UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

103072

UNIDAD ACADEMICA DE CICLOS PROFESIONAL Y DE POSGRADO DEL COLEGIO DE CIENCIAS Y HUMANIDADES

AISLAMIENTO Y GARACTERIZACION DE LA SECUENCIA NUCLEOTIDICA DE Un cona de centruroides noxius hoffman que codifica para una toxina semejante a la variante 3 de centruroides sculpturatus ewing

> S F. Т S DE: OBTENER EL GRADO MAESTRIA BIOTECNOLOGIA FN Ε S E Ν Р R А CONSULTO GARCIA RODRIGUEZ MARIA CUERNAVACA, MORELOS 1993

TESIS CON FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. ESTE TRABAJO SE REALIZO EN EL LABORATORIO DEL DR. BOLIVAR, EN EL DEPARTAMENTO DE BIOLOGIA MOLECULAR Y EN EL LABORATORIO DEL DR. POSSANI, EN EL DEPARTAMENTO DE BIOQUIMICA DEL INSTITUTO DE BIOTECNOLOGIA, UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO BAJO LA DIRECCION DEL DR. BALTAZAR BECERRIL LUJAN. DURANTE EL DESARROLLO DE ESTE TRABAJO EL AUTOR FUE BECARIO DE LA DIRECCION GENERAL DE INTERCAMBIO ACADEMICO DE LA UNAM Y DEL CONSEJO NACIONAL DE CIENCIA Y TECNOLOGIA.

ESTA TESIS FUE FINANCIADA PARCIALMENTE POR LOS PROYECTOS HOWARD HUGHES MEDICAL INSTITUTE 75191-527104 DGAPA-UNAM IN202689 E IN300991 CONACyT-0018-N9105 JURADO DESIGNADO POR EL PROYECTO ACADEMICO DE ESPECIALIZACION, MAESTRIA Y DOCTORADO EN BIOTECNOLOGIA.

PRESIDENTE:	DR. FRANCISCO G. BOLIVAH ZAPATA
SECRETARIO:	DR. BALTAZAR BECERRIL LUJAN
VOCAL:	DR. ROBERTO HERNANDEZ PERNAMDE?
SUPLENTE:	DR. LOURIVAL D. POSSANI POBTAY
SUPLENTE:	DR. DAVID RENE ROMERO CAMARENA

JURADO DESIGNADO POR EL PROYECTO ACADEMICO DE ESPECIALIZACION, MAESTRIA Y DOCTORADO EN BIOTECNOLOGIA.

PRESIDENTE:	DR. FRANCISCO G. BOLIVAR ZAPATA
SECRETARIO:	DR. BALTAZAR BECERRIL LUJAN
VOCAL:	DR. ROBERTO HERNANDEZ FERNANDEZ
SUPLENTE:	DR. LOURIVAL D. POSSANI POSTAY
SUPLENTE:	DR. DAVID RENE ROMERO CAMARENA

INDICE

- RESUMEN	an a	1
- PRESENTACION	an an an an Angelan an Arran an Array a Array an Array an Arr	2
I INTRODUCCION		з
II ANTECEDENTES	and a second	5
III OBJETIVO		11
IV PUBLICACIONES		12
V METODOLOGIA		20
VI RESULTADOS Y DISCUSION		23
VII CONCLUSIONES		30
VIII REFERENCIAS		32

RESUMEN

En esta tesis se reporta el aislamiento, caracterización y determinación de la secuencia nucleotídica de dos clonas de cDNA que codifican para sendas toxinas del veneno del alacrán *Centruroides noxius* Hoffmann aún no reportadas por secuencia directa de aminoácidos. También se reporta la edición por técnicas de reacción en cadena de la polimerasa (PCR), de uno de esos cDNAs y su clonación en un vehículo de expresión con el objeto de generar toxinas funcionales por técnicas de biología molecular.

PRESENTACION

El propósito de esta tesis fue el hacer una contribución al conocimiento de la biología molecular de las toxinas del alacrán *Centruroides noxius* Hoffmann como parte de un proyecto más amplio relacionado con el estudio de la relación estructura-función de dichas toxinas. La contribución de la parte de biología molecular se centra en la caracterización de los genes que codifican para estas toxinas, expresión de genes tanto silvestres como mutantes para entonces ensayar sus productos en los modelos biológicos adecuados. Esto nos permitirá correlacionar los cambios estructurales introducidos, con la especificidad y/o toxicidad de dichas toxinas.

En esta tesis se presenta primero el marco teórico y antecedentes que sirvieron de base para elaborar este proyecto. Se anexa una copia de un artículo publicado en la revista Gene en el cual se incluyen los datos relativos a la clonación y determinación de la secuencia nucleotídica de las clonas de cDNA antes mencionadas y que fueron denominadas *Cngt*II y *Cngt*III. En la parte de metodología sólo se presentan los datos referentes a un ensayo adicional que no se planteó al inicio de esta tésis y que corresponde a la edición, clonación y expresión del gene *Cngt*II. En la discusión y conclusiones se trata de conjuntar ambos grupos de datos.

Helstoft 4

to some to another in an article in the and the and 20 constanting the also in a nation of a first first the solution of the al all a log the second hear and bear of the second of the second s 1921 1 and I bell it and Marine war land in the adapted Succession pour in a sound for a Course from the William Call THE WAAR NO W AND AND AN AN AN AN AND AN Weight in many a state of a solar and an and an and an excerniceren merelende er erstere eperadere partikale og atter tille af hallande for atte while all is within the other of the other of the other the the the the second of the the the the second of the wased and its the advector of the advector and the advector of the second states in the second states and exhiben hava ha dhenguna manana mujaha Hahin (1996). HER 10 PH (2016) numerowow trabaptor orthogonal for purplication to consider the participation of the particip of al., 1070, Percond (014) Foo from a prophetism in table spinkes so like (1944) on dos granem de nonmele a la lomplad de ser la participa participar de presente della serviciente orm, 1992, Mémor of al., 1969. En of minor milling by Antoni Inn Australe (In Alban Barga izen 12 e 19 nasialaris eta inmoriar-altasi et muantria direntitutu goisent hudhutit hille dir Ultati al canad the the discharge engineers. For the teaching opport on the philling of the first the Alex & Or & Or St. State State and State ******* Fortune (1) + CHERGER CHERGER SHERE AND THE STATE STATE STATE AND STATES AND STATES AND STATES AND STATES AND STATES AND STATES **"III" (Derails & Der Clithe, "see Filler**e bell A die Derte die Horscher dagen Aberlike die

Ą.

I INTRODUCCION

Aún cuando el número de especies del orden scorpiones es muy grande (aproximadamente 800) sólo unas 50 especies de la familia Buthidae pueden considerarse peligrosas al hombre. Estas especies pertenecen a los géneros Androctonus, Buthus, Leiurus, Parabuthus, Mesobuthus en Africa y Medio Oriente, Centruroides en México y sur de Estados Unidos y Tityus en America del Sur (Keegan 1980). Se sabe que la actividad tóxica de los venenos de alacrán es debida a la presencia de pequeños péptidos básicos de cadena sencilla que se encuentran estabilizados mediante puentes disulfuro. También se sabe que el veneno de cada especie de alacrán contiene una serie de estas proteínas neurotóxicas, las cuales presentan diferencias en la composición de aminoácidos y en el grado de toxicidad que exhiben hacia las diferentes especies animales (Babin et al., 1974). Se han realizado numerosos trabajos enfocados a la purificación y caracterización de estas toxinas (Zlotkin et al., 1978, Possani 1984). Las toxinas encontradas en estos venenos se han dividido en dos grupos de acuerdo a la longitud de su cadena peptídica (Possani 1984, Zamudio et al., 1992, Ménez et al., 1992). En el primer grupo se encuentran toxinas de cadena larga con 60-70 residuos de aminoácidos, 4 puentes disulfuro y son toxinas que se unen al canal de Na* de células excitables. En el segundo grupo se encuentran péptidos de cadena corta con 37-39 residuos de aminoácidos con 3 puentes disulfuro y que modifican canales de K⁺. Atendiendo a su mecanismo de acción y al sitio de pegado al canal, las toxinas de cadena larga se dividen en dos tipos: α v β (Jover et al., 1980, Couraud et al., 1982. Couraud v Jover 1984). Las toxinas tipo α se unen, de manera dependiente del

З

voltaje, al sitio de pegado No. 3 del canal de sodio y afectan la inactivación del mismo. Las toxinas tipo ß se unen al sitio de pegado No. 4 del canal de sodio, de manera independiente del voltaje, afectando la activación.

Al hacer alineamientos de las secuencias primarias de estas toxinas se puede observar que mantienen varias características en común, como son la misma localización general de los resíduos cisteína, un patrón similar de puentes disulfuro y la localización de algunos resíduos invariantes o conservados (Fontecilla-Camps et al., 1980). Respecto a la estructura tridimensional los trabajos de dicroísmo circular, resonancia magnética nuclear y cristalografía de rayos-X han permitido proponer la conservación de un marco estructural para todas las toxinas de alacrán, independientemente de su tamaño (Fontecilla-Camps et al., 1980, Almassy et al., 1983, Loret et al., 1990, Bontems et al., 1991). La conservación de este marco estructural se mantiene aún en ciertas toxinas contra insectos que presentan un puente disulfuro atípico (Fontecilla-Camps 1989). El interés por el estudio de las toxinas de alacrán, que en sus inicios fue motivado sólo por el aspecto médico, se ha incrementado en función de que dichas toxinas han resultado ser herramientas fundamentales en el estudio de la relación estructura-función de los canales iónicos así como su caracterización y aislamiento (Fontecilla-Camps et al. 1980. Couraud v Jover 1984. Possani 1984. Blaustein et al., 1991). Además presentan ciertas características como: tamaño pequeño, alta estabilidad, selectividad y especificidad que las perfilan como proteínas modelo para el estudio de la relación estructura-función pues nos ofrecen la posibilidad de introducir nuevas funciones baio un mismo tema estructural (Zlotkin et al., 1978, Ménez et al., 1992).

II ANTECEDENTES

II.1.- Al iniciarse el presente trabajo el grupo del Dr. Baltazar Becerril contaba ya con un banco de cDNAs, del alacrán *Centruroides noxius* Hoffmann, el cual fué construido en el fago gt11 aprovechando su alta eficiencia de empaquetamiento *in vitro* de DNA como un método para introducir los genes de las toxinas del veneno de este alacrán a una cepa de *E. coli.* Se utilizaron aproximadamente 800 glándulas de organismos 7 días después de la extracción del veneno, tiempo necesario para la regeneración de las células glandulares, concomitante con un importante incremento de la concentración de mRNA que codifica para las toxinas.

Se contaba también con la secuencia nucleotídica de la clona *Cngtl* la cual se obtuvo de una búsqueda en la que se utilizó como sonda un oligonucleótido diseñado a partir de la región carboxilo de la toxina II.9.2.2 (resíduos 42-48) cuya secuencia primaria había sido determinada por el grupo del Dr. Possani (Possani *et al.*, 1981). Dicha clona se encuentra truncada y codifica para la región carboxilo de una proteína del resíduo Cis 25 al Ser 66 los cuales presentan una alta similitud (40 de 41 residuos son idénticos) con la región equivalente de la variante 3 del alacrán *C. sculpturatus* Ewing (CsEv3)(Fig.# 1), cuya secuencia de aminoácidos se conoce (Babin *et al.*, 1974).

II.2.- En el veneno de *C. sculpturatus* se han encontrado varias toxinas, algunas muy potentes contra vertebrados como son las toxinas I, II, III y IV, así como tres toxinas denominadas variantes 1, 2 y 3 las cuales presentan una baja actividad contra insectos y aún más baja contra vertebrados (Babin *et al.*, 1974). Esta mínima toxicidad en

Fig.# 1 Comparación de la secuencia de aminoácidos de las toxinas CsEv3 y II-9.2.2 con la secuencia deducida a partir de la secuencia nucleotídica de la clona Cngtl. Utilizando las cisteínas como punto de alineamiento. Las asteriscos marcan las regiones para la cual se diseñaron los oligos. vertebrados las hace buenos candidatos para los ensayos de protección en mamíferos. Con respecto a su estructura, las variantes fueron consideradas toxinas B sin embargo los ensayos electrofisiológicos mostraron que su mecanismo de acción es tipo α (Meves *et al.*, 1984).

El aspecto más importante de la toxina CsEv3 es que su estructura tridimensional ha sido determinada (Fontecilla-Camps *et al.*, 1980, Almassy *et al.*, 1983) mediante cristalografía de rayos-X, de alta resolución (1.8 Å). Los rasgos más prominentes de la estructura secundaria (Fig.# 2) son: dos y media vueltas de hélice α que incluye del resíduo 23 al 31, una corta lámina β plegada de 3 hebras antiparalelas que comprenden del resíduo 1 al 4, del 37 al 41 y del 46 al 50. La lámina β plegada corre aproximadamente paralela a la hélice α y ambas se conectan mediante dos puentes disulfuro de las cisteínas 25 a la 46 y de la 29 a la 48. Cerca de esta región se encuentra un tercer puente disulfuro que se forma entre las cisteínas 16 y 41. Además la molécula presenta tres vueltas reversas que incluyen los resíduos 31 a 34, 42 a 45 y 52 a 55.

II.3.- Al momento de iniciar este trabajo existía ya un reporte sobre clonación y expresión de toxinas de alacrán. En dicho trabajo (Bougis *et al.*, 1989) parten de un banco de cDNAs del alacrán norteafricano *Androctonus australis* Hector para aislar una serie de cDNAs que codifican para 6 toxinas diferentes, 4 contra mamíferos y 2 contra insectos. Este fue el primer trabajo que mostró la existencia de precursores para las toxinas de alacrán y sugiere un posible procesamiento de estos precursores para llegar al péptido maduro.

Logran la expresión de una toxina biológicamente activa, en células COS-7. Sin embargo mencionan que la cantidad de proteína obtenida sólo permitió hacer el ensayo biológico

Fig.# 2 Representación esquemática de la estructura de la toxina CsEv3. La hélice- α se representa como un cilindro; las tres hebras antiparalelas de la lámina ß plegada se representan por medio de flechas y los puentes disulfuro están representados por las barras negras. N= extremo amino y C= extremo carboxilo.

y no fué posible hacer la caracterización de la proteína recombinante.

II.4.- Por último, otro dato que apoyaba la viabilidad de este proyecto fue la distribución del género *Centruroides* (Fig.# 3). Se encuentran en nuestro país 28 especies de este género, 8 son peligrosas al hombre incluyendo al *C. sculpturatus* Ewing., el cual es considerado por varios autores como de Arizona y Nuevo México pero hay reportes de su presencia en Sonora y hasta Sinaloa. Por lo tanto si el *C. noxius* se localiza en Nayarit y el *C. sculpturatus* Ewing de Sonora a Estados Unidos se puede pensar en que son especies cercanas, sobre todo por estar considerado México como el centro de radiación del género (Keegan 1980)

Fig.# 3 Mapa de la distribución geográfica del género Centruroides.

III OBJETIVO

Aislar y secuenciar un cDNA que codifique para una toxina semejante a la variante 3 del alacrán *Centruroides sculpturatus* Ewing (CsEv3) de un banco de cDNAs de *Centruroides noxius* Hoffmann.

IV PUBLICACIONES

VI.1.- Becerril, B., Vázquez A., García C., Corona M., Bolivar F. and Possani L. D. "Cloning and characterization of cDNAs that code for Na⁺-channel-blocking toxins of the scorpion *Centruroides noxius* Hoffmann". Gene (1993). En prensa.

GENE 07136

29 MAART 1993

Cloning and characterization of cDNAs that code for Na⁺-channelblocking toxins of the scorpion *Centruroides noxius* Hoffmann

(Recombinant DNA; Agt11 cDNA library; Southern blot genomic analysis; nucleotide sequence; polymerase chain reaction; toxin gene evolution; introns)

Baltazar Becerril, Alejandra Vázquez, Consuelo Garcia, Miguel Corona, Francisco Bolivar and Lourival D. Possani

Instituio de Biotecnologia, Universidad Nacional Autônoma de México, Cuernavaco, Morelos 62271, Mexico

Received by L.K. Miller: 23 September 1992; Revised/Accepted; 19 January/20 January 1993; Received at publishera: I March 1993

SUMMARY

With the purpose of studying the organization and characteristics of the genes that code for toxins present in the venom of the Mexican scorpion, Centruroides noxius Holfmann (CnH), we prepared a λ gl11 cDNA library from the venom glands. Using specific oligodeoxyribonucleotides (oligos) designed according to known amino acid (aa) sequences of CnH toxins (STox), we detected several positive clones, determined their nucleotide (nt) sequences and deduced their aa sequences. A comparative analysis of these sequences with previously reported STox revealed that CnH cDNAs code for a family of very similar STox. The cDNA coding for a known STox, II-10, was cloned. Additionally, three other complete (new) nt sequences were obtained for cDNAs encoding peptides similar to STox 1 from CnH or variants 2 and 3 from Centruroides sculpturatus Ewing. Southern blot genomic DNA analysis showed a minimum size of approximately 600 bp as *EcoRI* fragments for elements of this family. PCR amplifications of CnH genomic DNA and hybridization of PCR products with specific probes indicated that the genomic structural regions that code for these genes do not contain introns, or at least not large introns.

INTRODUCTION

Of the 134 species and sub-species of Mexican scorpions, only eight are dangerous to man (Dehesa-Dávila, 1989). Species which cause the most frequent cases of scorpion poisoning in Mexico belong to the Centruroides genus. They represent a serious health problem with more than 200 000 people stung per year and a mortality rate of 700-800 people per year (D. López- Acuña and A. Alagón, communicated during the technical session of the Sociedad Mexicana de Salud Pública, Mexico City, March 1979).

Scorpion venoms constitute a rich source of low-M, peptides toxic to a variety of organisms including man (Miranda et al., 1970; reviews by Zlotkin et al., 1978; Possani, 1984). The most dangerous scorpion venoms so

Centruroldes sculpturatus Ewing; Cas, Centruroldes auffutus suffutus; citad DNA, call thymus sonicated and denatured DNA; Denhard's solution, 0.02% cach of bovine serum albumin/ficoll/polyin/plyprolidone; EtdBr, chidium bromide; kb, kilobase(a) or 1000 bp; N, any nucleoside; nt, nucleoside(c), oligoe, osigoetcoxyribonucleoside; PCR; polymeraus ethain reaction; SDS, sodium dodecyl sulfate; SSC, 0.15 M NaC/0.015 M Nay citrate pH 7.6; SP, signal peptide(s); SToa, scorpion toain(s); T_{am} netling temperature (temperature at which SOV of the hybrids formed between (two nucleic acids are disposited).

(right hand col. shert)

Correspondence to: Dr. L.D. Possani, Instituto de Biotecnologia, UNAM, Av. Universidad 2001, Apartado Postal 310-3, Cuernavaca, Morelos 62271, Mexico. Tel. (52-73) 172799; Fax (52-73) 172388; e-mail: postani@ptr322.teingebi.unam.mx

Abbreviations: 48, amino acid(s); bp, base pair(s); CDNA, DNA complementary to RNA; Cli, Centruroldes limpidus tecomonus; Cngt, cDNA from Cnil cloned into Agil 1; CnH, Centruroldes nozius Hollmann; CSE

far studied have been shown to contain two kinds of STos: long-chain polypeptides of 60-70 aa which block Na*-channels of excitable cells (Catterall, 1977; Couraud et al., 1982) and short-chain peptides of 37-39 aa affecting K*-channels (Carbone et al., 1982; Possani et al., 1982; Miller et al., 1985; Gimenez-Gallego et al., 1988; Strong et al., 1989). Recently, Valdivia et al. (1991) demonstrated the existence of another class of polypeptides in the scorpion venom that activates the Ca²⁺-release channel of the sarcoplasmic reticulum.

Nevertheless, the most thoroughly studied STox are those that modify Na^{*}-channels and were classified as α and β -STox (Couraud et al., 1982; Wheeler et al., 1983). This classification was proposed based on the existence of two different binding sites on the Na^{*}-channels for the α - and β -toxins (Jover et al., 1980; Couraud et al., 1982). α -STox modify mainly the inactivation mechanism of the Na^{*}-channels (Nonner, 1979), while β -STox preferentially alter the activation mechanism (reviewed by Meves et al., 1986; Strichartz et al., 1987; Thomsen and Catterall, 1989).

Our group has contributed during the last decade to the knowledge of the structure-function relationship of the toxins from the venom of Mexican scorpions (Possani, 1984; Zamudio et al., 1992). A few regions involved in toxicity or antigenicity have been mapped in these STox using synthetic peptide and monoclonal antibody approaches (Gurrola et al., 1989; Possani et al., 1991). The possibility of using modern molecular biology strategies for cloning, directed mutagenesis and expression of specific STox-encoding genes or gene fragments in order to use the purified products to verify their interactions with ion channels has greatly motivated our work.

The aim of the present study was the isolation and characterization of several cDNAs from the Mexican scorpion Centruroides noxius Hoffmann (CnH) and an initial characterization of the genomic region encoding these cDNAs.

RESULTS AND DISCUSSION

(a) Isolation of cDNA clones encoding STox peptides

A degenerate oligo probe coding for aa 42-48 of STox Cn2, which are well-conserved among Centurvoides toxins, was used to screen a $\lambda g(1)$ CDNA library prepared from CnH venom glands (legend to Fig. 1 and Fig. 2). From this screening we detected several positive signals with different intensities; we decided to characterize first the clone that gave the strongest signal. This clone was named Cng1 and had an insert of approximately 230 bp. This insert was subcloned into the *EcoRI* sites of M13mp18 and M13mp19, and its nt sequence was determined. When the aa sequence from this cDNA was deduced, we found the target sequence (aa 42- 48 of Cn2); however, the entire sequence did not correspond to Cn2. Cngil was a truncated clone that contained the sequence for a (new) Na*-channel-blocking STox cDNA coding from aa 25 through the polyadenylation site. A comparative analysis of the deduced as sequence of clone CngtI with reported STox an primary sequences revealed that from 41 aa encoded by this clone, 40 aa were identical with the STox variant 3 of C. sculpturatus (see Fig. 2), whose three-dimensional structure is known (Fontecilla-Camps et al., 1980). To explore the possibility of isolating a complete cDNA that encoded a STox closely related to CsE variant 3, we decided to use the Cngtl insert as a probe to screen the cDNA library under conditions of high stringency in order to isolate clones highly homologous to the Cngil insert. From this second screening, we isolated several positive clones.

The next step consisted of probing Southern blots of digested DNA of the isolated positive clones with a variant 3-specific oligo (designed from as 10-16; see Figs. 1 and 2). Two positive inserts with a size adequate to encode a complete STox sequence were subcloned into the EcoRV site of pBluescript (pKS, Stratagene, La Jolla, CA). They were called Cngt11 and Cngt111.

From this second screening, two less strongly positive clones were isolated, subcloned and sequenced. They were called CngtIV and CngtV. The nt sequences of clones CngtII through CngtV are shown in Fig. 1. These cDNAs are about 350 bp in length and encode STox precursors of 86-87 aa.

It has been proposed, based on the analysis of their cDNA sequences, that STox might be synthesized as precursors with a signal peptide (SP) of 18-19 aa (Bougis et al., 1989; Gurevitz et al., 1991). CnH SP sequences met all the requirements for cukaryotes as proposed by von Heijne (1986).

In the case of STox that affect mammalian Na⁺-channels (Bougis et al., 1989) and in the case of a STox that affects insect Na⁺-channels (Gurevitz et al., 1991), it has also been observed that they have extensions at their C-terminal ends: Arg, Gly-Arg or Arg-Lys. These basic residues are not present in the mature peptides and when Gly precedes a basic residue, the residue becomes amidated at the C terminus (Bougis et al., 1989).

Of the STox coded by the cDNAs shown in Fig. 1, only CngtV was thoroughly studied. It corresponded to STox 11-10 (Possani et al., 1981), a Na⁺-channel effector (Carbone et al., 1982; 1984), whose complete primary aa sequence has been determined (A.V., B.B., B. Martin, F. Zamudio, F.B. and L.D.P., manuscript in preparation). As shown in Fig. 2, the deduced aa sequences of these cDNAs are closely related to *Centruroides* STox that have

.... 25 - 24 • • • 1.2 52 44 CRETATO * * * * * è. 2 A M & L & M T T A C & T L E T Y M A A E O T L V M A A T O C Υ. ā ۱. 1 ۰. . ALLER OF THE THE THE THE è A T T THE A L D G I L V U Y TALL antaleteriterialetericeretiter 1 6 3 6 4 1 ٤. 1 4 c

			78				a						1	••				110			1	120			ı,	۰,		۱	49			• •	•			1.	•			v,	•			123	
Ser Coyell		ANCO	شد	×r	in		in	ų,	n.c	m	a		w	w.		، ن ېن	m	ند،					w.	-	in t	tti	زمين	1.4	ŵ			ر. ا	in		cç.		اند	<u>م</u> د ا		iur	i.	A11	çe	: ri	ee t
Cogt111	• •	4420	in.	2.1	e sca	ATA	ĥæ	ů.	rec	эñ,	200	uî.	ألمت	we	e	المدة	نة لانا	113	TT	1.00	ů.		e Ker	i.	à,	ŵ		a Sa	÷.		u.	د شنه	11	i.	ά.			140	انه	lu.	; ; r (415	έĢ	ein	άı
CogtIV		1100	ATT	111	in.	D Ata	3	Ľ.	ñic	ŵ	. A . 170	a.		60	e 	ية. دن	ي. درن	6 1 a j	rt	1 404	ۍ ایانه		e Net	N FAGN	ini.	،	نې نېن	n.	LA:	ې ۱۳۷۱	اند اندا	ii Arris		L [4 1-		а 147-		r NC	ا	i.	ι . 11	5	÷.	en	de la
CARLY		ALCO	an	1 117	с Сст	N TVLA			ñ		CA:		ат) аті		а 		لو لارت	8 1.00	n.	۱ ۵۵۰	ن ایرند	1.1	C NTT	n Inci	3	ú	ŵ	i nor	-	an An	1	ن م تند	1	ι 191		in.		تمار	نب	t Imi	t K	*	t.	ene	
		M	\$	•	C	L	A	£	¢	N	0	e	1		u **	X	Ĩú.			Ú.	6	۲	¢	۲	۸	F	ú	¢		¢	1	H		•	۰.	8	J	*		۷.	•		۲	r	•
			1.00			10				21a			,	10				1 J V										,									•							199	
11		AA12	un	ctt	ce 1	ç CA	in	u	144	ni	c.s.	<u>ار د</u>	AC1		T - J	A T 1	1 1	114	we.	.	: Ad	ui		na ti	112	ώT	141	taŭ	th	sen:	1 1			•••										•	

MTALLARATOCASCHILLARTANDSSEAR CAST ITT FATTURES ATANASAHAATATISTAN SETTE ITAN ISEAN TAANASATAANAANAA 111 TCILLIAN

17 ARTAAAATGEOGEOGAAAATAATGGE AACGACTYTYTYTATGECEACCAACAAAATAGTGTAACGETETTATTV CAAGTAAAAAA

e . c 0 v

ΑΤCONCOCAMATATYGCA.COACTTTTTATTGCCCACCAACAGAATATTGTAATGCTTVTIAATTCAATTAAATGAATTAAATGAATAAAA T C N C X and

Fig. 1. Nucleotide sequences of clones Creftl - Creft and their deduced as sequences. SP sequences are underlined. The overlined at sequences [1-2] and 246-266 (complementary)] were used to synchesize PCR primers. Precursor peptides start at 1 (bold number) on the left side of Crettl and Anish with an residue \$7 (bold number) to the right of the Creeff sequence, Polyadenviation signals (AATAAA) are doubly underlined. Methodas The screening of the cDNA library was carried out in two ateps. In the first step, we analyzed approximately 30000 plaques with a mixture of oligo probes designed from a conserved region of Call STox; no 42-48 in Fig. 2 (3-TASGENTISGENTOFTGETG, where N = A,G,C or T). Probes were synthesized on a Mycrosyn 1450A DNA synthesizer by B-cyanoethyl phosphoroamidite chemistry and 12P-end-tabeled by T4 polymocleotide kinase. Replica filters were prehybridized for 2-8 h at 37°C in 6 x SSC pH 7.6 containing 5 x Denhardt's/0.1% SDS/100 µg per ml call thymus sonicated and denatured DNA (ctid DNA)(0.05% sodium pyrophosphate. Filters were then hybridized in 6 + SSC pH 7.6/1 + Denhardt'/100 pg per mi ctad DNA/0.05% sodium pyrophosphate/21P-end-labeled oligo probe for 12-16 h at 31°C. Successive washes were performed in 6 × SSC pH 7.6/0.05% Na pyrophosphate/0.1% SDS at 37°C for 3 min and once at 42°C for 5 min before autoradiography using X-AR film with intentifying screens for 18 h at -70°C. The second step of library screening consisted in the isolation of clones similar to the positive clone Cart identified in the first step (oligo screening). Positive clones were hybridized with an oligo probe designed from m 10-16 of C. sculpturatus variant 3 (CaEv3) from Fig. 2 (S'-GASGGNTGSAASTSGGNTG). Prehybridization and hybridization conditions for the double-stranded probe (Carl intert) were similar to those just described except that incubation was at 42°C in the presence of 50% formamide. The pre- and hybridization conditions for CrEv3 oligos were the same as in the first step of library screening. Positive clone inserts were amplified by PCR using Agill forward (S-GGTGGCGACGACTCCTGGAGCCCG) and reverse (5'-TTQACACCAOACCAACTGGTAATG) primers (New England Bio-Lata). These primers hybridize with the flanking regions of the Agt11 EcoR1 cloning site. The annealing temperature depended on the Ta of the primers but typically was 50°C. The reactions were performed in a programmable heating chamber (lliosycler) using 30 rounds of temperatura cycling (92°C for 1 min, 30°C for 1.5 min and 72°C for 3 min) followed by a final 10-min step at 72°C. At recommended by the manufacturer, we used 300 ng of each primer/300 ng of template DNA/2.5 units of Vent polymerase (New England Bio-Laba) in a final vol. of 100 pl reaction buffer, These PCR products were purified from get, blunt-ended with T4 DNA polymerase and subcloned into the Eroky site of offlurscript phagemid (Stratagene, La Jolla, CA). The lightion reaction was used to transform competent E, coll DH5-a cells. The subcloned DNA was sequenced using the Sequenase kit (US blochemical, Cleveland, OH) on both strands. The Agt11 forward and reverse oligo primers were used for sequencing. Since the PCR reaction is known to be associated with a relatively high rate of nu minincorporation, we performed the PCR amplification experiments with Vent polymerase instead of Tag polymerase, and several independent clones were sequenced. The Cog11-Cog17 at sequences were deposited with the Gentlank Nuclsofilde Sequence Database under accession Nos. L03060-L03063, respectively.

been characterized. As can be seen in Figs. 1 and 2, the four final C-terminal residues for STox 11-10 (CngtV) are Cys-Asn-Gly-Lys. It has been determined that the Asn residue is amidated at the C terminus in the mature II-10 STox (A.V., B.B., B. Martin, F. Zamudio, F.B. and L.D.P., manuscript in preparation). Now that the cDNA sequences encoding both North African (Bougis et al., 1989; Gurevitz et al., 1991) and North American (this study) STox are available, we can surmise that C-terminal STox processing follows the rules previously proposed by Bougis et al. (1989). Additional processing consists of the removal of the SP.

Mature peptides encoded by the cDNAs shown in Fig. I would be 66 na residues in length for Cagili, Cogtill and CogtV and 65 and residues for CogtIV, Comparative analyses between these sequences reveal that Cogt11 and Cogt111 are 92% similar at the nt level, and the peptides encoded by these cDNAs are 91% similar. Also, CnetIV shares 80% similarity with CnetIII at the at level and 68% at the an level. Similar results are obtained when CngrV is compared. In spite of a lower similarity at the an level between the peptides encoded by Cagill (or Cagilli) and CagilV (or CagiV), the similarity at the nt level (at least 80%) suggests that these

	-	60			20			-4	•		•	30			- 2	10			- 1	۰			1			10			- 2	16			30			- 41	٥			30			60	
		:.			· ·							<u>.</u>				•				•			÷		· · · ·	<u>.</u>				÷							•		_			-		
	un	T, A,	GAT		TCC	:m	π	i A TI	MI	CVC	ICC	TTG	11	TGT	TCC	:10/	110	xcc.	MC	AGT	GTO		c.v.	vic.	NC	611	ATC	TCC	12	vc	uc.	CC:	NCC	ccc	TOC.	w.	1 NO	OGT	tec	£π	ATA.		~~~	~~~
		1		<u> </u>	<u> </u>	<u> </u>	L	_		_ T				L	f	ι_	1	<u> </u>		<u> </u>			<u>,</u> 1	()	6 (5	¥.	£ .	v	N.	x	8	Τ.	G	c	ĸ	¥.	c	С	L	- L	L.	•	. .
			ay to		100	:110	110	AT	AT	CAC	tcc	110	11	TCC	TCC	TAT	ΠC	ŝ	wc	AGT	CTC	600	cuu	uc.	щс	CTT	A7(TCC	11	чc	uci	ŝ	1C7	ccc	rcc.	~	5YC	ost	100	:110	TOC	ne	cα	
						L	Ŀ	_N	-					L	<u>×</u>	L_	<u>r</u>	<u> </u>	. 7	<u>v</u>			<u>,</u> 1	•	c (6	¥ .	L	v	N	ĸ	8	τ	6	c	ĸ	۲.	6	C	<u> </u>		<u> </u>	<u>د</u>	
			- 16	AAT	TCC	110	i T	IA TO	AT	CAE	TGC	TTG	11	TGG	tct	TCI	ATC	CC.	~~~	AG 7	610	CC	cm	vcc.	ACC	GTT	ATC	TCC	TCC	200	37A-	•••	w.c	ccc	100	***	ALC:	AAT	TCC			TTC-	ŝ	~~~
						<u> </u>	r.	1	- 1					L	<u> </u>	٤	1	<u> </u>					<u>,</u> 1	κ.	D	G	Υ.	r.	v	D	v		Χ.	G	c	ж.	_ X _		. с	. T.		<u> </u>	<u>.</u>	- E
		GAU	MIG	i i i i i i i i i i i i i i i i i i i	160	110	π	IA TO	AT	연	τeć	TTG	11	TCC	çcc	100	- TC	εĢ	<u>مد</u>	ACT	CIC	cci	ŝ	LCC.		ςπ	ATC	700	71	MC:	LCC.	IAC.	vēc	ççc	tec.	***	TAC	ŝ	100	лŋ		πo	ŝ	÷
			<u> </u>		<u> </u>		-		-		_^	_	_	L	<u>. </u>	L	<u>×</u>	G		<u> </u>			<u>, </u>		5	6	Ŧ	L	۷.	ж	s .	τ.	Ŧ	c	c	ĸ			¢			5	-	
					•			••				•																									-							
											•				100	,			110				20			1 10			1.				1 30											<u> </u>
- Corti	12		AND	644	čce	TGO			2.1	h Tra		ice	r.a.		• ~ ~		-		• • ċ	 .		~	·				**/	~~~	-	÷.				***		***	i			uni-	****	rrr	r mi	-
		41		E	a	c	D	×		č	ĸ			K		0	6	~	·~			~ "	· · ·		~~~		÷.,	~,	~		~	~	~~~	"L		Ŧ	7.	Ŧ			7		~Ľ	÷.
Coeti	111		***	ىتە	600	TGC	GAT		κū	TG	-	AGC	C .J.	KCA.			÷.	<u></u>	7 A.C	TTA	cc	CT			ice				ČC 1	-ca-			CCT.	τīo	ċċc	cãa	8ČT	10.0	rin (:	27Å7	eče.	CT1	CCT.
			- 14	E	6	c	D	K	r	c	x			κ :	H	0	G	- e			6		Υ .				÷	<u> </u>	~		~		<u> </u>	1.	-			-	-	T	Ŧ		L	
Cngll	IV .			GAT	741	TCC		ACC	κū	NTG	cuï	AAT	2	inc	ACC	ČA (ΞGA	<u>م</u> ع	TAG	TTÀ	ccē	сŦ	ATT	CT.	ince.	CAT	770		inc.	TAT:	TOT:			TTA	100	6	AĞ7	IAČA	сċс	aēt	нċс	сēс	ε'n	CCT
-			н	D	Y	c	N			Ċ	ĸ	H	É I	ĸ	×	R	6	G		Y	6		r e		¥ 1	<u> </u>	r''	6	ē	¥	c	r	6	L		D				T			L	
CARLY	1		***	GAT	TAT	TGC	110	100	CA.	TG	ŝ	ACA	cc/	NGT.	ACG	c.	ū	cc:	rcc	TGO	ccā	CT.	ATT	277.	ACC.	ĊŦŦ	110		Ge 1	rcc:	ičci		CAT	TTC	TÃC	مآما	ىتە	сċс	CT(:cic	2766	ccc	CTT	
			*	Þ	۲	c	L	R	ε.	c	×	0	•		۲	~ء	x	٦ċ.	Ā	Ģ			۲ (:	¥.	A .	r	G	c		¢	T	ж	1	Y	3	Q		۷	v	w	2	L	ĸ
																																					-							
				19	•		- 4	00			21	8			220	<u>ا</u>		- 2	330			2	40			230			24	60			270			28	0		2	190			300)
					•			•				•													_					•			•				•			•				,
			1	~~~	tet	1100	ACC	30	w	NTA.	ATC	GCA	vc	GAC	111	rt-1	ATT.	GT	778	c	JCA	S.	AAT.	ATT	GTA	ACC	ĊT	1611	2	110	CAC	TTA.	AA T	~~~	*	***	***	arr						
		41	. N .			_ c		ĸ	. ×.	•	4 4	7																																
1	11		AA1	***	vči	1100	AGO		ŝ	ATA	ATC	GC A	AC	s.c	111	111	ATT.	GT	CCA	78.	ມເມ	10.1	***	ATT	GTA	ACO	C 71	1011	. **	TTG	CAG	T7A	**1	CV7	ATA	<u> </u>	100	788	1744	2CA1	TTAN		w	~

N K T C J K K 400 NATAAAAGATGCGGGGGAAAATAATGCGAACGACTTTTTATTGTCCACCAACAGAAATAGTGTAACGCTTCTTAATTCCAAGTAAAAAAA N K K C G G K k 400

V ATTALICATECHCEGALUTATEGCALCGACTTTTTATEGCCCACCAGAMTATEGTALCCCTTCTTATTTCMTTALATGALTALATA-TTATECCTTTALAAAAAA... H K T C H G K and

Fig. 1. Nucleotide sequences of clones Cagell-CageV and their deduced as sequences, SP sequences are underlined. The overlined at sequences [1-21 and 246-266 (complementary)] were used to synthesize PCR primers. Precursor peptides start at 1 (bold number) on the left side of Cagill and finish with an residue \$7 (bold number) to the right of the Crigill sequence. Polyadenyiution signals (AATAAA) are doubly underlined. Methoda: The screening of the cDNA library was carried out in two steps. In the first step, we analyzed approximately 30,000 plaques with a mixture of oligo probes designed from a conserved region of CnH STox; at 42-48 in Fig. 2 (3-TASGCNTTSGCNTGSTGGTG, where N = AG,C or TJ. Probes were synthesized on a Mycrosyn 1450A DNA synthesizer by B-cyanoethyl phosphoroamidite chemistry and 32P-end-labeled by T4 polynucleotide kinate. Replica filters were prehybridized for 2-8 h at 37°C in 6×SSC pH 7.6 containing 5×Denhardt's/0.1% SDS/100 ug per ml call thymus sonicated and denatured DNA (ctsd DNA)/0.05% sodium pyrophasphate. Filters were then hybridized in 6 x SSC pH 7.6/1 x Denhardt's/100 µg per ml cted DNA/0.05% sodium pyrophosphate/22P-end-labeled oligo probe for 12-16 h at 37°C. Successive washes were performed in 6×SSC pH 7.6/0.05% Na pyrophosphate/0.1% SDS at 37°C for 5 min and once at 42°C for 5 min before autoradiography using X-AR film with intensifying screens for 18 h at -70°C. The second step of library screening consisted in the isolation of clones similar to the positive clone Corel identified in the first step (oligo screening). Positive clones were hybridized with an oligo probe designed from nt 10-16 of C. sculpturatus variant 3 (CsEv3) from Fig. 2 (5'-GASGGNTGSAASTSGGNTG). Prehybridization and hybridization conditions for the double-stranded probe (Carl insert) were similar to those just described except that incubation was at 42°C in the presence of 50% formamide. The pre- and hybridization conditions for CaEv3 oligos were the same as in the first step of library screening. Positive clone inserts were amplified by PCR using Agt11 forward (5'-GGTGGCGACGACTCCTGGAGCCCCG) and reverse (5"-TTGACACCAGACCAACTGGTAATG) primers (New England Bio-Labs). These primers hybridize with the flanking regions of the Agt11 EcoRI cloning site. The annealing temperature depended on the Ta of the primers but typically was 50°C. The reactions were performed in a programmable heating chamber (Biosycler) using 30 rounds of temperature cycling (92°C for 1 min, 50°C for 1.5 min and 72°C for 3 min) followed by a final 10-min step at 72°C. As recommended by the manufacturer, we used 300 ng of each primer/500 ng of template DNA/2.5 units of Vent polymerase (New England Bio-Labs) in a final vol. of 100 µl reaction buffer. These PCR products were purified from gel, blunt-ended with T4 DNA polymerase and subcloned into the EcoRV site of pBluescript phagemid (Stratagene, La Jolla, CA). The ligation reaction was used to transform competent E. coll DH5-a cells. The subcloned DNA was sequenced using the Sequenase kit (US Biochemical, Cleveland, OH) on both strands. The Agt11 forward and reverse oligo primers were used for sequencing. Since the PCR reaction is known to be associated with a relatively high rate of nu misincorporation, we performed the PCR amplification experiments with Vent polymerate instead of Tag polymerase, and several independent clones were sequenced. The Cngill-CngiV nt sequences were deposited with the GenBank Nucleotide Sequence Database under accession Nos, L05060-L05063, respectively.

been characterized. As can be seen in Figs. 1 and 2, the four final C-terminal residues for STox II-10 (CngtV) are Cys-Asn-Gly-Lys. It has been determined that the Asn residue is amidated at the C terminus in the mature II-10 STox (A.V., B.B., B. Martin, F. Zamudio, F.B. and L.D.P., manuscript in preparation). Now that the cDNA sequences encoding both North African (Bougis et al., 1989; Gurevitz et al., 1991) and North American (this study) STox are available, we can surmise that C-terminal STox processing follows the rules previously proposed by Bougis et al. (1989). Additional processing consists of the removal of the SP.

Mature peptides encoded by the cDNAs shown in Fig. 1 would be 66 aa residues in length for CngtII, CngtIII and CngtV and 65 aa residues for CngtIV. Comparative analyses between these sequences reveal that CngtII and CngtIII are 92% similar at the nt level, and the peptides encoded by these cDNAs are 91% similar. Also, CngtIV shares 80% similarity with CngtIII at the nt level and 68% at the aa level. Similar results are obtained when CngtV is compared. In spite of a lower similarity at the aa level between the peptides encoded by CngtII (or CngtIII) and CngtIV (or CngtV), the similarity at the nt level (at least 80%) suggests that these

	Group			10	20	30	10	50	60	
		Cnl	KEGYLVDI	OTGCXT	ECLALGO	TOTCLAZCE	OGYRGACGYC	TAFACHCTHL	EDATVWELPHKAC	3
New Argent		Castl	REGYLVS	STOCK	CLELGO	DICLASCA	OYGKSAGGYC	TAFACUCTULI	COAVWPLPHATC	×
		C22111	KEGYLVSI	STOCKY	ECLELGO	DYCLRECK	OYCHSSCOTC	YAFACUCEAL	DHTOWN-VPHX-C	т
	1 -	Citi	KEGYLVNI	STOCK	ECTRIGO	DICLAICAD	OTGRGAGGTC	YAFGCWCTHL	LOAVVWPLPHATC	\$
		Cn3	REGILVEN	GTGCKY	ECFRIGD	DYCLASCKA	ATGREAGETC	TAFGEWETOLT	EOAVVNPLKNATC	R
		CngtV	REGYLVNS	SYTCCK	ECTALGO	DICLASCA	OTGRGAGGTC	TAFGENETHLI	EGAVVNPLINKTC	HGK
		Cons.1	KROYLVXX	US TOCK	TCLELGO	DICLARCE	OTGREACET	TAFACHCTRL	TOAVVIT LEMETC	
								G		
					•				•	
				10	20	30	40	50	60	
		Catvi	KEGYLVKI	(SDGCK)	PCENEGR	NEHCHTECKA	KHOGGSYOYC	YAFACHCEGLI	LITETTELENK-C	
		CAULI				CDKECK	LICHOGGSTGTC	YAFACWCEGLI	ESTITLILIANESC	GRK
		ChgtIII	REGYLVHI	STGCK	GCINLGR	NEGCORECKA	AKHOGGSYGYC	TAFGENCEGLI	ESTPTYPLPHETC	SKA
	-	Calvi	REGILVNI	STOCK	CLADE	REGEDRECK	NNOGGSTGTC	TAFACWEEGL	LSTPTTPLPHA-C	
		Charles	REGILVAN	ATUCK	CLUDGE	NECCORECIO	KNOGGSTGIC	TAPOCHCEGLI	ESTETTELPAREC	PAK.
		CJEVJ	ALGILVA	SOGLE	CONTRACT	NEGEDTECK		TAPACHCEGE	LITTLELEWARD	
		CONS. 2	ALGILVH				000000000000000000000000000000000000000			
				10	20	. 30		50	60	
		CaEl	KDGYLVE	K-TGCKI	TCYNLGE	NDECKARCKY	*KHIGGSYGYC	TGFGCYCEGL	DSTOTWPLPHR-C	
	1	CngtIV	KDGYLVD	/-KGCKI	NCYRLGE	NDYCHRECK	IXHRGGSYGY	TOFGCTCEGL	IDSTRTWPLPHKNC	GGX
	-	Cnl	KDGYLVDJ	-KGCKJ	NCYKLOK	NDYCHRECR	UKHAGGSYGY	TOFOCICEGL	DSTPTWPLTNKTC	
		Cons.3	KDGYLVD)	(-XGCIU	OCTALGE	IOTOHRICK)	OUDIGGSYGYC	TOPOCYCLEL	IDSTRINPLISHED.C	XGK

Fig. 2. The as sequence comparison of principal representatives of Centrwoides STox. Toxin sequences were grouped according to their similarities. Gaps (-) were introduced to maximize similarities, Below each similarity group, the construut sequence is shown in bold. The as sequences deduced from CDNAs are included. The CARIV deduced primary sequence has been corroborated by direct as sequence of the mature STox (A.V., B.B., B. Martin, F. Zamudio, F.B. and L.D.P., manuscript in preparation). Data are from this study. Meves et al. (1984) and Zamudio et al. (1992). In consensus sequences, X represents a variable residue. The sa are aligned with the last digits of the numerals.

cDNAs originate from mRNAs transcribed from closely related genes. Comparative studies with the North African Androctonus australis Hector STox cDNAs show that although the regions encoding mature peptides are more variable, the nucleotide sequences encoding SP and the 3' non-coding regions are relatively well-conserved (data not shown). The cDNAs encoding STox 1, 1', 11 and 111 of A. australis Hector (see Bougis et al., 1989) have a similar variation in the regions that code for the mature peptides, but those encoding the SP and the 3' noncoding regions are also well-conserved. These results indicate that both scorpion species (A. australis Hector and CnH) have followed a similar strategy to generate variation in their STox; gene duplications and independent evolution of the duplicated genes.

(b) Deduced as sequences derived from cDNAs. Analysis and comparison with different *Centruroides* primary STox sequences

In order to compare the aa sequences derived from the cloned CnH cDNAs, different Centruroides STox were grouped according to their similarities. Gaps were introduced where necessary to maximize similarities. The STox can be clustered into three groups as shown in Fig. 2. The sequences were aligned with respect to Cys residues. Each main group was aligned, and a consensus sequence was proposed for each one of them. CngrV(II-10) is included in the first group, where Cn2 can be considered representative. CngrII and CngrIII are included in the second group, where CsE variants 2 and 3 are also presented, CngrIV is included in the third group, where Cn1 can be considered representative. Some specific differences among the three groups can be observed, especially several deletions of 1 as residue in different positions. Examples of such deletions or insertions can be deduced from cDNA sequences. The as residue number 9 that is a Ser in CngtII and CngtIII is missing in CngtIV (Figs. 1 and 2). It is interesting to note, however, that this region in *Centruroides* toxins is very variable (Zamudio et al., 1992), indicating that its encoding DNA could be a hot spot for mutation.

(c) Southern blot genomic analysis

To determine the size of the genomic DNA region containing the genes encoding the peptides shown in Fig. 1, Southern blot hybridization analysis was carried out. When using Cngtl or Cngtll inserts as probes (Fig. 3), only two DNA fragments are clearly observed; one of approximately 18 kb when the genomic DNA was digested with BamHI, HindIII or BamHI+HindIII and a second segment of approximately 0.6 kb when the digestions were performed with EcoRI, EcoRI+BamHI or EcoRI+HindIII. These results and the fact that CngtII and CngtIII share 92% similarity at the nt level suggest that at least two different 0.6-kb EcoRI DNA segments should contain the genomic DNA regions encoding these two cDNAs (mRNAs). Since CngtIV (or CngtV) is 80% similar at the nt level to CngtII (or CngtIII), and since the bands mentioned above are the only two bands present in the Southern blot experiment (18 kb and 0.6 kb). we propose that the genomic regions that specify these four cDNAs (mRNAs) are contained within these 0.6-kb EcoRI DNA fragments. The double digestions with EcoRI + BamHI or EcoRI + HindIII suggest that the 18-

Fig. 3. Southern blot genomic analysis. CnH DNA digested with restriction endonucleases was blotted in lanes: I, EcoRI; 2, BamHI; 3, Hindill; 4, EcoRi + BamHI; 5, EcoRI + Hindill; 6, BamHI + Hindill. Methods: High M, genomic DNA was prepared from the whole body of CaH. After ethanol precipitation the DNA was resuspended in water and subjected to molecular filtration chromatography on an agarote A-50 (Bio-Rad, 0.7 x 28 cm) column coullibrated (and then cluted) with M Tris pH 7.6/I mM EDTA/0.75 M NaCl. Twenty fractions of 0.5 were collected, and the DNA profile was determined by absorbance 1 260 nm. Fractions corresponding to the maximum of absorbance were pooled and ethanol-precipitated. This step was necessary in order to eliminate a pigment that coprecipitates with scorpion DNA. The colored material was shown to inhibit the enzymatic digestion of DNA. After digestion with the indicated endonucleases, 10-ug samples of DNA were electrophotesed in a 0.7% agarose gel, blotted onto a nitrocellulose membrane and probed independently with the inserts derived from clones Caril of Carill. The probes were 31P-labeled using the random primer labeling kit from Dupont. The filters were prehybridized, hybridized and washed as described in the legend to Fig. I for double-stranded probes (second step screening), except that an additional wash at 65°C for 10 min was performed.

kb-band might contain at least these four 0.6-kb EcoRI segments. An alternative explanation is that each cDNA (mRNA) could be encoded by a different 18-kb band. Thus, their corresponding genes may also be encoded in the same or different 18-kb DNA bands, and consequently, they might have the same organization as the 0.6-kb EcoRI fragments in which a substantial part of the region transcribed into their respective mRNAs might be present. Furthermore, these results also suggest that the genes encoding these STox lack large introns. (d) PCR genomic analysis

In order to understand the genomic organization of the structural DNA regions encoding CnH STox, a PCR amplification experiment using genomic DNA and specific primers was performed. The DNA sequences that were used for the synthesis of the PCR primers correspond to well-conserved sequences of CnH cDNA. They are shown overlined in Fig. 1 and flank a stretch of 263-266 bp of DNA that includes the mature part of the STox encoded by these cDNA. As can be seen in Fig. 4, while several DNA bands were visualized after staining with EtdBr, when using 0.5 µg of genomic DNA as the PCR substrate (Fig. 4A, lane 2), only one specific DNA band, of about 270 bp, was observed after hybridization (Fig. 4B, Jane 2). This band corresponds to the smallest band stained with EtdBr. When ten times more genomic DNA (5 µg) was used as the substrate for PCR amplification, a second specific band of about 330 bp was detected

Fig. 4. PCR genomic analysis. Primers for genomic PCR amplifications were synthesized as described in the legend to Fig. 1. The forward primer (5'-AAAGAAGGTTATCTGGTAAAC), corresponds to a wellconserved DNA sequence that codes for the first 7 as of mature C. noxius toxins (see Figs. 1 and 2). The reverse primer (5'-AACTGCAATTAAGAAGCGTTA) is complementary to a wellconserved at 246-266 sequence of cDNA (see Fig. 1). The source of the DNA was the same as for the Southern blot genomic analysis. PCR conditions were the same as described in the legend to Fig. 1, excent that 0.5 up or 5 up of template DNA were used. (Panel A) Products of PCR amplification; lanes; 1, pBR322 (Boliver et al., 1977) digested with Tug] as size marker; 2. PCR sample (1/20 of total reaction) using 0.5 ug of genomic DNA as template; 3, same as lane 2 but using 5 ug of template DNA. The gel was stained with EtdBr and photographed under ultraviolet light. (Panel B) Autoradiography of PCR products shown in panel A hybridized with Cagil insert. The pBR322 DNA was also transferred and hybridized as a negative control,

(Fig. 4B, lane 3). It is important to observe that the 330bo band was detected only when high concentrations of genomic DNA were used as a substrate for PCR, suggesting that this band might correspond to a region that might have an at least tenfold lower copy number than the 270-bp band versions. Taking the cDNA sequences shown in Fig. 1 as prototypes of DNA sequences that encode CnH STox, these PCR results indicate that the 270-bp product should code for the mature part of CnH STox closely related, to the ones encoded by the Cngill-CngiV cDNA These results also indicate that those genomic regions do not contain introns. However, the results in Fig. 4B (lane 3) clearly show the presence of a 330-bp fragment which could accommodate an intron of about 60 bp in its genomic region. Another possibility is that the 330-bp band corresponds to a rare version of a closely related gene. Preliminary results aimed at verifying the existence of introns in the genomic regions encoding the 5' end of CnH STox cDNAs (including the SP) did not detect introns. We have sequenced some of the cloned PCR products, and we did not find introns at least between the regions coding for the SP and the C terminus (data not shown). An interpretive review of the results presented in this work, including detailed comparative analyses and recent data on the STox structure-function relationship, is now in preparation for publication (B.B., A.V., C.G., M.C., L.D.P. and F.B.1

(e) Conclusions

(1) We have prepared and probed a Agt11 cDNA library from the venom glands of the Mexican CnH scorpion. From this cDNA library we have isolated four cDNAs that code for different STox.

(2) We have determined the nt sequence of these cDNAs and deduced their as sequences. From these sequences we have shown that they are closely related to the STox Cnl of CnH and to variants 2 and 3 of CsE. CngtV corresponded to STox 11-10 of CnH, which has been purified and sequenced in our group.

(3) From the nt sequence data, it seems that these CnH cDNAs derived from a common gene ancestor. We propose that this gene might have duplicated, and each duplication then evolved independently.

(4) From Southern blot genomic analysis, it can be proposed that this family of closely related genes, including at least the genes coding for the four cDNAs reported here, shows a minimal size of about 600 bp when the genomic DNA is digested with *Eco*RI.

(5) PCR genomic amplifications of CnH DNA with specific primers and hybridization with specific probes suggest that the region(s) encoding the mature part of STox closely related to the ones reported here do not seem to contain large introns.

(6) Comparison of STox sequences deduced from CnH cDNAs provided background for their classification, in terms of their similarity, in three different groups.

ACKNOWLEDGEMENTS

This work was supported in part by grants of the Universidad Nacional Autónoma de México project DGAPA No. 1N202689 to L.D.P., CONACYT (México) project 0018-N9105 to L.D.P. and F.B. and Howard Hughes Medical Institute No. 75191-527104 to L.D.P. Training received by B.B. in the laboratories of Dr. Ki-Han Kim (Department of Biochemistry, Purdue University) and Dr. Edward Ginns (National Institute for Mental Health, Bethesda) is greatly appreciated. Dr. Fernando López Casillas and Dr. Brian Martín are acknowledged for helpful discussions. Oligos were synthesized at the 'Unidad de Sintesis de Oligonucleótidos' of the Instituto de Biotecnologia, with the assistance of Paul Gaytán. The technical assistance of Fernando Zamudio is also recognized.

REFERENCES

- Bolivar, F., Rodriguez, R.L., Greene, P.J., Betlach, M.C., Heyneker, H.L., Boyer, H.W., Cross, J.H. and Falkow, S.: Construction and characterization of new cloning vehicles, II. A multipurpose cloning v system. Gene 2 (1977) 95-113.
- Bougis, P.E., Rochal, H. and Smith, L.A.: Precursors of Androctonus australis scorpion neurotoxins. J. Biol. Chem. 264 (1989) 19259-19265.
- Carbone, E., Wanke, E., Prestipino, G., Possani, L.D. and Maelicke, A.: Selective blockage of voltage-dependent K* channels by a novel scorpion toxin. Nature 296 (1982) 90-91.
- Carbone, E., Prestipino, G., Franciolini, F., Dent, M.A.R. and Possani, L.D.: Selective modification of the aquid axon Na currents by Centruroldes noxius toxin 11-10. J. Physiol. Paris 79 (1984) 179-184.
- Catterall, W.A.: Activation of the action potential Na* ionophore by neurotoxins. An allosteric model. J. Biol. Chem. 232 (1977) 8669-8676.
- Couraud, F., Jover, E., Dubois, J.M. and Rochat, H.: Two types of scorpion toxin receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel. Toxicon 20 (1982) 9-16.
- Dehesa-Dávila, M.: Epidemiological characteristics of scorpion sting in León, Guanajuato, México. Toxicon 27 (1989) 281-286.
- Fontecilla-Camps, J.C., Almassay, R.J., Suddath, F.L., Watt, D.D. and Bugg, C.E.: Three dimensional structure of a protein from scorpion venom: a new structural class of neuroloxins. Proc. Natl. Acad. Sci, USA 77 (1980) 6496-6500.
- Gimenez-Gallego, G., Navis, M.A., Reuben, J.P., Katz, G.M., Kaczorowski, G.J. and Garcia, M.L.: Purification sequence, and model structure of charybolotoxin, a potent selective inhibitor of calcium-activated potassium channels. Proc. Natl. Acad. Sci. USA 85 (1988) 3229-3333.

- Guravitz, M., Urbach, D., Zlotkin, E. and Zilberberg, N.: Nucleotide sequence and structure analysis of a cDNA encoding an alpha insect taxin from the scorpion Letwar guinquestriatus hebracus. Toxicon 29 (1991) 1270-1272.
- Gurrola, G.B., Molinar-Rode, R., Sitges, M., Dayon, A. and Possani, L.D.: Synthetic peptide corresponding to the sequence of Noxitutosin Indicate that the active site of this K^{*} channel blocker is located on its N-terminal portion. J. Neural Transm. 77 (1989) 11-20.
- Jover, E., Couraud, F. and Rochal, H.: Two types of scorpion neutotosins characterized by their binding to two separate receptor sites on rat brain synaptosomes, Biochem, Biophys. Res. Commun. 95 (1980) 1607-1614.
- Meves, H., Simard, M.J. and Watt, D.D.: Biochemical and electrophysiological characteristics of toxins isolated from the venom of the scorpion Contruroldes sculpturatus. J. Physiol. Paris 79 (1984) 185-191.
- Meves, H., Simard, M.J. and Wall, D.D.: Interactions of scorpion toxins with the sodium channel. In: Kao, C.Y. and Levinson, S.R. (Eds.), Tetrodotexin, Sazitoxis and the Molecular Biology of the Sodium Channel. Ann. NY Acad. Sci. 479 (1986) 113-132.
- Miller, C., Moczydlowski, E., Latorre, R. and Phillips, M.: Charpbdotoxin, a protein inhibitor of single Ca²⁺-activated K^{*} channels from mammalian skeletal muscle. Nature 313 (1985) 316-318.
- Miranda, F., Kopeyan, C., Rochat, H., Rochat, C. and Lissitzky, S.: Purification of animal neurotoxins. Isolation and characterization of eleven neurotoxins from the venom of the scorpions Androctonus australis Hector, Buthus occitanus tunetanus and Leiurus quinquestriatus quinquestriatus. Eur. J. Biochem. 16 (1970) 514-523.
- Nonner, W.: Effects of Leiurus scorpion venom on the 'gating' current in myclinated nerve. In: Ceccarelli, B. and Clementi, F. (Eds.), Advances in Cytopharmacology, Vol.3. Raven Press, New York, 1979, pp. 345-331.
- Possani, L.D.: Structure of scorpion toxins. In: Tu, A.T. (Ed.), Handbook of Natural Toxins, Vol. 2. Marcel Dekker, New York, 1984, pp. 513-550.
- Possani, L.D., Dent, M.A.R., Martin, B.M., Maelicke, A. and Svendsen, I.: The N-terminal sequence of several toxins from the venom of the Mexican scorpion Centruroldes noxius Hoffmann. Carlsberg Res. Commun. 46 (1981) 207-214.

- Possani, L.D., Martin, B.M. and Svendsen, I.: The primary structure of Noxiustosin: a K* channel blocking peptide, purified from the venom of the scorpion Centruroldes nexture Hoffmann. Carliberg* Res. Commun. 47 (1982) 245-289.
- Possani, L.D., Gurrola, G.B., Portugal, T.O., Zamudio, F.Z., Yuca, L.D., Calderon, E.S.A. and Kirsch, G.E.: Scorpion toxins: a model for peptide synthesis of new drugs. In: Oliveira, B. and Sgarbieri, V. (Eds.) Proceedings of the First Brazilian Congress on Proteins. Editors da UNICAMP, Campinas, Brazil, 1991, pp. 332-367.
- Strichartz, G., Rando, T. and Wang, G.K.: An integrated view of the molecular toxinology of sodium channel gating in excitable cells. Annu. Rev. Neurosci. 10 (1987) 237-267.
- Strong, P.N., Weir, S.W., Beech, D.J., Hiestand, P. and Kocher, H.P.: Effects of potassium channel toxins from *Lelurus quinquestrious* hebraeus venom on responses to cromakalim in rabbit blood vessels. Dr. J. Pharmacol. 98 (1989) 817-826.
- Thomsen, WJ. and Catterall, W.A.: Localization of the receptor site for a scorpion toxins by antibody mapping implications for sodium channel topology. Proc. Natl. Acad. Sci. USA 86 (1989) 10161-10165.
- Valdivia, H.H., Fuentes, O., El-Hayek, R., Morrissette, J. and Coronado, R.: Activation of the ryanodine receptor Ca¹⁺ release channel of sarcoplasmic reticulum by a novel scorpion venom. J. Biol. Chem. 266 (1991) 19135-19138.
- von Heijne, G.: A new method for predicting sequence cleavage sites. Nucleic Acids Res. 14 (1986) 4683-4690.
- Wheeler, P.K., Watt, D.D. and Lazdunski, M.: Classification of Na channel receptors specific for various scorpion toxins. Pflügers Arch. 397 (1983) 164-165.
- Zamudio, F., Sasvedra, R., Martin, B.M., Gurrola-Brionez, G., Herlon, P. and Possani, L.D.: Amino acid sequence and immunological characterization with monoclonal anlibodies of two toxins from the venom of the scorpion Centruroldes nozius Hoffmann. Eur. J. Biochem. 204 (1992) 281-392.
- Zlotkin, E., Miranda, F. and Rochat, C. Chemistry and pharmacology of Buthinas scorpion venoms. In: Bettini, S(Ed), Handbook of Experimental Pharmacology, Vol. 48. Springer-Verlag, Berlin, 1978, pp. 317-369.

V METODOLOGIA

V.1.- Expresión del gene *Cngt*II: para este ensayo se utilizó un "kit" comercial (Biolabs) para expresión y purificación de proteínas de fusión. El kit cuenta con dos vehículos de expresión uno citoplásmica (pMAL-C) y el otro periplásmica (pMAL-P). Ambos vehículos presentan el mismo "polylinker" (Fig.# 4) . Como proteína acarreadora se usa una proteína de unión a la maltosa. La purificación de los productos se hace por cromatografía de afinidad utilizando una resina de amilosa, también nos proporciona anticuerpos contra la proteína de unión a la maltosa. Para el corte de la proteína de fusión el "kit" cuenta con el factor Xa el cual corta en la secuencia IIe-Glu-Gli-Arg-Pro codificada por una región en cuyo borde existe un sitio para la enzima de restricción *Xmn*I, por lo que al clonar en este sitio se puede tener una separación exacta de la proteína de interés.

V.1.1 - Edición: se llevó a cabo mediante PCR usando como templado el DNA de la clona en gt11 . Para este paso se diseñaron dos oligos: #1N (5' ATG AAA GAA GGT TAT CTG GTA AAC 3') para el extremo amino, el cual nos permite deletar el péptido señal completo y agregar una metionina al inicio del gene para separar la proteína de fusión mediante un corte con CNBr. #1C (5' TTA GCT GCA AGA TTT ATT AGG AAG 3') para el extremo carboxilo y el cual nos permite deletar las dos lisinas que preceden al codón de terminación.

V.1.2 - Clonación: el producto de PCR (0.2 kb) fué rasurado con Pol T4 y ya purificado

Fig.# 4 Diagrama de los vectores pMAL: La región del polilinker se encuentra amplificada, se pueden observar los sitios de restricción únicos. Las regiones subrayadas corresponden a los sitios de unión de los oligos #1Mal/N y #2Mal/C. La flecha marca el sitio de corte del factor Xa.

se subclonó en pMAL-C en el sitio de XmnI (Fig.# 4). El producto de la ligación se utilizó para transformar la cepa TB1 de *E. coli*, la cual permite α complementación, por lo que las colonias recombinantes fueron seleccionadas en cajas con medio de cultivo conteniendo X-gal e IPTG.

La presencia y tamaño del inserto se determinó en un gel de agarosa, previa purificación del DNA del plásmido el cual fué digerido con las enzimas *Sac*l y *Eco* RI.

V.1.3 - Expresión: para probar la expresión del gene *Cngt*II, se prepararon varios cultivos utilizando 5 ml de LB-Amp, tomando como inóculo algunas de las colonias que presentaron un inserto del tamaño correcto. Se incubaron a 37°C con agitación hasta que los cultivos alcanzaron una densidad de 2x10⁸ células/ml. Se agregó el inductor (IPTG 0.3 mM) y se incubó 2 h más. Una alícuota de cada uno de los cultivos, antes y después de la inducción, se sometió a electroforesis (SDS-PAGE).

A las colonias que mostraron expresión de una proteína del tamaño esperado (49,260 Da = 42,000 de MBP + 7,260 Cngt II) se les determinó su secuencia de nucleótidos para comprobar la orientación del inserto así como la edición del gene. Para este fín se diseñaron los oligos #1 Mal/N y #2Mal/C (Fig.# 4).

Tomando como inóculo una colonia, cuya secuencia nucleotídica mostró la orientación correcta del inserto, se iniciaron los ensayos de expresión. En el primero se prepararon dos extractos diferentes para verificar si la proteína de fusión se encontraba en forma soluble o si formaba cuerpos de inclusión.

Para determinar la cantidad óptima de inductor y el mejor tiempo de cosecha se hicieron varios cultivos en 80 ml de medio rico adicionado con glucosa y ampicilina a 37°C.

VI RESULTADOS Y DISCUSION

VI.1. Análisis de la estructura de los cDNAs (*Cngt*II y *Cngt*III). Ambas secuencias mostraron un marco abierto de lectura capaz de codificar para precursores completos de una toxina de alacrán. Se observa una región que codifica para un péptido señal de 19 aa. Sigue la región encargada de codificar para la parte estructural de una proteína de 66 aa más el codón de terminación (Fig # 1 del artículo, página 3). Sólo en uno de los cDNAs (*Cngt*III) se encuentra presente una señal de poliadenilación típica aunque ambos presentan la región del poli A. Esto se debe, probablemente, a que la clona *Cngt*II se encuentra truncada antes de dicha señal y que lo que parece ser el poli A bien pudiera ser el complementario de el oligo dT que pudiera haber servido como primer para la síntesis de la primera cadena de cDNA. Este efecto se puede observar en otras clonas aisladas por nuestro grupo. La region 5' no codificadora es en un caso de 8 nucleótidos mientras que en el otro sólo hay 1. La region 3' no codificadora es en ambos casos mayor de 70 nucleótidos.

La homología que existe entre las dos clonas es tan alta (92%) que podemos suponer que ambos genes pertenecen a una misma familia. Además la secuencia primaria para la que codifican presentan homologías aun mayores con otras proteínas del grupo de las variantes (Fig.# 5) por lo que podemos afirmar que se trata de dos grupos de genes homólogos (uno en *C. noxius* y el otro en *C. sculpturatus*). Se pueden observar regiones altamente conservadas y otras regiones donde se encuentran todas las variaciones, las cuales estructuralmente representan las asas o vueltas de la molécula.

Asímismo los péptidos señales de ambas clonas son altamente similares y presentan

	1	10	20	30	40	50	60			
	ßßßß		αα	ιααααααα	BBBBB	ßßßßß	*****			
CsEv1	KEGYLVE	KSDGCKYD	CFWLGKNEH	CNTECKAKNQG	GSYGYCYAFA	CWCEGLPES	TPTYPLPNK-CS	-	65 a	зa
CsEv2	KEGYLVN	VKSTGCKYG	CLKLGENEG	CDKECKAKNQG	GSYGYCYAFA	CWCEGLPES	TPTYPLPNK-CSS		66 8	зa
CsEv3	KEGYLVF	KKSDGCKYG	CLKLGENEG	CDTECKAKNQG	GSYGYCYAFA	CWCEGLPES	TPTYPLPNKSC	-	65 a	зa
Cngt II	KEGYLVN	VKSTGCKYG	CLLLGKNEG	CDKECKAKNQG	GSYGYCYAFG	CWCEGLPES	TPTYPLPNKSCS	-	66 a	зa
Cngt III	KEGYLVN	NKSTGCKYG	CFWLGKNEG	CDKECKAKNQG	GSYGYCYAFG	CWCEGLPES	TPTYPLPNKTCS	-	66 a	зà
			*	+ Ç	*	+ Ç				
		12	16	25 29	41 4	648	65			

GRADO DE HOMOLOGIA

22

CngtII-CngtI	II	= 95.4 %	CsEv1-CngtII = CsEv1-CngtIII=	83.3 86.4	ક ક
CsEv1-CsEv2 CsEv1-CsEv3 CsEv2-CsEv3	=	84.8 % 86.4 % 90.9 %	CsEv2-CngtII = CsEv2-CngtIII=	92.4 90.9	8 8
			CsEv3-CngtII = CsEv3-CngtIII=	87.9 84.8	8 8

Fig.# 5 Comparación de la secuencia de aminoácidos de las toxinas denominadas variantes (1, 2 y 3) de *C. sculpturatus* E., con las secuencias primarias deducidas a partir de las clonas *Cngt*II y *Cngt*III de *C. noxius* Hoffmann. Se muestra el grado de homología que existe entre estas secuencias primarias. Los símbolos corresponden a los datos estructurales de CsEv3. B= región β plegada, α = hélice α , ***= región altamente contorsionada. Los símbolos y números de la parte inferior corresponden a las cisteínas que se encuentran formando puentes disulfuro: 12 con 65, 16 con 41, 25 con 46 y 29 con 48.

diferentes grados de homología con el resto de los péptidos señal conocidos de toxinas de alacrán (Fig.# 6). Estos péptidos señal presentan una región que cumple con la regla (-3,-1) que nos permite predecir la posible region de corte del péptido señal (von Heijne 1986). Se puede observar que en todos los casos la posición -3 es ocupada por una valina mientras que en la posición -1 se encuentra un aminoácido pequeño.

La estructura de los cDNAs nos muestra que estos genes codifican para un precursor de toxinas y que el proceso de maduración de estos péptidos es el propuesto para otras toxinas de alacrán (Bougis *et al.*, 1989, Martin-Eauclaire *et al.*, 1992) y para péptidos neuroactivos (Fricker 1988): separación del péptido señal mediante una peptidasa señal y remoción de las dos lisinas del extremo carboxilo por una carboxipeptidasa específica para resíduos básicos.

VI.2.-Expresión: en la Fig.# 7 se observa el resultado de la edición y clonación del gene *Cngt*II. El péptido señal no está presente y en cambio sí aparece una metionina inicial que no existía. Se puede ver que la orientación fue correcta, esto es que se encuentra en el sentido de LacZ α pues se puede leer la región final de Mal E, el polilinker y por último la región amino de *Cngt*II. La edición correcta del extremo carboxilo se comprobo mediante secuenciación de nucleótidos en una clona que presenta la orientación contraria pudiendose observar que las dos lisinas fueron deletadas.

Los ensayos de expresión se pueden resumir en la Fig.# 8. Se observó claramente la aparición de una banda, después de la inducción, de aproximadamente 50,000 Da que es el tamaño esperado. En cuanto al tiempo de cosecha se observa que 3 1/2 h después de la inducción la concentración de proteína es máxima y no hay una degradación aparente de la proteína. Para determinar la cantidad óptima de inductor se probaron

	-20					-1	15				-:	LO					-5				-1	Ref	•
CngtII CngtIII CngtIV CngtV TsVII Cons. 1	M M M M M	N N N K N K N	នននទទ	L L L M L	L L L L L	M M M M L M	·IIIIFI	T T T T I T	A A A S A	000000	LLLL	·FVVALV	L L L L L L	IFIVII	0000000	T T T T I T		- - - V -	v v v v v v	W W W W E W	A A A A C A	1 1 1 2	
AaHI AaHIII AaHII LqhαIT Cons. 2	М М М М	N N N N	Y Y Y H Y	L L L L L	V V V V V	M M M M	I I I I I	ន ន ន ន ន	L L L L L	A A A A A	L L L L L		L L L L L	L L L L L	M M M L M	I T T T	6 6 6 6 6 6 6 6		V V V V V	EEEE	ន ន ន ន ន	3 3 4	
AaHIT AaHIT1 AaHIT2 BjIT2 Cons. 3	М М М М	K K K K	F F F L F	L L L L L	L L L L L	L L L L L	F F F L F	L L V L	V V V I V	V V S V	L L A L	P P P S P	I I M I	M M M L M	- - L -	- - E -	G G G C G	- - L -	V V V V V	L F L N L	G G A G	3 3 5	
Cons. 1-3	B M	N K	X a	L M	L V	M L	I F	X h	h A	х	L	х	L I	h M	х	х т	G	h	v	х	x		

Fig.# 6 Comparación de los péptidos señal de toxinas de alcranes de diferentes géneros. En el primer grupo se encuentran las de alacranes de América. En el segundo grupo se encuentran toxinas contra mamíferos de alacranes del viejo mundo. Por último están las toxinas contra insectos de alacranes del viejo mundo. En cada caso se obtiene una secuencia consenso. Nótese la valina en posición -3 en todos los casos y en la posición -1 un resíduo pequeño (Ala, Gli, Ser ó Cis). Referencias; 1: Becerril et al., (1993), 2: Martin-Eauclaire et al., (1992), 3: Bougis et al., (1989), 4: Gurevitz et al., (1991) y 5: Zilberberg et al., (1991).

SECUENCIA NUCLEOTIDICA DE LA CLONA Cngt II / pMal C

10 30 20 40 TCG AGC TCG AAC AAC AAC AAT AAC AAT AAC AAC AAC CTC GGG mal E ----adaptador----50 60 70 80 90 1 ATC GAG GGA AGG ATG AAA GAA GGT TAT CTG GTA AAC AAG AGC ACG М К Е G Y Ľ v N ĸ s T 100 110 120 130 GGC TGC AAA TAC GGT TGC CTG CTA TTG GGG AAA AAC GAA GGC TGC G C Y G G К ĸ С L L L Ν Е G С 140 150 160 170 180 GAT AAG GAA TGC AAA GCG AAG AAC CAA GGA GGT AGT TAC GGC TAT D. к E С к К G G S Y G Y А Ν Q 190 200 GCT TTT GGG TGC TGG TGC TGC TAC C Y Α F G С W C resíduo no. 48

Fig.# 7 Secuencia nucleotídica de la clona pMAL/CngtII. Los primeros dos codones corresponden a mal E, la región subrayada corresponde al polilinker de pMAL. Sigue la metionina que se insertó por medio de PCR y no se encuentra el péptido señal que fue deletado usando la misma técnica. La región que sigue corresponde a la toxina ya procesada.

A II 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Ι

Fig.# 8 Gel de proteínas que muestra los resultados de los ensayos de expresión. En el carril I se muestra el marcador de peso molecular. En el carril II se muestra el perfil electroforético de la cepa sin transformar.Los tres grupos de carriles siguientes: A, B y C corresponden al perfil electroforético de diferentes ensayos en los que la variable fue el inductor (IPTG; 0.5, 0.7 y 1.0 mM, respectivamente). A su vez en cada uno de los ensayos se varía el tiempo de muestreo. Se tomaron alícuotas que corresponden a: 0.75 h., 1.5 h., 2.25 h., 3.25 h. y 4.25 h., que se muestran en los carriles 2 a 6, respectivamente. En los carriles 1, de los tres ensayos, se muestra la cepa sin inducir. La flecha marca la posición de la proteína de fusión.

varias concentraciones desde 0.1 mM hasta 1 mM, siendo 0.5 mM la concentración elegida dado, que no se vé un claro aumento en la concentración de la proteína cuando se induce con una cantidad mayor a 0.5 mM.

HOTECA

Aunque se observó una pequeña cantidad de proteína en la fracción insoluble la mayor parte de la proteína se encuentra en forma soluble. Pensamos que esto puede deberse a que la proteína está formando los puentes disulfuro adecuados y por lo tanto no quedan cisteínas libres para formar los enlaces intermoleculares que le permitan formar agregados. O bién que por encontrarse en un ambiente reductor, no se dé la formación de ningún puente disulfuro y por lo tanto tampoco haya agregados.

VII CONCLUSIONES

1.- Dado que las dos clonas obtenidas durante el desarrollo de esta tesis codifican para un péptido que presenta una alta homología con la toxina CsEv3 podemos afirmar que se cumplió el objetivo del trabajo: aislar un cDNA que codifique para una proteína semejante a CsEv3, a partir de un banco de cDNAs del alacrán *C. noxius* Hoffmann.

2.- Podemos decir que nuestro trabajo permite confirmar las propuestas sobre la existencia de un precursor y un procesamiento para maduración de estas toxinas. Sin embargo existen pequeñas diferencias. Mientras que en el trabajo de Bougis *et al* (1989) el procesamiento del extremo carboxilo se presenta sólo en las toxinas contra mamíferos, en nuestro caso, ambos genes muestran la región de procesamiento del extremo carboxilo y no son toxinas contra mamíferos. Esto ha quedado demostrado con la reciente secuenciación de la toxina correspondiente al gene *CngtII*, toxina Cn 5, por nuestro grupo (datos no publicados). Dicha toxina no presenta el péptido señal ni las dos lisinas del carboxilo terminal y no afecta a mamíferos (datos no publicados).

3.- Respecto a la expresión, aunque no tenemos la toxina caracterizada los resultados preliminares apuntan a que se está expresando. Si acaso no tuviera la estructuración de la toxina nativa se intentará renaturalización *in vitro* ó expresión en periplasma antes de cambiar a un sistema eucariote. Esto es porque un sistema procariote ofrece muchas ventajas para su cultivo y los rendimientos que se pueden lograr son muy altos. Sin

embargo, existen algunas toxinas en el veneno del alacrán que requieren un procesamiento que no se puede lograr en sistemas procariotes (α -amidación, además del corte de los resíduos básicos) y para éstas el sistema de expresión deberá ser eucariote, en el caso de la toxina que trabajamos no es así.

VII REFERENCIAS

1.- Almassy R. J., Fontecilla-Camps J. C., Suddath F. L. and Bugg Ch. E. (1983). Structure of Variant-3 Scorpion Neurotoxin from *Centruroides sculpturatus* Ewing, Refined at 1.8 Å Resolution. J. Mol. Biol. 170: 497-527.

2.- Babin D. R., Watt D. D., Goos S. M. and Mlejnek R. V. (1974). Amino Acid Sequences of Neurotoxic Protein Variants from the Venom of *Centruroides sculpturatus* Ewing. Arch. Biochem. and Biophys 164: 694-706.

3.- Becerril B., Vázquez A., García C., Corona M., Bolívar F. and Possani L. D. (1993). Cloning and Characterization of cDNAs that Code for Na*-channel-blocking Toxins of the Scorpion *Centruroides noxius* Holfmann. Gene (en prensa).

4.- Blaustein M. F., Rogowski R. S., Schneider M. J. and Krueger B. K. (1991). Polypeptide Toxins from the Venom of the Old World and New World Scorpions Preferentially Block Different Potassium Channels. Mol. Pharm. 40: 932-942.

5.- Bontems F., Roumestand Ch., Boyot Ph., Gilquin B., Doljansky Y., Ménez A. and Toma F. (1991). Three-dimensional Structure of Natural Charybdotoxin in Aqueous Solution by H-NMR. Eur. J. Biochem. 196: 19-28.

6.- Bougis P. E., Rochat H. and Smith L. A. (1989). Precursors of *Androctonus australis* Scorpion Neurotoxins. J. Biol. Chem. 264: 19259-19265.

7.- Couraud F., Jover E., Dubois J. M. and Rochat H. (1982). Two Types of Scorpion Toxin Receptor Sites, One Related to the Activation, the Other to the Inactivation of the Action Potential Sodium Channel. Toxicon. 20: 9-16.

8.- Couraud F. and Jover E. (1984). Mechanism of Action of Scorpion Toxins. En: Handbook of Natural Toxins. 2: 659-673. Tu A. T. ed. Marcel Dekker, Inc., New York.

9.- Fontecilla-Camps J. C., Almassy R. J., Suddath F. L., Watt D. D. and Bugg Ch. E. (1980). Three-dimensional Structure of a Protein from Scorpion Venom: A New Structural Class of Neurotoxins. Proc. Natl. Acad. Sci. USA. 77: 6496-6500.

10.- Fontecilla-Camps J. C. (1989). Three-Dimensional Model of the Insect-Directed Scorpion Toxin from *Androctonus australis* Hector and Its Implication for the Evolution of Scorpion Toxins in General. J. Mol. Evol. 29: 63-67.

11.- Fricker L. D. (1988). Carboxypeptidase E. Ann. Rev. Physiol. 50: 309-321.

12.- Gurevitz M., Urbach D., Zlotkin E. and Zilberberg N. (1991). Nucleotide Sequence and Structure Analysis of a cDNA Encoding an Alpha Insect Toxin from the Scorpion *Leiurus quinquestriatus hebraeus*. Toxicon. 29: 1270-1272.

13.- Jover E., Couraud F. and Rochat H. (1980). Two Types of Scorpion Neurotoxins Characterized by Their Binding to Two Separate Receptor Sites on Rat Brain Synaptosomes. Biochem. and Biophys. Res. Commun. 95: 1607-1614.

14.- Keegan H. L. (1980). Scorpions of Medical Importance. University Press of Mississippi. USA. pp. 140.

15.- Loret E. P., Sampieri F., Roussel A., Granier C. and Rochat H. (1990). Conformational Flexibility of a Scorpion Toxin Active on Mammals and Insects: A Circular Dichroism Study. Proteins 8: 164-172.

16.- Martin-Eauclaire M. F., Céard B., Ribeiro A. M., Diniz C. R., Rochat H. and Bougis P. E. (1992). Molecular Cloning and Nucleotide Sequence Analysis of a cDNA Encoding the Main B-Neurotoxin from the Venom of the South American Scorpion *Tityus serrulatus*. FEBS. 302: 220-222.

17.- Ménez A., Bontems F., Roumestand C., Gilquin B., and Toma F. (1992). Structural Basis for Functional Diversity of Animal Toxins. Proceedings of the Royal Society of Edinburgh, 99B (1/2), 83-103.

18.- Meves H., Simard J. M. and Watt D. D. (1984). Biochemical and Electrophysiological Characteristics of Toxins Isolated from the Venom of the Scorpion *Centruroides sculpturatus.* J. Physiol., Paris, 79: 185-191.

19.- Possani L. D., Dent M. A. R., Martin B. M., Maelicke A. and Svendsen I. (1981). The Amino Terminal Sequences of Several Toxins From the Venom of the Mexican Scorpion *Centruroides noxius* Hoffmann. Carlsberg Res. Commun. 46: 207-214.

20.- Possani L. D. (1984). Structure of Scorpion Toxins. En: Handbook of Natural Toxins. Vol. 2: 513-550. Tu A. T. ed. Marcel Dekker, Inc., New York.

21.- von Heijne G. (1980). A New Method for Predicting Signal Sequence Cleavage Sites. Nucleic Acids Research. 14: 4683-4690.

22.- Zamudio F., Saavedra R., Martin B. M., Gurrola-Briones G., Hérion P. and Possani L. D. (1992). Amino Acid Sequence and Immunological Characterization with Monoclonal Antibodies of Two Toxins from the Venom of the Scorpion *Centruroides noxius* Hoffmann. Eur. J. Biochem. 204: 281-292.

23.- Zilberberg N., Zlotkin E. and Gurevitz M. (1991). The cDNA sequence of a Depressant Insect Selective Neurotoxin from the Scorpion *Buthotus judaicus*. Toxicon. 29: 1155-1158.

24.- Zlotkin E., Miranda F. and Rochat H. (1978). Chemistry and Pharmacology of *Buthinae* Scorpion Venoms. En: Arthropod Venoms. Vol. 48, chapter 13.C: 317-369. Bettini S. ed. Springer-Verlag, Berlin.