

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE INGENIERIA

CRITERIO PARA DISEÑO SISMICO DE ESTRUCTURAS CON DISPOSITIVOS DISIPADORES DE ENERGIA

OUE OBTENER EL TITULO DE PARA INGENIERO CIVIL Ε S E т R FRANCISCO LEONEL SILVA GONZALEZ

DIRECTORA DE TESIS: DRA. SONIA ELDA RUIZ GOMEZ

MEXICO, D. F.,

TESIS CON FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. CRITERIO PARA DISEÑO SÍSMICO DE ESTRUCTURAS CON DISPOSITIVOS DISIPADORES DE ENERGÍA

CAPITULO	1. INTRODUCCIÓN	I		•••••		. 1
1.1 An	tecedentes					. 1
1.2 Ob	jetivos y alcance					
CAPITULO 2	2. PLANTEAMIENT	O DEL PROBLE	МА			. 9
2.1 De	finiciones				- 	9
2.2 Par 2.3 Pla	rámetros conocidos y inteamiento del prof	y desconocidos		•••••••••••••••••		. 11
	incumento del proc					
CAPITULO 3	. CRITERIO DE DI	SEÑO				. 15
3.1 Ba	ses preliminares					15
3.2 Cri	terio de diseño					. 58

CAPITULO 4. DISENO DE EDIFICIOS CON Y SIN DISIPADORES	72
 4.1 Datos 4.2 Diseño del marco con disipadores 4.3 Diseño de los marcos convencionales 	72 74 145
CAPITULO 5. ANÁLISIS DINÁMICO DE LAS ESTRUCTURAS	152
 5.1 Envolvente de los desplazamientos de cada nivel 5.2 Historia de desplazamientos relativos de cada entrepiso 5.3 Historia de fuerzas axiales que se desarrollan en las columnas 5.4 Envolventes de fuerzas axiales, fuerzas cortantes y momentos 	154 155 160
 5.5 Envolvente de momentos flexionantes en las trabes 5.6 Articulaciones plásticas en los marcos 5.7 Coeficiente sísmico asociado a cada marco 5.8 Disipación de energía en el marco con disipadores 5.9 Resistencias y ductilidades de entrepiso	162 164 165 168 171 177
CAPITULO 6. CONCLUSIONES Y RECOMENDACIONES	190
BIBLIOGRAFÍA	193
APÉNDICES	
 A. FÓRMULAS DE WILBUR B. ARCHIVOS DE DATOS C. PROGRAMA PARA EL CÁLCULO DE	199 202
DIAGRAMAS DE INTERACCION D. ARCHIVOS PARA EL CÁLCULO DE RESISTENCIAS DE ENTREPISO	234 238

1.1 ANTECEDENTES.

Cuando un sismo de gran magnitud excita una estructura, el grado de daño que adquiere, depende de la manera en que esta absorbe los altos niveles de energía cinética a los cuales se ve sujeta. Como los códigos de diseño actuales lo reconocen, sería demasiado costoso absorber esta energía dentro de la capacidad elástica de los materiales, es por eso que la mayoría de los reglamentos, recomiendan aprovechar la ductilidad que son capaces de desarrollar las estructuras. Los edificios diseñados así dependen para su supervivencia, durante un sismo severo, principalmente de la ductilidad que pueden desarrollar los elementos estructurales que la conforman. Gracias a esta ductilidad la estructura puede disipar energía cinética mediante sus deformaciones inclásticas. La razón de esto es que, al entrar la estructura a su comportamiento inclástico, la respuesta se reduce, ya que hay disipación de energía; esto hace pensar que la estructura posee cierta cantidad de amortiguamiento, y en efecto, este tipo de amortiguamiento es el *amortiguamiento histerético*, ya que sólo se presenta cuando la

CAPITULO

estructura está sujeta a inversiones en el signo de la carga en el rango inelástico. Como se muestra en la figura 1.1, un lazo de histéresis de un solo piso se hincha hacia afuera. La energía que corresponde al área del lazo (área ABCDA) se disipa en el ciclo. Este tipo de amortiguamiento no se afecta por la velocidad de la estructura, pero se incrementa con el nivel de desplazamiento.

El amortiguamiento de una estructura ante las perturbaciones sísmicas no solo se compone de *amortiguamiento histerético*, existen además otros tipos de amortiguamiento, y que en conjunto todos ellos, ayudan a la estructura a disminuír su respuesta sísmica. El amortiguamiento de una estructura se compone, además del histerético de un:

carga-deflexión.

Amortiguamiento viscoso externo. Es el provocado por el agua o el aire que rodean una estructura; es lo

suficientemente pequeño como para resultar despreciable en comparación con otros tipos de amortiguamiento.

Amortiguamiento viscoso interno. Este tipo de amortiguamiento está asociado con la viscosidad del material. Es proporcional a la velocidad de manera que el factor de amortiguamiento se incrementa en proporción a la frecuencia natural de la estructura. Este tipo de amortiguamiento es el que se incluye en los análisis dinámicos introduciendo un amortiguador al modelo de la estructura (tigura 1.2b), en la figura F_1 =fuerza de increia, F_p =fuerza de amortiguamiento, y F_1 =fuerza que resiste el resorte.

Amortiguamiento por fricción de cuerpo. Este amortiguamiento, al que también se le llama amortiguamiento de Coulomb, se presenta debido a la tricción en las conexiones o puntos de apoyo.

Amortiguamiento por radiación. Cuando la estructura de un edificio vibra, se propagan ondas elásticas a través del terreno sobre la que está construida. La energía introducida a la estructura se disipa por esta propagación de la onda. Es decir, parte de

la cnergía que el sismo introduce a la estructura, se "regresa" al terreno, debido a la vibración de la estructura.

Amortiguamiento histerético alrededor de la cimentación. Es parte del amortiguamiento externo y lo causa una deformación inclástica del terreno en la vecindad de la cimentación.

Fig. 1.2 Sistema de un grado de libertad.

De todos los tipos de amortiguamiento anteriores el que se presenta en mayor cantidad en una estructura es el *amortiguamiento histerético* (si y sólo, si la estructura tiene comportamiento suficientemente dúctil). Así pues, como antes se mencionó, la vida de la estructura depende de este amortiguamiento.

En la mayoría de los análisis de respuesta dinámica de estructuras de edificios, todas las diversas fuentes de amortiguamiento se representan por un *amortiguamiento* viscoso. El *amortiguamiento histerético* se toma en cuenta mediante un amortiguamiento viscoso equivalente. Este amortiguamiento viscoso equivalente se obtiene como (ver figura 1.1):

 $\xi_{eq} \equiv \frac{1}{2\pi} \frac{\dot{a}rea \ de \ lazo \ ABCDA}{\Delta OAE + \Delta OCF} \equiv \frac{1}{2\pi} \frac{\Delta W}{W}$

donde W=energía disipada en el ciclo.

Sin embargo, el hacer esta equivalencia, conduce a resultados erróneos cuando el nivel de deflexión es muy grande. En análisis más refinados, el *amortiguamiento histerético* a menudo se considera en, la representación de la rigidez, mediante el uso de las características de la fuerza restauradora inelástica. Un programa de cómputo que permite hacer esto es el DRAIN-2D [#22 y 38].

Como se ve, el amortiguamiento en la estructura es fundamental para la reducción de su respuesta sísmica, pero el inconveniente de que la estructura disipe por

sí misma la energía cinética que le es introducida por el sismo, es que los elementos estructurales se deterioran irreversiblemente cuando adquieren deformaciones inelásticas importantes, es decir se producen agrietamientos indescables, fallas prematuras, etc., lo que obliga a veces a reconstruir secciones completas o tal vez a que se tenga que demoler el edificio, con todas las pérdidas económicas que ello implica.

Por todo lo anterior, se propone el empleo de un amortiguamiento adicional, un amortiguamiento externo que produzea reducciones apreciables de la respuesta sísmica, sin tener que depender de la ductilidad que pueda desarrollarse en la estructura, lo que permitirá <u>reducir</u> o <u>eliminar</u> la posibilidad de daños a la estructura (articulaciones plásticas, agrietamientos, etc.). Lo anterior se apoya en investigaciones recientes que han mostrado la conveniencia de suministrar dispositivos externos de disipación de energía a las estructuras, los cuales disminuyen notablemente las demandas de ductilidad en los sistemas estructurales [***** 23]. El concepto básico es que la energía se disipe a través del trabajo mecánico de estos dispositivos y no por el comportamiento dúctil de los elementos de la estructura.

Estos dispositivos se clasifican, según su funcionamiento, como de control pasivo y de control activo. Los dispositivos de control pasivo responden al movimiento de la estructura de forma prefijada por el diseñador, mientras que los dispositivos de control activo responden de acuerdo a un mecanismo de control que se ajusta a la excitación que está ocurriendo durante un sismo y que se retroalimenta con la respuesta que está ocurriendo. Este mecanismo de control recurre a equipo analógico o digital de control. Entre los dispositivos de control activo más importantes destacan los de masa activa y los tendones activos.

Masa activa.

El movimiento de la masa sobre el último nivel de la estructura se controla por medio de una computadora instalada en el mismo nivel, que detecta el movimiento del edificio a través de sensores y envía a los actuadores una señal que provoca la aplicación de fuerzas externas a las masas para el control de los desplazamientos (figura 1.3).

Tendones activos.

Su principal objetivo es modificar el período fundamental de la estructura para evitar que se encuentre cerca de la frecuencia dominante del temblor para cada instante de tiempo y así evitar grandes amplificaciones del movimiento (figura 1.4) [# 21].

Fig. 1.4 Tendones activos

Entre los dispositivos de control pasivo destacan principalmente tres sistemas: aisladores de base, osciladores resonantes y disipadores de energía. Sus principales características son:

Aisladores de base.

La finalidad de estos dispositivos es la de provocar el desacoplamiento de las características dinámicas de la estructura y las del suelo que la soporta. Esto se logra aumentando la flexibilidad y reduciendo la resistencia de la base de la estructura utilizando diferentes tipos

Fig. 1.5 Aislador de base.

de sistemas de aislamiento (figura 1.5) [# 44]. Se han construido estructuras que usan aislamiento sísmico por lo menos en 17 países [# 25].

Osciladores resonantes.

Son pisos adicionales colocados sobre diferentes niveles, comúnmente el último nivel de la estructura, con ciertas propiedades dinámicas que reducen la respuesta de la misma [# 26].

Disipadores de energía,

Estos dispositivos son colocados en la superestructura y basan su funcionamiento en el comportamiento histerético de los elementos componentes, por lo que dependen de los desplazamientos relativos de entrepiso. Dentro de este tipo de dispositivos destacan aquellos basados en la fricción [# 35], en la deformación plástica de los metales [# 24] y en el comportamiento de materiales viscoclásticos.

Los mecanismos de fricción basan su disipación de energía en una especie de balata de freno insertada entre placas de acero sometidas a una presión transversal (figura 1.6) [47 49].

Los mecanismos basados en la disipación de energía por plastificación de placas pueden comprender cualquiera de las siguientes cuatro tipos de deformación: flexión (figura 1.7) (# 48], compresión (# 20], tensión (# 15] y torsión (figura 1.8) (# 43].

Fig. 1.7 Dispositivo de flexión.

Fig. 1.8 Dispositivo de torsión

1.2 OBJETIVOS Y ALCANCE.

El objetivo de esta tesis, es proponer un criterio de diseño sísmico para estructuras con dispositivos disipadores de energía, las cuales disiparan parte de la energía cinética que le es introducida por un sismo a través del trabajo mecánico de estos y parte por medio del amortiguamiento interno de la estructura.

La metodología de diseño propuesta se enfoca a estructuras esqueletales de concreto reforzado regulares en elevación y planta¹, que cuentan con disipadores de energía en toda su altura.

El procedimiento que se presenta ofrece dos alternativas:

1) Realizar iteraciones correctivas para que las estructuras diseñadas con disipadores tengan un período de vibración similar al de una estructura convencional.

¹ Que cumplan con las Condiciones de Regularidad, dadas por las Normas Técnicas Complementarias para Diseño por Sismo (inciso 6 de estas normas) [# 12].

2) No realizar iteraciones correctivas.

La primera opción es útil para realizar estudios sobre la respuesta estructural de edificios en los que se varíe el porcentaje de rigideces laterales que toma el sistema disipador y el que toma la estructura de concreto. También se ha empleado para comparar respuestas de edificios con diferentes arreglos de disipadores (= 45 y 46).

Se supone que la rigidez y la resistencia de los dispositivos disipadores son parámetros independientes. La hipótesis anterior no es rigurosamente cierta, por lo que es una limitación del procedimiento. Debido a que se tratan solamente estructuras regulares, el efecto de torsión es despreciable.

Los lineamientos que se presentan no contemplan el diseño por cortante de los elementos; solamente se analiza el diseño por flexión. Tampoco se toma en cuenta la interacción suelo-estructura.

Con el fin de ejemplificar los procesos de análisis y diseño propuestos, se muestran los pasos a seguir para diseñar un *marco con disipadores de energía*. También se diseñan dos *marcos convencionales*. Los tres marcos anteriores son de diez niveles y tres crujías y tienen un período fundamental de vibración de 1 s aproximadamente. Se realiza un análisis dinámico inelástico paso a paso de los tres marcos excitándolos con el acelerograma registrado en la Secretaria de Comunicaciones y Transportes durante el movimiento sísmico del 19 de septiembre de 1985 (componente este-oeste). Se discuten los resultados del comportamiento estructural de los tres diseños.

Se siguen las disposiciones para el diseño de trabes y columnas dadas por las Normas Técnicas Complementarias (NTC) para el Diseño de Estructuras de Concreto, 1987 [rer 11].

PLANTEAMIENTO DEL PROBLEMA.

2.1 DEFINICIONES.

Antes que nada conviene dar las definiciones de algunos términos usados en este trabajo.

Rigidez y Resistencia de la estructura. En este trabajo se entenderá por rigidez y resistencia de la estructura a la rigidez y resistencia lateral de la misma.

Estructura (marco) convencional. La rigidez y resistencia totales ($K_T y R_T$ respectivamente) de esta estructura dependen únicamente de las propiedades mecánicas y geométricas de sus trabes y columnas. Esta estructura, como se verá en el capítulo 3, ayuda en el dimensionamiento de la estructura con disipadores.

Estructura (marco) con disipadores. La rigidez total (K_T) de esta estructura depende de las características mecánicas y geométricas de sus trabes, columnas y disipadores. De hecho la rigidez total de la estructura es la suma de la rigidez que aportan las trabes y columnas (K_{ud}) mas la rigidez que aporta el sistema disipador (K_u). Lo mismo sucede con las resistencia de la estructura ($R_T = R_{ut} + R_{dt}$ ver figura 2.1).

(2.1)

Estructura (o marco) sin disipadores. Es la misma estructura anterior pero sin disipadores (ver figura siguiente). Obviamente esta estructura es más flexible que la anterior.

Fig. 2.1 Rigideces K_T y resistencias R_T de la estructura con disipadores.

Sc establece lo siguiente

$$K_{zd} = \alpha_1 \cdot K_T \quad o \ bien \quad \alpha_1 = \frac{K_{sd}}{K_T}$$

$$K_d = \alpha_2 \cdot K_T \quad o \ bien \quad \alpha_2 = \frac{K_d}{K_T}$$

$$R_{zd} = \beta_1 \cdot R_T \quad o \ bien \quad \beta_1 = \frac{R_{zd}}{R_T}$$

$$R_d = \beta_2 \cdot R_T \quad o \ bien \quad \beta_2 = \frac{R_d}{R_T}$$

$$\alpha_1 + \alpha_2 = 1 \quad ; \quad \beta_1 + \beta_2 = 1$$

PLANTEAMIENTO DEL PROBLEMA

Según las ecuaciones anteriores α_1 es la fracción de la rigidez total que tendrá la estructura sin disipadores, α_2 es la fracción de la rigidez total que posee el sistema disipador, β_1 es la fracción de la resistencia total que tendrá la *estructura sin disipadores*, β_2 es la fracción de la resistencia total que posee el sistema disipador.

Proceso de dimensionamiento. Es una serie de pasos a seguir para calcular las secciones transversales de los elementos estructurales de un edificio, con las cuales se dará a la estructura la rigidez de entrepiso deseada.

Proceso de reforzamiento. Es una serie de pasos a seguir para calcular el refuerzo necesario de los elementos estructurales de un edificio. La cantidad de refuerzo depende de las fuerzas exteriores de diseño y de las características mecánicas y geométricas de la estructura, de acuerdo con esto, si la rigidez de la estructura no varía, el valor de la resistencia de entrepiso de la estructura no es un parámetro que pueda elegirse de antemano con facilidad, como sucede con la rigidez de entrepiso.

La rigidez y resistencia de entrepiso no son parámetros de diseño independientes.

2.2 PARÁMETROS CONOCIDOS Y DESCONOCIDOS.

Los datos que por lo general se tienen disponibles para comenzar un diseño son los siguientes:

a) Una estimación de los pesos de cada nivel.

b) Propiedades mecánicas del material de construcción.

c) Geometría global de la estructura, es decir, alturas de entrepiso, distancias entre columnas, etc.

d) Como se mencionó en el capitulo 1, en este trabajo se tratan estructuras regulares y por lo tanto si se usa el Método de Análisis Sísmico Estático (inciso 8 de las NTC para Diseño por Sismo) para culcular los cortantes que actuarán en los diferentes niveles de la estructura, la ley de variación de estos será muy cercana a la real. Entonces los cortantes de entrepiso y su ley de variación también son conocidos.

Las variables desconocidas en el diseño son las características geométricas y mecánicas de los elementos estructurales del edificio, es decir, las secciones transversales de trabes, columnas y disipadores así como sus resistencias.

2.3 PLANTEAMIENTO DEL PROBLEMA.

Este tipo de estructuras son especiales y las rigideces de entrepiso no pueden tomar cualquier valor, dependen en gran parte de los disipadores de energía. Tal vez se elijan valores de K_{sd} y K_d con los cuales estos no funcionen adecuadamente. Es deseable entonces que la *estructura con disipadores* tenga valores específicos de los parámetros α_1 y α_2 y también de su período fundamer al de vibración. Para encontrar los valores óptimos de estas variables es necesario dar respuesta a las siguíentes preguntas:

a) ¿Cómo se modela el disipador?

Esta pregunta es importante, ya que para diseñar cualquier estructura, es necesario tener un modelo que represente lo más cercano posible, las características geométricas y mecánicas de la estructura real. En particular para el disipador se debe estudiar como es su comportamiento estructural, para entonces buscar un modelo matemático que lo represente en el análisis.

b) ¿Cuál es el período de vibración adecuado para la estructura con disipadores?

Esta pregunta tiene que ver con la deformación a la cual trabajarán los disipadores ya que si se diseña una estructura flexible estos se verán sometidos a deformaciones grandes y si se diseña una estructura más rígida las deformaciones disminuirán. El comportamiento del disipador depende del período de vibración de la estructura y de la excitación a la que se somete.

c) ¿Cómo se modelará matemáticamente la estructura durante el proceso de dimensionamiento?

Una estructura se puede modelar de varias maneras, las más comunes son: usando un modelo tipo esqueletal o como el modelo de cortante. Como se sabe este último, es más sencillo pero no representa adecuadamente, en muchos casos, el comportamiento real de la estructura. Por el contrario el modelo tipo esqueletal se apega más a la realidad.

Puede usarse el modelo de cortante en la etapa de predimensionamiento para tener una idea de las rigideces totales de entrepiso (K_T) que debe tener la *estructura con disipadores* y después analizar y diseñar definitivamente la estructura usando el modelo tipo esqueletal con algunas correcciones en sus elementos estructurales, debido a que se puede subestimar los desplazamientos reales de esta. En el capítulo siguiente se estudia cómo pasar del modelo de cortante al tipo esqueletal y se plantean las correcciones necesarias.

d) ¿Cómo debe variar la rigidez de entrepiso¹ a lo largo de la altura del edificio?

Se hace esta pregunta porque el buen comportamiento del edificio depende en parte de las rigideces de entrepiso que posea, ya que los desplazamientos que tenga durante un movimiento sísmico o cualquier excitación lateral son función directa de estas.

El comportamiento de los disipadores depende de la amplitud de deformación (elongación) a la cual trabajen, que a su vez, depende de los desplazamientos relativos de la estructura que son función de las rigideces de entrepiso.

Por lo tanto la variación de rigideces con respecto a la altura del edificio es deseable que tenga cierta forma.

¹ Éste criterio como se mencionó en el capitulo 1. es solamente para estructuras compuestas por marcos regulares en elevación donde es válido el concepto de rigidez de entrepiso.

PLANTEAMIENTO DEL PROBLEMA

e) ¿Que fracción de la rigidez total y de la resistencia total debe aportar la estructura como tal y cuanta debe aportar el sistema disipador para que las trabes y columnas de la *estructura con disipadores* sufran daños mínimos y la energía sea disipada por medio de los elementos disipadores y el amortiguamiento interno?

Se refiere a que parámetros α_1 , α_2 , β_1 y β_2 son los óptimos

n ¿Cuál es la mejor disposición de disipadores en el marco?

Si se varía la disposición de los disipadores en la estructura variará ligeramente el período natural de vibración, las fuerzas internas que se desarrollen en el marco (y con esto el costo), los desplazamientos relativos, etc. Esto influye en el buen comportamiento de los disipadores y por supuesto de toda la estructura.

Todas las preguntas anteriores se estudian con más detalle en el siguiente capítulo.

CRITERIO DE DISEÑO.

3.1 BASES PRELIMINARES.

Comúnmente para conseguir que una estructura sea razonablemente económica¹, el proceso de diseño es iterativo ya que, una vez que se ha hecho la primer propuesta habrá que verificar que tanto los desplazamientos como la cantidad de refuerzo de la estructura sean razonables y estén dentro de los límites marcados por el reglamento, si no es así, surge la necesidad de hacer una nueva propuesta y una nueva revisión . Al proponer secciones sobradas de los elementos estructurales, tal vez no haya necesidad de iterar, pero el costo de la estructura será alto.

Lo que se puede hacer es idear métodos que reduzcan el número de iteraciones. El método de diseño que se propone en esta tesis, es también un proceso iterativo, pero como se verá más adelante las iteraciones que se hacen son menores a las que se harían

¹ El obtener un diseño óptimo es prácticamente imposible, ya que el proceso de diseño necesita ser muy detallado. Lo que se consigue es un diseño razonable.

.

con un diseño convencional.

Como se ha dicho el objetivo de este trabajo es proporcionar un criterio para diseñar una estructura que disipe parte de la energía que le es introducida por un sismo a través del trabajo mecánico de dispositivos disipadores de energía. Existen varias preguntas cuando se va a diseñar este tipo de estructuras, las cuales fueron planteadas en el capítulo anterior y que en este se les dará respuesta.

3.1.1 Propuesta preliminar para el criterio de diseño.

Se proponen dos etapas para el criterio de diseño

 En la primera, se analiza la estructura con disipadores como si fuese una convencional. Esta última se dimensiona para que tenga características especiales que dependerán del trabajo mecánico de los disipadores y del parámetro α₁ (ecuaciones 2.1).

 La segunda etapa consiste en "convertir" la estructura convencional de la etapa anterior en la estructura con disipadores, de la siguiente manera;

a) se disminuyen las secciones transversales de las columnas y trabes de la estructura convencional hasta obtener una estructura con la rigidez K_{xx} . La disminución esta en función de α_1 . En este paso se obtiene la estructura sin disipadores (ver fig. 2.1).

b) se incorporan los disipadores a la estructura resultante para que estos aporten la rigidez faltante K_{se}

Al final del proceso de dimensionamiento la estructura con disipadores tendrá el mismo período y la misma rigidez que la estructura convencional.

Parece ser que la etapa I es innecesaria: Lo es, si no es de importancia el valor que adquiera al final del diseño el factor α_1 .

La etapa I es necesaria si se desea que α_1 tenga un valor constante en todo el proceso de diseño; esta etapa tiene tres funciones principales:

a) facilitar el cálculo de las secciones transversales de los elementos estructurales

de la estructura con disipadores y mantener fijo el valor de α_1

b) verificar de manera indirecta mediante la estructura convencional que los desplazamientos de entrepiso de la estructura con disipndores no excedan el permitido.

c) las dimensiones de sus elementos estructurales servirán como base para el dimensionamiento de otras estructura con disipadores con diferentes valores de α_1 pero con períodos de vibración parecidos. Esto resulta muy útil cuando se desea hacer un estudio de optimación de los parámetros α y β .

3.1.2 Modelado del sistema de disipación de energía.

¿Cómo modelar un disipador?. Para contestar esta pregunta se debe conocer primero cómo trabaja un disipador. Se estudiará el caso de un dispositivo en particular, uno cuya disipación de energía es a través de la plastificación de placas.

Desde 1974, en el Instituto de Ingeniería de la UNAM se ha estudiado el comportamiento de dispositivos disipadores de energía en forma de "U" (figura 3.1), cuyo comportamiento histerético es muy estable [** 3]. Este dispositivo tiene un comportamiento histerético experimental como el mostrado en la figura 3.2. Las gráficas de la figuras se obtuvieron de montar el dispositivo en un marco de carga, como el mostrado en la figura 3.3, y someterlo a una prueba cíclica, en la cual se aplica un desplazamiento controlado con un movimiento de tipo armónico [** 41]. En las gráficas, se observa que el dispositivo fluve en un sentido al jeual que en el oouesto.

Este tipo de disipador se coloca junto con una diagonal. Para no introducir flexión al sistema (diagonal-disipador), se articula esta última en sus extremos (figura 3.4). La razón de porqué no admitir esfuerzos flexionantes en el sistema, es porque estos disminuyen la capacidad para resistir fuerzas axiales y por tanto el disipador no trabajaría como debiera esperarse.

Por lo anterior, el sistema diagonal-disipador se puede modelar como una sola

Fig. 3.1 Dispositivo de soleras.

Fig. 3.4 Colocación del disipador.

diagonal con la rigidez y resistencia que posea dicho sistema y permitiendo que esta diagonal fluya a compresión y a tensión. Un programa de cómputo que permite hacer esto es el DRAIN-2D (# 22 y 38). Este programa tiene la opción para permitir que una diagonal fluya a tensión y compresión o, fluya a tensión y se pandeé elásticamente a compresión, en este caso se elige la primera opción.

Para disipadores de energía que basen su funcionamiento en la fricción (ver figura 1.6) se puede hacer lo mismo. El diseño del modelo que refleja de forma aproximada el comportamiento real del mecanismo de fricción, está compuesto de diagonales cuvo comportamiento es el que resulta de la superposición de elementos armadura y elementos viga-columna (del programa DRAIN-2D), este modelo se muestra en la figura 3.5. Primero, todos los miembros se modelan por elementos armadura con sus propicurvas de carga-deformación (en este caso, curvas histeréticas). Para las cuatdiagonales exteriores se permite que se pandeen clásticamente en compresión y las dos diagonales interiores que son las que poseen el mecanismo de fricción (una especie de balata de freno(cojincillo) insertada en la unión de estas dos diagonales] fluirán en tensión y compresión. Los elementos viga-columna con área transversal igual a-cero se

Fig. 3.5 Modelo refinado para un marco con dispositivo de fricción.

superponen sobre los elementos armadura anteriores; los elementos viga-columna sólo pueden introducir flexión al sistema. Estos últimos se introducen para asegurar que el mecanismo de fricció: permanezca estable. Este modelo es nuy refinado que, posee muchos elementos y grados de libertad tan solo para un marco de una crujía y un nivel, para marcos de más niveles y crujías el tiempo de cómputo se incrementa significativamente [= 16].

Cualquier dispositivo disipador de energía ya sea de fricción o de plastificación

de placas se puede modelar empleando los "elementos armadura" del programa DRAIN-2D con fluencia a tensión y compresión. Estos "elementos armadura" son diagonales cuya rigidez axial (EA/L) será igual a la rigidez que tiene el sistema diagonal-disipador, en este trabajo, a estas diagonales se les llama *diagonales equivalentes*.

Si un disipador se puede modelar por medio de una *diagonal equivalente*, ¿porqué no sustituir el disipador por una diagonal de contraventeo con las mismas características mecánicas y geométricas del disipador ya que también la gran rigidez y resistencia de los marcos contraventeados hacen que se minimicen los daños tanto estructurales como no estructurales producidos por los temblores?. Existen algunos problemas relativos al comportamiento de las diagonales bajo carga efclica y al pandeo de estas.

Cuando se usan contraventeos en X una fuerza sísmica intensa en una dirección ocasiona un alargamiento de una de las diagonales (figura 3.6 a) mientras que la otra, incapaz de trabajar en compresión, simplemente se "cuelga" (fig. 3.6 b), sin aceptar fuerza alguna. Cuando en el siguiente ciclo de carga vuelve a aplicarse la fuerza lateral en la misma dirección, la

Fig. 3.6 Marco contraventeado.

diagonal que se alargó en el primer ciclo no ofrece ninguna resistencia hasta que se reestira, y entonces vuelve a alargarse. Esto da lugar a ciclos histeréticos "aplastados", como los que se muestran en la figura 3.7 en los que se observan grandes desplazamientos laterales producidos por incrementos muy pequeños de las cargas, lo que hace que el sistema absorba y disipe una cantidad reducida de la energía que recibe durante los temblores. Para evitar este comportamiento inadecuado, los contravientos deben arreglarse y diseñarse de tal manera que cada diagonal que trabaje en tensión esté acompañada siempre por otra que resista las fuerzas sísmicas trabajando en compresión

CRITERIO DE DISEÑO

Fig. 3.7 Ciclo histerético de un marco sometido a carga vertical constante y a cargas horizontales repetidas alternadamente.

Aún en este caso los elementos de contraventeo han de diseñarse con cuidado, pues en estudios de laboratorio se ha comprobado que la resistencia en compresión de los miembros sometidos a cargas axiales eíclicas, que producen tensiones y compresiones alternadas, disminuye drásticamente después del primer ciclo de carga, es decir estos elementos presentan una degradación de resistencia y rigidez apreciable aún cuando estén diseñados para soportar cargas de compresión.

Debido a que las diagonales deben de cumplir ciertos requisitos para poder resistir cargas de compresión, existirán casos en que las características del disipador no puedan darse mediante un sistema de contraventeo, por ejemplo en claros grandes la

longitud de la diagonal también lo será y tal vez la rigidez mínima que puede ofrecer la diagonal (que estará en función de su relación de esbeltez) sea mayor que la rigidez del disipador y por tanto cambie totalmente el diseño. Aún cuando se pudiesen cumplir con todas las propiedades del disipador, existe la gran desventaja que un marco contraventeado ofrece menos capacidad de disipar energía, sus ciclos histeréticos no son estables ya que hay degradación de rigidez y resistencia. Es por eso la preferencia por los disipadores ya que estos tienen ciclos histeréticos bastante estables y además una gran resistencia a la fatiga [= 10].

3.1.3 Período de vibración de la estructura con disipadores.

Después de haber estudiado cómo trabajan los disipadores se puede decir que las estructuras donde funcionan bien estos son aquellas donde los desplazamientos de entrepiso son relativamente grandes², es decir, aquellas estructuras que son <u>flexibles</u>. La flexibilidad de una estructura se puede medir con su período natural de vibración que para el caso mas simple, de un grado de libertad (figura 3.8), es igual a

$$T = 2\pi \sqrt{\frac{M}{K}}$$
(3.1)

² Se dice relativamente grandes ya que en estructuras normales, desplazantientos de entrepiso del orden de 2.5cm (amplitud de desplazamiento para el cual se han comportado bien los disipadores, ver figura 3.2 y primer párrafo de 3.1.6.1), ya lo son.

donde

M = W/g, W = peso de la estructura, g = aceleración de la gravedad.K = rigidez de la estructura.

Para estructuras de más de un grado de libertad el período natural de vibración se puede obtener

a) mediante una técnica de análisis modal. La manera de obtener el período es calculando los valores característicos (ω^3) del sistema K- ω^3 M donde ω es la frecuencia circular del sistema. El período se obtiene mediante $T=2\pi/\omega$.

b) mediante técnicas aproximadas como las de Stodola y Holzer.

Para más detalle sobre estos métodos consultar por ejemplo las referencias 9, 37, 47.

Si T es grande la estructura es flexible, por el contrario si T es pequeño la estructura es menos flexible.

Uno de los requisitos para el criterio es diseñar estructuras lo más flexibles posible. Es decir el período de vibración adecuado para una estructura con disipadores debe ser lo mas grande posible.

Como se observa en la expresión 3.1³, el período de vibración depende del peso y de la rigidez de la estructura; como el peso de la estructura no es un factor que varíe demasiado⁴ la única variable es la rigidez (como se menciona en el capítulo anterior). Esta depende de las características geométricas y mecánicas de los elementos estructurales. Estas últimas también se definen desde el principio y no se modifican, por lo tanto es mas factible variar el período fundamental de vibración de una estructura cambiando el tamaño de las secciones transversales de los elementos estructurales.

Así pues, para hacer la estructura flexible, hay que colocar secciones lo mas

³ Que aunque solo es válida para estructuras de un grado de libertad, proporciona una idea de como varía el período cuando varían las características de las cuales depende siempre, independientemente del número de grados de libertad.

⁴ Se puede tomar como una cantidad constante si se ha establecido con anterioridad el uso del edificio (carga viva) y si se desprecia la variación del peso de los elementos estructurales durante el proceso de diseño.

(3.2)

pequeñas posible (esto disminuye la rigidez y aumenta el período). El Reglamento de Construcciones del Distrito Federal, en sus Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto establece un mínimo de tamaño de secciones para algunos elementos estructurales, así por ejemplo, para columnas la dimensión menor es de 20 cm, ó de 30 cm si el marco es dúctil [== incisos 4.2.1 y 5.3.1 de la referencia 11]. El tamaño mínimo de secciones y por lo tanto la rigidez mínima de entrepiso (que corresponde al último entrepiso) están condicionados por el Reglamento o tal vez por el mismo proyecto arquitectónico. La manera de calcular la rigidez de entrepiso mínima se muestra en el inciso 3.1.5.

3.1.4 Modelado de la estructura convencional.

Como se plantea en el capítulo 2, puede comenzarse a diseñar y analizar la estructura real modelándola como una estructura de cortante. Se plantea de esta forma ya que la incógnita principal del diseño son las dimensiones de los elementos estructurales y, para este modelo la ecuación que relaciona estos parámetros con las rigideces de entrepiso es bastante sencilla. Si la estructura es de cortante, la rigidez de entrepiso se calcula mediante la siguiente ceuación

$$K = \sum_{i=1}^{n} \frac{12E_{i}I_{i}}{H^{3}}$$

donde

K = rigidez de entrepiso.

n = número de columnas en el entrepiso.

E = módulo de elasticidad del material de la columna i.

I = momento de inercia de la sección de la columna i.

H = altura de la columnas.

Para calcular las secciones de las columnas es necesario, como se observa en la ecuación anterior, conocer las rigideces de entrepiso (estas se calculan en el inciso 3.1.6).

Supongamos primero que la etapa I del inciso 3.1.1 se descarte, es decir, que no se use la *estructura convencional*. El cálculo de las secciones de las columnas de la *estructura con disipadores* se haría con la ecuación 3.3 sustituyendo K por $K_{sd} = \alpha_1 \cdot K_T$ y las áreas de las *diagonales equivalentes* por medio de la ecuación 3.20 del inciso 3.1.9. El problema surgirá cuando se desee analizar la estructura con el modelo tipo esqueletal, ya que la rigideces K_{sd} y K_d que se había supuesto iban a aportar las columnas y los disipadores serán menores³. Si los desplazamientos son menores a los permitidos y la variación de α_1 es tolerable, las dimensiones de los elementos estructurales calculadas pueden quedar como definitivas. Si los desplazamientos exceden los permitidos habrá necesidad de aumentar el tamaño de las columnas propuestas o de las áreas de las *diagonales equivalentes* por lo que variarán los valores de K_{sd} y K_d y por lo tanto α_1 . Si no es de importancia este último factor las dimensiones que resulten pueden ser las definitivas; sin embargo, si se desea conservar el valor del factor α_1 hasta el final

⁵ Debido a que el modelo de cortante supone que las trabes son infinitamente rígidas y que las columnas no sufren acortamiento, lo que hace que la rigidez crezca y el período disminuya.

del diseño, entonces el proceso de dimensionamiento debe contener la etapa I, en la cual se hace uso de la *estructura convencional* que tendrá al final del proceso de dimensionamiento la misma rigidez y el mismo período que la *estructura con disipadores*. Las secciones de las columnas de la *estructura convencional* se calculan con la ecuación 3,3 sustituyendo K por K₁. Una vez que se han calculado las secciones de las columnas de la *estructura convencional*, esta se puede analizar con el modelo tipo esqueletal, para tomar en cuenta el comportamiento que se desprecia en el modelo de cortante (flexibilidad de trabes, acortamiento de columnas, deformaciones de cortante, etc.). Obviamente, se tendrá el mismo problema mencionado en el párrafo anterior, las rigideces que se esperan no son las reales, pero si los desplazamientos están dentro del rango permitido las dimensiones calculadas serán definitivas, de otra forma habrá que aumentar las dimensiones de las columnas (por lo tanto K_T) hasta que los desplazamientos estén dentro de lo permitido. La forma de aumentar las dimensiones de las columnas o la manera de recuperar la "rigidez perdida" al pasar de un modelo a otro se describe en el inciso 3.1.8.

El siguiente paso es convertir la estructura convencional en estructura con disipadores, de esta forma se asegura que esta última no tendrá desplazamientos mayores a los permitidos y que el factor α_1 será estable como se verá en 3.1.9.

Como se advierte en este inciso, el uso de la estructura convencional ahorra iteraciones innecesarias en el proceso de dimensionamiento y el modelar esta estructura como tipo de cortante facilita la estimación de las dimensiones de las secciones de sus columnas. En los siguientes dos incisos (3.1.5 y 3.1.6) se trata sobre la rigidez de la estructura convencional suponiendo que es modelada como estructura de cortante.

3.1.5 Rigidez de entrepiso mínima (KT min).

Esta rígidez corresponde al último entrepiso de la estructura con disipadores. Si

la estructura se modela como estructura de cortante la rigidez de entrepiso se calcula mediante la expresión 3.2

a) Si el producto El es constante en un entrepiso, la rigidez K_{sd} mínima ($K_{sd mm}$) de la *estructura sin disipadores* es igual a

$$K_{\rm sd\ min} = N^2 \ de\ columnas \left[\frac{12EI_{\rm min}}{H^3}\right] \tag{3.4}$$

donde I_{min} es el momento de inercia de la sección transversal mínima de la column n
 b) por otra parte, se sabe que

$$K_T = K_{sd} + K_d$$

también que

$$K_{sd} = \alpha_1 \cdot K_T$$

to bien $K_T = \frac{K_{sd}}{\alpha_1}$

si $K_{nd} = K_{nd \min}$ entonces $K_T = K_{T \min}$ as la ecuación anterior se convierte en

$$K_{T\min} = \frac{K_{M\min}}{\alpha}$$

sustituyendo 3.4 en la última ecuación se tiene

$$K_{T\min} = N^{2} de \ columnas \left[\frac{12EI_{\min}}{\alpha_{1} \cdot H^{3}} \right]$$
(3.5)

debe quedar claro que esta rigidez es la que tendrá el <u>último entrepiso</u> de la estructura con disipadores y por lo tanto de la estructura convencional.

Como se observa en la ecuación 3.5, es necesario tener establecido el valor de α_i , de esta forma las características de la *estructura con disipadores* quedan involucradas en el dimensionamiento de la *convencional* como se menciona en la etapa I de 3.1.1.

3.1.6 Rigideces totales de entrepiso (Kr) y su ley de variación.

Si se conoce la rigidez del último entrepiso $K_{T,min}$ (inciso 3.1.5) y la ley de variación de las rigideces (inciso siguiente), será inmediato conocer las rigideces de entrepiso totales (K_T). Luego el paso siguiente es calcular las secciones transversales de trabes y columnas, ya que la rigidez de entrepiso depende de estos dos parámetros.

Existen fórmulas que calculan de forma aproximada la rigidez de entrepiso, por ejemplo las llamadas Fórmulas de Wilbur (ver apéndice A). Suponiendo que los valores de K_r son ya conocidos, si se hace uso de las fórmulas anteriores para calcular las dimensiones de las secciones, se formará un sistema de ecuaciones donde las rigideces de entrepiso son variables conocidas y las rigideces de los elementos estructurales desconocidas (K_m y K_m de dichas fórmulas). Si se observa, el sistema de ecuaciones es muy complejo, y su solución no sería nada fácil.

Para no complicar el método de diseño, en la etapa de predimensionamiento se modelará la *estructura convencional* con el modelo de cortante, ya que como se vió en el inciso 3.1.4, la expresión que relaciona la rigidez de entrepiso con las dimensiones transversales de los elementos estructurales, es mucho mas sencilla (ecuación 3.2). Así las secciones transversales de las columnas se calculan con la ecuación 3.3. En esta etapa no es necesario conocer las secciones de las trabes, sino hasta que la estructura se analice con el modelo tipo esqueletal (ver inciso 3.1.8).

Rigurosamente, la rigidez de entrepiso es la relación entre la fuerza cortante absorbida por un marco, muro o contraviento en un entrepiso y el desplazamiento horizontal relativo entre los dos niveles que lo limitan. La rigidez así definida no es independiente del sistema de fuerzas laterales. Por tanto para calcularla con rigor debe conocerse tal sistema de fuerzas con anterioridad o al menos que ley de variación tienen las fuerzas con la altura, lo cual en general no es posible. En marcos ordinarios de edificios, el empleo de sistemas de cargas que no son estrictamente proporcionales al definitivo de análisis, introduce errores de poca importancia, y usualmente es aceptable

calcular las rigideces a partir de hipótesis simplificadoras sobre la forma del sistema de fuerzas laterales [\Rightarrow 8]. En este trabajo, para verificar que los valores definitivos de las rigideces K₁ sean similares a los teóricos, estas las rigideces de entrepiso se calculan como se menciona en este párrafo. El cálculo de las rigideces K₁ se muestra en 3.1.6.1.

3.1.6.1 Ley de variación de las rigideces de entrepiso.

El buen comportamiento de un disipador está en función directa de la amplitud de deformación de este ya que, mientras menor sea la amplitud de deformación más ciclos de carga soportará y si la deformación crece el disipador resiste menos ciclos de carga. Lo anterior se apoya en pruebas de laboratorio realizadas para los disipadores que se estudian en el Instituto de Ingeniería UNAM. Con el fin de estimar la influencia de la amplitud de la excitación en el comportamiento de los elementos se hicieron pruebas de fatiga a frecuencia constante de 0.50 Hz, con amplitudes de $\pm 0.5, \pm 1.0, \pm 1.5, \pm 2.0, \pm 2.5$ cm, también se efectuaron dos pruebas para cada una de las amplitudes, empleando un juego de dos soleras "U" en cada prueba y aplicando ciclos de deformación hasta causar la falla de uno de los elementos [m 41].

En la figura 3.10 se presenta una gráfica que relaciona la amplitud del ciclo de deformación con el número de ciclos a la falla por fatiga del material. En esta figura se puede apreciar que el número de ciclos para alcanzar la falla para un desplazamiento de ± 2.5 cm es aproximadamente 100, mientras que para un desplazamiento de ± 1.0 cm el número de ciclos crece notablemente, hasta alcanzar un valor aproximado de 1000.

Fig. 3.10 Curva de fatiga de los disipadores de energía

Otros resultados importantes obtenidos de los ensayes realizados en el Instituto son los siguientes [# 41].

1. El número de ciclos a la falla aumenta conforme se incrementa la dimensión A,

indicada en la figura 3.1. Así se puede recuperar la resistencia a la fatiga perdida por un posible aumento en el desplazamiento.

 Un cambio significativo en el período del cielo de carga afecta muy poco la capacidad de carga y el número de cielos a la falla.

El aspecto más importante y el que hay que subrayar es que una disminución relativamente pequena en la deformación unitaria nominal, aumenta de manera significativa el número de ciclos a la falla, por lo tanto, la vida del disipador depende de la deformación del mismo.

Se intuye que para que la estructura tenga un trabajo adecuado (incluyendo los disipadores), los desplazamientos relativos de entrepiso deben ser parecidos, de lo contrario los disipadores que se hallen en los entrepisos que tengan desplazamientos grandes, la resistencia a la fatiga será pequeña y entonces la disipación de energía total durante su vida útil también lo será puesto que soportará menos ciclos de carga. Esto haría que la rigidez del entrepiso al igual que la resistencia disminuyeran significativamente y por tanto se concentren los daños en este tipo de entrepisos.

El objetivo es dar una distribución de rigideces de entrepiso a la estructura de tal forma, que se produzcan durante un sismo, desplazamientos relativos similares en todos los entrepisos. Para lograr esto la ley de variación de las rigideces de entrepiso debe ser parecida a la de cortantes, debido a que la rigidez se ha definido como $K=V/\delta x$. Si se desea que δx sea constante $1/\delta x$ también lo será, por consiguiente

V ∝ K

(3.6)

pero, ¿con que distribución de fuerzas sísmicas se encuentra la distribución de rigideces?

Como se están tratando estructuras regulares, es válido usar el Método de Análisis Sísmico Estático [== 12 y 13]. Este supone que la variación de las aceleraciones de los niveles durante un movimiento sísmico es lineal con la altura y que el cortante sísmico en la base es igual a

$$V_o = W_o \cdot \frac{c}{Q}$$

donde

 $V_a = cortante basal.$

W_e = peso de la estructura.

e = coeficiente sísmico de diseño.

Q = factor de comportamiento sísmico.

Con este método de análisis sísmico no es necesario conocer el tamaño de las secciones de la estructura, así se podrá encontrar la ley de variación de las fuerzas sísmicas y por consiguiente la de rigideces de entrepiso para que los desplazamientos de entrepiso sean similares. Esto será valido siempre y cuando la estructura sea lo mas regular posible (cumplir con las condiciones del inciso 6 de las Normas Técnicas Complementarias para Diseño por Sismo) para que la ley de variación de los cortantes sísmicos calculada por este método sean lo mas cercana a la real.

De acuerdo con lo anterior, la ley de variación de las rigideces totales se puede calcular normalizando los cortantes sísmicos respecto al cortante basal de la siguiente forma

$$K'_{Ti} = \frac{V_i}{V_0} \quad para \ i = 1, 2, ..., n$$
 (3.7)

donde n = número de entrepisos, V_1 = cortante del entrepiso i, y V_0 = cortante basal. Para el primer entrepiso $V_1 = V_0$.

Sea $K_{\tau t}$ la rigidez total del entrepiso i de la *estructura convencional*. Se establece que

$$K_{\tau i} = \eta \cdot K'_{\tau i} \ para \ i = 1, 2, ..., n$$
 (3.8)

Puesto que se conoce la rigidez total del último entrepiso (que corresponde a la rigidez $K_{T_{min}}$ ecuación 3.5) y la rigidez normalizada del mismo (ecuación 3.7 haciendo i=n), el
(3.9)

factor η se puede calcular. De la última expresión

$$\eta = \frac{K_{\pi}}{K'_n} \quad para \ i = 1, ..., n$$

para el último nivel la ecuación anterior se convierte en

$$m_1 = \frac{K_{Tn}}{K'_{Tn}} \quad donde:$$
$$K_{Tn} = K_{T \min}$$

por lo que

$$=\frac{K_{T\min}}{K_{Tn}}$$

este factor se usa en la expresión 3.8 para obtener los valores de K_T con los cuales la estructura convencional (y por supuesto la estructura con disipadores) tendrán el máximo período posible y el desplazamiento de entrepiso será muy parecido en todos ellos.

Puesto que generalmente en la práctica profesional del diseño estructural, las secciones de las columnas no se dimensionan para que sean diferentes en cada entrepiso, sino que se tiende a colocar un mismo tipo de sección en cierto número de entrepisos, el siguiente paso es darle una ley de variación "práctica" a las rigideces de entrepiso calculadas con la ecuación 3.8, por ejemplo hacer $K_{T1} = K_{T2}$, $K_{T3} = K_{T4}$, etc, lo cual implica que en cada dos entrepisos se tendrá la misma sección de la columna (hasta este paso la *estructura convencional* ha sido modelada como una estructura de cortante).

3.1.7 Rigidez y resistencia de la estructura.

Se ha visto que la rigidez de la estructura con disipadores es la suma de la rigidez de la estructura sin disipadores (K_{ud}) y la rigidez que aporta el sistema disipador (K_{ud}).

Lo mismo pasa con la resistencia de la estructura $R_1 = R_{at} + R_d$, (ver figura 2.1). Se han definido los parámetros α y β de la siguiente manera (ver ecuación 2.1)

αı	$=\frac{K_{sd}}{K_T}$,	α ₂ =	$\frac{K_d}{K_T}$
ß	$=\frac{R_{sd}}{R_T}$;	β ₂ =	$\frac{R_d}{R_T}$

(3.10)

Se ha visto que para comenzar el diseño es necesario haber definido algún valor para α_1 o α_2 (ver ecuación 3.5). Es necesario, por lo tanto, conocer para que valor de α_1 la *estructura con disipadores* tiene un buen comportamiento. En la referencia 10, se llegó a la conclusión de que este tipo de disipador (con comportamiento histerético bilineal) trabaja eficientemente cuando más del 50% de la rigidez total de la estructura es proporcionada por los disipadores, es decir cuando $\alpha_1 < 0.5$ y $\alpha_2 \ge 0.5$. Esta afirmación no esta bien fundamentada ya que al parecer no se estudiaron los casos para cuando $\alpha_1 > 0.5$ y $\alpha_2 < 0.5$. El criterio a desarrollarse en este trabajo es tal que se pueden obtener si así se desea, varias *estructura con disipadores* con diferentes relaciones de rigidez (α) y de resistencia (β) a la vez que se mantiene el mismo período natural de vibración en todas ellas para ooder realizar la comparación de sus respuestas estructurales.

La elección del valor óptimo del parámetro α_1 o α_2 esta en función del costo total del edificio y de su respuesta estructural. En lo que se refiere a respuesta estructural, el mejor valor de α_1 o α_2 , es aquel con el que se obtienen desplazamientos y elementos mecánicos pequeños, un trabajo inclástico pequeño de trabes y columnas, una disipación de energía alta a través de los disipadores, etc. En relación al costo el valor óptimo de α_1 o α_2 se puede

Fig. 3.11 Valor óptimo de α_t en función del costo de la estructura.

obtener trazando una curva del estilo de la figura 3.11. Un punto en la gráfica de la

figura, representa el costo (ya sea inicial $C_1 \circ de$ reparación C_8) de una estructura diseñada con un factor α_1 . El factor α_2 esta implícito en la gráfica ya que $\alpha_2 = 1 - \alpha_1$. El costo total C_T de la estructura está dado por $C_T = C_1 + C_8$.

En relación con los parámetro β_1 y β_2 , no se tiene mucho que hacer, ya que la rigidez y resistencia lateral de una estructura son parámetros dependientes, por lo que una vez encontrado el valor de α quedará establecido automáticamente el valor de β .

3.1.8 Paso del modelo de cortante al modelo tipo esqueletal.

Una vez que se conocen las secciones de las columnas de la estructura convencional se debe analizar con otro modelo que se apege más al comportamiento real de una estructura, debido a que el modelo de cortante no brinda la información suficiente para poder calcular la rigidez real de la estructura (o bien sus desplazamientos). Este modelo sobrecstina la rigidez.

Ya que la rigidez es inversamente proporcional al desplazamiento de la estructura:

$V = K \cdot x \implies K \propto 1/x$

si se sobreestima la rigidez (cuando se usa el modelo de cortante) se subestiman los desplazamientos, por lo que tal vez pueda excederse el desplazamiento permitido. Para resolver este problema, la solución más factible, es aumentar el tamaño inicial de las columnas (las que se obtuvieron de la ecuación 3.3 por ejemplo).

Si se desprecian las deformaciones axiales⁶ y las de cortante⁷ y sólo se consideran las deformaciones producidas por la flexión de las barras, la rigidez de la estructura estará en función únicamente del momento de inercia de las secciones de las columnas

Consideración válida para estructuras con relación altura-ancho efectivo (sin incluir voladizos) no mayor de 2 [re22].

² Cuando las dimensiones de columnas y trabes son pequeñas en comparación con su claro libre, se pueden despreciar las deformaciones de cortante.

y trabes. Es decir, se considera que la rigidez de la estructura depende indirectamente de la deformación que se producirá por la flexión de columnas y trabes. Como se dijo antes se hará variar la dimensión de las columnas para "agregar" rigidez, por lo que una vez que se hayan fijado las dimensiones de las trabes estas no cambiarán durante el proceso de diseño, es decir que la rigidez que aportan las trabes será constante.

Si adoptamos la hipótesis anterior, la rigidez de entrepiso de la estructura es directamente proporcional a la inercia de la sección de las columnas (ver ecuación 3.2).

Para aumentar las dimensión de las columnas se utilizará la siguiente expresión.

$$l^* = \lambda \cdot l \tag{3.11}$$

donde l^* = dimensión corregida de la columna.

I = dimensión previa de la columna (ver figura 3.9).

 λ = factor mayor a la unidad.

La corrección se hará en función de los desplazamientos de entrepiso (los cuales se denotarán como δ_{a}), es decir que el factor lamda (λ) es función de δ_{a} , $\lambda = f(\delta_{a})$, la relación que existe entre los desplazamientos de entrepiso y la dimensión transversal de la columna es la siguiente:

Sustituyendo K=V/ δ_t en la ceuación 3.3 (la cual es válida para estructuras de cortante con columnas de sección transversal cuadrada), se tiene

$$l = \left[\frac{H^3 \cdot V}{E \cdot n \cdot \delta_x}\right]^{1/4}$$

si $\frac{H^3 \cdot V}{E \cdot n} = \kappa$, entonces
 $l = \left[\frac{\kappa}{\delta_x}\right]^{1/4}$

para una estructura se puede decir que κ es constante. Para cierto valor de *l* la estructura tiene sus respectivos desplazamientos de entrepiso los cuales se denotarán con $\delta_{k}^{(1)}$.

(3.12)

Cuando la estructura tiene desplazamientos permitidos denotados con δ_s^{μ} , se tendrán la dimensión final de la columna denotada con l^{*}. Así pues se tiene

por último la ecuación 3.13 se convierte en

$$\left(\frac{\delta_x^r}{\delta_x^p}\right)^{\frac{1}{2}}$$
 1

l es la dimensión de la sección transversal de la columna con la cual se tiene el desplazamiento de entrepiso δ_i^r y *l*' es la dimensión corregida de la columna. Cuando $\lambda = 1$ la dimensión de la columna *l*' produce el desplazamiento δ_i^p deseado.

Si al pasar del modelo de cortante al de marco los desplazamientos exceden los permitidos por el reglamento, podremos "agregar" rigidez por medio de la expresión 3.12 ya que, si sucede lo anterior $\lambda > 1$, esto hará crecer la dimensión de la columna y por lo tanto la rigidez. El análisis de la *estructura convencional* usando el modelo tipo esqueletal, implica que se tengan conocidas las secciones de columnas y trabes; las primeras lo son pero las secciones de las trabes no, estas se pueden proponer en base a la experiencia del diseñador, o bien, basándose en diseños similares.

El procedimiento es iterativo y en la figura 3.12 se muestra el algoritmo del método.

3.1.9 Conversión de la estructura convencional en la estructura con disipadores.

En el inciso 3.1.1 se habló sobre la función que tendrá la estructura convencional en el proceso de dimensionamiento, esta sirve como se ha dicho, para conservar constante el valor del factor α_1 en todo el proceso de dimensionamiento y verificar que los desplazamientos de la estructura con disipadores no excedan los permisibles, una vez que se ha revisado lo anterior la estructura convencional se "convertirá" en una estructura con disipadores disminuyendo las secciones del primero para conseguir la rigidez K_{sd} y luego se incorporan los disipadores para que estos aporten la rigidez faltante K_d hasta que la estructura iguale el período de la estructura convencional. Al final del proceso de dimensionamiento se tendrán dos estructuras, la convencional y la que tendrá los disipadores, ambas con un período fundamental de vibración muy similar.

En este inciso se estudia como disminuir las secciones de la estructura convencional para obtener la rigidez K_{sd} que se desea, y cuáles son las áreas de las diagonales equivalentes³ para dar la rigidez faltante K_{sb} , es decir, como se convierte la estructura convencional en una estructura con disipadores.

Haciendo las mismas consideraciones que en el inciso anterior, la rigidez de la estructura depende sola nente del momento de inercia de las secciones de las columnas y trabes, de esta forma cuando se quiera reducir la rigidez $1/\alpha_1$ veces, entonces, el momento de inercia de las secciones se multiplica por α_1 veces(ya que la rigidez es

⁸ En 3.1.2 se mencionó que la *diagonal equivalente* es la diagonal que modela al disipador, entonces la rigidez inicial (pendiente de la primer rama de la curva $\sigma \cdot \epsilon$) del disipador es igual a EA/L donde A es el área de la *diagonal equivalente*.

directamente proporcional al momento de inercia). Viéndolo de otra forma, la matriz de rigidez de la *estructura convencional* se multiplicará por α_1 , esto implica que cada elemento de la matriz se vea afectado por α_1 ; puesto que los elementos de la matriz de rigidez son de la forma xEI/L donde x=constante y, E y L no cambian en el proceso de diseño entonces α_1 afectará solamente a L.

Lo anterior lleva a lo siguiente. Sea:

I = el momento de inercia de una sección de una columna o trabe de la estructura convencional.

b y h = ancho y peralte total de dicha sección.

b' **y h**' = ancho y peralte total de la sección de las columnas o trabes de la *estructura con* disipadores. Estas serán igual a **b**' = h/r_b y **h**' = h/r_b , donde r_b y r_b son factores de reducción del ancho y peralte respectivamente de la sección de las columnas o trabes de la *estructura convencional*.

El momento de inercia I se multiplicará por α_i , se considera que la sección de las columnas y trabes son macizas y rectangulares o cuadradas, por lo que, I=bh³/12, entonces

$$\alpha_1 \cdot I = \alpha_1 \cdot \frac{b \cdot h^3}{12}$$

la ecuación anterior debe ser igual a b'h"/12, es decir

$$\alpha_1 \cdot \frac{b \cdot h^3}{12} = \frac{b^* \cdot h^{*3}}{12} = \frac{\frac{b}{r_b} \cdot \left(\frac{h}{r_b}\right)^3}{12}$$
$$\alpha_1 \cdot b \cdot h^3 = \frac{b \cdot h^3}{r_b \cdot r_b^3}$$

$$\alpha_1 = \frac{1}{r_b \cdot r_b^3} \tag{3.13}$$

por otro lado, se desea que se siga manteniendo la misma relación ancho-peralte, por lo que

$$\frac{h}{b} = \frac{h^*}{b^*} = \frac{h/r_h}{b/r_h}$$

lo que implica que $r_h = r_b$; sustituyendo esta última igualdad en la ecuación 3.13 se obtiene

$$r_h = r_b = \frac{1}{\sqrt[4]{\alpha_1}} \tag{3.14}$$

esto quiere decir que las secciones del marco con rigidez K_{sd} se obtendrán con las siguientes expresiones

$$h^{*} = \frac{h}{r_{h}} = \frac{4}{\sqrt{\alpha_{1}}} \cdot h$$

$$b^{*} = \frac{b}{r_{b}} = \frac{4}{\sqrt{\alpha_{1}}} \cdot b$$
(3.15)

La estructura que posea las dimensiones reducidas de la estructura convencional tendrá la rigidez K_{sd} buscada. El factor α_1 real no resulta exactamente igual al que se busca ya que se han hecho varias suposiciones (despreciar efectos de cortante y normales) para encontrar r_b y r_b .

Una vez que se tiene la estructura con rigidez K_{sd} se procederá a introducir las diagonales equivalentes para "agregar" la rigidez que falta para que el período de esta estructura sea parecido al de la estructura convencional. Para esto se cuenta con los datos siguientes: puesto que el arreglo de disipadores se debe de definir antes de introducir los disipadores y se conoce la pendiente de la primera rama de la gráfica esfuerzodeformación unitaria del disipador⁹ la longitud de la *diagonal equivalente* y el módulo de elasticidad son conocidos; también se cuenta con K₄ que es la rigidez faltante que aportará el disipador, o bien, la fuerza <u>horizontal</u>¹⁰ con la cual el disipador se debe desplazar una cantidad unitaria <u>horizontal</u>, de acuerdo con lo anterior, el área necesaria para dar la rigidez K₄ no puede calcularse con la expresión que se obtiene de despejar A de K₄=EA/L, ya que el área que se obtendría aportaría una rigidez tal que al aplicar a la *diagonal equivalente* una fuerza axial igual a K₄ produciría un desplazamiento axial unitario, pero si esta misma fuerza se aplicara en dirección horizontal produciría un desplazamiento horizontal mayor a la unidad, es decir, la rígidez que se estaría agregando sería menor a K₄. Lo anterior implica una transformación de la cantidad de rigidez K₄ a una cantided K' con la cual el área sí se pueda calcular con la expresión **A=K'L/E**.

Una cantidad de rigidez no es una cantidad vectorial y por ello no se transforma de un sistema de coordenadas a otro, de la misma forma que se hace con las fuerzas o con los desplazamientos. Para ilustrar esto considérese la diagonal de la figura 3.13. En la fig. 3.13 (a), la diagonal está sometida a un desplazamiento δ. La fuerza P., necesaria Fig. 3.13 Diagonal

para mantener en esta posición a la diagonal, está dada por $P_a=K_a \delta_a$, donde K_a es la rigidez de la diagonal en su dirección axial (coordenadas locales).

Lo que se desea es definir la relación de rigidez de la misma diagonal en otro

⁹ Es decir, el módulo de elasticidad de la *diagonal equivalente* es la pendiente de la primera rama de la gráfica fuerza-deformación del disipador.

¹⁰ Es horizontal ya que las rigideces se han calculado con fuerzas horizontales y con los desplazamientos horizontales producidos por éstas

sistema coordenado (que no sea el local) como se muestra en la figura 3.13 b. La rigidez buscada, como ya se dijo, es aquella que define la fuerza necesaria para mantener la diagonal en un desplazamiento en la dirección horizontal (dirección x), es decir, $P_r = K_r \cdot \delta_r$. Para lograr esto, es necesario considerar tanto el equilibrio como la compatibilidad del sistema.

La fuerza a lo largo de la dirección axial debida a P, puede obtenerse a partir del diagrama de cuerpo libre de la figura 3.14 como

$$P_{a} = \frac{1}{\cos \theta} P_{x}$$
(3.16)
$$P_{x} = P_{a} \cos \theta$$

Lo anterior establece la relación de equilibrio entre las fuerzas locales y globales. Para examinar la compatibilidad, se bosqueja el perfil desplazado y se relaciona el desplazamiento ô, con el alargamiento de la diagonal, es decir, los desplazamientos locales. Puede obtenerse esta relación haciendo referencia al diagrama de desplazamiento de la figura 3.15. Así, δ_a en términos de δ_i es

Fig. 3.14 Equilibrio del sistema.

(3.17)

Ahora puede formarse la ecuación de rigidez en la dirección x, en dos pasos. Primero se sustituye la relación de compatibilidad (3.17) en la ecuación de rigidez local

$\mathbf{P}_{\mathbf{s}} = \mathbf{K}_{\mathbf{s}} \boldsymbol{\delta}_{\mathbf{s}}$ para obtener

 $P_a = K_a \cos\theta \delta_x$

Esta por de sustituirse en la ecuación de equilibrio (3.16) para obtener

۸

$$P_{x} = \cos\theta K_{a} \cos\theta \delta_{x} = K_{x} \delta_{x}$$

$$K_{x} = \cos\theta K_{a} \cos\theta$$

$$K_{x} = K_{a} \cos^{2}\theta$$
(3.18)

Cabe mencionar que la rigidez K, determinada aquí, está en términos de la rigidez local K, y define la fuerza necesaria para mantener la diagonal en un desplazamiento fijo en la dirección x, mientras todos los demás desplazamientos globales son cero, es decir, que únicamente el extremo superior de la diagonal tiene libertad de solo desplazarse en dirección horizontal.

Esta ecuación proporciona el área necesaria para dar una cantidad de rigidez en la dirección horizontal, para el caso de los disipadores esta cantidad de rigidez es la que se llama K_{tb} así pues, la ecuación 3.18 se puede recscribir como

$$K_d = \frac{EA}{L}\cos^2\theta \tag{3.19}$$

La expresión anterior es válida para cuando existe una sola diagonal, cuando hay más de una diagonal puede demostrarse que el área buscada es

$$A = \frac{K_d L}{E \cdot n \cdot \cos^2 \theta}$$
(3.20)

donde n = número de diagonales en cada entrepiso (ya que K_d es rigidez de entrepiso). Como se mencionó anteriormente, esta expresión calcula el área necesaria para dar la rigidez K_d <u>siempre y cuando</u> los extremos de la diagonal no se desplacen en dirección vertical, si sucede esto, se estará subestimando el área de la diagonal y la rigidez que aporta. Desafortunadamente en una estructura existen deformaciones axiales tanto de columnas como de trabes¹¹ que hay que tomar en cuenta para que el análisis se lo mas real posible, lo cual implica que en el modelo del marco se presentarán desplazamientos tanto horizontales como verticales de los nudos a los cuales estarán conectados los disipadores y por lo tanto el área calculada con la expresión 3.20 será menor a la necesaria y la rigidez será menor a K_{u} . Esto hace pensar en hacer un nuevo modelo, como el de la figura 3.13 pero donde se tome en cuenta que <u>ambos</u> extremos de la diagonal se mueven en cualquier dirección, para así obtener una expresión similar a la ecuación 3.20 donde A nos proporcione la rigidez deseada K_{u} . En este trabajo, se desecha esta solución, ya que complica el criterio de diseño, y se opta por corregir de alguna forma el área de la *diagonal equivalente* que se obtuvo de la ecuación 3.20 para alcanzar la rigidez deseada K_{u} . La corrección se hará aumentando el área y el problema será parecido al del inciso 3.1.8 donde se corrigen las secciones de las columnas para obtener ciertos desplazamientos, o bien, cierta rigidez. Se procederá en forma análoga.

Sca:

-A el área de la diagonal equivalente que se obtiene con la expresión 3.20

-K_{dr} la rigidez real que aporta dicha diagonal.

-A' el área de la diagonal equivalente corregida.

-K_d la rigidez que se necesita, aporte la diagonal y que es igual a K_T -K_d (ver fig. 2.1).

Ya que la rigidez que realmente aporta la diagonal (K_{ur}) es menor a la necesaria (K_u), se necesita aumentar el área que se ha calculado (A) de la siguiente forma

 $A^* = \gamma \cdot A \tag{3.21}$

donde γ es mayor a la unidad. Puesto que el área de la diagonal es directamente proporcional a su rigidez (ecuación 3.20), el factor γ puede ser función de las rigideces y como K_{dr}<K_d entonces

¹¹ En trabes, las deformaciones axiales no son tan grandes ya que éstas se ven restringidas por lo general por diafragmas rígidos en su plano, como los son las losas.

$$\gamma = \frac{K_d}{K_{dr}}$$

sustituyendo γ en la ecuación 3.21 se tiene

$$A^* = \frac{K_d}{K_{dr}} \cdot A \tag{3.22}$$

esta expresión es la que se necesita, pero falta definir como se calculará la rigidez K_u. Una vez que se han calculado las áreas de las *diagonales equivalentes* con la expresión 3.20, se incorporan estas diagonales a la *estructura sin disipadores* y su rigidez crecerá¹², esta rigidez se denotará con K_T, y es igual a

$$K_{Tr} = K_{sd} + K_{dr}$$

puesto que Kr, y K_{et} son conocidas entonces

$$K_{dr} = K_{Tr} - K_{sd} \tag{3.23}$$

como es de esperarse el proceso también es iterativo y se puede resumir en el diagrama de flujo de la siguiente página.

Hasta este inciso se tienen definidas las características geométricas de la *estructura* con disipadores, es decir, se conocen las secciones transversales de las trabes, columnas y áreas de las *diagonales equivalentes* con las cuales esta, tiene el mismo período y rigidez que la *estructura convencional*. De esta forma los desplazamientos de entrepiso son muy similares entre sí (depende de la ley de variación de las rigideces, que al final del proceso de dimensionamiento, tenga la estructura) y el factor α_1 real es muy parecido al valor teórico con el cual se llevó a cabo el dimensionamiento (ecuaciones 3.5 y 3.15).

¹² Esta última rigidez se calculará como el cociente del cortante sobre el desplazamiento relativo de entrepiso.

Para llevar a cabo los análisis de la *estructura con disipadores* (con el modelo tipo esqueletal) de los que se requiere en el inciso anterior para el cálculo de la rigidez K_{ut} (ecuación 3.23), es necesario tener definido algún arreglo de disipadores. En el siguiente inciso se trata de encontrar, cuál es la mejor disposición de los disipadores, analizando la respuesta elástica de <u>un marco de la estructura con disipadores</u>.

3.1.10 Ubicación de los disipadores en la estructura.

Para encontrar el arreglo de disipadores óptimo, se estudia el comportamiento de varias estructuras con diferente ubicación de estos. Se realiza un análisis elástico dinámico modal espectral para analizar el comportamiento de estas estructuras. El objetivo es encontrar qué arreglo es el que ofrece mayor rigidez de entrepiso, este se considerará como el óptimo.

En este caso se dimensiona un marco convencional el cual tiene un período fundamental de vibración T = 1.35 s., sus dimensiones se muestran en la figura 3.17 y

el tamaño de las secciones transversales de sus columnas y trabes en la tabla 3.1. A partir de las secciones de este marco se obtienen las del marco con disipadores estableciendo un valor de $\alpha_1 = 0.5$ y usando la expresión 3.15. Las secciones resultantes se muestran en la tabla 3.2. El proceso de dimensionamiento de este marco, no se describe detalladamente en este inciso, pero

en el capítulo siguiente se muestra el proceso de diseño de un marco similar.

Se establecieron varios arreglos de disipadores para llevar a cabo la comparación de sus respuestas. Los arreglos son los de las figuras 3,18 a 3,25.

CRITERIO DE DISEÑO

 Nivel
 Columnas
 Trabes

 9 y 10
 33
 25 x 60

 7 y 8
 39
 30 x 70

43

45

45

5 y 6

3 y 4

1 y 2

30 x 75

30 x 7.5

30 x 75

Tabla 3.1 Secciones del marco

Tabla 3.2Seccionesdelmarcocondisipadores, en cm.

Nivel	Columnas	Trabes		
9 y 10	28	21 x 50		
7 y 8	33	25 x 59		
5 y 6	36	25 x 63		
3 y 4	38	25 x 63		
1 y 2	38	25 x 63		

Los marcos tipo A a H tienen las secciones de trabes y columnas indicadas en la tabla 3.2.

Para introducir los disipadores se usó la expresión 3.20, obteniendo así las áreas de las *diagonales equivalentes* para cada marco (tipo A a H). Las áreas resultantes se dan en las tablas 3.3 y 3.4

Fig. 3.18 Marco tipo A.

Fig. 3.19 Marco tipo B.

CRITERIO DE DISEÑO

		-		
NIVEL	ÁREA DE			
NIVEL.	UNA			
	DIAGONAL.			
	en cm ² .			
10	1.3976			
9	1.9068			
	3.2681			
7	3.6125			
6	4.8476			
5	5.0383			
4	5.4844			
3	5.6874			
2	5.9268			
	7.7806			

Tabla 3.3Árcasdelasdiagonalesequivalentespara marcos tipoA-D,G y H.

Tabla 3.4Áreasdelasdiagonalesequivalentesdel marco tipo F.

	ÁREA DE		
NIVEL.	UNA		
	DIAGONAL.		
	en cm².		
10	0.8396		
9	1.1456		
8	1.9634		
7	2.1703		
6	2.9123		
5	3.0269		
4	3.2949		
3	3.4169		
2	3.5607		
1	4.6744		

Las áreas del marco tipo E son la mitad de las mostradas en la Tabla 3.3 ya que este marco tiene el doble de disipadores, por entrepiso, respecto a los demás marcos. Cabe aclarar que, las áreas de las dos últimas tablas son las que se obtienen directamente de la expresión 3.20 <u>sin corregirlas</u> con la ecuación 3.22 para poder saber cuál es la disposición de *diagonales equivalentes* que ofrece mayor cantidad de rigidez. La expresión 3.20 se puede escribir como

$$A = \frac{K_d}{\frac{E \cdot n \cdot \cos^2 \theta}{L}} = \mu \cdot K_d$$

para las estructuras tipo E y F, el factor μ es diferente ya que cambia el ángulo de inclinación, la longitud de la diagonal y la cantidad de estas por entrepiso.

El módulo de elasticidad es el mismo para todas las estructuras y K_d es un valor constante para todos los marcos(en este caso $K_d = 0.5K_T$), por lo tanto el área de la diagonal equivalente es únicamente función de su arreglo y geometría, que es lo que se busca.

Se analiza la respuesta estructural en el rango clástico de cada marco, para esto se realiza un análisis modal espectral utilizando el espectro del Reglamento de Construcciones para el Distrito Federal (1987) con un coeficiente sísmico c=0.4 y un factor de comportamiento sísmico Q=1.0. Se hace uso del programa SUPER-ETABS.

Se estudian, períodos fundamentales de vibración, desplazamientos del nivel superior, desplazamientos de entrepiso, fuerzas axiales en las columnas del primer entrepiso y cortantes de entrepiso; originados únicamente por las fuerzas sísmicas. Se comparan las respuestas anteriores para los marcos tipo A a H y, entre el marco convencional y un marco con disipadores tipo A con las áreas de sus diagonales equivalentes corregidas con la expresión 3.22, de manera que estos dos últimos, tienen períodos fundamentales de vibración similares (T = 1.34 s). Las áreas corregidas se muestran en la tabla 3.5.

En la tabla 3.6 se muestran los resultados del análisis realizado. Las figuras 3.26 a 3.36 muestran los desplazamientos de entrepiso de cada tipo de marco. Los resultados difieren poco, principalmente en períodos y desplazamientos, pero en fuerzas axiales en las columnas del primer entrepiso hay una diferencia más grande principalmente con el marco tipo D. Esto es importante ya que influye en el costo de la cimentación.

CRITERIO DE DISEÑO

Se resume lo siguiente: rigidez proporcionada por las dingonales T=1.34 s. equivalentes, es la tipo A, ya que posee el período mas bajo (T = 1.409 s), esto quiere decir que las diagonales, con este arreglo ofrecen mayor rigidez. El arreglo de disipadores de la estructura tipo H es el que ofrece menor rigidez lateral.

b) la mejor estructura en cuanto a fuerzas internas axiales desarrolladas en las columnas, también es la tipo A, la peor es la tipo D. En cuanto a fuerzas internas desarrolladas en las diagonales equívalentes, de las que poseen dos por entrepiso, la disposición del marco tipo H es la que consigue que se introduzcan las fuerzas mas pequeñas respecto a los demás marcos. De las que poseen cuatro diagonales por entrepiso la disposición que produce fuerzas internas mayores es la tipo F.

c) En lo que se refiere a cortante basal el marco tipo F es el que tiene el menor valor y el marco tipo B es el que tiene el valor más grande,

Tabla 3.5 Áreas de las diagonales a) la mejor estructura en cuanto a mayor equivalentes del marco con disipadores con

	ÁREA DE		
NIVEL.	UNA		
	DIAGONAL.		
	en cm².		
10	3.2678		
9	2.6570		
8	3.8452		
7	5.0218		
6	7.1288		
5	5.7414		
4	6.8744		
3	7.0514		
2	6.2331		
1	7.8538		

Analizando la respuesta del marco convencional, el marco con disipndores (ambos con período T = 1.34 s.), y el marco sin disipadores, se resume lo siguiente:

CRITERIO DE DISEÑO

Tabla 3.6 RESULTADOS DEL ANÁLISIS DINÁMICO MODAL DE LOS MARCOS.

=

	Marco tipo	Período [s]	Desplaza- miento en Período el nivel [s] superior	Fuerza interna axial en la columna: [ton] exterior interior		Fuerza axiał máxima de la diugonal	Cortante basal [ton]	
			[cm]			[ton]	·	
	A	1.409	28.22	197.27	13.44	53.35	173.13	1997 - P.
	В	1,413	28.30	232.64	15.12	51.18	173.98	
. •	C	1,413	28.26	215.21	14.69	53.57	173.60	
	D	1.448	29.76	156.33	190.52	51.13	172.86	
.	Е	1,470	30.85	248.35	89.26	26.64	172.01	
	F	1.451	30.03	238.29	82.96	36.35	171.73	
	G	1,461	30.44	234,30	98.82	52.29	171.95	
	н	1.481	31.33	262.89	79.11	50.78	172.13	
	A (T=1.34)	1,349	25.57	199.11	10.69	54.17	175.52	
	Conven- cional	1.349	25.57	221.54	3.45 _.		175.57	
	Sin disi- padores.	1.967	53.99	230.28	8.00		181.61	

Al introducir disipadores para alcanzar el período T=1.349 s, se consigue lo siguiente: a) Se disminuyen las fuerzas internas axiales en las columnas. Esto es obvio, debido a que las diagonales ayudan a resistir fuerzas axiales.

b) Se disminuye el período. También es obvio ya que se introducen nuevos elementos (diagonales) que hacen más rígido al marco.

c) El cortante basal disminuye, debido a la existencia de diagonales.

Se observa que el marco con disipadores y el convencional tienen respuestas elásticas muy similares (que fue el objetivo del diseño de estos dos marcos).

Ya que el marco tipo A, es el que muestra mejor comportamiento estructural (<u>por</u> <u>lo menos en el rango elástico</u>), del análisis realizado se puede concluir que, para este caso, el mejor arreglo de disipadores es el que corresponde a este marco (figura 3.18).

En las referencias 45 y 46 se estudia el comportamiento estructural inelástico de marcos con algunas disposiciones de disipadores estudiadas aquí y otras diferentes. El comportamiento inelástico proporciona información más veráz sobre el comportamiento de los disipadores debido a que estos son diseñados especialmente para trabajar en el rango inelástico.

3.1.11 Resumen.

En los incisos anteriores, se dió respuesta a las preguntas planteadas en el capítulo 2. Enseguida se hace un resumen:

a) Para obtener la fuerza de diseño del disipador, este se modelará como una diagonal equivalente. Para estudiar su comportamiento inelástico, el disipador se puede modelar con el elemento TRUSS del programa DRAIN-2D con fluencia en tensión y en compresión.

b) Se diseñarán estructuras lo más flexibles posible de modo que su comportamiento estructural y su costo sean adecuados.

c) En el predimensionamiento se modela la estructura convencional con el modelo de cortante. Una vez encontrados los tamaños preliminares de las secciones de las columnas, la estructura se modela con el modelo tipo esqueletal y se llevan a cabo las correcciones necesarias. Las secciones de trabes se proponen con base en la experiencia de diseños similares y no cambian en todo el proceso de dimensionamiento.

d) La variación de la rigidez de entrepiso con respecto a la altura, debe ser proporcional a la distribución de cortantes sísmicos obtenidos mediante un análisis sísmico estático.
e) Es necesario establecer el parámetro α, para iniciar el predimensionamiento.

f) El paso del modelo de cortante al modelo tipo esqueletal se lleva a cabo corrigiendo las secciones de las columnas mediante un factor que depende del desplazamiento permitido.

g) Los disipadores se introducen como diagonales equivalentes cuyas áreas teóricas se corrigen para conseguir que estas aporten la rigidez K_a que se necesita.

h) La mejor ubicación de los disipadores puede ser similar a la mostrada en la figura
 3.18 (marco tipo A). Se debe estudiar, como se mencionó anteriormente, el comportamiento inclástico del marco con la disposición de disipadores elegida (4745 y46).

Apoyándose en las bases que se han dado en esta sección (3.1), se desarrollará el proceso de diseño sísmico para estructura con dispositivos disipadores de energín. Este proceso de diseño se describe detalladamente en la siguiente sección.

3.2 CRITERIO DE DISEÑO.

Esta sección se divide en dos incisos, en el primero (3.2.1) se resume el criterio para obtener las dimensiones de los elementos estructurales del edificio, como lo son trabes, columnas, y *diagonales equivalentes*. Este primer inciso se refiere únicamente a la rigidez de la estructura.

En el segundo inciso (3.2.2) se da el criterio para proporcionar el refuerzo a los

elementos estructurales, es decir, como calcular la cantidad de acero de refuerzo necesaria para estos elementos. También se proporciona un criterio para calcular la fuerza de fluencia de diseño de los disipadores. Este último inciso trata de la resistencia de la estructura.

3.2.1 Criterio para el dimensionamiento de la estructura.

En este inciso se resume el criterio para obtener las dimensiones de trabes, columnas y diagonales equivalentes de la estructura con disipadores establecido el parámetro α_1 mencionado en el inciso 3.1.7, ecuación 3.10. Enseguida se listan los pasos a seguir para obtener dichas dimensiones¹⁰.

3.2.1.1 Predimensionamiento.

En el predimensionamiento se hace uso de un modelo de cortante y se obtiene una primera propuesta del tamaño de secciones de trabes y columnas de la *estructura convencional* de la cual se derivará posteriormente la *estructura con disipadores* que se quiere diseñar. Los pasos a seguir en esta etapa son los siguientes

A) Se estiman los pesos de cada nivel. Este dato es conocido ya que en general se conoce el uso que se le va a dar al edificio y por consiguiente es conocida la carga viva para diseño¹⁴, las cargas muertas se pueden estimar proponiendo secciones iniciales. Estos pesos se pueden ir corrigiendo cuando las secciones vayan cambiando en el proceso de diseño.

¹³ Este proceso está bacado en la sección 3.1

¹⁴El Reglamento de Construcciones para el Distrito Federal (1987) en su artículo 198, proporciona una tabla de cargas vivas en función del uso del edificio y áreas tributarias.

B) Se calculan las fuerzas sísmicas que actuarán en cada nivel. Las fuerzas sísmicas de diseño se calculan realizando un análisis sísmico estático según lo marca las Normas Técnicas Complementarias para Diseño por Sismo del Reglamento de Construcciones del Distrito Federal (1987). Con las fuerzas sísmicas obtenidas, se calculan las fuerzas cortantes de diseño en cada entrepiso.

C) Se calcula la ley de variación de las rigideces de entrepiso. Para obtener desplazamientos de entrepiso similares como se mencionó en 3.1.6, la variación de rigideces de entrepiso respecto a la altura debe ser proporcional a la variación de los cortantes sísmicos obtenidos en el inciso B). K⁴ se calcula con la siguiente expresión (proviene de la ecuación 3.7)

$$K'_{n} = \frac{V_{i}}{V_{0}} \text{ para } i = 1, 2, ..., n$$
 (3.24)

donde n = número de entrepisos, V_i = cortante del entrepiso i, y V_o = cortante basal (cortante en el primer entrepiso). Para el primer entrepiso $V_1 = V_o$.

D) Se varian las rigideces de entrepiso de tal forma de obtener una variación práctica del tamaño de las secciones de las columnas. Se establece en cuántos y cuáles entrepisos las secciones de las columnas serán las mismas. Como se esta tratando con el modelo de cortante la rigidez de entrepiso variará de la misma forma que las columnas (debido a que el momento de inercia de la columna es directamente proporcional a la rigidez lateral de entrepiso del modelo de cortante, ver ecuación 3.2).

E) Se establece qué fracción de la rigidez total tomará el marco (α_1). Por ejemplo si se desea diseñar una estructura con disipadores donde la estructura de concreto tome el 30% de la rigidez total y el sistema disipador el 70% restante, los valores de los parámetros mencionados son

$\alpha_1 = 0.30 \text{ y} \alpha_2 = 0.70.$

F) Cálculo de la rigidez de entrepiso mínima del entrepiso superior. Esta rigidez se calcula con la siguiente expresión (proviene de la ecuación 3.5)

$$K_{T\min} = \frac{12E_c n_c I_{\min}}{\alpha_1 H^3}$$
 (3.25)

donde E_e es el módulo de Young de las columnas, n_e el número de columnas en el entrepiso en estudio, I_{min} el momento de inercia más pequeño que puede tener la sección de la columna del entrepiso superior de la *estructura con disipadores* y H la altura de entrepiso. Se realiza este cálculo para que en el momento de reducir las secciones de la *estructura con disipadores* menores a las permitidas por el Reglamento de Construcciones.

G) Cálculo de las rigideces de entrepiso. Las rigideces de entrepiso del modelo de cortante se calculan con la expresión que sigue (se deriva de las ecuaciones 3.8 y 3.9)

$$K_{n} = \frac{K_{nnn}}{K'_{n}} \cdot K'_{n} \quad para \ i = 1, 2, ..., n \tag{3.26}$$

II) Estimación de las secciones de las columnas. Puesto que se está usando un modelo de cortante la dimensión de las columnas se calcula con la expresión 3.3 (válida solo para cuando E es el mismo en todas las columnas y cuando su sección es cuadrada, en caso contrario se pueden obtener expresiones similares).

$$l_{i} = \left[\frac{H^{3} \cdot K_{n}}{E_{c} \cdot n_{c}}\right]^{\frac{1}{4}} \quad para \ i = 1, 2, \dots, n$$
(3.27)

I) Se proponen las secciones transversales de las trabes. Se pueden proponer estas secciones basándose en diseños similares o en la experiencia del ingeniero. Estas secciones pueden quedar constantes, es decir, pueden no sufrir ningún cambio en el proceso de diseño.

3.2.1.2. Dimensiones definitivas de las secciones de las columnas y trabes de la estructura convencional.

Hasta este punto se ha hecho uso de un modelo de cortante y se conocen una estimación de las secciones de trabes y columnas de la *estructura convencional*. En los siguientes puntos se hará uso del modelo tipo esqueletal, que es el que representa con más precisión el comportamiento real de la estructura.

J) Se analiza la estructura con las secciones de columnas y trabes obtenidas en los pasos anteriores. Se analiza la estructura tomando en cuenta deformaciones axiales, de cortante y de flexión de todos los elementos, los efectos P- Δ , etc., esto hace que la rigidez que se deseaba dar con las secciones calculadas en los incisos H e I, sea menor a la rigidez (K_n inciso G) que se esperaba y por lo tanto los desplazamientos reales serán mayores. Si los desplazamientos se encuentran en el rango permitido por el reglamento, las secciones de los incisos H e I quedan como definitivas y se pasa al inciso siguiente. Si los desplazamientos sobrepasan los límites establecidos se procederá a corregir las secciones de las columnas calculadas en el inciso H [ver 3.1.8 y figura 3.12], con la expresión siguiente (proviene de la ecuación 3.12)

$$l^{i} = \left(\frac{\delta x^{r}}{\delta x^{p}}\right)^{\frac{1}{4}} \cdot l^{i-1} \quad \text{(3.28)}$$

donde δx^{\prime} = desplazamiento de entrepiso obtenido mediante un análisis de la estructura con las dimensiones de columnas l^{i+1} , δx^{ρ} = desplazamiento de entrepiso permitido por el RCDF87, l^{i+1} = dimensión de la columna en la iteración anterior, l^{i} = dimensión corregida de la columna.

La expresión anterior se usa en cada entrepiso y con las dimensiones corregidas se vuelve a analizar la estructura revisando los nuevos desplazamientos. Las secciones de las trabes pueden dejarse sin corregir.

K) Corrección de los pesos de cada nivel. El cambio de secciones hace que la carga

muerta de la estructura cambie o sea diferente a la que se supuso en un principio (inciso A), con las nuevas secciones se calculan los nuevos pesos de cada nivel y se vuelve a analizar el marco, es decir, se regresa al inciso anterior, para revisar los nuevos desplazamientos y hacer nuevas correcciones a las secciones de las columnas si es necesario.

L) Cálculo de las rigideces de entrepiso definitivas K_T. Con las secciones definitivas se pueden calcular las rigideces de entrepiso finales (K_T).

En esta sección quedan establecidas las secciones de las columnas y trabes así como las rigideces de entrepiso definitivas de la *estructura convencional*.

3.2.1.3. Dimensiones definitivas de las secciones de las trabes y columnas y de las áreas de las diagonales equivalentes de la *estructura con disipadores*.

M) Cálculo de las secciones de trabes y columnas del marco con disipadores. Estas dimensiones están en función de la fracción de rigidez que tomará el marco por sí solo y se calculan con las expresiones que siguen (se deriva de las ecuaciones 3.15)

$$h_d = \sqrt[4]{\alpha_1} \cdot h$$
 , $b_d = \sqrt[4]{\alpha_1} \cdot b$ (3.29)

donde h y b son el peralte total y ancho de las secciones definitivas del marco convencional y h_d y b_d el peralte total y ancho de las secciones definitivas del marco con disipadores.

Con estas dimensiones se consigue una estructura que tiene en cada entrepiso α de la rigidez total (K_T) del entrepiso correspondiente a la *estructura convencional*.

N) Se establece qué arregio de disipadores tendrá el marco. Se define la ubicación de los disipadores en el marco.

O) Cálculo de las rigideces de la estructura sin disipadores, K_{al}. Mediante un análisis estructural del marco sin disipadores con las secciones anteriores se calculan las rigideces de entrepiso K_{al}.

P) Cálculo de las áreas de las diagonales equivalentes. Para que la estructura con disipadores tenga en cada entrepiso una rigidez similar al del entrepiso correspondiente de la estructura convencional, se introducen las diagonales equivalentes que son las que aportarán la rigidez faltante de cada entrepiso. Cada diagonal tendrá un área dada por la expresión que sigue (proviene de la ecuación 3.20)

$$A = \frac{K_d \cdot L}{E_d \cdot n_d \cdot \cos^2 \theta}$$
(3.30)

donde $n_d = número de diagonales en el entrepiso, <math>\theta =$ ángulo que forma la diagonal con la horizontal, $E_d = pendiente de la primera rama de la gráfica esfuerzo-deformación$ $unitaria del disipador, L = longitud de la diagonal equivalente, <math>K_d = rigidez$ de entrepiso que debe tener el sistema disipador ($K_d = K_T \cdot K_{ed}$). La última expresión se usa en cada entrepiso.

Q) Cálculo de la rigidez de entrepiso que realmente aportan las diagonales equivalentes K_{dc} . Al calcular la rigidez de entrepiso de la estructura con disipadores (cuyas diagonales equivalentes tienen el área calculada en el inciso P o la obtenida de alguna corrección) se obtiene una rigidez total real (que es la suma de la rigidez de la estructura sin disipadores más la rigidez del sistema disipador), esta rigidez se ha denotado con K_{Tr} , y es diferente a K_T del inciso L. La rigidez que realmente aporta la diagonal esta dada por la expresión (ceuación 3.23)

$$K_{dr} = K_{Tr} - K_{sd} \tag{3.31}$$

La rigidez K_{ut} se calculó en el inciso O.

R) Corrección de las áreas de las diagonales equivalentes. Debido a que la expresión del inciso anterior se dedujo haciendo varias suposiciones que no se cumplen del todo en el comportamiento real de una estructura (ver 3.1.9), las áreas calculadas en el inciso anterior se corrigen con la expresión siguiente (se deriva de la ecuación 3.22)

$$A^{i} = \frac{K_d}{K_{dr}} \cdot A^{i-1}$$
 (3.32)

donde $A^{i+1} =$ área de la diagonal en la iteración anterior, $A^i =$ área de la diagonal corregida y K_{ur} = rigidez lateral correspondiente a las áreas A^{i+1} .

Con el área corregida se realiza un nuevo análisis estructural, es decir se regresa al inciso Q. El proceso es iterativo hasta conseguir que K_{tr} sea igual a K_{dr} . Este se ilustra en la figura 3.16.

Como se señala al principio del capítulo, no es necesario dimensionar la estructura convencional si no importa qué valores de α_1 ó α_2 resulten al final del diseño. En este caso se sustituyen los incisos H a R por los siguientes

II') Se calculan las rigideces K_{ud} y K_d con las ecuaciones 2.1.

I') Se calculan secciones de columnas de la estructura convencional de manera similar al inciso H.

J') Se proponen secciones de trabes.

K') Se estiman áreas de las diagonales equivalentes con la ecuación 3.30.

L') Se realiza un análisis estructural del edificio con las columnas, trabes y diagonales resultantes. Si los desplazamientos exceden los permisibles se pueden seguir dos caminos, dependiendo de qué parámetro α_1 o α_2 se desee dejar constante:

i) se corrigen las secciones de las columnas con la expresión 3.28 dejando constantes las árcas de las diagonales equivalentes, o bien

 ii) se corrigen las diagonales equivalentes con la expresión 3.32 dejando constantes las secciones de las columnas.

Este es el fin del proceso de dimensionamiento de la estructura convencional y de la estructura con disipadores ya que hasta este punto se tienen las dimensiones definitivas de sus elementos estructurales.

CRITERIO DE DISEÑO

3.2.2 Criterio para proporcionar resistencia a la estructura.

En este inciso se da el procedimiento para calcular la cantidad de acero de refuerzo necesario para las columnas y trabes de la *estructura convencional* y de la *estructura con disipadores*. También se muestra el procedimiento para obtener la resistencia de los disipadores con la que se tendrá el comportamiento deseado de la estructura.

Una vez que se tienen las dimensiones de los elementos estructurales, la estructura se analiza para encontrar las fuerzas internas que se desarrollarán cuando este se vea sometido a las siguientes combinaciones de cargas

1) Combinaciones que incluyan acciones permanentes y acciones variables.

2) Combinaciones que incluyan acciones permanentes, acciones variables y acciones accidentales.

En cada caso se usan las intensidades de cargas respectivas, especificadas en el artículo 187 y 188 del Reglamento de Construcciones para el Distrito Federal (1987).

Se supondrá, primeramente, que los dispositivos disipadores únicamente contribuyen a resistir las fuerzas internas provocadas por acciones horizontales por ejemplo sismo o viento, es decir, no serán diseñados para resistir cargas verticales. Lo anterior no significa que los disipadores no puedan resistir cargas verticales, sí las pueden resistir, pero esto implicarfa que el disipador tuviese una deformación permanente antes de que se vea sometido a las fuerzas provocadas por ejemplo por un sismo, esto à su vez implica que el disipador diseñado de la forma anterior deba ser mas resistente (y por lo tanto mas caro) que un disipador diseñado para resistir únicamente acciones horizontales. No se pasa por alto que si el disipador ayuda a resistir cargas verticales la cantidad de acero de refuerzo para trabes y columnas baje ligeramente.

3.2.2.1. Análisis Estructural.

Debido a que el disipador se diseña para resistir únicamente acciones horizontales, es necesario realizar dos tipos de análisis:

 El primero a la estructura sin disipadores (ver figura 2.1) sometiéndolo a cualquier combinación de acciones externas verticales, según lo marca el Reglamento de Construcciones para el Distrito Federal (1987).

 El segundo análisis se hará a la estructura con disipadores (ver figura 2.1) sometiéndolo únicamente a acciones horizontales.

Para cada elemento estructural se hará la combinación necesaria de los efectos de las acciones anteriores, para obtener las combinaciones de carga 1) y 2) antes mencionadas y que marca el RCDF87. Por último se diseñará para la combinación de cargas más desfavorable.

Si se desea diseñar una estructura con disipadores bajo la acción de cargas muertas, cargas vivas y sismo el procedimiento será el siguiente:

El dimensionamiento del marco se realiza siguiendo los pasos indicados en la sección 3.2.1.

Las combinaciones de las cargas para las que se revisa la estructura son las siguientes (suponiendo que la estructura es tipo B):

1) 1.4 Carga muerta + 1.4 Carga viva

2) 1.1 Carga muerta + 1.1 Carga viva + 1.1 Sismo

Los análisis I y II son los siguientes

I) Una vez que se tienen las dimensiones de trabes, columnas y áreas de diagonales equivalentes, se procede a realizar el análisis estructural de la estructura sin disipadores bajo la acción de cargas verticales. Para este caso se analiza con las siguientes combinaciones de cargas (tipo 1)

i) 1.4 Carga muerta + 1.4 Carga viva

ii) 1.1 Carga muerta + 1.1 Carga viva

II) Se realiza el segundo análisis sometiendo a la estructura con disipadores únicamente a acciones horizontales, en este caso a sismo:

iii) 1.1 Sismo

Por último se suman los efectos de la de los casos de carga número ii y número iii, para obtener las fuerzas internas que se desarrollarán en la estructura cuando este se vea sometido a la acción de cargas muertas, cargas vivas y sismo (combinación de carga tipo 2).

Teniendo las dos combinaciones de carga (1 y 2), se diseña para la más desfavorable.

La solicitación sísmica, en esta etapa de diseño, a la cual se someterá a la estructura (sea en forma de acelerograma, de espectro de diseño, etc.) no dehe tener ninguna reducción para efectos de diseño, es decir, el factor de comportamiento sísmico debe ser Q=1.0.

Con el proceso anterior se obtiene el refuerzo necesario para columnas y trabes de la estructura con disipadores teniendo en cuenta que los disipadores fueron diseñados para resistir cargas verticales. También se obtienen las fuerzas internas que actúan en los disipadores, estas fuerzas se les llamará *fuerzas de diseño elásticas*.

3.2.2.2. Diseño estructural.

Un aspecto importante es el que se refiere a que si las columnas y trabes de la estructura con disipadores deban o no desarrollar ductilidad. Si se acepta que las trabes y columnas de una estructura con disipadores desarrollen cierta ductilidad, ino sería mas conveniente diseñar una estructura convencional cuyas trabes y columnas desarrollen la misma ductilidad que las de una estructura con disipadores?. Si se decide diseñar una estructura convencional como se menciona, se tiene la ventaja de eliminar los problemas que puedan causar tanto el diseño como la construcción de la estructura con disipadores. La desventaja es que, como se mencionó en el capítulo 1, la degradación tanto de rigidez
como de resistencia es más severa en elementos de concreto que en los dispositivos disipadores ya que estos presentan ciclos histeréticos estables sin pérdida de rigidez ni de resistencia (como ejemplo se menciona el dispositivo tipo solera probado en el Instituto de Ingeniería, el cual se ha probado a 100 ciclos a toda su capacidad (± 2.5 cm) sin presentar deterioro apreciable [re 3 y 10]). Esto implica que el comportamiento estructural de la *estructura convencional* sea tal vez mas desfavorable al de la *estructura con disipadores* o que el costo de reparación de la *estructura convencional* sea igual o mayor a su equivalente *estructura con disipadores*. En el capítulo 5 se lleva a cabo un análisis comparativo de la respuesta estructural de un *marco convencional* que desarrolla cierta ductilidad (diseñado con un factor de comportamiento sísmico Q=4.0) y un *marco con disipadores*.

Si se desea que las trabes y columnas de la estructura con disipadores no ingresen a su rango inelástico (durante un sismo) las fuerzas internas debidas a sismo obtenidas del análisis estructural, para las cuales se diseñarán estos, no deben ser reducidas como se señala en las Normas Técnicas Complementarias para Diseño por Sismo en sus capítulos 4 y 5 (referente al Factor de Comportamiento Sísmico), lo anterior implica que el factor de comportamiento sísmico deba ser muy cercano a uno o mejor aún debe ser igual a 1. Para que los disipadores ingresen a su rango inelástico y por consiguiente disipen energía durante el sísmo, estos deben diseñarse de tal forma que tengan una resistencia menor a la fuerza interna nominal que se desarrolla en ellos (elementos mecánicos que se obtienen del análisis estructural anterior fuerzas de diseño elásticas).

Al factor reductivo de las fuerzas internas se le denotará para trabes y columnas con ϕ_M y para disipadores con ϕ_D . Estos factores son menores a la unidad. En algunos casos se hará mención del inverso multiplicativo de estos factores

 $\Phi_{\rm M} = 1/\phi_{\rm M} \ y \ \Phi_{\rm D} = 1/\phi_{\rm D}.$

Cuando la fuerza de diseño elástica se divide entre el factor Φ_D se obtiene la fuerza en la cual termina el comportamiento elástico del disipador, es decir, la fuerza de fluencia del mismo.

Para encontrar el valor óptimo de las fuerzas de fluencia será necesario, por una parte realizar un análisis de costos de la estructura y también realizar un análisis inelástico para estudiar el comportamiento de los disipadores. Se tendrá que ir variando las fuerzas de fluencia de los disipadores hasta encontrar el valor de todos ellos para los cuales la estructura tiene un comportamiento deseable.

Por otra parte, debido a que la mayor parte de la energía se absorberá por medio del trabajo inelástico de los disipadores, no hay necesidad de diseñar estrictamente conforme al capítulo 5 de las Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Conereto (1987) (referente a *Marcos dúctiles*).

Según lo anterior, para realizar el diseño estructural del edificio, es decir, para calcular las áreas de acero para trabes y columnas y las *fuerzas de fluencia* de los disipadores se propone el siguiente camino:

A) Se realiza el análisis estructural a la estructura con disipadores sección 3.2.2.1.

B) Se establecen los valores de Φ_M y Φ_D para afectar las fuerzas internas de los elementos estructurales respectivos, de esta manera se obtienen los elementos mecánicos de diseño. Se usa un factor de comportamiento sísmico Q=1.0

C) Se diseñan trabes y columnas para los elementos mecánicos de diseño resultantes.

D) Se analíza la respuesta inclástica de la estructura ante cuatro o mas acelerogramas de temblores reales o de movimientos simulados, o combinaciones de estos, representativos, independientes entre sí cuyas intensidades sean compatibles con los demás criterios que consignan el Reglamento de Construcciones para el Distrito Federal (1987) y sus Normas Técnicas Complementarias [# inciso 9.2 de estas normas].

E) Si la estructura no tiene un comportamiento adecuado, se deberán variar los factores $\Phi_M y \Phi_D$ (de preferencia el valor de Φ_M debe ser lo más cercano a uno para que el daño en trabes y columnas sea mínimo y no debe variar una vez establecido). Si la estructura tiene un comportamiento aceptable los disipadores habrán de diseñarse de manera tal que tengan una rigidez igual a EA/L (rigidez axial de las *diagonales*

equivalentes) y una fuerza de fluencia igual a F_i/Φ_D , donde F_i es la fuerza de diseño elástica del análisis estructural.

Si se tienen mecanismos de falla lateral habrá que respetar lo señalado en el inciso 5.3.2 del capítulo 5 de las Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto, que trata sobre la resistencia mínima a flexión de las columnas. La relación que deben mantener los momentos resistentes de columnas a momentos resistentes de las trabes (ecuación 3.33) puede ser menor a 1.5 (valor recomendado por las Normas Técnicas Complementarias para Diseño por Sismo) debido a que se espera que los elementos de concreto de la estructura no tengan demandas de ductilidad altas.

Si se usan valores del factor Φ_{M} cercanos a uno, la relación entre los momentos resistentes de las columnas a los momentos resistentes de las trabes puede ser pequeña (ecuación 3.34).

$$\frac{\sum M_c}{\sum M_T} \ge 1.5 \text{ seguin las NTC para diseño por sismo}$$
(3.33)

$$1.0 < \frac{\Sigma M_c}{\Sigma M_{\tau}} \le 1.5 \text{ para valores de } \Phi_M = 1$$
(3.34)

Es recomendable, que las ecuaciones anteriores se respeten, de esta forma se tendrá una reserva de resistencia contra el posible colapso de la estructura si los disipadores llegasen a fallar por alguna razón.

En este capítulo se muestra a manera de ejemplo, el diseño de un marco de diez niveles y tres crujías (figura 4.1). Se siguen los pasos indicados en la sección 3.2 del capítulo anterior y en su caso lo dispuesto en el Reglamento de Construcciones para el Distrito Federal (1987).

4.1 DATOS.

A continuación se listan algunos datos de la estructura

a) Las intensidades de carga son:

Para los niveles 1 a 9, 900 kg/m²

Para el nivel 10 el 75% de los niveles inferiores.

Los valores anteriores incluyen cargas muertas (incluyendo peso propio) y vivas.

b) El uso que se le dará al edificio es de oficinas y será una estructura del grupo B

(artículo 174 del Reglamento de Construcciones para el Distrito Federal 1987).

c) Se consideraran las siguientes propiedades de los materiales

Concreto clase 2 (según las Normas Técnicas Complementarias para Diseño y

Construcción de Estructuras de Concreto 1987 inciso 1.4.1)

Peso volumétrico del concreto igual a $\gamma = 2300 \text{ kg/m}^3$

Resistencia del concreto a compresión pura $\Gamma_c = 200 \text{ kg/cm}^2$

Módulo de elasticidad del concreto $E_c = 8000\sqrt{f_c^{\prime}}$

Esfuerzo de fluencia del acero $f_v = 4200 \text{ kg/cm}^2$

Módulo de elasticidad del acero $E_x = 2.1 \times 10^6 \text{ kg/cm}^2$

- d) La altura de piso a piso es de 3 metros.
- e) La distancia entre ejes de columnas es de 5 m.
- f) El desplazamiento de entrepiso permitido es 0.012 de la diferencia de elevaciones.
- g) La estructura con disipadores debe tener una dimensión transversal mínima de

columnas de 30 cm en el último entrepiso y deben ser de forma cuadrada.

h) El edificio se construirá en la zona lacustre (zona III) del Distrito Federal.

i) Se supone que las losas son diafragmas rígidos en su plano.

j) Los cuatro marcos de la estructura poseen la misma rigidez lateral, por lo que los cortantes sísmicos que corresponden a un marco son el 25% de los cortantes sísmicos totales de la estructura.

k) Se hace la hipótesis de que los apoyos de la estructura son empotramientos perfectos.
l) En cuanto al diseño no se consideraran excentricidades accidentales de las fuerzas sísmicas, ni efectos bidireccionales. Las columnas se diseñaran únicamente para flexión uniaxial.

m) Para la estructura con disipadores se supondrá que las diagonales equivalentes tienen un módulo de elasticidad $E = 2.1 \times 10^6 \text{ kg/cm}^2$.

Se diseña un marco exterior de la estructura y los elementos mecánicos para diseño se obtienen de un análisis líneal elástico, usando el programa SUPER-ETABS [# 29 y 50]. En este ejemplo de diseño se harán las correcciones que sean necesarias para que el parámetro α, que se eliga, no sufra grandes cambios en el proceso de diseño.

4.2 DISENO DEL MARCO CON DISIPADORES.

A continuación se muestran los pasos a seguir para diseñar un marco con disipidores con las dimensiones de la figura 4.1. Se describen paso a paso los procesos de dimensionamiento y reforzamiento que planteados en el capitulo anterior.

4.2.1 Proceso de dimensionamiento.

4.2.1.1 Predimensionamiento.

En el predimensionamiento se modela la estructura con el modelo de cortante

con el objeto de tener una estimación de las secciones de columnas y trabes de la *estructura convencional*. Los incisos a a r coinciden con los mencionados en la sección 3.2 del capítulo anterior.

a) Pesos de cada nivel. El área total en planta del edificio es de

 $15 \text{ m x} | 5 \text{ m} = 225 \text{ m}^3$.

Los pesos de cada nivel son:

-niveles 1 al 9;	$900 \text{ kg/m}^2 \text{ x } 225 \text{ m}^2 = 202500 \text{ kg} = 202.5 \text{ tor}$
-nivel 10;	$0.75 \ge 202.5 \text{ ton} = 151.875 \text{ ton}$

además, para el análisis sísmico se sumarán los pesos tributarios de las columnas. S e supone inicialmente una contribución del peso de las columnas al peso total del nivel, de 20 ton en los niveles 1 a 9 y de 12.625 ton para el nivel 10. Con lo anterior se tienen los pesos totales de los

niveles 1 a 9

$$202.5 \text{ ton} + 20 \text{ ton} = 222.5 \text{ ton}$$

y cl nivel 10

$$151.875 + 12.625 = 164.5$$
 ton

Tomando como aceleración de la gravedad $g = 9.81 \text{ m/s}^2$, las masas correspondientes son

nivel 1 a 9	222.5/9.81	= 22.681 ton·s ¹ /m	
nivel 10	164.5/9.81	= 16.769 ton's ² /m	

 b) Análisis sísmico estático. Puesto que el edificio se construirá en la zona lacustre del Distrito Federal, corresponde diseñarlo para un coeficiente sísmico de diseño e=0.4 (artículo 206 del Reglamento de Construcciones para el Distrito Federal 1987). El peso total de la estructura es

 $W_0 = 164.5 \text{ ton } + 9 \times 222.5 \text{ ton } = 2167.0 \text{ ton}$

así el cortante sísmico de diseño en la base, según el articulo 206 del Reglamento de

Construcciones para el Distrito Federal (1987) es

$V_0 = c \cdot W_0 = 0.4 \text{ x } 2167 \text{ ton} = 866.8 \text{ ton}$

El análisis sísmico estático se muestra en la tabla 4.1. En la columna 3 de dicha tabla se muestra una estimación de las aceleraciones del piso correspondiente, se supone inicialmente que la aceleración del nivel 10 es de 9.81 cm/s² y que su ley de variación es líneal con la altura, así se obtienen las aceleraciones de los demás niveles. En la columna 4 se muestran los pesos que se supone están concentrados a nivel del piso correspondiente. En la columna 5 se obtiene una estimación de las fuerzas sísmicas (F',). Esta columna se obtiene multiplicando la columna 3 por la 4. La columna 6 se calculan los cortantes sísmicos que actúan en cada entrepiso, acumulando las fuerzas sísmicas de la columna anterior desde el nivel 10 hasta el primer nivel. Para obtener las columnas 7 y 8, se calcula un factor correctivo f el cual rectifica los valores de las fuerzas sísmicas de los cortantes para que el cortante basal tenga el valor de diseño (V₀ = 866.8 ton) calculado anteriormente. Entonces el factor f es igual a

$$f = \frac{V_0}{V_0} = \frac{866.8 \ ton}{1165.75 \ ton} = 0.744$$

las dos últimas columnas se obtienen multiplicando por f las columnas 5 y 6.

c) Cálculo de la distribución de rigideces de entrepiso. Usando la ecuación 3.24 se calculan los valores de las rigideces K'_{TI} las cuales se muestran en la primer columna de la tabla 4.2.

d) Se realiza una variación de las rigideces K'_n de tai forma que resulte una variación práctica del tamaño de las columnas. El tamaño de las columnas será igual en cada dos entrepisos y por lo tanto para el modelo de cortante las rigideces también lo serán. Para dos entrepisos contiguos K'_{11} corresponde al valor máximo de estos. Los valores de $K'_{11 précisa}$ se muestran en la segunda columna de la tabla 4.2.

 e) Se establece la fracción de la rigidez total que tomará el marco sin disipadores (ver figura 2.1). Se diseñara un marco con disipadores donde el "marco solo" tenga

	Tabla 4.1 Análisis Sísmico Estático.						
			W	F',	v <i>°</i> ,	V,	F′,
Nivel	Entrepiso	a∕g	[ton]	(W∙a/g)	[ton]	(f·∀′,)	[ton]
				[ton]		[ton]	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
10		1.0	164.50	164.50			122.32
	10				164.50	122.32	
9		0.9	222.50	200.25			148.90
	9				364.75	271.21	
8		0.8	222.50	178.00			132.35
	8				542.75	403.57	
7		0.7	222.50	155.75			115.81
l	7				698.50	519.37]
6		0.6	222.50	133.50			99.27
	6				832.00	618.64	
5		0.5	222.50	111.25	ļ		82,72
	5				943.25	701.36	
4.		0.4	222.50	89.00			66.18
· · · ·	4				1032.25	767.54	
3		0.3	222.50	66.75			49.63
	3				1099.00	817.17	· _
2		0.2	222.50	44.50			33.09
	2				1143.50	850.26	
1		0.1	222.50	22.25			16.54
	1				1165.75	866.80	

and the second secon Second second

Tabla 4.2 Rigideces de entrepiso K'i				
Entrepiso (i)	K'π	K' _{Ti práctica}		
10	0.1411			
9	0.3129	0.3129		
8	0.4656			
7	0.5992	0.5992		
6	0.7137			
5	0.8091	0.8091		
4	0.8855	· · · · · · · · · · · · · · · · · · ·		
3	0.9427	0.9427		
2	0.9809			
1	1.000	1.000		

el 25% de la rigidez total y el sistema disipador el 75% restante, es decir

 $\alpha_1 = 0.25 \text{ y } \alpha_2 = 0.75$

f) Calculo de la rigidez de entrepiso mínima. Esta rigidez se calcula con la expresión 3.25. Los datos son los siguientes

n_e = 16

 $E_e = 8000\sqrt{f'_e} = 8000 \times \sqrt{200 \ kg/cm^2} = 113137.085 \ kg/cm^2 = 113.14 \ ton/cm^2$

 I_{min} = (30cm)⁴/12 (la dimensión de la sección transversal de la columna de la *estructura* con disipndores debe ser de 30 cm, según el inciso g de 4.1)

H = 300 cm

 $\alpha_1 = 0.25$

ESTA TESIS 110 DEBE Salir de la diblioteca

DISEÑO DE EDIFICIOS CON Y SIN DISIPADORES

luego, la rigidez K_{T ma} es igual a

 $K_{T \min} = 16 \times \left[\frac{12 \times 113.14 \times 30^4/12}{300^3 \times 0.25} \right] = 217.2232 \ ton/cm$

g) Calculo de las rigideces de entrepiso. Las rigideces de entrepiso del modelo de cortante se calcular con la ecuación 3.26 donde el factor η es igual a (ecuación 3.9)

$$\eta = \frac{K_{T\min}}{K_{T10}'} = \frac{217.2232}{0.3129} = 694.2505$$

sustituyendo este factor en la ecuación 3.26 se obtienen las rigideces de entrepiso de la estructura convencional modelada como estructura de cortante (equivale a multiplicar los valores de la tercer columna de la tabla 4.2 por η), estas se muestran en la tabla 4.3.

h) Cálculo de las secciones de las columnas. Ya que las columnas son de sección cuadrada, para calcular la dimensión transversal de esta se usara la ecuación 3.27

 $l = \left[\frac{300^3 \times K_{Tl}}{113.14 \times 16}\right]^{\frac{1}{4}} = 11.0512 \ K_{Tl}^{\frac{1}{4}}$

usando esta ecuación, se obtienen en la tabla 4.3 las dimensiones transversales de las columnas de cada entrepiso de la *estructura convencional*. La dimensión l de la columna de los entrepisos 1 y 2 no se redondeo a 57 cm ya que es muy poca la diferencia entre los valores teóricos de l de los primeros cuatro entrepisos, se hizo un promedio de los dos valores teóricos y este fue el que se redondeó.

i) Se proponen secciones de trabes. Se propone usar un solo tamaño de sección de trabe para toda la estructura, es decir, para los diez niveles las trabes tendrán la misma sección. Se propone ensayar una sección de 35 cm x 75 cm.

Tabla 4.3 Rigideces de entrepiso y dimensiones de columnas en el								
Entrepiso (i) K _{T1} <i>l</i> _{itotes} <i>l</i> _{rrai} (ton/cm) (cm) (cm)								
9 y 10	217.2232	42,42	42.0					
7 y 8	415.9849	49.91	50.0					
5 y 6	561.7438	53.80	54.0					
3 y 4	654.4985	55.90	56.0					
1 y 2	694.2505	56.73	56.0					

4.2.1.2. Dimensiones definitivas de columnas y trabes del marco convencional.

Hasta aquí se tiene una estimación de las dimensiones de las secciones de las columnas de la *estructura convencional* (las secciones de las trabes se quedan constantes en todo el proceso de dimensionamiento). El paso siguiente es analizar la estructura utilizando el modelo tipo esqueletal.

j) Se analiza la estructura con el modelo tipo esqueletal. Empleando el programa SUPER-ETABS se realiza el análisis estructural de <u>un marco exterior</u> de la estructura con las dimensiones obtenidas en los incisos h) e i), con el fin de revisar los desplazamientos de la estructura (el edificio cuenta con un sistema de piso bastante rígido en su plano y que los cuatro marcos que la conforman en cualquier dirección tienen la misma rigidez, por lo tanto, es válido realizar el análisis a un marco¹ para verificar los desplazamientos de toda la estructura). Se analiza el marco únicamente para sismo, efectuando un análisis sísmico modal espectral utilizando el espectro del

¹ Las masas, los cortantes, y las rigideces de entrepiso para un marco son la cuarta parte de los valores correspondientes a toda la estructura.

Reglamento de Construcciones para el Distrito Federal, 1987 (figura 4.2). El archivo de datos para el programa se muestra en el Apéndice B.

En la tabla 4.4 se muestran los desplazamientos de nivel y de entrepiso del marco convencional que resultan del análisis del SUPER-ETABS. El desplazamiento relativo permitido es

correspondiente a la zona III.

Tabla 4.4 Desplazamientos del marco convencional.						
Nivel/ Entrepiso	Nivel/ Desplazamiento de I Entrepiso nivel (cm) de					
10	14.29	0.66				
9	13.63	1.11				
8	12.52	1.19				
7	11.33	1,46				
6	9.87	1.53				
5	8.34	1.69				
4	6.65	1.75				
3	4.90	1.82				
2	3.08	1.79				
1	1.29	1.29				

 $\delta_{mnm} = 0.012 \times 3 \ m = 0.036 \ m = 3.6 \ cm$

Se observa en la tabla que los desplazamientos de entrepiso son menores al permitido, por lo que se pasará al siguiente punto del proceso de dimensionamiento (no hubo necesidad de corregir las secciones de las columnas). Las dimensiones definitivas de las secciones transversales de las columnas y trabes se encuentran en la tabla 4.5.

Tabla 4.5 Dimensiones definitivas de las					
secciones de	trabes y column	nas del marco			
	convencional.				
Sección de Sección de					
Nivel	Trabe				
	[cm]	[cm]			
9 y 10	42				
7у8	7 y 8 50				
5 y 6 54 35 x 7					
1 a 4	56				

k) Corrección de los pesos. Se corrigen los pesos de cada nivel, teniendo en cuenta las nuevas secciones de columnas. Los nuevos pesos tributarios se calculan teniendo en cuenta que la altura de las columnas es

 H_{Blue} = diferencia de elevaciones - peralte de la trabe = 3 m - 0.75 m = 2.25m

los pesos tributarios de las columnas se calculan con la siguiente expresión

$$\begin{split} w_{col} &= N^{p} columnas \cdot \frac{H_{lber}}{2} \cdot \gamma \cdot (l_{colump}^{2} + l_{colimp}^{2}) \\ w_{col} &= 16 \times 1.125 \ m \times 2.3 \ ton/m^{3} \times (l_{colimp}^{2} + l_{colimp}^{2}) \\ w_{col} &= 41.4 \ (l_{colimp}^{2} + l_{colimp}^{2}) \end{split}$$

donde *l* esta en cm y w_{ext} en toneladas, así los pesos que resultan son los que se muestran en la columna dos de la tabla 4.6

Con las dimensiones y pesos definitivos se realiza de nuevo el análisis estructural (cuyo archivo para el programa SUPER-ETABS se encuentra en el Apéndice B para un marco de la estructura) y se revisan desplazamientos (ver tabla 4.7).

I) Calculo de las rigideces de entrepiso definitivas. Estas se obtienen dividiendo

	Tabla 4.6 Pesos definitivos de toda la estructura.					
Nivel	Peso tributario de columnas [ton]	Peso total del nivel {ton]	Peso total para efectos sísmicos [ton]	Masa total para cfectos sísmicos [ton·s²/cm]		
10	7.303	151.875	159.178	16.226		
. 9	14.606	202.500	217.106	22.131		
8	17.653	202.500	220.153	22.442		
7	20.700	202.500	223.200	22.752		
6	22.422	202.500	224.922	22.928		
5	24.145	202.500	226.645	23.104		
: 4	25.055	202.500	227.555	23.196		
3	25.966	202.500	228.466	23.289		
2	25.966	202.500	228,466	23.289		
1	25.966	202.500	228.466	23.289		
	TOTALES		2,184.157	222.646		

la fuerza cortante que actúa en un entrepiso dado sobre el desplazamiento relativo de dicho entrepiso. Los cortantes y desplazamientos de entrepiso se obtienen del análisis que realiza el SUPER-ETABS, estos resultados se muestran en la tabla 4.7. El período fundamental de vibración de la *estructura convencional* resultó ser T=1.027s.

Hasta aquí quedan establecidas las secciones de columnas y trabes así como rigideces de entrepiso definitivas de la *estructura convencional* (las rigideces de entrepiso de toda la estructura son 4 veces mayores a las de la tabla 4.7, debido a que esta cuenta con cuatro marcos con la misma rigidez unidos por un diafragma rígido en su plano).

Tabla 4.7 Desp del a	Tabla 4.7 Desplazamientos, cortantes y rigideces de entrepiso definitivas obtenidas del análisis de <u>un marco exterior</u> de la estructura convencional.						
Nivel- Entrepiso	Desplaza- miento del nivel [cm]	Desplaza- miento de entrepiso [cm]	Cortantes sísmicos [ton]	Rigidez de entrepiso K _r [ton/cm]			
10	14.24	0.64	22.668	35.418			
9	13.60	1.09	51.605	47.344			
8	12.51	1.18	77.889	66.007			
7	11.33	1,44	101.945	70.795			
6	9,89	1.52	123.009	80.927			
5	8.37	1.70	141.260	83.094			
4	6.67	1.74	156.118	89.723			
3	4.93	1.83	167.535	91.549			
2	3.10	1,81	174.971	96.669			
1	1.29	1.29	177.441	137.551			

4.2.1.3. Dimensiones definitivas de las columnas y trabes y áreas definitivas de las diagonales equivalentes del marco con disipadores.

A partir de aquí se tratará únicamente con <u>un marco</u> de la *estructura convencional.* m) Calculo de las secciones de las trabes y columnas del *marco con disipadores.* Estas se calculan con las expresiones 3.29 donde

$$\sqrt[4]{\alpha_1} = \sqrt[4]{0.25} = \frac{1}{\sqrt{2}} = 0.7071$$

Las secciones definitivas de las columnas y trabes del marco con disipadores se muestran en la tabla 4.8, estas resultan de multiplicar los valores de la tabla 4.5 por 0.707

Tabla 4.8 Dimensiones definitivas de las secciones de trabes y columnas del marco con disipadores.					
Sección de Sección de Nivel columna Trabe [cm] [cm]					
9 y 10	30				
7 y 8	35	25 x 53			
5 y 6	38				
1 a 4	40				

Se puede ver que las secciones no son menores a las que marca el Reglamento y que la dimensión de la columna del último entrepiso es de 30cm (inciso g de 4.1).

 n) Se establece el arreglo de disipadores. El arreglo de disipadores que se adopta es el ilustrado en la figura 4.3.

o) Calculo de las rigideces del marco sin disipadores. Se analiza el marco sin disipadores para calcular la rigidez de entrepiso que posee por sí solo (el archivo de datos se encuentra en el Apéndice B). Las rigideces se calculan de la misma forma que en el

Fig. 4.3 Disposición de los disipadores en un marco.

inciso l. Los desplazamientos, cortantes y rigideces de entrepiso se muestran en la tabla 4,9.

Tabla 4.9 Desplazamientos, cortantes y rigideces de entrepiso del marco sin disipadores						
Nivel- Entrepiso	Desplaza- miento del nível [cm]	Desplaza- miento de entrepiso [cm]	Cortantes sísmicos [ton]	Rigidez de entrepiso K _u [ton/cm]		
10	61.45	2.38	23.682	9,950		
9	59.07	4.46	53.974	12.102		
8	54.61	4.91	80.922	16.481		
7	49.70	6.22	106.110	17.059		
6	43.48	6.55	127.965	19.537		
5	36.93	7.41	147.805	19.947		
4	29.52	7.60	164.031	21.583		
3	21.92	8.08	177.539	21.973		
2	13.84	8.12	186.748	22.999		
1	5.72	5.72	187.242	32.735		

En la tabla 4.12 se muestra el valor de α_1 real. De esta tabla se observa que el valor real de α_1 es muy cercano a su valor teórico (0.25).

p) Calculo de las áreas de las diagonales equivalentes. Estas áreas se calculan con la expresión 3.30, donde:

 $E_d = 2.1 \times 10^3 \text{ ton/cm}^2$

 $n_d = 2$ diagonales por nivel.

 θ = angtan (3/5) = 30.964°

 $L = (300^2 + 500^2)^{(1/2)} = 583.095 \text{ cm}$

con los datos anteriores la expresión 3.30 se reduce a

$$A = \frac{K_d \times 583.095 \ cm}{2100 \ tonlcm^2 \times 2 \times \cos^2 30.964^{\circ}} = 0.1888 \ K_d \tag{4.1}$$

la rigidez K_d es igual a $K_T - K_d$. En este caso el factor 0.1888 tiene unidades de cm³/ton así K_d debe estar en ton/em para obtener el área en cm³. En la tabla 4.10 se resumen las rigideces de entrepiso, en ella K_T corresponde a la rigidez de entrepiso definitiva del *marco convencional* (tabla 4.7), K_{sd} es la rigidez de entrepiso definitiva del *marco sin disipadores* (tabla 4.9) y K_d la rigidez de entrepiso teórica que necesita poseer el sistema disipador para conseguir que el *marco con disipadores* tenga un período fundamental de vibración similar al del *marco convencional*. Usando la ecuación 4.1 con la rigidez K_d , se calcula el área de una *diagonal equivalente* de cada entrepiso. En la tabla 4.11 se muestran las áreas teóricas resultantes de cada *diagonal equivalente*.

q y r) Calculo de la rigidez de entrepiso que realmente aportan las diagonales y corrección de estas. Con las áreas calculadas en el punto anterior se realiza el primer análisis estructural al *marco con disipadores* (el archivo de datos se encuentra en el

Tabla 4.10 Rigideces de entrepiso de un marco aislado.							
Entre- piso	K _T ton/cm	K _w ton/cm	K _d = K _T -K _{v1}	Entre- piso	K _T ton/cm	K _{rd} ton/cm	K _d = K ₁ -K ₁₄
10	35.418	9.950	25.47	5	83.094	19.947	63.15
9	47.344	12.102	35.24	4	89.723	21.583	68.14
8	66.007	16.481	49.53	. 3	91.549	21.973	69.58
7	70.795	17.059	53.74	2	96.669	22.999	73.67
6	80.927	19.537	61.39	1	137.551	32.735	104.82

	Tabla 4.11 Áreas teóricas de las diagonales equivalentes.								
	Entrepiso	Ku [ton/em]	A= 0.1888K ₄ {cm²}	Entrepiso	K _d ton/cm²[A= 0.1888K ₄ [cm²]			
	10	25.47	4.8087	5	63.15	11.9229			
	9	35.24	6.6541	4	68.14	12.8656			
	8	49.53	9.3511	3	69.58	13.1368			
	7	53.74	10.1460	2	73.67	13.9098			
l	6	61.39	11.5912	1	104.82	19.7905			

Apéndice B). De este análisis se obtienen las rigideces de entrepiso totales, que realmente tiene el *marco con disipadores* (que es la rigidez denotada como K_{Tr}), luego la rigidez que realmente aportan las diagonales con el área calculada es

 $K_{ur} = K_{Tr} - K_{sd}$ (ecuación 3.31), puesto que $K_{ur} \neq K_{d}$ las árcas anteriores se corrigen utilizando la ecuación 3.32

$$A^{(i)} = \frac{K_d}{K_{de}} \cdot A^{(i-1)}$$
(4.2)

 K_{d} es constante en todo el proceso y esta dada en la tabla 4.10, *i* denota el número de corrección. El proceso que se sigue para obtener las áreas definitivas de las diagonales equivalentes es el ilustrado en la figura 3.16, y los cálculos se muestran en las tablas 4.13a, 4.13b y 4.14. Para este proceso se realizaron cuatro correcciones al área inicial (teórica) (A^(e) = A de la tabla 4.11) calculada en el inciso p.

Las áreas definitivas son las que se muestran en la tabla 4.14. Las rigideces K_{tr} son parecidas a las teóricas K_{tr} . Obsérvese que K_{Tr} de la tabla 4.14 es similar a K_{T} de la

tabla 4.7. De hecho se consigue que el marco con disipndores (T = 1.029s) tenga un período muy parecido al marco convencional (T = 1.027s), por lo que α_1 no varió significativamente a excepción del último entrepiso en el factor α_1 real es un 36% mayor al teórico (Tabla 4.12).

Tabla 4.12 Valores reales de α_1								
Entre- piso	K _{Tr} ton/cm	K _{sd} ton/cm	αι	Entre- piso	K _{tr} ton/cm	K _{st} ton/cm	αι	
10	29.451	9.950	0.34	5	83.512	19.947	0.24	
9	46.144	12.102	0.26	4	89.597	21.583	0.24	
8	66.688	16.481	0.25	3	91.431	21.973	0.24	
7	69.889	17.059	0.24	2	96.568	22,999	0.24	
6	80.389	19.537	0.24	1	137,424	32,735	0.24	

4.2.2 Proceso de reforzamiento.

En esta sección se muestra el proceso que se sigue para calcular el <u>refuerzo para</u> flexión de las trabes y columnas del entrepiso 7 de <u>un marco exterior</u> de la *estructura con disipadores*, así como la resistencia necesaria de los disipadores del mismo entrepiso, para esta tenga un comportamiento adecuado. El refuerzo por cortante de trabes y columnas no se calcula ya que no es necesario para el análisis que se hará en el capitulo siguiente.

4.2.2.1 Análisis Estructural.

En este inciso, se muestran los resultados del análisis estructural del marco con disipadores. Debido a que los disipadores no se diseñaran para resistir cargas verticales, se realizan dos tipos de análisis: DISENO DE EDIFICIOS CON Y SIN DISIPADORES <u>Y SIN DISIPADORES</u>

	Tabla 4.13a Cálculo de las áreas definitivas de las diagonales equivalentes.							
	Entre-	i=0			i=1			
eta adago Alta da se	piso	A [cm²]	K _{Tr} [ton/cm]	K _{dr} [ton/cm]	A [cm²]	K _{Tr} [ton/cm]	K _{dr} [ton/cm]	
	10	4.809	20.241	10.291	11.901	25.234	15.284	
	9	6.654	32.250	20,148	11.639	40.252	28.150	
	8	9.351	55.178	38.697	11.968	65.286	48.805	
11 - C	- 7	10.146	52.859	35.800	15.229	64.714	47.655	
	6	11.591	61.642	42.105	16.900	74.500	54.963	
	5	11.923	73.766	53.819	13.989	84.116	64.169	
	4	12.866	75.586	54.003	16.234	86.626	65.043	
	3	13.137	77.358	55.385	16.503	88.419	66.446	
	2	13.910	92.499	69.500	14.744	96.830	73.831	
·	1	19.791	137.675	104.940	19.769	138.360	105.625	
	T [s]		1.114			1.045		

Entre-		i=2			i=3	
piso	A [cm ²]	K ₁ , [ton/cm]	K _{dr} [ton/cm]	A {cm²}	K _{Tr} [ton/cm]	K _{dr} [ton/cm]
10	19.830	27.284	17.334	29.135	28.817	18.867
9	14.571	43.659	31.557	16.273	45.420	33.318
. 8	12.145	66.791	50.310	11.955	66.164	49.683
7	17.173	68.536	51.477	17.926	69.907	52.848
6	18.876	77.842	58,305	19.875	79.350	59.813
5	13.767	83.864	63,917	13.601	83.955	64.008
4	17.007	88.913	67.330	17.211	89.031	67.448
3	17.280	90.717	68.744	17.489	91.358	69.385
2	14.712	97.354	74.355	14.577	97.011	74.012
1	19.616	137.027	104,292	19.714	137.297	104.562
T [s]		1.034			1.030	·····

-

· · · ·

Entrepiso		i=4	
	A [cm²]	K _{tr} [ton/cm]	K _{dr} [ton/cm]
10	39.329	29.451	19.501
9	17.213	46.144	34.042
8	11.918	66.688	50.207
7	18.227	69.889	52.830
6	20,399	80.389	60.852
5	13.418	83.512	63.565
4	17.388	89.597	68.014
	17.537	91.431	69.458
2	14.509	96.568	73.569
1	19.762	137.424	104.689
T [s]		1.029	
		92	

92 Base 1 - Constant of the second s

 El primero para el marco sin disipadores³ (ver figura 2.1) bajo combinaciones de cargas verticales que en este caso son las siguientes;

i) carga muerta mas carga viva máxima y,

ii) carga muerta mas carga viva instantánca

2) El segundo análisis se realiza al marco con disipadores (ver figura 2.1) bajo la siguiente solicitación:

iii) sismo (análisis dinámico modal espectral c = 0.4 con Q=1.0)

De esta forma se logra que los disipadores (o *diagonales equivalentes* en el análisis) solo tomen fuerzas horizontales, para las cuales se diseñaran.

Se analiza la estructura tridimensionalmente y para diseñar las columnas solo se tomaron en cuenta lo momentos flexionantes en la dirección x, despreciando la flexión en el sentido perpendicular al marco en estudio. La carga axial que resulta del análisis incluye la contribución de las trabes y diagonales perpendiculares al marco. El marco que se analiza y diseña es el que se muestra en la figura 4.3, tanto para la *estructura con disipadores* como para las *estructura convencional*. Se hace uso del programa de análisis **SUPER-ETABS** [**er** 29 y 48] y la manera como se numeraron las columnas y crujías de la estructura, para formar los archivo de datos, se muestra en el apéndice B.

Los elementos mecánicos que se obtienen de los análisis, se muestran en las figuras 4.4 a 4.6, estos son los que resultan de aplicar las cargas factorizadas (F_e =1.4 para la combinación *i*, F_e =1.1 para la combinación *ii* y F_e =1.1 con Q=1.0 para la solicitación *iii* (análisis dinámico modal espectral).

Se debe señalar que, las trabes al igual que las columnas, se diseñaran para los elementos mecánicos que resultan de NO reducir el espectro de diseño, es decir, el marco se diseñara, con un factor $\Phi_M = 1.0$ (ver capitulo anterior), de acuerdo con esto, las envolventes de diseño para trabes y la obtención de los parámetros K y M

² Se puede demostrar que el período fundamental de vibrar del marco sin disipadores es igual a $T_{ad} = \frac{T_{cd}}{\sqrt{\alpha_1}}$, donde T_{cd} es el período del marco con disipadores.

Fig. 4.3 Marco exterior a diseñar.

para columnas se harán directamente con las fuerzas mostradas en las figuras siguientes.

CONSTANTES.

Se listan a continuación las constantes necesarias para el diseño de las trabes y columnas del marco con disipadores.

 $f_c = 200 \text{ kg/cm}^2$

$$f_{y} = 4200 \text{ kg/cm}^2$$

- $f_c = 0.8 \text{ x } 200 = 160 \text{ kg/cm}^2$
- $f''_{c} = 0.85 f'_{c} = 136 \text{ kg/cm}^2$
- $F_{\rm g}$ para flexión = 0.9

 $F_{\rm B}$ para flexocompresión = 0.7 para falla en compresión y 0.8 para falla en tensión

Fig. 4.6 Elementos mecánicos de la solicitación 1.1(sismo en dirección positiva del eje x), en toneladas y toneladas metro. Los factores de resistencia anteriores se tomaron del inciso 1.6 de las Normas

Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto. -porcentajes de acero para elementos en flexión: (inciso 2.1.2 de las mismas normas)

$$\rho_{min} = 0.7 \frac{\sqrt{f_c'}}{f_y} = 0.7 \frac{\sqrt{136}}{4200} = 0.002357$$

$$\rho_{max} = 0.75 \rho_b = 0.75 \frac{f_c''}{f_y} \frac{4800}{f_y + 6000} = 0.75 \frac{136}{4200} \frac{4800}{4200 + 6000} = 0.011429$$

$$\frac{f_y}{f_c''} = \frac{4200}{136} = 30.8824$$

-porcentajes de acero para elementos en flexocompresión: (inciso 4.2.2)

$$\rho_{\min} = \frac{20}{f_y} = \frac{20}{4200} = 0.004762$$

$$q_{\min} = \rho_{\min} \frac{f_{y}}{f_{c}^{\prime\prime}} = 0.147059$$

$$\rho_{\max} = 0.06$$

$$q_{\max} = 0.06 \frac{4200}{136} = 1.8529$$

4.2.2.2.1. Trabes del nivel 7.

Combinando los elementos mecánicos obtenidos del análisis bajo cargas verticales (figura 4.5) y las obtenidas del análisis por sismo en el sentido positivo del eje x (figura 4.6), se obtienen las fuerzas internas mostradas en la figura 4.7. Combinando las cargas verticales (figura 4.5) y el efecto del sismo en el sentido negativo del eje x (fuerzas de la figura 4.6 con sentidos opuestos), se tienen los elementos mecánicos mostrados en la figura 4.8. Para llevar a cabo las combinaciones de carga anteriores se utilizó el

Fig. 4.7 Elementos mecánicos del análisis por cargas verticales y sismo en el sentido positivo del eje x, en toneladas y toneladas metro.

Fig. 4.8 Elementos mecánicos del análisis bajo cargas verticales y sismo en el sentido negativo del cje x, en toneladas y toneladas metro.

factor de carga que corresponde a combinaciones con acciones accidentales ($F_r = 1.1$). Calculo de la envolvente de momentos.

La envolvente corresponde a los valores máximos de los momentos flexionantes (para cada sentido) de las figuras 4.4, 4.7 y 4.8. Se obtienen los siguientes valores de los momentos flexionantes para diseño (momentos últimos M.,), en toneladas metro.

Línea de co	Línea de colum			
En flexión negativa ³	11.4536	6.2457	14.4681	Simétrico -+
En flexión positiva ³	2.6136	4.3219	9.1475	Simétrico -+

El momento máximo es $M_{max} = 14.4681$ ton·m

³ La flexión positiva produce tensión en las fibras inferiores al eje neutro de la sección de la viga. La flexión negativa produce tensión en las fibras superiores al eje neutro de la sección transversal de la viga.

Obtención del brazo interno mínimo⁴ zmin (corresponde al momento máximo).

 M_{mkl} = 14.4681 x 10⁵ kg·cm La sección de la trabe es de 25cm x 53cm se supone que la distancia entre el centroide del área de acero a compresión (tensión) y la fibra extrema a compresión (tensión) es de 4cm, de esta forma:

d' = 4cm d = 53-4 = 49cm $\frac{M}{bd^2} = \frac{14.4681 \times 10^5}{25 \times 49^2} = 24.10 \ kg/cm^2$

De la ecuación $M_R = F_R b d^2 f'_c q$ (1-0.5 q) se despeja q y en la ecuación resultante se sustituye $q = \rho f_c / f'_c$ para obtener

$$\rho = \frac{f_{\epsilon}''}{f_{y}} \left[1 - \sqrt{1 - \frac{2 \left(M/bd^{2} \right)}{F_{R} f_{\epsilon}''}} \right]$$

sustituyendo valores se obtiene $\rho = 0.0072$, luego

 $A_s = \rho b d = 0.0072 x 25 x 49 = 8.7839 cm^2$

como $M_R = F_R A$, f_y z_{min}, despejando z_{min}

$$z_{\min} = \frac{M_{\max}}{F_R A_s f_y} = \frac{14.4681 \times 10^3}{0.9 \times 8.7839 \times 4200}$$
$$z_{\min} = 43.5747 cm$$

en el resto de la trabe, y para los dos lechos, el refuerzo se calcula usando el brazo

⁴ Los brazos internos mínimos (z_{min}) se tienen en las secciones de momentos máximos; en ellas las fuerzas de tensión y de compresión que forman el par resistente son máximas, y, por tanto, es máxima la profundidad *a*, del bloque de esfuerzos de compresión, y mínimo el brazo interno d-0.5a (= 28).

interno mínimo⁵ por medio de la expresión

$$A_{g} = \frac{M_{u}}{F_{g} z_{\min} f_{v}} = \frac{M_{u}}{0.9 \times 0.435 \times 4.2} = 0.6071M$$

Utilizando esta expresión se obtienen las siguientes áreas de acero teóricas (en cm²)

Línea de co	lumna 1	Línea de colum	na 2
Lecho superior	6.9537	3.7919	8.7839 Simétrico -+
Lecho inferior	1.6050	2.6239	5.5536 Simétrico -+

En este caso no se calcula el refuerzo en toda la trabe ya que no es necesario para el análisis que se realiza en el capitulo siguiente. Se opta por colocar el armado más crítico de la trabe en todas las secciones adyacentes a las columnas. En la figura 4.10 se muestra el armado final de la sección de la trabe adyacente a cualquier columna. a) Calculo del momento resistente de la sección.

El calculo del momento resistente de la sección se puede realizar utilizando la expresión 2.9 de las Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto, la cual se refiere al momento resistente de secciones con acero de compresión y es válida únicamente cuando el acero de compresión fluye. Esta expresión se muestra en seguida

$$M_{R} = F_{R} \left[(A_{s} - A_{s}^{\prime}) f_{y} (d - \frac{a}{2}) + A_{s}^{\prime} f_{y} (d - d^{\prime}) \right]$$

donde
$$a = \frac{(A_{s} - A_{s}^{\prime}) f_{y}}{f_{s}^{\prime \prime} b}$$

³ Al usar los brazos mínimos en otras secciones de la viga, se obtienen áreas de acero ligeramente mayores que las que resultarían si estas se calcularan en cada una de ellas [ar 28].

 $A_i =$ área de acero a tensión.

A', = área de acero a compresión

d' = distancia entre el centroide del acero a compresión y la fibra extrema a compresión.

d = peralte efectivo.

El acero de compresión fluye si se cumple la ecuación 2.10 de dichas normas.

$$(\rho - \rho') \geq \frac{4800}{6000 - f_y} \frac{d' f_c''}{d}$$

Cuando no se cumple esta condición, M_R debe determinarse con un análisis basado en el equilibrio de la sección.

En este caso M_R se calcula mediante un programa de cómputo del cual se proporciona un listado en el apéndice C.

Resumiendo, los momentos resistentes de la sección son: * Momento resistente cuando el acero del lecho inferior esta a tensión. Resistencia en flexión positiva: M_K* = 11.044 ton·m * Momento resistente cuando el acero del lecho superior esta a tensión.

Resistencia en flexión negativa: $M_{\mu} = 18.127$ ton m

Los momentos anteriores no están reducidos, es decir no están afectados por F_R =0.9, son momentos resistentes nominales.

4.2.2.2.2. Columnas del entrepiso 7.

Se realiza la combinación efectos de cargas verticales $(CM+CV_{in})$ con los efectos del sismo en sentido positivo y en sentido negativo, como se hizo en el diseño de la trabe. Los efectos de la combinación $CM+CV_{in}$ +sismo en sentido positivo se muestran en la figura 4.11. Los efectos de la combinación $CM+CV_{in}$ +sismo en sentido negativo se muestran en la figura 4.12. Las unidades de los elementos mecánicos siguen estando en toneladas y toneladas metro para fuerza axial y momento flexionante respectivamente.

Según el inciso 2.1.3.a de las Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto, la excentricidad de diseño no debe ser menor que $0.05h \ge 2cm$, donde h es la dimensión de la sección en la dirección en que se considera la flexión. La columna en el entrepiso 7 es cuadrada de dimensión 35cm x 35cm (ver tabla 4.8). Por tanto 0.05 x 35 = 1.75 cm < 2cm, y entonces la excentricidad mínima es $c_{min} = 2cm$.

Se supone una distancia entre el área de acero a compresión (tensión) y la fibra extrema a compresión (tensión) de 4cm., por lo tanto:

> d = 35.0 - 4.0 = 31.0 cmd/h = 31 / 35 = 0.89

Fig. 4.11 Elementos mecánicos del análisis bajo cargas verticales y sismo en el sentido positivo del eje x en toneladas y toneladas-metro.

Fig. 4.12 Elementos mecánicos del análisis bajo cargas verticales y sismo en el sentido negativo del eje x en toneladas y toneladas-metro.

Para entrar al diagrama de interacción es necesario calcular los siguientes parámetros

$$K = \frac{P_u}{F_R b h f_c''}$$
$$R = \frac{M_u}{F_R b h^2 f_c''}$$

DISEÑO DE EDIFICIOS CON Y SIN DISIPADORES

En la tabla 4.15 se resumen los

valores de P_u y M_u⁶ de cada combinación Fig. 4.13 Diagrama de Interacción.

de carga (1.4 (CM+CV_{mxz}), 1.1 (CM+CV_{ixa}+Sismo) y 1.1(CM+CV_{ixa}-Sismo)) para la columna exterior (1)⁷ y se calculan los valores de K y R revisando que la excentricidad P_y/M_u no sea menor a la excentricidad mínima $e_{min} = 2.0$ cm. En la tabla 4.16 se hace lo mismo para la columna interior (2)⁵. Se obtienen así tres parejas de valores R y K una para cada combinación de carga. Se entra al diagrama de interacción (figura 4.13) y se observa cual es la condición que rige, siendo esta la que proporciona el valor máximo del índice de refuerzo (q) y por lo tanto del área de acero.

En las tablas se han denotado a las combinaciones de carga de la siguiente manera:

⁶ M_u es el mayor de los momentos actuantes en la parte superior e inferior de una columna.

⁷ Ver figura 4.3 para determinar cuales son las columnas 1 y 2.
$A: 1.4 (CM + CV_{max})$

 \mathbf{B} : 1,1 (CM + CV_{ins} + Sismo)

 $C: 1.1 (CM + CV_{ins} - Sismo)$

TABLA 4.15 Columna exterior (1).									
Comb. de carga	P _u (ton)	M _u (ton·m)	e=M _u /P _u (m)	M _{corr} = P _u x c _{man}	К	R			
A	45.5573	2.8304	0.062		0.342	0.061			
В	8.5937	2.1360	0.249		0.065	0.046			
C	58.2789	6,2580	0,107		0.437	0.134			

Hay que recordar que las columnas se diseñan para flexión uniaxial y con $\Phi_M = 1.0$

No se corrigen los momentos flexionantes (columna 5 de la tabla anterior), debido a que todas las excentricidades son mayores a la excentricidad mínima $e_{min} = 2.0$ cm

Todos los puntos (R, K) quedan dentro de la curva $q=0.2 < q_{min}$ del diagrama de interacción (figura 4.13), por lo que se colocara la cantidad de acero correspondiente a $q_{min} = 0.147$. Sabiendo que

 $\begin{aligned} \mathbf{q} &= \rho \, \mathbf{f_y} \, / \, \mathbf{f_e^{m}} \ ; \ \rho = \mathbf{q} \, \mathbf{f_e^{m}} \, / \, \mathbf{f_y} = 0.147 \, \mathbf{x} \, 136 \, / \, 4200 = 0.00476 \, = \rho_{min} \\ \rho &= \mathbf{A_y} \, / \, \mathrm{bh} \qquad ; \ \mathbf{A_{tres}} = \rho \, \mathrm{bh} = 0.00476 \, \mathbf{x} \, 35 \, \mathbf{x} \, 35 = 5.83 \, \mathrm{cm}^2 \end{aligned}$

La columna 1 se armará con 4 varillas de 5/8 in , por lo que su área de acero real

 $A_{i real} = 4\#5 = 7.92 \text{ cm}^2$ $\rho = 0.0065 \text{ y } q = 0.199$

es

TABLA 4.16 Columna interior (2)									
Comb. P_u M_u $c=M_y/P_u$ $M_{corr}=$ KRdc carga(ton)(ton·m)(m) $P_u \times e_{min}$ R									
A	73.8445	1.0021	0.014	1.4769	0.554	0.032			
В	48.8734	8.0487	0.165		0.367	0.173			
С	59.1306	9.4981	0.161		0.444	0.204			

DISENO DE EDIFICIOS CON Y SIN DISIPADORES

En la columna 2, rige la combinación de carga C va que con el punto de coordenadas (R=0.204, K=0.444) se obtiene q = 0.35

 $\rho = q f_{e}^{"} / f_{y} = 0.35 \times 136 / 4200 = 0.0113$

 $A_{1,too} = \rho b h = 0.0113 \times 35 \times 35 = 13.88 cm^2$

La columna 2 se armará con 8 varillas de 5/8 in, por lo que

 $A_{\rm upd} = 8\#5 = 15.84 \, {\rm cm}^2$

 $\rho = 0.0129$ y q = 0.399 - Este armado es el más crítico en el entrepiso.

Se opta por colocar el mismo armado en todas las columnas del entrepiso, por lo que el armado final de estas columnas es el más crítico (figura 4.14).

Este refuerzo no incluye la revisión de su resistencia mínima а flexión (ecuación 3.25 del capítulo anterior).

Fig. 4.14 Armado de las columnas del entrepiso 7 (sin la revisión de su resistencia mínima a flexión).

4.2.2.2.3. Disipadores del entrepiso 7.

En la figura 4.6, se muestra cual es la fuerza axial máxima de diseño que actúa en la diagonal equivalente, obtenida de un análisis sísmico modal espectral (sin reducción en las ordenadas del espectro de diseño). La fuerza de diseño elástica (que corresponde al espectro no reducido) es entonces

 $F_4 = 53.85$ ton

el área de la diagonal equivalente es (tabla 4.14)

 $A = 18.227 \times 10^{-4} m^{2}$

por lo que el esfuerzo de fluencia del disipador es igual a

 $F_d / A = 53.85 / 18.227 \times 10^4 = 29543.82 \text{ ton/m}^2$, debido a que este esfuerzo no tiene reducción de ningún tipo, es el que corresponde a un factor $\Phi_0 = 1.0$ (ver capitulo 3) y se denotará como

 $\sigma_{\bullet,-1} = 29543.82 \text{ ton/m}^2$

el esfuerzo del disipador debe ser menor a $\sigma_{e_p-1}^{s}$, por lo que este puede tener los siguientes posibles valores:

 $\sigma_{\bullet_{p}\bullet^{2}} = 29543.82/2 = 14771.91 \text{ ton/m}^{2}$ $\sigma_{\bullet_{p}\bullet^{3}} = 29543.82/3 = 9847.94 \text{ ton/m}^{2}$ $\sigma_{\bullet_{p}\bullet^{4}} = 29543.82/4 = 7385.95 \text{ ton/m}^{2}$ $\sigma_{\bullet_{p}\bullet^{5}} = 29543.82/5 = 5908.76 \text{ ton/m}^{2}$ $\sigma_{\bullet_{p}\bullet^{5}} = 29543.82/6 = 4923.97 \text{ ton/m}^{2}$

El valor del esfuerzo definitivo para el disipador es el que corresponda a un comportamiento adecuado de la estructura. Rigurosamente este valor debe determinarse

⁴ Si el disipador se diseña para este esfuerzo, nunca entrará al rango inelástico (a menos que las aceleraciones del terreno excedan a las de diseño 0.4g), es por eso, que el esfuerzo de fluencia debe ser menor para que el disipador trabaje como tal.

realizando un análisis de costos y de la respuesta de la estructura para cada valor de Φ_D y ante varios (por lo menos cuatro) temblores específicos, como se señala en el inciso 9.2 de las Normas Técnicas Complementarias para Diseño por Sismo. La mejor respuesta y el mínimo costo es el que proporciona el valor definitivo de Φ_D . En este ejemplo de diseño se analizará la respuesta de la estructura solamente para un sismo ya que no se cuenta con acelerogramas independientes entre sí. No se realizan análisis de costos.

4.2.2.2.4. Resumen de armados de todas las columnas y trabes, y esfuerzos de fluencia de los disipadores.

De la misma forma como se diseñaron las columnas y trabes del nivel 7, se diseñan las de los demás niveles. Se decidió colocar el armado de la columna mas esforzada en todas las columnas del entrepiso. Lo mismo se hizo para las trabes, el armado de la sección que resultó mas esforzada, se colocó a todas las secciones del nivel. De acuerdo a lo anterior, los armados son los que se muestran en las siguientes figuras. Estos armados corresponden a un factor $\Phi_{M} = 1.0$ y sin revisión de la resistencia mínima a la flexión de las columnas, por lo que tal vez no sean todavía los definitivos.

También con el mismo proceso de cálculo del esfuerzo de fluencia de los disipadores anteriores, se encuentran los esfuerzos de fluencia de los demás disipadores. En la tabla 4.17 se muestran los posibles valores de los esfuerzos de fluencia de todos

Fig. 4.23 Columna nivel 9 y 10.

Fig. 4.24 Trabc nivel 9 y 10.

los disipadores del marco, en ellos se hizo variar el factor $\Phi_{\rm D}$ desde 1.0 hasta 6.0.

	Tabla 4.17 Esfuerzos de fluencia de los disipadores en [ton/m ²].										
	Fza.	Area		Φυ							
Niv	[ton]	[cm²]	1.0	2.0	3.0	4.0	5.0	6.0			
10	13.0	39.33	3307.6	1653.8	1102.5	826.9	661.5	551.3			
9	27.9	17.21	16189.3	8094.7	5396.4	4047.3	3237.9	2698.2			
8	42.3	11.92	35504.6	17752.3	11834.9	8876.2	7100.9	5917.4			
7	53.9	18.23	29543.8	14771.9	9847.9	7385.9	5908.8	4923.9			
6	64.4	20.40	31582.1	15791.1	10527.4	7895.5	6316.4	5263.7			
5	72.9	13.42	54361.2	27180.6	18120.4	13590.3	10872.2	9060.2			
4	79.6	17.39	45792.5	22896.2	15264.2	11448.1	9158.5	7632.1			
3	84.5	17.54	48159.5	24079.7	16053.2	12039.9	9631.9	8026.6			
2	87.5	14.51	60289.7	30144.9	20096.6	15072.4	12057.9	10048.3			
1	87.20	19.76	44114.6	22057.3	14704.9	11028,7	8822.9	7352.4			

4.2.2.3. Análisis inelástico dinámico de la respuesta del marco.

En seguida se procede a realizar el análisis de la respuesta del marco para encontrar los valores óptimos de los esfuerzos de fluencia de los disipadores. Se hará uso del programa **DRAIN-2D**.

4.2.2.3.1. Selección del sismo.

Según el inciso 9.2 de las Normas Técnicas Complementarias para Diseño por Sismo, el análisis de la respuesta de una estructura se debe realizar ante <u>cuatro a mas</u> <u>acelerogramas independientes entre sí</u>. En este caso se cuenta solo con un acelerograma, el registrado en la Secretaria de Comunicaciones y Transportes el 19 de septiembre de 1985 (componente este-oeste). En la figuras 4.25 y 4.26 se muestra el acelerograma y el espectro de respuesta para un 5% del amortiguamiento crítico, del sismo mencionado.

Fig. 4.25 Acelerograma del sismo.

Fig. 4.26 Espectro de respuesta.

Este sismo ha sido sin duda uno de los principales eventos sísmicos que han sucedido en este siglo, su epicentro se localizó frente a las costas de Guerrero y Michoacán y tuvo una magnitud de 7.8 (M₄) o de 8.1 (M₄), este último valor es mas significativo puesto que se refiere a la energía contenida en las ondas de período largo. Puede observarse en las figuras anteriores que el movimiento tiene un período dominante de casi 2 seg. Las aceleraciones máximas de crestas sucesivas, positivas y negativas se mantienen cerca del 10% de la aceleración de la gravedad durante mas de 22 segundos; este nível sostenido es muy superior al que se había registrado en otros sismos. La aceleración máxima de este sismo en dirección E-W fue de 168 gals | = 40|.

4.2.2.3.2. Propiedades geométricas y mecánicas de las columnas, trabes y disipadores.

En las tablas 4.18 y 4.19 se dan las propiedades geométricas definitivas de trabes y columnas. Estas dimensiones y propiedades ya no cambian puesto que con ellas se ha conseguido el período mas alto.

Tabla 4.18 Propiedades geométricas de las secciones transversales de trabes.									
Тіро	Nivel	Sección [cm x cm]	Árca [cm²]	Árca efectiva a cortante [cm ²]	Momento de inercia en flexión [cm ⁴]	Tramo rígido en ambos extremos [cm]			
1	9 y 10	25 x 53	1325.0	1104.2	310160.4	15.0			
2	7 y 8	25 x 53	1325.0	1104.2	310160.4	17.5			
3	5 y 6	25 x 53	1325.0	1104.2	310160.4	19.0			
4	1 a 4	25 x 53	1325.0	1104.2	310160.4	20.0			

Tabla 4.19 Propiedades geométricas de las secciones transversales de columnas.									
Tipo	Entropiso	Sección [cm x cm]	Área [cm²]	Área efectiva a cortante [cm²]	Momento de inercia en flexión [cm ⁴]	Tramo rígido dc la columna [cm]			
1	9 y 10	30 x 30	900.0	750.0	67500.0	53.0			
2	7 y 8	35 x 35	1225.0	1020.8	125052.1	53.0			
3	5 y 6	38 x 38	1444.0	1203.3	173761.3	53.0			
4	1 a 4	40 x 40	1600.0	1333.3	213333.3	53.0			

Diagramas de interacción de las secciones extremas de las trabes y columnas.

En las tablas 4.20 y 4.21 se muestran los valores que definen cuatro puntos del diagrama de interacción de las secciones extremas de las trabes y columnas del marco en estudio: el punto que define el valor de la carga axial de compresión pura, el que define el valor de la carga axial de tensión pura, el que determina el momento flexionante puro y el que define el punto balanceado (puntos A y B de la figura 4.27). Los diagramas de interacción corresponden a los armados de las secciones de las figuras 4.15 a 4.24 (inciso 4.2.2.2.4).

Fig. 4.27 Diagrama de interacción de la sección transversal de una trabe o columna.

Los puntos A y B tienen como coordenadas la carga axial balanceada (P_b) y el momento flexionante balanceado (M_b) de la sección, en las tablas 4.18 y 4.19 estos valores se dan como fracción de P_m y M_r respectivamente, es decir, $\alpha = M_d/M_r$ y $\beta = P_d/P_m$.

Tabla 4.20 Diagramas de interacción de las trabes.										
	[* :					Punto A		Punto B		
Tipo	Nivel	M _{y+}	М _у .	P _{yr}	P _{yt}	α	β	α	β	
1	9 y 10	6.72	-9.92	198.13	-35.95	2.8	0.4	1.9	0.3	
2	7 y 8	9.94	-16.31	219.67	-57.49	2.4	0.4	1.4	0.3	
3	5 y 6	14.77	-21.65	242.43	-80.25	1.9	0.4	1.3	0.2	
4	1 a 4	19.63	-25.95	262.80	-100.62	1.7	0.3	1.3	0.2	
	<u></u>	·	سيهيدي ال				<u></u>			

	Tabla 4.21 Diagramas de interacción de las columnas.										
	no Nivel M M P P		Punto A		Punto B						
Тіро	Nivel	M _{y+}	М _у .	Pyr	P,,	α	β	α	β		
1	9 y 10	3.18	-3.18	124.53	-26.61	2.0	0.3	2.0	0.3		
2	7 y 8	7.44	-7.44	186.50	-53.22	1.5	0.3	1.5	0.3		
3	5 y 6	13.06	-13.06	242.32	-85.21	1.5	0.3	1.5	0.3		
4	3 y 4	24,18	-24.18	348.67	-174.59	1.2	0.2	1.2	0.2		
5	1 y 2	33.87	-33.87	433.74	-259.66	1.1	0.2	1.1	0.2		

Los módulos de clasticidad del concreto y acero, el esfuerzo a la compresión pura del concreto, el esfuerzo de fluencia del acero y el módulo de Poisson son los siguientes:

 $E_c = 8000 \sqrt{f_c} = 8000 \sqrt{200} = 113137.085 kg/cm^2$

 $E_{s} = 2.1 \times 10^{6} \ kg/cm^{2}$

 $f_c' = 200 \ kg/cm^2$

 $f_y = 4200 \ kg/cm^2$

v = 0.2

La pendiente de la segunda rama de la curva esfuerzo-deformación unitaria del concreto reforzado de trabes y columnas será igual a 3% de la pendiente de la rama inicial. Tanto trabes como columnas se modelan con el elemento 6 del programa DRAIN-2D, el cual considera degradación de rigidez [47 22, 38 y 39].

Propiedades geométricas y mecánicas de las diagonales equivalentes.

Las propiedades geométricas al igual que las mecánicas, se encuentran en la tabla 4.17. En esta tabla se encuentran las áreas de las *diagonales equivalentes* así como los esfuerzos de fluencia para diferentes valores de $\Phi_{\rm p}$. La pendiente de la segunda rama de la curva esfuerzo-deformación unitaria de la *diagonal equivalente* se tomará igual a 5% de la pendiente de la rama inicial. Los disipadores se modelan con el elemento 1 del programa DRAIN-2D.

4.2.2.3.3. Estados de carga.

Debido a que esta vez se realizará un análisis donde se combinan acciones permanentes (cargas muertas), acciones variables (cargas vivas) y una acción accidental (sismo); los estados de carga serán los que resulten de sumar cargas muertas mas cargas vivas con su intensidad <u>instantánea</u>, factorizandolos con F = 1.1.

Por otra parte, debido a que solamente se analizará la respuesta de un marco, la contribución de los marco perpendiculares a este debe tomarse en cuenta, por lo tanto, las cargas que transmiten las trabes perpendiculares al marco en estudio le serán aplicadas como cargas concentradas en sus columnas.

Los estados de carga sin factorizar son los que se ilustran en la figura 4.28.

4.2.2.3.4. Análisis de la respuesta.

En seguida se analizan las envolventes de desplazamientos así como el patrón de articulaciones plásticas que se presenta cuando el marco se ve excitado con el acelerograma del sismo de SCT-190985.

Cada figura corresponde a un valor del factor Φ_D . En la figura 4.29 se dan los rangos de rotación máxima de la articulación plástica y de la elongación plástica acumulada⁹ de la *diagonal equivalente* (o disipador). La rotación máxima de la articulación plástica puede tomarse como una medida del daño a la estructura¹⁰ y, la extensión plástica acumulada de la *diagonal equivalente* puede tomarse como una medida de la complatica acumulada de la *diagonal equivalente* puede tomarse como una medida de la complatica acumulada de la *diagonal equivalente* puede tomarse como una medida de la complatica acumulada de la *diagonal equivalente* puede tomarse como una medida de la complatica acumulada de la *diagonal equivalente* puede tomarse como una medida de la complatica acumulada de la *diagonal equivalente* puede tomarse como una medida de la complatica acumulada de la *diagonal equivalente* puede tomarse como una medida de la complatica acumulada de la *diagonal equivalente* puede tomarse como una medida de la complatica acumulada de la *diagonal equivalente* puede tomarse como una medida de la complatica acumulada de la *diagonal equivalente* puede tomarse como una medida de la complatica acumulada de la *diagonal equivalente* puede tomarse como una medida de la complatica acumulada de la *diagonal equivalente* puede tomarse como una medida de la complatica acumulada de la *diagonal equivalente* puede tomarse como una medida de la *diagonal equivalente* puede tomarse como una medida de la *diagonal equivalente* puede tomarse como una medida de la *diagonal equivalente* puede tomarse como una medida de la *diagonal equivalente* puede tomarse como una medida de la *diagonal equivalente* puede tomarse como una medida de la *diagonal equivalente* puede tomarse como una medida de la *diagonal equivalente* puede tomarse como una medida de la *diagonal equivalente* puede tomarse como una medida de la *diagonal equivalente* puede tomarse como una medida de la *diagonal equivalente* puede tomarse como una medida de

0	0.000< θ _{max} ≤0.007	
	0.007<θ _{max} ≤0.014	θ _{max} =rotaclón máxima de la articulaclón plástica, en radianes.
9	0.014<θ _{max} ≤0.021	
	e _{pa} =0.0	
<u></u>	0.00< ⊖_{pa} ≤0.16	⊖ _{pa} ≔deformación axial plástica
- <u></u>	0.16< ⊖ _{pa} ≤0.34	en metros.
-	0.34< Θ _{pa} ≤0.50	

Fig. 4.29 Nomenclatura para los patrones de articulaciones plásticas.

⁹ La elongación plástica acumulada es la suma de las deformaciones axiales inelásticas de todos los ciclos del comportamiento. Si $e_{pa} = 0$ el comportamiento del disipador fue entonces elástico.

¹⁰ La magnitud de la rotación máxima de la articulación plástica puede tomarse como una medida del daño del elemento, ya que a mayor rotación plástica habrá agrietamientos considerables de la sección, en cambio si la rotación plástica es pequeña el daño del elemento no será grave.

Fig. 4.41 Φ_{M} =1.0 y Φ_{D} =6.0

10

ž :

-40.0

Ę

59 04

59.04

59.02

59.02

\$9.02

51.00

59.00

59.00

59.00 57.86 59.00 \$ \$7.85

-30.0 -20.0 -10.0 0.0 10.0 D(SPLAZAMENTO [cm]

Fig. 4.36 Φ_{M} =1.0 y Φ_{D} =1.0

59.52

59.32

51.30

59.78

59.26

58.26

59.26

58.26

59.74

57.86

57.86

\$7.85

57 86

57.88

57.86

57 86

\$7.86

20.0 30.0 40.0

	63.24			57.88	7
	43.24		~	57 88	
	61.24	-	-	57.90	
	63.24	-		51.92	
	63.74			57.94	
ž	\$ 39.04		1	57.84	
	5804	\mathbf{t}	-1	57.94	
	59.04	T	1	57.98	-
	39.04	1	1	57.86	
	\$9.0	2	13	7.94	
	-40.0 -30.0 -20.0 -10.0 DISPL	0) Dali	10.0 70.0 300 [cm]	40

10.44

80.84

60.64

60.64

60.62

58.34

58.34

58.52

58 10

58.25

DISEÑO DE EDIFICIOS CON Y SIN DISIPADORES

En las figuras 4.36 a 4.41 se muestran también los tiempos de ocurrencia de los desplazamientos máximos.

Se observa en la figura 4.30 que la respuesta del marco es elástica¹¹. Lo anterior era de esperarse ya que para este caso se diseño con $\Phi_M = 1.0$ y $\Phi_D = 1.0$.

En la figura 4.31 se nota que casi todos los disipadores fluyen¹² a excepción de los de los entrepisos 5 y 8 que no entraron a su rango inclástico.

Los desplazamientos de los marcos anteriores se mantienen dentro del rango permitido (figuras 4.36 y 4.37).

A partir de $\Phi_p=3.0$ todos los disipadores del marco fluyen pero comienzan a formarse articulaciones plásticas tanto en columnas como en trabes, al grado tal que, llegan a formarse mecanismos de falla de entrepiso. Hay que hacer notar que las columnas de los entrepisos 5 a 10 son las mas "débiles".

El hecho de que se formen articulaciones plásticas, no implica que la sección haya fallado. La sección puede seguir resistiendo todavía deformaciones importantes dependiendo del grado de rotación de la articulación plástica.

Conforme aumenta el factor Φ_D , la e_{pa} se incrementa lo cual implica una mayor disipación de energía; a pesar de esto, los desplazamientos de la estructura crecen y llegan a rebasar el limite permisible (figuras 4.39 a 4.41). También el daño de la estructura es cada vez mayor.

En este caso la mejor respuesta es cuando Φ_p =2.0 ya que la mayoría de los disipadores fluyen, no existen articulaciones plásticas en columnas y trabes y los

¹² El objetivo del diseño es el siguiente: conseguir que todos los disipadores tengan una extensión plástica acumulada lo más grande posible y que el marco tenga un daño mínimo, a la vez que no se excedan los desplazamientos permisibles.

¹¹ La respuesta no es del todo elástica, ya que los disipadores del entrepiso 10 fluyen. Esto se debe a que los disipadores fueron diseñados solamente para resistir fuerzas horizontales. Cuando el marco se somete a la combinación de fuerzas horizontales y verticales (que es lo que se hizo en el análisis paso a paso), los esfuerzos actuantes exceden los de fluencia obtenidos con el criterio anterior.

desplazamientos no exceden el valor permisible (3.6cm). Este marco cumple con algunos de los objetivos que se persiguen, pero la disipación de energía es muy pequeña, es decir los disipadores no trabajan adecuadamente.

a) Incremento de los esfuerzos de fluencia de los disipadores de los entrepisos I a 5.

Se intentará reducir la magnitud de las articulaciones plásticas y de los desplazamientos incrementando el esfuerzo a la fluencia del disipador en los entrepisos 1 a 5. El incremento es de un 55%.

En la tabla 4.22 se indican los nuevos valores de los esfuerzos a la fluencia de los disipadores (es la misma tabla 4.17 pero con los esfuerzos de los entrepisos 1 a 5 multiplicados por 1.55). Las áreas de las *diagonales equivalentes* se conservan igual.

Tabla 4.22 Nuevos esfuerzos de fluencia de los disipadores en [ton/m ²].								
	Área	Ф _{Dos}						
Niv.	[cm ²]	3.0	4.0	5.0	6.0			
10	39.33	1102.5	826.9	661.5	551.3			
9	17.21	5396.4	4047.3	3237.9	2698.2			
8	11.92	11834.9	8876.2	7100.9	5917.4			
7	18.23	9847.9	7385.9	5908.8	4923.9			
6	20.40	10527.4	7895.5	6316.4	5263.7			
5	13.42	28086.6	21065.0	16852.0	14043.3			
4	17.39	23659.4	17744.6	14195.7	11829.7			
. 3	17.54	24882.4	18661.8	14929.4	12441.2			
2	14.51	31149.7	23362.3	18689.8	15574.9			
1	19.76	22792.6	17094.4	13675.5	11396.3			

Los valores de los esfuerzos correspondientes a $\Phi_D=1.0$ y $\Phi_D=2.0$ no fueron incrementados ya que en estos dos marcos no se formaron articulaciones plásticas y por tanto no tiene caso aumentar más la resistencia de los disipadores.

En las figuras 4.42 a 4.49 se muestra la respuesta de los marcos con los valores

><

÷.,

Fig. 4.42 $\Phi_{\rm M}$ =1.0 y $\Phi_{\rm Dm}$ =3.0

DISEÑO DE EDIFICIOS CON Y SIN DISIPADORES

de Φ_{μ} modificados denotados ahora con, Φ_{Dm} .

Las articulaciones plásticas de los niveles inferiores disminuyen de magnitud y en ocasiones desaparecen (comparar figuras 4.33 y 4.43). Tanto los desplazamientos de la estructura como las extensiones plásticas acumuladas (e_{ps}) de los disipadores disminuyen también, principalmente en los niveles inferiores.

Lo anterior es obvio puesto que se incrementó la resistencia a los disipadores de los primeros entrepisos, lo que hace que disminuyan las deformaciones plásticas. Por tanto los desplazamientos de la estructura son menores, entonces el trabajo de trabes y columnas disminuirá haciendo que la magnitud de las rotaciones de las articulaciones plásticas también lo haga y tal vez se logre bajar el número de estas¹⁰. b) Revisión de la resistencia mínima a la flexión de las columnas.

A pesar de que la respuesta fue mejor que la anterior se siguen presentando mecanismos de falla de entrepiso. Según la filosofía de diseño del Reglamento de Construcciones para el Distrito Federal (1987), no debe permitirse la formación de este tipo de mecanismos ya que esto implicaría tal vez el colapso de la estructura. Se permiten mecanismos de falla tipo viga (figura 5.12). El mecanismo de falla de entrepiso es tipo frágil y para evitarlo, se deben reforzar la columnas para que no se presenten articulaciones plásticas en ellas. Para esto se sigue lo dispuesto en el inciso 5.3.2 de las Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto, donde se señala que la relación entre los momentos resistentes de las columnas y los momentos resistentes de las trabes (en cualquier nudo y para los dos sentidos en que puede actuar el sismo) debe ser mayor o igual a 1.5.

En este ejemplo se diseñará respetando la ceuación 3.34 del capítulo anterior debido a que los elementos de concreto reforzado no disiparán gran cantidad de energía¹⁴, es decir, no incurrirán en su rango inelástico y por lo tanto no requieren de gran capacidad de rotación (es por eso que debe diseñarse para valores de Φ_M cercanos a 1 y tratar de eliminar las articulaciones en trabes y columnas). En este caso $\Phi_M=1.0$ y se puede usar un valor pequeño del factor $\Sigma M_0/\Sigma M_T$. Para fines de este ejemplo la relación entre los momentos resistentes de columnas y los momentos resistentes de trabes deberá ser mayor a 1,1

$$\frac{\Sigma M_c}{\Sigma M_T} \ge 1.1$$

(4.3)

¹⁴ Las trabes y columnas de estructuras con dispositivos disipadores de energía, no disipan gran cantidad de energía ya que se ven solventados por estos.

¹³ La rigidez de un elemento es mayor cuando este se encuentra en el intervalo elástico, una vez que entra al rango inelástico la rigidez de este se ve disminuida (ya que el modulo de elasticidad decrece).

Sólamente debe incrementarse el refuerzo en columnas para cumplir con la ecuación 4.3. El refuerzo en trabes no cambiará (los armados de las figuras 4.16, 4.18, 4.20 y 4.22 no sufren modificaciones). Los momentos resistentes de las secciones de las trabes se calcularon en el inciso a de 4.2.2.2.1. En esta revisión dichos momentos se afectan por $F_{\rm R} = 0.9$, ya que los de las columnas también son disminuidos.

Como ejemplo, se mostrará paso a paso como debe realizarse la revisión de la resistencia mínima a flexión de las columnas que se concetan en los nudos del nivel 7.

* Cálculo de los momentos resistentes de las columnas.

El procedimiento es el que sigue:

 Se calcula el factor K para los dos sentidos en que puede actuar el sismo. Este factor se define como

$$K = \frac{P_u}{F_R \, b \, h \, f_c''}$$

donde F_{R} = factor de resistencia para flexocompresión.

b y h = dimensiones de la sección transversal del elemento.

 $f'_{c} = 0.85 f'_{c} \text{ si } f'_{c} \le 250 \text{ kg/cm}^{2}$

 $f'_{e} = (1.05 - f'_{e}/1250)f'_{e}$ si $f'_{e} > 250 \text{ kg/cm}^{2}$

en las dos ultimas expresiones $f_c = 0.8 f_c$.

0

 $P_u = la$ carga axial de discño.

2) Se calcula el valor del índice de refuerzo q correspondiente al área de acero que se le colocará a la sección (el área de acero que corresponde al número de varillas que se colocaran). El índice de refuerzo se define como

$$q = \rho \frac{f_y}{f_c''}$$

 ρ = cuantía de acero = A/bh (A_s = área de acero).

 $f_y = esfuerzo de fluencia del acero de refuerzo.$

3) Con los valores de K y q se entra al diagrama de interacción adecuado (como el de la figura 4.13) y se lee el valor respectivo de R, que se define como

$$R = \frac{M_u}{F_R b h^2 f_c''}$$

en la ecuación anterior todos los valores son conocidos excepto M_a.

4) Se calcula el valor del momento resistente de la columna. De la expresión anterior se despeja M_u , y se obtiene

$$M_{\mu} = F_R b h^2 R f_{\epsilon}''$$

* Revisión.

Se realizan las sumas de momentos ΣM_c y ΣM_T . Las sumas anteriores deben realizarse de modo que los momentos de las columnas se opongan a los de las trabes,

Se verifica que se cumpla la expresión 4.3 para los dos sentidos en que pueda actuar el sismo. Si no se cumple la condición debe incrementarse el área de acero para aumentar el índice de refuerzo q y así aumentar el momento resistente. Debe cuidarse de no sobrepasar el porcentaje de acero máximo de la sección.

Cálculo de los momentos resistentes de las columnas que llegan al nivel 7.

Los pasos 1 a 4 anteriores se resumen en las tablas 4.23 a 4.26. En cada una de las tablas se calcula el valor del momento resistente para cada sentido del sismo indicado con una flecha (\rightarrow). Cada tabla corresponde a una columna de un entrepiso.

Los factores K para las columnas del entrepiso 7 ya han sido calculados anteriormente¹⁵. Estos factores se encuentran en la tabla 4.15 (para columnas exteriores)

¹⁵ Han sido calculados para las combinaciones de carga 1.4(CM + CV_{MAX}), 1.1(CM + CV_{INS} + SISMO-) y (CM + CV_{INS} + SISMO-). Para esta revisión los que interesan son los dos últimos.

y en la tabla 4.16 (para columnas interiores) para las condiciones B y C señaladas ahí (sismo \rightarrow y sismo \leftarrow respectivamente). Los valores de K de las columnas del entrepiso 8 se determinan de igual forma a como se calcularon los del entrepiso 7.

Para la obtención de R se emplea el diagrama de interacción de la figura 4.13.

Tabla 4.23 Momentos resistentes de las columnas exteriores del entrepiso 7.								
Combinación de carga K q R M _u (ton·m)								
CM+CV _{INS} +SISMO→	0.065	0.399	≈0,175	8,163				
CM+CV _{INS} +SISMO←	0,437	0.399	≈ 0.230	10.729				

Tabla 4.24 Momentos resistentes de las columnas interiores del entrepiso 7.							
Combinación de carga	к	q	R	M _u (ton·m)			
CM+CV _{INS} +SISMO→	0.367	0.399	≈0,225	10.496			
CM+CV _{INS} +SISMO←	0.444	0.399	≈ 0.230	10.729			

Tabla 4.25 Momentos resistentes de las columnas exteriores del entrepiso 8.							
Combinación de carga	к	q	R	M _u (ton∙m)			
CM+CV _{INS} +SISMO→	0.016	0.399	≈0.160	7.464			
CM+CV _{INS} +SISMO+-	0.349	0.399	≈ 0.225	10.496			

Tabla 4.26 Momentos resistentes de las columnas interiores del entrepiso 8.								
Combinación de carga K q R M _u (ton								
CM+CV _{INS} +SISMO→	0.231	0.399	≈ 0.210	9.796				
CM+CV _{INS} +SISMO←	0.363	0.399	≈0.225	10.496				

A continuación se lleva a cabo la revisión de la resistencia mínima a flexión de las columnas.

Sca $\zeta = \Sigma M_c / \Sigma M_T$

* NUDOS EXTERIORES DEL NIVEL 7.

```
a) CM+CV<sub>INS</sub>+SISMO→
```


 $\Sigma M_{c} = 7.464 + 8.163 = 15.627 \text{ t·m}$ $\Sigma M_{T} = 9.94 \text{ t·m}$ $\zeta = 1.57 \checkmark$

Nuevo armado para las columnas de los entrepsios 7 y 8.

Con el armado anterior se calcula de nuevo los momentos resistentes de las columnas (el nuevo armado se ha propuesto para todas las columnas del entrepiso, aunque en realidad las columnas exteriores no lo necesitan ya que en estas [>1.1). Se sigue empleando el diagrama de interacción de la figura 4.13 para el cálculo de **R**.

Tabla 4.27 Momentos resistentes de las columnas exteriores del entrepiso 7.									
Combinación de carga K q R M _u (ton									
CM+CV _{INS} +SISMO→	0.065	1.190	≈ 0.425	19.825					
CM+CV _{INS} +SISMO	0.437	1.190	= 0.45	20.992					

Tabla 4.28 Momentos resistentes de las columnas interiores del entrepiso 7.							
Combinación de carga	к	q	R	M _u (ton∙m)			
CM+CV _{INS} +SISMO→	0.367	1.190	≈0.45	20.992			
CM+CV _{INS} +SISMO+-	0.444	1.190	≈0.45	20.992			

Tabla 4.29 Momentos resistentes de las columnas exteriores del entrepiso 8.							
Combinación de carga	К	q	R	M _u (ton∙m)			
CM+CV _{iNS} +SISMO→	0.016	1.190	≈0.42	19.592			
CM+CV _{INS} +SISMO«-	0.349	1.190	≈0.45	20.992			

Tabla 4.30 Momentos resistentes de las columnas interiores del entrepiso 8.									
Combinación de carga K y R M _u (ton·									
CM+CV _{IN5} +SISMO→	0.231	1.190	≈0.445	20.758					
CM+CV _{INS} +SISMO←	0.363	1.190	≈ 0.45	20.992					

En seguida se realiza de nuevo la revisión de la resistencia mínima a la flexión de las columnas.

• NUDOS EXTERIORES DEL NIVEL 7.

Como se observa, el factor y es muy superior a 1.1 en las columnas exteriores, esto es porque el refuerzo que se propuso se colocó también a estas columnas, cuando en realidad no era necesario, ya que el refuerzo propuesto inicialmente (figura 4.21) es suficiente.

En las columnas interiores el factor ζ está sobrado, entonces se procedería a disminuir un poco el área de acero. Antes de hacer esto hay que observar la figura 4.50. En esta figura se muestran los valores del factor ζ en cada nudo después de haber hecho la revisión de la resistencia mínima a flexión de todas las columnas y haber aumentado, en las columnas que así lo requerían, el área de acero cuando $\zeta < 1.1$. En la figura 4.50 los valores fuera de las llaves corresponden a ζ que resulta de la

13ŀ

revisión para la combinación 1.1(CM+CV_{INS}+SISMO-) y los valores entre las llaves corresponden a la combinación 1.1(CM+CV_{INS}+SISMO-). Como se observa si se procede a disminuir el área de acero de las columnas interiores del entrepiso 7, también disminuirán los momentos resistentes de las columnas del entrepiso 8 y por lo tanto en los audos del nivel 8, ζ será menor a 1.1.

Del razonamiento anterior se concluye que el armado que rige en las columnas de dos entrepisos contiguos es el necesario para que se cumpla la expresión 4.3 en los nudos de las columnas del entrepiso superior. En este caso rige el entrepiso 8,

Como se mencionó anteriormente, los valores de 5 de la figura 4.50 corresponden a las nuevas áreas de acero que se obtienen de hacer cumplir la expresión 4.3. En las figuras siguientes se muestran los nuevos armados de las columnas con los que se obtuvieron los valores 5 de la figura 4.50. Se espera que con este refuerzo no se presenten articulaciones plásticas en las columnas.

Hay que hacer notar que el porcentaje de acero requerido en las columnas no excedió el porcentaje de acero máximo permitido para estas. El porcentaje de acero permitido es de 6% y el máximo requerido fue de 4.83% correspondiente a las columnas de los entrepisos 1 y 2 (figura 4.51).

El porcentaje de acero máximo permitido no se tomó igual a 4% especificado en las Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto en su capítulo 5, inciso 5.3.3, sino se tomó de 6% que corresponde a marcos ordinarios (inciso 4.2.2), debido a la misma razón de no haber respetado la relación $\zeta \ge 1.5$ (ver página 123) dada en el inciso 5.3.2 de las mismas Normas.

Al marco que tenga los armados de las figuras 4.51 a 4.55, se le nombrará como marco con columna fuerte y trabe débil, o bien, marco CCFTD. La razón de nombrarlo así, es que la resistencia a la flexión de las columnas que llegan a un nudo es mayor a la resistencia a la flexión de las trabes que llegan al mismo. Al marco con los armados del ínciso 4.2.2.2.4, será nombrado marco sin columna fuerte y trabe débil, marco SCFTD.

c) Análisis de la respuesta del marco con columna fuerte y trabe débil.

Se analizará la respuesta del marco CCFTD cuando se excita con el sismo SCT-190985. Para esto se vuelve a usar el programa DRAIN-2D. Es necesario calcular de nuevo los diagramas de interacción de las columnas con los nuevos armados. En la Tabla 4.31 se muestran los diagramas de interacción de las columnas del marco CCFTD.

		The second second							
Tabla 4.31 Diagramas de interacción de las columnas del marco CCFTD.									
Tipo	Entre-	М,.	м,	P,,	P,,	Punto A		Punto B	
	piso		L		}	α	β	α	β
1 -	9 y 10	11.00	-11.00	204.37	-106.45	1.3	0.2	1.3	0.2
2	7 y 8	19.55	-19.55	291.87	-158.59	1.1	0.2	1.1	0.2
3	5 y 6	24.01	-24.01	331.69	-174.59	1.1	0.2	1.1	0.2
4	3 y 4	30.39	-30.39	395.44	-221.36	1.1	0.2	1.1	0.2
5	1 y 2	33.87	-33.87	433.74	-259.66	1.1	_0.2	1,1	0,2

Todos los puntos que definen a los diagramas de interacción mostrados hasta ahora se han calculado usando el programa que se encuentra en el Apéndice C.

Los parámetros α y β definen los puntos balanceados del diagrama de interacción (puntos A y B de la figura 4.27). Como se mencionó anteriormente para el punto A, α y β se han definido como

$$\alpha = \frac{M_{b.}}{M_{y.}} \qquad \beta = \frac{P_{b.}}{P_{yc}}$$

C

donde M_{b+} y P_{ba} son el momento y la carga axial balanceadas de la sección, respectivamente; M_{y+} momento flexionante positivo puro y P_{ye} carga axial de compresión pura. Para el punto B, α y β se definen como

$$\alpha = \frac{M_{b-}}{M_{y-}} \qquad \beta = \frac{P_{b_y}}{P_{yc}}$$

donde M_b , y P_{ba} son el momento y la carga axial balanceadas negativas de la sección, respectivamente; M_a , momento flexionante negativo puro.

En las figuras 4.56 a 4.67 se muestran los patrones de articulaciones plásticas así como las envolventes de desplazamientos del marco, que resultan después de excitarlo con el acelerograma de SCT-190985. Los esfuerzos de tluencia de los disipadores, que se emplearon en este análisis son los que se muestran en la tabla 4.17, es decir aquellos que no están incrementados.

En las figuras 4.62 a 4.67 a parte de mostrar los desplazamientos máximos de cada nível, se muestran los tiempos de ocurrencia de estos.

Comparando la respuesta del marco sin columna fuerte trabe débil (marco SCFTD figuras 4.30 a 4.41) y la del marco CCFTD (figuras 4.56 a 4.67) existe una diferencia muy notable: ya no se presentan articulaciones plásticas en columnas como era de esperar.

También se observa que en general, las rotaciones de las articulaciones plásticas de las trabes aumentan en los entrepisos donde desaparecen articulaciones plásticas en columnas, esto se debe a que antes la energía era disipada por medio de columnas, trabes y disipadores; en cambio el *marco CFTD* disipa energía solamente a través de trabes y disipadores. Ya que la resistencia a la flexión de columnas es mayor a la resistencia a la flexión de trabes, estas últimas se plastificarán antes que aquellas y por lo tanto ya no serán capaces de seguir resistiendo incrementos importantes de momento con lo que (debido al equilibrio del nudo) los momentos actuantes en las columnas no sufrirán gran aumento después de que estas se hayan plastificado, con lo que se logra estar por debajo del momento plástico de las columnas. Por consiguiente, mientras que las columnas se encuentren trabajando en su rango elástico las rotaciones plásticas de las trabes seguirán aumentando, sin incremento considerable del momento.

Por otra parte, el marco CCFTD es de alguna forma más rígido que el marco SCFTD, con lo que el período del primero es más pequeño. Observando el espectro de respuesta del sismo (figura 4.26) el marco puede estar localizado en la zona en donde las aceleraciones tienden a crecer, con esto los esfuerzos a los que se ve sometido el marco aumentan. Los desplazamientos del marco CCFTD son algo mayores a los del marco SCFTD (figuras 4.62 a 4.67) en los entrepisos interiores, a pesar de que han desaparecido articulaciones plásticas en columnas. La razón de esto puede solamente atribuirse al moviniento que sufre el marco en el espectro de respuesta.

Para el marco CCFTD, la mejor respuesta es la que se presenta cuando $\Phi_{\rm p}$ =3.0,

138

Fig. 4.62
$$\Phi_{\rm M}$$
 = 1.0 y $\Phi_{\rm D}$ = 1.0

19.10

58.30

59.30

59.28

59.20

59 28

51 28

59.28

51.28

-30.0 -20.0 -10.0 0.0 10.0 DESPLAZEMENTO [cm]

Fig. 4.64 Φ_{M} =1.0 y Φ_{D} =3.0

39.14 38.06

59.04

58 04

59 02

\$9.02

\$9.02

59.00

ų,

10

Ę

57.56

57.86

57.86

5/ 84

\$7.86

57.26

58.24

38.24

58.77

58 22

58.22

70.0 10.0 40.0

58.22

58 22

54.24

58.22

DISEÑO DE EDIFICIOS CON Y SIN DISIPADORES

ya que solo existen dos articulaciones plásticas, todos los disipadores fluyen y los . desplazamientos están dentro del rango permitido.

La respuesta de los marcos con Φ_D =1.0 y Φ_D =2.0 no sufren cambios significativos cuando se refuerzan las columnas (ver figuras 4.31 y 4.57).

Incremento de los esfuerzos de fluencia de los disipadores de los entrepisos 1 a 5 del marco CCFTD.

Se tratará de eliminar las articulaciones plásticas de los niveles inferiores aumentando la resistencia de los disipadores de dichos entrepisos en la misma proporción que para el *marco SCFTD*, es decir, se aumentaran un 55% en los entrepisos 1 a 5. Los valores de estos esfuerzos ya han sido calculados anteriormente y se muestran en la tabla 4.22.

En las figuras 4.68 a 4.71 se ilustran las articulaciones plásticas que se forman en el marco CCFTD usando disipadores con resistencias incrementadas un 55% respecto a su valor inicial.

Esta vez al aumentar la resistencia a los disipadores inferiores se logra que disminuya la rotación plástica y desaparezcan la mayoría de las articulaciones plásticas, principalmente las que se formaron en los niveles superiores (figuras 4.59 a 4.61).

Se logran eliminar las articulaciones plásticas del marco que tenía la mejor respuesta (figura 4.58), pero a la vez se consigue que los disipadores de los entrepisos 3 y 5 no trabajen como tales.

Los marcos con $\Phi_{Dm} = 5.0$ y $\Phi_{Dm} = 6.0$ siguen teniendo rotaciones plásticas pero de menor magnitud y en menor número.

La mejor respuesta es la del marco con $\Phi_{Dm} = 4.0$ ya que este cumple con los objetivos perseguidos: todos los disipadores fluyen, no se forman articulaciones plásticas y los desplazamientos del marco están dentro de lo permitido (figura 4.73).

DISEÑO DE EDIFICIOS CON Y SIN DISIPADORES

Fig. 4.74 Φ_{M} =1.0 y Φ_{Dm} =5.0

Fig. 4.75 $\Phi_{M} = 1.0 \text{ y } \Phi_{Dm} = 6.0$

Hay que hacer notar también que los desplazamientos relativos de entrepiso son casi iguales en todos ellos (en la figura 4.73 se ve que la pendiente de las líneas que denotan los desplazamientos es constante, lo que implica que el desplazamiento relativo también lo es). Esto concuerda con el objetivo que se persigue en la etapa de diseño cuando se desea dar una rigidez de entrepiso tal que los desplazamientos relativos sean iguales entre sí (ver inciso 3.1.6.1 del capítulo anterior). El hecho de que los desplazamientos de entrepiso sean mas o menos parecidos, implica que todos los disipadores trabajarán similarmente (esto se nota en la figura 4.69 donde las clongaciones plásticas acumuladas de los disipadores se mantienen en un mismo rango $0.00 \text{ m} < c_{pa} \le 0.16 \text{ m}$). Lo anterior reafirma que cuando los desplazamientos de entrepiso son similares se tendrá un comportamiento adecuado de la *estructura con disipadores*.

Se puede concluir que el valor óptimo de Φ_D es el que corresponde a aquella estructura con disipadores donde todos los desplazamientos de entrepiso son similares y del orden del desplazamiento correspondiente a la elongación para la cual el disipador trabaja adecuadamente¹⁶.

4.2.2.3.5. Resumen de los armados de columnas y trabes y esfuerzos de fluencia definitivos del marco con disipadores.

En las figuras 4.76 a 4.85 se muestran los armados y dimensiones definitivas de las secciones de columnas y trabes del *marco con disipadores*. En las Tablas 4.18, 4.19, 4.20 y 4.31 están las propiedades mecánicas y geométricas de estos elementos. En la tabla 4.32 se muestran las rigideces axiales y esfuerzos de fluencia definitivos de los disipadores, para los cuales deben ser diseñados.

En este caso la mejor respuesta es la del *marco CCFTD* con un valor de $\Phi_D = 4.0$ en los entrepisos 6 a 10, y de $\Phi_D = 4.0/1.55 \approx 2.6$ para los entrepisos 1 a 5. El marco que se estudia en el capítulo siguiente es el *marco CCFTD* con $\Phi_M = 1.0$ y $\Phi_{Dm} = 4.0$.

Fig. 4.76 Columna nivel 1 y 2.

¹⁶ Para los disipadores estudiados en el Instituto de Ingeniería UNAM se ha visto que estos trabajan bien para elongaciones de ± 2.5 cm [rrat[6]

 0
 14
 2#6=5.7 cm²

 0
 #6
 53

 Ø
 Ø
 14

 3#4=3.81 cm²
 3#4=3.81 cm²

 -25
 .

 Fig. 4.85 Trabe nivel 9 y 10

DISENU DE EDIFICIOS CON Y SIN DISIPADORES

Tabla 4.32 Ri	Tabla 4.32 Rigideces axiales y esfuerzos de fluencia definitivos de los disipadores.								
Entrepiso/	Árca	Rigidez axial	Φ _D	Esfuerzo de					
Nivel	[cm ²]	[Ton/cm]	3.0	fluencia					
10	39.33	141.64	4.0	826.9					
9	17.21	61.99	4.0	4047.3					
8	11.92	42.92	4.0	8876.2					
7	18.23	65.64	4.0	7385.9					
6	20.40	73.47	4.0	7895.5					
5	13.42	48.32	2.6*	21065.0					
4	17.39	62,62	2.6*	17744.6					
3	17.54	63.16	2.6	18661.8					
2	14.51	52.25	2.6	23362.3					
1	19.76	71.17	2.6'	17094.4					

* Resulta de haber aumentado los esfuerzos un 55% en los niveles indicados.

 $\Phi_{\rm p} = 4/1.55 = 2.6$

4.3. DISEÑO DE LOS MARCOS CONVENCIONALES.

El proceso de diseño del *marco convencional* no se muestra tan detalladamente como se hizo con el del *marco con disipadores* ya que se considera que este no es un diseño novedoso.

Se diseñan dos tipos de marcos convencionales¹⁷ en función de la ductilidad global que desarrollará el marco. Se diseña para Q=1.5 y para Q=4.0 (Q es el factor de comportamiento sísmico).

En las figuras y tablas siguientes se dan las propiedades geométricas y mecánicas de las secciones transversales de trabes y columnas del *marco convencional*. Los diagramas de interacción corresponden a las secciones extremas de los mismos.

Para el diseño del marco convencional dúctil (Q=4.0) se respeta todo lo dispuesto en el capítulo 5 de las Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto (esta vez se cumple $\chi \ge 1.5$ y $\rho_{mb} = 0.04$).

Tabla 4.33	Tabla 4.33 Propiedades geométricas de las secciones transversales de las trabes de								
	los marcos convencionales con $Q=1.5$ y $Q=4.0$.								
Tipo	Nivel	Sección [cm x cm]	Área [cm²]	Árca a cortante [cm²]	Momento de inercia a la flexión [cm ⁴]	Tramo rígido en ambos extremos [em]			
- 1	9 y 10	35 x 75	2625.0	2187.5	1230468.8	21.0			
2	7 y 8	35 x 75	2625.0	2187.5	1230468.8	25.0			
3	5уб	35 x 75	2625.0	2187.5	1230468.8	27.0			
4	1 a 4	35 x 75	2625.0	2187.5	1230468.8	28.0			

¹⁷ Los dos tienen las mismas secciones transversales de columnas y vigas calculadas en el proceso de dimensionamiento en este mismo capítulo (ver tabla 4.5) y también el mismo período fundamental de vibración (T=1.027 s).

Tabla 4.34 Propiedades geométricas de las secciones transversales de columnas de los marcos convencionales con Q=1.5 y Q=4.0.								
Tipo	Entrepiso	Sección [cm x cm]	Árcu [cm²]	Árca a cortante [cm²]	Momento de inercia a la flexión [cm ³]	Tramo rígido de la columna (cm)		
1	9 y 10	42 x 42	1764.0	1470.0	259308.0	75.0		
2	7 y 8	50 x 50	2500.0	2083.3	520833.3	75.0		
3	5 y 6	54 x 54	2916.0	2430.0	708588.0	75.0		
4	1a4	56 x 56	3136.0	2613.3	819541.3	75.0		

DISENO DE EDIFICIOS CON Y SIN DISIPADORES

• Armados de columnas y trabes del marco convencional para Q=1.5.

. .

DISEÑO DE EDIFICIOS CON Y SIN DISIPADORES

Diagramas de interacción de las secciones extremas de las trabes y columnas del marco convencional con Q=1.5.

-

Tabla 4.35 Diagramas de interacción de las trabes.									
					Punto A		Punto B		
Tipo	Nivel	M _y ,	M _y ,	Pyr	P,,	α	β	α	β
: 1	9 y 10	17.95	-21.95	379.97	-58.67	2.8	0.4	2.3	0.4
2	7 y 8	33.19	-40.35	430.28	-108.98	2.0	0.4	1.6	0.3
3	5 y 6	47.62	-58.66	479.38	-158.08	1.7	0.3	1.4	0,3
4	1 a 4	66.04	-71.13	525.49	-204.20	1.5	0.3	1.4	0.3

	Tabla 4.36 Diagramas de interacción de las columnas.								
	Entre-		1			Punt		Pun	to B
Tipo	piso	M _{y+}	М _{у.}	P _{yr}	P _µ	α	β	α	β
1	9 y 10	13.29	-13.29	268.53	-76.61	1,5	0.3	1.5	.0.3
2	7 y 8	28.70	-28.70	408.28	-136.28	1.3	0.3	1.3	0.3
3	5 y 6	38.78	-38.78	491.85	-174.59	1.3	0.3	1.3	0.3
4	3 y 4	39.19	-39.19	515.78	-174.59	1,4	0.3	1.4	0.3
5	1 y 2	66.13	-66.13	647.63	-306.43	1.1	0.2	1.1	0.2

Los módulos de elasticidad del concreto y acero, el esfuerzo a la compresión pura del concreto, el esfuerzo de fluencia del acero y el módulo de Poisson son los mismos que se usan en el *marco con disipadores* [ver página 114].

Diagramas de interacción de las secciones extremas de las trabes y columnas del marco convencional con Q=4.0.

Tabla 4.37 Diagramas de interacción de las trabes.									
						Pun	to A	Punt	юB
Tipo	Nivel	м,	M _y .	P _{ye}	P _{y1}	α	ß	α	β
1	7 a 10	17.95	-17.95	373.99	-52.69	2.6	0.4	2.6	0.4
2	5 y 6	17.95	-21.16	378.79	-57.49	2.7	0.4	2.3	0.4
3	1 a 4	21.17	29.16	395.54	-74.24	2.6	0.4	1.9	0.3

Tabla 4.38 Diagramas de interacción de las columnas.									
	Entre-					Pun	to A	Pun	to B
Tipo	piso	M.,.	М _{у.}	Pyr	P _{y1}	α	β	α	β
. 1	9 y 10	31.72	-31.72	396.35	-204.42	1.1	0.2	1.1	0.2
2	7 y 8	40.47	-40.47	476.42	-204.42	1.2	0.3	1.2	0.3
3 -	5 y 6	45.09	-45.09	521.68	-204.42	1.2	0.3	1.2	0.3
4	1 a 4	47.38	-47.38	545.62	-204.42	1.2	0.3	1.2	0.3
								60-,	1

DISENO DE EDIFICIOS CON Y SIN DISIPADORES

Los módulos de elasticidad del concreto y acero, el esfuerzo a la compresión pura del concreto, el esfuerzo de fluencia del acero y el módulo de Poisson para este marco también son los mismos que se usan en el *marco con disipadores* [ver página 114]. Los estados de carga que se usan para estos marcos en el capitulo siguiente son los mismos que se usaron para el *marco con disipadores* (figura 4.28).

A continuación se muestran y discuten los resultados obtenidos del análisis dinámico de las tres estructuras diseñadas en el capítulo anterior. El análisis que se lleva a cabo es un análisis de respuesta dinámico inclástico paso a paso. Las estructuras se excitaron con el acelerograma registrado en la Secretaría de Comunicaciones y Transportes, durante el movimiento sísmico del 19 de septiembre de 1987. El acelerograma corresponde a la componente este-oeste del movimiento (ver inciso 4.2.2.3.1 del capítulo anterior) [= 40].

El análisis se lleva a cabo utilizando el programa DRAIN-2D y como se hizo en el capítulo 4, tanto las columnas como las trabes de los *marcos convencional y con disipadores* se modelaron con el elemento 6¹ y los disipadores con el elemento 1 de dicho programa.

Aquí se pretende hacer un análisis comparativo tanto de elementos mecánicos como de las deformaciones que sufren cada uno de los marcos.

¹ El comportamiento de este elemento considera degradación de rigidez.

Específicamente se analiza:

a) La envolvente (valores máximos) de los desplazamientos de cada piso respecto al terreno.

b) La historia de desplazamientos (valores de los desplazamientos en cada instante de la excitación sísmica) de entrepiso, es decir, el desplazamiento de un entrepiso con respecto a su entrepiso inferior. También se estudian los valores máximos de estos desplazamientos.

c) La historia de las fuerzas axiales en las columnas 1 y 2 (ver figura 5.1) del primer entrepiso.

d) Las envolventes de las fuerzas axiales, momentos flexionantes y fuerzas cortantes en las columnas 1 y 2.

e) La envolvente de los momentos flexionantes en las trabes A, B y C del primer nivel (ver figura 5.1).

Fig. 5.1 Elementos estructurales cuyos elementos mecánicos son analizados.

f) El patrón de articulaciones plásticas que se forma en cada marco.

g) La historia del coeficiente sísmico que se desarrolla en cada marco

h) Los ciclos histeréticos de los disipadores y también la cantidad de energía

disipada por cada uno de ellos.

i) Por último se calcula la resistencia de entrepiso de los marcos convencionales. Para el marco con disipadores se obtiene la relación entre la resistencia del sistema disipador y la resistencia total de cada entrepiso ($\beta_1 = R_y/R_p$, ver figura 2.1). Se obtienen también las demandas de ductilidad de los entrepisos de los tres marcos.

5.1 ENVOLVENTE DE LOS DESPLAZAMIENTOS DE LOS NIVELES.

En la figura 5.2 se muestran los valores máximos de los desplazamientos de cada nivel respecto a la base de la estructura. Se puede observar que las deflexiones del marco con disipadores y del marco convencional con Q=1.5 (marco "elástico") son

aproximadamente iguales en toda la altura, ya que la línea que une los desplazamientos de los niveles es aproximadamente una recta, al mismo tiempo se observa que los desplazamientos se encuentran dentro del rango permitido. Los desplazamientos máximos de cada entrepiso de estos dos marcos ocurren todos al mismo tiempo, los del *marco con disipadores* en el segundo 58.2 y los del *marco "elástico"* en el segundo 57.86. El desplazamiento máximo en la punta del *marco con disipadores* es de 13.07cm y el del *marco "elástico"* de 7.4cm, es decir, un 43% menor al del *marco con disipadores*.

Si todos los entrepisos tienen la misma deformación máxima aceptable, que en este caso es de 0.012h = 0.012(300cm) = 3.6 cm, entonces el desplazamiento en la punta máximo es de 36.0 cm, siempre y cuando no se exceda el desplazamiento máximo en los entrepisos inferiores. El marco convencional con Q=4.0 (marco dúctil) tiene un desplazamiento en la punta de 33.5 cm, un 353% mayor al desplazamiento del marco "elástico" y un 156% mayor al desplazamiento del marco con disipadores. El desplazamiento en la punta del marco dúctil es menor al permitido (36cm) según el razonamiento anterior, pero se observa que en los entrepisos inferiores los desplazamientos son excesivos por lo que se prevén daños de consideración en este marco. Por otra parte los desplazamientos máximos de cada nivel no ocurren al mismo tiempo, el desplazamiento máximo en el primer nivel ocurre en el segundo 58.42 y este tiempo s⁺ incrementa conforme se incrementa el nivel, así, el desplazamiento máximo del nivel 10 ocurre en el segundo 60.9.

La figura 5.2 muestra los desplazamientos en el sentido positivo (hacia la izquierda de la estructura). Los desplazamientos en el sentido contrario no se muestran, ya que son muy similares a los anteriores.

5.2 HISTORIA DE DESPLAZAMIENTOS RELATIVOS DE CADA ENTREPISO.

En las páginas siguientes se muestra la historia de desplazamientos de cada

entrepiso. La forma de la historia de los desplazamientos de los entrepisos del *marco con disipndores* es muy similar a la del acelerograma del sismo (ver figura 4.25) que excitó al marco. Los valores máximos de todos los entrepisos se encuentran entre los 55 y 70 segundos del acelerograma.

Los desplazamientos relativos del marco "elástico" son mas regulares en el tiempo y se observa que estos desplazamientos son menores a los del marco con disipadores.

Los desplazamientos de entrepiso de estos dos marcos son menores al desplazamiento máximo permitido de 3.6cm.

En el marco dúctil sucede un algo interesante. Hasta el segundo 58 aproximadamente los desplazamientos del marco son normales, pero a partir de este instante los desplazamientos aumentan bruscamente principalmente en los entrepisos 1 a 6. En la figura 4.25 se observa que la parte fuerte del movimiento está entre los 57 y 65 segundos aproximadamente, lo que hace pensar que algunos elementos del marco dúctil no resistieron los esfuerzos provocados por el sismo en este lapso de tiempo y debido a esto se incrementaron de tal forma los desplazamientos. En este marco se excede el desplazamiento de entrepiso máximo de 3.6cm en los niveles 1 a 6.

Otro aspecto importante es que en el marco con disipadores y en el marco dúctil existe una deformación permanente al final del movimiento sísmico, es decir que, al terminar la excitación, todos los entrepisos de estos dos marcos no regresaron a su posición relativa original sino quedaron con cierta deformación de entrepiso. Los entrepisos del marco "elástico" sí regresaron a su posición original como se puede observar en las figuras.

- 14	·	••••••••••••••••••••••••••••••••••••••	11 · · · ·
		11 - The second se	111
- 44		• • • • • • • • • • • • • • • • • • •	······
× 11		F 14	, II
1.0		1 121	111 · · · · · · · · · · · · · · · · · ·
1 1	}	* **	the second s
3 H	the second state of the se	8 ** ······	
2	· · · · · · · · · · · · · · · · · · ·	2-14 min	يستعد ومستطلها والششي ومترجب والزورق
§-21	•	[\$ 10 · · · · · · · · · · · · · · · · · ·
		8.11	\$ 113 COLOR DOCTORES AND ADDRESS OF ADDRESS OF ADDRESS
			46 from the second s
-4	· · · · · · · · · · · · · · · · · · ·	•1 1	At a second s
-4		** ***********************************	***
	700	146	104914
			1
	con disinadores Profrenso 1	a allocation lightenius	M doctri lintrenko 1

Todas las figuras se encuentran a la misma escula tanto horizontal como vertical, por lo que se puede observar a simple vista la diferencia entre las magnitudes de los desplazamientos. En la tabla 5.1 se dan los valores máximos de los desplazamientos de cada entrepiso y para cada marco.

Tabla 5.1 Desplazamientos máximos de entrepiso (en cm).							
	Marco						
NIVEL	Con disipadores	"Elástico"	Dúctíl				
1	1.58	0.86	4.63				
. 2	1.98	1.15	5.64				
3	1.69	1.10	5.75				
4	1.44	1.00	5.26				
5	1.35	0.91	5.22				
6	1.46	0.79	4.61				
7	1.38	0.72	3,42				
8	1.09	0.58	2.15				
9	1.09	0.53	1.04				
10	0.65	0.32	0,36				

5.3 HISTORIA DE LAS FUERZAS AXIALES QUE SE DESARROLLAN EN LAS COLUMNAS 1 Y 2.

Las figuras que siguen muestran la variación en el tiempo de la fuerza axial que se desarrolla en las columnas 1 y 2 del primer entrepiso (ver figura 5.1).

En la columna 1 de los tres marcos, la variación de la fuerza axial es muy irregular en el tiempo, incluso llega a trabajar en tensión en el lapso de tiempo en el que el acelerograma es más crítico.

La historia de fuerzas axiales en la columna 2 es más constante en el tiempo y siempre trabaja a compresión.

La intensidad de la fuerza axial en las columnas 1 y 2 de los marcos con disipadores y del marco dúctil puede considerarse aproximadamente igual. La que difiere un poco es la del marco "elástico" en el cual la fuerza axial máxima es cerca de un 15% mayor que la de los demás marcos.

La variación en el tiempo y la intensidad de la fuerza axial en las otras dos columnas del primer entrepiso es muy parecida a la que se presenta en las figuras siguientes.

5.4 ENVOLVENTES DE FUERZAS AXIALES, FUERZAS CORTANTES Y MOMENTOS FLEXIONANTES EN LAS LÍNEAS DE COLUMNAS α Y β .

A continuación se presentan las fuerzas que se desarrollan en la línea de columnas α y β del marco con disipadores y los marcos convencionales (ver tigura 5.1).

En las figuras se distingue una gran diferencia entre las fuerzas que actúan en el marco con disingdores y las que actúan en los marcos convencionales. Se advierte una considerable disminución en las fuerzas cortantes y los momentos flexionantes cuando se usa un sistema disipador, como el que se ha propuesto. Nótese que los valores máximos de la fuerza axial son muy parecidos en los tres marcos (figuras 5.3 y 5.4) y más aun en la línea de columnas β ; pero se presenta una gran diferencia en los otros dos elementos mecánicos. Las fuerzas cortantes que actúan en la línea de columnas α del marco con disipadores son aproximadamente, en promedio, del orden de un 54% menores a las que se desarrollan en la misma línea de columnas del marco "elástico" y de un 47% menor a las que actúan en las mismas columnas del marco dúctil y en la línea de columna β del marco con disipadores son del orden de un 60% menores a las del marco "elástico" y de un 56% menores a las del marco dúctil. En lo que se refiere a momentos flexionantes máximos en cada columna (figuras 5.7 y 5.8), los que se presentan en la línea de columnas a del marco con disipadores son un 51% menor a las del marco "elástico" y de un 62% menores a las del marco dúctil y los que actúan en las columnas de la línea β del marco con disipadores son un 56% menor a las del marco "elástico" y un 64% menor a las del marco dúctil. Hay que hacer notar que las fuerzas cortantes que actúan en las columnas del marco "elástico" son mayores a las que se presentan en las columnas del marco dúctil. En momentos tlexionantes sucede lo contrario, los momentos flexionantes máximos en las columnas del marco "elástico" son menores a los que se presentan en las columnas del marco dúctil. Lo anterior se debe a que las columnas del marco dúctil son más resistentes a la flexión ya que las Normas Técnicas Complementarias para Diseño por Sismo señalan que si el factor de

Fig. 5.3 Fuerzas axiales en la línea de columnas α .

Fig. 5.5 Fuerzas cortantes en la línea de columnas α .

Fig. 5.7 Momento flexionantes en la línea de columnas α .

Fig. 5.4 Fuerzas axiales en la línea de columnas β .

Fig. 5.6 Fuerzas cortantes en la línea de columnas β .

Fig. 5.8 Momento flexionantes en la línea de columnas β .

comportamiento sísmico es igual a 4.0 las columnas deben diseñarse de tal forma que la suma de momentos resistentes de las columnas que concurren a un nudo debe ser igual o mayor a 1.5 veces la suma de los momentos resistentes de las trahes que concurren al mismo nudo, esto hace que las columnas sean más resistentes a la flexión y por lo tanto tomen más momento flexionante (la cantidad de acero de refuerzo de las columnas del marco dúctil es mayor a la de las columnas del marco "elástico", ver figuras 4.86 a 4.102 pares).

En consecuencia debido a que los elementos mecánicos que se desarrollan en la base del *marco con disipadores* son en general menores a los de los *marcos convencionales*, el costo de la cimentación puede verse disminuido por el uso de disipadores.

Las envolventes de los elementos mecánicos que se han presentado en esta sección para las otras dos líneas de columnas de los marcos no difieren mucho de las presentadas en las figuras anteriores.

5.5 ENVOLVENTE DE MOMENTOS FLEXIONANTES EN LAS TRABES DE LAS CRUJÍAS γ , δ Y ϵ .

En las tres figuras siguientes se muestra la envolvente de los momentos flexionantes máximos en cada trabe de cada nivel y cada crujía, es decir, un punto en la figura representa el mayor de los momentos máximos que actuaron en los extremos de la trabe durante el sismo.

De nuevo se observa una notable disminución cuando se usan disipadores. Los momentos flexionantes que actúan en las trabes del *marco con disipadores* son, en promedio, un 53% menores a los que actuaron en las trabes del *marco "elástico"* y un 44% menores a los que actuaron en las trabes del *marco dúctil*.

Nótese que la magnitud de los momentos flexionantes en las trabes del marco

"elástico" son mayores a la de los momentos de las trabes del *marco dúctil*, esto se debe a que las trabes del primer marco tienen más acero de refuerzo y por tanto son más resistentes a flexión, así pues estas trabes "tomarán" más esfuerzos flexionantes (ver figuras 4.87 a 4.103 impares).

Fig. 5.9 Momentos flexionantes máximos en las trabes de la crujía γ .

Fig. 5.11 Momentos flexionantes máximos en la trabes de la crujía ϵ .

5.6 ARTICULACIONES PLÁSTICAS EN LOS MARCOS.

En las figuras 5.13, 5.14 y 5.15 se indican los lugares donde se formaron las articulaciones plásticas correspondientes al marco con disipadores, al marco "elástico" y al marco dúctil, respectivamente. Hay que hacer incapié en que sólo se muestran, como en el inciso 4.2.2.3.4 del capítulo anterior, las zonas en donde la rotación de la articulación plástica es más grande, como ocurre en los extremos de las trabes y

columnas para marcos regulares. No hay que olvidar que en el mecanismo de falla de un marco se llegan a presentar mecanismos de falla tipo viga como el

mostrado en la figura 5.12, es decir, se presentan articulaciones tanto en los extremos de la trabe como en zonas cercanas al centro del claro. Los rangos de la magnitud de la rotación de las articulaciones plásticas y de las extensiones plásticas acumuladas de los disipadores se encuentran en la figura 4.29 del capítulo anterior.

En el marco con disipadores (figura 5.13) no existen articulaciones plásticas en trabes ni columnas, los disipadores son los únicos elementos del marco que ingresan en su rango inclástico. En efecto, el marco con disipadores fue diseñado para que se comportara de esta forma (ver nota a pie de página 10 del capítulo 4).

Fig. 5.13 M con disipadores. Fig. 5.14 Marco "elástico".

El marco "elástico" (figura 5.14), como su nombre lo dice, se comportó elásticamente en todo el sismo, es decir, no hubo elementos que trabajaran en su rango inelástico. También esto era de esperarse, ya que el marco se diseñó con un factor de comportamiento sísmico muy cercano a uno (Q=1.5).

A diferencia de los otros marcos, en el marco dúctil (figura 5.15) existen secciones de elementos que se plastificaron, se observa que los elementos que trabajaron en su rango inelástico fueron las trabes. El mecanismo de falla del marco es aceptable ya que está definido por articulaciones plásticas en las trabes y en los apoyos del marco. No se presentan mecanismos de falla de entrepiso ya que el marco se diseñó con ese objetivo, haciendo cumplir todos los requisitos del capítulo 5 de las Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto (1987). A pesar de que el mecanismo de falla es el que se buscaba las rotaciones plásticas en las trabes son muy severas lo que provocó que los niveles inferiores se desplazaran sin control (ver figura 5.2 y tabla 5.1). En este marco la totalidad de la energía introducida por el sismo fue disipada por las trabes a cambio de un daño considerable en ellas.

Si el daño estructural se evantifica con la siguiente relación de daño (RD) definida de la siguiente manera

$$RD = \frac{N umero de trabes y columnas que fluyen}{N umero total de trabes y columnas}$$

(5.1)

el daño estructural de cada marco será el siguiente:

$$(RD)_{M \text{ con divised ores}} = \frac{0}{30 \text{ trabes } + 40 \text{ columnas}} = \frac{0}{70} = 0$$

$$(RD)_{M \text{ elemeto}} = \frac{0}{70} = 0$$

$$(RD)_{M \ ddetil} = \frac{29}{70} = 0.41$$

Se observa que un 41% de los elementos del marco dúctil sufren algún tipo de

daño mientras, los marcos "elásticos" y con disipadores no tienen daño estructural. Los disipadores no se toman en cuenta como miembros que puedan sufrir daño, ya que estos deben ser diseñados para tener un comportamiento estable aún cuando ingresen al rango inelástico.

El uso de disipadores de energía reduce bastante el daño estructural del marco y puede anular los costos de reparación, como en este caso. En el marco dúctil ocurre daño estructural a cambio de disipación de energía, con lo que aumentará el costo global del marco ya que existirán costos de reparación. En el marco "clástico" la relación de daño es nula pero tal vez el costo de este marco sea muy alto en comparación a los otros dos.

5.7 COEFICIENTE SÍSMICO ASOCIADO A CADA MARCO.

Para comparar el cortante basal de diseño con el cortante basal máximo que se desarrolla durante el sismo, se ha graficado la variación de la relación cortante basal entre peso de la estructura, la cual se designa comúnmente como coeficiente sísmico. En la Tabla 5.2 se compara para cada marco el valor del coeficiente sísmico de diseño con el valor máximo del mismo coeficiente que ocurre durante el sismo.

El peso total de la estructura está dado en la Tabla 4.6, este valor es de $W_T=2184.16$ toneladas, entonces el peso de un solo marco es 2184.16 / 4 = 546.04 ton, así el coeficiente sísmico máximo es c = cortante basal máximo / 546.04. El coeficiente sísmico de diseño es igual a 0.4 / Q, donde Q es el factor de comportamiento sísmico que para el marco con disipadores es Q=1.0, para el marco "elástico" es Q=1.5 y para el marco dúctil Q=4.0 (ver capítulo 4).

De la tabla y figuras se observa que el coeficiente sísmico de diseño del marco con disipadores y del marco "elástico" es mayor al coeficiente sísmico que se desarrolla en ellos, o bien el cortante sísmico máximo que se desarrollo en el marco con disipadores fue un 46% menor al de diseño y el cortante máximo del marco "elástico" un 16% menor

Tabla 5.2 Coeficiente Sísmico.								
	Cortante		Coeficiente	Coeficiente				
Marco	basal máximo	Tiempo	sísmico	sísmico de				
	itaxino Itonl.	[2]	maximo	c/Q				
Con disipadores	117.98	59.24	0.216	0.4/1.0=0.4				
"Elástico"	122.45	59.00	0.224	0.4/1.5=0.267				
Dúctil	96.11	58.38	0.176	0.4/4=0.1				

al de diseño. A esto se debe el buen comportamiento de estos marcos. En cambio el coeficiente sísmico de diseño del marco dúctil es excedido, esto quiere decir que el cortante que se desarrolló en el marco fue mayor al de diseño, aproximadamente un 76% más grande. Esta es la causa de los desplazamientos y de las rotaciones plásticas tan grandes ya que el cortante máximo fue tan grande que ocasionó en el marco una severa degradación de rigidez, por lo que, el período fundamental de vibración creció y según el espectro de respuesta del sismo las aceleraciones al marco se incrementaron considerablemente. Esto se ve claro en el espectro de respuesta del sismo (figura 4.26); el período original del marco es T=1.02s a este período le corresponde una seudoaceleración el marco era sometido a esfuerzos mayores a los de diseño experimentando degradación de rigidez por lo que las aceleraciones a las que se veía sometido el marco iban incrementándose (según el espectro de respuesta). Más aún cuando entró a la parte fuerte del acelerograma en donde se incrementaron las deformaciones del marco (ver historias de desplazamientos relativos en el inciso 5.2).

En las figuras anteriores se han dibujado líneas horizontales para representar el valor del coeficiente sísmico de diseño, de esta forma se puede ver en qué instantes se excede dicho valor en el marco dúctil. Tanto en el marco "clástico" como en el marco con disipadores la variación del coeficiente sísmico queda dentro de las líneas que marcan el valor del coeficiente sísmico de diseño. Estas figuras se encuentran a la misma escala horizontal y vertical.

5.8 DISIPACIÓN DE ENERGÍA.

En este inciso se estudia la disipación de energía sólamente en el marco con disipadores. Se verá el comportamiento de los disipadores durante el movimiento sísmico. Los disipadores fueron modelados con el elemento 1 "TRUSS" del programa DRAIN-2D el cual no considera ningún tipo de degradación, ya sea de rigidez o resistencia, por lo cual los ciclos histeréticos que se muestran en las figuras son estables, lo cual representa en buena medida el comportamiento real de los disipadores [473].

En las siguientes páginas se muestran los ciclos histeréticos de cada uno de los veinte disipadores los cuales se encuentran numerados en la figura 5.1. Las gráficas se encuentran a la misma escala para poder comparar las fuerzas y extensiones máximas que se desarrollaron en ellos.

En la tabla 5.3 se muestra la deformación máxima en tensión y compresión que experimentó el disipador y la energía acumulada disipada de cada elemento, la cual se obtuvo encontrando el área acumulada del ciclo histerético, por ejemplo si el ciclo histerético fuese un cuadrado de lado a y se tuviesen a ciclos de comportamiento iguales (n cuadrados superpuestos), la energía disipada por el elemento es a²-n.

De la información que proporcionan las figuras siguientes y la Tabla 5.3, se puede decir lo siguiente:

Las deformaciones máximas de los disipadores 3,4,9,10,15 y 16 correspondientes a los entrepisos 3,6 y 9 se deben a fuerzas de tensión, es decir, la deformación máxima es de acortamiento, mientras que en los demás disipadores las deformación máxima

Disipador	Alargamiento	Acortamiento	Energía disipada
	máximo [cm]	máximo (cm)	[ton·m]
1	0.084	0.497	0.128
2	0.097	*0,484	0.125
3	0.785	0.500	0.569
······	0.819	0.466	0.561
5	0.844	'0.898	0.952
б	0.832	0.910	0.958
7	0.689	1.133	1.388
8	0.742	1.080	1.364
9	1.093	0.842	1.537
10	1.046	0.889	1.519
Malaka je 1819	4	75	a a se a cara a se a se

	Tabla 5.3 Disipación de energía.							
Disipador	Alargamiento máximo [cm]	Acortamiento máximo [cm]	Encrgía disipada [ton·m]					
11	1.053	1.076	0.534					
12	0.959	1.170	0.544					
13	0.846	1.208	0.694					
14	0.903	1.151	0.683					
15	` 1.282	1.212	1.088					
16	1.250	1.244	1.084					
17	1,597	*1.724	1.829					
18	1.562	'1.759	1.817					
19	1.243	*1.452	1.871					
20	1.271	1.425	1,853					

valores máximos de la deformación

corresponde a fuerzas de compresión.

La energía disipada por los dos elementos de cada entrepiso es muy parecida y el valor de la energía disipada en cada entrepiso tiende a aumentar conforme se disminuye en nivel, a excepción de los entrepisos 3, 4 y 5 en dondo se nota una disminución en promedio de un 29%, de un 55% y de un 65%, respectivamente, de la energía disipada en el entrepiso 6, cuando en verdad la disipación de energía en estos tres entrepisos debió ser mayor a la del entrepiso 6. Esto también se puede ver en los ciclos histeréticos correspondientes ya que estos son más delgados, lo que indica que el
área encerrada en el ciclo es menor, o bien, la disipación de energía es menor.

Esta es la causa de los cambios bruscos de las envolventes de los elementos mecánicos estudiados en el inciso 5.4 y 5.5. En las figuras de estos dos incisos se advierte una disminución brusca en los mismos entrepisos que se señalan ahora (3, 4 y 5) debido a que, las fuerzas de fluencia de los disipadores (Tabla 4.32) de estos tres entrepisos tal vez son tan altos que el elemento absorba esfuerzo en vez de disipar energía², es decir, el elemento es más rígido, por lo tanto "libera de esfuerzos" tanto a columnas como a trabes como se nota en las figuras 5.3 a 5.8. Lo anterior significa que el factor Φ_0 usado para disminuir los *esfuerzos de fluencia el físticos* de los disipadores de estos tres entrepisos es pequeño y en efecto el factor Φ_0 en el entrepiso 6 es un 54% mayor al del entrepiso 5 por lo que sí existe una variación brusca de los esfuerzos de fluencia.

La solución es proporcionar una variación suave al factor Φ_D teniendo su valor máximo en el último entrepiso y su valor mínimo en el primero (r=45 y 46).

5.9 RESISTENCIAS Y DUCTILIDADES DE ENTREPISO.

Se calcularon también las curvas cortante de entrepiso contra deformación de entrepiso de cada uno de los tres marcos en estudio. Para el marco con disipadores se calculan dos curvas de este tipo una para el marco sin disipadores y otra para el marco con disipadores (ver figura 2.1). En estas curvas se definen el cortante resistente de entrepiso (desde el punto de vista de la teoría elástica) o bien el cortante de fluencia de entrepiso. También se define el valor del desplazamiento de fluencia de entrepiso. Con estos dos valores se calcula:

² Al aumentar el esfuerzo de fluencia disminuye la disipación de energía ya que, el elemento es más rígido y por lo tanto las deformaciones serán menores y el ciclo histerético se adelgaza. Esto se ve claro al comparar los ciclos histeréticos de los disipadores 9 y 10 y los de los disipadores 11 y 12 (correspondientes a los niveles 6 y 5 respectivamente).

ANÁLISIS DINÁMICO DE LAS ESTRUCTURAS

-La demanda de ductilidad de cada entrepiso durante el sismo y compararla con la ductilidad global de diseño definida en parte por Q (factor de comportamiento sísmico)

-La relación $\beta_1 = R_u/R_T$ para el marco con disipadores para poder encontrar qué porcentaje de la resistencia total del entrepiso debe proporcionar el sistema disipador para no tener daño estructural (definido por la ecuación 5.1), cuando se usa un arreglo de disipadores similar al utilizado en este marco.

Las curvas se obtuvieron utilizando el modelo de la figura 5.16. Este consta del marco en estudio sin masa, unido mediante elementos que trabajan a fuerza axial pura

(elementos tipo I) a una viga horizontal (elemento II) con masa. El marco no sufre ningún cambio con respecto al original (a excepción de que no tiene masa), es decir, tiene las mismas propiedades mecánicas y geométricas en sus elementos y está apoyado de la misma forma original. Los elementos tipo II tienen una rigidez tal que la ley de distribución de las fuerzas que en ellos se desarrollan es aproximadamente lineal con la altura, con su valor máximo

Fig. 5.16 Modelo utilizado en el cálculo de las curvas cortante contra deformación de entrepiso.

(rigidez máxima) en el último nivel y su valor mínimo (rigidez mínima) en el primer nivel. La viga (elemento II) es un elemento lo suficientemente rígido para no sufrir deformaciones. Este elemento posee masa y se encuentra sobre un apoyo deslizante.

Se usó como acelerograma un pulso rectangular. Puesto que la viga es el único elemento que posee masa, el movimiento sísmico solo excitará a la viga haciéndola desplazarse como cuerpo rígido, la cual a su vez "jalará" al marco mediante los elementos tipo II. Como estos elementos tienen una rigidez pequeña en el primer nivel y grande

ANÁLISIS DINÁMICO DE LAS ESTRUCTURAS

en el último, las fuerzas que en ellos se desarrollan son también pequeñas en los primeros niveles y grandes en los últimos. En el fondo, esto representa un análisis estático inclástico paso a paso. En el Apéndice D se da un listado del archivo elaborado.

En la Tabla 5.4 se resumen los valores de las resistencias de entrepiso del marco sin disipadores, del marco con disipadores y de la relación β_1 que es el cociente de los dos valores anteriores. En la Tabla 5.5 se muestran los valores de las resistencias, de los desplazamientos de fluencia y de la ductilidad de entrepiso del marco con disipadores, del marco "elástico" y del marco dúctil.

Tabla 5.4 Valores del factor β_1 del marco con disipadores.											
	Resistencia de en	trepiso (V _R) [ton]									
Entrepiso	M. sin disipadores	M. con disipadores	β,								
1	52.7	124.0	0.43								
2	51.3	112.8	0.45								
3	49.5	106.7	0.46								
	46.6	100.0	0.47								
5	42.8	89.0	0.48								
6	38,1	74.0	0.51								
7	32.0	59.6	0.54								
8	25,4	47.0	0.54								
9	18.2	35.0	0.52								
10	9.6	16.3	0.59								

La demanda de ductilidad de entrepiso (D,) se calcula con la siguiente ecuación

$$D_{e} = \frac{x_{mdx}}{x_{y}}$$

donde x_{max} es el desplazamiento relativo máximo que tiene el entrepiso durunte el sismo (este desplazamiento se encuentra en la Tabla 5.1) y x_y es el desplazamiento en el cual se inicia la fluencia (ver figuras siguientes).

		T	abla 5.	5 Den	iandas o	de duc	tilidad	de en	trepiso			
En-	М.	con di	sipador	es -	М	arco "e	lástico			Marco	o dúctil	·
píso	V _R ton	x _y cm	X _{mita} cm	D,	ν _R ton	x _y cm	X _{mika} cm	D,	V _R ton	x, cm	x _{niša} cm	D,
1	124.0	0.93	1.58	1.70	166.5	1.19	0.86	0.72	71.9	0.52	4.63	S.90
2	112.8	1.22	1.98	1.62	160.0	1.66	1.15	0.69	683	0.70	5.64	8.06
3	106.7	1.24	1.69	1.36	127.9	1.40	1.10	0.79	64.7	0.75	5.75	7.67
4	100.0	1.18	1.44	1.22	122.2	1.38	1.00	0.72	59.7	0.65	5.26	8.09
5	89.0	1.10	1.35	1.23	113.7	1.38	0.91	0.66	55.0	0.70	5.22	7.46
6	74.0	1.00	1.46	1.46	102.9	1.27	0.79	0.62	48.8	0.60	4.61	7.68
7	59.6	1.10	1.38	1.25	87.9	1.24	0.72	0.58	41.7	0.60	3.42	.5.70
8	47.0	0.74	1.09	1.47	70.9	1.07	0.58	0.54	34.5	0.54	2.15	3.98
9	35.0	0.94	1.09	1.16	47.5	1.00	0.53	0.53	26.7	0.55	1.04	1.89
10	16.3	0.57	0.65	1.14	30.9	0.80	0.32	0.40	15.4	0.40	0.36	0.90

Los valores de las relaciones de resistencia β_1 que se calculan en la Tabla 5.4 son prácticamente del mismo orden, entre el valor menor (0.43) y el valor mayor (0.59) hay una diferencia de 37%, el valor promedio de β_1 es 0.5, lo cual indica que para que el marco con disipadores tenga una relación de daño RD = 0, el sistema disipador debe proporcionar cerca de un 50% de la resistencia total de entrepiso ($\beta_1 = 0.5$). La afirmación anterior solamente es válida para arreglos de disipadores similares al que se ha estudiado aquí y para cuando el sistema disipador posee un 75% de la rigidez total de entrepiso ($\alpha_2 = 0.75$). Nótese que en los primeros cinco entrepisos en los cuales se incrementaron las fuerzas de fluencia de los disipadores (ver valores de Φ_0 en la Tabla

ANÁLISIS DINÁMICO DE LAS ESTRUCTURAS

4.32), los valores de β_1 son menores a 0.5 y en los entrepisos superiores es mayor a dicho valor. Esto quiere decir que los disipadores de la parte superior son menos resistentes que los de los cinco primeros entrepisos (β_1 es más pequeña en los entrepisos superiores), es decir, que tal vez se pueda disminuir un poco las resistencias de los disipadores inferiores, con esto se consigue uniformizar el valor de β_1 que es la tendencia que se observa en la Tabla 5.4. Esto reafirma lo que se decía en el inciso anterior, sobre que las resistencias en los disipadores de los entrepisos 3, 4 y 5 eran altas y por esta razón la energía disipada era pequeña.

De la Tabla 5.5 se deduce lo siguiente:

Resulta obvio que las resistencias (V_R) y los desplazamientos de fluencia de entrepiso sean más grandes en el marco "elástico" que en los otros dos marcos. En promedio las resistencias de entrepiso del marco con disipadores y del marco dúctil son un 28% y un 52% menores, respectivamente, a las del marco "elástico"; en cuanto a los desplazamientos de fluencia de entrepiso las diferencias también son de este orden un 19% y un 51% menores respectivamente. En lo que se refiere a las demandas de ductilidad de entrepiso, las diferencias son más notables, las demandas de ductilidad del marco con disipadores y del marco dúctil son en promedio un 122% y un 815% más grandes que las demandas de ductilidad del marco "elástico".

Estas diferencias se deben, claro, a que los tres marcos no se diseñaron con el mismo factor de comportamiento sísmico y también en gran parte a la relación entre el período dominante del acelerograma con que se excitaron los marcos y el período fundamental de vibración de estos.

La magnitud de las demandas de ductilidad de entrepiso del marco "elástico" y del marco con disipadores, eran de esperarse, las demandas de ductilidad de entrepiso del marco "elástico" son todas menores a uno, lo cual significa que en ningún entrepiso se excedió el desplazamiento de fluencia. En el marco con disipadores hubo demanda de ductilidad con un valor en promedio de 1.36, esta demanda se debe exclusivamente al trabajo inelástico del sistema disipador. Lo que no era de esperarse es la magnitud de

ANÁLISIS DINÁMICO DE LAS ESTRUCTURAS

la demanda de ductilidad del *marco dúctil*, ya que en promedio esta demanda es del orden de 6.03, la demanda de ductilidad que se esperaba es del orden de 4.0. Nótese que las demandas más altas se encuentran en los primeros seis entrepisos y disminuyen repentinamente en los entrepisos superiores, por lo que de nueva cuenta se observa que el "mal comportamiento" estructural del *marco dúctil* se debió a la falla de los entrepisos inferiores.

CONCLUSIONES Y RECOMENDACIONES

Del trabajo elaborado se concluye lo siguiente:

a) El proceso descrito es iterativo, por lo que es más eficiente si se realiza mediante un programa de cómputo. Con el avance de la aplicación de las computadoras en la ingeniería estructural, este método se podrá adoptar fácilmente en la práctica del diseño estructural.

b) Una opción aceptable es diseñar elásticamente las trabes y columnas de la estructura con disipudores (usar Φ_{M} =1.0), de lo contrario estos elementos se tendrán que reforzar (tanto por flexión como por cortante) para que tengan una capacidad de rotación adecuada y no sufran agrietamientos considerables. Esto provocaría aumentar el refuerzo por lo que tal vez haría el diseño de estructuras con disipadores poco atractivo.

c) La metodología propuesta es recomendable para realizar estudios sobre la optimación de los parámetros α_1 y α_2 . Variando estos factores en el diseño, se pueden dimensionar de manera sencilla varias estructuras con períodos fundamentales de vibrar similares entre sí y con distintas relaciones de rigidez,

CONCLUSIONES Y RECOMENDACIONES

d) Los valores óptimos de los factores α_1 y $\Phi_D = \phi_D^{-1}$ deben obtenerse de un estudio relativo al comportamiento estructural del edifício y al costo total del mismo. El valor óptimo de los factores α_1 y Φ_D puede obtenerse trazando curvas similares a las de las figuras 6.1 y 6.2.

Fig. 6.1 Valor óptimo de Φ_D en función del costo de la estructura.

Fig. 6.2 Valor óptimo de α_1 en función del costo de la estructura.

c) Se ha visto que para valores de α_1 y β_1 menores a 0.5 la estructura con disipadores tiene un comportamiento satisfactorio.

f) La independencia entre la rigidez y la resistencia del disipador es tal vez la hipótesis más restrictiva del método que se presenta, por lo que debe también tomarse en cuenta en el diseño de este tipo de marcos.

g) Para evitar la formación de mecanismos de falla de entrepiso, la relación entre momentos resistentes de las columnas y trabes del marco con disipadores, puede ser menor a la que marca el RCDF87, debido a que dichos elementos no necesitan gran capacidad de rotación.

h) Los fenómenos de torsión, efectos de cortante, incremento de la fuerzas axiales en las trabes por efecto de los disipadores, degradación de resistencia de trabes y columnas y fatiga de los disipadores, deben estudiarse en el futuro ya que implican entre otras cosas, problemas de aspectos funcionales del disipador e incremento en el refuerzo de las trabes y columnas. Del análisis dinámico inclástico realizado en el capítulo anterior se concluye lo siguiente:

i) En un marco diseñado elásticamente, la relación de daño por lo general será nula (RD=0); sinembargo, este diseño es antieconómico, y por lo tanto no es recomendable.

ii) Si se decide disipar energía por medio del trabajo inelástico del marco, se consigue lo siguiente:

1) Disminuir el costo inicial del marco en relación a un diseño elástico.

2) Aumentar el costo de reparación y mantenimiento del mismo ya que para disipar energía se necesitan generar zonas en donde se plastifique el material y esto provoca daños que en ocasiones son severos (como el caso estudiado en este trabajo). Este incremento en el costo generalmente se ve remunerado por la disminución de la respuesta estructural. Pero si la magnitud de la excitación sísmica provoca que la demanda de ductilidad sea superior a la ductilidad de diseño (como sucedió en el caso estudiado) la estructura sufrirá daños muy severos, lo que provoca un incremento muy considerable en el costo.

III) El uso de un sistema disipador puede reducir el daño estructural en un marco. Este puede comportarse como un caso intermedio entre un diseño elástico convencional y un diseño dúctil convencional. En estos tipos de estructuras se presenta disipación de energía por medio de los dispositivos disipadores y reducción de la respuesta del marco, a cambio de poco o ningún incremento en el costo de reparación. Con respecto al costo inicial de la estructura tal vez sea también un caso intermedio entre los dos diseños convencionales. Esto indica que se podría recomendar el uso de un sistema disipador en edificios como el estudiado en este trabajo.

BIBLIOGRAFÍA

 Aguirre, M. y Sánchez, R. "Disipadores de Energía Sísmica', Revista Construcción y Tecnología, IMCyC, agosto 1990, pp 15-19.

2 Aguirre, M. y Sánchez, R. "Privebas Complementarias de elementos Disipadores de Energía". Proyecto 8152, Instituto de Ingeniería UNAM, noviembre 1989.

3 Aguirre, M. y Sánchez, R. "Pruebas de Elementos Disipadores de Energía Sísmica". Revista Construcción y Tecnología, 1MCyC, Vol. 1, № 10, pp. 7-18, marzo 1989.

4 Alonso, J., "Estudios Experimentales del Sistema ADAS", Seismic Instrumentation and use of energy dissipating elements in the structural behavior, International Seminar organized by the Mexican Society Seismic Engineering, México D. F., october 11,12 1990.

5 Alvarado, W.B. "Análisis Inclástico paso a paso de una Estructura con Amortiguamiento Suplementario". Trabajo final presentado a la DEPFI, UNAM, como requisito para obtener el grado de Maestro en Ingeniería (estructuras), febrero 1988. 6 Alvarado, W.B. "Análisis paso a paso de un modelo sometido al acelerograma SCT-190985 con y sin dispositivos amortiguadores", Trabajo de Investigación presentado a la DEPFI-UNAM, México D.F., octubre 1987.

7 ASCE,"The México Earthquakes-1985. Factors Involved and Lessons Learned". International Conference, México City, september 19-21, 1986.

8 Bazán, E. y Meli, R. "Manual de Diseño Sísmico de Edificios", Limusa, México D.F., 1985.

9 Clough, R. & Penzien, J., "Dynamics of Structures", Mc. Graw Hill Book, Inc., New York, 1975.

10 Chávez, J.H. "Efecto del Amortiguamiento Externo en la Respuesta de una Estructura Metálica de dos Niveles". Trabajo final presentado a la DEPFI, UNAM, como requisito para obtener el grado de Maestro en Ingeniería (estructuras), septiembre 1989.

11 "Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto", Gaceta Oficial del Departamento del Distrito Federal, 26 de noviembre de 1987, México D.F.

12 "Normas Técnicas Complementarias para Diseño por Sismo", Gaceta Oficial del Departamento del Distrito Federal, 5 de noviembre de 1987, México D.F.

13 "Reglamento de Construcciones para el Distrito Federal", Diario Oficial de la Federación, 3 de julio de 1987, México D.F.

14 Dowrick, D.J. "Earthquake Resistant Design". John Wiley & Sons, Inc., New York, 1977.

15 Esswein, G.A. "Development of a Plastic Strain Energy Absorbing Pipe with Restraint". Proceedings, ASCE Special Conference on Structural Design of Nuclear Power Plant Facilities, Vol. 2, 1973, pp. 171-200. 16 Filiatrault, A. & Cherry, S. "Comparative Performance of Friction Damped System and Isolation System for Earthquake Retrofit and Aseismic Design". Eathquake Engineering and Structural Dynamics, Vol. 16, 1988, pp. 389-416

17 Fundación ICA A.C., "Experiencias Derivadas de los Sismos de Septiembre de 1985", Limusa, México D.F., 1988.

18 González, R. "Respuesta de Estructuras Provistas de Dispositivos Externos de Disipación de Energía tipo Solera".

19 González, O.M. y Robles, F. "Aspectos Fundamentales del Concreto Reforzado". Limusa, México D.F., 2ª ed., 1989.

20 Hernalsteen, P. y Leblois, L.C. "The Use of Energy Absorber Against Impact Loads". Nuclear Engineering and Design, vol. 37, 1976, pp 373-406.

21 Higashino M. "The Application of Base Isolation and Structural Control System in Takenaca". Seminario Internacional de Ingeniería Sísmica, México D.F., Octubre 1990, pp. 249-271.

22 Kanaan, A. & Powcell, G. "General Purpose Computer Program for Inelastic Dynamic Response of Plane Structures". Report Nº UCB/EERC 73-6, Earthquake Engineering Research Center, University of California, Berkeley Ca., April 1973.

23 Kelly, J.M. & Skinner, M.J. "A Review of Current Uses Energy Absorbing Devices". Report № UCB/EERC 79-10, Earthquake Engineering Research Center, University of California, Berkeley Ca., 1979.

24 Kelly, J.M. & Skinner, M.S. "The Design of Steel Energy Absorbing Restrainers and their Incorporation into Nuclear Power Plants for Enhanced Safety". Report Nº UCB/EERC 79-10, Volume 4, Review of current uses of energy absorbing devices. february of 1979.

25 Kelly, J.M., Skinner, R.I. & Heine A.J. "Mechanisms of Energy Absortion in Special Devices for Use in Earthquake Resistent Structures". Bulletin of the New Zealand National Society for Earthquake Engineering, Vol. 5, Nº 3, 1972, pp.63-88.

26 Korenev, B.G. & Reznikov, L.M. "Vibration Dynamic Dampers Theory and Technical Additions", Physical and Mathematical Literature, Moscow, 1988.

27 Laible, J.P. "Análisis Estructural". Mc. Graw Hill Inc./Nueva Editorial Interamericana S.A de C.V., México D.F., 1988.

28 Loera, S. y Mendoza, C.J. "Comentarios, Ayudas de Diseño y Ejemplos de las Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto, DDF", Series del Instituto de Ingeniería, № ES-2, noviembre 1991.

29 Maison, B.F. y Neuss, C.F. "SUPER-ETABS: An Enhanced Version of ETABS Program", A report to the National Science Foundation, J.G. Bouwkamp, Inc. Berkeley, California, january 1983.

30 Martínez, E., "Mejoramiento de la Respuesta Sísmica de Edificios Dañados, mediante la adición de disipadores de energía.". Seismic Instrumentation and use of energy dissipating elements in the structural behavior, International Seminar organized by the Mexican Society Seismic Engineering, México D.F., october 11,12 1990.

31 Meli, R., "Bases para los Criterios de Diseño Estructural del Proyecto del Reglamento de Construcciones para el Distrito Federal ", Informe Nº 375 del Instituto de Ingeniería, junio de 1976.

32 Meli, R. "Comentarios al titulo sexto "Seguridad Estructural de las Construcciones" del Reglamento de Construcciones para el Distrito Federal", Series del Instituto de Ingeniería, Nº ES-1, diciembre 1991.

33 Meli, R. "Diseño Estructural", Limusa, México D.F., 1985.

34 Newmark, N.M. & Rosenblueth, E. "Fundamentals of Earthquake Engineering". Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. Pall, A.S. "Response of friction damped buildings" VIII Conferencia Mundial de Ingeniería Sísmica, San Francisco California, USA, Volumen V, julio 1984, pp.1007-1014.
 Park, R. & Paulay, T., "Reinforced concrete structures". John Wiley & Sons, New York, 1975.

37 Paz, M. "Structural Dynamics: Theory and Computation", Van Nostrand Reinhold Company, USA, 1980.

38 Powell, G. "DRAIN-2D User's Guide". Report Nº UCB/EERC 73-22, Earthquake Engineering Research Center, University of California, Berkeley Ca., October 1973.

39 Powell, G. "Supplement to Computer Program DRAIN-2D" ,Earthquake Engineering Research Center, Coll. of Eng., Univ. of California, Berkeley Ca., August 1975.

40 Prince, J. et al "Acelerograma en el Centro SCOP de la Secretaría de Comunicaciones y Transportes. Sismo del 19 de septiembre de 1985". Informe IPS-10B, Instituto de Ingeniería UNAM, 21 de septiembre de 1985.

41 Ramírez, O. "Respuesta Experimental Inclástica de una Estructura Metálica Provista de Elementos Disipadores de Energía". Trabajo final presentado a la DEPFI, UNAM, como requisito para obtener el grado de Maestro en Ingeniería (estructuras), febrero 1992.

42 Rosenblueth, E. y Gómcz, R. "Comentarios a las Normas Técnicas Complementarias para Diseño por Sismo", Series del Instituto de Ingeniería, Nº ES-7, mayo 1991.

43 Skinner, R.I., Kelly, J.M. & Heine, A.J. "Hysteretic Dampers for Earthquake Resistent Structures". International Journal of Engineering and Structural Dynamics, Vol.3, 1975, pp. 287-289.

44 Skinner, R.I. & McVerry, G.H. "Base Isolation for Increased Earthquake Resistance of Buildings". Bulletin of the New Zealand National Society for Earthquake Engineering, Vol. 8, № 2, 1975, pp. 93-101. 45 Urrego, O. (En proceso). Elección del mejor arreglo de disipadores en un marco estructural plano. Tesis de Maestría. DEPFI, UNAM.

46 Urrego, O., Ruiz, S. y Silva F. 1993. Influencia de la Distribución de disipadores de energía en la respuesta sísmica de un edificio. X Congreso Nacional de Ingeniería Sísmica, Puerto Vallarta, Jalisco.

47 Wakabayashi, M. y Martínez, E. "Diseño de Estructuras Sismorresistentes". Mc. Graw Hill/Interamericana de México S.A de C.V., 1988.

48 Whitaker, A., Bertero, V., Alonso, J. y Thompson, C. "Earthquake Simulation Testing of Steel Plate Added Damping and Stifness Elements". Reporte UCB/EERC 89-02, enero 1989.

49 Wiesner, K.B. "The Role of Damping Systems". Third International Conference on Tall Buildings: The second century of the skyscraper. Chicago III. USA, enero 1986.

50 Wilson, E.L., Hollings, J.P. & Dover, H.H. "Three Dimensional Analysis of Building Systems (extended version)", Report № UCB/EERC 75-13, Earthquake Engineering Research Center, University of California, Berkeley, Ca., 1975.

Existen fórmulas que calculan de forma aproximada la rigidez de entrepiso, por ejemplo las llamadas Fórmulas de Wilbur. Estas son aplicables a marcos regulares formados por piezas de momentos de inercia constante. La versión de las fórmulas que aquí se presentan, se basa en las siguientes hipótesis [47 8]:

 Los giros en todos los nudos de un nivel y de los dos niveles adyacentes son iguales, excepto en el nivel de desplante, en donde puede suponerse empotramiento o articulación según el caso.

2. Las fuerzas cortantes en los dos entrepisos adyacentes al que interesa son iguales a la de este.

Tomando en cuenta estas hipótesis simplificatorias (que restringen de alguna forma el uso de las fórmulas) resultan las siguientes expresiones

APÉNDICE A

Para el primer entrepiso:

Suponiendo las columnas empotradas en la cimentación

$$\overline{K_1} = \frac{48E}{h_1 \left[\frac{4h_1}{\Sigma K_{cl}} + \frac{h_1 + h_2}{\Sigma K_{ll} + \frac{\Sigma K_{cl}}{12}} \right]}$$

Suponiendo las columnas articuladas en la cimentación

$$\overline{K_1} = \frac{24E}{h_1 \left[\frac{8h_1}{\Sigma K_{cl}} + \frac{2h_1 + h_2}{\Sigma K_{rl}}\right]}$$

• Para el segundo entrepiso:

Suponiendo las columnas empotradas en la cimentación

$$\overline{K_{2}} = \frac{48E}{h_{2} \left[\frac{4h_{2}}{\Sigma K_{c2}} + \frac{h_{1} + h_{2}}{\Sigma K_{c1}} + \frac{h_{2} + h_{3}}{\Sigma K_{c1}} + \frac{h_{2} + h_{3}}{\Sigma K_{c2}} \right]}$$

Suponiendo las columnas articuladas en la cimentación

$$\overline{K_{2}} = \frac{48E}{h_{2} \left[\frac{4h_{2}}{\Sigma K_{c2}} + \frac{h_{1} + h_{3}}{\Sigma K_{c2}} + \frac{2h_{1} + h_{2}}{\Sigma K_{c1}}\right]}$$

APÉNDICE A

· Para entrepisos intermedios:

$$\overline{K_n} = \frac{48E}{h_n \left[\frac{4h_n}{\Sigma K_{cn}} + \frac{h_m + h_n}{\Sigma K_{tm}} + \frac{h_n + h_a}{\Sigma K_{tn}}\right]}$$

En estas ecuaciones

 \overline{K}_{\bullet} rigidez del entrepiso en cuestión.

 K_n rigidez (1/L) de las trabes del nivel sobre el entrepiso n.

 K_m rigidez (I/L) de las columnas del entrepiso n.

m,n,o índices que identifican tres níveles consecutivos de abajo hacia arriba.

h, altura del entrepiso n.

Para el entrepiso superior, si se acepta que la cortante del penúltimo piso es el dable que la del último, se encuentra que es aplicable la fórmula para entrepisos intermedios, poniendo $2h_m$ en vez de h_m y haciendo $h_p=0$

La deducción de estas fórmulas y su aplicación para el caso de vigas de sección variable se presenta en Locra P.S., "Contribución a un manual para diseño de losas de concreto reforzado", Tesis profesional, Facultad de Ingeniería, UNAM, 1964.

En el capítulo 4 se utilizaron los programas de análisis SUPER-ETABS [= 29 y 50] y DRAIN-2D [= 22, 38 y 39], para ello, es necesario conformar un archivo de datos. A continuación se muestran en el orden en que fueron utilizándose, algunos de los archivos de datos. Para los *marcos convencionales* solo se presenta un solo archivo (el del marco elástico para el SUPER-ETABS y el del marco dúctil para el DRAIN-2D, los otros archivos difieren en el espectro de diseño, para el primer archivo, y en los diagramas de interacción para el segundo). En la figura B.1 se muestra la forma en que se enumeraron las columnas y crujías para formar los archivos de datos para el SUPER-ETABS. En las figuras B.2 y B.3 se muestra la numeración de los clementos estructurales y de los nodos del *marco con disipadores* para usar el DRAIN-2D, (la numeración de columnas, trabes y nodos de los *marcos convencionales* esta mostrada en las mismus figuras).

Fig. B.1. Numeración de columnas y crujías para los archivo de datos del SUPER-ETABS.

ARCHIVO DE DATOS DEL MARCO CONVENCIONAL (PRIMER ARCHIVO).

	10 1	1 0	7 10	1 0000	9.81	÷.,	HARCO C	ONVENCI	OHAL A					
	N-10	3.0	4.192											
	30.579	0.0												
All the second	N-09	3.0	5.67											
	37.224	0.0									4			i de l
	N-08	3,0	5.67											
	33.088	0.0												14 N.
	N-07	3.0	5.67											
	28.952	0.0												
 	N-06	3.0	5.67						1.41.4					
	24.816	0.0									100			
	N-05	3.0	5.67											1
	20.680	0.0												1.1.1
	N-04	3.0	5.67										-	
	16.544	0.0												
	N-03	3.0	5.67											
	12.408	0.0												14
	N-02	3.0	5.67											
	8.272	0.0												1.1
	N-D1	3.0	5.67										A	1.1
	A 14 1 1 1	1.1.1.1										100	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
							1000	-9. COM	한 한 -	an 16	e andre es	a da la cara da	÷	
						203								

								APENDICE B
	4.136	0.0						
	1 10	54	5 5	0	O O MARCO	EXT. DE	LA ESTRUCTURA	
	ż.	5.0	0.0					
	31 41	0.0	0.0					
1.1	5 2	0.0	0.0					
	1 11 2 11	31370.85	0.1764	.147		0.002593	0.75	
	3 11	31370.85	0.2916	.243		0.007086	0.75	
	4 11 5 11	31370.85	0.3136	.201		0.008195	0.75	
	1 11	31370.85	.219		0.012305 4	4 2	.210 .210	an an the state of t
, s	2 ii 3 11	31370.85	.219		0.012305 4	4 2	.270 .270	
	4 11	31370.85	.219		0.012305 4	4 2	.280 ,280	
	í 1	2 1	0		0.012303 4		1200 1200	and the state of the second second
	1 1	2 1	0				e e e e e e e e e e e e e e e e e e e	
	i i	2 3	i				1.1	
	1 1	2 4 2 5	1					
	2 2	3 1	Ó					
	22 22	3 1	0					
1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	2 2	3 3	1					وجرد والمنجر والمتحد ستقد والمرح
	22	3 5	i.					
	33	4 1	0					일이 가장 것 같은 것 같이 많이 많이 많이 많이 많이 많이 많이 많이 했다.
	3 3	4 2	1					
an an tha	33	4.3	1					
	3 3	4 5	i					
	44	5 0	9					
	1 2	5 1						승규는 것은 물질을 들었다.
	1 4	5 1			1 - A - A - A - A - A - A - A - A - A -			
an a	15	5 1				ریا در	1997 - 1997 	1997 - Alexandra Area and
	2 2	5 1						
	23	5 1						
	2 5	5 1						그는 것이라는 그는 물문에 적으면서
	31 32	5 1						
	3 3.	5 1						이 같다. 이 것 같아요. 이 같아요.
	3 4	5 1					a series and	ران کردشت (4 یاد در این میشن) در این در به مهمه این در این در میشینی ماری وارد در این مارز در افران در این در این در ا
	4 1	5 1						
	4 3	5 1						
	4 4	5 1						
	5 0	4 9						이번 소망한 것이라는 것을 것 같은
	11	0.0	0.0	1.1	0.0	EJE 1		
								지 않는 것 같은 것이 없다.
						104	(1) No. 462	나는 것 같아요. 그는 것 같아요. 그는 것 같아요. 그는 것

10 1 0 7 0 0000 9.01 RCP 87 3 0 0.4 0 0 0 0 0 ARCHIVO DE DATOS DEL MARCO CONVENCIONAL (MASAS CORREGIDAS). 10 1 0 7 0 10000 9.61 MARCO CONVENCIONAL (MASAS CORREGIDAS). 10 1 0 7 0 10000 9.61 MARCO CONVENCIONAL (MASAS CORREGIDAS). 10 1 0 7 0 10000 9.61 MARCO CONVENCIONAL (MASAS CORREGIDAS). 10 1 0 7 0 10000 9.61 MARCO CONVENCIONAL (MASAS CORREGIDAS). 10 1 0 7 0 10000 9.61 MARCO CONVENCIONAL (MASAS CORREGIDAS). 10 1 0 7.75 MARCO 2000 9.75 MARCO 2000 9.75 10.00 0 0 MARCO 2000 9.75 9.777 9.75 10.00 0.00 MARCO 2000 0.75 9.75 9.75 9.75 9.75 10.00 0.01205 4										
10 1 0 7 10 10000 9.81 MARCO CONVENCIONAL (MASAS CORREGIDAS) 10 1 0 7 10 10000 9.81 MARCO CONVENCIONAL (MASAS CORREGIDAS) ADDITION DE DATOS DEL MARCO CONVENCIONAL (MASAS CORREGIDAS) 10 1 0 7 10000 9.81 MARCO CONVENCIONAL (MASAS CORREGIDAS) NOTO DE DATOS DEL MARCO CONVENCIONAL (MASAS CORREGIDAS) 10 1 0 7 10 10000 9.81 MARCO CONVENCIONAL (MASAS CORREGIDAS) NOTO DE DATOS DEL MARCO ENT, OL LA ESTRUCTURA 10 1 0 7.10 (MARCO CONVENCIONAL (MASAS CORREGIDAS) NOTO DE DATOS DEL MARCO ENT, OL LA ESTRUCTURA 10 5.00 5.01 (MARCO CONVENCIONAL (MASAS CORREGIDAS) 10 5.00 5.772 (MARCO CONVENCIONAL (MASAS CORREGIDAS) 10.00 5.020 5.020 (MARCO CONVENCIONAL (MASAS CORREGIDAS) 10.00 5.020 5.020 (MARCO CONVENCIONAL (MASAS CORREGIDAS) 10.00 5.00 5.00 (MARCO CONVENCIONAL (MARCO CONVENCIONAL (MASAS CORREGIDAS) 10.00 </th <th></th>										
10 1 0 7 10 1000 9.81 MARCO CONVENCIONAL (MASAS CORREGIDAS). ARCHIVO DE DATOS DEL MARCO CONVENCIONAL (MASAS CORREGIDAS). 10 1 1 0 7.00 9.81 MARCO CONVENCIONAL (MASAS CORREGIDAS). NACHIVO DE DATOS DEL MARCO CONVENCIONAL (MASAS CORREGIDAS). 10 1 1 0 7.00 9.81 MARCO CONVENCIONAL 8 283.966 0.0 5.33 0.0 5.64 0 0 MARCO ENVENCIONAL 8 283.966 0.0 5.732 0.0 0 MARCO ENVENCIONAL 8 0 283.966 0.0 5.776 0.0 0 MARCO ENT. 9E LA ESTRUCTURA 100 5 5 0 0 0 MARCO ENT. 9E LA ESTRUCTURA 100 5 5 0 0 0.00293 0.73 101 5 5 0 0 0.00293 0.73 101 5 5 0 0.00293 0.75 101 5 6 5 0.00293 0.75 1033.065<										
1 0 0.0 0.0 0.00 REP 87 3 0 0.0 0.0 0.00 REP 87 3 0 0.0 0 0.000 REP 87 4 0 1 0 7 10 10000 9.31 MACD CONVENCIONAL (MASAS CORREGIDAS). 10 1 1 0 7 10 10000 9.31 MACD COMPEXIDML B 10 1 1 0 7 10 10000 9.31 MACD COMPEXIDML B 10 1 1 0 7 10 10000 9.31 MACD COMPEXIDML B 10 1 1 0 7 10 10000 9.31 MACD COMPEXIDML B 10 5 0 1.0000 9.31 MACD COMPEXIDML B MACD CMACD EXT, OF LA ESTRUCTURA 12.600 0.00 5.022 1.0000 5.022 1.0000 0.000000 0.75 12.600 0.00 5.024 0.000000 0.75 0.75 0.75 0.75 0.75 0.75 1<										
10 1 0 7 10 10 0 0 0 0 10 1 1 0 7 10 10 10 10 10 10 10 10 10 10 10 10 10 10000 9.31 MACD CONVENCIONAL (MASAS CORREGIDAS). 10 1 1 0 7 10 10000 9.31 MACD CONVENCIONAL B 10 1 1 0 7 10 10000 9.31 MACD CONVENCIONAL B 10 1 1 0 7 10 10000 9.31 MACD CONVENCIONAL B 10 1 1 0 7 10 10000 9.31 MACD CONVENCIONAL B 10 1 1 0 5.33 30.0 5.41 33.08 5.41 33.08 0.0 5.422 3.0 5.422 4.42 3.0 5.422 41.20 0.0 0.0 0.0 0.00000 0.75 5.75 10.0 0.00000 0.75 11										
$\frac{1}{1} \frac{1}{2} \frac{1}$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				····						APENDICE B
$ \begin{array}{c} 0.3 \\ 0.4 \\ 0.5 \\ 0.5 \\ \end{array}$ ARCHIVO DE DATOS DEL MARCO CONVENCIONAL (MASAS CORREGIDAS). $ \begin{array}{c} 10 & 1 & 1 & 0 & 7 & 10 & 10000 & 9.81 \\ 10 & 1 & 1 & 0 & 7 & 10 & 10000 & 9.81 \\ 10 & 1 & 1 & 0 & 7 & 10 & 10000 & 9.81 \\ 10 & 1 & 1 & 0 & 7 & 10 & 10000 & 9.81 \\ 10 & 1 & 1 & 0 & 7 & 10 & 10000 & 9.81 \\ 10 & 1 & 1 & 0 & 7 & 10 & 10000 & 9.81 \\ 10 & 1 & 1 & 0 & 7 & 10 & 10000 & 9.81 \\ 10 & 1 & 1 & 0 & 7 & 10 & 10000 & 9.81 \\ 10 & 1 & 1 & 0 & 7 & 10 & 10000 & 9.81 \\ 10 & 1 & 1 & 0 & 7 & 10 & 10000 & 9.81 \\ 10 & 1 & 1 & 0 & 7 & 10 & 10000 & 9.81 \\ 10 & 1 & 0 & 7 & 10 & 10000 & 9.81 \\ 10 & 1 & 0 & 7 & 10 & 10000 & 9.81 \\ 10 & 1 & 0 & 7 & 10 & 10000 & 9.81 \\ 10 & 10 & 0 & 7 & 10 & 10000 & 9.81 \\ 10 & 10 & 0 & 7 & 10 & 10000 & 9.81 \\ 10 & 10 & 0 & 10 & 5.688 \\ 10 & 20 & 3.0 & 5.688 & 1000 & 100000 & 100000 & 10000 & 1000000 & 100000 & 100000 & 100000 & 100000 & 100000 & 100000 & 100000 & 100000 & 100000 & 1000000 & 1000000 & 1000000 & 1000000 & 1000000 & 100000000$				9.81	90.0.00	00100		PCDE B	,	
0.6 0.4 0 3.9 0.4 0 ARCHIVO DE DATOS DEL MARCO CONVENCIONAL (MASAS CORREGIDAS). 10 1 1 0 7 10 1000 9.81 MARCO CONVENCIONAL B 10 1 1 0 7 10 1000 9.81 MARCO CONVENCIONAL B 10 1 1 0 7 10 1000 9.81 MARCO CONVENCIONAL B 10 1 1 0 7 10 1000 9.81 MARCO CONVENCIONAL B 10 20.865 0.0 5.533 4.05 8.05 5.533 4.05 8.00 5.5482 2.333 0.0 5.5482 2.333 0.0 5.5482 1.277 0.0 1.0 5 4 5 5 0 0 0 0 MARCO EXT, OF LA ESTAUCTURA 1.0 5 4 5 5 0 0 0 0 MARCO EXT, OF LA ESTAUCTURA 1.0 5 4 5 5 0 0 0 0 MARCO EXT, OF LA ESTAUCTURA 1.0 5 4 5 5 0 0 0 0 MARCO EXT, OF LA ESTAUCTURA 1.0 5 4 5 5 0 0 0 0 MARCO EXT, OF LA ESTAUCTURA 1.0 5 4 5 5 0 0 0 0 MARCO EXT, OF LA ESTAUCTURA 1.0 5 4 5 5 0 0 0 0 MARCO EXT, OF LA ESTAUCTURA 1.0 5 4 5 5 0 0 0 0 MARCO EXT, OF LA ESTAUCTURA 1.1 0 5 4 5 5 0 0 0 0 MARCO EXT, OF LA ESTAUCTURA 1.1 0 5 4 5 5 0 0 0 0 MARCO EXT, OF LA ESTAUCTURA 1.1 0 5 4 5 5 0 0 0 0 MARCO EXT, OF LA ESTAUCTURA 1.1 0 5 4 5 5 0 0 0 0 MARCO EXT, OF LA ESTAUCTURA 1.1 0 5 4 5 5 0 0 0 0 MARCO EXT, OF LA ESTAUCTURA 1.1 0 5 4 5 5 0 0 0 0 MARCO EXT, OF LA ESTAUCTURA 1.1 0 5 4 5 5 0 0 0 0 0 MARCO EXT, OF LA ESTAUCTURA 1.1 0 5 4 5 5 0 0 0 0 0 MARCO EXT, OF LA ESTAUCTURA 1.1 0 5 4 5 5 0 0 0 0 0 0 0 MARCO EXT, OF LA ESTAUCTURA 1.1 0 5 4 5 5 0 0 0 0 0 0 MARCO EXT, OF LA ESTAUCTURA 1.1 0 5 4 5 0 0 0 0 0 0 0 0 MARCO EXT, OF LA ESTAUCTURA 1.1 0 5 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-	0.0	0.1						
0 ARCHIVO DE DATOS DEL MARCO CONVENCIONAL (MASAS CORREGIDAS). 10 1 1 0 7 10 10000 9.81 MARCO CONVENCIONAL B 129.66 0.0			0.6	0.4						
ARCHIVO DE DATOS DEL MARCO CONVENCIONAL (MASAS CORREGIDAS). 10 1 1 0 7 10 1000 9.81 MARCO CONVENCIONAL 8 10 1 1 0 7 10 1000 9.81 MARCO CONVENCIONAL 8 10 1 30.06 0.0 10 0 5.05 5.00 10 0 5.05 5.00 10 0 0 5.05 5.00 10 0 0 5.05 5.00 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0								
ARCHIVO DE DATOS DEL MARCO CONVENCIONAL (MASAS CORREGIDAS). 10 1 1 0 7 10 1000 9.81 MARCO CONVENCIONAL B 127.0866 0.0 14.09 3.0 5.533 36.646 0.0 14.08 3.0 5.610 14.08 3.0 5.610 14.08 3.0 5.722 25.335 0.0 5.685 14.06 3.0 5.779 17.000 0.0 10.5 4 5 5 0 0 0 MARCO EXT. DE LA ESTRUCTURA 1 0.0 0.0 1 10 5 4 5 5 0 0 0 MARCO EXT. DE LA ESTRUCTURA 1 0.0 0.0 1 10 5 4 5 5 0 0 0 MARCO EXT. DE LA ESTRUCTURA 1 0.0 0.0 1 113170.65 0.219 0.00155 0.75 2 113170.65 0.219 0.00155 0.75 3 1131170.65 0.219 0.001525 4 4 2.250.250 1 11 2 1 0 1 1 2 2 1 1 1 2 2										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ARC	HIV	'O DE D	ATOS DEI	L MARCO	CONV	ENCIONAL (MASAS CO	RREGIDAS).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
10 1 1 0 0 7 10 1000 9.81 MARCO CONVENCIONAL B 120,886 0.0 14-09 3.0 5,533 3.6.866 0.0 14-07 3.0 5,668 133,068 0.0 14-07 3.0 5,668 14-07 3.0 5,732 24,2333 0.0 5,772 17,090 0.0 5,822 17,090 0.0 5,822 12,869 0.0 10 0 5 4 5 5 0 0 0 MARCO EXT, DE LA ESTRUCTURA 1 10 5 4 5 5 0 0 0 MARCO EXT, DE LA ESTRUCTURA 1 10 5 4 5 5 0 0 0 MARCO EXT, DE LA ESTRUCTURA 1 10 5 4 5 5 0 0 0 MARCO EXT, DE LA ESTRUCTURA 1 10 5 4 5 5 0 0 0 MARCO EXT, DE LA ESTRUCTURA 1 10 5 4 5 5 0 0 0 MARCO EXT, DE LA ESTRUCTURA 1 10 5 4 5 5 0 0 0 MARCO EXT, DE LA ESTRUCTURA 1 10 5 4 5 5 0 0 0 MARCO EXT, DE LA ESTRUCTURA 1 10 5 4 5 5 0 0 0 MARCO EXT, DE LA ESTRUCTURA 1 10 5 4 5 5 0 0.0 MARCO EXT, DE LA ESTRUCTURA 1 10 5 4 5 5 0 0.0 MARCO EXT, DE LA ESTRUCTURA 1 10 5 4 5 5 0 0.0 MARCO EXT, DE LA ESTRUCTURA 1 10 5 4 5 5 0 0.0 MARCO EXT, DE LA ESTRUCTURA 1 10 5 4 5 5 0 0.0 MARCO EXT, DE LA ESTRUCTURA 1 10 5 4 5 5 0 0.0 MARCO EXT, DE LA ESTRUCTURA 1 10 5 4 5 5 0 0.0 MARCO EXT, DE LA ESTRUCTURA 1 10 5 4 5 5 0 0.0 MARCO EXT, DE LA ESTRUCTURA 1 10 5 4 5 5 0 0.0 MARCO EXT, DE LA ESTRUCTURA 1 10 5 4 0.0 0 0.0 0.00505 0.75 0.75 0.150 0.200 0.00505 0.75 0.75 0.150 0.150 0.1205 4 4 2 2.200 1.200 0.75 0.150 0.150 0.1205 0.1205 0.1205 0.200 0.75 0.150 0.1205 0.1205 0.1205 0.200 0.75 0.150 0.1205 0.1205 0.1205 0.200 0.75 0.150 0.1205 0.1205 0.200 0.1205 4 4 2 2.200 .200 1 1 1 2 1 0 0 0.01205 4 4 2 2.200 .200 1 1 1 2 1 0 0 0.01205 4 4 2 2.200 .200 1 1 1 2 1 0 0 0.01205 4 4 2 2.200 .200 1 1 1 2 1 0 0 0.01205 4 4 2 2.200 .200 1 1 1 2 1 0 0 0.01205 4 4 2 2.200 .200 1 1 1 2 2 1 0 0 0.01205 4 4 2 2.200 .200 1 1 1 2 2 1 0 0 0.01205 4 4 2 2.200 .200 1 1 1 2 2 1 0 0 0.01205 4 4 2 2.200 .200 1 1 1 2 2 1 0 0 0.01205 4 4 2 2.200 .200 1 1 1 2 2 1 0 0 0.01205 4 4 2 2.200 .200 1 1 1 2 2 1 0 0 0.01205 4 4 2 2.200 .200 1 1 1 2 2 1 0 0 0.01205 4 4 2 2.200 .200 1 1 1 2 2 1 0 0 0.01205 4 4 2 2.200 .200 1 1 1 2 2 5 1 0 0 0.01205 4 4 2 2.200 .200 1 1 1 2 2 5 1 0 0 0.01205 4 4 2 2.200 .200 1 1 1 2 2 5 1 0 0 0.01205 4 4 2 0.000 .0000 .00										
H-10 3.0 4.057 (Massa corregidas) 220.866 0.0 5.533 3.646 N-09 3.6.666 0.0 N-08 3.0 5.641 33.068 0.0 1 100 N-06 3.0 5.643 20.335 0.0 1 1 100 N-06 3.0 5.772 21.277 0.0 1 1 5.822 11.7060 0.0 1 1.0 5.822 11.10.5 4.570 0.0 1 11.10.5 4.5 5 0 0 11.10.5 4.5 5 0 0 MARCO EXT, DE LA ESTRUCTURA 1 0.0 2.2 3.0 0.0 2.3 0.0 2 3.0 0.0 2.4.250 0.0 0.0 2.5 2 3.0 0.0 2.4.250 0.0 0.75 2.5 2 1.10.0 0.0 2.250 0.75 0.75 0.75 2 1.1131370.25 0.2191		10	1	1 0	7 10	0000 9	.81	MARCO CONVENCION	L B	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	the second second	N-10		3.0	4.057			(Masas corregid	55)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		K-09	1000	3.0	5.533					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		36	- 686	0.0	5 611					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		33	.068	0.0	21011					
$\begin{array}{c} \textbf{w}, \textbf{v}, \textbf{v},$		N-07 20	335	3.0	5,688					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		N-06		3.0	5,732					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		25 N+05	.338	0.0	5.776					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		21	.277	0.0						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		N-04 17	.090	3.0	5,799					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	N-03		3.0	5.822					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		H-02	. 509	3.0	5,822					
4.200 0.0 1 10 5 4 5 5 0 0 0 MARCO EXT. DE LA ESTRUCTURA 1 0.0 0.0 2 5.0 0.0 3 10.0 0.0 4 15.0 0.0 5 20.0 0.0 1 1131370.65 0.746.147 0.002593 0.75 2 1131370.65 0.2500 2.020 0.0055208 0.75 3 1131370.65 0.2510 2.020 0.005195 0.75 3 1131370.65 0.3136.221 0.0008195 0.75 1 1131370.65 2.19 0.012305 4 4 2.210.210 3 1131370.65 2.19 0.012305 4 4 2.220 270 3 1131370.55 2.19 0.012305 4 4 2.220 280 3 1131370.55 2.19 0.012305 4 4 2.220 280 3 1131370.55 2.19 0.012305 4 4 2.220 280 3 113150.55 2.19 0.012305 4 4 2.220 280 3 110 2 2 2			.579	0.0	5 477					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4	.290	0.0	3.022					de la construcción de la
$\begin{array}{c} 2 & 2.3 & 0.0 \\ 3 & 10.0 & 0.0 \\ 5 & 20.0 & 0.0 \\ 11 & 131370.65 & 0.2764 & .147 & 0.002593 & 0.75 \\ 2 & 1131370.65 & 0.2706 & 2.423 & 0.007086 & 0.75 \\ 3 & 1131370.65 & 0.2316 & .2243 & 0.0007086 & 0.75 \\ 4 & 1131370.65 & 0.3136 & .221 & 0.000395 & 0.75 \\ 1 & 1131370.65 & .219 & 0.012305 & 4 & 2 & .226 & .250 \\ 3 & 1131370.65 & .219 & 0.012305 & 4 & 2 & .226 & .250 \\ 3 & 1131370.65 & .219 & 0.012305 & 4 & 4 & 2 & .227 & .270 \\ 4 & 1131370.65 & .219 & 0.012305 & 4 & 4 & 2 & .220 & .280 \\ 1 & 1 & 2 & 1 & 0 \\ 1 & 1 & 2 & 1 & 0 \\ 1 & 1 & 2 & 1 & 0 \\ 1 & 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 5 & 1 \\ 2 & 2 & 3 & 1 & 0 \\ 2 & 2 & 3 & 1 & 0 \\ 2 & 2 & 3 & 1 & 0 \\ 2 & 2 & 3 & 1 & 0 \\ 2 & 2 & 3 & 2 & 1 \end{array}$	1	. 1	10	5 4	5 5 1	0 0 0 4	ARCO EXT.	DE LA ESTRUCTUR	A	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	and the second second second	ź		5.0	0.0					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3		10.0	0.0				general a	ر میر میشون برد از جرجه ا
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5	·	20.0	0.0			1997 - A.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	. 1	131370.85	0.1764 .14		0.00	2593 0	.75	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	1	131370.85	0.2916 .24		0.00	7086 0	.75	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1	131370.85	0.3136 .26		0.00	8195 D	.75	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	1	131370.85	.219	0.012305	4 4	2 .210 .210		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	1	131370.85	.219	0.012305	4 4	2 .250 .250		
$\begin{array}{c} 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 2 \\ 2 \\ 3 \\ 2 \\ 2$		4	1	131370.85	.219	0.012305	4 4	2 .280 .280		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	' ı'	2 1	0	0.012305	.4 4	2.280.280		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	1	2 1	0					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		_ i	1	2 3	i					
		1	-1	24	1					
$\begin{bmatrix} 2 & 2 & 3 & 1 \\ 2 & 2 & 3 & 2 \end{bmatrix}$		2	ź	3 1						
205 Normal State (1997) - Constant (1997) Normal State (1997) - Constant (1997) Normal State (1997) - Constant (1997)	ieš i Materiali, jeg 1919 - A	2	2	· 3· 1	- 0 a - 1 a - 1					
205 1997 - Barlin Marine, and an anti-anti-anti-anti-anti-anti-anti-anti-	al de la composición de la composición La composición de la c	•			•					
							206			
	가 있는 부모 관계에 있다. 1997년 - 1997년 - 1997년 1997년 - 1997년 -			· · · · · ·			205	all the second second	e de la composition d La composition de la c	
										un di The Bost Arche

10 1	1 0	7 10	1 0000	9.81	MARCO	SIN	DIAGONALES					
N-10	3.0	4.057						1.1				
29.886	0.0											
N-09	3.0	5.533										
36.686	0.0										1, AN AN	1.11
K-08	3.0	5.611					1				All the second second	
33.068	0.0							1.1.1				
N-07	3.0	5.688								, ' 사람 '		
29.335	0.0											
N-06	3.0	5,732								1.1		
25.338	0.0											
N-05	3.0	5.776										
21,277	0.0											
N-04	3,0	5,799										
												27 J 27
en en en en			a sa agina	a las, i	a de tras de la composición de la compo	÷	s harrin in Spire	sirrity	galante da	del delle	-dolain	. Let sa yi
				1	206							
				· · · ·								- 11

17,000 0.0 5.022 12,609 0.0 5.022 14,000 0.0 5.022 10,000 0.0 0.000 110 5 0.0 0 2,500 0.0 0 0.000675 0.33 2,500 0.0 0 0.00162 0.00178 0.33 2,113170.05 0.1600 0.03102 4 2.150 10.33 2,113170.05 0.1600 0.03102 4 2.150 10.33 1,113170.05 0.1600 0.03102 4 2.150 10.33 1,113170.05 0.00102 4 2.150 10.33 1,113170.05 0.00102 4 4 2.150 10.33 1,113170.05 0.003102 4 4 2.150 10.33 1,113170.05 0.003102 4 4 2.150 10.33 1,113170.05 0.003102 4 4 2.150 10.33 1,112 1,10 0.003102 4 4 2.100.200 1,112 1,10																						
17,000 0.0 17,000 0.0 17,000 0.0 17,000 0.0 18,000 1.0 10,000 0.0 10,00 5.022 4,200 0.0 1 0.0 1 0.0 2,000 0.0 1 0.0 2,000 0.0 1 1.0 1 0.0 2,000 0.0 1 1.0.0 2,000 0.0 1 1.0.0 2,000 0.0 1 1.0.0 1 1.0.0 2,000 0.00 1 1.0.00 1 1.0.00 1 1.0.00 1 1.0.00 1 1.0.00 0.00002 2 1.0.00 0.000102 2 1.0.00 0.000102 2 1.0.00 0.000102 2 1.0.00 0.000102 2 1.0.00																						
17,000 0.0 5.622 NO2 5.00 5.622 NO3 5.00 5.622 NO4 5.00 0.00 0.000475 0.533 1 0.0 0.000 0.000175 0.533 1 131370.65 0.1640 0.000175 0.533 1 131370.65 0.1640 0.000172 4.4.2 135 1 131370.65 0.1640 0.000172 4.4.2 2.150 150 1 131370.65 0.1640 0.000172 4.4.2 2.100 131 1 131370.65 0.1600 0.0003102 4.4.2 2.200 200 1 1 2 1 1 2 1 1 1.2 1 0.003102 4.4.2 2.200.200 1 1 2 1 2 1 1 2 1 2<																						
17,000 0.0 12,899 0.0 12,899 0.0 10 5 10 5 10 5 100 5 1100 5 1100 5 1100 5 1100 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													1									
17,000 0.0 12,899 0.0 8,579 0.0 10 5 4,290 3.0 10 5 2,50 0.0 3 0.0 1 10 2 5.0 0.0 3 10.0 0.0 4,290 0.0 0 3 10.0 0.0 4,290 0.00 0.0 5 0.00 0 4,130 0.0 0.00 5 0.00 0.00000 5 20.0 0.00000 5 0.00000 0.00000 5 1131370.65 0.4600 1 1131370.65 0.4600 1 1131370.65 0.4600 1 131370.65 0.003102 4 2.175 1 131370.65 0.003102 4 2.170 1 1 2 1 1 2 2 3 1 1 1 2											÷											
17,000 0.0 12,869 0.0 1,000 5,822 4,200 0.0 1 0.0 5,822 4,200 0.0 1 0.0 0.0 2 5.0 0.0 1 0.0 0.0 2 5.0 0.0 3 10.0 0.0 4 13.0 0.0 5 20.0 0.0 1 13.0 0.0 2 5.0 0.00075 0.53 2 1131370.65 0.1620.133 0.002131 0.53 1 131370.65 0.1600.133 0.002131 0.53 1 131370.65 110 0.003102 4 2.175.175 1 131370.65 0.1000.133 0.002131 0.53 1 131370.65 110 0.003102 4 2.200.200 1 1 2 1 0.003102 4 2.200.200 1 1 2 3 1 1 2 <th></th> <th>_</th> <th></th> <th>APE</th> <th>VDICE I</th> <th>1</th> <th></th> <th></th>		_																APE	VDICE I	1		
H-03 3.0 5.822 H-02 3.0 5.822 H-01 0.0 0.0 H-02 5.0 0.0 H-03 0.0 0.0 H-01 0.0 0.0 H-01 0.0 0.0 H-02 0.0 0.0 H-03 0.0 0.0 H-03 0.0 0.0 H-03 0.00 0.0 H-03 0.00 0.0 H-03 0.00 0.00 H-03 0.000 0.000 H-03 0.000 0.000 H-03 0.1424 1.20 0.000718 0.53 H-11131370.65 0.1600 0.003102 4 2 1.05 H-11131370.65 0.1600 0.003102 4 2 1.00 H-1113170.65 110 0.003102 4 2 1.			17	.090		0.0								12.1			2	1.1				
H 202 3.0 5.822 H 01 5.0 5.822 1.70 5.0 5.822 1.80 5.0 0.0 1 10 5 5 0 0 1 10 5 4 5 0 0 1 10 5 4 5 0 0 2 5.0 0.0 0 0.00075 0.53 2 113170.65 0.1225 10.20 0.001211 0.53 3 113170.65 0.1600.133 0.002131 0.53 3 113170.65 0.1600.133 0.002131 0.53 1 113170.65 0.1600.133 0.002131 0.53 1 113170.65 0.1600.133 0.002131 0.53 1 113170.65 110 0.003102 4 2 1.75 3 113170.65 110 0.003102 4 2 1.00 1 12 1 0 0.003102 4 2 1.00 1		, N	- 03			3.0		5.822														
0.0 5.02 4.200 0.0 1 0.0 0.0 3 0.0 3 0.0 3 0.0 3 0.0 1 0.0 2 3.0 1 0.0 3 0.0 3 0.0 1 0.0 2 3.0 1 0.0 3 0.0 1 0.0 1 131370.65 1 131370.65 1 131370.65 1 131370.65 1 131370.65 1 131370.65 1 131370.65 1 131370.65 1 1 1 2 1 2 1 1 1 2 1 1 1 1 2 1 1 1 2 2 3 3		N	1-02	.007		3.0		5.822														
4.200 0.0 1 0.5 4 5 5 0 0 0 MARCO EXT. DE LA ESTRUCTURA 2 5.0 0.0 3 10.0 0.0 4 1131370.65 0.200 1 1131370.65 0.200 1 1131370.65 0.1464.120 0.000173 0.53 3 1131370.65 0.1464.120 0.000173 0.53 4 1131370.65 0.1460.133 0.002133 0.53 1 1131370.65 0.1460 .13 1 1131370.65 1.10 0.003102 4 4 2.150 150 2 1131370.65 1.10 0.003102 4 4 2.150 150 3 1131370.65 1.10 0.003102 4 4 2.100 190 4 1131370.65 1.10 0.003102 4 4 2.100 190 1 1 2 1 0 1 1 2 3 1 1 2 3 1 1 2 4 0 1 1 2 3 1 1 2 5 1 2 3 5 1 2 4 5 1 3 4 5 1 3 5 1 3 4 5 1 3 5 1 3 5 1 3 5 1 3 6 5 1 4 6 5 0 9 1 2 2 5 1 3 6 6 1 4 7 207			ء ۱۰٥١	1.579		0.0 3.0		5.822										÷				
10 0 0 0 0 0 0 0 0 2 5 0			4	.290		0.0			•		HARCO	EVT DE		1011010	ID 4							
$ \begin{bmatrix} 2 & 5.0 & 0.0 \\ 5 & 15.0 & 0.0 \\ 5 & 20.0 & 0.0 \\ 2 & 1131370.65 & 0.0000.075 & 0.000675 & 0.53 \\ 2 & 1131370.65 & 0.1400.133 & 0.000172 & 0.000121 & 0.35 \\ 1 & 1131370.65 & 0.1400.133 & 0.0002113 & 0.35 \\ 1 & 1131370.65 & 0.1600.133 & 0.0002123 & 0.002 \\ 2 & 1131370.65 & 110 & 0.003102 & 4 & 4 & 2.150 & 150 \\ 2 & 1131370.65 & 110 & 0.003102 & 4 & 4 & 2.150 & 150 \\ 1 & 131370.55 & 110 & 0.003102 & 4 & 4 & 2.200 & 200 \\ 1 & 1 & 2 & 1 & 0 & 0.003102$			ાં		0.0		0.0	, ,	U		- HARLU	CALL DC		RUCIU								
$ \begin{bmatrix} 1 & 15 & 0 & 0 & 0 \\ 2 & 20 & 0 & 0 & 0 & 0 \\ 1 & 1131370 & 5 & 0 & 000 & 075 & 0 & 000675 & 0.53 \\ 2 & 1131370 & 5 & 0.1424 & 120 & 0 & 0007121 & 0.53 \\ 3 & 1131370 & 5 & 0.1600 & 133 & 0 & 0002133 & 0.53 \\ 1 & 131370 & 5 & 0.1600 & 133 & 0 & 0002133 & 0.53 \\ 1 & 131370 & 5 & 110 & 0 & 0.003102 & 4 & 4 & 2 & 150 & 150 \\ 2 & 1131370 & 5 & 110 & 0 & 0.003102 & 4 & 4 & 2 & 150 & 150 \\ 1 & 131370 & 5 & 110 & 0 & 0.003102 & 4 & 4 & 2 & 150 & 150 \\ 1 & 131370 & 5 & 110 & 0 & 0.003102 & 4 & 4 & 2 & 200 & 200 \\ 1 & 1 & 2 & 1 & 0 & 0 & 0.003102 & 4 & 4 & 2 & 200 & 200 \\ 1 & 1 & 2 & 1 & 0 & 0 & 0.003102 & 4 & 4 & 2 & 200 & 200 \\ 1 & 1 & 2 & 1 & 0 & 0 & 0.003102 & 4 & 4 & 2 & 200 & 200 \\ 1 & 1 & 2 & 1 & 0 & 0 & 0.003102 & 4 & 4 & 2 & 200 & 200 \\ 1 & 1 & 2 & 1 & 0 & 0 & 0.003102 & 4 & 4 & 2 & 200 & 200 \\ 1 & 1 & 2 & 1 & 0 & 0 & 0.003102 & 4 & 4 & 2 & 200 & 200 \\ 1 & 1 & 2 & 1 & 0 & 0 & 0.003102 & 4 & 4 & 2 & 200 & 200 \\ 1 & 1 & 2 & 1 & 0 & 0 & 0.003102 & 4 & 4 & 2 & 200 & 200 \\ 1 & 1 & 2 & 1 & 0 & 0 & 0.003102 & 4 & 4 & 2 & 200 & 200 \\ 1 & 1 & 2 & 1 & 0 & 0 & 0.003102 & 4 & 4 & 2 & 200 & 200 \\ 1 & 1 & 2 & 1 & 0 & 0 & 0.003102 & 4 & 4 & 2 & 200 & 200 \\ 1 & 1 & 2 & 1 & 0 & 0 & 0.003102 & 4 & 4 & 2 & 200 & 200 \\ 1 & 1 & 2 & 1 & 0 & 0 & 0.003102 & 4 & 4 & 2 & 200 & 200 \\ 1 & 1 & 2 & 1 & 0 & 0 & 0.003102 & 4 & 4 & 2 & 200 & 200 \\ 1 & 1 & 2 & 1 & 0 & 0 & 0.003102 & 4 & 4 & 2 & 200 & 200 \\ 1 & 1 & 2 & 1 & 0 & 0 & 0.003102 & 0 & 0 & 0 & 0.003102 & 0 & 0 & 0 & 0 & 0 \\ 2 & 2 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$			23		5.0		0.0															
$ \begin{bmatrix} 1 & 0.53 \\ 2 & 1131370.55 \\ 2 & 1131370.55 \\ 3 & 1131370.55 \\ 4 & 1131370.55 \\ 5 & 1131370.55 \\ 1131370.55 \\ 1131370.55 \\ 1131370.55 \\ 1131370.55 \\ 110 \\ 2 & 1131370.55 \\ 110 \\ 1 & 12 \\ 1 & 12 \\ 1 & 12 \\ 1 & 12 \\ 2 & 13 \\ 1 & 12 \\ 2 & 13 \\ 1 & 12 \\ 2 & 13 \\ 1 & 12 \\ 2 & 13 \\ 1 & 12 \\ 2 & 1 \\ 1 & 12 \\ 1 & 12 \\ 1 & 12 \\ 1 & $			4		15.0		0.0															
$ \begin{array}{c} 2 & 1131370.65 & 0.1225 & 102 & 0.001251 & 0.53 \\ \hline 1131370.65 & 0.1640 & 133 & 0.002113 & 0.53 \\ \hline 1131370.65 & 0.1600 & 130 & 0.002102 & 4 & 4 & 2.150 & 150 \\ \hline 1131370.65 & 110 & 0.003102 & 4 & 4 & 2.150 & 150 \\ \hline 1131370.65 & 110 & 0.003102 & 4 & 4 & 2.200 & 200 \\ \hline 1 & 1 & 2 & 1 & 0 & 1 \\ \hline 1 & 2 & 1 & 0 & 1 & 0 \\ \hline 1 & 1 & 2 & 5 & 1 & 0 \\ \hline 1 & 1 & 2 & 5 & 1 & 0 \\ \hline 2 & 2 & 3 & 1 & 0 & 0.003102 & 4 & 4 & 2.200 & 200 \\ \hline 1 & 1 & 2 & 2 & 1 & 0 & 0.003102 & 4 & 4 & 2.200 & 200 \\ \hline 1 & 1 & 2 & 2 & 1 & 0 & 0.003102 & 4 & 4 & 2.200 & 200 \\ \hline 1 & 1 & 2 & 4 & 1 & 0 & 0.003102 & 4 & 4 & 2.200 & 200 \\ \hline 1 & 1 & 2 & 4 & 1 & 0 & 0.003102 & 4 & 4 & 2.200 & 200 \\ \hline 1 & 1 & 2 & 4 & 1 & 0 & 0.003102 & 4 & 4 & 2.200 & 200 \\ \hline 1 & 1 & 2 & 4 & 1 & 0 & 0.003102 & 4 & 4 & 2.200 & 200 \\ \hline 1 & 1 & 2 & 2 & 3 & 1 & 0 & 0.003102 & 4 & 4 & 2.200 & 200 \\ \hline 1 & 1 & 2 & 2 & 3 & 1 & 0 & 0.003102 & 4 & 4 & 2.200 & 200 \\ \hline 1 & 1 & 2 & 2 & 3 & 1 & 0 & 0.003102 & 4 & 4 & 2.200 & 200 \\ \hline 1 & 1 & 2 & 2 & 3 & 1 & 0 & 0.003102 & 4 & 4 & 2.200 & 200 \\ \hline 1 & 1 & 2 & 2 & 3 & 1 & 0 & 0.003102 & 4 & 4 & 2.200 & 200 \\ \hline 1 & 1 & 2 & 2 & 3 & 1 & 0 & 0.003102 & 4 & 4 & 2.200 & 200 \\ \hline 1 & 1 & 2 & 2 & 3 & 1 & 0 & 0.003102 & 4 & 4 & 2.200 & 200 \\ \hline 1 & 1 & 2 & 2 & 3 & 1 & 0 & 0.003102 & 4 & 4 & 2.200 & 200 \\ \hline 1 & 1 & 2 & 2 & 3 & 1 & 0 & 0.003102 & 4 & 4 & 2.200 & 200 \\ \hline 1 & 1 & 2 & 2 & 3 & 1 & 0 & 0.003102 & 4 & 4 & 2 & 2.000 & 0.003102 & 4 & 4 & 2 & 2.000 & 0.003102 & 4 & 4 & 2 & 2.000 & 0.003102 & 4 & 4 & 2 & 2.000 & 0.003102 & 4 & 4 & 2 & 2.000 & 0.003102 & 4 & 4 & 2 & 2.000 & 0.003102 & 4 & 4 & 2 & 2.000 & 0.003102 & 4 & 4 & 2 & 2.000 & 0.003102 & 4 & 4 & 2 & 2.000 & 0.003102 & 4 & 4 & 2 & 2.000 & 0.003102 & 4 & 4 & 2 & 2.000 & 0.003102 & 4 & 4 & 2 & 2.000 & 0.003102 & 4 & 4 & 2 & 2.000 & 0.003102 & 4 & 4 & 2 & 2.000 & 0.003102 & 4 & 4 & 2 & 2.000 & 0.003102 & 4 & 4 & 2 & 2.000 & 0.003102 & 4 & 4 & 2 & 2.000 & 0.003102 & 4 & 4 & 2 & 2.000 & 0.003102 & 4 & 4 & 2 & 2.000 & 0.003102 & 0 & 0.003102 & 0 & 0.003102 & 0 & 0.003102 & 0 & 0.003102 &$			1		11313	70.85	0.0	.0900	.075			0.000675			0,53							
4 1131370.65 0.1600 133 0.002133 0.53 1 1131370.65 110 0.003102 4 4 2.150 150 2 1131370.65 110 0.003102 4 4 2.175 175 3 1131370.65 110 0.003102 4 4 2.175 175 3 1131370.65 110 0.003102 4 4 2.175 175 3 1131370.65 110 0.003102 4 4 2.175 175 1 131370.65 110 0.003102 4 4 2.000 200 1 1 2 1 1 2 1 1 2 2 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 3 1 2 2 3 1 1 2 2 3 1 2 2 3 1 3 1			23		11313 11313	70.85	0	. 1225	.102			0.001251			0.53							
3 1131370.85 110 0.003102 4 4 2 155 2 1131370.85 110 0.003102 4 4 2 175 3 1131370.85 110 0.003102 4 4 2 175 4 1131370.85 110 0.003102 4 4 2 175 4 1131370.85 110 0.003102 4 4 2 100 1 1 2 1 0 0.003102 4 4 2 200 1 1 2 1 0 0.003102 4 4 2 200 1 1 2 1 0 0.003102 4 4 2 200 1 1 2 1 0 0.003102 4 4 2 200 2 2 3 1 0 0.003102 4 4 2 200 2 2 3 1 0 0 0.003102 4 1			4		11313	70.65	0	. 1600	.133			0.002133			0.53							
2 1131370.85 .110 0.003102 4 4 2 .175 3 1131370.85 .110 0.003102 4 4 2 .200 4 1131370.85 .110 0.003102 4 4 2 .200 1 1 2 1 0.003102 4 4 2 .200 1 1 2 1 0.003102 4 4 2 .200 1 1 2 1 0.003102 4 4 2 .200 1 1 2 1 0.003102 4 4 2 .200 1 1 2 1 0.003102 4 4 2 .200 2 3 1 0 .201 .201 .201 .201 2 3 1 0 .201 .201 .201 .201 3 3 4 1 .201 .201 .201 .201			ĩ		11313	70,85	.110			0.003102	2 4	4 2	. 150	. 150	0.33							
4 1131370.65 10 0.003102 4 4 2.200.200 1 2 1 0.003102 4 4 2.200.200 1 2 1 0 0.003102 4 4 2.200.200 1 2 1 0 0.003102 4 4 2.200.200 1 2 2 1 0 0.003102 4 4 2.200.200 1 2 2 1 0 0.003102 4 4 2.200.200 1 2 2 1 0 0.003102 4 4 2.200.200 2 2 3 1 0 0.003102 4 4 2.200.200 2 2 3 1 0 0.003102 4 4 2.200.200 2 2 3 4 1 0.003102 4 4 2.200.200 3 3 4 1 0 0.003102 4 4 2.200.200 3 3 4 <td< td=""><td></td><td></td><td>23</td><td></td><td>11313 11313</td><td>70.85</td><td>.110</td><td></td><td></td><td>0.003102</td><td>4</td><td>4 2</td><td>.175</td><td>.175</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			23		11313 11313	70.85	.110			0.003102	4	4 2	.175	.175								
1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 3 1 2 3 1 2 2 3 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 4 3 3 4 3 3 4 3 3 4 5 1 5 1 2 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1			4		11313	70.85	.110			0.003102	4	4 2	.200	.200					19.19			
1 2 2 1 2 3 2 3 1 2 3 1 2 2 3 2 3 1 2 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 1 3 1 2 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1			៍	1	2	1	0			0,003102	•			.200							a firi	
1 1 2 3 1 1 2 5 1 2 2 3 1 0 2 2 3 2 1 2 2 3 2 1 2 2 3 3 1 3 3 4 1 1 1 2 5 1 1 2 5 1 1 2 5 1 2 3 5 1 3 1 5 1 3 2 5 1 3 3 5 1 3 4 5 1 3 5 1 3 4 5 1 3 5 1 3 4 5 1 3 5 1			1	- 1	. 2	2	1										21					
1 1 2 3 1 2 2 3 1 0 2 2 3 4 1 3 3 4 1 0 3 3 4 1 0 3 3 4 1 0 3 3 4 1 3 3 4 1 3 3 4 1 3 3 4 1 1 3 1 1 1 3 1 1 1 3 1 1 2 3 1 1 2 3 1 1 3 3 1 1 2 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 <td< td=""><td></td><td></td><td>1</td><td>1</td><td>. 2</td><td>3</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			1	1	. 2	3	1															
2 2 3 1 0 2 2 3 2 1 2 2 3 4 1 3 3 4 1 0 3 3 4 1 0 3 3 4 1 0 3 3 4 1 0 3 3 4 1 0 3 3 4 1 0 3 3 4 1 0 3 3 4 1 0 3 3 4 1 0 1 5 1 1 5 1 5 1 1 5 1 5 1 2 5 1 2 5 1 3 3 5 1 2 5 1 3 3 5 1 3 3 5 1 3 3 5 3 5			· į	i	ž	5	1											bek i		22		
2 2 3 2 1 2 2 3 4 3 3 4 1 0 3 3 4 1 0 3 3 4 2 1 3 4 2 1 3 4 2 1 3 5 1 3			2	2	- 3	- 1	0															
2 2 3 5 4 1 0 3 3 4 1 0 3 3 4 2 0 3 3 4 2 0 3 3 4 2 1 3 5 1 2 4 5 1 2 4 5 1 2 4 5 1 3 4 5 1 4 4 5 1			2	2	3	2	1															
2 2 3 3 1 0 3 3 4 1 0 3 3 4 2 1 3 3 4 3 1 3 3 4 4 1 3 3 4 4 1 3 3 4 4 1 3 3 4 5 1 1 1 5 1 1 2 5 1 1 3 5 1 1 4 5 1 2 2 5 1 2 3 5 1 2 4 5 1 2 3 5 1 3 4 5 1 3 5 1 1 4 5 1 2 2 5 1 2 3 5 1 3 1 5 1 3 2 5 1 3 3 4 5 1 2 3 5 1 3 1 5 1 3 2 5 1 3 3 4 5 1 2 3 5 1 3 1 5 1 3 2 5 1 3 3 4 5 1 3 2 5 1 3 3 4 5 1 3 4 5 1 3 5 1 3 4 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 4 5 1 3 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1			2	ž	3	4	i											6 A. S. S.				
3 3 4 1 3 3 4 1 3 3 4 1 3 3 4 1 3 3 4 1 3 3 4 1 3 3 4 1 1 5 1 1 5 1 1 5 1 2 5 1 2 5 1 2 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 4 1 1 4			3	3	. 4	1	0										100			°.,		
3 3 4 5 1 3 5 1 1 3 5 1 2 5 1 3 3 5 3 3 5 3 3 5 4 1 3 5 4 1 3 5 4 1 207			3	3	4	1	0					منظر برد الم		ار رو د محت ما متار	ad in a An is se		in in the second se				itereta.	
3 3 4 5 1 1 5 5 1 1 5 5 1 2 1 5 1 2 2 5 1 2 3 5 1 2 3 5 1 2 3 5 1 3 1 5 1 3 2 5 1 3 3 5 1 3 4 5 1 3 5 5 1 3 4 5 1 3 4 5 1 3 4 5 1 3 4 5 1 3 5 1 3 4 5 1 3 4 5 1 3 5 1 3 4 5 1 3 4 5 1 3 5 1 3 5 1 3 4 5 1 3 5 1 3 4 5 1 3 5 1 3 5 1 3 4 5 1 3	· · · ·		3	3	4	3	i						1.11	, .	Sar,	- 2 y	192		6 A (A)			
4 4 5 0 9 1 2 5 1 1 3 5 1 2 3 5 1 2 2 5 1 2 2 5 1 2 2 5 1 2 2 5 1 2 3 5 1 2 3 5 1 2 4 5 1 3 1 5 1 3 2 5 1 3 3 5 1 3 3 5 1 3 3 5 1 3 4 5 1 3 5 1 3 5 1 3 5 1 3 2 5 1 3 3 5 1 3 2 5 1 3 3 5 1 3 3 5 1 3 5 1 5 1 3 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1			3	. 3	4	Š	1									14 j.						
1 2 5 1 3 5 1 2 1 5 1 2 2 5 1 2 2 5 1 2 2 5 1 2 4 5 1 3 1 5 1 3 2 5 1 3 3 5 1 3 4 5			- 4	4	. 5	0	9			1.00				e de			197 7 8		an an an Ar			
2 1 5 1 2 2 5 1 2 2 5 1 2 4 5 1 3 1 5 1 3 2 5 5 1 3 3 5 1 3 3 5 1 3 4 5 1 3 3 5 1 3 4 5 1 3 4 5 1 3 3 5 1 3 4 5 1 3 4 5 1 3 5 1 3 5 1 3 4 5 1 3 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1			1	. 2	5	. 1										×1.,						1
1 5 5 1 2 2 5 1 2 3 5 1 2 4 5 1 2 4 5 1 3 1 5 1 3 2 5 1 3 3 5 1 3 4 5 1 4 5 1 3 4 5 1 4 5 1 3 4 5 1 4 5 1			i	4	្ទ័	- i															n an the and the National States	ć
2 2 5 1 2 4 5 1 3 5 5 1 3 1 5 1 3 2 5 5 1 4 1 5 1 3 2 5 1 4 1 5 1			2	. 5	5	- 1											1.3			101		
	2		2	2	S	1					1	en e			18 8 0 1 19 1							
2 5 5 1 3 1 5 1 3 2 5 1 3 3 5 1 3 4 5 1 3 5 5 1 4 1 5 3			, ž	् 4	5	_ i																
3 2 5 1 3 3 5 1 3 4 5 1 3 5 5 1 4 1 5 3			2	5	5	- 1															ega de la Maria. A face de la Com	
			3	z	5	1					1.1											
3 5 5 1 207			3	. 4	5	. i					11											
207			34	5	5	1									la Maria							j
207	del le g		·									1997) 1997	el sudi Li		areat r	7. 7						
											2	07		÷.,						S.		
an de la companya de En la companya de la c											7 			A.d.	ar e la gegene		enert.		an a		s special	ŝ

APÉNDICE B _

5 1 4 9 0.0 0.0 0.0 EJE 1 00100 90.0 0.05 9.81 0.1 0.4 0.4

.

4 4. 4 5

4 5 0 ī i

3 0

0.0

0.6

3.9

0

2 5 1 3 5 1 4 5 1

RCDF 87

ARCHIVO DE DATOS DEL MARCO CON DISIPADORES (LAS ÁREAS DE LAS DIAGONALES SON LAS INICIALES).

10	1	1	0	7	10	1 0	0000		9.81	MARC	:0 0	ON D1/	GONA	LES		
N-10			3.0	4	.057						lini	cial i	(=0)			
29.	886		0.0													
N+09			3.0	5	.533											
36.	686		0.0													
80-N			3.0	5	.611	•										
33.	668		0.0													
N-07			3.0	5	.668											
29.	335		0.0	-												
N-06			3.0	5	.732											
25.	338		0.0	-												
N+05			3.0	,	.776											
21.	277		0.0		-											
N-04			5.0		• / / /											
	090		0.0													
N-US			3.0		.022										1.1	
. 14.	003		0.0		821											
N-02			3.0		.044											
	314		3.0		477											
H-01	200		3.0	· · ·	.014											
	10		0.0	5		•	•	20	MARCO	EVT. 1	่าค่า					
	10	0.0	-	0.0		•	Ŷ							~~~		
		5.0		0.0												
3		10.0		0.0												
. 4		15.0		0.0												
5		20.0		0.0												
- <u>1</u> -		11313	10.85	0.	0900	.075	.075	0.00	0999	0.000	675	0,00	0675	0.5	5	
2		11313	70.85	· 0.	1225	.102	.102	0.00	1851	0,001	251	0,00	1251	0.5	5	
. 3		11313	70.85	0.	1444	·120	120	0,00	2572	0.001	738	0.00	1738	0.5	5	
4		113137	70.85	٥.	1600	.133	.133	0.00	3157	0,002	133	0,00	2133	0.5	5	
5		11313	10.85	. 0.	1600	.133	.133	0.00	3157	0.002	133	0.00	2133	0.5	5	
1		11313	70.85	.110	0.00	1940	0.00	3102	- 4	4	2	.150	. 150			
2		11313	70.85	.110	0.00	1940	0.00	3102	- 4	4 -	2	.175	.175			
3		11313	70.85	.110	0.00	1940	0.00	3102	. 4	4	2	.190	.190			
- 4		11313	70.85	.110	0.00	1940	0.00	3102	4	. 4	2	.200	.200			
5		11313	70.85	.110	0.00	1940	0.00	3102	4	4	2	. 200	.200			
1	1	2	1	0												
1.1	1	- 2	. 1	0												

APÉNDICE B 0.0 0.0 9.81 00 0 1 1 3 0 0.0 9.81 0.0 EJE 1 90.0 0.05 00100 RCDF 87 0.0 0.1 3.9 0.4 0

ARCHIVO DE DATOS PARA DISEÑAR EL MARCO CONVENCIONAL

	10		۰.	,		1 0000		Icetourtine.	TRIDINCHE	10441					n a		2012 2012	
	H-10	•	3.0	- i,	6 226	0.0	7	5 7.5										
	20 890	<u>د</u>	0.0		7 5	7 5											a ngia	
	8-09	-	3.0	2	2.131	0.0	7.	5 7.5										
	36.68/	5	0.0	-	7.5	7.5							$\gamma_{0} < \gamma_{1}$				1. J. J.	
	N-08		3.0	2	2.442	0.0	7.	5 7.5										
	33.060	3	0.0		7.5	7.5										د الكلي		٠.,
с. н. н	N-07		3.0	2	2.752	0.0	7.	.5 7.5										
	29.335	5	0.0		7.5	7.5							- 1	e 17 -				
	N-06		3.0	23	2.928	0.0	7.	5 7.5					1					
	25.338	3	0.0		7.5	7.5											e 1514	
	N-05		3.0	23	3,103	0.0	7.	5 7.5										
	21.277	1	0.0		7.5	7.5					+							
	N-04		3.0	2	3.196	0.0	. 7.	.5 7.5							19			
	17.090)	0.0		7.5	7.5												
	H-03		3.0	2	3,289	0.0	7.	.5 7.5										
	12.869	>	0.0		7.5	7.5										1.1		
	¥-02		.3.0	2	3.289	0.0	7.	.5 7.5										
	8.575	,	0.0		7.5	7.5											19.54	
	N-01		3.0	23	3.289	0.0	7.	.5 7.5							îr			
,	4,290	D	0,0		7.5	7.5							1.1.1		200	1.202.02		٠.,
	1 10	20	28	5	5	12 0	0	ESTRUCTURA	CONVENCIO	HAL								
	1	0.0		0.0														
	2	5.0		0.0														• 1
	. 3	10.0		0.0								St. 1		100				
	-	15.0		0.0									127.2					
	2	20.0		0.0									- N. M		- 6 - 6 - 6 		i și e cu	
in states	· · • • • • • • •	. 0.0		5.0							and the second			1.11		411-41	1997 g 1	
		5.0		2.0												200	12.000	÷.,
	8	10.0		5.0								100				¹⁹ 66	Aleren e	-
		13.0		5.0				1. • 1 ·									11417	
	10	20.0		10 0								1.1				2019-A		÷
		e 0		10.0								16.274				영제 문제	가가요?	
	13	10.0		10.0								- 1 ¹						
	14	15 0		10.0					. E. B.				1.1		1. A.			
	15	20.0		10 0														
	16	0.0		15.0					1. A. S. 1.									
	17	5.0		15.0				1 - A - A - A - A - A - A - A - A - A -										
	18	10.0		15.0														
	19	15.0		15.0												1.1.1	19.1	
	20	20.0		15.0									1.1					
	1	11313	10.85		. 1764	147 .147		0.002593	0.002593	0.75							110	
	2.	11313	10.85		.2500	208 .208		0.005208	0.005208	0.75						1.1	n Shugh	
	3	113137	0.85		.2916	243 .243		0.007086	0.007086	0.75			1.1			2.24		
												£				1.11		
												1.1		1.20		9 B. S. M.		
								210								39 C.A.	e to sefe ante e	
								210					1. J.					
												an Contacta Tanàna amin'ny fisiana		aan di C		energi.	an ging	2
										÷ .								

					antana an
			2-7 <u></u> 22-3		APENDICE B
5	1131370.85 .3136 .261 1131370.85 .3136 .261	.261	0.008195 0.008195	0.008195 0.75	
- 1	1131370.85 .219 1131370.85 .219	0.012305 4	4 2 4 2	.210 .210	
3	1131370.85 .219 1131370.85 .219	0.012305 4	4 2	.270 .270 .280 .280	
5	1131370.85 .219 0 0.0 0.0	0.012305 4	4 Z 1.02984	.280 .280	
2	0 0.0 0.0	0.0 0.0	1,20953		
3 S.	0 0.0 0.0	0.0 0.0	1.91190		
6	0 0.0 0.0 0 0.0 0.0	0.0 0.0	.39063		
8 9	0 0.0 0.0	0.0 0.0	. 10938		
10	0 0.0 0.0	0.0 0.0	.28125		
12	0 0.0 0.0	9	.56250		
1	1 2 2 1 2 6	10			
1	1 2 4 1 2 6	10			
2	2 3 1 0 1 5	9			
2		10			
	2 3 4 1 2 6	10			
3	341015	9	1997 - 1997 -		
3	342126	10 10			
3	344126	10			
4	4 5 0 9 0 0	0			이것, 이상 공부 등 가장 공부를
5	671048 672148	12			
	6 7 3 1 4 8 6 7 4 1 4 8	12 12			
5 6	6 7 5 1 4 8 7 8 1 0 3 7	12 11			
6 6	7 8 1 0 4 8 7 8 2 1 4 8	12 12			
6 6	7 8 3 1 4 8 7 8 4 1 4 8	12 12	r i kraga A		
6 7	7 8 5 1 4 8 8 9 1 0 3 7	12 11			
77	8 9 1 0 4 8 8 9 2 1 4 8	12 12		ji ta'ili. Alava Alaysidan	
7 7	8 9 3 1 4 8 8 9 4 1 4 8	12 12			3 등 21 - 21 20 20 - 20 - 20 - 20 - 20 - 20
	8 9 5 1 4 8 9 10 0 9 0 0	12 0			2011년 2012년 2012년 2017년 2017년 2017년 2017년 2017
91	11 12 1 0 3 7	11			
			211		
			2 A A A A A A A A A A A A A A A A A A A		

	and the second
n an Angel Ality and a degree layer and a solution of the second second second second second second second seco	
	APÉNDICE B
9 11 12 1 0 4	8 12
9 11 12 2 1 4 9 11 12 3 1 4	8 12
9 11 12 4 1 4 9 11 12 5 1 4	8 12
10 12 13 1 0 3 10 12 13 1 0 4	7 11 8 12
10 12 13 2 5 4 10 12 13 3 1 4	8 12 8 12
10 12 13 4 1 4 10 12 13 5 1 4	 A distribution of the second se
11 13 14 1 0 3 11 13 14 1 0 4	7 11 8 12
11 13 14 2 1 4 11 13 14 3 1 4	8 12 8 12
11 13 14 4 1 4 11 13 14 5 1 4	8 12
	 Construction of the state of th
13 16 17 1 U 2 13 16 17 2 1 2	10 10 Construction of the second sec second second sec
13 16 17 4 1 2	
13 16 17 5 1 2 14 17 18 1 0 1 14 17 18 1 0 2	 O IV 12 Constraints of the second seco
14 17 18 2 1 2 14 17 18 3 1 2	 We have a set of the set of the
14 17 18 4 1 2 14 17 18 5 1 2	6 10 6 10
15 16 19 1 0 1 15 18 19 1 D 2	5 7 6 10
15 18 19 2 1 2 15 18 19 3 1 2	6 10 6 18
15 18 19 4 1 2 15 18 19 5 1 2	6 10 6 10
16 19 20 0 9 0 17 1 6 1 0 1	 On the second sec
17 1 6 1 0 2 17 1 6 2 1 2	6 10 6 10
17 1 6 3 1 2 17 1 6 4 1 2	6 10 6 10
	 4 10 mm 5 9
18 6 11 1 0 2 18 6 11 2 1 2	6 10 6 10
18 6 11 3 1 2 18 6 11 4 1 2	6 10 6 10
18 6 11 5 1 2 19 11 16 1 0 1	 8 × 10 9 × 10 × 10 × 10 × 10 × 10 × 10 × 10 × 1
19 11 16 2 1 2	
17 11 10 3 1 2 19 11 16 4 1 2 10 11 14 5 1 2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
20 2 7 2 1 4	${f a}$ (1.) and (1.)
a a transforma a construction de la construction de la construction de la construction de la construction de la A construction de la construction de	

16	3	20 1						
16	4	20 1						
16	5	20 1						
17	1	20 1						
17	2	20 1						
17	3	20 1						
17	4	20 1						
17	5	20 1						
18	1	20 1				11 - 17 -	1111	
18	2	20 1						1
18	3	20 1		· .				
18	· 4	20 1						
18	5	20 1						
19	1	20 1						
19	z	20 1						
- 19	3	20 1						
19	4	20 1						
19	5	20 1		· · ·				ang sanang saring
20	0	19 9						
1	0	0.0	0.0	0.0 ESTR	. COMPLETA			
3	D	9.81	90.0 0.05	00100	Q=1.5		RCOF 87	
	0.0	0,0667						
	0,6	0.2667						
	3.9	0.2667						
	1.4	1.4						
	1.1	0.0	1.1					
	0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	1.1	
	0,0	0.0	0.0	1.1				
0								

APENDICE # -

ARCHIVOS DE DATOS PARA DISEÑAR EL MARCO CON DISIPADORES.

a) ARCHIVO DE LA ESTRUCTURA CON DISIPADORES.

	10	1	1	2	7	10	1 00	00	9.81ES	TRUCTURA	TRIDIKENSIONAL
1	N-10		3.	0	16.	226		9,0	7.5	7.5	· · · · · · · · · · · · · · · · · · ·
11 A. 1997	59.7	73	Ó,	0		7.5	7	.5			
	N-09		3.	0	22.	131	(0.0	7.5	7.5	
	73.3	372	0.	0		7.5	7	.5			
	N-08		3.	0	22.	44Z	c	0.0	7.5	7.5	
	66.	135	0.	0		7.5	7	.5			
	N-07		3.	0	-22.	752		0.0	7.5	7.5	
	58.6	569	0.	0		7.5	7	1.5			
	N-06		3.	0	22.	928	ć	0.6	7.5	7.5	
	50.4	576	0.	0		7.5	2	.5			
	8-05		3	0	23.	103	ć	0.0	7.5	7.5	
	42.5	553	0.	0		7.5	1	1.5			
	H-04		3.	0	23.	196	Ċ	0.0	7.5	7.5	
	34.	160	0.	.0		7.5	1	7.5			
	H-03		3.	0	23.	289	Ċ	0.0	7.5	7.5	
	25.	737	0.	0		7.5		7.5			
	N-02		3	0	23.	289	, i	0.0	7.5	7.5	
	17.	158	0.	0		7.5	-	7.5			
	N-01		3	.0	23.	289	i i	0.0	7.5	7.5	
	8.9	579	0.	0		7.5		7.5			
and so and the	entaño e a										i lan inina
									2	15	

	and the second second second	and the second
		APENDICE I
1 10 20	8 5 5 12 0 160 1	ESTRUCTURA CON DIAGONALES
1 0.0	0.0	
3 10.0	0.0	
4 15.0	0.0	
6 0.0	5.0	
7 5.0 8 10.0	5.0	
9 15.0	5.0	
10 20.0	10.0	(a) The second se The second s Second second s Second second s Second second s Second second se
12 5.0	10.0	
14 15.0	10.0	
15 20.0	10.0	
17 5.0	15.0	
18 10.0 19 15.0	15.0	
20 20.0	15.0	
1 1151370. 2 1131370.	85 0.0900 .075 .075 85 0.1225 .102 .102	0.000675 0.000675 0.53 0.001251 0.001251 0.53
3 1131370.	5 0.1444 .120 .120	0.001738 0.001738 0.53
4 11313/0. 5 1131370.	85 0.1600 .133 .133 85 0.1600 .133 .133	0.002133 0.002133 0.53
1 1131370.	85 .110 0.003102	4 4 2 .150 .150
3 1131370.	B5 .110 0.003102	4 4 2 .190 .190
4 1131370.	85 .110 0.003102	4 4 2.200.200
	.0 0.0 0.0 (0.0 1.02984
200	.0 0.0 0.0 0	0.0 1.20953
4 0 0	.0 0.0 0.0	0.0 1.91190
500	.0 0.0 0.0 0	0.0 .15625 0.0 .39063
7 0 0	.0 0.0 0.0	0.0 .31250
9 0 0	.0 0.0 0.0	0.0 .10938
10 0 0	.0 0.0 0.0	0.0 .28125
12 0 0	.0 0.0 0.0	0.0 .56250
1 1 2.	1 0 1 5 9	
1 1 2	2 1 2 6 10	
1 1 2	3 1 2 6 10	
	5 1 2 6 10	
223	1 0 1 5 9	
2 2 3	2 1 2 6 10	
2 2 3	4 1 2 6 10	
2 2 3	5 1 2 6 10	그는 글에게 이 것은 물건에 가장 성격적인.
3 3 4	1 0 2 6 10	그는 것은 것은 것을 수 있는 것은 그는 것을 가셨다.
3 3 4	2 1 2 6 10	
		이는 것 같은 것은 것이 모두 것이 있습니다.
		216

									AP.	ÉNDICE B	
26	4 9	1 0	2	6 10							
20	4 9	3 1	- 5	6 10							
26	4 9	4 1	2	6 10							
26	4 9	5 1	2	6 10							
27	9 14	1 0	1	5 9							
27	0 14	2 1	2	6 10							
27	9 14	3.1	2	6 10							
27	9 14	4 1	z	6 10							
27	9 14	5 1	2	6 10							
20	14 19	1 0	,	6 10							al di Geografia
28	14 19	2 1	2	6 10						1.4	
28	14 19	3 1	2	6 10							
- 28	14 19	4 1	2	6 10							
20	1 5	1 1	4	່ວ່າບ							
i	2 5	1					A sector	an a			
1	.3 5	.1									
· 1	4 5	1								are de colé	
1		1								1997 - 1998 1997 - 1998	
2	2 5	1									
. 2	3 5	i									
2	4 5	1									6 - AS
2	5 5	1									
·	2 5	1									
3	3 5	i						1.1			1996 J.
3	4 5	i									
an 11 a 3 -	5 5	1						nin Nin Art			1.00
. 4.	1 5	1					$= \{m_i \in \{-, -\}\}$	$\phi \in [0, \frac{1}{2}]$			
2	2 3	-									
	4 5	- i								1. S.	
4	55	11.1									
2 5 2	0 4	9									
	1 10	. 1					1.4				
instructure en la Par	3 10	-		en esser	en e	ali in the state of the state o	i i i i i i i i i i i i i i i i i i i			أرائل مراجع والم	
š	4 10	i								- <u>Sere</u> taria	
6	5 10	1									
7	1 10	1						1 - E - E - E			
	2 10	1					1.14.14	1.1			
÷	6 10	1						i ster	11,77,127,14		
7	5 10	i								1 - Colored	
8	1 10	1						2.22			
	2 10	1						- 40° - 14	<u>-</u>	the states	
	3 10	1									
3 . S	5 10										
9	1 10	i									110
9	2 10	1.									
9	3 10	1								e de la composition d	
9	4 10	1								14-15-18-1	
	3 10										
							1. N. L.				
do ano villo					2	19					
			1.1					e estatu	والمتحركة بمراج	أبارتها غبوفيتك	dag el

	المحتور والمحتور في الأربعة المحتوجة الما المحتوجة المراجعة والمكتمة المراجع
	APÉNDICE B
10 0 9 9	
11 1 15 1 11 2 15 1	
11 3 15 1	
11 5 15 1	
12 1 15 1 12 2 15 1	and the second secon
12 3 15 1 12 4 15 1	
12 5 15 1	이 가지 않는 것 같은 것 같
13 2 15 1	and the second secon
13 4 15 1	e de la factor de la companya de la
13 5 15 1 14 1 15 1	a series de la construcción de la c La construcción de la construcción d
14 2 15 1 14 3 15 1	a star
14 4 15 1 14 5 15 1	
15 0 14 P	
16 2 20 1	
16 3 20 1 16 4 20 1	
16 5 20 1 17 1 20 1	(a) A set of a set of a set of a set of a set of a set a set of a set of a set of a set of a set of a set of
17 2 20 1 17 3 20 1	
17 4 20 1	والمتعادية والمعترية والمعترين والمنافع فلأنته والمترجع والمتعاد والمعترين والمعترين والمعترين والمتع
18 1 20 1	
18 2 20 1 18 3 20 1	na en
18 4 20 1 18 5 20 1	
19 1 20 1	
19 3 20 1	n en
19 5 20 1	
10 2 121000000.039.3289E-4	
10 3 421000000.039.3289E-4 10 7 621000000.039.3289E-4	
10 8 921000000.039.3289E-4 10 12 1121000000.039.3289E-4	
10 13 1421000000.039.3289E-4	이 아이는 것 같은 것 같은 것 같은 것 같은 것 같이 같아.
10 18 192100000.039.3289E-4	
10 11 1621000000.039.3289E-4	· · · · · · · · · · · · · · · · · · ·
10 7 221000000.039.3289E-4 10 12 1721000000.039.3289E-4	
10 8 321000000.039.3289E-4 10 13 1821000000.039.3289E-4	
10 9 421000000.039.3289E-4	이 같이 다 같이 아파는 것이 아파는 것 같은 것 같이 가지?
	an a
	220

APÉNDICE B

10	14	1921000000.039.3289E-4
9	1	221000000.017.2126E-4
9	4	321000000.017.2126E-4
9	6	721000000.017.2126E-4
9	9	821000000.017.2126E-4
9	11	1221000000.017.2126E-4
. 9	14	1321000000.017.2126E-4
. 0	16	1721000000.017.2126F-4
9	19	1821000000.017.2126E-4
ò	1	621000000.017.2126E-4
	16	1121000000.017.2126E-4
ò		771000000 017 71265-4
ó	17	1221000000 017 21265-4
	- ''	821000000 017 31245-4
ž	10	17100000 017 21265-4
		021000000.017.21202-4
		1/21000000.017.2126E-4
ž	19	142100000.017.21262-4
		22100000.011.9176E-4
		321000000.011.91766-4
	2	72100000.011.91768-4
8		821000000.011.91762-4
в	13	1221000000.011.9176E-4
8	12	1321000000.011.9176E-4
8	18	172100000.011.9176E-4
5	17	1821000000.011.9176E-4
8	6	1121000000.011.9176E-4
8	11	621000000.011.9176E-4
8	7	1221000000.011.91768-4
8	12	721000000.011.9176E-4
8	8	1321000000.011.9176E-4
8	13	821000000.011.9176E-4
8	9	142100000.011.9176E-4
8	14	92100000D.011.9176E-4
7	2	12100000.018.2273E-4
7	3	421000000.018.2273E-4
. 7	7	621000000.018.2273E-4
7.	8	921000000.018.2273E-4
7	12	1121000000.018.2273E-4
7.	13	142100000.018.2273E-4
7	17	1621000000.018.2273E-4
7	18	192100000.018.2273E-4
7	6	121000000.018.2273E-4
7	11	1621000000.018.2273E-4
7	7	221000000.018.2273E-4
7	12	1721000000.018.2273E-4
7	8	321000000.018.2273E-4
7	13	1821000000.018.2273E-4
.7	9	421000000.018.2273E-4
7	14	1921000000.018.2273F-4
6	1	221000000.020.3992E+4
6	4	321000000.020.3992E-4
6	6	721000000.020.39925-4
6	9	821000000.020.39925-4
6	11	1221000000.020.39925-4
6	14	1321000000.020.39925-4
6	16	1721000000.020.3992=-4
6	19	1821000000.020.39925-4
6	· 1	621000000.020.39925-4
	•	

. 1919 - •

an ga

APENDICE B

11	ÉNDICE	B
		~

		_					
	2	7	621000000	014.5093E+4			
	ž	13	1221000000	014.5093E-4			
	ž	12	1321000000	014.5093E-4			
	ž	18	1721000000	014.5093E-4			
	2	17	1821000000	014.5093E-4			
	2	6	1121000000	014.5093E-4			
	. 2	11	621000000	014.5093E-4			
	2	7	1221000000	014.5093E-4			
	ž	12	721000000	014.5093E-4			
	ž	6	1321000000	014.5093E-4			
	2	13	821000000	014.5093E-4			
	2	9	1421000000	014.5093E-4			
	- 5	14	921000000	014.5093E-4			
	- ī-	2	121000000	019.7622F · 4			
	1	3	421000000	019.76Z2F-4			
	i	7	621000000	019.7622F-4			
	- i	8	921000000	019.76226-4			
	- i	12	1121000000	019.7622E-4			
	1	13	1421000000	019.76225-6			
	i	17	1621000000	019 7622E-4			
1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -		18	1921000000	019.7622F+4			
	. i		121000000	019.7677F-4			
	1	11	1621000000	019.76276-4			
	÷ .		221000000	010 74225+4			
	÷	12	1721000000	010.7A77F+4			
	i	ñ	321000000	019.7627F+4			
	i	13	1821000000	019.76228+4			
1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	- i		421000000	010 76725+4			
	i	14	1921000000	019.76226-4			de la servició de la
		0	0 0	0.0	0.0 6518		
	÷	ň	9,81	90.0.0.05	00100	0=1.0	8cnf 87
	. 1	٥ň	0.1	/010 010/	00100		
		0.6	0.4				
		10	0.4				
2		0.0	0.0	0.0	0.0	0 0 0 0	0.0.0.1.1
		0.0	0.0	0.0	1 1	0.5 0.0	
		0.0	0.0	0.0			

b) ARCHIVO DE LA ESTRUCTURA SIN DISIPADORES.

	. 10	1	1 2	7 10	1 0000	9.8125	RUCTURA TRIC	IMENSIONAL
	N-10	1.1.1	3.0	16.226	0.0	7.5	7.5	
	2	9.886	0,0	7.5	7.5			
	N-09		3.0	22.131	0.0	7.5	7.5	
	3	5.686	0.0	7.5	7.5			
	N-08		3.0	22.442	0.0	7.5	7.5	
	3	5.068	0.0	7.5	7.5			
	N-07		3.0	22.752	0.0	7.5	7.5	
	2	9.335	0.0	7.5	7,5			
112.11	N-06		3.0	22.928	0.0	7.5	7.5	
	2	5.338	0.0	7.5	7.5			
	8-05		3.0	23,103	0.0	7.5	7.5	
	2	1.277	0.0	7.5	7.5			
	N-04		3.0	23.196	0.0	7.5	7.5	
	· _ 1	7.090	0,0	7.5	7.5			
	N-03	· .	3.0	23.289	0.0	7.5	7.5	
						22	3	
2000 100				مشر ومدرمان م				1. S.

												· ·		
													10000	CF 8
	-												- ALENDI	
	12	.869		0.0	. 7	r.5	7.5							
	N-02			3.0	23.2	89	0.0	7.5	7.5					
	N-01	5.5/9		3.0	23.2	289	0,0	7.5	7.5					
	4	.290		0.0	្ន	1.5	7.5							
	. 1	10	20	28	0.0	5 12	0 0	EST	RUCTURA SI	N DIAGONALES				
i de la composita de la compos	ž		5.0		0.0									
	3		10.0		0.0									
			20.0		0.0									
	6		0.0		5.0									
	7 B		5.0		5.0									100 March 12
	9		15.0		5.0									
	10		20.0		5.0									
	12		5.0		10.0									en e
	13		10.0		10.0									1 Sameria
	15		20.0		10.0									
	16		0.0		15.0									
	17		10.0		15.0									
	19		15.0		15.0									
	20		20.0	70.85	15.0	900 .075	.075		0.000675	0.000675 0	.53			
	· 2		1313	70.85	0.1	225 .102	.102		0.001251	0.001251 0	53			
	3		11313	70.85 70 85	0.1	444 .120 600 .333	.120		0.001738	0.001738 0	.53			
	- 7			10.05		600 .133	.133		0.002133	0.002133 0				
	5		11313	70.85	. 0.1				0.002135	0.002155 0	.33			
	5		11313	70.85	.110		0.003102	4	4 2	.150 .150			e disa tak	
	5		11313 11313 11313 11313 11313	70.85 70.85 70.85 70.85	.110 .110 .110		0.003102 0.003102 0.003102	444	0.002133 4 2 4 2 4 2	0.002133 0 .150 .150 .175 .175 .190 .190	.33		e diata na fa Terreta	
	51234		1313 11313 11313 11313 11313 11313	70.85	.110 .110 .110 .110 .110		0.003102 0.003102 0.003102 0.003102	4444	0.002133 4 2 4 2 4 2 4 2	0.002133 0 .150 .150 .175 .175 .190 .190 .200 .200			e shekar ta fa Ta ta ta ta	
	5123451		11313 11313 11313 11313 11313 11313	70.85 70.85 70.85 70.85 70.85 70.85 70.85	0.1 .110 .110 .110 .110 .110 .110	0.0	0.003102 0.003102 0.003102 0.003102 0.003102 0.003102	4 4 4 4 4	0.002133 4 2 4 2 4 2 4 2 4 2 4 2 1.02984	0.002133 0 .150 .150 .175 .175 .190 .190 .200 .200 .200 .200				
	51234512	0	11313 11313 11313 11313 11313 11313	70.85 70.85 70.85 70.85 70.85 70.85 70.85 0.0	0.1 .110 .110 .110 .110 .110 .110	0.0	0.003102 0.003102 0.003102 0.003102 0.003102 0.003102 0.0	4 4 4 4 4 0.0 0.0	4 2 4 2 4 2 4 2 4 2 4 2 1.02984 1.20953	0.002133 0 .150 .150 .175 .175 .190 .190 .200 .200 .200 .200	.33			
	512345123	0000	1313 11313 11313 11313 11313 11313 11313	70.85 70.85 70.85 70.85 70.85 70.85 70.85 0.0 0.0	0.1 .110 .110 .110 .110 .110 .110	0.0	0.003102 0.003102 0.003102 0.003102 0.003102 0.0 0.0 0.0 0.0	4 4 4 4 4 0.0 0.0 0.0	0.002133 4 2 4 2 4 2 4 2 1.02984 1.20953 1.55253	0.002133 0 .150 .150 .175 .175 .190 .190 .200 .200 .200 .200				
	5 1 2 3 4 5 1 2 3 4 5	0 0 0 0	1313 11313 11313 11313 11313 11313	70.85 70.85 70.85 70.85 70.85 70.85 0.0 0.0 0.0 0.0 0.0	0.1 .110 .110 .110 .110 .110	0.0 0.0 0.0 0.0 0.0	0.003102 0.003102 0.003102 0.003102 0.003102 0.003102 0.0 0.0 0.0 0.0 0.0	4 4 4 0.0 0.0 0.0 0.0 0.0	0.002133 4 2 4 2 4 2 4 2 1.02984 1.20953 1.55253 1.91190 .15625	0.002133 0 .150 .150 .175 .175 .190 .200 .200 .200				
	5 1 2 3 4 5 1 2 3 4 5 6	000000000000000000000000000000000000000	1313 11313 11313 11313 11313 11313 11313	70.85 70.85 70.85 70.85 70.85 70.85 70.85 70.85 0.0 0.0 0.0 0.0 0.0	0.1 .110 .110 .110 .110 .110	0.0 0.0 0.0 0.0 0.0 0.0	0.003102 0.003102 0.003102 0.003102 0.003102 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4 4 4 0.0 0.0 0.0 0.0 0.0	0.002133 4 2 4 2 4 2 4 2 4 2 1.02984 1.20953 1.55253 1.91190 .15625 .39063	0.002133 0 .150 .150 .170 .150 .175 .175 .190 .190 .200 .200 .200 .200				
	5 1 2 3 4 5 1 2 3 4 5 6 7 8	000000000000000000000000000000000000000	1313 11313 11313 11313 11313 11313	70.85 70.85 70.85 70.85 70.85 70.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.1 .110 .110 .110 .110 .110		0.003102 0.003102 0.003102 0.003102 0.003102 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4 4 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.002133 4 2 4 2 4 2 4 2 1.02984 1.20953 1.55253 1.91190 .15625 .39063 .31250 .78125	0.002133 0 ,150 .150 ,175 .175 ,190 .190 ,200 .200 ,200 .200				
	5 1 2 3 4 5 1 2 3 4 5 6 7 8 9	0 0 0 0 0 0 0 0 0	1313 11313 11313 11313 11313 11313 11313	70.85 70.85 70.85 70.85 70.85 70.85 70.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.1 .110 .110 .110 .110 .110	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.003102 0.003102 0.003102 0.003102 0.003102 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4 4 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.002133 4 2 4 2 4 2 4 2 1.02984 1.20953 1.55253 1.91190 .15625 .39063 .31250 .78125 .10938	0.002133 0 .150 .150 .175 .175 .190 .190 .200 .200 .200 .200				
	5 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10		1313 11313 11313 11313 11313 11313 11313	70.85 70.85 70.85 70.85 70.85 70.85 70.85 70.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.1 .110 .110 .110 .110 .110	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.003102 0.003102 0.003102 0.003102 0.003102 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4 4 4 4 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.002133 4 2 4 2 4 2 4 2 1.02984 1.20953 1.9190 .15625 .39063 .31250 .78125 .10938 .20125 21875	0.02133 0 150 .150 .175 .175 .170 .190 .200 .200 .200 .200				
	5 1 2 3 4 5 1 2 3 4 5 6 7 8 9 0 111		1313 11313 11313 11313 11313 11313	70.85 70.85 70.85 70.85 70.85 70.85 70.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.3 .110 .110 .110 .110 .110	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.003102 0.003102 0.003102 0.003102 0.003102 0.003102 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4 4 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 1.02984 1.20953 1.55253 1.05125 .39063 .31250 .5625 .10938 .20125 .21875	0.02133 0 150 .150 .175 .175 .170 .190 .200 .200 .200 .200				
	5 1 2 3 4 5 1 2 3 4 5 6 7 8 9 0 11 12 12	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11313 11313 11313 11313 11313 11313 11313 11313	70.85 70.85 70.85 70.85 70.85 70.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.1 .110 .110 .110 .110 .110	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.003102 0.003102 0.003102 0.003102 0.003102 0.003102 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4 4 4 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.002133 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	0.02133 0 150 .150 .175 .175 .190 .190 .200 .200 .200 .200				
	5 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10 11 12 1 1 12 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11313 11313 11313 11313 11313 11313 11313 11313 2 2 2 2	70.85 70.85 70.85 70.85 70.85 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.1 .110 .110 .110 .110 .110 .110 .110	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.003102 0.003102 0.003102 0.003102 0.003102 0.003102 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4 4 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.002133 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	0.002133 0 150 150 175 175 190 190 .200 200				
	5 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10 11 12 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11313 11313 11313 11313 11313 11313 11313 11313 2 2 2 2	70.85 70.85 70.85 70.85 70.85 70.85 70.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.3 .110 .110 .110 .110 .110 .110 .110	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.003102 0.003102 0.003102 0.003102 0.003102 0.003102 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4 4 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.002135 4 2 4 2 4 2 4 2 4 2 4 2 4 2 1.20953 1.515253 1.09190 .15625 .39063 .31250 .78125 .21075 .56250	0.002133 0 150 150 175 157 190 190 200 200 200 200				
	5 1 2 3 4 5 5 4 5 6 7 8 9 0 11 12 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17313 11313 11313 11313 11313 11313 11313 11313 2 2 2 2	70.85 70.85 70.85 70.85 70.85 70.85 70.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.3 .110 .110 .110 .110 .110 .110 .110	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.03102 0.003102 0.003102 0.003102 0.003102 0.003102 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4 4 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.002133 4 2 4 2 4 2 4 2 4 2 4 2 4 2 1.02794 1.5525 1.0525 1.91190 .15525 .10038 .20125 .56250	0.002133 0 150 150 175 157 190 190 200 200 200 200				
	5 1 1 2 3 3 4 4 5 5 5 4 4 5 5 5 4 4 5 5 6 4 7 7 8 8 9 9 9 9 9 10 111 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17313 11313 11313 11313 11313 11313 11313 11313 11313 2 2 2 2	70.85 70.85 70.85 70.85 70.85 70.85 70.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.3 .110 .110 .110 .110 .110 .110 .110	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.03102 0.03102 0.003102 0.003102 0.03102 0.03102 0.03102 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4 4 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	6.002133 4 2 4 2 4 2 4 2 4 2 4 2 1.0284 1.50953 1.55253 1.55253 1.55253 1.5125 1.	0.002133 0 150 150 175 175 170 190 200 200 200 200				
	5 1 2 2 3 3 4 4 5 5 1 1 2 2 3 3 4 4 5 5 6 6 7 7 7 8 8 9 9 100 101 112 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17313 11313 11313 11313 11313 11313 11313 11313 11313 2 2 2 2	70.85 70.85 70.85 70.85 70.85 70.85 70.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0,110 .110 .110 .110 .110 .110 .110 .110	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.003102 0.003102 0.003102 0.003102 0.003102 0.003102 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4 4 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.002133 4 2 4 2 4 2 4 2 2 4 2 1.02984 1.55253 1.91190 .15625 .39063 .3125 .10038 .20125 .56250	0.002133 0 1150 1150 1175 1175 1190 1190 200 200 200 200				
	5 1 2 2 3 3 4 4 5 5 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 0 10 11 11 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17313 11313 11313 11313 11313 11313 11313 11313 11313 2 2 2 2	70.85 70.85 70.85 70.85 70.85 70.85 70.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0, 110 .110 .110 .110 .110 .110 .110 .110	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.003102 0.003102 0.003102 0.003102 0.003102 0.003102 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4 4 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.002133 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	0.002133 0 1150 1150 1175 1175 1190 1190 200 200 200 200				
	5 1 1 2 3 3 4 4 5 5 1 1 2 3 3 4 4 5 5 1 1 2 3 3 4 4 5 5 6 7 7 8 8 9 9 9 9 9 10 11 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11313 11313 11313 11313 11313 11313 11313 11313 11313 2 2 2 2	70.85 70.85 70.85 70.85 70.85 70.85 70.85 70.85 70.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0, 110 .110 .110 .110 .110 .110 .110 .110	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.003102 0.003102 0.003102 0.003102 0.003102 0.003102 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4 4 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	6.002133 4 2 4 2 4 2 4 2 1.02984 1.55253 1.55253 1.55253 1.55253 3.55253 3.51250 .78125 .10338 .28125 .56250	0.002133 0 150 150 175 175 176 170 200 200 200 200				
	5 1 1 2 3 3 4 4 5 5 1 1 2 2 3 3 4 4 5 5 4 5 5 4 5 6 7 7 8 8 9 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17313 11313 11313 11313 11313 11313 11313 11313 11313 11313 11313 2 2 2 2	70.85 70.85 70.85 70.85 70.85 70.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0, 110 .110 .110 .110 .110 .110 .110 .110	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	0.03102 0.03102 0.03102 0.03102 0.03102 0.03102 0.005102 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4 4 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.002133 4 2 4 2 4 2 4 2 1.02884 1.20853 1.55253 1.55253 1.55253 1.51525 .31058 .20125 .21675 .56250	0.002133 0 1150 1150 1175 1175 1179 1190 200 200 200 200				
	5 1 1 2 3 3 4 4 5 5 1 1 2 3 3 4 4 5 5 5 6 6 7 7 8 8 9 9 10 10 11 11 11 11 11 12 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11313 11313 11313 11313 11313 11313 11313 11313 11313 11313 11313 2 2 2 2	70.85 70.85	0, 110 .110 .110 .110 .110 .110 .110 .110	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.03102 0.03102 0.03102 0.03102 0.03102 0.0 0.03102 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4 4 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	6.002133 4 2 4 2 4 2 4 2 1.02684 1.20653 1.55253 1.55253 1.51250 .78125 .103180 .28125 .56250	0.002133 0 1150 1150 1175 1175 1190 1190 200 200 200 200				

						APÉNDICE B
	9 1	10 1				
	9 2	10 1				
	93 94	10 1				
	9 5	10 1				
1	00	99 151				
. 1	1 2	15 1				
1	1 3	15 1	1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997			
a tra d	1 5	15 .1				
	212	15 1				이 같은 영화가 가지 않는다.
. 1	2 3	15 1				
	2 4 2 5	15 1				
	3 1	15 1				
	3 2	15 1			محتر بججير بالألية	i de la presenta de la sec
	34	15 1		alata sha dhi		tan di karang di kar Karang di karang di ka
	3 5	15 1				
	4 2	15 1				
	4 3	15 1 15 1				
1	4 5	15 1				
	5 0	14 9				
	6 Z	20 1				이 고려한 것, 것 좀 말한
1	6 3	20 1				
	6 5	20 1				
1	7 1	20 1				
	7 3	20 1				
1	7 4	20 1				
1	8 1	20 1				
	8 2	20 1		na sha ƙwa	Apple and	
1	8 4	20 1				
	18 5. 19 1	20 1				이 같은 것은 것을 받는
1.1	9 2	20 1				
	9 3	20 1				
	9 5	20 1				
	20 0	19 9	0.0 0.0 Eeve			
	3 0	9.61	90.0 0.05 00100	Q=1.0 R	CDF 87	
	0.0	0.1				
	3.9	0.4				
	1.4	1.4				
	0 1.1	0.0	(i) (i)			
	1.11					
			e de fander de star			나는 말을 하는 것이라.
		····	ana da sur subser			
				228	and the set	the second s

APENDICE B

En seguida se listan los archivos de datos usados para el análisis dinámico inelástico de la respuesta de los marcos, mediante el uso del programa DRAIN-2D. En las figuras B.2 y B.3 se muestra la numeración de los nodos y elementos estructurales tanto para los marcos convencionales como para el marco con disipadores.

Fig. B.2 Numeración de columnas y trabes.

ļ

1	ARCHIVO DE I	JATUS PARA EI	ANALIS	NS DEL I	MARCO DUCTIL.	
						5 (r.
START	HARCO CONVENCIONAL O-	4.0				
. 1	0 30					
3.	10 30					
41	0 0					
43	10 0					
44 1	41 9 4 3					
23	42 9 4 3 43 9 4 3					
41	44 9 4 3			1.00		
	4 1 2 3 4 5 6 7	4 B				
1	4 9 10 11 1	2				de la
1	4 17 18 19 2	Ő	14 g. #		이번 승규는 것 같이 나는 것이 있는	1.2.1
- 1	4 25 26 27 2					
. i	4 33 34 35 3	6				
1.	9,94863 0	0 4	9.61	an a		
9	3.75956 0	0 12				
17	4.05764 0	0 20				
25 1	4.22221 0	0 24				1. d. y.
29 1 33 1	4,27913 0 4,27913 0	0 32				
37 1	4.27913 0 6 5399 0.02	0 40				
1 2	0 -2.94489 0 -4.57876	0 4 3 0 3 1				1.0
5 6	0 -3.79081 0 -6.29198	0 37 4				
7	0 -6.29198	0 39 4				
5400	0 0 0 SISHO DE	\$.C.T.				
6	50 0 0	0 0 0			المراجع المراجع المالية المراجع المراجع المراجع المراجع	e er ef
Ĭ	13921.1648 29 <i>6</i>	984.85 103119.74	4 2	0.03	0.03	
	0.210 +0.210	0 0	0.1	0.4		
3	0.270 -0.270	o o				
1	3 17.948 -17.94	8 373.993 -52.693	2.6 0.4	2.6 0.4		
5	3 17.950 -21.10	8 373.993 -52.69 0 378.794 -57.494	2.6 0.4	2.6 0.4		
1	0 0 2.944E	5 395.539 -74.239 8 2.306830 (2.6 0.4	1.9 0.3		
2	0 0 3.7908	0 2.921020 0) 3.79080) 1	-2.921020 1		
4	5 6 1 1 9 10 1 1	1 1 1 1 1 0 2 2 2 1 0 0 0 0 0 0 0 0 0 0	2	1		
10 13	13 14 1 1 17 18 1 1	2 2 2 1 0	2	1		
16	21 22 1 1	3 3 3 1 0	2	į		
	/ /					
ner an	a fina ser con		230			
						h fra

APÉNDICE B

		2 2	· · · · · · ·	-	·· ` .	APÉNDICE B
22 25 28 30 6 1 1 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 5 7 7 7 7 7 7 7 7	29 30 1 33 34 1 37 38 1 29 40 1 2933,7351 5092,5555 8016,7581 0 5092,5555 8016,7581 0 2272,0517 0 3 3,721 3 40,465 3 47,378 1 5 5 5 5 5 5 5 5 5 5 5 5 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	
AR start 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1	CHIVO DE E MARCO CON DISI 8 4 1 5 10 5 10 41 0 4 42 0 4 42 0 4 42 0 4 43 0 4 44 0 7 84 0 10 4 0 10 13.75956 13.75956 13.75956 13.75956 13.759764 14.057764 14.05	ATOS PARA PADORES a, +0, 25 10 10 3 30 30 0 0 0 0 0 0 0 0 0 0 0 0 0	4 8 12 16 12 12 12 12 13 12 13 14 15 15 15 15 15 15 15 15 15 15	(SIS DEL)		N DISIPADORES.
		n na ann	2	31		

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				nt e													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		APÉNDICE B													-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										36 40	0	0	27913	14.	33 37		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									3	4	. 0	0.02	5399	6	1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									4	37	ŏ	-3.79081 -6.29198	ŏ		5		
3400 0 0 0 0 0 0 1 5150 0 5 5.7.1. 5722375.00120346 1 2 2.1E7 0.0539.32954 2 236.073 - 226.698 0 1 2 2.1E7 0.0539.32954 2 026.515 - 4577.615 0 3 2.1E7 0.0517.21264 2 4047.326 0 4 2.1E7 0.0517.31784 - 735.954 0 5 2.1E7 0.0517.33784 - 126.158 - 4577.615 0 6 2.1E7 0.0517.33784 - 126.158 - 4577.61 6 2.1E7 0.0517.33784 - 126.158 - 4577.61 6 2.1E7 0.0517.33784 - 126.158 - 4577.61 9 2.1E7 0.0517.33784 - 126.159 - 4577.61 9 2.1E7 0.0517.33784 - 126.1797.46.377 0 9 2.1E7 0.0517.33784 - 126.1797.46.377 0 1 2 5 0 1 1 0 2 3 5 0 0 1 0 2 3 5 0 0 1 0 3 3 0 0 2 1 0 5 10 15 0 3 1 0 7 14 17 0 4 1 0 5 10 15 0 3 1 0 7 14 17 0 4 1 0 1 2 2 27 0 6 1 0 1 2 2 27 0 6 1 0 1 2 2 2 0 7 1 0 1 2 2 2 0 7 1 0 1 2 2 2 0 7 1 0 1 2 2 2 7 0 6 1 0 1 2 2 3 0 5 1 0 1 2 2 3 3 5 0 8 1 0 1 3 26 0 9 1 0 1 3 350.0645 0 10900.645 2030.916 4 4 2 0.003 0.03 1 3 350.0645 0 109906.64 52030.916 4 4 2 0.0.3 0.03 3 3 0 0 0 0 0.1 20.01 3 0 0 0 0 0.1 20.01 4 0 0.4 0.4 1 0.4 0.4 0.4 1 0.4 0.4 0.4 1 0.4 0.4 0.4 1 0.4 0.4 1 0.4 0.4 1 0.4 0.4 1 0.4 0.4 1 0.4 1 0.4 0.4 1 0.4 0.4 0.4 1 0.4 1 0.4 1 0.4 1 0.4 0.4 0.4 1 0.4 1 0.4 0.4 0.4 0.4 1 0.4 1 0.4 0.4 0.4 0.4 1 0.4 1 0.4 0.4 0.4 0.4 1 0.4 0.4 0.4 0.4 1 0.4 0.4 0.4 0.4 1 0.4 0.4 0.4 0.4 1 0.4 0.4 0.4 0.4 1 0.4 0.4 0.4 0.4 1 0.4 0.4 0.4 0.4 1 0.4 0.4 0.4 1 0.4 0.4 0.4 1 0.4 0.4 0.4 1 0.4 0.4 0.4 1 0.4 0.4 0.4 1 0.4 0.4 1 0.4 0.4 1 0.4 0.4 1 0.4 0.4 0.4 1 0.4 0.4 1 0.4 0.4 1 0.4 0.4 1 0.4 0.4 1 0.4 0.4 1 0.4 0.4 1 0.4 0.4 1 0.4 0.4									4	39 40	0	-6.29198 -3.79081	0 0		7		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										•	DE S.C.1	0 515H0	.00412	38754. 50	.4572		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							78	-826.	.875	826	9.3289E-4	0.053	2.1E7	źŏ	1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							26 58	-4047.	.326	4047 8876	7.2126E+4	0.051	2.1E7 2.1E7		23		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							30 73	-7895.	.530	7895	8.2273E-4 10.3992E-4	0.051	2.1E7 2.1E7 2.1E7		5	•	
9 2.167 0.0514.50934.2 23362.276 23362.276 0 1 2 5 0 1 7 0.0519.72622.4 17054.416 0 1 2 5 0 1 7 00 4 1 0 3 5 10 0 2 1 0 5 10 15 0 3 1 0 6 11 14 0 3 1 0 7 14 17 0 4 1 0 6 11 14 0 3 1 0 7 14 17 0 4 1 0 1 2 2 7 0 6 1 0 1 2 2 2 7 0 6 1 0 1 3 2 6 0 8 1 0 1 5 2 2 0 0 7 1 0 1 4 2 7 3 2 0 7 1 0 1 5 2 3 3 0 8 1 0 1 5 2 3 3 0 8 1 0 1 7 32 4 10 1 0 1 7 32 5 0 0 7 1 0 1 8 33 38 0 9 1 0 1 9 38 4 1 0 10 1 0 2 0 39 44 0 10 1 0 2 0 39 44 0 10 1 0 3 3 0 0 045 4 2 0.03 0.03 1 3 30 0.45 1 149905.45 2505.0716 4 4 2 0.03 0.03 1 3 30 0.45 1 149905.45 2505.0716 4 2 0.4 0.3 0.03 3 3 0 0 0 0 0.1 20 0.1 0.4 0.4 0.4 1 3 3 500.045 1 149905.45 2505.0716 4 4 2 0.4 0.3 0.03 3 3 0 0 0 0 0.1 20 0.1 0.4 0.4 0.4 1 3 3 500.045 1 149905.45 14 20.0 0.1 0.3 0.03 3 0 0 0 0.1 20 0.1 0.4 0.4 0.4 1 3 3 500.045 1 149905.45 2505.0716 4 4 2 0.4 0.3 0.03 3 0 0 0 0.1 20.011 0.4 0.4 1 3 0 0 0 0.1 20.011 0.4 0.4 1 3 0 0 0 0 0.1 20.011 0.4 0.4 1 3 0 0 0 0 0.1 20.011 0.4 0.4 1 3 0 0 0 0 0.1 20.011 0.4 0.4 1 3 0 0 0 0 0.1 20.011 0.4 0.4 1 3 0 0 0 0 0 0.1 20.011 0.4 0.4 1 3 0 0 0 0 0 0.1 20.011 0.4 0.4 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							75	17744.	.575-	17744	7.3878E-4	0.051	2.1E7 2.1E7	1.	7		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ing phis the						76 15	25362.	.276-	23362	4.5093E-4	0.051	2.1E7 2.1E7		10		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										5	1 0	0 1	2 8 3 8 5 10	3	23		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$))	1 0	0 2	8 11 0 15	8 10	4 5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											1 0	0 3	1 14	11	67		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,)	1 0	0 5	7 22	17	9 10		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										2	1 0	0 6	2 27	22 23	11		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) 1	1 0	0 7	6 29 7 32 0 14	26	13		as di
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		an e de la complete Complete de la complete		•						í	i č	0 B	2 35 4 39	32 34	16 17		
20 39 44 2 10 2 0 6 33 3509.0645 149906.64 52050.916 4 4 2 0.03 0.03 1 3509.0645 149906.64 52050.916 4 4 2 0.03 0.03 2 3509.0645 149906.64 52050.916 4 4 2 0.03 0.03 3 309.0645 149906.64 520.916 4 2 0.03 0.03 3 309.0645 149906.64 520.916 4 2 0.03 0.03 3 309.0645 149906.64 520.916 4 2 0.03 0.03 4 3509.0645 149906.64 520.916 4 2 0.03 0.03 4 0.150 0.150 0.1 0.4 0.4 1 4 0.153 0.0157 0 0										2	1 0	0 10	5 38 8 41	35	18		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.03		0.03		4	4	. 916	52050	2 0	0 10 4 4 .0645	0 4	30	20 6		
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4	an a	0.03	1	0.03	0.4	4	4	0.1	52050	0.1	0645	3509		2	ан. Ангарт	
4 3507.0445 149904.64 52050.916 4 4 2 . 0.03 0.03 4 0.150 0.150 0.1 0.4 0.4 1 2 0.155 0.0155 0 0	i gan bai s Suar su su		0.03		0.03	0.4		4	0.1	52050	149906.64	.0645	3509	5	23		
1 0.150 -0.150 0 0 2 0.175 -0.175 0 0			0.03	·	0.03	0.4	2	4	.916	52050	149906.64	.0645 0	3509		44		
									0	0	C C	-0.150 -0.175	0.150	2	1		
3 0,190 -0.190 0 0 4 0,200 -0.200 0 0 1 3 4 710 -0.015 108 138 -35 0/8 7 8 0 4 1 9 0 3					0.3	1 0	8 0	0/8	0))))) 128	0 015 10	-0.190	0.200		4		
2 3 9.940 -16.314 201.620 -57.644 2.4 0.4 1.4 0.3 3 3 14.773 -21.653 242.429 -80.249 1.9 0.4 1.3 0.2					0.3	1.4	.4 0 .9 0	.494	-57	19.674	6.314 21	9.940 ·14	3 3 1	2 3	23		
4 3 19.625 -25.947 262.804 -100.624 1.7 0.3 1.3 0.2 1 0 0 2.94488 2.306830 0 2.94488 -2.306830					0.2	-2.3	.7 0	0.624	- 100	52.804 506830	5.947 26 94488 2.3	0 2.	3 1' 0		1		
					21020		1 2	0	1	1 1	1 1	1 1	12 54	1 1	- 1		
7 9 10 1 2 2 2 2 1 0 2 1 10 13 14 1 2 2 2 2 1 0 2 1						1	22	Ö	Í	2 2	2 2	1 2	9 10 3 14	7 9 0 13	10		
13 17 18 1 3 3 3 3 1 0 2 1 16 21 22 1 3 3 3 3 1 0 2 1 17 18 1 3 3 3 3 1 0 2 1						. 1	22	0	1	5 3	3 3	1 3	7 18	5 17	13		
						1	ź	ů	ł	: :	1 1	1 2	9 30	2 29	22		
232		er e sere esta companya	ger en se des				2	2									
			11 A.									· · · · ·			•		

APÊNIMCE B

						_									
25	33	34	1	. 4	4	4	4	1	0	2		1			
28	37	38	- i		7	2	2	- i	ň	5		· .			
30	- 30	40	'n	2	i	ž	ĩ	- i	ň	5		· .			
- 6	20	1	ĩ	ŝ	ó	ō		•	•	-					
Ť		763.6	7512	· •	01823	. 1 8 1	15355	310	4	4	2		0.03	0.03	
i				° '		n 1		0 1	-	0 6	•	n 4		1	
÷		1414	8028	Č,	18502	01 /	68122	540	4		2	•	0.03	0.03	
5		0	0020	_ ^ '		n 1		0 1		01	•	0.4	•	1 0.05	
i		1045	8851	Ť.	0.4557.41	05 0	\$4775	680			,	••••	r0 0	0.01	
- .		0		` ^ '	100,007	n ,		0 1		07	•	0.4	0.03	1 0.05	
- Z		2413	5011	Č,	191010	12.		ain.	1		,	0.4	0.03	0.01	
- 7		0		· `		0.1		0.1	-	οž	•	n 4		1	
- 7		ň		ň	-0	÷.		·		0.4		0.4		•	
•	٦	ň	004	-11	004	204	345	+ 104	115	1.1	0.2	1 3	0.2		
	- 1	10	544	. 10	544	201	872	-158	505	111	0.5	11	0.2		
÷		71	011	- 24	011	111	504	+174	SRA	11	0.2	- i. i	0.2		
- ž.	ŭ	30	305	-30	105	105	417	. 221	357	111	0.2	1.1	0.2		
ŝ		ū	865		845	433	741	.250	441		0.5		0.5		
· · •	- 7	5	1	1	1	1			n in						
÷	Ś	6	- i	- i	i	-i	i	- i -	ň						
ō	Ξē	13	i	ż	i	ż	ż	i	ň						
13	13	17	i		i	5	5	- i	ň						1.1.1.1.1.1.1.1
17	17	21	i	ž	i	3	3	÷	ŏ						
źì	21	25	i	ŝ	i	3	ž	- i	ň						
25	25	29	i	Ă	i	Ā	ž	í	ň						
20	20	33	i	ź	i	ć.	Ĺ	· i	ñ						
	- 33	37	- i	- 2		ŝ	- 5	. i	ŏ						
37	37	41	· i	4	i	ŝ	ŝ	í	ň						
40	40	11	, i	2	- i	ś	- 5		ň						
TOP	40		•	•	•	1			. •						

233

S10

Para el cálculo de los diagramas de interacción, usados en el análisis dinámico inelástico con el DRAIN-2D, se utilizó un programa de cómputo escrito en lenguaje BASIC. Este programa calcula los cuatro puntos característicos de un diagrama de interacción, la carga axial de compresión pura, la carga axial de tensión pura, el momento flexionante y la carga axial en la condición balanceada y el momento resistente a flexión pura (ver figura 4.27). Además puede calcular puntos intermedios del diagrama. El diagrama de interacción que se obtiene es un "diagrama elástico", es decir, no toma en cuenta efectos inelásticos (disminución de la resistencia por la plastificación de la sección), ni efectos de segundo orden (ya que es un diagrama exclusivo de la sección transversal), y solamente define la resistencia de la sección a flexocompresión uniaxial. En breve, la forma como trabaja el programa, es la siguiente:

se va moviendo el eje neutro de la sección y mediante el equilibrio de esta, se calculan ios momentos flexionantes y cargas axiales resistentes (en la referencia 19 se dan ejemplos de cálculo de diagramas de interacción)

Para el cálculo de la resistencia a flexión, tensión y compresión de la sección se utilizan las expresiones que da la referencia 11.

APENDICE C

•

```
1 DECLARE SUB DATOS (FC1, FY1, B1, H1, NL1, A1(), D1(), ES1, SA1, DRAIN1)
DIM A(20), D(20), D1S(20), S1(20), P(20), M(21), DV(20)
  H1 = 0
 PARAH=0
 MANTED
  PANT=0
  CALL DATOS(FC, FY, B, H, HL, A(), D(), ES, SA, DRAIN)
  CLS
 OPEN "O", #1, "DINT.RES"
 REM
REM CONSTANTES
  REM
  F2C = .65 * .8 * FC
  REM
  REH CALCULO DE LA CARGAS DE COMPRESION Y TENSION QUE OCASIONAN LA FALLA
REM
REM CALCULO DE PUNTOS INTERNEDIOS DEL DIAGRAMA
  REM
DC = D(HL) / 20
  FOR I = 20 TO 1 STEP -1
P = 0
H = 0
       HAUX = D
       HAUX = U
C = t + DC
FC = f2C + .8 + C + B
FOR J = 1 TO NL
D1S(J) = C - D(J)
             D(x(J) = (H / 2) - D(J)

S(J) = (H / 2) - D(J)

S(J) = 1

IF (DIS(J) > 0) AND (DV(J) < 0) THEN

SI(J) = -1
              ELSEIF (DIS(J) < 0) AND (DV(J) > 0) THEN
             ELSEIF (U(S_{J}) < 0) AND (
SI(J) = -1
END IF
SIG = SGN(DIS(J))
ET = .003 * (DIS(J)) / C
IF ABS(ET) >= .002 THEN
FT = A(J) * FY * SIG
             ELSE
FT = ES * ET * A(J)
              P = P + FT
              HAUX = HAUX + SI(J) * ABS(FT) * ABS(DV(J))
        NEXT J
       P = (P + FC) / 1000
       P = {P + P + C} / 1000
N = (PC + ABS((H / 2) - ,4 + C) + HAUX) / 100000
IF M < MANT AND PARAM = 0 THEN
NFB = MANT
PFB = PANT
              PARAM = 1
       END IF

FP < 0 AND PANT > 0 THEN

MEP = PANT * (NANT - N) / (PANT - P)

NEP = NANT - NUEH

PO = 0

PRINT #1, USING "#####.##^^^^####.##^^^^###

FND IF
        END IF
        ENO 17
PRINT #1, USING #####.##^^^^,####.##^^^*; M; P
PANT = P
        HANT = M
  NEXT I
  PRINT #1, USING "#####.##****.###***** ##*****
   CLOSE #1
   CLOSE #1
1F DRALN = 1 THEN
        PRP = PFB / POC
        HRP = MFB / MPO
```

APÉNDICE C

```
CLS
       CLS CLCATE 5, 20; PRINT ""CARGA AXIAL DE COMPRESION (P+) = "; POC
LOCATE 7, 20; PRINT "CARGA AXIAL DE LINSIDN(P-) = "; POT
LOCATE 7, 20; PRINT "CARGA AXIAL DE LINSIDN(P-) = "; PPO
LOCATE 17, 20; PRINT "CARGA DE FALLA BALANCEADA"
LOCATE 17, 20; PRINT "CARGA DE FALLA BALANCEADA"
LOCATE 17, 20; PRINT "MOMENIO DE FALLA BALANCEADA"
LOCATE 17, 20; PRINT "MOMENIO DE FALLA BALANCEADA"
LOCATE 17, 20; PRINT "CARGA DE FALLA BALANCEADA"
LOCATE 17, 20; PRINT "CARGA DE FALLA BALANCEADA(PD) = "; PPB
LOCATE 17, 20; PRINT "CARGA DE FALLA BALANCEADA(PD) = "; PPB
LOCATE 17, 20; PRINT "CARGA DE FALLA BALANCEADA(PD) = "; PPB
LOCATE 17, 20; PRINT "MOMENIO DE FALLA BALANCEADA(PD) = "; PPB
  END IF
 PRINT
 PRINT
  INPUT "HAS CALCULOS(S/N) 1", DRS
IF DRS="S" OR DRS="S" OR DRS="H THEN
      GOTO 1
ELSE CLS
         END
 FND 1F
 SUB DATOS (FC, FY, B, H, HL, A(), D(), ES, SA, DRASH) STATIC
 203 UNIO (CL) FI, J, H, HL, KL, US, CJ, CS, AN, OKN
STATEN
SOCHE 10, 22
PRINT CALCULO DE DIAGRAMAS"
LOCHE 12, 22
ECCHE 2, 22
  PRINT " DE INTERACCION"
LOCATE 14, 22
PRINT "
                                (C.1.5)"
  PRINT H
  LOCATE 24, 42
  INPUT "OPRIME «RETURN» PARA CONTINUAR ", AAA
   100 CLS
  COLOR 10, 15
  CLS
  REM
  REM LECTURA DE DATOS
  REM
  PRINT HADDRAND LECTURA DE DATOS *********
 ELSEIF DRS - "H" AND DRS - """ THEN
       GOTO 500
  END 1F
  END 1F
LOCATE 11, 48: PRINT "S"
200 LOCATE 11, 4: INPUT " ESTAN BIEN LOS DATOS (S/N)
1F RESS = "N" OR RESS = "O" TKEN
GOTO 100
                                                                                                                 : ", RESS
  ELSEIF RESS + "S" AND RESS + "S" AND RESS + "" THEN
       GOTO 200
  END IF
  300 MAYAS = 0
   SA = 0
  CLS
LOCATE 1, 10
PRINT NAMANANA LECTURA DE AREAS DE ACERO Y DISTANCIAS *******
  LOCATE 2, 10
PRINT
                                                  POR LECHO
                                                                                             ......
```

APÉNDICE C

PRINT LOCATE 5, 18 PRINT "LECHO No. DISTANCIA A5" LOCATE 6, 18 PRINT " {cm.} (cm²)" PRINT PRINT FOR 1 = 1 TO NL PRINT " LOCATE 1 + 7, 38 INPUT ; "", D(1) LOCATE 1 + 7, 53 INPUT "", A(1) SA = SA + A(1) 12 32 IF A(1) > MAYAS THEN MAYAS = A(1) NEXT 1 CLS SCREEN 2 PRINT " PRINT " PRINT LECHOS DE VARILLAS d As" (00.1)* (cm) FOR 1 = 1 TO NL TAH = A(1) * B / MAYAS TAM = A(1) = B / MATAS PRINT USING = CIRCLE (175, 25 * 1), TAM CIRCLE (195, 25 * 1), TAM CIRCLE (215, 25 * 1), TAM CIRCLE (235, 25 * 1), TAM ##.##"; 0(1); A(1) PRINT PRINT NEXT I LINE (159, 20)-(250, 25 * NL + 5), , B Print Print Using " E=##.## | E=##.## kg/cm! f'c=###.# kg/cm! fy=####.# kg/cm!"; ES; FC; FY PRINT PRINT USING " SECCION: ##.#cm x ##.#cm"; B; H PRINT 400 INPUT * ESTAN BLEN LOS DATOS (S/N) : ", RESS IF RESS = "N" OR RESS = "n" THEN SCREEN O GOTO 300 ELSEIF RESS ~ "S" AND RESS ~ "s" AND RESS ~ "" THEN GOTO 400 END IF SCREEN O END SUB

El programa anterior fué elaborado en el Instituto de Ingeniería por el

M.I. Armando Sosa García. Para la elaboración de esta tesis sufrió pequeños cambios.

Para el cálculo de las curvas de desplazamiento de entrepiso-fuerza cortante de entrepiso calculadas en el capítulo 5 (sección 5.9) correspondientes a los marcos convencionales y al *marco con disipadores*, se utilizó el modelo de la figura 5.16 de dicho capítulo. Para el cálculo de los desplazamientos y fuerzas cortantes de entrepiso del modelo mencionado, se utilizó el programa DRAIN-2D elaborando archivos de datos para cada marco. En este Apéndice se presenta únicamente el archivo de datos con el cual se obtuvieron las curvas del *marco con disipadores*. En la figura 5.16) del modelo utilizado. La numeración de los nudos y de los elementos tipo I y tipo II. (ver figura 5.16) del modelo utilizado. La numeración de nudos y clementos del *marco con disipadores* es la que se muestra en las figuras B.2 y B.3 del Apéndice B.

L L L L 55 ▲¹² Fig. D.1 Numeración de nudos y elementos (numeros subrayados) del modelo usado astra cala desplazamiento-cortante de entrepiso.

ARCHIVO CORRESPONDIENTE AL MARCO CON DISIPADORES.

	CT407	ADCH	1100 2		i cli			F110VA	-		24174	DE EN	TREDIG	0						
	55	10	5	2	10	11	5	0	J UL 4										1 e	
والألوب ستجاجز سأر	1 .		0.		30															
	2		5		30								12.11		i ge me	e e contra da se	a da ang a			د. معرب برده
	3		10		30													· •	9 J.	- ¹ (
	4		15		30													11 J.		S
	41		0		0															
	42		5		0											<u>) 1985</u>	t (54).			1.4
	43		10		0															
	. 44		15		.0										1		- N.S.			
	45		20		- 20															
	22		20	,														4		
	2	12	÷	- 2	1											1. see 1	1.1	ang sa	6 ()	
	3	43	ó	1	ŝ								- v-1				1.1.1		1.15	() g fi
		44	ġ	- 4	ŝ															
	45	55	ģ	1	- <u>3</u> -									- , i					12 L	1.
	41	. 1	1	. 1	44	1						- C - 1								
	55	0	1 -	1													. 114		2.0	
	1	4	٩.	2	3	. 4													16	
	1	4	5	6	7	8														
														111			1.	100		S. 1.
a sharin ina b														1.1		3 Q.A.		- 44		
								1.11	e energy	239 ::			21	أيفتت	10.04		de la composición de La composición de la c			20
														12						
													·							

		and the second	ч - ^с							
										WENNER D
	-					in-				
	1	4 9	10	11	12					
	i	4 17	18	19	20					and the second secon
	1	4 21	22	23	24 28					
	1	4 25	30	31	32					
	i	4 37	38	39	40					
	1	(1	0	0	4 B		1		
	. 9		5	ŏ	ŏ	12				
	13	· . ()	0	. 0	16 20				이 가지 않는 것이 있는 것이 가 문제로 가지 않는다. 같은 것은 것이 있는 것이 있
	21	.) .	0	0.	24 .				에 있는 것은 가장에 가지 구분에게 있는 것이 있는 것이 있는 것이다. 이 가방 가방 이용에 가지 않는 것이 많은 것이 없을 수 있는 것이 있는 것이다.
$(x,y) \in \mathcal{L}_{\mathcal{D}}^{1,1}(\mathbb{R}^{n})$	29	. č		ō	ő	32				
	35 37)) ·	0	0	36 40				
	45	7000.		0.02	0	55 1			50	8.00
	j	0 100	-2.5	4489	0	4				services and the second se
	5) -4.5	79081	0	37 4				
	67		-6.2	29198	0	38 4				
				.,,,,,						
			-3.7	79081	s õ	40 4				
	9001 .45723	0 (8754,004) -3.7) 0 120344	9081 PULSO	DE ACELER	40 ACLON REC	TANGULAR.			
	9001 .45723 5	0 (8754.004) 5	0 -3.7 0 0 120344 1	79081 PULSO 0	DE ACELER	40 4 ACION REC 0 2	TANGULAR. 2	2 1 1	i. L	
	9001 .45723 5 4	0 (8754.004) 5 8 (0 -3.7 0 0 120344 1 3 12	9081 PULSO 0 12	0 DE ACELER 0 10 16 16	40 4 ACION REC 0 2 20 20	TANGULAR. 2 2	2 1 1		
	9001 .45723 5 4 4 24 1	0 (8754.004 5 8 (28 2) 10 1(0 -3.7 0 0 120344 1 3 12 3 32 0 0	9081 PULSO 0 12 32	0 DE ACELER 0 10 16 16 36 36	40 4 ACION REC 0 2 20 20 40 40	TANGULAR. 2 2 2 2 24 2 44	2 1 1	·	
	9001 .45723 5 4 24 1 1 2	0 (8754.004 5 8 (28 2) 10 1(2.16 2.16	0 -3.7 0 0 120344 1 3 12 3 32 0 0 7	9081 PULSO 0 12 32 .05	0 DE ACELER 0 10 16 16 36 36 1.1905E-6 1.0716E-6	40 4 ACION REC 0 2 20 20 40 40 1.0610 1.0610		2 1 1	•	
	9001 .45723 5 4 24 1 1 2 3	0 (8754.004 5 8 (28 2) 10 1(2.16) 2.16 2.16	0 -3.7 0 0 120344 1 3 12 3 32 0 0 7 7	9081 PULSO 0 12 32 .05 .05	0 DE ACELER 0 10 16 16 36 36 1.1905E-6 1.0714E-6 9.5238E-7	40 4 ACION REC 0 2 20 20 40 40 1.0E10 1.0E10 1.0E10	2 2 2 2 2 4 1.0E-1 1.0E-1 1.0E-1	2 1 1	•	
	9001 .45723 4 4 24 1 1 2 3 4 5	0 (8754.004 5 8 (28 2) 10 (2.16) 2.16 2.16 2.16 2.16	0 -3.7 0 0 120344 1 3 12 3 32 0 0 7 7 7 7	9081 PULSO 0 12 32 .05 .05 .05 .05 .05	0 DE ACELER 0 10 16 16 36 36 1.1905E-6 9.523&E-7 8.3333E-7 7.1429E-7	40 4 ACION REC 20 20 40 40 1.0610 1.0610 1.0610 1.0610 1.0610	CTANGULAR. 2 2 2 24 2 44 2 1.0E-1 2 1.0E-1 2 1.0E-1 2 1.0E-1 2 1.0E-1	2 1 1 10 0 10 0 10 0 10 0 10 0	* . 	
	9001 .45723 4 24 1 1 2 3 4 5 6 7	0 (8754.004 5 8 (28 21 10 10 2.161 2.161 2.161 2.161 2.161 2.161 2.161 2.161 2.161 2.161 2.161	0 -3.7 0 0 120344 1 3 12 3 32 3 0 7 7 7 7 7 7 7 7	9081 PULSO 0 12 32 .05 .05 .05 .05 .05 .05	0 DE ACELER 0 10 16 16 36 36 1.1905E-6 1.0714E-6 9.523&E-7 8.3333E-7 7.1429E-7 5.9524E-7 5.9524E-7	40 4 ACTOW REC 0 20 20 40 40 1.0E10 1.0E10 1.0E10 1.0E10 1.0E10 1.0E10	2 2 2 2 2 4 2 4 2 1.0E-1 0 1.0E-1 0 1.0E-1 0 1.0E-1 0 1.0E-1 0 1.0E-1	2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	9001 .45723 5 4 24 1 1 2 3 4 5 6 7 8	0 (8754.004 5 8 (28 2) 10 1(2.16)	0 -3.1 0 0 120344 1 3 12 3 32 0 7 7 7 7 7 7 7 7 7 7	9081 PULSO 0 12 32 .05 .05 .05 .05 .05 .05 .05	0 10 16 ACELER 0 10 16 16 36 36 1.1905E-6 1.0714E-6 9.523&E-7 8.3333E-7 7.1429E-7 5.9524E-7 3.5714E-7 3.5714E-7	40 4 ACION REC 0 2 20 20 40 40 1.0E10 1.0E10 1.0E10 1.0E10 1.0E10 1.0E10	2 2 2 2 2 2 2 2 2 2 4 1.0E-1 1.0E-	2 1 1 10 0 10 0 10 0 10 0 10 0 10 0 10 0		
	9001 .45723: 5 4 24 24 1 1 2 3 4 5 6 7 8 9 9 10	8754,004 8754,004 5 8 1 28 21 2.16 2	0 -3.1 0 0 120344 1 3 12 3 32 0 7 7 7 7 7 7 7 7 7 7 7	PUL SO 0 12 32 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	0 DE ACELER 0 10 16 16 36 36 36 36 36 36 35 35 4 7.14296-7 5.95246-7 4.76196-7 3.57146-7 2.38106-7 1.19056-7	40 4 ACION REC 0 20 20 40 40 1.0010 1.0010 1.0010 1.0010 1.0010 1.0010 1.0010 1.0010 1.0010	1.0E-1	2 1 1 10 0 10 0 10 0 10 0 10 0 10 0 10 0		
	9001 .45723: 4 24 24 1 1 2 3 4 5 6 7 8 9 10 1 2	8754,004 8754,004 5 8 (28 21 2.16 2	0 -3.1 0 -3.7 120344 1 3 12 3 32 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7	PULSO 0 12 32 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	0 10 DE ACELER 0 10 16 16 36 36 1.1905E-6 1.1905E-6 9.5238E-7 8.3333E-7 7.1429E-7 3.5714E-7 2.5810E-7 1.1905E-7 0 1 0 1	40 4 ACIOH REC 0 20 20 40 40 4.0010 1.0010 1.0010 1.0010 1.0010 1.0010 1.0010 1.0010	2 2 2 2 3 24 4 4 1 .0E-1 0 1.0E-1 0 1.0E-1 0 1.0E-1 0 1.0E-1 0 1.0E-1 0 1.0E-1 0 1.0E-1 0 1.0E-1	2 1 1 10 0 10 0 10 0 10 0 10 0 10 0 10 0		
	9001 .45723 5 4 24 24 1 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 3	0 (8754,004 5 8 (28 2) 10 10 2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.16	0 -3.1 0 -3.1 0 0 120344 1 3 12 3 32 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7	PULSO 0 12 32 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	0 DE ACELER 0 10 16 16 16 36 36 36 36 36 36 36 36 36 36 36 36 36	40 4 ACIOH REC 0 20 20 40 40 4.0010 1.0010 1.0010 1.0010 1.0010 1.0010 1.0010 1.0010 1.0010	2 2 2 24 3 24 4 4 4 1.0E-1 0 1.0E-1 0 1.0E-1 0 1.0E-1 0 1.0E-1 0 1.0E-1 0 1.0E-1	2 1 1 10 0 10 0 10 0 10 0 10 0 10 0 10 0		
	9001 .45723 5 4 4 24 1 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 5 6 7 8 9 9	0 (8754,004 5 8 (28 2) 10 11 2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.	0 -3.7 0 0 120344 1 3 12 3 12 3 2 3 0 7 7 7 7 7 7 7 7 7 7 7 7 7	79081 PULSO 0 12 32 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	0 DE ACELER 0 10 16 16 16 36 36 36 36 36 36 36 36 36 36 36 36 36	40 4 ACIOH REC 0 20 20 40 40 40 1.0010 1.0010 1.0010 1.0010 1.0010 1.0010 1.0010 1.0010 1.0010	1 24 2 24 3 1.0E-1 1 1.0E-1	2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	9001 .45723 .45723 .4 .4 .4 .4 .2 .4 .2 .4 .2 .4 .5 .6 .7 .8 .9 .10 .1 .2 .3 .4 .5 .6 .7 .8 .5 .6 .7 .8 .5 .6 .7 .8 .5 .6 .7 .7 .3 .6 .7 .7 .3 .6 .7 .7 .3 .6 .7 .7 .3 .6 .7 .7 .3 .6 .7 .7 .3 .7 .3 .6 .7 .3 .7 .3 .7 .3 .7 .3 .7 .3 .7 .3 .7 .3 .7 .3 .7 .3 .7 .3 .7 .3 .7 .3 .7 .3 .7 .3 .7 .3 .7 .7 .3 .7 .7 .3 .7 .7 .3 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7	6 8 8 8 10 10 28 28 28 28 28 21 2.16	0 -3.1 1 -0.1 1 -0.1	79081 PULSO 0 12 32 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	0 10 16 16 16 16 1.1905E-6 1.1905E-6 9.5258E-7 8.3333E-7 7.1429E-7 3.5714E-7 2.3810E-7 1.1905E-7 1.1905E-7 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	40 4 ACIOH REC 0 20 20 40 40 1.0E10 1.0E10 1.0E10 1.0E10 1.0E10 1.0E11 1.0E11	1 24 2 24 3 4.4 1 1.0E-1	2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	9001 .45723 .45723 .4 24 4 24 1 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9	0 (0 8754.004 5 8 (1 28 21 10 110 11 2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.	0 -3.1 120344 1 3 12 3 22 3 32 7 7 7 7 7 7 7 7 7 7 7 7 7	79081 PULSO 0 12 32 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	0 10 16 16 36 36 1.1905E-6 1.30716E-6 9.5258E-7 8.3333E-7 7.1429E-7 5.9524E-7 4.7619E-7 3.5714E-7 2.3810E-7 1.1905E-7 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	40 4 ACION REC 0 20 20 40 40 1.0E10 1.0E10 1.0E10 1.0E10 1.0E10 1.0E10	CTANGULAR. 2 2 3 24 4 4 3 1.0E-1 3 1.0E-1 3 1.0E-1 3 1.0E-1 3 1.0E-1 3 1.0E-1	2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	9001 .45723 .45723 .4 .4 .4 .4 .2 .4 .2 .4 .1 .2 .3 .4 .5 .6 .7 .8 .9 .10 .1 .2 .3 .4 .5 .6 .7 .8 .9 .01 .1 .2 .3 .4 .5 .5 .4 .7 .3 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	0 (0 8754.004 5 8 (1 28 2) 10 11 2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.16	0) -3.1 120344 1 1 12120344 1 1 2 3 3 2 3 0 7 7 7 7 7 7 7 7 7 7 7 7 7	79081 PULSO 0 12 32 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	0 10 16 ACELER 0 10 16 16 36 36 36 1.1005E-6 1.0714E-6 9.5238E-7 8.3333E-7 7.1429E-7 5.9524E-7 2.3810E-7 1.1905E-7 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	40 4 ACIOW REC 0 20 20 40 40 1.0E10 1.0E10 1.0E10 1.0E10 1.0E10 1.0E10	CTANGULAR. 2 2 3 24 4 4 3 1.0E-1 3 1.0E-1 3 1.0E-1 3 1.0E-1 3 1.0E-1 3 1.0E-1	2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	9001 .45723: 44 24 24 24 24 1 1 2 3 4 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 5 5 10 1 2 3 4 5 5 5 10 10 10 10 10 10 10 10 10 10 10 10 10	6 0 0 6 8 2 2 2 10 2 10 2 11 1 11 1	0) -3.7 3) 0) -3.7 120344 1 3) 122 3) 32 3) 0 7 7 7 7 7 7 7 7 7 7 7 7 7	79081 PULSO 0 12 32 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	0 10 16 16 16 16 16 16 1.0714E-6 9.5258E-7 9.5258E-7 9.5258E-7 9.5258E-7 1.1905E-7 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	40 4 ACIOW REC 0 2 20 22 40 40 1.0E10 1.0E10 1.0E10 1.0E11 1.0E11 1.0E11 1.0E11	TAXGULAR. 2 2 3 24 3 24 3 1.0E-1 3 1.0E-1 3 1.0E-1 3 1.0E-1 1 .0E-1 1 .0E-1 1 .0E-1 1 .0E-1	2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	0001 457233 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 6 6 7 7 8 8 9 9 0 10 1 1 2 2 3 3 4 4 5 5 5 5 5 7 8 7 8 9 9 9 0 10 11 11 12 12 3 3 4 4 10 10 10 10 10 10 10 10 10 10 10 10 10	((0) 8754,004 5 8 11 2.12 2.) -3.1) -3.1 20344 1 3 12 3 3 2 3 7 7 7 7 7 7 7 7 7 7 7 7 7	79081 PULSO 0 12 32 32 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	0 10 16 ACELER 0 10 16 16 36 36 1.1905E-6 1.0714E-6 9.5238E-7 9.5238E-7 9.5234E-7 3.5714E-7 2.3810E-7 1.1905E-7 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	40 4 ACTOW REC 0 2 20 22 40 40 1.0E10 1.0E10 1.0E10 1.0E10 1.0E10	TAXGULAR. 2 2 0 24 0 24 1 1.0E-1 1 1.0E-1 1 1.0E-1 1 1.0E-1 1 .0E-1 1 .0E-1 1 .0E-1 1 .0E-1	2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	6 001 4572334 5 5 4 4 24 4 24 4 24 4 24 4 24 4 24 4	((0) 0) 0) 0) 0) 0) 0) 0)) -3.1) -3.1 220344 1 3 1220344 1 3 3 220 4 7 7 7 7 7 7 7 7 7 7 7 7 7	79081 PULSO 0 12 32 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	0 DE ACELER 0 16 16 16 16 16 13 36 36 36 36 36 36 36 36 36 3	40 4 ACLOW REC 0 2 20 22 40 40 40 1.0E10 1.0E10 1.0E11 1.0E11 1.0E11 1.0E11 1.0E11 1.0E11 1.0E11	TANGULAR. 2 2 3 24 4 4 4 1.0E-1 0 44 1.0E-1 1.0E-1 1.0E-1 1.0E-1 1.0E-1 1.0E-1 0 1.0E-1 0 1.0E-1 0 1.0E-1 0 2 0 4 0 4 0 0 0 0 0	2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	6 0001 4577334 5 5 4 4 24 4 1 1 2 2 3 4 4 24 4 24 1 1 2 2 5 5 6 7 7 7 8 9 9 10 1 1 2 2 3 4 4 5 5 6 7 7 7 8 9 9 10 1 1 1 1 1 2 2 2	((0) 8 11 8754,004 5 8 11 2.152 2.1) -3.1) 0 1 3 1 2 3 3 2 2 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7	79081 PULSO 0 12 32 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	0 DE ACELER 0 10 16 16 136 36 1.1005145 1.071456 0.52382-7 0.52382-7 0.52382-7 1.07145-7 3.57145-7 3.57145-7 3.57145-7 3.57145-7 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	40 4 ACION REC 0 2 20 22 2 20 22 4 40 44 40 44 40 44 1.0E1 1.0E1 1.0E1 1.0E1 1.0E1	TANGULAR. 2 2 0 24 0 44 1 .0E-1 0 .0E-1 0 .0E-1 1 .0E-1 1 .0E-1 0	2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	0001 457233 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 2 4 4 2 3 3 4 4 5 5 6 6 6 7 7 8 8 9 900 1 1 1 1 1 1 1 2 2 3 3 4 4 5 2 5 5 6 6 7 7 7 8 8 9 900 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	((0) 0) 0) 0) 0) 0) 0) 0)) -3.1) 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	79081 PULSO 0 12 32 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	0 10 16 16 16 13 13 16 1.1905c-6 1.0714E-6 9.2528c-7 8.3333c-7 7.1429c-7 3.57146-7 2.3810c-7 3.57146-7 2.3810c-7 1.00 1	40 4 ACION REC 0 2 20 22 4 0 41 1.0011 1.0011 1.0011 1.0011 1.0011 1.0011	2 2 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

		e en e	a na guya			a se s		an warr a'r fair ywar	
							an an an Ar		
	-							APÉNDICE L	
	. 3	47 48	1	1 1 0	0				
	5	48 49		T 1 0	0				
	7.	50 51		1 1 0	0				
	8 9	52 53 53 54	1	1 1 0	0				
$\mathcal{A}_{1,1} = \mathcal{A}_{1,2} = \mathcal{A}_{1,2}$	10	54 55 20 10	1	1 1 0	٥				
	- į	2.167	0.0539.326	VE-4 826.898	-826.898	0			
	3	2.1E7	0.0511.91	6E-4 8876,158	-8876.158	0			e agente i agente
	5	2.1E7 2.1E7	0.0518.22	ZE-4 7385.954	-7385.954 -7895.530	0			
	67	2.1E7 2.1E7	0.0513.417 0.0517.387	BE-4 21064.973- BE-4 17744.575-	21064.973	0			
	8 9	2.1E7 2.1E7	0.0517.53	4E-4 18661,797- 3E-4 23362,276-	18661.797 23362.276	0			
	10	2.167	0.0519.76	ZE-4 17094,416-	17094.416	0		a na wiel nijer.	an an an ang ag ar an an An an an ang ag ar an an
	2	3 8	0 1 1	0 .					
	4	8 11	0 2 1	0					
	6	11 14	0 3 1	0					
	8	14 17 15 20	0 4 1	0					anga sa ta sa
	9 10	17 22 20 23	0 5 1	0					
	11 12	22 27	0 6 1	0					
Ala e y	13	26 29	0 7 1	0					
	15	29 34	0 8 1	ō ·					
	17	34 39	0 9 1	0			1		
	19	35 38 38 41	0 10 1	0					
	20 6	39 44 30 4	0 10 1	0					
	1	3509	.0645 1499I 0	6.64 52050,916 0.1 0.1	4 4	2 0.0	3 0.03 1		
	2	3509	.0645 1499	0.1 0.1	4 4	2 0.0	3 0.03 1		
	3	3509	.0645 14991 0	0.1 0.1	4 4	2 0.0	3 0.03 1		
	4	3509	.0645 1499	06.64 52050.916	4 4	2 0.0	3 0.03		
	1	0.150	-0.150	0 0	0.4	0.4	•		
	3	0.175	-0.175	0 0					
	: 1	0.200 3	-0.200 6.719 -9.915	0 0 198.128 -35	.948 Z.8	0.4 1.9 0.3	3		
	2	3.3	9.940 -16.314	219.674 -57	.494 2.4	0.4 1.4 0.	5 ·		
	4	3 1	9.625 -25.947	262.804 -100	.624 1.7	0.3 1.3 0.	2		
	2	ō	0 3.79080	2.921020	0 3.7	2.92102	o a sina		
					.				
مرجد فيأتح	·· .				241	en de la serie	e se e succeso a	and a second	alarah Maria. Marina

APÉNDICE D -----1 i . 0 2 0 2 0 2 0 2 1 1 . 1 1 1 1 1 2 0.03 0.03 ٥ 0 0.1 0.1 0.4 0.4 0.03 1414.8028 138592.93 48122.540 4 4 2 0.03 0 0 0.1 0.1 0.4 0.4 1 . . . 3 3 4 163369.95 56725.680 1965.6851 4 4 2 0.03 0.03 0 0 0.1 0.1 0.4 0.4 2413.5911 181019.34 62853.940 4 4 2 0.03 - - · · · STOP 242