

Facultad de Estudios Profesionales Z A R A G O Z A

Modelo Matemático para Analizar el Comportamiento de los Cambiadores 101 CA-CB en una Planta de Amoniáco

TESIS CON FALLA DE ORIGEN

T E S I S Para Obtener el Título de INGENIERO QUIMICO P r e s e n t a Fiona Margarita Anguiano Avalos

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

Par

2

12

18

38

44

55

62

65

80

89

RESUMEN

GENERALIDADES

CAMBIADORES DE LA PLANTA DE AMONIACO

MODELO MATEMATICO DE LOS CAMBIADORES 101 CA/CB

RESOLUCION DEL MODELO MATEMATICO

ANALISIS DE RESULTADOS

PROBLEMAS OPERACIONALES EN LOS CAMBIADORES 101 CA/CB

CONCLUSIONES

ANEXO A: CORRELACIONES EMPLEADAS

ANEXO B: DERIVACION DE LAS ECUACIONES

BIBLIOGRAFIA

RESUMEN

En la presente tesis se desarrolla un modelo matemático con el cual se analiza el comportamiento de uno de los equipos más importantes, desde el punto de vista energético, de una planta de amoniaco. La relevancia del equipo cuyo modelo presenta (cambiadores 101 CA/CB) es manifiesta si se toma en cuenta que en él se genera el 55% del vapor que se consume en una planta de amoníaco de 1,500 toneladas cortas de amoníaco/dia, vapor que se usa para comprimir el gas de sintesis.

Tomando en cuenta la relevancia de los generadores de vapor para la buena operación en la planta, resulta por demás importante poder disponer de una herramienta de cálculo con la cual se pueda analizar la operación del equipo asi como el impacto que tendrían las condiciones de operación de la planta sobre la producción de vapor (recuperación de calor).

CAPITULO I

GENERALIDADES

DESCRIPCION DEL PROCESO

Actualmente el amoníaco es la principal fuente de nitrógeno como fertilizante, siendo aplicado a nivel mundial ya sea en forma directa al suelo ó consumido en la elaboración de urea y otros fertilizantes nitrogenados, tales como el sulfato de amonio. Durante los últimos 15 años, se han venido construyendo bastantes plantas con capacidades de 600 a 1,000 toneladas cortas por día en todo el mundo. En años recientes, se han puesto en operación plantas muy grandes, como es el caso de México con sus cuatro plantas de 1,500 toneladas cortas por día en el Complejo Petroquímico de Cosoleacaque, situando así a nuestro país en un primer plano a escala mundial como productor de amoníaco.

El amoníaco anhidro se elabora al combinarse el hidrógeno y el nitrógeno en una relación molar de 3:1, comprimiendo la mezcla y luego separando el amoníaco por enfriamiento. El nitrógeno se toma del aire, mientras que el hidrógeno puede producirse a partir de hidrocarburos por medio de varios procesos. Normalmente, un alto porcentaje de la producción en el mundo (de 70 a 80%) usa el hidrógeno producido por operaciones de reformación catalítica con vapor, utilizando gas natural (metano) como materia prima. Estos procesos de amoníaco siguen básicamente seis pasos:

- Desulfuración del gas natural.
- Reformación catalítica del gas natural con vapor.

- 3) Conversión del Monóxido de Carbono a Dióxido de Carbono.
- 4) Eliminación del Dióxido de Carbono.
- Metanación (eliminación del CO₂ residual).
- Síntesis del Amoníaco.

Los pasos primero, tercero, cuarto y quinto están diseñados para eliminar impurezas tales como el azutre, monóxido de carbono, dióxido de carbono y agua de la corriente de carga al sexto paso en el cual se produce amoníaco anhidro a partir del gas de síntesis (11₂ y N₂). Todas las plantas de amoníaco usan este proceso básico, aunque las condiciones del proceso tales como temperatura, presiones y velocidades de flujo varían de planta a planta.

Aproximadamente, del total del gas consumido en una planta de amoníaco, entre un 65 y un 75%, se usa como carga para el reformador primario y del 35 al 25% se usa como combustible para la sección de radiación del reformador y para la generación de vapor.

Un diagrama de bloques de proceso para una planta de amoníaco tipo Kellogg de reformación catalítica del gas natural se nuestra en la figura 1. FIG1 - DIAGRAMA ESQUEMATICO GLOBAL DE LA PRODUCCION DE AMONIACO

DESULFURACIÓN DEL GAS NATURAL.

El contenido de azufre en el gas natural debe reducirse a un nivel tan bajo como sea posible para prevenir el envenamiento del catalizador de níquel del reformador primario y disminuir la deposición de carbón sobre el catalizador. El azufre puede estar presente como ácido sull'hídrico, mercaptanos, sulfuro de carbónilo y compuestos orgánicos de azufre. Usualmente se emplean camas de carbón activado cuando el contenido de azufre es menor de 10 gramos por pie cúbico estándar de gas, mientras que se usan camas de óxido de hierro ó de óxido de zinc, en caliente, para gases con mayores contenidos de azufre. La mayoría de las plantas modernas usan carbón activado.

Esta primera parte del proceso, cuando se usa carbón activado, consiste en pasar el gas natural a temperatura ambiente a través de la cama de carbón activado generalmente con Oxido de cobre (CuO). Los compuestos de azuíre que son adsorbidos sobre el carbón reaccionan con el óxido metálico formando el sulfuro correspondiente.

CuO + H2S ----- CuS + H2O

Al usar como catalizador el Oxido de Zinc (ZnO) el proceso es similar la diferencia es que en este caso la temperatura es de 204º a 427ºC.

ZnO + H2S ----- ZnS + H2O

2 REFORMACIÓN CATALÍTICA CON VAPOR.

En esta etapa, el gas natural endulzado que sale de los desulfuradores, se mezcla con vapor y se precalienta, hasta 450° - 500°C en un serpentin de recuperación de calor localizado, usualmente, en la sección de convección del reformador primario. La relación molar de vapor a carbón se mantiene en el rango de 3 a 4.

La mezcla vapor/gas precalentada reacciona endotérmicamente en los tubos de la sección de radiación del reformador primario, los cuales contienen de un catalizador de níquel donde se llevan a cabo las siguientes recciones:

> $CH_4 + H_2O \longrightarrow CO + 3H_2$ $CO + H_2O \longrightarrow CO_2 + H_2$

Aproximadamente el 70% de metano es convertido a hidrógeno. El gas parcialmente reformado abandona el reformador primario a una temperatura aproximada de 800 a 825°C y entra al reformador secundario donde se mezcla con aire el cuat proporciona el nitrógeno requerido para producir el amoníaco. El calor requerido para completar la reacción de reformación se obtiene de la combustión de

parte del H₂ de la mezcla aire/gas y se lleva a cabo en una cámara de combustión colocada encima de un segundo lecho de catalizador (base níquel) similar al catalizador del reformador primario.

El gas de síntesis casi completamente reformado abandona el reformador secundario a una temperatura de 1,000°C y es entriado por medio de un cambiador de recuperación de calor a una temperatura de 370°C. El cambiador produce vapor de aproximadamente 1,500 psig, el cual se usa para accionar las turbinas de los compresores del gas de síntesis.

El calor de los gases de combustión - generados en la sección de radiación del reformador primario - se recupera en varios serpentines de precalentamiento en la sección de convección.

3 CONVERSIÓN DEL MONÓXIDO DE CARBONO A DIÓXIDO DE CARBONO.

El gas de síntesis enfríado que sale del reformador secundario contiene cerca del 12% de CO y 8% de CO₂ como productos indeseables. Para eliminarlos, se pasa el gas sobre un lecho de catalizador de óxido de cromo/óxido de hierro en el "mutador de alta" temperatura, el cual opera de 370° a 450°C. El CO se convierte a CO₂, produciéndose más hidrógeno, de acuerdo a la siguiente reacción exotérmica:

 $CO + H_2O - CO_2 + H_2$

El gas que sale del mutador de alta temperatura a 430°C se enfria a 200°C en un cambiador de calor; luego se pasa sobre un lecho de catalizador de óxido de

cobre/óxido de zinc en el mutador de baja temperatura. En donde se reduce el contenido de CO del gas de síntesis a cerca del 0.4%. Enseguida el gas se enfría a 150°C, aproximadamente, y entra al sistema de eliminación de dióxido de carbono. El vapor que no reaccionó se condensa y se separa del gas de síntesis. Este vapor condensado puede reciclarse en el proceso, ("Condensado de proceso").

4 ELIMINACIÓN DEL DIÓXIDO DE CARBONO.

Después de la conversión de monóxido de carbono a dióxido de carbono, éste debe eliminarse de la mezcla de hidrógeno y nitrógeno. Se producen cerca de 1.2 toneladas métricas de CO₂ por cada tonelada métrica de amoniaco elaborado.

La eliminación de Dióxido de Carbono es por absorción con solventes dentro de una reacción química reversible. Los solventes más comúnmente usados son:

- Monoetanolamina (MEA)
- II) Dietanolamina (DEA)
- III) Trietanolamina (TEA)
- IV) Metildietanolamina (MDEA)
- V) Diisopropanolamina y Dióxido de tetrahidrotiofeno (SULFINOL).
- VI) Carbonato bicarbonato de potasio (Benfield)

5 METANACIÓN.

Todos los sistemas de absorción de CO₂ dejan una pequeña cantidad (menos de 1%) de óxidos de carbono residuales en el gas de síntesis. Ambos, el bióxido y el monóxido de carbono residual deben eliminarse ya que de otra forma envenenarían el catalizador de síntesis de amoníaco.

La eliminación de los óxidos de carbono se lleva a cabo por medio de un proceso de metanación en el cual el gas de síntesis se hace reaccionar sobre un catalizador que contiene niquel (NiO en alumina) de 316 a 454°C, las reacciones que ocurren son las siguientes:

Esta secuencia de reacciones es la inversa de la involucrada en la reformación el metano con vapor.

El gas de salida del metanador se enfría hasta 38°C y contiene menos de 20 ppm de óxidos de carbono. El condensado se elimina en un separador de condensado de proceso. El gas de síntesis final, a 38°C contiene hidrógeno y nitrógeno en una relación molar de 3:1 y menos de 0.5% de metano, así como algo de argón y agua la cual se elimina en los interpasos de compresión del gas de síntesis.

6 SINTESIS DEL AMONÍACO.

La primera etapa de la síntesis es la compresión del gas que llega del metanador. En los últimos 15 años, los compresores centrifugos accionados por turbinas de vapor han sido usados ampliamente para comprimir el gas de síntesis a presiones entre 2,000 y 3,500 psig.

El gas de síntesis se comprime a través de varios pasos hasta 2,000 - 3,500 psig y se mezcla con el gas de síntesis recirculado de los reactores. La contente de gas combinada se entría hasta temperaturas que dependen de la misma presión de operación en un entriador de retrigeración. El amoníaco condensado se separa del gas no convertido el cual se precalienta a cerca de 180 °C antes de entrar al reactor de síntesis. En este punto, el gas de síntesis contiene hidrógeno y nitrógeno en la relación adecuada de 3:1, además de 12 - 14% de inertes y aproximadamente de 4% de amoníaco.

3H2 + N2 ----- 2NH3

En el convertidor de síntesis, el gas reacciona sobre el catalizador de Fierro promovido (un catalizador cuya actividad se incrementa ó promueve por la adición de óxidos de aluminio o potasio).

El gas que sale del lecho del reactor, a una temperatura de 270°C, contiene aproximadamente 15% de amoníaco y 14% de inertes. Este gas caliente se usa en el sistema de generación de vapor y luego intercambia calor con el gas de carga al reactor.

El gas rico en amoníaco se recircula al compresor de sintesis antes de ser enfríado para condensar el amoníaco. Una pequeña porción del gas mencionado se purga del sistema para prevenir la acumulación de inertes en la circulación. El gas de purga se enfría hasta -23°C para minimizar las perdidas de amoníaco y se quema como combustible en el reformador primario. Algunas plantas usan un sistema de mallas moleculares para recuperar hidrógeno del gas de purga y reciclarlo como materia prima para producir amoníaco adicional.

El amoníaco líquido de los separadores primario y de purga se colecta en el tambor de expansión de baja presión, donde se vaporiza a la presión atmosférica a - 33°C para eliminar las impurezas que pudieran contener, tales como argón. El amoníaco anhidro líquido de alta pureza es transferido del tambor de expansión de baja presión al tanque de almacenamiento a baja temperatura y a presión atmosférica.

CAPITULO II

CAMBIADORES DE LA PLANTA DE AMONIACO

2.1 CAMBIADORES DE LA PLANTA DE AMONIACO TIPO KELLOGG

El diseño actual de las plantas de amoníaco está basado en lograr una alta recuperación de energía dentro del proceso mismo. Así, en las plantas de amoníaco con diseño Kellogg se recupera calor de las corrientes de proceso, para producir vapor de alta presión. A continuación se describen los equipos que generan vapor a la planta:

- Zona de convección del reformador primario
- Cambiadores 101 CA/CB

(salida reformador secundario)

- Cambiador 102 C

(salida reformador secundario)

- Cambiador 103 C
- (salida mutador de alta)
- Cambiador 106 C

(salida mutador de baja)

- Cambiador 114 C

(salida metanador)

- Cambiador 123 C

(salida reactor de síntesis NHg)

(58.7 MMBTU/h) (234.0 MMBTU/h)

(49.8 MMBTU/h)

(44.8 MMBTU/h)

(30.1 MMBTU/h)

(34.3 MMBTU/h)

(152.0 MMBTU/h)

Según se observa en los datos anteriores, el equipo donde se logra la mayor

recuperación de energía es en los cambiadores 101 CA/CB, colocados a la salida del reformador secundario. Por otro lado, de los equipos antes mencionados, los 101 CA/CB, el 102-C y el 103-C, así como la caldera auxiliar, 101 BAUX, están coneclados al tambor de vapor de alta presión (100 Kg/cm²) 101-F, como se muestra en la ligura 2.

Debido a que los equipos que de hecho producen vapor son los cuatro que se muestran en la parte inferior de la figura y su funcionamiento está basado en la diferencia de densidades que se establece en el agua, entre las ramas descendentos y ascendentes del tambor 101-F (termosifón). Ahora bien, la circulación de agua que se establece en cada uno de los equipos mencionados y por tanto la generación de vapor. estará en función directa de los siguientes factores:

- Temperatura de entrada de la corriente de proceso que pasa en cada equipo (temperatura radiante, para la caldera auxiliar), y
- Flujo de gas de proceso que se usa como medio de calentamiento (calor liberado, para la caldera auxiliar).

Finalmente, basándose en experiencias operacionales (Reportes de campo Complejo Petroquímico Cosoleacaque), se ha observado que cuando los cambiadores 101 CA/CB se rompen (bayonetas y/o roles) la producción de vanor se ve impactada negativamente en forma substancíal debido, principalmente, a los dos siguientes factores:

AMONIACO KELLOG.

Pérdida de agua (saturada) a través de las roturas y

Enfriamiento súbito de la coniente de proceso que se usa como medio de calentamiento debido al mezclado del agua que luga (a 313°C) con los gases del reformador secundario (entre 980°C - 1000°C), lo que provoca una pérdida en la capacidad de calentamiento.

Tomando en cuenta lo expuesto en los parralos anteriores, resulta de gran importancia el poder analizar y predecir el comportamiento de los equipos en cuestión, bajo diferentes condiciones de operación, siendo el propósito de la presente tesis el analizar el comportamiento de los cambiadores 101 CA/CB.

2.2 DESCRIPCION DE LOS 101 CA/CB

En la figura 3 se presenta esquemáticamente la forma en que operan y están conectados los 101 CA/CB con el tambor 101-F y reformador secundario 103-D.

De manera esquemática, la forma en que operan los 101 CA/CB es la siguiente:

Al recibir calor el agua, fundamentalmente en el espacio anular de las bayonetas, la densidad del agua baja por calentamiento y como consecuencia de ésto, el efecto de "flotación " que se genera tiende a mover el agua, la cual es "empujada", hidrostáticamente, por la columna de agua densa que se genera en el tambor 101-F (pierna descendente). Conforme el agua recibe calor en el espacio anular, eventualmente llega a vaporizarse. Una vez que el agua deja el cambiador y sube por las piernas ascendentes, continua su vaporización debido a que, conforme sube, la

presión de la columna de la mezcla vapor-líquido es cada vez menor, hasta que regresa al tambor de vapor. (Nótese que el líquido saturado que sale del tambor de vapor, al llegar al cambiador se encuentra subenfriado, ya que conservó su temperatura pero aumentó su presión como consecuencia de la columna hidrostática "descendente").

FIGURA 3 .- DIAGRAMA ESOUEMATICO DE LOS 101 CA/CB.

CAPITULO III

MODELO MATEMATICO DE LOS CAMBIADORES 101 CA/CB

A continuación se presenta un modelo matemático con el cual es posible analizar el comportamiento de los cambiadores 101 CA/CB, incluyéndose, como parte integral de ellos, la pierna descendente con líquido y las piernas ascendentes con mezclas de vapor y líquido. Para cada una de las partes integrantes del sistema, además de presentarse las ecuaciones que describen su comportamiento, se señalan las suposiciones hechas al obtenerlas.

3.1 PIERNA DESCENDENTE

Considere el sistema mostrado en la ligura 4. La presión de entrada al tubo descendente será la del tambor. PT, más la columna hidrostálica H-101 dentro del mismo, es decir

 $P^{d}(0) = P_{T} \cdot [g/g_{C} \cdot (p_{L}^{T} H_{101}/144)]$ (1)

Donde:

		•	
g	= •	32.2 IVseg2	
gc	· = ''	32.2 lbt//lbseg2	
ρLT	- -	Densidad del líquido saturado a las condiciones del tambor (њ/((З)
PT	#	Presión del tambor (psia)	
Pd(0)	=	Presión a la entrada del tubo (psia)	
11101		Altura del líquido en el tambor (It)	

I BUKA 4 .- DIAGRAMA ESOUEMATICO DE LA PIERNA DESCENDENTE A LOS CAMMADORES IGI CA/CO.

Debido a que el tubo descendente se encuentra aislado y es de sección tranversal constante, se puede suponer lo siguiente:

- Puesto que el tubo se encuentra aislado termicamente, entonces la temperatura permanece constante.
- b) No existe vaporización en la pierna descendente como consecuencia de la columna hidrostática y no existe transferencia de calor.
- c) Ya que el tubo es de sección transversal constante y que no hay cambio de fase, el fluido que desciende su aceleración se considerable despreciable.
- d) Finalmente, se supondrá que no existen gradientes radiales de velocidad ni de temperatura (llujo pistón) (7).

Bajo las condiciones señaladas, la variación de presión a lo largo de la pierna descendente está dada por

$$dP^{d}/dz = \{g/g_{c} * (p_{1}d/144)\} + H_{1}d$$

(2)

Donde:

d	-	Presión a lo largo de la pierna descendente (psia)
L ^d - PL ^T	-	Densidad del liquido en la pierna descendente (lb/ll ³)
ηd	= .	Caida de presión por tricción (psi/ft)
	=	Nivel sobre la pierna descendente, desde la base del tambor

Observese que la caída de presión por fricción depende de la masa (m) que fluye a través del tubo, la cual se desconoce. La ecuación diferencial (2) deberá ser integrada usando como condición inicial la presión $P^{d}(0)$ dada por la ecuación (1) para obtener la presión en la base del tubo $P^{d}(1)_{n}^{1}$.

PRIMERA INCOGNITA: Flujo a cada 101 C (m)

3.2 PIERNAS ASCENDENTE

Considere el sistema mostrado en la ligura 5. Al igual que para la pierna descendente, la presión a la que llega la mezcla vapor/liquido al tambor estará dada por

$$P^{a}(0) = P_{T} \cdot [(g/g_{c}) \cdot (\rho_{L}^{T} \cdot H_{101}/144)] \ (= P^{d}(0)) \tag{3}$$

Donde:

P^a (0) = Presión a la salida del tubo (psia).

En contraste con la pierna descendente, y a pesar de que ésta también está aislada, no es posible repetir las suposiciones hechas para el caso anterior ya que se debe tomar en cuenta una probable vaporización del agua en la línea (de hecho es ésto último lo que se espera que suceda) como consecuencia de la variación en la presión de la masa vaporizada, lo cual implica que, a lo largo del tubo, la temperatura del fluido tampoco es constante. De lo anterior, las únicas suposiciones que se pueden hacer son las siguientes:

FIGURA 8 - DIAGRAMA EQUEMATICO DE LA PIERIA ASCENDENTE DE LOS CAMBIADORES IDI CAZCH

a) El lubo se encuentra aislado

b) No existen perfiles radiales ni de temperatura ni de velocidad.

Bajo las consideraciones anteriores, las ecuaciones que describen el comportamiento del sistema son:

Para la presión (Pa)

 $dP^{a}/dz = [(g/g_{c})^{*}(p_{m}^{a}/144)] + H_{l}^{a} - [(p_{m}^{a}/144g_{c})^{*}v_{m}^{a} + dv_{m}^{a}/dz] (4)$

Donde:

En la ecuación (4), el último término del lado derecho corresponde a la caída de presión por aceleración.

Para la temperatura (Ta)

Para calcular la temperatura de una mezcla vapor/líquido de agua, basta con conocer la presión, es decir la temperatura es función de la presión

Pa = Pa (Ta)

(7)

Para la fracción vaporizada (Xa)

 $dX^{a}/dz = -1/\lambda^{a} \cdot (X^{a} Cp_{v}^{a} + (1 X^{a}) Cp_{L}^{a})(dT^{a}/dz)$ (8)

Donde:

λ ^a =	Calor latente de vaporización del agua (BTU/lb)
Cp _v a ⊨	Calor específico del vapor (BTU/Ib°F)
CpL ^a =	Calor especilico del líquido (BTU/lb F)
dl ^a /dz =	Variación de la temperatura con la altura (*F/I)
	(d ^{pa-} dz)(d ^{pa} /d ¹ ^a) (9)

(dPa/dTa) se obtiene de la ecuación para la presión de vapor dada por (7).

Antes de proceder a obtener las ecuaciones que describen el funcionamiento de los 101 CA/CB propiamente dicho, vale la pena hacer las siguientes observaciones:

24

Al desconocer la masa que baja a los 101, tampoco se conoce la que asciende al tambor.

- Al descargar al tambor el fluido que asciende, tendrá una presión Pa (0) (igual a Pd(0)) y estará por lo tanto a la temperatura del tambor
- Como no se conocen las siguientes variables; la fracción vaporizada en los 101, la presión, la temperatura del agua en la base de la pierna ascendente, entonces tampoco se conoce la fracción de agua vaporizada a la entrada del tambor.

Finalmente debe aclararse lo siguiente con respecto a la validez de la ecuación (8), la cual describe la variación de la fracción vaporizada del agua, con respecto a la longitud de la pierna ascendente. Dicha ecuación es válida solamente cuando X^a > 0; si al integrar la ecuación diferencial desde la base del tambor 101-F resulta que X^a $(0) \le 0$, en ese momento las ecuaciones (4) - (9) se modifican como sigue:

 $dP^{a}/dz = g'g_{c} \cdot p_{l}^{a}/144 + H_{l}^{a}$

(4')

 $\frac{\rho_{m}^{a} = \rho_{L}^{a}}{v_{m}^{a} = -(m/7200)/\rho_{L}^{a} A_{l}^{a}}$ (5) $X^{a} = 0$ (8) $dT^{a}/dz = 0$ (9)

con base en lo anterior se tiene que:

SEGUNDA INCOGNITA: Xa (0)

3.3 CAMBIADOR 101 CA/CB

Considere el diagrama de la figura 6, en el cual se muestran los componentes relevantes al modelos de los cambiadores 101 CA/CB. Para desarrollar las ecuaciones faltantes, se hacen las siguientes suposiciones:

No se generan perfiles radiales de velocidad, ni de temperatura, en el tubo interior de las bayonetas ni en los espacios anulares.

Se supondrá flujo pistón del lado de la coraza.

- Excepto por las entradas y salidas de agua y de gas, el cambiador se encuentra aislado.
- El espacio entre la pierna descendente y el espejo superior es tal que el llujo se distribuye uniformemente en todas las bayonetas.
- En el espacio comprendido entre los dos espejos no existe transferencia de calor entre las dos corrientes de aqua.
- Finalmente, el agua que baja por la pierna descendente tiene una ganancia adicional en presión hidrostática, sin pérdidas por fricción, entre las alturas Hp' y Hn, dada por

GRAMA ESQUEMATICO DE LOS CAMBIADURES IOI CA/CH.

DEL 101-F

$$P^{t}(H_{p}) = P^{d}(H_{p}') + [g/g_{c} * (\rho_{L}^{d}/144) * (H_{p} + H_{p}')$$
 (10)

Tomando en cuenta todas las suposiciones anteriores, se obtiene el siguiente conjunto de ecuaciones diferenciales para describir el comportamiento de los cambiadores 101 CA/CB.

3.3.1 TUBOS INTERIORES DE LAS BAYONETAS

Para modelar esta parte del proceso se deberá tener presente que si bien es cierto que el agua entra líquida (como líquido subentriado), existe la posibilidad de que ésta se vaporice. La forma de distinguir si el agua ha empezado a vaporizar o no, es la siguiente: suponga que el agua se encuentra a P y T; usando la ecuación (7) se calcula la presión de vapor del agua a T, digamos P_V , y si $P_V > P$, entonces el agua ha empezado a vaporizarse. Teniendo presente la situación descrita, se obtienen los siguientes conjuntos de ecuaciones para el agua en los tubos interiores de las bayonetas. (En el Anexo A se observan las correlaciones empleadas).

3.3.1.A.- NO EXISTE VAPOR

Para la temperatura (T^t)

 $dT^{1}/dz = (N_{B} * \pi * D_{oi} / m * Cp_{L}^{d}) * [U_{ww} * (T^{e} - T^{1})]$ (11)

Para la presión (Pt)

 $dP^{t}/dz = [(g/g_{c}) \cdot (\rho_{L}^{t}/144)] - H_{l}^{t}$

En estas dos ecuaciones

(7')

3.3.1.B .- SI EXISTE VAPOR

Para la presión (Pt)

 $dP^{t}/dz = [g/g_{c} \cdot \rho_{m}^{t}/144] \cdot H^{t}_{1} \cdot [(\rho_{m}^{t}/144g_{c}) \cdot v_{m}^{t} \cdot dv_{m}^{t}/dz] (13)$

29

- Para la temperatura (TI)

 $P^{t} = P^{t}(T^{t})$

- Para la fracción vaporizada (XI)

donde

$dX^{l}/dz = [(X^{l} \cdot Cp_{v}^{l} + (1 \cdot X^{l})Cp_{L}^{l})/\lambda^{l}] \cdot (dT^{l}/dz) +$

 $[(N_B^*\pi^*D_{oi})/(m\lambda^{t})]^*U_{WW}^*(T^0 - T^{t})$ (14)

는 일자에 관망했는 것 및 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		
ρm ¹ =		Densidad de la mezcla vapor/liquido en los tubos interiores (lb/li ³) (se cilicula de acuerdo a la ecuación (5)).
vm [†] =		Velocidad de la mezcla vapor/líquido en los lubos interiores (ll/seg)
		(π/3600)'(M _B · π · ρm ¹ · Al ¹) (15)
Aj ^t =		Area de Ilujo por tubo de los tubos interiores (II ²)
xt =		Fracción vaporizada del agua en los tubos interiores (Ib vapor/Ib mezcla)
Cpv ^I ≖		Calor específico del vapor en los tubos interiores (B1 U/lb mezcla)
λ! =	•	Calor latente de vaporización del agua en los tubos interiores (BTU/lb)
dī¦/dz =		Variación de la temperatura del agua en los lubos interiores con la longilud de los tubos (F/II)
		(dP ¹ /dz)/(dP ¹ /dT ¹) (16)

y (dPI/d11) se obtiene a partir de la ecuación para la presión de vapor, dada por (7)

3.3.2.- ESPACIOS ANULARES DE LAS BAYONETAS

Al desarrollar el modelo para esta sección de los 101 CA/CB se debe tener la misma precaución, con respecto a la vaporización, según se describió para el interior de los tubos de las bayonetas. Teniendo esta situación presente, las ecuaciones que se generan son las siguientes:

3.3.2.A.- NO EXISTE VAPOR

```
- Para la temperatura (Te)
```

 $dT^{e}/dz = [(N_{B}^{*}\pi)/(m^{*}Cp_{L}^{e})]^{*} [D_{0}^{*}U_{ww}^{*}(T^{e} - T^{l}) - D_{00}^{*}U_{gw}^{*}(T_{g} - T^{e})] (17)$

- Para la presión (Pe)

 $dP^{e}/dz = [(g/g_{c} + \rho_{L}^{e})/144] + H_{f}^{e}$

donde

D ₀₀ =	Diámetro externo del tubo externo de las hayonetas (II)
U _{gw} =	Coeliciente de transferencia de calor entre el agua en el espacio anular de las bayonetas y los gases, basado en el área externa (BTU/h fl 2 'F)
τ _g = .	Temperalura de los gases en la coraza (F)
Cple =	Calor específico del agua liquida en el espacio anular (B1U/lb °F)
P ^e =	Presión en el espacio anular (psia)
PL e =	Densidad del liquido en el espacio anular (lb/lt ³)
11 ₆ =	Caida de presión por fricción en el espacio anular (psi/ll)

(18)

3.3.2.B.- SI EXISTE VAPOR

- Para la presión (P^e)

 $dP^{e}/dz = [(g/g_{c}) \cdot (\rho_{m}^{e}/144)] + H_{f}^{e} \cdot (\rho_{m}^{e}/144g_{c}) \cdot v_{m}^{e} \cdot dv_{m}^{e}/dz$ (19)

- Para la temperatura (Te)

Pe= pe (Te)

- Para la fracción vaporizada (X^e)

 $dX^{e}/dz = -(X^{e}Cp_{v}^{e} + (1 - X^{e})Cp_{L}^{e})/\lambda^{e}) \cdot (dT^{e}/dz) +$

 $[(N_B \cdot \pi)/(m \lambda^e)] \cdot [D_{oi} \cdot U_{ww} \cdot (T^e \cdot T^l) \cdot D_{oo} \cdot U_{aw} \cdot (T_q - T^e)] (20)$

donde:

р _т е =	Densidad de la mezcla vapor/liquido en el espacio anular (lb/ll ³) (se calculan de acuerdo a la ecuación (5))
vm ₆ =	Velocidad de la mezcla vapor/liquido en el espacio anular (Il/seg)
un un antigene Maria del provento. Nota del provinto de	- (m·3600)/(N _B • ρ_m^e • A _f ^e) (21)
Al ₆ =	Area de flujo por bayoneta del espacio anular (11 ²)
Xe =	Fracción vaporizada del agua en el espacio anular (lb vapor/lb mozcla)
Cpv ⁸ ≃	Calor específico del vapor en el espacio anular (BTU/lb)
λe _	Calor latente de vaporización del agua en el espacio anular (BTU/lb)
dT ^e /dz =	Variación de la temperatura del agua en el espacio anular con la longitud de los tubos (" F/t)

(7

 $= (dP^{e}/dz)'(dP^{e}/dI^{e})(22)$

y (dPe/dTe) se obtiene a partir de la ecuación para la presión de vapor, dada por (7")

3.3.3. GASES POR LA CORAZA

Para complementar el modelo falta establecer las ecuaciones que predicen el

comportaniento de los gases por la coraza. Si se quiere ser muy estricto se requiere plantear las ecuaciones de conservación de masa, energía y de transferencia de momento. Ahora bien, hasta cierto punto la última ecuación mencionada resulta ser irrelevante, dada la mínima caída de presión que experimentan los gases, y la ecuación de conservación de masa se puede manejar implícitamente en la ecuación de conservación de energía. Si se procede como se ha mencionado, la ecuación de energía nos proporciona la variación de la temperatura con la longitud del cambiador, la cual se puede escribir como

 $dT_{q}/dz = (N_{B} \cdot \pi \cdot D_{00})/(Cp_{q} \cdot (w/2)) \cdot [U_{qw} \cdot (T_{q} \cdot T^{\theta})](23)$

donde

w = Flujo de gases a la salida del reformador secundario (lb/h)
Cpg = Calor específico de los gases en la coraza (B1U/lb °F)

3.4 COMENTARIOS

Al intentar integrar las ecuaciones diferenciales para los 101 CA/CB se presenta la siguiente situación en z = H_0

Los resultados obtenidos para la pierna ascendente se transforman en datos para el espacio anular, es decir

 $P^{e}(H_{D}) = P^{a}(H_{D})$

(24A)

(24B)

T^e (H_D) = T^a (H_D)
(24C)

Los resultados obtenidos para la pierna descendente se transforman en datos para el interior de los tubos de las bayonetas, previa modificación de la presión, de acuerdo a la ecuación (10), es decir

$$P^{l}(H_{p}) = P^{d}(H_{p}') + g'g_{c} p_{L}^{d}/144 (H_{p} \cdot H_{p}')$$
(10)

T^t (H_D) = Temperatura en el tambor 101 · F

 $X^{t}(H_{D}) = 0$ (liquido subentriado)

(25B)

(25A)

Finalmente, para poder integrar la ecuación de la temperatura de los gases en la coraza, no se conoce la temperatura de salida de éstos, por lo que se tiene como

TERCERA INCOGNITA; Tg (Hp)

Resumiendo, las incógnitas del modelo son las siguientes:

a.- Flujo de agua a los 101 - C (m)

- b.- Fracción vaporizada en la piorna ascendente en la entrada del lambor 101-F (X^a (0))
- c.- Temperatura de salida de los gases en la coraza (T_o(H_p))

Para resolver el problema que se acaba de plantear, se necesitan tres ecuaciones con lo cual se generaría un sistema de tres ecuaciones con tres incógnitas. Las ecuaciones que completan el modelo las proporciona el sistema físico como sigue:

m, Xa y Tg deben ser tales que

a.- T₀(H_c) calculada con las ecuaciones deberá ser igual al dato de la planta

Tg (Hc) - Tg^{planta} (Hc) = 0

b.-

C.-

(26)

La presión calculada en Z = H_C para el fluido por el tubo interior de las bayonetas, P¹ (H_C), debe ser igual a la presión calculada en el mismo punto para el fluido en el espacio anular

(27)

Lo mismo deberá ocurrir con las lemperaturas, T^{\dagger} (H_c) - T^e (H_c) = 0 (28)

Con el próposito de aclarar el manejo de las ecuaciones descritas en los incisos 3.1 - 3.4, en la figura 7 se presenta el manejo genérico de aquellas.

FIG. 7 WEED TE LAS FOLKULTES FR LAS DIFFIENTES SECULTES LET. SISTEMA TWARD TOL-F/CWHIMITHIS TOL CV/OB

3.5 TEMPERATURAS DE PARED

Un punto que merece especial atención en el análisis del comportamiento de los 101 CA/CB es la temperatura que se establece en la pared del tubo exterior de la bayoneta. Complementando las ecuaciones anteriormente obtenidas, el valor de las temperaturas de pared externa e interna al tubo (ver figura 6) están dadas por

 $T_w g = T_q \cdot [(U_{qw}/h_q) \cdot (T_q \cdot T^e)]$

(29)

 $T_w^{e} = T^{e} + [((U_{gw} * D_{oo})/(h_w^{e} * D_{io})) * (T_g - T^{e})$ (30)

donde

hg .	- 1 (1), 1 (1) ₩	Coeliciente de transferencia de calor del lado de la coraza (BTU/htl ²⁻ F)
hw ^e	=	Coeliciente de transferencia de calor del lado anular (BTU/hlt2º F
Dio	=	Diámetro interno del tubo externo de las bayonetas (II)
Tw ^g		Temperatura de pared exterior de las bayonetas (°F)
Twe	*	Temperatura de la pared interior de las bayonetas (°F)

El valor de Tw9 nos proporciona una medida de la vida útil de las bayonetas, mientras que la diferencia (Tw9 - Tw^e) nos dá una medida de los esfuerzos a que se sujeta la pared del tubo externo de las mismas.

CAPITULO IV

RESOLUCION DEL MODELO MATEMATICO

De acuerdo al planteamiento hecho en el capitulo 3, para analizar el comportamiento de los cambiadores 101 CA/CB deberán encontrarse los valores de

X^a = Vaporización final en la pierna ascendente.

T_d = Temperatura de salida de los gases por la coraza.

m = Flujo de agua a los 101.

tales que, al usarlos como condiciones iniciales y parámetros de las ecuaciones diferenciales descritas con anterioridad, se satisfagan las condiciones de frontera.

 $T_g (H_c) = T_g^{planta} (H_c)$

 $P^{t}(H_{c}) = P^{e}(H_{c})$

 $T^{\dagger}(H_{c}) = T^{e}(H_{c})$

es decir, se tiene el problema tipico de resolver un sistema de ecuaciones diferenciales con condiciones a la frontera; sin embargo, existe la complicación adicional de que una de las incógnitas es un parámetro de las ecuaciones (m, el flujo de agua a traves del cambiador) en lugar de ser condición inicial o de frontera.

Para resolver el problema planteado anteriormente, se puecle reformular como un problema de ecuaciones no lineales simultáneas de la siguiente forma: sean

$$y_1 = X^a(0)$$

$$y_2 = T_g (H_p)$$

 $y_2 = m$

y definanse tres ecuaciones, obviamente no lineales, para representar las condiciones de Irontera (26) - (28)

$$f_1 (y_1, y_2, y_3) = T_0^{calc} (H_c) - T_0^{planta} (H_c)$$
 (1)

$$f_2(y_1, y_2, y_3) = P_1^{calc}(H_c) - P^e(H_c)$$
 (2)

$$f_3 (y_1, y_2, y_3) = T_i^{calc} (H_c) - T^e (H_c)$$
 (3)

Resulta claro que si los valores y₁ y/o y₂ y/o y₃ no son los correctos entonces f_1 + 0 y/o f_2 + 0 y/o f_3 + 0, donde los valores de f_1 , f_2 y f_3 se encuentran resolviendo el sistema de ecuaciones (1) - (26), empleando los parámetros y correlaciones descritas en el capítulo 3.

Para resolver el sistemas de ecuaciones (1 a 3) existe una variedad de métodos que van desde el clásico de Newton hasta el de Broyden, si se decide resolver el problema como un sistema de ecuaciones no lineales simultáneas. La "técnica" que se usa en esta tesis es útil para encontrar el valor correcto de las variables desconocidas o condiciones de frontera (X^a (0), T_g (H_p) y m). Sin embargo, durante la búsqueda de los valores de las condiciones de frontera es necesario obtener la solución de un modelo descrito por ecuaciones diferenciales ordinarias (ecuaciones 1 - 25); esta solución se obtuvo usando un método de predicción-corrección de primer orden, como a continuación se ilustra para el caso de la pierna ascendente, cuyo comportamiento está descrito por las ecuaciones

$$dP^{a}/dz = [(g/g_{c})^{*}(\rho_{m}^{a}/144) + H_{l}^{a}] - [(\rho_{m}^{a}/(144^{*}g_{c}))^{*}v_{m}^{a} + dv_{m}^{a}/dz$$
(4)

$$dX^{a}/dz = -[(X^{a} * C_{p_{v}}^{a} + ((1 \cdot X^{a}) * C_{p_{1}}^{a})/\lambda^{a}] * (dT^{a}/dz)$$
(5)

Los pasos que siguen para resolver este par de ecuaciones son los siguientes:

0.- Datos:

pa (z), Ta (z), Xa (z), m

1.- Calcular:

 $v_m^a(z) = - (m/7200)/(p_m^a(z) \cdot A_f)$

2.- Suponer:

 $P^{a}(z + \Delta z)^{\circ} y X^{a}(z + \Delta z)^{\circ} (T^{a}(z + \Delta z)^{\circ} \operatorname{con} \operatorname{la ec.} (7)).$

3.- Calcular los valores promedio:

 $\vec{Pa} = [Pa(z) + Pa(z + \Lambda z)^{c}]/2$

 $\overline{X^a} = [X^a(z) + X^a(z + \Lambda z)^r]^2$

Ta con la ec. (7) y Pa

Calcular

4.-

 $v_m^a(z + \Delta z) = -(m/7200)/[(\rho_m^a(z + \Delta z) * A_j)]$

 $v_m^a = (v_m^a (z) + v_m^a (z + \Delta z))/2$

y aproximar

 $dv_m^{a}/dz = (dv_m^{a}/dz) = (v_m^{a}(z + \Lambda z) \cdot v_m^{a}(z))/\Lambda z$

5.- Calcular $\overline{\lambda^a}$ y $\overline{\eta_m}^a$ a Ta y $\overline{\Pi_j}^a$ con los valores promedio que se llenen hasta este paso.

Evaluar

 $d\overline{P^a}/dz = g/g_c \cdot p_m^a + H_i^a \cdot p_m^a/144g_c v_m^a (dv_m^a/dz)$

 $dX^a/dz = -[(X^a \cdot CpV^a + (1 \cdot X^a)) \cdot CpL^a]/\lambda^a(dT^a/dz)$

7.- Usando la aproximación de Euler para ecuaciones diferenciales calcular unas nuevas estimaciones de P^a (z + Δz) y X^a(z + Δz) como

 $P^{a}(z + \Delta z)^{*} = P^{a}(z) + (dP^{a}/dz)\Delta z$

 $X^{a}(z + \Delta z)^{*} = X^{a}(z) + (dX^{a}/dz)\Delta z$

 $T^a (z + \Delta z)^*$ con la ecuación (7) y $P^a (z + \Delta z)^*$

8.- Si

 $|P^{a}(z + \Delta z)^{\circ} - P^{a}(z + \Delta z)^{*}| < tolerancia$

y, simultáneamente

 $|X^{a}(z + \Delta z)^{\circ} - X^{a}(z + \Delta z)^{*}| < tolerancia$

las nuevas estimaciones calculadas en el paso 7 se pueden tomar como los valores correctos en z + Δz y se puede seguir avanzando en la integración. En caso de que una de las dos desigualdades no se satisfaga, es necesario repetir el cálculo anterior (pasos 3 -7) con una nueva estimación la cual se puede tomar igual a los valores calculados, es decir

$$P^{a}(z + \Delta z)^{\circ} = P^{a}(z + \Delta z)^{\circ}$$

 $X^{a} (z + \Delta z)^{\circ} = X^{a} (z + \Delta z)^{*}$

 $T^{a}(z + \Delta z)^{\circ} = T^{a}(z + \Delta z)^{*}$

El procedimiento anterior se empleó para resolver las ecuaciones que describen el comportamiento de la pierna ascendente y las del cambiador de calor. Para la pierna descendente no es necesario aplicar este procedimiento ya que debido a que la temperatura se mantiene constante, la densidad del líquido no cambia y por lo tanto tampoco cambia el lado derecho de la ecuación (2), es posible la integración inmediata de está última ecuación como

 $P^{d}(z) = P^{d}(0) + [g/g_{c} \cdot \rho_{L}^{d}/144 - H_{f}^{d}] z$

 $= P_{T} - g/g_{c} \cdot (\rho_{L}^{T} \cdot H_{101})/144 + [g/g_{c} \cdot \rho_{L}^{d}/144 - H_{l}^{d}]z(2')$

CAPITULO V

ANALISIS DE RESULTADOS.

Con el propósilo de analizar el comportamiento de los cambiadores 101 CA/CB, se variaron las siguientes condiciones de operación:

- Flujo de gas natural al reformador primario (variación en el proceso de la planta).
 - Vapor al reformador primario (variación de la relación H₂/HC en el reformador primario).
 - Temperatura de salida de los gases del reformador primario (variación de la severidad de la operación del reformador primario).

Los resultados obtenidos fueron los siguientes:

a)

Al aumentar el flujo de gases en un 10% (ver Tabla 1) la producción de vapor se incrementó de 430,674 lb/h a 460,282 lb/h lo que representa un 6.87%. Al disminuir el flujo de gases en un 10%, 20% y 30% la producción de vapor disminuyó a 390,000 lb/h, 349,000 lb/h y 312,000 lb/h, respectivamente lo que representa una disminución de un 9.49%, 18.96% y 27.56%. Según se observa, al disminuir el flujo de gases, la turbina JT-103 que mueve el compresor de sintésis, no se ve alectada ya que la producción de vapor es mayor que el vapor que se requiere. Por otro lado, al aumentar el flujo de gases, la producción de

vapor es menor que el requerimiento adicional. Como se observa en la Tabla I fue necesario variar la temperatura de salida de los gases al reformado secundario, esto fue para mantener constante la temperatura de los gases en la coraza.

- b) Al aumentar la cantidad de vapor al reformador primario (ver Tabla 2) la producción de vapor aumenta pero no en la cantidad demandada por el reformador; aumentando el flujo de vapor en un 10%, 20% y 50% la producción varió de 430,674 lb/h a 457,800 lb/h (6.3%), a 483,000 lb/h (12.15%) y 559,000 lb/h (29.8%), respectivamente, siendo obvio el déficit de vapor. Por otro lado, al disminuir el vapor al reformador primario la producción de vapor no baja en la misma proporción; al bajar el flujo de vapor, respectivamente, y ya que los gases que se deben comprimir no se ven afectados por la disminución en el flujo de vapor, entonces se concluye que existe un déficit de vapor para mover la turbina JT-103 de síntesis.
- c) Por último, al aumentar la temperatura de salida del reformador primario en 15°C, de 830°C a 845°C, (ver Tabla 3) la producción de vapor aumentó de 430,674 lb/h a 441,000 lb/h, lo que representa un incremento de 2.4%. Al disminuir la temperatura 15°C y 30°C la producción de vapor disminuye en un 5.4% y en 12.23%, respectivamente, con lo que el déficit de vapor se hace evidente.

Los resultados anteriores se presentan gráficamente en las figuras 8, 9, 10, 11, 12 Y 13.

TABLA I

VARIACION DE FLUJO DE GAS NATURAL AL REFORMADOR PRIMARIO.

FLUJO DE GAS AL REFOR. PRIMARIO (Ib/h)	TEMPERATURA AL REFOMADOR SECUNDARIO (°C)	FLUJO DE AGUA A LOS CAMBIA. 101 CA/CB (Ib/h)	Xa	m * Xa (lb/h)
250,000	910	2,150,850	0.1070	230,141
227,353	900	2,100,850	0.1025	215,337
204,620	889	2,050,000	0.0940	192,700
181,882	878	2,000,000	0.0865	173,000
159,147	865	1,950,000	0.0080	156,000

FIG. 8

VARIACION DE FLUJO DE GAS AL REFORMADOR PRIMARIO

TEMPERATURA DE SALIDA DE LOS GASES (°C)

FIG, 9

TABLA II

VARIACION DE VAPOR AL REFORMADOR PRIMARIO

Flujo de Vapor al Ref. Primario (Ib/h)	TEMPERATURA DE SALIDA DE LOS GASES (°C)	FLUJO DE AGUA A LOS CAMB. 101 CA/CB (Ib/h)	Xa	m * Xa (lb/h)
365,937	950	2,150,000	0.1300	279,500
292,750	922	2,100,000	0.1150	241,500
268,354	911	2,100,000	0.1090	228,900
243,958	900	2.100.850	0.1025	215,337
219,562	887	2,100,00	0.0950	199,500
195,166	873	2,100,00	0.0860	180,600

VARIACION DE VAPOR AL REFORMADOR PRIMARIO

VARIACION DE VAPOR AL REFORMADOR PRIMARIO

TABLA III

VARIACION DE TEMPEMPERATURA DE SALIDA DE GASES DEL REFORMADOR PRIMARIO

Flujo de Gas al Refor. Primario (16/h)	TEMPERATURA DE SALIDA DE LOS GASES (°C)	FLUJO DE AGUA A LOS CAMBIA. 101 CA/CB (Ib/h)	Xa	m * Xa (lb/h)
225,947	845	2, 100,000	0.1050	220,500
225,947	830	2,100,850	0.1025	215.337
225,947	815	2,100,000	0.0970	199,500
225,947	800	2, 100,000	0.0090	189,000

VARIACION DE TEMPERATURA DE SALIDA DEL REFORMADOR PRIMARIO

FIG. 12

VARIACION DE TEMPERATURA DE SALIDA DEL REFORMADOR PRIMARIO

TEMPERATURA DE SALIDA DE GASES (°C)

CAPITULO VI

PROBLEMAS OPERACIONALES EN LOS CAMBIADORES 101 CA/CB

Como se observó en el capítulo anterior el electo que produce el incremento de la relación vapor/gas en el reformado primario es el de incrementar la producción vapor. Este hecho podría tener su aplicación cuando la turbina del compresor del gas de sintésis JT -103 y/o el mismo compresor pierde eficiencia, (normalmente por desajustes mecánicos) ya que éstas podrían compensarse con mayor flujo de vapor. Por otro lado, el vapor "sobrante", normalmente vapor de media (580 psig), podría usarse para compensar perdidas de eficiencia en las turbinas de los comprensores de aire, de refrigeración y/o agua de calderas. Es importante aclarar que bajo ninguna circunstancia se debe permitir que las turbinas mencionadas operen con baja eliciencia; sin embargo cuando por una u otra razón se debe mantener la operación vapor/gas.

Por otro lado, el hecho de operar la planta con relaciones vapor/gas más atlas implica, en principio, que el reformador primario se debe operar con mayor flujo a través de él. Sin embargo, aprovechando el hecho que "sobra" vapor al subir la relación vapor/gas al reformador primario manteniendo fija la temperatura de salida (ver figura 14), podría pensarse en bajar la temperatura de salida del reformador primario hasta que no sobre vapor. Este hecho se ilustra en la figura 15 donde se observa que al usar una relación vapor/gas, mayor que la de diseño (3.8 mol/mol) la temperatura de salida del reformador primario se puede bajar, lo que hará menos

severa su operación con los consiguientes beneficios mecanicos como son el prolongar la vida tanto de los tubos como del catalizador.

Finalmente el déficit de vapor que se observa cuando se baja la carga a la planta podría compensarse si se incrementa la relación vapor/gas al primario o se incrementa la temperatura de salida de éste.

TABLA IV

VARIACION DE FLUJO DE GAS AL REFORMADOR PRIMARIO

VARIACION EN EL FLUJO DE GAS	DISEÑO	110 %	90 %	80 %	70 %
VAPOR A TURBINA JT/103 (TON/H)	276.98	304.58	249.28	221.59	193.89
VAPOR AL REFORMADOR PRIMARIO (TON/H)	101.65	111.81		81.32	71.15
PRODUCCION DE VAPOR EN 101 CA/CB (TON/H)	179.45	191.78	162.5	145.92	130
VARIACION EN LA PRODUCCION DE VAPOR EN 101 CA/CB	100.00 %	106.9 %	90.6 %	81.11%	72.4 %

TABLA V

VARIACION DE LECTURA DE VAPOR AL REFORMADOR PRIMARIO

VARIACION EN LA LECTURA DE VAPOR AL REF. PRIMARIO	DISEÑO	150 %	120 %	110 %	90 %	80 %
VAPOR A TURBINA JT/103 (TON/H)	276.98	276.98	276,98	276.98	276.98	276.98
VAPOR AL REFORMADOR PRIMARIO (TON/H)	101.65	152.47	121.98	111.81	91.48	81.32
PRODUCCION DE VAPOR EN 101 CA/CB (TON/H)	179.45	232,92	201.25	190.75	166.25	150.50
VARIACION EN LA PRODUCCION VAPOR EN 101 CA/CB	100.00 %	129.80 %	112.15 %	106.30 %	92.65 %	83.87 %

TABLA VI

VARIACION DE TEMPERATURA DE SALIDA DE GASES DEL REFORMADOR PRIMARIO

VARIACION EN LA		845 %	815 %	900.90
TEMPEDATUDA	BBENC	100 %	515 0	800 0
		102 %	98 %	96 %
VAPOR A				
TURBINA	276 98	276.98	276.98	276.98
JT/103	210.00		2.0.00	
(TON/H)	n an at	ale Aurana.		
VAPOR AL				
REFORMADOR	101.65	101.65	101 65	101 65
PRIMARIO	101.00		101.00	101.00
(TON/H)				
PRODUCCION			网络拉耳科	$\left\{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
DE VAPOR EN 101 CA/CB	179.45	183.75	169.75	157.50
(TON/H)				
VARIACION EN	_			
LA PHODUCCION	100.00 %	102.40 %	94.60 %	87.77 %
DE VAPOR EN				
101 CA/CB	1997) 1997 - 1997 - 1997 1997 - 1997 - 1997			

VAPOR ADICIONAL AL VARIAR LA RELACION VAPOR/GAS PRODUCCION DE VAPOR (Ton/h)

FIG. 14

PRODUCCION DE VAPOR EN LOS CAMBIADORES 101 CA/CB PRODUCCION DE VAPOR (Ton/h)

CAPITULO VII

CONCLUSIONES

De acuerdo a los resultados descritos con anterioridad, se puede decir que el modelo desarrollado en el capítulo 3, además de reproducir las condiciones de diseño de los cambiadores 101 CA/CB, tambien puede reproducir el comportamiento de los cambiadores en una planta real, al menos cualitativamente.

Los únicos fenómenos que se ignoraron en la derivación de las ecuaciones que constituyen al modelo son los siguientes:

Difusión axial de energía tanto en el gas como en el agua que se vaporiza.

Efectos viscosos que pudieran generan calentamiento.

Caída de presión del lado del gas.

Con respecto a los dos primeros puntos se puede demostrar que su contribución en el comportamiento global del sistema es despreciable; para el tercer punto, tomando en cuenta las condiciones de flujo resulta que no es significativo el efecto de la caída de presión sobre la transferencia de calor a los cambiadores 101 CA/CB.

En el capitulo anterior se describieron una serie de resultados que se obtienen al variar las condiciones de operación en el reformador primario. Las conclusiones que se pueden extraer de estos resultados son las siguientes:

Si se disminuye el flujo de gas a reformación, manteniendo la misma relación vapor/hidrocarburos y la misma temperatura de salida del reformador, existe un exceso de vapor en la planta lo que permitiría operar el reformador con una menor temperatura, prolongandose la vida útil de los tubos del mismo.

a)

Por el contrario, si se aumenta el flujo de gas a reformación, se presento un defecto de vapor en la planta, lo que obligaría a incrementar la temperatura de operación del reformador primario, disminuyendose la vida útil de los tubos.

- b) Los efectos descritos a el punto anterior se repiten cuando se aumenta el flujo de vapor al reformador primario, es decir, al aumentar el vapor al reformador, fa cantidad de vapor adicional que se produce es menor a la segunda, mientras que se disminuye, existe un exceso de vapor. Este último efecto no es del todo benefico ya que al disminuir el vapor al reformador puede provocar una desactivacion por carbonización del catalizador.
- c) Por último, el efecto de variar la temperatura de salida del reformador primario es el copiado. Es decir, aumentando la temperatura aumenta la producción de vapor y disminuyendola baja la producción de vapor.

El modelo desarrollado en esta tésis puede ser usado en los siguientes casos:

Detección de problemas operativos entre el reformador secundario y los cambiadores 101 CA/CB que ocasione que éstos no operen en forma simétrica como debe de ocurrir. Con este modelo se podría conocer los efectos que se producen sobre la generación de vapor. (De hecho, el modelo se ha usado para

el análisis de un problema operativo en un reformador secundario).

Se puede predecir la producción total de vapor sobrecalentado de alta, el cual provee la fuerza motriz de la turbina JT-103 del compresor de síntesis; a partir de este dato es factible realizar una evaluación confiable del comportamiento de la turbina.

Se espera que dentro de las aplicaciones de este modelo se pueda monitorear la operación de los cambiadores ya que con frecuencia, cuando a éstos se les dá mantenimiento, se encuentran bayonetas rotas en el extremo de retorno así como en el espejo caliente. Estas fallas limitan la producción de vapor de la planta por lo que es importante cuantificar y analizar hasta que punto es tolerable.

ANEXO A

CORRELACIONES EMPLEADAS

Propiedades termolísicas del agua y relaciones que se empleadas para calcular coelicientes de transporte y caída de presión.

En esta sección so presentan las correlaciones que se emplearán para poder calcular todos los coeficientes de transporte y propiedades termotísicas del agua. Con respecto a éstas últimas, se hicieron ajustes por mínimos cuadrados para cubrir únicamente el rango de presión y temperatura de interés.

A.1.- PROPIEDADES TERMOFÍSICAS DEL AGUA

a -- Presión de vapor (ecuaciones (7),(7'), y (7"))

In P = 12.5666 - 4639.938/T

(A.1)

(A.2)

donde

P = Presión de vapor (Kg/cm²abs)

T = Temperatura (°K)

y de esta ecuación se obtiene que

 $dP/dT = P \cdot (4639.938/T^2)$

(Kg/cm²/°K)

término que se usa en las ecuaciones diferenciales para la fracción vaporizada de agua

b.- Calor latente de vaporización (λ)

Esta propiedad del agua se puede predecir a partir de

 $\lambda = -1571.459 + (2.2.18536 \cdot 10^{6}/(1 + 460))$ (A.3)

donde

λ

Calor latente de vaporización (BTU/lb)

Temperatura (* F)

c.- Densidades del líquido y del vapor (pL , py)

Estas propiedades se predicen de acuerdo a

 $1/\rho_1 = -0.00258 + 4.367 \cdot 10^{-5} t$

ρ_v =-16.12069 + 0.0330921

(A.5)

(A 4

donde:

PL	н	Densidad det agua liquida (lb/tl ³)
Ρv	=	Densidad del agua vapor (Ib/It ³)
t	=	Temperatura ("F)

NOTA: En las ecuaciones (A.1), (A.3) - (A.5), los coeficientes de correlacion son superior a 0.9997, para un rango de temperaturas de 581°F - 602°F (305°C - 317°C), correspondiente a un rango de presión de 1400 - 1550 psia (98.6 Kg/cm² abs - 109 Kg/cm² abs)

d.- Otras propiedades (CpL, Cpv, µL, µv, kL, kv, σL)

El resto de las propiedades termolísicas se tomaron como constantes, dado el rango de operación que se observa en los 101 CA/CB

Cpl.	=	1.46, calor específico del agua liquida (BTU/b'F)	
Cpv	π	1.73, calor específico del agua vapor (BTU/b°F)	
μL	- = -	0.07, viscosidad del agua liquida (cp)	
μ _v		0.02, viscosidad del agua vapor (cp)	
kL	a	0.3149, Conductividad térmica del agua líquida (BTU/h f	(F)
k _v	=	0.0404, Conductividad térmica del agua vapor (BTU/h lt	۴F}
σL	u	13.0, Tensión superlicial del agua líquida (dinas/cm)	

A.2.- PROPIEDADES TERMOFÍSICAS DE LOS GASES EN LA CORAZA.

En este inciso se presentan las correlaciones empleadas para predecir las propiedades de transporte y lísicas de la mezcla de gases que sale del reformador secundario y entra a los 101 CA/CB.

A.2.1.- CAPACIDAD CALORÍFICA

La capacidad calorífica molar de la mezcla gaseosa se calculó de acuerdo a

$Cp^{m} = \sum_{i=1}^{n} x_i Cp_i$; BTU/Ibmol^oR.

donde

X

- $Cp_i = a_i + b_i T + c_i T^2 + d_i T^3$
 - Fracción mol del i-ésimo componente.
 - = Temperatura
- ai, bi, ci, di _____ Constantes para calcular el calor específico del i-ésimo componente (Tabla I).

TABLA I.- COEFICIENTES PARA EL CALCULO DEL CALOR ESPECIFICO.

La bia matatik kana kana personakanan kana		a second in the second second in the second s	a shi na shi ka shi	
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	的方式。 這個語識	State Contracts	· 後期時間的10月1日(11月)	
			2010 - 10 - 10 - 10 - 10 - 10 - 10 - 10	
Componente	a j	b;*10≤	<u> </u>	di 109
	111111111111111111111111			
<u>N2</u>	6.903	-0.03753	0.193	-0.6861
a state of the second		Contactoring Particular Solution of the Contactoring of the Contactoring Solution of the Contactoring of the Contactoring Solution of the Contactoring of the Contactoring Solution of the Contactoring Solution of the Contactoring Solution of the Contactoring Solution of the Contactoring Solution of the Contactoring Solution of the Contactoring Solution of the Contactoring Solution of the Contactoring Solution of the Contactoring Solution of the Contactoring Solution of the Contactoring Solution of the	Alexandrichter in the second sec	1
		的。在自己的问题的		
	4.75	1.2	<u> </u>	-2.63
H ₂ O	7.7	0.04594	0.252	-0.8587
	Construction of the second s second second se second second se		<u></u>	
Ha	6.952	-0.04576	0.09563	-0.2079
			All a di	
, í			Alexandra de la composición de la compo	
CO	6.726	0.04001	0.1283	-0.5307
			and the second second	
CO2	5.316	1.4285	-0.8362	1.784
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A DECK. ALL AND A DECK. PARTY REPORT		And a second	

A.2.2 VISCOSIDAD

El cálculo de esta propiedad de transporte se hizo de acuerdo al siguiente procedimiento:

 $\mu^{m} = (\Sigma x_{j} \, \mu^{\circ}_{i}) \, / \, \Sigma x_{j} \, \phi_{ij}$

; centipoises

donde:

Viscosidad del i-ésimo componente.

 $\psi_{ij} = \{1 + (\mu_i/\mu_j)^{1/2} (M_j/M_j)^{1/4}\}^2 / [8 (1 + (M_i/M_j)]^2]$

 $\mu^{n}_{i} = 2.6693 \cdot 10^{-3} \cdot ((M_{i} \cdot T)^{1/2}) / \sigma_{i}^{2} \cdot w_{i}$

0.74 T/k; 8.9

Wj =

(1.3023 - 0.12807 • (T/kj) + 0.00721 (T/kj)² T/kj < 8.9

".K

Peso Molecular del i ésimo componente (Tabla II)

σ_j, k_j

Mi

Constantes para el i-ésimo componente (Tabla II)
TABLA II.- CONSTANTES PARA EL CALCULO DE LA VISCOSIDAD.

	and the second second	we character a set of the	
Composito			
Componente	And the state Million Strateward	1999 - 1999 - OI 1977 - 1995 - 1	STREAM IN THE REAL PROPERTY OF A
No No	28	3.681	91.5
CHA	16	3.822	136.5
HinO HinO	18	2 649	356.0
	2	2.968	33.3
co		3.590	110.0
CO ₂	44	3.996	190.0
The second se	THE REPORT OF A DESCRIPTION OF A DESCRIP	the second se	مستنفته يبرب سينتشون براع ستنتج وسيباست

A.2.3 CONDUCTIVIDAD TERMICA.

Para calcular esta propiedad se usó la siguiente expresión empírica:

k^m = 18.02618 µ/M^m

BTU-ft/h-ft2- °F

Donde

M^m = Peso Molecular de la mezcla.

A.3 COEFICIENTES DE TRANSFERENCIA DE CALOR(HG, HW, UGW, UWW).

Gases en la coraza (hg)

Este coeficiente de transferencia de calor se puede calcular a partir de

 $Nu_g = (h_g \cdot D_{es})/k_g = 0.027 \text{ Reg}^{0.8} \text{ Pr}_g^{1/3}$

Donde:

a)

2.1.2 (1) + 4.3 (4)	1.1				
Nug	#	Número de Nussell para los gases.			
hg	Ħ	Coeficiente de transferencia de calor de los	gases (BT	U/h-1(^{2.} 'F)	
D _{es}		Diámetro equivalente del lado de la coraza	(†)		
	-	4 ·(3/2 P ₁ ² · π ^{/4} D ₀₀ ²)' D ₀₀			
		(para arreglo triangular).			
PL	-	Pitch de los tubos (II)			
Reg	n	Número de Reynolds para los gases.			
		D _{es} Gg/6.714'10 ⁻⁴ μg			j. d. l.
Gg	. .	Flujo másico de los gases (lb/h-lt ²)			
	=	(w/2) / A _s			÷.,
As	=	Area de Ilujo equivalente a la coraza (ft ²)(v	er ligura 6)		
	- ,	D _s C _B C/P _t			
Ds		Diámetro interno del cambiador de calor (#)	h		
CB	=	Espaciamiento entre mamparas (II).			
С		Claro de los tubos (II).			
	÷	Pu - Dea			

71

Número de Prandil de los gases.

6.714'10'4 Cpg Pg kg

Agua en las bayonetas (hw)

Para este caso se deben distinguir las siguientes situaciones:

Unicamente agua líquida

Nuw = hwDe/ KL = 0.023 Rew0.8 Prw0.4

Donde:

Nuw	Número de Nussell del agua liquida.	
h _w	Coeficiente de transferencia de calor del agua líquida (B	TU⁄h #² °F)
D _e	Diámetro equivalente (It)	
	D _{ii} , para el tubo interior de la bayoneta.	
	≖ D _{io} - D _{oi} , para el espacio anular.	
Rew	Numero de Reynolds del agua liquida.	
	= De G _w /6.714 * 10 ⁻⁴ μ _w	
G _w	Flujo másico del agua líquida (lb/h lt ²)	
	= $n\nu N_{\rm B}/\pi/4~{\rm D_{ij}}^2$, para el tubo interior de la bayoneta.	
	$m/N_B/\pi/4$ ($D_{io}^2 \cdot D_{oi}^2$) , para el espacio anular.	
Pr _w	Número de Prandil para el aqua líquida.	
	= 6.714 * 10 ⁻⁴ Cρ _L μ _L /k _l	

Dos fases (agua en ebullición)

Para esta situación el coeficiente de transferencia de calor se predice de acuerdo a (ya corregido por presión)

 $h_W = 82.18 (\Lambda T_X)^3$

Do

nde	-														
	N		ta inina Agina	Coelic	ciente de	transfe	rencia	de cal	or del	agua	en eb	ulliciór	(BT	U/h ft	2
	오다. 1977년			۲ F }						1					
Δ	Tx	-		۲ _w -	Tagual										
T	w			Temp	eratura c	le pare	d (' F)								
Т	agua	=		Temp	eratura c	ie la me	ezcla li	quido/v	apor	(°F)					

De acuerdo a esta última definición, la mezcla vapor/líquido en el anular presenta dos coeficientes de transferencia de calor: uno hacia el gas, el cual se calcula como

 $h_w 9 = 82.18 (T_w^0 - T^0)^3$

y otro hacia el tubo interior de las bayonetas que se calcula como

 $h_w eb = 82.18 (Te - T_w eb)^3$

donde:

 T_w^e se calcula de acuerdo a la ecuación (30) y T_w^{eb} , la temperatura de pared exterior de los tubos interiores, como

$T_w^{eb} = T^e - U_{ww}/h_w^{eb} (T^e - T^t)$

Cuando el agua que circula por los tubos de las bayonetas entra en ebullición, su coeficiente de transferencia de cator se calcula como

 $h_w^{tb} = 82.18 (T_w^{tb} - T_b)^3$

donde:

 $\mathsf{T}_{\mathbf{W}}^{l\mathbf{b}},$ la temperatura de pared interior de los tubos interiores, se calcula de acuerdo a

 $T_w^{tb} = T^t + (U_{ww} D_{ni}/h_w^{tb} D_{ii})^* (T^e - T^t)$

Habiéndo calculado los coeficientes de transferencia de calor individuales (hg y h_w), los coeficientes de transferencia de calor globales se calculan como

Entre el gas y el agua

 $U_{gw} = 1/[(1/h_0) + (D_{go}/k_l \ln(D_{go}/D_{io})) + (D_{go}/D_{io}^{*}(1/h_w^{e}))]$

donde

k_l

Conductividad térmica del metal (BTU/h ft °F) y debe emplearse el coeficiente de calor $h_w{}^{e}$ de acuerdo al estado en que se encuentre el agua en el espacio anular de las bayonetas.

Entre el agua del anular y el agua de los tubos.

 $U_{WW} = 1/[(1/h_W^e) + (D_{0i}/k_i ln(D_{0i}/D_{ii})) + (D_{0i}/D_{ii}^*(1/h_W^t))]$

donde, al igual que el caso anterior,

hw^eyh_wt =

se calculan de acuerdo al estado en que se encuentra el tubo en el espacio anular y en el interior de los tubos, respectivamente.

A.4 CAÍDA DE PRESIÓN (H_F)

Para calcular la caída de presión para flujo en dos fases, se usó el siguiente procedimiento (2)

a) Flujo Burbuja, durante la primera fase de la ebullición la cual se presenta si

 $B_x = 531 (1-x)/x [(\rho_L \rho_V)^{1/3}/\rho_L^{2/3}] \mu_L/\sigma_L > 120$

b) Flujo disperso, el cual pudiera presentarse en la pierna ascendente, cuando

 $B_{x} < 120$

 $y B_y/B_x > 240$

donde

 $B_{\gamma} = 2.16 W_{\gamma}/A(p_L p_V)^{1/2}$

W_v = Flujo de vapor (lb/h)

A ____ Area de Ilujo (fi²)

Con lo anterior, la caída de presión se calcula de acuerdo a:

Para cada fase se calcula (i = L o V)

Rei = DeVipi/ µi

El factor de fricción se calcula como

64/Rej

Fi

Re_i < 2,000

Rei > 2,000

 $[(2 \log_{10}[0.27 \text{ c/D} + (7/\text{Re}_i)^{0.9})]^2]$

y la caída de presión por unidad de longitud como

 $H_{fi} = (F_i \cdot V_i^2 \cdot p_i)/(2g_c \cdot D_e \cdot 144)$

Donde:

H_{li}

V_i

Calda de presión por fricción en cada fase (psi/fi) Velocidad lineal de cada fase (lt/seg).

Si para algún punto en particular no existe vapor (x = 0) la caída de presión por fricción querta dada por el correspondiente líquido. Para el caso en que existen dos fases, la caída de presión por fricción se evalúa de acuerdo a

 $H_{f} = H_{fv} * Y_{v}$

(psi/ft)

donde Yy, factor de corrección, se calcula de acuerdo al régimen de flujo como sigue:

Flujo Burbuja (B_X > 120)

 $R = (H_{IV}/H_{IL})^{0.5}$

 $F_{\rm R} = V^2 / (32.16 \cdot D)$

 $B_{D} = 0.19 \cdot R \cdot F_{R}^{0.185}$

 $Y_V = [(14.2 \cdot B_D^{0.75})/(W_L/\Lambda)^{0.1})]^2$

En las expresiones anteriores

V = Velocidad lineal de la mezcla vapor/liquido (tt/seg) De = Diámetro equivalente de Ilujo (tt) Flujo Disperso ($B_x < 120$, $B_y / B_x > 240$)

Ln Yy^{1/2}= 1.4659 + 0.49138 ln R + 0.04887 (ln R)² - 0.0003487 (ln R)³

Adicionalmente a la caída de presión en las diferentes secciones del sistema (lubos y piernas ascendentes y descendentes) se tomaron en cuenta las caídas de presión por cambios súbitos de velocidad (boquillas y espejos) de acuerdo a los siguientes esquemas:

Boquillas piernas descendentes/entrada al cambiador

32.2 ft/seg²

 $P = V_1^2 \rho/2g_c 144$

(26A)

Donde:

V₁ 96

Velocidad del agua en la pierna descendente.

Espejo/tubos interiores de las bayonetas

 $P = (V_2^2 p/2g_c 144)^{-5}$

(26B)

donde:

Velocidad del agua en los tubos interiores de las bayonetas.

ESTA TESIS NO DEBE Salir de la biblioteca

Espacio anular de tubos en la bayonetas

 $P = (V_3^2 \rho / 2g_c 144)^*.5$

(26C)

donde :

٧a

Velocidad de la mezcla líquido-vapor en el espacio anular de las bayonetas.

Salida del cambiador/boquillas piernas ascendentes

$P = (V_4^2 p/2g_c 144)^*.5$

donde:

V4

Velocidad de la mezcla líquido-vapor en las piernas ascendentes.

Cambio de dirección en el fondo de las bayonetas

 $P = [(V_1^2 + V_4^2)^* p/2g_c 144]$

(26E)

(26D)

Las anteriores caídas de presión se añaden o se restan, según corresponda, a las presiones calculadas mediante la integración de las ecuaciones diferenciales en las diferentes zonas del cambiador.

79

ANEXO B

Derivación de las ecuaciones 2, 4, 4', 8, 11, 12, 13, 14, 17, 18, 19, 20, 23.

En este anexo se presenta la derivación detallada de cada una de las ecuaciones que describen el comportamiento de las diferentes partes del modelo.

> B.1. EQUACIONES 2. 4', 12 Y 18. SUPONIENDO QUE NO EXISTE VAPORIZACIÓN, EL BALANCE SE ESTABLECE COMO SIGUE (FIGURA B.1)

Fuerzas en $(z + \Lambda z)$ - Fuerzas en z = Fuerzas perdidas por fricción.

 $[-144 P (z + \Delta z)g_{c} A + \rho_{L} (z + \Theta \Delta z)g_{c} A \Delta z] + 144 P(z)g_{c} A =$

 $144g_{c}$ H₁ (z + $\Theta \Delta z$) A Δz (A)

(')

0>0>1

(*) Debido a la definición usualmente empleada para H_f (Cap. 3), pareciera que este término actual sobre todo el elemento de volúmen, AΔz, cuando en realidad solamente actua sobre el área perimetral πDΔz.

Dividiendo entre el elemento el volúmen AAz y tomando el límite cuando Az tiende a cero, se obtiene

 $dP/dz = (g/g_c)^*(p_1/144) - s^* H_f$

Esta ecuación corresponde a las ecuaciones (2), (4'), (12), (18) del capítulo 3, con s = 1 si el fluido se mueve en la dirección del eje z (hacia abajo), como en el caso de la pierna descendente y del lubo interior de las bayonetas y vale -1 si el fluido se mueve en dirección contraria al eje z (hacia arriba), como en el caso de la pierna ascendente y en el espacio anular de las bayonetas.

B.2. <u>Ecuaciones (4), (13), (19)</u>. En contraste con el caso anterior, en esta derivación se supondrá la coexistencia de agua líquida y vapor; tomando en cuenta esta suposición, el balance de fuerzas queda como: (figura B.2).

 $[-144 P(z + \Delta z)g_c A + p_m(z + \Theta \Delta z)g_c A \Delta z] + 144 P(z)g_c A +$

 $[-1/2 \rho_{\rm m}(z + \Delta z) v_{\rm m}^2 (z + \Delta z) + 1/2 \rho_{\rm m}(z) v_{\rm m}^2 (z) Adz =$

144gc HI (Z + OAZ) AAZ (S)

Dividiendo entre el elemento de volúmen A Δz y tomando el límite cuando Δz tiende a cero, se obliene

 $dP/dz = (g/g_c)^*(\rho_m/144) - s^*H_l - 1/2^*d/dz(\rho_m v_m^2)/144g_c$

81

TINURA B 2 - BALANCE DE FUERZAS EN UN ELEMENTO AZ DE TUBO, CON CAMBIO DE FASE

Si adicionalmente se supone que la densidad permanece razonablemente constante, se obtiene entonces que

 $dP/dz = (g/g_c)^{(p_m/144)} \cdot s^{H_1} \cdot 1^{p_m/(g_c^{144})v_mdv_m/dz}$

ecuación que corresponde a las ecuaciones (4), (13) y (19) del capítulo , usando el nilsmo significado al asignado anteriormente a la variable s.

La diferencia entre esta última ecuación y la derivada en el inciso anterior radica en el último término del lado derecho. Note que si el fluido no cambia de fase, es decir permanece con velocidad constante, la derivada que aparece en el último término se anula, generándose así la ecuación del inciso anterior.

B.3. <u>Ecuacion (8)</u>. Para derivar la ecuación (8), se efectúa un balance de energía, suponiendo que el tubo está perlectamente aislado, es decir, constiluye un sistema adiabático. Bajo estas condiciones, el balance de energía se escribe como (Figura B.3)

Energía entra - Energía sale = 0

 $mX(z + \Delta z)H(z + \Delta z) + m[1 + X(z + \Delta z)]h(z + \Delta z) + mX(z)H(z) + m[1 + X(z)]h(z) = 0$

la cual se reescribe, al tomar el límite cuando Az tiende a cero, como

d(XH)/dz + d[(1 - X)h]/dz = 0

m/2

FIGURA B3 .- ELEMENTOS INVOLUCIADOS EN EL BALANCE DE ENERGIA PARA LA Pietnia ascendente. y desarrollando las derivadas

$$(H - h)dX/dz + XdH/dz + (1 - X)dh/dz = 0$$

Tomando las definiciones de las entalpias del vapor, H, y del líquido, h, así como la del calor latente de vaporización, λ ,

 $dH = Cp_V dT$

 $dh = Cp_{L}dT$

 $\lambda = H - h$

se obliene

 $dX/dz = - (XCp_V + (1 - X)Cp_L)/\lambda(dT/dz)$

que corresponde a la ecuación 8 del capítulo 3.

Ahora bien, en este elemento del modelo completo no se dispone de ecuación alguna para calcular explícitamente la variación de la temperatura con la altura del tubo. Sin embargo, empleando la ecuación para la presión de vapor y la regla de la cadena se obtiene lo siguiente: De la ecuación de la presión de vapor

P = P(T)

se obtiene, al escribirla en forma diferencial

dP = (dP/dT)dT

y dividiendo entre dz queda finalmente que

dT/dz = (dP/dz)/(dP/dT)

donde el término dP/dz corresponde a la caída de presión a lo largo del tubo y dP/dT se obtiene de la ecuación para la presión de vapor.

B.4. <u>Ecuación (11)</u>. Para obtener la ecuación (11) se procede a efectuar un balance de energía tomando en cuenta los elementos que aparecen en la ligura B.4; suponiendo que no hay cambio de fase en la corriente analizada

Energia entra - Energia sale = 0

 $mh(z) + U_{ww}[T^{0}(z + \Theta \Lambda z) - T^{1}(z + \Theta \Lambda z)]N_{B\pi}D_{0i}\Lambda z - mh(z + \Lambda z) = 0$

Dividiendo entre Az y lomando el limite cuando Az liende a cero, así como la definición de la entalpia del líquido empleada con anterioridad se obtiene $dT^{l}/dz = (N_{Bp}D_{0j}/mCp_{L})U_{WW}(T^{\theta} - T^{l})$

que corresponde a la ecuación (11) del capítulo 3.

B.5. <u>Ecuación (14)</u>. Para obtener la ecuación (14), combinamos los conceptos usados en los incisos (B.3) y (B.4), con las variables mostradas en la figura B.4.

$$\begin{split} &\mathrm{mX}(z) \, I\,(z) + \mathrm{m}[1 - X(z)] \mathrm{I}(z) + U_{\mathrm{WW}}[\mathrm{T}^{\mathrm{D}}(z + \Theta \Lambda z) - \mathrm{T}^{\mathrm{I}}(z + \Theta \Lambda z)] \mathrm{N}_{\mathrm{B}} \pi \mathrm{D}_{\mathrm{O}} \Lambda z - \mathrm{mX}(z + \Lambda z) \mathrm{I} \mathrm{I} - \\ &\mathrm{m}[1 - X(z + \Lambda z)] \mathrm{I}(z + \Delta z) = 0 \end{split}$$

Dividiendo entre maz y tomando el límite cuando tiende a cero se obtiene

 $d(XH)/dz + d/dz[(1 \cdot X)h] = (N_B \pi D_{0i}/m) U_{WW}[T^{0} - T^{1}]$

y efectuando los mismos pasos para obtener la ecuación (8) en el inciso B.3 se obtiene finalmente la ecuación (14) dada por

 $dX/dz = - \left[(XCp_V + (1 - X)Cp_L)/\lambda \right] (dT/dz) + (N_B \pi D_0 i/m \lambda) U_{WW}(T^e - T^{\dagger})$

FIGURA BA -- ELEMENTOS RIVOLUCRADOS EN LOS BALANCES DE ERENGIA DE LOS CAMBIADORES IDI CA/CB

(a) A set is a first set of a set a set of a set of

BIBLIOGRAFIA

- Bromley, L.A., "Heat transfer in stable film boiling" Chem. Eng. Prog. Vol. 46, No. 221-227, 1950.
- 2) Collier, John G., Convective Boiling and Condensation. McGraw-Hill.

3) Crane, Flow of fluids through valves, fittings and pipe.

 Fair R. J., "What you need to design thermosiphon reboilers". Petroleum Reliner, Vol. 39, No. 2, 104 - 123, 1960.

- 5) Fair R. J., "Vaporizer and reboiler design". Chem. Eng. Julio 8, 119 121, 1963.
- Forster K. H., Zuber N., "Growth of a vapor bubble in a superheated liquid". Journal of applied physics, vol. 65, No. 4, 474 - 478, 1954.
- 7) Foust A.S., Wenzwel L.A., Clump C.W., Maus L., Principios de Operaciones Unitarias, Ed. CECSA 1a. Edicion, 1980.
 - Frank O. Prickett R., " Designing vertical thermosiphon reboilers". Chem. Eng., sept 3, 107 - 110,k 1973.
 - Gambill R. Wallace, "An evaluation of recente correlations for high-flux heat transfer. Chem. Eng., Agosto 28. 147 - 154.

<u>89</u>

- Gilmour H. Charles, "Performance of vaporizers: Heat transfer analysis of plant data", Chem. Eng. Prog. S.S., Vol. 54, No. 10, 77 - 79, 1958.
- Gilmour H. Charles, "Nucleate Boiling": Chem. Eng. Prog. S.S., Vol. 54, No. 10, 777-79, 1958.
- Kaufmann A., Mélodos y modelos de la investigación de operaciones, pags. 32 -48, Ed. CECSA, 1a Edición, 1969.
- McNelly J. M., " A correlation of the rates of heat transfer to nucleate boiling liquids". J. Imp. Coll. Chem. Soc., No. 7, 18-34, 1953.
- 14) Mostinky I.t., " Aplication of rule of corresponding states for the calculation of heat transfer and critical heat flux to boiling liquids". Teploenergetika No. 4, 66 -71, 1963.
- Nukiyama Shiro, "Maximum and minimum values of heat transmitted from metal to boiling water under atmospheric pressure". J. Soc. Mech. Eng., Japan, Vol. 37, No.206, 367 - 374, 1934.
- Palen W. J., Shih Co., Perfomance limitation in large scale thermosyphon reboiler", Paper HE22, Proceedings of trhe fifth international heat transfer conference, Tokyo 1974.
- Palen W. J., Small M. W., "A new way to design Kettle and internal reboilers". Hydrocarbon Processing, Vol. 43, No. 11, 199 - 207, 1964.

- Palen W. J., Taborek J. J., "Preventing inefficient design of thermosyphon reboilers", XX National Conference IMIQ/AICHE, México, 1980.
- Palen W. J., Taborek J. J., "Refinery Kelle reboiles". Chem. Eng. Prog., Vol. 58, No. 7, 37 - 46, 1962.
- Palen W. J.M., Yarden A., " Characteristics of boiling outside large scale horizontal multilube bundles", AICHE Symp. Series, Vol. 68, No. 118.
- Perry H.R., Chillon H.C., Manual del Ingeniero Químico. 5a Edición. McGraw Hill.
- Satterfield N. C., Heterogeneus catalysis in practice, pags 301 309. McGraw Hill, 1980, 1a Edición.
- 23) Ullman's Encyclopedia of Industrial Chemistry Ammonia. Reprint VCH, 1991.

91

24) Westmater, W.J., "Boiling heat transfer". American scientist, 427 - 445.