

MEXICO, D.F.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

RESUMEN	1
INTRODUCCION	. 3
OBJETIVO	. 9
MATERIALES Y METODOS	10
RESULTADOS	22
DISCUSION	34
CONCLUSIONES	39
BIBLIOGRAFIA	40

RESUMEN

En este trabajo, utilizando técnicas de Ingeniería genética, se realizó un estudio topológico de l a proteína OmpC de Salmonella typhi (una de las principales porinas de la membrana externa), demostrándose la exposición en la superficie celular de la región variable **f** de esta proteína.

Este estudio se efectuó por medio de la inserción de un epítope reportero en dos de las regiones variables (e y f) de la proteína OmpC, las cuales se ha propuestó que están expuestas en la superficie celular de S. typhi, según el modelo de estructuración y plegamiento de esta proteína en la membrana externa desarrollado por Puente *et al.* (datos no publicados).

Un epítope de la proteína VP4 de la cápsula de rotavirus constituyó el epítope reportero, cuya secuencia nucleotídica correspondiente a los codones 293 al 313, fue insertada por medio de mutagénesis sitio dirigida, entre los codones 208 y 209 y entre el 252 y 253 del gene *ompC* de S. typhi, los cuales están comprendidos dentro de las regiones variables e y f, respectivamente.

Se verificaron las inserciones del epítope de rotavirus en las regiones variables f y e, demostrandose que ésta última fue inestable, la cual eliminó gran parte de la región 5'del gene ompC.

En el perfil electroforético de las proteínas expresadas por los genes híbridos, la proteína híbrida OmpC-252-Rota que contiene la inserción en la región variable **f**, se abservó con una migración correspondiente a un mayor peso molecular en comparación con la proteína OmpC nativa. Esto coincidio con el tamaño esperado para una proteína híbrida.

El epítope de rotavirus en la proteína OmpC-252-Rota, fué detectado por medio del anticuerpo monoclonal YO-2C2 en preparaciones de proteínas de membrana externa y en células completas en ELISA, y por medio de microscopía electrónica, por lo que concluimos que la región de la proteína acarreadora del epítope de rotavirus, está expuesta en la superficie celular y tolera modificaciones sin afectar la viabilidad de la célula. Esto sugiere que la estrategía utilizada puede ser de utilidad para la caracterización topológica de esta proteína. Por otra parte, ésto se traduce en la posibilidad de utilizar las regiones expuestas como acarreadoras de epítopes heterólogos en el diseño de vacunas recombinantes.

Utilizando técnicas de "PCR" (amplificación en cadena de la polimerasa), también se caracterizó la secuencia nucleotídica de las regiónes variables e y f de algunas especies de Salmonella, observándose una variabilidad del 14% en la primera región y 8% en la segunda,

entre las cepas estudiadas. Los cambios observados a nivel de aminoácidos correspondieron a aminoácidos promotores de giros o no bloqueadores de éstos, por lo que se piensa que las vueltas predichas para estas regiones en la superficie celular se mantienen, permitiendo que las cadenas 8 de la proteína inviertan su dirección para atravesar la membrana externa.

INTRODUCCION

En la actualidad, las nuevas metodologías desarrolladas por disciplinas como la Biología molecular, han permitido abordar el estudio de las enfermedades infecciosas como el de la fiebre tifoidea con un enfoque diferente y generar tanto conocimlentos de los procesos biológicos básicos, como aquéllos que permitan desarrollar nuevas estrategias para el diseño de métodos de diagnóstico, más específicos y rápidos, y el de vacunas más eficaces, entre otros.

La fiebre tifoidea representa un problema de salud en México y a nivel mundial. Anualmente afecta a más de 12 millones de personas (excluyendo China) (Edelman y Levine, 1986). El agente etiológico de esta enfermedad es Salmonella typhi, enterobacteria Gram-negativa que entra al organismo por vía gastrointestinal al ingerir alimentos o agua contaminados con heces de humano. En el intestino, las bacterias penetran las células del epitelio, alcanzan la lámina propia e invaden las placas de Peyer, llegan al sistema retículo endotelial y se multiplican dentro de los macrófagos, invadiendo los nódulos linfáticos del mesenterio, el bazo y el hígado y produciendo finalmente una bacteremia (Calva et al., 1988; Finlay y Falkow, 1989).

Los mecanismos implicados en la adherencia de Salmonella a las células epiteliales del intestino, así como la virulencia, la resistencia a la fagocitosis por macrófagos y la multiplicación dentro de éstos, son desconocidos. En S. typhimuríum, los determinantes genéticos de la virulencia requeridos para producir infección, adhesión e invasión celular, están presentes en plásmidos grandes (Gulig y Curtis, 1987). En S, typhi, la mayoría de sus cepas carecen de plásmidos y cuando están presentes conficten resistencia a antibióticos (Calva et al., 1988). La identificación y caracterización de genes implicados en la supervivencia y replicación de Salmonella, representan un área de investigación futura con implicaciones en el diseño de vacunas (Pang et al., 1992). Sin embargo, la carencia de un modelo animal para el estudio de la fiebre tifoidea, debido a la especificidad de S. typhi por su huésped, ha ocasionado poco avance en el conocimiento de los mecanismos de la virulencia y patogenia. No obstante, es posible el estudio de estos factores, gracias a un modelo análogo representado por la salmonelosis murina, ocasionada por S. typhimurium. Recientemente, en estudios de microscopía electrónica con tejidos infectados de S. typhimurium in vivo, ha sido evidenciada la destrucción de esta bacteria dentro de los macrófagos y células polimorfonucleares, colocando el sitio principal de proliferación bacteriana en regiones extracelulares de los tejidos infectados del huésped y apoyando la observación de una correlación directa entre la resistencia a la fagocitosis y la virulencia (Hsu,

1989). Sin embargo, en la fiebre tifoidea en humanos, se sigue considerando a *S. typhi* como un parásito intracelular, ya que no se cuenta con evidencias que indiquen lo contrario.

S. typhi es un bacilo móvil gram-negativo, perteneciente a la familia Enterobacteriaceae. Se diferencia de otras especies de Salmonellas por sus productos de fermentación y por tener el serotipo 9,12,d,Vi, definido por las unidades repetidas (9,12) del antígeno O, localizado en el lipopolisacárido (LPS) de la membrana externa (ME); el antígeno H (d) constituido por la proteína flagelar (flagelina), y el antígeno polisacárido capsular K (Vi). El antígeno O tiene un papel importante como factor de virulencia de Salmonella, ya que se ha observado que cepas que carecen de este antígeno son menos virulentas que las que lo presentan (Germanier, 1984).

Las bacterias gram-negativas como Salmonella, presentan una ME constituida por una bicapa lipídica asimétrica, la cual contiene dos componentes principales localizados en la superficie externa de la bicapa y son: el LPS y un grupo de proteínas característico de la ME, las proteínas de membrana externa (PME), dentro de las que se encuentran las porinas, las cuales forman poros no específicos o canales que permiten el paso de pequeñas moléculas hidrofílicas a través de la ME (Nikaido y Vaara, 1985). Varios de los componentes de la ME, localizados en la superficie de la misma, constituyen antígenos de superficie. El estudio de la estructura y ensamble de estos componentes en la ME, la expresión de sus genes (en el caso de proteínas) y la función que desempeñan éstos en los procesos de inmunidad, es de gran interés para el desarrollo de métodos de diagnóstico más eficientes y el diseño de nuevas vacunas.

Las PME de las enterobacterias tienen un papel esencial en la interacción con otras entidades biológicas como anticuerpos, bacteriófagos y células. Estudios en ratones han mostrado que la inmunización con PME de S. typhimurium y S. typhi generan protección contra las infecciones causadas por estas bacterias, (Udhayakumar y Muthukkaruppan, 1987; Isibasi, et al., 1988). En pacientes con fiebre tifoidea se ha observado la elevación de los títulos de anticuerpos contra las PME (Calderón et al., 1986; Calva et al., 1988). Otros estudios en ratón han mostrado que la inmunización con PME de Neisseria gonorrhoeae y N. meninglitáis inducen inmunidad protectora contra estas bacterias (Buchanan et al., 1977; Wong y Frash, 1984). También se ha reportado la inmunización con PME de otras bacterias como Haemophilus Influenzae (Guling etal., 1982), Shigella flexneri (Adamus et al., 1980), Pseudomonas aeruginosa (Gilleland et al., 1984) y Chlanydia trachomatis (Caldwell y Perry, 1982). Un estudio de "Western blot" con suero de conejo anti PME de S. typhi, capaz de conferir pasivamente un estado protector contra un reto de la bacteria, mostró que los anticuerpos principalmente reconocen las PME de entre 37 y 45 KDa que corresponden a las porinas y a la OmpA (otra PME) (Isibasi et al., 1988).

Entre las PME están las porinas OmpC, OmpF, OmpD y PhoE, y la proteína modificable por calor OmpA (Osborn y Wu, 1988). Las porinas están presentes en la ME en un número alto de copias, del orden de 10⁴ por célula. Los poros de difusión pasiva que fornan, permiten el paso de moléculas hidrofflicas de bajo peso molecular, siendo variable el límite de exclusión del poro entre las diferentes especies de bacterias, hasta de un máximo de 800 daltons. Las porinas confieren la propiedad de tamiz molecular de la ME. Se ha visto que funcionan como sitios receptores de fagos y bacteriocinas. Presentan propiedades químicas conservadas y la mayoría forman trímeros de unidades monoméricas de entre 30 y 40 kDa de peso molecular. La secuencia primaria de estas porinas contiene una alta densidad de resíduos de aminoácido con carga, no existiendo segmentos hidrofóbicos lo suficientemente grandes para formar a hélices que se expandan en la ME. Por tal razón se piensa que el centro transmembranal está constituidas, postulan que estas proteínas se estructuran formando hojas B anfipáticas antiparalelas, orientadas perpendicularmente a la superfície de la ME, por lo que la atraviesan varias veces, exponiendo ciertas regiones en la superfície celular (Kleffel, B. *et al.*, 1985; Paul y Rosenbusch, 1985).

Entre las porinas más estudiadas se encuentran las porinas de Escherichia coli, codificadas por los genes ompF, ompC y phoE, las cuales han sido caracterizadas genética, bioquímica e inmunológicamente. Estas porinas forman una familia de proteínas con 60% de similitud estricta a nivel de secuencia nucleotídica y de aminoácidos, lo que hace pensar que comparten un ancestro común. Sin embargo, no hay homología en los promotores y las regiones 5'y 3' no codificantes entre estos genes de porinas (Mizuno, et al., 1983).

La expresión de los genes ompC y ompF de Escherichia coli está regulada coordinadamente a nivel de transcripción por la acción de los productos del operón ompB, los cuales responden a cambios en la osmolaridad del medio de crecimiento. El operón ompB cedifica para dos productos génicos, EnvZ y OmpR, provenientes de un solo ARNm policistrónico (Mizuno et al., 1982). EnvZ es una proteína osmosensora de la membrana interna de la clase de histidina-cinasa. OmpR es un activador transcripcional localizado en el citoplasma que reconoce secuencias en la región promotora de los genes ompC y ompF (Mizuno et al., 1983). Estudios bioquímicos y genéticos muestran que EnvZ funciona monitoreando las condiciones de osmolaridad del medio y comunicando esta información al componente efector OmpR, el cual media una respuesta adaptativa, que implica una regulación diferencial de los

genes ompC y OmpF (Hall y Silhavy, 1981). La expresión de OmpC se incrementa en condiciones de alta osmolaridad, mientras que la de OmpF disminuye proporcionalmente al incremento de OmpC, sucediendo lo inverso con niveles de baja osmolaridad, por lo que el número de la suma de ambas porinas permanece constante (Kawají et al., 1979). Estudios recientes han mostrado que EnvZ actúa tanto fosforilando OmpR (Aiba et al., 1989; Forst et al., 1989) como defosforilando OmpR-P (Igo et al., 1989). Se ha observado, por medio de experimentos de huella digital del DNA in vivo, que OmpR estabiliza la formación de un complejo promotor-RNA polimerasa (Tsung et al., 1990). Sin OmpR, la RNA polimerasa es incepaz de transcribir los genes ompC y ompF debido a que las regiones -10 y -35 de éstos, son muy diferentes de las regiones consenso utilizadas por la RNA polimerasa en ausencia de activadores (Mizuno et al., 1983).

Estudios recientes muestran que el sistema EnvZ/OmpR es necesario para la virulencia de Salmonella (Dorman et al., 1989). Existen otros factores implicados en la regulación de la expresión de los genes ompC y ompF independientes del sistema EnvZ/OmpR; se ha comprobado que bajo condiciones medioambientales apropiadas, OmpC y OmpF pueden ser inducidas en ausencia de OmpR (Ni Bhriain et al., 1989). Por ejemplo, se ha mostrado que los cambios en la topología del DNA afectan la osmorregulación; mutaciones en OsmZ (protefna que tiene un papel importante en el nivel de superenrollamiento del DNA) afectan la regulación osmótica de OmpC y OmpF (Graeme-Cook et al., 1989). La DNA topoisomerasa I (Graeme-Cook, et al., 1989) y los productos del locus envY (Lundrigon y Earhart, 1984) controlan también los niveles de ompC y ompF. Otros factores como la disponibilidad de oxfgeno (Ni Bhriain et al., 1989), el Factor de Integración del Hospedero (IHF), proteína implicada en una variedad de cevatos de recombinación de sitio específica y en la integración del bacteriófago lambida (Huang et al., 1990), sá como el AMPc (Huang et al., 1992), también influyen en la expresión de estos genes.

En S. typhi, a diferencia de E. coli, la expresión de la proteína OmpC es constitutiva, expresándose en niveles altos aún cuando la bacteria crece en condiciones de baja osmolaridad. Esta proteína también es regulada por un sistema dependiente de OmpR, aunque éste funciona de una manera diferente con respecto al de E. coli (Puente et al., 1991).

Las proteínas OmpC y OmpF de E. coli son importantes para la sobrevivencia de la bacteria en diferentes ambientes. La proteína OmpF es expresada en un medio de baja osmolaridad y temperatura como al que se piensa se enfrenta la bacteria principalmente cuando

1988). Ellos han observado que las proteínas híbridas resultantes son estables y conservan su actividad biológica. Otro grupo interesado también en este campo es el de J. Tommassen, quienes han utilizado a la proteína de membrana externa PhoE de *E. coli* K-12 como acarreadora de determinantes antigénicos a la superficie celular (Agterberg *et al.*, 1990). Estos autores han observado que el sistema es muy flexible, la longitud y naturaleza de las inserciones en las regiones de PhoE expuestas al exterior celular, pueden variar sin interferir en el proceso de ensamble de dicha proteína en la ME.

Fig. 1 Secuencia de aminoácidos de la proteína OmpC de S. typhi Debajo de esta secuencia se encuentran los aminoácidos de la proteína OmpC de E. colí que diferen con los de la OmpC de S. typhi, los guiones indican huecos que se incluyeron para mejorar el alineamiento entre las dos secuencias. Las cajas contienen las siete regiones variables de a a g entre ambas bacterias. Las barras indican las regiones de la secuencia con un alto perfil hidrofilico

se encuentra en el medio ambiente externo al huésped, donde la toma de nutrimentos escasos se cree es favorecida por el diámetro relativamente más grande (1.2 nm) que forma esta porina en comparación con el de la OmpC. En cambio, la expresión de OmpC es dada por una alta osmolaridad y temperatura, condiciones que se presentan en el interior del hospedero, en donde el tamaño de poro menor (1.1 nm) pudiera permitir a la bacteria sobrevivir en un medio lleno de potentes detergentes como las sales biliares, al impedir el paso de dichos compuestos a través de los poros (Nikaido y Vaara, 1985).

En este laboratorio, el gene ompC que codifica para la proteína OmpC de S. typhi se ha aislado y caracterizado (Puente et al., 1987; Puente et al., 1989). La proteína OmpC es una de las proteínas más abundantes de la membrana externa; el monómero de esta proteína tiene un peso molecular de 38,306 en E. coli (Mizuno et al., 1983) y de 39,215 en S. typhi (Puente et al., 1989), el cual forma trímeros que funcionan como poros transmembranales a través de los cuales pueden pasar solutos pequeños (Nakae, 1986).

El análisis comparativo de la secuencia de aminoácidos de las proteínas OmpC de S. typhi y E. coli muestra que existe una similitud del 77% a nivel nucleotídico y del 79% a nivel de aminoácidos entre ambas. De este análisis se han identificado siete regiones variables: a,b,c,d,e,f y g (Fig. 1) de las cuales, según el perfil hidropático, las regiones a, b, c, e y g corresponden a trechos hidrofílicos (Puente *et al.*, 1989), que probablemente se proyectan hacia el exterior de la membrana externa, lejos de la región transmembranal hidrofóbica.

Con la finalidad de contribuir al estudio de la topología de estas proteínas en la membrana extema, y verificar la exposición en la superficie celular de las regiones que los modelos de estructuración han predicho para estas proteínas, se han realizado trabajos de ingeniería genética. Estos trabajos han permitido insertar determinantes antigénicos heterólogos en las regiones predichas como expuestas, y comprobar su exposición en la superficie celular por medio de anticuerpos dirigidos contra los epítopes heterólogos insertados. Esto ha permitido también evaluar el uso de dichas regiones como acarreadoras y presentadoras de determinantes antigénicos de diversos agentes infecciosos en la superficie bacteriana, generandose así la posibilidad de usar potencialmente estas regiones en la creación de vacunas recombinantes en un futuro próximo. Dentro de los trabajos en este campo se encuentran los realizados por el grupo de M. Hofnung, quienes han empleado una variedad de péptidos de diversas secuencias antigénicas, las cuales han insertado en la proteína LamB de *E. coli* para ser acarreadas hasta la superficie celular bacteriana y de esta manera quedar expuestas al sistema inmune (Charbit *et al*

OBJETIVO

Dada la importancia de las proteínas de ME de S. typhi como inmunógenos en la infección ocasionada al hombre por este organismo, y debido al papel que desempeñan las porinas OmpF y OmpC en la sobrevivencia de la bacteria, tanto en el medio ambiente como en el interior del huésped, se planteó el siguiente objetivo: contribuir a la generación de conocimiento sobre la topología de la proteína de ME OmpC de S. typhi. Esto se planeó mediante la inserción del determinante antigénico de la proteína VP4 de la cápsula de rotavirus, en dos de las regiones variables (e y f) de esta proteína. Según el modelo de plegamiento y ensamble que se ha desarrollado para esta proteína (Puente *et al.*, datos no publicados), estas regiones se encuentran expuestas en la superficie celular. De esta forma, al mismo tiempo se planteó evaluar la capacidad de la proteína OmpC de S. typhi como acarreadora y presentadora de un epítope heterólogo.

MATERIALES Y METODOS

Cepas Bacterianas

E.coli HB101 E.coli JM101 E.coli CMK E.coli DH5αF'

Preparacion y subcionación de fragmentos de DNA

Las preparaciones de DNA fueron realizadas por el método de lísis alcalina y las subclonaciones de fragmentos de DNA por medio de técnicas de DNA recombinante (Maniatis, et al., 1989). Las enzimas de restrición usadas en este trabajo : BamHI, EcoRI, Mtul,Pstl, PvuII, y las enzimas modificadoras de DNA: DNA polinucleótido cinasa de T4, DNA ligasa de T4 y fosfatasa alcalina fueron obtenidas de Promega Biotec. La DNA polimerasa de T7 modificada o "Secuenasa" (Tabor y Richardson, 1987) fue obtenida de la United States Biochemicals Corporation. La Tag DNA polimerasa fue de Bochringer Mannheim.

Vectores y oligonucleótidos empleados en la construcción de los genes híbridos

El vector M13PPs (Fig. 2), fue generado mediante la clonación del fragmento *PvuII-PsII* de 0.7 kb del pVF271 (Puente *et al.*, 1987), el cual contiene la secuencia que codifica para los aminoácidos 50 a 285 de OmpC silvestre, entre los sitios *HincII* y *PsII* del fago M13mp18. Este vector fue empleado para realizar la mutagénesis sitio dirigida del gene *ompC*.

El plásmido pVF51 (Fig. 2), (Puente, J.L. comunicación personal) está constituido por el fragmento *Eco*RI-*Eco*RV del plásmido pVF271 (Puente *et al.*, 1987), el cual contiene la secuencia que codifica para el gene *ompC* completo y 1.1 kb de la región 5'. Este fragmento fue subclonado en el pMT21, el cual es un derivado de 1.9 kb del pBR322 que contiene los nucleótidos 2521 a 4361 y conserva el gene de resistencia a ampicilina, sin presentar el sitio de restrición para la enzima *Pst*l (Huang, H.V. comunicación personal). Para efectuar la clonación del fragmento *Eco*RI-*Eco*RV, el pMT21 fue digerido con *Bg/*II y los extremos cohesivos generados fueron rasurados con el fragmento Klenow de la DNA polimerasa I. Posteriormente se digirió con *Eco*RI, eliminando así del vector los sitios *Pst*I y *BamH*I del polienlazador (Puente, J.L., comunicación personal). De esta forma, quedó presente en el plásmido pVF51, un sitio único

Fig. 2 Construcción del plásmido pVF51 y del fago recombinante M13PPs. El esquema muestra las estrategias seguidas en la construcción del plásmido pVF51 y del fago recombinante M13PPs a partir de el plásmido pVF271, así como la obtención del pVF51-RV160 por mutagénesis dirigida, el cual contiene al gen omfc-160rota (para mayor información ver materiales y métodos).

para la enzima *PsrI* dentro de la secuencia del gene ompC y ningún sitio para la enzima *BamHI*, debido a que esta fue la enzima elegida para introducir los epítopes heterólogos en el gene ompC. El pVF51 fue empleado para sustituirle a manera de "cassette" el fragmento *Mlui-PsrI* del gene ompC silvestre, por el fragmento similar con la mutación introducida proveniente del fago M13PPs mutagenizado.

El plásmido pVF51-RV160 (Puente *et al.*, datos no publicados), derivado del pVF51, el cual contiene la inserción de la secuencia del epítope de la proteína VP4 de rotavirus, entre los codones 160 y 161 correspondientes a la región variable c del gene *ompC* de *S. typhi* (Fig. 2). Este plásmido fue empleado para amplificar por PCR (Polimerase Chain Reaccion) la secuencia del determinante antigénico de rotavirus flanqueada por los sitios de restricción para *Bam*H1

Los oligonucleótidos BH208 (36-mero) y RV252 (100-mero) fueron sintetizados por el método de los fosforamiditos usando un sintetizador automático de DNA Microsyn 1450 (Systec). Las secuencias nucleotídicas de los oligos BH208 y RV252 (Fig. 3a) son complementarias al gene *ompC* de *S. typhi* en las regiones que flanquea al codón 208 y 252, respectivamente. El primer oligo (BH208) presenta, en la región central, la secuencia que reconoce la enzima de restricción *Bam*H1 y hacia uno y otro extremo secuencias de 15 nucleótidos complementarias al gene *ompC* (Fig. 3b). El segundo oligo (RV252), contiene en la parte central la secuencia de 54 nucleótidos que codifican para el epítope de la proteína VP4 de rotavirus, entre un doble sitio de restricción para la enzima *Bam*HI. Este mismo oligo contiene hacia uno y otro extremo 16 y 18 nucleotídos, respectivamente, los cuales son complementarios al gene *ompC* (Fig. 3b).

Los codones de la secuencia que especifica el péptido de rotavirus, fueron elegidos con base al uso de codones que presenta ompC (Puente *et al.*, 1989). Ambos oligos fueron purificados por electroforesis preparativa en geles desnaturalizantes de poliacrilamida al 20% y urea 8 molar (Maniatis *et al.*, 1989). Estos oligos fueron fosforilados en el extremo 5' con ATP no radioactivo, utilizando la enzima polinucleótido cinasa de T4 (Maniatis *et al.*, 1989), para ser empleados posteriormente como iniciadores en la reación de síntesis de cadena nucva, durante la mutagénesis dirigida.

CALCULATION ANALAS TAATGAD DETTAA COADTAACCADTGGCATAAAAA DIAA TAAD DESITA TAGAGGCTTAATAAC 1 ATTICATION ininantina III CLATTERINTYLLI 274 222 m ER 5 A ce AAAOOOOCTUCTUCO TATEACHITTIGATATACICTICCUTCCATTE CETTATTCC

Fig. 3a Secuencia nucleotídica del gene ompC de S. typhi.

Secuencia donde se indica las regiones con las que los oligos mutagénicos BH208 (36-mero) y RV252 (100-mero) se asocian. Los oligos están representados por las baras y la punta de flecha indica su dirección. Los triángulos corresponden a las regiones de los oligos no complemetarias con el gene ompC de S. typhi, y muestran los sitios de inserción de la secuencia para el sitio de restricción de la enzima BamHI con el primer oligo y del epítope de rotavirus flanqueado por los sitio para esta misma enzima con el segundo oligo.

C

- Fig. 3b Oligos empleados en la mutagénesis dirigida y en la secuenciación de las inserciones efectuadas en los plásmidos pVF51RV208 y pVF51RV252 obtenidos.
 - A: Oligo mutagénico BH208 y secuencia nucleotídica de la región variable e del gene ompC de S. typhi en asociación con éste.
 - B: Oligo mutagénico RV252 en asociación con la secuencia nucleotídica de la región variable f del gene ompC de S. typhi.
 - C: Secuencia nucleotídica de los oligos C5 y F/I empleados de la reacción de secuenciación de las inserciones realizadas.

Introducción del sitio para la enzima de restricción BamHI y la secuencia nucleotídica que codifica el epítope de la proteína VP4 de rotavirus en el gene *ompC*

Fue realizada por el método de mutagénesis dirigida de Su y El-Gewely (1988), el cual emplea a la DNA polimerasa T7 modificada, que carece de la actividad 3'- 5' exonucleasa, y es conocida comercialmente como "Secuenasa". En la realización de la mutagénesis de sitio dirigida, fue utilizado como templado el fago recombinante M13PPs en su forma de cadena seacilla, el cual lleva clonado el fragmento *PvaII-PsrI* del gene *ompC* nativo, y como iniciadores de la cadena complementaria los oligos mutagénicos BH208 ó RV252. En reacciones separadas, cada oligo fue hibridado con el DNA de cadena sencilla del fago M13PPs; para ello el templado junto con su iniciador se mantuvieron a 65°C por 5 minutos permitiendo, después, por un intervalo de 60 minutos, descender lentamente la temperatura, hasta alcanzar la del ambiente, e incubar finalmente en hielo por 15 minutos. La replicación de nuevas cadenas del fago recombinante con la incorporación de las mutaciones sito dirigidas fue realizada por la enzima "Secuenasa" a 37°C por 15 minutos, e inactivandola después a 65°C durante 5 minutos. La DNA ligasa de T4 efectuó la circularización de cadenas de DNA nuevas. Células *E. coli* JM101 fueron transformadas por electroporación con una porción del DNA, producto de la reacción de mutagénesis.

Identificación de las clonas positivas

Fue realizada por hibridación DNA-DNA, del tipo "slot-blot", utilizando como sondas el oligo BH208 ó el oligo RV2 (34-mero), el cual contiene la secuencia que codifica para el epítope de rotavirus. Fueron marcados por separado 30 pmol de cada oligo en el extremo 5' con 140 μ Ci de gamma ATP P², empleando 10 unidades de enzima polinucleotido cinasa de T4. Los oligos marcados fueron separados de la marca no incorporada en una columna de 200 μ l de Biogel P-30, contenida en un tubo eppendorf y cíectuando la separación por centrifugación (Maniatis, *et al.*, 1989). La actividad específica fue determinada en un contador de centelleo, siendo para ambos oligos de 10⁶ - 10⁶ cpm/ug.

El DNA de las clonas obtenidas en la transformación con la reacción de mutagénesis, fue fijado a membranas de nitrocelulosa y prehibridado con formamida al 50%, SSC 5X, Tris-HCl 50 mM (pH 7.5), solución Denhardt's 10X (Ficol, polivinilpirrolidona y albúmina de suero de bovino, cada una al 0.2%) y 0.1 mg/ml de DNA de timo de ternera, por 30 minutos a 42°, y posteriormente hibridado con 30 x 10° cpm de oligo marcado a 37°C toda la noche en la misma solución, más SDS 0.5% y EDTA ImM. Las membranas de nitrocelulosa fueron lavadas con una solución de SSC 1X y SDS 0.1% a 37°C por 30 minutos y expuestas en un "cassette" a una película de rayos X a -70°C.

Las clonas positivas en el "Slot-Blot" fueron cultivadas y de éstas se obtuvo el DNA del fago recombinante mutagenizado. La inserción de la secuencia para el sitio de restricción fue analizada por patrón de restricción. Para ello, el DNA fue digerido con la enzima de restricción *Bam*H1. El sitio creado para dicha enzima se observo para las clonas mutagenizadas con el oligo BH208 mediante linearización del plásmido con *Bam*H1. La liberación del segmento de DNA correspondiente al epítope de rotavirus con *Bam*H1, permitió corroborar las clonas mutagenizadas con el oligo RV252.

Dependiendo de cada oligo usado, se siguieron dos estrategias para la obtención de los genes híbridos. La primera estrategía se realizó empleando al oligo BH208, por medio del cual fue introducido el sitio para la enzima de restricción *Bam*H1, entre los codones 208 y 209 del gene *omp*C, logrando la mutagénesis dirigida en el fago recombinante M13PPs. Después el fragmento *Mlul-Pstl* del gene *omp*C en el pVF51, fue sustituido por el fragmento *Mlul-Pstl* del M13PPs, el cual contenía la región mutagenizada del gene *omp*C. El DNA del plásmido obtenido se digirió con la enzima BamH1 - *Eco*R1 y fue analizado por patrón de restricción. En el sitio creado para la enzima BamH1, fue insertada, la secuencia nucleotídica que codifica para el epítope de la proteína VP4 de rotavirus, la cual se obtuvo como producto de PCR. Esta secuencia fue diseñada de tan manera que contuviera, en los extremos, sitios para la enzima BamH1, los cuales permitierón crear extremos cohesivos complementarios a los del sitio de inserción.

Para llevar a cabo lo anterior, fueron sintetizados dos oligonucleótidos de 20 bases cada uno (160P1 y 160P2), complementarios a las secuencias nucleotídicas que flanquean por el extremo 5'y 3'a la secuencia que codifica para el epítope de la proteína VP4 de rotavirus. Esta secuencia se encuentra entre dos sitios para la enzima *Bam*H1 en el fago recombinante M13RV160 (Puente *et al.*, en preparación) (Fig. 4). Este fago fue usado como templado para amplificar la secuencia en cuestión. Los oligos 160P1 y 160P2 fueron purificados por electroforesis preparativa en geles de poliacrilamida al 20% y urea 8 M. La reacción de amplificación por PCR se efectuó empleando a la enzima Taq DNA polimerasa por 30 ciclos; siendo cada uno de 1 minuto a 92°C, 1 minuto a 55°C y 3 minutos a 72°C, para la desnaturalización del DNA, la asociación entre iniciadores y templados y la polimerización, respectivamente, y un ciclo final de 15 minutos a 72°C. EL DNA producto de PCR, fue digerido con la enzima *Bam*H1 y purificado por electroforesis en poliacrilamida. La secuencia

Fig. 4 Construcción del pVF51RV208,

En la figura se representa la estrategía seguida en la construcción del plásmido pVF51RV208. Este se obtuvó por dos pasos. El primero consisió en crear por medio de mutagénesis dirigida el sitio de restricción para la enzima BamHI entre los codones 208 y 209 del gene ompC de S. typhi, en el fago M13PFs con el oligo BH208 y la sustitución del fragmento Mlul-PstI del gene ompC con el sitio incorporado para la enzima BamHI, por el fragmento similiar en el plásmido pVF51, generando así el pVF51BH208. El segundo paso consistió en amplificar de el fago M13RV160 por PCR, la secuencia nucleotifica del epítope de rotavirus flanqueada por los sitios para la enzima BamHI, por medio de los oligos 160P1 Y 160P2. EL producto de PCR posteriormente fue digerido con BamHI y ligado con el pVF51BH208 linearizado con esta misma enzima. nucleotídica del epítope de rotavinus con extremos cohesivos para la enzima BamH1 fue subclonada en el sitio de restricción creado para ésta enzima en el gene ompC (Fig. 4).

Para efectuar la subclonación, el plásmido con el sitio de inserción en el gene ompC fue linearizado con la enzima BamH1 y defosforilado con la enzima fosfatasa alcalina. La reacción de ligación fue realizada con una relación 1:10 de vector a inserto a 16°C por 8 horas. Células E. coli CMK y HB101 fueron transformadas con el DNA de la reacción de ligación. Las clonas positivas fueron identificadas por hibridación del tipo "Slot - blot", utilizando como sonda al oligo RV2, marcado con fósforo 32 en el extremo 5°. El DNA del plásmido obtenido de la clona positiva fue digerido con las enzimas BamH1 - EcoR1 para analizarlo por patrón de restricción. La otra estrategia consistió en emplear al oligonucleótido RV252 como iniciador de la cadena complementaria. Este oligo permitió, en un solo paso, insertar entre los codones 252 y 253 del gene ompC en el fago recombinante M13PPs, la secuencia nucleotídica que codifica para el epítope de rotavirus flanqueada por los sitos que reconoce la enzima de restricción BamH1. Una vez introducida esta secuencia en el fago recombinante M13PPs, por medio de la nutagénesis dirigida, fue obtenido el fragmento Mul-Psrl conteniendo la mutación incorporada, el cual se empleó para sustituir el fragmento similar del gene ompC en el pVFS1 (Fig. 5).

Análisis de la expresión de los genes híbridos generados por mutagénesis dirigida.

La expresión de las proteínas OmpC de membrana externa híbridas codificadas por los plásmidos mutagenizados fue analizada por electroforesis en poliacrilamida-SDS.

Las proteínas de membrana externa de las cepas transformadas con los plásmidos generados, fueron obtenidas en la fracción insoluble de tritón X-100 por el método de Matsuyammina *et al.*,1984. Fueron cuantificadas por el micrométodo de Bradford estandarizado en este laboratorio. Este método permitió determinar con precisión cantidades del orden de 1 a 5 µg de proteína.

Identificación del epítope de rotavirus en las proteínas híbridas generadas

El reconocimiento del epítope de rotavirus en las proteínas híbridas expresadas por el gene *ompC* mutagenizado, fue realizado para verificar la inserción y expresión correcta de la secuencia nucleotídica del epítope de rotavirus. Se utilizaron ensayos de ELISA con el anticuerpo monoclonal YO-2C2 (ACM YO-2C2), el cual reconoce la secuencia KAANYQYNYLRDGEQVTA (del aminoácido 296 al 313) correspondiente al epítope de la

Fig. 5 Construcción del pVF51RV252.

La construcción del pVF51RV252 se efectuó en un solo paso por medio de la incorporación de la secuencia nucleotídica del epítope de rotavirus flanqueada por sitios para la enzima BamHI entre los codones 252 y 253 del gene ompC de S. typhi en el fago recombinante M13PPs. Esto fue posible empleando el oligo RV252 en la mutagénesis sitio dirigida en este fago para generar al M13RV252. En el plásmido pVF51 fue sustituído el fragmento M1ul-Psíl del gene ompC por el fragmento similar pero mutagenizado proveniente del M13RV252, obteniendo así al pVF51RV252. proteína VP4. Este anticuerpo monocional reconoce el epítope sintético y neutraliza al virus y se piensa que éste es lineal o secuencial (Taniguchi et al., 1988). Los ensayos de ELISA (Verdugo et al., en preparación), fueron realizados con proteínas de membrana externa (PME). Como control negativo fueron empleadas las PME de la cepa E. coli HB101/pVF51, que expresa la OmpC de S. typhi nativa, y como control positivo para este ensayo, a las PME de la cepa E. coli HB101/pVF51-RV160, que lleva al gene híbrido, el cual expresa la OmpC-160Rota de S. typhi; siendo ésta reconocida por el AcM YO-2C2 en ELISA en PME y células completas (Puente et al., en preparación).

Por otra parte, para determinar si el epítope de rotavirus fusionado a la proteína OmpC fue expuesto en la superficie celular, se efectuó un ensayo de ELISA utilizado células completas a una concentración de 5 X $10^{7}/ml$, equivalente a una DO₆₀₀ = 0.1 en PBS, como antígeno inmovilizado.

Los ensayos de ELISA fueron llevados a cabo de la siguiente forma :

Pozos de microplacas de ELISA fueron cubiertos con 100 µl de células completas o 100 µl de PME previamente hervidas en PBS / BME por 5 minutos, a una concentración de 5 µg/ml; por duplicado para cada cepa, permitiendo la inmovilización del antígeno por toda una noche a temperatura ambiente.

Al día siguiente, cada pozo fue lavado tres veces, siendo cada lavado efectuado con 150 μ l de PBS 1X-Twecen 20 al 0.05 % (PBS-T). Los pozos fueron bloqueados con 150 μ l de gelatina al 1 % y albúrnina 2 % en PBS 1X pH 7.4, por 2 horas a temperatura ambiente; luego fueron lavados con PBS-T tres veces.

El AcM YO-2C2 fue adicionado a razón de 100 ul por pozo y se dejó actuar por 90 minutos a temperatura ambiente. Las diluciones probadas del anticuerpo fueron 1/45,000, 1/15,000, 1/5,000 y 1/500. La dilución con el anticuerpo del pozo fue removida y éstos fueron lavados tres veces con 150 µl de PBS-T.

Inmunoglobulinas de conejo conjugadas con peroxidasa anti-inmunoglobulinas de ratón (conjugado), fueron agragadas a una concentración inversa de 1000 en PBS-T pH 7.4, 100 µl por pozo, durante 90 minutos. Después, los pozos fueron lavados con 150 µl de PBS-T, por cinco veces con intervalos de 5 minutos cada uno.

El sustrato de la peroxidasa, 1 mg/ml de orto-fenildiamino en buffer de citratos a pH 5.5 y peróxido de hidrógeno 0.06 %, fue agregado en razón de 100 µl. La reacción se llevó a cabo por 20 minutos a temperatura ambiente y fue detenida con 50 ul de ácido sulfúrico al 0.055 % por pozo. La placa de ELISA fue leída al espectrofotómetro a 492 nm.

Secuencia de las regiones mutagenizadas del gene ompC

La secuencia nucleotídica de las regiones del gene *ompC*, donde se llevaron a cabo las inserciones de las secuencias para los sitios de restricción *Bam*HI y del epítope de rotavirus, fue determinada por el método derivado del de dideoxinucleótidos para DNA de doble cadena. Fueron usados como iniciadores de cadena para el análisis de secuencia del DNA los oligonucleótidos F/I (30-mero) y C5 (23-mero), correspondientes a dos segmentos del gene *ompC*. El primer oligo es complementario al gene *ompC* en la región que comprende a los codones del 249-252 y 251-256, el segundo es complementario a la región entre los codones 203 y 210. El oligo F/I (mutagénico, que lleva en la parte central la secuencia que codifica para el sitio de restricción de *Bam*H1) fue empleado para secuenciar la inserción de los sitios de restricción y del epítope de rotavirus, efectuada entre los codones 208 y 209 del gene *ompC*; el oligo C5 fue usado para secuenciar la inserción realizada entre los codones 252 y 253 (Fig. 3b).

Secuencia de las regiones e y f del gene ompC de diferentes especies de Salmonella

Las secuencias nucleotídicas efectuadas por PCR, de las regiones variables e y f del gene ompC, de diferentes especies de Salmonella (Tabla II), fueron determinadas por el método de dideoxinucleótidos para bandas de DNA obtenidas por PCR. Como iniciador de cadena se empleó al oligo C4 (21-mero) complementario a la región variable d del gene ompC. El DNA utilizado como templado en la reacción de secuencia se obtuvo por PCR como producto de la amplificación del gene ompC, a partir del DNA genómico de las especies de Salmonella, con los pares de oligos C2-C6 y C2-C7 (Bobadilla, 1992); siendo el oligo C2 (21-mero), el C6 (27-mero) y el C7 (18-mero) complementarios a las regiones variables b, f y g, respectivamente.

RESULTADOS

Creación del sitio de restricción para la enzima BamHI dentro del gene ompC de S. typhi, entre los codones 208 y 209

Por medio de mutagénesis dirigida (como se describe en Materiales y Métodos) empleando al oligo BH208 como iniciador de cadena y al fago recombinante M13PPs como templado, fue introducido, entre los codones 208 y 209 del gene *ompC* de S. *typhi*, el sitio de restricción para la enzima *Bam*HI, generándose así el fago M13BH208. Las células de E. coli JM101 transformadas con este fago, fueron identificadas por hibridación "Slot-blot", utilizando como sonda, el oligo BH208. El DNA de fago de las clonas positivas fue digerido con la enzima *Bam*HI, originando el fragmento de 247 pb correspondiente al tamaño esperado para el patrón de restricción con esta enzima (Fig. 6).

En la construcción del plásmido pVF51-BH208, el fragmento de DNA Mlut-PstI del plásmido pVF51 fue reemplazado a manera de "cassette" por el fragmento similar pero mutagenizado proveniente del fago M13BH208. El DNA de los plásmidos de las clonas transformadas con esta construcción, previamente identificadas como positivas en "Slot-blot" con la sonda BH208, fue analizado por medio de una digestión doble con las enzimas BamHI-EcoRI, generando un segmento de DNA de 549 pb (Fig. 7).

Clonación de la secuencia nucleotídica del epítope de rotavirus dentro del sitio creado para la enzima BamHI en el gene ompC

Una vez creado el sitio de restricción único para la enzima *Bam*HI en el pVF51, en el interior del gene *ompC*, fue introducido dentro de éste la secuencia nucleotídica del epítope de rotavirus, flanqueada por extremos cohesivos generados por la enzima *Bam*HI. Esta secuencia fue obtenida como producto de PCR. Para obtener la secuencia del epítope heterólogo, los oligos 160P1 y 160P2 (20-meros), complementarios a las regiones que flanquean la secuencia nucleotídica del epítope, clonado entre los sitios para la enzima *Bam*HI en el fago recombinante M13RV160, fueron usados como iniciadores y el fago anterior como templado en la reacción de amplificación por PCR. Fl DNA producto de la amplificación, correspondiente al tamaño molecular esperado de 183 pb fue purificado por electrofóresis en poliacrilamida al 8%. Este DNA fue digerido con la enzima *Bam*HI, produciendo la liberación de los extremos flanqueantes y generando los extremos cohesivos para la enzima. El DNA producto de la digestión fue

Fig. 6 Patrón de restricción del M13BH208 Y M13RV252 con la enzima BamHI. En la figura se muestra el patrón electroforético en poliacrilamida al 8% del DNA de las clonas M13BH208 (b) y M13RV252 (c) digeridas con BamHI. En la figura se observa el patrón de restricción generado por la inserción del sitio para BamHI entre los codones 208 y 209 del gene ompC de S. nphi en la primera clona y de la secuencia nucleotídica de rotavirus flanqueada por sitios de BamHI entre los codones 252 y 253 del gene ompC en la segunda clona, observandose así la banda de 247 pb para el M13BH208 y las de 115 y 59pb para el M13RV252, correspondiendo la última banda a la secuencia de rotavirus liberada;

Fig. 7 Patrón de restricción de los plásmidos pVF51, pVF51BH208, pVF51RV208 y pVF51RV252 generado por las enzimas BamHi-EcoRL

En la figura se muestra el parón electroforético en poliacrilamida al 8% de los plásmidos pVF51 (b), pVF51BH208 (c), pVF51RV208 (d) y pVF51RV252 (c) dígeridos con las enzimas BamHI-EcoRI. En la figura puede observarse la incorporación del sitio para la enzima BamHI por mutagénesis de sitio drirgida, la cual origina las bandas de 549 pb en los plásmidos pVF51BH208 y pVF51RV208, y la de 420 pb en el pVF51RV252, observando en este último plásmido también la banda de 59 pb correspondiente a la secuencia de rotavirus liberada, la cual no se observa en el pVF51RV208.

separado por electroforesis en poliacrilamida al 8%, obteniéndose las tres bandas esperadas de 49, 59 y 75 pb, aproximadamente. La banda de DNA de 59 pb, correspondiente al peso molecular de la secuencia nucleotídica del epítope de rotavirus, fue purificada cortando la banda del gel y eluyéndola.

El DNA del plásmido pVF51-BH208, linearizado con la enzima BamHI y desfosforilado, fue ligado con el DNA producto de PCR digerido con BamHI y correspondiente a la secuencia que codifica para el epítope de rotavirus. Células de *E. coli* CMK fueron transformadas por electroporación con el DNA de la reacción de ligación. La única clona positiva transformada por el plásmido generado pVF51-RV208 fue detectada por hibridación "Slot-blot", empleando como sonda al oligonucleótido RV2. El DNA de esta clona fue empleado para transformar a *E. coli* HB101. Las clonas transformadas fueron identificadas por "Slot-blot" con la sonda RV2. Sin embargo, el análisis del patrón de restricción con BamHI-EcoRI, de las clonas tanto de la cepa *E. coli* HB101 como de la CMK no mostró la liberación de la banda correspondiente al DNA de la secuencia nucleotídica del epítope de rotavirus (Fig.7).

Introducción de la secuencias nucleotídicas para el sitio de restricción BamHI y del epítope de rotavirus dentro del gene *ompC* (entre los codones 252 y 253), en un solo evento.

Al disponerse del oligonucleótido sintético RV252 (100-mero), fue posible realizar la mutagénesis sitio dirigida que permitió, en un solo paso, introducir entre los codones 252 y 253 del gene *ompC* de *S. typhi*, un doble sitio de restricción para la enzima *Bam*HI y entre éstos, a la secuencia nucleotídica que codifica el epítope de la proteína VP4 de rotavirus, generando el fago recombinante M13RV252. Células de *E. coli* JM101 fueron transformadas con este fago, producto de la reacción de mutagénesis. Las clonas positivas fueron seleccionadas por hibridación "slot-blot", usando como sonda el oligo RV2. El DNA de las clonas positivas fue analizado por patrón de restricción para la enzima *Bam*HI. La electroforesis en poliacrilamida al 8% mostró las bandas de 115 y de 59 pb, correspondiendo la segunda a la secuencia del epítope, liberada del plásmido como cassette (Fig. 6).

La sustitución del fragmento Mlul-Psrl del plásmido pVF51 (correspondiente a un fragmento del gene ompC nativo de S. typhi) por el fragmento similar pero mutagenizado con el oligo RV252, proveniente del fago M13RV252, generó al plásmido pVF51-RV252. Células de E. coli HB101, transformadas por electroporación con el DNA producto de la subclonación del fragmento mutagenizado Mlul-Psrl, fueron identificadas por hibridación upo "slot-blot" con la

sonda RV2. El DNA de las clonas positivas por hibridación fue analizado por medio de una doble digestión con *Eco*RI-*Bam*HI, originándose los fragmentos esperados de 420 y 59 pb, perteneciendo el segundo a la secuencia del epítope de rotavirus (Fig. 7).

Perfil electroforético de las proteínas OmpC híbridas generadas

La expresión de las proteínas codificadas por los plásmidos pMY111 (OmpC nativa de E. coli) (Mizuno et al., 1983), pVF51 (OmpC nativa de S. typhi), pVF51-RV160 (proteína híbrida OmpC-160Rota de S. typhi), pVF51-RV252 (proteína híbrida OmpC-252Rota de S. typhi) y pVF51-RV208 (proteína híbrida OmpC-208Rota de S. typhi), fue analizada por electroforesis en poliacrilamida-SDS. El perfil electroforético de estas proteínas mostró un tamaña molecular menor para la proteína OmpC de E. coli con respecto a la OmpC de S. typhi. En cuanto a las proteínas híbridas, se observó un tamaño molecular mayor para la OmpC-160Rota, como anteriormente se había observado (Puente et al., en preparación), así como para la OmpC-252Rota, con respecto a la proteína OmpC nativa de S. typhi. Sin embargo, el plásmido pVF51-RV208 no expresó la proteína híbrida OmpC-208Rota, cuyo peso molecular se esperaba fuera similar al de las otras dos proteínas híbridas; observándose únicamente la producción de las proteínas OmpC y OmpA de E. coli (Fig.8).

Detección del epítope de rotavirus fusionado a la proteína OmpC

La detección del epítope de rotavirus se realizó sólo para la proteína OmpC-252Rota, cuyo perfil electroforético correspondió al de una proteína híbrida.

La detección del epítope heterólogo fue llevada a cabo con las preparaciones de proteínas de membrana externa (PME) en ELISA, utilizando al AcM YO-2C2 (Tabla 1). El AcM YO-2C2 fue empleado en diluciones 1:500, 1:5,000, 1:15,000 y 1:45,000. En cada uno de los ELISA con las diferentes diluciones, el epítope de rotavirus fue detectado. Sin embargo, la proteína OmpC-252Rota fue reconocida en una proporción menor con respecto a la OmpC-160Rota (Fig.9).

a

h

d

Fig. 8 Patrón electroforético de preparaciones de proteínas de membrana externa expresadas por las clonas obtenidas.

En la figura puede observarse el perfíl electroforético en poliacrilamida-SDS de preparaciones de proteínas de membrana externa de *E. coli* HB101 llevando los plásmidos a) pMYIII (OmpC de *E. coli*), b) pVF51 (OmpC de *S. typhi*), e) pVF51RV160 (OmpC-Rota160), d)pVF51RV252 (OmpC-Rota252) y e) pVF51RV208. Las proteínas híbridas expresadas OmpC-Rota160 y OmpC-Rota252 presentaron una migración electroforética menor correspondiente a la de proteínas de mayor tamaño en comparación con la proteína OmpC silvestre. El plásmido pVF51RV208 que presentó la eliminación de gran parte de la región amino terminal del gene *ompC* no expressí ninguna proteína Hibrida.

ELISA/ WHOLE CELLS

Fig. 9 Reactividad del anticuerpo monocional YO-2C2 contra preparaciones de proteínas de membrana externa y células completas.

En las gráficas se observa la detección del epítope de rotavirus con el anticuerpo monocional YO-2C2 realizada en las preparaciones de proteínas de membrana externa (a) y células completas (b) de E, coll HB101 conteniendo n o los plásmidos pVF51, pVF51RV160 y pVF51RV252. Los resultados se obtuvieron en experimentos de ELISA usando 5 µg/ml de preparaciones de proteínas de membrana externa o 5 x 10⁷ células/ml y diferentes diluciones del anticuerpo monoclonal YO-2C2.

h

Por medio de ELISA con células completas, se observó que el epítope heterólogo es reconocido por el AcM YO-2C2 en la superficie celular, cuando está formando parte de la proteína OmpC-252Rota. Sin embargo, el AcM YO-2C2 reconoció al epítope heterólogo en menor proporción con respecto al control positivo OmpC-160Rota (Tabla 1 y Fig. 9). Estos resultados indican que el epítope de rotavirus en la proteína OmpC-252Rota, está expuesto en la superficie celular, aunque su exposición no es tan accesible al AcM como lo es el epítope fusionado en la OmpC-160Rota.

Secuencia de las regiones del gene *ompC* de *S. typhi* que contienen las inserciones de los sitios de restricción *Bam*HI y del epítope de la proteína VP4 de rotavirus

La reacción de secuencia efectuada con el oligo C5 en el plásmido pVF51-RV252, mostró que la inserción de las secuencias nucleotídicas de los sitios de restricción para *Bam*HI, así como del epítope de rotavirus, se efectuó en fase entre los codones 252 y 253 del gen *ompC* de *S. typhi* (Fig. 10).

La secuencia realizada con el plásmido pVF51-RV208 empleando al oligo F/I, mostró que la inserción del "cassette" de rotavirus se llevó a cabo. Sin embargo, esta secuencia también mostró la eliminación de la región 5'del gene *ompC*. Para verificar esta eliminación de la región 5' del gene *ompC*, se procedió a analizar la clona por patrón de restricción con dobles digestiones, con las enzimas *Mlul-Bam*HI, *Pstl-Bam*HI y con una digestión sencilla con *Eco*RI. Este análisis mostró que el sitio de restriccción para la enzima *Mlu*I, a 400 pb en dirección 5' con respecto al inserto, se perdió. La digestión efectuada del plásmido pVF51-RV208 con la enzima *Eco*RI mostró una banda de aproximadamente 1 kpb menor que la obtenida para el plásmido pVF51-BH208, evidenciando así la eliminación de una parte de la región 5' del gene *ompC* en esta clona. TABLA I Detección de un antígeno de la proteína VP4 de rotavirus en preparaciones de proteína de membrana externa y en células completas por medio de ELISA

	PME	5- -		
Dilución del AcM YO-2C2	E.coli HB101 (sin plásmido)	pVF51 (OmpC)	pVF51-RV160 (OmpC-160Rota)	pVF51-RV252 (OmpC-252Rota)
1:500	0.37	0.59	3.37	2.83
1:5000	0.11	0.15	1.90	0.74
1:15000	. 0.05	0.09	0.69	0.29
1:45000	0.08	0.13	0.36	0.23
	Células co	ompletas ^b		
1:500	0.19	0.18	1.0	0.77
1:5000	0.02	0.02	0.98	0.36
1:15000	0.01	0.01	0.88	0.16
1:45000	0.07	0.01	0.70	0.07

a- Las PME se utilizaron a una concentración de 5 μ g/ml en PBS. b- Las cétulas completas se utilizaron a una concentración de 5 x 10⁷ cétulas/ml, equivalente a una DO_{co} = 0,1 en PBS.

g

nc	597							C	5												
88		200			-		-					210									
	λ	D	Q	N	N	т	λ	N	٨	R	L	۲	a	N	σ	D	R	λ	T	۷	Ŧ
5	000	art	CVO	AAC	AAC	YCC	GCT	AAC	ост	coc	CTG	TAT	oor	AAC	60C	ant.	œc	acc	YC0	отт	TAC
																					•••
			~								230								~	-	240
			000	-			~~~	~~~~				•			<u></u>					т.	
		uuc.		C10	~~~	1.	uni	000	AAC	~~~	NIC.	141	Cito -					ICT (
										250		252			296						
	N	λ	T	R	F	G	т	8	и	۵	8	N	đ	9	ĸ	۸	A	N	¥	Q	Y
	AAC	GCN	YCC	COT	777	00 T	ACC	TCT	YVC.	00C	V00	ANC	00A	TCC	***	007	oct	MC	TAC	C14	TAC
													Bai	WHI	50	cuenc	ia r	ucle		lica	del
																					-
											313			253							260
	N	Y	L	R	Ð	a	E	Q	v	T	x	G	8	P	s	т	8	Y	a	P	A
	ANC	TAC	CTO	COT	arc	000	OFF	CNG	OTT	ACC	act.		100	cca	TCC	YCC.	TCT	TCA	DOT		occ
	ep	ítop	de	rote	vin	18						Bai	- mHI								
																				· · .	
										270					_	_				280	_
	N	к		0	N	r	Б	•	v		Q		Q					ь —	к		8
	AAC	***	909	çaa	AAC	ITI	GAA	010	on	OCT	cuo	TAC	CAG	HC	enc.	***	001	CTO	COT	cca	TCT
•																					
									-										-		
						~		-	390			-		-		~			300		
	v	^	1	ы 	•	ช 	к 		ĸ		1	5	N	0	1	u 	^ 	9	T	4	
	910	ocr	TAC	cro	CYO	TCT	***	UOT	*10	orc	ATC	AOC	AAC	GOC	TAC	uac	acc	NOC	TAT	çaç	GAC

Fig. 10

Letras claras

Secuencia nucleotídica del gene ompC de la región circundante a la inserción efectuada por medio de mutagénesis dirigida.

Letras negritas

Muestran la secuencia nucleotídica obtenida con el oligo C5 (23-mero), el cual fue empleado como iniciador de cadena complementaria, en la reacción de secuenciación del plásmido pVF51RV252.

La secuencia nucleotídica efectuada de las regiones variables e y f de las diversas especies de Salmonella (Tabla II) por un lado, mostró que entre las especies estudiadas, la región variable e, difiere en un 14%, mientras que la región variable f, en un 8%. Los cambios en la secuencia de aminoácidos deducida de este análisis, indican que los aminoácidos que varían entre las secuencias, corresponden a aminoácidos que promueven giros o que no los bloquean. Por otro lado, estos resultados concuerdan con los obtenidos en el estudio de hibridación de los oligos C5 y C6 (complementarios a las regiones variables e y f del gene *ompC de S. typhi*) con el DNA genómico digerido con *Eco*RV de estas salmonellas (Bobailla, 1992). Estos oligos no hibridaron con el DNA de las salmonellas que mostraron una secuencia nucleotídica con una similitud menor al 90% con respecto al oligo, siendo la excepción la región variable f de *S. enteritidis*, que no hibridó con el oligo C6 aún presentando una similitud con este oligo mayor del 90%, lo cual pudo deberse a la disposición de bases adyacentes a la región de cambio, afectando la unión del oligo C6 a la región complementaria durante las condiciones de hibridación utilizadas.

TABLA II Secuencia nucleotídica de las regiones variables e y f del gene ompC de varias salmonellas.

	Fuente	200	olicooucianiida a	210	Нур	×
s. tvohi IMSS-1	(1)	GCC GAT CAG A Aka Asa Gin As	AC AAC ACC GCT AAC GCT CGC CI	G TAT	٠	100
S. typhimurium LT2	(2)	GCC GAT CAG A	AC AAC ACC GCT AAC GCT CGC CT	g tat	٠	100
S. enteritidis D1	(3)	GCC GAT CAG A	AC AAC ACC GCT AAC GCT CGC CT	g tat	+	100
S. worthington G2	(3)	GCC GAT CAG A	AC AAC ACA GCT GAC GCT CGC CT	G ĬVĨ	٠	91.3
S. gallinarum FVA-1	(4)	GCC GAI CAG A	AC AAC ACC GCT GAC GAA CAC CI Arp Giu His	G TAT	-	82.6
S. aberdeen F	(5)	GCC GAT CAG A	AC AAA ACC GCI GAC GAA CAC CI	g tat	-	78.3
S. typhi 2d	(6)	GCC GAT CAG A	AC AAC ACC GCT AAC GCT CGC CT	G TAT	ND	100

	245	•	iligonucleolide i		:	259 H	yb %
S. typhl IMSS-1	TTI GGT ACC Phe Gly Thr	ICI AAC G	GC AGC AAC Gly Ser Asn	CCG 1CC ACC 1 Pro Ser Thr S	CT TAC GGT	רוד - להס	100
S. typhimurium LT2	III GGI ACC	101 VVC 6	GGT AGC AAC	CCG ICC ACC I	CT IAC GGI	m •	⊧ 96.3
S. enteritidis D1	TIT GGT ACC	ICI AAC G	SGC AGT AAC	CCG TCC ACC T	CI TAC GGI	π -	. 96.3
S. worthington G2	TIT GGI ACC	101 440 6		AAG TCC ACC	ICI TAC GGI	Π -	. 65.2
S. gallinarum FVA-1	TT GGI ACC	101 AAC 0		AAG ICC ACC	ICI TAC GGT	π	. 85.2
S. aberdeen F	TT GGI ACC			AAG TCC ACC	ICT TAC GGT	m _	. 85.2
S. typhi 2d		101 770 6	GGC AGC AAC	CCG TCC ACC T	CT TAC GGT	• m	4D 100

1.- Este laboratorio (Puente et al., 1987).

2.- American Type Culture Collection No. 19430.

3.- Cepa de referencia del Instituto Nacional de la Nutrición, Cd. de México.

4.- Cepa de referencia de la Facultad de Medicina Veterinaria y Zootecnia, UNAM.

5.- Cepa de referencia de Bigaux Diagnóstica, México,

6.- Cepa monofásica (d:-) aislada en Indonesia, Stanford University / USNAMRU-2,

Hyb: Resultado de la hibridación del oligo e con la región variable e y del oligo f con la región variable f del gene ampC de Salmonella typhi. (+) sí hibrido, (-) no hibrido (Bobadilla, 1992).

5 : Porcentaje de similitud de la región variable e con el oligo e, y de la región variable f con el oligo f. 33

DISCUSION

En este trabajo se demuestra la exposición en la superficie celular de una de las regiones variables de la proteína OmpC de *S. typhi*, por medio de la inserción del epítope lineal de la proteína VP4 de la cápsula de rotavirus, entre los aminoácidos 252 y 253, correspondientes a la región variable f de la proteína OmpC. La detección del antígeno heterólogo se realizó ulitizando el anticuerpo monoclonal YO-2C2 y la técnica de ELISA con células completas. Sin embargo, el reconocimiento del epítope heterólogo efectuado por el anticuerpo monoclonal en esta región variable f, fue menor con respecto al de la región variable c, donde anteriormente el mismo epítope fue insertado y detectado por el anticuerpo monoclonal YO-2C2 (Puente *et al.*, datos no publicados).

Esto indica que el epítope de rotavirus es expuesto en menor grado en la región f, siendo en este sitio menos accesible a la interacción con el anticuerpo monoclonal en comparación con la región variable c. El análisis de estos resultados nos permiten considerar que la región variable f de la proteína OmpC de *S. typhi*, según el modelo de plegamiento propuesto para esta proteína por Puente *et al.*,(datos no publicados), no es de carácter hidrofílico y se pliega sobre sí misma evitando el contacto con el agua, por lo que el antígeno de rotavirus insertado en esta región pudiera quedar incluído dentro de ésta y no ser presentado adecuadamente a la superficie celular. La detección por la técnica de marcaje inmunológico con oro ((immunogold) del antígeno VP4, realizado en células completas que expresan las proteínas OmpC-160-Rota y OmpC-252-Rota, también apoyan este punto de vista (Fig. 11)(Puente *et al.*, datos no publicados).

Con respecto a la inserción del epítope de rotavirus en la región variable e (construcción pVF51-RV208), sólo una clona fue detectada con la inserción del epítope de rotavirus llevada a cabo entre los nucleótidos correspondientes a los aminoácidos 208 y 209 de la proteína OmpC de *S. typhi*. Esta presentó además la eliminación de una región mayor a l kbp en la región nucleotídica adyacente al lugar de la inserción por el extremo 5' del gene *ompC*. El hecho de que no se detectara ninguna clona funcional para la construcción del pVF51-RV208 (expresando la proteína híbrida OmpC-Rota208) podría deberse a que la inserción sus propiedades fisiológicas, por lo que sólo la construcción con la deleción, que no expresó ninguna proteína funcional híbrida, no fue letal.

h

Fig. 11 Detección por inmunogold del epítope de rotavirus. En las imágenes puede observarse la detección del epítope de rotavirus efectuada por medio de la técnica de inmunogold en la superficie de células de *E, coll* HB101 conteniendo los plásmidos pVF51 (a), pVF51RV160 (b) y pVF51RV252 (c), usando el anticuerpo monocional YO-2C2.

Sin embargo, los trabajos realizados con las proteínas OmpC, PhoE y OmpF de E, coli, las cuales comparten un 60% de similitud y son muy similares estructuralmente (Mizuno et al., 1983: Van der Ley et al., 1986), no apoyan las suposiciones anteriores, ya que por ejemplo, la eliminación de los aminoácidos 195-206 de la proteína PhoE en la región variable análoga a la región variable e de OmpC de S. typhi, no afecta la incorporación y localización de esta proteína en la membrana externa (Agterberg et al., 1989). Esto permite especular que la región variable e ha surgido como resultado de la insercion de aminoácidos efectuada a través del tiempo, los cuales no son indispensables para la incorporación de la porina en la ME. De esta manera puede suponerse que la inserción del epítope de la proteína VP4 es permisible en dicha región, sin producir alteraciones que afecten la estructuración en la ME de la proteína híbrida resultante. Por otra parte, se ha reportado que las mutaciones en los aminoácidos R37, R74, D105 y R124 alteran la función de poro de la proteína OmpC de E, cali (Misra y Benson, 1988), y que las propiedades de poro de la proteína OmpF son conferidas por el primer tercio de esta proteína (Misra y Benson, 1988). Con base en lo anterior puede suponerse que la región variable e de la proteína OmpC de S. typhi no está implicada en la función de poro de está proteína, y la inserción del antígeno VP4 de rotavirus efectuada por mutagénesis dirigida en esta región, se esperaría fuera permisible sin ocasionar la alteración de esta función.

La detección de una única clona durante la construcción del pVF51-RV208, conteniendo una eliminación, pudo deberse a la estrategia de dos pasos empleada para obtener dicha construcción. La estrategia resultó ser poco eficiente debido a la dificultad de clonar en el sitio de restricción, creado para BamHI en el gene ompC de S. typhl, la secuencia de 59 pb correspondiente al epítope de rotavirus flanqueada por los sitios complementarios al lugar de la inserción, obtenida previamente como producto de amplificación por PCR. Además la clona obtenida mostró ser poco estable, presentando la eliminación de una gran parte de la región 5' del gene ompC.

De acuerdo con el modelo de plegamiento y estructuración en la ME de la proteína OmpC de S. typhi de Puente et al., (datos no publicados), esta proteína atraviesa 16 veces la membrana externa en una conformación de hojas B anfipáticas antiparalelas y perpendiculares a la ME (Fig. 12), con los residuos hidrofóbicos hacia la cara fosfolipídica y los aminoácidos hidrofílicos hacia la luz del poro. De ahí que las cadenas B, invierten su dirección y producen vueltas o giros que ocasionan la exposición de ciertas regiones hacia el exterior celular y hacia el espacio periplásmico, por lo que se postula que existen 8 regiones expuestas hacia el exterior celular. Estas han sido postuladas con base a las regiones variables observadas entre la proteína OmpC de *S.typhi* y la OmpC de *E.coli* y al carácter hidrofílico de la mayoria de ellas, así como de la determinación de los trechos transmembranales de esta proteína debido a su carácter anfipático (Puente *et al.*, 1989).

Fig. 12 El esquema representa el modelo de plegamiento y ensamble de la porina OmpC de S. typhi en la membrana externa, propuesto por Puente et al., (datos no publicados). En éste, cada monómero de la porina atraviesa 16 veces la membrana externa en forma de cadenas B antipáticas y antiparalelas, exponiendo 8 regiones hacia la superfície celular. Cada una de estas región corresponde a un pico hidrofilico en el perfil de hidrofobicidad de OmpC, concordando la mayoría de ellas con las regiones variables entre la OmpC de S. typhi y E. coll. Estas regiones variables están representadas por las letras a, ib, e, d, e, f y g.

Los aminoácidos de S. typhi que difieren con los de E. coli están indicado: con letras negritas. Los puntos señalan los aminoácidos de la OmpC de S. typhi que corresponden a huecos o "gaps" en la OmpC de E. coli, los cuales se determinaron por el alineamiento de las secuencias de aminoácidos de estas proteínas. Los círculos encieran aminoácidos importantes en la función de poro, los cuales están conservados entre las portinas relacionadas filogendicamiente con OmpC. En el rectángulo superior está representada la secuencia de aminoácidos del epítope de la proteína VP4 de rotavirus, la cual se insertó en la región variable e. En la región variable f, también está indicada por medio del cuadrado, la inserción de este mismo epítope. Por otra parte, en un estudio realizado por Janteur et al., (1991) sobre la estructuración de las proteínas de membrana externa de enterobacterias y neiseriales, se identificaron las regiones altamente conservadas a través del alineamiento de la secuencia de aminoácidos de estas proteínas, las cuales correspondieron a los segmentos transmembranales anfipáticos, mientras que las regiones variables entre ellas correspondieron a trechos extramembranales, los cuales se piensa han tolerado inserciones o deleciones de aminoácidos sin afectar la estructuración y función de la porina. En cambio, se piensa también que las mutaciones que afectan los segmentos transmembranales pudieran disminuir o incluso abolir la incorporación de la proteína en la ME (Bosch et al., 1989).

Los resultados obtenidos con la inserción del epítope de rotavirus en las regiones variables c y f, así como su reconocimiento en la superficie celular por el anticuerpo monoclonal YO-2C2, tanto en el ELISA como en la detección por "Immunogold" con células completas, demuestra la exposición de estas regiones variables en la superficie celular y apoya la idea de que dichas regiones toleran inserciones o deleciones de aminoácidos sin afectar el ensamble de la proteína en la ME. Por otro lado, los resultados obtenidos con las secuencias nucleotídicas de las regiones variables e y f del gene *ompC* de las diferentes salmonellas empleadas en este estudio, apoyan la idea de que dichas regiones de la proteína toleran cambios que no afectan su estructuración en la ME.

El estudio de la topología de porinas por medio de la inserción de epítopes reporteros, ha llevado al descubrimiento de sitios permisibles, es decir, sitios de las porinas que toleran inserciones de secuencias de aminoácidos, sin provocar cambios importantes en su conformación en la ME, ni en sus propiedades biológicas. Entre las porinas estudiadas en las que se han identificado sitios permisibles están LamB (Charbit et al., 1991) y PhoE (Agterberg, 1990) de E. coli. Es también de interés el estudio de las secuencias (hidrofobicidad, longitud) que pueden ser insertadas en función de la traslocación e incorporación de la proteína híbrida resultante en la ME. En esta línea de investigación se han desarrollado trabajos, como por ejemplo con la proteína PhoE de E. coli, en la que se ha observado que secuencias insertadas altamente hidrofóbicas impiden el ensamble de la proteína en la ME (Agterberg et al., 1990). En la proteína LamB de E. coli, las secuencias heterólogas que han sido insertadas y expuestas en la superficie celular han sido de hasta de 60 aminoácidos de longitud (Charbit et al., 1988).

Por otra parte, otros grupos de investigadores están llevando a cabo la inserción de determinantes antigénicos heterólogos en las regiones expuestas y permisibles de porinas, con

ESTA TESIS NO DEBE Salir de la bibliotec/

la finalidad de hacerlos accesibles al sistema inmune, al ser acarreados hasta la superficie celular por porinas expresadas en cepas de vacunación. Dentro de los epítopes heterólogos con los que se ha trabajado, se encuentran el antígeno de la proteína VP1 del virus de la fiebre aftosa (Agterberg et al., 1990) llevado hasta la superficie celular por la proteína PhoE de E.coli; los epítopes de las principales proteínas de ME de Chlamydia trachomatis insertados en LamB de E. coli (Hayes et al., 1991), así como el péptido correspondiente a los aminoácidos 132-145 de la región preS₂ del virus de la hepatitis B y el péptido 93-103 de la proteína VP1 de la cápsula del poliovirus insertados también en esta porina (Callaghan et al., 1990).

El uso de las regiones expuestas de porinas en la superficie celular, para la inserción de determinantes antigénicos de diversos microorganismos patógenos, representa la posibilidad de generar por medio de esta metodología, vacunas recombinantes que induzcan inmunidad contra divesas enfermedades, mediante un solo inmunógeno (OmpC modificada con los diversos epítopes

CONCLUSIONES

El estudio topológico de la porina OmpC de S. typhi efectuado en este trabajo, contribuye al desarrollo de conocimiento de la estructura y ensamble de ésta proteína en la membrana externa. Los resultados obtenidos apoyan el modelo de plegamiento de está proteína propuesto por Puente *et al.*,(datos no publicados), el cual asume que la región variable **f** está expuesta en la superfície celular.

Por otra parte, la región variable f de la proteína OmpC de S. typhi, fue capáz de acarrear hacia la superficie celular, el epítope VP4 de rotavirus. Sin embargo, la exposición del epítope heterólogo en esta región de la proteína, fue menor en comparación con la exposición del mismo epítope, en la región variable e efectuada por Puente *et al.*, (datos no publicados).

En cuanto a la estrategía seguida en la inserción del epítope heterólogo, en la región variable f de la porina OmpC, realizada en un solo paso y empleando al oligo RV252 (100-mero), resultó ser eficas. Por lo que, el empleo de esta estrategía se sugiere para la inserción de epítopes heterólogos en las regiones expuestas de la porina OmpC.

BIBLIOGRAFIA

- Agterberg, M., Adriaanse, H., Tijhaar, E., Resink, A. and Tommassen, J. (1989) Role of the cell surface-exposed regions of outer membrane protein PhoE of *Escherichia* coli K-12 in the biogenesis of the protein. *Bur. J. Biochem.* 185:365-370.
- Agterberg, M., Adriaanse, H., van Bruggen, A., Karperien, M. and Tommassen, J. (1990) Outer-membrane PhoE protein of Escherichia coli K-12 as an exposure vector: posibilities and limitations, Gene 88:37-45.
- Adamus, G., Mulczka, M., Witkowska, D. and Romanowska, E. (1980) Protection against keratoconjunctivitis shigellosa induced by immunization with outer membrane proteins of *Shigella sp. Infect. Immun.* 30:321-324.
- Aiba,H., Nakasa, F., Mizushima, S. and Mizuno, T. (1989) Evidence for the physiological importance of the phosphotransfer between the two regulatory components, EnvZ and OmpR, in osmoregulation in *Escherichia coll. J. Biol. Chem.* 264:14090-14094.
- Bobadilla del Valle, J.M. (1992) Análisis molecular del gene ompC de Salmonella typhi. Tesis maestria en Biotecnología, Instituto de Biotecnología, U.N.A.M.
- Bosch, D., Scholten, M., Verhagen, C., and Tommassen, J. (1989) The role of the carboxyterminal membrane-spanning fragment in the biogenesis of *Escherichia coli* K-12 outer membrane protein PhoE. *Mol. Gen Genet.* 216:144-148.
- Buchanan, T.M., Pearce, A.W., Schoolnik, G.K. and Arko, R.J. (1977) Protection against infections with *Nelsseria gonorrhoeae* by immunization with outer membrane complex and purified pili. J. INFECT, DIS. 136:132-137.
- Calderón, I., Lobos, S.R., Rojas, H.A., Palomino, C., Rodríguez, L.H. and Mora, G.C. (1986) Antibodies to porin antigens of *Salmonella typhi* induced during typhoid fever in humans. *Infect. Immun*, 52:209-212.
- Caldwell, H.D., and Perry, L.P. (1982) Neutralization of Chlamydia trachomatis infectivity with antibodies to the major outer membrane protein. Infect. Immun. 38:745-754.

- Callaghan, D.O., Charbit, A., Martineau, P., Leclerc, C., van der Werf, S., Nauciel, C. and Hofnung, M. (1990) Immunogenicity of foreign peptide epitopes expressed in bacterial envelope proteins. *Res. Microbiol.* 141:963-969.
- Calva, E., Puente, J.L. and Calva, J.J. (1988) Research opportunities in typhoid fever: epidemiology and molecular biology. *BioEssays 9: 173-177*.
- Charbit, A., Molla, A., Saurin W. and Hofnung, M. (1988) Versatility of a vector for expressing foreign polypeptides at the surface of gram-negative bacteria. Gen 70:181-189.
- Charbit, A., Ronco, J., Michel, V., Werts, C. and Hofnung, M. (1991) Permissive sites and topology of an outer membrane protein with a reporter epitope. J. Bacteriol. 173:262-275.
- Dorman, C.J., Chatfield, S., Higgins, C.F., Hayward, C. and Dougan, G. (1989) Characterization of porin and ompR mutants of a virulent strain of Salmonella typhimurium: ompR mutants are attenuated in vivo. Infect. IMMUN. 57:2136-2140.
- Edelman, R. and Levine, M.M. (1986) Summary of an international workshop on typhoid fever. *Rev. Infect. Dis* 8:329-349.
- Finlay, B.B. and Falkow, S. (1989). Salmonella as intracellular parasite. Mol. Microbiol.3:1833-1841.
- Forst, S., Delgado, J. and Inouye, M. (1989) DNA-binding properties of the transcription activator (OmpR) for the upstream sequences of the ompF gene in Escherichia coli are altered by envZ mutations and medium osmolarity. J. Bacteriol. 171:2949-2955.
- Germanier, R. (1984) Typhoid fever. In: Bacterial vaccines. Academic. Press, Inc. New York. 137-165.
- Gilleland, H.E.; Parker, M.G., Matthews, J.W. and Berg, R.D. (1984). Use of purified outer membrane protein F (porin) preparation of *Pseudomonas aeruginosa* as a protective vaccine in mice. *Infect. Immun.*, 44:49-54.
- Graeme-Cook, K.A., May, G., Bremer, E. and Higgins, F.C. (1989) Osmotic regulation of porin expression: a role for DNA supercoiling. *Mol. Microbiol.* 3:1287-1294.

- Gulig, P.A. and Curtiss, R.III (1987) Plasmid associated virulence of Salmonella typhimurium.Infect. Immun. 55:2891-2901.
- Guling, P.A., McCracken, G.H. Jr., Frich, C.F., Johnston, K.H. and Hansen, E.J. (1982) Antibodies response of infants to cell surface-exposed outer membrane proteins of *Haemophilus influenzae* type b after systemic *Haemophilus* disease. *Infect. Immun.* 37:82-88.
- Hall, M.N. and Silhavy, T.J. (1981) The ompB locus and the regulation of the major outer membrane protein porin proteins of Escherichia coli K-12.J. Mol. Biol. 146:23-43.
- Hayes, L.J., Conlan, J.W., Everson, J.S., Ward, M.E. and Clarke, I.N. (1991) Chlamydia trachomatis major outer membrane protein epitopes expressed as fusions with LamB in an attenuated aroA strain of Salmonella typhimurium; their application as potential immunogens. J. Gen. Microbiol. 137:1557-1564.
- Hsu, H.S. (1989) Pathogenesis and immunity in murine Salmonellosis Microbiol. Rev. 53: 390-409.
- Huang, L., Tsui, P. and Freundlich, M. (1990) Integration host factor is a negative effector of in vivo and in vitro expression of ompC in Escherichia coli. J. Bacteriol. 172: 5293-5298.
- Igo, M.M., Ninfa, A.J., Stock, J.B. and Silhavy, T.J. (1989) Phosphorylation and dephosphorylation of a bacterial activator by a transmembrane receptor. *Genes* Dev. 3:1725-1734.
- Isibasi, A., Ortiz, V., Vargas, M., Paniagua, J., González, C., Moreno, J. and Kumate, J. (1988) Protection against Salnionella typhi infection in mice after immunization with outer membrane proteins from Salmonella typhi 9, 12, d, Vi.Infect. Immun. 56:2953-2959.
- Jeanteur, D., Lakey, J.H. and Pattus, F. (1991) The bacterial point superfamily: sequence alignment and structure prediction. Mol. Microbiol. 5:2153-2164.
- Kawaji, H., Mizuno, T., and Mizushima, S. (1979) Influence of molecular size and osmolarity of sugars and dextrans on the synthesis of outer membrane proteins O-8 and O-9 of *Escherichia coli* K-12. J. Bacteriol. 140:843-847.

- Kleffel, B., Garavito, R.M., Baumeister, W. and Rosenbusch, J.P. (1985) Secondary structure of a channel forming protein : porin from *Escherichia coli* outer membranes. *EMBO*, J. 14:1589-1592.
- Lundrigan, M.D. and Earhart, C.F. (1984) Gene envZ of Escherichia coli K-12 affects thermoregulation of major porin expression. J. Bacteriol. 157:262-268.
- Matsuyama, S.L, Inokuchi, K. and Mizushima, S. (1984) Promoter exchange between ompF and ompC, genes for osmoregulated major outer membrane proteins of Escherichia coli K-12. J- Bacteriol. 158:1041-1047.
- Misra, R. and Benson, S.A. (1988) Genetic identification of the pore domain of the OmpC porin of Escherichia coli K-12. J. Bacteriol. 170:3611-3617.
- Mizuno, T., Chou, M.Y. and Inouye, M. (1983) A comparative study on the genes for three porins of the *Escherichia coli* outer membrane. J. Biol. Chem. 258:6932-6940.
- Mizuno, T., Wurtzel, E.T., and Inouye, M. (1982) Osmoregulation of gene expression.IL DNA sequence of the *envZ* gene of the *ompB* operon of *Escherichia coli* and characterization of its gene product. J. Biol. Chem. 257:13692-13698.
- Nakae, T. Outer membrane permeability of bacteria. CRC. Crit. Rev. Microbiol. 13:1-62.
- Ni Bhriain, N., Dorman, C.J. and Higgins, C.F. (1989) An overlap between osmotic and anaerobic stress responses: a potential role for DNA supercoiling in the coordinate regulation of gene expression. *Mol. Microbiol.* 3:933-942.
- Nikaido, H. and Vaara, M. (1985) Molecular basis of bacterial outer membrane permeability. *Microbiol. Rev.* 49:1-32.
- Osbom, M.J. and Wu, H.C. (1980) Proteins of the outer membrane of gram-negative bacteria. Annu. Rev. Microbiol. 34: 369-422.
- Pang, T., Calva, E., Punjabi, N. and Rowley, D. (1992) Report from an international Symposium on typhoid fever. Asian Pacific Journal of Allergy and Immunology. 10:81-83.
- Paul, C. and Rosenbusch, J.P. (1985) Folding patterns of porin and bacteriorhodopsin. EMBO, J. 4:1593-1598.

- Puente, J.L., Flores, V., Fernández, M., Fuchs, Y. and Calva, E. (1987) Isolation of an ompC-like outer membrane protein gene from Salmonella typhi. Gene 61:75-83.
- Puente, J.L., Alvarez-Scherer, V., Gosset, G. and Calva, E. (1989) Comparative analysis of the Salmonella typhi and Escherichia coli ompC genes, Gene 83:197-206.
- Puente, J.L., Verdugo-Rodríguez, A. and Calva, E. (1991) Expression of Salmonella typhi and Escherichia coli OmpC is influenced differently by medium osmolarity; dependence on Escherichia coli OmpR. Mol. Microbiol. 5:1205-1210
- Su, T-Z. and El-Gewely, M.R. (1988) A multisite-directed mutagenesis using T7 DNA polymerase: application for reconstructing a mamalian gene. *Gene 69:81-89.*
- Taniguchi, K., Maloy, W.L., Nishikawa, K., Green, K.Y., Hoshino, Y., Urasawa, S., Kapikian, A.Z., Chanock, R.M. and Gorziglia, M. (1988) Identification of crossreactive and serotype 2-specific neutralization epitopes on VP3 of human rotavirus. J. Virol. 62:2421-2426.
- Tsung, K., Brissette, R.E. and Inouye, M. (1990). Enhancement of RNA polymerase binding to promoters by a transcriptional activator, OmpR, in *Escherichla coli*: Its positive and negative effects on transcription. *Proc. Natl. Acad. Sci. USA*. 87:5940-5944.
- Udhayakumar, V. and Muthukkaruppan, V.R. (1987) Protective immunity induced by outer membrane proteins of Salmonella typhimurium in mice. Infect. Immun. 55: 816-821.
- Van der Ley, P., Struyvé, M. and Tommassen, J. (1986) Topology of K-12 outer membrane pore protein of *Escherichia coli*. Mol. Gen. Genet. 209:585-591.
- Verdugo-Rodríguez, A.; Santana, J.; Puente, J.L. and Calva, E. (1992) Salmonella typhi outer membrane proteins in the diagnosis of typhoid fever. In: Typhoid Fever Strategies for the 90's . Pang,T.; Koh, C.L. and Puthucheary, S.D. (eds). World Scientific (ed). 216-220.
- Wang, L.I. and Frash, C.E. (1984) Development of a Neisseria meningitidis group B serotype 2b protein vaccine and evaluation in a mouse model. Infect. Immun. 46: 408-414.