

UNIVERSIDAD LA SALLE Escuela de Ingeniería Mecánica Eléctrica Incorporada a la U.N.A.M.

DESARROLLO DE LA METODOLOGIA PARA LA REHABI-LITACION DE POZOS PROFUNDOS DE AGUA.

TESIS PROFESIONAL
Que para obtener el Título de
INGENIERO MECANICO ELECTRICISTA
AREA INDUSTRIAL
Presentana
ENRIQUE LBOLIVAR GOMEZ
EDUARDO)GARZA RAMOS MARTINEZ

Director de Tesis:
ING. ALFREDO HEREDIA NAVARRO

México, D. F.

1993

TESIS CON FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE GENERAL

INTRODUCCION	1
CAPITULO L. EFICIENCIA DE POZOS	3
I.L PERDIDAS DE EFICIENCIA DEBIDAS A LAS CARACTERÍSTICAS DEL ACU	IFERO 3
1.2 PERDIDAS DE EFICIENCIA DEBIDAS A LAS CARACTERISTICAS DEL POZ	0 4
1.2.1 Método de Rorabaugh.	5
L3 METODOS DE RESOLUCION PARA EL CALCULO DE LA EFICIENCIA DE P	ozo 7
1.3.1 Método de Jucob.	100
1.3.2 Tanteos de n.	8
I.3.3,- Otro método gráfico.	. 9
I.3.4,- Método anglítico del valor de n.	11
I.3.5,- Método analítico del valor de B.	12
I.4 MEDICION DE LA EFICIENCIA.	13
1.5MEDICIONES PRELIMINARES.	15
1.5.1 Equipo necesario y secuencia de las pruebas.	
1.5.2 Interpretación de la prueba.	17
CAPITULO IL- POZOS INEFICIENTES, SUS CAUSAS Y POSIBLES SOLUCIONES	20
II.1 DEFECTOS DE DISEÑO.	
II.1.1 Pozos incompletos.	21
II.1.2 Exceso de cedazo.	23
II.1.3 Defecto de cedazo.	
II.1.4 Información litológica inadecuada.	24
II.1.5 Filtro granular mai diseñado.	25
II.1.6 Aforo mal realizado o interpretado.	
II.1.7,- Mala protección sanitaria o química del pozo.	26
II.2 DEFECTOS CONSTRUCTIVOS.	27
II.2.1 Lodos inadecundos.	
II.2.2 Fuita de desarrollo del pozo.	
11.2.3 Filtro granular mal colocado.	28
II.2.4 Defecto en la colocución del ademe.	. 29
II.2.5 Falta de verticalidad del pozo.	
II.2.6 Materiales defectuosos o inadecuados.	30
II.3 DEFECTOS OPERACIONALES.	31
11.3.1,- Falta de mantenimiento del pozo.	
II.3.2 Falta de mantenimiento en la bomba,	32
II.3.3 Faita de reposición del filtro.	
II.3.4 Arranques y paros frecuentes del equipo.	33
II.4 CAUSAS REGIONALES.	
II.4.1 Aguas corrosivas.	
II.4.2 Aguas incrustantes.	34
H 4.2 Destantes formationers	

II.4.4 Abatimientos regionales de los niveles freáticos.	3.5
CAPITULO III OPERACIONES Y METODOS DE REHABILITACION DE POZOS	36
HLL-OPERACIONES Y METODOS DE REHABILITACION.	
III.1.1 Ademes rotos, colapsados o mat soldados.	
III.1.1.1 Reparación de ademes colapsados.	31
III.1.1.2 Reparación de ademes rotos.	39
III.1.2 Cementaciones.	
III.1.2.1 Tapones de fondo.	
III.1.2.2 Cementaciones intermedias.	44
III.1.2.3 Composición de la lechada.	41
III.1.3 Cepillado de ademes.	
III.1.4 Colocación de falsos ademes.	43
III.1.4.1 Falsos ademes en pozos con ademes rotos.	
III.1.4.2 Falsos ademes en pozos productores de arena.	40
III.1.5 Colocación de camisus.	
III.1.6 Determinación de la geometría del pozo.	. 44
III.1.6.1 Bloques impresores.	*
III.1.6.2 Calibración del pozo.	
111.1.6.3 Registros de Video.	4:
III.1.6.4 Registros de verticalidad.	
III.1.6.4.1 Calculo de la desviación.	
III.1.6.4.2 El equipo de medición de la verticalidad.	41
III.1.6.4.3 Límites permitidos en la desviación de pozos.	44
III.1.7 Reparación de la bomba del pozo.	50
III.1.8 Pescas.	
III.1.8.1 Bloque de impresión.	5
III.1.9 Prensa electrohidránlica.	- 51
III.1.10 Profundización de pozos.	5-
III.1.11 Reposición del filtro granular.	5'
III.1.12 Verificación de la rehabilitación.	51
CAPITULO IV OTRAS ACTIVIDADES Y FENOMENOS RELACIONADOS CON LA	
REHABILITACION DE POZOS	6
IV.1 AFORO DE POZOS.	
IV.1.1 Equipo de bombeo.	
IV.1.2 Programa del aforo.	
IV.1.3 Interpretación del aforo.	67
IV.1.3.1 El caudal óptimo de explotación.	6
IV.1.3.1.1 El caudal óptimo de explotación desde el punto de v	rista
hidráulico.	
IV.1.3.1.2 El caudal óptimo de explotación desde el punto de v	ista
económico.	

IV.1.3.1.3 Cálculo de la transmisibilidad del acuffero a partir de la recuperación	
del pozo.	70
IV.2 CORROSION E INCRUSTACION DE POZOS.	72
IV.2.1 Incrustación.	
IV.2.1.1 Tipos de incrustación de origen natural.	
IV.2.1.1.1 Incrustación debida a la precipitación de carbonatos o sulfatos	
de catcio y de manganeso.	73
IV.2.1.1.2 Incrustación devida a la precipitación de compuestos de hierro	
y manganeso, principalmente óxidos hidratados.	
IV.2.1.1.3 Oclusión debida a materiales gelatinosos, provocados por	
bacterias ferrosas y otros organismos.	
IV.2.1.1.4 Obstrucción debido a la depositación en la rejilla de materiales	
como limo y arcillas.	75
IV.2.1.2Características y funcionamiento de los pozos que favorecen la	
incrustación.	
IV.2.1.3 Prevención de la incrustación y desincrustación	76
IV.2.2 Corrosión	77
IV.2.2.1 Fenómenos electrolíticos	78
IV.2.2.2 Tipos de corrosión	
IV.2.2.2.1. Corrosión uniforme.	
IV.2.2.2 Corrosión localizada.	79
IV.2.2.3Prevención contra la corrosión.	81
IV.2.2.3.1 Protección Catódica.	
IV.2.2.3.2 Uso de recubrimientos anticorrosivos.	
IV.2.2.3.3 Selección de material.	82
IV.2.2.3.4 Inhibidores de la corrosión.	
IV.3 DESARROLLO DE POZOS.	
IV.3.1 Los fines del desarrollo.	
IV.3.2 Métodos de desarrollo químico.	83
IV.3.2.1 Tratamiento con polifosfatos.	
IV.3.2.2 Acidificación.	84
IV.3.2.3 Cloración.	86
IV.3.3 Métodos de desarrollo físico.	88
IV.3.3.1 Dasarrollos con bomba de pozo profundo.	
IV.3.3.1.1 Sobrebombeo.	
IV.3,3.1.2 Arranque y parada de la bomba.	
IV.3.3.2 Dasarrollos con bomba de inyección.	89
IV.3.3.2.1 Chorro vertical y pozo abierto.	
IV.3.3.2.2 Chorro horizontal y pozo abjerto.	90
IV.3.3.2.3 Chorro vertical y pozo cerrado.	
IV.3.3.3 Desarrollo con oleada mecánica o pistoneo.	92
IV.3.3.3.1 Ciclo del pistón y longitud de la carrera.	
IV.3.3.3.2 Peso de la sarta del pistón.	93
IV.3.3.3.3. El pistón.	

	IV.3.3.3.4. Operación del pistón.			96
	IV.3.3.4 Desarrollo neumático.			
	IV.3.3.4.1 Desarrollo neumático a pozo a	bierto.		98
	IV.3.3.4.2 Desarrollo neumático a pozo o	errado.		
	IV.3.3.4.3 Desarrollo neumático combina			10
	IV.3.3.5 Desarrollo de formaciones rocosas.			
* *	IV.3.3.5.1 Desarrollo con explosivos.			103
	IV.3.3.6 Desarrollo con hielo seco.			
IV.4 HER	RRAMIENTAS DE PESCA.			103
	FERIALES DE CONSTRUCCION DEL POZO.			11
	.1 El flitro granular.			
	IV.5.1,1 Métodos de diseño de filtros granulare	·S.		113
	IV.5.1.1.1 Gráfica granulométrica.	••		• • • •
	IV.5.1.1.2 Definiciones.			114
	IV.5.1.1.3 Método de Nold.			110
	IV.5.1.1.4 Método de Fuchs. (modificado	N.		***
	IV.5.1.1.5 Método de Kruse (modificado)	•		119
	IV.5.1.1.6 Método de Stow.	,		120
	IV.5.1.1.7 Método de Johnson.			123
	IV.5.1.1.8 Espesor del filtro granular,			123
	IV.5.1.1.9 Origen del filtro granular,			12.
TV &	.2 Selección del tamaño de la abertura del cedazo			
	.3 Ademes de pozos.			124
14.5	IV.5.3.1 Materiales constructivos.			124
	IV.5.3.2 Unión de tubos del ademe.			
	IV.5.3.2.1 Ademes metálicos IV.5.3.2.2 Ademes de P.V.C.			
	IV.5.3.2.2 Ademes de P.V.C.	191 50		126
CONOT HOLON	ng.			
CONCLUSION	<u>s</u>			127
BIBLIOGRAFIA	L			
APENDICES				129
	E A AFOROS			131
	E B CEMENTACIONES			143
	E C CONVERSIONES			147
	E D MISCELANEOS			161
APENDIC	E.E., CORROSION			169

INDICE DE FIGURAS

Figura 1 Gráfica de bombeos escalonados a partir de una prueba de a	foro	
Figura 2 Método de Jacob para la determinación de los valores de By	yC	
Figura 3 Determinación del valor de B por tanteos del valor de n		10
Figura 4 Determinación del valor de n por tanteos del valor de B	and the second s	10
Figura 5 Dispositivo para pruebas de mediciones previas	and the second s	16
Figura 6 Pozos completos e incompletos		22
Figura 7 Trompo para enderezado de ademes.		. 38
Figura 8 Cepillo con cerdas intercambiables		38
Figura 9 Relación de triángulos semejantes en registros de verticalida	id the growth	- 46
Figura 10 Platinas fija y movil para registros de verticalidad		. 46
Figura 11 Desviación permitida en pozos de agua		49
Figura 12 Bloques de impresión		53
Figura 13 Prensa electrohidráulica		55
Figura 14 Profundización de un pozo		57
Figura 15 Formas básicas de la curva de aforo		63
Figura 16 Curva de aforo y caudal óptimo de explotación		65
Figura 17 Gráfica Costo total-Caudal		69
Figura 18 Gráfica Eficiencia económica-Caudal		69
Figura 19 Cálculo de la transmisibilidad del acuffero		71
Figura 20 Lubricación en la zona de aireación del ademe		83
Figura 21 Dispositivo para desarrollo con chorro horizontal y pozo abi	ierto	91
Figura 22 Desarrollo de pozo con chorro vertical y pozo cerrado		91
Figura 23 Pistón para desarrollo de pozos		95
Figura 24 Compresor de alta presión para desarrollo neumático		97
Figura 25 Dispositivo para desarrollo neumático a pozo abierto		99
Figura 26 Dispositivo para desarrollo neumático a pozo cerrado		100
Figura 27 Herramientas de pesca		105
Figura 28 Herramientas de pesca		107
Figura 29 Herramientas de pesca		110
Figura 30 Herramientas de pesca		112
Figura 31 Cedazos para análisis granulométricos		112
Figura 32 Curva Granulométrica Acumulativa		115
Figura 33 Método de Nold		115
Figura 34 Método de Fuchs		118
Figura 35 Método de Kruse		118
Figura 36 Método de Stow		121
Figura 37 Método de Johnson	ng tawa na pina	121
Figura 38 Colocación de ademe metálico soldado a tope		126

INDICE DE TABLAS

Tabla Nº 1 Relación entre el coeficiente C y el estado del pozo		14
Tabla N° 2 Mediciones previas		18
Tabla Nº 3 Causas de ineficiencia de los pozos de agua		21
Tabla Nº 4 Análisis del costo hora máquina	2 - Paga	6
Tabla Nº 5 Análisis del costo hora máquina		68
Tabla Nº 6 Eficiencia económica		69
Tabla Nº 7 Electronegatividad de metales		79
Tabla Nº 8Clorinación de pozos	en e	87
Tabla Nº 9 Peso aproximado de barretones		94
Tabla Nº 10 Pesos mínimos de barretones en pistonéo		9.
Tabla No 11 Metales de rejillas y sus aplicaciones		125

INTRODUCCION

Por medio de la presente me permito solicitarle la reposición di pozo 103 del ramal a mi cargo, debido a una baja considerable en su gasto, ocasionada seguramente por un cambio notable en sus características mecánicas originales. Este solía ser el párrafo inicial de una serie de solicitudes de reposición de pozos basadas casi en su totalidad, en el desconocimiento de las técnicas de rehabilitación. Dichas solicitudes actualmente no tendrían fundamentos en su mayoría, debido a que casi cualquier pozo se puede rehabilitar con buenos resultados.

A lo largo de el tiempo se ha obtenido el agua potable de distintas fuentes, siendo cada vez mas común la utilización de pozos profundos. Aspecto por el cual se han venido desarrollando mas técnicas eficientes de construcción, desarrollo y rehabilitación de estos.

La rehabilitación de pozos es una actividad que se ha estado desarrollando en México desde hace pocos años, motivo por el cual no se cuenta con una buena cantidad de información. Al elevarse considerablemente los costos de la perforación y declararse muchas zonas vedadas a la construcción de pozos debido a los descensos alarmantes en los niveles estáticos de los acuíferos, surge entonces la necesidad de una nueva alternativa, para así poder satisfacer los requerimientos necesarios de agua en cada comunidad.

Un pozo funciona básicamente bajo el principio de" vasos comunicantes ", donde los fluidos tienden ha viajar hacia las zonas de menor presión, en el caso de el pozo, esto se consigue dejando un área libre de formación en el acuífero. Una vez que se ha terminado la perforación, se introduce en el pozo una tubería ranurada en algunas secciones; con el doble objetivo de darle estabilidad a el pozo y mantener despejada el área perforada, evitando derrumbes internos y la generación de cavernas. Está deja que el agua fluya a través de ella logrando formar una cámara, la cual se llenara de agua que fluirá del acuífero a el interior, en primera instancia a través de el terreno, y posteriormente por medio de el filtro de grava que se coloca alrededor de la tubería. El fluido será extraído por medio de una bomba. Este bombeo generará una baja de presión hidrostática, la cuál mantendrá la continuidad de el fluido. Entre la perforación y el ademe (tubería), se coloca un filtro de grava que detendrá las partículas solidas que pudieran ser arrastradas dentro del pozo que en otra circunstancia viajarían por medio de las ranuras al interior de éste.

La tecnología desarrollada en la construcción de pozos profundos de agua, fue en su mayor parte generada en la industria petrolera, por lo cuál, la rama hidráulica es

solo una adaptación, que por lo mismo no resulta ser siempre la más apropiada. Además, el desarrollo en el manejo de materiales, personal y maquinaria en la construcción y rehabilitación de pozos, no ha sido estudiada en forma completa, dejando un horizonte profundo en la investigación industrial para lograr una conjunción adecuada de los recursos utilizados.

Pero antes de hacer estos estudios es necesario conocer las actividades que se realizan en una rehabilitación, por lo que el objetivo principal de este trabajo es describir las técnicas principales para reconocer cuando un pozo esta trabajando ineficientemente, cuáles son sus causas y posibles soluciones así como las actividades principales realizadas en la rehabilitación y desarrollo de los pozos. Describiendo otras actividades que sin ser propiamente métodos de rehabilitación, son necesarias en la ejecución de estos trabajos y por consiguiente intimamente ligadas a ellos. Dando una idea de los posibles problemas que frecuentemente se encuentran en estas operaciones.

La rehabilitación de pozos no es una tarea metódica y rutinaria puesto que cada pozo puede tener problemas particulares, que tendrán soluciones individuales, por lo que el ingeniero que se encuentra a cargo de el pozo, tiene que tomar a su criterio, una serie de decisiones basadas en los conocimientos adquiridos, contando con los medios que disponga en el campo de trabajo. Por lo que esta tesis no pretende resolver todos los problemas, pero si dará una idea de como tratar de solucionar los principales.

CAPITULO I.- EFICIENCIA DE POZOS.

En el medio de la explotación de aguas subterráneas es conocida la gran frecuencia con que los pozos funcionan ineficientemente; pero incluso pozos que se suponen eficientes, no lo son, en el grado que podrían haber alcanzado de aplicarse toda la tecnología disponible hoy en día.

En cualquier sistema donde existe una entrada y una salida de energía, la eficiencia medida, será la capacidad del sistema para realizar esta transformación o de tan solo transmitirla. La transformación de la energía nunca será total al existir perdidas por fricción, calor, ruido etc. Comúnmente se define a la eficiencia, como la relación entre la salida y la entrada de energía consumida por el sistema, expresado generalmente en un porcentaje.

Dentro del sistema "pozo de agua", tenemos dos áreas de eficiencia principales, relativas al consumo de energía al extraer el agua subterránea. Estas son la eficiencia del sistema de bombeo y la eficiencia del pozo. La eficiencia en el bombeo es el producto de la integración de varias eficiencias como pueden ser la eficiencia propia de la bomba (eb), de su arranque (ea), del sistema hidráulico (perdidas por fricción en tuberías, codos, válvulas, etc. (eh), del sistema eléctrico (ee), y eficiencia del motor (em).

Eficiencia total en el bombeo = (eb) x (ea) x (eh) x (ee) x (em) (1.1)

En la práctica todas estas eficiencias se resumen en dos de amplia difusión: La eficiencia de la bomba y la del motor y aún estas dos se agrupan como una sola, que se nombra "eficiencia del sistema de bombeo". En esta trabajo no se tratará el aspecto electromecánico de la explotación de aguas subterráneas, dado que el propósito se centra en el pozo.

La eficiencia de un pozo es su efectividad para extraer agua del acuífero; como un pozo no necesita una potencia de entrada para que fluya el agua dentro de el, esta eficiencia no se puede medir con la división de potencia de salida entre la potencia de entrada, por lo que es necesario desarrollar diferentes métodos para medirla. Para comprender fácilmente estos métodos, hay que conocer las causas que pueden producir ineficiencia en el pozo.

I.1- PERDIDAS DE EFICIENCIA DEBIDAS A LAS CARACTERISTICAS DEL ACUIFERO.

Las características del acuífero rigen la capacidad de entrada del agua dentro del pozo, influyen su diseño y a los parámetros de selección del equipo de bombeo.

Las principales características del acuífero son: el tamaño, sus límites, uniformidad, arreglo granulométrico, permeabilidad, transmisibilidad, el grado de consolidación del acuífero, y la composición química de los materiales y del agua, que afectan el grado de corrosión e incrustación. Estas características son aplicables básicamente a acuíferos constituidos por materiales granulares, que se comportan de acuerdo a la ley de Darcy, cuando se trata con un acuífero en rocas kársticas o de rocas compactadas y fracturadas, la determinación de algunos parámetros es imposible y en otros tendrá un valor sólo relativo, para efectos de comparación en la misma región. Estas características son incontrolables, pues reflejan condiciones naturales, a las que se tiene que adaptar el proyecto del pozo en la mejor forma posible.

La pérdida de carga originada en el acuífero se refleja en el descenso del nivel dinámico necesario para que el agua fluya al pozo en régimen laminar y depende, además, de las características antes mencionadas, del caudal bombeado y en menor medida, del diámetro del pozo.

1.2.- PERDIDAS DE EFICIENCIA DEBIDAS A LAS CARACTERISTICAS DEL POZO.

Las características del pozo afectan su eficiencia en forma determinante y la detección práctica de posibles deficiencias se explica en el Capítulo II, pero en términos generales se manifiestan como un descenso en el nivel dinámico para un caudal dado, originado por las siguientes causas:

- Al pasar el agua por las ranuras del cedazo al interior del pozo, se tiene una pérdida de carga. Si la velocidad es grande, la pérdida es proporcional al cuadrado del caudal, lo que resulta más crítico cuanto peor fuera el diseño del pozo, pudiendo llegar a ser muy importantes con grandes descensos en el nivel dinámico.
- En los alrededores del pozo aumenta la velocidad de entrada del agua, con el consiguiente aumento del número de Reynolds, superando el valor matemático admisible para la validez de la ley de Darcy. Este descenso es proporcional a cierta potencia del caudal.
- La pérdida de carga por la entrada del agua en la bomba, sólo tiene importancia cuando la aspiración de la bomba está por encima del cuerpo de ella y éste deja muy poco espacio entre el y las paredes del pozo.
- El movimiento del agua desde la zona filtrante hasta la bomba, produce una pérdida de carga, aunque esta pérdida normalmente no reviste mayor importancia.

I.2.1-Método de Rorabaugh

Una forma de medir la eficiencia de un pozo es por medio de la fórmula de Rorabaugh que analiza el descenso del nivel dinámico del pozo.

$$S_p = B \times Q + C \times Q^n \qquad (1.2)$$

Donde:

Sp = descenso en el pozo (nivel dinámico - nivel estático).

O = caudal de bombeo.

B = coeficiente de las pérdidas de circulación en la formación.

C = coeficiente de las pérdidas de circulación en el pozo.

n = exponente dependiente de la severidad de la turbulencia.

La fórmula indica que el descenso del nivel en el pozo es debido a la suma de dos causas: como ya se dijo, la primera debida a las condiciones del acuífero que es proporcional al caudal. La segunda, debida a las condiciones del pozo, es proporcional a una potencia del caudal que varía según que el régimen sea laminar, de transición o turbulento.

Como las características del acuífero no se pueden cambiar, estas no influyen en la medición de la eficiencia y sólo se toma como un punto de comparación, por lo tanto (B x Q), indica una característica de la zona acuífera, este descenso es el valor que se tendría en el caso hipotético de un "pozo perfecto".

Las condiciones del pozo pueden afectarse dependiendo de las causas que las produjeron. El interés de un correcto diseño y construcción de pozo radica en que ($C \times Q^n$) sea pequeña, lo que es igual a que la eficiencia del pozo sea mejor.

Para lograr conocer los valores de B, C y n , es necesario obtener los descensos del nivel correspondientes a tres caudales diferentes. Estos datos, se pueden obtener de la prueba de aforo a condición de que los escalones de bombeo sean de una misma duración y casi alcancen la estabilidad como se muestra en la Figura 1, donde se observan los descensos máximos S_1 , S_2 y S_3 para los distintos caudales correspondientes Q_1 , Q_2 y Q_3 , se deben excluir los valores extremos y de preferencia el valor del caudal al que opera el pozo se debe encontrar en medio de los otros.

Se toman tres pares de datos y se sustituyen en la formula (1.2), teniendo:

$$S_1 = B \times Q_1 + C \times Q_1^n$$

$$S_2 = B \times Q_2 + C \times Q_2^n$$

$$S_3 = B \times Q_3 + C \times Q_3^n$$
(1.3)

Figura 1.-Gráfica de bombeos escalonados a partir de una prueba de aforo

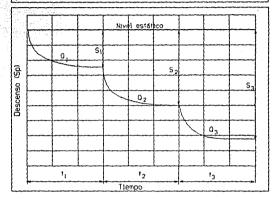
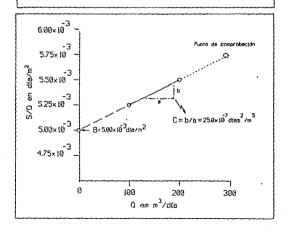



Figura 2.- Método de Jacob para la determinación de los valores de B y C.

La resolución analítica de este sistema de ecuaciones resulta complicado, aunque un adecuado programa matemático de computadora lo resuelve con facilidad.

Para interpretar correctamente la fórmula de Rorabaugh o alguna de sus variantes, hay que tomar en cuenta la siguiente condición:

Si los caudales son pequeños, la velocidad de entrada del agua al pozo también lo será, y el régimen de flujo resultará laminar, con n igual a 1, siendo proporcional al caudal; por lo tanto en ese rango la fórmula (1.2) no se puede utilizar, ya que ciertos efectos no se manifiestan. Si se observa que Sp/Q es constante se puede concluir que n=1, lo que no quiere decir que no existan pérdidas de carga en el pozo, sino que no se pueden separar los valores de B y C.

I.3.-METODOS DE RESOLUCION PARA EL CALCULO DE LA EFICIENCIA DE POZO.

I.3.1. Método de Jacob.

C.E. Jacob en 1950 había propuesto la misma fórmula que en 1953 planteó Rorabaugh, pero fijaba n = 2:

$$S_p = B \times Q + C \times Q^2$$
 (1.4)

Con esta variante el sistema puede resolverse con solo dos pares de datos y si se tienen más se pueden emplear como comprobación (Fig. 2).

$$S_1 = B \times Q_1 + C \times Q_1^2$$

 $S_2 = B \times Q_2 + C \times Q_2^2$ (1.5)

El sistema de ecuaciones se puede resolver gráficamente, presentando S/Q en función de Q:

$$S_1 / Q_1 = B + C \times Q_1$$

 $S_2 / Q_2 = B + C \times Q_2$ (1.6)

y trazando la recta que pasa por los dos puntos. La pendiente de esta recta representa el valor de C y la ordenada al origen el valor de B. Si se cuenta con otros pares de puntos se pueden graficar para verificar si se ajustan a ella, corroborándose que n=2 es un supuesto correcto, como se muestra en la figura 2, donde a partir de una prueba de bombeo se obtuvieron los datos que se presentan a continuación:

Descenso (Sp) en m.	Caudal (Q) en m3/día	Sp/Q en día/ m²
	eje X	eje Y
0.525	100	0.005250
1.100	200	0.005500
1.730	300	0.005767

Al graficar la línea recta con los dos primeros puntos se observa que el punto donde se intersecta con el eje Y, es .00500 que es el valor de B.

Para calcular la pendiente(m)de la recta se utiliza la siguiente fórmula:

$$m = (Y_2 - Y_1) / (X_2 - X_1)$$
 (1.7)

=
$$(0.0055-0.00525)/(200-100) = 0.0000025 = 25 \times 10^{-7}$$

Este valor de la pendiente es el coeficiente C, quedando la fórmula como:

$$Sp = 0.005 Q + 0.0000025 Q^2$$
 (1.8)

Como comprobación se inserta el punto tres dentro de la gráfica observándose que este se ajusta en la recta, lo que confirma que la suposición de que n=2 es correcta.

I.3.2.- Tanteos de n.

Despejando las ecuaciones y considerando S/Q como una función de $\, Q^{n\cdot 1} \,$ resulta:

$$S_1/Q_1 = B + C \times Q_1^{n-1}$$

 $S_2/Q_2 = B + C \times Q_2^{n-1}$ (1.9)
 $S_3/Q_3 = B + C \times Q_3^{n-1}$

Si se gráfica S/Q en función de Qⁿ⁻¹ (Fig. 3) se obtiene una recta de pendiente C y ordenada al origen B. Para lograr esto se ensayan distintos valores de n hasta lograr que se alineen los puntos; este método es un tanto impreciso, puesto que distintos valores de n harán parecer la gráfica como una recta, pero es evidente que en la realidad sólo uno es el correcto. Como se muestra en el ejemplo siguiente, donde se graficaron, los siguientes valores:

Descenso (S) metros		
4.1	1728	0.00237269
10.1	3456	0.00292245
19.1	5184	0.00368441

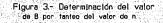
Calculando varios valores de n (2.25, 2.50, 2.75 y 3.00) en la función Qⁿ⁻¹, y graficada con respecto a S/Q se obtiene la fig.3., Donde el eje de las X contiene varias escalas.

De las 4 rectas sólo se percive un ligero quiebre en n=2.25 y n=3.00, quedando descartadas, pero esto no da un valor muy aproximado de cuál es la n real. Para lo que sí sirve es para tener una idea del valor de B, pues al prolongar las rectas resulta que aproximadamente todas cruzan al eje Y en un intervalo de 0.0020 a 0.0023.

I.3.3.- Otro método gráfico.

Consiste en despejar las ecuaciones anteriores en :

$$(S/Q) - B = C \times Q^{n-1}$$
 (1.10)


y transformándola con logaritmos quedaría:

$$log((S/Q)-B) = (n-1) log Q + log C$$
 (1.11)

Si graficamos el valor absoluto de Log ((S/Q)-B) en función de log de Q, Observándose que el resultado de ((S/Q)-B) solamente puede ser positivo, se obtiene una recta de pendiente (n-1) que corta al eje de ordenadas en el valor de C. Para lograr esto hay que ensayar distintos valores de B hasta conseguir que los puntos queden alineados en una recta, donde:

$$X = log ((S/Q)-B)$$
 (1.12)
 $Y = log Q$ (1.13)

Usando los valores del ejemplo de I.3.2, se obtiene la (Fig.4) donde se ensayaron valores de B igual a: 0.0023, 0.0021, 0.001, 0.0005 y 0.0002; si se hubiera combinado con el método anterior, solo habría que probar con valores entre 0.002 y 0.0023, lo que constituye la utilidad del método de tanteos de n. De la familia de líneas, sólo se obtiene una línea recta cuando B = 0.0021. Tomándose a este como valor real. Se calcula la pendiente (m) de esta línea, que es igual a n-1 por medio de la fórmula:

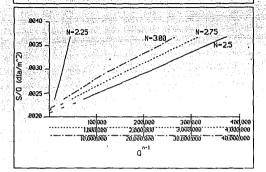
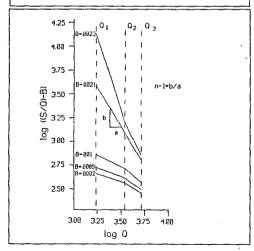



figura 4.- Determinación del valor de n por tanteo del valor de B

$$m = (Y_2 - Y_1)/(X_2 - X_1) = (3.084 - 3.564)/((-3.538) - (-3.237)) = 1.6 = n-1$$

De donde n=2.6, C es fácil de calcular despejando alguna de las ecuaciones quedando la fórmula de Rorabaugh como:

$$S = 0.0021 \times Q + 1.35 \times 10^{-9} \times Q^{2.6}$$
 (1.15)

I.3.4.- Método analítico del valor de n.

A partir de:

$$S_{1} = B \times Q_{1} + C \times Q_{1}^{n}$$

$$S_{2} = B \times Q_{2} + C \times Q_{2}^{n}$$

$$S_{3} = B \times Q_{3} + C \times Q_{3}^{n}$$
(1.3)

Se elimina B y C en el sistema de ecuaciones quedando:

$$\frac{(S_3 / Q_3) \cdot (S_1 / Q_1)}{(S_2 / Q_2) \cdot (S_1 / Q_1)} = \frac{Q_3^{n-1} \cdot Q_1^{n-1}}{Q_2^{n-1} \cdot Q_1^{n-1}} = A \quad (1.16)$$

Sustituyendo distintos valores de n, se puede hallar el que satisfaga mejor la ecuación, reconociéndose al acercarse a la constante A, y despejando B y C, de las ecuaciones anteriores (2), se encuentran todas las incógnitas.

$$C = \frac{(S_3/Q_3) \cdot (S_1/Q_1)}{(Q_3^{n-1}) \cdot (Q_1^{n-1})}$$
(1.17)

$$B = (S_1 - C \times Q_1^n) / Q (1.18)$$

Ejemplo: A partir de los datos de aforo del ejemplo del inciso I.3.2:

$$(S_3/Q_3) - (S_1/Q_1)$$
 0.00131172
----- = 2.386
 $(S_2/Q_2) - (S_1/Q_1)$ 0.00054976

Iteración del valor de n.

n	2.25	2.5	2.75	2.6	2.634
Q_1^{n-1}	11,141.14	71,831.6	463,128.5	151,380.5	195,050.0
Q ₂ n-1	26,498.25	203,170.4	1,557,772.5	458,900.0	605,382.0
Q ₃ n-1	43,987.70	373,248.0	3,167,114.0	877,938.2	1,174,255.5

$$A = \frac{Q_3^{n+1} \cdot Q_1^{n+1}}{Q_2^{n+1} \cdot Q_1^{n+1}}$$
 (1.16)

A	0.4000	0.0010	0.4504	0.000	0.000
I A I	2.1388	2.2949	2.4701	2.3626	2.3863
				1	

Como A=2.3863 es muy parecido a 2.386 obtenido anteriormente el valor de n será de 2.634, despejando $\,$ C nos queda:

$$\mathbf{C} = \frac{(S_3/Q_3 \cdot (S_1/Q_1)}{(Q_3^{\text{n-l}}) \cdot (Q_1^{\text{n-l}})} = \frac{0.00131172}{979,205.257} = 1.3396 \times 10^{-9}$$

y por último despejando B:

$$B = (S_1 - C \times Q_1^n) / Q = 3.6485 / 1,728 = 0.002114$$

I.3.5.- Método analítico del valor de B:

A partir de:

$$S_1 = B \times Q_1 + C \times Q_1^n$$

 $S_2 = B \times Q_2 + C \times Q_2^n$ (1.3)
 $S_3 = B \times Q_3 + C \times Q_3^n$

Se elimina n y C en el sistema de ecuaciones quedando:

$$\frac{\log (Q_3/Q_1)}{\log (Q_2/Q_1)} = \frac{\log ((S_3/Q_3) - B) - \log ((S_1/Q_1) - B)}{\log ((S_2/Q_2) - B) - \log ((S_1/Q_1) - B)} = E \quad (1.19)$$

Sustituyendo distintos valores de B, se puede hallar el que satisfaga mejor la ecuación, después se calcula n por medio de la siguiente formula:

$$n = \frac{\log ((S_{1}/Q_{1}) - B) - \log ((S_{1}/Q_{1}) - B)}{\log (Q_{3}/Q_{1})}$$
(1.20)

Y despejando C de cualquiera de las ecuaciones de Rorabaugh, se obtiene:

$$C = (S_1 - B \times Q_1)/(Q_1^n)$$
 (1.21)

Ejemplo: A partir de los datos del aforo del inciso 1.3.2.:

$$E = \frac{\log (Q_3/Q_1)}{\log (Q_2/Q_1)} = \frac{0.47712}{0.30103} = 1.5845$$

Iteración del valor de B.

B	0.001	0.002	0.0023	0.0021	0.002111
log ((S /O) B)	0.001	-3,42865	-4.13852	-3.56433	-3.58304
$\log ((S_1/Q_1)-B)$					
$\log ((S_2/Q_2)-B)$	-2.71614	-3.03505	-3.20589	-3.08489	-3.09100
$\log ((S_3/Q_3)-B)$	-2.57115	-2.77355	-2.85873	-2.80013	-2.80329

$$E = \frac{\log ((S_3/Q_3) - B) - \log ((S_1/Q_1) - B)}{\log ((S_2/Q_2) - B) - \log ((S_1/Q_1) - B)}$$
(1.19)

E	1.99119	1.66440	1.37223	1.59393	1.58473

Como el valor de E para B = 0.002111 es casi idéntico al obtenido anteriormente, se toma como válido, despejando n:

$$n = \frac{\log ((S_3/Q_3) - B) - \log ((S_1/Q_1) - B)}{\log (Q_3/Q_1)} + 1 = \frac{0.77974}{0.47712}$$

$$C = (S_1 - B \times Q_1) / (Q_1^n) = 0.451328 / 337,738,414 = 1.3363 \times 10^{-9}$$

L4.- MEDICION DE LA EFICIENCIA.

Una vez definidos los valores de B,C y n, se calcula la eficiencia del pozo, dividiendo el descenso teórico (St) entre el descenso en el pozo (Sp); el descenso teórico es el cambio de nivel dinámico debido a las condiciones específicas del acuífero y el descenso en el pozo es el cambio total del nivel observado en éste. Representada con la fórmula de Rorabaugh la eficiencia es igual a:

$$St = (B \times Q)$$
 (1.22)

$$Sp = (B \times Q + C \times Q^{n})$$
 (1.2)

$$ef = St / Sp$$
 (1.23)

$$ef = 1 - (C \times Q^{n} / Sp)$$
 (1.24)

Esta eficiencia es constante si el régimen es laminar (velocidades pequeñas de entrada del agua al pozo), y empieza a disminuir rápidamente cuando el régimen se convierte en turbulento. La eficiencia sirve como un valor indicativo de lo bien que está construido el pozo si se mide después de instalado, y para conocer si se necesita una rehabilitación. Esta permite comparar pozos en la misma formación, si se toman iguales tiempos e iguales caudales.

El valor de n puede variar de 1 hasta 3.5. En régimen laminar, n es cercano a 1; a mayores velocidades pasa a turbulento, cambiando cuando n es del orden de 2. Estos valores pueden aumentar debido a otras causas como la disminución del espesor saturado y el aumento de la zona perimetral afectada por turbulencia al incrementar el caudal. Los valores frecuentes de este exponente varían entre 2.5 y 2.9.

Con frecuencia B incluye también pérdidas en el pozo proporcionales a Q, y no sólo pérdidas debidas al acuífero, pero es difícil separarlas, por lo que se considera como una sola, aunque en ciertas ocasiones se debe tomar en cuenta sobre todo cuando n se acerca a 1.

El coeficiente (C) de las pérdidas de circulación en el pozo, puede indicar, en forma comparativa, el estado del mismo (Tabla 1):

Tabla Nº 1 Relación entre el coeficiente C y el estado del nozo.

Para C x 10-7 igual a:	Estado del pozo			
< 2.5	El pozo esta bien construido y desarrollado.			
2.5-50	Principio de obturación.			
50-200	La obturación es importante.			
> 200	La obturación es fuerte y la rehabilitación del pozo puede ser difícil o imposible.			

Estas C tienen como unidades días $^2/m^5$ y están calculadas para n=2, para utilizar estos valores cuando n es mayor de 2, se puede transformar esta C en una C' con la siguiente formula:

$$C' = C \times Q^n / Q^2$$
 (1.25)

Por ejemplo; para poder comparar la C obtenida en el ejemplo 1.3.5 con los valores de la Tabla N° 1 se efectúa la siguiente operación:

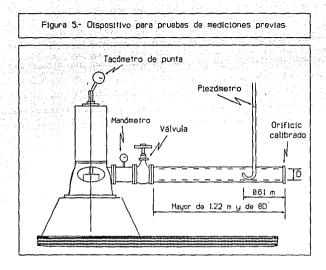
$$C' = 0.01333 \times 10^{-7} \times 5{,}184^{2}6^{34} / 5{,}184^{2} = 3.01 \times 10^{-7}$$

Lo que indica una mínima obturación del cedazo, apenas de importancia.

En pozos en operación, en que el caudal de operación es similar a alguno de los escalones empleados durante el aforo, y si no ha habido una variación notable en el nivel estático regional, se puede considerar que B y n sean las mismas del aforo; de modo que la variación a la alta de C indicaría un deterioro en las condiciones del pozo.

La eficiencia de los pozos suele ser alta en acuíferos cautivos poco permeables, puesto que la mayoría de las perdidas son debidas al acuífero, la eficiencia puede ser baja en acuíferos muy permeables, si el pozo no ha sido bien construido, desarrollado o si requiere ser rehabilitado. No deben compararse eficiencias de pozos en acuíferos diferentes.

I.5.- MEDICIONES PRELIMINARES.


Muchos pozos en proceso de rehabilitación cuentan con bomba instalada en condiciones de operar. En estos casos, antes de iniciar las labores de rehabilitación propiamente dichas se deben efectuar una serie de pruebas con el propio equipo del pozo que se denomínan "Mediciones Preliminares", cuya principal ventaja radica en su corta duración y bajo costo.

Hoy en día, la mayoría de los pozos están equipados con motor eléctrico, que trabaja a velocidad constante y dado que para estas mediciones se requiere variar las condiciones de trabajo de pozo y bomba, se debe contar con una válvula que permita realizar esta variación. La instalación necesaria para realizar este tipo de pruebas se ilustra en la Fig. 5.

La validez de las Mediciones previas radica en la observación de que al ser bombeado un pozo, la mayor proporción del descenso del nivel dinámico ocurre durante los primeros minutos de bombeo. Como una aseveración de carácter práctico, a la que no se le debe dar una credibilidad excesiva, podemos decir que el 80 o 90 % del descenso del nivel dinámico para un caudal dado, ocurre durante los primeros 30 min de bombeo. Por consiguiente, cuando a continuación se haga referencia a diversos escalones de prueba, su duración puede variar de pozo a pozo, según el tiempo en que cada uno alcance su estabilidad. Pero cuando sea posible, se tratará de que los diversos escalones de una prueba sean de igual duración.

I.4.1.- Equipo necesario y secuencia de las pruebas.

Para realizar las Mediciones Previas se requiere, además del equipo de bombeo, el siguiente equipo complementario (Fig. 5):

Tubo de descarga con orificio calibrado y piezómetro, válvula, manómetro, amperímetro, voltímetro, potenciómetro, tacómetro de punta y flexómetro.

La secuencia de operaciones a realizar es la siguiente:

- 1. Medición de nivel estático.
- 2. Arranque de la bomba con la válvula abierta. Una vez "estabilizado" el nivel dinámico, medición de este, del tiempo transcurrido hasta la estabilización, de la presión en la línea, del amperaje en las fases 1, 2 y 3, del voltaje entre las fases 1-2, 1-3 y 2-3, de la potencia y de las revoluciones cuando el equipo sea de flecha. Estas medidas representan las condiciones normales de operación del pozo.
- 3- Cerrar la válvula de la línea, si existe y efectuar la misma serie de medidas enumeradas en el inciso 2. En estas condiciones se están tomando lecturas a caudal 0 y carga máxima.

- 4. Se suspende el bombeo y se desconecta la bomba de la línea, se levanta y gira la bomba lo que fuera necesario y se intalan los aditamentos de medición (manómetro, tacómetro y piezómetro) y los de descarga (válvula y tubo con orificio calibrado) ilustrados en la figura 2 para realizar los siguientes bombeos a descarga libre.
- 5. Se repiten la serie de mediciones con válvula abierta, con válvula cerrada y se cuentan las vueltas que da el volante entre estas dos posiciones.
- 6. Accionando la valvula se regula el caudal y se cuentan las vueltas, hasta estabilizar el pozo en el mismo nivel dinámico establecido en el inciso 2 (Condiciones de operación) y se repiten las lecturas.
- 7. Por último se miden otros dos escalones regulando la válvula, mediante el número de vueltas, hasta obtener un punto intermedio entre el de operación y válvula abierta y el otro entre operación y válvula cerrada.
- 8. Las lecturas obtenidas durante la prueba se procesan de manera similar a la empleada en la Tabla 2.

1.4.2.- Interpretación de la prueba.

Las mediciones previas ofrecen información cercana a la realidad, según el tiempo de duración de la prueba, respecto al funcionamiento del pozo. Por medio de su capacidad específica que por si misma indica la eficiencia del conjunto acuíferopozo; cuando se conservan los datos de aforos anteriores, la comparación con las nuevas mediciones indicarán si las condiciones hidráulicas se han deteriorado en el tiempo transcurrido entre las dos pruebas y por tanto si el pozo requiere de rehabilitación.

Además indica la eficiencia con que trabaja el conjunto motor-bomba comparándola con las curvas del impulsor, que proporciona el fabricante, se establece si la bomba requiere reparación o cambio. En caso de que no se disponga de las curvas de operación, la eficiencia teórica se puede suponer en base a la formula de potencia:

$$kw_1 = \frac{Q \times h \times 9.81}{1,000 \times eb \times em}$$
 (1.26)

Donde:

kw_t = potencia teórica (Kw/hr) Q = Caudal en l/seg.

Tabla No 2 - MEDICIONES PREVIAS								
POZO:	DIAMETROS DE: DESCARGA: 8"					ORIFICIO:6"		
NIVEL ESTATICO: 90.85 OBSERVACIONES: Agua limpia desde el arranque.								
EFICIENCIA TEORICA MO FOR-BOMBA(eb x em): 72:00% PRECIO kW/hr:: 195.55						,		
CONCEPTOS	CONDI- CIONES ACTUA- LES DE TRABA- JO 1	VALVU LA CERRA DA 2	3	4	5	6	7	VALVULA TOTAL- MENTE ABIERTA 8
ALTURA PIEZOMETRICA (cm)	0.00	0.00	10.00	22.00	30.00	40.00	50.00	69.00
CAUDAL (l/seg)	0.00	0.00	20.00	30.00	35.00	40.00	45.00	53.00
PRESION MANOMETRICA (Kg/cm2)	0.00	10.83	1.30	1.12	1.00	0.81	0.67	0.00
NIVEL DINAMICO (m)	0.00	0.00	94.80	97.00	98.50	100.10	102.05	108.00
CARGA DINAMICA TOTAL (m)	0.00	108.30	107.80	108.20	108.50	108.20	108.75	108.00
VOLTAJE 1-2 (V)	0.00	440.00	440.00	440.00	440.00	440.00	440.00	440.00
VOLTAJE 1-3 (V)	0.00	440.00	440.00	440.00	440.00	440.00	440.00	440.00
VOLTAJE 2-3 (V)	0.00	440.00	440.00	440.00	440.00	440.00	440.00	440.00
VOLTAJE PROMEDIO (V)	0.00	440.00	440.00	440.00	440.00	440.00	440.00	440.00
CORRIENTE I(A)	0.00	62.00	62.00	78.00	80.00	88.00	102.00	145.00
CORRIENTE 2(A)	0.00	62.00	70.00	78.00	80.00	88.00	102.00	145.00
CORRIENTE 3(A)	0.00	62.00	70.00	78.00	80.00	88.00	102.00	145.00
CORRIENTE PROMEDIO (A)	0.00	62.00	70.00	78.00	80.00	88.00	102.00	145.00
POTENCIA SUMINISTRADA(kW/Hr)	0.00	33.51	38.90	46.91	50.54	56.94	65.22	87.20
REVOLUCIONES FOR MINUTO (rpm)	0.00	1780.00	1780.00	1780.00	1780.60	1780.00	1780.00	1780.00
FACTOR DE POTENCIA	0.00	0.71	0.73	0.79	0.83	0.85	0.84	0.79
EFICIENCIA BOMBA-MOTOR REAL	0.00π	0.00%	54.32%	67.82%	73.63%	74.49%	73.53%	64.33%
POTENCIA TEORICA (kW/Hr)	0.00	0.00	29.38	44.23	51.74	58.97	66.68	77.99
FACTOR DE VARIACIÓN DE POTENCIA	0.00	0.00	0.76	0.94	1.02	1.04	1.02	0.89
DIFERENCIA DE POTENCIAS (kW)	0.00	0.00	9.52	2.68	-1.20	-2.03	-1.46	9.21
COSTO DE LA INEFICIENCIA /hr CAPACIDAD ESPECIFICA.	\$0 0.00	\$0 0.00	\$1,862 5.06	\$524 4.88	(\$234) 4.58	(\$397) 4.32	(\$285) 4.02	\$1,800 3.09

DESCRIPCION DE LA TABLA

ALTURA PIEZOMETRICA: MEDICIÓN DURANTE LA PRUEBA

CAUDAL: OBTENIDO EN TABLAS (APENDICE DE AFOROS)

PRESION MANOMÉTRICA: MEDICIÓN DURANTE LA PRUEBA

NIVEL DINÁMICO: MEDICIÓN DURANTE LA PRUEBA

CARGA DINÁMICA TOTAL = (PRESION MANOMETRICA x 10) + NIVEL DINAMICO

VOLTAJES: MEDICIÓN DURANTE LA PRUEBA

VOLTAJE PROMEDIO = (Volt1 + Volt2+ Volt3)/3

CORRIENTE: MEDICIÓN DURANTE LA PRUEBA

CORRIENTE PROMEDIO = (Amp1 + Amp2 + Amp3)/3

POTENCIA SUMINISTRADA: MEDICIÓN DURANTE LA PRUEBA

REVOLUCIONES POR MINUTO: MEDICIÓN DURANTE LA PRUEBA

FACTOR DE POTENCIA. = POT. SUMINISTRADA X 1000 / (VOLTAJE PROMEDIO X CORRIENTE PROMEDIO X 1.73)

EFICIENCIA BOMBA-MOTOR REAL = CARGA DINAM. TOTAL x CAUDAL x 0.0098 / POT. SUMINISTRADA

POTENCIA TEORICA - CARGA DINAMICA TOTAL 2 CAUDAL, 2 0,0098 ÆFICIENCIA TEÓRICA MOTOR. BOMBA.

FACTOR DE VARIACIÓN DE POTENCIA - POTENCIA TEÓRICA/POTENCIA SUMINISTRADA

DIFERENCIA DE POTENCIAS = POTENCIA SUMINISTRADA - POTENCIA TEÓRICA.

COSTO DE LA INEFICIENCIA/hr = DIFERENCIA DE POTENCIAS x PRECIO KW/hr.

CAPACIDAD ESPECIFICA = CAUDAL/(NIVEL DINÁMICO - NIVEL ESTÁTICO)

h = Carga manométrica total en m.

eb = eficiencia de la bomba. Bomba sumergible: 70%, bomba de flecha: 80 %. em = eficiencia del motor. Motor eléctrico: 90 %, motor de combustión:80%.

Dividiendo la potencia teórica entre los kw medidos con el potenciómetro

Dividiendo la potencia teorica entre los kw medidos con el potenciometro (potencia real de entrada, kw_r), obtendremos un "factor de variación de potencia" (f.v.p.).

$$f.v.p. = \frac{kw_t}{kw_r}$$
 (1.27)

Un f.v.p. menor que la unidad indica sistemas motor-bomba de menor eficiencia a la que se considera adecuada al proyectar un sistema de bombeo, en contraste, valores superiores a la unidad señalan uno cuya eficiencia es óptima. Al restar la potencia teórica a la potencia real de entrada obtendremos los kw que se pueden ahorrar al sistema; cantidad que multiplicada por el costo del kw/hr y las horas de operación permitirán evaluar la conveniencia de proceder a eficientizar el sistema o no.

El Factor de Potencia se obtiene aplicando la fórmula:

Este factor debe ser del orden de 0.9, para que el sistema se pueda considerar dentro de las normas de la comisión federal de electricidad y no hacerse acreedor a sanciones por parte de las mismas.

CAPITULO II.- DIAGNOSTICO DE POZOS INEFICIENTES; SUS CAUSAS Y POSIBLES SOLUCIONES.

Sin considerar la errónea localización del pozo, que no es el tema de este trabajo, y dando por hecho que ésta es adecuada, existen numerosas razones para que un pozo funcione en forma ineficiente, de las que mencionaremos las más comunes, sin considerar ni su importancia relativa ni la frecuencia con que se presentan, pues estas condiciones varían notablemente de región a región y aún de pozo a pozo en una misma zona.

El objetivo de este capítulo es proporcionar una herramienta práctica para detectar el mal funcionamiento de los pozos y las posibles soluciones a esta situación. Tanto la manifestación del problema, como su solución se presentan en forma resumida, pues una vez determinados se espera se consulten los capítulos siguiente donde se trate con mayor amplitud el tema.

Para cada causa de ineficiencia se pueden enumerar varias manifestaciones del problema y soluciones, sin que esto quiera decir que se den todas ellas en un mismo pozo.

Desde hace algunos años se viene empleando la cámara de video con la que se obtiene un registro visual a lo largo de el pozo; herramienta que ha vuelto de gran utilidad para la detección de muchos de los problemas que se presentan en los pozos y casi indispensable tanto para planear sus soluciones, por consiguiente en la actualidad es habitual que una rehabilitación lleve implícita la corrida de al menos uno y a veces varios registros de video.

En la tabla Nº 3 se ha dividido las causas de mal funcionamiento de los pozos en cuatro grupos, en el primero de los cuales se agrupan los originados por un mal diseño y cuya solución evidentemente estriba en diseñar correctamente el pozo, cuidando que lo especificado sea posteriormente cumplido por el constructor; pero el aspecto del diseño del pozo no es el motivo que ahora se ocupa, por lo que solamente será comentado parcial y brevemente cuando se requiera por estar muy ligado a la rehabilitación.

II.1.- DEFECTOS DE DISEÑO.

Si un pozo ha sido mal diseñado, por no haberse considerado las condiciones geohidrológicas regionales, las encontradas durante la propia exploración o los

Tabla No 3	Causas de ineficiencia de los pozos de agua.				
Defectos de diseño	- Pozos incompletos				
	- Exceso de cedazo				
Į.	- Defecto de cedazo				
}	- Información litológica inadecuada				
l	- Granulometría del filtro granular mal diseñada				
<u> </u>	- Filtro granular o cedazo mal diseñado				
}	- Aforo mal realizado o interpretado				
1	- Diseño inadecuado de bomba				
j	- Defectuosa protección sanitaria o química				
Defectos constructivos	- Fluídos de perforación inadecuados				
1	- Falta de desarrollo del pozo				
į	- Filtro granular mal colocado				
ł	- Defectos en la colocación del ademe				
į	- Falta de verticalidad del pozo				
ł	- Materiales defectuosos o inadecuados				
Defectos operacionales	- Falta de mantenimiento del pozo				
4	- Falta de mantenimiento de la bomba				
ł	- Falta de reposición del filtro granular				
<u> </u>	- Arranques y paros frecuentes del equipo				
Problemas regionales	-Aguas corrosivas				
	- Aguas incrustantes				
ľ	- Bacterias ferruginosas				
L	- Abatimientos regionales de los niveles freáticos				

requerimientos de la obra, es muy probable que nunca trabaje eficientemente; no obstante, en muchos casos existen soluciones o al menos paliativos al problema, mismas que se presentan a continuación y que no se deben considerar como reglas generales, por lo que en cada caso particular se hace necesario llevar a cabo una recopilación y análisis del máximo de información técnica de que se disponga, ponderándose además, las consecuencias económicas que se deriven.

II.1.1 .- Pozos incompletos.

Se llama pozo incompleto a aquel que no atraviesa completamente el acuffero, a diferencia del pozo completo que sí lo hace (Figura 3.). El pozo incompleto concentra el flujo del agua en menor área, lo que resulta en mayores velocidades de entrada para un caudal dado y la posibilidad más factible del arrastre de finos hacia el pozo.

El problema se manifiesta:

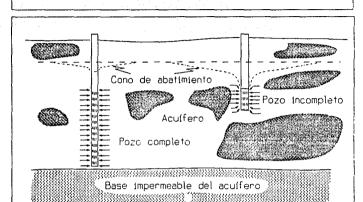


Figura 6- Pozos completos e incompletos

- Por comparación con la columna estratigráfica de la región.
- En una menor capacidad específica que la de los pozos vecinos completos.
- La comparación del funcionamiento de pozos completos e incompletos en regiones en que se presentan los fenómeno de incrustación o el de la corrosión, ha mostrado que ambos actúan mas enérgicamente sobre los segundos que sobre los primeros.
- La vida útil del pozo incompleto es más corta que la del completo en la misma zona.

Solución:

Si el pozo incompleto se terminará con un tapón de fondo de cemento (sin "punta de lápiz") y se hubiese ademado con tubería de suficiente diámetro (al menos 30.48 cm (12"); se puede profundizar, colocando un nuevo ademe y cedazo con el filtro correspondiente.

II.1.2.- Exceso de cedazo.

Es práctica frecuente, aunque errónea, el dejar toda la superficie de contacto pozo-acuífero ademada con cedazo. Este diseño tiene, de principio el grave inconveniente, del innecesario gasto en cedazo en lugar de tubo ciego. El exceso de cedazo presenta además la situación contradictoria de originar una alta capacidad específica y por tanto de bajo consumo de energía por unidad de caudal, pero con un caudal menor al óptimo.

El problema se manifiesta:

- En la producción de finos, cuando se ademaron con cedazo estratos de materiales muy finos (limos y arcillas), que son imposibles de detener aún con un filtro granular muy fino.
- En la observación de un registro de video cuando se conoce la columna estratigráfica.
- En una capacidad específica mayor, y/o caudal menor que los de pozos bien diseñados cercanos.

Solución:

Si el exceso consiste en dejar abiertas con cedazo formaciones de materiales finos que no pueden ser detenidos por el filtro granular, el problema se puede solucionar mediante cuidadosas cementaciones de la zona problema, esperar el fraguado y posteriormente romper el tapón, quedando así un anillo de cemento en la zona del filtro granular y acuífero inmediato al pozo. Esta solución presenta el inconveniente de que el propio anillo impedirá la reposición de grava abajo de él.

Si el exceso de cedazo se encuentra solo en la porción superior del pozo, y se quiere incrementar su producción, se puede encamisar con un ademe ciego del diámetro nominal inmediato inferior al empleado en el pozo, este encamisado deberá apoyarse en un anillo de cemento previamente colado, y una vez asentado el pequeño espacio anular entre las dos tuberías se rellenará con lechada de cemento. Una vez fraguada esta lechada se romperá el tapón de cemento.

II.1.3.- Defecto de cedazo.

El problema se manifiesta:

- Durante la observación de un registro de video cuando se conoce la columna

estratigráfica.

- Una baja capacidad específica, lo que se traduce en caudales con altos consumos energéticos.
- La concentración del flujo en un área reducida resulta en velocidades de entrada del agua al pozo altas y consecuentemente un alto riesgo de arrastre de finos, así como mayores probabilidades de corrosión e incrustación del ademe cuando las aguas presentan estas características.

Solución:

Si la falta de cedazo se tiene en un pozo completo no existe solución a el problema.

Si se trata de un pozo incompleto, existe la posibilidad de reperforarlo hasta el fondo del acuífero, de acuerdo a lo descrito en el inciso III.1.10, colocándose cedazo en los tramos adecuados, disminuyendo así el defecto original.

II.1.4.- Información litológica inadecuada.

El correcto diseño de un pozo se basa esencialmente en las muestras colectadas durante la perforación exploratoria, apoyadas por los registros geofísicos; de manera que un muestreo o registros inadecuados, o una mala interpretación de los mismos, inevitablemente tiene como colofón un mal diseño, con todos los problemas a el asociados.

El problema se manifiesta:

En innumerables formas (pozo seco o de baja producción, producción de agua con sólidos, mala calidad del agua, etc), puesto que el proyecto del pozo se basa en las muestras litológicas y los registros.

Solución:

Los problemas originados por una inadecuada información exploratoria pueden tener solución dependiendo de cuál sea su manifestación, pero en muchos casos no la tienen, dado que la información de que se dispone es errónea o nunca se obtuvo.

II.1.5.- Filtro granular o cedazo mal diseñado.

Aun cuando la exploración y muestreo se realicen correctamente, el filtro granular o el cedazo pudieran ser mal diseñados.

El problema se manifiesta:

- Pozo productor de sólidos.
- Disminución gradual de la capacidad específica de el pozo y estabilización de esta, debido a que el pozo se va llenando gradualmente de sólidos, hasta el punto en que la bomba los alcanza a succionar, impidiendo a partir de entonces que continúe la acumulación.

Solución:

El defecto en la selección del filtro granular generalmente consiste en el grosor excesivo de sus constituyentes y la consiguiente incapacidad de filtrado. La única solución permanente a este problema, siempre y cuando el diámetro del pozo lo permita, consiste en colocar un nuevo cedazo y un filtro granular correctamente diseñado en el interior del pozo ineficaz.

- Una solución que por lo general ofrece buenos resultados temporales consiste en desazolvar el pozo hasta alcanzar la profundidad de proyecto y a continuación desarrollarlo enérgicamente. Como no se ha solucionado el problema de origen, la acumulación de finos se reinicia, pero el pozo puede funcionar correctamente un cierto tiempo.

II.1.6.-Aforo mal realizado o interpretado.

En el caso de que el aforo de un pozo se realice con una bomba incapaz de alcanzar su caudal óptimo de explotación, se seleccionaría una bomba inferior a la capacidad del pozo y por lo tanto la inversión en el sería mal aprovechada.

El problema se manifiesta por:

La bomba seleccionada no es capaz de provocar un abatimiento del nivel dinámico, suficiente para rebasar el caudal óptimo de explotación del pozo. En esta condición no se está cumpliendo con el objetivo de la prueba, que es precisamente establecer dicho caudal.

Si por el contrario el punto óptimo ha sido rebasado y por defecto en la

interpretación se seleccionará una bomba que exceda la capacidad del pozo, el costo unitario del agua extraída será excesivo y se llega al caso de que el nivel dinámico alcance la succión de la bomba, con el consecuente "boqueo" en la descarga. Si esta condición se da en los primeros escalones del aforo, la prueba debe repetirse con una bomba de menor capacidad o de columna más larga.

La selección de la bomba de aforo dependerá de la experiencia regional en pozos anteriores, de los requerimientos de agua, o de los indicios durante la construcción del pozo, condiciones todas ellas bastante subjetivas por lo que cabe una cierta posibilidad de error en dicha selección. Para minimizar el costo de esta posibilidad se debe establecer como un procedimiento de rutina el ensayo de aforo (Ver inciso IV.1.2.).

Los datos del aforo se presentan en la gráfica correspondiente, cuyo correcto análisis e interpretación indica si la bomba de aforo fue la adecuada al pozo y permite la selección del equipo de explotación idóneo al pozo probado (IV.1.3)

II.1.8.- Mala protección sanitaria o química del pozo.

El acuífero explotado por un pozo, puede ser susceptible de ser contaminado química o bacteriológicamente, cuando el propio pozo conecta a dicho acuífero con una fuente de contaminación. Para evitarlo el pozo deberá contar con un contraademe bien cementado que aisle al acuífero.

El problema se manifiesta:

- En un análisis químico y bacteriológico del agua extraída del pozo.
- Si el pozo se utiliza para extraer agua potable se presenta una alta incidencia de enfermedades relacionadas con bacterias patógenas presentes en aguas contaminadas, o con algún ion nocivo.
- Si se trata de una explotación de aguas agrícolas o industriales, la mala calidad del agua se puede manifestar en defectos en el producto agrícola o industrial.

Solución:

El proporcionar a un pozo ya terminado una adecuada protección contra la contaminación, resulta imposible en forma económicamente práctica, por lo que la única solución a este problema consiste en eliminar la contaminación en su fuente.

II.2.- DEFECTOS CONSTRUCTIVOS.

Es frecuente que un pozo bien diseñado resulte malogrado por inadecuadas maniobras constructivas. Los problemas mas frecuentes son:

II.2.1.- Lodos inadecuados.

Cuando un pozo se construye con perforadora rotaria directa, es indispensable el uso de un fluído de perforación que mantengan estables las paredes de él, enfrien la barrena y levanten hasta la superficie el recorte de la perforación. Este fluído de perforación puede ser aire, agua, lodos fabricados a base de substancias degradables o el que es con mucho el mas usual el lodo bentonítico. Estos lodos deben tener un peso, viscosidad y caudal acordes con las condiciones de la roca perforada, y las características del pozo.

La popularidad del lodo bentonítico se debe a su bajo costo de adquisición con respecto a los lodos autodegradables y la menor inversión en equipo necesaria respecto a la perforación neumática o a base de agua sola. Forma un enjarre periférico a la perforación (el "cake"), que debe ser capaz de mantener estables las paredes, sin que la penetre mucho en la formación, pues en caso contrario el mismo lodo impedirá o dificultará la entrada de agua al pozo. Esta situación no es grave cuando se tiene un buen control de los lodos utilizados.

El problema se manificsta:

- Menor capacidad específica que en pozos similares de la región.

Solución:

Si la invasión del lodo no es muy profunda, los restos de la bentonita se eliminan durante el desarrollo del pozo, que es una de las últimas etapas constructiva de él, pero si esto no ocurriera en ese momento, se puede realizar aunque hubiera: pasado bastante tiempo.

II.2.2.- Falta de desarrollo del pozo.

El desarrollo de un pozo se debe efectuar inmediatamente después de su terminación y antes de su aforo. Consiste esencialmente en una agitación controlada del pozo, cuya finalidad es eliminar residuos de bentonita que quedaran en él, limpiar el filtro granular, si lo hay y eliminar los materiales finos del acuífero en el entorno del pozo. Existen varios métodos de desarrollo que se comentarán en el Capítulo IV.

El problema se manifiesta:

- Menor capacidad específica que en pozos similares de la región.

Solución:

Si el desarrollo no se realizó, al terminar el pozo, se puede realizar tiempo después, frecuentemente con buenos resultados. En esta situación es común que al ser aforado nuevamente, resulte que la bomba con que venía operando es de capacidad inferior a la que resulta conveniente según las nuevas condiciones del pozo.

II.2.3.- Filtro granular mal colocado.

Aún cuando el filtro estuviera bien diseñado, puede ser mal colocado en el pozo, sea por una mala práctica de las operaciones de engravado, o bien por las características físicas de algún estrato. El defecto de colocación puede ser un vertido en el pozo demasiado lento, que permite que el filtro se clasifique respecto a tamaños, de modo que el resultado son pequeños estratos alternados de material grueso, medio y fino, ninguno de los cuales cumple con las características del proyecto.

En cambio si la colocación es demasiado rápida o si el espacio anular es muy reducido, el filtro se puede "puentear" al acuñarse los gránulos entre el ademe y el terreno. Un efecto semejante se tiene cuando formaciones inestables, generalmente arcillosas, se anillan alrededor del ademe, impidiendo la bajada del filtro.

El problema se manifiesta:

- Por la entrada de finos al pozo.

Solución:

Si el problema se debe a la estratificación del filtro granular, o a una formación que se "anilla" alrededor del ademe ciego, no existe solución al problema excepto el encamisado y colocación de un nuevo filtro granular. Si el anillo se formara frente al cedazo, se puede romper mediante un enérgico desarrollo que permita la gradual sustitución del material del anillo por el del filtro.

Si el defecto consiste en el "puenteo" del filtro, existe la posibilidad de romper dicho "puente" mediante un enérgico desarrollo del pozo.

II.2.4.- Defecto en la colocación del ademe.

Los problemas más comunes de colocación de ademes derivan de defectos de soldadura durante el ademado, sean en la unión entre tubos, o lo que es más frecuente, al soldar las "orejas" laterales donde se cruza la flecha para bajar la tubería soldada a tope.

Otra causa de mala entubación, pero ésta debida a las condiciones de terrenos inestables, es provocada por su derrumbe al interior del pozo durante su ademado, momento en le que las condiciones de estabilidad son críticas debido a la falta de circulación de fluidos de perforación. El resultado es que el azolve acumulado en el fondo impide bajar el ademe hasta la profundidad proyectada, con el siguiente desfasamiento entre los tramos de cedazo y los acuferos, resultando un pozo menos productor y en ocasiones productor de finos.

El problema se manificsta:

- Si se dejaron tubos mal soldados o con "orejas" abiertas, es típica la presencia de filtro granular en el interior del pozo y posteriormente el arrastre de finos al ser eliminado el filtro.
- Cuando el problema se originó por un desfasamiento en la posición del cedazo, se pueden tener diferentes manifestaciones del mal ademado, las más frecuentes de las cuales son: pozos productores de sólidos o capacidades específicas menores que las normales en la zona.
- Los defectos en el ademado del pozo se pueden detectar con facilidad mediante un registro de T.V.

Solución:

En la situación del desfasamiento del cedazo, la producción de finos se puede evitar, en algunos, casos con soluciones similares a las expuestas en el inciso II.1.5.

Si el problema resultante es la baja producción por haber quedado parcialmente tapado con ademe ciego algún acuífero importante, no existe ningún remedio práctico a este problema

II.2.5.- Falta de verticalidad del pozo.

La falta de verticalidad de un pozo puede afectar la operación de la bomba, sobre todo si esta es de motor en la superficie, pues su sistema de transmisión de

flecha esta diseñada para trabajar suspendida verticalmente. Si el pozo está inclinado de modo que la columna de la bomba apoye en el ademe, carga el peso de la flecha en forma irregular sobre los centradores acortándose su vida útil, además se tendrán vibraciones indeseables de la bomba y del ademe que afectan a los dos. Por todo lo anterior el aspecto de la verticalidad es particularmente crítico en la cámara de bombeo.

Conviene considerar que aún cuando un pozo se encuentra dentro de tolerancia (ver inciso III.1.6.4.3) pueden presentarse los inconvenientes antes mencionados, pues no sólo importa la magnitud de la desviación sino la dirección de esta, pues la situación mas crítica se presenta cuando cambios mas o menos bruscos de dirección del pozo flexionan el tubo de la bomba y por consiguiente la flecha.

Abajo de la cámara de bombeo la desviación del pozo pierde importancia, salvo la posibilidad de que el ademe quede en contacto con el terreno, impidiendo la envolvencia del cedazo por el filtro granular.

El problema se manifiesta:

- Dificultad o imposibilidad de bajar la bomba en el pozo.
- Cuando se trabaja el pozo con bomba de flecha se presentan frecuentes problemas en esta y sus soportes internos.
- Aporte de finos ocasionado por la falta de cubrimiento del filtro al cedazo en todo su perímetro.

Solución:

Si la falta de verticalidad del pozo se detecta durante la perforación, sea mediante inclinómetros, o por la experiencia del perforista, el defecto puede ser corregido, pero una vez terminado el pozo y colocado el ademe, no existe solución a la falta de verticalidad que solo podrá atenuarse mediente el empleo de una bomba sumergible, que al carecer de flecha en menos susceptible a este problema, si bien lo es más al manejo de sólidos puesto que trabaja a mas altas revoluciones.

II.2.6.- Materiales defectuosos o inadecuados.

Evidentemente la mala calidad de los materiales empleados afectan el funcionamiento del pozo, primordialmente ademe, cedazo, filtro granular y bomba.

IL3., DEFECTOS OPERACIONALES

La operación cotidiana de un pozo es tarea sencilla, pero que requiere de una observación sistemática y diaria de las condiciones de operación de la pareja pozobomba. Aún cuando esto se lleve a cabo, la costumbre repetida ocasiona, a veces, negligencia en la verificación, o en el análisis de la información, que provocan que los problemas se presenten en forma inesperada, aunque se presentasen, con anterioridad síntomas indicativos de la falla. Resulta de gran importancia la adecuada capacitación del personal de operación, que debe estar consciente que es parte importante de un complejo sistema, que a su vez es parte vital de el desarrollo de la comunidad.

Los defectos operacionales mas frecuentes son:

II.3.1.- Falta de mantenimiento del pozo.

Como se menciona a lo largo de este capítulo la calidad de un pozo depende de múltiples factores, mismos que establecen la magnitud y frecuencia del mantenimiento preventivo, o correctivo que requiera. Aún cuando las causas y magnitud de los problemas puedan ser muy variadas:

El problema se manifiesta:

- Pozo azolvado, con una disminución de la producción proporcional a los metros de cedazo azolvado.
- -Disminución de la permeabilidad del acuífero en el entorno del pozo, por colmatación del filtro con materiales finos.
 - Ademes rotos o colapsados, que pueden provocar la inutilización del pozo.
 - Ademes corroídos.
 - Ademes incrustados.
 - Objetos caídos en el pozo.
- En general, el mejor medio de corroborar la sospecha que provoquen los indicios anteriores, consiste en la corrida de un registro de T.V., una vez extraída la homba.

Solución:

- Cuando la ineficiencia se manifiesta por pozos azolvados o acuíferos colmatados por materiales finos la solución, al menos temporal, consiste en desarrollar enérgicamente el pozo.
- Si el problema se originó por ademes colapsados, se debe eliminar el colapso mediante trompo o prensa electrohidráulica. Si estuviera roto, es necesario el encamisado en la parte afectada o la cementación del tramo.
- En el caso de ademes corroídos, la rehabilitación suele ser difícil y depende en gran medida de la intensidad del fenómeno de corrosión, pero algunos casos de pozos corroídos se han continuado operando mediante el encamisado total o parcial, con la correspondiente colocación de filtro granular.
- Si el ademe se hubiera incrustado, se pueden eliminar las incrustaciones del interior del ademe y las ranuras del cedazo mediante un cepillado, aunque no alcanza la parte exterior de él, ni el filtro. Por tanto si el cepillado no muestra efectividad, al no mejorar la capacidad específica del pozo, será necesario proceder a un tratamiento químico que elimine la incrustación.
 - Los objetos caídos al pozo serán extraídos mediante pescantes.

II.3.2.- Folto de mantenimiento en la bomba.

La bomba como cualquier equipo electromecánico requiere de mantenimiento preventivo y correctivo, tema que no será tratado en este trabajo.

II.3.3.- Falta de reposición de filtro granular.

La operación normal de un pozo suele provocar una cierta compactación del filtro granular por efectos de carga del terreno circundante y su propio peso.

Un pozo productor de sólidos puede originar oquedades que lleguen a ocasionar asentamientos del terreno. En casos mas discretos estos vacíos dejados por la arena extraída se van rellenando con el filtro granular del pozo.

El problema se manifiesta:

-Durante las operación del pozo se presenta un descenso del filtro granular en el espacio anular.

Solución:

El filtro debe reponerse desde la superficie, de tal modo que el espacio anular se mantenga siempre lleno de filtro.

II.3.4.- Arranques y paros frecuentes del equipo.

La operación de un pozo es más eficiente cuanto mayores sean los periodos de explotación continua, pues se obtienen las siguientes ventajas:

- Reducir el consumo de energía en los arranques.
- Reducir el desgaste del equipo.
- Eliminar agitaciones innecesarias en el pozo en cada arranque.

Evidentemente, los frecuentes paros y arranques del equipo provocarán efectos contrarios.

II.4.- CAUSAS REGIONALES.

En muchas ocasiones los problemas de funcionamiento de un pozo no son originados por ninguna de las causas anteriores, sino por condiciones regionales generalmente naturales pero que también pueden ser originadas por el hombre, pero en forma independiente a las características de la obra, algunos de estos problemas son:

II.4.1.- Aguas corrosivas.

El proceso de la corrosión implica el ataque a ademes metálicos y bombas con su paulatina desintegración. En el caso de el cedazo, se agranda las ranuras permitiendo la entrada del filtro granular y luego del acuífero al pozo.

El problema se manifiesta:

- En una producción de sólidos mas o menos repentina que se inicia cuando el filtro granular empieza a entrar al pozo. Esta situación va acompañada por un descenso brusco del la capacidad específica debido a el azolve acumulado en el pozo, y si este alcanza el nivel de la bomba puede atascarse con los consiguientes problemas electromecánicos.
- Un registro de video posterior a el cepillado del pozo, muestra con claridad el efecto de la corrosión agrandando las ranuras del cedazo.

Solución:

Cuando un pozo es atacado por la corrosión no es susceptible de ser rehabilitado quedando como única opción la colocación de un nuevo ademe interior, de ser posible de P.V.C., generalmente con su filtro granular correspondiente. Esta alternativa solo es factible cuando el diámetro del pozo lo permite.

II.4.2.- Aguas Incrustantes.

La incrustación consiste en la depositación de iones por las aguas, sobre la parte metálica del pozo que está en contacto con ellas. Los más frecuentes son el carbonato de calcio y minerales de hierro y manganeso. Estos depósitos pueden obturar cedazo, filtro granular y el acuífero cercano al pozo.

El problema se manifiesta:

- Por una disminución de la capacidad específica del pozo, provocada por la obturación de la rejilla.
 - En la observación de registros de video.

Solución:

En ocasiones se puede solucionar temporalmente el problema, mediante el cepillado del ademe, con lo que se eliminan las incrustaciones de la parte interior del mismo, pero sin lograr afectar los depósitos de la parte exterior de él. Para atacar estos depósitos mas profundos, es efectivo el tratamiento con ácido que disuelva el depósito, aunque ataca también el ademe metálico si no se dosifica adecuadamente.

II.4.3.- Bacterias Ferruginosas.

Existen bacterias, no perjudiciales a la salud, requieren de la presencia del hierro y manganeso para su ciclo vital. Son conocidas como bacterias ferruginosas o bacterias del hierro y aparentemente oxidan y precipitan el hierro y manganeso disueltos en el agua. Los minerales junto con los organismos forman una masa (materia gelatinosa) que obstruye cedazo y poros del acuffero inmediato al pozo.

Parece evidente que las bacterias no existian en el acuífero antes de que se construyera el pozo, ya que viven del hierro del ademe, por consiguiente se supone que la bacteria llega al pozo durante su construcción o poco después, sea en el fluido de perforación o en herramientas contaminadas.

El problema se manifiesta:

- Por una disminución de la capacidad específica del pozo, provocada por la obturación de la rejilla.
- En la observación de registros de video donde las colonias bacterianas se observan como una masa filamentosa.
 - En el equipo de bombeo o en las tuberías surtidas por el pozo.

Solución:

- Lo más conveniente es evitar la presencia de las bacterias en el pozo, utilizando agua potable o clorinando la que se va a usar en el fluído de perforación y lavando con cierta periodicidad la herramienta de perforación con una solución de permanganato de potasio.
- Una vez que el problema se ha presentado, para corregirlo, se aplica un tratamiento al pozo a base de ácido clorhídrico o acído sulfámico, o algún producto comercial que disuelven el Fe y Mn precipitados y posteriormente se aplica cloro que mata los organismos. Estos tratamientos proporcionan una solución de carácter temporal, pues después de un lapso de tiempo variable el fenómeno se repite y el pozo requerirá de nuevo tratamiento.

II.4.4.- Abatimientos regionales de los niveles freáticos.

La sobreexplotación regional de un acuífero implica descensos paulatinos de el nivel freático.

El problema se manifiesta:

En una disminución del espesor del acuífero y en consecuencia del caudal explotable, que adicionalmente se puede ver disminuido por la desecación de acuíferos superiores, hasta llegar a la última posibilidad de que el pozo quede completamente seco ("pozo colgado").

Solución:

- Regular la explotación regional hasta permitir la recuperación parcial o total de los niveles.
 - Profundizar el pozo.

III.- OPERACIONES Y METODOS DE REHABILITACION DE POZOS.

Llamaremos rehabilitación de pozos al conjunto de operaciones tendientes a reintegrar al servicio eficiente a un pozo que por determinadas circunstancias había salido de esta condición.

Las operaciones y métodos de rehabilitación de pozos son tan variados como puedan ser las condiciones geohidrológicas, de proyecto, constructivas y de operación, de la obra, por lo que resulta aventurado el pretender abarcarlas todas. Además muchas posibilidades aún están incubándose en la mente de alguien relacionado con esta actividad, que álgún día que la necesidad le apure, dejará que afloren. Por tanto, pretender establecer especificaciones precisas de las actividades de rehabilitación, resulta prácticamente imposible pues en cada caso en partícular se deberán programar las acciones a realizar, que serán adecuadas a esa situación y otras, incluso ideadas para esa ocasión, por consiguiente la relación que sigue, se deberá considerar como solamente enunciativa pero nunca limitativa.

III.1.- OPERACIONES Y METODOS DE REHABILITACION.

III.1.1.- Ademes rotos, colapsados o mal soldados.

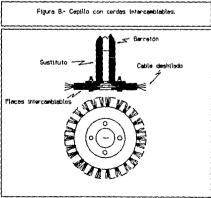
La presencia de ademes en mal estado, es común en pozos viejos. Las razones mas frecuentes son:

- Aguas corrosivas que adelgazan paulatinamente el ademe, o agrandan las ranuras del cedazo. Esta gradual debilitación puede culminar en el colapso o la rotura del ademe.
 - Ademes de mala calidad.
- Soldaduras defectuosas en las uniones entre tubos, o lo que es mas frecuente en las "orejas" que se abren en los tubos para atravesar una flecha que sostenga a la tubería al bajarla durante la operación del ademado del pozo. Esta indeseable situación se solucionaría si se generalizase el uso de tubería con rosca y cople en lugar de la usual soldada a tope.
- El terreno presiona el ademe en tal forma que puede llegar a colapsarlo. La presión puede ser gradual y creciente o súbita como se ha manifestado en algunas zonas sísmicas como el Valle de México, donde el sismo de 1985 seccionó o colapsó varios pozos.

Entenderemos por ademe colapsado, aquel que presenta una deformación de

su sección circular original, pero sin llegar a la rotura.

Generalmente es posible restituir el diámetro original de un ademe de acero, mediante el empleo del "trompo". La operación de trompear un pozo implica disponer de una máquina de percusión, con una sarta de perforación pesada que le imprima energía al pesado trompo de acero sólido, que a base de golpes continuos retraiga el ademe. El trompeo se inicia con una herramienta del diámetro inmediato superior al que queda libre en la zona colapsada y se irá cambiando, aumentando su diámetro conforme el ademe va cediendo, hasta llegar al original.


Actualmente existe un equipo especial, la "prensa electrohidráulica", con la que se obtiene un efecto similar al provocado por el trompo, consiste básicamente en un gato de gran capacidad que se introducen hasta la zona de colapso, donde se expanden para retraer el ademe. La ventaja de este sistema estriba en la rapidez de operación con respecto al trompo, pero en cambio su precio unitario horario es bastante mayor, por lo que no siempre es la mejor solución. Estos equipos se emplean también para colocar a presión forros metálicos que obturen la rotura. Estas camisas están formadas por lámina delgada, por lo que si el origen del problema fueran aguas corrosivas o derrumbes de la formación, podrían ser de vida bastante efímera. En el inciso III.1.9 se presenta una descripción mas detallada de esta herramienta y su operación.

Muchos ademes colapsados llegan a romperse y cuando la rotura alcanza un cierto tamaño se manifiesta por la presencia de filtro granular en el interior del pozo y gran abundancia de azolve. En estas condiciones la etapa correctiva preliminar consistirá también en restituir el diámetro original a todo el pozo.

III.1.1.1.- Reparación de ademes colapsados.

- En el caso de ademes colapsados o desgarrados la rehabilitación comienza por la corrida de calibradores de varios diámetros para establecer cuál es el mayor que deja pasar el colapso o rotura (Ver inciso III.1.6.2).
- Una vez establecida la magnitud del colapso, es necesario restituir al ademe del pozo su diámetro original mediante la corrida de trompos de diámetros crecientes (Fig. 7) o mediante la prensa electrohidráulica (Ver inciso III.1.9).
- Si el defecto del pozo consistía sólo en colapso de la tubería, con la restitución del diámetro se habrá terminado el trabajo.

III.1.1.2.- Reparación de ademes rotos.

- En caso de que el ademe esté desgarrado, una unión de tubos mal soldada o una oreja destapada, es necesario tapar la rotura. Si la zona afectada no es muy extensa la solución mas rápida consiste en la colocación de una camisa con la prensa electrohidráulica (Ver inciso III.1.9), pero si lo fuera o no se contara con una, se puede cementar la zona de rotura, para lo cual se procede a:
- Colocar un tapón perforable alrededor de un metro abajo de la zona de la rotura. Si la rotura es cerca del fondo del pozo resulta práctico azolvar el pozo hasta la rotura y sobre ese azolve colocar el cemento (Ver inciso III.1.2).
- Cubicar el volumen de cemento necesario para llenar el pozo hasta al menos un metro arriba de la parte superior de la rotura.
- Colocar el volumen de lechada que resulte de la cubicada, con un acelerante de fraguado.
- Esperar unas horas y sondear la cima del tapón que por lo general se encontrará abajo de la cota teórica, debido a la penetración de la lechada en la formación. Incluso puede darse el caso de que el cemento se haya perdido totalmente, lo que obligara a repetir la operación de cementado con lechadas más espesas o incluso un concreto con agregados finos.
- De una u otra manera se obturará la zona problemática, se esperará hasta el fraguado total y se procederá a perforar el tapón con la mayor broca que quepa.

III.1.2.- Cementaciones.

La cementación es una operación rutinaria en la construcción y que tampoco es rara en la rehabilitación de pozos.

III.1.2.1- Tapones de fondo.

El tapón de fondo evita el "flujo de fondo" en los pozos, con la entrada de las aguas de menor calidad que frecuentemente existen en la parte inferior a los acusteros, además de la posibilidad de subpresiones en el pozo. Por consiguiente es parte de cualquier pozo correctamente construido, pero por negligencia o ignorancia de constructor y supervisión, no es raro encontrarse con pozos ya en operación que carecen de él, por lo que se deberá colocar como una operación de rehabilitación. Por otra parte, puede suceder que exista una rotura en el ademe, lo suficientemente cercana al fondo del pozo como para indicar la conveniencia de extender el tapón de

fondo hasta tapar dicha rotura.

El medio de colocación de un tapón de fondo es la tubería de perforación, desprovista de barrena, cuando se cuente con una perforadora rotaria, lo que no es común en la rehabilitación de pozos, o una cuchara de dardo cuando se tenga máquina de percusión que es la usual en estas actividades.

En cualquiera de los dos casos la tarea inicial consiste en la cubicación de la lechada necesaria para el tapón. Cuando se coloque con pulseta, se debe cubicar también la capacidad de la cuchara y establecer cuantas cucharadas se requieren para alcanzar el volumen deseado.

Si el tapón se desplaza por la tubería de perforación rotaria, se debe cubicar el interior de la misma y este volumen, como mínimo, se inyecta de agua, después del cemento, para poder desplazarlo hasta el lugar deseado, asegurándose al terminar, la limpieza de la tubería de perforación empleada para la maniobra.

III.1.2.2.- Cementaciones intermedias.

Cuando se tienen roturas de tubería en zonas amplias o si se quiere clausurar alguna zona indebidamente abierta, por donde penetran al pozo materiales finos, puede resultar más conveniente desde el punto de vista técnico o económico, una cementación que la colocación de una camisa interior.

La operación de colocación es similar a la que acabamos de describir, pero previamente a la cementación es necesario colocar un tapón perforable que contenga el cemento durante su fraguado. Existen tapones perforables de diversos tipos que se emplean cotidianamente en la industria petrolera, pero su elevado costo y requerimientos técnicos que generalmente no están al alcance del rehabilitador de pozos de agua, los tornan inusuales, por lo que se utilizan tapones por lo general habilitados en campo. Un tipo de tapón que suele dar buen resultado es el de madera, algo ajustado al diámetro interior del ademe y lo suficientemente grueso para impedir que gire en él. Este tapón se baja suspendido con alambres o cable delgado empujándolo con la herramienta de perforación.

Una vez colocado el tapón de cemento y después de esperar su fraguado, se verifica la posición del techo de la cementación. Aún cuando el volumen de cemento se cubicara correctamente, es posible que este se encuentre más abajo de lo esperado, sea por mala construcción del tapón de madera que dejó escapar parte del cemento, o por que el cemento pasando a través de la rotura del ademe rellenó huecos más o menos grandes en el exterior del pozo. Si esto ocurriera puede ser necesario repetir la cementación una o más veces, después de cubicar nuevamente el volu-

men faltante. En estas nuevas cementaciones ya no se requerirá tapón pues la cementación anterior cumplirá su función.

Fraguado el cemento en la posición deseada, se reperfora junto con el tapón provisional, dejando sólo un anillo alrededor del ademe que tapona y consolida la zona problemática.

Se debe considerar la posibilidad de que un tapón de cemento como el descrito, forme un anillo alrededor del pozo, que en el futuro impida la reposición de filtro granular abajo de esa cota.

III.1.2.3.- Composición de la lechada.

Se recomienda emplear lechadas de densidad de 1.8 gr/cm³, lo cual se logra con 27 l de agua por saco de 50 Kg de cemento. Conservando esta misma densidad, la preparación de 1 m³ de lechada requiere de 637 l de agua y 1,169 Kg de cemento (aproximadamente 363 l).

La densidad mínima permisible es de 1.6, equivalente a 42.5 l de agua por saco de 50 Kg de cemento, o bien 730 l de agua y 869 Kg de cemento (aproximadamente 270 l) para preparar l m³ de lechada.

En el apéndice B se presentan tablas de proporciones para obtener distintas mezclas de concretos.

Para evitar el agrietamiento de la lechada al endurecerse, se puede agregar a la mezcla un 5 % de bentonita, con respecto al cemento. Esto no es recomendable cuando la lechada se bombea, si no se cuenta con una bomba de buena potencia, pues la adición de la bentonita eleva la viscosidad del fluido.

Para abreviar la espera del fraguado se emplean acelerantes, de los que el cloruro de calcio (CaCl₂) es el más usual.

Los tapones, tanto de fondo como intermedios, cuando se colocan con cuchara, pueden construirse con concreto de baja proporción de grava, en lugar de lechada de cemento, lo cual presenta la ventaja de su mayor solidez. Si se trata de un tapón intermedio, esta característica permite que no se fracture con facilidad a la hora de ser perforado. En cambio tiene el inconveniente de una menor movilidad para rellenar posibles cavidades.

III.1.3.- Cepillado de ademes.

Ademes incrustados, con costras de oxidación o colonias de bacterias ferruginosas, y que van a ser desarrollados física o químicamente, requieren de cepillado para limpiarlos en su interior, pues al eliminar con facilidad las costras interiores, total o parcialmente, se aumenta la eficacia del desarrollo.

El cepillo se construye (Fig. 8), con dos placas de acero, que confinan trozos de cable también de acero cuyas puntas floreadas sobresalen de las placas. Los cables cubrirán un diámetro igual al del ademe y las placas serán de diámetro menor unas 7.6 cm (3") al interior del ademe a cepillar. Ademas de estar oprimidos por las placas los trozos de cable se soldarán a una de las placas para evitar su caída al pozo durante la enérgica operación del cepillado. La rutina del cepillado es similar a la del pistoneo (ver inciso IV.3.3.3), pero el tiempo de operación es generalmente mucho mas breve y dependiente de la magnitud del problema de incrustaciones.

Las microexplosiones (Sonar Jet), es un método que hace algunos años gozó de grán popularidad, pues se presentaba como una nueva modalidad para el desarrollo de pozos, aunque nunca se dijera claramente como lograba tal efecto. Se han realizado, en numerosas ocasiones, registros de video antes del Sonar Jet y después, encontrándose que por lo general elimina solo parcialnente las incrustaciones, en algun caso se ha realizado otro video en el mismo pozo despues de cepillarlo observándose una notable mejoria respecto al Sonar. Adicionalmente se tiene un costo mucho mayor que el necesario para cepillar el pozo, razones que han provocado una rápida pérdida de popularidad del método.

III.1.4.- Colocación de falsos ademes.

Se llama En esta obra llamaremos falso ademe o "camisa" a aquel cuya función reside en soportar parcialmente al terreno sólo en ciertos tramos problemáticos, o bien en impedir el paso de sólidos a un pozo que los produce por la razón que fuera.

III.1.4.1.- Falsos ademes en pozos con ademes rotos.

Si el ademe original de un pozo presenta roturas, por lo general debidas a la corrosión, de tal magnitud que no resulta práctico el colocar camisas con la prensa electrohidráulica, la única posibilidad de rescatar el pozo afectado es la colocación de un falso ademe colocado en el interior del dañado. Si el único problema es la rotura y el pozo no era productor de arena, el nuevo ademe puede ser del diámetro inmediato inferior al original y la longitud, como mínimo, llegará desde el fondo del pozo, hasta unos 3 o 4 m arriba de la parte superior de la zona problemática, pero en pozos poco profundos, puede resultar mas conveniente prolongarlo hasta la superficie. La proporción y posición de los tramos ciegos y de cedazo, se proyectará en base

a la información completa que se recabó en el pozo desde su construcción y si ésta no existiera siempre será muy recomendable la observación de un registro de video.

III.1.4.2.- Falsos aciemes en pozos productores de arena.

La colocación de nuevos ademes en pozos productores de arena requiere por una parte de un diseño de filtro granular, cedazo y velocidades de entrada del agua al pozo, similares a los que se realizan para un pozo nuevo, con la diferencia de que la muestra en que se basa el análisis granulométrico proviene de arena producida por la arena producida por el pozo (Ver inciso IV.5)

El diámetro exterior del nuevo ademe será de preferencia 15.2 cm (6") y como mínimo 10.2 cm (4") menor que el diámetro interior del ademe defectuoso. El ademe a colocar debe estar provisto de centradores que aseguran que el filtro lo cubran perimetralmente. Esta condición es causa de que en muchas ocasiones sea imposible realizar esta rehabilitación, pues no se cuenta con el diámetro suficiente para dar cabida a la pareja ademe-filtro o bien el nuevo ademe es de un diámetro tal que impide la entrada de la bomba. Para eludir esta restricción de diámetro es frecuente que los nuevos ademes se coloquen solo en la porción filtrante del pozo abajo de la cámara de bombeo, lo que se conoce comunmente como un ademe telescópico.

Como ya se dijo, un falso ademe puede prolongarse hasta la superficie, en cuyo caso su colocación no difiere de el ademado de un pozo nuevo o bien dejarse a partir de cierta profundidad, con lo que se abarata la operación y se respeta el diámetro de al menos la sección superior del pozo. En este caso la operación resulta algo más complicada pues se requiere un dispositivo soltador para dejar en el fondo el falso ademe al llegar a la profundidad deseada. Además se debe contar con un tapón cónico que impida la entrada del filtro granular al interior del falso ademe, pero que permita su colocación en el espacio anular entre ambos.

Durante la colocación del filtro granular se debe sondear constantemente el pozo para verificar que no llegue a cubrir el tapón cónico provisional.

III.1.5.- Colocación de camisas.

Dentro de las opciones que se tienen para reparar pozos colapsados o rotos se encuentra la de la prensa electrohidráulica, con la que es posible colocar camisas interiores que tapen las roturas del ademe. En el inciso III.1.9 se describe y explica la operación de esta herramienta.

III.1.6.- Determinación de la geometría del pozo.

Como premisa de cualquier trabajo de rehabilitación es necesario conocer las condiciones del pozo, para así poder planear las acciones a efectuar. La buena calidad de los registros que se describen a continuación establece el exito o fracaso de la rehabilitación.

III.1.6.1.- Bloques impresores.

En numerosas tareas de rehabilitación, en especial en las de pesca, es necesario conocer las condiciones reales en que se encuentre el objeto que causa el problema, a tal fin se emplean frecuentemente los bloques impresores que son herramientas, por lo general construidas en campo, que se unen firmemente a la herramienta y que en la parte inferior constan de un receptáculo que contenga algún material plástico que será el que reciba la impresión del objeto desconocido (Ver inciso III.1.8.1).

III.1.6.2.- Calibración del pozo.

La sección transversal de un pozo debe ser perfectamente circular a lo largo de toda su profundidad y libre de bordes o cualquier otro tipo de obstáculos que impidan el descenso de la bomba, así mismo no deben existir codos o cambios bruscos de dirección en el ademe. Con objeto de verificar las condiciones enumeradas se acostumbra correr en los pozos el llamado "registro de calibración" que consiste en pasar a todo lo largo del pozo un "calibrador" que debe bajar suave y libremente.

El Calibrador se construye con dos o tres tubos del diámetro comercial inmediato inferior al del ademe del pozo que se está probando, lo que resulta en una longitud de 12 m a 18 m. Evidentemente es recomendable un calibrador de 18 m respecto a uno de 12 m, pero cuando se está trabajando con máquinas pequeñas puede ser imposible el manejo de una tubería de esa longitud. La bajada de la herramienta debe ser suspendida con cable con el objeto de que cualquier obstáculo se pueda detectar con facilidad.

Con el registro de calibración se detectan ademes ovalados, soldaduras de tubos que no coinciden, orejas o roturas que doblen hacia el interior del pozo, así como cambios bruscos en la dirección del pozo (codos).

Evidentemente si se calibra un pozo de más de un diámetro se requerirá de varios calibradores, de modo que si un tamaño determinado no alcanzara a bajar a partir de una profundidad, se pueden correr otros de tamaños inferiores sucesivos hasta que uno pase.

III.1.6.3.- Registros de Video.

El registro de video es una herramienta de la que se dispone desde hace algunos años y que resulta invaluable para conocer el estado real de un pozo, por lo que se debe considerar como un requisito de rutina previo a cualquier rehabilitación.

Antes de correr un registro de video, es recomendable dejarlo en reposo el tiempo necesario para que se depositen los sólidos en suspensión que pudiera haber en el pozo. Esta clarificación del agua, que permite una imagen nítida, se favorece aplicando al pozo alumbre o hipoclorito de calcio, si bien el efecto de estos productos puede variar notablemente de pozo a pozo.

III.1.6.4.- Registros de verticalidad.

En la construcción de pozos profundos, perforados con máquina rotatoria se pueden tomar lecturas de inclinaciones de la perforación con inclinómetros que se corren por el interior de la tubería de perforación y reportan el ángulo que se tiene en el punto medido, pero esta técnica requiere de un equipo sofisticado y caro que no resulta práctico ni económico para el rehabilitador de pozos.

La falta de verticalidad de un pozo y lo que es mas grave aún, el cambio en su dirección, se manifiesta con mayor intensidad en los pozos equipados con bomba de flecha, que en aquellos que tienen bomba sumergible, pero en cualquiera de los dos casos se tiene el problema del contacto entre la bomba y el ademe, que puede favorecer la corrosión de alguno de los dos o ambos, además de un cierto desgaste originado por la vibración que pudiera ocasionar la bomba.

El método mas usado para medir la verticalidad de un pozo ya terminado, se basa en el principio de los triángulos semejantes (Fig 9). Para su aplicación práctica se forma un triángulo rectángulo cuyos hipotenusa es h y su cateto horizontal es d, siendo h la altura desde una platina giratoria o juego de regletas hasta el eje de la polea de donde pende la sonda. Al inicio de el registro, cuando la sonda se encuentra en la boca del pozo y el equipo bien centrado, h debe ser totalmente vertical y consecuentemente d que es la desviación medida en la platina será igual a 0. A medida que la sonda va descendiendo a lo largo de un pozo desviado se va generando el cateto d cuya magnitud será proporcional a la de D en el triángulo cuyos hipotenusa es (h+p) y su cateto horizontal D. Las lecturas generalmente se toman con intervalos de 3 m.

III.1.6.4.1.- Calculo de la desviación.

$$h/d = (h+p)/D$$
 (3.1)

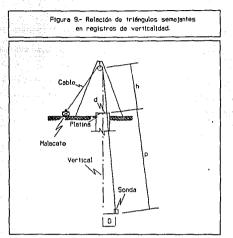
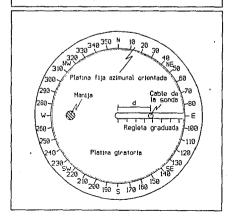



Figura 10.- Platinas giratoria y fija azimutal orientada para registros de verticalidad.

$$D = (h+p) d/h$$
 (3.2)

donde:

h = Altura del eje de la polea de donde cuelga la sonda respecto a la platina.

d = Desviación leída en la platina.

p = Profundidad de la sonda respecto a la platina.

D = Desviación real

En la práctica resulta cómodo utilizar las siguientes unidades:

h en m, d en mm, p en m, D en cm

Para lo cuál la formula quedará:

$$D = (h+p) d/10 h$$
 (3.3)

- Corrección por cambio de sonda.

En algunos registros de verticalidad, especialmente en pozos ya antiguos, puede ocurrir que la sonda con que se inició el registro no baje a partir de un cierto punto, lo que obliga a cambiar la sonda por otra de menor diámetro. En este caso, después de calcular la desviación con la fórmula general, se aplicará la siguiente corrección:

$$D1 = ((D_{s1}-D_{s2})/2) + D$$
 (3.4)

donde:

 D_{s1} = Diámetro de la sonda original con que se calculó D.

D_{s2} = Diámetro de la sonda cambiada.

III.1.6.4.2.-El equipo de medición de la verticalidad.

El equipo de medición de verticalidad es bastante símple por lo que puede ser construido a nivel taller metal-mecánico. Consta de:

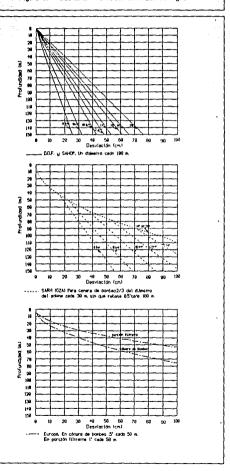
- Un tripié o pluma de la que pende la sonda, de una altura del orden de los tres metros, con tornillos o algún dispositivo de nivelación y lo suficientemente firme para que una vez nivelado no se mueva.
 - Un malacate, preferentemente accionado por algún tipo de motor.
 - Un medidor para establecer la profundidad de la sonda en cada lectura.

- Un juego de sondas de los diferentes diámetros que se pueden requerir para los diámetros de ademe usuales en el país.
- Una platina giratoria con un marco fijo acimutal orientado (Fig.10), o un marco para regletas.
 - III.1.6.4.3.- Limites permitidos en la desviación de pozos.

El establecer límites a la posible desviación de un pozo, puede resultar peligroso pues fácilmente se puede caer en descalificar prácticamente cualquier pozo al que se le realice la medición. Por otra parte en la mayoría de los casos no importa tanto el ángulo de desviación del pozo, en que hacen énfasis las normas, sino la forma que esta adopte, pues lo que en verdad resulta funesto para una bomba de flecha son los cambios de dirección del pozo (los codos), que la obligan a trabajar arqueada con rápidos desgastes de las chumaceras y frecuentes roturas.

No obstante presentamos las dos normas usuales en México y una norma utilizada en Europa que resulta mas tolerante, especialmente bajo la cámara de bombeo (Fig.11).

- Geohidrología y Zonas Aridas de la antigua Secretaría de Recursos Hidráulicos.


En cámara de bombeo se permiten desviaciones de hasta un diámetro del ademe (Da) cada 100 m.

Profundidad (m) x Da (m)
Desviación permitida =
$$\frac{100 \text{ (m)}}{100 \text{ (m)}}$$

- Norma de la Antigua Secretaria de Asentamientos Humanos y Obras Públicas, adoptada por la Dirección de Agua Potable y Alcantarillado del D.D.F.

Se permiten desviaciones de hasta 2/3 del diámetro del ademe por cada 30 m de profundidad, pero siempre y cuando no rebase 0.5° cada 100 m de profundidad del pozo.

Figura II.- Desviación Permitida En Pozos De Agus.

$$Desviación permitida = \frac{Profundidad (m) \times 0.5^{\circ}}{100 (m)}$$
(3.8)

Norma Europea.

En cámara de bombeo: 0.5° cada 50 m. En porción filtrante: 1° cada 50 m.

Con el objeto de que se visualicen los límites impuestos por las normas anteriores se han graficado en la Fig 11.

III.1.7.- Reparación de la bomba del pozo.

Aunque la reparación de bombas tanto en su parte eléctrica como mecánica están fuera de los alcances de este trabajo, enfocado especificamente al pozo, es frecuente que si hubiera una bomba instalada, el encargado de la rehabilitación debe extraerla del pozo y enviarla a donde el dueño de la obra le indique o bien encargarse él mismo de la reparación electromecánica. En este último caso casi siempre será también él, el encargado de la instalación posterior a la rehabilitación del pozo.

III.1.8 .- Pescas.

La pesca de herramientas, cables, objetos caídos dentro del pozo e incluso de bombas es una actividad frecuente dentro de la perforación y la rehabilitación de pozos.

Esta es una labor que comunmente consume mucho tiempo, e ingenio por ser diferentes los objetos a pescar, por lo que no hay que impacientarse jamás. Lo mejor será evitar las pescas en lo posible, revisando y tomando las debidas precauciones

como el estado del cable, uniones roscadas, etc.

Las operaciones de pesca son comunmente sencillas, pero cualquier error puede complicarlas e incluso imposibilitarlas. Por lo que es preferible no hacer nada antes que proceder en forma inadecuada.

Para realizar la maniobra de pesca, se tiene que conocer las dimensiones y posición de lo que se tiene que pescar; si el objeto ha quedado pegado, centrado, inclinado hacia algún lado, dentro de una cavidad, cubierto de desprendimientos, etc, o si la herramienta u otro objeto tienen deformaciones. Para conocer esto se pueden aplicar varios métodos como el introducir una cámara de video hasta la profundidad de pesca, o si no realizar un bloque de impresión.

Además en prevención de posibles pescas el operador del sistema de pozos debe siempre anotar las dimensiones de las diferentes herramientas y objetos introducidos al pozo.

III.1.8.1.- Bloque de Impresión.

Como su nombre indica, el bloque de impresión es una herramienta que tiene por objetivo obtener una impresión lo más clara que sea posible de algún objeto extraño al pozo que se detecte en su interior, sea para identificação o bien para establecer su posición.

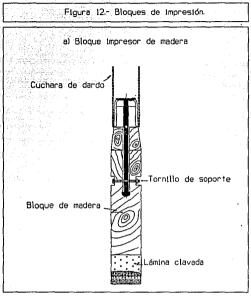
El bloque impresor será de un diámetro cercano al interior del ademe del pozo y se fabrica a base de un material plástico soportado por algún dispositivo. Los materiales plásticos mas usualmente empleado son la plastilina, el jabón amasado, el plomo, o el chapopote y dependiendo del que se utilice se verá la construcción de la herramienta para que no se desprenda.

Antes de tomar la impresión se debe marcar la profundidad exacta a que se encuentra el cuerpo problema, de modo que al tomar la impresión, el bloque apenas toque al objeto, de modo que su huella sea nítida y sin deformación. El bloque impresor tiene la ventaja de manifestar la posición del cuerpo dentro del pozo y su forma aun cuando sólo se tenga una visión en "planta" de él.

Puede decirse con toda seguridad que la obtención de una buena impresión de un "pescado" significa un gran porcentaje del posible éxito de la pesca.

Cuando se cuenta con una perforadora de percusión, el bloque impresor puede manejarse con la sarta de perforación o lo que es más recomendable con la línea de la cuchara. Si se maneja con una cuchara de dardo, el bloque de impresión se hace con un taco cilíndrico de madera de 1 metro de longitud aproximadamente (Fig.12 a), y de diámetro de 1cm a 2.5 cm inferior al interior de la tubería. Si ésta está colapsada o con roturas, conviene reducir aun más el diámetro del cilindro. A un extremo del taco se le da forma cónica para igualar con el diámetro de la cuchara y además, se le hace una ranura para que entre la lengüeta de la válvula de dardo. Es necesario pasar un tornillo que fije el taco a la cuchara.

El extremo inferior se rodea con una chapa fina de unos 20 cm. de ancho y de longitud suficiente para que lo envuelva por completo. Esta chapa se fija procurando que sobresalga unos 10 cm de su extremo. En el interior de la cavidad se clavan aproximadamente hasta la mitad, algunas puntas, alambre o rejillas sostenidas al taco para ayudar a mantener dentro de la cavidad la sustancia plástica con que se ha de rellenar y que servirá para sacar la impresión o molde de la herramienta.


Para realizar la impresión se baja la cuchara sin el taco para determinar la profundidad, y se marca el cable exactamente. Se coloca el taco y se baja hasta tener contacto con la herramienta. La marca hecha en el cable nos indicará cuando ocuesto, desde luego restando la altura del taco. Conviene que la cuchara con el taco se asiente bien sobre el pescado, pero teniendo cuidado de no presionar demasiado. Después se sube el taco despacio, y se retira el bloque teniendo el molde deseado.

Si se desea tomar la impresión utilizando la línea de perforar, se debe contar con un sustituto de rosca cónica que se acople al barretón de la sarta. Esta pieza remata en la parte inferior en un disco de diámetro unas tres pulgadas mayor que el cuerpo del sustituto con perforaciones para unos tornillos con que se fijan los bloques impresores de diferentes diámetros (Fig. 12 b). El modo de operación es similar al tomado con cuchara, pero las maniobras que requiere resultan mas lentas y complicadas.

La gran diversidad de posibles objetos a pescar originan a su vez una variedad similar de herramientas de pesca de fabricación de línea (Ver inciso IV.4), sin que esto excluya que muchas pescas se realicen con pescantes construídos en campo, y que varían notablemente según el ingenio y la experiencia del perforista.

III.1.9.- Prensa electrohidráulica.

Es una herramienta que consta de tres gajos que se pueden abrir y cerrar al ser accionados por un pistón al que se le aplica la presión con una bomba hidráulica. Este conjunto es el que se introduce al pozo y recibe la energía necesaria a través de un cable conductor eléctrico que a su vez recibe la corriente de un generador con

b) Bloque impresor metálico

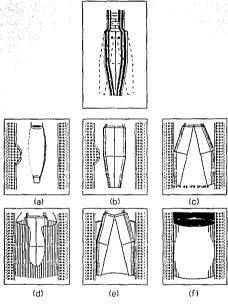
Puntas para sujetar el material plástico

Material plástico.

motor de combustión interna.

La prensa se baja hasta la profundidad donde se presenta la falla, por medio de flechas de bomba o con cable y es capaz de ejercer presiones suficientes para que las deformaciones ó las puntas del ademe roto vuelvan a su posición original, a veces después de repetir la maniobra varias veces. Con estas maniobras se logra un efecto similar al que se consigue con un trompo.

Una vez que se enderezó el ademe roto o colapsado, se procede a colocar una camisa de lámina cuyo diámetro exterior corresponderá al interior del ademe, que se pretende reparar. La camisa lleva unas estrias o canales con el fin de disminuir el diámetro durante el descenso de la herramienta y permitir que sea alcanzada la profundidad requerida. Cuando se aplica presión, las estrias son planchadas y la camisa alcanza su diámetro definitivo (ver fig.13). Las camisas tienen una longitud aproximada de un metro y conviene soldar, en el perímetro superior e inferior de ellas, cuatro tuercas que al ser incrustadas en el ademe original, por la presión de la prensa, incrementan la adherencia entre camisa y ademe.


Para la instalación de una camisa, se monta esta, en la prensa hidráulica cerrada, empleando un cable, que en la primera vez que se accione la prensa se romperá dejando adherida la camisa al ademe, por medio de las tuercas y la fricción; la prensa se vuelve a accionar hasta dejar completamente adherida la camisa.

III.1.10.- Profundización de pozos.

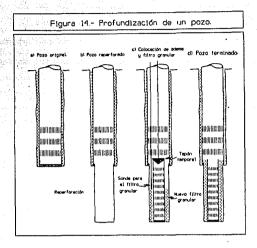
En ocasiones, debido a la sobreexplotación de un acuífero, los niveles de bombeo descienden y un pozo puede resultar corto e ineficiente para las nuevas condiciones. Si sus características geométricas lo permiten el pozo puede ser perforado por su interior hasta alcanzar las condiciones de explotación actuales. Para que esta operación sea posible se requiere de tres condiciones preliminares:

- Que el pozo tenga un diámetro suficientemente amplio para permitir la reperforación por su interior y posteriormente el ademado y colocación del filtro cuando la reperforación se efectúa en materiales no coherentes. Por tanto si se requiere de filtro granular, el mínimo diámetro necesario para efectuar esta operación será el de 32.39 cm (12 3/4") y si se dejara el pozo descubierto en un acuífero en rocas coherentes de 21.91 cm (8 5/8").
- El pozo a profundizar se deberá haber terminado con tapón de cemento sin modificación del diámetro original del ademe. Nunca con terminación de "punta de lápiz".

Figura 13.- Prensa electrohidráulica.

- (a) Se detecta el problema, en este caso con un registro de T.V.(b) y (c) La prensa es bajada hasta la zona de la rotura y presiona el ademe hasta recuperar el diámetro original.
- (d) y (e) Se baja una camisa corrugada que se presiona contra el ademe.
- (f) La camisa queda colocada.

- El ademe original del pozo será de acero, con cedazo de ranura, de tipo canastilla o tipo concha, pues ademes menos resistentes como el de P.V.C. o el cedazo de alambre helicoidal dificilmente resistirán el roce o incluso golpes de la pesada herramienta de perforación durante las operaciones de reperforación.


La profundización de pozo se podrá realizar con una perforadora de cualquiera de los sistemas usuales, pero excluyendo, si existe la posibilidad, el sistema de perforación rotaria directa con lodo bentonítico que contaminaría la parte superior del pozo ya desarrollada.

En la reperforación de un pozo se mantendrá el mismo control litológico y se correrán los registros habituales que en un pozo nuevo. Asimismo el diseño de filtro granular y cedazo será similar (Ver inciso IV.5.1).

El ademe que soporta la porción reperforada del pozo, por lo general, no continua dentro del ademe original, para no limitar el diámetro de la cámara de bombeo, no efectuar un gasto innecessario, ni aumentar las pérdidas de carga al penetrar el agua al pozo; pero como medida de seguridad, la nueva tubería traslapará al menos unos tres metros dentro de la antigua y se deja en el fondo mediante un dispositivo soltador variable según el tipo de perforadora empleado en la maniobra.

La operación de colocación del filtro granular dentro del tramo reperforado, una vez soltado el ademe (Fig.14) se debe realizar de la siguiente forma:

- Colocación de un tapón cónico, bajado con cable o tubería, con el vértice hacia abajo de modo que se introduzca dentro de la boca del nuevo ademe. La base del cono debe ser del mismo diámetro exterior que la tubería que tapará, o lo que es lo mismo sólo una media pulgada mayor que el interior de la tubería.
- El filtro granular, previamente cubicado, se vierte desde la superficie pero su colocación se deberá verificar de continuo mediante una sonda, pues nunca deberá sobrepasar la cota de la boca donde se encuentra el tapón. En caso de que se rebasara dicha cota, antes de haber tomado al menos el volumen teórico será indicio de acuñamiento del filtro ("puenteo"), en cuyo caso se tratará de romper el "puente" agitando el pozo lo mas suavemente posible, con alguno de los métodos de desarrollo.
- Es frecuente que el pozo tome un volumen de filtro superior al teórico al rellenar la posible sobreexcavación que se pudiera haber tenido durante la perforación, por lo que conviene adquirir un volumen de filtro que exceda en un 20% a 30%, según el material reperforado, el volumen teórico.

- Cuando el filtro alcance la cota de la boca del tubo nuevo se suspende el engravado y se extrae el tapón cónico, procediéndose a desarrollar el pozo como si se tratara de uno nuevo.
- Por último se procede a aforar o se prueba el pozo con su bomba de operación comparando la nueva capacidad específica con la que se tenía antes de la rehabilitación. Si se encontrara una variación notable en este valor conviene realizar un aforo formal, que quizás concluya en una nueva selección de bomba.

III.1.11.- Reposición del filtro granular.

A medida que un pozo permanece en operación y preferentemente si está mal desarrollado, el filtro granular va sufriendo un cierto reacomodo entre gránulos que se traduce en un descenso del nivel que se manifiesta en la superficie, durante un cierto tiempo hasta que alcanza la mejor compactación. Este descenso es mas noto-

rio cuando el pozo es productor de arena, pues el material extraído va dejando huecos que el filtro rellena; consecuentemente en estos casos el descenso del filtro es mas acelerado, y permanente. En cambio cuando un pozo explota acuíferos kársticos o en fracturas el asentamiento del filtro es leve y sólo ocurre durante el inicio de la operación.

Cuando un pozo se desarrolla mecánicamente, dentro de las faenas de rehabilitación, la extracción de finos que se produce ocasiona un notable descenso del nível del filtro, de tal modo que este descenso es una de las señales más determinantes de que el desarrollo se está efectuando eficientemente.

Sea cual sea el motivo del descenso del filtro granular, este se deberá reponer a la brevedad posible, a partir de un volumen de filtro que se debería tener cerca del pozo para estos fines, y por otra parte el pozo debe contar desde su construcción de algún conducto por el que reponer el filtro sin necesidad de efectuar maniobras complicadas.

III.1.12. Verificación de la rehabilitación.

A lo largo del Capítulo II hemos visto que las causas que provocan una rehabilitación de pozo son muy variadas, y por tanto también lo serán las manifestaciones de las mejoras logradas al rehabilitarlo.

Cuando la rehabilitación se originó por un defecto físico en el pozo, como ademes colapsados o rotos, pescas, etc, evidentemente el éxito de la maniobra se manifiesta en la reparación del daño, lo que a lo mas requerirá de una inspección visual del pozo con un registro de video.

Si la rehabilitación se originó en una baja de su eficiencia, provocada principalmente por incrustación, azolve, colmatación de acuífero y filtro por finos, o problemas regionales, la verificación de la bondad de las maniobras de rehabilitación se medirá en base a una aforo. Este aforo normalmente es más corto que el realizado en un pozo nuevo (de 24 a 48 hr), pues ya se tienen antecedentes de las características del pozo. Los resultados de este aforo se compararán con los datos de operación previos a la rehabilitación.

Debemos hacer énfasis que el éxito de la rehabilitación no se calibrará en función a el incremento en el caudal, sino en el de su efficiencia (Ver Capítulo I), o como mínimo, cuando el pozo no se vuelve a aforar, en la de su capacidad específica para un caudal o un nivel determinado, lo que se manifiesta como distintas combinaciones de caudal-nivel dinámico en alguna de las condiciones siguientes:

- Mismo caudal que antes de la rehabilitación pero menor nivel dinámico.
- Mayor caudal para un mismo nivel dinámico.
- Mejoran las dos condiciones anteriores.
- Una condición mejora y la otra empeora pero de tal modo que la relación beneficio-costo-oportunidad resulta positiva.

Cuando se corre el registro de video preliminar a la rehabilitación, suele resultar incompleto pues no es posible bajar la sonda hasta el extremo del pozo por impedirlo algún obstáculo ("pescado" o azolve), por lo que vale la pena correr un nuevo registro para completar la información y comprobar los resultados de la rehabilitación (cementaciones, cepillado, etc.).

CAPITULO IV.- OTRAS ACTIVIDADES Y FENOMENOS RELACIONADOS CON LA REHABILITACION DE POZOS.

IV.1.- AFORO DE POZOS.

La prueba de aforo tiene por objeto establecer cual es caudal óptimo al que debe explotar un pozo. Es la operación que culmina la construcción del mismo, pero es también una operación de rutina en la rehabilitación de pozos, pues por lo general los pozos rehabilitados cambian sus condiciones de operación y por consecuencia es necesario conocer las nuevas.

En un aforo podemos diferenciar dos tipos de actividades: las de instalación, operación y desmantelamiento de la bomba que no trataremos aquí y las de análisis e interpretación de los resultados de la prueba que veremos con cierto detalle.

IV.1.1.- Equipo de bombeo.

En los aforos se emplean bombas turbina, accionadas por un motor de combustión capaz de variar revoluciones, por lo general entre 900 r.p.m. y 1900 o 2000 r.p.m.. La columna será la necesaria para que la bomba no succione aire cuando trabaje a las máximas revoluciones. Además de la bomba, la brigada de aforo debe contar con un tacómetro de contacto, una sonda preferentemente eléctrica, con cable suficiente y un dispositivo de medición de caudal que consiste por lo general en un tubo con orificio calibrado y piezómetro.

Para realizar un aforo, se debe seleccionar una bomba capaz de entregar un caudal del orden del 30 % superior al esperado para operar el pozo.

IV.1.2.- Programa del aforo.

Al hablar de la selección de un equipo de bombeo se dijo que la bomba excedería un caudal esperado y que tendría columna suficiente; el problema radica en que la prueba de aforo tiene como finalidad establecer dos parámetros básicos el caudal y el nivel dinámico, por tanto en primera instancia la bomba se solicita en base solo a experiencias anteriores, sean en la región o en el propio pozo. Esta situación se resuelve, una vez instalada la bomba, realizando un ensayo de aforo. Se basa en la propiedad de los pozos de alcanzar la mayor parte del abatimiento correspondiente a un caudal dado, durante un tiempo relativamente corto (generalmente una hora puede ser suficiente). Consecuentemente una vez medido el nivel estático del pozo, haremos el ensayo seleccionando cuatro escalones de bombeo que inciuirán el mínimo y máximo caudal que la bomba pueda proporcionar. Como un ejemplo prác-

tico podrían ser 900 r.p.m., 1250 r.p.m., 1600 r.p.m. y 1900 r.p.m. y bombeando del orden de una hora en cada escalón.

Como resultado de este ensayo de aforo podemos obtener tres diferentes conclusiones:

- Con el máximo de revoluciones el nivel dinámico apenas se desplaza, lo que indicará que la bomba es insuficiente para el pozo en cuestión y la prueba definitiva no debe realizarse hasta que se cambie, si es posible, por otra de mayor capacidad.
 - Se logra abatir el pozo varios metros, o sea que la bomba es adecuada.
- El nivel dinámico alcanza la succión de la bomba, lo que se manifiesta en un flujo de agua interrumpido por la expulsión de bocanadas de aire; significa que el pozo no es capaz de abastecer a la bomba, o que a ésta le falta más longitud de columna.

Una vez terminado el ensayo de bombeo se medirá la recuperación del nivel dinámico.

Generalmente, se considera que un aforo confiable debe durar unas 72 hr, aunque en zonas o pozos bien conocidos podría reducirse a unas 48 hr.

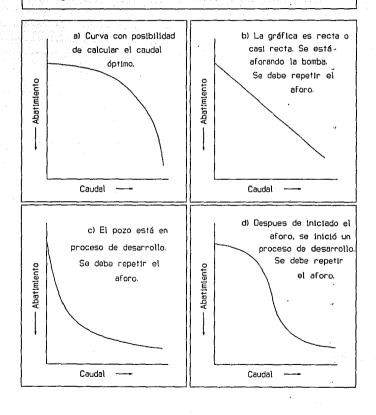
Como ejemplo para un aforo de 49 hr se podrían programar escalones a: 900, 1150, 1300, 1450, 1600, 1750, y 1900 r.p.m con 7 hr de duración cada una. Para uno de 70 hr los mismos escalones de bombeo pero con duración de 10 hr cada uno.

En cada escalón se deberán tomar lecturas de nivel dinámico, del piezómetro y verificar si se mantienen las r.p.m., en los siguientes intervalos de tiempo:

1 min	10 min	1 hr 30 min	5 hr	
2 min	15 min	2 hr	6 hr	
4 min	20 min	2 hr 30 min	7 hr	fin en aforo 49 hr
6 min	45 min	3 hr	8 hr	
8 min	1 hr	4 hr	9 hr	
			10 hr	fin en aforo 70 hr

Esta secuencia de lecturas se repetirá en cada escalón de bombeo.

Como el proceso de aforo resulta ininterrumpido, largo y tedioso para el personal de campo, no es raro sobre todo durante la noche, que se olviden de tomar alguna lectura. Dando por hecho que esta situación no debe ocurrir, el personal de campo debe estar consciente de que existirá comprensión para alguna omisión, pero no para la invención de datos que no se tomaron y que por lo general no son difíciles de detectar al analizar los registros.


Una vez finalizado el último escalón, a 1900-2000 r.p.m., se suspende el bombeo y se repite el ciclo de lecturas pero ahora en forma ascendente hasta alcanzar la recuperación del nivel estático, momento en que se dará por finalizado el trabajo de campo.

IV.1.3.- Interpretación del aforo.

Con los datos de lecturas piezométricas recabados en campo, el diámetro de la tubería de descarga y el del orificio calibrado se calcula el caudal para cada escalón de bombeo utilizando las tablas o fórmulas que se presentan en el apéndice y se elabora la gráfica de aforo en que se representa el caudal en el eje de abscisas y los descensos en el de ordenadas, preferentemente con escala creciente hacia abajo a partir de el nivel estático. Además se pueden graficar los descensos contra el tiempo para establecer la eficiencia del pozo, según se vio en el capítulo I. La gráfica de aforo puede presentar tres formas básicas y una cuarta que es la superposición de dos de las básicas:

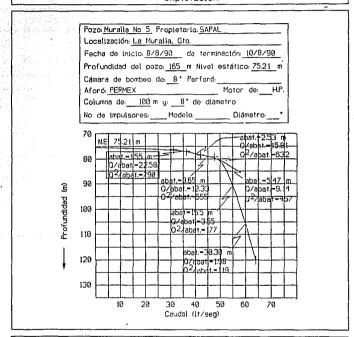
- La gráfica tiene forma curva con la concavidad hacia abajo (Fig. 15 (a)). En principio la bomba es adecuada a las características del pozo, a reserva de que se haya llegado al caudal óptimo de explotación.
- La gráfica tiene forma recta (Fig. 15 (b)). En principio la bomba es de poco caudal con respecto a las características del pozo e incapaz de realizar el aforo. El único dato útil que proporciona la prueba es que el pozo en cuestión es capaz de proporcionar mayor caudal que el máximo obtenido en el bombeo.
- La gráfica tiene forma curva con la concavidad hacia arriba (Fig. 15 (c)). Durante el bombeo el pozo continúa con el proceso de desarrollo y están mejorando sus características hidráulicas. Se debe suspender el aforo y reanudar el proceso de desarrollo, reiniciándolo cuando se tenga la certeza de que esta operación se ha realizado correctamente.
- Durante un tiempo la gráfica presenta la concavidad hacia abajo y a partir de cierto momento se invierte hacia arriba (Fig. 15 (d)). Esta condición implica que el aforo que se había llevado normalmente hasta un momento dado se tornó en proceso de desarrollo del pozo. Como en el caso anterior, se debe suspender el aforo y completar el desarrollo del pozo.

Figura 15.- Formas básicas de la curva de aforo.

IV.1.3.1.- El caudal óptimo de explotación.

Es aquel caudal al cual resulta más conveniente explotar un pozo. Es evidente que el establecimiento de la conveniencia de explotación es muy relativa; por ejemplo para una persona que sólo requiere de 5 l/seg aún cuando su pozo fuese capaz de proporcionarle un caudal mayor, su óptimo será de 5 l/seg. En cambio para un agricultor que cuente con una extensión ilimitada de tierras susceptible de riego, el caudal óptimo será el máximo que le pueda extraer al pozo, aunque quizás tenga la limitante de la profundidad pues su cultivo puede no resultar económico con bombeos que excedan determinada profundidad. O bien un sistema de agua potable con escasez de abastecimiento y el consiguiente problema social, para el que el costo del bombeo puede resultar secundario ante las protestas de la ciudadanía. Ante este gran numero de variantes, cada uno con muy variados matices para cada caso particular, nosotros nos limitaremos a tratar sólo el establecimiento del caudal óptimo de explotación del pozo considerando sólo el punto de vista hidráulico y su derivado el económico.

IV.1.3.1.1.- El caudal óptimo de explotación desde el punto de vista hidráulico.


El caudal óptimo de explotación de un pozo, desde el punto de vista hidráulico, se alcanza en aquel punto de la curva de aforo en el que el producto del caudal por la capacidad específica es máximo (Ver fig. 16).

Es común escuchar el término "capacidad específica del pozo", como si esta fuera una característica única para un pozo dado, pero la realidad es que esta variable disminuye al aumentar el caudal del pozo. Esto se interpreta como que durante un cierto rango de caudales el pozo aporta poco caudal pero con bajos descensos del nivel de bombeo, por consiguiente esta agua resulta "barata", pues consume poca energía para bombear un caudal dado. A partir de un punto específico de la curva (el que cumple la definición de caudal óptimo), pequeños incrementos de caudal significan grandes aumentos en el nivel de bombeo; de manera que esta agua, mas abundante, sera también mas "cara". El caudal óptimo de explotación es aquel en que estas dos situaciones contrapuestas se equilibran de manera mas racional.

IV.1.3.1.2.- El caudal óptimo de explotación desde el punto de vista económico.

El caudal óptimo hidráulico toma en cuenta solamente el aspecto de su funcionamiento en función del consumo energético, que evidentemente es muy importante en el rubro de gastos de operación, pero existen muchos otros aspectos íntimamente ligados a condiciones económicas variables de país a país y aún de región a

Figura 16.- Curva de aforo y caudal óptimo de explotación

Conclusiones: Desde el punto de vista hidráulico el caudal óptimo de este pozo es de 35 l/seg, punto donde se obtiene la mejor relación 0²/abat. Pero hasta llegar a 45 l/seg esta relación desciende muy suavemente y es a partir de los 50 l/seg donde el descenso se vuelve mas brusco. Por consiguiente <u>se recomienda explotar este pozo a 45 l/seg.</u>

región, que trataremos de exponer en forma muy simplificada a modo de ejemplo, pero que cada especialista podrá afinar tanto como la información de que disponga y su propia organización administrativa le permita.

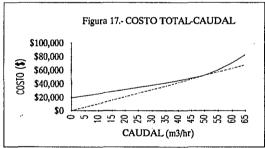
Para una más fácil comprensión de la aplicación del sistema, en las descripciones siguientes se emplea un ejemplo en que los costos fijos se obtuvieron en las tablas 4 y 5 y los variables del aforo que se presenta en la Figura 16.

- Costos fijos. Proponemos bajo esta denominación aquellos costos que se tienen aun cuando el pozo se encuentre fuera de operación; básicamente los aspectos de depreciación, inversión, seguros, y mantenimiento, de pozo, bomba, y obra civil, además de los sueldos del personal y todos los demás costos fijos que se puedan determinar. Estos costos fijos se convierten a costos horarios, por el sistema usual en cualquier análisis de precios unitarios, aplicando a cada uno de los elementos una vida económica y horas anuales de operación razonables.

Estos costos horarios se agrupan en un "Costo Fijo" horario (Ver Tabla 6).

- Costos variables. Son aquellos que se generan durante la explotación del pozo y que por tanto están afectados por el rango de operación del mismo.

Como vimos; en una misma curva de aforo, a cada caudal corresponde un cierto nivel dinámico y por consiguiente unos kw consumidos con su costo correspondiente.


De esta manera a cada caudal de explotación corresponde un Costo Total que agrupa al fijo más el variable (Tabla 6). Llamaremos "Eficiencia Económica" a la relación entre el costo horario total sobre el caudal bombeado y "Caudal óptimo económico de explotación" al punto en el que el valor de la Eficiencia económica sea mínimo. Los datos calculados se pueden presentan en dos gráficas (Ver Figs. 17 y 18), en la primera de las cuales se representan el caudal en abscisas contra el costo total por hora de operación. Si desde el origen trazamos una serie de rectas que corten la curva encontraremos que la de mínima pendiente es la única tangente a la curva y la tangencia corresponde al caudal óptimo económico.

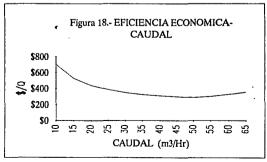

En la Figura 18, se ha representado el caudal en el eje de las abscisas contra el costo horario total dividido entre el caudal correspondiente en las ordenadas, en este caso la curva debe presentar forma de cuna y el punto de menor ordenada nos señalará el óptimo económico del pozo que se puede ver coincide en las dos gráficas.

Tabla 5.	Al		STO HORA MAQUINA (C.I		0/91
	T	ASTE, Asesoría Téci	nica, S.A. de C.V.	Clave:	
MA	QUINA:	Bomba Mur. 5	MOD	ELO H.P.	
	CIDAD		DATOS ADICION	ALES:	
DATOS GENERALES					
1) Precio de adquisición (Va)		\$95,000,000	15) Motor electrico	0 Kw/h	
2) Equipo adicional		S 0	16) Factor de operación	0%	
3) Valor Ilantas (VII)		SO	17) Pot. operac.diesel (POD)	OH.P.	
4) Valor inicial (Va)		\$95,000,000	18) Pot. operac.gasot. (POG)	0 H.P.	
5) Valor rescate (Vr) \$	0%	SO	19) Pot. operac.electr. (POE)	0 H.P.	
Vida económica (Ve)		7	20) Precio litro de diesel (Pc)	\$455	
7) Tasa de interes anual (i)		20%	21) Precio litro de gasol. (Pc)	\$500	
8) Hotas anuales (Ha)		4,500 h/año	22) Precio del Kw/h	\$300	
9) Prima anual seguros (s)		1%	23) Capacidad del carter (C)	1 lt	
10) Fac.manten.mayor (Q)		70%	24) Tiemp. / camb. aceite (1)	1 h	
11) Fac.manten.menor (q)		10%	25) Precio del aceite (It) (Pa)	\$1	
13) Motor diesel		0 H.P.	26) Vida económ. Ilantas (Hv)	1 h	
14) Motor gasolina		0 H.P.	27)		
- CARGOS FIJOS					
) DEPRECIACION	D = (Va • Vr) / (Ve • Ha) = .			\$3,01
) INVERSION	l = (V	/a + Vr)i/2 Ha ≔			\$2,11
:) SEGUROS					\$10
) MANTENIMIENTO	T = C) • D =			\$2,11
•			SUMA CARGOS FIJOS II	IORA	\$7,34
			combustible por hora y Pc el precio	o del litro)	
DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P	• Pc =_ OG• Pc	=		o del litro)	S
DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * Pob ENERGIA ELECTRICA:	• Pc =_ OG• Pc	=		o del litro)	5
DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P. b) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((C/t) + 0.00	• Pc = _ OG• Pc E = 0.7-	= 16 • POE • Pc = D • Pa) =		o del litro) - -	5
DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P. b) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((C/t) + 0.00	• Pc = _ OG• Pc E = 0.7-	= 16 • POE • Pc = D • Pa) =		o del litro) - - -	S
DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P b) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((C/t) + 0.00 GASOLINA: L = ((C/t) + 0.00	O • Pc = _ OG • Pc E = 0.74 035 • POI 0.0030 •	= 16 * POE * Pc = D * Pa) = POG * Pa) =		o del litro)	2
DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * POD DESERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((C/t) + 0.00 GASOLINA: L = ((C/t) + 4 d) LLANTAS: LI = VII / Hv =	O * Pc = _ OG * Pc E = 0.7- 035 * POI 0.0030 *	=		o del litro)	2
DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * POD DESERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((C/t) + 0.00 GASOLINA: L = ((C/t) + 4 d) LLANTAS: LI = VII / Hv =	O * Pc = _ OG * Pc E = 0.7- 035 * POI 0.0030 *	=		o del litro)	s s
DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P. B) ENERGÍA ELECTRICA: c) LUBRICANTES DIESEL: L = ((C/t) + 0.00 GASOLINA: L = ((C/t) + 4.00 GASOLINA: L = VII/H+ = e) MANTENIMIENTO MENO	OP: Pc = _ OG* Pc E = 0.7: 035 * POI 0.0030 *	= (6 * POE * Pc =	grasa, ctc): Oc = suma * 10 %	- · · · · · · · · · · · · · · · · · · ·	\$ \$ \$ \$
DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P. b) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((C/k) + 0.00 GASOLINA: L = ((C/k) + 0.00 J. LLANTAS: L = VII/Hv = 0.00 b) MANTENIMIENTO MENG 0) OTROS CONSUMOS (Des	PC =OG* Pc E = 0.7* 0.0030 * =OR: Mm	= (6 * POE * Pc =		- · · · · · · · · · · · · · · · · · · ·	\$ \$ \$
DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P b) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((CK) + 0.00 GASOLINA: L = ((CK) + 4.00 d) LLANTAS: L = VII/Hv = e) MANTENIMIENTO MENG 0) OTROS CONSUMOS (DES	PC =OG* Pc E = 0.7* 0.0030 * =OR: Mm	= 16 * POE * Pc = D * Pa) = POG * Pa) = = q * D = , herramienta, estopa, g	(rasa, etc): Oc = suma * 10 % SUMA CAR. CONSUM, HORA	SUM	\$ \$ \$ \$
DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P b) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((CK) + 0.00 GASOLINA: L = ((CK) + 4.00 d) LLANTAS: L = VII/Hv = e) MANTENIMIENTO MENG 0) OTROS CONSUMOS (DES	PC =OG* Pc E = 0.7* 0.0030 * =OR: Mm	= 16 * POE * Pc = D * Pa) = POG * Pa) = = q * D = therramienta_estopa_g	grasa, etc): Oc = suma • 10 % SUMA CAR. CONSUM, HORA Factor rendimiento salarios	SUM 1.572	\$ \$ \$
DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P b) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((C/k) + 0.00 GASOLINA: L = ((C/h) + 4.00 d) LLANTAS: L = VII/Hv = e) MANTENIMIENTO MENG 0) OTROS CONSUMOS (Des	OP: PC = OG* PC E = 0.7-035 * POI 0.0030 * = OR: Mm perdicios Ino. 1no. 1no.	=	grasa, etc): Oc = suma * 10 % [SUMA CAR. CONSUM, HORA Factor rendimiento salarios Horas por turno	1.572 8	\$ \$ \$ \$ \$
DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P b) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((C/k) + 0.00 GASOLINA: L = ((C/h) + 4.00 d) LLANTAS: L = VII/Hv = e) MANTENIMIENTO MENG 0) OTROS CONSUMOS (Des	OP PC = OG* PC E = 0.7-035 * POI 0.0030 * = OR: Mm Perdicios Ino. Ino. Ino. Ino.	= 16 * POE * Pc = 16 * POE * Pc = 16 * POE * Pc = 16 * POG * Pa = 17 = 17 = 18 =	grasa, etc): Oc = suma * 10 % [SUMA CAR. CONSUM, HORA Factor rediminento salarios Horas por turno Cargo salarios = Salario/turno *	1.572 8	\$ \$ \$ \$ \$
DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P. b) ENERGÍA ELECTRICA: c) LUBRICANTES DIESEL: L = ((Ch) + 0.00 GASOLINA: L = ((Ch) + 6.00 GASOLINA: L = (VII / Hv = e) MANTENIMIENTO MENO f) OTROS CONSUMOS (DES	OP: Pc =OG* Pc =OG* Pc	=	srasa, etc): Oc = suma * 10 % [SUMA CAR. CONSUM. HORA Factor rendimiento salarios Horas por turno Cargo salarios = Salario/turno *	1.572 8	S S S S S S
DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P b) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((CK) + 0.00 GASOLINA: L = ((CK) + 4.00 d) LLANTAS: L = VII/Hv = e) MANTENIMIENTO MENG 0) OTROS CONSUMOS (DES	OP PC = OG* PC E = 0.7-035 * POI 0.0030 * = OR: Mm Perdicios Ino. Ino. Ino. Ino.	= 16 * POE * Pc = 16 * POE * Pc = 16 * POE * Pc = 16 * POG * Pa = 17 = 17 = 18 =	grasa, cic): Oc = suma * 10 % [SUMA CAR. CONSUM, HORA Factor rendimiento salarios Horas por turno Cargo salarios = Salario/turno *	SUM 1.572 8 Fac.Sal./ (h/turi	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P. b) ENERGÍA ELECTRICA: c) LUBRICANTES DIESEL: L = ((Ch) + 0.00 GASOLINA: L = ((Ch) + 6.00 GASOLINA: L = (VII / Hv = e) MANTENIMIENTO MENO f) OTROS CONSUMOS (DES	OP: Pc =OG* Pc =OG* Pc	=	srasa, etc): Oc = suma * 10 % [SUMA CAR. CONSUM. HORA Factor rendimiento salarios Horas por turno Cargo salarios = Salario/turno *	SUM 1.572 8 Fac.Sal./ (h/turi	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P. b) ENERGÍA ELECTRICA: c) LUBRICANTES DIESEL: L = ((Ch) + 0.00 GASOLINA: L = ((Ch) + 6.00 GASOLINA: L = (VII / Hv = e) MANTENIMIENTO MENO f) OTROS CONSUMOS (DES	OP: Pc =OG* Pc =OG* Pc	=	grasa, cic): Oc = suma * 10 % [SUMA CAR. CONSUM, HORA Factor rendimiento salarios Horas por turno Cargo salarios = Salario/turno *	SUM 1.572 8 Fac.Sal./ (h/turi	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P. D ENERGIA ELECTRICA: E) LUBRICANTES DIESEL: L = ((C/t) + 0.00 GASOLINA: L = ((C/t) + 0.00 GASOLINA: L = (VII / H+ = e) MANTENIMIENTO MENO D) OTROS CONSUMOS (Des) III CARGOS POR OPERACI SUMA MAQ. TRAB. INDIRECTO	OF PC = OG* PC E = 0.7: OG* PC E = 0.7: OS* POI O.0030 * OR: Mm perdicios Ino. Ino.	S0 S0 S0 S0 S0 S0 S2,056 S2,056	grasa, etc): Oc = suma * 10 % [SUMA CAR. CONSUM, HORA Factor rendimiento salarios Horas por turno Cargo salarios = Salario/turno * SUMA CARGOS MANO O SUMA CARGOS HORARIO UTILIDAD	SUM 1.572 8 Fac.Sal./ (h/turi	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P b) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((C/t) + 0.00 GASOLINA: L = ((C/t) + 0.00 GASOLINA: L = ((C/t) + 0.00 GASOLINA: L = (VII / Hv = 0) MANTENIMIENTO MENO f) OTROS CONSUMOS (Des) HIL- CARGOS POR OPERACI	OF PC = OG* PC E = 0.7: OG* PC E = 0.7: OS* POI O.0030 * OR: Mm perdicios Ino. Ino.	S0 S0 S0 S0 S0 S0 S0 S0	grasa, etc): Oc = suma * 10 % [SUMA CAR. CONSUM, HORA Factor rendimiento salarios Horas por turno Cargo salarios = Salario/turno * SUMA CARGOS MANO O SUMA CARGOS HORARIO UTILIDAD	SUM 1.572 8 Fac.Sal./ (h/turn	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P. b ENERGÍA ELECTRICA: c) LUBRICANTES DIESEL: L = ((C/t) + 0.00 GASOLINA: L = ((C/t) + 0.00 GASOLINA: L = (VI/THY = 0) d) LLANTAS: LI = VII/THY = 0) MANTENIMIENTO MENO f) OTROS CONSUMOS (DES) III CARGOS POR OPERACI SUMA MAQ. TRAB. INDIRECTO	• Pc = _ OG • Pc = _ OG • Pc = _ E =	S0 S0 S0 S0 S0 S0 S2,056 S2,056	trasa, etc): Oc = suma * 10 % [SUMA CAR. CONSUM, HORA Factor rendimiento salarios Horas por turno Cargo salarios = Salario/turno * SUMA CARGOS MANO O SUMA CARGOS HORARI UTILIDAD UTILIDAD COSTO DIRECTO	1.572 8 Fac.Sal./ (h/turn	\$ \$ \$ \$ \$

Tabla 4.	ANA	LISIS DEL COS	TO HORA MAQUINA (C.	H.M.) 17/1	0,91
Table 4.		ASTE, Asesorfa Téci		Clave:	KX
MA		ozo muralia 5		DELO:	
	CIDAD:	JZO IIIOJana J	DATOS ADICIO		
DATOS GENERALES	T T		DATOSABIO		
Precio de adquisición (Va)	52	000,000,000	15) Motor electrico	0 Kw/h	
2) Equipo adicional	SC		16) Factor de operación	80%	
3) Valor liantas (VII)	50		17) Pot. operac.diesel (POD)	0 H.P.	
4) Valor inicial (Va)	\$2	200,000,000	18) Pot. operac.gasol. (POG)	0 H.P.	
5) Valor rescate (Vr) \$	0% \$0		19) Pot. operac.electr. (POE)	OH.P.	
6) Vida econômica (Ve)	15	i	20) Precio litro de diesel (Pc)	\$455	
7) Tasa de interes anual (i)	20)%	21) Precio litro de gasol. (Pc)	\$500	
8) Horas anuales (Ha)	4,	500 h/año	22) Precio del Kw/h	\$300	
9) Prima anual seguros (s)	09	76	23) Capacidad del carter (C)	10 h	
10) Fac.manten.mayor (Q))%	24) Tiemp. / camb. aceite (t)	100 h	
11) Fac.manten.menor (q)		1%	25) Precio del aceite (It) (Pa)	\$3,000	
13) Motor diesel		H.P.	26) Vida económ, llantas (Hv)	3,000 h	
14) Motor gasolina		H.P.	27)		
I CARGOS FIJOS	7		<u> </u>		
a) DEPRECIACION	D = (Va	· Vr) / (Ve • Ha)=			\$2,963
b) INVERSION	I = (Va +	Vr) i/2 Ha =_			\$4,444
c) SEGUROS					. 50
e) MANTENIMIENTO	T=0'1				\$1,481
			SUMA CARGOS FIJOS	HORA	
II CARGOS POR CONSUMO			SUMA CARGOS FIJOS	ITORA	\$8,889
II CARGOS POR CONSUMO	,	es el comsumo de c		1.0	
	Pc (donde C		combustible por hora y Pc el prec	1.0	\$8,889
a) COMBUSTIBLE; E = C •	Pc (donde C			1.0	\$8,889
a) COMBUSTIBLE; E = C • DIESEL: E = 0.1514 • POD	Pc (donde C • Pc ** OG• Pc **		combustible por hora y Pc el prec	1.0	\$8,889 \$0 \$0
a) COMBUSTIBLE; E = C * DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * Pob ENERGIA ELECTRICA:	Pc (donde C • Pc ** OG• Pc **		combustible por hora y Pc el prec	1.0	\$8,889 \$0 \$0
a) COMBUSTIBLE; E = C * DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P b) ENERGIA ELECTRICA: c) LUBRICANTES	OG • Pc == E = 0.746 •	POE • Pc =	combustible por hora y Pc el prec	1.0	\$8,889 \$0 \$0
a) COMBUSTIBLE; E = C * ! DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P: b) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((C/t) + 0.00	Pc (donde C • Pc = OG• Pc = E = 0.746•	POE * Pc = Pa) =	combustible por hora y Pc el prec	1.0	\$8,889 \$0 \$0
a) COMBUSTIBLE; E = C * DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * PI D) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((CA) + 0.00 GASOLINA: L = ((CA) + 0.00	Pc (donde C • Pc = OG• Pc = E = 0.746 35 • POD • 0.0030 • PO	POE * Pc = Pa) = G * Pa) =	combustible por hora y Pc el prec	1.0	\$8,889 \$0 \$0
a) COMBUSTIBLE; E = C * DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P) b) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((C/A) + 0.00 GASOLINA: L = ((C/A) + (.00) GASOLINA: L = (1/A) + (.00)	Pc (donde C	POE * Pc = Pa) = G * Pa) =	combustible por hora y Pc el prec	1.0	\$8,889 \$0 \$0
a) COMBUSTIBLE; E = C * DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * PI D) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((CA) + 0.00 GASOLINA: L = ((CA) + 0.00	Pc (donde C	POE * Pc = Pa) = G * Pa) =	combustible por hora y Pc el prec	1.0	\$8,889 \$0 \$0 \$0 \$0
a) COMBUSTIBLE; E = C * DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * Pb) b) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((CA) + 0.00 GASOLINA: L = ((CA) + (4) + 0.00 GASOLINA: L = (VII/Hv = 0) d) LLANTAS: LI = VII/Hv = 0) MANTENIMIENTO MENG	Pc (donde C * Pc == OG* Pc == E = 0.746* 35 * POD * 0.0030 * PO	POE * Pc = Pa) = G * Pa) = q * D =	combustible por hora y Pc el prec	io del litro)	
a) COMBUSTIBLE; E = C * DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * Pb) b) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((CA) + 0.00 GASOLINA: L = ((CA) + (4) + 0.00 GASOLINA: L = (VII/Hv = 0) d) LLANTAS: LI = VII/Hv = 0) MANTENIMIENTO MENG	Pc (donde C * Pc == OG* Pc == E = 0.746* 35 * POD * 0.0030 * PO	POE * Pc = Pa) = G * Pa) = q * D =	combustible por hora y Pc el prec	io del litro)	\$8,889 \$0 \$0 \$0 \$0
a) COMBUSTIBLE; E = C * DIESEL E = 0.1514 * POD GASOLINA E = 0.2271 * Pb) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((Cn) + 0.00 GASOLINA: L = ((Cn) + 0.00 GASOLINA: L = (VI/Hv = 0) MANTENIMIENTO MENC d) OTROS CONSUMOS (Des)	Pc (donde C • Pc == OG • Pc == E = 0.746 • 35 • POD • 0.0030 • POi C OR: Mm = 0	POE * Pc = Pa) = G * Pa) = q * D =	combustible por hora y Pc el preci	io del litro)	\$8,889 \$0 \$0 \$0 \$0 \$0
a) COMBUSTIBLE; E = C * DIESEL E = 0.1514 * POD GASOLINA E = 0.2271 * Pb) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((Cn) + 0.00 GASOLINA: L = ((Cn) + 0.00 GASOLINA: L = (VI/Hv = 0) MANTENIMIENTO MENC d) OTROS CONSUMOS (Des)	Pc (donde C • Pc == OG • Pc == E = 0.746 • 35 • POD • 0.0030 • POi C OR: Mm = 0	POE • Pc =	combustible por hora y Pc el preci	io del litro)	\$8,889 \$0 \$0 \$0 \$0
a) COMBUSTIBLE; E = C * DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P b) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((CA) + 0.00 GASOLINA: L = ((CA) + (d) LLANTAS: L1 = VII/Hv = e) MANTENIMIENTO MENC f) OTROS CONSUMOS (Des)	DPc (donde C Pc = OG* Pc = E = 0.746* 35 * POD * 0.0030 * POI CR: Mm = C perdicios, he	POE * Pc = Pa) = G * Pa) = q * D =	rasa, etc): Oc = suma * 10 % SUMA CAR, CONSUM, HORA	io del litro)	\$8,889 \$0 \$0 \$0 \$0
a) COMBUSTIBLE; E = C * DIESEL E = 0.1514 * POD GASOLINA: E = 0.2271 * P. b) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((CA) + 0.00 GASOLINA: L = ((CA) + 0.00 GASOLINA: L = (ICA)	Pr (donde C Pr (POE * Pc =	rasa, etc): Oc = suma * 10 % SUMA CAR. CONSUM. HORA Factor rendimiento salarios	io del litro)	\$8,889 \$0 \$0 \$0 \$0 \$0
a) COMBUSTIBLE; E = C * DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P b) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((CA) + 0.00 GASOLINA: L = ((CA) + (d) LLANTAS: L1 = VII/Hv = e) MANTENIMIENTO MENC f) OTROS CONSUMOS (Des)	Pc (donde C	POE * Pc =	rasa, etc): Oc = suma * 10 % SUMA CAR CONSUM, HORA Factor rendimiento salarios Horas por turno	io del litro)	\$8,889 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0
a) COMBUSTIBLE; E = C * DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P b) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((CA) + 0.00 GASOLINA: L = ((CA) + (d) LLANTAS: L1 = VII/Hv = e) MANTENIMIENTO MENC f) OTROS CONSUMOS (Des)	Pe (donde C • Pc = • Pc = OG• Pc = E = 0.746 • 35 • POD • O.0030 • POI OR: Mm = (Ontion of the control of the contro	POE * Pc = Pa) = Pa	rasa, etc): Oc = suma * 10 % SUMA CAR CONSUM, HORA Factor rendimiento salarios Horas por turno	io del litro)	\$8,889 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0
a) COMBUSTIBLE; E = C * DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P. b) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((Cn) + 0.00 GASOLINA: L = ((Cn) + 0.00 GASOLINA: L = ((Cn) + 0.00 GASOLINA: L = (VII) HV e) MANTENIMIENTO MENO 0) OTROS CONSUMOS (Des) HIL-CARGOS FOR OPERACI POCETO	Pr (donde C * Pc == OG* Pc == E = 0.746* 35 * POD * 0.0030 * Poi OR: Mm = 0 perdicios, he tno. tno. tno. tno.	POE * Pc =	rasa, etc): Oc = suma * 10 % SUMA CAR CONSUM, HORA Factor rendimiento salarios Horas por turno	io del litro) SUM 1.572 8 Fac.Sal./ (h/turn	\$8,889 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0
a) COMBUSTIBLE; E = C * DIESEL E = 0.1514 * POD GASOLINA: E = 0.2271 * P. b) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((Cn) + 0.00 GASOLINA: L = ((Cn) + 0.00 GASOLINA: L = ((Cn) + 0.00 GASOLINA: L = (VII/Hv = 0.00) DIESEL: L = VII/Hv = 0.00 OTROS CONSUMOS (Des) DIEL-CARGOS FOR OPERACI POCCTO	Pr (donde C * Pc == OG* Pc == E = 0.746* 35 * POD * 0.0030 * Poi OR: Mm = 0 perdicios, he tno. tno. tno. tno.	POE * Pc =	rasa, etc): Oc = suma * 10 % SUMA CAR, CONSUM, HORA Factor rendimiento salarios Horas por turno Cargo salarios = Salario/turno *	sum 1.572 8 Fac.Sal./ (h/turn	\$8,889 \$0 \$0 \$0 \$0 \$0
a) COMBUSTIBLE; E = C * DIESEL E = 0.1514 * POD GASOLINA: E = 0.2271 * P. b) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((Cr) + 0.00 GASOLINA: L = ((ICR) + 0.00 GASOLINA: L = ((ICR) + 0.00 GASOLINA: L = (ICR) + 0.00 GASOLINA: L = (ICR	ON tno. tno. tno. tno.	POE * Pc =	rasa, etc): Oc = suma * 10 % SUMA CARGOS MANO C SUMA CARGOS HORARI	SUM 1.572 8 Fac.Sal./ (h/turn	\$8,889 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$1,948
a) COMBUSTIBLE; E = C * DIESEL: E = 0.1514 * POD GASOLINA: E = 0.2271 * P. b) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((Cn) + 0.00 GASOLINA: L = ((Cn) + 0.00 GASOLINA: L = ((Cn) + 0.00 GASOLINA: L = (VII) HV e) MANTENIMIENTO MENO 0) OTROS CONSUMOS (Des) HIL-CARGOS FOR OPERACI POCETO	Pe (donde C * Pc = OG* Pc = E = 0.746 * 35 * POD * 0.0030 * PO OR: Mm = Oerdiclos, he on tno, tno, tno, tno, tno, tno, tno.	POE * Pc =	rasa, etc): Oc = suma * 10 % [SUMA CAR CONSUM. HORA Factor rendimento salarios Horas por turno Cargo salarios = Salario/turno * SUMA CARGOS MANO (SUMA CARGOS HORARI UTILIDAD	SUM 1.572 8 P Fac.Sal./ (h/turn DBRA: OS: \$ 10%	\$8,889 \$0 \$0 \$0 \$0 \$0 \$0 \$1,836 \$1,184
a) COMBUSTIBLE; E = C * DIESEL E = 0.1514 * POD GASOLINA: E = 0.2271 * P. b) ENERGIA ELECTRICA: c) LUBRICANTES DIESEL: L = ((CA) + 0.00 GASOLINA: L = ((CA) + 0.00 GASOLINA: L = (ICA)	Pc (donde C Pc = 0.746 3.5 * POD * 0.0030 * POD DR: Mm = 0 perdicios, he con tno. tno. tno. tno. tno. tno.	POE * Pc =	rasa, etc): Oc = suma * 10 % [SUMA CAR CONSUM. HORA Factor rendimento salarios Horas por turno Cargo salarios = Salario/turno * SUMA CARGOS MANO (SUMA CARGOS HORARI UTILIDAD	SUM 1.572 8 P Fac.Sal./ (h/turn DBRA: OS: \$ 10% 10%	\$8,889 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0

Tabla Nº	5 Eficiencia	a económi	OSTO FUO:	\$19,180	Pozo:Muralla 5		
CAUDAL	CAUDAL	NIVEL			COSTO	COSTO	EFICIENCIA
EN	EN	DINAMI	HP	Kw/hr	VARIABLE	TOTAL	
l/seg	m3/hr	m			\$/hr	S/hr	\$/Q
0	0	75.21	0	0	\$0	\$19,180	\$0
5	18	75.28	27	20	\$3,068	\$22,248	\$1,236
10	36	75.47	55	41	\$6,152	\$25,332	\$704
15	54	75.61	83	62	\$9,245	\$28,425	\$526
20	72	75.81	110	82	\$12,359	\$31,539	\$438
25	90	76.06	139	103	\$15,500	\$34,680	\$385
30	108	76.27	167	124	\$18,651	\$37,831	\$350
35	126	76.76	196	146	\$21,899	\$41,079	\$326
40	144	77.74	227	169	\$25,348	\$44,528	\$309
45	162	78.86	259	193	\$28,927	\$48,107	\$297
50	180	80.68	294	219	\$32,883	\$52,063	\$289
55	198	90.71	364	271	\$40,668	\$59,848	\$302
60	216	105.51	461	344	\$51,603	\$70,783	\$328
65	234	120.00	568	424	\$63,581	\$82,761	\$354

IV.1.3.1.3.- Cálculo de la Transmisibilidad del acuífero a partir de la recuperación del pozo.

Para conocer el funcionamiento de un acuífero y planear su explotación racional es indispensable conocer dos parámetros esenciales de él, el Coeficiente de Almacenamiento y la Transmisibilidad. Estos dos parámetros se establecen a partir de pruebas de bombeo, preferentemente aplicando alguno de los métodos de variación. Este tipo de pruebas requiere, además de un pozo de bombeo, de al menos un piezómetro, (aunque se recomiendan de dos a cuatro), donde leer los descensos provocados por el bombeo. Esta condición no se da muy frecuentemente por lo que tampoco es frecuente contar con esta información.

Definiremos la transmisibilidad como la cantidad de m³ de agua, que a una temperatura de 10° C, atraviesa durante un día, una faja de acuífero de altura m igual a la del acuífero y de un metro de ancho, bajo un gradiente unitario (1m/1m). También podemos definirla como el producto de la permeabilidad media del acuífero por su espesor, bajo las mismas condiciones antes determinadas.

 $T = K \times m$

Donde:

T =Transmisibilidad en m²/día.

K = Coeficiente de permeabilidad en m/día.

m = espesor medio del acuífero en m.

La transmisibilidad se puede calcular en forma aproximada, aun cuando no exista pozo de observación, mediante la medición de la recuperación en el propio pozo de bombeo, aplicando la fórmula simplificada de Jacob:

 $T = 0.1832 (Q/(s_2 \cdot s_1))$

donde:

T = Transmisibilidad en m²/día.

O = Caudal del último escalón de bombeo en m3/día.

 s_2 - s_1 = Diferencia de nivel durante un ciclo logarítmico.

La aplicación de la fórmula de Jacob requiere conocerce la diferencia de nivel durante un ciclo logarítmico que se obtiene graficando en un papel semilogarítmico el tiempo en el eje logarítmico, contra el descenso en el eje normal (Fig. 19).

La diferencia de nivel durante un ciclo logarítmico, en la porción en que ésta se adapta a una línea recta, es el término s,-s, .

Figura 19.- Cálculo de la transmisibilidad del aculfero por el método de Jacob.

IV.2.- CORROSION E INCRUSTACION DE POZOS.

La mayor parte de la pérdida de rendimiento dentro de un pozo bien construído, viene dado por dos efectos: la corrosión y la incrustación. La composición del agua en general son de naturaleza corrosivas o incrustantes.

Estos efectos pueden ser generados al mismo tiempo. La variedad de las causas químicas produce que la prevención sea muy dificil, algunas aleaciones son más resistentes a cierta corrosión o incrustación pero no a otras. Para lograr un material óptimo, se necesitaría realizar un estudio de las aguas y definir el material de la tubería de bombeo y de el ademe, pero aun que se halla logrado esto, nos tiene en el mercado la variedad de ademes para conseguir el necesario, por lo que en general la prevención se debe realizar observando los efectos del fenómeno en el pozo, y aplicando un método de desincrustación o anticorrosión, a tiempo, cuando el problema se presente sin dejar que este llegue a afectar mucho al pozo.

La condición de incrustante o corrosiva de un agua subterránea, depende en buena medida de su composición química. Existen dos índices, el de Riznar (I_R) y el de Langelier (I_L), que proporcionan una medida cuantitativa de la tendencia del agua a depositar o disolver materiales. En el apéndice E se muestran los límites y característica de estas medidas así como una tabla de concentraciones de varios iones que indican la presencia de estos fenómenos.

IV.2.1.- Incrustación.

La incrustación es una depositación de materiales extraños en las zonas metálicas del pozo y a veces alrededor, en el filtro granular o en el acufero. Su consistencia puede ser frágil, dura con apariencia de cemento, como una masa cristalina, gelatinoso, suave o pastoso, según sea la causa de la incrustación.

La incrustación, crea una disminución del caudal específico, pues ataca principalmente a las zonas filtrantes, reduciendo las entradas de agua y en casos extremos se llegan a taparlas por completo. La reducción del área libre de entrada del agua al pozo incrementa la velocidad provocando un arrastre de sólidos finos al pozo. También en el acuífero, alrededor del pozo, se puede dar una incrustación que rellene los poros y disminuya la permeabilidad en una zona más o menos grande. Dentro del pozo, se sedimenta la incrustación reduciendo la sección de este y provocando en algunos casos la imposibilidad de montar y desmontar la bomba.

IV.2.1.1.-Tipos de incrustación de origen natural.

Los tipos de incrustación en su orden de frecuencia son:

IV.2.1.1.1.- Incrustación debido a la precipitación de carbonatos o sulfatos de calcio y de magnesio.

Dentro de la composición del agua es frecuente que estas contengan carbonato de calcio o de magnesio disuelto gracias a la presencia de anhrídrido carbónico. Por las condiciones del acuífero, las aguas subterráneas tienen una mayor concentración de anhrídrido lo que produce también una mayor disolución de carbonatos. Al entrar el agua del acuífero al pozo y experimentar un cambio en las condiciones de presión entre la que existía en el terreno y la presión atmosférica, el anhrídrido se libera del agua en forma de gas lo que produce que se sobresature de carbonatos que se incrustan en el pozo o su alrededor. Un cambio en la temperatura del agua que produce un efecto similar.

Otras incrustaciones son las de sulfato de magnesio e incrustaciones duras de yeso producidas por aguas sulfatadas.

IV.2.1.1.2.- Incrustación debido a la precipitación de compuestos de hierro y manganeso, principalmente óxidos hidratados.

En la composición del agua es frecuente encontrar cantidades notables de hierro, generalmente asociado a aguas reductoras, este hierro, como los carbonatos, se precipita por la pérdida de anhrídrido carbónico, al cambio de temperatura, contacto con el aire o con la variación de la velocidad de entrada del agua; también ocurre lo mismo con el magnesio. Estas precipitaciones pueden obstruir el cedazo o infiltrarse alrededor del pozo, obstruyendo los poros del acuífero.

IV.2.1.1.3.- Oclusión debido a materiales gelatinosos, provocados por bacterias ferrosas y otros organismos.

Las bacterias de hierro aparecen en pozos abiertos a la atmósfera con suficiente hierro y manganeso, en conjunción con materia orgánica disuelta, bicarbonato o dióxido de carbono.

Una forma común de bacterias de hierro en algunas regiones, tapa los pozos por catalización enzimática y oxidación del hierro (o manganeso), formando depósitos de limos. La precipitación del hierro y el rápido cultivo de bacterias crea un voluminoso material que rápidamente cierra las aberturas del filtro y de los sedimentos cercanos.

Otras formas de bacterias del hierro reducen el diámetro interior del ademe bajo condiciones anaeróbicas. Hasta el momento faltan por clasificar muchos tipos de bacterias del hierro que participan en el depósito de este mineral.

Una clasificación de bacterias del hierro, muy usada en la industria del agua subterránea se basa en la forma física de los organismos. Este sistema de clasificación ayuda en la identificación del tipo de bacteria que se encuentra en una muestra en particular, dividida en:

- 1. Formas capsulares cocoides. Incluye solo un género conocido, el Siderocapsaceae. Este organismo se presenta en forma de numerosos corpúsculos redondeados envueltos en una capsula mucoide. El depósito que forma la cápsula estado férrico hidratado en forma de un precipitado café rojizo. Este organismo probablemente produce precipitados de hierro que pueden ser rotos mediante el uso de un agente "quelante".
- 2. Formas ramificadas. Compuestas por bandas móviles unidas a un a rama o tallo. El género de esta forma física es Gallionella también llamada Spirophylum. Puede ser reconocida por su movimiento y por la celda bacteria en forma de frijol al final de la rama móvil. Probablemente esta sea la principal bacteria enzimática presente en los pozos.
- 3. Formas filamentosas, Está formado por cuatro géneros: Crenothrix, Sphaerotilus, Clonothrix y Leptothrix.

Las especies del genero *Crenothrix* tienen un final delgado que gradualmente engorda hacia el extremo libre. Germinan sin este tejido y unen sus filamentos a través de las paredes dando la apariencia de numerosas ramas extendidas desde la rama principal.

Los miembros del grupo Sphaerotilus presentan filamentos coloreados que aparentan falsas ramas. Otra bacteria ferruginosa que presenta falso rameado es el Clonotlurix, que difiere de otras en su aspecto filamentoso en que el tejido es cubierto.

El cuarto género del grupo filamentoso es la *Leptothrix*, una forma simple de tejido, usualmente incrustado con hierro a todo lo largo de la superficie. La superficie de este género es generalmente uniforme, pero al final es ancho y con celdas cilíndricas coloreadas y acopladas final con final.

Si en un pozo se sospecha la presencia de bacterias del hierro, se debe obtener muestras con un dispositivo filtrante acoplado a la descarga de la bomba del pozo durante una semana. El agua pasa a través del filtro durante este periodo, dejando un depósito café oscuro en la cubierta de porcelana, el cuál puede ser analizado por un laboratorio calíficado.

Otro método de obtener muestras con facilidad es recolectando el material atrapado en válvulas o líneas de descarga de la bomba en pozos parados temporalmente o en pequeños objetos metálicos suspendidos temporalmente en el pozo para este fin. para lograr observar las bacterias es necesario contar con un microscopio de al menos 1,000 aumentos.

IV.2.1.1.4.- Obstrucción debido a la depositación en la rejilla de materiales como limo y arcillas.

Esta incrustación debida a la depositación de limos y arcillas procedentes del lavado de los acuíferos y que contribuyen a aumentar la cantidad de material incrustante efectiva, ocurre frecuentemente cuando las aberturas de la rejilla son muy pequeñas, si el pozo ha sido poco desarrollado o cuando el acuífero contiene grandes cantidades de finos.

IV.2.1.2.- Características y funcionamiento de los pozos que favorecen la incrustación.

Las características constructivas del pozo dan origen algunas veces a la incrustación del mismo. Comúnmente los pozos ineficientes, con notables pérdidas de carga en el paso del agua del acuífero al pozo por la zona filtrante, y los que están mal desarrollados suelen incrustarse con mayor facilidad que pozos de la región bien terminados.

El incremento en la velocidad de entrada del agua, la turbulencia y el descenso excesivo del nivel dinámico, facilitan el desprendimiento del anhrídrido carbónico, sobresaturándose el agua de carbonatos. Un desarrollo adecuado del pozo, limpia de finos las zonas aledañas, facilita el flujo del agua, disminuyendo la velocidad en el medio poroso contiguo al pozo y retarda la incrustación. Por las mismas causas un pozo completo también tiene menos propensión a incrustarse que uno incompleto.

La zona de aireación, en el intervalo entre los niveles estático y dinámico, facilita la depositación de hierro, al producirse cambios físicos y químicos mas intensos.

El régimen de explotación del pozo favorece la incrustación, si se explota de tal manera que el nivel dinámico descienda hasta las zonas filtrantes dejando estas en

seco. La condición alternativa de seco y mojado ayuda a la evaporación del agua que deposita cristales de calcio y precipita el hierro, que puedan contener las aguas. Dependiendo de la frecuencia de los arranques y paros de la bomba este proceso se acelera o retarda.

El caudal de explotación se debe seleccionar para que la velocidad de entrada no sea mayor a 2 o 3 cm/seg, y el pozo pueda trabajar en un régimen poco turbulento evitando el desprendimiento del anhrídrido carbónico.

IV.2.1.3.- Prevención de la incrustación y desincrustación.

La prevención de la incrustación es muy difícil cuando se dan condiciones naturales que la favorezcan, por lo que a fin de cuentas, se tendrá que desincrustar al pozo periódicamente; pero el intervalo de tiempo en que esto se realice puede ampliarse si se siguen las recomendaciones anteriores y se mantiene una observación periódica del pozo para evitar llegar a incrustaciones extremas.

El empleo de ademes de P.V.C. elimina por completo el problema de incrustación aunque persista en bomba, filtro y acuífero. Hay que tomar en cuenta que su uso, trae consigo otros tipos de problemas como pueden ser los debidos a sus propiedades mecánicas, su colocado, estructura, etc. Por lo que no siempre es la solución idónea.

No hay evidencias de la existencia de las bacterias ferruginosas en el acuífero antes de la perforación de pozos, por lo que se presume que su establecimiento y multiplicación se relacionan con las maniobras realizadas en la perforación o rehabilitación; las bacterias mezcladas con las aguas que se utilizaron durante la construcción del pozo, suelen ser traspasadas desde un pozo contaminado a uno que no lo estaba. Por lo que la bacteria del hierro es acarreada de pozo a pozo durante la perforación, bombeos o tanques de agua.

Consecuentemente el contratista de perforación debe evitar introducir la bacteria del hierro al acuífero durante la construcción o reparación del pozo. Los fluídos que se utilicen durante la perforación deben clorinarse con concentraciones de 50 mgr/l de cloro activo, siempre y cuando se tenga duda del origen y calidad del agua. Como el cloro no es estable en el fluído de perforación, se debe adicionar periódicamente, manteniendo unos 10 mg/l de cloro residual. La herramienta de perforación debe clorinarse o lavarse con permanganato de potasio para estar seguro de eliminar bacterias provenientes otros pozos. Además debe efectuarse rutinariamente, una limpieza de los tanques o pipas de agua utilizados para suministrar agua al pozo.

La desincrustación de pozos debe efectúarse cuando se empieza a notar una disminución clara del caudal específico, pues si se deja progresar mucho el fenómeno, el tratamiento puede ser poco eficaz o inútil por completo.

El tipo de tratamiento para desincrustar un pozo, dependerá del tipo de incrustación, cosa que no siempre es fácil determinar. Los tratamientos son mecánicos, de tipo químico o mixtos. Los tratamientos de tipo mecánico, no suelen ser efectivos para el tratamiento de incrustación excepto en el interior del ademe, pero en cambio, después que un pozo ha sido tratado químicamente el desarrollo mecánico mejora los resultados obtenidos.

Los métodos de desarrollo mecánicos, químicos y su manera de aplicarlos serán expuestos en el capitulo IV.3.

IV.2.2.- Corrosión.

La corrosión es la destrucción de un metal por reacción química o electroquímica por el medio ambiente que corroe el metal con su disgregación o puesta en solución.

Ataca preferentemente el cedazo del pozo y logra ampliar las ranuras, que presentan mas caras libres al ataque de la corrosión, de tal forma que dejan pasar elementos indeseables de un tamaño mayor al esperado en el proyecto del pozo. Ademas debilita la tubería en general, logrando que pueda, en un momento, dado sufrir un colapso con la posible oclusión parcial o total del pozo.

Algunas aguas son muy corrosivas para la mayoría de los metales que pudieran sumergirse en ellas, otras corroen en forma selectiva sólo algunos elementos. Además de este factor relacionado con la composición química del agua, existen otras causas que propician a la corrosión de los metales en el pozo, como son la velocidad de circulación del agua respecto al material agredido, la formación de películas protectoras, la temperatura y la presencia de fenómenos electrolíticos. Pero en general la corrosión se puede reducir a un fenómeno de tipo electroquímico dentro de los pozos. Las características principales de aguas con tendencia corrosiva se señalan el apéndice E.

El oxígeno, que se encuentra en la superficie del metal ya sea en forma de aire o disuelto en el agua, se transforma por adición en un óxido de características diferentes a las del metal, este se adhiere al metal y puede formar una superficie sin grietas, reduciendo sus propios efectos o también integrarse y romper la estructura interna del metal, formando grietas, que se irán agrandando, degradando al metal.

IV.2.2.1. Fenómenos electrolíticos.

Siempre que tenemos dos metales unidos o un metal y su óxido en un medio electrolítico, que en el caso de los pozos es el agua con cierto contenido de sales, se realiza un fenómeno llamado pila galvánica, la cual por medio de un proceso químico, tiende a degradar a uno de los metales, al transportar parte de él, en forma de iones, y acumularlo en el otro metal.

Al ocurrir este proceso, se desprende oxígeno e hidrógeno el cuál se puede adherir al metal degradado, formando una capa protectora, que retrasa el proceso.

En las zonas de aereación, donde esta capa de hidrógeno es más fácil de eliminar, se dan corrosiones que son más severas, teniendo cerca del nivel del agua una corrosión máxima.

La corrosión de uno de los dos metales, depende de sus característica químicas, principalmente de la electronegatividad, de manera que de los dos metales, el que se degradará será el de menor electronegatividad.

A continuación se presenta una tabla de series galvánicas (electronegatividades, Tabla 7), donde el más próximo al extremo superior, será el metal corroible o activo y el más próximo al extremo inferior será el metal noble o pasivo.

IV.2.2.2.- Tipos de corrosión.

La corrosión se puede dividir por su aspecto en dos grandes ramas, la corrosión uniforme y la corrosión localizada.

IV.2.2.2.1.- Corrosión Uniforme.

Es el ataque del medio ambiente sobre grandes áreas de una superficie metálica, puede ser húmeda o seca, electroquímica o química. Es un fenómeno por el cual el espesor del material se va reduciendo paulatinamente, ya sea porque el óxido del metal no es adherente, o porque el medio disuelve a ese óxido. Como resultado, en las zonas de menor espesor se pueden producir perforaciones, la tubería pierde resistencia y las ranuras de la rejillas se agrandan permitiendo la entrada de partículas mayores que las deseadas.

Tabla Nº 7.- Series Galvánica (Electronegatividad de metales).

Mínima electronegatividad Máxima corrosión (Extremo Corrofble o activo)

Magnesio Aleaciones de magnesio

Zinc

Aluminio (25)

Cadmio

Aluminio resistente a la corrosión (17 ST)

Acero, Hierro, Hierro Fundido

Cromo-Hierro (ferrocromo) activo

Acero inoxidable al cromo-níque 18-8 (activo)

Acero inoxidable al cromo-níquel-molibdeno 18-8-3 (activo)

Soldadura de plomo, estaño o sus aleaciones

Níquel, Iconel (activo)

Cobre

Latón

Bronce

Monel

Soldadura de plata

Níquel (pasivo)

Iconel (pasivo)

Ferrocromo (pasivo)
Acero inoxidable cromo-níquel 18-8 (pasivo)

Acero inoxidable Cromo-níquel-molibdeno 18-8-3 (pasivo)

Plata

Orn

Platino

Máxima electronegatividad Mínima corrosión (Extremo Noble o Pasivo)

IV.2.2.2.2.- Corrosión Localizada.

La corrosión localizada se realiza en zonas específicas de la tubería, y se presenta macroscópica o microscópica.

* Corrosión Macroscópica.

La corrosión macroscópica se presenta en forma aparente y se divide en:

ESTA TESIS NO DEBE Salir de la biblioteca

- Corrosión Galvánicas.

Se presenta cuando están en contacto dos metales diferente. Puede aparecer en pozos cuando se emplean en contacto metales distintos en la rejilla y el cedazo liso, tubos de diferentes calidades o cuando la bomba toca el tubo del ademe.

- Corrosión alveolar o picado.

Se origina cuando en la superficie de un metal aparecen diferencias de potencial eléctrico, por pequeñas variaciones de composición, acabado, dureza, impurezas, etc. Ello origina pilas galvánicas, fenómeno que ataca a uno de los metales, se favorece este proceso si el agua contiene cloruros. Ocurre frecuentemente cuando es preciso renovar un tramo de tubería enterrada, pues entonces el nuevo tubo forma pares metálicos con el óxido de la porción vieja, de modo que actúa como portador de iones metálicos y se corroe más rápidamente de como lo hizo el tubo sustituido.

- Corrosión selectiva.

Es la disolución preferente de uno de los componentes de la aleación, dejando al metal restante. Este fenómeno se puede ver en el latón, donde se disuelve el zinc, dejando el cobre poroso y poco resistente.

- Corrosión por Erosión.

La corrosión por erosión se presenta cuando el medio corrosivo ataca a la superficie metálica incrementando su acción debido al desgaste mecánico, debido al movimiento de fluídos o sólidos.

- Corrosión por agrietamiento.

Las grietas o hendiduras se encuentran generalmente en los traslapes, uniones y las aberturas del cedazo, también pueden formarse por depósitos sobre la superficie y raspaduras en la película de recubrimiento. Las causas por las que sucede son los cambios de acidez en la grieta, la escases de oxígeno que forma iones en la hendidura y el agotamiento de inhibidor en la grieta.

- Corrosión por exfoliación.

La corrosión se dá en capas completas de material, el ataque es generalmente identificado por su aspecto escamoso. Esta corrosión subsuperficial comienza sobre una superficie limpia, pero que se esparce debajo de ella no es muy común en el ademe de los pozos.

* Corrosión Microscópica (intergranular).

Es la que se produce en ciertas impurezas de un metal, lo que lleva a la formación de zonas de debilidad, que puedan ocasionar la disgregación del metal. El ion cloruro es capaz de efectuar una acción de este tipo en los aceros inoxidables ordinarios, que no son adecuados para aguas salinas. Lógicamente el fenómeno tiene un efecto menor o nulo cuanto más puro sea el metal. Ataca preferentemente a los espacios intergranulares a nivel molecular, por lo que es muy difícil de observar, si no se tiene una muestra que analizar en microscopio.

IV.2.2.3.- Prevención contra la corrosión.

Existen 4 tipos de prevención contra la corrosión en general:

IV.2.2.3.1.- Protección Catódica.

Esta método para proteger tuberías enterradas, consiste en colocar a lo largo de ellas bloques de magnesio o zinc, unidos a a la tubería con un cable conductor. La tubería se protege por tener electronegatividad alta y el magnesio o zinc cumplen la función de metal de sacrificio, el cual se repondrá antes de consumirse por completo. El mismo efecto se consigue si se conecta la tubería al polo positivo de un generador de corriente continua. Estas dos formas de protección se han utilizado poco en pozos, pero parece que con buenos resultados.

IV.2.2.3.2.- Uso de recubrimientos anticorrosivos.

Los elementos expuestos a la corrosión en la superficie del terreno, se puede proteger utlizando recubrimientos anticorrosivos o mediante el galvanizado del hierro, en el que el hierro está recubierto por una película de zinc. Si se llega a romper el recubrimiento, éste actúa como metal de sacrificio, pues es menos electronegativo que el hierro, cuya corrosión no comienza mientras dure el zinc.

El hierro o acero galvanizado no es útil en aguas muy ácidas, o pozos a los que se les haga un tratamiento con ácido, pues el recubrimiento de protección se destruye rápidamente.

Estos métodos no son útiles en el caso de los pozos, pues cualquier recubrimiento o galvanizado exterior sera erosionado durante el descenso de la tubería al pozo, y en la colocación de la grava en el espacio anular; e internamente durante las maniobras de desarrollo y de instalación y extracción de bombas. Si la corrosión no es muy severa, da resultado el recubrir la rejilla o tubería con caucho o polietileno o aplicando un doble galvanizado.

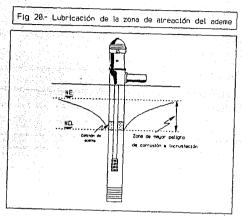
IV.2.2.3.3.- Selección de materiales.

Si el filtro y tubo son de P.V.C. (Poli Vinil Cloruro) la corrosión será nula, esta práctica se puede realizar cuando el estudio químico del agua indique una zona de extrema corrosión, tomando en cuenta las propiedades mecánicas del P.V.C.

Lo más cómodo y sencillo, es utilizar acero de buena calidad y pureza, de suficiente espesor para el tubo del pozo y la rejilla, diseñando al pozo de manera que la velocidad de entrada sea la correcta.

IV.2.2.3.4.- Inhibidores de la corrosión.

La porción del pozo más susceptible de ser atacada por la corrosión, o la incrustación, es la sometida a secado y mojado, siendo ésta la comprendida entre el nivel estático y el nivel dinámico. En pozos en que el agua nunca descienda hasta la zona filtrante, o tazones de la bomba, se pueden evitar estos ataques añadiéndole al pozo un colchón de aceite, que funge como inhibidor, lubricando la porción afectada. (Fig. 20).


IV.3 DESARROLLO DE POZOS.

El desarrollo del pozo es una de las actividades primordiales en la construcción del mismo, pero que generalmente se repite varias veces a lo largo de su vida útil, como parte de los trabajos de mantenimiento y rehabilitación que todo pozo requiere, pues una vez que esté fuera de operación y habiendo movido hasta él un equipo de rehabilitación, sería absurdo no desarrollar el pozo dada la mejora que experimentará en la inmensa mayoría de los casos.

Se llama desarrollo de un pozo a la serie de acciones de carácter físico o químico, tendientes a lograr la máxima eficiencia de él.

IV.3.1.- Los fines del desarrollo.

Por varias razones el desarrollo de un pozo es un procedimiento fundamental para la terminación de un pozo nuevo y mejora sustancialmente el funcionamiento de uno usado, sobre todo si la construcción del mismo no se realizó de acuerdo a una buena técnica. Generalmente, mediante el desarrollo se logran uno o vario de los siguientes fines:

- Mejorar la capacidad específica del pozo, al despejar las ranuras del cedazo y limpiar el filtro, además de mejorar la permeabilidad del acuífero en el entorno de la zona filtrante del pozo.
- Estabilizar la formación arenosa alrededor del pozo retardando su entrada a él, aún cuando el diseño del filtro no fuera el adecuado.
- Se ha observado que pozos bien desarrollados, en zonas con aguas incrustantes o corrosivas, tienen una vida útil mas prolongada que aquellos que no fueron desarrollados.
- En pozos perforados con rotaria directa y lodos bentoníticos, el desarrollo es la única posibilidad de eliminar el enjarre de lodo (cake), que disminuye la permeabilidad en el entorno del pozo.

IV.3.2- Métodos de desarrollo químico.

IV.3.2.1- Tratamiento con polifosfatos.

Los polifosfatos, más comúnmente conocidos como dispersantes de arcillas, son agentes tensoactivos, similares a los detergentes, pero menos espumantes, que tienen la propiedad de separar los aglomerados de partículas, si se hace intervenir una fuerte agitación. El más usual es el hexametafosfato de sodio, aunque también se utilizan otros polifosfatos como el tetrapirofosfato sódico, el septafosfato sódico y el tripolifosfato sódico.

Este tratamiento, no se trata en realidad de un método de desarrollo de pozo, pero puede incrementar notablemente la efectividad de él, cuando la obra explota acuíferos granulares con una fracción arcillosa y cuando se emplea en pozos que han sido perforados con lodo bentonítico, por lo que este tratamiento debe anteceder o en ocasjones ser simultáneos al desarrollo propiamente dicho.

Las dosis recomendadas varían según el fabricante pero podemos considerar de 10 a 50 Kg/m³ de agua en el pozo añadiéndole 1 Kg/m³ de hipoclorito cálcico que le confiere acción oxidante. El rebasar los 50 Kg/m³ no ofrece ningún efecto adicional.. El tiempo de aplicación será mayor cuanto menor sea la dosis.

Los polifosfátos pueden aplicarse combinados con ácido, sobre todo en pozos viejos incrustados o con hipoclorito de calcio en los tratamientos de bacterias ferruginosas.

Los tratamientos con polifosfatos durarán unas 24 hr, en las que se debe mantener el agua del pozo agitada y pueden requerirse dos o mas tratamientos. El efecto cuando no se agita el agua es prácticamente nulo.

IV.3.2.2.- Acidificación.

Se utiliza principalmente para eliminar incrustaciones de carbonato cálcico y magnésico. Pueden emplearse diversos ácidos, pero el más usual es el muriático (clorhídrico industrial), con un inhibidor de corrosión de metales como la gelatina Knos (de 5 a 10 Kg de gelatina por cada 100 Kg de ácido concentrado).

La concentración de ácido será del 25 al 30 % y el volumen de solución empleado en un tratamiento será de 1.5 a 2 veces el volumen de agua en la zona filtrante. Si el pH del medio es menor de 3 también se disolverá, al menos parcialmente el hierro precipitado.

Aunque el ácido muriático es muy efectivo para desincrustar pozos, es de manejo muy delicado, pues una vez en contacto con el agua produce una gran cantidad de gases tóxicos que son expelidos por el pozo. La inhalación de estos gases puede ser letal y al contacto con la piel humana producir daños graves, Por lo que son necesarios las precauciones y el equipo de seguridad.

Actualmente se utiliza cada vez más el ácido sulfámico (SO₄HNH₂), que es más caro que el clorhídrico, pero que ofrece grandes ventajas pues es sólido en estado puro lo que lo torna más manejable e inofensivo en su manipulación; además, es muy soluble en agua dando soluciones marcadamente ácidas y en cambio menos agresivas para el ademe. Puede añadirse previamente disuelto, o en estado sólido disolviéndolo mediante agitación del pozo.

El ácido sulfúrico no es útil para desincrustar carbonatos, pues forma sulfato de calcio (yeso) que es poco soluble.

La acidificación es solo parcialmente efectiva al actuar contra incrustaciones de sílice y silicatos alumínicos.

La efectividad de la acidificación se incrementa en forma espectacular si se le da movilidad al ácido con un agente externo; en la industria petrolera se emplea rutinariamente el nitrógeno inyectado a altas presiones, pero lo caro de el tratamiento lo vuelve prohibitivo para la del agua, salvo en casos verdaderamente excepcionales. Esta deficiencia puede suplirse, con las limitaciones del caso inyectándolo con aire comprimido, o si es agitado en forma mecánica durante e inmediatamente después de su aplicación, continuando hasta que sea evacuado del pozo.

Sí por las condiciones del pozo, el ácido se mezcla en la superficie se deberán emplear las mismas precauciones que con el clorhídrico pues durante el tratamiento y su disolución produce gases tóxicos aunque en proporción baja, pero aún así se debe contar con buena ventilación en la zona de trabajo.

En pozos cortos con la zona de filtro concentrada en la parte baja se puede emplear la forma peletizada dejada caer directamente en el pozo, pues los trozos caerán al pozo donde se irán disolviendo lentamente frente al cedazo.

Los pelets se disuelven en aproximadamente 4 hr, mientras no se llegue a la saturación. La agitación del agua en el cedazo incrementa la velocidad de solución.

La cantidad de ácido sulfámico peletizado que se requiere para un tratamiento varía dependiendo de la longitud y diámetro de la zona de cedazo o en función del peso del agua encarada a la zona de cedazo.

Cuando se acidifican cedazos largos (mas de 30 m) o separados en el ademe se utiliza la forma granular, la cual se bombea directamente al interior del pozo para saturar de ácido toda la columna. El ácido pasa a la solución cuando los granos descienden lentamente dentro del ademe. Luego se inyecta agua limpia para obligar al ácido a penetrar dentro de la formación. En pozos profundos con un nivel estático

alto puede ocurrir que el ácido granular o polvorulento se disuelva por completo cerca de la superficie por lo que deberá ser bombeado a la parte mas profunda del pozo.

Por cuestiones de costos, en pozos profundos se llegan a utilizar soluciones de sólo el 10%, pero con 30% se obtienen mejores resultados.

El ácido sulfámico es muy usado en el tratamiento de incrustaciones de calcio y magnesio, pero es menos efectivo para las incrustaciones de hierro y manganeso. La adición de sal de roca al ácido incrementa su habilidad para disolver estos minerales. La proporción es de 1 Kg de sal por cada 5 de ácido.

El ácido sulfámico reacciona químicamente con los mismos minerales que el clorhídrico pero en forma menos enérgica, consecuentemente se requiere de más tiempo de contacto para obtener los mismos resultados. Se recomiendan tiempos de unas 15 hr.

Después de la aplicación del ácido, será extraído del pozo con bomba o sifón hasta sacar una cantidad de agua de al menos el doble de la inyectada. El ciclo de inyección, extracción se repetirá en tanto se observen resultados favorables. También se puede emplear un tratamiento mecánico, para extraer los materiales granulares finos que se pueden haber acumulado detrás de las incrustaciones que tapaban las aberturas del cedazo. Para minimizar los problemas del vertido, el ácido debe ser neutralizado antes de ser extraído del pozo.

IV.3.2.3- Cloración.

Consiste en añadir cloro activo al agua del pozo, con objeto de que mate las bacterias y elimine el limo orgánico asociado. La acidificación también mata las bacterias pero no elimina el limo orgánico.

El cloro se puede aplicar como gas disuelto previamente en el agua o directamente, pero el medio mas fácil y seguro es su manejo como hipoclorito cálcico en estado puro o disuelto en agua. Se precisan concentraciones de cloro activo, en el pozo de 100 a 200 p.p.m., y como máximo 500 p.p.m. Para el cálculo de las concentraciones se cubicará el agua en el pozo. El hipoclorito cálcico tiene un 70 % de cloro activo. Bajo estas premisas, para preparar soluciones para un metro cúbico de agua se requieren las siguientes cantidades de Hipoclorito cálcico:

Concentración de 100 p.p.m.: 143 gr Concentración de 200 p.p.m.: 286 gr Concentración de 300 p.p.m.; 429 gr Concentración de 400 p.p.m.: 571 gr Concentración de 500 p.p.m.: 715 gr

En caso de que no fuera posible la utilización del hipoclorito de calcio puede emplearse el hipoclorito de sodio, el cuál se obtiene fácilmente en forma de blanqueador de ropa (lejía). La mayor parte de las presentaciones comerciales de este producto contienen un 5 % de cloro activo, aunque la máxima concentración de este producto puede llegar a un 20 %.

En la Tabla No 8 se presentan los litros de blanqueador necesarios para preparar 1 m³ de solución a diferentes concentraciones según distintas proporciones de cloro activo en el hipoclorito de sodio.

Tabla Nº8.- Clorinación de pozos.

	litros de blanqueador por m3 de agua en el pozo.					
Concentración Cl en p.p.m.	5 %	7 %	10 %			
100	2.00	1.43	1.00			
200	4.00	2.86	2.00			
300	6.00	4.28	3.00			
400	8,00	5.72	4.00			
500	10.00	7.15	5.00			

Al hacer un tratamiento de cloración se debe considerar el carácter altamente agresivo del cloro que actuará directamente sobre las partes activas del pozo, sobre todo si se rebasa la concentración máxima, por tanto es aconsejable que antes del tratamiento se extraiga la bomba.

Si no se procede previamente a la desincrustación, el tratamiento con cloro puede no ser efectivo, puesto que algunas de las bacterias del hierro son capaces de formar una delgada capa protectora alrededor de la cápsula, la cual es rodeada por óxidos e hidróxidos de hierro y manganeso. Esta cápsula restringe el acceso del cloro hasta la célula en dosis letales y por consiguiente puede volver a presentarse el problema al poco tiempo.

El permanganato de potasio, es un fuerte oxidante y excelente bactericida que ha sido muy utilizado para controlar las bacterias del hierro en los pozos. Este producto es fácil de conseguir en forma de cristales púrpura y es fácil de manejar. En el tratamiento de pozos infestados por la bacteria del hierro, el permanganato se disuelve en agua suficiente para saturar el filtro.

Se ha visto que una solución de 1,000 a 2,000 mg/l ofrece magnificos resultados. Para obtener una solución de 1,000 mg/l equivale a 0.95 Kg por cada m³ de agua frente al cedazo. Como en el caso de todos los tratamientos químicos se requiere de una vigorosa agitación mecánica para que el permanganato logre su máxima efectividad.

IV.3.3.- Métodos de desarrollo físico.

Los procedimientos de desarrollo físico logran su objetivo mediante la agitación más o menos enérgica del agua en el pozo y la acción de el flujo y reflujo del agua desde y hacia el pozo. El efecto de el desarrollo se percibe desde el momento de la ejecución por la cantidad de azolve extraído y por el reacomodo del filtro granular, manifestado en un descenso del mismo por el espacio anular del pozo. Es indispensable que conforme el filtro descienda se reponga de inmediato. Si se obtuviera mucho azolve sin el descenso correspondiente se deberá sospechar la existencia de "puentes".

IV.3.3.1- Desarrollos con bomba de pozo profundo.

El equipo necesario es una bomba de aforo, capaz de provocar fuertes abatimientos al pozo y el equipo complementario. Estos desarrollos provocan un fuerte desgaste en el equipo de bombeo, debido a los frecuentes cambios de esfuerzos a que se ve sometido y al manejo de agua turbia.

IV.3.3.1.1- Sobrebombeo.

Consiste en bombear el pozo hasta alcanzar un fuerte descenso en el nivel dinámico, creándose un gradiente hidráulico mayor al que tendrá el pozo durante su operación normal. Solo actúa en el sentido del acuífero hacia el pozo y es propenso a formar "puentes".

IV.3.3.1.2- Arranque y parada de la bomba.

Se efectúan sucesivos arranques y paradas de la bomba, elevándose el agua hasta la superficie para dejarla luego caer al pozo por la tubería de la bomba. Invierte alternativamente la dirección del flujo del agua, lo que dificulta la formación de "puentes".

Dentro de esta modalidad existen tres variantes:

 Máximo descenso y recuperación. Se hace funcionar la bomba hasta lograr el máximo abatimiento en el pozo y a continuación se para la bomba, esperando hasta que casi se recupere el nivel estático, momento en que se reanuda el ciclo hasta que no se note mejoría en el pozo.

- Máximo descenso sin recuperación. Como en el caso anterior se bombea hasta lograr el máximo descenso, se interrumpe el bombeo unos minutos y se reanuda sin esperar a lograr la recuperación.
- Bombeos cortos. Se bombea hasta que el agua descargue en la superfície y se para la bomba, se repite esta operación las veces que sea necesario. Tiene la ventaja de que no se requiere de equipos de tan alta capacidad como en los métodos anteriores, aunque también es menos enérgico y también provoca fuertes desgastes en el equipo.

Los desarrollos con bomba de pozo profundo, aunque de utilización muy difundida, son los menos efectivos, pues es dificil contar con las bombas del gran tamaño requerido para realizar un trabajo eficiente, sobre todo si el pozo es buen productor. Además cuanto mejor se realice el trabajo de desarrollo, mas intenso es el desgaste del equipo utilizado, lo que plantea el conflicto de hacer bien el trabajo a costa de estropear el equipo de bombeo.

IV.3.3.2- Desarrollos con bomba de inyección.

El equipo necesario es una bomba de inyección, de preferencia de pistón duplex, similar a las usuales en la perforación rotaria, tubería de inyección y accesorios, según el método empleado. Esto adecúa este método de desarrollo a pozos perforados con máquinas rotaria directas, ya que cuentan con la bomba y tubería requeridas. El alto costo horario de los equipos y los consumos de agua, que pueden ser altos, origina que estos métodos de desarrollo resulten caros en términos relativos a los otros desarrollos físicos.

Son métodos de lavado a contracorriente mas vigorosos que los de bomba de pozo profundo y consisten en bombear agua desde el interior de la rejilla, por medio de una tubería (usualmente la de perforación). Generalmente da muy buenos resultados iniciar la inyección bombeando dispersante de arcillas en la proporción y cantidad establecidos en el inciso IV.3.2.1. Presenta tres variables:

IV.3.3.2.1- Chorro vertical y pozo abierto.

Se manda una línea hasta el fondo del pozo por la que se envía agua a presión con el caudal máximo que permita la bomba. El azolve se extrae con una bomba de arena, que debe caber en el pozo sin necesidad de extraer la tubería.

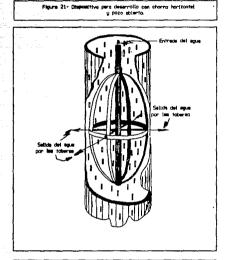
IV.3.3.2.2- Chorro horizontal y pozo abierto.

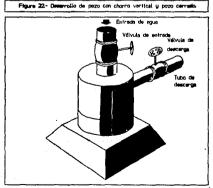
Esta variante es similar a la anterior en lo básico, pero con una herramienta adicional que la hace más efectiva. Consiste en una serie de toberas colocadas horizontalmente, por los que saldrá el agua a alta velocidad para estrellarse directamente contra el cedazo (Fig. 21).

- Se baja la tubería, con las toberas en el extremo inferior hasta el tramo filtrante superior. Se bombea el agua mientras se hace girar lentamente la sarta a no más de 1 r.p.m, para que los chorros recorran el perímetro del cedazo. Se mantiene la sarta en ese nivel durante 2 o 3 minutos y se baja 15 cm, repitiéndose la secuencia hasta alcanzar el azolve que se ha venido depositando en el fondo del pozo.

Se extrae la sarta y después el azolve con una bomba de arena o cuchara común.

- Se repite la operación hasta que el azolve producido sea tan poco que indique la conveniencia de suspender el tratamiento. Un buen desarrollo puede requerir recorrer el pozo varias veces.


Las toberas pueden ser de 2, 3 o 4, con orificios de 0.6 a 1.3 cm de diámetro (1/4" a 1/2"), según la bomba y cantidad de agua disponible, pero tratando siempre que la velocidad de salida del agua en las toberas no sea menor de 46 m/seg (150 pies/seg). El espacio anular entre cedazo y toberas será de 2.5 cm (1").


IV.3.3.2.3- Chorro vertical y pozo cerrado.

La instalación es similar a la descrita en el inciso IV.3.3.2.1 pero sellando herméticamente la boca del pozo con una tapa que dejará pasar la tubería de inyección e irá provista de una descarga lateral cerrada con una válvula (preferentemente de paso rápido) y un manómetro (Ver Fig. 22).

Con la tubería en el fondo del pozo y la válvula de descarga cerrada, se le aplica presión al pozo mediante la bomba, registrándose la presión alcanzada. Se abre rápidamente la válvula de descarga hasta recuperar la presión 0.00. Se repetirá este ciclo tantas veces como sea necesario.

La efectividad del tratamiento se calibrará por la cantidad de azolve extraído al descargar el pozo y la dificultad creciente en levantar presión al inyectar, debido al incremento de la permeabilidad del acuífero en el entorno del pozo.

IV.3.3.3.- Desarrollos con oleada mecánica o pistoneo.

El equipo necesario es una perforadora de percusión provista de pistón, cuchara y una sarta de perforación adecuada. Por consiguiente resulta el método más adecuado al desarrollo de pozos perforados con equipo de percusión. Dado que aún perforadoras pequeñas pueden realizar el trabajo, con ciertas limitaciones y la abundancia de estos equipos resulta un sistema muy popular para la rehabilitación de pozos. La efectividad de un tratamiento con pistón depende de condiciones naturales o constructivas, sobre las que el desarrollo no puede influir y de otras que le son propias como:

IV.3.3.3.1- Ciclo del pistón y longitud de la carrera.

La mayoría de las perforadoras a percusión tienen tres o cuatro perforaciones en la conexión de la biela, cada una de las cuales corresponde a una frecuencia de golpeo. Cada ciclo a su vez corresponde a una longitud de carrera determinada para cada modelo de perforadora, de modo que a ciclos mas lentos carreras más largas y así ciclo, longitud de carrera y diámetro del pozo se combinan y determinad el caudal que el pistón inyecta y extrae del pozo en cada pistonazo. Aunque varía ligeramente entre los distintos modelos podemos considerar como típicos los siguientes ciclos:

Ciclo 1: 20 carreras por minuto y longitud de unos 95 cm.

Ciclo 2: 28 a 32 carreras por minuto y longitud de unos 80 cm.

Ciclo 3: 40 a 45 carreras por minuto y longitud de unos 50 cm.

El trabajo de desarrollo se programará de tal modo que se inicie con el menor caudal (Ciclo 1) y se incremente cuando se observe que el aporte de azolve al pozo va disminuyendo (Ciclos 2 y 3).

El caudal del pistoneo se obtendrá:

Q = Axcxl

donde:

Q = Caudal pistoneado en m3/min

A = Area transversal interior del tubo en m²

c = carreras/min

l = longitud de la carrera en m

En la práctica el caudal así obtenido es siempre menor que el real, pues siempre estará presente el efecto de flotación a que esta sometido el pistón, el que será mas notorio cuanto mayor sea el diámetro del ademe a tratar y más ligero sea el pistón.

Conviene detenernos a considerar cual es la importancia de el caudal pistoneado: Es el volumen de agua que en la unidad de tiempo es inyectado y succionado desde el pozo hacia el acuífero y viceversa. Si conocemos las características geométricas del pozo a pistonear, como diámetro del ademe, tramos con cedazo y características del mismo es fácil obtener el área libre (Al), por la que se inyectará el caudal antes calculado y consecuentemente la velocidad de inyección y succión:

v = Q/AI

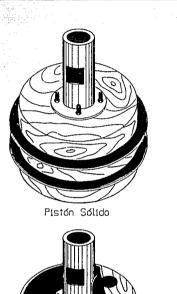
Evidentemente el pistoneo será mas efectivo cuanto mayor sea la velocidad, pues el flujo turbulento es el que es capaz de aflojar, levantar y arrastrar partículas, lo cual es precisamente la finalidad del desarrollo. Cuando pistoneando al máximo caudal no se observen los efectos del pistoneo será el momento de dar por finalizado el trabajo.

IV.3.3.3.2.- Peso de la sarta del pistón.

El pistón debe tener un peso mínimo para compensar el efecto de flotación provocado por el agua desplazada en el pistonazo, el volumen que desplaza la propia herramienta sumergida y lograr el desplazamiento de la herramienta a lo largo de la carrera de la máquina en tiempos iguales o menores al ciclo de pistoneo.

En la Tabla Nº 10 se señalan los pesos mínimos requeridos en la sarta para que se cumplan estas condiciones con tres diferentes ciclos y longitudes de carrera, que se consideran representativas y en la Tabla Nº 9 las pesos de barretones comerciales en distintos diámetros y longitudes.

IV.3.3.3.- El pistón.


Consta de tres discos de madera impregnada de aceite quemado o chapopote, de diámetro 5 cm (2") menor que el interior del pozo, entre los cuales se intercalan dos discos de hule de 1 cm de grueso y diámetro igual al interior del ademe. Este paquete de discos se sujeta con otros dos exteriores de pequeño diámetro cuya única función es mantener fuertemente unido el pistón (Ver Fig. 23).

Una variedad de pistón es el de válvula, que es similar al anterior con la particularidad de que está atravesado verticalmente por cuatro o más perforaciones del mayor diámetro que sea posible y que deben ser coincidentes de lado a lado del pistón, en la parte superior del cual se colocará un disco adicional de hule fuerte sin perforaciones y sujeto solo en la parte central del pistón. Cuando el pistón cae, el

	Tabla Nº9 Peso aprox. de barretones, en kg. en función de su diámetro y longitud (en pies y metros)													
Diamet	ro	Junta	6	8	10	12	14	16	18	20	22	24	28	32
Pulg.	cm	API	1.829	2.438	3.048	3.658	4.267	4.877	5.486	6.096	6,706	7.315	8.534	9.754
2 1/4	5.715	1 3/4	36.8	49	61.6	74	86	98.3	111	123				
2 1/4	5.715	21/4	48.5	60.7	73.5	85.5	97.9	110	123	135		ĺĺ	í 1	
3	7.620	2 1/4	65.3	87	109	131	153	174	196	218	240	262		
3	7.620	2 5/8	81.1	103	125	147	168	190	212	234	256	278		
3 1/4	8.255	2 1/4	76.1	102	128	154	180	206	231	257	2R3	309		
3 1/4	8.255	25/8	92	108	144	170	196	222	248	273	299	325		
3 1/2	8.890	2.5/8	89.2	109	149	178	208	237	267	296	326	355	414	473
3 1/2	8.890	3	107	134	163	193	222	252	282	311	340	370	429	487
3 3/4	9.525	3	109	143	177	211	245	479	313	347	381	415	478	546
4	10.160	3	117	155	194	233	272	ı	348	378	426	464	541	618
4	10.160	3 1/4	129	167	205	244	283		360	398		474	552	628
4 1/4	10.795	3	131	175	219	262	306	350	394	437	478	523	610	696
4 1/4	10.795	3 1/4	143	187	230		318	361	405	448	491	534	622	708
4 1/4	10.795	3 3/4	162	206	250	294	337	385	429	471	515	558	645	732
4 1/2	11.430	3 1/4	147	196	245	294	343	392	441	489	538	586	682	778
4 1/2	11.430	3 3/4	168	216	266	314	364	413	460	510			705	804
4 3/4	12.065	3 3/4	179	234	288	343	397	452	505	559		780	777	886
5	12.700	3 3/4			309	369	429	489	550	609	669	.	850	971
5 1/2	Pin	3 3/4						l						
	Caja	4 1/4		1	386	458			677			895	1041	1088
6	15.240	. 5			475	563	650	737	824	910	998	1086	1259	1437

Diametr	Diámetro Nomi 8 5/8 10 5/8 12 3/4 14 16 18							
carrera	ciclos			Peso Mín	imo del l	Barreión		
m.	/min.				Kg.			
0.50	45.00	26.54	41.26	58.01	69.91	91.31	115.60	142.70
0.80	30.00	40.18	62.45	87,82	105.83	138.22	174.99	216.02
0.95	20.00	44.55	69.25	97.38	117.35	153.27	194.04	239.54

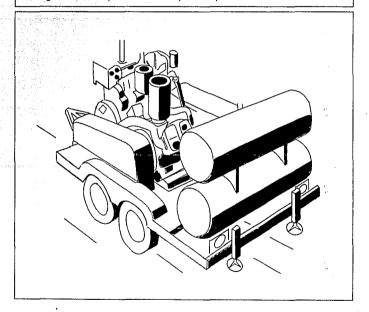
Figura 23.- Pistones para desarrollar pozos.

Pistón de válvula

hule superior se levanta permitiendo el paso del agua por las perforaciones y cuando sube el hule se pega al cuerpo del pistón cerrando la "válvula". Este pistón por consiguiente inyecta en forma menos eficiente que el sólido y succiona como él. Esta desventaja en cambio permite operaciones de pistoneo, eficientes durante la succión, aun cuando el peso de la sarta no alcance los requerimientos del inciso IV.3.3.3.1

IV.3.3.3.4.- Operación del pistón.

La maniobra inicial de el desarrollo será verificar fondo, anotando su profundidad, para en lo sucesivo medir la efectividad del método en función de la cantidad de azolve arrastrado por el pistoneo. Al operarse el pistón debe desplacamente, sin golpes fuertes en el cable. Cada 5 o 10 minutos de pistoneo se retira la herramienta y se saca el azolve con una cuchara o bomba de arena, llevándose un control de la cantidad de cucharadas necesarios para desazolvar el pozo, con objeto de ampliar o reducir el tiempo de pistoneo. Al avanzar el desarrollo se verá que su efecto se reduce y por tanto los intervalos de las oleadas serán mas largos, considerándose finalizado el tratamiento cuando no haya aporte de azolve después de una hora de oleadas continuas en la carrera mas efectiva.


Si el cedazo del pozo es de alambre helicoidal, P.V.C. u otro material cualquiera que se considere poco resistente a la fricción del pistón, este se colocará en zonas de tubo liso lo más cercanas posible a la zona a desarrollar cuidando siempre que el pistón trabaje con una sumergencia de al menos 3 m. Si fuera tubo de acero ranurado, canastilla o cualquier otro resistente, el pistoneo se efectuará a lo largo de todo el pozo y preferentemente frente a la zona de rejilla. En las dos modalidades el efecto de la inyección y la succión se trasmite a todo el cedazo a través de la columna de agua, pero al pistonear frente a éste, se adiciona la turbulencia que se provoca en la cercanía del pistón.

IV.3.3.4.- Desarrollo neumático.

El equipo requerido para un desarrollo con aire comprimido es: Compresor de aire (preferentemente de alta presión; 17.5 kg/cm², 250 lb/pulg²), sifón (tuberías de inyección y descarga), equipo auxiliar (válvulas, cabezales, trampas, etc.), y tanques de almacenamiento de aire comprimido de al menos 1 m³ (Ver Fig. 24).

En cualquier desarrollo con aire se debe tener muy presente, que el sifoneo del pozo es una operación cuya finalidad única es extraer el azolve que ha llegado al pozo debido a las descargas de aire o a la presurización del pozo. Existen tres variantes del método:

Figura 24.- Compresor de alta presión para desarrollo neumático.

IV.3.3.4.1.- Desarrollo neumático a pozo abierto.

Se basa en el principio de provocar la agitación del pozo mediante descargas de aire comprimido a presión, el cual previamente fue almacenado en los tanques de alta presión (Ver Fig 25).

- El desarrollo se inicia desazolvando el pozo con el sifón hasta verificar el fondo.
- Se levantan las tuberías unos tres metros y se acumula aire en el tanque hasta una presión ligeramente superior (1/2 Kg/cm²) a la necesaria para romper la columna de agua (Ver apéndice C, tabla de conversión de presiones). Se descarga el aire a esa presión unas 5 veces y se sifonea hasta obtener agua limpia en la descarga.
- Se repite la operación hasta que después de 10 descargas el agua salga clara, momento en que se iniciará un nuevo ciclo aumentando en 1 Kg/cm² la presión en los tanques.

El desarrollo terminará cuando con la máxima presión del compresor no se logre enturbiar el agua ni bajar el filtro de grava. Este método de desarrollo resulta efectivo y rápido pero tiene como principal limitación la presión que logre levantar el compresor; por consiguiente, con compresores estandard de 8.8 Kg/cm² (125 lb/pulg²) solo se podrán desarrollar pozos con 88 m de sumergencia, mientras que con el recomendado, de 17.6 Kg/cm² (250 lb/pulg²) se pueden tratar pozos con sumergencias de hasta 176 m lo que cubre el rango de la mayoría de los pozos de agua. Además de la posibilidad de atacar pozos mas profundos, el compresor de alta presión permite un desarrollo mas intenso, dado que se puede ir levantando la presión hasta los 17.6 en lugar de los 8.8 Kg/cm² del estandard.

IV.3.3.4.2- Desarrollo neumático a pozo cerrado.

Este sistema de desarrollo debe su efectividad a la capacidad del aire comprimido para desplazar el agua por el interior del pozo, inyectándolo hacia la formación a través de las ranuras, e invirtiendo la dirección del flujo desde el acuífero hacia el pozo cuando se libera la presión en el pozo. En esta modalidad no se requiere de tanques de almacenamiento, pero si de un cabezal con el cuál sellar el brocal del pozo y a través del que penetran las tuberías de inyección y descarga del sifón. Otra entrada con conexión rápida sirve para entrada del aire. (Fig. 26)

- La operación inicial del desarrollo consiste en desazolvar totalmente el pozo por medio del sifón, verificando fondo. A continuación se levantará el sifón unos 3 m y se coloca el cabezal, bien soldado al brocal.

Figura 25. Dispositivo para desarrollo neumático a pozo abierto.

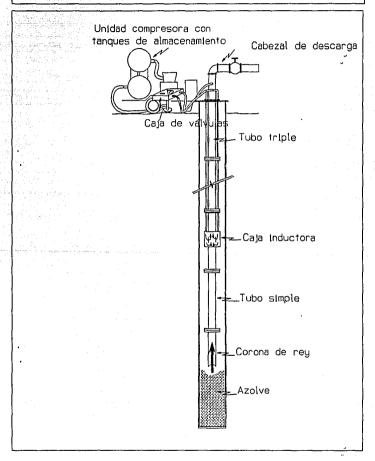
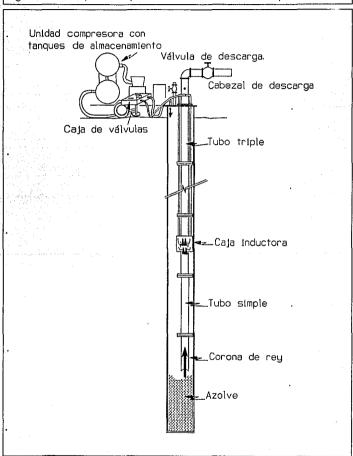



Figura 26.- Dispositivo para desarrollo neumático a pozo cerrado.

- Se empieza a inyectar aire a través de la entrada del cabezal, hasta alcanzar una presión de 1 Kg/cm².
- Se abre la válvula de paso rápido, para liberar la presión acumulada en el pozo y se repite la operación unas cinco veces.
 - Se sifonea hasta obtener agua limpia.
- Si se observa que el aporte de azolve es escaso es recomendable aumentar el ciclo de presurizaciones a unas diez veces.
- Se repite todo el ciclo de presurización y sifoneo, manteniendo la misma presión hasta que se observe escaso efecto durante dos ciclos consecutivos, en cuyo caso se aumentará la presión en 0.5 Kg/cm² repitiéndose todo el proceso.

La limitación en el progreso de este tipo de desarrollo se establece por la capacidad de presurizar de el compresor, y por la posición relativa del nivel estático del pozo respecto a las primeras aberturas del cedazo, por donde escapa la presión a través del filtro granular.

III.3.3.4.3.- Desarrollo neumático combinado.

El equipo e instalación empleado, es similar al del pozo cerrado, pero además se cuenta con tanques de almacenamiento de aire a alta presión.

Así es posible descargar en el fondo si la presión hidrostática lo permite como en la modalidad de pozo abierto, inyectar presión por el cabezal como en la de pozo cerrado y además dar descargas por el cabezal, formando en el pozo una cámara de pleno con una inyección al acuífero más acelerada que el caso del pozo cerrado.

Por lo anterior, resulta el método de desarrollo neumático mas enérgico y versátil, pues permite escoger en cada caso particular la variante o combinación de ellas con que se observen mejores resultados.

IV.3.3.5.- Desarrollo de formaciones rocosas.

Los métodos de desarrollo físico que se han venido comentando son aplicables también a las formaciones rocosas puesto que tienden a remover los materiales finos que se encuentren obstruyendo en mayor o menor grado las fracturas o las cavidades de disolución. Debe tenerse presente que ésta es la única posibilidad a diferencia de el desarrollo con explosivos, que fracturan la roca aumentando el número de vías de acceso al agua.

IV.3.3.5.1.- Desarrollo con explosivos.

Su empleo se limita a pozos perforados en roca lo suficiéntemente estable como para no haber sido ademados o solo parcialmente, en cuyo caso la explosión se provocará lejos del tubo. Las cargas de explosivo que se emplean pueden variar entre 15 y 50 Kg, dependiendo de la roca a fracturar, el diámetro del pozo y la profundidad.

El efecto fisurador de un explosivo en un pozo es en realidad muy limitado y por tanto salvo casos excepcionales no se deberá considerar como un verdadero método de desarrollo, sino como un modo de producir una fracturación inicial de la roca que facilite la penetración de un tratamiento con HCl o con dispersante.

Existen varias fórmulas para tratar de cuantificar en forma aproximada los efectos de la acción de una explosión subterránea, pero todas ofrecen cierto grado de incertidumbre pues hacen intervenir variables que generalmente son desconocidas como la densidad media de la roca a fracturar o alguna otra constante dependiente de las características de la roca. Por consiguiente no abundaremos mas en este tema y en caso de necesidad se recurrirá a la literatura especializada.

En la actualidad se vienen empleando pequeñas cantidades de explosivos para arrancar incrustaciones en ademes, tanto en formaciones consolidadas como en las que no lo son (Sonar Jet). Consiste en una serie de pequeñas cargas de explosivos que se detonan según tiempos determinados y provocan una serie de ondas de choque que desprenden las incrustaciones sin lastimar la tubería.

IV.3.3.6.- Desarrollo con Hielo Seco.

La nieve carbónica, más comúnmente conocida como hielo seco es anhídrido carbónico sólido.

Al entrar en contacto con el agua, el hielo seco burbujea intensamente. Esto se produce por un cambio del hielo seco solido a líquido y otro subsecuente se líquido a gas. Estos cambios de estado libera gran cantidad de calor y un notable aumento de volumen (unas 150 veces), lo que puede resultar en una brusca expulsión del agua del pozo hacia el exterior en unión de un volumen más o menos grande de sólidos, lo cual lo convierte en un método de desarrollo, que en el pasado gozó de popularidad pues requiere de poca técnica y equipo.

A pesar de que la explosión puede ser muy violenta y espectacular, el efecto del desarrollo puede ser muy pobre pues sólo se pueden efectuar unas cuantas apli-

caciones. Por otra parte, cuando el pozo está tan tapado como para aproximarse a un compartimento estanco y la tubería del ademe en malas condiciones, la violenta explosión puede provocar un vació en el interior del pozo, capaz de colapsar el ademe. Por todo lo anterior, podríamos calificarlo como el menos recomendable de los métodos de desarrollo, sólo aplicable cuando no se pueda utilizar ningún otro.

La cantidad aproximada de hielo seco a colocar en cada aplicación es de 1 Kg por cada m³ de agua en el pozo.

IV.4.- HERRAMIENTAS DE PESCA

En el vocabulario de la perforación de pozos, se llaman "operaciones de pesca" a aquellas tendientes a extraer desde el pozo hasta la superficie, cualquier material indeseable que se encontrara en su interior. Por extensión en el mantenimiento y rehabilitación de pozos se emplea la misma terminología si bien el tipo de objetos que se pescan en una de otra actividad difieren, pues mientras que en la perforación lo usual es extraer la propia herramienta de perforación, en la rehabilitación por lo general se pescan bombas y objetos que alguien por descuido u ignorancia ha dejado caer al pozo.

El tipo de herramienta que se utilice para una pesca es enormenente variado pues depende de el tipo de pesca de que se trate, de la experiencia y preferencia y recursos propios de cada operador, por lo que resulta iluso el pretender dar reglas o "recetas" al respecto, con excepción de las que siguen que resultan invalorables:

- 1 No inicie ninguna maniobra de pesca antes de tener toda la información posible al respecto como geometría del pescado, situación en el pozo, peso aproximado, esta libre o aprisionado, etc.
- 2 Organice detenidamente la o las maniobras que requiere para la pesca en el orden correspondiente y verifique si cuenta con el equipo y materiales necesarios, en caso negativo obténgalos antes de iniciar la operación.
- 3 Repase toda su estrategia de pesca varias veces y si no encuentra fallas ni posibles mejoras inicie la pesca.

Por lo que respecta a las herramientas a utilizar son también muy variadas y en muchos casos construidas en campo por lo que sólo citaremos las más frecuentemente usuadas en máquinas de percusión y fabricadas por casi todas las firmas especializadas.

Portacable Rígido.

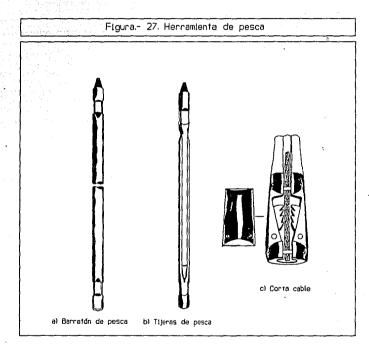
Para realizar las labores de pesca se emplea un portacable rígido en lugar del giratorio usado para perforar, ya que con él no existe variación en la longitud del cable, como sucede con el portacable giratorio. Como la precisión es importantísima en las maniobras de pesca deben cuidarse todos los detalles, de ahí la necesidad de tener en cuenta que un error de unos pocos centímetros puede estropear una faena de pesca. Si no se cuenta con un portacable rígido, se puede utilizar el giratorio pero introduciendo un trozo de madera que acuñe la bala, con lo que se evita su juego.

Barretón de pesca.

El barretón (Fig. 27 a) de pesca es más corto y ligero que el normal utilizado en la perforación. Se utiliza debajo del portacable y encima de las tijeras de pesca.

Tijeras de pesca.

Son iguales que las tijeras de perforación pero su carrera es más larga (Fig. 27 b). La finalidad de esta característica es que al golpear hacia arriba no exista un golpe hacia abajo al mismo tiempo, si se golpea en ambos sentidos existe una gran probabilidad que nuestra pesca se desenganche. Cuando hay que golpear hacia abajo, es muy complicado hacerlo con unas tijeras normales ya que la caída del barretón es, a lo más, igual a la carrera de la tijera.


Corta-Cable.

Cuando las herramientas están tan atascadas en el sondeo que no se pueden soltar con el golpeador, se tiene que cortar el cable lo más cerca posible del portacable, para intentar después una pesca con campana.

El cortador de cable (Fig. 27 c) completo, comprende el portacable rígido, un barretón, tijera de pesca y corta-cable, manejado con el cable de cuchara.

Se quita del cortador la tapa, las cuchillas y los pasadores y se arma alrededor del cable, pero sin poner las cuchillas. Se tensa el cable que se ha de cortar.

Se baja el cortador comprobando que corra por el cable libremente hasta el portacable, se sube y se le agregan las cuchillas limpias y bien engrasadas, se baja otra vez hasta el portacable. La acción de corte se realiza golpeando hacia arriba sucesivamente.

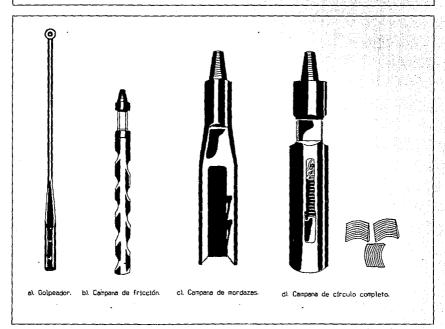
Golpeador.

Se utiliza para soltar herramientas que se han acuñado (Fig. 28 a) Esto suele ocurrir cuando se perfora sin tijeras, pues es más fácil que se atore la herramienta, sin tener el impulso extra que otorgan las tijeras. El golpeador se suspende de el cable de la cuchara y el cable de perforación sirve como guía. Para impedir que se enreden los cables de cuchareo y de perforación, se debe tensar este ultimo antes de descender el golpeador, que de preferencia no se debe bajar de una sola vez sino en varios tramos. Una vez que ha tocado el cuello del portacable, se sube unos 3 a 5 metros, para luego dejarse caer libremente, por lo común unos cuantos golpes aflojan la herramienta, exceptuando en algunas ocasiones en que la herramienta está muy enterrada, por algunos pequeños caídos.

También si por algunos desprendimientos, se atascan las tijeras, estas pueden desatorarse, utilizando un método análogo, pero aplicando menos tensión al cable de perforación y dejando el freno del malacate de perforación apretado ligeramente.

Si no se dispone de cortacables, el golpeador puede cortar el cable del portacable, dejando a este cable un poco flojo, y golpeando sucesivamente, unas 10 o 12 veces desde una altura de 3 metros, a continuación se le dan tirones sucesivos hasta que el cable se rompe de la parte machacada por el golpeador.

Campana de fricción.


La forma de pescar cuando se desenrosca o rompe la rosca de una broca, es con una campana de fricción (Fig. 28 b). No se debe intentar pescarlo a la primera, si no golpear un poco hacia abajo y después golpear la campana para ver las señales que la broca deja en ella. Si se observa que la broca ha entrado, entonces se golpea más fuerte hasta que se atore, y se comienza a subir. Hay que recordar que esta unión es debida sólo a la fricción por lo que no aguanta muchos golpes hacia arriba.

Si al golpear la broca, se observa en la campana que no entra dentro de ella, quiere decir que se está golpeando de lado, ocasionando enterrarla más, por lo que hay que suspender esta operación y bajar una costilla para enderezarlo, para poder continuar con la campana de fricción.

Campana con Mordazas.

Sirve para pescar el cuello de un portacable después de que se ha cortado el cable. También se puede utilizar para pescar la rosca macho de cualquier herramienta, o cualquier objeto cilíndrico, como son el barretón de perforación, o la tubería, que esté en posición vertical, con la condición que el diámetro sea 0.5 cm me-

Figura 28.- Herramientas de pesca.

nor que el interior de la campana. Las cuñas son de dos tipos: cónicas que sirven para pescar roscas, y cilíndricas para pescar cuellos de portacable y objetos cilíndricos. Teniendo distintos tamaños para cada pieza que se quiera pescar.

Esta herramienta (Fig. 28 c) es sumamente efectiva, y es muy difícil que ésta se desprenda, una vez realizada la pesca, por lo que antes de pescarla, es necesario asegurarse de que la herramienta a pescar no este acuñada de tal forma que sea imposible sacarla.

Se utilizan las tijeras de pesca, y el golpe más corto de la máquina. Se baja la campana lentamente hasta alcanzar la pesca, dándose unos cuantos golpes hacia abajo para hacer el enganche. Si no sale hay que golpear hacia arriba, es conveniente golpear corto y rápido, esta acción puede durar algunas horas. Si no queda libra se puede dar un golpe más largo y fuerte. Si no se puede soltar la herramienta, lo único que queda por hacer es desenganchar la campana, golpeando en los dos sentidos simultáneamente, Si suelta en pocos minutos no se dañará la campana, pero frecuentemente puede tardar mas tiempo en soltar con graves daños a ésta.

Después de terminar la pesca, se desengancha la campana, desarmándola y limpiándola para tenerla lista cuando sea necesario.

Campana del círculo completo.

La campana del círculo completo (Fig. 28 d) sirve para realizar pescas de cuellos de barretón, tijeras, brocas u objetos cilíndricos en posición vertical. Su uso y procedimiento de pesca es igual al de la campana de mordazas, tomando las mismas precauciones.

Costilla.

Esta herramienta (Fig. 29 a), sirve para enderezar brocas o herramientas acostadas sobre la pared, de manera que no puedan ser pescadas por una campana. También puede desacuñar una barra. La manera de utilizarla es bajándola hasta que esté al lado de la pesca, y entonces golpear con la máquina simultáneamente arriba y abajo. Después de 20 o 30 minutos, se quita la costilla y se hace un intento por pescarla.

Si este método no da resultado, hay que colocar la costilla encima de ella, y se hace descender, toda su longitud entre la pared y la herramienta. Se pone en movimiento golpeando arriba y abajo, abriendo así un hueco entre la herramienta y la pared, para poder introducir más fácilmente la campana.

Gancho centrador (Mano de diablo).

Se utiliza para poner en pie herramientas que estén apoyadas en la pared, y no se puedan enderezar con la costilla (Fig. 29 b) Se puede utilizar un portacable giratorio o tubería en lugar de cable.

Se baja el gancho hasta que se encuentre a lado del pescado, y se sube muy despacio hasta llegar a la parte superior de la herramienta perdida. A continuación se arroja al pozo escoria, carbón u otro material blando para evitar que la herramienta se vuelva a acostar en la pared.

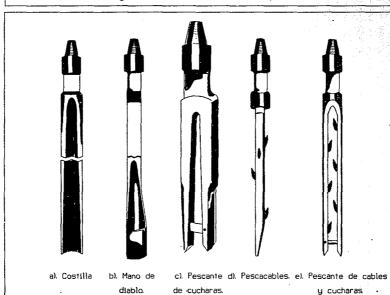
Pescante de cucharas.

Esta herramienta (Fig. 29 c), se utiliza para pescar cucharas que han quedado en el pozo con poco o nada de cable sobre ellas. El pestillo abre hacia arriba para permitir la entrada de el asa de la cuchara dentro de la horquilla del pescante, pero no lo hace hacia abajo con lo que se logra la pesca de la cuchara.

Pesca-cable

Se utiliza para pescar herramientas unidas a una cantidad mas o menos grande de cable (Fig. 29 d), el cual se enreda en los ganchos de que va provisto el pescante.

Arpón pesca-cable con pestillo.


Se trata de una herramienta híbrida de las dos que acabamos de describir (Fig. 29 e) que se utiliza cuando se rompe el cable de perforación, y queda la herramienta con cable encima. También se utiliza si se rompe el cable de una cuchara.

Se mide el cable desde el punto que corresponde al nivel del suelo hasta el extremo y, tomando en cuenta la longitud de la herramienta y la profundidad del sondeo, se determina la cantidad de cable que quedó en el interior.

Si la cuchara quedó con poco cable, puede ser pescada por el asa con el pestillo de la parte inferior de este pescador. Debe cuidarse que no baje tanto y pueda atorarse con las tijeras, complicando la pesca.Para evitar esto es conveniente que el pescador lleve un disco de madera de diámetro aproximado al del sondeo.

Debe comprobarse que al enganchar con el arpón, quede bien fijo, esto se hace subiendo la pesca unos 5 o 6 metros y aplicar ligeramente el freno de tambor,

Figura 29.- Herramienta de pesca.

para si la pesca no esta bien enganchada, ésta se suelte desde poca altura, lo que es preferible a que no ocurra de una altura mayor.

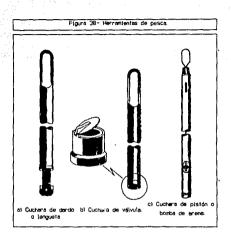
Si las herramientas están atascadas, habrá que ir sacando el cable a pequeños trozos.

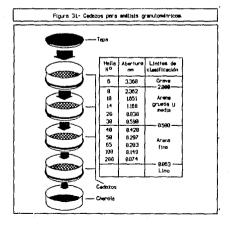
Cucharas.

Aunque la cuchara no es en realidad una herramienta de pesca la incluimos en este capítulo en vista de que su uso es constante en trabajos de rehabilitación de pozos.

Las cucharas mas usuales son la de dardo (Fig. 30 a) y la de válvula (Fig. 30 b), cuya diferencia estriba solo en el tipo de cierre que permite la entrada e impide la salida del material "cuchareado", el cuál previamente debe encontrarse en suspensión para poder penetrar al interior de la cuchara.

La cuchara de pistón (Fig. 30 c) también conocida como bomba de arena, introduce el material a su interior por la succión que provoca un émbolo que se acciona desde la superficie con un cable. Resulta muy práctica para extraer materiales gruesos como la arena e incluso gravilla.


IV.5.- MATERIALES DE CONSTRUCCION DEL POZO.


En la construcción de un pozo interviene un número reducido de materiales, número que se reduce aún más al tratar de la rehabilitación en la que se llegan a utilizar solamente filtro granular, ademes y algunos productos químicos como los dispersantes de arcillas, cloro, o ácido. Estos productos se han tratado en el inciso IV.3.2 al comentar el desarrollo de pozos, de modo que aquí nos limitaremos a comentar lo referente al filtro y el ademe.

IV.5.1.- El filtro granular.

La presencia de arena en los pozos de producción es uno de los problemas más frecuentes que se presentan en este tipo de obras, debido en la mayoría de los casos a un mal diseño, construcción deficiente o ambas causas.

Una solución temporal a la presencia de arena, consiste en un desarrollo enérgico del pozo que penetre lo más profundamente posible en el acuífero, dejándolo limpio de arena, pero dado que no se han modificado las condiciones defectuosas originales, el pozo algún día volverá a producir finos, aunque si el tratamiento es

lo suficientemente profundo puede permitir varios años de operación normal, antes de requerirse una nueva rehabilitación.

Para remediar en forma definitiva el problema, deberemos realizar en la rehabilitación lo que debió hacerse al construirlo o sea colocar un cedazo y filtro granular adecuados a la granulometría del acuífero, lo cuál sólo puede lograrse instalando en el interior de la obra un nuevo cedazo y filtro granular diseñados en función de la granulometría del azolve extraído del pozo.

Lo anterior limita esta solución a pozos con ademes de grandes diámetros pues el nuevo cedazo y filtro lo reducirán en unos 15.24 cm (6") como mínimo, lo que probablemente implicaría cambiar a una bomba de menor diámetro y por tanto de menor caudal. En resumen esta posibilidad dependerá las características geométricas de cada pozo y de los requerimientos de agua. Por otra parte, los nuevos elementos implantados, implican pérdidas de carga adicionales y por tanto una baja en la capacidad específica del pozo.

IV.5.1.1.- Métodos de diseño de filtros granulares.

Existen varios métodos para el diseño de un filtro granular para pozo, pero antes de comentarlos, definiremos algunos conceptos de uso necesario para comprender las explicaciones.

El método de Stow ofrece una curva granulométrica del filtro, y consecuentemente se tienen que mezclar varios tamaños de granos en distintos porcentajes de pesos para lograr tener en la práctica un filtro similar al de la curva calculada. Cuando en la región de trabajo no se cuenta con una fuente de grava manejada por personal medianamente calificado, puede resultar imposible el lograr lo anterior.

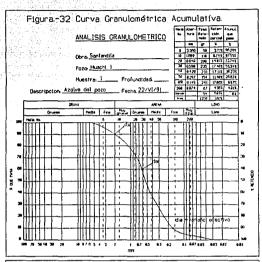
IV.5.1.1.1- Gráfica granulométrica.

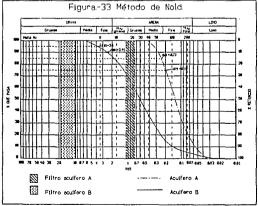
Para calcular el filtro granular que requiere un pozo por cualquiera de los métodos que comentaremos a continuación, es necesario como primer paso obtener una muestra del material que se pretende filtrar, y a partir de ella elaborar la curva granulométrica acumulativa.

En la rehabilitación de un pozo productor de sólidos se muestreará el material arrastrado dentro del pozo (azolve), que no pudieron parar el cedazo y el filtro original, si es que existen.

La muestra seleccionada, se pesa y se hace pasar por un juego de cedazos de distintas aberturas dispuestas de mayor a menor (Ver Fig. 31), pesándose el mate-

rial retenido por cada malla y calculando el porcentaje de retención parcial con respecto al peso total. Después se calcula el porcentaje acumulado que pasa, restando del 100 %, la sumatoria de la retención parcial de cada una de las mallas anteriores, y a continuación se grafica en un papel semilogarítmico el porcentaje acumulado que pasa en el eje de escala normal, y la abertura de la malla en el eje logarítmico.


En la Fig. 32 se presenta a modo de ejemplo una curva granulométrica obtenida a partir de una muestra heterogénea extraída del azolve de un pozo en rehabilitación, que tenía un peso de 1.350 Kg. En la tabla de la parte superior aparecen los pesos retenidos por cada malla y a partir de ellos se calcularon los porcentajes de retención parcial y el porcentaje acumulado que pasa.


En la parte central de la figura aparecen: la clasificación de materiales granulares de la División de Aguas Subterránea del Servicio Geológico de los Estados Unidos, la representación del tamaño de las mallas utilizadas en la prueba y la curva granulométrica obtenida de la muestra del ejemplo.

IV.5.1.1.2- Definiciones.

La nomenclatura utilizada en las fórmulas de los métodos de diseño de filtro que se verán a continuación, corresponde principalmente al tamaño de los granos y el porcentaje del peso de la muestra, tanto del acuífero o material de azolve, como del filtro:

- Tamaño (d_X) o el tamaño de las partículas (d) tal que el (x) porcentaje en peso es más pequeño. Por tanto (100 x) representa el porcentaje retenido por la malla de abertura (d). Por ejemplo (2_{90}) quiere decir que el 90% del total del material es menor a 2. m.m. y el 10% es mayor. (punto d_{90} de la Fig. 32).
- Coeficiente de uniformidad es la razón del tamaño d_{60} respecto al tamaño duo del material (d_{60}/d_{10}) . Valores del coeficiente que se acerquen a 1, indican una muestra homogénea. El valor 1 no se dá en materiales naturales y representa una homogéneidad perfecta. En la Fig. 32, d_{60} =0.61 y d_{10} =0.17, por tanto el Coeficiente de Uniformidad resulta de 3.59.
- Tamaño Efectivo es el tamaño del tamiz que retiene el 90% de la muestra y que por consecuencia deja pasar el 10% de esta, (d₁₀). En la Fig. 32 el Tamaño Efectivo es igual a 0.17.

IV.5.1.1.3.- Método de Nold.

El método de Nold desarrollado en 1962, obtiene dos valores correspondientes a los límites superior e inferior de los tamaños del grano del filtro. Por lo tanto para obtener este material, sólo se tiene que cernir la grava a través de dos cribas de estos tamaños, quedando como filtro, el material que se retuvo entre las dos (Fig. 33).

Se basa en el Coeficiente de Uniformidad del acuífero; si este valor oscila entre 3 y 5, o lo que es lo mismo se trata de un material poco uniforme, el d_{95} del acuífero se multiplica por 5, obteniéndose así el límite superior del filtro, y el d_{90} del acuífero multiplicado por 4, proporciona el límite inferior.

Si el coeficiente de uniformidad es menor de 3; el d₈₅ del acuífero multiplicado por 5, proporciona el límite superior del filtro y el d₇₅ multiplicado por 4, nos señala el límite inferior.

Coeficiente de uniformidad del acuífero (d ₆₀ /d ₁₀)	Límite Superior	Límite Inferior
Entre 3 y 5	d ₉₅ x 5	d ₉₀ x 4
Menor a 3	d ₈₅ x 5	d ₇₅ x 4

En el ejemplo de la Fig. 33: se presentan dos curvas granulométricas, que corresponden a dos acuíferos: uno uniforme y el segundo no uniforme; En el primer caso: $(d\omega/d\omega)=0.15/.054=2.78$, su límite superior será das x 5=0.23 x 5=1.15. El límite inferior se calcula d_{75} x 4=0.2 x 4=0.8.

En el 2º caso: $(d_{60}/d_{10})=0.78/0.15=5.2$ y el límite superior será d_{95} x 5=3.6 x 5=18 . El límite inferior se calcula d_{90} x 4=2.45 x 4=9.8.

IV.5.1.1.4.- Método de Fuchs.(Modificado)

Este método se desarrolló en 1963, y es aplicable preferentemente a acuíferos heterogéneos, basándose en el coeficiente de uniformidad del acuífero.

Si el coeficiente de uniformidad es menor a 3:

d₈₅ del acuífero por 4 igual a d₅₀ del filtro d₅₀ del acuífero por 16 igual a d₅₀ del filtro

Se tomará como tamaño del filtro el menor de los dos d_{so} obtenidos.

Si el coeficiente de uniformidad varía entre 3 y 5:

d₈₅ del acuífero por 4 igual a d₅₀ del filtro d₅₀ del acuífero por 10 igual a d₅₀ del filtro

Se tomará como tamaño del filtro el menor de los dos dos obtenidos.

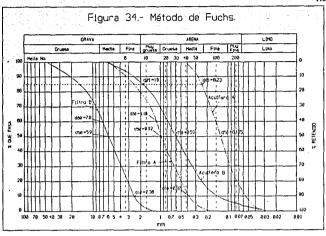
Utilizando como pivote el d_{50} del filtro se admitirán filtros cuyo coeficiente de uniformidad no exceda de 3.

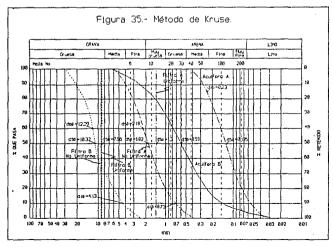
La fig.-34 muestra las mismas curvas del acuífero de la fig.-33, donde se obtuvieron los siguientes datos :

- Acuífero A (Uniforme):
$$d_{85} = 0.23$$
 , $d_{50} = 0.135$, Coeficiente de Uniformidad=2.78

Realizando las operaciones indicadas:

$$\begin{array}{llll} d_{50 \; filtro} = d_{85 a cuifero} \; x \; 4 & = 0.23 \; \; x \; \; 4 \; = 0.92 \\ d_{50 \; filtro} = d_{50 \; a cuifero} \; x \; 16 & = 0.135 \; x \; 16 \; = 2.16 \end{array}$$


Se toma el d_{50} menor, que es igual a 0.92, y con centro en este valor se construye una curva con un coeficiente de uniformidad no mayor de 3. En la curva de filtro $d_{60} = 1.10$. y $d_{10} = 0.37$.


-Acusero B (No uniforme):
$$d_{85} = 1.9$$
, $d_{50} = 0.59$, Coeficiente de Uniformidad=5.2

Realizando las operaciones indicadas:

$$d_{50 \text{ filtro}} = d_{85 \text{acuffero}} \times 4 = 1.9 \times 4 = 7.6$$

 $d_{50 \text{ filtro}} = d_{50 \text{acuffero}} \times 10 = 0.59 \times 10 = 5.9$

Se toma el do menor, que es igual a 5.9, y con centro en este valor se construye una curva con un coeficiente de uniformidad no mayor de 3. En la curva de filtro \mathbf{d}_{60} = 7.0 y \mathbf{d}_{10} = 2.36.

IV.5.1.1.5.- Método de Kruse (modificado).

Este método se basa principalmente en la relación entre los tamaños de granos para el filtro y el acuífero en sus dso, los valores de esta relación (F/A) se deben escoger según las características del acuífero y del filtro granular, que a continuación se presentan:

Acuífero	Filtro Granular	Valor Máximo de F/A
Uniforme	Uniforme	9.5
No uniforme	Uniforme	13.5
Uniforme	No Uniforme	13.5
No uniforme	No Uniforme	17.5

Una vez escogida la relación F/A se multiplica por el d_{50} del acustero, obteniendo el tamaño del d_{50} del filtro granular.

Si el filtro es no uniforme se utiliza centro el d_{50} y se construye la gráfica del filtro, cuyo coeficiente de uniformidad no excedera de 3.

Si es uniforme, se elige con quién sumunistre el filtro de grava las mallas que se acerquen más al ${\rm d}_{50}$ obtenido; una con un diámetro de cedazo mayor y otra menor.

En la figura 35 se muestran dos ejemplos de filtros calculados por el método de Kruse:

Acuffero A (Uniforme): $d_{50} = 0.135$, Coeficiente de Uniformidad=2.78

Para un filtro uniforme el valor máximo de F/A es de 9.5 por lo tanto:

$$d_{\text{50 filtre}} = d_{\text{50 souttern}} \times 9.5 = 0.135 \times 9.5 = 1.3$$

Para un filtro no uniforme el valor máximo de F/A es de 13.5 por lo tanto:

$$d_{50 \text{ filtro}} = d_{50 \text{ acustero}} \times 13.5 = 0.135 \times 13.5 = 1.82$$

Con centro en dso se construye una curva cuyo coeficiente de uniformidad no exceda de 3. En el ejemplo: d_{60} =2.18 y d_{10} = 0.73

-Acuífero B (No uniforme): d₅₀ = 0.59, Coeficiente de Uniformidad=5.2

Para un filtro uniforme el valor máximo de F/A es de 13.5 por lo tanto:

Para un filtro no uniforme el valor máximo de F/A es de 17.5 por lo tanto:

$$d_{50 \text{ filtro}} = d_{50 \text{ acuffero}} \times 17.5 = 0.59 \times 17.5 = 10.32$$

Con centro en do se construye una curva cuyo coeficiente de uniformidad no exceda de 3. En el ejemplo: $d_{c0}=12.39~y~d_{10}=4.13$

IV.5.1.1.6.- Método de Stow.

El método de Stow obtiene la curva del filtro granular a partir de los siguientes calculos:

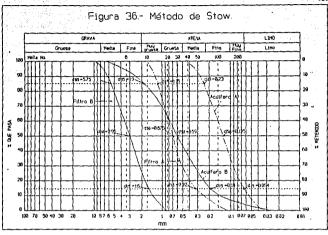
$$d_{85 \text{ filtro}} = d_{85 \text{ acuffero}} \times 5$$

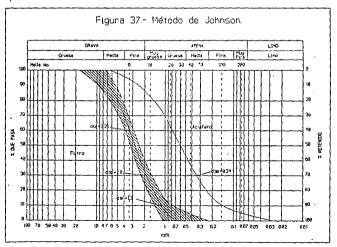
$$d_{50 \text{ filtro}} = d_{50 \text{ acuffero}} \times 5$$

$$d_{15 \text{ filtro}} = d_{15 \text{ acuffero}} \times 5$$

Ademas la relación (d_{85}/d_{15}) del filtro debe ser menor a 5, si esta relación es mayor a 5, hay que ajustar el d_{85} y d_{15} para reducir la relación hasta el límite permitido.

En la Fig.-36 se muestran dos ejemplos del método de Stow:


Acuífero A:
$$d_{85}=0.23$$
, $d_{50}=0.135$ y $d_{15}=0.064$


Los puntos del Filtro para el acuífero A seran entonces:

$$\begin{array}{l} d_{85 filtro} \! = \! d_{85 acutfero} \, x \, 5 \! = \! 0.230 \, x \, 5 \! = \! 1.150 \\ d_{50 filtro} \! = \! d_{50 acutfero} \, x \, 5 \! = \! 0.135 \, x \, 5 \! = \! 0.675 \\ d_{15 filtro} \! = \! d_{15 acutfero} \, x \, 5 \! = \! 0.064 \, x \, 5 \! = \! 0.320 \end{array}$$

Calculando la relación $d_{85}/d_{15}=0.23/0.064=3.6$ siendo esta menor a 5 no.hay que ajustar.

Una vez que se calculan estos tres puntos se grafica la curva del filtro A, que tiene una forma de "S", invertida.

Acuifero B:
$$d_{85}=1.9$$
, $d_{50}=0.59$ y $d_{15}=0.19$

Los puntos del Filtro para el acuífero A seran entonces:

$$d_{856litro} = d_{85aculfero} x 5 = 1.90 x 5 = 9.50$$

$$d_{506litro} = d_{50aculfero} x 5 = 0.59 x 5 = 2.95$$

$$d_{156litro} = d_{15aculfero} x 5 = 0.19 x 5 = 0.95$$

Calculando la relación $d_{85}/d_{15}=9.5/0.95=10$ siendo esta mayor a 5 hay que ajustar: disminuyendo d_{85} a 8.0 y aumentando d_{15} a 1.60

Una vez que se calculan estos tres puntos se grafica la curva del filtro B, que tiene una forma de "S", invertida.

IV.5.1.1.7.- Método de Johnson.

El Método de Johnson, al igual que el de Stow, da como resultado una curva granulométrica del filtro, pero con mayor holgura para elegir los tamaños y porcentajes de los granos, por medio de franjas de seguridad.

Los pasos a seguir para el cálculo de la curva granulométrica son los siguientes:

El do del acuífero se multiplica por un factor entre variable entre 4 y 9 dependiendo de las características del acuífero de acuerdo a las siguientes condiciones:

Factor.	Características del acuífero.
4	Material de la formación fino y uniforme.
6	Material de la formación más grueso y no uniforme.
	Formación acuífera de la granulometría muy poco uniforme y contiene limo.

El punto así obtenido será el primero de la curva granulométrica del filtro y corresponde a su \mathbf{d}_{30}

Utilizando este punto como pivote se traza por tanteos una curva suave con un coeficiente de uniformidad (d_{ω}/d_{10}) igual o menor a 2.5. Con 4 o 5 tamaños dentro de la curva se específica el filtro granular dándose tolerancias al porcentaje retenido en cada malla de mas o menos 8%.

En el ejemplo de la Fig.-36 el acuifero tiene un d_{30} =0.34, de la observación de la curva granulométrica se concluye que el material es grueso y no uniforme con muy bajo contenido de Jimo, por lo que el factor a multiplicar será 6.

$$d_{\text{MOSites}} = d_{\text{Macuffero}} \times 6 = 0.34 \times 6 = 2.04$$

Obtenido este valor se pivotea, obteniendo un coeficiente de uniformidad no mayor de 2.5, obteniendo como valores d_{60} =3.25 y d_{10} =1.3, con un coeficiente de uniformidad=3.25/1.3=2.5 una vez que se calculan estos tres puntos se grafica la curva del filtro, que tiene una forma de "S", invertida.

A los lados de ésta con un + y - 8 % se grafican dos líneas que serán las franjas de seguridad.

Cualquier filtro que tenga una curva granulométrica que se encuentre entre las franjas de seguridad sera aceptado como bueno.

IV.5.1.1.8.- Espesor del filtro granular.

Teóricamente un filtro granular funciona eficientemente con un espesor igual a la suma de 4 diámetros de sus gránulos. En la práctica resulta imposible la colocación de filtros de tan escaso espesor, por lo que se acostumbra colocarlos de sespesores de al menos entre 6 y 10 cm. Para garantizar que el filtro envuelva perimetralmente a todo el cedazo, éste deberá estar provisto de centradores.

IV.5.1.1.9.- Origen del filtro granular.

El filtro granular será siempre de origen natural y sus gránulos lo más redondeado que sea posible obtener, característica esta que se obtiene en las rocas sedimentarias clásticas. En las rocas piroclásticas, que han tenido un transporte aéreo, los gránulos son de formas angulosas que resultan mas propensas al empacamiento y la correspondiente disminución de la porosidad. Esta condición perniciosa es extensiva al material triturado, por lo que nunca se debe utilizar como filtro granular en un pozo.

IV.5.2.- Selección del tamaño de la abertura del cedazo.

Una vez determinada la curva del filtro granular, por cualquiera de los métodos antes descritos, se seleccciona el tamaño de la abertura del cedazo en función del tamaño que retenga el 90 % del material del filtro granular.

IV.5.3.- Ademes de pozos.

El ademe de un pozo se puede dividir en dos porciones principales: la de ademe ciego que integra la cámara de bombeo y los tramos intermedios entre acuíferos y la de rejilla o cedazo, por donde el agua penetra al pozo. En la actividad de la rehabilitación de pozos se utilizan preferentemente tramos de cedazo tanto en encamisados interiores como en el caso de reperforaciones y por tanto es a él al que nos referiremos a continuación.

IV.5.3.1.- Materiales constructivos.

Las rejillas de pozo pueden fabricarse con diferentes metales o aleaciones o con P.V.C.. En la Tabla N^o 11 se presentan los materiales metálicos mas utilizados aunque no siempre son asequibles en todos los países.

Las rejillas de P.V.C. de alta densidad, presentan la ventaja, respecto a las metálicas, de su inalterabilidad por la corrosión y la incrustación, aunado a un precio similar o inferior al del acero. En cambio su resistencia mecánica es menor, por lo que puede ser peligroso su uso como ademe en pozos de mas de unos 250 m, pero en el caso de encamisados de pozos rehabilitados donde por lo general ya existe un ademe metálico exterior, esta limitante pierde importancia.

IV.5.3.2.- Unión de tubos del ademe.

La forma de unión de los tubos del ademe durante la construcción del pozo es un tema al que se le ha dado escasa importancia dentro de las fases constructivas y sin embargo es una de las causas mas frecuentes de la falla de tuberías de ademe.

IV.5.3.2.1.- Ademes metálicos.

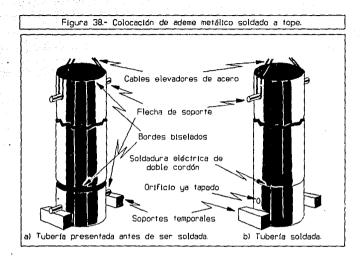

Los ademes metálicos pueden ser unidos mediante rosca y cople, que es el sistema mas recomendable desde el punto de vista técnico, aunque la inversión inicial es mayor, o mediante soldadura eléctrica a tope con doble cordón que es el sistema comunmente utilizado por su menor costo inicial a pesar del gran numero de problemas que se puede presentar por su uso. El problema mas frecuente deriva de la necesidad de suspender la tubería, durante la operación de ademado, de una flecha que atraviesa el ademe a través de unas perforaciones practicadas transversalmente al tubo (Fig.38). Una vez soldados dos tubos consecutivos y por tanto ya unidos, se retira la flecha del inferior y se cierran las perforaciones con el mismo trozo de tubería que previamente se había cortado, posteriormente se baja este tramo de tubería al interior del pozo. Es muy común la falta de atención en la soldadura con que se cierran estas tapas, que se abren con facilidad al poco tiempo de instaladas

Tabla Nº 11 Me	tales de rejillas y	sus aplic	aciones.
Metal o aleación	Composi-	Costo	Aplicaciones
	ción no-	rela-	-
	minal	tivo	
MONEL	70 % níquel	1.5	Altos contenidos de cloruro de sodio
·	30 % cobre		combinado con oxígeno disuelto. No se
			utiliza generalmente en agua subterrá-
			nea potable.
ACERO	74 % acero	1.0	Presencia de Sulfuro de Hidrógeno,
INOXIDABLE	18% cromo		Oxigeno disuelto, Bióxido de carbono.
	8% níque!		Bacterias ferruginosas. Alta resistencia
			mecánica.
EVERDUR	96% cobre	1.0	Aguas de alta dureza total, alto cloruro
ļ	3% sflice		de sodio, sin oxígeno disuelto, alto con-
	1% manganeso		tenido de hierro. Muy resistente a los
			tratamientos con ácido.
BRONCE	83% cobre	0.9	Condiciones similares a las del
ROJO AL SI-	16% zinc		EVERDUR, pero inferior en calidad y
LICIO	1% sílice		resistencia.
HIERRO	99.84% hierro	0.6	No es resistente a una corrosión in-
ARMCO	puro con doble		tensa. Se utiliza para pozos agrícolas en
	galvanizado		zonas de aguas relativamente neutras.
ACERO	99.35-99.72 %	0.5	No es resistente a la corrosión por lo
	hierro		que en paises desarrollados se emplea
	0.09-0.15 %		básicamente en pozos de prueba o de
	carbono		drenaje. No obstante puede alcanzar
	0.2-0.5% man-		una larga vida útil si las aguas no son
l	ganeso (doble		corrosivas ni incrustantes.
	galvanizado.		[

De Johnson Division, UOP Inc, 1975 (Modificado)

dejando abierto un orificio de tamaño suficiente como para que penetre el filtro, o el terreno al interior del pozo, lo que puede significar la ruina de la obra a no ser que se proceda a su encamisado, con un costo que casi siempre sobrepasa con creces la diferencia en precio con el ademe con cople.

Otro problema frecuente en este tipo de uniones de ademe, estriba en tubos con la boca deformada por golpes o rolado defectuoso, otros sin biselar o tubos previamente cortados con soplete de bordes irregulares. Cualquiera de estas circunstancias impiden una correcta soldadura de dos tubos y a veces la necesidad de rellenar pequeños huecos en la unión con varillas de soldadura o pequeñas piezas de

acero. Evidéntemente esta condición implica una unión sumamente defectuosa que puede provocar severos problemas durante el funcionamiento del pozo.

IV.5.3.2.2.- Ademes de P. V. C.

Los ademes de P.V.C. se ensamblan generalmente mediante uniones de campana y espiga y por medio de limpiador y pegamento o con cople unido también con limpiador y pegamento. En los dos casos se obtiene una unión muy adecuada, tan o mas resistente que el propio tubo.

CONCLUSIONES

El agua es uno de los recursos más importantes, así como necesarios para el desarrollo del país, de ahí, la importancia de conocer las técnicas de explotación de una manera más eficiente. La rehabilitación de pozos de agua, es una operación recomendable en casi todos los casos, dado que aumenta la vida útil de los pozos considerablemente, pero a un precio generalmente menor a el de un pozo nuevo, por lo que resulta altamente rentable.

Esta actividad como pudo observarse a lo largo del trabajo, está llena de diferentes problemas, por lo que para optimizar las maniobras, hay que, en primer término, tener una idea completa del funcionamiento de los pozos y conocer las posibles causas de la anomalía en el funcionamiento y en segundo término conocer las posibles soluciones.

Las técnicas y distintas maniobras explicadas, no son las únicas que existen, son básicamente las más usuales. Conforme se ha ido tomando conciencia de los alcances e importancia de los trabajos de rehabilitación, así como con el afán continuo de el ingeniero por resolver nuevos problemas, se ha incrementado e impulsado el desarrollo de nuevas tecnologías las cuales no son aún de el uso común.

Es importante tener claro que una serie de estudios (registros) en la rehabilitación de un pozo, generan mucha información de este y del acuífero explotado, siendo ésta de vital importancia para el adecuado desempeño de el sistema, y para investigaciones futuras, de tal forma que resulte necesaria, la correcta interpretación de estos registros. Por lo que es recomendable crear un expediente formal al terminar la obra.

El caudal a explotar de un pozo de agua, varía aumentando o disminuyendo su eficiencia hidráulica y económica. Este caudal tiene varias implicaciones, como pueden ser el costo de explotación, la eficiencia mecánica del equipo, la eficiencia hidráulica, la necesidad de la zona y el costo social y político que genere, por lo que la decisión a explotar dependerá del tipo de propietario del pozo y de las necesidades que este tenga.

En este trabajo se explican los dos tipos más comunes para escoger un caudal, que serían, la eficiencia hidráulica y la económica. Pero es importante señalar que el elegir un criterio reducirá ampliamente el otro. Si se sacrifica eficiencia hidráulica por económica, seguramente entrara el agua más rápido, lo que ocacionará que los problemas mecánicos, químicos, y de operación puedan aumentar, por el contrario si se le da más peso a la eficiencia hidráulica, se obtendrá agua a un mayor costo. Por lo que hay que ponderar estas dos opciones y alguna otra si esta existe, teniendo presente que no es una decisión que debe

tomarse a la ligera.

El desarrollo de un pozo; que se puede realizar en cualquier etapa de su operación, o de preferencia cuando se termina su construcción, es una actividad que aumenta la eficiencia del pozo en todos los sentidos. Se puede realizar varias veces a lo largo de la vida útil de un pozo por lo que es altamente recomendable incluir este proceso como parte integral de los trabajos de rehabilitación para lavar y drenar el entorno del pozo.

La aplicación de productos químicos para la desincrustación debe hacerse con la mayor seguridad posible, si estos son aplicados convenientemente logran reponer gran parte de la eficiencia perdida del pozo, pero para esto, hay que conocer y detectar perfectamente el problema que se esta atacando, evitando de esta forma acrecentar el mismo, como podría ser en el caso de la corrosión.

La mayoría de los pozos tienen un vago estudio para la elección del filtro de grava ya que no existe una variedad adecuada de tamaños, por lo que en los medios al alcance del rehabilitador la reposición del filtro debe ser seleccionado por medio de algún método de los antes mencionados.

La tarea de pesca es una operación que puede oscilar notablemente en su grado de complejidad, por lo que el rehabilitador debe tener mucha atención y cuidado en esta actividad. Considerando lo variado de ella, sólo se dá una idea de como tratarla y algunas herramientas de pesca, recomendando contar con alguien experimentado en el ramo, así como con una buena cantidad de registros.

A lo largo de el trabajo anterior, se han mencionado una serie de métodos para tratar de conseguir que un pozo reestablesca o mejore su características, se estudio debidamente el efecto de cada una de ellas en el desempeño de el sistema, y se efectuaron las correcciones pertinentes, sin embargo desde el punto de vista de el ingeniero industrial, existen aun una gran cantidad de mejoras aplicables.

Es importante antes de tomar cualquier decisión, elaborar un análisis económico, basado en los supuestos trabajos que requiere la obra, para de esta forma determinar si es o no rentable la rehabilitación, pues en pozos completamente dañados, suelen requerirse demasiadas operaciones para su reestablecimiento, lo cuál aumenta considerablemente los costos.

Es importante tomar en cuenta que se deberá emplear personal con amplios conocimientos en el ramo, así como de el manejo de soldadura eléctrica, y de equipos de corte de acetileno, ya que debido a lo variado de las actividades se tendrán que estar haciendo modificaciones casi constantemente a las diferentes herramientas.

RIBLIOGRAFIA

LIBROS

- AMERICAN WATER WORKS ASSOCIATION: «Groundwater», AWWA, EUA New York, N.Y.1984.
- BENITEZ, ALBERTO: «Captación de Aguas Subterráneas». Editorial Dossat, S.A., España Madrid 1963.
- BOLIVAR DEL VALLE, JOSÉ MARÍA: « Hidrología Subterránea (Algunos Aspectos)». Cia Mexicana Aerofoto, S.A., México, D.F. 1969
- CASTANY, G.: «Tratado Práctico de las Aguas Subterráneas ». Ediciones Omega, S.A., España Barcelona 1971.
- CUMBEFORT, HENRI: «Perforaciones y Sondeos». Ediciones Omega, S.A., España Barcelona 1962.
- CUSTODIO, EMILIO/LLAMAS, MANUEL RAMON: «Hidrología Subterránea». Ediciones Omega, S.A., España Barcelona 1976.
- DAVIS, STANLEY N. / DE WIEST, ROGER J.M.: "Hidrgeología". Ediciones Ariel, España Barcelona 1971.
- HELWEG, OTTO J./SCOTT, VERNE H./SCALMANINI, JOSEPH C.: «Improving Well and Pump Efficiency». American Water Works Association, EUA Denver, Co. 1982.
- HEM, JOHN D.: «Study and Interpretation of the Chemical Caracteristics of Natural Water». Geological Survey, EUA Washington 1959.
- JOHNSON DIVISION, UOP INC.: «El Agua Subterránea y los Pozos». Johnson Division, UOP Inc., EUA Saint Paul, Minnesota 1975.
- NATIONAL ASSOCIATION OF CORROSION ENGINEERS: NACE Basic Corrosión Course., NACE, EUA Texas 1970.
- MOGG, JOE L.: «Diseño de Pozos para Agua». U.N.A.M., Div de Est. Sup., Centro de Ingeniería Sanitaria., México, D.F. 1975.
- TODD, DAVID KEITH: «Hydrology», John Wiley & Sons, Inc., EUA New York, N.Y. 1963.
- UNIV. CENTR. DE VENEZUELA (FAC. DE ING.): «Desarrollo de Aguas Subterráneas». Universidad Central de Venezuela, Venezuela Caracas 1967.

MANUALES

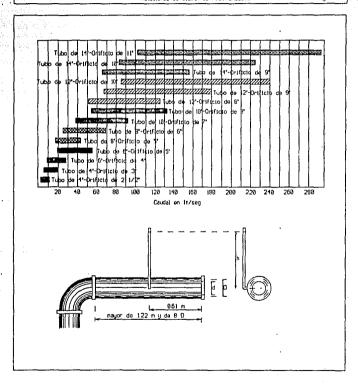
AMERICAN WATER WORKS ASSOCIATION: «AWWA Standard for Deep Wells, AWWA, EUA New York, N.Y.1984.

- ANDERSON, KEITH E.: « Water Well Handbook ». Missouri Water Well & Pump Contractors Assn., Inc.,EUA Rolla Missouri 1975.
- ENVIRONMENTAL PROTECTION AGENCY, OFFICE OF WATER SUPPLY: «Manual of Water Well Construction Practices», E.P.A., USA 1976.
- FAIRBANKS MORSE: «Hidraulic Handbook». Fairbanks Morse Colt Industries, EUA Kansas City,1969.
- KOEHRING, SPEEDSTAR DIVISION: «Well Drilling Manual», Kochring, Enid, EUA Okl.
- URALITA: «Manual General». Editorial Dossat, S.A., España Madrid 1969.
- INGERSOLL-RAND COMPANY: « Compressed Air and Gas Data ». Charles W. Gibbs, EUA Woodcliff Lake, New Jersey 1971.
- SECRETARIA DE COMERCIO Y FOMENTO INDUSTRIAL, INDUSTRIA DE LA CONSTRUCCION: Tubos de Concreto Preesforzado., Evaluación de Parámetros Potencialmente Agresivos.

CONFERENCIAS

CARREIRA JIMENEZ, FRANCISCO: «Perforación a Percusión». Conferencia.

CUSTODIO, EMILIO: «Corrosión e Incrustación de Pozos». Conferencia.


HORTA SANTOS, FERNANDO: «Desarrollo de Pozos», Conferencia.

HORTA SANTOS, FERNANDO: «Rejillas y Empaques de Grava», Conferencia,

APENDICE A

AFOROS

Medida de flujo con descarga libre a través de un orificio calibrado. Relactores de diámetros recomendados.

MEDIDA DE FLUJO CON REGLA A TRAVES DE UN TUBO HORIZONTAL, LLENO, CON DESCARGA LIBRE.

		Diáme	ro tube	ria en	pulgadas	. Q=5.	121°D*2	X, Y=10	.16 cm					Diametro	tuberia	en pulg	das, O=	3.14°D^2	"X, Y=3	0 48 cm				
Dist.	1																							
Xen		1 1/4	1 1/2	2	21/2	3	1	5	6	ا ہ ا	10	12	, [1 1/4	1 1/2	2	21/2	3	4	5	6	la i	10	12
10	0.35	_	0.79	_	2.19	3,15	5 60	_	_	-			0.20	0.32	0.45	0.81	1.27	1.82	3.24		_	-		-12
12	0.42	0.66	0 94		2 62	3.78	6.72	10.49					0.24	0 38	0.55	0.97	1.52	2.19	3 89		8.75	15.56		
14	0.49	0.77	1.10	1	3.06	4.41	7.83	12 24	17.63				0.28	044	0.64	1,13	1.77	255	454		10.21	18.15		!
16	0.56	0.87	1.26	2.24	3 50	5.04	8.95	13.99	20.15		ĺĺ		0.32	0.51	0.73	1.30	203	2.92	5.19		11.67	20.74		
18	0 53	0.98	1.42	2.52	3.93	5 67	10.07	15.74	22 66	40.29	1	ì	0 36	0.57	0.82	1.46	2 28	3 28	583	9.12	13.13	23.34	36 46	52.51
1		- 1		1	. }																1			
20	0.70	1.09	1.57	2.B0	4 37	6 30	11.19	17.49	25.18	44 77	69 95		0 41	0 63	0.91	1.62	2 53	3 65	6 48	1013	14 59	25.93	40 52	58 34
22	0 77	1 20	1.73	3.08	4 81	6 92	1231	19.24	27.70	49 24	76 94	110 80	0.45	0.70	1.00	1.78	2.79	4 01	7.13	11.14	1604	28 52	44 57	64 18
24	0.84	1 31	1.89	3 36	5 25	7.55	13 43	20 98	30 22	53.72	83 94	120 87	0 49	0.76	1 09	194	3 04	4 38	7,78	1215	17.50	31.12	48 62	70 01
26	091	1 42	2 05	3 64	5 68	8 15	14 55	22.73	32.74	58.20	90 93	130 94	0 53	0.82	1 19	2.11	3 29	474	8 43		18 96	33 71	52 67	75 85
28	0.98	1.53	2.20	3.92	6 12	8 811	15 67	24 48	35 25	62 67	97 93	141.02	0 57	0.69	1 28	2 27	3 55	5 11	9.08	14.18	20 42	36 30	56 72	81.68
	1 05	ا ، ، ، ا	2.20				45.70	~~~		57.45												20.00		87.51
30	1.12	1.75	2.36	4 20	6 55	9 44	16 79 17 91	26 23 27.98	37.77 40.29	67.15 71.63	104 92	151 09	061	0.95	1.37	2 43	3 80 4 05	5 47 5 83	9.72	15.19 16.21	21 88 23 34	38 90 41 49	64 83	93 35
34	1,15		2.52		7 43	10.70		29 73	42.81	75 10	118.91	171 23	0 69	1.08	1.55	2.76		6 20	11 02		24 80	44 08	68 88	99 18
36	1 26	1.97	2 83		7 67	11.33	20 15	31.48	45.33	80 5a	125 91	181 31	0 73	1 14	1 64	2 92	456	656	11 67	18 23	26.25	46 67	72 93	105 02
38	1.33	2.08	2.99	-	8 31	11 96	21 26	33.23	47.84	85.06	132 90	191.38	0.77	1 20	1.73	3.08	481	6.93	12.32			49 27	76 98	110 85
1 1	1	I	- 1		- 1																			
40	1.40	2.19	3.15	5 60	8 74	12.59	22.38	34.97	50 36	89 53	139 90	201.45	0.81	1.27	1.82	3 24	506	7 29	12 97	20 26	29 17	51 86	81.03	116 69
42	1.47	2.30	3.31	5 B3	9 18	13 22	23 50	36.72	52.88	94 01	146 89	211.52	0.85	1.33	1 91	3 40	5 32	7.5%	1361	21.27	3063	54.45	85 08	122 52
44		2.40	3 46	6 16	9 62	13 85	24 62	38 47	55 40	98 49	153.89	221.60	68.0	1.39	2 01	3 57	5 57	802	14 26	22.28	32 09	57 05	89 14	128 35
45	ı	ì	3,62	644	10 06	14 48	25.74	40 22	57.92	102 96	160 88	231.67	0 93	1 46	2 10	3.73	5 82	8 39	1491	23.30	33 55	59 64	93.19	
[49]	- 1	- 1	į	672	10.49	15.11	26 86	41.97	60.44	107 44	167.68	241 74	0.97	1.52	2.19	3 89	608	8 75	15.56	24.31	35 01	62.23	97.24	140 02
ا 👡 ا	Į	Į		۱ ۱																				
50 52	· 1	- 1			10 93	15 74	27.98	43.72	62 95 65 47	111.92		251.81	1.01	1 58	2 28	4 05	6.33	9.12	16.21	25,32		64 83	1	145 86 151 69
54	. (- (1		11 31	17.00	29.10 30.22	45.47 47.22	67.99	116.39 120.87	181.67	261.89 271.96	1.09	1.03	2.37	4 21	6 58	9.48	16.85	26.34 27.35	37.92 39.38	67.42 70.01	105 34	157.53
56	Į	- 1	1	' I	ļ	17.00	31.34	48.96	70.51	125.35	195 86	282.03	1.13	1.77	2.55	4 54	709	10.21	18.15	28.36	40 84	72.60	113.44	163.36
58	ļ	1	,	. !	i			50.71	73 03	129 82	202 85	292 10	1.17	1 84	264	470		10.21	18 80		42.30	75.20		
~	i	i	ĺ	۱ ا	ļ				. 5 00				i "']		- "	'''	'~			23,37	-2.50	,310		
60)	1	ì	· 1	İ		1		75 54	134.30	209.84	302 18	1.22	1.90	273	4.86	7.60	10.94	19 45	30.39	43 76	77.79	121.55	175 03
62	- 1	ļ		.	. (138.78	216 84	312.25	1.26	1 96	2.83	5 02	7.85	11.30	20.10	31.40	45 22	80.38	125.60	180.86
64	ĺ	ı	i		Į						223 83	322,32	1.30	2.03	2.92	5.19	8 10	11.67	20.74	32,41	46.67	82.98	129 65	186.70
66							1					332.39	1.34	2.09	301	5.35	8.38	1203	21.39	33.43	48.13	85 57	133.70	192.53

CAUDALES MEDITOS CON TUBO CON ORIFICIO CALIBRADO CRISTO CAUDALES MEDITOS CON TUBO CON ORIFICIO CALIBRADO CRISTO																		
The contribute	CAUL	DALES M	EDII	os con	TUB	сон о	RIFIC	IO CAL	BRAD	ю								
	к-	0.621			C =	0.968			TUBO): 102 m	m (4°)		ORIF	ICIO: 6	3.5 mr	12 (2 1/2")		
1	III	Q	н	Q	14	Q	11	Q	11	Q	11	Q	н	Q	11	Q	Н	٥
1.5	cm	l.p.s.	cm	I.p.s.	cm	Lp.s.	cm	Lp.s.	cm	1 ps.	cm	l.p.s.	cm	1 p.s.	cm	l.p.s.	cm	l.p.s.
1.68 23		0.97				6.20	61	7.56		8.71	101	9,73	121	10.65		11.49	161	12.2
1.64						1 "	62			8.77					142			12.3
S	1	i									***							12.34
6 237 26 4.94 46 6.57 65 7.86 8.0 8.0 16 97 126 1087 146 11.70 166 7 256 27 5.03 47 6.64 7 7.72 87 9.03 107 1001 127 1091 147 11.74 167 8 274 28 5.12 49 6.78 69 80.4 89 9.13 109 1011 129 10.99 149 11.81 169 10 3.66 30 5.30 50 6.84 70 8.00 90 9.18 110 10.15 130 11.04 150 11.80 170 111 3.21 31 5.39 18 6.91 71 8.16 91 9.23 111 10.24 132 11.02 131 11.02 151 11.02 132 11.08 151 11.80 170 111 3.21 31 5.39 81 6.91 71 8.16 91 92.3 111 10.20 132 11.02 151 11.00 171 12 13.35 32 5.48 52 6.98 72 8.21 92 9.28 112 10.24 132 11.12 152 11.99 172 13 3.49 33 5.56 53 7.05 73 8.27 93 9.34 113 10.29 133 11.16 153 11.99 173 14 3.62 34 5.64 54 7.11 74 8.33 94 9.39 114 10.34 134 11.21 154 12.01 174 153 156 156 3.77 35 5.73 55 7.18 75 8.33 95 9.43 115 10.28 135 11.25 155 12.05 173 16 3.77 33 5.73 57 7.31 77 8.49 97 9.48 118 10.25 138 11.37 158 12.17 178 19 4.22 39 6.05 59 7.44 79 8.69 99 9.63 119 10.56 139 11.41 159 12.21 179 19 4.22 39 6.05 59 7.44 79 8.69 99 9.63 119 10.56 139 11.41 159 12.21 179 19 4.22 39 6.05 59 7.44 79 8.69 99 9.63 119 10.56 139 11.41 159 12.21 179 19 4.22 39 6.05 69 7.50 80 8.66 100 9.68 120 10.06 140 11.45 160 12.24 180 18 11.04 12.1 12.0 12.0 174 11.00 11.0				1		1 -			•									12.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 -		_															12.4
8 2.74 28 5.12 48 6.71 68 7.98 88 9.08 108 1006 128 10.95 148 11.78 168 9 2.90 29 5.21 49 6.78 69 8.94 89 9.13 109 1011 129 10.99 149 11.82 169 100 3.06 30 5.30 50 6.84 70 8.10 70 9 1.91 10.10 10.15 130 11.04 150 11.86 171 11 2.31 13 5.39 51 6.91 71 8.16 91 9.23 111 10.20 131 11.08 151 11.86 171 12 3.35 32 5.48 52 6.98 12 82.1 92 9.28 112 10.24 132 11.12 152 11.93 172 13 3.49 33 5.56 53 7.05 73 82.7 93 9.34 113 10.29 133 11.16 153 11.97 173 144 3.62 34 5.64 54 7.11 74 8.33 94 9.39 114 10.34 134 11.21 154 12.01 174 15 3.75 35 5.73 55 7.18 75 8.33 95 9.43 115 10.36 135 11.25 155 12.05 175 16 3.87 39 37 5.80 57 7.31 77 8.49 97 9.53 117 10.47 137 11.33 157 12.13 177 188 4.11 38 5.97 88 7.33 78 8.55 98 9.58 118 10.52 138 11.31 158 12.17 178 19 4.22 39 6.05 59 7.44 79 8.66 99 9.63 119 10.56 139 11.41 159 12.21 179 20 4.33 40 6.12 60 7.50 80 8.66 100 9.96 120 10.60 140 11.45 156 12.22 180 14 1.64 12.0 154		1 1					Ł			1 1								12.4
9 2.90 2.9 5.21 4.9 6.78 6.9 8.04 8.9 9.13 10.9 10.11 12.9 10.97 14.9 11.82 169 10 3.06 30 5.30 50 6.84 70 8.10 90 9.18 110 10.15 130 11.04 150 11.86 170 11 3.21 31 5.39 51 6.91 71 8.16 91 92.3 111 10.24 132 11.12 152 11.93 172 12 3.35 32 5.48 52 6.98 72 8.21 92 9.28 112 10.24 132 11.12 152 11.93 172 13 3.49 33 5.56 53 7.05 73 8.27 93 9.34 113 10.29 133 11.16 153 11.97 173 14 3.62 34 5.64 54 7.11 74 8.33 94 9.39 114 10.34 134 11.21 154 12.01 174 15 3.75 35 5.73 55 7.18 75 8.38 95 9.43 115 10.38 135 11.25 155 12.03 175 16 3.87 36 5.81 56 7.24 76 8.44 96 9.48 116 10.34 135 11.25 155 12.03 175 18 4.11 38 5.97 58 7.33 78 8.55 98 9.48 118 10.52 138 11.37 158 12.17 178 19 4.22 39 6.05 59 7.44 79 8.60 99 9.63 119 10.56 139 11.41 159 12.21 179 19 4.22 39 6.05 59 7.44 79 8.60 99 9.63 119 10.56 139 11.41 159 12.21 178 19 4.22 39 6.05 59 7.44 79 8.60 99 9.63 119 10.56 139 11.41 159 12.21 178 19 4.22 39 6.05 59 7.44 79 8.60 99 9.63 119 10.56 139 11.41 159 12.21 178 19 4.22 39 6.05 59 7.44 79 8.60 99 9.63 119 10.56 139 11.41 159 12.21 178 19 1.20 4.33 40 6.12 60 7.50 80 8.66 100 98 9.63 119 10.56 139 11.41 159 12.21 178 19 1.20 1.20 1.20 1.20 1.20 10.60 140 11.45 160 12.24 180 K = 0.713	1					1 1		_	1 1									12.5
10 3.06 30 5.30 50 6.84 70 8.10 80 9.18 110 10.15 130 11.64 150 11.80 170 11 3.21 31 5.30 51 6.91 71 8.16 91 9.23 111 10.20 131 11.65 151 11.80 171 12 3.35 32 5.48 52 6.98 72 8.21 92 9.28 112 10.24 132 11.12 152 11.19 172 133 134 13.21 13.34 13.35 3.56 53 7.05 73 8.27 93 9.34 113 10.29 133 11.65 153 11.97 173 14 3.62 34 5.64 54 7.11 74 8.33 94 9.39 114 10.31 134 11.21 154 12.01 174 15 3.75 35 5.73 55 71.8 75 8.33 95 9.43 113 10.34 13.35 11.25 155 12.05 175 16 3.37 36 5.81 56 7.24 76 8.44 96 94.8 116 10.34 136 11.29 156 12.09 175 16 13.37 13.35 13.35 13.35 11.25 155 12.05 175 18 4.11 38 5.97 58 7.31 77 8.49 97 9.53 117 10.47 137 11.33 157 12.13 177 18 4.11 38 5.97 58 7.31 78 8.65 98 9.58 118 10.52 138 11.37 158 12.17 178 19 42.2 39 6.05 59 7.44 79 8.60 99 9.65 170 10.60 140 11.45 160 12.24 180 180 19 141 19 12.21 177 18 19 12.21 177 18 19 12.22 180 18 13.35 13.3								1										12.5
11 3.21 31 5.39 51 6.91 71 8.16 91 9.23 111 10.20 131 11.68 151 11.89 171 12 3.35 32 5.48 52 6.96 72 8.21 92 9.28 112 10.24 132 11.12 152 11.93 172 133 3.5 5.56 5.3 7.05 73 8.27 93 9.34 113 10.29 133 11.16 153 11.97 173 14 3.62 34 5.64 54 7.11 74 8.33 94 9.39 114 10.34 134 11.21 154 12.01 174 153 3.75 15 5.73 55 7.18 75 8.34 95 9.43 115 10.36 135 11.25 155 12.05 175 16 3.87 36 5.81 56 7.24 76 8.44 96 9.48 115 10.36 135 11.25 155 12.05 175 177 18 4.11 38 5.97 58 7.73 78 8.65 98 9.58 118 10.52 138 11.37 158 12.17 178 19 4.22 39 6.05 59 7.44 79 8.66 99 9.63 118 10.52 138 11.31 158 12.17 178 19 4.22 39 6.05 59 7.44 79 8.66 99 9.63 119 10.56 139 11.41 159 12.21 179 120 134	1 1																	12.5
12 3.35 32 5.48 52 6.98 72 8.21 92 9.28 112 10.24 132 11.12 152 11.93 172 13 3.49 33 5.56 53 7.05 73 8.27 93 9.34 113 10.26 133 11.16 153 11.97 173 14 3.62 34 5.64 47 7.11 7.18 8.31 94 9.39 114 10.34 134 11.21 154 12.01 174 15 3.75 35 5.73 55 7.18 75 8.38 95 9.43 115 10.38 135 11.25 155 12.01 175 16 3.87 36 5.81 56 7.24 76 8.44 96 9.48 116 10.34 135 11.25 155 12.05 175 17 3.99 37 5.89 57 7.31 77 8.45 96 9.48 116 10.34 135 11.25 155 12.05 175 18 4.11 38 5.97 58 7.37 78 8.55 98 9.58 118 10.52 138 11.37 158 12.17 178 19 4.22 39 6.05 59 7.44 79 8.66 99 9.63 119 10.56 139 11.41 159 12.21 179 20 4.33 40 6.12 60 7.50 80 8.66 100 96.88 120 10.66 139 11.41 159 12.21 179 20 4.33 40 6.12 60 7.50 80 8.66 100 96.88 120 10.66 140 11.45 160 12.24 180	1 1	1 1		1 1														126
13								1										12.70
14 3.62 34 5.64 54 7.11 74 8.33 94 9.39 114 10.34 134 11.21 154 12.01 174 155 3.75																		12.7
15 3.75 3.5 5.73 5.5 7.18 7.5 8.38 9.5 9.43 11.5 10.38 13.5 11.25 15.5 12.05 17.5 16 3.87 3.6 5.81 5.6 7.24 7.6 8.44 9.6 9.48 11.6 10.34 13.6 11.29 15.6 12.09 17.6 17 3.99 3.7 5.80 5.7 7.31 7.8 8.55 9.8 9.58 11.8 10.52 13.8 11.37 15.8 12.17 17.8 18 4.11 3.8 5.97 5.8 7.37 7.8 8.55 9.8 9.58 11.8 10.52 13.8 11.37 15.8 12.17 17.8 19 4.22 3.9 6.05 5.9 7.44 7.9 8.60 9.9 9.63 11.9 10.56 13.9 11.41 15.9 12.21 17.9 20 4.33 4.0 6.12 6.0 7.50 80 8.6 10.0 9.6 9.6 11.9 10.56 13.9 11.41 15.9 12.21 17.9 18 4 7 7 7 7 7 7 7 7 7	14	3.62	34	5.64	54	7.11	1	8.33	94	9.39	114	10.34	134					12.7
17 3.99 37 5.89 57 7.31 77 8.49 97 9.53 117 10.47 137 11.31 157 12.11 177 18 4.11 38 5.57 58 7.34 78 8.55 98 9.58 118 10.52 138 11.31 158 12.17 178 199 4.22 39 6.05 59 7.44 79 8.60 99 9.63 119 10.56 139 11.41 159 12.21 179 199 199 199 10.60 140 11.45 160 12.21 179 19	15	3.75	35	5.73	55	7.18	75	8.38	95	9.43	115							12.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	3.87	36	5.81	56	7.24	76	8.44	9ó	9.48	116		136	11.29	156	12.09		12.8-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	3.99	37	5.89	57	7.31	77	8.49	97	9.53	117	10.47	137	11.33	157	12.13	177	12.80
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	18	4.11	38	5.97	58	7.37	78	8.55	98	9.58	118	10.52	138	11.37	158	12.17	178	12.9
	19	4.22	39	6.05	59	7.44	79	8.60	99	9.63	119	10.56	139	11.41	159	12.21	179	12.95
H Q H Q H Q II Q II Q II Q II Q II Q II	20	4.33	40	6.12	60	7.50	80	8.66	100	9.68	120	10.60	140	11.45	160	12.24	180	12.99
H Q H Q III D III	к-	0.713			C =	1.599			TUB6	D: 102 m	m (4°)		ORIF	ICIO: 7	6 mm	(37)		
1	н	Q	Н	Q	11	0	11	0	_		_		_				н	q
2 2.26 22 7.50 42 10.36 62 12.59 82 14.48 102 16.15 122 17.66 142 19.03 162 3 2.77 23 7.67 43 10.49 63 12.09 83 14.57 103 16.21 12.3 12.73 143 19.12 16.3 4 3.20 24 7.83 4 4 10.61 64 12.79 84 14.66 104 16.31 12.4 17.81 14.4 19.12 16.3 5 3.58 25 8.00 45 10.73 65 12.89 85 14.74 105 16.39 125 17.88 14.5 19.22 16.5 6 3.92 26 8.15 46 10.83 66 12.99 86 14.83 106 16.40 12.6 17.98 14.4 19.12 16.6 7 4.23 27 8.31 47 10.96 67 13.09 87 14.91 107 16.54 127 18.02 147 19.39 167 8 4.53 12.8 18.09 14.8 19.32 16.9 18.0 14.2 18.0 14.8 19.32 16.9 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	cm l	lps.	cm	Lp.s.	cm	lp.s.	cm	I.p.s.	cm	1.0.4	cm	l.p.s.	cm	Lp.s.	сm		1	Lp.s.
3 2.77 23 7.67 43 10.49 63 12.69 83 14.57 103 16.23 12.3 17.73 143 19.12 163 4 3.20 24 7.83 44 10.61 64 12.79 84 14.66 104 16.31 12.4 17.81 144 19.19 164 15.5 3.58 25 8.00, 18.5 10.73 6 12.89 85 14.74 105 16.31 12.4 17.81 144 19.19 164 16.6 13.92 26 81.5 46 10.84 66 12.99 86 14.83 10.6 16.46 12.6 17.93 146 19.12 16.6 7 4.33 27 8.31 47 10.96 67 13.09 87 14.91 107 16.54 127 18.02 147 19.39 167 8 4.51 28 8.46 18 31 10.80 86 13.11 85 15.00 183 16.2 12.3 18.00 143 14.5 19.39 16.9 16.9 16.9 16.9 16.9 16.9 16.9 18.16 14.9 19.32 16.9 16.9 16.9 16.9 16.9 18.16 14.9 19.32 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9	1	1.60	21	7.33	41	10.24	61	12.49	81	14.39	101	16.07	121	17.59	141	18.99	161	20.29
4 3.20 24 7.83 44 10.61 64 12.79 84 14.66 104 16.31 124 17.81 144 19.19 164 5 3.58 25 8.00 45 10.73 65 12.89 85 14.74 105 16.38 125 17.88 145 19.25 165 6 3.92 26 8.15 46 10.84 66 12.99 86 14.74 105 16.38 125 17.88 145 19.25 165 7 4.23 27 8.31 47 10.96 67 13.09 87 14.91 107 16.45 127 18.02 147 19.91 166 18.45 12.9 18.05 14.74 19.95 16.8 452 28 8.40 48 11.08 68 13.19 85 15.00 108 16.62 128 18.09 148 19.45 168 9 4.50 29 8.61 49 11.19 69 13.25 80 15.08 109 16.69 129 18.16 149 19.52 169 100 5.06 30 8.76 50 11.31 70 13.38 90 15.07 11.08 16.91 129 18.05 149 19.52 169 11 15.20 31 8.09 51 11.42 71 13.45 91 15.25 111 16.85 131 18.30 151 19.65 171 12 5.54 32 9.05 52 11.53 72 13.57 92 15.34 112 16.92 132 18.37 152 19.71 172	2	2.26	22	7.50	-12	10.36	62	12.59	62	14.48	102	16.15	122	17.66	142	19.05	162	20.3
5 3.58 25 8.00 45 10.73 55 12.89 85 14.74 105 16.38 125 17.88 145 19.23 165 6 3.92 26 8.15 46 10.84 66 12.99 86 14.83 106 16.46 12.6 17.93 146 19.32 16.6 17.84 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	3	2.77	23	7.67	43	10.49	63	12.69	83	14.57	103	16.23	123	17.73	143	19.12	163	20.4
6 3.92 26 8.15 46 10.84 66 12.99 86 14.83 106 16.46 126 17.95 146 19.32 166 7 4.23 27 8.31 47 10.96 67 13.09 87 14.91 107 16.54 127 18.02 147 19.39 167 8 4.53 28 8.46 48 11.08 68 13.19 83 15.00 108 16.62 128 18.09 148 19.45 168 9 48.0 29 8.61 49 11.19 69 13.28 80 15.08 109 16.69 129 18.16 149 19.52 169 100 50.6 30 8.76 50 11.31 80 15.17 110 16.77 130 18.23 150 19.58 170 111 5.30 31 8.90 51 11.42 71 13.47 91 15.25 111 16.85 131 18.30 151 19.65 171 12 16.54 127 13.28	4	3.20	24	7.83	44	10.61	64	12.79	84	14.66	104	16.31	124	17.81	144	19.19	164	20.48
7 4.23 27 8.31 47 10.96 67 13.69 87 14.91 107 16.54 127 18.02 147 19.39 167 8 4.52 28 8.46 48 11.08 68 13.11 85 15.06 108 16.62 128 18.09 148 19.52 169 100 5.06 30 8.76 50 11.31 70 13.38 90 15.17 110 10.57 13.00 18.20 15.00 108 16.69 129 18.16 149 19.52 169 100 5.06 30 8.76 50 11.31 70 13.38 90 15.17 110 16.77 130 18.23 150 19.86 171 11 5.30 31 8.90 51 11.42 71 13.47 91 15.25 111 16.85 131 18.30 151 19.65 171 12 5.54 32 9.05 52 11.53 72 13.57 92 15.34 112 16.92 132 18.37 152 19.71 172	1		25	8.00	45	10.73	65	12.89	85	14.74	105	16.38	125	17.88	145	19.25	165	20.5
8 4.52 28 8.46 48 11.08 68 13.19 85 15.00 108 16.62 128 18.09 148 19.45 168 9 4.80 29 8.61 49 11.19 69 13.24 80 15.08 100 16.69 129 18.16 149 19.52 169 10 5.06 30 8.76 50 11.31 70 13.38 90 15.17 110 16.77 130 18.23 150 19.58 170 115.25 111 16.85 131 18.30 151 19.65 171 12 5.54 32 9.05 52 11.53 72 13.57 92 15.34 112 16.92 132 18.37 152 19.71 172						! !	66			14.83	106	16.46	126	17.95	146	19.32	166	20.6
9 4.80 29 8.61 49 11.19 69 13.28 89 15.08 109 16.69 129 18.16 149 19.52 169 100 5.06 30 8.76 50 11.31 70 13.38 99 15.47 110 16.77 130 18.23 150 19.58 170 11 5.30 31 8.90 51 11.42 71 13.47 91 15.25 111 16.85 131 18.30 151 19.65 171 12 5.54 32 9.05 52 11.53 72 13.57 92 15.34 112 16.92 132 18.37 152 19.71 172																		20.66
10 5.06 30 8.76 50 11.31 70 13.36 9J 15.17 110 16.77 130 18.24 150 19.58 170 111 5.30 31 8.90 51 11.42 71 13.47 91 15.25 111 16.85 131 18.30 151 19.65 171 12 5.54 32 9.05 52 11.53 72 13.57 92 15.34 112 16.92 132 18.37 152 19.71 172		1		- 1														20.7
11 5.30 31 8.90 51 11.42 71 13.47 91 15.25 111 16.85 131 18.30 151 19.65 171 12 5.54 32 9.05 52 11.53 72 13.57 92 15.34 112 16.92 132 18.37 152 19.71 172										l i	1							20.79
12 5.54 32 9.05 52 11.53 72 13.57 92 15.34 112 16.92 132 18.37 152 19.71 172				- 1									1					20.8
12.7 1.2	1																	20.9
	13	5.77	33	9.19	53	11.53	73		93		1							20.9
13 13 13 13 13 13 13 13 13 13 13 13 13 1																		21.0
	1) 1																21.0
133 133 133 133 133										ł I								21.1:
150 150 150 150 170	16																	21.2
		6.59										. /	137	10.72	13/	20.04	4//	21.2
1.0	17	1 1					78	1	98	15.83	118	17 17	138	18 79	158	20.10	178	21 2
20 7.15 40 10.11 60 12.39 80 14.34 100 15.99 120 17.52 140 18.92 160 20.23 180	17 18	6.78	38	9.86	58	12.18	1	14.12		15.83 15.91	118	17.37 17,44	138 139	18.78 18.83	158 159	20.10 20.16	178 179	21.3

ï	-						_		_			===		==	=		=	
ı	_		EDIL	os con	_		RIFIC	CIO CAL	_		-							
1		0.713 Q	н	O	Н.	0.887 Q	11	0	101	O: 152 m	11		H	0	3.5 mi	n (2 I/2" O	_	
	cm	Lp.s.	cm	lps.	cm	lps.	cm	Lps.	cm	Q Lp.s.	cm.	Q Lps.	cm	LDs.	em	Lp.s.	H cm	Q i.p.s.
	1	0.89	21	4.06	41	5.68	61	6.93	81	7.98	101	8.91	121	9.76	141	10.53	161	11.25
	2	1.25	22	4.16	42	5.75	62	6.98	82	8.03	102	8.96	122	9.80	142	10.57	162	11.29
	3	1.54	23	4.25	43	5.82	63	7.01	83	8.08	103	9.00	123	9.84	143	10.61	163	11.32
J	4	1.77	21	4.35	44	5.88	64	7.10	84	8.13	104	9.05	124	9.88	144	10.64	164	11.36
H	5	1.98	25	4.44	45	5.95	65	7.15	85	8.16	105	9 (99	125	9.92	145	10.6B	165	11.39
	6	2.17	26	4.52	46	6.02	66	7.21	86	8.23	106	9.13	126	9.96	146	10.72	166	11.43
	7	2.35	27	4.61	47	6.08	67	7.26	87	8.27	107	9.18	127	10.00	147	10.75	167	11.46
	8	2.51	28	4.69	48	6.15	68	7.31	88	8.32	108	9.22	128	10.04	148	10.79	168	11.50
1	9	2.66	29	4.78	49	6.21	69	7.37	89	8.37	109	9.26	129	10.07	149	10.83	169	11.53
ı	10	2.80	30	4.86	50	6.27	70	7,42	90	8.41	110	9.30	130	10.11	150	10.86	170	11.57
ı	11	2.94	31	4.94	51	6.33	71	7.47	91	8.46	111	9.35	131	10.15	151	10.90	171	11.60
1	12	3.07	32	5.02	52	6.40	72	7.53	92	8.51	112	9.39	132	10.19	152	10.94	172	11.63
ı	13	3.20	33	5.10	53	6.46	73	7.58	93	8.55	113	9.43	133	10.23	153	10.97	173	11.67
ı	14	3.32	34	5.17	54	6.52	74	7.63	94	8.60	114	9.47	134	10.27	154	11.01	174	11.70
ł	15	3.44	35	5.25	55	6.58	75	7.68	95	8.65	115	951	135	10.31	155	11.04	175	11.73
1	16	3.55	36	5.32	56	6,64	76	7.73	96	8.69	116	9.55	136	10.34	156	11.08	176	11.77
ı	17	3.66	37	5.40	57	6.70	77	7.78	97	8.74	117	9.59	137	10.38	157	11.11	177	11.80
1	18	3.76	38	5.47	58	6.76	78	7.83	98	8,78	118	9,64	138	10,42	158	11.15	178	11.83
1	19	3.87	39	5.54	59	6.81	79	7.88	49	8.83	119	9.68	139	10,46	159	11.18	179	11.87
	20	3,97	40	5.61	60	6.87	60	7.93	100	8 87	120	9.72	140	10,50	160	11.22	180	11.90
1						_		_										
IJ	Κ=	0.713			C =	1.314	-		TUB	O: 152 m	m (6°		ORII	ICIO: 7	6 mm		11.7	
	K=	0.713 Q	Ш	Q	C=	1.314 Q	В	0	TUB	O: 152 m	m (6*		ORII		mm à		11	Q
			II cm	Q i.p.s.			II cm	Q Lps.	_	_	÷		_	ICIO: 7	_	(3")		
	H cm	Q			ii	Q			Н	Q	Н	Q	11	ICIO: 7	н	(3°) Q	11	Q
	H cm 1 2	Q t.p.s. 1.31 1.86	em 21 22	i.p.s. 6.02 6.16	li cm	Q Lp.s.	cm	l.p.s.	H cm	Q Lp.s.	11 cm 101	Q I.p.s.	II cm	ICIO: 70 Q 1 p.s.	II em	(3°) Q Lp.s.	11 cm	Q l.p.s.
	H cm 1 2 3	Q t.p.s. 1.31 1.86 2.28	21 22 23	i.p.s. 6.02 6.16 6.30	11 cm	Q 1 p.s. 8.41 8.52 8.62	cm 61	1.p.s. 10.26 10.35 10.43	H cm 81	Q Lp.s. 11.83 11.90 11.97	11 cm 101	Q 1.p.s.	11 cm 121	Q 1.p.s. 14.45	ti em	(3°) Q I.p.s. 15.60	11 cm	Q 1.p.s. 16.67
	H cm 1 2 3 4	Q t.p.s. 1.31 1.86 2.28 2.63	em 21 22	i.p.s. 6.02 6.16	11 cm 41 42	Q 1.p.s. 8.41 8.52	61 62	10.26 10.35	H cm 81 82	Q Lp.s. 11.83 11.90	11 cm 101 102	Q I.p.s. 13.21 13.27	11 cm 121 122	Q 1.p.s. 14.45 14.51	11 cm 141 142	(3°) Q Lp.s. 15.60 15.66	11 cm 161 162	Q 1.p.s. 16.67 16.72
	H cm 1 2 3 4 5	Q Lp.s. 1.31 1.86 2.28 2.63 2.94	21 22 23	6.02 6.16 6.30 6.44 6.57	11 cm 41 42 43	Q 1 p.s. 8.41 8.52 8.62	61 62 63	1.p.s. 10.26 10.35 10.43	H cm 81 82 83	Q Lp.s. 11.83 11.90 11.97	11 cm 101 102 103	Q 1.p.s. 13.21 13.27 13.34	11 cm 121 122 123	Q 1.p.s. 14.45 14.51 14.57	11 cm 141 142 143	(3°) Q Lp.s. 15.60 15.71	1i cm 161 162 163	Q 1.p.s. 16.67 16.72 16.78
	H cm 1 2 3 4 5	Q t.p.s. 1.31 1.86 2.28 2.63 2.94 3.22	21 22 23 24 25 26	6.02 6.16 6.30 6.44 6.57 6.70	11 cm 41 42 43 44 45 46	Q 1.p.s. 8.41 8.52 8.62 8.72 8.81 8.91	61 62 63 64 65 66	1.p.s. 10.26 10.35 10.43 10.51 10.59 10.67	81 82 83 84 85 86	Q Lp.s. 11.83 11.90 11.97 12.04 12.11 12.19	11 cm 101 102 103 104 105 106	Q l.p.s. 13.21 13.27 13.34 13.40 13.46	11 cm 121 122 123 124 125 126	14.45 14.51 14.63 14.69 14.75	141 142 143 144 145 146	(3°) Q Lp.s. 15.60 15.71 15.77 15.82 15.88	161 162 163 164 165 166	Q 1.p.s. 16.67 16.72 16.78 16.83 16.88 16.93
	H cm 1 2 3 4 5 6 7	Q Lp.s. 1.31 1.86 2.28 2.63 2.94 3.22 3.48	21 22 23 24 25 26 27	6.02 6.16 6.30 6.44 6.57 6.70 6.83	11 cm 41 42 43 44 45 46 47	Q 1 p.s. 8.41 8.52 8.62 8.72 8.81 8.91 9.01	61 62 63 64 65 66 67	1.p.s. 10.26 10.35 10.43 10.51 10.59 10.67 10.76	81 82 83 84 85 86 87	Q Lps. 11.83 11.90 11.97 12.04 12.11 12.19 12.26	11 cm 101 102 103 104 105 106 107	Q l.p.s. 13.21 13.27 13.34 13.40 13.46 13.53	11 cm 121 122 123 124 125 126 127	14.45 14.57 14.63 14.63 14.69 14.75 14.81	141 142 143 144 145 146 147	(3°) Q Lp.s. 15.66 15.71 15.77 15.82 15.88 15.93	161 162 163 164 165 166	Q 1.p.s. 16.67 16.72 16.83 16.83 16.88 16.93
	H cm 1 2 3 4 5 6 7 8	Q Lp.s. 1.31 1.86 2.28 2.63 2.94 3.22 3.48 3.72	21 22 23 24 25 26 27 28	6.02 6.16 6.30 6.44 6.57 6.70 6.83	11 cm 41 42 43 44 45 46 47 48	Q 1 p.s. 8.41 8.52 8.62 8.72 8.81 8.91 9.01	61 62 63 64 65 66 67	1.ps. 10.26 10.35 10.43 10.51 10.59 10.67 10.76	81 82 83 84 85 86 87	Q Lps. 11.83 11.90 11.97 12.04 12.11 12.19 12.26 12.33	11 cm 101 102 103 104 105 106 107 108	13.21 13.21 13.34 13.40 13.46 13.53 13.59	11 cm 121 122 123 124 125 126 127 128	14.45 14.45 14.51 14.63 14.69 14.75 14.81 14.87	11 cm 141 142 143 144 145 146 147	(3°) Q Lp.s. 15.60 15.66 15.71 15.77 15.82 15.88 15.93 15.99	161 162 163 164 165 166 167 168	Q l.p.s. 16.67 16.72 16.78 16.83 16.88 16.93 16.98 17.03
	H cm 1 2 3 4 5 6 7 8	Q Lp.s. 1.31 1.86 2.28 2.63 2.94 3.22 3.48 3.72 3.94	21 22 23 24 25 26 27 28 29	6.02 6.16 6.30 6.44 6.57 6.70 6.83 6.95 7.08	11 cm 41 42 43 44 45 46 47 48 49	Q 1 p.s. 8.41 8.52 8.62 8.72 8.81 9.01 9.10 9.20	61 62 63 64 65 66 67 68	1.ps. 10.26 10.35 10.43 10.51 10.59 10.67 10.76 10.84	81 82 83 84 85 86 87 88	Q Lps. 11.83 11.90 11.97 12.04 12.11 12.19 12.26 12.33 12.40	11 cm 101 102 103 104 105 106 107 108 109	13.21 13.21 13.27 13.34 13.40 13.46 13.53 13.59 13.66 13.72	11 cm 121 122 123 124 125 126 127 128 129	14.45 14.45 14.51 14.63 14.69 14.75 14.81 14.87 14.87	141 142 143 144 145 146 147 148 149	(3°) Q Lps. 15.60 15.66 15.71 15.77 15.82 15.88 15.93 15.99 16.04	161 162 163 164 165 166 167 168	Q 1.p.s. 16.67 16.72 16.78 16.83 16.88 16.93 16.98 17.03 17.08
	H cm 1 2 3 4 5 6 7 8 9 10	Q tp.s. 1.31 1.86 2.28 2.63 2.94 3.22 3.48 3.72 3.94 4.16	21 22 23 24 25 26 27 28 29 30	6.02 6.16 6.30 6.44 6.57 6.70 6.83 6.95 7.08	11 cm 41 42 43 44 45 46 47 48 49 50	Q 1ps. 8.41 8.52 8.62 8.72 8.81 8.91 9.01 9.20 9.20	61 62 63 64 65 66 67 68 69 70	1.p.s. 10.26 10.35 10.43 10.51 10.59 10.67 10.76 10.84 10.91	81 82 83 84 85 86 87 88 89	Q Lps. 11.83 11.90 11.97 12.04 12.11 12.19 12.26 12.33 12.40 12.47	11 cm 101 102 103 104 105 106 107 108 109 110	13.21 13.21 13.27 13.34 13.40 13.46 13.53 13.59 13.66 13.72	11 cm 121 122 123 124 125 126 127 128 129 130	14.45 14.45 14.51 14.57 14.63 14.69 14.75 14.81 14.87 14.92	141 142 143 144 145 146 147 148 149	(3°) Q Lp.s. 15.60 15.71 15.77 15.82 15.88 15.93 15.99 16.04 16.09	11 cm 161 162 163 164 165 166 167 168 169 170	Q l.p.s. 16.67 16.72 16.78 16.83 16.88 16.93 16.98 17.03 17.08
	H cm 1 2 3 4 5 6 7 8 9 10 11	Q Lp.s. 1.31 1.86 2.28 2.63 2.94 3.22 3.48 3.72 3.94 4.16 4.36	21 22 23 24 25 26 27 28 29 30 31	1.p.s. 6.02 6.16 6.30 6.44 6.57 6.70 6.83 6.95 7.08 7.20 7.32	11 cm 41 42 43 44 45 46 47 48 49 50 51	Q 1.p.s. 8.41 8.52 8.62 8.72 8.81 8.91 9.01 9.20 9.20 9.29 9.38	61 62 63 64 65 66 67 68 69 70	1.p.s. 10.26 10.35 10.43 10.51 10.59 10.67 10.76 10.84 10.91 10.99 11.07	81 82 83 84 85 86 87 88 89 90	Q Lp.s. 11.83 11.90 11.97 12.04 12.11 12.19 12.26 12.33 12.40 12.47 12.53	11 cm 101 102 103 104 105 106 107 108 109 110	13.21 13.21 13.27 13.34 13.46 13.53 13.59 13.66 13.72 13.78 13.84	11 cm 121 122 123 124 125 126 127 128 129 130 131	14.45 14.45 14.51 14.63 14.69 14.75 14.81 14.87 14.92 14.98 15.04	141 142 143 144 145 146 147 148 149 150	(3°) Q Lp.s. 15.60 15.66 15.71 15.82 15.88 15.93 15.99 16.04 16.09 16.15	161 162 163 164 165 166 167 168 169 170	Q 1,p.s. 16.67 16.72 16.78 16.83 16.88 16.93 17.03 17.08 17.13 17.18
	H cm 1 2 3 4 5 6 7 8 9 10 11 12	Q Lp.s. 1.31 1.86 2.28 2.63 2.94 3.22 3.48 3.72 3.94 4.16 4.36 4.55	21 22 23 24 25 26 27 28 29 30 31 32	6.02 6.16 6.30 6.44 6.57 6.70 6.83 6.95 7.08 7.20 7.32 7.43	11 cm 41 42 43 44 45 46 47 48 49 50 51 52	Q 1ps. 8.41 8.52 8.62 8.72 8.81 8.91 9.01 9.20 9.20 9.29 9.38 9.48	61 62 63 64 65 66 67 68 69 70 71	1.ps. 10.26 10.35 10.43 10.51 10.59 10.67 10.76 10.84 10.91 11.07 11.15	H cm 81 82 83 84 85 86 87 88 89 90 91 92	Q Lp.s. 11.83 11.90 11.97 12.04 12.11 12.19 12.26 12.33 12.40 12.47 12.53 12.60	H cm 101 102 103 104 105 106 107 108 109 111 111	13.21 13.21 13.27 13.34 13.46 13.53 13.59 13.66 13.72 13.78 13.84 13.91	111 cm 122 122 123 124 125 126 127 128 129 130 131 132	14.45 14.51 14.69 14.75 14.81 14.87 14.92 14.98 15.04	141 142 143 144 145 146 147 148 149 150 151	(3°) Q Lps. 15.60 15.71 15.77 15.82 15.88 15.93 16.04 16.09 16.15 16.20	161 162 163 164 165 166 167 168 169 170 171	Q 1.p.s. 16.67 16.72 16.78 16.83 16.88 16.93 17.03 17.08 17.13 17.18
	H cm 1 2 3 4 5 6 7 8 9 10 11 12 13	Q Lp.s. 1.31 1.86 2.28 2.63 2.94 3.22 3.48 3.72 3.94 4.16 4.36 4.55 4.74	21 22 23 24 25 26 27 28 29 30 31 32 33	6.02 6.16 6.30 6.44 6.57 6.70 6.83 6.95 7.08 7.20 7.32 7.43	11 cm 41 42 43 44 45 46 47 48 49 50 51 52 53	Q 1ps. 8.41 8.52 8.62 8.72 8.81 8.91 9.01 9.20 9.29 9.38 9.48 9.57	cm 61 62 63 64 65 66 67 70 71 72 73	1.ps. 10.26 10.35 10.43 10.51 10.59 10.67 10.76 10.84 10.91 11.07 11.15 11.23	H cm 81 82 83 84 85 86 87 88 89 90 91 92	Q Lps. 11.83 11.90 11.97 12.04 12.11 12.19 12.26 12.33 12.40 12.47 12.53 12.60 12.67	H cm 101 102 103 104 105 106 107 108 109 111 112 113	13.21 13.21 13.27 13.34 13.40 13.46 13.53 13.59 13.66 13.72 13.78 13.84 13.91	111 cm 122 123 124 125 126 127 128 129 130 131 132 133	14.45 14.45 14.51 14.57 14.63 14.69 14.75 14.81 14.87 14.92 14.98 15.04 15.10	111 cm 141 142 143 144 145 146 147 148 149 150 151 152 153	(3°) Q Lps. 15.60 15.71 15.77 15.82 15.88 15.93 16.04 16.09 16.15 16.20 16.25	16 cm 161 162 163 164 165 166 167 168 169 170 171 172 173	Q 1,p.s. 16,67 16,72 16,78 16,83 16,88 16,93 17,03 17,08 17,13 17,18 17,23 17,28
	H cm 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Q Lp.s. 1.31 1.86 2.28 2.63 2.94 3.22 3.48 3.72 3.94 4.16 4.36 4.55 4.74 4.92	21 22 23 24 25 26 27 28 29 30 31 32 33 34	6.02 6.16 6.30 6.44 6.57 6.70 6.83 6.95 7.08 7.20 7.32 7.43 7.55	11 cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54	Q 1ps. 8.41 8.52 8.62 8.72 8.81 8.91 9.01 9.20 9.29 9.38 9.48 9.57	cm 61 62 63 64 65 66 67 68 69 71 72 73 74	1.ps. 10.26 10.35 10.43 10.51 10.59 10.67 10.76 10.84 10.91 11.07 11.15 11.23 11.36	H cm 81 82 83 84 85 86 87 88 89 90 91 92 93	Q Lps. 11.83 11.90 11.97 12.04 12.11 12.19 12.26 12.33 12.40 12.47 12.53 12.60 12.67	H cm 101 102 103 104 105 106 107 108 110 111 112 113 114	13.21 13.21 13.27 13.34 13.40 13.46 13.53 13.59 13.66 13.72 13.78 13.84 13.91 13.97	111 cm 122 123 124 125 126 127 128 129 130 131 132 134	14.45 14.51 14.57 14.63 14.69 14.75 14.81 14.87 14.92 14.98 15.04 15.10 15.15	11 cm 141 142 143 144 145 146 147 148 149 150 151 152 153 154	(3°) Q 1,p.s. 15.60 15.66 15.71 15.77 15.82 15.83 15.93 16.04 16.09 16.15 16.20 16.25	11 cm 161 162 163 164 165 166 167 168 169 170 171 172 173 174	Q l.p.s. 16.67 16.72 16.78 16.83 16.83 16.93 17.03 17.13 17.18 17.23 17.28 17.33
	H cm 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15	Q Lp.s. 1.31 1.86 2.28 2.63 2.94 3.22 3.48 3.72 3.94 4.16 4.36 4.55 4.74 4.92 5.09	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	1.ps. 6.02 6.16 6.30 6.44 6.57 6.70 6.83 6.95 7.08 7.20 7.32 7.43 7.55 7.66	11 cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	Q 1p.s. 8.41 8.52 8.62 8.72 8.81 8.91 9.01 9.20 9.29 9.38 9.48 9.57 9.66	cm 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75	1.ps. 10.26 10.35 10.43 10.51 10.59 10.67 10.76 10.84 10.91 11.07 11.15 11.23 11.36 11.38	H cm 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	Q Lps. 11.83 11.90 11.97 12.04 12.11 12.19 12.26 12.33 12.40 12.47 12.53 12.60 12.67 12.74 12.74	H cm 101 102 103 104 105 106 107 108 111 112 113 114 115	Q l.p.s. 13.21 13.27 13.34 13.40 13.46 13.59 13.66 13.72 13.78 13.84 13.91 13.97 14.03	111 cm 122 122 123 124 125 126 127 128 130 131 132 133 134 135	14.45 14.45 14.51 14.57 14.63 14.69 14.75 14.81 14.87 14.92 14.98 15.04 15.10 15.15 15.21	11 cm 141 142 143 144 145 146 147 148 149 150 151 152 153 154	(3°) Q 1,p.s. 15.60 15.66 15.71 15.77 15.82 15.83 15.99 16.04 16.09 16.15 16.20 16.25 16.31 16.36	11 cm 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175	Q l.p.s. 16.67 16.72 16.78 16.83 16.83 16.93 17.03 17.13 17.18 17.23 17.28 17.33 17.38
	H cm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Q Lp.s. 1.31 1.86 2.28 2.63 2.94 3.22 3.48 3.72 3.94 4.16 4.36 4.55 4.74 4.92 5.09 5.26	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	1.ps. 6.02 6.16 6.30 6.44 6.57 6.70 6.83 6.95 7.08 7.20 7.32 7.43 7.55 7.66	11 cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	Q 1ps. 8.41 8.52 8.62 8.72 8.81 8.91 9.01 9.10 9.20 9.29 9.38 9.48 9.57 9.66 9.74	cm 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76	1.ps. 10 26 10.35 10.43 10.51 10.59 10.67 10.76 10.84 10.91 11.07 11.15 11.23 11.36 11.38 11.46	H cm 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	Q Lps. 11.83 11.90 11.97 12.04 12.11 12.19 12.26 12.33 12.40 12.47 12.53 12.60 12.67 12.74 12.81 12.81	H cm 101 102 103 104 105 106 107 108 111 112 113 114 115 116	13.21 13.21 13.34 13.40 13.43 13.43 13.53 13.53 13.78 13.78 13.78 13.71 14.03 14.03 14.03	111 cm 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136	14.45 14.45 14.51 14.63 14.69 14.75 14.81 14.87 14.92 14.98 15.04 15.15 15.21 15.21	11 cm 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156	(3°) Q Lps. 15.60 15.66 15.71 15.77 15.82 15.88 15.93 16.94 16.04 16.09 16.15 16.20 16.25 16.31 16.36	11 cm 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176	Q l.p.s. 16.67 16.72 16.83 16.88 16.93 17.03 17.18 17.13 17.18 17.28 17.33 17.28
	H cm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Q tp.s. 1.31 1.86 2.28 2.63 2.94 3.22 3.48 3.72 3.94 4.16 4.35 4.74 4.92 5.09 5.26	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	1.ps. 6.02 6.16 6.30 6.44 6.57 6.70 6.83 6.95 7.08 7.20 7.32 7.43 7.55 7.66 7.77 7.88	11 cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	Q 1p.s. 8.41 8.52 8.62 8.72 8.81 8.91 9.01 9.20 9.20 9.38 9.48 9.57 9.66 9.74 9.83 9.92	cm 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77	1.ps. 10.26 10.35 10.43 10.51 10.59 10.67 10.84 10.91 10.97 11.07 11.15 11.23 11.36 11.38 11.46 11.53	H cm 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97	Q Lps. 11.83 11.90 11.97 12.04 12.11 12.19 12.26 12.33 12.40 12.47 12.53 12.60 12.67 12.74 12.81 12.87 12.81	H cm 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117	Q pp. 13.21 13.40 13.46 13.53 13.59 13.66 13.72 13.78 13.91 14.03 14.09 14.15 14.21 14.2	11 cm 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137	Q 1p4. 14.45 14.51 14.51 14.69 14.75 14.81 14.87 14.92 14.98 15.04 15.15 15.27 15.32	11 cm 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157	(3*) Q l.p.s. 15.60 15.77 15.82 15.88 15.93 16.04 16.09 16.15 16.25 16.31 16.36 16.41	11 cm 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176	Q l.p.s. 16.67 16.72 16.78 16.83 16.98 17.03 17.08 17.13 17.18 17.23 17.23 17.23 17.24 17.34
	H cm 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18	Q tp.s. 1.31 1.86 2.28 2.63 2.94 3.22 3.48 3.72 3.94 4.16 4.35 4.74 4.92 5.09 5.26 5.42 5.57	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	1.ps. 6.02 6.16 6.30 6.44 6.57 6.70 6.83 6.95 7.08 7.20 7.32 7.43 7.55 7.66 7.77 7.88 7.99	11 cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	Q 1ps. 8.41 8.52 8.62 8.72 8.81 8.91 9.10 9.20 9.29 9.38 9.48 9.57 9.66 9.74 9.83 9.92 10.01	cm 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77	1.ps. 10.26 10.35 10.43 10.51 10.59 10.67 10.76 10.84 10.91 10.99 11.07 11.15 11.23 11.36 11.38 11.46 14.53 11.60	H cm 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	Q Lps. 11.83 11.90 11.97 12.04 12.11 12.19 12.26 12.33 12.40 12.47 12.53 12.60 12.74 12.81 12.87 12.81 12.87 12.93 13.01	H cm 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118	Q p3.	11 cm 121 122 123 124 125 126 127 128 130 131 132 133 134 135 136 137 138	Q 19-a. 14.45 14.51 14.57 14.63 14.69 14.75 14.81 14.87 14.98 15.04 15.10 15.21 15.22 15.38 15.44	11 cm 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157 158	(3°) Q 15.60 15.66 15.71 15.77 15.82 15.83 15.93 16.04 16.09 16.15 16.20 16.23 16.34 16.44 16.46 16.46	11 cm 161 162 163 164 165 166 167 171 172 173 174 175 176 177 178	Q 16.72 16.72 16.78 16.83 16.98 16.93 17.03 17.13 17.18 17.23 17.23 17.33 17.24 17.33 17.48 17.43
	H cm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Q tp.s. 1.31 1.86 2.28 2.63 2.94 3.22 3.48 3.72 3.94 4.16 4.35 4.74 4.92 5.09 5.26	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	1.ps. 6.02 6.16 6.30 6.44 6.57 6.70 6.83 6.95 7.08 7.20 7.32 7.43 7.55 7.66 7.77 7.88	11 cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	Q 1p.s. 8.41 8.52 8.62 8.72 8.81 8.91 9.01 9.20 9.20 9.38 9.48 9.57 9.66 9.74 9.83 9.92	cm 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77	1.ps. 10.26 10.35 10.43 10.51 10.59 10.67 10.84 10.91 10.97 11.07 11.15 11.23 11.36 11.38 11.46 11.53	H cm 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97	Q Lps. 11.83 11.90 11.97 12.04 12.11 12.19 12.26 12.33 12.40 12.47 12.53 12.60 12.67 12.74 12.81 12.87 12.81	H cm 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117	Q pp. 13.21 13.40 13.46 13.53 13.59 13.66 13.72 13.78 13.91 14.03 14.09 14.15 14.21 14.2	11 cm 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137	Q 1p4. 14.45 14.51 14.51 14.69 14.75 14.81 14.87 14.92 14.98 15.04 15.15 15.27 15.32	11 cm 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157	(3*) Q l.p.s. 15.60 15.77 15.82 15.88 15.93 16.04 16.09 16.15 16.25 16.31 16.36 16.41	11 cm 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176	Q l.p.s. 16.67 16.72 16.78 16.83 16.98 17.03 17.08 17.13 17.18 17.23 17.23 17.23 17.24 17.34

	-						_											
ł			EDIE	os con	_	_	RIFIC	IO CAL										—
1		0.639				2.549): 152 m			_	ICIO; 10				
	н	Q	11	0	н	0	H	Q	11	0	н	.0	н	Q	H	Q	н	0
	cm i	I.p.s. 2.55	cm 21	1.p.s. 11.68	cm 41	1 p.s. 16.32	61	1.p.s. 19.91	cm 81	1 p.s. 22.94	101	1.p.s. 25.62	121	1.p.s. 28.04	cm 141	I.p.s. 30,27	cm 161	1.p.s. 32.34
	2	3.60	22	11.96	42	16.52	62	20.07	82	23.08	101	25.74	122	28.15	142	30.27	162	32.44
	3	4.41	23	12.22	43	16.71	63	20.23	83	23.22	103	25.87	123	28.27	143	30.48	163	32.54
	4	5.10	24	12.49	44	16.91	64	20.39	84	23.36	104	25.99	124	28.38	144	30.59	164	32.64
	5	5.70	25	12.75	45	17.10	65	20.55	85	23.50	105	26.12	125	28.50	145	30.69	165	32.74
l	6	6,24	26	13.00	46	17.29	66	20.71	86	23.64	106	26.24	126	28.61	146	30.80	166	32.84
	7	6.74	27	13.24	47	17.48	67	20.86	87	23.78	107	26.37	127	28.73	147	30.90	167	32.94
	8	7.21	28	13.49	48	17.66	68	21.02	88	23.91	108	26.49	128	28.84	148	31.01	168	33.04
İ	9	7.65	29	13.73	49	17.84	69	21.17	89	24.05	109	26.61	129	28.95	149	31.11	169	33.14
ı	10	8.06	30	13.96	50	18.02	70	21.33	90	24.18	110	26.73	130	29.06	150	31.22	170	33.23
	11	8.45	31	14.19	51	18.20	71	21.48	91	24.32	111	26.86	131	29.17	151	31.32	171	33.33
ı	12	8.83	32	14.42	52	18.38	72	21.63	92	24.45	112	26.98	132	29.29	152	31.43	172	33.43
i	13	9.19	33	14.64	53	18.56	73	21.78	93	24.58	113	27.10	133	29.40	153	31.53	173	33.53
1	14	9.54	34	14.86	54	18.73	74	21.93	94	24.71	114	27.22	134	29.51	154	31.63	174	33.62
	15	9.87	35	15.08	55	18.90	75	22.07	95	24.84	115	27.33	135	29.62	155	31.73	175	33.72
Į	16	10.20	36	15.29	56	19.07	76	22.22	96	24.97	116	27.45	136	29.73	156	31.84	176	33.82
1	17	10.51	37	15.50	57	19.24	77	22.37	97	25.10	117	27.57	137	29.84	157	31.94	177	33.91
1	18	10.81	38	15.71 15.92	58 59	19.41 19.58	78	22.51	98 99	25.23	118	27.69	138	29.94	158	32.04	178	34.01
	20	11.11 11.40	40	16.12	60	19.74	80	22.66		25.36 25.49	119	27.81	139 140	30.05 30.16	159 160	32.14 32.24	179 180	34.10 34.20
1	_		_	10.12	. 00	12.74	100	1 22.00	100	23.47	120	47.92	140	30.10	100	36.64	100	34.20
	_	0.825				5.142			_): 152 m		_	_	1010: 1				
ı	Ħ	Q	H	0	Н	Q	Н	٥	В	Q	H	Q	H	Q	H	Q	н	0
	H cm	Q I.p.s.	cm	Lp.s.	H cm	Q i.p.s.	сm	l.p.s.	II cm	Q lp.s.	H cm	Q I.p.s.	H cm	Q l.p.s.	H cm	Q Ips.	cm	Lp.a.
	ii cm	Q I.p.s. 5.14	cm 21	Lp.s. 23.56	H cm 41	Q 1.p.s. 32.92	cm 61	1.p.s. 40.16	(1) cm 81	O 1 p.s. 46.28	FI em 101	Q 1.p.s. 51.68	H cm 121	Q 1.p.s. 56.56	H cm 141	Q lp.s. 61.06	cm 161	I.p.a. 65.24
	om 1 2	Q I.p.s. 5.14 7.27	21 22	1 p.s. 23.56 24.12	H cm 41 42	Q l.p.s. 32.92 33.32	61 62	1.p.s. 40.16 40.49	11 cm 81 82	Q l p.a. 46.28 46.56	11 cm 101 102	Q 1.p.s. 51.68 51.93	H cm 121 122	Q l.p.s. 56.56 56.80	H cm 141 142	Q I p.s. 61.06 61.27	cm 161 162	I.p.a. 65.24 65.45
	ii cm	Q I.p.s. 5.14 7.27 8.91	21 22 23	1 p.s. 23.56 24.12 24.66	H cm 41	Q 1.p.s. 32.92 33.32 33.72	61 62 63	1.p.s. 40.16 40.49 40.81	81 82 83	Q p.s. 46.28 46.56 46.85	101 102 103	Q 1.p.s. 51.68 51.93 52.19	H cm 121 122 123	Q l.p.s. 56.56 56.80 57.03	H cm 141 142 143	Q 1 p.s. 61.06 61.27 61.49	cm 161 162 163	E.p.a. 65.24 65.45 65.65
	11 2 3 4	Q I.p.s. 5.14 7.27	21 22	23.56 24.12 24.66 25.19	H cm 41 42 43 44	Q 1.p.s. 32.92 33.32 33.72 34.11	61 62 63 64	1.p.s. 40.16 40.49 40.81 41.14	81 82 83 84	Q l p.a. 46.28 46.56 46.85 47.13	H cm 101 102 103 104	Q 1.p.s. 51.68 51.93 52.19 52.44	H cm 121 122 123 124	Q 1.p.s. 56.56 56.80 57.03 57.26	H cm 141 142 143 144	Q I p.s. 61.06 61.27 61.49 61.70	161 162 163 164	1.p.a. 65.24 65.45 65.65 65.85
	om 1 2 3	Q I.p.s. 5.14 7.27 8.91 10.28	21 22 23 24	1 p.s. 23.56 24.12 24.66	11 cm 41 42 43	Q 1.p.s. 32.92 33.32 33.72	61 62 63	1.p.s. 40.16 40.49 40.81	81 82 83	Q p.s. 46.28 46.56 46.85	101 102 103	Q 1.p.s. 51.68 51.93 52.19	H cm 121 122 123	Q l.p.s. 56.56 56.80 57.03	H cm 141 142 143	Q 1 p.s. 61.06 61.27 61.49	cm 161 162 163	E.p.a. 65.24 65.45 65.65
	11 2 3 4 5	Q 1.p.s. 5.14 7.27 8.91 10.28 11.50	21 22 23 24 25	23.56 24.12 24.66 25.19 25.71	H cm 41 42 43 44 45	Q i.p.i. 32.92 33.32 33.72 34.11 34.49	61 62 63 64 65	1.p.s. 40.16 40.49 40.81 41.14 41.46	81 82 83 84 85	Q p.s. 46.28 46.56 46.85 47.13 47.41	H cm 101 102 103 104 105	Q 1.p.s. 51.68 51.93 52.19 52.44 52.69	H cm 121 122 123 124 125	Q 1.p.s. 56.56 56.80 57.03 57.26 57.49	H cm 141 142 143 144 145	Q Lp.s. 61.06 61.27 61.49 61.70 61.92	cm 161 162 163 164 165	1.p.s. 65.24 65.45 65.65 65.85 66.05
	11 2 3 4 5 6	Q I.p.s. 5.14 7.27 8.91 10.28 11.50 12.60	21 22 23 24 25 26	23.56 24.12 24.66 25.19 25.71 26.22	H cm 41 42 43 44 45 46	Q 1.p.s. 32.92 33.32 33.72 34.11 34.49 34.87	cm 61 62 63 64 65 66	1.p.s. 40.16 40.49 40.81 41.14 41.46 41.77	81 82 83 84 85 86	Q 1 p.s. 46.28 46.56 46.85 47.13 47.41 47.68	H cm 101 102 103 104 105 106	Q 1.p.s. 51.68 51.93 52.19 52.44 52.69 52.94	H cm 121 122 123 124 125 126	Q 1.p.s. 56.56 56.80 57.03 57.26 57.49 57.72	H cm 141 142 143 144 145 146	Q 1 p.s. 61.06 61.27 61.49 61.70 61.92 62.13	cm 161 162 163 164 165 166	1.p.u. 65.24 65.45 65.65 65.85 66.05 66.25
	11 2 3 4 5 6 7	Q I.p.s. 5.14 7.27 8.91 10.28 11.50 12.60 13.60	21 22 23 24 25 26 27	23.56 24.12 24.66 25.19 25.71 26.22 26.72	11 cm 41 42 43 44 45 46 47	Q 1.p.s. 32.92 33.32 33.72 34.11 34.49 34.87 35.25	61 62 63 64 65 66 67	1.p.s. 40.16 40.49 40.81 41.14 41.46 41.77 42.09	81 82 83 84 85 86 87	Q 1 p.s. 46.23 46.56 46.85 47.13 47.41 47.68 47.96	H cm 101 102 103 104 105 106 107	Q 1.p.s. 51.68 51.93 52.19 52.44 52.69 52.94 53.19	H cm 121 122 123 124 125 126 127	Q 1.p.s. 56.56 56.80 57.03 57.26 57.49 57.72 57.95	H cm 141 142 143 144 145 146 147	Q lps. 61.06 61.27 61.49 61.70 61.92 62.13	cm 161 162 163 164 165 166 167	1.p.s. 65.24 65.45 65.65 65.85 66.05 66.25 66.45
	11 2 3 4 5 6 7 B	Q I.p.s. 5.14 7.27 8.91 10.28 11.50 12.60 13.60 14.54	21 22 23 24 25 26 27 28	1.p.s. 23.56 24.12 24.66 25.19 25.71 26.22 26.72 27.21	11 cm 41 42 43 44 45 46 47 48	Q 1.p.s. 32.92 33.32 33.72 34.11 34.49 34.87 35.25 35.62	61 62 63 64 65 66 67 68	1.p.s. 40.16 40.49 40.81 41.14 41.46 41.77 42.09 42.46	81 82 83 84 85 86 87 88	Q 1 p.s. 46.23 46.56 46.85 47.13 47.41 47.68 47.96 48.24	H cm 101 102 103 104 105 106 107	Q 1.p.s. 51.68 51.93 52.19 52.44 52.69 52.94 53.19 53.44	H cm 121 122 123 124 125 126 127 128	Q l.p.s. 56.56 56.80 57.03 57.26 57.49 57.72 57.95 58.18	H cm 141 142 143 144 145 146 147	Q lps. 61.06 61.27 61.49 61.70 61.92 62.13 62.34 62.56	cm 161 162 163 164 165 166 167 168	1.p.s. 63.24 65.45 65.65 65.85 66.05 66.25 66.45 66.65
	11 2 3 4 5 6 7 8 9	Q Lp.s. 5.14 7.27 8.91 10.28 11.50 12.60 13.60 14.54 15.43	21 22 23 24 25 26 27 28 29	23.56 24.12 24.66 25.19 25.71 26.22 26.72 27.21 27.69	H cm 41 42 43 44 45 46 47 48 49	Q hps. 32.92 33.32 33.72 34.11 34.49 34.87 35.25 35.62 35.99	61 62 63 64 65 66 67 68 69	1.p.a. 40.16 40.49 40.81 41.14 41.46 41.77 42.09 42.46 42.71	81 82 83 84 85 86 87 88	Q 1 p.s. 46.28 46.56 46.85 47.13 47.41 47.68 47.96 48.24 48.51	H cm 101 102 103 104 105 106 107 108 109	Q 1.p.s. 51.68 51.93 52.19 52.44 52.69 52.94 53.19 53.44 53.68	H cm 121 122 123 124 125 126 127 128 129	Q l.p.s. 56.56 56.80 57.03 57.26 57.49 57.72 57.95 58.18 58.40	H cm 141 142 143 144 145 146 147 148 149	Q 1p.s. 61.06 61.27 61.49 61.70 61.92 62.13 62.34 62.56 62.77	cm 161 162 163 164 165 166 167 168 169	65.24 65.45 65.65 65.85 66.05 66.25 66.45 66.65 66.85
	1 2 3 4 5 6 7 8 9 10 11 12	Q Lp.s. 5.14 7.27 8.91 10.28 11.50 12.60 13.60 14.54 15.43 16.26 17.05 17.81	21 22 23 24 25 26 27 28 29 30	23.56 24.12 24.66 25.19 25.71 26.22 26.72 27.21 27.69 28.16	11 cm 41 42 43 44 45 46 47 48 49 50	Q i.p.s. 32.92 33.32 33.72 34.11 34.49 34.87 35.25 35.62 35.99 36.36	61 62 63 64 65 66 67 68 69 70	1.p.a. 40.16 40.49 40.81 41.14 41.46 41.77 42.09 42.40 42.71 43.02	81 82 83 84 85 86 87 88 89	Q 1 p.s. 46.23 46.56 46.85 47.13 47.41 47.68 47.96 48.24 48.51 48.78	H cm 101 102 103 104 105 106 107 108 109 110	Q 1.p.s. 51.68 51.93 52.19 52.44 52.69 52.94 53.19 53.44 53.68 53.93	H cm 121 122 123 124 125 126 127 128 129 130	Q l.p.s. 56.56 56.80 57.03 57.26 57.49 57.72 57.95 58.18 58.40 58.63	H cm 141 142 143 144 145 146 147 148 149	Q lps. 61.06 61.27 61.49 61.70 61.92 62.13 62.34 62.56 62.77 62.98	161 162 163 164 165 166 167 168 169	65.24 65.45 65.65 65.85 66.05 66.25 66.45 66.65 66.85 67.04
	11 2 3 4 5 6 7 8 9 10 11 12 13	Q I.p.s. 5.14 7.27 8.91 10.28 11.50 12.60 13.60 14.54 15.43 16.26 17.05 17.81 18.54	21 22 23 24 25 26 27 28 29 30 31 32 33	23.56 24.12 24.66 25.19 25.71 26.22 26.72 27.21 27.69 28.16 28.63 29.09 29.54	H cm 41 42 43 44 45 46 47 48 49 50 51 52 53	Q 1.p.s. 32.92 33.32 33.72 34.11 34.49 34.87 35.25 35.62 35.99 36.36 36.72 37.08 37.43	61 62 63 64 65 66 67 68 69 70 71 72 73	1pa. 40.16 40.49 40.81 41.14 41.46 41.77 42.09 42.40 42.71 43.02 43.33 43.63 43.93	81 82 83 84 85 86 87 88 89 90	Q Ip.s. 46.23 46.56 46.85 47.13 47.41 47.68 47.96 48.24 48.51 48.78 49.05	H cm 101 102 103 104 105 106 107 108 109 110	Q 1.p.s. 51.68 51.93 52.19 52.44 52.69 52.94 53.19 53.44 53.68 53.93 54.17	H cm 121 122 123 124 125 126 127 128 129 130	Q l.p.s. 56.56 56.80 57.03 57.26 57.49 57.72 57.95 58.18 58.40 58.63 58.85	H cm 141 142 143 144 145 146 147 148 149 150	Q lps. 61.06 61.27 61.49 61.70 62.34 62.34 62.56 62.77 62.98 63.19	cm 161 162 163 164 165 166 167 168 169 170 171 172 173	1.p.a. 65.24 65.45 65.65 65.85 66.05 66.25 66.45 66.65 66.85 67.04 67.24
	11 2 3 4 5 6 7 8 9 10 11 12 13 14	Q I.p.s. 5.14 7.27 8.91 10.28 11.50 12.60 13.60 14.54 15.43 16.26 17.05 17.81 18.54 19.24	21 22 23 24 25 26 27 28 29 30 31 32 33 34	1ps. 23.56 24.12 24.66 25.19 25.71 26.22 26.72 27.21 27.69 28.16 28.63 29.09 29.54 29.98	H cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54	Q 1.p.s. 32.92 33.32 33.72 34.11 34.49 34.87 35.25 35.62 35.99 36.36 36.72 37.08 37.43 37.79	cm 61 62 63 64 65 66 67 68 69 70 71 72 73 74	1.p.s. 40.16 40.49 40.81 41.14 41.46 41.77 42.09 42.46 42.71 43.02 43.33 43.63 43.93 44.23	81 82 83 84 85 86 87 88 89 90 91 92 93	Q lps. 46.28 46.56 46.85 47.13 47.41 47.68 47.96 48.24 48.51 49.05 49.32 49.32 49.85	H cm 101 102 103 104 105 106 107 108 110 111 112 113 114	Q 1.p.s. 51.68 51.93 52.19 52.44 52.69 53.19 53.44 53.66 53.93 54.17 54.42 54.66 54.90	H cm 121 122 123 124 125 126 127 128 129 130 131 132 133 134	Q l.p.s. \$6.56 56.80 57.03 57.26 57.49 57.72 57.95 58.18 58.40 58.63 58.85 59.08 59.30	H cm 141 142 143 144 145 146 147 150 151 152 153 154	Q lps. 61.06 61.27 61.49 61.70 61.92 62.13 62.34 62.56 62.77 62.98 63.19 63.39 63.60 63.81	cm 161 162 163 164 165 166 167 168 170 171 172 173 174	Lp.a. 65.24 65.45 65.65 65.85 66.05 66.25 66.45 66.65 66.85 67.04 67.24 67.63 67.83
	11 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15	Q l.p.s. 5.14 7.27 8.91 10.28 11.50 12.60 13.60 14.54 15.43 16.26 17.05 17.81 18.54 19.24 19.91	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	1ps. 23.56 24.12 24.66 25.19 25.71 26.22 26.72 27.21 27.69 28.16 28.63 29.09 29.54 29.98 30.42	H cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	Q 1.p.s. 32.92 33.37 34.11 34.49 34.87 35.25 35.62 35.99 36.36 36.72 37.08 37.43 37.79 38.13	cm 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75	1.p.s. 40.16 40.49 40.81 41.14 41.46 41.77 42.09 42.40 42.71 43.02 43.33 43.63 43.93 44.23 44.53	11 cm 81 82 83 84 85 86 87 88 89 90 91 92 93 94	Q 1 p.s. 46.23 46.56 46.85 47.13 47.41 47.68 47.96 48.24 48.51 48.78 49.05 49.32 49.59 49.85 50.12	H cm 101 102 103 104 105 106 107 108 109 111 112 113 114 115	Q 1.p.s. 51.68 51.93 52.19 52.44 52.69 53.19 53.44 53.68 53.93 54.17 54.42 54.66 54.90 55.14	H cm 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135	Q l.p.s. 56.56 56.80 57.03 57.26 57.49 57.72 57.95 58.18 58.40 58.63 59.08 59.30 59.52	H cm 141 142 143 144 145 146 147 150 151 152 153 154 155	Q lps. 61.06 61.27 61.49 61.70 62.13 62.34 62.56 62.77 62.98 63.19 63.60 63.81 64.02	cm 161 162 163 164 165 166 167 168 170 171 172 173 174 175	1.p.a. 65.24 65.45 65.65 65.85 66.03 66.25 66.45 66.65 66.85 67.04 67.24 67.44 67.63 68.02
	11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Q l.p.s. 5.14 7.27 8.91 10.28 11.50 12.60 13.60 14.54 15.43 16.26 17.05 17.81 18.54 19.24 19.91 20.57	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	Lps. 23.56 24.12 24.66 25.19 25.71 26.22 26.72 27.21 27.69 28.16 28.63 29.09 29.54 29.98 30.42 30.85	H cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	Q 1.p.s. 32.92 33.37 34.11 34.49 34.87 35.25 35.62 35.99 36.36 36.72 37.08 37.43 37.79 38.13 38.48	cm 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76	1.p.a. 40.16 40.49 40.81 41.14 41.46 41.77 42.09 42.46 42.71 43.02 43.03 43.63 43.93 44.23 44.53	11 cm 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	Q 1 p.s. 46.23 46.56 46.85 47.13 47.41 47.68 47.96 48.24 48.51 48.78 49.05 49.32 49.59 49.85 50.12 50.38	H cm lo1 lo2 lo3 lo4 lo5 lo6 lo7 lo8 lo9 l10 l11 l12 l13 l14 l15 l16	Q 1.p.s. 51.68 51.93 52.19 52.44 52.69 53.19 53.44 53.68 53.93 54.17 54.42 54.66 54.90 55.14 55.36	H cm 121 122 123 124 125 126 127 128 129 130 131 132 134 135 136	Q l.p.s. 56.56 56.80 57.03 57.26 57.49 57.72 57.95 58.18 58.40 58.63 59.08 59.30 59.52 59.74	H cm 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156	Q lps. 61.06 61.27 61.49 61.70 62.34 62.56 62.77 62.98 63.19 63.60 63.81 64.02 64.22	cm 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176	1.p.a. 65.24 65.45 65.65 65.85 66.03 66.25 66.45 66.65 66.85 67.04 67.24 67.44 67.63 68.02 68.02
the state of the s	11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Q l.p.s. 5.14 7.27 8.91 10.28 11.50 12.60 13.60 14.54 15.43 16.26 17.05 17.81 18.54 19.24 19.91 20.57 21.20	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	1.p.s. 23.56 24.12 24.66 25.19 25.71 26.22 26.72 27.21 27.69 28.16 28.63 29.09 29.54 29.98 30.42 30.85 31.28	H cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	Q l.p.s. 32.92 33.32 34.11 34.49 34.87 35.25 35.62 35.99 36.36 37.43 37.79 38.13 38.48 38.82	cm 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77	1.p.a. 40.16 40.49 40.81 41.14 41.46 41.77 42.09 42.40 42.71 43.02 43.03 43.63 43.93 44.23 44.53 44.83	11 cm 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	Q 1 p.s. 46.23 46.56 46.85 47.13 47.41 47.68 47.96 48.24 48.51 48.78 49.05 49.32 49.59 49.85 50.12 50.38	H cm lo1 lo2 lo3 lo4 lo5 lo6 lo7 lo8 lo9 l10 l11 l12 l13 l14 l15 l16 l17	Q 1.p.s. 51.68 51.93 52.19 52.44 52.69 52.94 53.19 53.44 53.68 53.93 54.17 54.42 54.66 54.90 55.14 55.36 55.62	H cm 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137	Q l.p.s. 56.56 56.80 57.03 57.26 57.49 57.72 57.95 58.18 58.40 58.63 58.85 59.08 59.30 59.52 59.74 59.97 60.19	H cm 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157	Q lps. 61.06 61.27 61.49 61.70 61.92 62.13 62.34 62.56 62.77 62.98 63.99 63.60 63.81 64.02 64.22 64.43	cm 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177	1.p.a. 65.24 65.45 65.65 65.85 66.05 66.25 66.45 66.65 67.04 67.44 67.63 67.83 68.02 68.22 68.41
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Q I.p.s. 5.14 7.27 8.91 10.28 11.50 12.60 13.60 14.54 15.43 16.26 17.05 17.81 18.54 19.91 20.57 21.20 21.82	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	1.p.s. 23.56 24.12 24.66 25.19 25.71 26.22 26.72 27.21 27.69 28.16 28.63 29.09 29.54 29.98 30.42 30.85 31.28 31.70	11 cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	Q ip4. 32.92 33.32 33.72 34.11 34.49 34.87 35.22 35.62 35.99 36.36 36.72 37.79 38.13 38.48 38.82 39.16	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77	1.p.s. 40.16 40.49 40.81 41.14 41.46 41.77 42.09 42.40 42.71 43.02 43.63 43.63 44.23 44.53 44.83 45.12 45.41	11 cm 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97	Q pa. 46.23 46.56 46.85 47.13 47.41 47.68 47.96 48.24 48.51 49.05 49.25 49.55 50.12 50.38 50.64 50.90	H cm lo1 lo2 lo3 lo4 lo5 lo6 lo7 lo8 lo9 l10 l11 l12 l13 l14 l15 l16 l17 l18	Q 1p.s. 51.63 51.93 52.19 52.44 52.69 52.94 53.19 53.44 53.68 53.93 54.17 54.42 55.56 55.62 55.62 55.62	H cm 121 122 123 124 125 126 127 128 130 131 132 133 134 135 136 137 138	Q lps. 56.56 56.80 57.03 57.26 57.72 57.72 57.95 58.18 58.63 58.63 59.30 59.52 59.57 60.19 60.40	H cm 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157 158	Q 1p4. 61.06 61.27 61.49 61.70 61.92 62.13 62.34 62.56 62.77 62.98 63.19 63.39 63.81 64.02 64.02 64.03 64.63	cm 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178	1.p.s. 65.24 65.45 65.65 65.85 66.05 66.25 66.45 66.65 67.04 67.44 67.63 67.83 68.02 68.22 68.41 68.60
	11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Q l.p.s. 5.14 7.27 8.91 10.28 11.50 12.60 13.60 14.54 15.43 16.26 17.05 17.81 18.54 19.24 19.91 20.57 21.20	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	1.p.s. 23.56 24.12 24.66 25.19 25.71 26.22 26.72 27.21 27.69 28.16 28.63 29.09 29.54 29.98 30.42 30.85 31.28	H cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	Q l.p.s. 32.92 33.32 34.11 34.49 34.87 35.25 35.62 35.99 36.36 37.43 37.79 38.13 38.48 38.82	cm 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77	1.p.a. 40.16 40.49 40.81 41.14 41.46 41.77 42.09 42.40 42.71 43.02 43.03 43.63 43.93 44.23 44.53 44.83	11 cm 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	Q 1 p.s. 46.23 46.56 46.85 47.13 47.41 47.68 47.96 48.24 48.51 48.78 49.05 49.32 49.59 49.85 50.12 50.38	H cm lo1 lo2 lo3 lo4 lo5 lo6 lo7 lo8 lo9 l10 l11 l12 l13 l14 l15 l16 l17	Q 1.p.s. 51.68 51.93 52.19 52.44 52.69 52.94 53.19 53.44 53.68 53.93 54.17 54.42 54.66 54.90 55.14 55.36 55.62	H cm 121 122 123 124 125 126 127 128 130 131 132 136 137 138 139	Q l.p.s. 56.56 56.80 57.03 57.26 57.49 57.72 57.95 58.18 58.40 58.63 58.85 59.08 59.30 59.52 59.74 59.97 60.19	H cm 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157	Q lps. 61.06 61.27 61.49 61.70 61.92 62.13 62.34 62.56 62.77 62.98 63.99 63.60 63.81 64.02 64.22 64.43	cm 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177	1.p.a. 65.24 65.45 65.65 65.85 66.05 66.25 66.45 66.65 67.04 67.44 67.63 67.83 68.02 68.22 68.41

_																	-	
ı	CÁUL	ALES N	IEDII	os con	TUB	o con o	RIFIC	10 CAL	BRAI	ю								
١	K=	0.586			C =	2.337			TUB	3; 203 m	m (8")		ORI	icto: to	2 mm	s (4°)		
ı	Н	Q	н	Q	н	Q	11	Q	11	Q	11	Q	H	Q	H.	Q	H.	Q
1	cm	l.p.s.	cm	l.p.s.	cm	1.p.s.	сm	Lps.	cm	l.p.s.	cw	1.p.s.	cm	Lp.s.	cm	1.0.s.	cm	l.p.s.
1	1	2.34	21	10.71	41	14.96	61	18.25	81	21.03	101	23,49	121	25.71	141	27.75	161	29.65
1	2	3.31	22	10.96	42	15.15	62	18.40	82	21.16	102	23.60	122	25.81	142	27.85	162	29,75
ı	3	4.05	23	11.21	43	15.32	63	18.55	83	21.29	103	23.72	123	25.92	143	27.95	163	29.84
1	4	4,67	24	11.45	44	15.50	64	18.70	84	21.42	104	23.83	124	26.02	144	28.04	164	29.93
1	5	5.23	25	11.69	45	15.68	65	18.84	85	21.55	105	23.95	125	26.13	145	28.14	165	30.02
1	6	5.72	26	11.92	46	15.85	66	18.99	86	21.67	106	24.00	126	26.23	146	28.24	166	30.11
ı	7	6.18	27	12.14	47	16.02	67	19.13	87	21.80	107	24.17	127	26.34	147	28.33	167	30.20
i	8	6,61	28	12.37	48	16.19	68	19.27	88	21.92	108	24.29	128	26.44	148	28.43	168	30.29
ł	9	7.01	29	12.59	49	16.36	69	19.41	89	22.05	109	24.40	129	26.54	149	28.53	169	30.38
1	10	7.39	30	12.80	50	16.53	70	19.55	90	22.17	110	24.51	130	26.65	150	28.62	170	30.47
ł	11	7.75	31	13.01	51	16.69	71	19.69	91	22.29	111	24.62	131	26.75	151	28.72	171	30.56
ł	12	8.10	32	13.22	52	16.85	72	19.83	92	22.42	112	24.73	132	26.85	152	28.81	172	30.65
ı	13	8,43	33	13.43	53	17.01	73	19.97	93	22.54	113	24.84	133	26.95	153	28.91	173	30.74
1	14	8,74	34	13.63	54	17.17	74	20.10	94	22.66	114	24.95	134	27.05	154	29.00	174	30.83
ı	15	9.05	35	13.83	55	17.33	75	20.24	95	22.78	115	25.06	135	27.15	155	29.10	175	30.92
ı	16	9.35	36	14.02	56	17.49	76	20.37	96	22.90	116	25.17	136	27.25	156	29.19	176	31.00
J	17	9,64	37	14.22	57	17.64	77	20.51	97	23.02	117	25.28	137	27.35	157	29.28	177	31.09
1	18	9.92	38	14.41	58	17.80	78	20.64	98	23.14	118	25.39	138	27.45	158	29.38	178	31.18
1	19	10.19	39	14.59	59 60	17.95 18.10	79 80	20.77	100	23.25	119 120	25.49 25.60	139	27.55	159 160	29.47 29.56	179	31.27
1	20	10.45	40															
	_			1 111		10.10		1 10:7:	1100	23.37	120	\$5,00	140	27.03	.00	27.50	180	3133
1	K =	0.621			C =	3.78			_	D: 203 m				1CIO: 1		ستسب	180	3133
	K=	Q	11	0			11	Q	_							ستسب	180	0
	-	Q t.p.s.	H cm		c-	3.78		Q lps.	TUB	D: 203 m	nı (8"	Q lps.	ORII II cm	icio: i	27 1111	1 (5") Q I.p.s.		Q I.p.s.
	om 1	Q t.p.s. 3,78	H cm	Q 1.p.s. 17.32	C =	3.78 Q 1 p.s. 24.20	il cm 61	Q 1ps. 29.52	TUB 11 cm 81	Q 1.p.s. 34.02	m (8"	Q l.p.s. 37,99	ORII H cm	ICIO: 1 Q l.p.s. 41.58	27 mir	1 (5°) Q 1.p.s. 44.89	H em 161	Q 1.p.s. 47.96
	cm 1 2	Q t.p.s. 3,78 5.35	H cm 21 22	Q 1.p.s. 17.32 17.73	C = ii cin 41 42	3.78 Q 1 p.s. 24.20 24.50	11 cm 61 62	Q lps. 29.52 29.76	TUB 11 cm 81 82	O: 203 m Q 1.p.s. 34.02 34.23	m (8" 11 cm 101	Q 1.p.s. 37.99 38.16	OR11 11 cm 121 122	Q 1.p.s. 41.58 41.75	27 mm H cm 141 142	1 (5°) U 1.p.s. 44.89 45.04	H em 161 162	Q 1.p.s. 47.96 48.11
	11 cm 1 2 3	Q t.p.s. 3,78 5,35 6,55	H cm 21 22 23	Q 1.p.s. 17.32 17.73 18.13	C = 11 cm 41 42 43	3.78 Q 1 p.s. 24.20 24.50 24.79	11 cm 61 62 63	Q 1.p.s. 29.52 29.76 30.00	TUB6 11 cm 81 82 83	O: 203 m Q 1.p.s. 34.02 34.23 34.44	m (8" 11 cm 101 102 103	Q l.p.s. 37.99 38.16 38.36	ORII 11 cm 121 122 123	Q 1.p.s. 41.58 41.75 41.92	27 mm H cm 141 142 143	1 (5°) U 1.p.s. 44.89 45.04 45.20	H cm 161 162 163	Q 1.p.s. 47.96 48.11 48.26
	11 cm 1 2 3 4	Q t.p.s. 3.78 5.35 6.55 7.56	H cm 21 22 23 24	Q 1.p.s. 17.32 17.73 18.13 18.52	C = ii cm 41 42 43 44	3.78 Q 1 p.s. 24.20 24.50 24.79 25.07	11 cm 61 62 63 64	Q 1ps. 29.52 29.76 30.00 30.24	TUB 11 cm 81 82 83 84	O: 203 m Q 1.p.s. 34.02 34.23 34.44 34.64	m (8" 11 cm 101 102 103 104	Q 1.p.s. 37.99 38.16 38.36 38.55	ORII 11 cm 121 122 123 124	Q 1.p.s. 41.58 41.75 41.92 42.09	27 mar H cm 141 142 143	1,p.s. 44,89 45,04 45,20 45,36	H em 161 162 163	Q 1.p.s. 47.96 48.11 48.26 48.41
	11 2 3 4 5	Q t.p.s. 3,78 5,35 6,55 7,56 8,45	11 cm 21 22 23 24 25	Q 1.p.s. 17.32 17.73 18.13 18.52 18.90	C = 11 cm 41 42 43 44 45	3.78 Q 1 p.s. 24.20 24.50 24.79 25.07 25.36	11 cm 61 62 63 64 65	Q 1ps. 29.52 29.76 30.00 30.24 30.48	TUB6 11 cm 81 82 83 84 85	O: 203 m Q 1.p.s. 34.02 34.23 34.44 34.64 34.85	m (8" 11 cm 101 102 103 104 105	Q 1.p.s. 37.99 38.16 38.36 38.55 38.73	ORII 11 cm 121 122 123 124 125	1CIO: 1 Q 1.p.s. 41.58 41.75 41.92 42.09 42.26	27 mm H cm 141 142 143 144 145	1 (5°) Q 1.p.s. 44.89 45.04 45.20 45.36 45.52	H cm 161 162 163 164 165	Q 1.p.s. 47.96 48.11 48.26 48.41 48.55
	11 2 3 4 5 6	Q t.p.s. 3.78 5.35 6.55 7.56 8.45 9.26	11 cm 21 22 23 24 25 26	Q 1-p.s. 17.32 17.73 18.13 18.52 18.90 19.27	C = 11 cm 41 42 43 44 45 46	3.78 Q 1 p.s. 24.20 24.50 24.79 25.07 25.36 25.64	11 cm 61 62 63 64 65 66	Q 1ps. 29.52 29.76 30.00 30.24 30.48 30.71	TUB 11 cm 81 82 83 84 85 86	O: 203 m Q 1.p.s. 34.02 34.23 34.44 34.64 34.85 35.05	m (8" 11 cm 101 102 103 104 105 106	Q l.p.s. 37,99 38.16 38.36 38.55 38.73 38.92	ORII 11 cm 121 122 123 124 125 126	Q 1.p.s. 41.58 41.75 41.92 42.09 42.26 42.43	27 mm H cm 141 142 143 144 145 146	1 (5°) Q 1.p.s. 44.89 45.04 45.20 45.36 45.52 45.67	H cm 161 162 163 164 165 166	Q 1.p.s. 47.96 48.11 48.26 48.41 48.55 48.70
	11 2 3 4 5 6 7	Q t.p.s. 3.78 5.35 6.55 7.56 8.45 9.26 10.00	H cm 21 22 23 24 25 26 27	Q 1.p.s. 17.32 17.73 18.13 18.52 18.90 19.27 19.64	C = II cm 41 42 43 44 45 46 47	3.78 Q 1 p.s. 24.20 24.50 24.79 25.07 25.36 25.64 25.91	11 cm 61 62 63 64 65 66	Q 1ps. 29.52 29.76 30.00 30.24 30.48 30.71 30.94	TUB6 11 cm 81 82 83 84 85 86	O: 203 m Q 1.p.s. 34.02 34.23 34.44 34.64 34.85 35.05 35.26	m (8" 11 cm 101 102 103 104 105 106 107	Q l.p.s. 37.99 38.16 38.36 38.55 38.73 38.92 39.10	ORII 11 cm 121 122 123 124 125 126 127	ICIO: 1. Q 1.p.s. 41.58 41.75 41.72 42.09 42.26 42.43 42.60	27 mm H cm 141 142 143 144 145 146 147	1 (5°) Q 1.p.s. 44.89 45.04 45.20 45.36 45.52 45.67 45.83	H cm 161 162 163 164 165 166 167	O 1.p.s. 47.96 48.11 48.26 48.41 48.55 48.70 48.85
	11 2 3 4 5 6 7 8	Q t.p.s. 3.78 5.35 6.55 7.56 8.45 9.26 10.00	11 cm 21 22 23 24 25 26 27 28	Q Lp.s. 17.32 17.73 18.13 18.52 18.90 19.27 19.64 20.00	C = 11 cm 41 42 43 44 45 46 47 48	3.78 Q 1 p.s. 24.20 24.50 24.79 25.07 25.36 25.64 25.91 26.19	11 cm 61 62 63 64 65 66 67 68	Q 1p.s. 29.52 29.76 30.00 30.24 30.48 30.71 30.94 31.17	TUB6 11 cm 81 82 83 84 85 86 87 88	Q 1.p.s. 34.02 34.44 34.85 35.05 35.26 35.46	m (8 11 cm 101 102 103 104 105 106 107 108	Q 1.p.s. 37.99 38.16 38.36 38.55 38.73 38.92 39.10 39.28	ORII 11 cm 121 122 123 124 125 126 127 128	PICIO: 1. Q 1.p.s. 41.58 41.75 41.92 42.09 42.26 42.43 42.60 42.77	27 mm H cm 141 142 143 144 145 146 147 148	1 (5°) U 1.p.s. 44.89 45.04 45.20 45.36 45.52 45.67 45.83 45.99	H cm 161 162 163 164 165 166 167 168	O 1.p.s. 47.96 48.11 48.26 48.41 48.55 48.70 48.85 48.99
	1 2 3 4 5 6 7 8 9	Q 1.p.s. 3.78 5.35 6.55 7.56 8.45 9.26 10.00 10.69 11.34	11 cm 21 22 23 24 25 26 27 28 29	Q 1-p.s. 17.32 17.73 18.13 18.52 18.90 19.27 19.64 20.00 20.36	C = 11 cm 41 42 43 44 45 46 47 48 49	3.78 Q 1 p.s. 24.20 24.50 24.79 25.07 25.36 25.64 25.91 26.19 26.46	11 cm 61 62 63 64 65 66 67 68 69	Q 1ps. 29.52 29.76 30.06 30.24 30.48 30.71 30.94 31.17 31.40	TUB 11 cm 81 82 83 84 85 86 87 88	O: 203 m Q 1.p.s. 34.02 34.44 34.64 34.85 35.05 35.26 35.46 35.66	m (8 11 cm 101 102 103 104 105 106 107 108	Q 1.p.s. 37.99 38.16 38.36 38.55 38.73 38.92 39.10 39.28 39.46	ORH 11 cm 121 122 123 124 125 126 127 128 129	PICIO: 1.1 Q 1.p.s. 41.58 41.75 41.92 42.09 42.26 42.43 42.60 42.77 42.93	27 mm 141 142 143 144 145 146 147 148 149	1 (5") U 1.p.s. 44.89 45.04 45.20 45.36 45.52 45.67 45.83 45.99 46.14	161 162 163 164 165 166 167 168	Q 1.p.s. 47.96 48.11 48.26 48.41 48.55 48.70 48.85 48.99 49.14
	1 2 3 4 5 6 7 8 9 10	Q tps. 3.78 5.35 6.55 7.56 8.45 9.26 10.00 10.69 11.34 11.95	21 22 23 24 25 26 27 28 29	Q 1-p.s. 17.32 17.73 18.13 18.52 18.90 19.27 19.64 20.00 20.36 20.70	C = 11 cm 41 42 43 44 45 46 47 48 49 50	3.78 Q 1 ps. 24.20 24.50 24.79 25.07 25.36 25.64 25.91 26.19 26.46 26.73	11 cm 61 62 63 64 65 66 67 68 69 70	Q 1ps. 29.52 29.76 30.00 30.24 30.48 30.71 30.94 31.17 31.40 31.63	TUBB 11 cm 81 82 83 84 85 86 87 88 89 90	O: 203 m Q 1ps 34.02 34.23 34.44 34.64 34.85 35.05 35.26 35.46 35.66 35.86	m (8" 11 cm 101 102 103 104 105 106 107 108 109 110	Q 1.p.s. 37.99 38.16 38.36 38.55 38.73 38.92 39.10 39.28 39.46 39.64	ORIE 11 cm 121 122 123 124 125 126 127 128 129 130	1.p.s. 41.58 41.75 41.92 42.09 42.26 42.43 42.60 42.77 42.93 43.10	27 min H cm 141 142 143 144 145 146 147 148 149	1(5") Q 1.p.s. 44.89 45.04 45.20 45.36 45.52 45.67 45.83 45.99 46.14 46.30	H cm 161 162 163 164 165 166 167 168 169 170	Q 1.p.s. 47.96 48.11 48.26 48.41 48.55 48.70 48.85 48.99 49.14 49.29
	11 cm 1 2 3 4 5 6 7 8 9 10 11	Q t.p.s. 3.78 5.35 6.55 7.56 8.45 9.26 10.00 10.69 11.34 11.95	21 22 23 24 25 26 27 28 29 30 31	Q 1.p.s. 17.32 17.73 18.13 18.52 18.90 19.27 19.64 20.00 20.36 20.70 21.05	C = 11 cm 41 42 43 44 45 46 47 48 49 50 51	3.78 Q 1 p.s. 24.20 24.50 25.36 25.64 25.91 26.19 26.46 26.73 26.99	H cm 61 62 63 64 65 66 67 68 69 70 71	Q 1ps. 29.52 29.76 30.00 30.24 30.48 30.71 30.94 31.17 31.40 31.63 31.85	TUB 11 cm 81 82 83 84 85 86 87 88 89 90	O: 203 m Q 1.p.s. 34.02 34.44 34.64 34.85 35.05 35.26 35.46 35.66 35.86 36.06	m (8" H cm 101 102 103 104 105 106 107 108 110 111	Q 1.p.s. 37,99 38,16 38,36 38,73 38,92 39,10 39,28 39,46 39,64 39,82	ORIE 11 cm 121 122 123 124 125 126 127 128 129 130	PICIO: 11 Q 1.p.s. 41.58 41.75 42.09 42.26 42.43 42.60 42.77 42.93 43.10 43.26	27 mir H cm 141 142 143 144 145 146 147 148 149 150	1 (5°) Q 1.p.s. 44.89 45.04 45.36 45.52 45.67 45.83 45.99 46.14 46.30 46.45	H cm 161 162 163 164 165 166 167 168 169 170 171	Q 1.p.s. 47.96 48.11 48.26 48.41 48.55 48.70 48.85 48.99 49.14 49.29
	11 2 3 4 5 6 7 8 9 10 11 12	Q t.p.s. 3.78 5.35 6.55 7.56 8.45 9.26 10.00 10.69 11.34 11.95 12.54	21 22 23 24 25 26 27 28 29 30 31 32	Q 1.p.s. 17.32 17.73 18.13 18.52 18.90 19.27 19.64 20.00 20.36 20.70 21.05 21.38	C = 11 cm 41 42 43 44 45 46 47 48 49 50 51 52	3.78 Q 1 p.s. 24.20 24.50 25.07 25.36 25.64 25.91 26.19 26.46 26.73 26.99 27.26	11 cm 61 62 63 64 65 66 67 68 69 70 71 72	Q 1ps. 29.52 29.76 30.00 30.24 30.48 30.71 30.94 31.17 31.40 31.63 31.85 32.07	TUB 11 cm 81 82 83 84 85 86 87 88 89 90 91 92	O: 203 m Q 1.p.s. 34.02 34.44 34.65 35.05 35.26 35.46 35.66 35.86 36.06 36.26	m (8" II cm 101 102 103 104 105 106 107 108 109 111 112	Q 1.p.s. 37,99 38,16 38,36 38,55 38,73 38,92 39,10 39,28 39,46 39,82 40,00	ORIE 11 cm 121 122 123 124 125 126 127 128 129 130 131	ICIO: 1. Q 1.p.s. 41.58 41.75 41.92 42.09 42.26 42.43 42.60 42.77 42.93 43.10 43.26 43.43	27 min H cm 141 142 143 144 145 146 147 148 149 150 151	1 (5°) Q 1.p.s. 44.89 45.04 45.36 45.36 45.52 45.67 45.83 45.99 46.14 46.30 46.45 46.60	H cm 161 162 163 164 165 166 167 168 169 170 171 172	Q 1.p.a. 47.96 48.11 48.26 48.41 48.55 48.70 48.85 48.99 49.14 49.29 49.43 49.57
	11 cm 1 2 3 4 5 6 7 8 9 10 11 12 13	Q t.p.s. 3.78 5.35 6.55 7.56 8.45 9.26 10.00 10.69 11.34 11.95 12.54 13.09 13.63	21 22 23 24 25 26 27 28 29 30 31 32 33	Q 1-p.s. 17.32 17.73 18.13 18.52 18.90 19.27 19.64 20.00 20.36 20.70 21.05 21.38 21.71	C= 11 cm 41 42 43 44 45 46 47 48 49 50 51 52 53	3.78 Q 1 p.s. 24.20 24.50 24.79 25.07 25.36 25.64 25.91 26.19 26.46 26.73 26.99 27.26 27.52	11 cm 61 62 63 64 65 66 67 68 69 70 71 72 73	Q 1ps. 29.52 29.76 30.00 30.24 30.48 30.71 30.94 31.17 31.40 31.63 31.85 32.07 32.30	TUB 11 cm 81 82 83 84 85 86 87 88 89 90 91 92 93	Q 1.p.s. 34.02 34.23 34.44 34.64 35.05 35.26 35.46 35.66 36.26 36.45	m (8" II cm 101 102 103 104 105 106 107 108 110 111 112 113	Q l.p.s. 37.99 38.16 38.36 38.55 38.73 38.92 39.10 39.28 39.46 39.82 40.00 40.18	ORTE 11 cm 121 122 123 124 125 126 127 128 129 130 131 132	10:10:11 Q 1.p.s. 41.58 41.75 41.92 42.09 42.26 42.43 42.60 42.77 42.93 43.10 43.26 43.43 43.59	27 min H Cm 141 142 143 144 145 146 147 148 149 150 151 152 153	1 (5°) Q 1.p.s. 44.89 45.04 45.20 45.36 45.52 45.67 45.83 45.99 46.14 46.30 46.45 46.60 46.76	H cm 161 162 163 164 165 166 167 170 171 172 173	Q 1.p.s. 47.96 48.11 48.26 48.41 48.55 48.70 48.85 48.99 49.14 49.29 49.43 49.57 49.72
	11 cm 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Q t.p.s. 3.78 5.35 6.55 7.56 8.45 9.26 10.00 10.69 11.34 11.95 12.54 13.09 13.63 14.14	21 22 23 24 25 26 27 28 29 30 31 32 33 34	Q 1-p.s. 17.32 17.73 18.13 18.52 18.90 19.27 19.64 20.00 20.36 20.70 21.05 21.38 21.71 22.04	C= 11 cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54	3.78 Q 1 p.s. 24.20 24.50 24.79 25.07 25.36 25.64 25.91 26.19 26.46 26.73 26.99 27.26 27.52 27.52	11 cm 61 62 63 64 65 66 67 68 69 70 71 72 73 74	Q 1ps. 29.52 29.76 30.00 30.24 30.48 30.71 30.94 31.17 31.40 31.63 32.07 32.30 32.52	TUB6 11 cm 81 82 83 84 85 86 87 88 89 90 91 92 93 94	O: 203 m Q 1ps 34.02 34.23 34.44 34.64 34.85 35.05 35.26 35.46 35.66 36.86 36.26 36.45 36.65	m (8" 11 cm 101 102 103 104 105 106 107 108 111 112 113 114	Q l.p.s. 37.99 38.16 38.36 38.55 38.73 38.92 39.10 39.28 39.46 39.82 40.00 40.18 40.36	ORTE 11 cm 121 122 123 124 125 126 127 138 129 130 131 132 133	1CIO: 1. Q 1.p.s. 41.58 41.75 41.92 42.09 42.26 42.43 42.60 42.77 42.93 43.10 43.26 43.43 43.59 43.76	27 min 11 141 142 143 144 145 146 147 148 149 150 151 152 153 154	1(5°) 1.p.s. 44.89 45.04 45.20 45.36 45.52 45.67 45.83 45.99 46.14 46.30 46.45 46.60 46.76 46.76	161 162 163 164 165 166 167 168 169 170 171 172 173 174	Q 1.p.s. 47.96 48.11 48.26 48.41 48.55 48.70 48.85 48.99 49.14 49.29 49.43 49.57 49.72 49.86
	11 cm 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15	Q 1.p.s. 3.78 5.35 6.55 7.56 8.45 9.26 10.00 10.69 11.34 11.95 12.54 13.09 13.63 14.14 14.64	21 22 23 24 25 26 27 28 29 30 31 32 33	Q 1.p.s. 17.32 17.73 18.13 18.52 18.90 19.27 19.64 20.00 20.36 20.70 21.05 21.38 21.71 22.04 22.36	C = 11 cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	3.78 Q 1 p.s. 24.20 24.50 24.79, 25.07 25.36 25.64 25.91 26.46 26.73 26.99 27.26 27.52 27.78 28.03	11 cm 61 62 63 64 65 66 67 68 69 70 71 72 73	Q 1p.s. 29.52 29.76 30.00 30.24 30.48 30.71 30.94 31.17 31.40 31.63 32.07 32.30 32.52 32.74	TUB6 11 cm 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	O: 203 m Q 1.p.s. 34.02 34.44 34.64 34.85 35.05 35.46 35.46 35.86 36.86 36.26 36.45 36.45 36.84	m (8" 11 cm 101 102 103 104 105 106 107 108 110 111 112 113 114 115	Q l.p.s. 37.99 38.16 38.36 38.55 38.73 38.92 39.10 39.26 40.00 40.18 40.36 40.54	ORTE 11 cm 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135	1CIO: 1. Q 1.p.s. 41.58 41.75 41.92 42.09 42.26 42.43 42.60 42.77 42.93 43.10 43.26 43.43 43.59 43.76	27 min 141 142 143 144 145 146 147 148 149 150 151 152 153 154	1 (5°) Q l.p.s. 44.89 45.04 45.20 45.36 45.52 45.67 45.83 45.99 46.14 46.30 46.45 46.60 46.76 46.91	161 162 163 164 165 166 167 168 169 170 171 172 173 174 175	Q 1.p.s. 47.96 48.11 48.26 48.41 48.55 48.70 48.85 48.99 49.14 49.29 49.43 49.57 49.72 49.86 50.00
	11 cm 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16	Q 1.p.s. 3.78 5.35 6.55 7.56 8.45 9.26 10.00 10.69 11.34 11.95 12.54 13.09 13.63 14.14 14.64 15.12	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	Q l.p.a. 17.32 18.13 18.52 18.90 19.27 19.64 20.00 20.36 20.70 21.05 21.35 21.31 22.04 22.36	C= 11 cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54	3.78 Q lps. 24.20 24.50, 25.07, 25.36 25.64 25.91 26.19 26.46 26.73 26.99 27.26 27.26 27.26 27.28 28.03 28.29	11 cm 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76	Q 1p.s. 29.52 29.76 30.00 30.24 30.48 30.71 31.40 31.63 32.07 32.30 32.52 32.74 32.95	TUB6 11 cm 81 82 83 84 85 86 87 88 89 90 91 92 93 94	Q 1ps. 3442, 34.64 34.65 35.05 35.26 36.45 36.66 36.45 36.64 37.04 37.04	m (8" 11 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116	Q 1.p.a. 37.99 38.18 38.36 38.55 38.73 38.92 39.10 40.00 40.18 40.36 40.54 40.71	ORTE 11 cm 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135	1C10: 1. Q 1.p.s. 41.58 41.75 41.92 42.09 42.26 42.43 42.60 42.77 42.93 43.10 43.26 43.43 43.59 43.76 43.92 44.08	27 min H1 cm 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 155	1(5°) U 1.p.s. 44.89 45.20 45.36 45.52 45.67 45.83 45.93 46.14 46.30 46.45 46.60 47.06 47.21	141 cm 161 162 163 164 165 166 167 170 171 172 173 174 175 176	Q 1.p.s. 47.96 48.11 48.26 48.41 48.55 48.70 48.85 48.99 49.14 49.29 49.43 49.57 49.72 49.86 50.00 50.15
	11 cm 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15	Q 1.p.s. 3.78 5.35 6.55 7.56 8.45 9.26 10.00 10.69 11.34 11.95 12.54 13.09 13.63 14.14 14.64	H cm 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	Q l.p.a. 17.32 17.73 18.13 18.52 18.90 19.27 19.64 20.00 20.36 20.70 21.05 21.38 22.04 22.26 22.26	C = 11 cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	3.78 Q lps. 24.20 24.50, 25.07 25.36 25.64 25.91 26.19 27.52 27.52 27.52 28.03 28.29 28.29 28.54	11 cm 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75	Q lps. 29.52 29.76 30.00 30.24 30.48 30.71 30.94 31.17 31.40 31.63 32.07 32.30 32.52 32.74 32.95 33.17	TUB6 11 cm 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	Q 1p.s 34.02 34.23 34.44 34.65 35.05 35.26 35.46 36.66 36.26 36.45 36.65 36.84 37.04 37.23	m (8" 11 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117	Q lp.a. 37.99 38.18 38.55 38.73 38.92 39.10 39.26 40.00 40.18 40.36 40.54 40.71 40.89	ORTE 11 cm 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137	Q lp.s. 41.75 41.75 41.75 41.75 41.72 42.09 42.26 42.43 42.60 42.77 42.93 43.10 43.26 43.43 43.69 43.43 43.69 43.43 43.43 43.92 44.08	27 min H 1 cm 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157	1,53 1,p.s. 44,89 45,04 45,04 45,04 45,04 45,04 45,04 45,04 45,04 45,04 45,04 45,04 46,00 46,14 46,00 46,45 46,76 47,06 47	141 cm 161 162 163 164 165 167 168 169 170 171 172 173 174 175 176 177	Q 1.p.s. 47.96 48.11 48.26 48.41 48.55 48.70 48.85 49.14 49.29 49.43 49.57 49.72 49.85 50.00 50.15
	11 cm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Q t.p.s. 3.78 5.35 6.55 7.56 8.45 9.26 10.00 10.69 11.34 11.95 12.54 13.09 13.63 14.14 14.64 15.12 15.59	H cm 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	Q l.p.a. 17.32 18.13 18.52 18.90 19.27 19.64 20.00 20.36 20.70 21.05 21.35 21.31 22.04 22.36	C= 11 cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	3.78 Q lps. 24.20 24.50, 25.07, 25.36 25.64 25.91 26.19 26.46 26.73 26.99 27.26 27.26 27.26 27.28 28.03 28.29	11 cm 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77	Q lps. 29.52 29.76 30.00 30.24 30.48 30.71 30.94 31.17 31.40 31.63 32.07 32.52 32.74 32.93 33.17 33.38	TUB6 11 cm 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97	Q 1ps. 3442, 34.64 34.65 35.05 35.26 36.45 36.66 36.45 36.64 37.04 37.04	m (8" 11 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118	Q lp.s. 37.99 38.18 38.36 38.55 38.73 38.92 39.10 39.28 39.46 40.40 40.18 40.36 40.54 40.71 40.89 41.06	ORTE 11 cm 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138	Q lps. 41.58 41.75 41.92 42.09 42.26 42.43 42.67 42.77 42.77 42.79 43.10 43.26 43.43 43.59 43.76 43.43	27 min H cm 141 142 143 144 145 146 147 159 159 151 152 153 154 155 156 157 158	1(57) U 1/p.a. 44.89 45.04 45.20 45.36 45.52 45.67 45.83 46.94 46.30 46.45 46.60 46.76 47.06 47.73 47.36 47.51	H cm 161 162 163 164 165 166 167 171 172 173 174 175 176 177	Q 1.p.a. 47.96 48.11 48.26 48.41 48.55 48.70 49.94 49.14 49.29 49.43 49.57 49.72 49.86 50.00 50.05 50.29 50.43
	11 cm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Q t.p.s. 3.78 5.33 6.55 7.56 6.55 9.26 10.00 10.69 11.34 11.95 12.54 13.09 13.63 14.14 14.64 15.12 15.59 16.04	H cm 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	Q I.p.a. 17.32 17.73 18.13 18.52 18.90 19.27 19.64 20.00 20.36 20.70 21.38 21.71 22.04 22.36 22.29 21.38	C= 11 cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	3.78 Q 1p.s. 24.20 24.50 24.79 25.07 25.56 25.61 26.19 26.46 26.73 26.99 27.26 27.52 27.72 28.03 28.32	11 cm 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79	Q lps. 29.52 29.76 30.00 30.24 30.48 30.71 30.94 31.17 31.40 31.63 32.07 32.30 32.52 32.74 32.95 33.17	TUB 11 cm 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	Q 1ps 34-02 34-04 34-04 34-05 35-05 35-06 36-06 36-06 36-06 36-06 37-03	m (8" 11 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119	Q lp.a. 37.99 38.18 38.55 38.73 38.92 39.10 39.26 40.00 40.18 40.36 40.54 40.71 40.89	ORTE 11 cm 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137	Q lp.s. 41.75 41.75 41.75 41.75 41.72 42.09 42.26 42.43 42.60 42.77 42.93 43.10 43.26 43.43 43.69 43.43 43.69 43.43 43.43 43.92 44.08	27 min H cm 141 142 143 144 145 146 147 159 159 151 152 153 154 155 156 157 158	1,53 1,p.s. 44,89 45,04 45,04 45,04 45,04 45,04 45,04 45,04 45,04 45,04 45,04 45,04 46,00 46,14 46,00 46,45 46,76 47,06 47	141 cm 161 162 163 164 165 167 168 169 170 171 172 173 174 175 176 177	Q 1.p.s. 47.96 48.11 48.26 48.41 48.55 48.70 48.85 49.14 49.29 49.43 49.57 49.72 49.85 50.00 50.15

_																		
ı	CAUL	DALES M	(EDIT	os cos	TUR	о сох о	RIFIC	IO CAL	BRAD	ю								
	κ-	0.713			C=	6.339			TUBO): 203 m	กะ (8")		ORIE	ICIO: 15	52 mn	(6")		
	11	Q	ш	Q	11	Q	11	Q	н	Q	H	Q	П	Q	11	Q	11	Q
1	cm	l.p.s.	cm	Lps.	cm	Lps.	cm	Lps	cm	Lp.s.	cm	Lp.s.	cm	l.p.s.	cm	l.p.s.	cm	l.p.s.
٠	1	6.34	21	29.05	41	40.59	61	49.51	81	57.05	101	63.71	121	69.73	141	75.27	161	80.43
	2	8.96	22	29.73	42	41.08	62	49.91	82	57.40	102	64.02	122	70.02	142	75.54	162	80.68
	3	10.98	23	30.40	43	41.57	63	50.31	83	57.75	103	64.33	123	70.30	143	75.80	163	80.93
	4	12.68	24	31.05	44	42.05	64	50.71	R4	58.10	104	64.65	124	70.59	144	76.07	164	61.18
	5	14.17	25	31.70	45	42.52	65	51.11	85	58.44	105	64,96	125	70.87	145	76.33	165	81.43
	6	15.53	26	32.32	46	42.99	66	51.50	86	58.79	106	65.26	126	71.16	146	76.59	166	81.67
	7	16.77	27	32.94	47	43.46	67	51.89	87	59,13	107	65.57	127	71.44	147	76.86	167	81.92
	8	17.93	28	33.54	48	43.92	68	52.27	88	59.47	108	65.88	128	71.72	148	77.12	168	82.16
	9	19.02	29	34.14	49	44.37	69	52.66	89	59,80	109	66.18	129	72.00	149	77.38	169	82.41
	10	20.05	30	34.72	50	44.82	70	53.04	90	60.14	110	66.48	130	72.28	150	77.64	170	82.65
	11	21.02	31	35.29	51	45.27	71	53.41	91	60.47	111	66.79	131	72.55	151	77.89	171	82.89
	12	21.96	32	35.86	52	45.71	72	53.79	92	60.80	112	67.09	132	72.93	152	78.15	172	83.14
-	13	22.86	33	36.41	53	46.15	73	54.16	93	61.13	113	67.38	133	73.10	153	78.41	173	83.38
-	14	23.72	34	36.96	54	46.58	74	54.53	94	61.46	114	67.68	134	73.38	154	78.66	174	83.62
	15	24.55	35	37.50	55	47.01	75	\$4.90	95	61.78	115	67,98	135	73.65	155	78.92	175	83.86
	16	25.36	36	38.03	56	47.44	76	55.26	96	62.11	116	68.27	136	73.92	156	79.17	176	84.10
	17	26.14	37	38.56	57	47.86	77	55.62	97	62.43	117	68.57	137	74.20	157	79.43	177	84.33
1	18	26.89 27.63	38	39.08	58	48.28	78	55.98	98	62.75	118	68.86	138	74.47	158	79.68	178	84.57
-	20	28.35	40	39,59 40.09	59 60	48.69	79 80	56.34 56.70	99 100	63.07 63.39	119 120	69.15 69.44	139	74.74 75.00	159	79.93 80.18	179	84.81 85.05
į		لينسنيا	Ë	40.07	_		-00	30.70			_		140	75.00	160	60.18	150	83.03
,	_	0.612			C =	5.493				D: 234 m		_	_	IC10: 1	,			
	н	Q	11	0	H	0	Ħ	Q	H	Q	Н	Q	Н	Q	н	Q	н	Q
1	cm	1.p.s.	cm	1.p.s.	cm	Lp.s.	cm	I.p.s.	cm	l.p.s.	cm	I p.s.	cm	Lp.s.	cm	Lp.s.	cm	1.p.s.
1	1	5.49	21	25.17	41	35.17	61	42.90	81	49.44	101	55.20	121	60.42	141	65.23	161	69.70
-	2	7.77 9.51	23	25.76 26.34	42	35.60 36.02	62	43.25	82	49.74	102	55.48	122	60.67	142	65.46	162	69.91
	4	10.99	24	26.91	43 44		63	43.60	8.3	50.04	103	55.75	123	60.92	143	65.69	163	70.13
1	5	12.28	25	27.47	45	36.44 36.85	64	43.94 44.29	84 85	50.34	104	56.02	124	61.17	144	65.92	164	70.34
÷	6	13.46	26	28.01	46	37.26	65 66	44.63	86	50.64 50.94	105 106	56.29 56.55	125 126	61.41 61.66	145 146	66.14 66.37	165	70.56
	7	14.53	27	28.54	47	37.66	67	44.96	87	51.24	107	56.82	127	61.90	147	66.60	166 167	70.99
1	8	15.54	28	29.07	48	38.06	68	45.30	88	51.53	108	57.08	128	62.15	148	66.83	168	71.20
-	9	16.48	29	29.58	49	38.45	69	45.63	89	51.82	109	57.35	129	62.39	149	67.05	169	71.41
-	10	17.37	30	30.09	50	38.84	70	45,96	90	52.11	110	57.61	130	62.63	150	67.28	170	71.62
	11	18.22	31	30.58	51	39.23	71	46.28	91	52,40	111	57.87	131	62.87	151	67.50	171	71.83
	12	19.03	32	31.07	52	39.61	72	46.61	92	52.69	112	58.13	132	63.11	152	67.72	172	72.04
ı	13	19.81	33	31.55	53	39.99	73	46.93	93	52.97	113	58.39	133	63.35	153	67.94	173	72.25
١	14	20.55	34	32.03	54	40.37	74	47.25	94	53.26	114	58.65	134	63.59	154	68.17	174	72.46
	15	21.27	35	32.50	55	40.74	75	47.57	95	53.54	115	55.91	135	63.82	155	68.39	175	72.67
-	16	21.97	36	32.96	56	41.11	76	47.89	96	53.82	116	59.16	136	64.06	156	68.61	176	72.87
-	17	22.65	37	33.41	57	41.47	77	48.20	97	54.10	117	59.42	137	64.29	157	68.83	177	73.08
	18	23.30	38	33.86	58	41.83	78	48.51	98	54.38	118	59.67	138	64.53	158	69.05	178	73.29
0																		
-	19	23.94	39	34.30	59	42.19	79	48.82	99	54.65	119	59.92	139	64.76	159	69.26	179	73.49
-	19 20	23.94 24.57	39 40	34.30 34.74	59 60	42.19 42.55	79 : 80	48.82 49.13	99 100	54.65 54.93	119 120	59.92 60.17	139 140	64.76 64.99	159 160	69.26 69.48	179 180	73.49 73.70

ī	CAUI	DALES M	EDII	os cos	TUR	2 CON O	RIFIC	10 CAL	IBRAI	00			_				_	
ı	_	0.661				8.074			_	D: 234 m	m (10	7	OKIE	ICIO: 1	77 nin	1 (7")		_
ı	н	Q	H	Q	н	Q	11	Q	H	0	н	Q	11	Q	11	Q	11	O
ı	cm	I.p.a.	cm	1.p.s.	cm	I.p.s.	cm	lps.	cm	l.p.s.	¢m	1.p.s.	спі	i.p.s.	cm	l.p.s.	cm	Lp.s.
ı	1	8.07	21	37.00	41	51.70	61	63.06	81	72.67	101	81.14	121	88.81	141	95.87	161	102.45
١	2	11.42	22	37.87	42	52.33	62	63.57	82	73.11	102	81.54	122	89.18	142	96.21	162	102.77
ı	3	13.98	23	38.72	43	52.94	63	64.09	83	73.56	103	81.94	123	89.54	143	96.55	163	103.08
H	4	16.15	24	39.55	44	53.56	ы	64.59	£4	74.00	104	82.34	124	89.91	144	96.89	164	103.40
Į	5	18.05	25	40.37	45	54.16	65	65.09	85	74.44	105	82.73	125	90.27	145	97.22	165	103.71
١	6	19.78	26	41.17	46	54.76	66	65.59	86	74.88	106	83.13	126	90.63	146	97.56	166	104.03
ı	7	21.36	27	41.95	47	55.35	67	66.09	87	75.31	107	83.52	127	90,99	147	97.89	167	104.34
1	8	22.84	28	42.72	48	55.94	68	66.58	88	75.74	108	83.91	128	91.35	148	98.22	168	104.65
ı	9	24.22	29	43.48	49	56.52	69	67.07	89	76.17	109	84.30	129	91.70	149	98.56	169	104.96
1	10	25.53	30	44.22	50	57.09	70 -	67.55	90	76.60	110	84.68	130	92.06	150	98.89	170	105.27
	11	26.78 27.97	31	44.95 45.67	51 52	57.66 58.22	71 72	68.03 68.51	91 92	77.02 77.44	111	85.06 85.45	131	92.41 92.76	151 152	99.21 99.54	171	105.58
1	13	29.11	33	46.38	53	58.78	73	68.98	93	77.86	113	85.83	132	93.11	153	99,87	172	105.89
ı	14	30.21	33	47.08	54	59.33	74	69.46	94	78.28	114	86.21	134	93,46	154	100.20	173	106.50
ł	15	31.27	35	47.77	55	59.88	75	69,92	95	78.70	115	86.58	135	93.81	155	100.52	175	106.81
	16	32.30	36	43.44	56	60.42	76	70.39	96	79.11	116	86.96	136	94.16	156	100.84	176	107.11
1	17	33.29	37	49.11	57	60.96	77	70.85	97	79.52	117	87,33	137	94.50	157	101.17	177	107.42
ı	18	34.26	36	49.77	58	61.49	78	71.31	98	79,93	118	87.71	138	94.85	158	101.49	178	107.72
1	19	35.19	39	50.42	59	62.02	79	71.76	99	80.34	119	88.08	139	95.19	159	101.81	179	108.02
١	20	36.11	40	51.06	60	62.54	80	72.22	100	80.74	120	88.45	140	95.53	160	102.13	180	108.32
į	K -	0.713	_		C=	9.999			TUB	D: 234 m	m (10	7)	ORIF	IC10: 15	10.5 m	m (7 1/2	7	==
I	Н	Q	H	Q	Н	Q	н	Q	31	Q	н	Q	Н	Q	н	Q	Н	Q
Į	cm	Lp.s.	сm	1.p.s.	cm	l.p.s.	CEI	Ips.	CETT	1.p.s.	cm	1.p.s.	cm	i.p.s.	сm	1.p.s.	сm	Lp.s.
١	1	10.00	21	45.82	41	64.02	61	78.09	81	89.99	101	100.49	121	109.99	141	118.73	161	126.87
١	2	14.14	22	46.90	42	64.80	62	78.73	82	90.54	102	100.98	122	110.44	142	119.15	162	127.27
١	3	17.32 20.00	23 24	47.95 48.98	43	65.57 66.33	63	79.36 79.99	83 84	91.10	103	101.48	123	110.89	143	119.57	163	127.66
1	5	20.00	25	50.00	45	67.08	65	80.61	85 .	91.64 92.19	104	101.97	124	111.34	144	119.99	164	128.05
۱	6	24.49	26	50.99	46	67.82	66	81.23	86	92.73	106	102.95	126	111.79	146	120.40	165	128.44
١	7	26.45	27	51.96	47	68.55	67	81.85	87	93.26	107	102.93	127	112.68	147	121.23	167	129.22
۱	8	28.28	28	52.91	48	69.23	68	82.45	83	93.80	103	103.43	128	113.13	148	121.64	168	129.22
ı	9	30.00	29	53.85	49	69.99	69	83.00	89	94.33	109	104.39	129	113.57	149	122.05	169	129.99
1	10	31.62	30	54.77	50	70.70	70	83.66	90	94.86	110	104.87	130	114.01	150	122.46	170	130.37
ı	11	33.16	31	55.67	51	71.41	71	54.25	91	95.38	111	105.35	131	114.44	151	122.87	171	130.75
ı	12	34.64	32	56.56	52	72.10	72	81.84	92	95.91	112	105.82	132	114.88	152	123.28	172	131.14
١	13	36.05	33	57.44	53	72.79	73	85,43	93	96.43	113	106.29	133	115.31	153	123.68	173	131.52
١	14	37.41	34	58.30	54	73.48	74	86.01	94	96.94	114	106.76	134	115,75	154	124.08	174	131.90
١	15	38.73	35	59.15	55	74.15	75	86.59	95	97.46	115	107.23	135	116.18	155	124.49	175	132.27
J	16	40.00	36	59.99	56	74.83	76	87.17	96	97.97	116	107.69	136	116.61	156	124.89	176	132.65
١	17	41.23	37	60.82	57	75.49	77	87.74	97	98.48	117	108.16	137	117.04	157	125.29	177	133.03
ļ	18	42.42	38	61.64	58	76.15	78	88.31	98	98.99	118	108.62	138	117,46	1,58	125.69	178	133.40
1	19	43.58	39	62.44	59	76.80	79	83.87	99	99.49	119	109.08	139	117,89	159	126.08	179	133.78
1	20	44.72	40	63.24	60	77.45	80	89.43	100	99.99	120	109.53	140	118.31	160	126.48	180	134.15

ī															_			
I			EDIL	os con	_	2 CON 0	RIFIC	то сага	_				_					
	<u>K -</u>	_			_	12.445			_): 234 m	m (10	<u> </u>	_	ICIO: 20	_	(8")		,
П	H	Q	н	Q	11	Q	Н	Q	Н	Q	11	0	Н	Q	11	Q	н	0
ı	cm	1 p.s.	cm	l.p.s.	cm	Lps,	cm	i.p.s.	cm	Lp.s.	cm	l.p.s.	cm	Lp.s.	cm	l.p.s.	cm	Lp.s.
ı	1	12.45	21	57.03	41	79.69	61	97.20	81	11201	101	125.07	121	136.90	141	147.78	161	157.91
	2	17.60	22	58.37	42	80.65	62	97,99	82	112.69	102	125.69	122	137.46	142	148.30	162	158.40
	3	21.56	23	59.68	43	81.61	63	98.78	83	113.38	103	126.30	123	138.02	143	148.82	163	158.89
	4	24.89	24	60,97	44	82.55	64	99.56	84	114.06	104	126.91	124	138.58	144	149.34	164	159.37
ı	5	27.83 30.48	25	62.23	45	83.48	65	100.33	85	114.74	105	127.52	125	139.14	145	149.86	165	159.86
H	6	32.93	26 27	63.46 64.67	46 47	84.41 85.32	66	101.10 101.87	86	115.41	106	128.13	126 127	139.69	146	150.37	166	160.34
	8	35.20	28	65.85	48	86.22	68	102.62	RR	116.03 116.74	107	128.73 129.33	127	140.25	147	150.89	167	160.82
ľ	9	37.34	29	67.02	49	87.12	69	103.38	89	117.41	109	129.93	129	141.35	149	151.40 151.91	169	161.31
	10	39.35	30	68.16	50	88.00	70	104.12	90	118.06	110	130.52	130	141.89	150	152.42	170	162.26
	11	41.28	31	69.29	51	88.88	71	104.56	91	118.72	111	131.12	131	142.44	151	152.93	171	162.74
	12	43.11	32	70.40	52	89.74	72	105.60	92	119.37	112	131.71	132	142.98	152	153.43	172	163.21
	13	44.87	33	71.49	53	90,60	73	106.33	93	120.02	113	132.29	133	143.52	153	153.94	173	163.69
	14	46.56	34	72.57	54	91.45	74	107.06	9.1	120.66	114	132.88	134	144.06	154	154.44	174	164.16
	15	48.20	35	73.63	55	92.29	75	107,75	95	121.30	115	133.46	135	144.60	155	154.94	175	164.63
I	16	49.78	36	74.67	56	93.13	76	108.49	96	121.94	116	134.04	136	145.13	156	155.44	176	165.10
	17	51.31	37	75.70	57	93.96	77	109.20	97	122.57	117	134.61	137	145.66	157	155.94	177	165.57
	18	52.80	38	76.72	58	94.78	78	109.91	93	123.20	118	135.19	138	146.20	158	156.43	178	166.04
	19	54.25	39	77.72	59	95.59	79	110.61	49	123.83	119	135.76	139	146.72	159	156.93	179	166.50
ľ	20	55.66	40	78.71	60	96.40	80	111.31	100	124.45	120	136.33	140	147.25	160	157.42	180	166,97
П	K -	0.586			_	5.259	=		느				=				100	100.97
	K =	0.586 Q	ii	Q	_		11	Q	느	D: 304.8			=	ICIO: 1:			H	0
	_		ii cm		C=	5.259	=		TUB	D: 304.8	mm (27)	ORH	ICIO: 1	52 mm	1 (6")		
	H	Q		Q	C=	5.259 Q	11	0	TUB	D: 304.8 Q	nm (1	27) Q	ORH	ICIO: t	52 mm	(6°)	н	0
	ii em	Q Lpa.	cm	Q l.p.s.	C ≈ H cm	5.259 Q I.p.s.	II cm	Q Lps.	TUB II cm	O: 304.8 Q l.p.s.	nm (I	Q Ips.	ORII II cm	ICIO: t: Q l.p.s.	1f cm	(6°) Q I.p.s.	H cm	Q lps.
	ti em	Q J.p.a. 5.26	cm 21	Q l.p.s. 24.10	C = H cm 41	5.259 Q I.p.s. 33.67	11 cm 61	O Lp.s. 41.07	TUB6	O: 304.8 Q I.p.s. 47.33	nm () if cm	27) Q 1ps. 5285	ORH H cm	ICIO: 1: Q 1.p.s. 57.85	1f cm 141	Q I.p.s. 62.45	H cm	Q I.p.s. 66.73
	ti em 1 2	Q I.p.a. 5.26 7.44	21 22	Q l.p.s. 24.10 24.67	C = H cm 41 42	5.259 Q I.p.s. 33.67 34.08	11 cm 61 62	Q Lp.s. 41.07 41.41	TUBE II cm S1 82	O: 304.8 Q I.p.s. 47.33 47.62	11 cm 101 102	Q Ips. 5285 53.11	ORII II cm 121 122	ICIO: 1: Q 1.p.s. 57.85 58.09	1f cm 141 142	Q 1.p.s. 62.45	H cm 161 162	O l.p.s. 66.73 66.94
	11 cm 1 2 3	Q Lp.s. 5.26 7.44 9.11	21 22 23	Q l.p.s. 24.10 24.67 25.22	C = H cm 41 42 43	5.259 Q I.p.s. 33.67 34.08 34.49	11 cm 61 62 63	O Lp.s. 41.07 41.41 41.74	TUB6 II cm 81 82 83	O: 304.8 Q I.p.s. 47.33 47.62 47.91	11 cm 101 102 103	Q Ips. 5285 53.11 53.37	ORH H cm 121 122 123	Q 1.p.s. 57.85 58.09 58.33	52 mm 11 cm 141 142 143	Q l.p.s. 62.45 62.67 62.89	H cm 161 162 163	Q l.p.s. 66.73 66.94 67.14
	11 cm 1 2 3 4 5 6	Q Lpa, 5.26 7.44 9.11 10.52 11.76 12.88	cm 21 22 23 24 25 26	Q l.p.s. 24.10 24.67 25.22 25.76	C ≈ H cm 41 42 43 44	5.259 Q I.p.s. 33.67 34.08 34.49 34.88	11 cm 61 62 63 64	Q Lp.s. 41.07 41.41 41.74 42.07	TUB6 II cm 81 82 83 84	O: 304.8 Q I.p.a. 47.33 47.62 47.91 48.20	101 102 103 104	Q Ips. 52.85 53.11 53.37 53.63	ORII H cm 121 122 123 124	Q Lps. 57.85 58.09 58.33 58.56	11 cm 141 142 143 144	Q 1.p.s. 62.45 62.67 62.89 63.11	H cm 161 162 163 164	O l.p.s. 66.73 66.94 67.14 67.35
	11 2 3 4 5 6 7	Q Lps. 5.26 7.44 9.11 10.52 11.76 12.88 13.91	21 22 23 24 25 26 27	Q l.p.s. 24.10 24.67 25.22 25.76 26.30 26.82 27.33	C = H cm 41 42 43 44 45	5.259 Q I.p.s. 33.67 34.08 34.49 34.88 35.28	11 cm 61 62 63 64 65	Q Lps. 41.07 41.41 41.74 42.07 42.40	TUB6 II cm 81 82 83 84 85	O: 304.8 Q I.p.a. 47.33 47.62 47.91 48.20 48.49	11 cm 101 102 103 104 105	Q Ips. 52.85 53.11 53.37 53.63 53.89	ORII II cm 121 122 123 124 125	ICIO: 15 Q Lp.s. 57.85 58.09 58.33 58.56 58.80	141 cm 141 142 143 144 145	Q 1.p.s. 62.45 62.67 62.89 63.11 63.33	161 162 163 164 165	O l.p.s. 66.73 66.94 67.14 67.35 67.55
	11 cm 1 2 3 4 5 6 7 8	Q Lps. 5.26 7.44 9.11 10.52 11.76 12.88 13.91 14.87	21 22 23 24 25 26 27 28	Q 1.p.s. 24.10 24.67 25.22 25.76 26.30 26.82 27.33 27.83	C = H cm 41 42 43 44 45 46 47 48	5.259 Q Lp.s. 33.67 34.08 34.49 34.88 35.28 35.67 36.05 36.44	11 cm 61 62 63 64 65 66 67 68	Q Lps. 41.07 41.41 41.74 42.07 42.40 42.72 43.05 43.37	TUB6 II cm 81 82 83 84 85 86 87	O: 304.8 Q Lps. 47.33 47.62 47.91 48.20 48.49 48.77	11 cm 101 102 103 104 105 106	Q Ips. 52.85 53.11 53.37 53.63 53.89 54.14	ORH II cm 121 122 123 124 125 126	7CIO: 15 Q 1.p.s. 57.85 58.09 58.33 58.56 58.80 59.03	141 142 143 144 145 146	Q l.p.s. 62.45 62.67 62.89 63.11 63.33 63.54	H cm 101 162 163 164 165 166	O l.p.s. 66.94 67.14 67.35 67.55 67.76
	11 cm 1 2 3 4 5 6 7 8 9	Q Lps. 5.26 7.44 9.11 10.52 11.76 12.88 13.91 14.87 15.78	21 22 23 24 25 26 27 28 29	Q Lps. 24.10 24.67 25.22 25.76 26.30 26.82 27.33 27.83 28.32	C = H cm 41 42 43 44 45 46 47	5.259 Q Lp.s. 33.67 34.08 34.49 34.88 35.28 35.67 36.05	11 cm 61 62 63 64 65 66	Q 1,p.s. 41.07 41.41 41.74 42.07 42.40 42.72 43.05	TUB6 II cm 81 82 83 84 85 86 87	O: 304.8 Q I.p.s. 47.33 47.62 47.91 48.20 48.49 48.77 49.05	101 102 103 104 105 106 107	Q 1 ps. 52.85 53.11 53.37 53.63 53.89 54.14 54.40	ORII H cm 121 122 123 124 125 126 127	7CIO: 15 Q 1.p.s. 57.85 58.09 58.33 58.56 58.80 59.03 59.27	141 cm 141 142 143 144 145 146 147	Q 1.p.s. 02.45 62.67 62.89 63.11 63.33 63.54 63.76	H cm 161 162 163 164 165 166	O l.p.s. 66.73 66.94 67.14 67.35 67.55 67.76 67.96
	11 cm 1 2 3 4 5 6 7 8 9 10	Q Lps. 5.26 7.44 9.11 10.52 11.76 12.88 13.91 14.87 15.78 16.63	21 22 23 24 25 26 27 28 29 30	Q l.p.s. 24.10 24.67 25.22 25.76 26.30 26.82 27.33 27.83 28.32 28.80	C = 11 cm 41 42 43 44 45 46 47 48 49 50	5.259 Q I.p.s. 33.67 34.08 34.49 34.88 35.28 35.67 36.05 36.44 36.81 37.19	11 cm 61 62 63 64 65 66 67 68 69 70	Q Lps. 41.07 41.41 41.74 42.07 42.40 42.72 43.05 43.37 43.68 44.00	TUB6 11 cm 81 82 83 84 85 86 87 88 89 90	O: 304.8 Q Lp.s. 47.33 47.62 47.91 48.20 48.49 48.77 49.05 49.33	101 102 103 104 105 106 107 108	Q Ips. 52.85 53.11 53.37 53.63 54.14 54.40 54.65	ORII cm 121 122 123 124 125 126 127 128	7CIO: 15 Q Lp.s. 57.83 58.09 58.33 58.56 58.80 59.03 59.27 59.50	141 cm 141 142 143 144 145 146 147 148	Q 1.p.s. 62.45 62.67 62.89 63.11 63.33 63.54 63.76 63.98	H cm 161 162 163 164 165 166 167	O l.p.s. 66.73 66.94 67.14 67.35 67.55 67.76 67.96 68.16
	11 cm : 1 2 3 4 5 6 7 8 9 10 11	Q Lps. 5.26 7.44 9.11 10.52 11.76 12.88 13.91 14.87 15.78 16.63 17.44	21 22 23 24 25 26 27 28 29 30	Q l.p.s. 24.10 24.67 25.22 25.76 26.30 26.82 27.33 27.83 28.32 28.80 29.28	C = H cm 41 42 43 44 45 46 47 48 49 50 51	5.259 Q I.p.s. 33.67 34.08 34.88 35.28 35.67 36.05 36.44 36.81 37.19 37.56	11 cm 01 62 63 64 65 66 67 68 69 70 71	Q Lps. 41.07 41.41 42.07 42.40 42.72 43.05 43.37 43.68 44.00 44.31	TUBE TUBE TUBE TUBE TUBE TUBE TUBE TUBE	O: 304.8 Q I.p.s. 47.33 47.62 47.91 48.20 48.49 48.77 49.05 49.33 49.61 49.89 50.17	mm (i ii cm 101 102 103 104 105 106 107 108 109 110	27 Q 1ps. 52.85 53.11 53.37 53.63 53.89 54.14 54.40 54.65 54.91	ORH 11 cm 121 122 123 124 125 126 127 128 129	FICIO: 15 Q Lps. 57.85 58.09 58.33 58.56 58.80 59.03 59.27 59.50 59.73	141 142 143 144 145 146 147 148	Q 1.ps. 02.45 62.67 62.89 63.11 63.33 63.54 63.76 63.98 64.19	161 162 163 164 165 166 167 168	O l.p.s. 66.94 67.14 67.35 67.55 67.76 67.96 68.16 68.37
	11 cm : 1 2 3 4 5 6 7 8 9 10 11 12	Q Lps. 5.26 7.44 9.11 10.52 11.76 12.88 13.91 14.87 15.78 16.63 17.44 18.22	21 22 23 24 25 26 27 28 29 30 31 32	Q Lps. 24.10 24.67 25.22 25.76 26.30 26.82 27.33 27.83 28.32 28.80 29.28 29.75	C = H cm 41 42 43 44 45 46 47 48 49 50 51 52	5.259 Q I.p.s. 33.67 34.08 34.49 34.88 35.28 35.67 36.05 36.44 36.81 37.19 37.56 37.92	11 cm 01 62 63 64 65 66 67 68 69 70 71 72	Q 1,ps. 41.07 41.41 42.07 42.40 42.72 43.05 43.37 43.68 44.00 44.31 44.02	TUB6 11 cm 81 82 83 84 85 86 87 88 89 90 91	O: 304.8 Q I.p.s. 47.33 47.62 47.91 48.20 48.49 48.77 49.05 49.33 49.61 49.89 50.17 50.44	mm (1 11 101 102 103 104 105 106 107 108 109 110	Q 1 ps. 52.85 53.11 53.37 53.63 53.89 54.14 54.40 54.65 54.91 55.16 55.41	ORH H cm 121 122 123 124 125 126 127 128 129 130 131	S7.85 57.85 58.09 58.33 58.56 58.80 59.03 59.27 59.50 59.73 59.96 60.19 60.42	52 min 11 cm 141 142 143 144 145 146 147 148 149 150 151	Q 1.p.s. 02.45 62.67 62.89 63.11 63.33 63.54 63.76 63.98 64.19 64.62 64.84	H cm 162 163 164 165 166 167 170 171 172	O l.p.s. 66.94 67.14 67.35 67.55 67.76 67.96 68.16 68.37 68.57
	11 cm 1 2 3 4 5 6 7 8 9 10 11 12 13	Q I.p.a. 5.26 7.44 9.11 10.52 11.76 12.88 13.91 14.87 15.78 16.63 17.44 18.22 18.96	21 22 23 24 25 26 27 28 29 30 31 32 33	Q Lps. 24.10 24.67 25.22 25.76 26.30 26.82 27.33 27.83 28.32 28.80 29.28 29.75 30.21	C = 11 cm 41 42 43 44 45 46 47 48 49 50 51 52 53	5.259 Q I.p.s. 33.67 34.08 34.49 34.88 35.28 35.67 36.05 36.44 36.81 37.19 37.56 37.92 38.29	11 cm 61 62 63 64 65 66 67 68 69 70 71 72 73	Q 1,p.s. 41.07 41.41 41.74 42.07 42.40 42.72 43.05 43.37 43.68 44.00 44.31 44.02 44.93	TUB6 11 cm 81 82 83 84 85 86 87 88 89 90 91 92 93	O: 304.8 Q I.p.s. 47.33 47.62 47.91 48.20 48.49 48.77 49.05 49.33 49.61 49.89 50.17 50.44 50.72	mm (1 11 101 102 103 104 105 106 107 108 109 110 111 112 113	Q 1ps. 52.85 53.11 53.37 53.63 53.89 54.14 54.65 54.91 55.16 55.41 55.46 55.90	ORH H cm 121 122 123 124 125 126 127 128 129 130 131 132 133	ST.RS S8.09 58.33 58.56 58.80 59.03 59.27 59.50 59.73 59.96 60.19 60.42 60.65	52 min 11 cm 141 142 143 144 145 146 147 148 149 150 151 152 153	02.45 62.67 62.67 63.31 63.54 63.76 63.98 64.19 64.62 64.84 65.05	H cm lol 162 lo3 164 lo5 lo6 lo7 lo8 lo9 l70 l71 l72 l73	Q l.p.s. 66.73 66.94 67.14 67.35 67.55 67.76 67.96 68.16 68.37 68.57 68.77
	11 cm : 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Q I.p.a. 5.26 7.44 9.11 10.52 11.76 12.88 13.91 14.87 15.78 16.63 17.44 18.22 18.96 19.68	21 22 23 24 25 26 27 28 29 30 31 32 33 34	Q Lp.s. 24.10 24.67 25.22 25.76 26.82 27.33 27.83 28.32 28.80 29.28 29.75 30.21 30.66	C = 11 cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54	5.259 Q 1.p.s. 33.67 34.08 34.49 34.88 35.67 36.05 36.44 36.81 37.19 37.56 37.92 38.29 38.65	11 cm 01 62 63 64 65 66 67 68 69 70 71 72 73 74	Q 1,p.s. 41.07 41.41 41.74 42.07 42.40 42.72 43.05 43.37 43.68 44.00 44.31 44.02 44.93 45.24	TUB6 11 cm 81 82 83 84 85 86 87 88 89 90 91 92 93	1: 304.8. Q 1:p.s. 47.33 47.62 47.91 48.20 48.49 48.77 49.05 49.33 49.61 49.89 50.17 50.44 50.72 50.99	101 102 103 104 105 106 107 108 109 110 111 112 113	27 Q 1ps. 52.85 53.11 53.37 53.63 53.89 54.14 54.65 54.91 55.16 55.41 55.46 55.90 56.15	ORIN H cm 121 122 123 124 125 126 127 128 129 130 131 132 133	1CIO: 15 Q 1.p.s. 57.85 58.09 58.33 58.56 58.80 59.03 59.27 59.50 60.19 60.42 60.65 60.88	141 cm 141 142 143 144 145 146 147 148 149 150 151 152 153 154	1 (6°) Q l.p.s. 62.45 62.67 62.89 63.11 63.54 63.54 63.78 64.19 64.41 64.62 64.84 65.05 65.26	H cm lol 162 163 164 165 166 167 170 171 172 173 174	O l.p.s. 66.73 66.94 67.14 67.35 67.76 67.96 68.16 68.37 68.57 68.77 68.97 69.17
	11 cm ; 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Q Lps. 5.26 7.44 9.11 10.52 11.76 12.88 13.91 14.87 15.78 16.63 17.44 18.22 18.96 19.68 20.37	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	Q l.p.s. 24.10 25.22 25.76 26.80 27.33 27.83 29.28 29.28 29.25 30.21 30.66 31.11	C = 11 cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	5.259 Q 1.p.s. 33.67 34.08 34.49 34.88 35.67 36.63 36.44 36.81 37.19 37.56 37.92 38.29 38.65 39.00	11 cm 01 62 63 64 65 66 67 68 69 70 71 72 73 74 75	Q 1,p.s. 41.07 41.41 41.74 42.07 42.40 42.72 43.05 43.37 43.68 44.00 44.31 44.02 44.93 45.54	TUB6 11 cm 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	1: 304.8 . Q l.p.s. 47.33 47.62 47.91 48.20 48.49 48.77 49.05 49.33 49.61 50.72 50.99 51.26	101 102 103 104 105 106 107 108 109 110 111 112 113 114 115	27) Q 1ps. 52.85 53.11 53.37 53.63 54.14 54.40 54.65 54.91 55.46 55.90 56.15 56.40	ORIN H cm 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135	1CIO: 15 Q 1.p.s. 57.85 58.09 58.33 58.56 58.80 59.03 59.27 59.50 60.19 60.42 60.65 60.68 61.10	11 cm 141 142 143 144 145 146 147 148 149 150 151 152 153 154	1 (6°) Q l.p.s. 62.45 62.67 62.89 63.11 63.54 63.54 63.78 64.19 64.62 64.84 65.05 65.26	H cm lol lo2 lo3 lo4 lo5 lo6 lo7 lo7 lo7 lo7 lo7 lo7 lo7 lo7 lo7 lo7	O l.ps. 66.73 66.94 67.14 67.35 67.76 67.96 68.16 68.37 68.57 68.77 69.57 69.57
	11 cm : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Q Lps. 5.26 7.44 9.11 10.52 11.76 12.88 13.91 14.87 15.78 16.63 17.44 18.22 18.96 19.68 20.37 21.04	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	Q Lps. 24.10 24.67 25.22 25.76 26.30 26.82 27.33 27.83 29.32 29.80 29.28 30.21 30.66 31.11 31.55	C = H cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	5.259 Q Lp.s. 33.67 34.08 34.49 34.88 35.28 35.67 36.05 36.44 36.81 37.19 37.56 37.92 38.65 39.00 39.35	11 cm 01 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76	Q Lps. 41.07 41.41 42.07 42.40 42.72 43.05 43.37 43.68 44.00 44.31 44.62 44.93 45.24 45.54	TUB6 11 cm 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	1 304.8 Q Ip.a. 47.33 47.62 47.91 48.20 48.47 49.05 49.50 17 50.47 50.72 50.99 51.26 51.53	11 cm (101 102 103 104 105 106 107 108 110 111 112 113 114 115 116	Q Ips. 52.85 53.11 53.37 53.63 53.87 54.40 54.40 55.46 55.46 55.46 55.46 55.46 55.46 55.46 55.46 56.40 56.	ORIN 11 cm 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136	FICIO: 15 Q Lps. 57.85 58.09 58.33 58.56 58.80 59.03 59.27 59.50 59.73 59.96 60.19 60.49 60.65 60.88 61.10 61.33	11 cm 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156	62.45 62.45 62.67 62.89 63.11 63.33 63.54 63.76 63.98 64.19 64.62 64.84 65.05 65.26	H cm lol l62 lo3 l64 l65 l66 l67 l70 l71 l72 l73 l74 l75 l76	O l.ps. 66.73 66.94 67.14 67.35 67.55 67.76 67.96 68.16 68.37 68.57 69.77 69.77
	11 cm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Q l.p.s. 5.26 7.44 9.11 10.52 11.76 12.88 13.91 14.87 15.78 16.63 17.44 18.22 18.96 20.37 21.04 21.68	cm 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	Q lps. 24.10 24.67 25.22 25.76 26.30 26.82 27.33 27.83 29.28 80 29.28 30.21 30.666 31.11 31.55 31.99	C = H cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	5.259 Q lp.s. 33.67 34.08 34.49 34.88 35.28 35.67 36.05 36.44 36.81 37.19 37.56 38.29 38.65 39.00 39.35 39.30	11 cm 01 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77	1,107 41.07 41.41 41.74 42.07 42.40 42.72 43.05 43.37 43.65 44.00 44.31 44.02 45.24 45.54 45.54 45.55 46.15	TUB6 11 cm 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97	0 lpa. 47.33 47.62 47.91 48.20 48.49 48.77 49.05 49.33 49.61 49.89 50.17 50.44 50.12 50.99 51.26 51.53 51.60	11 cm (101 102 103 104 105 106 107 108 109 111 112 113 114 115 116 117	27) Q Pras 5285 53.11, 53.31 53.89 54.14 54.60 54.65 55.41 55.66 56.45 56.64 56.88	ORIS 11 cm 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137	Picto: 1: Q	141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157	1,(6*) Q 1,p,s. 62,45 62,67 63,11 63,33 63,54 63,76 63,98 64,19 64,62 (6,84 65,50 65,26 65,26 65,50	H cm lol l62 l63 l64 l65 l66 l67 l70 l71 l72 l73 l74 l75 l76 l77	O l.p.s. 66.94 67.14 67.35 67.55 67.76 67.96 68.16 68.37 68.57 68.77 68.97 69.97
	11 cm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Q Lps. 5.26 7.44 9.11 10.52 11.76 12.88 13.91 14.87 15.78 16.63 17.44 18.22 18.96 19.68 20.37 21.04 21.68 22.31	cm 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	Q lps. 24.10 24.67 25.22 25.76 26.30 26.82 27.33 27.83 29.28 30.21 30.66 31.11 31.15 31.99 32.42	C= H cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	5 259 Q Ips. 33 67 34.08 34.49 34.88 35.23 35.67 36.44 37.19 37.56 37.92 38.29 38.29 39.00 40.05	11 cm 01 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78	0 1µs. 41.07 41.41 41.74 42.07 42.40 42.72 43.05 43.05 44.00 44.31 44.02 44.93 45.54 45.54 46.15 46.45	TUB6 11 cm 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97	0 lpa. 47.33 47.62 47.91 48.20 48.49 48.77 49.05 49.33 49.61 49.89 50.17 50.44 50.72 51.53 51.60 52.06	11 cm (101 cm 102 cm 103 104 105 106 107 108 111 112 113 114 115 116 117 118	Q Pps. 52.85 53.11, 53.37 53.65 53.69 54.65 55.90 56.15 55.66 56.66 56.88 57.13	ORII II cm 121 122 123 124 125 126 127 138 131 132 133 134 135 136 137 138	Picio: 1: Q	141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157	1, (6*) Q 1,p.s. 62,67 62,89 63,11 63,33 63,54 63,76 63,98 64,41 64,62 64,84 65,05 65,26 65,27 65,26 65,27 65,26 65,27 66,10	H cm 161 162 163 164 165 166 167 170 171 172 173 174 175 176 177 178	O l.p.s. 66.73 66.94 67.14 67.35 67.56 67.96 68.16 68.37 68.57 68.77 68.97 69.97 69.97 70.16
	11 cm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Q l.p.s. 5.26 7.44 9.11 10.52 11.76 12.88 13.91 14.87 15.78 16.63 17.44 18.22 18.96 20.37 21.04 21.68	cm 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	Q lps. 24.10 24.67 25.22 25.76 26.30 26.82 27.33 27.83 29.28 80 29.28 30.21 30.666 31.11 31.55 31.99	C = H cm 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	5.259 Q lp.s. 33.67 34.08 34.49 34.88 35.28 35.67 36.05 36.44 36.81 37.19 37.56 38.29 38.65 39.00 39.35 39.30	11 cm 01 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77	1,107 41.07 41.41 41.74 42.07 42.40 42.72 43.05 43.37 43.65 44.00 44.31 44.02 45.24 45.54 45.54 45.55 46.15	TUB6 11 cm 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97	0 lpa. 47.33 47.62 47.91 48.20 48.49 48.77 49.05 49.33 49.61 49.89 50.17 50.44 50.12 50.99 51.26 51.53 51.60	11 cm (101 102 103 104 105 106 107 108 109 111 112 113 114 115 116 117	27) Q Pras 5285 53.11, 53.31 53.89 54.14 54.60 54.65 55.41 55.66 56.45 56.64 56.88	ORIS 11 cm 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137	Picto: 1: Q	141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157	1,(6*) Q 1,p,s. 62,45 62,67 63,11 63,33 63,54 63,76 63,98 64,19 64,62 (6,84 65,50 65,26 65,26 65,50	H cm lol l62 l63 l64 l65 l66 l67 l70 l71 l72 l73 l74 l75 l76 l77	O l.p.s. 66.94 67.14 67.35 67.55 67.76 67.96 68.16 68.37 68.57 68.77 68.97 69.97

car	DALES M	EDII	os cos	TUR	covo	RIFIC	10 CAL	RRAI	00					-		-	
_	0.639			_	10.195			_); 304.B ;	nm (27)	ORIF	ICIO: 20)3 mn	(8")		
H	0	Н	Q	н	Q	н	Q	н	Q	11	Q	н	Q	Н	Q	н	Q
cm	lps.	cm	l p.s.	cm	Lps.	cm	lps.	cm	t.p.s.	cm	Lps.	cm	1 p.s.	cm	Lp.s.	cm	Lp.s.
1	10.20	21	46.72	41	65.28	61	79.63	81	91.76	101	102.45	121	112.15	141	121.06	161	129.36
2	14.42	22	47.82	42	66.07	62	80.28	82	92.32	102	102.96	122	112.61	142	121.49	162	129,76
3	17.66	23	48 89	43	66.85	63	80 92	Н3	92.88	103	103.47	123	113.07	143	121.91	163	130.16
4	20.39	24	49,95	44	67.63	64	81.56	84	93.44	104	103.97	124	113.53	144	122.34	164	130.56
5	22.80	25	50.98	45	68.39	65	82.19	85	93.99	105	104.47	125	113.98	145	122.76	165	130.96
6	24.97	26	51.98	46	69.15	66	82.82	Ht.	94.54	106	104.9ъ	126	114.44	146	123.19	166	131.35
7	26.97	27	52.97	47	69.89	67	63.45	87	95.09	107	105.46	127	114.89	147	123.61	167	131.75
8	28.84	28	53.95	48	70.63	68	81.07	88	95.64	108	105.95	128	115.34	148	124.03	168	132.14
9	30.59	29	54,90	49	71.37	69	84.69	89	96.18	109	106.44	129	115.79	149	124.45	169	132.54
10	32.24	30	55.84	50	72.09 72.81	70	85.30 85.90	90	96 72 97.25	110	106.93	1.30	116.24	150	124.86	170	132.93
11	33.81 35.32	32	56.76 57.67	52	73.52	72	86.51	92	97.79	111	107.41 107.69	131	116.69	151	125.28 125.69	171 172	133.32
13	36.76	33	58.57	53	74 22	73	67.11	93	98.32	113	107.89	133	117.13	153	126.11	173	133.71
114	38.15	34	59.45	54	74.92	74	87.70	94	98 84	114	108.85	134	118.02	154	126.52	174	134.45
15	39.49	35	60.31	55	75.61	75	88.29	95	99.37	115	109.33	135	118.46	155	126.93	175	134.87
16	40.78	36	61.17	56	76.29	76	88.88	96	99.89	116	109.80	136	118.89	156	127.34	176	135.25
17	42.04	37	62.01	57	76.97	77	89.46	97	100.41	117	110.28	137	119.33	157	127.74	177	135.64
18	43.25	38	62.85	58	77.64	78	90.04	98	100.93	118	110.75	138	119.76	158	128.15	178	136.02
19	44.44	39	63.67	59	78.31	79	90.62	99	101.44	119	111.21	139	120.20	159	128.55	179	136.40
20	45.59	40	64.48	60	78.97	80	91.19	100	101.95	120	111.68	140	120.63	160	128.96	180	136.78
K-	0.713			C=	14.397			TUB): 304.8 (nım (i	127	ORIF	ICIO: 2	28.6 n	ım (9*)		
н	0	Н	Q	Н	Q	11	0	П	Q	Н	Q	н	Q	н	Q	н	0
cm	1.p.s.	cm	I p.s.	cm	Ips.	em	tps.	cm	1px	cm	lps.	cm	1 p.s.	ca	1.p.s.	CBI	1.0
1	14.40	21	65.98	41	92.19	61	112.44	81	129.57	101	144.69	121	158.37	141	170.95	161	192.68
2	20 36	22	67.53	42	93.30	62	113.36	82	130.37	102	145.46	122	159.02	142	171.56	162	183.24
3	24.94	23	69.05	43	94 41	63	114.27	83	131.16	103	146.11	123	159.67	143	172.16	163	183.81
1 1	28.79	24	70.53	44	95.50	64	115.18	84	131.95	104	146.82	124	160.32	144	172.76	164	184.37
5	32.19 35.27	25	71.99	45	96.58	65	116.07	85	132.73	105	147.53	125	160.96	145	173.36	165	184.93
6	38.09	26 27	73.41	46 47	97.65 98.70	66	116.96 117.84	86	133.51	106	148.23 148.92	126	161.61	146	173.96 174.55	166	185.49
's	40.72	28	76.18	48	99.75	68	113.72	88	135.06	103	149.62	128	162.25 162.88	147	175.15	167	186.05 186.61
l,	43.19	29	77.53	49	100.78	69	119.59	89	135.82	103	150.31	129	163.52	149	175.74	169	187.16
10	45.53	30	78.86	50	101.80	70	120.45	90	136.58	110	151.00	130	164.15	150	176.33	170	187.71
lii	47.75	31	80.16	51	102.82	71	121.31	91	137.34	111	151.68	131	164.78	151	176.91	171	188.27
12	49.87	32	81.44	52	103.82	72	122.16	92	138.09	112	152.36	132	165.41	152	177.50	172	188.81
13	51.91	33	82.70	53	104.81	73	123.01	93	138.84	113	153.04	133	166.03	153	178.08	173	189.36
14	53.87	34	83.95	54	105.80	74	123.85	94	139.58	114	153.72	134	166.66	154	178.66	174	189,91
15	55.76	35	85.17	55	106.77	75	124.68	95	140.32	115	154.39	135	167.28	155	179.24	175	190.45
16	57.59	36	86.38	56	107,74	76	125.51	96	141.06	116	155.06	136	167.90	156	179.82	176	191.00
17	59.36	37	87.57	57	108.69	77	126.33	97	141.79	117	155.73	137	168.51	157	180.39	177	191.54
18	61.08	38	88.75	58	109.64	78	127.15	98	142.52	118	156.39	138	169.13	158	180.97	178	192.08
19	62.76	39	89.91	59	110.59	עד	127.90	99	143.25	119	157.05	139	169.74	159	181.54	179	192.62
20	64.39	40	91.05	60	111.52	80	128.77	100	143.97	120	157.71	140	170.35	160	182.11	150	193.16

•	_				_													
ı		DALES M	EDIE	os con			RIFIC	IO CALI	BRAD	0								
	K =	0.82			_	20.442			TUBO): 304.8 r	ıını (1	2")	ORIF	ICIO: 23	4 num	1 (10")		
1	н	Q	H	Q	н	Q	H	Q	н	Q	H	0	-11	Q	11	Q	H	0
ı	cm	1.p.s.	cm	Lps.	cm	Lps.	cm	1.p.s.	cm	1 p.s.	cm	Lp.s.	cm	Lp.s.	cm	l.p.s.	cm	1.p.s.
Ш	1	20.44	21	93.68	41	130.89	61	159.66	81	183.98	101	205.44	121	224.86	141	242.74	161	259.38
ı	2	28.91	22	95.88	42	132.48	62	160.96	82	185.11	102	206.45	122	225.79	142	243.59	162	260.18
П	3	35.41	23	98.04	43	134.05	63	162.25	83	186.24	103	207.46	123	226.71	143	244.45	163	260.99
ı	4 :	40.88	24	100.14	44	135.60	64	163.54	84	187.35	104	208.47	124	227.63	144	245.30	164	261.79
ı	5	45.71	25	102.21	45	137.13	65	164.81	85	183.47	105	209.47	125	228.55	145	246.15	165	262.58
ı	6	50.07	26	104.23	46	139.64	66	166.07	86	189.57	106	210.46	126	229.46	146	247.00	166	263.38
1	7	54,08	27	106.22	47	140.14	67	167.32	87	190.67	107	211.45	127	230.37	147	247.85	167	264.17
1	8	57.82	28	108.17	48	141.63	68	168.57	88	191.76	108	212.44	128	231.27	148	248.69	168	264.96
ı	9	61.33	29	110.08	49	143.09	69	169.80	89	192.85	109	213.42	129	232.18	149	249.53	169	265.75
1	10	64.64	30	111.97	50	144.55	70	171.03	90	193.93	110	214,40	130	233.07	150	250.36	170	266.53
1	11	67.80	31	113.82	51	145.99	71	172.25	91	195.00	111	215.37	131	233.97	151	251.20	171	267.31
ı	12	70.81	32	115.64	52	147.41	72	173.46	92	196.07	112	216.34	132	234.86	152	252.03	172	268.09
П	13	73.70	33	117.43	53	148.82	73	174.66	93	197.14	113	217.30	133	235.75	153	252.85	173	268.87
ı	14	76.49	34	119.20	54	150.22	74	175.85	94	198.19	114	218.26	134	236.63	154	253.68	174	269.65
ı	15	79.17	35	120.94	55	151.60	75	177.03	95	199.24	115	219.22	135	237.51	155	254.50	175	270.42
	16	81.77	36	122.65	56	152.97	76	178.21	96	200.29	116	220.17	1.36	238.39	156	255.32	176	271.19
ı	17	84.28	37	124.34	57	154.33	77	179.38	97	201.33	117	221.11	137	239.27	157	256.14	177	271.96
ı	18	86.73	38	126.01	58	155.68	78	180.54	98	202.37	118	222.06	138	240.14	158	256.95	178	272.73
1	19	89.10	39	127.66	59	157.02	79	181.69	99	203.40	119	223.60	139	241.01	159	257.76	179	273.50
ı	20	91.42	40	129.29	60	158.34	80	132.84	100	204.42	120	223.93	140	241.87	160	258.57	180	274.26
ı	K=	0.662			c-	26.309			_): 355.6	*****			ICIO: 2.	_			
H	Н	Q	Н	0	н	n	н	Q	111	Q	H	Q	Н	Q	н	Q	н	0
ı	cm	l.p.s.	cm	1.p.s.	cm.	tps.	cm.	1.p.s.	cm	Lp.s.	cm	1.p.s.	cm	I.p.s.	cm :			
	1	26.31	21						_				ĺ		-	1.p.s.	сm	l.p.s.
H	2	37.21		120.56	41	168.46	61	205.48	51	236.78	101	264.40	121	289.40	141	312.40	161	333.82
ı	3		22	123.40	42	170.50	62	207.16	82	236.78 238.24	101 102	265.71	122	290.59	142	312.40 313.51	161 162	333.82 334.86
		45.57	23	123.40 126.17	42 43	170.50 172.52	62 63	207.16 203.82	82 83	236.78 238.24 239.69	101 102 103	265.71 267.01	122 123	290.59 291.78	142 143	312.40 313.51 314.61	161 162 163	333.82 334.86 335.89
ı	4	45.57 52.62	23 24	123.40 126.17 128.89	42 43 44	170.50 172.52 174.51	62 63 64	207.16 208.82 210.47	82 83 84	236.78 238.24 239.69 241.13	101 102 103 104	265.71 267.01 268.30	122 123 124	290.59 291.78 292.96	142 143 144	312.40 313.51 314.61 315.71	161 162 163 164	333.82 334.86 335.89 336.92
	4	45.57 52.62 58.83	23 24 25	123.40 126.17 128.89 131.55	42 43 44 45	170.50 172.52 174.51 176.49	62 63 64 65	207.16 208.82 210.47 212.11	82 83 84 85	236.78 238.24 239.69 241.13 242.56	101 102 103 104 105	265.71 267.01 268.30 269.59	122 123 124 125	290.59 291.78 292.96 294.14	142 143 144 145	312.40 313.51 314.61 315.71 316.80	161 162 163 164 165	333.82 334.86 335.89 336.92 337.95
	4 5 6	45.57 52.62 58.83 64.44	23 24 25 26	123.40 126.17 128.89 131.55 134.15	42 43 44 45 46	170.50 172.52 174.51 176.49 178.44	62 63 64 65 66	207.16 208.82 210.47 212.11 213.74	82 83 84 85 86	236.78 238.24 239.69 241.13 242.56 243.98	101 102 103 104 105 106	265.71 267.01 268.30 269.59 270.87	122 123 124 125 126	290.59 291.78 292.96 294.14 295.32	142 143 144 145 146	312.40 313.51 314.61 315.71 316.80 317.89	161 162 163 164 165 166	333.82 334.86 335.89 336.92 337.95 338.97
	4 5 6 7	45.57 52.62 58.83 64.44 69.61	23 24 25 26 27	123.40 126.17 128.89 131.55 134.15 136.71	42 43 44 45 46 47	170.50 172.52 174.51 176.49 178.44 180.37	62 63 64 65 66 67	207.16 208.82 210.47 212.11 213.74 215.35	82 83 84 85 86 87	236.78 238.24 239.69 241.13 242.56 243.98 245.39	101 102 103 104 105 106 107	265.71 267.01 268.30 269.59 270.87 272.14	122 123 124 125 126 127	290.59 291.78 292.96 294.14 295.32 296.49	142 143 144 145 146 147	312.40 313.51 314.61 315.71 316.80 317.89 318.98	161 162 163 164 165 166 167	333.82 334.86 335.89 336.92 337.95 338.97 339.99
	4 5 6 7 8	45.57 52.62 58.83 64.44 69.61 74.41	23 24 25 26 27 28	123.40 126.17 128.89 131.55 134.15 136.71 139.21	42 43 44 45 46 47 48	170.50 172.52 174.51 176.49 178.44 180.37 182.27	62 63 64 65 66 67 68	207.16 208.82 210.47 212.11 213.74 215.35 216.95	82 83 84 85 86 87 88	236.78 238.24 239.69 241.13 242.56 243.98 245.39 246.80	101 102 103 104 105 106 107 108	265.71 267.01 268.30 269.59 270.87 272.14 273.41	122 123 124 125 126 127 128	290.59 291.78 292.96 294.14 295.32 296.49 297.65	142 143 144 145 146 147 148	312.40 313.51 314.61 315.71 316.80 317.89 318.98 320.06	161 162 163 164 165 166 167 168	333.82 334.86 335.89 336.92 337.95 338.97 339.99 341.00
	4 5 6 7 8	45.57 52.62 58.83 64.44 69.61 74.41 78.93	23 24 25 26 27 28 29	123.40 126.17 128.89 131.55 134.15 136.71 139.21 141.68	42 43 44 45 46 47 48 49	170.50 172.52 174.51 176.49 178.44 180.37 182.27	62 63 64 65 66 67 68 69	207.16 208.82 210.47 212.11 213.74 215.35 216.95 218.54	82 83 84 85 86 87 88	236.78 238.24 239.69 241.13 242.56 243.98 245.39 246.80 248.20	101 102 103 104 105 106 107 108	265.71 267.01 268.30 269.59 270.87 272.14 273.41 274.67	122 123 124 125 126 127 128 129	290.59 291.78 292.96 294.14 295.32 296.49 297.65 298.81	142 143 144 145 146 147 148 149	312.40 313.51 314.61 315.71 316.80 317.89 318.98 320.06 321.14	161 162 163 164 165 166 167 168 169	333.82 334.86 335.89 336.92 337.95 338.97 339.99 341.00 342.02
	4 5 6 7 8 9	45.57 52.62 58.83 64.44 69.61 74.41 78.93 83.20	23 24 25 26 27 28 29 30	123.40 126.17 128.89 131.55 134.15 136.71 139.21 141.68	42 43 44 45 46 47 48 49 50	170.50 172.52 174.51 176.49 178.44 180.37 182.27 184.16 186.03	62 63 64 65 66 67 68 69 70	207.16 208.82 210.47 212.11 213.74 215.35 216.95 218.54 220.12	82 83 84 85 86 87 88 89	236.78 238.24 239.69 241.13 242.56 243.98 245.39 246.80 248.20 249.59	101 102 103 104 105 106 107 108 109	265.71 267.01 268.30 269.59 270.87 272.14 273.41 274.67 275.93	122 123 124 125 126 127 128 129 130	290.59 291.78 292.96 294.14 295.32 296.49 297.65 298.81 299.97	142 143 144 145 146 147 148 149	312.40 313.51 314.61 315.71 316.80 317.89 318.98 320.06 321.14 322.22	161 162 163 164 165 166 167 168 169	333.82 334.86 335.89 336.92 337.95 338.97 339.99 341.00 342.02
	4 5 6 7 8 9 10	45.57 52.62 58.83 64.44 69.61 74.41 78.93 83.20 87.26	23 24 25 26 27 28 29 30 31	123.40 126.17 128.89 131.55 134.15 136.71 139.21 141.68 144.10	42 43 44 45 46 47 48 49 50	170.50 172.52 174.51 176.49 178.44 180.37 182.27 184.16 186.03 187.88	62 63 64 65 66 67 68 69 70 71	207.16 208.82 210.47 212.11 213.74 215.35 216.95 218.54 220.12 221.68	82 83 84 85 86 87 88 89 90	236.78 238.24 239.69 241.13 242.56 243.98 245.39 246.80 249.59 250.97	101 102 103 104 105 106 107 108 109 110	265.71 267.01 268.30 269.59 270.87 272.14 273.41 274.67 275.93 277.18	122 123 124 125 126 127 128 129 130	290.59 291.78 292.96 294.14 295.32 296.49 297.65 298.81 299.97 301.12	142 143 144 145 146 147 148 149 150	312.40 313.51 314.61 315.71 316.80 317.89 318.98 320.06 321.14 322.22 323.29	161 162 163 164 165 166 167 168 169 170	333.82 334.86 335.89 336.92 337.95 338.97 339.99 341.00 342.02 343.03
	4 5 6 7 8 9 10 11 12	45.57 52.62 58.83 64.44 69.61 74.41 78.93 83.20 87.26 91.14	23 24 25 26 27 28 29 30 31 32	123.40 126.17 128.89 131.55 134.15 136.71 139.21 141.68 144.10 146.48 148.83	42 43 44 45 46 47 48 49 50 51	170.50 172.52 174.51 176.49 178.44 180.37 182.27 184.16 186.03 187.88 189.72	62 63 64 65 66 67 68 69 70 71	207.16 208.82 210.47 212.11 213.74 215.35 216.95 218.54 220.12 221.68 223.24	82 83 84 85 86 87 88 89 90 91	236.78 238.24 239.69 241.13 242.56 243.98 245.39 246.80 249.59 250.97 252.35	101 102 103 104 105 106 107 108 109 110 111	265.71 267.01 268.30 269.59 270.87 272.14 273.41 274.67 275.93 277.18 278.43	122 123 124 125 126 127 128 129 130 131	290.59 291.78 292.96 294.14 295.32 296.49 297.65 298.81 299.97 301.12 302.27	142 143 144 145 146 147 148 149 150 151	312.40 313.51 314.61 315.71 316.80 317.89 318.98 320.06 321.14 322.22 323.29 324.36	161 162 163 164 165 166 167 168 169 170 171	333.82 334.86 335.89 336.92 337.95 338.97 339.99 341.00 342.02 343.03 344.03 345.04
	4 5 6 7 8 9 10 11 12	45.57 52.62 58.83 64.44 69.61 74.41 78.93 83.20 87.26 91.14 94.86	23 24 25 26 27 28 29 30 31 32 33	123.40 126.17 128.89 131.55 134.15 136.71 139.21 141.68 144.10 146.48 148.83 151.13	42 43 44 45 46 47 48 49 50 51 52	170.50 172.52 174.51 176.49 178.44 180.37 182.27 184.16 186.03 187.88 189.72 191.53	62 63 64 65 66 67 68 69 70 71 72 73	207.16 208.82 210.47 212.11 213.74 215.35 216.95 218.54 220.12 221.68 223.24 224.78	82 83 84 85 86 87 88 89 90 91 92	236.78 238.24 239.69 241.13 242.56 243.98 245.39 246.80 248.20 249.59 250.97 252.35 253.71	101 102 103 104 105 106 107 108 109 110 111 112	265.71 267.01 268.30 269.59 270.87 272.14 273.41 274.67 275.93 277.18 278.43 279.67	122 123 124 125 126 127 128 129 130 131 132 133	290.59 291.78 292.96 294.14 295.32 296.49 297.65 298.81 299.97 301.12 302.27 303.41	142 143 144 145 146 147 148 149 150 151 152	312.40 313.51 314.61 315.71 316.80 317.89 318.98 320.06 321.14 322.22 323.29 324.36 325.42	161 162 163 164 165 166 167 168 169 170 171 172	333.82 334.86 335.89 336.92 337.95 338.97 341.00 342.02 343.03 344.03 345.04 346.04
	4 5 6 7 8 9 10 11 12 13	45.57 52.62 58.83 64.44 69.61 74.41 78.93 83.20 87.26 91.14 94.86 98.44	23 24 25 26 27 28 29 30 31 32 33 34	123.40 126.17 128.89 131.55 134.15 136.71 139.21 141.68 144.10 146.48 148.83 151.13	42 43 44 45 46 47 48 49 50 51 52 53	170.50 172.52 174.51 176.49 178.44 180.37 182.27 184.16 186.03 187.88 189.72 191.53	62 63 64 65 66 67 68 69 70 71 72 73	207.16 208.82 210.47 212.11 213.74 215.35 216.95 218.54 220.12 221.68 223.24 224.78 226.32	82 83 84 85 86 87 88 89 90 91 92 93	236.78 238.24 239.69 241.13 242.56 243.98 245.39 246.80 249.59 250.97 252.35 253.71 255.08	101 102 103 104 105 106 107 108 109 110 111 112 113 114	265.71 267.01 268.30 269.59 270.87 272.14 273.41 274.67 275.93 277.18 278.43 279.67 280.90	122 123 124 125 126 127 128 129 130 131 132 133	290.59 291.78 292.96 294.14 295.32 296.49 297.65 298.81 299.97 301.12 302.27 303.41 304.55	142 143 144 145 146 147 148 149 150 151 152 153 154	312.40 313.51 314.61 315.71 316.80 317.89 320.06 321.14 322.22 323.29 324.36 325.42 326.49	161 162 163 164 165 166 167 168 169 170 171 172 173 174	333.82 334.86 335.89 336.92 337.95 338.97 341.00 342.02 343.03 344.03 345.04 346.04 347.04
	4 5 6 7 8 9 10 11 12 13 14 15	45.57 52.62 58.83 64.44 69.61 74.41 78.93 83.20 87.26 91.14 94.86 98.44 101.89	23 24 25 26 27 28 29 30 31 32 33 34 35	123.40 126.17 128.89 131.55 134.15 136.71 139.21 141.68 144.10 146.48 148.83 151.13 153.41 155.65	42 43 44 45 46 47 48 49 50 51 52 53 54	170.50 172.52 174.51 176.49 178.44 180.37 182.27 184.16 186.03 187.88 189.72 191.53 193.33 195.11	62 63 64 65 66 67 68 69 70 71 72 73 74	207.16 208.82 210.47 212.11 213.74 215.35 216.95 218.54 220.12 221.68 223.24 224.78 226.32 227.84	82 83 84 85 86 87 88 89 90 91 92 93 94 95	236.78 238.24 239.69 241.13 242.56 243.98 245.39 246.80 249.59 250.97 252.35 253.71 255.08	101 102 103 104 105 106 107 108 109 110 111 112 113 114 115	265.71 267.01 268.30 269.59 270.87 272.14 273.41 274.67 275.93 277.18 278.43 279.67 280.90 282.13	122 123 124 125 126 127 128 129 130 131 132 133 134 135	290.59 291.78 292.96 294.14 295.32 296.49 297.65 298.81 299.97 301.12 302.27 303.41 304.55 305.68	142 143 144 145 146 147 148 149 150 151 152 153 154 155	312.40 313.51 314.61 315.71 316.80 317.89 320.06 321.14 322.22 323.29 324.36 325.42 326.49 327.54	161 162 163 164 165 166 167 168 169 170 171 172 173 174 175	333.82 334.86 335.89 336.92 337.95 338.97 339.99 341.00 342.02 343.03 344.03 345.04 346.04 347.04
	4 5 6 7 8 9 10 11 12 13 14 15	45.57 52.62 58.83 64.44 69.61 74.41 78.93 83.20 87.26 91.14 94.86 98.44 101.89	23 24 25 26 27 28 29 30 31 32 33 34 35 36	123.40 126.17 128.89 131.55 134.15 136.71 139.21 141.68 144.10 146.48 148.83 151.13 153.41 155.65 157.85	42 43 44 45 46 47 48 49 50 51 52 53 54 55 50	170.50 172.52 174.51 176.49 178.44 180.37 182.27 184.16 186.03 187.88 189.72 191.53 193.33 195.11	62 63 64 65 66 67 68 69 70 71 72 73 74 75 76	207.16 208.82 210.47 212.11 213.74 215.35 216.95 218.54 220.12 221.68 223.24 224.78 226.32 227.84 229.36	82 83 84 85 86 87 88 89 90 91 92 93 94 95	236.78 238.24 239.69 241.13 242.56 243.98 245.39 246.80 249.59 250.97 252.35 253.71 255.08 256.43 257.77	101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116	265.71 267.01 268.30 269.59 270.87 272.14 273.41 274.67 275.93 277.18 278.43 279.67 280.90 282.13 283.36	122 123 124 125 126 127 128 130 131 132 133 134 135 136	290.59 291.78 292.96 294.14 295.32 296.49 297.65 298.81 299.97 301.12 302.27 303.41 304.55 305.68 306.81	142 143 144 145 146 147 148 149 150 151 152 153 154 155 156	312.40 313.51 314.61 315.71 316.80 317.89 320.06 321.14 322.22 323.29 324.36 325.42 326.49 327.54 328.60	161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176	333.82 334.86 335.89 336.92 337.95 338.97 339.99 341.00 342.02 343.03 344.03 345.04 347.04 348.04 349.03
	4 5 6 7 8 9 10 11 12 13 14 15 16 17	45.57 52.62 58.83 64.44 69.61 74.41 78.93 83.20 87.26 91.14 94.86 98.44 101.89 105.24	23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	123.40 126.17 128.89 131.55 134.15 136.71 139.21 141.68 144.10 146.48 148.83 151.13 153.41 155.65 157.85	42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	170.50 172.52 174.51 176.49 178.44 180.37 182.27 184.16 186.03 187.88 189.72 191.53 193.33 195.11 196.88 198.63	62 63 64 65 66 67 68 69 70 71 72 73 74 75 76	207.16 208.82 210.47 212.11 213.74 215.35 216.95 218.54 220.12 221.68 223.24 224.78 226.32 227.84 229.36 230.86	82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	236.78 238.24 239.69 241.13 242.56 243.98 245.39 246.80 249.59 250.97 252.35 253.71 255.08 256.43 257.77 259.11	101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117	265.71 267.01 268.30 269.59 270.87 272.14 273.41 274.67 275.93 277.18 278.43 279.67 280.90 282.13 283.36 284.58	122 123 124 125 126 127 128 130 131 132 133 134 135 136 137	290.59 291.78 292.96 294.14 295.32 296.49 297.65 298.81 299.97 301.12 302.27 303.41 304.55 305.68 306.81	142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157	312.40 313.51 314.61 315.71 316.80 317.89 320.06 321.14 322.22 323.29 324.36 325.42 326.49 327.54 328.60 329.65	161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176	333.82 334.86 335.89 336.92 337.95 338.97 341.00 342.02 343.03 344.03 345.04 346.04 347.04 348.04 349.03
	4 5 6 7 8 9 10 11 12 13 14 15	45.57 52.62 58.83 64.44 69.61 74.41 78.93 83.20 87.26 91.14 94.86 98.44 101.89	23 24 25 26 27 28 29 30 31 32 33 34 35 36	123.40 126.17 128.89 131.55 134.15 136.71 139.21 141.68 144.10 146.48 148.83 151.13 153.41 155.65 157.85	42 43 44 45 46 47 48 49 50 51 52 53 54 55 50	170.50 172.52 174.51 176.49 178.44 180.37 182.27 184.16 186.03 187.88 189.72 191.53 193.33 195.11	62 63 64 65 66 67 68 69 70 71 72 73 74 75 76	207.16 208.82 210.47 212.11 213.74 215.35 216.95 218.54 220.12 221.68 223.24 224.78 226.32 227.84 229.36 230.86 232.35	82 83 84 85 86 87 88 89 90 91 92 93 94 95	236.78 238.24 239.69 241.13 242.56 243.98 245.39 246.80 249.59 250.97 252.35 253.71 255.08 256.43 257.77 259.11 260.45	101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117	265.71 267.01 268.30 269.59 270.87 272.14 273.41 274.67 275.93 277.18 278.43 279.67 280.90 282.13 283.36 284.58 285.79	122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138	290.59 291.78 292.96 294.14 295.32 296.49 297.65 298.81 299.97 301.12 302.27 303.41 304.55 305.68 306.81 307.94	142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158	312.40 313.51 314.61 315.71 316.80 317.89 320.06 321.14 322.22 323.29 324.36 325.42 326.49 327.54 328.60 329.65 330.70	161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177	333.82 334.86 335.89 336.92 337.95 338.97 341.00 342.02 343.03 344.03 345.04 346.04 347.04 348.04 349.03 350.02
	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	45.57 52.62 58.83 64.44 69.61 74.41 78.93 83.20 87.26 91.14 94.86 98.44 101.89 105.24 108.47 111.62	23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	123.40 126.17 128.89 131.55 134.15 136.71 139.21 141.68 144.10 146.48 148.83 151.13 153.41 155.65 160.03 162.18	42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	170.50 172.52 174.51 176.49 178.44 180.37 182.27 184.16 186.03 187.88 189.72 191.53 193.33 195.11 196.88 198.63 200.36	62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77	207.16 208.82 210.47 212.11 213.74 215.35 216.95 218.54 220.12 221.68 223.24 224.78 226.32 227.84 229.36 230.86	82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97	236.78 238.24 239.69 241.13 242.56 243.98 245.39 246.80 249.59 250.97 252.35 253.71 255.08 256.43 257.77 259.11	101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117	265.71 267.01 268.30 269.59 270.87 272.14 273.41 274.67 275.93 277.18 278.43 279.67 280.90 282.13 283.36 284.58	122 123 124 125 126 127 128 130 131 132 133 134 135 136 137	290.59 291.78 292.96 294.14 295.32 296.49 297.65 298.81 299.97 301.12 302.27 303.41 304.55 305.68 306.81	142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157	312.40 313.51 314.61 315.71 316.80 317.89 320.06 321.14 322.22 323.29 324.36 325.42 326.49 327.54 328.60 329.65	161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176	333.82 334.86 335.89 336.92 337.95 338.97 341.00 342.02 343.03 344.03 345.04 346.04 347.04 348.04 349.03

APENDICE B

CEMENTACIONES

PREPARACION DE LECHADA DE INVECCION AGUA-CEMENTO

CANTIE	DADES	DE AGUA Y	LECHA	DA PREPA	RADA	PARA DIST	INTAS RE	LACIONES	A/C Y N	DE SACO	s									
N° de			Γ																	
saces	Relació	5n 1/1	Relacio	án 2/1	Retaca	ón 3/1	Relación	411	Relaci	ón 5/1	Relaci	ón 6/1	Relació	n 7/1	Relación	8/1	Relació	n 9/1	Relaci	ón 10/1
	Agua	Lechada	Agua	Lechada	Agua	Lechada	Agua	Lechada	Agua	Lechada	Agua	Lechada	Agua	Lechada	Agua	Lechada	Agua	Lechada	Agua	Lechada
1	330	49.5	66 0	82 5	99.0	1155	132.0	148.5	1650	181.5	198.0	2145	231.0	247,5	2640	280.5	297.0	313.5	330.0	346.5
2	66.0	99.0	1320	165.0	198 0	231.0	264 0	297.0	330 C	363 0	396,0	429.0	462.0	495 0	528 0	561.0	5940	627.0	660.0	693 0
3	99.0	148.5	198 0	247.5	297.0	346.5	396 0	445.5	495 0	544.5	594 0	643.5	693 0	724.5	792.0	841.5	981.0	940.5	990.0	1,039 5
4	132 0	198 0	264 0	330 0	396 0	462 0	528.0	594.0	660 0	726.0	792.0	858.0	924.0	990.0	1,056.0	1,122.0	1,188 0	1,254.0		
5	165.0	247 5	330 0	412.5	495 0	577.5	660.0	742.5	825.0	907.5	990 0	1,0725	1,155 0	1,237.5						
6	198 0	297.0	396 0	495 0	594 0	693 0	792.0	891.0	990.0	1,089.0										
7	231 0	345.5	462.0	577.5	693 O	808 5	9240	1,039 5									1			
8	2640	396 0	528 0	660 0	792 0	9240	1,056 0	1,188 0		1		1								1
9	297 0	445 5	5940	742 5	981.0	1,039.5				} .										
10	330.0	4950	660 0	825 0	9900	1,155 0				1							} ,			! !
11	363 0	544 5	726.0	907.5							Ì									
12	396 0	594 0	792 0	990 0										-				i		ł
13	429.0	6435	858 0	1,072.5				1				1	1							
14	462 0	693.0	9240	1,155 0								i 1								
15	495 0	742 5								} .										
16	528.0	792 0							ļ	l	1						Ì			
17	561.0	841.5]							{	[· •
18	594.0	8910	1																	
19	627.0	940 5									1	}								
20	660.0	990 0	1																	
21	693.0	1,039 5																		

Cantidades de Cemento-Arena-Grava para obtener 1 m de mezcla en diferentes diámetros de ademe.

Cemento (C)en Kg y arena (A) y grava (G) en m3. Proporción Tuberías 24" 20 18* 16* 14" 12 3/4* 10 3/4 8 5/8" 6 5/8 291 200 161 126 96 79 61 39 23 1:1:0 A 0.22 0.15 .012 0.10 0.07 0.06 0.05 0.03 0.02 0.00 G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 41 15 1:1:1 c 194 107 84 64 53 26 A 0.10 0.06 0.05 0.04 0.03 0.02 0.01 0.15 0.08 0.01 G 0.15 0.10 0.08 0.06 0.05 0.04 0.03 0.02 20 12 1:1:2 c 146 100 81 63 48 40 30 A 0.11 0.08 0.06 0.05 0.04 0.03 0.02 0.02 0.01 G 0.07 0.04 0.03 0.02 0.22 0.15 0.12 0.10 0.06 c 1:2:0 194 133 107 84 64 53 41 26 15 0.04 0.02 A 0.30 0.20 0.16 0.13 0.10 0.08 0.06 G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 c 20 1:2:1 146 100 81 63 48 40 30 12 A 0.22 0.15 0.10 0.07 0.06 0.05 0.03 0.02 0.12 G 0.11 0.08 0.06 0.05 0.04 0.03 0.02 0.02 0.01 1:2:2 c 116 80 64 50 38 32 24 16 9 A 0.18 0.12 0.20 0.03 0.06 0.05 0.04 0.02 0.01 G 0.08 0.06 0.05 0.04 0.01 0.18 0.12 0.20 0.02 c 1:2:3 97 67 42 20 13 54 32 26 8 0.10 0.06 0.05 0.04 0.03 0.02 0.10 Α 0.15 0.08 G 0.22 0.15 0.12 0.10 0.07 0.06 0.05 0.03 0.02 1:2:4 С 83 57 46 36 28 23 17 11 7 0.13 0.04 0.01 A 0.09 0.07 0.06 0.03 0.03 0.02 G 0.26 0.18 0.14 0.11 0.09 0.07 0.05 0.03 0.02 1:3:2 ċ 97 32 20 67 54 42 26 13 8 A 0.22 0.05 0.03 0.02 0.15 0.12 0.10 0.07. 0.06 G 0.15 0.10 0.08 0.06 0.05 0.04 0.03 0.02 0.10 1:3:3 CA 83 57 46 36 28 23 17 11 0.19 0.13 0.11 0.08 0.06 0.05 0.04 0.03 0.02 G 0.19 0.13 0.11 0.08 0.06 0.05 0.04 0.03 0.02 С 1:3:4 73 50 40 32 24 20 15 10 6 0.17 A 0.12 0.09 0.07 0.06 0.05 0.04 0.02 0.01 G 0.22 0.15 0.12 0.10 0.07 0.06 0.05 0.03 0.02 c 21 1:3:5 65 45 36 28 18 14 9 5 A 0.15 0.10 0.08 0.06 0.05 0.04 0.03 0.02 0.10 G 0.25 0.17 0.14 0.11 0.08 0.07 0.05 0.03 0.02 Cantidades de materiales necesarios para obtener 1 m3 de concreto. Una proporción de 1:2:0 representa 1 parte de cemento, 2 de arena y nada de grava.

Proporciones	Cemento en Kg	Arena en m3	Grava en m3
1:1:0	1,040	0.80	0.00
1:1:1	693	0.53	0.53
1:1:2	520	0.40	0.80
1:2:0	693	1.06	0.00
1:2:1	520	0.80	0.40
1:2:2	416	0.64	0.64
1:2:3	347	0.53	0.80
1:2:4	298	0.46	0.92
1:3:2	347	0.80	0.53
1:3:3	298	0.69	0,69
1:3:4	260	0.60	0.80
1:3:5	231	0.53	0.89

APENDICE C

CONVERSIONES

ARE	Α	l							
De	Α	cm.2	m.2	Km2	Hectár.	Mill.2	Acres	Pics2	Inch.2
C	m.2	1.000	10,000.0					0.001	0.155
١,	m.2		1,000		i Ì		ļ	10.764	1,550.000
K	Cm2			1.000	100,000	0.386	247.105		
He	ectár.		10,000.0	0.010	1.000	0.004	2.471		
M	1111.2			2.590	259.000	1.000	640,000		
Α	cres	!	4,046.710	0.004	0.405	0.002	1.000		
P	ies2	909.091	0.093				ļ	1.000	0.007
<u>lr</u>	ich.2	6.452				l		144.000	1.000

CAU	DAL								**
De	Α	it/Seg.	cm3/Seg	gal/Día	gal/Min.	lt/Min.	m3/Día	m3/hr	Pic3/seg
11/3	Seg.	1.000	1,000.000		15.851	60.000	86.400	3.600	0.035
cm:	3/Seg	0.001	1.000	22.825	0.016	0.060	0.083		
gal	/Día		0.044	1.000			0.004		
gai/	Min.	0.063	63.089	1,440.000	1.000	0.000	5.451	0.227	0.002
11/1	Min.	0.017	16.667	0.000	0.264	1.000	1,440	0.060	1
m3	/Día	0.012	11.570	264.550	0.183	0.694	1.000	0.042	
m3,	hora	0.278		6,340.152	4.403	16.667	24.000	1.000	0.010
Pie	3/seg	28.316			448.831	1,698.960	2,446.590	101.941	1,000

EFICIENCIA DE POZ	٥	
De A	gal/min/ pie	lt/seg/m
gal/min/pie	1	0.206
It/seg/m	4.840	1

LON	GITU	D							
De	Α	mm	cm.	m.	Km.	Mill.	Milt. Nau.	Pics	Inch.
mm		1.000	0.100	0.001					
cm.		10.000	1,000	0.010				0.033	0.394
	m.	1,000.000	100.000	1.000	0.001			3.281	39.370
ŀ	ζm.	j j		0.001	1.000	0.621	0.540	0.003	0.039
λ	Aill.	!		1,609.347	1.609	1.000	0.869	5,280.000	
Mil	l. Nau,		į	1,852.000	1.852	1.151	1.000	6,076.103	
F	Pies	1 1	30.480	0.305	· /			1.000	12.000
I	nch.	25.400	2.540	0.025				0.083	1.000

PERMEA	BILIDAD	l					
De	Α	cm/seg	gal/dia/ pie2	millones gal/dia/a- cre	m/dia	pie/seg	Darcy
cm	/seg	1,000	21,204.78		864.000	0.033	
gal/dia	ı/pic2		1.000		0.041		0.055
millon ga	ıl/dia/acre			1.000	0.935		
n	ı/dia	0.001	24.543	1.069	1.000		1.351
pie	e/seg	30,480			26,334.72	1.000	
D	arcy		18.200		0.740		1.000

PESC)								
De	Α	Grano	Gramo	Kilogramo	libra	Onza	Ton.Corta	Ton.Larg.	Ton.Métr.
Gi	rano	1.000	0.065						
Gr	amo	15.432	1.000	0.001	0.002				
Kilo	gramo		1,000.000	1.000	2.205	35.273			0.001
li	bra		453.592	0.454	1.000	16.000			
0	nza	437.500	28.350			1.000			
Ton.	Corta			998.900	2,000.000		1.000		0.907
Ton.	. Larg.			1,014.700	2,237,870		1.118	1.000	1.014
Ton.	Métr.			1,000.000	2,205.000		1.104	0.986	1.000

POT	ENCIA								
De	Α	CV	HP	kw	w	ft.lb/seg	kgm/seg	B.t.u./seg	Cal/seg
(cv	1.000	0.986	0.736	735.500	542.500	75.000	0.697	0.176
I	HP	1.014	1.000	0.746	745,700	550.000	76.040	0.707	0.178
1	kw	1.360	1.341	1.000	1,000.000	737.600	101.980	0.948	0.239
	w			0.001	1.000	0.738	0.102		
របា	b/seg	i i			1.3560	1.000	0.1382	0.0018	0.0018
kgr	m/seg	0.0133	0.0132	0.0098	9.8060	7.2330	1.000	0.0093	0.0023
B.t.	u./seg	1.434	1.415	1.055	1,055.000	778.100	107.580	1.000	0.252
Ca	l/seg	5.692	5.614	4.186	4,186.000	3,088.000	426.900	3,968	1.000

PRES	ION							
De	Α	Atmósfer.	kg/cm2	lb/pulg.2	mm-mer.	pulg-mer.	m-agua	pies-agu.
Atmó	sfera	1.000	1.033	14.700	760.000	29.921	10.330	33.899
kg/cm	2	0.968	1.000	14.220	73.580	28.970	9.977	32.810
lb/pul	g.2	0.068	0.070	1.000	51.816	2.036	0.710	2.307
mm-m	nerc.,	0.013	0.136	0.193	1.000	0.039	0.136	0.0446
pulg-r	merc	0.033	0.035	0.491	25.400	1.000	0.345	1.133
m-agu	Ja	0,096	0.100	1.423	7.370	2.900	1.000	3.284
pics-a	gua	0.029	0.030	0.433	22.430	0.883	0.304	1,000

TIEN	MPO						
De	Α	Afios	Meses	Días	Horas	Minutos	Segund.
A	ភិពន	1.000	12.000	365.000	8,760.000		
М	eses	0.083	1.000	30.410	729.840		
E) (as	0.003	0.033	1.000	24.000	1,440.000	
н	oras	l i		0.042	1.000	60.000	3,600.000
Mi	nutos		}		0.017	1.000	60,000
Sc	gund.					0.017	1.000

TRABAJO								
De A	CV hora	HP hora	kw hora	jul	ft.lb	kgm	b.t.u.	Cal
CV hora	1.000	0.986	0.736				2,510.000	632.500
HP hora	1.014	1.000	0.746				2,545.000	641.200
kw hora	1.360	1.341	1.000				3,413.000	860.000
jul	.			1.000	0.738	0.102		
ft.lb	1			1.356	1.000	0.138		
kgm				9.806	7.233	1,000		
b.t.u.				1,054.900	778.100	107.580	1.000	0.252
Cal				4,186.000	3,087.000	426.900	3.968	1.000

TRANSM	IISIBILID <i>A</i>	ND .		
De	A	cm2/seg	gal/dia/ pie	m2/dia
cm2	bcg	1.000	695.694	8.640
gal/d	ia/pie	0.001	1.000	0.012
m2/	dia	0.116	80.520	1.000

VOL	UMEN								
De	Α	cm.3	m3	lt.	pies3	Gal,USA	Acre-pies	Inch.3	Yarda3
CI	m.3	1.000		0.001				0.061	
1	m3		1.000	1,000.000	35.314	264.171			1.307
	It.	1,000.000	0.001	1.000	0.035	.0,264		61.023	
pi	ics3		0.028	28.317	1.000	7.481			0.037
Gal.	. USA		0.004	3.785	0.134	1.000		250.000	
Acr	c-pics		1,233,490				1.000		
In	ich3	16.387		0.016		0.004		1.000	
Ya	ırda3		0.765		27.000				1.000

Γ		===	CC	NVERS	ION DE	PIES	PULG	ADAS.	METR	os			
ı	Pies\pulg.	0	1	2	3	4	5	6	7	В	9	10	11
l	0	0.000	0.025	0.051	0.076	0 102	0.127	0.152	0.178	0.203	0.229	0.254	0.279
ı	[1]	0.305	0.330	0.356	0.381	0,406	0.432	0.457	0.483	0.508	0.533		0.584
ı	2	0.610	0.635	0.660	0.686	0.711	0.737	0.762	0.787	0.813	0.838	0.864	0.889
ı	3	0.914	0.940	0.965	0.991	1,016	1.041	1.067	1.092	1.118	1.143	1,168	1.194
ı	4	1.219	1.245	1.270	1.295	1.321	1.346	1.372	1.397	1.422	1.448	1,473	1.499
l	5	1.524	1.549	1.575	1.600	1.626	1.651	1.676	1.702	1.727	1.753	1.778	1.803
Į	į	١.									ļ	i	
ı	6	1.829	1.854	1.880	1.905	1.930	1.956	1.981	2.007	2.032	2.057	2.083	2.108
ı	7	2.134	2.159	2.184	2.210	2.235	2.261	2.286	2.311	2.337	2.362	2.388	2.413
ı	8	2.438	2.464	2.489	2.515	2,540	2.565	2.591	2.616	2.642	2.667	2.692	2.718
l	9	2.743	2.769	2.794	2.819	2.845	2.870	2.896	2.921	2,946	2.972	2,997	3.023
ı	10	3.048	3.073	3.099	3.124	3,150	3.175	3.200	3.226	3,251	3.277	3,302	3.327
ı	1		1						١.	ļ		}	1 1
ı	11	3.353	3.378	3.404	3,429	3.454	3.480	3,505	3.531	3.556	3.581	3.607	3.632
ı	12	3.658	3.683	3.708	3.734	3.759	3.785	3.810	3.835	3,861	3.886	3.912	3.937
ı	13	3.962	3.988	4.013	4.039	4.064	4.089	4.115	4.140	4.166	4.191	4.216	4.242
l	14	4.267	4.293	4.318	4.343	4.369	4.394	4.420		4.470	4.496		4.547
ı	15	4.572	4.597	4.623	4.648	4.674	4.699	4.724	4.750	4,775	4.801	4.826	4.851
l	l .		[ĺ									
Į	16	4.877	4.902	4.928	4.953	4.978	5.004	5.029	5.055	5.080	5.105	5.131	5.156
ı	17	5.182	5.207	5.232	5.258	5.283	5.309	5.334	5.359	5.385	5.410	5,436	5.461
l	18	5.486	5.512	5.537	5.563	5.588	5.613	5.639	5.664	5.690			5,766
ı	19	5.791	5.817	5.842	5.867	5.893	5.918	5.944	5.969	5.994	6.020		6.071
l	20	6.096	6.121	6.147	6.172	6.198	6.223	6.248	6.274	6.299	6.325	6.350	6,375
ı													
ı	21	6.401	6.426	6.452	8.477	6.502	6.528	6.553	6.579	6,604	6,629	6.655	6.680
l	22	6.706	6.731	8.756	6.782	6.807	6.833	6.858	6.883	6.909	6.934	6.960	6.985
ſ	23	7.010		7.061	7.087	7.112		7.163	7.188	7.214	7.239		7.290
ı	24	7,315	7.341	7,366	7.391	7.417	7.442	7.468	7.493	7.518	7.544	7.569	7.595
l	25	7.620	7.645	7.671	7.696	7.722	7.747	7.772	7.798	7,823	7.849	7.874	7.899
ı		7.925	7.950	7.976	8.001	8.026	8.052	8.077	8,103	0 400	8.153	8,179	8.204
ı	26 27	8.230				8.026				8.128		8.484	8.509
ı	27 28	8.230	8.255 8.560	8.280 8.585	8.306 8.611	8.331	8.357 8.661	8.382 8.687	8.407 8.712	8.433 8.738	8.458 8.763	8,788	8.814
ı	20	8.839	8.865	8.890	8.915	8.941	8.966	8.992	9.017	9.042	9.068	9,093	9,119
l	30	9.144	9.169	9.195	9.220	9.246	9.271	9.295	9.322	9.042		9.398	9.119
ı	30	9.144	8.109	9.195	5.220	3.240	8.271	0.290	8.322	5.347	9.3/3	3.390	0.423
ı	31	9,449	9.474	9.500	9,525	9,550	9.576	9,601	9.627	9,652	9.677	9.703	9.728
ı	32	9.754						9.906		9.957		10.008	
I	33		10.084										
ĺ	34		10.389										
Ī	35		10.693										
L		.0.000	10.033	10.719	10.144	10.110	10.193	10.020	.0.040	.0.071	.0.037	.0.022	10.077

I	Lt/seg.	m3/ hr.	m3/dia	gal/min.		ı
ľ	1	3.60	86.4.0	15.85	0.035	П
	2	7.20	172.8.0	31.70	0.071	l
1	3	10.80	259.2.0	47.55	0.106	П
ı	'4	14.40	345.6.0	63.40	0.141	П
3	5	18.00	432.0,0	79.25	0.177	П
	8	21.60	518.4.0	95.10	0.212	Ц
	7	25.20	604.8.0	110.95	0.247	ŀ
ı	8	28.80	691.2.0	126.61	0.283	Н
Ľ	9	32.40	777.6.0	142.66	0.318	П
ľ	10	36.00	864.0.0	158.51	0.353	П
	11	39.60	950.4.0	174.36	0.388	H
	.12	43.20	1,036.8.0	190.21	0.424	l
	13	46.80	1,123.2.0	206.06	0.459)
	14	50.40	1,209.6.0	221.91	0.494	ı
	15	54.00	1,296.0.0	237.76	0.530	Н
	16	57.60	1,382.4.0	253.61	0.565	П
	17	61.20	1,468.8.0	269.46	0.600	l
	18	64.80	1,555.2.0	285.31	0.636	П
	19	68.40	1,641.6.0	301.16	0.671	Н
	20	72.00	1,728.0.0	317.01	0,708	П
	21	75.60	1,814.4.0	332.86	0.742	П
i	22	79.20	1,900.8.0	348.71	0.777	H
	23	82.80	1,987.2.0	364.57	0.812	Н
	24	86.40	2,073.6.0	380.42	0.848	П
	25	90.00	2,160.0.0	396.27	0.883	H
ĺ	28	93.60	2,246.4.0	412.12	0.918	H
i	27	97.20	2,332.8.0	427.97	0.954	Н
ŀ	28	100.80	2,419.2.0	443.82	0.989	П
	29	104.40	2,505.6.0	459.67	1,024	П
	30	108.00	2,592.0.0	475.52	1.059	Н
	31	111.60	2,678.4.0	491.37	1.095	П
	32	115.20	2,764.8.0	507.22	1.130	Н
	33	118,80	2,851.2.0	523.07	1.165	П
	34	122.40	2,937.6.0	538.92	1.201	Н
	35	126.00	3,024.0.0	554.77	1.236	H
	36	129.60	3,110.4.0	570.62	1.271	l
	37	133.20	3,196.8.0	586.48	1.307	П
Ĺ	38	136.80	3,283.2.0	602.33	1.342	П
	39	140.40	3,369.6.0	618.18	1.377	П
	40	144.00	3,456.0.0	634.03	1.413	ı
i	41	147.60	3,542.4.0	649.88	1.448	l
	42	151.20	3,628.8.0	665.73	1.483	П
Ĺ	43	154.80	3,715.2.0	681.58	1.519	Ц
	44	158.40	3,801.6.0	697.43	1.554	J
l	45	162.00	3,888.0.0	713.28	1.589	Н
						٠

Lt/s		m3/ hr.	m3/dia	gal/min.	Ft3/seg.
4		165.60	3,974.4.0	729.13	1.625
4		169.20	4,060.8.0	744.98	1.660
4		172.80	4,147.2.0	760.83	1.695
4		176.40	4,233.6.0	776.68	1.730
5		180.00	4,320.0.0	792.53 808.38	1.766
		183.60	4,406.4.0	824.24	
5		187.20	4,492.8.0	840.09	1.836
5		190.80	4,579.2.0 4.665.6.0	855.94	1.907
5		194.40	4,752.00	871.79	1.942
	6	198.00	4,752.00	887.64	1.978
	7			903.49	2.013
	8	205.20	4,924.8.0	919.34	2.013
5		212.40	5,011.2.0 5.097.6.0	935.19	2.046
6		216.00	5,184.0.0	951.04	2.119
6		219.60	5,184.0.0	966.89	2.113
6		223.20	5,356.8.0	982.74	2.190
6		226.80	5,443.2.0	998.59	2.225
6		230.40	5,529.6.0	1,014,44	2.223
6		234.00	5,616.0.0	1,030.29	2.296
6		237.60	5.702.4.0	1,030.29	2.230
6		241.20	5.788.8.0	1.062.00	2.366
6		244.80	5.875.2.0	1,077.85	2.401
6		248.40	5,961.6.0	1,093.70	2.437
7		252.00	6,048.0.0	1,109.55	2.472
1		255.60	8,134.4.0	1,125,40	2.507
	2	259.20	6,220.8.0	1,141,25	2.543
	3	262.80	6,307.2.0	1,157.10	2.578
7		266.40	6,393,6.0	1,172,95	2.613
1 7		270.00	6,480.0.0	1,188,80	2.649
7	-	273.60	6,566.4.0	1,204.65	2.684
1		277.20	6,652.8.0	1,220.50	2.719
	8	280.80	6,739.2.0	1,236.35	2.755
	9	284.40	6,825.6.0	1,252,20	2.790
ll is		288.00	6,912,0.0	1,268,05	2.825
ll ă	-	291.60	6,998.4.0	1,283,91	2.861
ll ā		295.20	7,084.8.0	1.299.76	2.896
	3	298.80	7,171.2.0	1,315.61	2.931
) 8	4	302.40	7,257.6.0	1,331.46	2.966
B	5	306.00	7,344.0.0	1,347.31	3.002
B	6	309.60	7,430.4.0	1,363.16	3.037
B	7	313.20	7,516.8.0	1,379.01	3.072
8	8	316.80	7,603.2.0	1,394.86	3.108
8	9	320.40	7,689.6.0	1,410.71	3,143
9	0	324.00	7,776.0.0	1,426.56	3.178

					C121	
1	Lt/seg.	m3/ hr.	m3/día	gal/min.		Н
i	91	327.60	7,862.4.0	1,442.41	3.214	Ц
. !	92	331.20	7,948.8.0	1,458.26	3.249	H
1	93	334.80	8,035.2.0	1,474.11	3.284	Н
ď	94	338.40	8,121.6.0	1,489.96	3.320	ı
	95	342.00	8,208.0.0	1,505.81	3.355	Н
1	96	345.60	8,294.4.0	1,521.67	3.390	IJ
i	97	349.20	8,380.8.0	1,537.52	3.426	Н
	98	352.80	8,467.2.0	1,553.37	3.461	П
١,	99	356.40	8,553.6.0	1,569.22		l
	100	360.00	8,640.0.0	1,585.07	3.532	H
	101	363.60	8,726.4.0	1,600.92		П
İ,	102	367.20	8,812.8.0	1,616.77	3.602	Ц
. '	103	370.80	8,899.2.0	1,632.62	3.637	li
١	104	374.40	8,985.6.0	1,648.47	3.673	
. !	105	378.00	9,072.0.0	1,664.32	3.708	IJ
	108	381.60	9,158.4.0	1,680.17	3.743	1
	107	385.20	9,244.8.0	1,696.02	3.779	l
ŀ	108	388.80	9,331.2.0	1,711.87	3.814	H
i	109	392.40	9,417.6.0	1,727.72	3.849	П
	110	396.00	9,504.0.0	1,743.57	3.885	Ч
	111	399.60	9,590.4.0	1,759.43	3.920	Н
	112	403.20	9,676.8.0	1,775.28	3.955	H
	113	406.80	9,763.2.0	1,791.13	3.991	П
	114	410.40	9,849.6.0	1,806.98	4.026	ı
١.	115	414.00	9,936.0.0	1,822.83	4.061	П
	116	417.60	10,022.4.0	1,838.68	4.097	Ì
١	117	421.20	10,108.8.0	1,854.53	4.132	IJ
	118	424.80	10,195.2.0	1,870.38	4.167	П
	119	428.40	10,281.6.0	1,886.23	4.203	l
	120	432.00	10,368.0.0	1,902.08	4.238	l
	121	435.60	10,454.4.0	1,917.93	4.273	П
ĺ	122	439.20	10,540.8.0	1,933.78	4.30B	1
ı	123	442.80	10,627.2.0	1,949.63	4.344	П
Ì	124	446.40	10,713.6.0	1,965.48	4.379	П
	125	450.00	10,800.0.0	1,981.34	4.414	ı
d	126	453.60	10,886.4.0	1,997.19	4.450	i
ļ	127	457.20	10,972.8.0	2,013.04	4.485	ı
ij	128	460.80	11,059.2.0	2,028.89	4.520	ı
ľ	129	464.40	11,145.6.0	2,044.74	4.556	П
	130	468.00	11,232.0,0	2,060.59	4.591	ı
ľ,	131	471.60	11,318.4.0	2,076.44	4.626	Ц
d	132	475.20	11,404.8.0	2.092.29	4.662	l
١	133	478.80	11,491,2.0	2.108.14	4.697	ı
ļ	134	482.40	11,577,6,0	2,123,99	4.732	П
٠	135	486.00	11,664.0.0	2,139.84	4.768	H
						1

7			2111	a Vaila	C42/222	7
ı	Lt/seg.	m3/ hr.	m3/dia	gal/min.	Ft3/seg. 4.803	
	136 137	489.60 493.20	11,750.4.0 11,836,8.0	2,155.69 2,171.54	4.838	
ľ	138	495.20	11,923,2.0	2,187.39	4.874	ì
1	139	500.40	12,009.8.0	2,203.24	4.909	
Н	140	504.00	12,009.0.0	2,219.10	4.944	-
·	141	507.60	12,182.4.0	2,234.95	4.979	ı
١	142	511.20	12,268.8.0	2,250.80	5.015	ļ
	143	514.80	12,355.2.0	2,266,65	5.050	1
	144	518.40	12,441,6.0	2,282,50	5.085	ı
Ч	145	522.00	12,528.0.0	2,298.35	5.121	1
1	146	525.60	12,614.4.0	2,314.20	5.156	ļ
	147	529.20	12,700.8.0	2,330.05	5.191	ì
	148	532.80	12,787.2.0	2,345.90	5.227	
ľ	149	536.40	12,873.6.0	2,361.75	5.262	1
	150	540.00	12,960.0.0	2,377.60	5.297	ì
	151	543.60	13,046.4.0	2,393.45	5.333	1
i	152	547.20	13,132.8.0	2,409,30	5.368	Į
	153	550.80	13,219.2.0	2,425.15	5.403	ì
ı	154	554.40	13,305.6.0	2,441.00	5.439	ł
ı	155	558.00	13,392.0.0	2,456.86	5.474	1
	156	561.60	13,478.4.0	2,472.71	5.509	ļ
IJ	157	565.20	13,564.8.0	2,488.56	5.545	ı
ı	158 159	568.80 572.40	13,651.2.0 13,737.6.0	2,504.41	5.580 5.615	1
1	160	576.00	13,737.0.0	2,520.20	5.650	Į
Ц	161	579.60	13,910.4.0	2,551.98	5.686	
i	162	583.20	13,996.8.0	2,557.81	5.721	
ľ	163	586.80	14,083.2.0	2,583.66	5.756	ı
	164	590.40	14,169.6.0	2,599.51	5.792	i
	165	594.00	14,256,0.0	2,615,36	5.827	ľ
	166	597.60	14,342.4.0	2,631.21	5.862	
ı	167	601.20	14,428,8.0	2,847,06	5.898	
	168	604.80	14,515.2.0	2,662.91	5.933	1
1	169	608.40	14,601.6.0	2,678.78	5.968	ı
۱	170	612.00	14,688.0.0	2,694.62	6.004	
ı	171	615.60	14,774.4.0	2,710,47	6.039	1
	172	619.20	14,860.8.0	2,726.32	6.074	1
ı	173	622.80	14,947.2.0	2,742,17	6.110	
	174	626.40	15,033.6.0	2,758.02	6.145	
	175	630.00	15,120.0.0	2,773,87	6.180	
	176	633.60	15,206.4.0	2,789.72	6.216	
	177	637.20	15,292.8.0	2,805.57	6.251	ì
١	178	640.80 644.40	15,379.2.0 15,465.6.0	2,821.42	6.288 6.321	
	179 180	648.00	15,465.6.0	2,837.27 2,853,12	6.321	ļ
	100	040.00	15,552.0.0	£,000.12	0.357	_

TABLA DE CONVERSION DE CAUDALES

Lt/seg.	m3/ hr.	m3/dia		Ft3/seg.
181	651.60	15,638.4.0	2,868.97	6.392
182	855.20	15,724.8.0	2,884,82	6.427
183	658.80	15,811.2.0	2,900.67	6.463
184	662.40	15,897.6.0	2,916.53	6.498
185	666.00	15,984.0.0	2,932.38	6.533
186	869.60	16,070,4.0	2,948.23	6.569
187	673.20	16,156.8.0	2,964.08	6.604
188	676.80	16,243.2.0	2,979.93	6.639
189	680.40	16,329,6.0	2,995.78	6.675
190	684.00	16,416.0.0	3,011.63	6.710
191	687.60	16,502.4.0	3,027.48	6.745
192	691.20	16,588.8.0	3,043.33	6.781
193	694.80	16,675.2.0	3,059.18	6.816
194	698.40	16,761.6.0	3,075.03	6.851
195	702.00	16,848,0.0	3.090.88	6.887
196	705.60	16,934,4.0	3,106.73	6.922
197	709.20	17.020.8.0	3,122,58	6.957
198	712.80	17,107.2.0	3,138.43	6.992
199	716.40	17,193,6,0	3,154.29	7.028
200	720.00	17,280.0.0	3,170.14	7.063
201	723.60	17,366.4.0	3,185,99	7.098
202	727.20	17,452.8.0	3,201.84	7.134
203	730.80	17,539,2.0	3,217.69	7.169
204	734.40	17,625.6.0	3.233.54	7,204
205	738.00	17,712.0.0	3,249,39	7.240
206	741.60	17,798,4.0	3.265.24	7.275
207	745.20	17,884.8.0	3,281,09	7.310
208	748.80	17,971,2.0	3,296.94	7.346
209	752.40	18,057,6.0	3,312.79	7.381
210	756.00	18,144,0.0	3,328.64	7.416
211	759.60	18,230,4.0	3,344,49	7.452
212	763.20	18.316.8.0	3,360,34	7.487
213	766.80	18.403.2.0	3,376.19	7.522
214	770.40	18,489,6.0	3,392.05	7.557
215	774.00	18.576.0.0	3,407.90	7.593
216	777.60	18.662.4.0	3,423,75	7.628
217	781.20	18,748.8.0	3,439.60	7.663
218	784.80	18.835.2.0	3,455,45	7.699
219	788.40	18,921,6.0	3,471.30	7.734
220	792.00	19.008.0.0	3,487.15	7.769
221	795.60	19,094,4.0	3,503.00	7.805
222	799.20	19,180.8.0	3,518.85	7.840
223	802.80	19,267.2.0	3,516.65	7.875
224	806.40	19,353,6,0	3,550.55	7.911
225	810.00	19,333.0.0	3,566.40	7.946
223	010.00	13,440,0.0	3,300.40	1.540

_						-
1	Lt/seg.	m3/ hr.	m3/dia	gal/mln.	Ft3/seg.	ı
Ì	226	813.60	19,526.4.0	3,582.25	7,981	Ī
	227	817.20	19,612.8.0	3,598.10	8,017	l
	228	820.80	19,699.2.0	3,613.96	8.052	l
	229	824.40	19,785.6.0	3,629.81	8.087	l
i	230	828.00	19,872.0.0	3,645.66	8.123	ŀ
	231	831.60	19,958.4.0	3,661.51	8.158	
	232	835.20	20,044.8.0	3,677.36	8.193	ı
	233	838.80	20,131.2.0	3,693.21	8.228	Ĺ
1	234	842.40	20,217.6.0	3,709.06	8.264	
	235	846.00	20,304.0.0	3,724.91	8,299	ľ
-	236	849.60	20,390.4.0	3,740.76	8.334	l
	237	853.20	20,476.8.0	3,756.61	8,370	ľ
	238	856.80	20,563.2.0	3,772.46	8.405	
į	239	860.40	20,649.6.0	3,788.31	8.440	ľ
	240	864.00	20,736.0.0	3,804.16	8.476	
	241	867.60	20,822.4.0	3,820.01	8,511	ı
	242	871.20	20,908.8.0	3,835.86	8.546	ı
	243	874.80	20,995.2.0	3,851.72	8,582	l
	244	878,40	21,081.6.0	3,867.57	8.617	l
1	245	882.00	21,168.0.0	3,883.42	8.652	l
	246	885.60	21,254.4.0	3,899.27	8,688	l
-	247	889.20	21,340.8.0	3,915.12	8.723	l
	248	692.80	21,427.2.0	3,930.97	8.758	l
1	249	896,40	21,513.6.0	3,946.82	8.794	ŀ
	250	900.00	21,600.0.0	3,962.67	8.829	
1	251	903.60	21,686.4.0	3,978.52	8,864	ı
	252	907.20	21,772.8.0	3,994.37	8.899	
	253	910.80	21,859.2.0	4,010.22	8,935	ļ
	254	914.40	21,945.6.0	4,026.07	8.970	ŀ
	255	918.00	22,032.0,0	4,041.92	9.005	l
	256	921.60	22,118.4.0	4,057.77	9.041	l
	257	925.20	22,204.8.0	4,073.62	9.076	1
	258	928.80	22,291.2.0	4,089.48	9.111	ŀ
,	259	932.40	22,377.6.0	4,105.33	9,147	1
	260	936.00	22,464.0.0	4,121.18	9.182	l.
,	261	939.60	22,550.4.0	4,137.03	9.217	ì
	262	943.20	22,636.8.0	4,152.88	9,253	
	263	946.80	22,723.2.0	4,168.73	9.288	ı
	264	950.40	22,809.6.0	4,184.58	9.323	ı
1	265	954.00	22,896.0.0	4,200.43	9.359	ı
	266	957.60	22,982.4.0	4,216.28	9.394	١
	267	961.20	23,068.8.0	4,232.13	9.429	ı
	268	964.80	23,155.2.0	4,247.98	9,465	ľ
1	269	968.40	23,241.6.0	4,263.83	9.500	ı
	270	972.00	23,328.0.0	4,279.68	9.535	ı
_						_

FOUIVALENCIAS TERMOMETRICAS DE CENTIGRADOS A FAHRENHEIT

С	F	C	F	С	F	С	F
100	212	70	158	40	104	10	50
99	210.2	69	156.2	39	102,2	9	48.2
98	208.4	68	154.4	38	100.4	8	46.4
97	206.6	67	152.6	37	98.6	7	44.6
97 96	204.8	66	150.8	36	96.8	6	42.8
96 95	204.8	65	149	35	95	5	41
	201.2	64	147.2	34	93.2	1 1	39.2
94		63	145.4	33	91,4		37.4
93	199.4			33	89.6	3 2	35.6
92	197.6	62	143.6	31	87.8	1 1	33.8
91	195.8	61	141.8			1 1	
90	194	60	140	30	86	0	32
89	192.2	59	138.2	29	84.2	-1	30.2
. 88	190.4	58	136.4	28	82.4	-2	28.4
87	188.6	57	134.6	27	80.6	-3	26,6
86	185.8	56	132.8	26	78.8	4	24.8
85	185	55	131	25	77	-5	23
84	183.2	54	129.2	24	75.2	-6	21.2
83	181.4	53	127.4	23	73,4	-7	19.4
82	179.6	52	125.6	22	71.6	-8	17.6
81	177.8	51	123.8	21	69,8	-9	15.8
80	176	50	122	20	68	-10	14
79	174.2	49	120.2	19	66.2	-11	12.2
78	172.4	48	118.4	18	64.4	-12	10.4
77	170.6	47	116.6	17	62.6	-13	8.6
76	168.8	46	114.8	16	60.8	-14	6.8
75	167	45	113	15	59	-15	6
74	165.2	44	111.2	14	57,2	-16	3.2
73	163.4	43	109.4	13	55.4	-17	1.4
72	161.6	42	107.6	12	53.6	-18	-0.4
71	159.6	41	105.8	11	51.8	-19	-2.2

FORMULAS GENERALES PARA LA CONVERSION DE LOS DIFERENTES SISTEMAS

CENTIGRADOS A FAHRENHEIT "F=9/5"C+32
FAHRENHEIT A CENTIGRADOS "C=5/9" (F-32)
REAMUR A CENTIGRADOS "C=5/4" (F-32)
FAHRENHEIT A REAMUR "R=4/9" (F-32)
REAMUR A FAHRENHEIT "F=9/4"R+32
CENTIGRADOS A KELVIN "K=273.15+"C
FAHRENHEIT A RANKINE "R==459.67+"F
RANKINE A KELVIN "K=5/9"RA

FACTORES QUIMICOS DE CONVERSION

	Α	8_	C	D	E
	e.p.m.	p.p.m.	e.p.m.	g.m.g.	p.p.m.
CONSTITUYENTES	l a	a	а	a	a
	p.p.m.	e.p.m,	g.p.g.	e.p.m.	p.p.m.
					COCa3
	-	1			
CALCIO (Ca)	20.04	0.04991	1.1719	0.8533	2.4970
HIERRO (Fe)	27.92	0.03582	1.6327	0.6125	1.7923
MAGNESIO (Mg)	12.16	0.08224	0.7111	1.4063	4.1151
POTASIO (K)	39.10	0.02558	2.2865	0.4373	1.2798
SODIO (Na)	23.00	0.04348	1.3450	0.7435	2.1756
		l			
BICARBONATO (C03H)	61.01	0.01639	3.5678	0.2803	0.8202
CARBONATO (CO3)	30.00	0.03333	1.7544	0.5700	1.6680
CLORO (CI)	35.46	0.02820	2.0737	0.4822	1.4112
HIDROXIDO (OH)	17.07	0.05879	0.9947	1.0053	2.9263
NITRATO (NO3)	62.01	0.01613	3.6263	0.2758	0.8070
FOSFATO (PO4)	31.67	0.03158	1.8520	0.5400	1.5800
SULFATO (SO4)	48.04	0.02082	2.8094	0.3559	1.0416
BICARBONATO DE CALCIO ((CO3H)2Ca)	81.05	0.01234	4.7398	0.2120	0.6174
CARBONATO DE CALCIO ((CO3H)2Ca)	50.04	0.01234	2.9263	0.3417	1.0000
CLORURO DE CALCIO (CICa)	55.50	0.01802	3.2456	0.3081	0.9016
HIDROXIDO DE CALCIO (CICA)	37.05	0.01602	2.1667	0.4615	1,3506
SULFATO DE CALCIO (Ca(OA)2)	68.07	0.02699	3.9807	0.4513	0.7351
SULFATO DE CALCIO (SO4CA)	66.07	0.01469	3,9007	0,2512	0.7351
BICARBONATO FERRICO ((CO3H)2Fe)	88.93	0.01124	5.2006	0.1923	0.5627
CARBONATO FERRICO (COSFe)	57.92	0.01727	3,3871	0.2951	0.8640
SULFATO FERRICO (SO4Fe)	75.96	0.01316	4.4421	0.2251	0.6588
1002 710 (2111100 (00110)	,	0.0.0.0	4.4421		5.5555
BICARBONATO MAGNESICO ((CO3H)2Mg)	73.17	0.01367	4.2789	0.2337	0.6839
CARBONATO MAGNESICO (CO3Mg)	42.16	1.02372	2.4655	0.4056	1.1869
CLORURO DE MAGNESICO (CI2Mg)	47.62	0.02100	2.7848	0,3591	1.0508
HIDROXIDO DE MAGNESIO (Mg(OH)2)	29.17	0.03428	1.7058	0,5862	1.7165
SULFATO DE MAGNESIO (SO4Mg)	60.20	0.01661	3.5202	0.2841	0.6312
· · · · · · · · · · · · · · · · · · ·					

TABLA DE CONVERSION DE PULGADAS EN MILIMETROS

1	Dec, de pulg.	0	0.125	0.25	0.375	0.5	0,625	0.75	0.875
١,	Pulgadas.	0	1/8	1/4	3/8	1/2	5/8	3/4	7/8
	0	0	3.175	6.35	9.525	12.7	15.875	19.05	22.225
	1	25.4	28.575	31,75	34.925	38.1	41.275	44.45	47.625
	. 2	50.8	53.975	57.15	60,325	63.5	66.675	69.85	73.025
	3	76.2	79.375	82,55	85,725	88.9	92.075	95.25	98.425
	4	101.6	104,775	107.95	111.125	114.3	117.475	120.65	123.825
	5	127	130,175	133.35	136.525	139.7	142.875	146.05	149.225
			l '		ł		ĺ		1 1
	6	152.4	155,575	158.75	161.925	165.1	168.275	171.45	174.825
1	7	177.8	180,975	184,15	187.325	190.5	193.675	196.85	200.025
'n	8	203.2	206,375	209.55	212.725	215.9	219.075	222.25	225.425
	9	228.6	231,775	234.95	238,125	241.3	244.475	247.65	250.825
	10	254	257,175	260.35	263.525	266.7	269.875	273.05	276.225
1			!)	1			l I
	11	279.4	282.575	285.75	288.925	292.1	295.275	29B.45	301.625
	12	304.8	307,975	311.15	314,325	317.5	320.675	323.85	327.025
	13	330.2	333.375	336.55	339.725	342.9	346.075	349.25	352.425
	14	355.6	358,775	361.95	365.125	368.3	371.475	374.65	377.825
ŀ	15	381	384,175	387.35	390.525	393.7	396.875	400.05	403.225
			[Ì		})
	16	406.4	409.575	412.75	415.925	419.1	422.275	425.45	428.625
	17	431.8	434,975	438.15	441,325	444.5	447.675	450.85	454.025
	18	457.2	460,375	463.55	468,725	469.9	473.075	476.25	479.425
	19	482.6	485,775	488.95	492,125	495.3	498.475	501.65	504.825
	. 20	508	511,175	514.35	517,525	520.7	523.875	527.05	530.225
٠,			1				[! !
	21	533.4	536,575	539.75	542,925	546.1	549.275	552.45	555.625
	22	558.8	561,975	565.15	568,325	571.5	574.675	577.85	581.025
	23	584.2	587.375	590.55	593.725	596.9	600.075	603.25	606.425
	24	609.6	612.775	615.95	619,125	622.3	625.475	628.65	631.825
	25	635	638,175	641.35	644,525	647.7	650.875	654.05	657.225
			1))		i l
	26	660.4	663.575	666.75	669.925	673.1	676.275	679.45	682.625
ľ	27	685.8	688.975	692.15	695.325	698.5	701.675	704.85	708.025
	28	711.2	714.375	717.55	720,725	723.9	727.075	730.25	733.425
	29	736.6	739.775	742.95	746,125	749.3	752.475	755.65	758.825
	30	762	765.175	768.35	771.525	774.7	777.875	781.05	784.225
			"		(

		co	NVERSK	N DE L	BRAS PO	R PULGA	DA CUADI	RADA (ps	1)		- 1		1.65
	100					EN kg/cm	^2				1.7		1
Its/pulg*2	0	30	60	90	120	150	180	210	240	270	300	330	360
0	0.0000	2.1120	4 2240	6 3360	8.4480	10 5600	12 6720	14 7840	16 6960	19 0080	21.1200	23.2320	25 3440
[[1]	0.0704	2.1824	4 2944	6 4064	8 5184	10.6304	12.7424	14 8544	16 9664	19.0784	21.1904	23.3024	25.4144
2	0.1408	2.2528	4 3648	6.4768	8 5888	10.7008	12.8128	14 9248	17 0368	19.1488	21.2608	23.3728	25.4848
3	0.2112	2.3232	4 4352	6 5472	8.6592	107712	12 8832	14 9952	17.1072	19.2192	21.3312	23.4432	25.5552
4	0.2816	2.3936	4.5056	6.6176	8.7296	10 8416	12 9536	15.0656	17.1776	19 2896	21.4016	23.5136	25.6256
[5	0 3520	2.4640	4.5760	6 6880	8 6000	10 9120	13 0240	15 1360	17.2480	19 3600	21.4720	23.5840	25.6960
6	0.4224	2.5344	4 6464	6.7584	B 8704	10 9824	13 0944	15 2064	17.3184	19 4304	21.5424	23.6544	25.7664
[7]	0 4928	2 6048	47168	6 6288	8 9408	11 0528	13.1648	15 2768	17 3888	19 5008	21.6128	23.7248	25 8368
6	0 5632	2.6752	4 7872	6 8992	9 0112	11.1232	13 2352	15 3472	17.4592	19 5712	21.6832	23.7952	25.9072
9	0.6336	2.7456	4 8576	6 9696	9 0816	11 1936	13 3056	15 4176	17.5296	19.6416	21.7536	23.8656	25.9776
10	0.7040	2.8160	4 9 2 8 0	7.0400	9 1520	11.2640	13.3760	15 4880	17.6000	19.7120	21.8240	23.9360	26.0480
11	0.7744	2 8864	4 9984	7.1104	9 2224	11 3344	13 4464	15.5584	17 6704	19.7824	21.6944	24.6064	26.1184
12	0 8448	2.9568	5 0688	7.1808	9 2928	11.4048	13 5168	15 6288	17,7408	19.8528	21.9648	24.0768	26.1888
13	0.9152	3 0272	5.1392	7 2512	9 3632	11 4752	13 5872	15.6992	17.8112	19 9232	22.0352	24.1472	26.2592
14	0.9856	3.0976	5 2096	7 3216	9.4336	11 5456	13.6576	15.7696	17,8816	19.9936	22.1056	24.2176	26.3296
15	1.0560	3.1680	5 2500	7 3920	9.5040	11 6160	13 7280	15 8400	17,9520	20.0640	22.1760	24.2880	26.4000
16	1.1264	3 2384	5.3504	7.4624	9 5744	11.6864	13.7984	15 9104	18 0224	20.1344	22.2464	24.3584	26.4704
17	1.1968	3.3088	5 4208	7 5328	9 6448	11.7568	13 8688	15 9808	18 0928	20 2048	22.3168	24.4288	26.5408
18	1.2672	3 3792	5 4912	7.6032	9 7152	11 8272	13.9392	16 0512	18,1632	20.2752	22.3872	24.4992	26.6112
19	1 3376	3.4496	5 5616	7.6736	9 7856	11.8976	14.0096	16 1216	18.2336	20.3456	22.4576	24.5696	26.6816
20	1.4080	3 5200	5 6320	7.7440	9 8560	11.9680	14 0800	16.1920	18 3040	20.4160	22 5280	24 6400	26.7520
21	1 4784	3 5904	5.7024	7.8144	9 9264	12 0384	14 1504	16 2624	18 3744	20 4864	22.5984	24.7104	26.8224
22	1.5488	3 6608	5.7728	7,8848	9.9968	12 1088	14 2208	16 3328	18 4448	20 5568	22 6688	24.7808	26.8928
23	1.6192	3 7312	5 8432	7 9552	10 0672	12 1792	14 2912	16 4032	18.5152	20 6272	22.7392	24 B512	26.9632
24	1.6896	3 8016	5.9136	8.0256	10.1376	12.2496	14 3616	16 4736	18.5856	20.6976	22.8096	24.9216	27.0336
25	1.7600	3.8720	5.9840	8 0960	10 2080	12 3200	14.4320	16 5440	18.6560	20.7680	22.8800	24.9920	27.1040
26	1.8304	3 9424	6.0544	8.1664	10.2784	12 3904	14 5024	16.6144	18 7264	20 8384	22.9504	25 0624	27.1744
27	1.9008	4.0128	6.1248	8.2368	10 3488	12.4608	14 5728	16 6848	18.7968	20.9088	23.0208	25.1328	27.2448
28	1 9712	4 0832	6.1952	8 3072	10 4192	12 5312	14 6432	16.7552	18 8672	20 9792	23.0912	25 2032	27.3152
29	2.0416	4.1536	6 2656	8 3776	10 4896	12 6016	14 7136	16 8256	18 9376	21 0496	23 1616	25.2736	27.3856

r	.																																			
ŀ	1\12	6	7	8	_				_	_		_	_	_	_	PER.	_	_	_	_	_		_	_	_	_	_	_					_	_		_
Ě	_	_		_	9	10	11		13																						35			38	.39	40
1	7																																	2_16 2.08		
1	,																																	2.04		
ł																																		1.98		
ł	10																																	1.93		
J	11																																	1.87		
1	12																																	1.82		
١	13																																	1.77		
۱	14																																	1.73		
١	15	0.78	0.79	0.82	0.84	0.87	0.90	0 92	0 45	0.98	1.00	1 02	1 05	1.08	1.11	1.14	1.17	1.20	1.22	1.24	1,27	1.30	1.33	1.36	1.40	1.43	1.46	1.50	1.53	1.56	1.59	1.62	1.65	1.68	1.71	1.7
i	16	0 76	0.78	0.80	0.82	0.85	0.87	0.90	0.93	0.96	0.98	1.00	1.03	1.06	103	1.11	1.14	1.17	1.19	1.21	124	1.27	1.30	1.33	1.37	1.40	1.42	1.45	1.49	1.52	1.55	1.58	1.62	1.64	1.67	1.70
1	17	0.74	0.76	0 78	0 50	0.83	0.84	0.87	090	0.93	0 95	0 98	1,00	1.03	1.06	1.08	1.11	1.14	1.16	1.18	1.21	1.24	1.27	1.30	1.33	1,36	1.39	1.42	1,45	1.48	151	154	1.57	1.60	1.6.1	1.44
ł	18	0.72	0.74	0.76	0 79	0 Bt	0.83	0.84	0.88	0 90	0.93	0.95	0.98	1.00	1.03	1.05	1.08	1.10	1.13	1.15	1,18	1.20	1.23	1.26	1.30	1.32	1.35	1.39	1.41	1.44	1.47	1.50	1.53	1.56	1.59	1.6
l	19																																	1.52		
1	20																																	1.48		
١	21																																	1.44		
ł																																		1.41		
١	23																																	1.38		
ſ	35																																	1.34		
ĺ	26																																	1,28		
1	27																																	1.26		
ł	28																																	1.22		
ł	29																																	1.20		
ł	30																																	1.18		
Į	31																																	1.16		
i																																		1.13		
۱																																		1.11		
۱	34	0.49	0.50	0.52	0.54	0.56	0.58	0.59	0.61	0.62	0.64	0 65	0.67	0.69	0.71	0.72	0.74	0.76	0.78	0.80	0.82	0,84	63.0	0.88	0.90	0.94	0.95	0.96	0.98	1.00	1.03	1.05	1.08	1.10	1.31	1.1:
ł	35	0.48	0.49	0.51	0.52	0.55	0.56	0.58	0.60	061	0.63	0.64	0.66	0.6R	0.69	0.71	0.73	0.75	0.76	0.78	0.80	0.82	0.84	68.0	0.88	0.90	0.94	0.95	0.96	0.98	1.00	1.03	1.05	1.08	1.10	1.0
i	36	0.49	0,49	0.51	0.52	0.54	0.55	0.56	0.59	0 60	0.62	0.63	0.64	0.66	0.68	0 69	0.71	0.73	0.75	0.76	0.78	0.50	0.82	0.84	0.86	0.88	0.91	0.94	0.95	0.96	0.98	1.00	1.03	1.05	1.08	1.10
۱	37	0.48	0.49	0.50	0.51	0.53	0.54	0.55	0.57	0.59	0.61	0.62	0.64	0.65	0 67	0.68	0.70	0.72	0.73	0.75	0.76	0.78	0.80	0.82	0.84	0.86	88.0	0.91	0.94	0.95	0.96	0.98	1,00	1.03	1.05	10
ł	.18	0.47	0.48	0.49	0.50	0.52	0.53	0.54	0.56	0.58	0.60	0.61	0.63	0.64	0.66	0.67	0.69	0.71	0.72	0.74	0.75	0.76	0.78	0.80	0.82	0.84	0.86	0.88	0.91	0.94	0.95	0.96	0.98	1.00	1.03	1.0

	FORMULAS DE	E CONVERSIONES ELECTRICAS	
PARA ENCONTRAR	CORRIENTE DIRECTA	CORRIE	NTE ALTERNA
		UNA FASE	*TRES FASES
Amperes cuando los caballos	H.P. x 746	H.P. x 746	H.P. x 746
de fuerza (de entrada) se conocen	Volts x Eficiencia	Volts x Eficiencia x F.P.	Volts x 1.73 x Eficiencia x F.P.
Amperes cuando se conocen	kW x 1000	kW × 1000	kW x 1000
los kiloWats	Volts	Volts x F.P.	Volts x 1.73 x F.P.
Amperes cuando se conocen		kva x 1000	kva x 1000
los kva		Volts	Volts x 1.73
kiloWats	Amperes x Volts	Amperes x Volts x F.P.	Amperes x Volts x 1.73 x F.P.
	1000	1000	1000
kva		Amperes x Volts	Amperes x Volts x 1.73
		1000	1000
		kW x 1000	kW x 1000
Factor de Potencia		Amps. x Volts	Amps. x Volts x 1,73
- 1000 = 21 01011010		, kW	, kW
		kva	kva
Caballos de fuerza (de salida)	Amps x Volts x Efeciencia	Amps. x Volts x Eficiencia x F.P.	Amps. x Volts x 1.73 x Eficiencia x F.P
\	746	746	746

El factor de Potencia y la eficiencia cuando se usan en estas formilas se deben expresar en decimales.

* Para 2-fases y cuatro alambres sustituir el 1.73 por 2. Para 2-fases y 3 alambres sustituir el 1.73 por 1.41

APENDICE D

MISCELANEA

N	IULTIPLOS DECIMALES	
Exponente	Signo	Prefijo
10 12	T	tera
10 ⁹	G	giga
10 ⁶	M	mega
10 ³	k	kilo
10 ²	h	hecto
10 ¹	da	deca
10 -1	d	deci
10 -2	c	centi
10 ⁻³	m	mili
10 -6	μ	micro
10 -9	n	папо
10 -12	р	pico
10 -15	f	femto
10 ⁻¹⁸	a	atto

LEYES DE AFINIDAD DE BOMBAS CENTRIFUGAS.

Cuando el diámetro del impulsor es constante.

Ley 1a.
$$Q_1/Q_2 = N_1/N_2$$

Ley 1b. $H_1/H_2 = (N_1/N_2)^2$
Ley 1c. $Bhp_1/Bhp_2 = (N_1/N_2)^3$

Cuando la velocidad de rotación es constante.

Ley 2a.
$$Q_1/Q_2 = D_1/D_2$$

Ley 2b. $H_1/H_2 = (D_1/D_2)^2$
Ley 2c. $Bhp_1/Bhp_2 = (D_1/D_2)^3$

Donde:

 $Q_1=$ Caudal y $H_1=$ Carga cuando el impulsor de diámetro $=D_1$ gira a N_1 r.p.m., consumiendo Bhp_1 y $Q_2=$ Caudal y $H_2=$ Carga cuando el impulsor de diámetro $=D_2$ gira a N_2 r.p.m., consumiendo Bhp_2 .

T-01-10 D	-10				
	specificos		(Datos to	mados del Manual Uralda,	1966, modificado
Gases y vapores		1			
Acido carbónico	1 5290	Cloro	3 4216	Oxigeno	1.1056
Acido cloridrico	1 2472	Hidrógeno	0 0692	Vapor de agua a 0º	0 6225
Acido sulfuroso	2 2474	Nitrógena	0 9714	Vapor de agua a 100°	0 4686
Amoniaco	0 5967	Oxido de carbono	0 9714	Vapor de eler	2 5860
Liquidos					
Acete de finaza	0.935	Agua desidada	1 0000	Leche	1 2750
Aceste de oiva	0 9 150	Agua de mar	1 0280	Mercurio	13.5690
Acido acélico	1 0600	Alcohol absolute	0 7980	Petróleo	0 0650
Acido eltrico	1 6100	Amoniaco	0 5910	Vina	0.9900
Acido nitrico	1.5000	Chapopole	1 1950	ŀ	
Acido suffúrico	1 6480	Diesel	0.8500	l	
Combustibles					
Antracita	1 4000	Grafto	2 0000	Turba húmeda	0 7800
Carbón vegel. (trozos)	0 4200	Hulla compacta	1 2300	Turba seca	0 5 100
Carbón vegel (polvo)	1.5200	Hulla en trozos	0 8000	1	
Cok	0 3800	Lignito	1 2800		
Aleaciones					
Bronce antiguo	92	Ore acuñado	17 5000	Platino-indio	22.8000
Bronce de campana	8 81	Plata acuñada	10 4100		
Metales					
Acero cementado	7.53	Niquel forjado	9 0700	Piatino laminado	22.0600
Acero fundido	7.88	Niquel fundido	8 2600	Plomo fundido	11.3500
Acero pudelado	7 6500	Oro	18 8000	Polasio	0 8700
Aluminio fundido	2 5600	Oro forjado	19.3600	Sodio	0.9700
Aluminio martifiado	2.6700	Ora fundido	19 2600	Tungsteno	17.6000
Estaño fundido	7.2900	Plata fundida	10.4700	Zinc fundido	6 9000
Fundición blanca	7.5000	Platino forjado	21.4500	Zinc taminado	7.2000
Fundición grís	7.1000	Platine fundido	21 1500		
Maderas secas					
Abeta	0.43	Castasho	0 62	Nogal	0.7400
Acacia	0.7	Ebano	1.11	Olma	0 6000
Alamo blanco	0 45	Pino del norte	0.55	Pino silvestre	0 6000
Alerce	0.5	Haya	0.8	Pino oregón	0.5000
Almendro	1.02	Limonera	1	Roble	0 7200
Arce	0.62	Melis (Pino tea)	0.85	1	
Caoba	0.6	Naranjo	0.72	İ	
Varios					
Algodón	1.95	Cristal común	2.49	Lana	1.6100
Asbesto	28	Cristal de roca	268	Minio	8 9400
Asfalto	1.12	Cuarzo	2 065	Nieve	0.1600
Azufre	2.07	Feldespato	2.6	Oxido de zinc	5 6000
Caucho	0.93	Galena	7.5000	Porcelana	2,4300
Cera	0.96	Goma elástica	0.9300	Resina	1,1000
Cinabrio	8.12	Hielo	0 9300	Seda	1.5600
Cloruro de potasio	1.84	Jabón	0.9800	Tako	2.6700
Cloruro de sodio	2 2600	Kaolin	2,2400	Vidrio	2 6000
0.0.0.0.0.0.0	2.1000		2.2400	1.0.0	

								ADOS DE LOS ACION DE PO			
No	POZO	EN	PULGAD	DAS	PROFUNDIDADI EN METRO		os	CAUDAL ORIGINAL	NIVEL ESTATICO		OBSERVACION
		1	2	3	1	2	3	1/Seg.	(m)	(m)	
											n-1
		\dashv									
\vdash			<u> </u>		 	_					
					-		-			<u> </u>	
					—						
					\vdash	<u> </u>	<u> </u>				
\blacksquare											
$\vdash\vdash$				 	 	_	<u> </u>				
H				ļ	-						
											
$\vdash \vdash$			ļ		— —						
\vdash			i –	 -	1	1				 	

		165
REPORTE DE INSTALACION O D	E DESINTALACION	
SISTEMA:		
FECHA.		
POZO;		•
MOTOR	CUERPO DE TAZONES	
MARCA:	MARCA:	
No. DE SERIE:	MODELO:	
POTENCIA:	SERIE:	
VELOCIDAD	DIAMETRO:	
	No. DE PASOS:	
CABEZAL DE DESCARGA	CURVA DEL	
	IMPULSOR:	
MARCA:	TIPO DE	
No. DE SERIE	IMPULSORES:	
TAMAÑO:		
TAMAÑO:	COLADOR	
DIAM, DESCARGA: DIAM, COLUMNA:	COLADOR	
DIAM. COLUMINA.	TIBO	
COLUMNA	TIPO:	
COLUMNA	DIAMETRO:	
LUBBIO COLOR	LONGITUD:	
LUBRICACION:		
DIAM, COLUMNA:	FLECHA SUPERIOR	
DIAM. DE FLECHAS:		**
LONGITUD:	LONGITUD:	
DIAM, DE CAMISA:	DIAMETRO:	
No. DE TRAMOS:		
OBSERVACIONES:		
		
		
		
		
		
		
	· · · · · · · · · · · · · · · · · · ·	

REPORTE DIARIO DE REHABILITACION FECHA	
AYUDANTE: NIVEL DE AZOLVE AL INICIO DE LA REHABILITACION. AYUDANTE: PROFUNDIDA DA INICIO DE LI TURNO PROFUNCIDAD DA L'ERMINAR EL TURNO. NIVEL DEL FILTRO DE GRAVA	=
CONCEPTO 7 8 9 10 11 12 13 14 15 16 17 18 19 OBSERVA	CIONES
┠╼╼╼╼╼╼╼╼╼╌┼┼╂┼╂┼╂┼╂┼╂┼╂┼╂┼╂┼╂┼╂┼╂┼╂┼╂┼╂┼	
┠┈┈┈┈┈┈┈┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	
┠╼╼╼╼╼╼╼╼╼╼╌╂┼╂┼╂┼╂┼╂┼╂┼╂┼╂┼╂┼╂┼╂┼╂┼╂┼╂┼╂	
<u> </u>	
┠──────────────────────────────────────	
┠╌╌╌╌╌╌╌╌┈┈╂┦╂┼┨┼╂┼╂┼╂┼╂┼╂┼╂┼╂┼╂┼╂┼╂┼╂┼╂┼	

. Vo. Bo. SUPERVISION CONTRATISTA

		VOLUN	IEN DE	MATER	IAL DE	FILTRO	EN m'	3 POR	METRO	DE PÉ	RFORA	CION	
<u> </u>				+	u	b	е –	٢	1	а		(pulg.)	
Perfo	ración	4 1/2	6 5/8	8 5/8	10 3/4	12 3/4	14	16	18	20	24	30	32
Diam.]	,	1	[
(puig.)	(m^2)	0.0103	0.0222	0.0377	0.0586	0.0824	0.0993	0.1297	0.1642	0.2027	0.2919	0.4560	0.5189
ا ا					}]			ì		ļ	
	0.0114)) !	i	i i	ì		Į.	ļ
	0.0160				1) [1	i i	ĺ		ł	ļ
6		0.0080	1			! .			1 1	1		ł	ł
	0.0214		i i	1	1	!		1		[(i	ł
	0.0276			i	i i	1	} !) !	ĺ	((ł
	0.0366			ĺ		1	}]]	([ł
			0.0166		'	()]		[1
			0.0235		1 1	f i	i		1)	1	(
			0.0247			[i i		}	Į.	}		['
12 1/4	0.0760	0.0658	0.0538	0.0383	0.0175	1	[i I	l l	}		ļ .
15	0.1140	0.1037	0.0918	0.0763	0.0555	0.0316	0.0147		i i	ł	}	}) '
17 1/2	0.1552	0.1449	0.1329	0.1175	0.0966	0.0728	0.0559	0.0255	i i	ł	}	1	! .
20	0.2027	0.1924	0.1804	0.1650	0.1441	0.1203	0.1034	0.0730	0.0385	1	}		
22	0.2452	0.2350	0.2230	0.2076	0.1867	0.1629	0.1459	0.1155	0.0811	0.0426	i		1
24	0.2919	0.2816	0.2698	0.2542	0.2333	0.2095	0.1925	0.1621	0.1277	0,0892			
26	0.3425	0.3323	0.3203	0.304B	0.2840	0.2602	0.2432	0.2128	0.1784	0.1399	0.0507	i ı	i
28	0.3973	0.3870	0.3750	0.3596	0.3387	0.3149	0.2979	0.2675	0.2331	0.1946	0.1054		Ì
	0.4560	0.4458	0.4338	0.4183	0.3975	0.3737	0.3567	0.3263	0.2919	0.2534	0.1842		l
32	0.5189	0.5086	0.4966	0.4812	0.4603	0.4365	0.4196	0.3892	0.3547	0.3162	0.2270	0.0628	ĺ
	0.5858	0.5755	0.5635	0.5481	0.5272	0.5034	0.4864	0.4560	0.4216	0.3831	0.2939	0.1297	0.0669
38	0.6567	0.6464	0.6345	0.6190	0.5981	0.5743	0.5574	0.5270	0.4925	0.4540	0.3848	0.2007	0.1378
LI			l					1 1			l		L j

APENDICE E

CORROSION

Tabla de características químicas para conocer la incrustación y la corrosión.

	INCR	USTACION	CORRO	OSION
Característica	Concentra-	Efecto	Concentración	Efecto
	ción			
Dureza Total de	>300	Depositación de		
Carbonato	p.p.m.	Carbonatos de	1	
		calcio.		
Total de Hierro	>2 p.p.m.	Precipitación de		
(fe)		Hierro		
Total de Manga-	>1 p.p.m.	1		
neso (Mn)	}	Precipitación de		
pH	Alto	manganeso		
Oxígeno	Presencia			
pH	>7.5	Aguas incrustantes	<7	Aguas
	L			corrosivas
Acido			Pueda olerse o	Corrosión
sulfhidrico			sabor a huevo	fuerte
			podrido	
Solidos Totales			>1000 p.p.m.	Corrosión
				electrolítica.
Bióxido de Car-			>50 p.p.m.	Aguas
bono (CO ₂)				corrosivas.
Cloruros (como			>500 p.p.m.	Agua
Cl)				corrosivas.
Oxígeno disuelto	l		Presencia	Ayuda a la
(O ₂)				corrosión.

Indice de Ryznar.-

Ha sido propuesto como una medida cuantitativa de la tendencia del agua a ser incrustante o agresiva. Siempre es positivo

Indice de Ryznar =
$$I_R$$
 = 2 pHs - pH

$$pHs = pCa + palc + C$$

$$pCa = 4.9996 - 0.4343 \text{ in (D)}$$

$$palc = 4.7006 - 0.4345 \ln (A)$$

$$C = 2.4566 - 0.0189 T + 0.0363 in (STD)$$

Donde: pHs = potencial hidrógeno de saturación

pH = potencial de hidrógeno

pCa = potencial de dureza de calcio

palc = potencial de alcalinidad

C = potencial de temperatura y sólidos disueltos

T = Temperatura K (°C)

A = Alcalinidad total (mg/l) de CaCO₃)

D = Dureza de calcio (mg/l) de CaCO₃)

STD Sólidos disueltos totales (mg/l)

Tipo de clasificación			
Límites de clases	Carácter del agua		
4 ≤ I _R < 5	Muy incrustante		
5 ≤ I _R < 6	Moderadamente incrustante		
6 <u><</u> I _R < 7	Poco incrustante o corrosiva		
$7 \leq I_R < 7.5$	Corrosiva		
7.5 ≤ I _R < 9	Francamente corrosiva		
$9 \leq I_n$	Muy corrosiva		

Indice de Langelier .-

Este índice es indicativo del grado de inestabilidad del agua con respecto al depósito o a la solubilidad del carbonato de calcio (CaCO₁).

Si el valor del índice (I_L) es positivo existe tendencia a depositar carbonato de calcio (efecto incrustante).

Si el valor del índice (I_L) es negativo existe tendencia a disolver carbonato de calcio (efecto incrustante).

Indice de Langelier = $I_L = pH - pHs$

Donde:

pHs = potencial de saturación de Langelier. pH = potencial de hidrógeno

 $pHs = A + B - log(Ca^{2+}) - log(alcalinidad)$

Temperatura del agua K (℃)	A
273 K (0)	2.60
277 K (4)	2.50
281 K (8)	2.40
285 K (12)	2.30
289 K (16)	2.20
293 K (20)	2.10
297 K (24)	2.00
301 K (28)	1.90
305 K (32)	1.80

En caso de ser necesario pueden interpolarse valores.

Valores de la constante B, en función del residuo de sólidos totales disueltos.

Residu	o de sólidos totales disueltos (mg/l)	В
	0	9.70
	100	9,77
	200	9.83
	400	9.86
	800	9.89
	1,000	9.90

Logaritmo de las concentraciones del ion calcio y alcalinidad.

Ca2+ o alcalinidad (mg/l) como CaCO3 equiv	valente log
10	1.00
20	1.30
30	1.48
40	1.60
50	1.70
60	1.78
70	1.84
80	1.90
100	2.00
200	2.30
300	2.48
400	2.60
500	2.70
600	2.78
700	2.84
800	2.90
900	2.95
1,000	3.00