03077

# UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

Unidad Académica de los Ciclos Profesional y de Posgrado del Colegio de Ciencias y Humanidades Sede: Instituto de Geofísica

# Estructura de la corteza y manto superior en el Norte de México (a lo largo del Trópico de Cáncer desde Baja California hasta el Golfo de México)

# TESIS QUE PARA OBTENER EL GRADO DE MAESTRIA EN SISMOLOGIA Y FISICA DEL INTERIOR DE LA TIERRA PRESENTA

# TATIANA PETROVNĄ KERDAN

# TESIS CON FALLA DE ORIGEN

MEXICO D. F.

OCTUBRE 1992

1-A 2e)



# UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

# DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. INDICE

| Introducción                                                                       | 1   |
|------------------------------------------------------------------------------------|-----|
| Capítulo I. Marco geológico regional.                                              | 7   |
| Capítulo II. Estructura sísmica de la corteza y manto<br>a lo largo del transecto. | 42  |
| Capítulo III. Modelo gravimétrico para el área del transecto.                      | 68  |
| Capítulo IV. El estudio de la isostasia en el transecto.                           | 87  |
| Capítulo V. Magnetometría.                                                         | 133 |
| Capítulo VI. Flujo de calor.                                                       | 156 |
| Capítulo VII. Consideraciones sobre la evolución tectónica<br>de la Mesa Central.  | 225 |
| Bibliografía.                                                                      | 247 |
| Anexo A. (Gravimetría).                                                            | 262 |
| Anexo B. (Isostasia).                                                              | 278 |
| Anexo C. (Magnetometría).                                                          | 298 |
| Anexo D. (Flujo de calor).                                                         | 319 |
| Conclusiones.                                                                      | 333 |

## INTRODUCCION-

### OBJETIVOS.

El objetivo principal de este trabajo es inferir la estructura de la corteza superior e inferior, así como del manto superior (litósfera superior) a lo largo de un transecto que pasa por el Trópico de Cáncer  $(23^{\circ} 27 \text{ N})$  y que corre desde la peninsula de Baja California (110° W) hasta los domos salinos de Segsbee en el Golfo de México (92° W) (Fig. 1 ).

### ANTECEDENTES.

El transecto aquí estudiado corresponde parcialmente al transect H-1 del programa de transectos de margen continental (continente-océano) para Norteamèrica de la Sociedad Geológica Americana e igualmente a uno de los transectos globales recomendados por el Proyecto de Transectos Regionales (Global Geoscience Transects Project - GGT) auspiciados por el Programa Internacional de la Litósfera (International Litosphere Program - I.L.P.) (Fig. 2).

Este proyecto (GGT) tiene el objetivo de facilitar la comparación directa de la estructura de la corteza y de la litósfera en varias partes del mundo. La integración de transectos de todo el mundo es escencial para entender la evolución de la litósfera.

El término "transecto" en este proyecto se refiere a una sección transversal hasta la profundidad del Moho (como mínimo). Los modelos de la corteza deben sintetizar toda la información geológica y geofísica existente sobre el área de estudio.

Los transectos en este proyecto fueron propuestos tomando en cuenta estructuras geológicas importantes (Fig. 2 ). La densidad y la distribución de los transectos en este mapa és aproximadamente lo que el proyecto GGT desea obtener como minimo.

### METODOLOGIA.

Para inferir la estructura de la corteza en nuestra zona de estudio



N

Fig. 1. Transecto estudiado y provincias geológicas que este atraviesa. 19 - Planicie Costera del Golfo de México, 20 - SMOr,
22 - Mesa Central, 24 - SMOc, 28 - Planicie Costera del Golfo de California.



Fig. 2. Distribución propuesta de transectos para el proyecto GGT (tomado de Freeman et al., 1986).

se utilizaron datos de:

1) geologia

2) sismologia

3) gravimetria

4) magnetometria y de

5) flujo de calor.

En la Fig. 3 están representados las áreas del transecto cubiertas por los diferentes métodos geofísicos, geoquímicos, y geológicos.

Este estudio geofísico se realizó de acuerdo al siguiente plan: 1) En principio sintetizar la estructura sísmica de la corteza a lo largo de nuestro transecto a partir de estudios sísmicos ya existentes y realizados en diferentes porciones del mismo.

 Modelar el efecto gravimétrico de las estructuras inferidas a partir de los datos sísmicos.

3) Determinar la profundidad hasta el basamento magnético y la profundidad hasta el punto de Curie y realizar un modelado magnético (si posible).

4) Relacionar los valores de flujo de calor con la estructura cortical propuesta y determinar el espesor de la litósfera térmica en el transecto. Comparar la distribución de la temperatura con la profundidad con las respectivas profundidades al punto de Curie obtenidas en el estudio magnetométrico.

## METAS ESPECIFICAS.

Además del objetivo principal (inferencia de la estructura de la corteza y de la litósfera), en cada capítulo se decidió hacer un resumen de fundamentos básicos que son utilizados. Por ejemplo:

 Para la interpretación gravimétrica se empleó un método bidimensional de interpretación tipo Talwani modificado para considerar la topografía en los cálculos.

2) Hacer una comparación de los resultados obtenidos con las diferentes metodologías para determinar el grado de equilibrio



Fig. 3. Localización de las áreas de los diferentes estudios en el transecto. I-l' - estudio sísmico, modelado gravimétrico y estudio de flujo de calor, M-M' - estudio magnetométrico (perfil total),  $P_1 - P_1'$ ,  $P_2 - P_2'$ ,  $P_3 - P_3'$  - perfiles magnetométricos en la Planicie Costera del Golfo de México, X-X' - estudios de xenolitos de Aranda-Gómez (1987).

×.

isostático.

- 3) Como parte del estudio del flujo de calor
  - a) determinación de la producción de calor radioactivo en la corteza a partir del modelo sísmico;
  - b) construcción de geotermas representativas de cada provincia geológica y
  - c) determinación del espesor de la litósfera térmica a lo largo del transecto a partir de valores de flujo de calor.

4) A partir de interpretación de los datos geofísicos y geológicos proponer un mecanismo para el ascenso tectónico y la posterior extensión cortical de la Mesa Central.

Con el paso del tiempo es aconsejable revisar el modelo de la corteza para una misma área a pesar de la existencia de trabajos de buena calidad. Las razón de esto es la aparición de nuevos estudios de sismica, geologia, etc. sobre el área que pueden proporcionar nuevos detalles.

# CAPITULO I. MARCO GEOLOGICO REGIONAL.

Los objetivos de este capítulo son describir las provincias geológicas del Norte de México, por las cuales pasa el transecto: Península de Baja California, Golfo de California, Planicie Costera del Golfo de California, SMOc, Mesa Central, SMOr, Planicie Costera del Golfo de México y el Golfo de México.

Más que nada se hace incapie en

 a) la descripción de eventos tectónicos en el área estudiada que nos podrián dar luz sobre las causas de la estructura presente de la corteza;

 b) describir tipos de rocas y espesores de las diferentes formaciones regionales que nos podria ser útil en nuestro modelado gravimétrico.

Al final del capítulo se presenta un resumen de eventos tectónicos para todas las provincias desde finales del Paleozóico hasta el reciente con el propósito de relacionar el desarrollo de todas las provincia y que además nos será útil en la elaboración del Capítulo VII (Consideraciones sobre la evolución tectónica de la Mesa Central).

# LA PENINSULA DE BAJA CALIFORNIA Y EL GOLFO DE CALIFORNIA.

a) Cuadro geológico regional.

La península de Baja California es una área montañosa formada por secuencias sedimentarias y vulcano-sedimentarias mesozolcas, intrusionadas por batolitos emplazados durante el Jurásico y el Terciario. Existen algunos afloramientos de rocas del Paleozoico Superior.

Para dar una descripción geológica más clara se ha seguido la subdiviŝión de la peninsula utilizada por Morán Zenteno (1984) (Fig. 1.1):

1) Baja California Norte;



Fig. 1.1. Provincias geológicas de Baja California (tomado de Morán Zenteno, 1985).

2) Cuencas de Vizcaino y Ballenas-Iray-Magdalena;

3) Sierra de la Giganta;

4) Región de Cabo.

A continuación hacemos un resumen de los rasgos más fundamentales de estas provincias.

1) La porción norte de la península se puede estudiar en 3 cinturones preterciarios (Fig.1.2.):

 a) la parte oriental ó cinturón metasedimentario. Las rocas metamórficas derivan principalmente de un metamorfismo de tipo regional que afectó a las rocas sedimentarias (Gastil, 1975; 1981);

b) en la parte media existe un cinturón volcanoclástico mesozoico constituido por secuencias de rocas volcanicas, volcanoclásticas y sedimentarias cuya edad corresponde principalmente al Aptiano -Albiano (Gastil, 1973). Estos dos cinturones están afectados por intrusienes batolíticos mesozoicas;

c) parte occidental ó cinturón sedimentario del Cretácico superior compuesto por sedimentos marinos y continentales cubriendo en discordancia angular a rocas intrusivas volcánicas y sedimentarias más antiguas.

2) Cuencas de Vizcaino y Ballenas - Iray - Magdalena.

Esta sub-provincia abarca la mitad occidental de la mayor parte del estado de Baja California Sur. Estas zonas están conformadas por rocas sedimentarias y volcánicas con edades desde triásicas hasta recientes rellenando dos depresiones de orientación NW-SE (Morán Zenteno, 1984).

3) Sierra de la Giganta.

Baja California Sur se caracteriza por la presencia de una extensa cubierta de rocas piroclásticas (aglomerados volcánicos, tobas pumicíticas, ignimbritas), derrames lávicos y areniscas continentales (litoarenitas, conglomeradas) (en conjunto hasta 1200 metros de espesor) que constituyen la Sierra de la Giganta.



Fig. 1.2. Terrenos Preterciarios de Baja California (tomado de Moran Zenteno, 1985).

4) En el extremo Sur de la península - en la región del cabo vuelven a aparecer afloramientos de rocas plutónicas del Cretácico, que están intrusionadas en las rocas metamórficas. La zona del Cabo presenta además una sorie de fallas normales de orientación cercana a N-S, que dan origen a fosas tectonicas en las cuales han ocurrido los depósitos de sedimentos marinos y continentales del Terciario y Cuaternario.

La estructura de la corteza del Golfo de California es de grán complejidad. Comprende nueva corteza oceánica, corteza continental adelgazada y bloques corticales hundidos.

# EVOLUCION TECTONICA DEL MARGEN CONTINENTAL NORTEAMERICANO EN LAS AREAS CORRESPONDIENTES A CALIFORNIA CONTINENTAL Y PENINSULAR.

De acuerdo con Gastil et al., (1981) las primeras evidencias del volcanismo marginal en el oeste de Norteamerica relacionadas con la colisión de arcos intraoceánicos centra la margen de Norteamérica se encuentran en las rocas de Paleozóico Superior. En las rocas Triásicas de la Península se ha encontrado evidencias de tectónismo convergente (Formación San Hipólito). Durante el Jurásico y el Cretácico temprano existian dos arcos paralelos (Gastil et al., 1981):

uno - continental en Sonora, y el otro - oceánico, que limitaba la costa (ahora oeste de Baja California). Durante el Cretácico (Cenomaniano) el arco oceánico entró en colisión con el continente.

En el periodo comprendido entre el Cretácico tardio y el Cenozoico medio (entre 80 Ma y 40 Ma) ocurrió un cambio en la dirección de movimiento de la Placa Americana (Fig.1.3) lo que originó una mayor convergencia (de oblicua a frontal) entre dicha placa y la placa Farrallón (Fig.1.4). Este cambio en el movimiento de las placas da origen a la Orogenia Laramide.

En las Fig. 1.5(a)., 1.5(b). y 1.6. están representados las variaciones del ángulo de subducción y de la velocidad de convergencia en función de la edad geológica.

Como resultado de la orogenia Laramide en el Cretácico tardio ocurrieron los levantamientos tectónicos de la península de la Baja







ы С



Fig. 1.4. Configuración de los límites de la placa Farallón hace 53 M.a. (tomado de Atwater, 1970).



Fig. 1.5(a). Variación aparente del ángulo de subducción con la edad para el sistema trinchera-arco del noroeste de México. Con esto se puede explicar la variación en la distancia entre la trinchera y arco de la Fig. 6. La profundidad supuesta de generación del magma es 100 km (tomado de Urrutia-Fucugauchi, 1986).



Fig. 1.5(b). Sección esquemática que ilustra la evolución inferida del sistema trinchera-arco para NW de México (tomado de Urrutia-Fucugauchi, 1986).



Fig. 1.6. Variación de la distancia entre la trinchera y el arco en km (puntos) y velocidad de cámbio con el tiempo (crucez) en cm/año para el sistema trinchera-arco para el N-W de México (tomado de Urrutia-Fucugauchi, 1986).

California y en general del Noroeste de México.

El eje del arco volcánico se desplazó lentamente tierra adentro en dirección oriental hasta el Oligoceno temprano y después en el Oligoceno-Mioceno regresó nuevamente al oeste (Fip. 1.7).

Coney y Reynolds (op cit.) y Urrutia-Fusugauchi (1986) dieron una explicación a esta migración del arco magmático. De acuerdo a su modelo, la convergencia contrela la posición de la zona de generación de magma a una profundidad constante en la placa descendente en función del ángulo de subducción (Fig. 1.7(b)). A medida que la velocidad de convergencia se incrementó durante la orogenia Laramide, disminuyó el ángulo entre las placas, desplazándose la generación del magma a profundidad hacía el oriente, dentro del continente alejandose de la trinchera. La disminución en el ángulo de convergencia de las placas hace 40 Ma causó el regreso de la zona de generación de magma regresó hacia el poniente en dirección de la trinchera (Fig. 1.7).

Alternativamente también se sugiere que el tránsito, por debajo del continente, de un fragmento caliente y más delgado de de placa tectónica subducida, pudo haber resultado en una menor profundidad para la generación del magma, lo cual a su vez contribuyó a su regresión en dirección oeste (Damon et al., 1981).

El extensivo volcanismo calco-alcalino relacionado con el arco cezó su actitud a lo largo de la costa en Sonora hace 10 Ma aproximadamente y en Baja California hace 8 Ma. El vulcanismo silícico (basaltos alcalinos) subsequente parece estar relacionado con fallas transformadas (Atwater, 1970).

La colisión del primer segmento de la Placa Farallón y la placa Norteamericana tuvo lugar hace aproximadamente 30 Ma en un punto ubicado cercano a la latitud de Mazatian. A partir de este primer contacto entre estas placas se inició un movimiento lateral derecho a lo largo del límite convergente con una velocidad de 6 cm por año (Atwater, 1970).

La acreción total de la Península de Baja California a la placa Pacifica ocurrió en los últimos 6-11 Ma.

Según Karing y Jensky (1972) el Golfo de California se abrió como resultado de la apertura del fondo oceánico y el fallamiento de tipo transformante a lo largo del East Pacific Rise en los últimos 5-6 Ma. Pero el golfo se formó en un área de riftogenesis



Fig. 1.7. Evolución de los arcos magmáticos en México (tomado de Damon, 1981).

57.5



Fig. 1.7(b) Representación esquemática del modelo de subducción mostrando mayores detalles discutidos en el texto. Note la diferencia entre zona de arco magmático y zona espacial de arco magmático.

antes del Mioceno, generalmente llamado proto-golfo. Este proto-golfo según estos autores es un ejemplo de una posible extensión tectónica en la zona de retro-arco, relacionado con la subducción activa.

A pesar de que Karing y Jensky relacionan el proto-golfo con una posible tectónica de extensión de retro-arco, según Henry (1989) la asociación estructural del área del Golfo de California con la provincia del "Basin and Range" indica que el origen de este proto-golfo está ligado a esta última provincia.

Según Henry (1989) el fallamiento del "Basin and Range" probablemente creó el proto-Golfo de California.

En 1973 Moore presenta una paleoreconstrucción del Golfo. Esta reconstrucción implica la presencia de un protogolfo, formado a partir de un proceso de formación de rift, y sustentado por la presencia de depósitos marinos.

Asimismo propone la formación de corteza de caracter intermedio en ciertas zonas del Golfo, producto de un ajuste isostático ocasionado por aporte de sedimentos e inyección de material intrusivo.

El modelo que considera que el movimiento de la península de Baja California con respecto de la placa Norteamericana era constante a partir de 23 Ma, da como resultado un desplazamiento total de la península de 1400 km (Atwater, 1970).

El noroeste de México (incluyendo el Golfo de California, la Peninsula de Baja California y la parte continental que bordea el Golfo de California - Planicie costera) están caracterizados por un fallamiento activo

a) normal (Fig. 1.8),

b) y de fallas transformes con un desplazamiento lateral derecho.

#### LLANURA COSTERA DEL PACIFICO.

a) Cuadro geológico regional.

Se extiende desde Cd.Obregón, Sonora hasta la región de Tuxpan. Nayarit.

Morfologicamente constituye una área relativamente plana encontrándose eventualmente grandes mesas metamórficas e



Fig. 1.8. Fallas normales con rumbo N-NW de edad Cenozóica tardia alrededor del Golfo de California. Las flechas indican las direcciónes de extensión (tomado de Henry, 1989).

intrusiones en forma de troncos. Existen grandes derrames andesíticos y basálticos. La Llanura costera del Pacífico se caracteriza por el desarrollo de una planicie derivada de la evolución de un sistema de deltas que han migrado paulatinamente hacia el oeste.

La zona está limitada al oeste por un litoral con desarrollo de acumulaciones arenosas, producto de la acción de las corrientes litorales, las mareas y el oleaje que han retrabajado los sedimentos deltáicos y dado lugar a la formación de barras, tómbolos y flechas.

El borde oriental de esta zona está constituido por las estribaciones de la Sierra Madre Occidental en donde aparece un conjunto de sierras formadas por unidades rocosas cuyo alcance estratigráfico varia aproximadamente del Precámbrico al Terciario Inferior y están parcialmente cubiertas por la secuencia volcánica de la Sierra Madre Occidental.

De acuerdo a Morán Zenteno (1984) la historia de los terrenos preterciarios que afloran en el borde oriental de Sinaloa, comparten muchas afinidades con los estilos tectónicos y paleogeográficos que imperaron en Sonora y Baja California, a la cual estaban unidos antes de Plioceno.

A lo largo del borde oriental de la Llanura Costera del Pacífico existen una serie de afloramientos aislados de regular extensión de secuencias paleozoicas marinas. Estas secuencias están constituidas principalmente por areniscas, lutitas, limolitas y calizas; en algunas localidades se presentan afectadas por diversos grados de metamorfismo. A lo largo del límite oriental de la Llanura costera también se observan extensos afloramientos de rocas volcánicas, lávicas y piroclásticas, cuya composición varia de ácida a básica, y muestran efectos de metamorfismo regional y de contacto.

Las rocas sedimentarias mesozoicas están representadas por secuencias de calizas que en algunas localidades se observan parcialmente metamorfizadas. Los afloramientos de estas rocas se encuentran aislados; se presentan sobre intrusiones en forma de techos colgantes aflorando a travéz de la cubierta Terciaria.

Todo el conjunto mesozoico volcánico y sedimentario se encuentra afectado por emplazamientos plutónicos mesozoicos y

terciarios. Estos emplazamientos migraron desde Baja California (en el Cretácico) hasta los límites con Chihuahua (Terciario inferior) (Silver y Anderson, 1978).

### b) Evolución tectónica.

Como ya se mencionó, el área alrededor del Golfo de California fue intensamente fallada durante el Cenozóico tardio antes de la apertura del Golfo. Según Henry (1989) las fallas en la Planicie Costera consisten de los siguientes conjuntos (Fig. 1.8)

1) con un rumbo N-NW y con desplazamiento normal;

 fallas complementarias con rumbo E-NE y que tienen un desplazamiento de cizalla (strike-slip).

Se reconocen dos dominios :

 Primero - en el cual ambos rumbos de fallas son abundantes;
 en este dominio las fallas N-NW forman una serie de semigrabenes rellenos con sedimentos del Terciario superior. El desplazamiento de las fallas individuales alcanza varios kilómetros. Las fallas E-NE probablemente representan zonas de acomodamiento entre áreas con diferente grado de extensión tectónica.

2) Segundo - en el cual las fallas con rumbo E-NE son menos abundantes. En este dominio las fallas N-NW forman un sistema de grabens en extensión. Las fallas mayores con echados de  $40^{\circ}$  -  $70^{\circ}$  hacia el centro de los grabens y que tienen varios kilómetros de desplazamiento acumulativo, estan espaciados cada 5-10 km.

El comportamiento de los estratos indica que los bloques fallados en el Planicie Costera estan rotados hasta en un 65 %. La extensión total puede variar entre el 20 % y el 50 %.

Las edades (K-Ar) de tres diques con rumbo N-NW indican que la extensión E-NE empezó hace 32 Ma. La edad de las rocas volcánicas basculadas indica que la mayor parte del fallamiento empezó hace 17 Ma (Henry, 1989).

Un fallamiento con el mismo estilo, edad y orientación ocurre a travéz del área que limita el Golfo de California: desde Nayarit (al S) hasta Sonora (que ya está dentro de la provincia del Basin and Range).

Esta continuidad y similaridad en características de fallamiento alrededor del Golfo y en la provincia del "Basin and Range" en Estados Unidos sugiere que la Planicie Costera pertenece

### SIERRA MADRE OCCIDENTAL.

La Sierra Madre Occidental (SMOc) está formada por mesetas volcánicas y grandes barrancas de hasta 1000 m de profundidad. Esta provincia geológica es una de las más grandes de la República. Se extiende desde la frontera con Estados Unidos al norte, hasta intersectar el Eje Volcánico Trans-Mexicano al sur.

Tiene una superficie aproximada de 250,000 km<sup>2</sup>. Dentro de ella se encuentra el parteaguas entre la cuenca hidrográfica del Océano Pacífico y de la región de bolsones de la Mesa Central y Chihuahua.

La cubierta ignimbrítica continua de la SMOc es la más extensa en la Tierra. Presenta una orientación noroeste-sureste (Fig. 1.9), 250 km de ancho y más de 1200 km de largo. El espesor de estas ignimbritas llega a superar en algunas localidades los 1000 metros.

La Sierra Madre Occidental está compuesta por dos importantes secuencias igneas, cuyo contacto marca un periodo intermedio de calma volcánica (McDowell y Clabough, 1981) (Fig.1.10).

1) La secuencia más antigua posee una forma dominante de derrames y unidades piroclásticas de composición andesitica, pero también cuenta con intercalaciones de ignimbritas silícicas y cuerpos igneos intrusivos. Este complejo esta ligeramente deformado, intensamente afallado y alterado. Las edades de esta secuencia varian entre 100 y 45 millones de años.

Esta unidad constituye un arco magmático de caracter calcoalcalino típico relacionado con una margen continental convergente en donde la placa Farrallon subducía bajo la corteza continental de México (Damon, 1981).

El periodo de interrupción del magmatismo en la Sierra Madre Occidental de acuerdo a McDowel y Clabaugh (1981) ocurrió en el intervalo 45-34 Ma.

Damon y coloboradores (1981) interpretan esta interrupción como una migración hacia el este del arco magmático con un incremento claro en el contenido de álcalis.

La migración hacia el este del arco en el suroeste de Estados



Fig. 1.9. Província geológica de la Sierra Madre Occidental.



Fig. 1.10. Diagrama que muestra el magmatismo episódico en la Sierra Madre Occidental, asociado a la progresión y a la regresión del Arco Cordillerano en toda esa área, seguido por extensión tectónica desde el Mioceno hasta el Presente y asociado con extrusión de basaltos en ambas laderas de la sierra (tomado de Damon, 1981).

Unidos se debió a un aumento en la velocidad de convergencia y a una desminución en el ángulo de subsidencia de la placa en subducción (hasta 20<sup>0</sup> según Urrutia-Fucugauchi, 1986) del noroeste de Mèxico y suroeste de Estados Unidos.

2) De acuerdo a McDowell y Clabaugh (1981) la secuencia ignea más reciente está integrada por ignimbritas riolíticas y riodacíticas con edades que varian principalmente entre 34 y 27 millones de años. A base de resultados de Cameron et al. (1986) se formuló la hipótesis de que las ignimbritas resultan probablemente de fenómenos de fusión de la corteza, por encima de zonas donde se generan magmas andesíticos.

Estas unidades superiores (tobas y lavas ignimbriticas) se presentan, por lo general, horizontalmente. Sin embargo, en algunos lugares, las ignimbritas están plegados (región de Chihuahua, Zacatecas). Este plegamiento corresponde a la fase tarditectónica de la Orogenia del Terciario Medio, que es el resultado del regreso del arco cordillerano hacia la costa.

En algunos partes del Altiplano ignimbrítico (zona de Durango), por encima de las ignimbrítas se presentan grandes mesas basálticas de composición alcálina, de edad plio-cuaternaria (Demant et al., 1976); también se desarrolló esta actividad basáltica en Sonora. Esto demuestra que al finalizar el Mioceno la parte Occidental de Mèxico reaccionó a fenómenos dinámicos diferentes de los que prevalecian hasta esa época; estos fenómenos deben relacionarse ahora con la tectónica distensiva que se manifiesta al nivel del Golfo de California.

El basamento que se encuentra bajo estas dos secuencias volcánicas está compuesto por sedimentos del Mesozoico y Paleozoico y rocas metamórficas de bajo grado que están intrusionados por batolitos graníticos.

#### MESA CENTRAL.

La Mesa Central es un elemento fisiográfico caracterizado por la presencia de extensas llanuras con montañas aisladas de moderado relieve.

Se encuentra en la parte central de México y está limitada al oriente por la Sierra Madre Oriental, al norte por el sistema orogénico transverso Torreón - Saltillo, al Oeste por la Sierra

Madre Occidental y al Sur por el Eje Neovolcánico. Su superficie total es de más de 137,600  $\text{km}^2$  El promedio de elevación de la Mesa Central es de 1900 m sobre el nivel del mar y el relieve relativo es de 300 a 400 m.

Las rocas que atloran en la Mesa Central pueden dividirse en dos grandes paquetes - complejo basal Mesozoico y cubierta Cenozoica. El basamento tiene una edad Triásica a Paleozóica tardia.

El paquete Mesozoico esta constituido por plutones de composiciones y edades diversas y por rocas de origen submarino (sedimentarias y volcánicas ) que fueron metamorfoseadas en grado bajo e intensamente deformadas por esfuerzos compresivos.

La "cubierta" está compuesta por conglomerados continentales del Eoceno y por un paquete grueso de rocas volcánicas de composición dominantemente ácida (Oligoceno). En algunas regiones de la parte meridional de la Mesa Central, existen depósitos extensos de grava con fauna de vertebrados del Plioceno-Pleistoceno. Estos, a su vez, están parcialmente cubiertos por rocas volcánicas básicas.

En la parte meridional de la Mesa Central, existen dos juegos conjugados de fallas normales, que dan origen a fosas y pilares tectónicos con rumbos NE y NW (Fig. 1.8).

En la región hay evidencias de dos grandes períodos de deformación, que dieron origen a estructuras radicalmente distintas (Aranda - Gómez et al., 1989).

Las rocas mesozoicas fueron deformadas por fuerzas compresivas y, subsecuentemente, sufrieron extensión, mientras que las rocas cenozoicas solo muestran evidencias de extensión (fallamiento normal y basculamiento). Se cree que el patrón de fracturamiento en la región existe desde el Eoceno y que haya sido repetidamente reactivado.

Durante la segunda mitad del Mesozoico la zona de la Mesa Central y la Sierra Madre Oriental estaba cubierta por el "mar Méxicano" (cuenca Mesozoica de México) (Fig. 1.11., 1.12.) La transgresión del mar provino del Occidente en el Oxfordiano e inundó'zonas bajas de una penillanura después de un prolongado episodio de emersión que abarcó toda la primera mitad del Mesozoico (Eguiluz de Antuñano, 1985).



Fig. 1.11. Limite geográfico de afloramientos del "Mar Mexicano" (tomado de Eguiluz de Antuñano, 1985).



Fig. 1.12. Croquis que indica la ubicación del Mar Mexicano en el contexto de la tectónica de placas (tomado de Eguiluz de Antuñano, 1985). 28

El inicio de la emersión de la cuenca se da entre 100-80 Ma, cuando la Placa de Norteamérica cambió de una dirección de convergencia con una fuerte componente lateral a una convergencia frontal. El angulo de subducción entre ambas placas disminuyó y aumentó la velocidad de convergencia (Kenneth et al., 1982).

La región Noroccidental del Mar Mexicano pudo tener un basculamiento ascendente que originó una emersión más temprana, que la parte central y sur del cinturón de pliegues y cabalgaduras. Este levantamiento motivó que la carpeta alóctona, plegada en el Norte, se erosionara con mayor intensidad que las rocas más meridionales de este sistema (Eguiluz de Antuñano, 1985). Probablemente esto puede ser la razón de que en la Mesa Central afloren rocas más antiguas que en la Sierra Madre Oriental.

La Mesa Central se elevó originalmente durante la revolución Laramide en el periodo Cretácico tardío - Terciario temprano, afectando principalmente rocas sedimentarias Jurásicas y Cretácicas que cubren un complejo cristálino. En el Terciario Inferior tuvo lugar un periodo de erosión. Durante el Mioceno-Plioceno la Mesa Central volvió a levantarse (Aranda-Gómez et al., 1989).

Las rocas que subyacen a la secuencia del Mar Mexicano tienen una génesis y evolución compleja y en cada localidad presentan diferente naturaleza. Por ejemplo: rocas sedimentarias afectadas por intrusiones de probable edad triásica, esquistos y filitas cuya edad y origen es especulativa, rocas volcánicas metamorfizadas de edad 180-220 Ma, lechos rojos que se depositaron del Triásico Superior al Jurásico Medio y etc.

### SIERRA MADRE ORIENTAL.

La Sierra constituye una faja montañosa orogénica que sigue, en su segmento sur, una trayectoria general noroeste - sureste y,a la altura de Monterrey, se flexiona para seguir una trayectoria este-oeste hacia Torreón (Fig.1).

La Sierra Madre Oriental está compuesta de estrechos pliegues con una orientación que sigue el rumbo general de la Sierra.

Rumbo a la Mesa Central los valles son mas amplios, las sierras anticlinales menos estrechas, y hacia el occidente son cubiertos

paulatinamente por las rocas volcánicas de la Sierra Madre Occidental.

Las alturas de las sierras alcanzan 3000 m. El promedio de altitud de la Sierra es de unos 2000 m sobre el nivel del mar. La Sierra Madre Oriental presenta grandes contrastes topográficos con un relieve de más de 800 m (L.Ramoz, 1979).

La Sierra Madre Oriental y las zonas adyacentes están constituídas principalmente por rocas sedimentarias mesozoicas (jurásicas y cretácicas ) que se depositaron y evolucionaron sobre un basamento paleozoico y precámbrico.

La base de la secuencia mesozoica está representada por sedimentos dominantemente continentales y algunos cuerpos transicionales y marinos con un alcance estratigráfico que va del Triásico tardio al Jurásico temprano.

La región de la Sierra Madre Oriental estuvo sujeta al efecto de diferentes orogenias siendo las más notables la Appalachiana (Pérmico-Triásico) y la Laramide en el Terciario, que produjo pliegues recostados y cabalgaduras de grandes desplazamientos. El transporte general observado es hacia el oriente (Padilla et al., 1986; Suter, 1991). Las plataformas carbonatadas de San Luis -Valles y Acoplan actuaron como elementos rigidos sobre los que cabalgaron las secuencias del "Mar Mexicano" o Cuenca Mesozoica de México. Con esta orogenia termina la larga historia de sedimentación marina que se inició en el Jurásico Tardío.

Como resultado del plegamiento durante la orogenia Laramidica ocurrió un acortamiento de más de 50 km tan solo en la Sierra, sin considerar la Mesa Central (Altiplano) mientras que la topografía original sufrió un levantamiento intenso. La erosión posterior dejó en algunas partes al descubierto rocas de un basamento igneo y metamórfico.

A lo largo de la frontera oriental de la Sierra Madre Oriental se localiza una zona con vulcanismo Cenozoico en la cual se pueden " diferenciar dos sectores:

1) uno al Sur que se extiende entre Jalapa y el Golfo de México en la prolongación este del Eje Neovolcánico. La secuencia aqui, es continua desde el Mioceno Superior hasta el cuaternario. Las lavas son tanto de tipo calco-alcalino como alcalino (Morán-Zenteno, 1984).

2) en el Norte (Estado Hidalgo) se puede observar una secuencia que contiene términos ácidos (ignimbritas) que son más abundantes.

En las Sierras de San Carlos y Tamaulipas la actividad de magmatismo alcalino empezó en el Oligoceno - Mioceno (Bloomfield et al., 1973), lo que corresponde a la primera fase terciaria de actividad alcalina de esta región.

Asi como en la Sierra Madre Oriental existe una zonación Este -Oeste (llanuras - altiplano), también se puede definir una variación química con dirección Norte - Sur. Este zoneamiento se puede interpretar como resultado de una influencia debida a la tectónica vertical tanto en el Golfo de México como en el Eje Neovolcánico.

#### LLANURA COSTERA DEL GOLFO DE MEXICO.

Es una planicie de 120 km de ancho con prominencias aisladas como la Sierra de Tamaulipas, la Sierra de San Carlos, la Sierra de los Tuxlas, etc., que rompen con el paisaje.

De acuerdo a perforaciones de PEMEX efectuadas en la región de la llanura costera del Golfo se pueden reconocer zonas en donde ha habido una acumulación mayor de sedimentos marinos terciarios. Las cuencas reconocidas donde se han desarrollado mayores espesores de sedimentos terciarios son las siguientes (Fig. 1.13):

Cuenca de Burgos,

Cuenca de Tampico - Tuxpan,

Cuenca de Veracruz,

Cuenca Salina del Istmo,

Cuenca de Macuspana.

Durante la apertura del Golfo de México a partir del final del Jurásico Medio se inició una invasión marina, que transgrede a grán parte de la región. Las primeras transgresiones marinas en las fosas tectónicas preexistentes diéron lugar a los depósitos de evaporitas y sal del SE del país y del Golfo de México (Buffer et al., 1990).

El espesor de los sedimentos en las cuencas de la Llanura llega a más de 3000 m. El espesor máximo estimado en el centro de la cuenca de Burgos, por ejemplo, es de 10000 m (Marmissolle-Daguerre, 1984).

La secuencia estratigráfica cortada por los pozos perforados en



Fig. 1.13. Unidades tectónicas de la Planicie costera (tomado de Marmissolle-Daguerre, 1984).

la planicie Costera del Golfo es la siguiente:

 Sedimentos marinos parcialmente metamorfizados de Paleozóico Tardio e intrusiones Permo-Triásicos.

Sedimentos continentales rojos - (Triasico Tardio - Jurásico Medio).

3. Sedimentos marinos del Jurásico Temprano, Jurásico Tardio, Cretácico, Terciario.

Durante las transgresiones marinas que afectaron el este y noreste de México a partir del Calloviano se desarrolló en la parte occidental de la llanura costera una serie de elementos positivos que constituyen el llamado Archipielago de Tamaulipas -Yucatán.

El archipiélago está representado por una serie de altos en el basamento y en rocas antiguas que, durante el Jurásico tardio y ocasionalmente en el Cretácico temprano bordeaban la margen occidental del Golfo de México en forma de arco desde los estados de Tamaulipas a Yucatán.

Estos levantamientos representan segmentos fallados, periodicamente rejuvenecidos, de una franja plegada paleozoica y de rocas igneas y metamórficas paleozóicas y del Mesozóico temprano. Los segmentos son producto de un fallamiento en bloques, que se desarrolló en la región oriental de Norteamérica a principios del Mesozóico (Triásico).

La mayoria de los yacimientos petroliferos mexicános se hallan sobre o en las márgenes de estos elementos positivos que integran al Archipiélago de Tamaulipas - Yucatán. También se reconocen en la región de la Llanura Costera cuerpos magmáticos de diferente edad y de naturaleza dominantemente alcalina. Dentro de las zonas con presencia de rocas magmáticas terciarias y más recientes se encuentran la Sierra de San Carlos, la zona de Palma Sola y el macizo de San Andres Tuxtla.

De acuerdo a Santiago et al. (1984) existió una migración del vulcanismo alcálino hacia el sur en la Planicie Costera que estaba asociada con el fallamiento a lo largo de la margen de la SMOr. El fallamiento ocurrió a partir del Oligoceno (en la Sierra de San Carlos'y en la Sierra de Tamaulipas) y en el macizo de San Andres Tuxtla). El fallamiento dió origen al depósito de capas continentales de las formaciones Huizachal y Todos Santos.
## EL GOLFO DE MEXICO.

El Golfo de México es una cuenca oceánica cuya edad no ha sido establecida definitivamente. La profundidad batimétrica en el centro del Golfo es de 4 km.

De acuerdo a las interpretaciones de Bufler y Watkins (1990), basado en perfiles sismicos de refracción y de reflección, la estratigrafía en la cuenca del Golfo de Mexico se puede sintetizar de la siguiente manera:

El piso de la cuenca está formado por corteza transicional (un espesor de 6-20 km) y corteza oceánica (5-6 km de espesor) (Fig. 1.14).

La secuencia sedimentaria del Mesozoico temprano en la porción correspondiente a la corteza transicional está cubierta por un potente estrato de sal (de Jurásico Medio) (Fig.1.15).

Esta secuencia sedimentaria y de sal se encuentran deformados.

La secuencia de los sedimentos más jóvenes (Jurásico tardio -Cretásico temprano) se desarrolló tanto sobre coretza transicional como sobre corteza oceánica.

Entre la secuencia anterior al Cretácico medio y la secuencia del Cretácico tardio existe una discordancia regional que Buffler y Watkins relacionan con un descenso del nivel del mar.

La corteza transicional y el estrato grueso de sal estan distribuidos simetricamente a cada lado de la corteza oceánica. El espesor máximo de los sedimentos en el Golfo en el transecto

estudiado es de 9 km, y el espesor minimo de la corteza aquí es de 18 km.

Con base a mediciones sísmicas Puffler et al. (1990) propusieron un modelo de evolución para el Golfo de México que consiste en 4 etapas principales:

1) Etapa de riftogénesis (Triásico - Jurásico temprano)

se caracteriza por un ascenso regional, riftogénesis, erosión, relleno de la cuenca con sedimentos continentales y volcánicos, formación de corteza continental adelgazada (corteza transicional).

La causa exacta de esta etapa de riftogénesis no está entendida completamente. Este mecanismo probablemente consiste en alguna



Fig. 1.14. La distribución de la corteza transicional y corteza oceánica en el Golfo de México inferida de refracción sísmica (tomado de Buffler et al., 1980).



Fig. 1,15. Mapa indicando la distribución generalizada de sal en la cuenca profunda del Golfo de México (tomado de Buffler et al., 1980).

combinación de erosión subcortical, inyección del material del manto y atenuación de la corteza superior.

 2) Durante la etapa tardia de riftogénesis (Jurásico medio) se produjo un ascenso central en la cuenca que debe asociarse a un ascenso del manto.

En esta etapa empieza la subsidencia del área de la cuenca del futuro Golfo de México, con subsecuente entrada de agua marina y sedimentación en aguas someras de evaporitas de grán espesor en las cuencas a cada lado de la zona que sufrió levantamiento.

 Período de deriva del fondo oceánico (Jurásico tardio -Cretásico temprano) (Fig. 1.16) se caracteriza por

a) formación de corteza oceánica;

b) subsidencia rápida de la cuenca, debida al enfriamiento de la corteza;

 c) depositación de sedimentos de agua somera en los márgenes adyacentes cubriendo la sal;

d) deformación de la sal y de los sedimentos debajo de la sal debido al flujo gravitacional de la sal hacia la cuenca.

4) Etapa de subsidencia (Cretácico temprano - Cretácico medio) caracterizada por

 a) el cese de la deriva del fondo oceánico debido a la grán reorganización que sufrieron las placas hace 130 Ma aproximadamente;

 b) continuación de la subsidencia de la cuenca a través del Cretácico temprano mientras la corteza continuaba enfriandose;

c) depósito de sedimentos de agua profunda a través de la cuenca profunda y formación de bancos carbonatados en las márgenes, controlada por la zona estructural del eje;

d) formación de una grán discordancia en el Cretácico medio (hace
 97 Ma) debida a la combinación de la subsidencia y al grán descenso en el nivel del mar.

A continuación se presenta un resumen de eventos tectónicos desde finales del Paleozóico hasta el reciente.



del fondo oceánico durante el Jurásico tardio (tomado de Buffler et al., 1980).

# FINES DE PALEOZOICO.

Deformaciones orogénicas en la Sierra Madre Oriental (Orogenia Apalachiana).

Las primeras evidencias del volcanismo marginal Pacífico en el oeste de México aparecen en estratos del Paleozoico superior a ambos lados del Golfo de California (Gastil, 1981).

### MESOZOICO.

Durante la mayor parte del Paleozoico y del Mesozoico ocurre una subducción a lo largo de la margen oeste de los Estados Unidos.

# 1) Triásico (245-208 Ma)

Durante el Triásico tardio la parte oeste de Pangea se vió afectada por esfuerzos de tensión.

La placa de Norteamericana empieza a separarse de las placas de America del Sur y de la placa Africana.

Empieza a abrirse el Golfo de México.

La Sierra Madre Oriental se encontraba emergida.

## 2) Jurásico (208-144 Ma)

# Jurásico Temprano (208-187 Ma).

El arco magmático se encuentra en el interior de México.

Movimiento de América del Norte hacia el Noroeste, apertura del Atlántico del Norte.

## Jurásico Medio (187-163 Ma).

En el Calloviano el Golfo de México recibió un aflujo de agua marina de las protocuencas del Atlantico del Norte y del Océano Pacífico.

La placa Africana empieza a separarse directamente de la placa Norteamericana a lo largo del sistema de rifts del Atlántico medio.

Empieza a entrar en actividad el sistema de rifts localizado entre el bloque Honduras-Nicaragua y América del Sur.

# Jurásico Tardio (163-144 Ma)

El arco magmático cordillerano se encontraba cerca de la margen convergente.

En el Oxfordiano (163-156 Ma) - ocurrió la transgresión del Mar Mexicano que provino del occidente e inundó zonas bajas de una penillanura.

En el periodo 150-100 Ma ocurrió la actividad volcánica más importante de la SMOc.

# 3) Cretácico (144-66.4 Ma)

# Cretácico Temprano (144-97.5 Ma)

Progresión del arco cordillerano lentamente hacia el oriente.

Sigue la apertura del Atlántico del Norte (160-100 Ma) con movimiento de América del Norte hacia el noroeste.

Empiezan a separarse America del Sur y Africa (apertura del Atlántico del Sur).

Cierre del dominio Caribe.

En el periodo 100-80 Ma - cambio del sentido del desplazamiento de América del Norte.

#### Cretácico Tardio ( 97.5-66.4 Ma)

Rápido avance en la progresión hacia el este del arco magmático como resultado del incremento de la convergencia de la placa Farallón entre 80-40 Ma.

100-80 Ma - inicio de la emersión de la cuenca del Mar Mexicano, cuando la placa de Norteamérica cambió su dirección de un desplazamiento con una fuerte componente tangencial a un desplazamiento frontal con relación a la placa Farrallón.

Orogenia Laramide (83-45 Ma). Levantamientos de la región de Baja California y el noroeste de México.

En el Campaniano (84-74.5 Ma) - la mayor parte del este de México estaba cublerta por sedimentos marinos terrigenos y clásticos derivados de la región elevada del oeste de México.

#### CENOZOICO.

## 1) Paleoceno (66.4-57.8 Ma)

Hace 60 Ma el arco magmático estaba centrado en la SMOc. Desplazamiento del arco magmático hacia el oriente. Intensa deformación debida a la Orogenia Laramide.

La mayor parte de México estaba emergida.

México se vió afectado por fallamiento de desplazamiento lateral izquierdo con componentes compresionales NE-SW.

Movimientos recurrentes a lo largo de viejas fallas normales Inicio del diapirismo en el area del "Basin and Range".

2) Ecceno (57.8-36.6 Ma)

Del Cretácico Medio al Eoceno - una fase de quietud en el vulcanismo en la SMOc.

Fin de la Orogenia Laramide.

. 56-50 Ma - desminuye la velocidad de convergencia de la placa Farallón por debajo de la Norteamérica

50-42 Ma - cambio en la dirección de convergencia de la placa Farallón y Norteamérica.

El arco magmático empieza a migrar a la costa occidental de nuevo.

# 3) Oligoceno (36.6-23.7 Ma)

Hace aproximadamente 30 Ma se inició la colisión de la dorsal del Pacífico con la placa Norteamericana en un punto ubicado en la actual Baja California.

A partir del primer contacto de las placas Pacífica y Norteamericana se inicia un movimiento lateral derecho a lo largo del limite creciente de ambas placas.

En el Oligoceno Temprano -Mioceno Medio - magmatismo calcoalcálino en la parte meridional de la provincia del Basin and Range.

En la SMOc ocurrió el vulcanismo calcoalcalino (andesitas). Posteriormente estas andesitas fueron plegadas por la orogenia del Terciario medio.

Oligocéno superior - Mioceno medio - la edad de las manifestaciones piroclásticas (tobas e ignimríticas ).

Oligoceno - Mioceno - primera fase de la actividad de vulcanismo alcalino a nivel del Golfo de México.

# 4) Mioceno (23.7-5.3 Ma)

Ocurrió el vulcanismo compresivo (lavas andesiticas, dacíticas y riolíticas ) de la Provincia Californiana

Levantamiento de la Mesa Central y de la SMOc.

#### Mioceno Temprano (23.7- 16.6 Ma)

El arco cordillerano alcanzó la región costera (del Pacífico).

#### Mioceno Medio (16.6-11.2 Ma)

Oligoceno superior - Mioceno medio - manifestaciones piroclásticas en la SMOc,

# Mioceno Superior (11.2-5.3 Ma)

Incidencia de volcanismo basáltico primario a lo largo de toda la Cordillera Sur y Norte del arco volcánico Trans-Mexicano en respuesta a la extención seguida de la regresión del arco cordillerano.

Hace solo 10 Ma que la placa Farallón desapareció a lo largo de toda la extensión del sistema San-Andreas - Golfo de California.

Régimen distensivo en la SMOc, que cambió el vulcanismo en el NW de la SMOc de calco-alcalino a alcalino (en general basaltos).

Mioceno - Plio-Cuaternario - la actividad volcànica alcalina predominante de tipo "basaltico" (mesas y cuellos ) en la SMOr.

Todo el vulcanismo relacionado a la subducción de la placa Farallón cesó hace 8 Ma aproximadamente.

# 5) Plioceno (5.3-1.6 Ma)

Hace 4 Ma - la apertura del Golfo de California y el desarrollo de su sistema dorsal. Movimiento de Baja California hacia el NW.

En Plio-Cuaternario - desarrollo de la actividad basáltica alcálina en Baja California, parte Occidental de México (zona de Durango, en Sonora).

# CAPITULO II.

# ESTRUCTURA SISMICA DE LA CORTEZA SUPERIOR Y MANTO A LO LARGO DEL TRANSECTO.

# INTRODUCCION

El propósito de este capítulo es recopilar los estudios sísmicos existentes sobre la estructura de la litósfera en el norte de México. Esta recopilación será la base para crear un modelo inicial de la corteza y litósfera hasta la profundidad de 100 km que se presentará al final de este capítulo (Fig. 2.16). Este modelo será un modelo que debe ser "respetado" en general por el modelado gravimétrico (Capítulo IV). Se representarán las figuras que serán útiles para el modelado (que indican las profundidades hasta el Moho, densidades, localización de estudios o la estructura de la velocidad que nos puede indicar zonas de fusión parcial en el manto, por ejemplo).

La estructura sísmica, es decir la distribución de la velocidad sísmica en la litósfera superior (corteza superior e inferior y manto superior), a lo largo de nuestra zona de estudio ha sido determinada mediante la contribución de varios estudios sísmicos. Estos estudios sísmicos se han basado en el análisis de ondas elásticas producidas por fenómenos naturales (actividad sísmica), o artificiales (explosiones nucleares, explosiones de cargas de dinamita). Algunos de estos estudios se han enfocado a las ondas de volumen P y S, otros se han avocado a las ondas superficiales.

Esta información fué utilizada en el presente trabajo con el objeto de constreñir la interpretación de los datos gravimétricos (anomalía de Aire Libre y de Bouguer) (Capítulo III). Hacemos dicho resumen de los estudios sísmicos analizando en cada caso el metodo usado y los resultados obtenidos.

# BANCO DE DATOS.

Los estudios sísmicos que han aportado información sobre la estructura sísmica en zonas de nuestro transecto son los siguientes:

- En la zona de dispersión del Golfo de California: M. C. Walck (1984)
- Península de Baja California, Golfo de California y Sonora:
   W. Thatcher, J. N. Brune (1973)
- 3) Parte este de la Sierra Madre Occidental: J. Rivera, L. Ponce (1986),
   R. P. Meyer, J. S. Steinhart, G. P. Woolard (1957)
- 4) Parte Norte de Mexico (zona de transición entre la Sierra Madre Occidental y la Mesa Central):
   J. S. Gomberg (1988)
- 5) Mesa Central:

J. E. Fix (1975)

6) Parte Este de la Mesa Central, Sierra Madre Oriental, parte Costera del Golfo de México y Golfo de México:
A. L. Hales, C. E. Helsley, J. B. Nation (1970)

A continuación resumimos los resultados de cada una de estas investigaciones.

# M.C.Walck (1984)

- Area de estudio: Golfo de California (zona de dispersión oceánica).
- Objetivos: determinar la estructura de la corteza y del manto superior por debajo de la zona de dispersión oceánica hasta la profundidad de 900 km
- Método de estudio: la investigación se basó en la siguiente información:
  - 1) velocidades de ondas P;
  - 2) 1753 valores de tiempos de viaje de ondas P;
  - 3) 57 mediciones de la velocidad aparente;
  - 4) datos sobre la forma de onda.

Se usaron más de 1400 sismogramas de 29 temblores ocurridos en el Golfo de California, la zona de fractura de Rivera, el "East Pacific'Rise" y la fosa centroamericana (Fig. 2.1). Los temblores fueron registrados por el California Institute of Technology.



Fig. 2.1 Mapa de localización. Asteriscos representan epicentros de 22 sismos a menos de 30° de distancia. También se muestran pequeñas porciones de circulo entre SCARLET y los eventos, indicando el área cubierta por el modelo GCA. Note que todos los segmentos de arco caen dentro de la región afectada por el esparcimiento en el Golfo de California. Circulos llenos ubican los eventos de calibración que se encuentran más alla de 30° de Pasadena.



Fig. 2.2. Los 150 km superiores de los modelos GGA y GGA. El modelo GGA considera solamente temblores con una distancia máxima de  $13^{\circ}$ . El modelo GGA no posee la zona de transición en el límite entre la corteza y el manto. La diferencia entre los modelos GGA y GGA' puede representar variaciónes laterales en la corteza entre el Golfo de California (GCA) y la área continental adyacente (tomado de Walck, 1984).

| Depth | Velocity              | Depth | Velocity |
|-------|-----------------------|-------|----------|
| (km)  | (km s <sup>-+</sup> ) | (km)  | (km s*') |
| 0     | 6.400                 | 300   | 8.403    |
| 19    | 6.400                 | 325   | 8.520    |
| 20    | 7.900                 | 350   | 8.638    |
| 35    | 7,750                 | 375   | 8,750    |
| 50    | 7,700                 | 390   | 8.819    |
| 75    | 7 8 50                | 391   | 9.250    |
| 100   | 7,900                 | 450   | 9.476    |
| 125   | 7,938                 | 538   | 9.800    |
| 150   | 7.975                 | 620   | 10.060   |
| 175   | 8.013                 | 660   | 10.360   |
| 200   | 8.050                 | 661   | 10.650   |
| 225   | 8,100                 | 680   | 10.760   |
| 250   | 8.168                 | 970   | 11.340   |
| 275   | 8.285                 |       |          |

Tabla 2.1. Modelo de velocidades GCA (tomado de Walck, 1984).

Resultados: en la Fig. 2.2 y Tabla 2.1 y 2.2 están representados dos modelos: a) GCA - para la zona de dispersión en el Golfo de California y b) GCA - para el oeste de México al norte del paralelo 20<sup>0</sup> N Conclusiones: el Golfo de California es un área actualmente activa. La estructura de la corteza y del manto superior es muy complicada y heterogenea. Bajo la zona de la dorsal la transición entre la corteza y el manto es gradual.

W . Thatcher y J. N. Brune (1973) Area de estudio: distintas porciones del Golfo de California, Baja California y Sonora.

- Objetivos: estudio de la corteza y del manto superior en distintas partes de Golfo de California, Baja California y Sonora.
- Método de estudio: se basó en la dispersión de las ondas superficiales de terremotos ocurridos en el Golfo de California.

Las estaciones estuvieron situados en el norte del Golfo y en el Sur de la península de Baja California, y en Arizona (E.E.U.U.)

Resultados: en la Fig. 2.3 estan representados los epicentros de los temblores y la ubicación de las estaciones sísmicas, así como el modelo cortical para varias áreas del Golfo de México.

> Los resultados principiales son los siguientes: Baja California y Sonora tienen un espesor cortical similar - alrededor de 25 km. En la parte más profunda del Golfo la estructura promedia es casi oceánica con un espesor cortical de 9 km, pero es casi 20 km en la parte central y noreste del Golfo de México.

Conclusiones: los autores indican que existe una diferencia significante en la estructura de la corteza y el manto superior entre el Golfo de California y las regiones adyacentes. El modelo de la corteza del Golfo de Californiacomprende nueva corteza oceánica, corteza continental adelgazada y bloques corticales

Fig. 2.3. Fuentes de terremotos, trayectoria de ondas y dispersión observada en las ondas Love y Rayleigh asi como modelo cortical. Los parámetros estructurales son: espesor de los estratos (h) en km, velocidades de ondas compresionales ( $\alpha$ ) y ondas de sizalla ( $\beta$ ) en km/s, densidad ( $\rho$ ) en g/cm<sup>3</sup> (tomado de Thatcher et al., 1973).



a) Baja California.



b) Oeste del Golfo.



c) Golfo central.



d) Parte NE del Golfo de California.



e) Sonora.

undidos.

J. Rivera y L. Ponce (1986)

Area de estudio: aproximadamente a lo largo del flanco oriental de la Sierra Madre Occidental (el perfil une al Distrito Federal con el sitio de Pruebas Nucleares en Nevada (E.E.U.U.) (Fig. 2.4).

Objetivos: el estudio de la estructura de la corteza terrestre del flanco oriental de la SMOc.

Método de estudio: se analizaron ondas superficiales generadas por dos explosiones nucleares efectuadas en Nevada (E.E.U.U.), y registradas en la estación sismológica UNAM (WWNSS) de periodo largo (Ts=15 s, Tg=100 s, A=1500) en la Ciudad de México.

- Resultados: el espesor promedio obtenido para la corteza es del orden de 40 km (Tabla 2.3). Según estos autores el mayor espesor de la corteza en la SMOc (40 km) con relación a la Mesa Central (30 km) (Fix, 1975) se debe a una capa granítica más gruesa.
- Conclusiones: el modelo de velocidades obtenido sugiere que la estructura del flanco oriental de la Sierra Madre Oriental es transicional entre una de tipo Alpino y otra del tipo "Basin and Range".

R. P. Meyer, J. S. Steinhart, G. P. Woollard (1957).

Area de estudio: el perfil estudiado va de Durango hasta San Luis Potosi, cubre parte sur de la Sierra Madre Occidental y de la Mesa Central (Fig. 2.5). (Así que no se puede estar de acuerdo con los autores de que estos los valores del espesor de la corteza obtenidos para este transecto sean característicos de la Mesa Central).

Objetivos: el propósito de esta investigación era determinar el espesor de la corteza terrestre bajo la Mesa Central. 'El interés en este estudio era debido al hecho siguiente. Tatel y Tuve (1955) encontraron que bajo la



Fig. 2.4. Esquema de la localización del perfil estudiado (NTS-D.F.) que corre casi paralelo al margen oriental de la Sierra Madre Occidental. Se muestra la disposición geográfica de los perfiles estudiados por Meyer y otros (1958, 1961), Fix (1975) y Prodhel (1979). Perfiles cercanos a la región del presente estudio (tomado de Rivera et al., 1986).

| V <sub>p</sub> (km/s) | V (tm/s)                              | Plu/cm <sup>3</sup> } | H (bm)     | Prof. (bm) |
|-----------------------|---------------------------------------|-----------------------|------------|------------|
| ·                     | · · · · · · · · · · · · · · · · · · · |                       |            |            |
| 1.67                  | 1.5±0.2                               | 7.37                  | 1.2 ±0.5   | 1.2        |
| 5.16                  | 2.9 ±0.2                              | 2.67                  | 1.1 ±0.1   | 3.4        |
| 6.34                  | 3.56 ± 0.01                           | 3.09                  | 26.0 ± 0.5 | 29.4       |
| 7.30                  | 4.10 ±0.03                            | 3.25                  | 10. ± 2.0  | 39.4       |
| . 8.01                | 4.50±0.05                             | 3.30                  | 10. 1 1.0  | 49.4       |
| 7.39                  | 4.15 ± 0.05                           | 3.32                  | -          | -          |
| 7.39                  | 4.15 ±0.05                            | 3.32                  | •          | -          |

Tabla 2.3. Modelo de capas para la corteza y el manto superior en el flanco oriental de la Sierra Madre Occidental, propuesto en el trabajo de Rivera et al., (1986) (perfil NTS-D.F.; Modelo OSMO).



Fig. 2.5. La linea curva marcada "Wisconsin" representa el perfil sísmico de refracción observado por la Universidad de Wisconsin en 1957 (tomado de Meyer et al., 1957).



Fig. 2.6. Modelos corticales correspondientes al perfil estudiado por Universidad de Wisconsin (tomado de Meyer et al., 1957). Meseta del Colorado el espesor de la corteza es menor de lo que podría esperarse según la teoría de isostasia de Airy (teniendo la anomalía de Bouguer alrededor de -200 mgal y la topografía una elevación  $\approx$  2 km). El objetivo de los autores era determinar si las relaciones encontrados para la Meseta del Colorado se cumplen en otras áreas elevadas del planeta.

- Método de estudio: refración sísmica. El perfil estudiado no incluyó tiros reversos. Por eso los autores indican que todas las velocidades, con la excepción de los velocidades de las capas superficiales, no estan determinados sin incertidumbre.
- Resultados: en la Fig. 2.6. estan representados cuatro posibles modelos de la corteza para el transecto estudiado. El espesor mínimo para la corteza según estos modelos es  $37 \stackrel{+}{-} 3.8$  km y el máximo sería 44.5  $\stackrel{+}{-} 4.5$  km
- Conclusiones: los autores hacen notar que el espesor de la corteza es considerablemente más grande que el determinado por Tatel y Tuve para la Meseta del Colorado, pero es menor de lo que se hubiera podido esperarse de la magnitud de la anomalía gravimétrica.

J. S. Gomberg (1988).

- El área de estudio: el norte de México. Las tres estaciones sismológicas involucradas estuvieron instaladas en Chihuahua, Monterrey y Durango (Fig. 2.7).
- Objetivos: el estudio de la estructura de la corteza y del manto superior en el norte de México.

Método de estudio: estudio de ondas superficiales.

Resultados: El espesor promedio de la corteza en el norte de México esta comprendido entre 38 y 45 km (Tabla 2.4.). El autor confirma la existencia de un estrato de alta velocidad en el manto superior. El espesor de este



Fig. 2.7. El mapa indicando la trayectoria de propagación entre cada fuente y las estaciones sísmicas. (R) y (L) al lado de los números de las fuentes significan mediciones de la dispersión de las ondas Raleygh y de Love respectivamente (tomado de Gomberg et al., 1988).

| Characteristic                | Mexican<br>Plateau | Colorado<br>Plateau | Havin &<br>Rabge | S. Great<br>Plains | Canadian<br>Shield | East Africa<br>Rafi Zone |
|-------------------------------|--------------------|---------------------|------------------|--------------------|--------------------|--------------------------|
| Crustal<br>Thickness (km)     | 40-50              | 41:1                | 25.35            | 46.52              | 35                 | 36-48                    |
| Lid<br>Thickness (km)         | 10-40              | 12-20               | 10.30            | 41.74              | 80                 | 120-200                  |
| Max. Depth<br>of LVZ (km)     | e2(11)             | •                   | 244              |                    | 315                | 120-2(8)                 |
| F, sel. (km/s)                | 78:2               | 78:03               | 7.8              | 8184               | ۶:                 | ÷ 05                     |
| P vel, above<br>250 km (km/s) | 7680               |                     | 77               | ,                  | 82.83              | •                        |
| S. vel. (km/s)                | 54.4               | 4.5±1               | 45               | •                  | 4 72               | 4 25-4 45                |
| S vel. above<br>250 km (km/s) | 4 0-4 2            | •                   | 40412            | •                  | 4 51 - 4.54        | 4 25-4 45                |

Tabla 2.4. Características de estructuras sísmicas según los estudios en diferentes províncias tectónicas. (Las características indicadas para la Mesa Central son las determinadas por Gomberg (1988). estrato es de 30-40 km y las velocidades  $V_P=7.8 \stackrel{+}{=} 0.2$  km/s y  $V_S > 4.4$  km/s. A 300 km por debajo del manto superior existe una zona de baja velocidad para las ondas S,  $V_S=4.0-4.2$  km/s (Fig. 2.8, 2.9).

Conclusiones: muchos de los rasgos estructurales determinados para

- el norte de México son similares a aquellos del SW de los Estados Unidos:
  - velocidades de las ondas Pn y Sn (7.8 km/s y 4.5 km/s respectivamente);
- 2) el espesor de la tapa solida del manto superior ("mantle lid ") -30-50 km ;
- 3) flujo de calor de moderado a alto;

4) compensación isostática;

5) elevación promedio 1.5-3 km.

Las altas velocidades de las ondas P a 300 km de profundidad de esta área son típicas de regiones tectonicamente activas.

# J.E.Fix (1975)

El área de estudio: el centro de México. El perfil de estudio une Chiapas con Queen Greek (Arizona, E.E.U.U.) (Fig. 2.10).

Objetivos: estudio en el centro de México de la estructura de los primeros 380 km de la corteza y del manto superior en el centro de México.

El método de estudio: estudio de la dispersión de ondas superficiales y de las velocidades de las ondas S.

> Se usó información de 18 terremotos ocurridos cerca de Chiapas, México, y registradas por 6 sismógrafos en Queen Greek, Arizona.

Resultados: la corteza bajo la Mesa Central tiene un espesor de 30 km y consiste de 4 estratos principales.

En el trabajo se dan como resultado cuatro modelos probables de la inversión de los datos sísmicos (Tabla



Fig. 2.8. Modelos de velocidad de ondas S usados para estimar el espesor cortical. Los modelos iniciales (indicado: a la ezquierda) difieren de los modelos finales solamente por la profundidad del Moho definido por la velocidad de 4.5 km/s de ondas S. La similaridad de los modelos finales suguiere que el Moho está localizado a una profundidad de 40 km aproximadamente (tomado de Gomberg et al., 1988).



Fig. 2.9. Modelo de velocidad de ondas S, ondas P y densidad para la zona de transición entre la Sierra Madre Occidental y la Mesa Central (tomado de Gomberg et al., 1988).



Fig. 2.10. Mapa indicando epicentros, la localización de estaciones sísmicas QC-AZ (utilizados en el trabajo de Fix, 1975) y la trayectoria de las ondas (tomado de Fix, 1975).

2.5(a) y 2.5(b), Fig. 2.11(a) y 2.11(b)).

Por abajo de la corteza se encuentra un estrato de manto sólido de 4-8 km de espesor y enseguida más abajo un estrato del manto parcialmente ( 10-20% ) fundido. La irregularidad y la profundidad de la zona de baja velocidad indica que el magma está siendo transportando hacia arriba (hacia la capa sólida del manto).

A una profundidad de 70-80 km se observa un gradiente abrupto de velocidad.

Las velocidades de las ondas S son menores en relación con otros áreas del mundo. Estas velocidades son representativas de otras regiones similares con un alto flujo de calor y una elevación grande.

Al respecto del mecanismo de elevación de la Mesa Central, el autor presenta la siguiente hipótesis: los grandes volumenes de magma de baja densidad en el manto superior producen la fuerza vertical regional que da origen a mesetas como la Mesa Central y la del Colorado.

Conclusiones: la estructura geológica de México representa la continuación de la estructura general del Este de Estados Unidos.

A.L.Hales, C.E.Helsley, S.B.Nation (1970)

- El área de estudio: Este de la Mesa Central, Sierra Madre Oriental, Planicie Costera del Golfo de México entre el arco de Tamaulipas y la Bahia de Tampico.
- Objetivos: el propósito de este trabajo era determinar si por debajo del océano existe o no en el manto un estrato de baha velocidad para las ondas P y encontrar su espesor. En trabajos de otros autores (Toksöz et 1966. 1967; Kanamori, al., 1970) se habría demostrado que en el manto debajo de los océanos, escudos (shilds) y áreas tectonicamente activas existe una zona de baja velocidad para las ondas S.



Fig. 2.11(a). Modelo 1 y 2 de la distribución de la velocidad de ondas de cizalla en los 100 km superiores en México central (modelo inicial -FBR3) (tomado de Fix, 1975).



Fig. 2.11(b). Modelo A1 y A2 de la distribución de la velocidad de ondas de cizalla en los 100 km superiores en México central (modelo inicial FBR3A) (tomado de Fix, 1975).

|              |                            |                   | Shear-wave velocity (km s <sup>-1</sup> ) |         |         |  |
|--------------|----------------------------|-------------------|-------------------------------------------|---------|---------|--|
| Layer<br>No. | Depth at<br>bottom<br>(km) | Thickness<br>(km) | Starting<br>model<br>FBR3                 | Model I | Model 2 |  |
| 1            | 1                          | I                 | 1.50                                      | 0-896   | 0.980   |  |
| 2            | 2                          | 1                 | 2.87                                      | 2-817   | 2.630   |  |
| 3            | 4                          | 2                 | 2.87                                      | 2.974   | 2.709   |  |
| 4            | 6                          | 2                 | 3 - 58                                    | 3.646   | 3-645   |  |
| 5            | 10                         | 4                 | 3 - 58                                    | 3.296   | 3 - 503 |  |
| 6            | 14                         | 4                 | 3.58                                      | 3.269   | 3 - 159 |  |
| 7            | 18                         | 4                 | 3 58                                      | 3 377   | 3.177   |  |
| 8            | 22                         | 4                 | 3.80                                      | 3.799   | 3 542   |  |
| 9            | 26                         | 4                 | 3.80                                      | 3-487   | 3.577   |  |
| 10           | 30                         | 4                 | 3.80                                      | 3-394   | 3-442   |  |
| ii -         | 34                         | 4                 | 4.50                                      | 4-428   | 4-263   |  |
| 12           | 38                         | 4                 | 4.50                                      | 3 - 698 | 4.137   |  |
| 13           | 42                         | 4                 | 4.50                                      | 3-823   | 4.039   |  |
| 14           | 46                         | 4                 | 4.50                                      | 3.902   | 3.968   |  |
| 15           | 50                         | 4                 | 4.47                                      | 4.016   | 3.555   |  |
| 16           | 60                         | 10                | 4.33                                      | 4.147   | 3.874   |  |
| 17           | 70                         | 10                | 4.12                                      | 4.102   | 3.920   |  |
| 18           | 80                         | 10                | 4.12                                      | 4.270   | 4-112   |  |
| 19           | 100                        | 20                | 4.13                                      | 4.283   | 4.372   |  |

Tabla 2.5(a). Velocidades de ondas S asignadas al modelo inicial FBR3 y modelos resultantes de la inversión, (1 y 2), para México central (tomado de Fix, 1975).

|              |                            |                   | Shear-wave velocity (km s <sup>-1</sup> ) |          |          |  |
|--------------|----------------------------|-------------------|-------------------------------------------|----------|----------|--|
| Layer<br>No. | Depth at<br>bottom<br>(km) | Thickness<br>(km) | Starting<br>model<br>FBR3A                | Model A1 | Model A2 |  |
| 1            | 1                          | 1                 | 1.50                                      | 0.643    | 0        |  |
| 2            | 4                          | 3                 | 2.87                                      | 3.107    | 3-139    |  |
| 3            | 18                         | 14                | 3.58                                      | 3.368    | 3-427    |  |
| 4            | 30                         | 12                | 3.80                                      | 3 - 54-4 | 3-458    |  |
| 5            | 38                         | 8                 | 4.50                                      | 4.783    | 4.646    |  |
| 6            | 50                         | 12                | 4.50                                      | 3+601    | 3.973    |  |
| 7            | 80                         | 30                | 4.12                                      | 3.979    | 3.878    |  |
| 8            | 120                        | 40                | 4-14                                      | 4.349    | 4.174    |  |
| 9            | 160                        | 40                | 4-17                                      | 4.571    | 4.517    |  |
| 10           | 200                        | 40                | 4.50                                      | 4.539    | 4.547    |  |
| 11           | 260                        | 60                | 4.609                                     | 4.767    | 4.775    |  |
| 12           | 300                        | 40                | 4.609                                     | 4.750    | 1.671    |  |
| 13           | 340                        | 40                | 4.72                                      | 1.001    | 1.105    |  |
| 14           | 350                        | 40                | 4-59                                      | 1.067    | 1.750    |  |

Tabla 2.5(b). Velocidades de ondas S asignadas al modelo inicial FBR3A y modelos resultantes de la inversión, (A1 y  $\lambda$ 2) (tomado de Fix, 1975).

Método de estudio: método sísmico de refracción. Las explosiones fueron hechas en el Golfo de México y las estaciones sísmicas estaban localizados en México y Florida (Fig. 2.12).

Resultados: los resultados de la interpretación estan

representados en las Fig. 2.13, 2.14, 2.15 y las Tablas 2.6 y 2.7. Por debajo del Golfo de México a la profundidad de 60 km se observa un incremento significativo de velocidad desde 8 km/s hasta 8.77 km/s. La velocidad empieza a disminuir a partir de los 80 km (Fig. 2.15). La densidad en el manto superior bajo el océano es más alta (correspondiendo a Vp=8.1-8.3 km/s), que bajo el continente (Vp=7.9 km/s).

Conclusiones: los autores hacen notar, que el espesor encontrado en la Mesa Central es menor de lo que se hubiera podido esperar según su elevación. La estructura de la corteza en la Mesa Central se asemeja al área del oeste de los Estados Unidos en que se experimenta extención cortical: la provincia del "Basin and Range".

Como resultado de esta recopilación se propone un modelo de la corteza a lo largo del transecto que indica la distribución aproximadade las velocidades sísmicas con la profundidad (Fig. 2.16).



Fig. 2.12. Ubicación de tiros y de estaciones. Los círculos abiertos y sólidos indican la posición de explosiones, los triángulos indican la posición de estaciones sísmicas de observación. La estación C - fue operada por la UNAM, las estaciones en Florida fueron operados por la Universidad Teinológico de Texas (T) y la Universidad de Wisconsin (W). La curva marcada "Wisconsin" indica el perfil observado por Universidad de Wisconsin en 1957. Perfiles M-4 y M-5 fueron observados por la Universidad de Texas. Los perfiles con etiqueta V fueron observados por el Observatorio Geológico Lamont (tomado de Hales et al., 1970).



Fig. 2.13. Modelo sísmico cortical para la porción continental del perfil estudiado por Hales et al., (1970).

| Location        | Total Crustal<br>Thickness, km | Sediment<br>Thickness* |
|-----------------|--------------------------------|------------------------|
| Stations 7-11   |                                |                        |
| (plateau)       | 34 9                           | 0                      |
| Stations 4-6    |                                |                        |
| (coastal plain) | 29/8                           | 0-0-55                 |
| Station 3       | 27.6                           | 0.95                   |
| Station 2       | 26.7                           | 1 45                   |
| Station 1       | 25.5                           | 2.2                    |

Included in total.

Tabla 2.6. Estructura cortical obtenida para la porción continental del perfil estudiado por Hales et al. (1970).



Fig. 2.14. La sección transversal del perfil compilado de los mapas de isópacas de Guzmán (1952). Lineas punteadas son extrapolaciones (tomado de Hales et al., 1970).

| Unit                     | Principal Types of Sediments                                                                                      | Seismic<br>Velocity<br>Assumed,<br>km/sec |
|--------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Oligorene and<br>younger | Marine and nonmarine state,<br>and, gravel, caliche, bgnire,<br>ashes, small conglomerate, and<br>reef limestone. | 2.2                                       |
| Eocene                   | Marine and nonmarine shale,<br>sund, calcareous sand, and con-<br>glomerate.                                      | 22                                        |
| Upper Cretareous         | Marine shale, marl, and thin-bedded limestones.                                                                   | 30                                        |
| Lower Cretaceous         | Marine limestone (locally very thick reef deposits).                                                              | 4 0                                       |
| Upper Jurassie           | Marine limestone and shale;<br>sandstone and conglumerate;<br>red beds, gypsum, salt, tuffs,<br>and coal.         | 40                                        |

Tabla 2.7. Composición de las unidades estratigráficas indicadas en la Fig. 2.14. (tomado de Hales et al., 1970).



Fig. 2.15. Varios modelos de velocidad para las partes continental y oceánica del perfil estudiado por Hales et al., (1970). Estos modelos son compatibles con el tiempo de recorrido observado. También son compatibles con las amplitudas observadas con la excepción del modelo 5 (tomado de Hales, 1970).



.

Fig. 2.16. Estructura sismica de la corteza a lo largo del transecto.

# CAPITULO III.

MODELO GRAVIMETRICO PARA EL AREA DEL TRANSECTO.

#### INTRODUCCION

El propósito de este capítulo es proponer un modelo gravimétrico en base de datos sísmicos.

En particular nuestra interpretación gravimétrica debería respetar

 la profundidad del Moho deducida a partir de los estudios sísmicos;

2) las densidades consistentes con las velocidades sísmicas;

3) y los datos geológicos sobre los espesores de capas de rocas superficiales.

Digno de comentar es el uso en este trabajo:

1) de diferentes densidades de referencia para diferentes profundidades;

 del algoritmo de Talwani modificado para incluir la topografía.

Al hacer el modelo gravimétrico a continuación se discute la estructura obtenida de la corteza a lo largo del transecto.

Como complimento se hizo el cálculo de las derivadas de la anomalía de Bouquer de diferente orden. Esto nos puede indicar en la presencia de los cuerpos anómalos cercános a la superficie. Los resultados obtenidos fueron muy útiles para estudio isostático (Capítulo IV) y en el estudio magnetométrico (Capítulo V). Un aspecto muy importante de la gravimetría es la no unicidad en la solución del problema inverso. En particular no podemos determinar la estructura de la corteza y del manto superior partiendo unicamente de datos gravimétricos. Lo único que podemos saber con certeza es que la estructura deducida es consistente con la anomalía de Bouguer observada. Pero para una anomalía gravimétrica dada hav un número infinito de estructuras diferentes consistentes con ella. De donde se deduce que la interpretación particular de la estructura de la corteza y del manto superior en

nuestra zona de estudio no debiera basarse solo en datos gravimétricos.

Con la ayuda de los datos gravimétricos se ha podido demostrar (Capitulo IV) que la mavor parte de los grandes rasgos topográficos superficiales a lo largo de nuestro transecto están aproximadamente en equilibrio isostático. Sin embargo como también lo veremos los datos gravimétricos no pueden utilizarse para deducir sin ambigüedad la estructura del subsuelo y por lo tanto el mecanismo de compensación isostática. Más sin embargo, la II) proporciona información sismología (Capítulo sobre la distribución de la velocidad sísmica (interfaces y velocidades) y por lo tanto ayuda a restringuir la interpretación de la estructura del subsuelo (Birch, 1961). Las Fig. 3.1(a) y 3.1(b) que generaliza resultados de estudios experimentales sobre la relación que existe entre la velocidad de propagación de las ondas sísmicas y de la densidad de las rocas, muestran que existe una considerable dispersión y que no hay una relación general simple entre estos dos parámetros.

Es obvio entonces que no es posible asignar a un tipo de roca una velocidad sísmica única. Un procedimiento objetivo de verificación de cualquier interpretación de la distribución de la velocidad sísmica en términos de densidad es comparar la anomalía de Bouguer calculada en base al modelo elaborado a partir de los datos sísmicos con la anomalía de Bouguer observada.

De este modo la gravimétria conjuntamente con la sismología, proporciona un poderoso instrumento para investigar la estructura de la corteza y del manto superior (litósfera). En este trabajo esta ha sido la metodología seguida para inferir la estructura de la litósfera.

# LA ANOMALIA DE BOUGUER, LA TOPOGRAFIA Y EL MODELADO.

" La anomalía de Bouguer ha sido considerada como la información más importante de los estudios gravimétricos.

En los últimos años se ha revisado el concepto de esta anomalía. Estos cambios demuestran la necesidad de introducir algunas modificaciones en las prácticas de interpretación cuantitativa, en particular de tomar en cuenta la topografía en el


Fig. 3.1(a). Relacion velocidad contra densidad en base a estúdios de laboratorio de Woollard (1962, 1969 a,b) - W, Dortman y Magid (1968) - D (tomado de Meissner et al., 1983).



Fig. 3.1(b). Velocidad contra densidad para siliicatos y óxidos a una presión de 10 kbars. Los números al lado de los circulos representan los pesos atómicos. Las lineas punteadas suguieren a variación para pesos atómicos promediados constantes (tomado de Geller, en preparación).

método de modelación directa tipo Talwani (Talwani et al., 1959). Precisamente estas modificaciónes se tomaron en cuenta en este trabajo. Los cambios en el concepto físico asociado a la anomalía de Bouguer se discuten en el Anexo A.

En el trabajo de Gutiérrez (1983) se presenta la modificación al método desarrollado por Morgan y Grant (1962) para el cálculo del efecto gravitacional de cuerpos bidimensionales de forma modificó el irregular. Gutiérrez algoritmo para variar simultaneamente las variables X y Z en cada estación de cálculo las cuales corresponden a las posiciones horizontal y vertical, respectivamente. De esta forma se puede seguir cualquier clase de relieve topográfico, por complicado que este sea, solucionandose el problema del cálculo de modelos geológico - geofísicos con relieve topográfico accidentado, y en particular ajustándose a las condiciones en que fueron hechas las observaciones de campo.

La fórmula:

 $\Delta g_{z}(0) = G\rho \sum_{k=1}^{n} [b_{k} / (1+a_{k}^{2})] [ln ((x_{k+1}^{2} + z_{k+1}^{2}))/$ 

 $/(x_{k}^{2} + z_{k}^{2})) + a_{k}(\tan^{-1}x_{k+1}/z_{k+1} - \tan^{-1}x_{k}/z_{k})]$ 

(1)

Fue empleada en este trabajo en el cálculo del efecto gravitacional de cuerpos 2-D de forma irregular aproximados por polígonos, en donde : G es la constante de gravitación universal;  $\rho$  es el contraste de densidad ;  $(x_k, z_k)$  - son las coordenadas de cada uno de los vértices del polígono.

Para aplicar satisfactoriamente la fórmula (1) se partió de la suposición de que el punto de cálculo se encuentra en el origen del sistema. Por lo tanto, si deseamos calcular el efecto

gravimétrico de cualquier cuerpo, en puntos situados sobre una superficie irregular, tendremos que hacer una translación de ejes en la que el punto de cálculo siempre conserve su posición en el origen del sístema de referencia.

A diferencia de este programa, el modelado gravimétrico con paquetes basados en los algoritmos comunes de Talwani (1959), Morgan y Grant (1962) que no consideran la topografía puede ocasionar errores considerables y más que nada en áreas con desniveles topográficas grandes.

#### BASE DE DATOS

La base de datos gravimétricos estuvo constituida por el plano gravimétrico para Norteamérica, escala 1 : 5 000 000 (Geological Society of America, 1987), del plano de anomalía de Bouquer de México, escala 1 : 3 000 000 (De la Fuente et al., 1991). En sus elaboraciones se utilizaron datos gravimétricos de PEMEX, INEGI, UNAM, CRM, Inst. Oceanográfico de Manzanillo, USGS, de las Universidades de Oregon State y Texas at Dallas y del Comitte for the Gravity Anomaly Map of North America (SEG). Se usó una densidad promedio de 2.67 g/cm<sup>3</sup> para el cálculo de la correción de Bouquer. No se incluye correción topográfica. A partir de estos planos se elaboró el perfil gravimétrico (Fig. 3.2, Tabla A.1). El perfil gravimétrico interpretado fue digitizado de estos dos documentos. En la parte continental del perfil se cuenta con valores de la anomalía de Bouquer, mientras que en la parte marina se cuenta con valores de la anomalía de Aire Libre.

El perfil estudiado corre a lo largo del Trópico del Cáncer (latitud  $23^{\circ}$  27<sup>°</sup> N) desde la península de Baja California (110<sup>°</sup>W) hasta el Golfo de México (92<sup>°</sup>), con una longitud de 1860 km.

## MODELACION.

El modelo inicial de la corteza y del manto superior a lo largo del transecto fue elaborado a partir de la distribución de la velocidad sísmica reportada en los diferentes estudios sismológicos realizados en México y que tienen relación con

Topografia.



Fig. 3.2. Anomalia de Bouguer y anomalia de Aire Libre en las partes continental y marítima respectivamente del transecto.

• •

nuestra zona de estudio (Capitulo II) (Fig. 2.16).

La distribución de velocidad sísmica fue traducida en una distribución de densidad usando la relación velocidad vs. densidad de Birch (1961), etc. En muchos casos las densidades fueron proporcionadas directamente por los autores de los estudios sísmicos.

Las interfaces entre las diferentes partes de la columna sísmica fueron incorporadas sin cambios mayores.

En la determinación de la profundidad al Moho se consideró al Moho como la zona en que la velocidad de las ondas P aumenta discontinuamente, o muy rápidamente, de valores propios de la corteza a valores superiores a 7.7 km/s.

Para determinar el espesor de la litósfera a lo largo del transecto se partió de los siguientes datos:

- 1) sísmicos (Capítulo II);
- 2) de flujo de calor (Capítulo VI);
- 3) de la edad de la corteza occánica (Capítulo I);

y se usaron las siguientes gráficas:

- a) conjunto de geotermas para el océano y continente (Capítulo VI);
- b) espesor de la litósfera bajo los océanos dependiendo de la edad del fondo oceánico (Capítulo VI).

Considerando, por ejemplo, que la corteza oceánica en el Golfo de México se formó durante el Jurásico tardio - Cretácico temprano y tiene por lo tanto una edad de 160 Ma, el espesor de la litósfera debería ser aquí ≈ 120-150 km según Pollack et al. (1977).

En el Golfo de California la situación es más compleja. Ya que el Golfo se abrió en los últimos 5-6 Ma (Karing et al., 1972), por lo cual le corresponderia un espesor litosférico de 20 km (Pollack et al., 1977). Bajo las zonas de dorsales la astenósfera es más somera (aproximadamente 10 km). En la Fig. 6.26 (capítulo VI) se representa el comportamiento de la litósfera a lo largo del transecto.

Basandose en el modelo sísmico (Fig. 2.16) es posible clasificar la corteza y manto superior a lo largo del transecto en

#### 3 tipos característicos:

- 1) continental,
- 2) oceánico,
- 3) regiones de transición continente-océano.

El paso siguiente consistió en verificar si la distribución de la densidad deducida de los datos sísmicos es consistente con la anomalía de Bouguer observada.

Para esto se procedió a simular numericamente el efecto gravimétrico del modelo propuesto. Se utilizó el algoritmo de Talwani (Talwani et al., 1959). Volvemos a repetir que el programa se modificó para considerar la topografía del perfil.

Se propusieron 65 cuerpos (Tabla A.2 y Fig. 3.3). La profundidad máxima del modelo es de 100 km. La cantidad de cuerpos se explica por los siguientes factores:

- se consideraron no solamente cambio de densidad con respecto de la profundidad sino que también cambios laterales de densidad dentro de la corteza y del manto superior;
- la columna de densidades de referencia incluyó varios dominios con densidades diferentes.

de -3 km a 0 km ----- 2.67gr/cm<sup>3</sup> de 5 km a 12 km ----- 2.75 gr/cm<sup>3</sup> de 12 km a 30 km ----- 2.85 gr/cm<sup>3</sup> de 30 km a 60 km ----- 3.30 gr/cm<sup>3</sup> de 60 km a 100 km ----- 3.40 gr/cm<sup>3</sup>

Esta columna de la distribución de densidades de referencia con profundidad fue tomada de Kamp et al. (1989) y habia sido construida en base de estudios de las densidades características para los diferentes rangos de profundidad derivadas de la dependencia velocidad-densidad. El uso de esta columna tiene gran importancia en la interpretación gravimétrica, porque la respuesta gravimétrica observada en la superficie depende del contraste lateral de densidades. Entonces es conveniente comparar la



# Fig. 3.3. Cuerpos utilizados en la modelación gravimétrica.

densidad asignada a un cuerpo a cierta profundidad con la densidad característica para esta profundidad.

De aquí que con frecuencia un estrato con una misma densidad absoluta fuera dividido en varios cuerpos con densidades relativas diferentes (cuando dicho estrato se extendía a través de regiones con densidades de referencia diferentes).

Esto explica el grán número de cuerpos usados. En realidad el modelo consta en su parte continental de cubierta sedimentaria (incluyendo el relieve topográfico), una corteza superior granítica, una corteza inferior básica y el manto superior (Fig. 3.4).

El uso del método bidimensional de Talwani se justificó por el hecho de que la anomalía de Bouguer en nuestra área presenta un patrón enlongado aproximadamente en la dirección N-S, es decir se puede considerar como una anomalía tipicamente bidimensional.

Como resultado general de la interpretación se obtuvo que el modelo propuesto es en general consistente con la anomalía observada de Bouguer (Tabla A.1 y Fig. 3.5). Solo fué necesario realizar modificaciones menores al modelo inicial para obtener un ajuste óptimo entre la anomalía teórica y la anomalía de Bouguer.

ESTRUCTURA DE LA LITOSFERA A LO LARGO DEL TRANSECTO.

A continuación discutiremos las características principales de la estructura de la corteza y del manto superior en las diferentes provincias que el transecto cruza.

# GOLFO DE CALIFORNIA Y GOLFO DE MEXICO.

El piso de la cuenca del Golfo de México está formado por corteza tipo transicional (de espesor 6-20 km) y corteza oceánica (5-6 km de espesor). En la Fig. 3.6 el límite entre los dos tipos de corteza está representado de acuerdo a las interpretaciones de Buffler y Watkins (1990), basado en perfiles sísmicos de refracción y reflección.

En la corteza transicional la capa granítica (corteza superior) se adelgaza, lo que se compensa, por lo menos parcialmente por un engrosamiento de la capa sedimentaria. El espesor máximo de la capa sedimentaria en el Golfo de México es  $\approx$  9 km.



Fig. 3.4. Modelo cortical y distribución de densidades.

Anomalia de Bouguer, mgal



Fig. 3.5. Anomalía gravimétrica observada y calculada en base al modelo de la Fig. 5.6.

SALIR

DE LA

BIBLHOTECA



Fig. 3.6. Mapa indicando la distribución de la corteza oceánica contra la corteza de tipo transicional en el centro del Golfo de México (tomado de Buffler et al., 1980).

En el Golfo de California se tiene un adelgazamiento en la corteza en correspondencia con la zona de esparcimiento del piso oceánico. Se tiene la cubierta sedimentaria y en seguida la corteza oceánica.

LAS ZONAS DE TRANSICION CORTEZA MARINA - CORTEZA CONTINENTAL.

Los dos margenes continentales del Golfo de México y del Golfo de California son de tipo pasivo, esto significa que no presentan zonas de subducción. En un caso la transición de corteza de tipo continental a la de tipo oceánico se opera en unos tramos con bastante rapidez y brusquedad dentro del marco del talud continental (Golfo de California), mientras que en el otro se extiende a mayores distancias (Golfo de México). Estas zonas se destacan por cambios abruptos en las anomalias de Aire Libre, Bouguer e Isostáticas (Capítulo IV).

En el margen continental del Golfo de México se interpretó la existencia de intrusiones magmáticas.

LA SIERRA MADRE OCCIDENTAL, MESA CENTRAL, SIERRA MADRE ORIENTAL.

Sobre la parte continental la anomalía de Bouguer varía entre -20 Y 240 mGal. La interpretación se hizo recordando que los valores negativos de la anomalia de Bouguer (regional) pueden ser causados:

- 1) por cambios en la profundidad de la interfase corteza-manto;
- por cambios laterales de densidad dentro de la misma corteza;
- por cambios laterales en la densidad de la parte superior del manto que la subyace.

Por otro lado a partir de datos sísmicos (capítulo II), de flujo de calor y magnetotelúricos se infiere que el manto superior por debajo de la Mesa Central posee una densidad relativamente baja (punto 3) (ver capítulos VI y VII). En correspondencia con los datos sísmicos, el espesor de la corteza debajo de la Mesa Central es de aproximadamente 30 km (Fix, 1975), mientras que por debajo de la parte este de la Sierra Madre Occidental y de la Sierra

Madre Oriental se tienen los siguientes espesores corticales: 40 y 35 km (Rivera et al., 1986; Hales et al., 1970) respectivamente. Es decir la corteza presenta una asimetría en su espesor cortical en la parte continental del transecto.

# ESTRUCTURAS CORTICALES SOMERAS.

Como subproducto de la interpretación de los datos gravimétricos se procedió a efectuar un procesado digital que incluyó:

- 1) la primera derivada horizontal de la anomalía de Bouguer:  $d\Delta g/dx$  (Tabla A.3 y Fig. 3.7);
- 2) la primera y segunda derivadas verticales:  $d\Delta g/dz$  y  $d^2\Delta g/dz^2$  (Tabla A.3 y Fig. 3.8, 3.9).

Estas derivadas apoyan el estudio de la parte somera de la corteza superior. La correlación de las derivadas con el mapa geológico a lo largo del transecto nos ha permitido destacar fuertes anomalias de derivadas en la zona de transición que se deben a:

 cuerpos cercanas a la superficie (por ejemplo intrusiones), que no afloran y por lo consiguiente no están reportados en el plano geológico.

2) o a cámbios abruptos en la profundidad del basamento cristalino.

En algunos casos, especialmente para masas pequeñas pero situadas muy cerca una de otra y cerca de la superficie, que causan anomalias de pequeña magnitud, el método de división del campo gravitacional en "regional" y "local" con los métodos tradicionales o mediante continuación analítica de anomalias a otro nivel puede ser no lo suficientemente sensible. Cerca de estas masas pueden observarse gradientes de fuerza de gravedad importantes. En estos casos el método más efectivo de análisis es la obtención del campo de gradientes a partir del campo de anomalias. La propiedad en la cual está basada la utilización de las derivadas consiste en que, al alejarse uno de las masas anómalas, la primera y segunda derivadas de la anomalía gravitacional desminuyen más rápidamente que la propia anomalía



transecto.



Fig. 3.8. Primera derivada vertical  $d\Delta g/dz$  a lo largo del

ъ 1,00



gravitacional. De este modo en el mapa de derivadas aumenta el efecto de las masas pequeñas situadas someramente en relación con las estructuras grandes y situadas a mayores profundidades.

El cálculo de las derivadas fue hecho en el dominio de las frecuencias. Para obtener a partir del conjunto original de datos gravimétricos (digitalizados de los planos) un conjunto de datos igualmente espaciados fue utilizado el método de interpolación mediante funciones tipo "Spline" (Campos-Enríquez et al., 1983).

# CAPITULO IV.

# EL ESTUDIO DE LA ISOSTASIA EN EL TRANSECTO.

#### OBJETIVOS,

En este capítulo se realiza una estimación por varios métodos del estado de equilibrio isostático en la región estudiada. Las anomalias isostáticas indican una sub - o sobrecompensación en el área de estudio y comunmente (aunque es a veces erroneamente y más adelante se discute porque) se relaciona con un espesor mayor o menor de la corteza comparando con que debe ser según la teoría de isostasia. Este análisis proporciona también la información sobre el tema principal de la tesis - estructura de la corteza a lo largo del transecto.

#### LA ANOMALIA ISOSTATICA Y SU UTILIDAD.

La anomalía de tipo isostático sirve para indicar el grado de equilibrio isostático que existe en una región dada de la Tierra. Una distribución dada de masas compensadoras es correcta si la anomalía tiene valores cercanos a cero. Si la anomalía tiene valores positivos o negativos muy grandes ella generalmente indica que las masas compensadoras estan sobrecompensando o subcompensando a los rasgos topográficos. Pero existen excepciones de esta confirmación (Simpson et al., 1986).

Esta información tiene significado tectónico, y está relacionada con la estabilidad tectónica cortical.

El fenómeno de isostasia está relacionado a la respuesta de la cubierta exterior de la Tierra, al depósito y remoción de grandes masas. Esta cubierta, a pesar de que es relativamente resistente, no puede soportar grandes esfuerzos generados, por ejemplo, por el gran peso de cadenas montañosas o la ausencia relativa de masa en cuencas oceánicas.

Las primeras observaciones conducentes al descubrimiento del principio de la isostasia no fueron medidas gravimétricas, sino determinaciones de la vertical. Entre 1735 y 1745, Bouguer dirigió

una expedición en el Perú, siendo una de sus finalidades la medida de un arco de meridiano. Bouguer y sus colegas encontraron que los Andes ejercian una atracción horizontal sobre su plomada, provocando una desviación local de la vertical verdadera. Análisis posteriores de sus datos demostraron que la desviación observada era mucho más pequeña que la esperada sobre la base de la topografía y densidad de los Andes (Fig. 4.1).

El hecho de que los sistemas montañosos no ejercían la atracción de la que obviamiente eran capaces fue confirmado por Sir George Everest en observaciones realizadas en la India (en los Himalaya) unos 100 años más tarde.

Este fenómeno no se explicó claramente hasta que casi simultáneamente en 1855 Airy y Pratt expusieron sus hipótesis respecto a las formas geométricas de la compensación isostática local. Ambos decían que la corteza terrestre podía suponerse dividida en bloques descansando sobre un "substrato" más o menos fluido (el magma). Ambas hipótesis se fundamentan en el principio de Arquimedes.

La idea de que las montañas no son excesos de carga situadas sobre la superficie, sino que su masa visible es compensada por un defecto de masa en profundidad, recibe el nombre de teoría de isostasia, y la compensación del exceso de masa superficial por una reducción de masa a profundidad es llamada compensación isostática.

La presencia de la compensación bajo la superficie está confirmada por la variación del campo gravitacional de la Tierra sobre grandes regiones. Las anomalías de Bouguer son negativas generalmente sobre áreas continentales elevados y positivas sobre cuencas oceánicas.

El principio de isostasía consiste en que a cierta profundidad, conocida como profundidad de compensación, la presión generada por el material que está arriba es igual en todos lados. Esto quiere decir que los pesos de las columnas verticales de sección unitaria son iguales.



Fig.4.1. La atracción gravitacional horizontal de la masa de los Andes situada sobre el nivel del mar causaría que la plomada sufriera deflexión (c) con relación a la vertical (a). La deflexión observada (b) es menor, indicando la existencia de una deficiencia de masa por debajo de los Andes. Los ángulos de deflexción y la distribución de masas son solamente esquemáticos.



Fig. 4.2. Mecanismo de compensación isostática según Pratt.  $T_p$  espesor normal de la corteza,  $\rho_h$  es la densidad de la corteza por debajo de las montañas,  $\rho_z$  es la densidad de la corteza por debajo de océano.  $D_p$  es la profundidad de compensación por debajo de  $T_p$ , h es la elevación de las montañas sobre el nivel del mar, z es la profundidad de la agua de densidad  $\rho_z$ .

Arediano Pratt suponía que la corteza terrestre tiene un espesor uniforme por debajo del nivel del mar por lo que el contacto con el "substratum" se alcanza a una profundidad constante que representa el nivel de compensación (Fig. 4.2).

Por ello los bloques en las regiones montañosas debian tener una densidad menor que la normal, mientras que bajo los océanos estos bloques debian tener una densidad mayor que la normal. Igualando los pesos de las columnas de sección unitaria bajo las montañas y de regiones de elevación cero, obtenemos :

 $g(T_p + h) \rho_h = gT_p \rho_c \qquad (1)$ 

 $\rho_{\rm h} = T_{\rm p} \rho_{\rm c} / (T_{\rm p} + h)$  (2)

Mientras que en cuencas oceánicas:

$$\rho_{z} = (T_{p} \rho_{c} - z \rho_{y}) / (T_{p} - z)$$
(3)

T - el espesor normal de la corteza, que corresponde a una elevación cero;

 $\rho_c - la densidad de la corteza bajo una región con elevación cero;$  $<math>
\rho_h - la densidad de la corteza bajo las montañas;$  $<math>
\rho_z - densidad de la corteza bajo del océano;$  $D_p - profundidad desde T_p hasta nivel de compensación;$ h - la altura sobre el nivel de mar; $z - la profundidad de agua de densidad <math>\rho_c$ .

# HIPOTESIS DE AIRY.

La teoría de Pratt fue criticada por Sir G. B. Airy, quien propuso otro tipo de explicación. Airy decía que los bloques simplemente flotan sobre el magma y que la densidad de todos los bloques es sustancialmente la misma. Los bloques con alta topografía son más pesados y penetran más en el "substratum",

mientras los bloques bajo los océanos serán más ligeros y se hundirán menos en el magma. El contacto con el magma quedará tanto más profundo cuando mayor sea el peso de cada bloque (Fig. 4.3).

Igualando los pesos de las columnas de sección unitaria bajo la cadena montañosa y una región con elevación zero, obtenemos:

$$g[h\rho_{c}+T_{A}\rho_{c}+r\rho_{c}+D_{A}\rho_{m}] = g[T_{A}\rho_{c}+r\rho_{m}+D_{A}\rho_{m}] \qquad (4)$$

$$r=h\rho_{r}/(\rho_{r}-\rho_{r})$$
, donde (5)

h es la altura sobre el nivel de mar; z es la profundidad de agua de densidad  $\rho_{_{u}}$ ; T<sub>A</sub> es el espesor normal de la corteza de densidad  $\rho_{_{c}}$ ; r es el espesor de la raíz; a es el espesor de antiraíz; D<sub>A</sub> es la profundidad del nivel de compensación bajo la raíz;  $\rho_{_{m}}$  es la densidad del manto;  $\rho_{_{c}}$  es la densidad de la corteza.

Igualmente tendremos para una cuenca oceánica:

$$a=z\left(\rho_{r}-\rho_{u}\right)/\left(\rho_{m}-\rho_{r}\right) \tag{6}$$

La hipótesis de Pratt fue utilizada extensamente en los Estados Unidos por J.F.Hayford, llegando a ser conocida como el esquema de compensación de Pratt-Hayford. Según Hayford la profundidad del nivel de compensación es 113.7 km.

De manera similar, en Europa se adoptó la hipótesis de Airy por W.A. Heiskanen y se le conoce como el esquema de compensaciones de Airy-Heiskanen.

La existencia de un equilibrio isostático perfecto implicaría que por debajo del nivel de compensacion el interior de la tierra fuera fluido.

Pero la información sísmica va contra esta hipótesis por las siguientes razones:

 El interior de la Tierra transmite ondas transversales que un líquido perfecto no lo haría;



Fig. 4.3. Mecanismo de compensación isostática según Airy. La leyenda es similar a de la Fig. 2 excepto que T<sub>A</sub> representa el espesor normal (con respecto de la elevación h=0 km) de la corteza de densidad  $\rho_c$ , r es el espesor de la raiz, a es el espesor de la antiraiz, D<sub>A</sub> es la profundidad de compensación por debajo de la raiz,  $\rho_m$  es la densidad del manto.

 2) los terremotos son comunes a una profundidad de 700 km. El mecanismo de terremotos de foco profundo es similar al de aquellas de foco poco profundo;

3) de la amplitud de las mediciones de las mareas se deduce que la rigidez de la tierra es de  $1.53 \times 10^{12}$  dinas/cm<sup>2</sup>, casi el doble de valor del acero (Howell, 1962). Una rigidez tan elevada no parece razonable para un líquido.

Todas estas evidencias implican que la corteza y el manto superior (hasta por lo menos 700 km) sean en su mayor parte sólidos.

Pero por otro lado existe la hipótesis de que la tierra puede comportarse como un cuerpo sólido en presencia de fuerzas de corta duración, pero que actua como si se tratara de un cuerpo líquido viscoso cuando está sometido a esfuerzos de larga duración.

Los modelos de compensación local de Airy y de Pratt, a pesar de que son usados comunmente, en realidad implican propiedades mecánicas no reales para la corteza y el manto superior, porque predicen que también un movimiento independiente interviene con masas muy pequeñas.

La litósfera no es tan debil como lo implican estos modelos, porque existen grandes anomalías gravimétricas sobre áreas de intrusiones ígneas con edades mayores a 100 Ma. La litósfera es capaz de soportar una diferencia de hasta 20-30 MPa durante períodos considerables de tiempo sin necesidad de compensación local.

En estos primeros modelos de isostasia se asumió que la cubierta exterior que está afectada por la compensación isostática corresponde a la corteza. Seguramente, el contraste grande de densidad existente alrededor de Moho aporta lamayor parte de compensación.

Pero hoy día se cree, que el estrato que está afectado por la compensación es mas grueso e incluye a la litósfera. Pero el contraste de densidad alrededor de la frontera entre litósfera y astenósfera es muy pequeño.

La compensación isostática puede explicarse de un número infinito de formas, y las hipótesis de Pratt y Airy representan nada más dos de estas posibilidades. Ambos hipótesis son casos

extremos de una hipótesis más general, que supone que la compensación se cumple tanto por un cambio en la densidad de la corteza, como por un cambio en su espesor.

También puede ser necesaria la existencia de flujos y diferencia de densidad en la astenósfera para explicar anomalías gravimétricas.

El proceso de compensación es indudablemente complicado, y no existe ninguna razón para suponer que en todas partes se produzca de la misma manera.

Las hipótesis de isostasia discutidas más arriba asumen que el soporte de los rasgos superficiales se consige por el equilibrio hidrostático con un "substrato". Pero en ciertas áreas. en particular en márgenes convergentes de placas los rasgos de la superficie son soportados dinamicamente por esfuerzos horizontales. Tales rasgos aportan anomalias isostáticas muy grandes en la superficie de la Tierra.

Los modelos de la isostasia más reales involucran una compensación regional.

# HIPOTESIS DE WENING-MEINESZ.

La hipótesis clásica de compensación regional es debida a Wening-Meinesz (1941) y consiste en la suposición de que las masas compensadoras bajo montañas y océanos se distribuyen en un área que es más grande que la que ocupan las masas topográficas (montañas u océano). Bajo el peso de masa anómalas (h>0) la corteza terrestre se flexiona, hundiendose en el "substratum" bajo de ella (de mayor densidad). La compensación se cumple por que las masas menos densas rellenan el volumen, anteriormente ocupado por las masas más densas.

La condición de compensación isostática según la hipótesis de Wening-Meinesz se expresa por la ecuación:

$$\rho_{s} = (\rho_{m} - \rho_{s}) \int_{0}^{h} z \, dh \qquad (7)$$

donde

 $ho_{_{\rm c}}$  -densidad de las masas anómalas superficiales.

 $(\rho_{m}-\rho_{s})\int z$  dh - el efecto de masa que se produce como el resultado

de la flexión de la corteza bajo el peso de masas anómalas,  $\rho_{\perp}$  -densidad del material bajo la corteza.

En la teoría clásica de la isostasia se supone que todas las masas topográficas están compensados a profundidad por:

- un cambio en el espesor de la corteza: depresión de la superficie del Moho por debajo de elevaciones topográficas y elevación de la misma por debajo de depresiones topográficas;
- o por cambios de densidad que tienen lugar dentro de la litósfera.

Con frecuencia tanto en los océanos como en los continentes, la parte significativa o principal de las masas anómalas que compensan el relieve topográfico está situada en el manto. Este sería el caso de estructuras topográficas positivas, la gran elevación de las cuales comunmente estará compensada por volumenes de manto anómalo. Esto ocurre por ejemplo en regiones continentales con actividad tectónica y dorsales oceánicas.

Las elevaciónes en los Alpes y en arcos insulares están compensados en parte por un engrosamiento de la corteza y en parte por un manto anómalo.

Como vimos en la teoría isostática clásica se considera, que las masas anómalas (compensadoras) pudieran estar situados solamente en el manto litosférico.

En realidad en algunos casos ocurre también otra situación: el manto anómalo caliente posee una viscosidad muy baja y forma parte más bién de la astenósfera. Si el límite inferior de la litósfera posee una elevación relativa, el material fundido se acumula ahí y no tiene posibilidad de migrar hacia los lados y puede permanecer aqui durante mucho tiempo: aproximadamente 10<sup>8</sup> años enfriandose paulatinamente (Artushkov, 1980).

En estos casos la parte principal de las masas anómalas que compensan el relieve está situada en el manto astenosférico. Las

inhomogeneidades fisico-químicas en la astenósfera se atenuan solamente por abajo del nivel de compensación, que pasará por las depresiones más profundas de la litósfera (Fig. 4.4).

En el estudio del grado de equilibrio isostatico de cualquier área nos encontramos por lo tanto con dos problemas distintos: 1) verificar si existe equilibrio isostático y en que grado;

2) y verificar que hipótesis de compensación isostática se aplica.

A continuación se enlistan

LOS METODOS QUE PERMITEN EVALUAR EL GRADO DE EQUILIBRIO ISOSTATICO DE UNA REGION.

 Correlación del campo gravitacional (anomalía de Aire Libre, de Bouguer) con el relieve topográfico y con el espesor cortical:

a) la misma magnitud de la anomalía de Aire Libre;

b) análisis de correlación entre la anomalía de Aire Libre y la topografía.

c) la relación entre la anomalía de Aire Libre y la de Bouguer;

 análisis de la correlación entre la anomalía de Bouguer y la elevación topográfica;

 e) análisis de la correlación entre el espesor de la corteza y el relieve topográfico;

II. Cálculo del coeficiente aproximado del grado de compensación isostática.

III. Cálculo de la anomalía isostática.

A continuación vamos a presentar los métodos usados en este trabajo y a discutir los resultádos obtenidos.

I. CORRELACION DEL CAMPO GRAVITACIONAL (ANOMALIA DE AIRE LIBRE, BOUGUER) CON EL RELIEVE TOPOGRAFICO Y CON EL ESPESOR CORTICAL.



Fig. 4.4. Manto anómalo "atrapado" en la parte elevada de la litósfera.

# a) ANOMALIA DE AIRE LIBRE.

Una idea cualitativa sobre el grado de compensación isostática se puede obtener a partir de la anomalía de Aire Libre.

La anomalía de Aire Libre se determina de la siguiente manera:

$$AAL = g(observada) - g(teórica) + 0.3086h$$
 (8)

donde 0.3086h - la corrección de Aire Libre.
[AAL]= mGal, [h]= m

De esta fórmula se ve, que la AAL representa la atracción de 1) <u>todas</u> las masas sobre el nivel del geóide y de las

2) masas anómalas situadas por bajo del nivel del geóide.

Se observa que esta anomalía cambia con el relieve en un grado considerablemente menor de lo que tendría que ser debido a las masas topográficas (sobre el nivel del mar). Se esperaría que sobre regiones montañosas existieran grandes anomalias positivas, mientras que sobre los océanos existieran grandes anomalias negativas.

Las anomalias de Aire Libre se aproximan al valor de lasanomalias isostáticas en áreas planas (mesetas planas elevadas o cuencas oceánicas profundas y anchas). Esto no se cumple en los extremos de dichas estructuras.

A continuación demostraremos este postulado.

Consideremos una meseta ancha, como por ejemplo la Mesa Central. Supongamos que masas con una elevación h están compensadas por una raiz de espesor r (Fig. 4.13). La correción por topografía en la parte central de la meseta es pequeña, de modo que la anomalía de Bouguer AB está relacionada a la anomalía de Aire Libre de la siguiente manera:

#### AB=AAL-CB (9)

donde AB - anomalía de Bouguer, AAL - anomalía de Aire Libre, CB=2pGr<sub>C</sub>h - corrección de Bouguer, donde r<sub>c</sub> - la densidad del estrato de compensación. Usando el modelo de compensación de Airy :

$$AI = AB - A_{raiz}$$
 (10)

donde

 $A_{raiz}$  la anomalía gravitacional de la raiz compensadora. Como la raiz es ancha comparada con su espesor, su anomalía puede ser aproximada la de un estrato infinito:

anomalía de la raiz =  $2pG(r_c - r_m)r$  (11)

donde  $r_m^-$  es la densidad del substrato. Combinando las ecuaciones (10) y (11)

 $AI = AB - A_{raiz} = AAL - CB - A_{raiz} = AAL - 2pGrh - 2pG(r - r_c)r_m$ 

(12) Y sustituyendo el criterio de Airy para el equilibrio isostático

$$r = hr_c / (r_m - r_c)$$

en la ecuación ( ) obtenemos

$$AI = AAL - 2pGr_h - 2pG(r_r)hr /(r_r) =$$

=  $AAL - 2pGr_h + 2pGr_h = AAL$ 

De tal manera, la anomalía isostática es igual a la anomalía de Aire Libre sobre rasgos topográficos anchos y planos (Fig.4.5(a), y esto representa un método simple para verificar el estado de equilibrio isostático de la Mesa Central.

(13)

Para el cálculo de la anomalía de Aire Libre se hizo la suguiente operación:

$$AAL = AB+CB = AB+2pGrh = AB+0.0419rh$$
(14)

Para un valor estandar de la densidad r=2.67 g/cm<sup>3</sup>, el valor



Fig. 4.5. Igualdad de la anomalía de Aire Libre y de la anomalía isostática sobre las mesetas anchas y planas (tomado de Kearey et al., 1990).

numérico de 2mGp será 0.1119 mGal/m, entonces

[AAL] = mGal, [AB] = mGal, [h] = m, h - positivo hacia arriba.

Esta fue la fórmula que empleamos para el cálculo de la AAL sobre la parte continental del transecto (Tabla B.1).

Para las zonas oceánicas (Golfo de California y Golfo de México) los valores de AAL se leen del mapa directamente. La anomalía de Bouguer para estas zonas se calculó de la siguiente manera (Tabla B.1):

# $AB = AAL - 2\pi G \Delta \rho h = AAL - 2\pi G (2.67 - 1.03) h = AAL - 2\pi G \times 1.64 h = AAL - 0.0687 h$ (16)

donde h - es negativa por debajo del nivel del geóide, h - será la profundidad del fondo del mar.

Se puede observar que a lo largo del transecto la anomalía de Aire Libre es muy suave y de poca magnitud (Fig. 4.6).

Para el área de la Mesa Central (aproximadamente plana) la anomalía de Aire Libre cambia entre un mínimo de 3.8 mGal y un máximo de 19.038 mGal, lo que permite inferir para dicha área una compensación isostática aproximada.

Las anomalias de Aire Libre más marcadas están restringuidos a las regiones de transición entre continente y océanos y suguieren la idea de que la actividad tectónica que ha caracterizado estas regiones, probablemente no se manifesta en la actualidad o que estas anomalias se deben a cuerpos anómalos cercanos a superficie. Es el comportamiento común de la anomalía de Aire Libre en zonas de transición (Lyustikh, 1960).

A continuación se construyeron las gráficas (Fig. 4.7 y 4.8) que representa la dependencia entre la anomalía de Aire Libre y la altura a lo largo del transecto. Se ve que la anomalía de Aire Libre aumenta con la altura en los continentes y decrese con la profundidad del fondo de mar en los océanos.



Fig. 4.6. Anomalía de Aire Libre a lo largo del transecto.



Fig. 4.7. Dependencia a lo largo del transecto entre la anomalía de Aire Libre y la altura. La ecuación de regresión lineal es A.L.=0.014h+8, [h]=m, [A.L.]=mGal.



Fig. 4.8. Dependencia a lo largo del transecto y para h>1350m entre la anomalía de Aire Libre y la altura. La ecuación de regresión lineal es A.L.=18.8+9.8h, [A.B.]=mGal, [h]=km.

La anomalía de Bouguer en el caso de la existencia de equilibrio isostático debe ser igual a la corrección de Bouguer con signo opuesto.

En la Fig. 4.9 se observa que esto se cumple aproximadamente para el transecto con excepción de la zona de transición entre el continente y el Golfo de México. En la zona de la SMOc se observa que la anomalia de Bouguer por su valor absoluto es menor que la corrección de Bouguer.

El hecho de que la anomalía de Bouguer es grande y negativa en la parte continental del transecto (Fig. 4.10) demuestra que bajo el sistema montañoso (SMOc, Mesa Central y SMOr) hay una deficiencia de masa.

Por si solo esto implica que ya ha habido alguna compensación isostática.

La anomalía isostática debe tener un valor entre la anomalía de Aire Libre y la anomalía de Bouguer. Una condición necesaria, pero no suficiente, para que el área esté en equilibrio isostático, es que la anomalía de Aire Libre y de Bouguer tengan signos opuestos (Fig. 4.11). Si las anomalías de Bouguer y de Aire Libre son negativas (o positivas) al mismo tiempo, entonces el área no estará compensada.

En la Fig. 4.11 vemos que las anomalias de Aire Libre y de Bouguer a lo largo del transecto tienen signos opuestos. Entonces la condición necesaria para la existencia de equilibrio isostático en el transecto se cumple con excepción de las zonas de transición entre el continente y el océano.

Para analizar la compensación isostática en base a la anomalía de Bouguer se analizó el grado de correlación lineal:

- entre la anomalía de Bouguer y la elevación topográfica;
- 2) entre la anomalía de Bouguer y el espesor de la corteza;
- 3) entre el espesor de la corteza y el relieve topográfico.








тbal







Fig. 4.11. Condición necesaria (pero no suficiente) para que el área esté en equilibrio isostático, es que la anomalía de Aire Libre y de Bouguer tengan signos opuestos. \_\_\_\_\_\_\_\_ anomalía de Bouguer, ++++ anomalía de Aire Libre.

### CORRELACION LINEAL ENTRE LA ANOMALIA DE BOUGUER Y LA ELEVACION TOPOGRAFICA.

La anomalía de Bouguer se incrementa linealmente al disminuir la altura promedio de las masas topográficas y al aumentar la profundidad promedio del mar. En general para la densidad 2.67  $g/cm^3$  en la corrección de Bouguer es de 112 mGal por cada kilómetro de elevación y 69 mGal por kilómetro de profundidad en el continente y en el mar respectivamente.

Si la compensación fuera completa en todos sus detalles y las densidades de las masas topograficas y del manto fueran constantes, se podría esperar que los puntos (h-elevación, A.B.) caerian sobre una misma linea recta con una pendiente 0.1119 mGal/m en la parte continental y 0.68 mgal/m en la parte oceánica.

Pero realmente se ve en la Figura 4.12 que existen desviaciones.

Las causas principales de estas desviaciones pueden ser las siguientes:

a) en el cálculo de la anomalía de Bouguer se usó para la corrección de Bouguer una densidad de 2.67 g/cm<sup>3</sup> que en realidad puede ser diferente de la densidad real de las masas topográficas;
 b) efecto de la forma de la estructura;

c) existen masas no compensadas, en otras palabras el área no esta completamente compensada (lo que nos interesa).

A continuación discutiremos las causas a) y b) que representan ruido en nuestro estudio de determinacion del grado de compensación isostática

a: El amplio y pronunciado mínimo de la anomalía de Bouguer según el concepto correcto de anomalía de Bouguer, puede estar parcialmente relacionado con una densidad de sedimentos menor a los 2.67 g/cm<sup>3</sup> (valor que fue usado en la corrección de Bouguer). 8

b: Veremos como la forma geométrica de la estructura puede también afectar al valor de la anomalía de Bouguer (y de Aire Libre). Las mediciónes de la gravedad se ven afectadas por la atracción de materiales localizados a diferentes profundidades. La medida en el punto de la superficie de una meseta que está en equilibrio



Fig. 4.12. Anomalia de Bouguer contra elevación para la parte continental del transecto. La ecuación de regresión lineal es A.B.=4.54-0.095h, [h]=m, [A.B.]=mGal (linea con ) y ecuación de corrección de Bouguer es A.B.=0.1119h, [A.B.]=mGal, [h]=m (linea sólida).

isostático está influenciada por la atracción de (Fig. 4.13):
1) la placa de material sobre el nivel del mar (efecto negativo);
2) y la placa que comprende la raiz compensadora (efecto negativo);

En el centro de la meseta en el punto O (Fig. 4.13) la atracción de las dos placas es igual. Entonces a) la anomalía de Aire Libre e isostática en este punto son igual a cero; b) y la anomalía de Bouguer es igual a la corrección de Bouguer con signo opuesto.

El efecto de la placa profunda (que contiene la raíz compensadora) por su gran profundidad empieza a disminuir mucho antes de alcanzar el margen de la meseta. Al contrario el efecto de la placa superficial empieza a desminuir solamente en las cercanias de la margen.

La suma de los efectos de las dos placas produce una anomalía positiva dentro la meseta y una anomalía negativa en los bordes de la meseta como muestra la Fig. 4.13.

Esto también explica por que la anomalía de Aire Libre no es completamente cero en las extremidades de estructuras planas compensadas isostaticamente.

Las anomalías de la fuerza de gravedad y el relieve topográfico pueden variar bruscamente. Pero por regla general las profundidades hasta el Moho no varian bruscamente y no se cumple la compensación isostática de cada pequeña parte de un área dada (la compensación es más bién regional, y no local). Por esta razón en esta y en las siguientes gráficas se utilizaron los valores promedios del relieve.

A continuación con el propósito de comparar con los resultados de Woollard (1962) se construyeron las gráficas de dependencia de la altura de la anomalia de Bouguer para el transecto. Fig. 4.14 representa esta dependencia para todo el transecto y Fig. 4.15 para la parte con elevaciones mayores a 1100 m. Los valores de todo el transecto se ajustan a la recta A.B.=-0.071h-33.43





Fig. 4.13. Influyencia de la forma geométrica de la estructura cortical sobre la anomalía de Bouguer. Topografia idealizada y raiz compensadora. Para las densidades indicadas, el espesor de la raiz R es 6 veces más grande que la elevación de la topografía t.



Fig. 4.14. Análisis de correlación entre la elevación y la anomalía de Bouguer para todo el transecto. La ecuación de regresión lineal es A.B.=-0.071h-33.43, [h]=m, [A.B.]=mGal.





Para la parte oceánica la ecuación de la recta se expresa como A.B.=-0.102h+18.

Según los resultados de Woollard (1962) para el Norte de México las ecuaciones son las siguientes:

| para | 0 <h<1100< th=""><th>m</th><th>A.B.=-0.111h+1±20 mGal;</th></h<1100<> | m | A.B.=-0.111h+1±20 mGal;  |
|------|-----------------------------------------------------------------------|---|--------------------------|
| para | h>1100                                                                | m | A.B.=-0.079h-35±20 mGal. |

# CORRELACION LINEAL ENTRE LA ANOMALIA DE BOUGUER Y EL ESPESOR DE LA CORTEZA.

La anomalía de Bouguer, aun antes de modelar, nos puede proporcionar información sobre el espesor aproximado de la corteza. Pero esto no siempre se cumple. Además esta afirmación que encontramos en varios libros (Woollard, 1962) puede conducir a grandes errores en la interpretación de datos gravimétricos. Un ejemplo de interpretación que puede estar equivocada (debida a Woollard, 1959):

a) En la Mesa Central la anomalía de Bouguer es ≈206 mgal.

b) La anomalía de Aire Libre se aproxima a cero, de aqui que se infiera que la Mesa Central se encuentra aproximadamente en equilibrio isostático.

c) De los puntos a) y b) se deduce que según la teoría de Airy el espesor de la corteza bajo la Mesa Central debe ser 48 km (según Woollard).

El error en este razonamiento clásico es que no se toma en consideración a las densidades de la litósfera y de la astenósfera y que además se supone que todas las masas compensadoras estan ubicadas dentro de la corteza.

Dependiendo fuertemente de la región en estudio, las variaciónes laterales en la densidad del manto superior pueden ser las que contribuyen de manera más marcada a la anomalía regional de Bouguer. Como conclusión vemos pues que no siempre se cumple la afirmación de que el valor promedio de la anomalía de Bouguer caracteriza el espesor de la corteza del área. Hay

Para la parte oceánica la ecuación de la recta se expresa como A.B.=-0.102h+18.

Según los resultados de Woollard (1962) para el Norte de México las ecuaciones son las siguientes:

para 0<h<1100 m A.B.=-0.111h+1±20 mGal; para h>1100 m A.B.=-0.079h-35±20 mGal.

## CORRELACION LINEAL ENTRE LA ANOMALIA DE BOUGUER Y EL ESPESOR DE LA CORTEZA.

La anomalía de Bouguer, aun antes de modelar, nos puede proporcionar información sobre el espesor aproximado de la corteza. Pero esto no siempre se cumple. Además esta afirmación que encontramos en varios libros (Woollard, 1962) puede conducir a grandes errores en la interpretación de datos gravimétricos. Un ejemplo de interpretación que puede estar equivocada (debida a Woollard, 1959):

a) En la Mesa Central la anomalía de Bouguer es ≈206 mgal.

b) La anomalía de Aire Libre se aproxima a cero, de aqui que se infiera que la Mesa Central se encuentra aproximadamente en equilibrio isostático.

c) De los puntos a) y b) se deduce que según la teoría de Airy el espesor de la corteza bajo la Mesa Central debe ser 48 km (según Woollard).

El error en este razonamiento clásico es que no se toma en consideración a las densidades de la litósfera y de la astenósfera y que además se supone que todas las masas compensadoras estan ubicadas dentro de la corteza.

Dependiendo fuertemente de la región en estudio, las variaciónes laterales en la densidad del manto superior pueden ser las que contribuyen de manera más marcada a la anomalía regional de Bouguer. Como conclusión vemos pues que no siempre se cumple la afirmación de que el valor promedio de la anomalía de Bouguer caracteriza el espesor de la corteza del área. Hay

excepciones a esta regla.

En las Fig. 4.16 y 4.17 que representan la dependencia del espesor de la corteza con respecto de la anomalía de Bouguer para todo el transecto y para la parte continental (h>0m) respectivamente se observa que existe una diferencia considerable de espesor de la corteza para valores srmejantes de la Anomalía de Bouguer.

#### CORRELACION LINEAL ENTRE EL ESPESOR DE LA CORTEZA Y EL RELIEVE TOPOGRAFICO.

El espesor de la corteza no necesariamente está relacionado con la elevación topográfica (que debe cumplirse según la hipótesis de Airy). Por ejemplo la provincia de la Mesa Central está compensada parcialmente por el mecanismo de Pratt resultante de la presencia del material de baja densidad en el manto superior (Fix, 1975).

Similarmente, los rifts oceánicos deben su elevación a la región de baja densidad en el manto superior y no a una corteza engrosada.

La sección transversal desde San Franscisco, California hasta Grandes Planicies basado en los datos de refracción sísmica (Pakiser, 1963) (Fig. 4.20) indica que las Grandes Planicies con una elevación promedia 1 km poseen una corteza con un espesor de 40-50 km, y la provincia "Basin and Range" con una elevación de 2 km posee una corteza de tan solo 25-30 km de espesor.

De la Fig. 4.18 se observa que la dependencia entre el espesor de la corteza y el relieve en el transecto varía para las diferentes regiones. Asi para la zona marina la gráfica tiene menos pendiente que para la zona de transición, y la pendiente de esta gráfica tiene a su vez menos pendiente que la zona continental. Entonces lo más correcto es considerar que la dependencia lineal se presenta por zonas: en los océanos, en las zonas de transición y en el continente.

De la Fig. 4.19 (para la zona continental con elevación topográfica h>1 km) se observa que la tendencia general - es un aumento en el espesor de la corteza con la elevación topográfica

15



Fig. 4.16. Análisis de correlación entre el espesor de la corteza y la anomalía de Bouguer para todo el transecto. La ecuación de regresión lineal es Espesor=-0.046  $\cdot$  A.B.=25.8, [Espesor]=km, [A.B]=mGal.



Fig. 4.17. Analisis de correlación entre el espesor de la corteza y la anomalía de Bouguer para la parte continental del transecto. La ecuación de regresión líneal es Espesor=23.9-0.061×A.B., [Espesor]=km,  $[\dot{A},\dot{B}]$ =mGal.



Fig. 4.18. Análisis de correlación entre el espesor de la corteza y la elevación para todo el transecto.







Fig. 4.20. Sección desde San Francisco, California hasta Lamar, Colorado basado en los datos de refracción sismica (tomado de Kearey et al., 1990).

según la fórmula Esp.cort.=8.3h+18.6

Aunque hay que notar que las desviaciones de los valores de esta linea son bastante grandes.

II. COEFICIENTE APROXIMADO DE COMPENSACION ISOSTATICA.

El segundo método para inferir el grado de compensación isostática es el uso del coeficiente aproximado de compensación isostática (Lyustikh, 1960), el cual representa la relación entre el valor real de la anomalía de Bouguer y el valor que se tendría si el ajuste isostático fuera completo.

Sea g\_\_\_\_ - la anomalía de Aire Libre,

 $g_p = g_1 - \Delta g_p$  - la anomalía de Bouguer.

El coeficiente aproximado de compensación es :

 $i = g_{B}^{\prime} - \Delta g_{B}^{\prime} = 1 - (g_{A,L}^{\prime} / \Delta g_{B,L}^{\prime}) = g_{B}^{\prime} / (g_{B}^{\prime} - g_{A,L}^{\prime})$  (17)

Este método se basa en el hecho de que si el ajuste isostático fuera completo la anomalía de Aire Libre debiera ser aproximadamente igual a cero y la anomalía de Bouguer debiera ser igual a la correción de Bouguer con signo opuesto.

- i=1 ajuste isostático es completo (100%)
- i>1 sobrecompensación
- i<1 subcompensación
- i=0 no existe compensación
- i<0 las masas anómalas no tienen el signo adecuado para compensar las masas topográficas.

Según este método (Tabla B.2, Fig. 4.21) el equilibrio isostático de la Mesa Central se ha realizado entre un 91.5 y un 98.3 % (i= 0.915 - 0.983).

En las zonas de transición (con el Golfo de México y con el Golfo de California ) se observan grandes perturbaciónes en el



Fig. 4.21. Comportamiento del coeficiente aproximado de compensación isostática a lo largo del transecto.

equilibrio isostático.

III. CALCULO DE LA ANOMALIA ISOSTATICA.

Para el cálculo de la anomalía isostática se usa la siguiente fórmula general:

anomalía isostática = anomalía de Bouguer - anomalía de la raíz predicha

#### (18)

Los esquemas de compensación isostática (en particular de Airy y de Pratt) proporcionan un método para calcular la distribución en el interior de la Tierra de masas compensadoras a partir de las elevaciones de la topografía.

La teoría gravitacional nos capacita para calcular las atracciones debidas a dichas masas compensadoras (raiz) según uno u otro esquema de compensación. Restando esta cantidad del valor observado de la gravedad, obtenemos la anomalía isostática. En otras palabras, obtenemos la atracción gravitacional de las masas no compensadas. Ambas esquemas de compensación isostática (Airy y Pratt) contienen un parámetro que debe ser escogido. En el esquema de Pratt-Hayford, el parámetro es la profundidad de compensación  $(T_n+D_n)$ , y en el de Airy es el espesor normal de la corteza T.

Aunque esta última cantidad no aparece en la expresión del espesor de las raices montañosas (ecuaciones 5 y 6), la atracción gravitacional de las masas compensadas depende de él.

De este análisis se ve claramente que las anomalias isostáticas son conceptualmente distintas de las anomalías de Bouguer y de Aire Libre. Las dos últimas corresponden a fenómenos metrológicos (aunque corregidos) donde no se parte a priori de ninguna hipótesis acerca de las variaciónes de la estructura. Mientras que las anomalias isostáticas tienen un elemento de predicción. Asi la posición de la raíz, y su correspondiente anomalía isostática serán diferentes, dependiendo de la hipótesis de compensación

utilizada para hacer los cálculos respectivos.

En la práctica, aunque las medidas de la gravedad son muy útiles en la estimación del grado de equilibrio isostático que reina, tienen menor éxito en la diferenciación de entre los diferentes mecanismos de compensación que se han postulado (por ejemplo de Airy o de Pratt). Fundamentalmente esto es debido a que en el problema inverso en gravimetría no existe unicidad.

Ya que en nuestro caso sabemos, que a partir de datos sísmicos(capítulo II), el espesor hasta el Moho varía a lo largo del transecto, se construyó la estructura esperada de la corteza de acuerdo con la hipótesis de Airy.

Para calcular el espesor de la raíz de la corteza se utilizaron (con el propósito de hacer comparación ) dos procedimientos :

1) el de Lyustikh (1960) y

2) el de Nettleton (1976).

El procedimiento de Lyustikh (1960) se basa en la suposición, de que la compensación se cumple por cambios de densidad en la corteza (Pratt), así como por cambios en su espesor (Airy). Este procedimiento se puede aplicar tanto a la combinacion de los dos mecanismos como a cada uno de ellos por separado.

Sea N.M. el nivel del mar (Fig. 4.22): N.S. el nivel del substrato libre (astenósfera) - el nivel, hasta donde hubiera fluido el substrato si se hubiera podido perforar un pozo hasta el;

sea t el espesor de la corteza (tanto para bloques continentales como oceánicos), diferente en cada caso;

h es la altura de la superficie medida a partir del geoide; To es la profundidad del N.S. relativo al N.M.;  $\rho$  es la densidad de la corteza (diferente para cada bloque);  $\rho_{\rm m}$  es la densidad del substrato;  $\rho_{\rm w}$  es la densidad de agua; to es el espesor normal = el espesor de la corteza cuando h=0.

 $t \rho_c = (t - T_0 - h) \rho_m \qquad (19)$ 



Fig. 4.22. Caso general de compensación considerando simultaneamente los mecanismos de compensación isostática de Airy y de Pratt. Según esta hipótesis la compensación se cumple tanto por cambios en la densidad de la corteza como por cambios en su espesor. N.M. es el nivel del mar. N.S. es el nivel del substrato libre, t es el espesor de la corteza, h es la altura de la superficie medida a partir del geoide, T es la profundidad de N.S. relativo a N.M.,  $\rho$  es la densidad de la corteza (diferente para cada bloque,  $\rho_{\rm m}$  es la densidad de agua,  $\rho_{\rm u}$  es la densidad de agua, t es el espesor de la corteza cuando h=0.

Para bloques continentales:

 $t=t_{p}$ ;  $h=((\rho_{p}-\rho)/\rho_{p})t-T_{0}$  (20)

Para el océano :

$$z = [(\rho_{m} - \rho) t - \rho_{m} T_{o}] / [\rho_{m} - \rho_{u}]$$
(21)

Estas ecuaciones generales se puede emplear tanto con los esquemas de Pratt como de Airy. A continuación se discute su aplicación al esquema de Airy. Aqui se necesita suponer

que 
$$\rho = \rho_{\perp} = \text{const.}$$

En el cálculo del espesor de la raiz de la corteza según el esquema de Airy se considera que los siguientes valores son conocidos:

1) la altura h o profundidad de mar z 2) el espesor normal  $t_0=T_A$ 

En este caso profundidad hasta el Moho baho el nivel del mar será:

 $t=T_{A} + \rho_{m}h / (\rho_{m} - \rho_{c}) \text{ para el continente (22)}$  $t=T_{A} + (\rho_{m} - \rho_{c}) z / (\rho_{m} - \rho_{c}) \text{ para el océano (z<0) (23)}$ 

La desviación vertical del Moho (raiz), con relación al nivel de referencia  $T_{A}$ , se determina con la expresión:

$$r=t-(t_0+h)$$
(24)

considerando positiva una desviación hacia abajo. Substituyendo la equación (20) o (21) en (24) obtenemos:

 $r = \rho_c h / (\rho_m - \rho_c)$  para el continente (25)

 $a = (\rho_c - \rho_u) z / (\rho_m - \rho_c) \quad \text{para el mar } (z < 0) \quad (26)$ Se nota que  $\rho_c / (\rho_m - \rho_c) > 1$ 

 $(\rho_c - \rho_m)/(\rho_m - \rho_c) > 1$ , entonces

r es positivo y a es negativo.

Comparando estas ecuaciones (25) y (26) con (5) y (6) se ve que es simplemente otra forma de deducir el espesor de la raiz.

Estas ecuaciones indican que actualmente, según la hipótesis de Airy, la raíz de la corteza es una exageración vertical simétrica (con respecto de la horizontal) del relieve de la corteza. La exageración vertical es diferente en bloques continentales y oceánicos. Hay que notar que en la fórmula (7) z < 0 y de aquí que cuanto más profundo sea el mar, menor sera el espesor de la corteza oceánica.

El otro método que se puede usar para estimar la raiz del sistema isostático, es el de Nettleton (1976), basado en el hecho de que las mediciónes gravimétricas en la superficie son afectadas por la atracción de material situado a diferentes profundidades (Fig. 4.13):

1) el efecto gravimétrico positivo de las masas topográficas de espesor h y densidad  $\rho_{roc}$ ;

 el efecto gravimétrico de igual magnitud pero signo contrario de la "raíz" respectiva.

$$h \rho_{top} = R \Delta \rho_{p} = R(\rho_{m} - \rho_{R})$$
(27)

donde

h es el espesor de las masas topográficas  $\rho_{top}$  es la densidad de las masas topográficas, R es el espesor de la raíz  $\Delta \rho_2 = \rho_m - \rho_R$  es la diferencia de densidad entre la densidad de la raíz y del manto circundante.

De (27) se sigue que:

$$R=h \rho_{top} / (\rho_{m} - \rho_{R})$$
(28)

Y para el océano el espesor de la antiraiz será

$$A=z\left(\rho_{10}-\rho_{y}\right)/\left(\rho_{m}-\rho_{R}\right)$$
(29)

La profundidad hasta el Moho bajo el nivel del mar será:

$$M=T_{+}R=T_{+}+h\rho_{+}/(\rho_{-}-\rho_{-}) \text{ (para el continente)} (30)$$

$$M=T_{+}+A=T_{+}+z\left(\rho_{+,n}-\rho_{n}\right)/\left(\rho_{-}-\rho_{n}\right) \quad (\text{para el océano, } z<0) \quad (31)$$

El paso siguiente consiste en calcular las posibles configuraciónes del Moho y hacerlas corresponder con algunos valores normales del espesor de la corteza T<sub>i</sub>.

Valores de  $T_A$  entre 20 y 30 km se consideran en general razonables. Consideramos el valor  $T_A=25$  km el más apropiado paranuestro transecto porque es característico (aproximadamente ±1 km) del área de estudio según los datos sísmicos tanto para Planicie Costera del Golfo de California (Thatcher et al., 1973) como para la Planicie Costera del Golfo de México (Hales et al., 1970).

Además la ecuación de regresión lineal entre espesor de la corteza y la Anomalía de Bouguer para todo el transecto es Espesor=-0.046×A.B. +25.8 (Fig. 4.16), [Espesor]=km, [A.B.]=mGal. Para A.B.=0 mGal (que se debe cumplirse para h=0 km en el caso de compensación isostática completa), el Espesor=25.8 km.

La ecuación de regresión lineal solamente para la parte continental del transecto es Espesor=23.9-0.061×A.B. (Fig.4.17). Para A.B.=0 mGal el espesor será 23.9 km.

El promedio entre estos dos valores es (25.8+23.9)/2=24.85 km

Para el cálculo del espesor de la Raiz según la fórmula (28) es nesesario tener el valor del contraste de densidades entre la raiz

y el manto  $(\rho_m - \rho_p)$ . Supongamos que  $\rho_{top} = 2.67 \text{ g/cm}^3$ .

Aquí surge otro problema - cual debe ser este contraste de densidades?

En este aspecto diferentes autores tienen diferentes puntos de vista. Por ejemplo:  $\rho_{\rm m}-\rho_{\rm R}=0.35$  g/cm<sup>3</sup> (según de la Fuente et al., 1992; y Simpson et al., 1986);  $\rho_{\rm m}-\rho_{\rm R}=3.3-2.85=0.45$  g/cm<sup>3</sup> (según Kamp et al., 1989; Smith, 1975; Bott, 1971; Kearey et al., 1990;) (Fig. 4.6(a));  $\rho_{\rm m}-\rho_{\rm R}=3.4-2.8=0.6$  g/cm<sup>3</sup> (según Nettleton, 1976) (Fig. 4.13);

Para demostrar como pueden influir estos parámetros sobre la anomalía isostática se calcularon diferentes modelos.

Primero se analizó el caso de influencia de T<sub>A</sub> sobre la anomalía isostática. En la Fig. 4.23 y Tabla 4.3 está representada la posición del Moho bajo el nivel del mar a lo largo del transecto para T<sub>A</sub>=20 km, T<sub>A</sub>=25 km, T<sub>A</sub>=30 km. Se tomó para estos tres ejemplos un mismo contraste de densidad  $\rho_m - \rho_R = 0.45$  g/cm<sup>3</sup>. En la Fig. 4.24 y Tabla B.4 están representados las anomalías isostáticas correspondientes a estos casos.

A continuación se hizo el análisis de la influencia del contraste de densidad  $\Delta \rho = \rho_m - \rho_R$  sobre la anomalía isostática. Se tomó  $\Delta \rho = 0.35 \text{ g/cm}^3$ ;  $\Delta \rho = 0.45 \text{g/cm}^3$ ;  $\Delta \rho = 0.55 \text{g/cm}^3$ . T, es el mismo 25 km para los tres casos considerados.

En la Fig. 4.25 y Tabla B.5 está representado la posición del Moho bajo el nivel del mar para estos casos y en la Fig. 4.26 y tabla B.6 las anomalias isostáticas correspondientes.

De estos casos se ve como los parametros que dependen del criterio del interprete ( $T_A$  y  $\Delta\rho$ ) influyen sobre la anomalía isostática. Según estos parámetros la anomalía isostática puede ser tanto positiva como negativa. Prueba de esto son las Figuras 4.29(a), 4.29(b) y 4.29(c) donde se observa que con diferentes técnicas para una misma área ("Basin and Range" y "Rio Grande Rift") en un caso se obtiene anomalias isostáticas positivas (Fig. 4.29(b) y 4.29(c)) y en otro - negativas (Fig. 4.29(a)).



Fig. 4.23. Posición del Moho bajo el nivel del mar correspondiente a TA=20 km, TA=25 km, TA=30 km. Contraste de densidad  $\Delta \rho$ =0.45 g/cm<sup>3</sup> para los tres casos.



Fig. 4.24. Anomalias isostáticas correspondientes a la Fig. 4.23.



Fig. 4.25. Posición del Moho bajo el nivel del mar correspondiente a un contraste de densidad  $\Delta \rho$ =0.35 g/cm<sup>3</sup>,  $\Delta \rho$ =0.45 g/cm<sup>3</sup>,  $\Delta \rho$ =0.55 g/cm<sup>3</sup>. Ta=25 km para los tres casos.



### Fig. 4.26. Anomalias isostaticas correspondientes a la Fig. 4.25.

Hay que tener mucho cuidado en "escoger" la anomalía isostática apropiada y basarse en varios métodos geofísicos (en sismológia por ejemplo) y no solamente en la información gravimétrica.

Entonces de todos estos múltiples casos cual es la anomalía isostática apropiada para nuestro transecto?

Según nuestro criterio es la anomalía que corresponde a  $T_A = 25$  km y  $\Delta \rho = 0.45$  g/cm<sup>3</sup> (Fig. 4.27). Las razones de esto son las siguientes:

1) escogimos T\_=25 km por las razones mencionados anteriormente;

2) escogimos  $\Delta p=0.45$  g/cm<sup>3</sup> por los valores de densidades de referencia utilizados en la interpretación gravimétrica (capítulo III) para la profundidad característica para la raiz de la corteza 2.85 g/cm<sup>3</sup> y para el manto superior 3.3 g/cm<sup>3</sup>. Además para este valor la anomalía isostática en la Mesa Central se acerca más a la anomalía de Aire Libre aquí (Fig. 4.6 y Tabla 4.4) que se debe cumplir para las mesetas planas y anchas como se demostró anteriormente.

La anomalía isostática obtenida para el transecto en el presente trabajo es diferente de los valores a partir de la carta de anomaía isostática de México de de la Fuente Duch et al. (1991) para México donde indica valores de anomalía isostática negativos en la Mesa Central.

Las razones de esto pueden ser las siguientes:

1) deferente valor de T, (para la carta de la Fuente Buch et al. (1991) se tomó el valor de T,=30 km);

2) diferente valor de  $\Delta p$  (para la carta se tomó el valor 0.35 g/cm<sup>3</sup>);

3) no consideró la topografía en el cálculo del efecto gravimétrico de la raiz. Esto afecta el valor de la anomalía isostática. Pero considerando la gran profundidad de la raiz comparado con la elevación de la topografía este efecto no será apreciable. En la Fig. 4.28 está representado un ejemplo de esto; 4) otra razón de discrepancia puede ser que para la carta se utilizaron las elevaciones mundiales cada 5 minutos proyectándola y subdividiéndola en una rejilla regular de 3 km antes del cálculo. Para el transecto en el presente trabajo se tomaron



Fig. 4.27. Raiz de la corteza según la hipótesis isostática de Airy para Ta=25 km y  $\Delta p{=}0.45$  g/cm  $^3.$ 



Fig. 4.28. Anomalia isostática a lo largo del transecto calculada con y sin considerar la topografía para TA=25 km y  $\Delta \rho$ =0.45 g/cm<sup>3</sup>.



Fig. 4.29(a). Mapa de la anomalía isostática para Estados Unidos. El intervalo de configuración es 2.5 mGal (tomado de Simpson et al., 1986).



Fig. 4.29(b). Mapa de la anomalía isostática de la porción sur del área de "Rio Grande rift". Intervalo de configuración es 5 mGal. Líneas más gruesas indican los límites aproximados del rift (tomado de Keller et al., 1990).



Fig. 4.29(c). Filtrado pasa-bajos del mapa de la anomalía isostática (Fig. 4.29(b)) del sur del área del "Rio Grande rift". El intervalo entre contornos es 5 mgal. Línea remarcadas indican aproximadamente los límites del rift.
valores puntuales en la Mesa Central (donde no existen variaciones de altura considerables) y los valores de altura suavizados para el resto del transecto.

Este tema requiere sin embargo de una mayor investigación más detallada.

Sin embargo el punto clave para verificar la validez de la anomalía isostática en la Mesa Central en el presente trabajo reside en la anomalía de Aire Libre.

El procedimiento clásico de cálculo de la anomalía isostática escogiendo de antemano la estructura más probable, no está completamente justificado, como ya lo mencionamos, porque suponemos que  $\rho_{\rm p}$  = const y  $\rho_{\rm c}$  = const.

Pero en nuestro caso como ya habiamos visto la corteza y el manto presentan inhomogeneidades. Según los datos sísmicos existen dos partes en el transecto con un manto anómalo de baja densidad bajo la parte central del Golfo de California y bajo la Mesa Central. Bajo el Golfo de México el manto, por el contrario, tiene una densidad más alta que bajo del continente (Hajes et al., 1970).

El manto anómalo en el caso de la Mesa Central (densidad baja), así como en el Golfo de México (densidad alta) influye radicalmente en el espesor de la corteza.

De este modo, se puede concluir que una combinación de los esquemas de compensación de Pratt y Airy está más cerca de la verdad para el caso de nuestro transecto estudiado que cualquiera de las dos por sí solos.

De aqui que este método (definir la estructura de la corteza según las anomalias isostáticas) es muy aproximado y puede conducir a errores considerables cuando no está justificado su uso.

Las anomalias isostáticas no necesariamente muestran desbalances isostáticos. Las anomalías isostáticas pueden ser originadas por cuerpos con densidades altas o bajas localizadas en la parte superior de la corteza.

En efecto la comparación de anomalía isostática (Fig. 4.24), el coeficiente aproximado de compensación isostática (Fig. 4.21) con

las gráficas de la segunda derivada vertical (capítulo III, Fig.) pone en realidad la coincidencia de anomalias en la zona de transición entre la Planicie Costera y el Golfo de México. Esto significa que las fuertes anomalias isostáticas aquí están relacionados con cuerpos anomalos en la corteza superior.

Es interesante notar que la configuración del Moho obtenido según la hipótesis de Airy (Fig. 4.23) se aproxima en rasgos generales al modelo obtenido según la interpretación de datos sísmicos y gravimétricos (Capítulo III, Fig. B.4).

Otro punto de interés - es que los valores de laanomalía isostática son cercanos a cero y positivos tanto en el "Rio Grande Rift" (según Fig. 4.29(b)) como en la Mesa Central (según el presente trabajo).

La anomalía isostática positiva significa subcompensación. Según la interpretación común la subcompensación indica que la corteza es de un espesor menor de lo que tenía que ser para que exista una compensación completa. Es un punto más a favor de que la corteza en la Mesa Central es de espesor relativamente reducido de lo que tenía que corresponder a su elevación de 2 km.

# CAPITULO V.

# MAGNETOMETRIA.

### INTRODUCCION.

El propósito de este capítulo es el estudio cualitativo y cuantitativo de la anomalia magnética a lo largo de la parte del transecto donde se cuenta con datos magnetométricos.

El análisis cualitativo consiste en describir el comportamiento del perfil magnético regional. Y la parte cuantitativa consiste en: 1) determinar la profundidad hasta el basamento magnético;

2) determinar la profundidad hasta el punto de Curie;

 y determinar un modelo magnético para la Planicie Costera del Golfo de México donde existen anomalias muy marcadas con rumbo N-NW.

La determinación de profundidad hasta el punto de Curie para las diferentes partes del transecto nos indica indirectamente sobre el espesor de la corteza o la cercania del manto.

Por otro lado los datos obtenidos sobre la profundidad del punto de Curie pueden ser útil para realizar comparación de la distribución de la temperatura con la profundidad para el transecto que se obtiene en el siguiente Capítulo VII.

Para alcanzar estos objetivos se utilizó análisis espectral de los datos aeromagnéticos y modelado 2-D basados en el algoritmo de Talwani (Talwani y Heirtzler, 1964).

### BASE DE DATOS.

El perfil magnético total empieza al este de la SMOc en el punto de coordenadas  $23^{\circ}30$  N  $105^{\circ}$  W y termina en la orilla del Golfo de México en el punto con coordenadas  $23^{\circ}16$  N  $99^{\circ}W$ 

En la parte este de la SMOr y la Planicie Costera del Golfo de México se tomaron 3 perfiles paralelos, que son perpendiculares al rumbo NW de las anomalias.

Sus coordenadas son: perfil I - inicio  $23^{\circ}19 \text{ N}$   $100^{\circ}32 \text{ W}$ , final -  $24^{\circ}59 \text{ N}$  97°01 W; perfil II - inicio  $22^{\circ}50\text{N}$   $100^{\circ}\text{W}$ , final -

23°57 N, 97°41 W; perfil III - inicio 21°08 N 99°42 W, final -22°22 N 97°22 W.

La altura de vuelo es 3.5 km

Se tiene la anomalia de campo magnético total. El perfil cubro la parte oriental de la SMOc, la Mesa Central, la SMOr y la Planicie Costera del Golfo de México.

Los datos magnetométricos a lo largo de nuestro transecto fueron corregidos por efectos de las variaciones diurnas, asi que en el presente trabajo unicamente se procedió eliminar el campo geomagnético principal (Fig. 5.1(a), 5.2(a), 5.3(a), 5.4(a), Tabla C.2). Para ello se utilizó el campo Geomagnético Internacional de Referencia IGRF 1985-1990. El modelo requiere de las coordenadas geográficas y de la altura del punto de observación, asi como de la época de observación (Tabla C.1) (Barrelough, 1987; Campos-Enriquez et al., 1991).

#### ANALISIS CUALITATIVO.

El perfil magnetométrico está orientado perpendicularmente al rumbo de las anomalias.

Al analizar cualitativamente el perfil de la anomalia magnética de campo total (Fig. 5.1(b)), podemos notar, que en su parte oeste las anomalias magnéticas son más altas que en la Mesa Central a causa de que allí afloran las ignimbritas (con espesor hasta 2 km) de la SMOc, que poseen mucho mayor susceptibilidad magnética que las rocas sedimentarias (calizas) que afloran en la Mesa Central y en la SMOr.

En la parte este de la SMOr y en la Planicie Costera se observa una fuerte anomalía local. Anomalias locales en el este de la SMOr y en la Planicie Costera (Fig. 5.2(c), 5.3(c), 5.4(c)) indican la presencia de cuerpos emplazados en la corteza superior o la elevación abrupta del basamento magnético.

#### ANALISIS ESPECTRAL

El análisis espectral de los datos aeromagnéticos representa un método simple, confiable y con bases matemáticas para estimar la profundidad promedio regional hasta los cuerpos magnéticos (por ejemplo hasta el basamento en las cuencas sedimentarias).

En este método la pendiente del espectro de potencia del mapa aeromagnètico está relacionado con la profundidad promedia a la cima del conjunto de los cuerpos magnéticos.

Este cálculo también se puede hacer directamente a partir de datos de perfiles (Treitel et al., 1971). Es decir no es necesario trabajar con mapas magnéticos digitalizados (Spector y Grant, 1970).

El espectro de potencia también permite estimar la profundidad hasta la base de los cuerpos magnéticos.

La parte del espectro de potencia del mapa aeromagnético que corresponde a las bajas frecuencias contiene esta información (Shuey et al., 1977). Esta información no se puede obtener mediante el análisis aislado de cada una de las anomalías del mapa.

A una misma anomalía magnética dada se puede ajustar una serie sin fin de las prismas verticales y que varian del estrato delgado hasta el prisma sin fondo.

Por consiguiente, es imposible determinar la profundidad hasta el fondo de basamento ajustando un prisma vertical a la anomalia.

La anomalia magnética tiene una parte negativa y positiva (el valor promedio de la anomalia es zero). La parte positiva de la anomalía contiene la información sobre la profundidad así como sobre las dimensiones horizontales de la cima del cuerpo magnetizado. La mayor parte de la información sobre el fondo del cuerpo está en la parte negativa de la anomalia, que es relativamente pequeña pero se distribuye sobre un área mayor. Considerando que las anomalias se traslapan y las anomalias pequeñas pueden enmascararse por las mayores, la parte negativa de las anomalias individuales es raramente estudiada.

Pero de todos modos las partes negativas de las anomalias están incluidas en el espectro de potencia. Su contribución es más grande en las bajas frecuencias porque son de mayor extensión que las

partes positivas de las anomalias.

#### SUPOSICIONES Y RESULTADOS.

1. Para cada área del perfil magnético (SMOc, Mesa Central, SMOr y Planicie Costera) asumimos tentativamente que en general el fondo magnético coincide con la isoterma de Curie. (El caso alterno seria cuando el fondo magnético representa una interfase litológica). Por consiguiente, la determinación de la profundidad hasta la base magnética es equivalente a la determinación del gradiente geotérmico promedio.

 Las anomalías residuales fueron interpolados para obtener 2<sup>m</sup> datos igualmente espaciados basados en una interpolación con funciones tipo spline (Campos-Enríquez et al., 1983).
El espectro de potencia (Fig. 5.1(d), 5.2(d), 5.3(d)) fue obtenido con el método de transformada rápida de Fourier (FFT).

3. En lugar de indicar el error asociado con cada estimación de h y de Umax, representaremos varias estimaciones de la profundidad de Curie para el perfil total, basadas sobre tres valores diferentes de la profundidad estimada hasta la cima del conjunto magnético (Fig. 5.1(d)).

4. En el caso del perfil magnético total con el presente método solo se pudo obtener la profundidad promedia hasta la cima del basamento magnético. Por esta razón las ondulaciones de la superficie del basamento que tienen periodos iguales o menores que la longitud del perfil no pueden ser detectados.

Es posible resolver en parte este problema dividiendo el perfil principal en varios segmentos. Pero hay que tener siempre en mente: 1) que se debe tener suficientemente muestras de tal manera, que el espectro resultante sea estadisticamente significante;

2) que los perfiles obtenidos de la división deben tener longitudes no menores a  $2\pi Z_F$  (donde  $Z_F$ - profundidad hasta el fondo magnético).

Debido a la naturaleza del perfil magnético, no se pudo dividirlo en segmentos correspondientes a las provincias geológicas intersectadas, por las siguientes razónes: 1) el perfil no cubre toda la SMOc,

2) ausencia del relieve magnético en la Mesa Central.

Por esa razón de todo el perfil magnético original, para el análisis espectral se tomaron solamente los datos correspondientes a la Mesa Central y SMOr.

A continuación se analizan los resultados de las determinaciones de la profundidad hasta el punto de Curie y se realiza un análisis de correlación con la geología regional y con las mediciones de flujo de calor asi como la estructura sismica.

Para el perfil completo la estimación del punto de Curie fue hecha para el intervalo entre el punto 17 (160 km desde inicio) y el punto 58 (570 km). Esta área comprende la Mesa Central y la SMOr. Se estima que la profundidad al punto de Curie se encuentra entre 23.5 km y 28.5 km. Considerando que la temperatura de Curie para las rocas de la corteza inferior - manto superior es 520-560 °C (Shuey et al., 1977), esto corresponde aproximadamente a la distribución de la temperatura con la profundidad obtenida en el Capítulo VI - (Fig. 6.24).

La profundidad de punto de Curie obtenido para la parte este de la SMOr y de la Planicie Costera del Golfo de México es entre 28 km (perfil I) y 36 km (perfil II), que también corresponde aproximadamente con los resultados representados en la Fig. 6.24.

La localización más somera de punto de Curie en la Mesa Central y en la SMOr que en la Planicie Costera del Golfo de México se explica por la contribución de la Mesa Central. En la Mesa Central el flujo de calor observado es más alto que en la Planicie Costera.

Los datos sísmicos (Fix, 1975) indican la presencia de fusión parcial en el manto superior bajo la Mesa Central. La interpretacion de datos magnetotelúricos (comunicación personal de Sanchez-Castellano y Alday-Cruz) permiten inferir conductividades más altas en la corteza inferior y en el manto superior bajo la Mesa Central que en la SMOc y SMOr, lo cual se puede explicar por

temperaturas elevados en el manto.

De tal modo se puede inferir que en la Mesa Central el punto de Curie está en la corteza media y en la SMOr está localizado en la corteza inferior en tante que en la Planicie Costera éste se localiza en el manto superior.

La isoterma de Curie normalmente se ubica dentro del manto superior por debajo de los continentes excepto en regiones de alto flujo térmico tales como áreas de actividad volcánica reciente y de tectónica extensional donde una fuerte magnetización está restringida a la corteza superior. La Mesa Central posee evidencias de extensión (Capítulo VII). Esto puede ser la razón que el punto de Curie aquí sea más somero que en la Planicie Costera del Golfo de México.

Se observa la siguiente correlación:

1) Los valores de alto flujo de calor corresponden con profundidades más someras del punto de Curie.

2) Las zonas con una isoterna de Curie somera coinciden con zonas de baja velocidad de ondas sismicas ( $P_n$ ) (Mesa Central).

### MODELADO 2-D

Finalmente se procedió a realizar una interpretación cuantitativa, basada en un modelado 2-D, del perfil aeromagnético (perfil III) que pasa por la parte este de la SMOr, Planicie Costera y parte del Golfo de México. Para ello se empleó el algoritmo de Talwani y Heirtzler (1964).

Este algoritmo proporciona el efecto magnético producido por un cuerpo bi-dimensional con una sección transversal de forma cualquiera (aproximada por un poligono irregular).

A pesar de que la suposición de un cuerpo de dos dimensiones implica algunos errores en la solución, éste método proporciona una primera aproximación, que a veces es suficiente (como en nuestro caso).

La utilización de modelado en 2-D se justifica ya que las anomalías presentan aproximadamente un patrón NW-SE (es decir

perpendicular a la dirección SW-NE del perfil aeromagnético).

Los resultados de esta interpretación están representados en la Fig. 5.5. Las causas de anomalías magnéticas en la Planicie Costera (perfil 1 y perfil II) y en la zona de transición con el Golfo de México (perfil III) pueden ser:

1) una elevación de basamiento magnético o

2) una serie de intrusiones en esta zona.

Es interesante notar que en las localizaciones de anomalías de la segunda derivada vertical de anomalía gravimétrica (Capitulo III - Fig. 3.9) coincide con las anomalías locales magnetométricas. En el Capitulo I se mensiona que las perforaciones en la Planicie Costera del Golfo de México cortan las intrusiones Permo-Triásicas. Y que por otra parte a partir de Calloviano se desarrolló en la parte occidental de la llanura costera una serie de altos del basamento y de rocas antiguas.







(Thousands)



Fig. 5.1(c). La anomalía magnética resudual a lo largo del perfil total (diferencia entre la anomalía magnética y su componente regional).



Fig. 5.1(d). Espectro de potencia del perfil total, frecuencia del máximo. Profundidad hasta el basamento magnético. Profundidad hasta el punto de Curie.







Fig. 5.2(b). Anomalía magnética a lo largo del perfil I (diferencia entre valores del campo medido y del IGRF) - (HERE) y componente regional de la anomalía, calculada por mínimos cuadrados (+++).







de Curie.



Fig. 5.3(a). Datos magnetométricos medidos a lo largo del perfil II (日日日) ) y campo geomagnético de referencia (IGRF) para año 1987 (+++++).



Fig. 5.3(b). Anomalía magnética a lo largo del perfil II (diferencia entre valores del campo medido y del IGRF) -  $(\Box \Box \Box)$  y componente regional de la anomalía, calculada por minimos cuadrados (++++).



Fig. 5.3(c). La anomalia magnética resudual a lo largo del perfil II (diferencia entre la anomalía magnética y su componente regional).



Fig. 5.3(d). Espectro de potencia del perfil II, frecuencia del 'máximo. Profundidad hasta el basamento magnético. Profundidad hasta el punto de Curie.







Fig. 5.4(b). Anomalia magnética a lo largo del perfil III (diferencia entre valores del campo medido y del IGRF) - ( $\exists E \models \exists$ ) y componente regional de la anomalía, calculada por mínimos cuadrados (++++).



Fig. 5.4(c). La anomalía magnética resudual a lo largo del perfil III (diferencia entre la anomalía magnética y su componente regional).



55

. .

Fig. 5.5. Modelo magnético para el perfil III.

# CAPITULO VI.

## FLUJO DE CALOR.

# INTRODUCCION.

## OBJETIVOS.

El estudio de los procesos térmicos de la Tierra revisten una importancia muy singular en geofísica. Por ejemplo, el calor interviene en todas las teorías sobre el origen y desarrollo de la Tierra.

Los objetivos del estudio del flujo de calor a lo largo de nuestro transecto son los siguientes:

- investigar la naturaleza térmica de las principales provincias geológicas que atraviesa el transecto y su relación con la actividad tectónica;
- determinar el espesor de la litósfera térmica a partir de los datos de flujo de calor;
- determinar la distribución de la temperatura con la profundidad.

### BANCO DE DATOS.

En este trabajo se hizo uso de los datos de flujo de calor que a continuación se citan:

Baja California - Lawer y Williams (1979); Golfo de California - Von Herzen (1963), Lawer y Williams (1979); Planicie Costera del Golfo de California - Smith et al.(1979); Sierra Madre Occidental - Smith et al.(1979), Ziagos et al.(1985); Mesa Central - Smith et al.(1979), Ziagos et al.(1985); Sierra Madre Oriental - Smith et al.(1979), Ziagos et al.(1985); Golfo de México - Epp et al. (1970).

Las determinaciones de flujo térmico reportados en estos trabajos fueron hechas en pozos exploratorios o en minas.

Al principio de este capítulo se hace un resumen de las características del flujo de calor para cada provincia geológica a lo largo del transecto.

La siguiente etapa es el cálculo de la producción de calor cortical a lo largo del transecto utilizando la dependencia velocidad sísmica - producción de calor para las rocas cristalinas y tipo de las rocas para los sedimientos.

Esto nos permite determinar dos componentes del flujo de calor medido en la superficie: flujo de origen cortical y mántico.

Posteriormente estas dos componentes se relacionan con la edad térmica (último evento tectónico o geológico ígneo) para cada provincia geológica y se verifica la coerencia de los valores obtenidos.

Finalmente se hace un modelo bidimensional - la distribución de la temperatura con la profundidad a lo largo del transecto.

objetivo de elaborar un Con el perfil únicamente. se aguellas determinaciones consideraron de flujo de calor comprendidos en una franja de 100 km de ancho centrada en el Trópico de Cáncer de 92º N hasta 110º N. Los valores de flujo de calor determinados en estas localidades fueron proyectados al transecto (Fig. 6.1). Este perfil tiene las mismas características descritas por Smith et al.(1979). Se le puede considerar como representativo del norte de México.

A continuación se presenta un resumen de las características del flujo de calor de los diferentes provincias geológicas a lo largo del transecto.

# PENINSULA DE BAJA CALIFORNIA.

Esta área está caracterizada por un flujo de calor de bajo a normal con relación a los valores observadas en la parte continental (SMOc) según Lee et al.( 1975) (Fig. D.2.a). Pero como este autor representa nada más dos medidas para toda la península hay que tomar con mucha desconfianza esta confirmación.





Según Lee et al. (1975) el origen de bajo flujo de calor aquí podria estar relacionado:

- con una concentración "pre-rift" de exceso de calor al Este del Golfo de California. Esto es consistente con el desarrollo de extensión tectónica durante el Cenozoico en la provincia fisiográfica del "Basin and Range" en México (Smith, 1974).
- 2) otra causa posible es la absorción de calor por las raices de los batolitos peninsulares asi como una generación más baja de calor de origen radioactivo (Crough et al., 1977).

## GOLFO DE CALIFORNIA.

El flujo de calor en el Golfo presenta valores varias veces más grande que el promedio mundial oceánico (1.2-1.4 HFU<sup>\*</sup>) y varia entre 0.62 HFU y 6.15 HFU. El promedio es 3.12 HFU (Von Herzen,1963) (Fig. D.1 y Tabla D.1.a).

Dataciones hechas con la técnica del carbono 14 indican que la velocidad de sedimentación es 2 ordenes de magnitud (~100 veces) más alta que la velocidad normal para un fondo oceánico profundo (Von Herzen, 1963). Existen dos posíbles consecuencias de tan alta velocidad de sedimentación sobre el flujo de calor:

- El flujo de calor se veria disminuido debido a que parte del calor se usa para elevar la temperatura de los sedimentos depositados rapidamente.
- 2) El flujo de calor aumenta como resultado de las reacciones exógenas en los sedimentos. Pero los estudios indican que la oxidación del carbón no es una fuente importante de calor aquí. Según Buntebarth (1984) los altos valores de flujo de calor en el océano se deben significativamente a la circulación hidrotermal en la corteza oceánica joven.
- \* 1HFU=1 $\mu$ cal/cm<sup>2</sup>s=41.8 mW/m<sup>2</sup>
- $*1HGU=10^{-13}cal/cm^{3}s = 0.42 \ \mu W/m^{3}$

La contribución de la producción radioactiva al flujo de calor en los océanos es mínima, porque el estrato basáltico de la corteza oceánica con un espesor promedio de ≈5 km no contiene grandes concentraciones de uranio, torio y potasio (es de composición básica a máfica).

El flujo de calor oceánico está sustancialmente influenciado por la formación de corteza. El flujo de calor es mayor cerca de los centros de expansión oceánica. Perpendicularmente a la dorsal el flujo de calor decrece exponencialmente. El hecho de que el Golfo de California fue formado mediante la acción de fuerzas tensionales suguiere la existencia de corrientes convectivas en el manto. Los altos valores de flujo de calor observados en el Golfo parecen confirmar esta hipótesis.

PARTE CONTINENTAL DEL NORTE DE MEXICO.

El flujo de calor promedio en la Mesa Central, SMOc, SMOr (norte) es más alto que el promedio continental (60 mW/m<sup>2</sup>) (Ziagos et al., 1985).

En la parte continental del norte de México existen dos áreas donde el flujo de calor presenta un comportamiento bién definido. En cada una de estas dos áreas el flujo de calor tiende a desminuir hacia el este. La primer área comprende a la Planicie Costera del Golfo de California y a la SMOc, en tanto que la segunda comprende la Mesa Central y a la SMOr. (Fig. 6.2)

La primer área está influenciada tentativamente por los procesos térmicos de la zona de expansión del Golfo de California. La tasa de disminución del flujo de calor es 3 HFU/1000 km.

En el segundo conjunto, el valor inicial (al oeste de la Mesa Central) presenta una diferencia notable (≈1.4 HFU más a'lto) con el último valor del primer conjunto (al este de la SMOC). Los datos decrecen hacia el este con una taza aproximada de 4 HFU/1000 km.

A pesar de que en ambas zonas el flujo de calor superficial disminuye hacia el este, la abundancia de elementos radioactivos generadores de calor aumenta primero hasta el borde oriental de la

SMOC, abruptamente decrece en la Mesa Central, para despues aumentar de nuevo hacia la SMOr (Fig. 6.3).

La taza de aumento de la producción de calor de origen radioactivo se incrementa ≈20 HGU/1000 km en cada una de las zonas antes mencionadas.

De las Fig. 6.4 y Fig. 6.5 según Smith et al. (1979) se puede ver que el flujo de calor proveniente del manto ( $q_m = q_0 - Ab$ ) es más alto en el área de la Mesa Central y que disminuye hacia el este en cada una de estas dos zonas con una taza aproximada 5-6 HFU/ 1000 km

\*Cuando se menciona aquí la SMOr se refiere a su parte Norte ya que la parte Sur de la SMOr posee valores bajos de flujo de calor (Ziagos et al., 1985).

### GOLFO DE MEXICO.

Casi todo el Golfo de México posee un flujo de calor uniformemente bajo. El flujo de calor promedio sin considerar los domos salinos de Sigsbee es 0.83  $\mu$ cal/cm<sup>2</sup>sec (Epp et al.,1970). Este valor es casi 35% menor que el promedio para todas las cuencas oceánicas (1.3  $\mu$ cal/cm<sup>2</sup>sec), pero se acerca más del valor promedio del flujo de calor de la cuenca NW del Atlantico (1.1  $\mu$ cal/cm<sup>2</sup>sec). El promedio de 20 valores observados al oeste de los 92<sup>°</sup>W es algo menor que 0.80  $\mu$ cal/cm<sup>2</sup>sec.

El área de domos de sal que incluye el domo Sigsbee, posee un flujo de calor promedio 1.9  $\mu$ cal/cm<sup>2</sup>sec, que es dos veces más alto que en el resto del Golfo. Los gradientes en esta área también son muy altos (Fig. 6.7). La conductividad ţérmica de la sal es aproximadamente 6 veces más que la de sedimentos oceánicos.

Si una alta velocidad de sedimentación prevaleciendo durante largo tiempo, entonces el flujo de calor proveniente del manto es mayor que el flujo de calor medido en la superficie.

Por ejemplo, si la velocidad de sedimentación en la planicie abisal de Sigsbee fue de 28 cm/1000 años durante el Pleistoceno



Fig. 6.2. Flujo de calor contra distancia perpendicular al eje general de la dorsal del rift del Golfo de Califórnia a) valores de Sonora, oeste de Chihuahua (Nuevo Casas Grandes y Parral), y Durango; b) valores de Coahuila, Nuevo León, Zacatecas y este de Chihuahua (tomado de Smith et al., 1979).



Fig. 6.3. Distribución de la generación de flujo de calor de origen radioactivo (en Heat Flow units) con relación a la distancia X perpendicular al área de una paleotrinchera inferida al oeste de la península de Baja California. Los números se refieren a la cantidad de rocas ígneas que fueron promediadas en



Fig. 6.4. Contenido de Uranio y Thorio y generación de calor radioactivo para fácies metamórficas. Fácies metamórficas: I eclogitas, II - granulitas, III - amfibolitas, IV - esquistos verdes (tomado de Smislov et al., 1979).



Fig. 5.9. Relación entre la producción de calor A y la velocidad de las ondas Vp para presiones P=50~MPa y P=400~MPa (tomado de Buntebarth, 1984).



Fig. 6.6. Diagramas para determinar la producción de calor radioactivo A (en  $\mu W/m^3$ ) a partir de la velocidad de las ondas compresionales Vp a una profundidad Z para una corteza a) Fanerozóica; b) Precámbrica (tomado de Pasquale et al., 1990).



Fig. 6.7. Relaciónes empíricas entre la generación de calor A y la velocidad sísmica Vp para rocas corticales; S - Stegena (1984) para áreas de plataformas y escudos; RB - Rybach y Bunterbart (1984) para corteza de edad Fanerozóica y para presión 200 MPa; RBPr -para corteza Precámbrica y presión de 100 MPa; G - Gordienko (1984) y + - Smithson y Decker's (1974) para una corteza metamórfica (tomado de Stegena et al., 1985).



Fig. 6.8. Relación entre producción de calor A y densidad  $\rho$  (tomado de Bunterbarth, 1984).
tardío y 3.8 cm/1000 años durante el Mioceno tardío, esta sedimentación habria reducido el flujo de calor superficial en la planicie abissal en un 20% en los últimos 10 Ma.

Si la sedimentación post-jurácica fue 4 cm/ 1000 años (Epp et al., 1970), ahora el flujo de calor del manto sería 1.2  $\mu$ cal/cm.sec. Pero para que el flujo de calor desminuya desde el valor observado en otras cuencas oceánicas hasta el valor promedio observado en el Golfo se necesitan 300 Ma.

Existe otra posible explicación para el bajo valor de flujo de calor en el Golfo de México. Según Pollack et al. (1977) las cuencas oceánicas antiguas se caracterizan por un bajo flujo de calor. Esto apoya la idea de que el Golfo de México es una cuenca oceánica que se formó en Mesozóico.

EL CALCULO DE LA PRODUCCION DE CALOR CORTICAL.

Los principales isótopos radioactivos  $^{238}\text{U},~^{235}\text{U},~^{232}\text{Th}$  v  $^{40}\text{K}$ son representantes típicos de elementos litófilos con un radio atómico grande y que destacan por su gran actividad química y facilidad a reaccionar con otros elementos, formando muchos minerales. de sustituir otros átomos en Son capacez redes cristalinas de silicatos y antes que nada en los cristales con un bajo grado de compactación de átomos. Esta propiedad de los elementos radioactivos determina su disposición a migrar durante la diferenciación del magma. Así se explica la mucho mayor concentración de estos isótopos en la corteza continental que en el manto o en la corteza oceánica.

En la corteza terrestre, entre los minerales con radioactividad más elevadas se encuentran:

entre los minerales primarios formadores de rocas - el cuarzo,
 los feldespatos, la plagioclasa, la biotita;

 y entre los minerales accesorios: circón, apatita, esfena.
 Los minerales formadores de rocas con una radioactivida más baja -(piroxenos y olivinos) se encuentran en rocas magmáticas de composición básica y ultrabásica.

Por abajo de la discontinuidad de Mohorovicic, en el manto superior la producción de calor puede considerarse constante e igual a 0.01  $\mu$ W/m<sup>3</sup> (Germak y Bodri, 1986).

La cantidad de elementos radioactivos en las rocas magmáticas de diferente composición cambia considerablemente. Esto es cierto no solamente para rocas con diferente contenido de sílice (Tabla 6.1), sino también para un mismo tipo de roca en diferentes provincias geológicas y hasta dentro de una misma intrusión se observa una mayor saturación con elementos radioactivos en su parte superior.

Las rocas metamórficas se destacan por una gran variación en su contenido de U, Th y K, lo que se explica por la heterogeneidad de las rocas sedimentarias y volcánicas de los cuales se derivaron, asi como por la diversidad de fenómenos que pudieron haber actuado: metamorfismo hidrotermal, de contacto y regional, etc.

Esta gran variedad en las características radioquímicas se da sobre todo en las rocas metamórficas de la facies de esquistos verdes y amfibolítica (Fig. 6.4). En las rocas de la facies granulítica y en la parte inferior de la facies amfibolítica la heterogeneidad de las propiedades radioactivos desaparece (Smislov et al., 1979).

Rybach (1976) propuso que en las rocas con un metamorfismo de alto grado, la escases relativa de U y Th se puede explicar por la migración de estos elementos hacía los ambientes de menor temperatura y presión. La disminución de la radioactividad con el aumento del grado de metamorfismo ocurre con la pérdida de bióxido de carbono, agua y otros componentes volátiles asi como con el metamorfismo de la sustancia orgánica.

Es importante mencionar que la corteza continental posee una radioactividad mayor comparada con la oceánica (Tabla 6.2) aunque el flujo de calor en los continentes y océanos sea aproximadamente igual.

El contraste en la composición química de las rocas continentales y oceánicas y la diferencia en la escala de tiempo

| Rocas         | Concentración de<br>uranio × 10 <sup>*</sup> g/g                                                    |
|---------------|-----------------------------------------------------------------------------------------------------|
| Igneas ácidas | 2,77 - 4,02<br>1,5 - 3,03<br>0,6 - 0,95<br>0,03<br>0,80 - 15,4<br>0,0033<br>0,001 - 0,005<br>0,0013 |

 Para datos y bibliografia más extensos, vease Davis, 1950; Cooper, 1952; Adams, 1954; Larsen y Phair, 1954; Peltersson, 1954.

Tabla 6.1. Valores típicos de la concentración de Uranio en algunas rocas (tomado de Howell, 1962).

| Estratos con<br>velocidades de<br>las ondas |                                                      | Produccion de o<br>promedio A(µW/1 | calor<br>n <sup>3</sup> ) |
|---------------------------------------------|------------------------------------------------------|------------------------------------|---------------------------|
| Vp(km/s)                                    | composición                                          | corteza<br>continental             | corteza<br>oceanica       |
| 6-6.4 km/s                                  | granito-<br>metamórfico                              | 1.6<br>(0.9-2)                     |                           |
| 6.4-7.8 km/s                                | granulitas<br>(Mesa Central,<br>SMOr)                | 0.25                               |                           |
|                                             | gabro-<br>dioritas<br>(en el resto<br>del transecto) | 0.35<br>(0.01-0.8)                 | 0.2                       |
| >8 km/s                                     |                                                      | 0.01                               | 0.01                      |

Tabla 6.2. Flujo de calor promedio, flujo de calor proveniente del manto, y profundidad característica de la distribución de fuentes radioactivas para algunas provincias de flujo de calor (tomado de Pollack et al., 1977). para el decaimento del flujo de calor suguiere una explicación diferente para el origen del flujo de calor en los océanos y en los continentes.

El cálculo de producción de calor en la corteza del Norte de México en el trabajo de Smith et al. (1979) (Figs. 6.3 y D.3) está basado en la medición de la abundancia de elementos radioactivos en muestras de rocas de la corteza que afloran en la superficie. En la práctica se conoce la cantidad de calor producida por cada uno de los elementos radioactivos y es bastante fácil determinar experimentalmente las concentraciones de estos mismos en diversos tipos de roca.

La producción de calor radiogénico A se calcula en base de las concentraciones CU, CTh, CK de la siguiente manera:

 $A=\rho$  (9.52 Cu + 2.56 Ck +3.48 Cth)  $10^{-5}$  (Buntebarth, 1984),

donde [A]= $\mu$ W/m<sup>3</sup>, [ $\rho$ ]=g/cm<sup>3</sup>, [C<sub>u</sub>]=ppm, [Th]=ppm, [K]=%

Como en general no se conoce la distribución de las fuentes radiogénicas de calor con la profundidad, la contribución de la producción de calor en la corteza se debe hacer en una primera aproximación considerando que  $q_c=bA$  ( $q_a=q_m+bA_o$ ).

Esta relación puede interpretarse simplemente suponiendo que A no cambia con la profundidad en una capa cercana a la superficie y de espesor constante b.

Pero esto da solamente una primera estimación de la distribución de elementos radioactivos con la profundidad debido a:

- 1) la movilidad de los elementos radioactivos (Ribach, 1976);
- 2) el caracter especulativo de la composición de la corteza.

Estas determinaciones de la producción de calor se realizan, sobre todo, a partir de rocas ígneas que afloran en la superficie. En estos estudios no se ha tomado en cuenta la radioactividad de rocas sedimentarias (Smith et al.,1979). En la Mesa Central y la SMOr, por ejemplo, el espesor de los sedimentos es aproximadamente 5 km. En la actualidad es imposible determinar con exactitud la cantidad de los isótopos radioactivos contenidos en la Tierra, dada la inaccesibilidad de su interior.

Sin embargo existen varios métodos empíricos indirectos que permiten estimar la generación de calor con la profundidad. 1) El método empírico de Roy (1968) hace posible obtener buenos estimaciones de flujo de calor a profundidad pero que necesita de muchas medidas de flujo de calor y de la generación de calor. 2) Otro método (que se usó en este trabajo) está basado en la correlación entre las velocidades sísmicas y la abundancia de elementos radioactivos.

A continuación se da la descripción de este método.

La velocidad sísmica de las rocas de la corteza está relacionada con su composición química. La velocidad aumenta con el cambio de las rocas de tipo ácido a básico.

La radioactividad de las rocas está también relacionada con la composición. Las rocas ácidas tienen una radioactividad más alta que las rocas básicas (Tabla 6.1).

Por eso es de esperar encontrar una relación entre la velocidad sísmica y la radioactividad de las rocas de la corteza (Rybach, 1973; Buntebarth, 1984; Pasquale et al., 1990; Stegena et al., 1985) (Fig. 6.5, 6.6, 6.7, 6.8)

Stegna (1984) expresa el flujo de calor en condiciones estacionarias de la siguiente manera:

$$q_{o}=q_{m} + \int A(z) dz \qquad (1)$$

donde

q. - el flujo de calor en la superficie,

qm - flujo de calor en el Moho,

A(z) - la producción de calor a la profundidad z,

M - profundidad del Moho.

La relación exponencial sugerida entre A(z) y V(z) (Rybach,1976) es:

$$A(z) = a \exp[-bV(z)](2)$$

1. 1. **1**. 1. 1.

donde las unidades de A(z) son  $\mu W/m^3$  y las de V(z) son km/s. Para una corteza Fanerozoica:

$$\ln A=13.7-2.17 V_{p}$$
 (3)

Como esta relación fue establecida a partir mediciones hechas a temperatura ambiente y a una presión de 100 MPa, las velocidades de las ondas P deben ser reducidos a condiciones estandar mediante la relación:

$$V_{p}(20^{\circ}C, 100 \text{ MPa}) = V_{p}(T,P)[1+B(z)/V_{p}(T,P)]$$
 (4)

El factor de corrección fue calculado por Gebrande (1982) y Kern (1982)

$$B(z) = (dV_p/dP)\Delta P + (dV_p/dT)\Delta T$$
(5)

y está dado en la Tabla 6.6 Sustituyendo (2) en (1), obtenemos:

$$q_{\circ} = q_{m} + a \int \exp \left[-bV(z)\right] dz$$

$$z = 0$$
(6)

ĸ

Si por lo menos  $q_0$ , V(z), M son conocidos en dos puntos y  $q_m$  - es constante, entonces se pueden determinar a y b.

En cálculos bidimensionales basados en estas fórmulas tenemos que asumir:

1) un estado térmico estacionario;

2) solamente transporte conductivo de calor.

Para la corteza terrestre continental y oceánica se pueden destacar dos tipos principales de régimen geotérmico:

estacionario (estabilizado en el tiempo) y
 no estacionario.

El régimen estacionario es caracterizado por un flujo térmico bajo, estabilizado y homogeneo en la extensión de toda la estructura geológica. Este tipo de régimen prevalece en plataformas y escudos (con un flujo de calor promedio de 40-50  $mW/m^2$  y un gradiente de 0.8-2.0 °K/100 m

El régimen estacionario se establece 150-200 Ma después del final de los procesos orogénicos.

La corteza con un régimen no estacionario se caracteriza por una participación sustancial de la componente convectiva de transferencia de calor. Como ejemplo, podemos citar las zonas de vulcanismo cenozóico, zona de riftogénesis y zonas de orogenia reciente.

Hay que mencionar, que la fórmula (3) se usa solamente con velocidades de ondas P mayores a 6 km/s ( $V_P>6$  km/s), que corresponden a rocas cristalinas. La discontinuidad  $V_P=6$  km/s está considerada como la base de la columna sedimentaria.

 $V_P=6.4$  km/s - coincide generalmente con la discontinuidad de Conrad, que puede representar la transición entre diferentes tipos de roca: granitos-gneis y amfibolitas-granulitas. Finalmente recordaremos que  $V_P=$  7.8-8.2 km/s - para el Moho.

En el presente trabajo para el cálculo de la producción de calor la corteza fué dividida en 3 estratos correspondientes a  $V_n$ <6 km/s, 6-6.4 km/s, 6.4-7.8 km/s (Fig. 6.9).

En la Tabla 6.7 están representados los valores promedios de producción de calor para estos estratos por debajo de V\_=6 km/s. Estos valores se adoptaron:

1) el diagrama que ilustra la dependencia de la producción de calor con relación a la velocidad sísmica en corteza de edad Fanerozóica (Pasquale et al., 1990) (Fig. 6.6); la relación empírica entre la generación de calor y velocidad sísmica para las rocas cristalinas (para la corteza Fanerozoica) - (Buntebarth, 1984; Stegena et al., 1985) (Fig. 6.5 y 6.7).

3) la producción de calor con la profundidad - (Buntebarth, 1984; Vitorello et al., 1980) (Fig. 6.10 y 6.11).

 y considerando los tipos de rocas en el transecto (Howell, 1962; Buntebarth, 1984) (Tabla 6.1 y 6.3).



Fig. 6.9. Estructura sísmica de la corteza a lo largo del transecto.



Fig. 6.10. Modelo de produción de calor en la corteza bajo el antepaís de los Alpes de acuerdo a \_\_\_resultados sísmicos, \_\_\_\_ modelos gravimétricos, \_\_\_\_ medelado petrológico (tomado de Buntebarth 1984).

| Rock type                   | Heat generation     |          |  |  |
|-----------------------------|---------------------|----------|--|--|
|                             | [10 - 13 cal cm3 s] | [µ₩ m³]  |  |  |
| Granite                     | 7,1                 | 3.0      |  |  |
| Granodiorite                | 3,6                 | 1.5      |  |  |
| Diorite                     | 2,6                 | 1,1      |  |  |
| Gabbro                      | 1,1                 | 0.46     |  |  |
| Dunite                      | 0.01                | 0.0042   |  |  |
| Peridotite                  | 0,025               | 0.0105   |  |  |
| Olivinfels (Eifel)          | 0,036               | 0,015    |  |  |
| Sandstone                   | 0,8-2,4             | 0,34-1,0 |  |  |
| Slate                       | 4,4                 | 1,8      |  |  |
| Mica shist                  | 3,6                 | 1.5      |  |  |
| Gneiss                      | 5,8                 | 2.4      |  |  |
| Amphibolite                 | 0,8                 | 0,3      |  |  |
| Eklogite                    |                     |          |  |  |
| low U-content               | 0,08                | 0.034    |  |  |
| high U-content              | 0,35                | 0.15     |  |  |
| Chondrite (Stone meteorite) | 0,063               | 0.026    |  |  |

Tabla 6.3. Producción de calor radioactivo para algunas rocas (tomado de Buntebarth, 1984).



Fig. 6.11(a). Producción de calor superficial y flujo de calor radiogénico cortical contra edad. En el recuadro se indica la distribución exponencial de las fuentes de calor para  $A_o=4~\mu W/m^3$ , b=9 km y  $\tau$ =350 M.a. y profundidad a la cual la erosión ha llegado con el tiempo transcurido indicado (tomado de Vitorrello et al., 1980).



Fig. 6.11(b). Producción de calor  $A_0$  de muestras cercanas a la superficie contra la edad tectónica de la provincia, compilación hacha de regiones de flujo de calor a nivel mundial que han sido estudiados con anterioridad (tomado de Vitorrelo et al., 1980).

Para el estrato granito-metamórfico (6.1-6.4 km/s), en todo el transecto se tomó el valor 1.6  $\mu$ W/m<sup>3</sup>. Se usó un valor de 0.25  $\mu$ W/m<sup>3</sup> como representativo de las rocas de facies granulítica de composición intermedia que según estudios de xenolitos (Roberts et al., 1989. y Ruiz et al., 1988) se encuentran en la corteza inferior (6.4-7.8 km/s) en la Mesa Central y en la SMOr. Para la corteza inferior, en el resto del transecto, se tomó 0.35  $\mu$ W/m<sup>3</sup> como valor representativo de gabro-dioritas.

Los valores obtenidos se puede considerar como una primera aproximación, porque no tenemos estudios sísmicos de refracción de detalle en el transecto.

Sin embargo los valores que obtuvimos de la producción de calor están dentro de los límites normales (Tabla 6.2 y Fig. 6.12).

Hasta ahora hemos tomado en cuenta la componente radioactiva del flujo de calor debida a la corteza cristalina. En el siguiente párrafo vamos a analizar la producción radiogénica de calor de la corteza sedimentaria. Para esto vamos primero a resumir los fundamentos de la técnica.

## PROCEDIMIENTO PARA DETERMINAR LA PRODUCCION DE CALOR A PARA LOS SEDIMENTOS

Vitorello y Polack (1980) analizan el valor promedio de A para sedimentos en función de su edad geológica (Fig. 6.13):

Axipinu=3.5µW/m<sup>3</sup> AHercinianu=3.2µW/m<sup>3</sup> ACaledonianu=2.8µW/m<sup>3</sup>

Pasquale et al.(1990) propusieron una fórmula empírica para determinar la producción radiogénica de calor de la capa superior de la corteza con  $V_p$ < 6 km/s:

$$A=3.2 \exp(-0.31 t)$$
 (7)

donde t es la edad geológica en GA (10<sup>9</sup> años).



Fig. 6.12. Valores de producción de calor ( $\mu W/m^3$ ) usados para el cálculo de flujo de calor de origen cortical a lo largo del transecto.



Fig. 6.13. Valor promedio de la generación de calor en función de edad (+) determinados por Vitorello y Pollack (1980): para el estrato más superficial con Vp<6 km/s. Valores de generación de calor de 3.5; 3.2 y 2.8  $\mu$ W/m<sup>3</sup> se usaron para areas de orogénias Alpina, Herciniano-Varisca y Caledoniana respectivamente (tomado de Stegena et al., 1985). Pero estos cálculos de generación de calor a partir de la edad de los sedimentos deben considerarse como una primera aproximación por la siquiente razón:

Los procesos exógenos(erosión) de las rocas lleva a la formación de rocas sedimentarias con una amplia variación de contenido de U, Th, K.

El Uranio se concentra en rocas sedimentarias ricas en sustancias orgánicas, el Torio en rocas conglomeráticas de facies de litoral marino, el Potasio en la sal.

Vemos por lo tanto que los cambios considerables en la concentración de elementos radioactivos y por lo tanto de generación de calor radioactivo en las rocas sedimentarias están relacionados a las condiciones geoquímicas y tectónicas, muy diversas, de acumulación del U, Th y K.

El nivel más alto de radioactividad se observa en los sedimentos de facies de litorales, de plataforma y en facies de miogeosinclinales.

A continuación se listan algunos valores de producción de calor promedia (en  $\mu W/m^3$ ) en orden decreciente para algunas rocas sedimentarias (Smislov et al., 1979):

| carbones (bitumir | nosos) 13.45     |
|-------------------|------------------|
| terrigenas        | 1.45/(1.2-3.85)  |
| carbonatos        | 0.62/(0.55-1.17) |
| sales             | 0.36/(0.29-0.82) |
| siliceos          | 0.53/(0.52-0.54) |

En nuestro estudio usamos los valores resumidos en la Tabla 6.4 y representados en la Fig. 6.12.

## FLUJO DE ORIGEN CORTICAL Y MANTICO. RESULTADOS.

Para los cálculos de la producción de calor, realizados en este trabajo la corteza fue dividió en los siguientes estratos según las velocidades sísmicas (Fig. 6.9 y Tabla 6.2):

| área                                 | rocas típicas<br>que afloran                                    | edad de<br>sedim.<br>t, GA | espesor<br>de la capa<br>con Vp<6km/s<br>km | producción de cale<br>segun los<br>valores típicos<br>para las rocas | or A, µW/m<br>según<br>Pascuale |
|--------------------------------------|-----------------------------------------------------------------|----------------------------|---------------------------------------------|----------------------------------------------------------------------|---------------------------------|
| Baja California<br>(región del Cabo) | batolitos graní-<br>ticos, rocas<br>metamórficas                |                            | 5                                           | 1.6                                                                  |                                 |
| Planicie costera                     | batolitos graní-<br>ticos, rocas<br>volcano-sedim.<br>metamorf. |                            | 5                                           | 1.6                                                                  |                                 |
| SMOC                                 | ignimbritas,<br>rocas volcano-<br>sedim. metamor-<br>fizadas    | 0.1-0.2                    | 2 km<br>5 km                                | 3<br>0.6                                                             | 1.3-1.26                        |
| Mesa Central                         | calizas<br>Mesozoico                                            | 0.1-0.2                    | 5 km                                        | 0.6                                                                  | 1.3-1.26                        |
| SMOr                                 | calizas, lutitas<br>Mesozoico                                   | 0.1-0.2                    | 5 km                                        | 0.6                                                                  | 1.3-1.26                        |
| Golfo de México                      | carbonatos, luti-                                               |                            |                                             | 0.6                                                                  |                                 |
|                                      | Mesozoico y<br>Cenozoico                                        | 0.3<br>0.16                | 5 km<br>5 km                                | 0.6<br>1                                                             | 1.28                            |

Tabla 6.4. Producción de calor de la capa cortical superficial con V:<6 km/s. a lo largo del transecto.

 $V_P < 6 \text{ km/s}$   $V_P = 6 - 6.4 \text{ km/s}$  $V_P = 6.4 - 7.8 \text{ km/s}$ 

En la Tabla 6.5 se dan los resultados del cálculo de producción de calor para cada uno de estos estratos.

Se consideró que la producción de calor no cambia en cada estrato. Es una aproximación, ya que en un mismo estrato la producción de calor se puede alternativamente considerar (Lachenbruch, 1970)

- 1) constante  $A(z) = A_1 = const$
- 2) varia linealmente  $A(z) = k A_1$
- 3) varia exponencialmente  $A(z) = A_1 exp(-z / c_1)$

De la Tabla 6.6 se observa que en general tanto en el presente trabajo como en el de Smith et al. (1979) se presenta la misma tendencia en los valores de la producción de calor con excepción de la SMOC. Esto se puede explicar de la siguiente manera: La producción de calor en el trabajo de Smith fue obtenido mediante mediciones de radioactividad de rocas ígneas encontrados en la superficie. En este trabajo, la evaluación de calor radioactivo fue hecha considerando por separado la producción de calor de cada una de las capas de una corteza estratificada. Esto permite incluir los efectos de:

- una diferente composición química de los magmas en la superficie;
- un espesor mayor de la corteza en la SMOc (más que nada de la capa granítica) que en la Mesa Central (Rivera y Ponce, 1986);
- una mayor radioactividad de la corteza inferior en la SMOc que en la Mesa Central.

Para cada área geológica se calculó el flujo de calor promedio  $q_0$  a partir de todas las mediciones existentes (de pozos o de minas) (Tabla 6.7 ). Para analizar los valores obtenidos  $q_m$ ,

L 4

| área             | Z1<br>km | Z2<br>km | Z3<br>km | QA1<br>mW/m | QA2<br>mW/m² | QA3<br>mW/m² | sumQA<br>mW/m² |
|------------------|----------|----------|----------|-------------|--------------|--------------|----------------|
| Baja California  | 5        | 10       | 26       | 8           | 8            | 5.6          | 21.6           |
| Planicie costera | 5        | 12       | 21       | 8           | 11.2         | 3.15         | 22.35          |
| SMOC             | 7        | 30       | 42       | 9           | 36.8         | 4.2          | 50.0           |
| Mesa Central     | 5        | 18       | 30       | 3           | 20.8         | 3.0          | 26.8           |
| SMOr             | 5        | 20       | 34       | 3           | 24           | 3.5          | 30.5           |
| Golfo de Mexico  | 4-13     | -        | 20       | 6.8         | -            | 1.4          | 8.2            |
|                  |          |          |          |             |              |              |                |

- · Z1 profundidad hasta corteza cristalina
  - Z2 profundidad hasta Conrad
  - Z3 profundidad hasta Moho

QA1, QA2, QA3 - contribucion de flujo de calor de cada uno de los estratos, calculado en la cima de cada estrato.

sumQ - produccion de calor de toda la corteza=QA1+QA2+QA3

QA1 sedimentos con Vp<6km/s \_\_\_\_\_21

QA2

00 4

\_\_\_\_\_Z2 Conrad

QA3

Z3 Moho

Tabla 6.5. Flujo de calor radioactivo producido en la corteza y contribución de cada estrato de la corteza en las diferentesprovíncias geológicas a lo largo del transecto.

| área             | QA (Smith)<br>promed.<br>mW/m | QA(obtenido)<br>mW/m <sup>2</sup> |
|------------------|-------------------------------|-----------------------------------|
| Baja California  |                               | 21.6                              |
| Planicie costera | 23.1                          | 22.35                             |
| SMOC             | 32.3                          | 50                                |
| Mesa Central     | 31                            | 26.8                              |
| SMOr             | 38                            | 30.5                              |
| Golfo de México  | -                             | 9.4                               |

Tabla 6.6. Comparación de flujo de calor radioactivo determinado en este trabajo y el flujo de calor radioactivo según Smith (1979). Tabla 6.7. Valores de flujo de calor considerados en este trabajo.

| Area                                  | Latitud             | Longitud             | Flujo de | calor | Fuente |
|---------------------------------------|---------------------|----------------------|----------|-------|--------|
|                                       | N                   | ¥                    | HFU      |       |        |
| Baja California                       | 30° 59              | 115° 46'             | 0.8      |       | 1      |
| ·                                     | 28° 00              | 113° 20              | 1.2      |       | 1      |
|                                       | 27° 24'             | 112° 23              | 1.2      |       | 1      |
|                                       |                     | promedio             | 1.1      |       |        |
| Planicie Costera                      | 31° 05′             | 112° 07′             | 3.8      |       | 1      |
|                                       | 30° 04'             | 112° 30              | 2.0      |       | 1      |
|                                       | 29° 15              | 111° 25′             | 2.3      |       | 1      |
|                                       | 28°21'              | 109° 58′             | 1.6      |       | 1      |
|                                       | 28° 38'             | 109° 40′             | 1.9      |       | 1.     |
|                                       |                     | promedio             | 2.3      |       |        |
|                                       |                     |                      |          |       |        |
| SMOc.                                 | 24° 20′             | 106° 04              | 1.8      |       | 1      |
|                                       | 25° 30′             | 107° 09′             | 3.0      |       | 1      |
|                                       | 26°54               | 108° 15              | 1.9      |       | 1      |
|                                       | 30° 13′             | 109° 39′             | 1.6      |       | 1      |
|                                       | 30°20               | 109° 33              | 1.8      |       | 1      |
|                                       |                     | promedio             | 2.02     |       |        |
| Mesa Central                          | 22° 38 <sup>′</sup> | 103° 36              | 2.9      |       | 1      |
|                                       | 23° 11 <sup>′</sup> | 102° 53              | 2.4      |       | 1      |
|                                       | 22° 19              | 102° 19'             | 1.8      |       | 1      |
|                                       | 28° 00              | 103° 45              | 1.8      |       | 1      |
| · · · · · · · · · · · · · · · · · · · | 24° 18'             | 104° 00              | 1.0      |       | 1      |
|                                       | 26° 46'             | 105° 36              | 1.5      |       | 1      |
|                                       | 26°49               | 105° 48′             | 2.3      |       | 1      |
|                                       | 24° 31′             | 103° 27 <sup>′</sup> | 1.8      |       | 1      |
|                                       | 28° 19              | 105° 47              | 2.5      |       | 1      |
|                                       | 28° 30′             | 106° 05′             | 2.4      |       | 1      |
|                                       | 30° 50              | 107° 29              | 1.2      |       | 1      |

| 22° 13.40  | 100° 48.30  | 1.22 | • • 2 |
|------------|-------------|------|-------|
| 20° 59.50  | 100° 13.60  | 2.30 | 2     |
| 21° 14.00' | 100° 30.60  | 4.57 | 2     |
| 20°51.10   | 99° 30. 30′ | 1.72 | 2     |
| 20° 05.80' | 99° 20, 50  | 1.75 | 2     |
| 20° 07.50' | 99° 42.50'  | 1.17 | 2     |
|            | promedio:   | 2.02 |       |
| 25° 40'    | 100° 16′    | 1.1  | 1     |
| 24° 36     | 101° 24     | 1.8  | 1     |
| 27° 18′    | 100° 30'    | 0.8  | 1     |
| 27° 47′    | 101° 08′    | 2.2  | 1     |
|            | promedio:   | 1.5  |       |

Golfo de México promedio de flujo de calor - 0.83 HFU (sin considerar los domos de Segsbee) según Epp (1970).

Fuente:

SMOr.

1 - Smith et al. (1979); 2 - Ziagos et al. (1985). construimos la gráfica qm contra qº y tratamos de ajustar una linea recta por el método de mínimos cuadrados (Fig. 6.14 y Tabla 6.8).

Según Vitorello y Polack (1980) el calor radioactivo de la corteza aporta el 40 % del flujo de calor observado y el flujo de calor proveniente del manto equivale aproximadamente al 60% del flujo total. Asi que una gráfica de qm contra qo deberia tener una pendiente de 0.6.

El aspecto más destacado de esta relación empírica es que según estos autores ella es válida para provincias de todas las edades. El promedio de flujo de calor de origen radioactivo en el transecto en la parte continental (Planicie costera, SMOc, Mesa Central y SMOr) es 41% de flujo de calor total (59 % - el flujo de calor del manto). Pero en cada área por separado esta relación no se cumple. De la Fig. 6.15 y Tabla 6.8 se ve que la componente radioactiva de flujo de calor en la Mesa Central es 32% de total. En el rift del Lago Baikal el calor radiogénico no aporta más del 24-30% al flujo total de calor observado. Las rocas en la zona de los rifts Africanos poseen una componente radioactiva todavia menor comparada con los valores observados en el rift del lago Baikal (Smislov et al., 1979). En la área de la provincia del "Basin and Range" la componente radioactiva es aproximadamente 25% (Fix, 1979).

En el transecto se destacan dos regiones con un flujo de calor mántico elevado (sin considerar el Golfo de California) (Tabla 6.8):

- 1) en la Planicie costera  $(q_m=75.45 \text{ mW/m}^2)$ , que podria explicarse por la cercanía de la zona a una dorsal oceánica (100-150 km);
- 2) en la Mesa Central  $(q_m=57.7 \text{ mW/m}^2)$  relacionado con una zona de actividad tectónica y vulcanismo miocénico, y probablemente de tectónica de extensión actual.

El flujo de calor de origen mántico más bajo se obtiene - en el Golfo de México (26.5 mW/m<sup>2</sup>), zona con fondo oceánico con una edad de 150-200 M.a.



Fig. 6.14. Flujo de calor promedio para cada província geológica en el transecto  $(q_0)$  contra flujo de calor proveniente del manto  $(q_m)$ .

| area             | qo<br>HFU        | qo<br>mW/m² | QA<br>mW/m² | QA<br>en % | qm=qo-QA<br>mW/m | qm<br>en % |
|------------------|------------------|-------------|-------------|------------|------------------|------------|
| Planicie Costera | 2.34<br>(1.6-3.8 | 97.8<br>)   | 22.35       | 23%        | 75.45            | 77%        |
| SMOC             | 2.02<br>(1.6-4.2 | 84.4<br>)   | 50.00       | 59%        | 34.4             | 41%        |
| Mesa Central     | 2.02<br>(1-2.9)  | 84.4        | 26.8        | 32%        | 57.7             | 68%        |
| SMOr             | 1.47<br>(0.6-2.2 | 61.4<br>)   | 30.5        | 50%        | 30.9             | 50%        |
| Golfo de Mexico  | 0.83             | 34.7        | 8.2         | 23%        | 26.5             | 73%        |

Entre paréntesis - límites de variación de flujo de calor en HFU para la área (Smith, 1979).

Tabla 6.8. Fluje de calor promedio en cada província geológica del transecto; contribución radioactiva del flujo de calor y flujo de calor proveniente del manto.



Fig. 6.15. Flujo de calor promedio para cada província geológica en el transecto; flujo de calor radioactivo producido en la corteza; flujo de calor del manto.

Esto confirma, probablemente, que la activización de los procesos tectónicos en la corteza están estrechamente relacionada con el flujo de calor proveniente del manto.

Se puede concluir que en el transecto no se observa una correlación directa entre la radioactividad y el flujo de calor observado (Fig 6.15).

Smith et al.(1979) explican la diferencia en producción de calor en el norte de México como debida a:

 una variación química en magmas que está relacionada con diferentes régimenes de subducción de la placa litósferica;
 una variación en el espesor de la corteza;

3) un diferente ascenso y una erosión subsequente de los áreas.

Según el análisis hecho en el presente trabajo de los posibles mecanismos que dieron origen a la elevación de la Mésa Central, las razones de la baja producción de calor y alto flujo proveniente del manto en la Mesa Central pueden ser las siguientes:

Por debajo de la Mesa Central existia ya un alto flujo de calor proveniente de manto. Este pudo provocar una elevación y consiguiente erosión (causa 3). Estos procesos llevaron a la disminución del espesor de la corteza superior bajo la Mesa Central (causa 2).

La erosión de la Mesa Central pudo alcanzar 4 km. Las pruebas de esto parecen ser las siguientes. En los areas de Caopas Rodeo, Zacatecas y Santa Maria del Oro, Durango afloran rocas metamórficas del basamento cristalino (sobre el que se depositó la secuencia mesozoica de 2 km de espesor). Pero el espesor estructural pudo ser 4 km (considerando los plegamientos y cabalyaduras). En otras localidades afloran rocas triásicas con metamorfismo incipiente. Por ejemplo en Zacatecas (Zacatecas) y Charcas (San Luis Potosí).

Sobre estas rocas se depositaron también espesores de rocas mesozoicas marinas superiores a los 2 km (Dante-Morán, cominicación personal).

Pero no se ha establecido si la erosión en la Mesa Central es más profunda que en la SMOc o en la SMOr. La otra posible causa de la baja producción de calor en la Mesa Central comparando con la SMOc y la SMOr es la variación química de las rocas que componen la corteza en la Mesa Central. En la SMOc yacen casi exclusivamente ignimbritas que se caracterizan por los valores mucho más altos de producción de calor que los basaltos o rocas sedimentarias que yacen en la Mesa Central.

La SMOC, a pesar de ser obviamente una fuente de actividad térmica durante Terciario, parece en el presente no poseer una influyencia térmica significante (Smith et al.,1979).

## PROVINCIAS DE FLUJO DE CALOR EN LA PARTE CONTINENTAL DEL NORTE DE MEXICO.

Una provincia de flujo de calor se define como el área geográfica en la cual el flujo de calor y la producción de calor están relacionados linealmente mediante una relación del tipo

$$q_0 = q_m + Ab$$
 (8),

donde

qo - flujo de calor superficial,

- qm flujo de calor proveniente del manto,
- A producción de calor,
- b el espesor de la capa que contiene elementos radioactivos; en general b=8.5±1.5 km

En general el máximo valor de b scría 10 (Tabla 6.9). Cada provincia tiene valores  $q_m$  y b - bién característicos.

El resto de la corteza y el manto subyacente tienen contenidos relativamente bajos en elementos radiogénicos (la producción de calor típica para la corteza superior es 2.5  $\mu$ W/m<sup>3</sup>, mientras que la producción de calor para la corteza inferior es 0.25  $\mu$ W/m<sup>3</sup>).

A continuación veremos las variables más importantes que definen las provincias térmicas.

| Province          | Mean heat<br>Now<br>(mW m <sup>-7</sup> )<br>± std.<br>deviation | Reduced heat<br>flow<br>(mW m <sup>-2</sup> )<br>± uncertainty | Charactere<br>istic depth<br>b (km) | References                                                             |
|-------------------|------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------|
| Basin and Range   | 92:13                                                            | 59 ± 8                                                         | 9.4                                 | Roy et al. (1968);<br>Sass et al. (1971);<br>Sass and Munroe<br>(1974) |
| Central Australia | 77:10                                                            | 27 1 6                                                         | 11.1                                | Jaeger (1970)                                                          |
| Zambia            | 67 : 7                                                           | 40 : 6                                                         |                                     | Chapman and Pollack<br>(1975a)                                         |
| Eastern U.S.A.    | 57 ± 17                                                          | 33 ± 4                                                         | 7.5                                 | Roy et al. (1968)                                                      |
| Canadian shield   | 39: 7                                                            | 28 + 6                                                         | 9.8                                 | Rao and Jessop (1975)                                                  |
| Western Australia | 39 ± 8                                                           | 26 ± 8                                                         | 4.5                                 | Jaeger (1970); Rao<br>and Jessop (1975)                                |
| Sierra Nevada     | 39:12                                                            | 17 : 2                                                         | 10.1                                | Sass et al. (1971); Sass<br>and Munroe (1974)                          |
| Baltic shield     | 36 : 8                                                           | 22:6                                                           | 8.5                                 | Rao and Jessop (1975)                                                  |
| Niger             | 20:8                                                             | 11:8                                                           | 8                                   | Chapman and Pollack (1974)                                             |

Tabla 6.9. Flujo de calor promedio, flujo de calor proveniente del manto, y profundidad característica de la distribución de fuentes radioactivas para algunas provincias de flujo de calor (tomado de Pollack et al., 1977).

El efecto sobre q<sub>o</sub> debido a una variación máxima en b de 3km puede ser facilmente estimado:

si asumimos  $q_{econst}$  y A<sub>econst</sub>, entonces para una producción de calor 2.5  $\mu$ W/m<sup>3</sup> (típica para la corteza superior), una variación máxima de b (de 3km) causará una variación en q<sub>o</sub> de 7.5 mW/m<sup>2</sup>. Pero la diferencia de flujo de calor de provincia a provincia debe ser de algunas decenas de mW/m<sup>2</sup>.

Entonces está claro, que las variables más importantes en la variación de flujo de calor promedio de provincia a provincia deben ser las variables  $A_o$  y  $q_m$ . Lachenbruch (1968) demostró que  $q_m$  es el parametro más determinante en delimitación de provincias térmicas.

La presencia de una correlación tipo (4) requiere una historia termo-tectónica común dentro de cada provincia durante los últimos 100-500 m.a. (Ziagos et al., 1985).

El flujo de calor no es perfectamente constante en estas provincias geotectónicas individuales. Las desviaciónes con respecto del valor representativo en la provincia pueden ser considerables. Por ejemplo, un cuerpo granítico grande puede significativamente aumentar el flujo de calor por su alto contenido de productores radiogénicos de calor.

Se nota un vago incremento en el flujo de calor con el aumento en la generación radioactiva de calor, en todos los sitios en que se han realizado mediciones en el Norte de México. Pero no se puede confirmar la existencia de la mencionada dependencia lineal (Fig. 6.16) (Smith et al., 1979).

La causa de esto probablemente es la existencia de diferentes condiciones térmicas en el Norte de México.

Según Smith (1979) existe la posibilidad de separar esta zona en varias sub-provincias térmicas con dependencias lineales propias. Esto está justificado por la complexidad de la actividad tectónica en el Norte de México.

1) La zona de flujo de calor con valores más elevados que el promedio continental se extiende desde el Cinturon Volcánico



Reference lines A and B represent the parameters established by Rov et al. [1968] for the Basin and Range and Central United States thermal provinces, respectively. The open erdets are for values presented by *Decker and Smithson* [1973] for the Rio Grande Rift Zone in New Mexico. Labeled values are Malpica (MAL), Caborca (CAB), Tameapa (TAM), Santa Eulalia (SE), Lamporos (LZ), Villa Garcia (VG), and La Linda (LL).

Fig. 6.16. Relación entre valores de flujo de calor (en Heat Flow units) y la generación de calor radioactivo de rocas superficiales (en unidades de producción de calor) para el Norte de México (tomado de Smith et al., 1979). Mexicano, atravéz de la SMOc hasta la provincia del "Basin and Range". Smith et al.(1979) suguiere que la SMOc es la extensión hacia el sur de la provincia térmica del "Basin and Range" pero modificada por los fenómenos asociados con el esparciamiento del Golfo de California.

Para la provincia del "Basin and Range" tampoco está definida una relación lineal entre qo y A. Por otro lado la frontera Este de la provincia térmica del "Basin and Range" en México todavia no está definida (Smith et al., 1979) (Fig. 6.17).

2) Los valores observados de flujo de calor en los estados de Chihuahua, Durango, Zacatecas son similares a aquellas asociados a la anomalía térmica del Rift del Rio Grande (Smith et al., 1979). Los círculos abiertos en la Fig. 6.16 (Smith et al., 1979) son de la zona del Rift del Rio Grande. la diferencia relativa de estos puntos con respecto de la mayoría de los valores del norte de México indica un caracter tectónico especial.

Las características térmicas del Rift del Rio Grande son las siguientes:

1) El flujo de calor en el rift es generalmente muy alto, típicamente está comprendido en el rango 75-125 mW/m<sup>2</sup>

2) Los estudios indican que un alto flujo de calor en la provincia del rift no se puede explicar por la generación de calor en la corteza.

Decker et. al. (1975) midieron la producción de calor radioactivo y finalmente obtuvieron valores relativamente altos de flujo de calor de origen mántico para la parte sur del Rift del Rio Grande. Estos autores propusieron temperaturas altas en el manto, adelgazamiento de la corteza e intrusiones superficiales en la corteza superior como la fuente de la anomalía térmica.

3) Similarmente a otras áreas de la provincia del Basin and Range, en Nuevo México no existe una relación lineal entre el flujo de calor y la producción de calor.

Estas características son similares a la que existen en la Mesa Central. Pero las densidades de las mediciones térmicas no permiten identificar una prolongación eventual de las condiciones térmicas del rift hacia Norte de México.



Map showing locations for seismic studies of crustal structure in the Rio Grande rift region. a—Sinno et al. (1986), b—McCullar, (1977), c—Toppozada and Sanford (1976), d—Olsen et al. (1979), e=Jaksha (1982), f=Stewart and Pakiser (1962), g—Roller (1965), h—Gish et al. (1981), surface wave studies — Keller et al. (1979), Sinno and Keller (1986). Numbers along profiles indicate approximate Moho depths in kidometers below sea level.

Fig. 6.17. Mapa del rift del Rio Grande. Los números a lo largo de los perfiles indican la profundidad aproximada hasta el Moho (en km bajo el nivel del mar) (tomado de Keller et al., 1990).

## ANALISIS DE LA VARIACION SECULAR DEL FLUJO DE CALOR CONTINENTAL.

El flujo de calor continental depende:

1) de la edad del último evento térmico;

2) de la intensidad de este evento y

 de la concentración de elementos radioactivos en los continentes.

Un área perturbada termicamente recobra su equilibrio térmico mediante el enfriamiento representado por una disminución del flujo de calor proveniente del manto  $q_m$ . A este proceso le corresponde un descenso en la contribución radiogénica de calor de la corteza.

Lo más probable es que esto se cumpla mediante:

a) decaimiento de elementos radioactivos

b) y remoción de elementos radioactivos de la superficie a travez de procesos erosionales. El nivel más profundo de la corteza (con menor concentración isotópica) va progresivamente a exponerse mediante erosión, de tal manera que la producción de calor de las rocas en la superficie indicará el descenso secular.

El flujo de calor q<sup>A</sup> asociado a la radioactividad de la corteza está dada por (Vitorello et al., 1980):

$$q_{A} = \int_{0}^{h} A_{0} \exp(-z/b) dz = A_{0} b [1 - \exp(-h/b)] (9)$$

De aquí se obtiene:

$$A_0 = q_A/b[1-\exp(-h/b)$$
(10)

donde h - es el espesor de la corteza y b está relacionado con la erosión. A un valor menor de b corresponde una erosión más profunda.

De tal manera, que la variación secular del flujo de calor continental tiene las dos componentes siguientes: 1) cese de los disturbios térmicos;

2) erosión y remoción de las fuentes de calor.

Mientras que el proceso de enfriamiento se puede representar por una ley del tipo  $t^{-1/2}$  (Parsons et al., 1977) como en los océanos, la superposición de los dos procesos no tiene una representación simple en la escala de tiempo (Fig. 6.18)

A continuación analizémos el comportamiento de la producción de calor y del flujo de calor con respecto de la edad del último evento térmico (ígneo o tectónico).

Se construyeron las gráficas (Tabla 6.10, Fig. 6.19) de:

 $(q_0,t)$  - flujo de calor superficial contra la edad térmica t; (A,t) - producción de calor de las rocas ígneas en la superficie contra t;  $(q_m,t)$  - flujo de calor del manto contra t;

 $(\Sigma Q_1, t)$  - flujo de calor radioactivo de toda la corteza.

1) Se observa un descenso de flujo de calor medido y del flujo de calor proveniente del manto con la edad térmica.

2) Pero el comportamiento de la producción de calor (medido por Smith, 1974; Fig. 6.20) de las rocas ígneas en la superficie no es tan claro. Esta variable depende no solamente de la edad térmica, sino también del tipo de la roca, considerando que con la disminución de la acidez de las rocas ígneas el contenido de los isótopos radioactivos disminuye considerablemente.

Asi se puede concluir, que en el transecto se observa en general un descenso de flujo de calor medido con la edad térmica  $(q_0,t)$  que se debe al descenso del flujo de calor del manto  $(q_m,t)$ .

200

.



Fig. 6.18. Descenso secular del flujo de calor con la edad
C - Cenozóico, M - Mesozóico, LPa - Paleozóico Tardio, EPA Paleozóico Temprano, LPr - Proterozóico Tardio, EPr - Proterozóico
Temprano, A - Argueano (tomado de Vitorello et al., 1980).






Fig. 6.20. Promedio de producción de calor de las rocas superficiales (Smith et al., 1979) para diferentes províncias geológicas a lo largo del transecto contra su edad tectónica.

| area             | t                       | Ao<br>superf.<br>#W/m | qo<br>promedio<br>mW/m | qm<br>promedio<br><i>mW/m²</i> | QA<br>calculado<br>mW/m² |
|------------------|-------------------------|-----------------------|------------------------|--------------------------------|--------------------------|
| Baja California  | Mioceno<br>20 M.a.      | ****                  |                        |                                | 21.6                     |
| Planicie Costera | Mioceno<br>20 M.a.      | 2.31                  | 97.8                   | 75.45                          | 22.35                    |
| SMOC             | Oligoceno<br>28 M.a.    | 3.23                  | 84.4                   | 34.4                           | 50.00                    |
| Mesa Central     | Mioceno<br>20 M.a.      | 3.1                   | 84.4                   | 57.7                           | 26.8                     |
| SMOr             | Paleoceno<br>80-40 M.a. | 3.8                   | 61.4                   | 30.9                           | 30.5                     |
| Golfo de México  | 100 M.a.                |                       | 8.2                    | 26.5                           | 8.2                      |

t - edad de último evento térmico (ígneo o tectónico)

Baja California, Planicie Costera - abertura del Golfo de California, inicio en Mioceno hace 20 M.A.
SMOC. - emplazamiento de las ignimbritas en Oligoceno hace aprox. 28 M.a.
Mesa Central - elevación en Mioceno hace 20 M.a.
SMOr.- orogenia Larámide en Paleoceno entre 40-80 M.a.
Golfo de México - abertura del Golfo de México hace aprox. 100 M.a.

Tabla 6.10. Relación entre los valores de flujo de calor y la edad tectónica de las diferentes províncias geológicas a lo largo del transecto.

### DISTRIBUCION DE LA TEMPERATURA CON LA PROFUNDIDAD.

La distribución de la temperatura dentro de la Tierra y de la intensidad del flujo de calor en la superficie se determina en base a:

 la distribución y espesor de las fuentes radioactivas de calor por un lado;

 así como a partir de los parametros termofísicos (más importante - conductividad térmica) de sustancias minerales y materiales en consideración.

Se puede calcular la temperatura a diferentes profundidades, en particular en el Moho usando:

- 1) la estructura de la velocidad en la corteza;
- 2) el flujo de calor superficial;
- 3) la contribución de calor de los diferentes estratos;
- 4) la conductividad térmica de los diferentes estratos.

Para este calculo se usó la fórmula para una Tierra estratificada con propiedades creciendo monotonicamente: la producción de calor A y la conductividad térmica K (Buntebarth 1984, Meissner, 1985):

$$T_{p}(z) = T_{p-1} + (q_{p-1})(z_{p}-z_{p-1})/K_{p} - A_{p}(z_{p}-z_{p-1})^{2}/2K_{p}$$
(11)

donde  $T_n$  - la temperatura en el fondo de la capa,  $T_{n-1}$  - la temperatura en el límite superior de la capa,  $q_{n-1}$  - flujo de calor atravez del límite superior de la capa,  $(z_n-z_{n-1})$  - espesor de la capa,  $A_n$  - la producción de calor de la capa,  $K_n$  - la conductividad térmica,  $q_{n-1} = q_{n-2} - (z_{n-1} - z_{n-2}) A_{n-1}$  (12)

 $A_{n-1} = \text{const}$   $Z_{n-1}, T_{n-1}, q_{n-1}$   $A_n = \text{const}$   $K_n$   $Z_n, T_n$ 

z\_\_,q\_\_

Se calculó  $T_{sed}$ ,  $T_{Conrad}$ ,  $T_{Noho}$  y la temperatura en el manto litosférico (hasta intersectar la temperatura 0.85 $T_m$  - límite entre la litósfera y la astenósfera) (Tabla 6.11, Fig. 6.21).

$$T_{sed} = 10^{\circ} + q_{o}(z_{sed} - z_{o})/K_{1} - A_{1}(z_{sed} - z_{o})^{2}/2K_{1}$$
(13)

$$T_{Conrad} = T_{sed} + q_{sed} (z_{Conrad} - z_{sed}) / K_2 - A_2 (z_{Conrad} - z_{sed})^2 / 2K_2$$
(14)

$$T_{Hoho} = T_{Conrad} + q_{Conrad} (z_{Hoho} - z_{Conrad}) / K_3 - A_3 (z_{Hoho} - z_{Conrad})^2 / 2K_3$$
(15)

Los valores de conductividad que se han usado son los siguientes:

 Para la capa sedimentaria (calizas del Mesozoico) con espesor de 5 km de la Mesa Central y SMOc se tomó 2 W/m°K.
 Según Buntebarth (1984) la conductividad de las calizas es 2.2-2.8 W/m°K (Tabla 6.12 y 6.13). Se tomó un valor un poco menor considerando que las rocas fueron afectados por una orogenia y erosión posterior.



Fig. 6.21. Distribución de temperatura con la profundidad a lo largo del transecto.

| área             | Tsed.<br>°C | q sed.<br>mW/m2 | Tconrad<br>°C | q conrad<br>mW/m2 | l Tmoho<br>°C |
|------------------|-------------|-----------------|---------------|-------------------|---------------|
| Planicie costera | 198         | 76              | 433           | 64                | 711           |
| SMOC             | 229         | 75.4            | 753           | 38.6              | 926           |
| Mesa Central     | 217         | 81.4            | 589           | 60.6              | 869           |
| SMOr             | 160         | 58.4            | 438           | 34.4              | 621           |
| Golfo de México  | 190         | 27.9            |               |                   | 266           |

Tsed.- temperatura en el fondo de la capa sedimentaria o con Vp=6 km/s q sed- flujo de calor en la frontera entre sedimentos y capa granito-sedim. Tconrad - temperatura en la discontinuidad de Cónrad q conrad -flujo de calor en la discontinuidad de Cónrad Tmoho - la temperatura en la discontinuidad entre la corteza y manto.

Tabla 6.11. Distribución de la temperatura con la profundidad a lo largo del transecto.

| Material        | K [W m K] | ★ [10 <sup>-</sup> <sup>b</sup> m <sup>2</sup> /s] |  |  |
|-----------------|-----------|----------------------------------------------------|--|--|
| Limestone       | 2.2 - 2.8 | 1.1                                                |  |  |
| Slate           | 2.4       | 1.2                                                |  |  |
| Sandstone       | 3.2       | 1.6                                                |  |  |
| Bituminous coal | 0.26      | 0.15                                               |  |  |
| Rock salt       | 5.5       | 3.1                                                |  |  |
| Gneiss          | 2.7       | 1.2                                                |  |  |
| Granite         | 2.6       | 1.4                                                |  |  |
| Gahbro          | 2.1       | -                                                  |  |  |
| Peridotite      | 3,8       | -                                                  |  |  |

Tabla 6.12. Conductividad térmica (K) para algunos materiales bajo condiciones normales (tomado de Buntebarth, 1984).

| Tipo de roca     | Temperatura,<br>*C | Conductividad<br>termica,<br>cal/seg/cm/*C |
|------------------|--------------------|--------------------------------------------|
| Granito          | 100                | $5 - 7 \times 10^{-3}$                     |
|                  | 200                | $5 - 6.5 \times 10^{-3}$                   |
| Anortosita       | 100                | $4.1 - 4.5 \times 10^{-1}$                 |
|                  | 200                | 4.3-4,7 × 10-'                             |
| Diabasa          | 100                | $5.0 - 5.35 \times 10^{-1}$                |
| Basalto          | 75                 | $4 \times 10^{-3}$                         |
| Gabro            | 100                | 5.25 - 5,75 × 10-'                         |
| ,                | 400                | $4.8 \times 10^{-3}$                       |
| Dunita           | 100                | $9.4 \times 10^{-3}$                       |
|                  | 200                | $8.1 \times 10^{-3}$                       |
| Piedra caliza    | 100                | $4.9 - 7.0 \times 10^{-1}$                 |
| Piedra arenisca  | 17                 | 10 × 10-*                                  |
| Pizarra          | 17                 | ; 1,4 × 10 <sup>-1</sup>                   |
| Sal de roca      | 17                 | $17 \times 10^{-3}$                        |
| Hielo            | 0                  | $22 \times 10^{-1}$                        |
| Vidrio de silice | 100                | 13-15 × 10-1                               |
| Obsidiana        | 100                | 15 × 10 <sup>-3</sup>                      |
| Marga arenosa *  |                    | $0.8 - 5.5 \times 10^{-3}$                 |
| Arcilla *        |                    | $0.6 - 4 \times 10^{-3}$                   |
| Arena de río *   |                    | $0.65 - 4.0 \times 10^{-1}$                |

Según Birch, 1942. Depende ampliamente de la humedad.

Tabla 6.13. Valores típicos de la conductividad térmica de las rocas a la presión atmosférica (tomado de Howell, 1962).

2) En el Golfo de México, para las rocas sedimentarias Cenozóicas no consolidadas de espesor 2 km (Ewing et al.,1962) se tomó una conductividad de 1 W/m°K. Este valor se tomó considerando que las mediciones de conductividad de los sedimentos en el Golfo (Epp et al., 1970) (Fig. D.5) y los valores típicos para rocas como: arcilla - 0.7-1.0 W/m°K (Bullard et al., 1961);

lodo - 0.8-1 W/m<sup>0</sup>K (Bullard et al., 1961);

sedimentos no litificados de la capa sedimentaria en los océanos -  $0.84-0.92 \text{ W/m}^{\circ}\text{K}$  (Smislov et al., 1979).

3) Para el resto de la corteza en el transecto se usó una conductividad 2.5  $W/m^{\circ}K$ , considerando los valores típicos de granitos - 2.6  $W/m^{\circ}K$  - Bunterbarth (1984) y el modelo de conductividad térmica con la profundidad (Bunterbarth, 1984) (Fig. 6.22).

4) Para el manto se usaron siguientes valores de conductividad (Bunterbarth, 1984) (Fig. 6.22):

Planicie Costera - 3 W/m<sup>°</sup>K, SMOC -3.2 W/m<sup>°</sup>K, Mesa Central - 3 W/m<sup>°</sup>K, SMOr - 3.3 W/m<sup>°</sup>K, Golfo de México - 3.3 W/m<sup>°</sup>K.

Los resultados del cálculo están representados en la Fig. 6.21 y Tabla 6.11

Debido a todas estas aproximaciones y en parte por el caracter unidimensional del cálculo, las temperaturas obtenidas deben ser consideradas como una primera aproximación.

De la Fig. 6.21 se ve, que el Moho no se puede considerar como una isoterma. La posición elevada de la isoterma (y Moho) en la Mesa Central indica que el material asciende desde la profundidad (astenósfera caliente). Esta hipótesis se confirma por el magmatismo miocénico. Además la Mesa Central está marcada por un movimiento vertical significante durante el Mioceno.

La temperatura calculada para el Moho en la Mesa Central  $(869^\circ)$ es consistente con la del "Basin and Range", obtenido por Fix (1975) - 800<sup>0</sup> (Fig. 6.23 y Tabla 6.14 y 6.15). Además para la Mesa



Fig. 6.22. Modelo de conductividad térmica para el interior de la Tierra en regiones continentales (tipo normal, escudos antiguos) y áreas oceánicas (tomado de Buntebarth, 1984).



Fig. 6.23. Geoterma para México Central; modelo petrológico de un manto de composición Pirolítica III (Green y Ringwood, 1970); y geotermas para océanos y escudos Precambricos (Clark y Ringwood, 1964) (tomado de Fix, 1975).

bente un

| Surface<br>heat<br>flow<br><u>µcal</u><br>cm <sup>2</sup> s | Surface<br>heat<br>flow  | Surface Mantle of heat<br>heat heat generating<br>flow thow layer |                    |       | Depth to<br>layer 2 | Depth to<br>mantle | Thermal conductivity<br>10 <sup>-3</sup> cal cm <sup>-1</sup> s <sup>-1</sup> °C <sup>-1</sup> |        |      |
|-------------------------------------------------------------|--------------------------|-------------------------------------------------------------------|--------------------|-------|---------------------|--------------------|------------------------------------------------------------------------------------------------|--------|------|
|                                                             | $\frac{\mu cal}{cm^2 s}$ | (km)                                                              | 10-13 cal<br>cm3 s | (km)  | (km)                | layer 1            | layer 2                                                                                        | mantle |      |
| Central Mexico                                              | 2.4                      | 1.9                                                               | 10                 | 5.0   | 18                  | 30                 | 6.5                                                                                            | 5.0    | 10-0 |
| nasin and<br>Range 1<br>(Blackwell 1971)                    | 1.90                     | 1 · 37                                                            | 10                 | 5 - 3 | 10                  | 30                 | 6-5                                                                                            | 5.0    |      |

Tabla 6.14. Valores utilizados para calcular la distribución de la temperatura con la profundidad para México Central y la provincia del Basin and Range (tomado de Fix, 1975).

| Depth | Temperature (°C) |                   |  |  |  |
|-------|------------------|-------------------|--|--|--|
| (km)  | Central Mexico   | Basin and Range 1 |  |  |  |
| 0     | 0                | 0                 |  |  |  |
| S     | 175              | 136               |  |  |  |
| 10    | 331              | 252               |  |  |  |
| 15    | 477              | 389               |  |  |  |
| 20    | 6-11             | 526               |  |  |  |
| 25    | 831              | 663               |  |  |  |
| 30    | 1021             | 800               |  |  |  |
| 35    | 1116             | 937               |  |  |  |
| 40    | 1211             | 1074              |  |  |  |
| 45    | 1306             | 1211              |  |  |  |
| 50    | 1401             | 1348              |  |  |  |

Tabla 6.15. Distribución de temperatura con la profundidad para México Central y Basin and Range (tomado de Fix, 1975). Central - el flujo de calor del manto promedio - 57.7  $mW/m^2$  y según Keller et al.(1990) para Rio Grande rift  $q_m = 60 mW/m^2$ . Pero la temperatura para el Moho para la Mesa Central obtenida en este trabajo es diferente de la obtenida por Fix (1975), que es 1021°. Las razones de esta diferencia podrian ser las siguientes:

 en el presente trabajo se usaron mediciones de flujo de calor de Smith et al.(1979) y Ziagos et al.(1985) posteriores al trabajo de Fix (1975);

2) se utilizó una metodología diferente para la evaluación de la contribución de calor radioactivo de la corteza.

# POSIBLES FUENTES DE ERRORES EN LA DETERMINACION DE LA PRODUCCION DE CALOR Y DEL CAMPO DE TEMPERATURAS:

1) hay que recordar de nuevo, que se supuso una condición de estado estacionario y que no es válida para algunas partes de nuestro transecto. Pasquale (1990) indica que por esa causa la temperatura calculada en el Moho puede tener una incertidumbre mayor del 10%. En este caso las temperaturas calculadas reflejan solamente una tendencia general del régimen térmico;

2) no se hicieron correcciones por

- a) ascenso,
- b) erosión;
- c) sedimentación;
- d) topografía;
- e) circulacion de fluidos, etc.
- 3) errores en mediciones de flujo de calor.

### DETERMINACION DEL ESPESOR DE LA LITOSFERA.

Se han identifican varios tipos de litósfera (Maxwell, 1985): 1) litósfera elástica o flexural (o reológica) definida por la reacción a una carga (hielo o otro material geológico) sobre la superficie de la Tierra. Es la definición más cercana al concepto clásico de estrato rocoso exterior. El espesor de esta litósfera depende del esfuerzo y del tiempo;

2) litósfera térmica, definida como el estrato conductor, se identifica por estar caracterizada por transporte conductivo de calor y descansa sobre la zona caliente y por eso estructuralmente debil, llamada astenósfera;

3) litósfera sísmica que probablemente coincide con la térmica (cuando fusión parcial y relajación por dislocación a altas temperaturas son los mecanismos que sirven para disminuir las velocidades sísmicas), y se define por las velocidades de las ondas. La zona de baja velocidad es generalmente equivale a la astenósfera, es decir ala zona de menor viscosidad que la corteza. Normalmente, el flujo de calor del manto qm además de controlar la temperatura de la corteza, influye en el espesor de la litósfera (Pollack et al., 1977). Las propiedades del manto superior varian de acuerdo al cociente:

temperatura evaluada /temperatura de fusión =  $T(z)/T_m(z)$ 

Las variaciones de esta relación corresponde directamente a la variación en la viscosidad del material mántico.

La transición litósfera-astenósfera empieza según Pollack et al. (1977) a una temperatura menor que la de sólidus.

La profundidad H a la cual  $T(z)/T_m(z) = 0.85$ corresponde al espesor de la litósfera sísmica, porque en esta profundidad ocurre refracción sísmica. Valores para  $T_m(z)$  fueron deducidos por Pollack y Chapmah (1977) a partir de valores experimentales y de las curvas teóricas de fusión de material mántico.

Para el transecto se construyó una familia de geotérmas para cada provincia geológica (Fig. 6.25). En el cálculo de geotérmas se usó transporte conductivo de calor y se extendió las geotermas solamente hasta la base de la litósfera (hasta la intersección con  $0.85T_m(z)$ . La continuación de las geotérmas en la astenósfera requiere incluir otros métodos de transporte de calor además de la conducción de calor conductiva, por ejemplo la convección, etc.

Por esta misma razón no se construyeron las geotérmas para el Golfo de California.



Fig. 6.24. Espesor de la litósfera y flujo de calor contra la edad del piso oceánico respectivamente. Los puntos con barras de error representan estimaciones realizados por Leeds et al. (1974) del espesor de la litósfera a partir de datos sismológicos (tomado de Pollack et al., 1977).



Fig. 6.25. Conjunto de geotermas para la:: diferentes províncias geológicas a lo largo del transecto; T $_m$  representa la geoterma de fusión del manto.

Para toda la Península de Baja California existen solamente 3 valores de flujo de calor. Además estos valores son bajos considerando la cercania de la zona de disperción del fondo oceánico. Por esta razón la geoterma tampoco se construyó para esta zona.

La litósfera en el transecto está representada en la Fig. 6.26 El espesor de la litósfera es más grande (Tabla 6.16), donde el flujo de calor superficial y del manto tiene sus valores mas bajos (Golfo de México y SMOr). La litósfera en la Mesa Central es 37 km según estos cálculos. Esto corresponde a los datos de Fix (1979), que propone que el espesor de la corteza es 30 km, más abajo encontrandose el "mantle lid" de espesor 4-8 km y a mayor profundidad una zona de fusión parcial.

Según estos cálculos el espesor de la litósfera térmica bajo la SMOC es 54 km, que es menor de lo que propuso Gomberg (1988) para la litósfera sísmica. Según esta autora la litósfera sísmica en el norte de México no debe ser menor a 70 km.

En rasgos generales el espesor de la litósfera obtenido en el presente trabajo es consistente con el obtenido por Pollack et al. (1977) - (Fig. 6.28) a partir de la representación del flujo de calor en funciones esféricas harmónicas (Fig. 6.27).

El flujo de calor del manto  $q_m$  generalmente sigue la misma tendencia que q<sub>o</sub>, incluso en áreas más jóvenes geologicamente.

De la Fig. 6.15 y 6.29 se observa que en el transecto en general el flujo de calor del manto sigue la misma tendencia que el flujo de calor superficial. Aunque en la SMOc a pesar de tener un promedio de flujo de calor igual que en la Mesa Central, el valor de flujo de calor del manto es mayor que en la SMOc.

Pero la observación de que el flujo de calor superficial decrese exponencialmente con el incremento de espesor de la litósfera no es muy riguroso, porque el flujo de calor depende de la variación lateral de la generación de calor en la corteza superior.



Fig. 6.26. Espesor de la litósfera a lo largo del transecto.

. . .



Fig. 6.27. Representación del flujo de calor en funciones harmónicas esféricos (en  $mW/m^2$ ) (tomado de Pollack et al., 1977).



A-A' - el transecto de estudio, correspondiente a la Fig. 6.25

Fig. 6.28. Espesor de la litósfera (en km) determinada a partir de la representación del flujo de calor en harmónicos esféricos (tomado de Pollack et al., 1977).





# Planicie costera32SMOc53Mesa Central37SMOr90Golfo de México143

espesor de la litósfera en km

área

Tabla 6.16. Espesor de la litósfera a lo largo del transecto.

# COMPARACION DE LOS DATOS DE FLUJO DE CALOR CON LOS PERFILES GRAVIMETRICO Y MAGNETOMETRICO.

Para hacer esta comparación, se necesita siempre tener en presente que en parte, la temperatura es el resultado de acontecimientos sucedidos en el pasado, al contrario de lo que ocurre con los campos gravitacionales y magnetométricos que dependen exclusivamente de la actual distribución de masas.

Es incluso presumible que los fenómenos térmicos que acompañaron a los procesos de formación de la Tierra, hayan dejado huellas reconocibles en las temperaturas internas actuales.

 El alto flujo de calor obsevado y aquel de origen mántico en la Mesa Central coincide con un adelgazamiento de la corteza según el modelo gravimétrico y correspone a una anomalia de -210 mGal.
 El alto flujo de calor observado y del manto en la Planicie Costera corresponde a un adelgazamiento de la corteza, pero la anomalia aquí es -12 ~ -80 mGal

Se pueden obtener las siguientes conclusiones:

no se observa una correlación entre la anomalía de Bouguer y el flujo de calor en el transecto. Es más apropriado comparar el flujo de calor del manto con el espesor de la corteza.

2) Comparando con valores de la ptofundidad al punto de Curie se observa que la profundidad mínima del punto de Curie para el el perfil magnético en la Mesa Central ( es menor a 25 km) se correlaciona con el alto flujo de calor mántico.

3) Aunque parece raro, la Mesa Central - un área con un alto flujo de calor mántico y una litósfera de espesor de solo 37 km, está isostaticamente compensada. Precisamente el manto anómalo bajo la litósfera, que se puede considerar como astenósfera compensa la elevación alta del área (1.9 km). Esto es el caso cuando la compensación isostática ocurre a un nivel más bajo que el fondo de la litósfera (al contrario de las hipótesis de Pratt y de Airy).

4) El alto flujo de calor del manto en la Mesa Central coincide con la baja resistividad obtenida a partir de datos magneto-telúricos (comunicación personal Sánchez-Castellanos y Alday).

4) En nuestro caso no se puede hacer comparación con los datos sísmicos porque presisamente los consideramos para deducir el flujo de calor del manto (para evitar una argumentación circular).

## CAPITULO VII.

# CONSIDERACIONES SOBRE LA EVOLUCION TECTONICA DE LA MESA CENTRAL.

### INTRODUCCION.

La diferencia principal del modelo de la corteza propuesto en este trabajo (según estudios geofísicos y geológicos) con el modelo de Woollard (1959) es el espesor de la Mesa Central que es 30 km en este trabajo y 48 km en el trabajo de Woollard (1959).

A lo largo del presente trabajo se han presentado argumentos a favor de este valor en base a datos de diferentes disciplinas. Por último en este capitulo se trata de justificar este valor en base a estudios geológicos existentes en este área.

La asi llamada la Mesa Central en realidad no es una meseta sino un altiplano rodeado de prominencias orográficas: SMOr, SMOc, Faja Volcánica (y sector transverso Torreón - Monterrey).

Existen todavía muchas interrogantes importantes sobre la evolución y situación tectónica de la Mesa Central. Las principales interrogantes respecto a la situación tectónica en la Mesa Central se pueden resumir de la siguiente manera:

- 1) Como se originó la tectónica de extensión en la Mesa Central?
- 2) Representa la tectónica de extensión de la Mesa Central la continuación de la provincia del "Basin and Range"?
- 3) Cual es el espesor de la corteza: 48 km según Woollard et al. (1956) o 30 km según Fix (1975)?

En este capitulo se trata de discutir estas preguntas según el comportente estas preguntas según estas preguntas preguntas según estas preguntas según estas preguntas según estas preguntas pregunta

- 1. Evidencias de extensión tectónica de la Mesa Central.
- 2. Prolongación del "Basin and Range" en la Mesa Central.
- 3. Modelos de extensión.
- 4. Modelos de elevación durante el Mioceno de la Mesa Central.
- Relación entre extensión, elevación y compensación isostática en la Mesa Central.

Para contestar a las preguntas anteriores se necesita hacer primero

una sintesis de las características geofísicas más importantes de la Mesa Central y de sus contrastes con otras provincias del norte de México.

### RESUMEN DE DATOS GEOFISICOS SOBRE LA MESA CENTRAL.

1) Los datos sismicos (Fix, 1975) indican que:

 a) el espesor de la corteza bajo la Mesa Central- es alrededor de 30 km;

b) existe un manto superior anòmalo (fusión parcial en un 10-20 %);
2) Los valores de la anomalía de Bouguer sobre la Mesa Central son más negativos (-220 mGal) de lo que deberia corresponder a un espesor de la corteza de 30 km, esto indica que el manto superior está más caliente de lo normal.

3) La Mesa Central está isostaticamente compensada.

4) La Mesa Central se caracteriza por un alto flujo de calor superficial que se debe al alto flujo de calor proveniente del manto ya que la producción de calor radioactivo en la corteza es bajo.

5) La profundidad del punto de Curie (23.5-25.5 km) es más somera que el Moho (30 km).

6) De acuerdo a datos magnetotelúricos del transecto, la Mesa Central presenta en la corteza inferior y manto superior una zona de baja resistividad comparada con la SMOc y la SMOr. Esto posiblemente se relaciona con un manto anómalo (comunicación personal, Sanches-Castellanos y Alday-Ruiz).

7) Además el estudio de xenolitos (Jean Pier, comunicación personal) propone tres posibles modelos para la corteza en el transecto. Uno de ellos (Fig.7.1) propone el adelgazamiento cortical bajo la Mesa Central comparado con la SMOc y la SMOr y es consistente con los modelos geofísicos de la corteza que se han descutido en el presente trabajo.

### EVIDENCIAS SOBRE EXTENSION EN LA MESA CENTRAL.

Una de las características tectónicas más interesantes de la Mesa Central es aparentemente la existencia de un régimen tectónico de extensión que ha caracterizado la historia post-miocénica de esta



SINALOA DURANGO

# VENTURA EAST SLP

Fig. 7.1. Posible modelo litosféra-astenósfera a lo largo del transect Sinaloa-Durango-Ventura-St. Domingo-Este de San Luis Potosí, construidos a partir de análisis químico de xenolitos provenientes de la corteza inferior y del manto superior (comunicación personal de Jean Pier, 1990)



Fig. 7.2. Mapa geológico simplificado del semi-graben de Rodeo, Durango (inmediatamente al norte de D en la Fig. 7.4). Las rocas volcánicas del Terciario medio estan desplazados hacía abajo con relación a las calizas falladas de edad Cretácica. Basaltos alcalinos con edad de 23 M.a. (Aguirre-Diaz y McDowell, 1988) emitidos a lo largo de la falla oriental limitante y están interestratificados con los sedimentos de relleno de la cuenca. El graben, la falla y la orientacion del espejo de la falla indican una extensión este - noreste hace 23 M.a. (tomado de Henry y Aranda, 1992).



Fig. 7.3. Mapa geológico simplificado del graben Rio Chico - Otinapa, Durango (inmediatamente al oeste de D en la Fig. 7.4.) Los basaltos alcalinos en el sur han sido datados en 12 Ma. (Mc Dowell y Keizer, 1977) y cubren la secuencia delgada de relleno de cuenca y estan afallados. De aqui se puede concluir que el fallamiento empezó hace 12 M.a. Los basaltos ubicados al norte tienen una edad K-Ar preliminar de 2-3 Ma. Uno de estos flujos cruza la falla delimitante oriental (flecha) y no está afallado Entonces el fallamiento terminó hace 2 Ma. El graben, la falla y la orientación del espejo de la falla indican una extensión este-noreste (tomado de Henry y Aranda, 1982).

3 S B

provincia y que probablemente sigue activo.

Dentro de las evidencias de un régimen tectónico de extensión se puede mencionar las siguientes:

1) En algunos lugares aislados de la Mesa Central existen pequeños campos volcánicos pleistocenicos (Fig. 7.2. y 7.3.), constituidos por basaltos alcalinos y/o basanitoides (Ventura y Espiritu Santo, S.L. Potosí; San Diego de La Unión, Guanajuato, etc.), típicos de zonas de rift continental. Asociados a este volcanismo a veces se presentan basaltos con xenolitos, provenientes del manto superior y de la base de la corteza (Aranda Gómez y Ortega-Gutiérrez, 1987).

2) Existen testimonios históricos de terremotos que causaron destrucción y apertura de grietas en Villa Hidalgo, San Luis Potosi. Existe actividad sismica en la región comprendida entre San Miguel de Allende y San Juan de los Lagos (falla del Bajio y/o graben de Campuzano).

3) Los cuerpos montañosos que se localizan en la región de la Mesa Central se encuentran generalmente limitados por lineamientos que corresponden generalmente a fallas normales (Fig. 7.4). En la parte meridional de la Mesa Central existen dos juegos conjugados de fallas normales, que dan origen a fosas y pilares tectónicos con rumbos NE y NW.

Entre las fosas tectónicas más importantes se encuentran los grabenes de:

Villa de Reyes (N  $40^{\circ}$  E), Aguascalientes (N  $10^{\circ}$ E), Campuzano (N  $80^{\circ}$  E), Paso Blanco (N  $45^{\circ}$  W), Enramadas (N  $45^{\circ}$  W), Bledos (N  $45^{\circ}$  W) y

la depresión de Lagos de Moreno.

Otras estructuras de grán importancia, en el borde meridional de la Mesa Central, son:

la falla El Bajio (N 50<sup>0</sup> W), la Veta Madre (N 40<sup>0</sup> W) y el sistema de vetas de La Sierra.



Fig. 7.4. Distribución generalizada de fallas de extensión de edad Cenozóica medio y tardio en el norte de México. Las fallas sin marcas son de Stewart (1978), fallas con marcas fueron compiladas del mapa geológico de escala 1:50 000 de INEGI asi como de fuentes publicados. Parte del Eje Neovolcánico se vió afectado por extensión durante el Cenozóico tardio la cual está ahora enmascarada por rocas volcánicas más jóvenes. La SMOC es un bloque relativamente inafectado por fallas de extensión que separa áreas de mayor extensión en el norte de México y México central de aquellas de alrededor del Golfo de Califonia. Oc = Ocampo; E = Santa Eulalia; C = San Carlos; S = Santa Bárbara; D = Durango City; B = Bajio; F = Fresnillo, G = Guanajuato; O = Ocaxaca. México comprende aproximadamente la mitad del área total en extensión de Norteamérica (tomado de Henry y Aranda, 1992).



Fig. 7.5. Principales elementos tectónicos de México expresados en la fisiografía. 1) Provincia de Cuencas y Sierras ("Basin and Range"); 2) Sierra Madre Occidental; 3) Sierras y Valles de Coahuila; 4) Sierra Madre Oriental; 5) Eje Neovolcánico Transmexicano; 6) Plataforma de Yucatán; 7) Llanura Costera del Golfo; 8) Sierra de Juárez; 9) Sierra de Chiapas; 10) Sierra Madre del Sur; 11) Sistema de Fallas Polochic - Motagua; 12) Trinchera de Acapulco; 13) Dorsal del Pacífico del Este (tomado de Morán - Zenteno, 1986).



Fig. 7.6. Prolongación de la provincia del "Basin and Range" hacía el norte de México en forma de dos bandas distintas de fallas de extensión. El área afectada con fallamiento extensional está punteada. SMOC- Sierra Madre Occidental; SIN - Sinaloa; RGR - Rio Grande rift; D - ciudad de Durango (tomado Henry, 1989). 4) Existencia de unflujo térmico alto y en particular deun alto flujo de calor proveniente del manto, que es característico de la zonas de extensión.

 Corteza adelgazada inferida a partir de sismología, gravimetría, magnetometria, flujo de calor y método magnetotelurico.

6) Al norte de la falla El Bajio es común encontrar acuiferos con aguas termales (e.g. Taboada, Gagorron, Ojo Callente, Aguas Buenas, Aguas Callentes, etc.) (Aranda-Gómez et al., 1989).

Pero hay que notar en conclusión que la información acerca del estado tectónico actual de la Mesa Central es escasa.

POSIBLE CONTINUACION DE LA PROVINCIA DEL BASIN AND RANGE,

La Mesa Central y la provincia del "Basin and Range" tienen muchos características semejantes que sugieren a primera vista que podria existir una continuidad en el régimen tectónico actual entre ambas provincias (Fig. 7.5). Dentro de las características comunes a ambas provincias se pueden citar las siguientes:

1) alto flujo de calor, baja producción de calor en la corteza;

2) anomalia de Bouguer 220-240 mgal;

3) existencia de fallas normales de edad Cuaternaria;

grandes elevaciones topográficas regionales ≈ 2 km;

corteza adelgazada (≈ 30 km) según la sismología;

6) presencia de campos basálticos alcalinos recientes.

Stewart (1978) sugirió que existe una prolongación de fallas de extensión del Cenozóico tardio de la provincia del "Basin and Range" hacía el norte de México en forma de dos bandas distintas (Fig. 7.6). De acuerdo a esta interpretación las dos franjas que se extienden hacía México serian:

1) una franja estrecha a ambos lados del Golfo de California;

2) y una franja más ancha al este de la SMOc, que representa la continuación al sur del Rift Rio Grande.

Estas dos franjas están separadas por la SMOc., la cual presenta una escaces relativa de fallamiento.

Stewart (1978) admite que la estructura de la provincia del "Basin and Range" en ambas franjas está pobremente estudiada y en general está generalizada a partir de los mapas regionales.

Max Suter (1991) realizó un estudio cobre el estado de esfuerzos y la deformación activa en México en base de datos obtenidos de la:

- 1) deformación de pozos;
- 2) mecanismos fócales;
- 3) alineamiento de conos cineríticos;
- 4) análisis de desplazamiento de fallas.

Según este autor el NE de México está bajo extensión y forma la continuación hacia el SE de la provincia de esfuerzos "Basin and Range-Rift Rio Grande" (Fig. 7.7).

En el norte de México esta provincia de esfuerzos tiene unaextensión aproximada de 1000 km en la dirección oeste-este y 1000 km en la dirección norte-sur.

Esta provincia de extensión está delimitada por las siguientes provincias de esfuerzos:

al oeste - por la provincia de Golfo de California;

al noroeste - por la provincia de Grandes Planicies;

al este - por la provincia de Planicie costera del Golfo del México; al sur - por la Faja Volcánica Trans-Mexicana.

Estos estudios indican que el régimen tensional que prevalece en el sur de los Estados Unidos, en la región de la provincia del "Basin and Range" se extiende hacía grán parte de noroeste de México y la Mesa Central.

### MODELOS DE EXTENSION PARA LA MESA CENTRAL.

No existen estudios recientes que se hayan avocado al origen del fallamiento y el desarrollo de la tectonica de extensión en la Mesa Central. Sin embargo se pueden mencionar algunas interpretaciones realizadas en relación a la provincia del "Basin and Range" y que podrian ser aplicables a la Provincia de la Mesa Central.

Todos estos modelos mencionados abajo no son completamente distintos, se asemejan uno a otro en algunos aspectos.



Fig. 7.7. Provincias de esfuerzos definidos para México y el oeste de Centroamérica. G - provincia de esfuerzos del Golfo de California; GC - provincia de esfuerzos de la costa del Golfo de México; GVA provincia de esfuerzos del arco volcánico Guatemalteco; IP - provincia de esfuerzos de Ipala; SGP - provincia de las Grandes Planicies del Sur; TMVB - provincia de esfuerzos del Eje Neovolcánico (tomado de Suter, 1991).



Fig. 7.8. Evolución Cenozóica inferida para la provincia del "Basin and Range" (tomado de Scholz et al., 1971).

### Modelo I (Kearey et al., 1990; Mayer, 1986)

A pesar de que durante la subducción de la placa Farrallón por debajo de la placa de Norteamérica no se habian desarrolladas cuencas marginales adyacentes a la trinchera a lo largo del margen continental, existen regiones de la litósfera continental adyacente a estas trincheras que parece estaban sujetos a un régimen de extensión (Kearey et al., 1990). Estas regiones son la provincia del "Basin and Range" y probablemente la Mesa Central.

Scholz et al.(1971) suguiere que la tectónica del "Basin and Range" se debe al ascenso diapirico de manto parcialmente fundido, generado por subducción de la Placa Farrallón durante el Cenozoico temprano (Fig.7.8)

Según Mayer (1986) el calientamiento por la placa Farrallón descendiendo someramente pudo ser responsable de la reducción de la viscosidad efectiva de la litósfera inferior y el inicio de diapirismo durante el Paleoceno.

La velocidad máxima del ascenso diapírico es de orden 5 km/Ma. Esta velocidad implica por lo menos 20-40 Ma para la penetración de la litósfera subcortical.

Según la hipótesis de Scholz et al. (1971), cuando la subducción cezó (esto ocurrió cuando la dorsal de Este de Pacifico alcanzó la trinchera) y la compresión de la placa Norteamericana cezó, entonces aumentó la extención como resultado del aumento del diapirismo.

Es notable la existencia de fallas del tipo "Basin and Range" alrededor del Golfo de California hasta la latitud de Nayarit, coincidiendo con la parte más septentrional de la actual margen activa, es decir de la fosa centroamericanaa lo largo de la cual la subducción está continuando (Henry, 1989).

### Modelo II (Damon et al., 1981)

Según Damon et al. (1981), la tectónica de extensión en el norte de México está asociado a la migración del arco volcánico al oriente y su regresó al oeste. Este proceso de extensión tectónica fué acompañado por volcanismo basáltico (localizado en campos volcánicos aislados). El último levantamiento en la Mesa Central ocurrió, de acuerdo a esta interpretación, durante el Mioceno, lo que coincide con el paso sobre la Mesa Central de la actividad magmática asociada a la subducción en el occidente.
### Modelo III (Mayer L., 1986).

El mecanismo principal para explicar la tectònica de extensión de la provincia del "Basin and Range" según Mayer es el diapirismo.

La extensión de la litósfera pude tener lugar en la zona de a) retro-arco sobre una(s) pluma(s) de material mántico;

a) retro-arco sobre una(s) piuma(s) de material mant.

b) intra-arco;

c) o sobre una ventana de la placa en subducción (Farrallón).

Es probable que la tectónica de extensión de la provincia del "Basin and Range" se desarrolló:

1)al principio en un ambiente de intra-arco,

2) posteriormente en el ambiente de retro-arco,

3) y al final se le puede asociar a la extensión oblicua de la falla transformada de San Andreás

Según este modelo, los esfuerzos pueden ser transmitidos a grandes distancias gracias al debilitamiento térmico o al suavizamiento de la litósfera.

La extensión según las causas 1) y 2) presentan el camino de adelgazamiento de una litósfera no uniforme perque implican mecanismos de adelgazamiento de la litósfera a partir de su base.

Entonces con estos mecanismos se puede explicar:

1) la elevación alta de la Mesa Central;

2) la corteza adelgazada de esta.

### Modelo IV (Henry, 1989).

Según Henry (1989), el tipo de tectónica de extensión en la provincia del "Basin and Range" es gravitacional, inducida por el superengrosamiento de la corteza resultante de alguno de los siguientes procesos:

1) Orogenia Laramídica,

- 2) o la contracción de la corteza más antigua,
- 3) o las intrusiones magmáticas.

Los plegamientos y sobrecorrimientos asociados a la llamada Orogenia Laramide afectaron a las secuencias mesozoicas marinas que se acumularon en el espacio actual de la Mesa Central (Rodgers et

al.,1956; Tardy et al.,1975; Padilla y Sanchez, 1986) y provocaron seguramente un engrosamiento de la corteza en esta región.

Adicionalmente los eventos magmáticos que afectaron esta zona durante la migración del arco magmático hacía el oriente de México y su posterior retorno deben haber producido también un engrosamiento de la corteza en esta porción de México.

Según Henry (1989) es dudoso que la extensión alrededor del Golfo de California y en la Mesa Central ocurrió como consecuencia del engrosamiento de la corteza unicamente. Sus argumentaciones son las siguientes:

a pesar de que casi todo el oeste de México fue afectado por magmatismo durante el Mesozoico tardio y en Cenozoico, la actividad más intensa y voluminosa está representada por rocas volcánicas del Terciario medio de la SMOc. Entonces, como explicar que la SMOc es un bloque sin tectónica de extensión y esté rodeado por áreas afectados por una mayor extensión considerando la hipótesis de que la extensión en el Norte de México se debe unicamente al engrosamiento de la corteza?

Posiblemente, en el Mioceno la corteza no estaba engrosada, solamente elevada termicamente.

Según Bott (1981) en la mayoría de los casos la elevación precede la extensión.

La mayoría de los "rifts" y fosas tectónicas (grabenes) continentales presentes se formaron en regiones donde la corteza se estaba elevando o en regiones de ascenso de las mesetas, por ejemplo: el sistema del rift de Africa Oriental.

el sistema del rift de Baikal,

el graben del Rhin y

la provincia del "Basin and Range".

Una de las pecularidades que presentan todas estas regiones con tectónica de extensión es la existencia de un manto anómalo.

Lo más probable es que la Mesa Central se puede representar como un área elevada en extensión con un manto anómalo.

La asociación común de riftogénesis y ascenso suguiere que existe una relación entre ellos. En general, el ascenso es la primera respuesta a la elevación de temperatura por debajo y la formación del rift es una consecuencia secundaria.

La elevación de la corteza es la respuesta isostática normal al

ascenso de temperatura que causa una reducción en la densidad y enel espesor de la litósfera. Pero Bott (1981) no presenta los cálculos para confirmar esto, porque la reducción de la densidad ~ si, puede conducir a la elevación (según hipótesis de Pratt), pero una reducción en el espesor de la litosfera puede llevar a un hundimiento de la superficie (según hipótesis de Airy).

Según Bott (1981) en general existen dos posibles esquemas generales, que explican ambos fenómenos:

a) corteza adelgazada y

b) extensión.

Estas dos esquemas se refleren al carácter de extensión dependiendo del papel que jugó la astenósfera durante el proceso de extensión:

- 1) activo o
- 2) pasivo.

En el caso pasivo el orden de acontecimientos es el siguiente: esfuerzos regionales de tensión producen

- 1) agrietamiento de la litósfera causando:
- 2) ascenso astenosférico con
- el consecuente ascenso de la temperatura y
- 4) ascenso isostático.

En este caso primero ocurre la tectónica de extensión y después la elevación.

En el caso activo:

ascenso astenosférico activo (fuentes probables: diapirismo, placa subducida en fusión, etc.) produce

- 1) un ascenso topográfico y
- 2) después la tectónica de extensión.

En este caso el ascenso causa extensión.

Como la extensión litosférica y penetración diapírica pueden ser relacionados como causa y efecto, se hace posible (si no probable) que los procesos múltiples están operando al mismo tiempo más bién que en secuencia.

Como se ha mencionado, el ascenso de la Mesa Central durante el Mioceno (Woollard et al., 1956) coincide con el tiempo en que aqui se ubicaba el arco magmático relacionado con la placa Farrallón. Esto hace suponer que el ascenso en este tiempo fue activo. Por lo consiguiente, podemos inferir que primero ocurrió la elevación la cual

produjo la extensión posterior.

#### ELEVACION DE LA MESA CENTRAL.

Hasta este momento aqui hemos analizado la elevación de la Mesa Central como causa de la tectónica de extensión y ahora toca el turno para discutir las causas de la elevación de esta provincia.

Para entender las causas del ascenso de la Mesa Central se necesitan tomar en cuenta los siguientes tipos de datos:

 la información sobre las propiedades físicas de la corteza inferior y del manto superior que aportan los métodos geofísicos;

2) datos de flujo de calor, procesos termales;

- el mapeo geológico y geomorfológico de los limites de la Mesa Central; determinación de la edad absoluta de rocas volcánicas que puedan indicar la dimension y la edad del ascenso;
- la petrología y geoquímica de las rocas volcánicas que nos dan la clave para entender su origen y relación con la placa en subducción;

5) petrología de xenolitos asociados a las rocas volcánicas que aporta

información importante para entender la composición y el estado de la corteza inferior y el manto superior y en particular sobre los eventos metamórficos.

En realidad los estudios geológicos y geomorfológicos en la Mesa Central son escasos y no existen practicamente investigaciones de esta naturaleza dirigidas a la reconstrucción de los episodios del levantamiento tectónico en esta región. La mayoria de los estudios geológicos tienen un enfoque estratigráfico y estructural con énfasis en las secuencias mesozoicas.

A partir de la información geológica general se pueden inferir los siguientes episodios de levantantamiento:

1. Elevación tectónica anterior al depósito de ignimbritas durante el Oligoceno sobre la SMOc y Mesa Central evidenciada por el contacto de ignimbritas sobre rocas plutónicas y rocas metamórficas paleozóicas y triásicas. Antes de que se depositaron las ignimbritas hubo una intensa erosión en la Mesa Central y enla SMOc. Esta erosión estaba relacionada con la elevación que produjo la Orogenia Laramídica.

Es posible que esta sea una elevación de la Mesa Central que

precedió al levantamiento de edad miocènica (Morán Zenteno comunicación personal, 1992).

2. Elevación de la Mesa Central posterior al depósito de ignimbritas. En la Mesa Central se presentan frecuentemente cuerpos de ignimbritas que forman o coronan prominencias topográficas en forma de pilares tectónicos. Si se considera que los flujos ignimbriticos tienden a rellenar depresiones y a nivelar el relieve, la presencia de tales prominencias de ignimbrita refleja al menos un levantamiento diferencial de bloques en la región de la Mesa Central.

A nivel regional el levantamiento general de la Sierra Madre Occidental y de la Mesa Central se refleja por el desarrollo de profundos rasgos erosivos en el flanco occidental de la Sierra Madre Occidental y de un desnivel topográfico brusco (las altitudes varian desde 2400 metros hasta el nivel del mar en la costa y en Baja California).

En las zonas donde se desarrollaron fosas tectónicas se acumularon depósitos fluviales que se encuentran actualmente rellenando cuencas en su mayor parte endorreicas.

La actitud de las capas de ignimbrita en la Sierra Madre Occidental, la Mesa Central y en la Llanura Costera occidental es en general horizontal lo que suguiere que el mencionado desnivel topográfico hacia el occidente no existía antes de la emisión de los grandes volúmenes ignimbriticos de la Sierra Madre Occidental.

## EXISTENCIA DE MANTO ANOMALO Y DE LITOSFERA ADELGAZADA POR DEBAJO DE LA MESA CENTRAL.

Según los datos de sismología de Fix (1975), bajo la Mesa Central existe un manto anómalo (Capítulo II).

Se pueden plantear diferentes hipótesis para explicar la existencia de dicho manto anómalo:

- 1) la fusión de material "ligero" puede ocurrir en la astenósfera;
- 2) o ser el producto de la fusión de la placa subducida;
- en el caso del desarrollo de una fase de extensión tectónica previa al desarrollo del manto anómalo puede producirse una disminución de presión en el manto lo que causaria la fusión.

Como ya se mencionó, la elevación de la Mesa Central coincide con la localización aquí en el Mioceno del arco magmático. Se puede suponer que el ascenso de la Mesa Central está relacionado probablemente con la subducción de la placa Farrallón bajo la placa Norteamérica. Fero entonces este último ascenco se debe no a los esfuerzos horizontales (como la elevación durante la Orogenia Laramide) sino verticales - al ascenso de material fundido. Durante la última elevación no hubo plegamiento a diferencia de la elevación Laramidica.

La placa en subducción induciria la fusión parcial bajo la Mesa Central.

Según Bott (1981) el desarrollo de una zona de manto anómalo con una fracción parcialmente fundida es el estado previo a un ascenso continental.

Si se considera que la litósfera continental en el lugar de ascenso del magma se calienta y adelgaza mediante el mecanismo de conducción térmica desde abajo unicamente, entonces el tiempo de ascenso sería prolongado.

A continuación se hacen una serie de consideraciones para un modelo de ascenso:

supongamos que el ascenso ocurre a partir de un proceso de conducción térmica y sin considerar la afluencia de material procedente de abajo.

El aumento de volumen debido a la fusión de magma basáltico es  $\approx$  8% (McGetchin et al., 1980). Por eso es de esperarar que la fusión parcial del manto superíor producirá una expansión.

Bajo la Mesa Central hay una zona  $\approx$  8-12 km parcialmente (10-20 %) fundida. Después la fusión parcial decrese gradualmente hasta un 5 % a una profundidad de 100 km (Fix, 1975).

Si consideramos que existe una fusión parcial promedio de 10 % (como máximo) desde 30 hasta 100 km de profundidad, entonces de esta columna de 70 km, 7 km será el espesor de la roca fundida. Entonces

7 km - 108 %

x km - 100 %

x = 700/108 = 6.48 km

7 km - 6.48 km = 0.52 km - será la elevación de la Mesa Central que se debe a la expansión del manto superior asociada a la fusión parcial. Pero la elevación de la Mesa Central es ≈ 2 km. De aqui, que este mecanismo por si solo no pueda explicar la elevación tectónica total

de la Mesa Central. Pero puede ser parte de un mecanismo compuesto.

2) Cuando el magma atravieza la litósfera ascenso, los bloques pueden romperse, undiendose y reemplazandose por material astenosférico caliente, que asciende desde abajo. De tal manera, la litósfera puede adelgazarse en un tiempo relativamente corto.

Según Bott (1981) la elevación de la corteza es la respueta isostática normal al ascenso de temperatura que causa reducción de la densidad y del espesor de la litósfera.

Con esto se explica la compensación isostática cercana a 100 % en la Mesa Central.

Ahora veremos el papel del manto anómalo en extensión.

- Como ya hemos discutido, el desarrollo de un manto anómalo es la etapa preliminar para un ascenso continental.
- 2) El desarrollo del régimen de extensión también depende de la presencia del magma. Si se presenta en abundancia, tenemos una situación donde una zona de extensión puede desarrollarse en zona de rompimiento continental (rift) por las intrusiones de dikes (Bott, 1981).

La extensión puede extinguirse si no hay aporte de magma. La razón de la extensión actual en la provincia del Basin and Range y probablemente en la Mesa Central es que bajo estas áreas todavía está presente un manto anómalo según los datos de sismologia (Fix, 1975).

Puede surgir la pregunta: POR QUE DESPUES DE LA GRAN EXTENSION TECTONICA LA MESA CENTRAL MANTIENE UNA ELEVACION ALTA?

Los regiones que están sujetos a extensión durante mucho tiempo pueden mantener una elevación alta. La flotabilidad perdida por el adelgazamiento de la corteza puede ser reemplazada por adiciones magmáticas CON UNA densidad cercana a la de la corteza. Esto puede ser válido para la Mesa Central porque en esta área existen evidencias de magmatismo basáltico pleistocénico (Aranda-Gomez et al., 1989). Los siguientes fenómenos pueden contribuir a que a pesar de la

extensión, el área pueda mantener su elevación alta y el mismo espesor de la litósfera (Lachenbruch et. al., 1990):

1) por adiciones magmáticas - como ya se mencionó;

2) por sedimentación;

3) acreción del manto;

4) expansión térmica.

#### MAGNITUD DE LA EXTENSION EN LA MESA CENTRAL.

Las estimaciones de la extensión de la corteza basadas en estudios locales de cinemática de fallas son necesarios pero no suficientes para describir el adelgazamiento litosférico regional porque las fallas se observan solamente en la corteza superior.

En la Mesa Central no se han realizado el estudio de la cinemática de fallas. Considerando los rasgos topográficas regionales de la provincia del Basin and Range, en la mayor parte de la provincia se puede contar con un factor de extensión de la corteza entre  $\beta$ =1 y  $\beta$ =1.33 (Mayer, 1986) dependiendo de localización. El factor de estiramiento se determina de la siguiente manera:

 $\beta = (1 + \Delta 1) / 1$ , donde

l es la longitud antes de estiramiento,

 $(1+\Delta 1)$  es la longitud despues de estiramiento.

Un factor de estiramiento  $\beta$  más grande requiere de la suposición de engrosamiento de la litósfera antes del adelgazamiento litosférico (y cortical).

Asumiendo conservación de masa extendida el, factor de adelgazamiento está definido por

 $\gamma = 1 - 1 / \beta$ 

El factor de estiramiento  $\beta$  en la Mesa Central se puede evaluar a partir de la siguiente fórmula:

 $\varepsilon + H = (\varepsilon + H) / \beta + (1 - 1 / \beta) \sum$  (Lachenbruch, 1990), donde

 $\varepsilon_{o}$  es la elevación inicial sobre el nivel del mar,  $\varepsilon$  es la elevación final (despues de extensión), H la distancia entre el nivel del mar y la superficie libre de la astenósfera hipotética (en generales 2.5 km según Lachenbruch (1990).)

 $\sum = (1 - \rho_b / \rho_a) b / \gamma + (1 - \rho_b / \rho_a) s / \gamma - (\rho_b / \rho_b - 1) m / \gamma + \delta / \gamma, \text{ donde}$ 

- p es la densidad de la astenósfera,
- $\rho_{\rm c}$  es la densidad de los cuerpos intrusivos,
- $\rho_{\rm e}$  es la densidad de los sedimentos,
- $\gamma$  es la velocidad de estiramiento o engrosamiento de la corteza,
- $\delta$  es la velocidad de expansión térmica causada por el cambio de temperatura en la corteza y manto,
- b es la velocidad de intrusiones,
- s es la velocidad de sedimentación,
- m es la velocidad de engrosamiento o adelgazamiento litosférico.

Unidades de b, s, m,  $\delta$  son km/M.a.,

unidades de  $\gamma$  son %/M.a.

De esta formula se ve que para el cálculo del factor de estiramiento en la Mesa Central se nesesitan evaluar los siguientes factores:

- elevación inicial c<sub>o</sub> antes de extensión, que corresponde al Eocenoprincipio del Mioceno, porque según Aranda-Gomez (1989) existen evidencias de que la tectónica extensiva ha actuado en la Mesa Central desde el Eoceno;
- los estudios geológicos detallados se necesitan para evaluar los factores:

 $\varepsilon_{0}$ , b, s, m,  $\delta$ ,  $\gamma$  o en otras palabras evaluar la intensidad de la sedimentacción, la erosión, la intrusión, cambios de la temperatura en la corteza y del manto desde el Eoceno.

# Bibliografía

Albrecht, A. y D.G. Brookins, 1989. Mid-tertiary siliceous igneous activity above cratonic basement in Northern Mexico; comparision of two localities. Geofisica Internacional, 28(5), 813-850.

Allmendinger ,R.W. y otros, 1987. Overview of the COCORP  $40^{\circ}$  N Transect, western United States: The fabric of an orogenic belt. Geological Society of America Bulletin, 98, 308-319.

Aranda-Gómez, J.J., F. Ortega-Gutierrez, 1987. mantle xenoliths in Mexico. Nixon PH (ed) Mantle Xenoliths. John Wiley and Sons, 75-85.

Arranda-Gómez, J.J. y otros, 1989. Consideraciones acerca de la evolución tectónica durante el Cenozoico de la sierra de Guanajuato y la parte meridional de la Mesa Central. Univ. Nal. Autón. México, Inst. Geología Revista, vol.8, num. 1, 1989, 33-46.

Artyushkov, E.V., A.E. Shlesinger y A.L.Yanshin, 1980. The origin of vertical crustal muvements within lithospheric plates. Geodynamics series. Volume 1, 37-51.

Atwater, T., 1970. Implication of plate tectonics for the Cenozoic tectonic evolution of western North America. Geological Society of America Bulletin, 81, 3513-3536.

Bhattacharyya, B.K., 1966. Continuous spectrum of the total-magnetic -field anomaly due to a rectangular prismatic body. Geophysics, 1, 97-121.

Bhattacharyya, B.K., 1969 . Bicubic spline interpolation as a metod for treatment of potential field data. Geophysics, Vol. 34, N 3, 402-423.

Bloomfield, K. y D.L. Cepeda, 1973. Oligocene alcaline igneous activity in N.E. Mexico. Geol. Mag., 110, 551-559.

Bott, M.H.P., 1971. Evolution of young continental margins and formation of shelf basins. Tectonophysics, 11, 319-327.

Bott, M.H.P., 1981. Crustal doming and the mechanism of continental rifting. Tectonophysics, 73, 1-8.

Buffler, R.T., J.S. Watkins, J. Swaub y J.L. Worzel, 1980. Structure and early geologic history of the deep central Gulf of Mexico basin. in: R.H. Pilger (ed.), The origen of the Gulf of Mexico an the early opening of the central North Atlantic Ocean. Proceedings of a Symposium at Louisiana State University, Baton Rouge, Louisiana, 3-16.

Bullard, E.C. y A. Day, 1961. The flow of heat throu the floor of the Atlantic Ocean. Geophysical Journal, 4, 282-292.

Buntebarth, G., 1984. Geothermics. Springer-Verlag, Berlin Heidelberg New York, Tokyo.

Byerly, P.E. y R.H. Stol, 1977. An attempt to define the Curle point isotherm in northern and central Arizona. Geophysics, 42(7), 1394-1400.

Cameron, K.L., M. Cameron, B.Barreiro, 1986. Origin of voluminous mid-Tertiary ignimbrites of the Batopilas region, Chihuahua: implications of continental crust beneath the sierra Madre Occidental. Geof. Int., 25(1), 39-59.

Campos-Enriquez, J.O., M.A. Arroyo-Esquivel y J.Urrutia-Fucugauchi, 1990. Basement, Curie isotherm and shallow-crustal structure of the Trans-Mexican Volcanic Belt, from aeromagnetic data. Tectonophysics, 172, 77-90.

Campos Enriquez, J.J., J.O. Campos Enriquez y J. Urrutla Fucugauchi, 1991. Variación secular reciente y cartas de los elementos del campo geomagnético en México. Geofísica Internacional, 30(2), 107-116.

Cantagrel, J.M. y C. Robin, 1979. K-Ar dating on eastern mexican volcanic rock - relations between the andasitic and the alcaline provinces. Journal of Volcanology and Geothermal Research, 5, 99-114.

Connard, G., R. Couch y M. Gemperle, 1983. Analysis of aeromagnetic measurements from the Cascade Range in central Oregon. Geophysics, 48 (3), 376-390.

Coney, P.J. y S.J. Reynolds, 1977. Cordilleran Benioff Zones. Nature, 279, 403-406.

Crough, S.T., and G.A. Thompson, 1977. Upper mantle origin of Sierra Nevada uplift, Geology, 5, 396-399.

Damon, P.E. y otros, 1981. Evolución de los arcos magmáticos en México y su relación con la metalogénesis. Univ. Nal. Autón. México, Inst. Geología, Revista, vol. 5 núm. 2, 223-238.

Decker, E.R., and S.B. Smithson, 1975. Heat flow and gravity interpretation across the Rio Grande rift in southern New Mexico and west Texas. J. Geophys. Res., 80, 2542-2552, 1975.

Demant A., R. Mauvois y L. Silva, 1976. El Eje Neovolcanico Transmexicano. III Congreso Latinoaméricano de Geologia, México. Excursión No. 4, 3-23.

Eguiluz de Antuñano, S., 1985. Posibilidades petroleras en el mar Mexicano. Ingenieria petrolera, agosto 1985, 39-61.

Epp, D., P.J. Grim y M.G. Langseth, Jr., 1970. Heat flow in the Caribbean and Gulf of Mexico. Journal of Geophysical Reasearch, 75(29), 5655-5669.

Ewing, J.I., J.L. Worzel y M. Ewing, 1962. Sediments and oceanic structure history of the Gulf of Mexico. Journal of Geophysical Research, Vol. 67, No. 6, 2509-2527.

Fairhead, J.D., 1976. The structure of the litosphere beneath the Eastern rift, Eastern Africa, deduced from gravity studies. Tectonophysics, 30, 269-298.

Fichler, C. y J.Hospers, 1990. Deep crustal structure of the northern North Sea Viking Graben: result from deep reflection seismic and gravity data. Tectonophysics, 178, 241-254.

Figuerola, J.C., 1973. Tratado de geofísica aplicada.

Fix, J.E., 1975. The crust and upper mantle of Central Mexico. Geophys. J. R. Astr. Soc., 43, 453-499.

Freeman, R., St. Mueller y P. Giese, 1986. European Geotraverse (EGT) Project.

Fuchs, K. et al., 1983. Epilogue: Mode and mechanism of Rhenish Plateau uplift. Plateau Uplift, ed. by K. Fuchs et al. Springer-Verlag Berlin Heidelberg 1983, 405-411.

Gastil, G., G. Morgan y D. Krummenacher, 1981. The tectonic history of peninsular California and adjacent Mexico. In Ernest, W.G.(Ed.). The geotectonic development of California (Rubey vol. 1) Prentice Hall, 285-305.

Gebrande, H., 1982. Elastic wave velocities and constants of elasticity of rocks at room temperature and pressure up to 1 GPa. G.Angenheister (Editor), Physical Properties of Rocks. Springer, Berlin, 35-99.

Germák, V. and Bodry, L., 1986. Two-dimensional temperature modeling along five East-European geotraverses. J. Geodyn., 5: 133-163.

Gomberg, J.S., K.F. Priestley, T.G. Masters y J.N. Brune,1988. The structure of the crust and upper mantle of northern Mexico. Geophysical Journal, 94, 1-20.

Green, A.G., 1972 . Magnetic profile analysis. Geophys. J. R. astr. Soc., 30, 393-403.

Gudmundsson, G., 1966. Interpretation of one-dimensional magnetic anomalies by use of the Fourier-transform. Geophys. J. R. astr. Soc., 12, 87-97

Gudmundsson, G., 1967. Spectral analysis of magnetic surveys. Geophys. J. R. astr. Soc., 13, 325-337.

Gutierrez y Acosta, J., 1983. Modelado gravimétrico bidimensional sobre relieve topográfico. Revista del Instituto Mexicano del Petroleo, 15(3), 105-111.

Hales, A.L., C.E. Helsley y J.B. Nation. P travel times for an oceanic path. Journal Geophysical Research, 75(35), 7362-7381.

Hauge, T.A. et al., 1987. Crustal structure of western Nevada from COCORP deep seismic-reflection data. Geological Society of America Bulletin,98,330-329.

Henry,C.D., 1989. Late Cenozoic Basin and Range structure in western Mexico adjacent to the Gulf of California. Geological Society of America Bulletin, 101, 1147-1156.

Henry, C.D. y Aranda-Gómez, J.J., 1992. The real southern Basin and Range: Mid - to late cenozoic extension in Mexico. Geology, 20, 701-704.

Holliger, K. y S.L. Klemperer, 1989. A comparison of the Moho interpreted from gravity data and from deep seismic data in the northern North Sea. Geophysical Journal, 97, 247-258.

Horton, C.W., W.B. Hempkins y A.A.J. Hoffman, 1964. A statistical analysis of some aeromagnetic maps from the northwestern Canadian Sheld. Geophysics, 29(4), 582-601.

Howell, B., 1962. Introducción a la Geofísica. Ediciones Omega, S.A. Barcelona, pp. 450.

Kamp, P.J.J. y K.A. Hegarty, 1989. Multigenetic gravity couple across a modern convergent margin: inheritance from Cretaceous asymmetric extension. Geophysical Journal, 96, 33-41.

Kanamori, Hiroo, 1970. Velocity and Q of mantle waves. Phys. Earth Planet. Interiors, 4, 259-275.

Karig, D.E. y W. Jensky, 1972. The proto-Gulf of California. Earth Planet. Sci. Lett., 17, 169-174.

Kearey, P. y Vine, F.J., 1990. Global Tectonics. Blackwell Scientific Publications.

Keller, G.R., P. Morgan y W.R. Seager, 1990. Crustal structure, gravity anomalies, and heat flow in the southern Rio Grande rift and their relationship to extensional tectonics. Tectonophysics, 174, 21-37.

Kern, H., 1982. Elastic wave velocities and constants of elasticity of rocks at elevated pressures and temperatures. In: G. Angenheister (Editor), Physical properties of rocks. Springer, Berlin, 99-140.

Lachenbruch, A.H., 1968. Preliminary geothermal model for the Sierra Nevada. J. Geophys. Res., 73, 6977-6989.

Lachenbruch, A.H., 1970. Crustal temperature and heat production: implication of the linear heat-flow relation. Journ. Geophys. Research, v.75, No.17, 3291-3300.

Lachenbruch, A.H. y P. Morgan, 1990. Continental extension, magmatism and elevation; formal relations and rules of thumb. Tectonophysics, 174, 39-62.

Langseth, M.G. y R.P. Von Herzen, 1970. heat flow throu the floors of the world oceans, in The Sea, vol. 4, John Wiley, New York.

Lawver, L.A. y D.L. Williams, 1979. Heat flow in the Central Gulf of California. Journal of Geophysical Research, 84(B7), 3465-3478.

Lee, T. and T.L. Henyey, 1975. Heat flow through the Southern California Borderland. J. Geophys. Res., 80, 3733-3743, 1975.

López Ramos, E., 1979. Geología de México. 2a. edición. México, D.F., Edición escolar, 3 volúmenes.

Lyustikh, E.N., 1957, Isostasy and isostatic hypothesis, American Geophysical Union, Consultants Bureau, New York, pp.119.

Marmissole-Daguerre, D., 1984. Evaluación de formaciones en México. Schlumberger.

Mayer, L., 1986. Topografic constraints on model of litospheric stretching of the Basin and Range province, western United States. Geological Society of America, Special Paper, 208, 1-14.

McGetchin, T.R., K.C. Burke, G.A. Thompson y R.A.Young, 1980. Mode and mechanisms of plateau uplifts, Geodynamics Series, Vol. 1, 99-110.

Meissner, R., 1985. The Continental Crust. Academic Press, New York.

Meyer, R.P., J.S. Steinhart y G.P. Woollard, 1957. Central Plateau, Mexico. 199-224.

Morán-Zenteno, D.J., 1984. Geología de la República Mexicana. INEGI.

Morán-Zenteno, D.J., 1986. Breve revisión sobre la evolución tectónica de México. Geofísica Internacional, 25(1), 9-38.

Nettleton, L.L., 1976. Gravity and magnetics in oil prospecting. New-York, McGraw-Hill.

Okubo.Y. et al, 1985. Curie point depth of the Island of Kyushu and surrounding areas, Japan. Geophysics, 53(3), 481-494.

Padilla, R.J. y Sanchez, 1986. Post-paleozoic tectonics of northeast Mexico and its role in the evolution of the Gulf of México. Geof. Int., 25(1), 157-206.

Pakiser, L.C., 1963. Structure of the crust and upper mantle in the western United States. J. Geophys. Res., 68, 5747-5756.

Parson, B. y J.G. Sclater, 1977. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res., 82, 803-827.

Pasquale, V., C. Cabella y M.Verdoya, 1990. Deep temperatures and lithospheric thickness along the European Geotraverse. Tectonophysics, 176, 1-11.

Peters, L.J., 1949. The direct approach to magnetic interpretation and its practical aplication. Geophysics, 15, 290-320.

Pier, Jean, 1990. Comunicación Personal

Pollack, H.N. y Chapman, D.S., 1977. On the regional variation of the heat flow, geotherms, and lithospheric thickness. Tectonophysics, 38, 279-296.

Potter, C.J. et al., 1987. Crustal structure of north-central Nevada: Result from COCORP deep seismic profiling. Geological Society of America Bulletin , 98, 330-337.

Prol-Ledesma, R.M. y G. Juárez M., 1986. Geotermal map of Mexico. Journal of Volcanology and Geothermal Research, 28, 351-362.

Prol-ledesma, R.M., 1989. Mediciones y estimaciones de flujo térmico en México: un análisis comparativo. Geotermia, Rev. Mex. Geoenergía, 5(1),19-32.

Rapolla, A., M. Fedi y M.G. Fiume, 1989. Crustal structure of the Ishia-Phlegrean geothermal fields, near Naples, Italy, from gravity and aeromagnetic data. Geophysical Journal, 97, 409-419.

Rivera, J. y L. Ponce, 1986. Estructura de la corteza al oriente de la Sierra Madre Occidental, México, basada en la velocidad de grupo de las ondas de Raylegh. Geofísica Internacional, 25-3, 383-402.

Roberts S.J. y J. Ruiz, 1989. Geochemestry of exposed granulite terrains and lower crustal xenoliths in Mexico. Jour. Geoph. Res., 94, 7961-7974.

Robin, C., 1976. Las series volcánicas de la Sierra Madre Oriental (basaltos e ignimbritas); Descripción y carácter químico: Bol. Inst. Geol. UNAM, México, 96, 59-92.

Roy, R.F., D.D. Blackwell y F. Birch, 1968. Heat generation of plutonic rocks and continental heat flow provinces. Earth Planet. Sci. Lett., 5, 1-12.

Ruiz, J., P.J. Patchett y R.J. Arculus, 1988. Nd-Sr isotope composition of lower crustal xenoliths - evidence for the origin of mid-tertiary felsic volcanis in Mexico. Contrib. Mineral Petrol., 99, 36-43.

Rybach, L., 1973. Wärmeproduktionsbestimmungen an Gesteinen der Schweizeriscen Alpen. Beitr. Geol. Schweiz., Geotechoonol. Ser., 51, Kümmerly und Frey, Bern, 43 pp.

Rybach, L., 1976. Radioactive heat production in rocks and its relation to other petrophysical parameters: Pure Appl. Geophys., 114, 309-317.

Rybach,L. et al, 1977. Heat flow, heat production and crustal dynamics in the Central Alps, Switzerland. Tectonophysics, 41, 113-126.

Rybach, L. y G. Buntebarth, 1984. The variation of the heat generation, density and seismic velocity with rock type in the continental lithosphere. Tectonophysics, 103, 335-344.

Santiago, A.J., 1979. Provincias y áreas petroleras del sureste de méxico. Boletín de la Asociación de Geólogos Petroleros, 31(1), 1-28.

Sclater, J.G. y J. Francheteau, 1970. The implications of terrestrial heat flow observations on current tectonic and geochemical models of the crust and upper mantle of the earth. Geophysical Journal of the Royal Astronomical Society, 20, 509-542.

Serson, P.H. y W.L. Hannaford, 1957. A statistical analysis of magnetic profiles. Journal of Geophysical Research, 62(1), 1-18.

Shive, P.N., 1990. The lyrea Zone and lower crustal magnetization. Tectonophysics, 182, 161-167.

Sholz. C.H., M. Barazangi y M.L. Sbar, 1971. Late Cenozoic evolution of the Great Basin, western United States, as an ensialic inter-arc basin. Bull. Geol. Soc. Am., 82, 2979-2990.

Shuey, R.T. et al, 1977. Curie depth determination from aeromagnetic spectra. Geophys. J. R. astr. Soc., 50, 75-101.

Silver, L.T., y Anderson, T.H., 1978. Mesozoic magmatism and tectonism in Northern Sonora and their implications for mineral resources. Resúmenes del Primer Simposio sobre la Geologia y Potencial Minero del estado de Sonora, Instituto de Geologia, UNAM, 117-118.

Smislov A.A., Moisenko U.I. y T.Z. Chadovich, 1979. El régimen térmico y radioactividad de la Tierra. Nedra.

Simpson, R.W., R.C. Jachens, R.J. Blakely y R.W. Saltus, 1986. A new isostatic residual gravity map of the conterminous United States with a discussion on the significance of the isostatic residual gravity anomalies. Jour. Geophys. Res., 91, 8348-8372.

Smislov, A.A., U.I. Moiseenko, T.Z. Chadovich, 1979. Radioactividad de la Tierra. Nedra.

Smith, D.L., 1974. Heat flow, radioactive heat generation, and theoretical tectonics for northwestern Mexico, Earth Planet. Sci. Lett., 23, 43-52.

Smith, D.L., C.E. Nuckels III, R.L. Jones y G.A. Cook, 1979. Distribution of heat flow and radioactive heat generation in Northern Mexico. Journal of Geophysical Reasearch, 84(B5), 2371-2379.

Smith, P.J., 1975. Temas de geofísica. Editorial Reverté, S.A.

Spector, A. y F.S. Grant, 1970. Statistical models for interpreting aeromagnetic data. Geophysics, 35(2), 293-302.

Stegena. L., 1984. Heat generation of the crust. In: G. Buntebarth (Editor), Sitzungsberichte der 14. Sitzung der FKPE-Arbeitsgruppe "Ermittlung der Temperaturverteilung im Erdinnern". Technische Universität Clausthal, 25.

Stegena. L y R. Meissner, 1985. Velocity structure and geotermics of the earth's crust along the european geotraverse. Tectonophysics, 121, 87-96.

Stewart, J.H., 1978. Basin and range in Western North America - A review, in: R.R. Smith and G.P. Eaton (Eds.), Cenozoic tectonics and regional geophysics of the western cordillera, Geol. Soc. Am. Mem., 152, 7-24.

Suárez-Reynoso, G. y Tejero-Andrade, A. 1976. Isostasia y grosor de la corteza en el Altiplano Mexicano. Tesis de licenciatura. Fac. de Ingeneria, UNAM, México.

Suter, M., 1991. State of stress and active deformation in Mexico and western Central America. The Geology of North America Decade Map,

Volume 1, 401-420.

Talwani, M. y otros, 1959. Rapid gravity computations for two-dimensional bodies with application of the Mendocino submarine fracture zone. Journal of Geophysical Reasearch, volume 64, No.1, 49-59.

Talwani, M. y M. Ewing , 1960. Rapid computation of gravitational attraction of three-dimensional bodies of arbitrary shape. Geophysics, 25, 203-225.

Talwani, M. y J.R. Heirtzler, 1964. Computation of magnetic anomalies caused by two dimensional structures of arbitrary shape. Computers in the mineral industries, part 1: Stanford University publications, Geol. Sciences, V.9, 469-480.

Tardy, M., D.F. Martinez, L.M. Mitre, M. Patiño y R. Padilla, 1975. Observaciones generales sobre la estructura de la Sierra madre Oriental. La aloctonia del Conjunto Cadena Alta-Altiplano Central, entre Torreón, Coahuila, y San Luis Potosi, S.L.P., México. Rev. Inst. Geol., UNAM, 75(1), 1-11.

Thatcher, W. y J.N. Brune ,1973. Surface waves and crustal structure in the Gulf of California region. Bulletin of the Seismological Society of America, 63(5), 1689-1698.

Toksöz, M.N. y D.L. Anderson, 1966. Phase velocities of long-perod surface waves and structure of the upper mantle. J. Geophys. Res., 71, 1649-1658.

Toksöz, M.N., M.A. Chinnery y D.L.Anderson, 1967. Inhomogeneities in the earth's mantle, Geophys.J., 13, 31-59.

Treitel.S., W.G.Clement y R.K. Kaul , 1971. The spectral determination of depth to buried magnetic basement rocks. Geophys. J. R. astr. Soc. 24, 415-428.

Urrutia-Fucugauchi, J., 1986. Late Mesozoic-cenozoic evolution of the northwestern Mexico magmatic arc zone. Geof.Int., 25(1), 61-84.

Urrutia-Fucugauchi, J., 1986. Crustal thickness, heat flow, arc magmatism, and tectonics of Mexico -preliminary report. Geof. Int., 25(4), 559-573.

Vázquez, C.A., R.J. Ruiz y T. González-Moran T.,1990. Exploración del basamento en el SW de San Luis Potosi, México, utilizando datos gravimétricos, aeromagnéticos y sondeos magnetotelúricos. Geofísica Internacional, 29(2), 71-88.

Verma, R.K. y Y. Satynarayana, 1990. Gravity field, deep-seismic sounding and crust-mantle structure over the cuddapah basin and dhawar Craton of India. Tectonophysics, 178, 337-356.

Vitorello, I. y H.N. Follack, 1980. On the variation of continental heat flow with age and the thermal evolution of continents. Journal of Geophysical Reasearch, 85(B2), 983-995.

Von Herzen, R.P., 1963. Geothermal heat flow in the Gulfs of California and Aden. Science, 40, 1207-1208.

Walck, M.C., 1984. The P-wave upper mantle structure beneath an active spreading centre: the Gulf of California. Geophys. J. R. astr. Soc. 76, 697-723.

Woollard, G.P. y J. Monges Caldera ,1956. Gravedad, geologia regional y estructura cortical de México. Anales del instituto de Geofísica. UNAM, 2.

Wollard, G.P., 1962. The relation of gravity anomalies to surface elevation, crust structure and geology. report 62-9. University of Wisconsin, Geophysical Polar Research Center. Ziagos, J.P., D.D. Blackwell y F. Mooser. Heat flow in Southern Mexico and the termal effect of subduction. Journal of Geophysical Research, 90(B7), 5410-5420.

# Anexo A

Con frecuencia el intreprete geofísico tiene solamente a su disposición los planos de la anomalía de Bouguer. En muchos casos es imposible tener acceso a los datos primarios (coordenadas geográficas y alturas de los puntos de observación con sus respectivas observaciones gravimétricas) o se considera que son innecesarios ya que se piensa que los planos de Bouguer contienen toda la información sobre la distribución de la densidad en el subsuelo. Pero para el caso de una región con un relieve topográfico complicado este no es el caso.

Para asegurarse de eso, veremos primero de una manera muy simplificada como se elaboran los planos. Despues de calcular la anomalía de Bouguer en los puntos de observación, se trazan las isolíneas de la anomalía de Bouguer, mediante un proceso de interpolación, considerandose que los valores de la anomalía de Bouguer están situados en un mismo plano.

Erroneamente, se tenía la idea de que la información quedaba referida a una superficie horizontal arbitraria (generalmente por debajo del punto de observación): el nivel de referencia particular de cada trabajo (más frecuente al nivel del mar), lo que constituye una fuente de error en la intrepretación de los datos gravimétricos en regiones de topografía marcada.

El siguiente análisis ayuda a ver el tipo de errores que se origina al no considerar la topografía en la interpretación cuantitativa de la anomalía de Bouguer.

Basaremos nuestro análisis en el relieve esquemático representado en la Fig. A.1.

Si el mapa de isolineas de la anomalía de Bouguer se hizo en base a observaciones en los puntos  $M_1$  y  $M_3$ , entonces el valor de la anomalía en el punto  $M_2$  interpolado del mapa (donde no se hizo medición alguna) va a tener errores considerables.

Analógamente si para elaborar el mapa de anomalía de Bouguer se usaron los puntos de medición  $M_2$  y  $M_4$ , entonces el valor de la

1



Fig. A.1. Esquematización del relieve topográfico.



Fig. A.2. Relieve topográfico y el concepto de anomalía de Bouguer.

anomalía en el punto  $M_3$ , tomado del mapa (ya que ninguna observación se llevó a cabo en él), también va a contener errores considerables.

Supongamos que el punto O sea el centro de una masa anómala de forma esférica y  $OM_2 = MM_2 = M_1M = MM_3 = 1$  km. Entonces el valor de la anomalía en el punto  $M_2$  tomado del mapa, que fué derivada en base de los puntos  $M_1$  y  $M_3$  será 5.6 veces menor, que el valor verdadero de la anomalía en este punto.

A continuación demostraremos esta afirmación.

La anomalía gravimétrica producida en el punto de observación por una esfera de masa M con el centro, cituado en la profundidad h y a una distancia r del punto de observación se determina de la siguiente manera:

Entonces para la anomalía gravimétrica producida por la esfera en el punto M. (o M.) tendremos:

$$\Delta g_{H1} = GM |OM| / |OM_1|^3 = GM \times 2 \times 10^3 / [(\sqrt{5})^3 \times 10^9) mGal$$

y en el punto M<sub>2</sub> tendremos

$$\Delta g_{H2} = GM |OM_2| / |OM_2|^3 = GM \times 10^3 / [|OM_2|^2 \times 10^9] = GM / 10^6 mGal$$

Entonces la diferencia del valor de anomalía tomada del mapa en el punto  $M_2$  derivado en base de los puntos  $M_1$  y  $M_3$  y el valor verdadero será:

 $\Delta g_{\mu_2} / \Delta g_{\mu_1} = (\sqrt{5})^3 \times 10^6 / 2 \times 10^6 = 5.6$ 

De este ejemplo queda claro, que el uso de mapas de anomalías gravimétricas de áreas con un relieve topográfico fuerte puede llevar a grandes errores en la interpretación de la información. Así en estos casos es muy importante para el interprete tener una tabla con los 4 valores  $(x_i, y_i, z_i, \Delta g_i)$  para cada punto, donde  $x_i, y_i, z_i$ - son las coordenadas de los puntos de observación y  $\Delta g_i$ el valor de la anomalía.

265

La anomalía de Bouguer viene dada por la siguiente expresión :

A.B. = 
$$g_{obs} - g_{teor} + \delta g_{A,L} - \delta g_{B,r} - \delta g_{Top}$$

donde

 $g_{obs.}$ - gravedad observada en el punto O (Fig. A.2);  $g_{teor.}$ - gravedad teórica en el nivel del mar (en el punto P);  $\delta g_{A.L.}$ - correcciones de Aire Libre (gradiente gravimétrico normal);  $\delta g_{B.}$ - corrección de Bouguer (efecto gravimétrico producido por una supuesta placa infinita horizontal de densidad  $\rho$  y de

espesor h;

 $\delta g_{Top}$  - corrección topográfica.

La anomalía de Bouguer es la diferencia entre un valor observado y un valor esperado de la gravedad en dicho punto. Sin embargo, puesto que el valor teórico es calculad a nivel del geóide, esta comparación no puede ser directa. Es con el objeto de hacer realizable esta comparación que se realizan las correcciones de Aire Libre, de Bouguer y Topográficas. Efectuar estas correcciones equivale a determinar el valor de la gravedad teórica en el punto observado. Con otras palabras el punto P desde el geóide sube hasta el punto O sobre la superficie.

Gravedad teórica en el relieve topográfico (punto 0)

 $g_{teor} = G.T.S.T. = g_{teor} - g_{A.L.} + \delta g_{A.B.} - \delta g_{Top}.$ A.B.=  $g_{obs}$  - G.T.S.T. =  $g_{obs} - (g_{teor} - \delta g_{A.L.} + \delta g_{A.B.} - \delta g_{Top})$ 

266

#### (1)

Esta diferencia entre la atracción medida y calculada a partir de un modelo teórico, representa exactamente el efecto gravimétrico de todas las heterogeneidades comprendidos en el

interior de la tierra (incluyendo aquellos que se localizan entre la superficie terrestre y el nivel de referencia).

Erroneamente el valor observado en el punto O se reduce hasta el nivel del mar (o nivel de referencia ) y ahí se compara con el valor teórico  $g_{tror}$ 

$$A \cdot B \cdot = (g_{obs} + \delta g_{A,L} - \delta g_{A,B} + \delta g_{Top}) - g_{teor}$$
(2)

Comparando las fórmulas (1) y (2) se nota que el valor de la A.B. en ambas fórmulas es idéntico. La diferencia radica en el punto con el cual se asocia esta magnitud:

en el punto de observación - (1) o

en el nivel de referencia ( nivel del mar ) - (2).

Por la definición erronea anterior, la anomalía de Bouguer se definía de la siguiente manera:

"La anomalía de Bouguer es atribuible únicamente a las variaciones de densidad bajo la superficie del nivel del mar en el lugar considerado" (Smith, 1975, pag.64);

"las correciones de Aire Libre, corrección de Bouguer, y correción topográfica nos permite reducir la gravedad observada al nivel del mar" (Figuerola, 1973, pag.42).

De tal manera que en cualquier tipo de interpretación de datos gravimétricos y si la topografía es importante, deben considerarse las posiciones originales de los puntos de observación cuando se usan los algoritmos de Talwani et al. (1959), Morgan y Grant (1962) y otros. Tabla A.1. Comparación de los valores gravimétricos observados y calculados a lo largo del perfil (anomalía de Bouguer y la anomalía de Aire Libre en las partes continental y maritima respectivamente del transecto).

| N<br>punto | Dist.<br>km | Altura<br>km | Grav.<br>calc., mGal | Grav.<br>obs., mGal | Diferenc.<br>mGal |
|------------|-------------|--------------|----------------------|---------------------|-------------------|
|            |             |              |                      |                     |                   |
| 1          | .000        | 600          | -27.415              | 18.00               | 45.42             |
| 2          | 20,000      | -1.800       | -22.455              | -25.00              | -2.54             |
| 3          | 40.000      | 200          | .920                 | .00                 | 92                |
| 4          | 60.000      | .000         | 39.491               | 16.00               | -23.49            |
| 5          | 80.000      | .000         | -13.011              | -26.00              | -12.99            |
| 6          | 100.000     | .000         | -18.363              | -14.00              | 4.30              |
| 7          | 120.000     | .000         | 453                  | -14.00              | -13.55            |
| 8          | 140.000     | .000         | 4.740                | -4.00               | -8.74             |
| 9          | 160.000     | .000         | -11.615              | -8.00               | 3.01              |
| 10         | 180.000     | .000         | -23.142              | -16.00              | 7.14              |
| 11         | 200.000     | .000         | -33.185              | -28.00              | 2.10              |
| 12         | 220.000     | .000         | -41.254              | -26.00              | 10.20             |
| 13         | 240.000     | .000         | -44.122              | -41.00              | 5.12              |
| 14         | 260.000     | .000         | -34.713              | -28.00              | -2 22             |
| 15         | 280.000     | .000         | ~11.773              | -15.00              | 12 56             |
| 16         | 300.000     | .000         | -16.563              | -4.00               | 12.30             |
| 17         | 320.000     | .000         | -20.763              | -8.00               | 12.70             |
| 18         | 340.000     | .000         | -12.077              | -12.00              | -1 83             |
| 19         | 360.000     | 080          | ~9.1/2               | ~11.00              | -2 26             |
| 20         | 380.000     | 320          | -33.743              | ~36.00              | -10 94            |
| 21         | 400.000     | -1.000       | -69.064              | -80.00              | -10.94            |
| 22         | 420.000     | -2.000       | -107.048             | -116.00             | 12 27             |
| 23         | 440.000     | -1.080       | -126.270             | -114.00             | - 24              |
| 24         | 460.000     | -2.700       | ~167.759             | -188.00             | -7 19             |
| 25         | 480.000     | -1.400       | -178.811             | -188.00             | 7.14              |
| 26         | 500.000     | -2.300       | -205.138             | -198.00             | 9.32              |
| 27         | 520.000     | -2.560       | -217.323             | -218.00             | 8.47              |
| 28         | 540.000     | -3.000       | -226.470             | -218.00             | -8.73             |
| 29         | 560.000     | ~1.500       | -213.272             | -222.00             | -5.97             |
| 30         | 580.000     | -2.200       | -222.087             | -228.00             | -6.91             |
| 31         | 600.000     | -2.240       | -223.091             | -235.00             | -11.02            |
| 32         | 620.000     | -2.300       | -223.377             | -238.00             | -8.25             |
| 22         | 640.000     | -2.600       | -229.731             | ~240.00             | -10.14            |
| 34         | 680.000     | -2.000       | -229.039             | ~226 00             | -4.02             |
| 35         | 200.000     | -2.420       | -212 928             | -220.00             | -7.07             |
| 20         | 700.000     | -2.000       | -210 726             | ~216.00             | -5.27             |
| 20         | 720.000     | -2.050       | -210.720             | -209.00             | -3.14             |
| 20         | 760.000     | -2.000       | ~203.004             | -207.00             | -2.99             |
| 10         | 780.000     | -2.020       | ~202.847             | -207.00             | -4.15             |
|            | 800.000     | -1.960       | -201.899             | -207.00             | -5.10             |
| 47         | 820 000     | -2.260       | -206.319             | -208.00             | -1.68             |
| 43         | 840 000     | -2.380       | -209.334             | -212.00             | -2.67             |
| 4.0        | 860.000     | -2.280       | -211,257             | -208.00             | 3.26              |
| 45         | 880.000     | -2.000       | -209.130             | -211.00             | -1.87             |

| 46         | 900,000  | -1,900 | -199.756 | -202.00 | -2.24          |
|------------|----------|--------|----------|---------|----------------|
| 47         | 920,000  | -2.560 | -193.780 | -189.00 | 4.78           |
| 48         | 940.000  | -1.500 | -179.907 | -182.00 | -2.09          |
| 49         | 960,000  | -2,900 | -180,939 | -168.00 | 12.94          |
| 50         | 980.000  | -2,900 | -171.663 | -163.00 | 8.66           |
| 51         | 1000.000 | -1.500 | -152.350 | -158.00 | ~5.65          |
| 52         | 1020.000 | -2.600 | -147.101 | -158.00 | ~10.90         |
| 53         | 1040.000 | -2.100 | -126.612 | -140.00 | -13.39         |
| 54         | 1060.000 | 800    | -95.330  | -102.00 | -6.67          |
| 55         | 1080.000 | -1.000 | -71.963  | -77.00  | -5.04          |
| 56         | 1100.000 | 400    | -48.456  | -42.00  | 6.46           |
| 57         | 1120,000 | 100    | -35.513  | -30.00  | 5.51           |
| 58         | 1140.000 | 500    | -29.817  | -21.00  | 8.82           |
| 59         | 1160.000 | 600    | -24.292  | -15.00  | 9.29           |
| 60         | 1180.000 | 160    | -16.280  | -13.00  | 3.28           |
| 61         | 1200.000 | 100    | -16.078  | -10.00  | 6.08           |
| 62         | 1220.000 | 040    | -15.175  | -4.00   | 11.18          |
| 63         | 1240.000 | .000   | -13.178  | -5.00   | 8.18           |
| 64         | 1260.000 | .000   | -15.352  | -20.00  | -4.65          |
| 65         | 1280.000 | .000   | -32.908  | -35.00  | -2.09          |
| 66         | 1300.000 | .000   | -38.211  | -30.00  | 8.21           |
| 67         | 1320.000 | .000   | -17,501  | 6.00    | 23.50          |
| 68         | 1340.000 | .000   | -29.696  | -11.00  | 18.70          |
| 69         | 1360.000 | .000   | -25.877  | -32.00  | -6.12          |
| 70         | 1380.000 | .000   | -31.524  | -38.00  | -6.48          |
| 71         | 1400.000 | .000   | -39.894  | -41.00  | -1.11          |
| 72         | 1420.000 | .000   | -50.155  | -50.00  | 2 0 2<br>2 1 2 |
| 73         | 1440.000 | .000   | -53.826  | -50.00  | 3.83           |
| 74         | 1460.000 | .000   | -54.934  | -48.00  | 0.93           |
| 75         | 1480.000 | .000   | -63.494  | -54.00  | 2.42           |
| 76         | 1500.000 | .000   | -64.660  | -62.00  | 2.00           |
| 77         | 1520.000 | .000   | ~61.457  | -57.00  | 4.40           |
| 78         | 1540.000 | .000   | -55.265  | -55.00  | -4 82          |
| 79         | 1560.000 | .000   | -48.182  | -33.00  | -2 11          |
| 80         | 1580.000 | .000   | -39.891  | -42.00  | -3 76          |
| 81         | 1600.000 | .000   | -31.236  | -39.00  | -5.24          |
| 82         | 1620.000 | .000   | -14 630  | -28.00  | -3.37          |
| 83         | 1640.000 | .000   | -14.030  | -18.00  | -1.77          |
| 84         | 1660.000 | .000   | -7.225   | -9.00   | -2.00          |
| 85         | 1080.000 | .000   | -1.990   | -9.00   | -10.39         |
| 80         | 1700.000 | .000   | 2.120    | -20.00  | -23,18         |
| 0/         | 1740 000 | .000   | 2 840    | -32.00  | -34.85         |
| 00         | 1740.000 | .000   | 2.049    | -37.00  | -35.84         |
| 09         | 1780.000 | .000   | -12 689  | -40.00  | -27.31         |
| 90         | 1800.000 | .000   | -41 118  | -43.00  | -1.88          |
| 0.2<br>2 T | 1820 000 | .000   | 15 840   | -44.00  | -59.85         |
| 92         | 1020.000 | .000   | 10.049   | 00.11   |                |

Tabla A.2. Coordenadas de los cuerpos utilizados en la modelación gravimétrica y representados en la Fig. 3.6.

Longitud del transecto 1820 km distancia entre los puntos 20 km numero de los cuerpos 65 numero de puntos 92

| x       | topogr. | x       | topogr. | x       | topogr. | x       | topo  |
|---------|---------|---------|---------|---------|---------|---------|-------|
| 0.00    | -0.60   | 20.00   | -1.80   | 40.00   | -0.20   | 60.00   | 0.00  |
| 80.00   | 0.00    | 100.00  | 0.00    | 120.00  | 0.00    | 140.00  | 0.00  |
| 160.00  | 0.00    | 180.00  | 0.00    | 200.00  | 0.00    | 220.00  | 0.00  |
| 240.00  | 0.00    | 260.00  | 0.00    | 280.00  | 0.00    | 300.00  | 0.00  |
| 320.00  | 0.00    | 340.00  | 0.00    | 360.00  | -0.08   | 380.00  | -0.32 |
| 400.00  | -1.00   | 420.00  | -2.00   | 440.00  | -1.08   | 460.00  | -2.70 |
| 480.00  | -1.40   | 500.00  | -2.30   | 520.00  | -2.56   | 540.00  | -3.00 |
| 560.00  | -1.50   | 580.00  | -2.20   | 600.00  | -2,24   | 620.00  | -2.30 |
| 640.00  | -2.60   | 660.00  | -2.60   | 680.00  | -2.42   | 700.00  | -2.00 |
| 720.00  | -2.05   | 740.00  | -2.00   | 760.00  | -2.02   | 780.00  | -2.00 |
| 800.00  | -1.96   | 820.00  | -2.26   | 840.00  | -2.38   | 860.00  | -2.28 |
| 880.00  | -2.00   | 900.00  | -1.90   | 920.00  | -2.56   | 940.00  | -1.50 |
| 960.00  | -2.90   | 980.00  | -2.90   | 1000.00 | -1.50   | 1020.00 | -2.60 |
| 1040.00 | -2.10   | 1060.00 | -0.80   | 1080.00 | -1.00   | 1100.00 | -0.40 |
| 1120.00 | -0.10   | 1140.00 | -0.50   | 1160.00 | -0.60   | 1180.00 | -0.16 |
| 1200.00 | -0.10   | 1220.00 | -0.04   | 1240.00 | 0.00    | 1260.00 | 0.00  |
| 1280.00 | 0.00    | 1300.00 | 0.00    | 1320.00 | 0.00    | 1340.00 | 0.00  |
| 1360.00 | 0.00    | 1380.00 | 0.00    | 1400.00 | 0.00    | 1420.00 | 0.00  |
| 1440.00 | 0.00    | 1460.00 | 0.00    | 1480.00 | 0.00    | 1500.00 | 0.00  |
| 1520.00 | 0.00    | 1540.00 | 0.00    | 1560.00 | 0.00    | 1580.00 | 0.00  |
| 1600.00 | 0.00    | 1620.00 | 0.00    | 1640.00 | 0.00    | 1660.00 | 0.00  |
| 1680.00 | 0.00    | 1700.00 | 0.00    | 1720.00 | 0.00    | 1740.00 | 0.00  |
| 1760.00 | 0.00    | 1780.00 | 0.00    | 1800.00 | 0.00    | 1820.00 | 0.00  |

N1-numero del cuerpo N2-numero de puntos en cada cuerpo N3-densidad relativa

| N 3 | N2 N3   |       |       |       |       |       |       |       |
|-----|---------|-------|-------|-------|-------|-------|-------|-------|
| 1   | 6-0.07  |       |       |       |       |       |       |       |
|     | x       | Z     | x     | 2     | x     | Z     | x     | z     |
|     | 0.00    | -0.60 | 20.00 | -1.80 | 40.00 | -0.20 | 60.00 | 0.00  |
|     | 0.00    | 0.00  | 0.00  | -0.60 |       |       |       |       |
| 2   | 6-0.05  |       |       |       |       |       |       |       |
|     | 0.00    | 0.00  | 60.00 | 0.00  | 60.00 | 7.00  | 20.00 | 9.00  |
|     | 0.00    | 9.00  | 0.00  | 0.0   |       |       | •     |       |
| 3   | 6 0.05  |       |       |       |       |       |       |       |
|     | 0.00    | 9.00  | 20.00 | 9.00  | 60.00 | 7.00  | 60.00 | 12.00 |
|     | 0.00    | 12.00 | 0.00  | 9.00  |       |       |       |       |
| 4   | 7 0.05  |       |       |       |       |       |       |       |
|     | 0.00    | 12.00 | 90.00 | 12.00 | 60.00 | 16.00 | 60.00 | 21.00 |
|     | 40.00   | 26.00 | 0.00  | 26.00 | 0.00  | 12.00 |       |       |
| 5   | 29-1.72 |       |       |       |       |       |       |       |

|     | 60.00   | 0.00  | 80.00  | 0.00  | 100.00 | 0.00  | 120.00 | 0.00  |
|-----|---------|-------|--------|-------|--------|-------|--------|-------|
|     | 140.00  | 0.00  | 160.00 | 0.00  | 180.00 | 0.00  | 200.00 | 0.00  |
|     | 220.00  | 0.00  | 240.00 | 0.00  | 260.00 | 0.00  | 280.00 | 0.00  |
|     | 300.00  | 0.00  | 320.00 | 0.00  | 340.00 | 0.00  | 320.00 | 0.06  |
|     | 300.00  | 0.14  | 280,00 | 0.20  | 260.00 | 0.94  | 240.00 | 1.30  |
|     | 220.00  | 1.65  | 200.00 | 1.80  | 180.00 | 2.56  | 160.00 | 2.64  |
|     | 140.00  | 2.36  | 120.00 | 2.34  | 100.00 | 2,40  | 80.00  | 1.60  |
|     | 60.00   | 0.00  |        |       |        |       |        |       |
| 6   | 13-0.08 |       |        |       |        |       |        |       |
|     | 60.00   | 0.00  | 80.00  | 1.60  | 100.00 | 2.40  | 120.00 | 2.34  |
|     | 140.00  | 2.36  | 160.00 | 2.64  | 180.00 | 2.56  | 200.00 | 4.00  |
|     | 200.00  | 7.00  | 180.00 | 4.00  | 100.00 | 4.00  | 60.00  | 7.00  |
|     | 60.00   | 0.00  |        |       |        |       |        |       |
| 7   | 12 0.11 |       |        |       |        |       |        |       |
|     | 60.00   | 7.00  | 100.00 | 4.00  | 180.00 | 4.00  | 200.00 | 7.00  |
|     | 200.00  | 12.00 | 180.00 | 12.00 | 170.00 | 10.00 | 140.00 | 9.00  |
|     | 100.00  | 10.00 | 90.00  | 12.00 | 60.00  | 12.00 | 60.00  | 7.00  |
| 8   | 13-0.75 |       |        |       |        |       |        | 1 20  |
|     | 180.00  | 2.56  | 200.00 | 1.80  | 220.00 | 1.65  | 240.00 | 1,30  |
|     | 260.00  | 0.94  | 280.00 | 0.24  | 300.00 | 0.14  | 320.00 | 0.06  |
|     | 340.00  | 0.00  | 340.00 | 2.00  | 260.00 | 2.00  | 200.00 | 3.00  |
|     | 180.00  | 2.56  |        |       |        |       |        |       |
| 9   | 8-0.25  |       |        |       |        | 2 20  | 240.00 | 2 00  |
|     | 180.00  | 2.56  | 200.00 | 3.00  | 260.00 | 2.00  | 190.00 | 2.00  |
|     | 340.00  | 5.00  | 240.00 | 5.00  | 200.00 | 4.00  | 180.00 | 2.30  |
| 10  | 6 0.00  |       |        |       |        | 5 00  | 240 00 | 11 00 |
|     | 200.00  | 4.00  | 240.00 | 5.00  | 340.00 | 5.00  | 240.00 | 11.00 |
|     | 200.00  | 7.00  | 200.00 | 4.00  |        |       |        |       |
| 11  | 6 0.15  |       |        |       | 200 00 | 11.00 | 340.00 | 12.00 |
|     | 200.00  | 7.00  | 240.00 | 11.00 | 300.00 | 11.00 | 0.0000 |       |
|     | 200.00  | 12.00 | 200.00 | 7.00  |        |       |        |       |
| 12  | / 0.05  | 10.00 | 400.00 | 12 00 | 400 00 | 22.00 | 380.00 | 22.00 |
|     | 180.00  | 12.00 | 400.00 | 12.00 | 400.00 | 12.00 |        |       |
| 1 2 | 240.00  | 18.00 | 190.00 | 14.00 | 180.00 |       |        |       |
| 12  | 340.00  | 0.00  | 260 00 | 0 00  | 380 00 | 0.00  | 400.00 | 0.00  |
|     | 340.00  | 2 00  | 340.00 | 2 00  | 380.00 |       |        |       |
| 14  | 400.00  | 2.00  | 340.00 | 2.00  |        |       |        |       |
| 14  | 340.00  | 2 00  | 400 00 | 2 00  | 400.00 | 4.00  | 340.00 | 5.00  |
|     | 340.00  | 2.00  | 400100 | 2.00  | 400.00 |       |        |       |
| 15  | 7 0 00  | 2.00  |        |       |        |       |        |       |
|     | 240.00  | 11.00 | 340.00 | 5.00  | 400.00 | 4.00  | 400.00 | 12.00 |
|     | 340.00  | 12.00 | 300.00 | 11.00 | 240.00 | 11.00 |        |       |
| 16  | 20-0.27 | 10100 |        |       |        |       |        |       |
|     | 340.00  | 0.00  | 360.00 | -0.08 | 380.00 | -0.32 | 400.00 | -1.00 |
|     | 420.00  | -2.00 | 440.00 | -1.08 | 460.00 | -2.70 | 480.00 | -1.40 |
|     | 500.00  | -2.30 | 520.00 | -2.56 | 540.00 | -3.00 | 560.00 | -1.50 |
|     | 580.00  | -2.20 | 600.00 | -2.24 | 620.00 | -2.30 | 640.00 | -2.60 |
|     | 640.00  | -1.00 | 660.00 | -1.00 | 660.00 | 0.00  | 340.00 | 0.00  |
| 17  | 6-0.25  |       |        |       |        |       |        |       |
|     | 400.00  | 0.00  | 680.00 | 0.00  | 680.00 | 1.00  | 460.00 | 1.00  |
|     | 400.00  | 4.00  | 400.00 | 0.00  |        |       |        |       |
| 18  | 7 0.00  |       |        |       |        |       |        | 1 00  |
|     | 400.00  | 4.00  | 440.00 | 2.00  | 460.00 | 1.00  | 700.00 | T.00  |
|     | 700.00  | 12.00 | 400.00 | 12.00 | 400.00 | 4.00  |        |       |

| 19  | 6-0.05  |       |         |              |         | 23.00  | 660 00  | 27 00       |
|-----|---------|-------|---------|--------------|---------|--------|---------|-------------|
|     | 400.00  | 12.00 | 700.00  | 12.00        | 700.00  | 23.00  | 000.00  | 27.00       |
|     | 500.00  | 27.00 | 400.00  | 12.00        |         |        |         |             |
| 20  | 9 0.05  |       |         |              | 660.00  | 27 00  | 700.00  | 23 00       |
|     | 400.00  | 12.00 | 500.00  | 27.00        | 660.00  | 22.00  | 400.00  | 22.00       |
|     | 700.00  | 30.00 | 410.00  | 30.00        | 380.00  | 22.00  | 400.00  | 22100       |
|     | 400.00  | 12.00 |         |              |         |        |         |             |
| 21  | 7-0.40  |       |         |              | 700.00  | 32 00  | 70 00   | 35.00       |
|     | 410.00  | 30.00 | 720.00  | 30.00        | 700.00  | 30.00  | 70.00   | 55.00       |
|     | 660.00  | 39.00 | 480.00  | 39.00        | 410.00  | 30.00  |         |             |
| 22  | 17-0.35 |       |         | 2 ( 2        | (80.00  | -2 42  | 700 00  | -2.00       |
|     | 640.00  | -2.60 | 660.00  | -2.60        | 560.00  | -2.02  | 780.00  | -2.00       |
|     | 720.00  | -2.05 | 740.00  | -2.00        | 760.00  | -2 38  | 860.00  | -2.28       |
|     | 800.00  | -1.96 | 820.00  | -2.26        | 840.00  | -1 00  | 640.00  | -1.00       |
|     | 880.00  | -2.00 | 900.00  | -1.90        | 900.00  | 1.00   | 040.00  | 1.00        |
|     | 640.00  | -2.60 |         |              |         |        |         |             |
| 23  | 5-0.17  |       |         |              | 000 00  | 0 00   | 660.00  | 0 00        |
|     | 660.00  | -1.00 | 900.00  | -1.00        | 900.00  | 0.00   | 000.00  | 0.00        |
|     | 660.00  | -1.00 |         |              |         |        |         |             |
| 24  | 9-0.15  | ~ ~ ~ |         |              | 000 00  | 1 00   | 880 00  | 1.00        |
|     | 680.00  | 0.00  | 900.00  | 0.00         | 900.00  | 1.00   | 680.00  | 1.00        |
|     | 880.00  | 2.00  | 700.00  | 2.00         | 700.00  | 1.00   | 000.00  | 1.00        |
|     | 680.00  | 0.00  |         |              |         |        |         |             |
| 25  | 5 0.00  |       |         |              | 000 00  | 12 00  | 700 00  | 12.00       |
|     | 700.00  | 2.00  | 880.00  | 2.00         | 880.00  | 12.00  | 700.00  | 12.00       |
|     | 700.00  | 2.00  |         |              |         |        |         |             |
| 26  | 7-0.05  | 10 00 |         | 12 00        | 000 00  | 20 00  | 860.00  | 18.00       |
|     | 700.00  | 12.00 | 880.00  | 12.00        | 200.00  | 12.00  | 000.00  | 10700       |
|     | 720.00  | 18.00 | 700.00  | 20.00        | /00.00  | 12.00  |         |             |
| 27  | 11 0.05 |       |         | 10.00        |         | 18 00  | 880.00  | 20.00       |
|     | 700.00  | 20.00 | 720.00  | 18.00        | 860.00  | 28 00  | 740 00  | 28.00       |
|     | 880.00  | 30.00 | 870.00  | 30.00        | 840.00  | 20.00  | /40.00  | 20100       |
|     | 720.00  | 30.00 | 700.00  | 30.00        | /00.00  | 20,00  |         |             |
| 28  | 5 0.25  |       |         |              | 840.00  | 28 00  | 870 00  | 30.00       |
|     | 720.00  | 30.00 | 740.00  | 28.00        | 840.00  | 20.00  | 0/0100  | 20100       |
|     | 720.00  | 30.00 |         |              |         |        |         |             |
| 29  | 6-0.10  | ~~ ~~ |         | 22.00        | 710 00  | 30 00  | 870.00  | 30.00       |
|     | 700.00  | 33.00 | 700.00  | 32.00        | /20.00  | 30.00  | 0,0.00  |             |
|     | 890.00  | 33.00 | /00.00  | 33.00        |         |        |         |             |
| 30  | 6-0.05  | 22.00 |         | 22.00        | 000 00  | 34.00  | 900.00  | 45.00       |
|     | 700.00  | 33.00 | 890.00  | 33.00        | 900.00  | 3.1.50 |         | • • • • • • |
| ~ 1 | 700.09  | 45.00 | /00.00  | 33.00        |         |        |         |             |
| 31  | 5 0.00  |       |         | 45 00        | 000 00  | 60.00  | 700.00  | 60.00       |
|     | 700.00  | 45.00 | 900.00  | 45.00        | 900.00  | 00.00  | ,       |             |
|     | 700.00  | 45.00 |         |              |         |        |         |             |
| 32  | 7-0.10  | ~~ ~~ |         | <b>CO OO</b> | 000 00  | 72 00  | 860.00  | 70.00       |
|     | 700.00  | 60.00 | 900.00  | 60.00        | 900.00  | 60.00  | 000.00  |             |
|     | 740.00  | /0.00 | /00.00  | 12.00        | /00.00  | 00.00  |         |             |
| 33  | 14-0.17 | 1 00  | 000 00  | - 2 FC       | 040 00  | -1.50  | 960,00  | -2.90       |
|     | 900.00  | -1.90 | 920.00  | ~2.56        | 940.00  | -2.60  | 1040.00 | -2.10       |
|     | 980.00  | -2.90 | 1000.00 | -1.50        | 1100.00 | -0.40  | 1100.00 | 0.00        |
|     | T000.00 | -0.80 | 1080.00 | -1.00        | 1100.00 | 0.10   | 2200100 |             |
| ~ . | 900.00  | 0.00  | 900.00  | -1.90        |         |        |         |             |
| 34  | T3 0.00 | 0.00  | 1100 00 | 0.00         | 1100.00 | 1.00   | 1180.00 | 1.00        |
|     | 900.00  | 0.00  | 1100.00 | 0.00         | 1100.00 | 1.00   |         |             |

Chief of a particulation of the

|            | 1240.00<br>1400.00 | 4.00  | 1290.00<br>880.00 | 7.00<br>12.00 | 1320.00<br>880.00 | 6.00<br>1.00 | 1360.00<br>900.00 | 11.00<br>1.00 |
|------------|--------------------|-------|-------------------|---------------|-------------------|--------------|-------------------|---------------|
| 35         | 900.00<br>12-0.05  | 0.00  |                   |               |                   |              |                   |               |
|            | 880.00             | 12.00 | 1400.00           | 12.00         | 1500.00           | 13.00        | 1460.00           | 14.00         |
|            | 1420.00            | 15.00 | 1350.00           | 14.00         | 1320.00           | 14.00        | 1290.00           | 16.00         |
|            | 1090.00            | 16.00 | 1040.00           | 20.00         | 880.00            | 20.00        | 880.00            | 12.00         |
| 36         | 10 0.05            |       |                   |               |                   |              |                   |               |
|            | 880.00             | 20.00 | 1040.00           | 20.00         | 1090.00           | 16.00        | 1290.00           | 16.00         |
|            | 1290.00            | 26.00 | 1190.00           | 26.00         | 1100.00           | 26.00        | 1060.00           | 30.00         |
| <b>•</b> • | 880.00             | 30.00 | 880.00            | 20.00         |                   |              |                   |               |
| 31         | 8-0.40             | 20.00 |                   |               |                   |              |                   |               |
|            | 870.00             | 30.00 | 1060.00           | 30.00         | 1020.00           | 33.00        | 970.00            | 33.00         |
| ~ ~        | 960.00             | 34.00 | 900.00            | 34.00         | 890.00            | 33.00        | 870.00            | 30.00         |
| 38         | 60-1.72            | 0.00  | 10/0 00           | 0 00          | 1000 00           |              | 1000 00           |               |
|            | 1240.00            | 0.00  | 1260.00           | 0.00          | 1280.00           | 0.00         | 1300.00           | 0.00          |
|            | 1320.00            | 0.00  | 1340.00           | 0.00          | 1360.00           | 0.00         | 1380.00           | 0.00          |
|            | 1400.00            | 0.00  | 1420.00           | 0.00          | 1440.00           | 0.00         | 1460.00           | 0.00          |
|            | 1480.00            | 0.00  | 1500.00           | 0.00          | 1520.00           | 0.00         | 1540.00           | 0.00          |
|            | 1560.00            | 0.00  | 1580.00           | 0.00          | 1000.00           | 0.00         | 1620.00           | 0.00          |
|            | 1840.00            | 0.00  | 1660.00           | 0.00          | 1080.00           | 0.00         | 1700.00           | 0.00          |
|            | 1720.00            | 0.00  | 1740.00           | 0.00          | 1760.00           | 0.00         | 1780.00           | 0.00          |
|            | 1700.00            | 0.00  | 1820.00           | 0.00          | 1820.00           | 3.70         | 1300.00           | 3.70          |
|            | 1780.00            | 3.70  | 1/60.00           | 3.70          | 1/40.00           | 3.70         | 1640.00           | 3.70          |
|            | 1620.00            | 3.70  | 1680.00           | 3.70          | 1560.00           | 3.70         | 1540.00           | 3.70          |
|            | 1520.00            | 3.70  | 1500.00           | 3.70          | 1580.00           | 3.70         | 1480.00           | 3.70          |
|            | 1460 00            | 3.70  | 1520.00           | 3.70          | 1420.00           | 3.04         | 1480.00           | 3.50          |
|            | 1380.00            | 3.20  | 1260.00           | 3.10          | 1240.00           | 2.90         | 1220.00           | 2.60          |
|            | 1300.00            | 2.40  | 1380.00           | 2,20          | 1340.00           | 2.10         | 1320.00           | 1.90          |
| 20         | 1300.00            | 1.20  | 1280.00           | 0.00          | 1280.00           | 0.12         | 1240.00           | 0.02          |
| 23         | 1100 00            | -0.44 | 1120 00           | -0.10         | 1140 00           | -0 50        | 1160 00           | -0 60         |
|            | 1180.00            | -0.44 | 120.00            | -0.10         | 1220.00           | -0.04        | 1240.00           | -0.80         |
|            | 1260.00            | 0.12  | 1280.00           | -0,10         | 1300.00           | 1 20         | 1320 00           | 1 90          |
|            | 1340.00            | 2 16  | 1360.00           | 2 20          | 1380 00           | 2 40         | 1400 00           | 2.60          |
|            | 1420 00            | 2 90  | 1440 00           | 3 10          | 1460.00           | 3 20         | 1480 00           | 2,00          |
|            | 1500.00            | 3 64  | 1520.00           | 3 70          | 1540.00           | 3 70         | 1560.00           | 3.50          |
|            | 1580.00            | 3.70  | 1600.00           | 3.70          | 1620.00           | 3.70         | 1640.00           | 3 70          |
|            | 1660.00            | 3.70  | 1680.00           | 3.70          | 1700.00           | 3.70         | 1720.00           | 3 70          |
|            | 1740.00            | 3.70  | 1760.00           | 3.70          | 1780.00           | 3.70         | 1800.00           | 3.70          |
|            | 1820.00            | 3.70  | 1820.00           | 6.00          | 1340.00           | 6.00         | 1240.00           | 4.00          |
|            | 1180.00            | 1.00  | 1100.00           | 1.00          | 1100.00           | -0.40        |                   | 4100          |
| 40         | 10-0.15            | 2100  | 2200100           | 2000          |                   |              |                   |               |
|            | 1240.00            | 4.00  | 1340.00           | 6.00          | 1820.00           | 6.00         | 1820.00           | 10.00         |
|            | 1640.00            | 12.00 | 1400.00           | 12.00         | 1360.00           | 11.00        | 1320.00           | 6.00          |
|            | 1290.00            | 7.00  | 1240.00           | 4.00          |                   |              |                   | 0.00          |
| 41         | 5 0.35             |       |                   |               |                   |              |                   |               |
|            | 100.00             | 12.00 | 180.00            | 12.00         | 180.00            | 30.00        | 100.00            | 30.00         |
|            | 100.00             | 12.00 |                   |               |                   |              |                   |               |
| 42         | 5-0.25             |       |                   |               |                   |              |                   |               |
|            | 1400.00            | 12.00 | 1640.00           | 12.00         | 1560.00           | 13.00        | 1500.00           | 13.00         |
|            | 1400.00            | 12.00 |                   |               |                   |              |                   |               |
| 43         | 4 0.45             |       |                   |               |                   |              |                   |               |
| -          | 1640.00            | 12.00 | 1820.00           | 10.00         | 1820.00           | 12.00        | 1640.00           | 12.00         |
| 44         | 10 0.50            |       |                   |               |                   |              |                   |               |
|     | 1060.00 | 30.00  | 1100.00 | 26.00  | 1290.00 | 26.00        | 1320.00 | 21.0        |
|-----|---------|--------|---------|--------|---------|--------------|---------|-------------|
|     | 1420.00 | 22.00  | 1500.00 | 21.00  | 1660.00 | 18.00        | 1820.00 | 18.0        |
|     | 1820.00 | 30.00  | 1060.00 | 30.00  |         |              |         |             |
| 45  | 6 0.45  |        |         |        |         |              |         |             |
|     | 180.00  | 14.00  | 240.00  | 18.00  | 380.00  | 22.00        | 410.00  | 30.0        |
|     | 180.00  | 30.00  | 180.00  | 14.00  |         |              |         |             |
| 46  | 8 0.00  |        |         |        |         |              |         |             |
|     | 0.00    | 30.00  | 340.00  | 30.00  | 340.00  | 60.00        | 280.00  | 60.0        |
|     | 220.00  | 51.00  | 60.00   | 51.00  | 0.00    | 56.00        | 0.00    | 30.0        |
| 47  | 6-0.02  |        |         |        |         | <b>51 00</b> | 220.00  | <b>F1 0</b> |
|     | 0,00    | 60.00  | 0.00    | 56.00  | 60,00   | 51.00        | 220.00  | 51.04       |
|     | 280.00  | 60.00  | 0.00    | 60.00  |         |              |         |             |
| 48  | 7-0.12  | 60.00  | 200 00  | 60.00  | 240.00  | 68 00        | 340.00  | 100.0       |
|     | 10.00   | 60.00  | 280.00  | 60.00  | 340.00  | 60.00        | 540100  | 100.0       |
| 40  | 180.00  | 92.00  | 0.00    | 52.00  | 0.00    | 00.00        |         |             |
| 49  | 4 0.00  | 92 00  | 180 00  | 92 00  | 340 00  | 100.00       | 0.00    | 100.00      |
| 50  | 4-0.08  | 92.00  | 180.00  | 52.00  | 340.00  | 100000       |         |             |
| 50  | 280.00  | 60.00  | 340.00  | 60.00  | 340.00  | 68.00        | 280.00  | 60.00       |
| 51  | 8 0.02  |        |         |        |         |              |         |             |
|     | 340.00  | 30.00  | 410.00  | 30.00  | 480.00  | 39.00        | 660.00  | 39.00       |
|     | 700.00  | 35.00  | 700.00  | 60.00  | 340.00  | 60.00        | 340.00  | 30.00       |
| 52  | 8-0.08  |        |         |        |         |              |         |             |
|     | 340.00  | 60.00  | 700.00  | 60.00  | 700.00  | 72.00        | 670.00  | 74.00       |
|     | 600.00  | 80.00  | 440.00  | 80.00  | 340.00  | 68.00        | 340.00  | 60.00       |
| 53  | 7-0.10  |        |         |        |         |              | 600.00  |             |
|     | 340.00  | 68.00  | 440.00  | 80.00  | 600.00  | 80.00        | 670.00  | 74.00       |
|     | 670.00  | 100.00 | 340.00  | 100.00 | 340,00  | 68.00        |         |             |
| 54  | 8-0.12  |        |         | 72.00  | 740.00  | 20 00        | 860.00  | 70.00       |
|     | 670.00  | 74.00  | 700.00  | 100 00 | 670.00  | 100.00       | 670.00  | 74.00       |
| E E | 900.00  | 72.00  | 900.00  | 100.00 | 670.00  | 100.00       | 070.00  | /4.00       |
| 22  | 9 0.01  | 34 00  | 960 00  | 34 00  | 970 00  | 33.00        | 1020.00 | 33.00       |
|     | 1060.00 | 30.00  | 1320 00 | 30.00  | 1320.00 | 60.00        | 900.00  | 60.00       |
|     | 900.00  | 34.00  | 1520.00 | 50.00  | 1920100 |              |         |             |
| 56  | 7-0.05  | 5      |         |        |         |              |         |             |
|     | 900.00  | 60,00  | 1320.00 | 60.00  | 1320.00 | 77.00        | 1290.00 | 78.00       |
|     | 1020.00 | 78.00  | 900.00  | 72.00  | 900.00  | 60.00        |         |             |
| 57  | 7-0.10  |        |         |        |         |              |         |             |
|     | 900.00  | 72.00  | 1020.00 | 78.00  | 1290.00 | 78.00        | 1320.00 | 77.00       |
|     | 1320.00 | 100.00 | 900.00  | 100.00 | 900.00  | 72.00        |         |             |
| 58  | 6 0.45  |        |         |        |         | ~ ~ ~        | 100.00  |             |
|     | 90.00   | 12.00  | 100.00  | 10.00  | 140.00  | 9.00         | 170.00  | 10.00       |
|     | 180.00  | 12.00  | 90.00   | 12.00  |         |              |         |             |
| 59  | 11 0.10 | 15 00  | 1400 00 | 14 00  | 1500 00 | 13 00        | 1560.00 | 13.00       |
| ·   | 1420.00 | 15.00  | 1480.00 | 14.00  | 1820.00 | 18 00        | 1660.00 | 18.00       |
|     | 1640.00 | 21 00  | 1820.00 | 22.00  | 1420.00 | 15.00        | 1000100 | 10.00       |
| 60  | 5 0 10  | 21.00  | 1420.00 | 22.00  | 1420.00 | 13,00        |         |             |
| 00  | 1320.00 | 30.00  | 1820.00 | 30.00  | 1820.00 | 60.00        | 1320.00 | 60.00       |
|     | 1320.00 | 30.00  | 1020100 |        |         |              |         |             |
| 61  | 7 0.05  |        |         |        |         |              |         |             |
| -   | 1320.00 | 60.00  | 1820.00 | 60.00  | 1820.00 | 72.00        | 1680.00 | 76.00       |
|     | 1440.00 | 76.00  | 1320.00 | 77.00  | 1320.00 | 60.00        |         | ŧ           |
| 62  | 7-0.10  |        |         |        |         |              |         | 1           |
|     |         |        |         |        |         |              |         | ( ·         |
|     |         |        |         |        |         |              |         |             |
|     |         |        |         |        |         |              |         | }           |
|     |         |        |         |        |         |              |         | 1           |
|     |         |        |         |        |         |              |         |             |
|     |         |        | 274     |        |         |              |         | ۱.          |
|     |         |        |         |        |         |              |         |             |

|    | 1320.00 | 77.00   | 1440.00 | 76.00   | 1680.00 | 76.00   | 1820.00 | 72.00   |
|----|---------|---------|---------|---------|---------|---------|---------|---------|
|    | 1820.00 | 100.00  | 1320.00 | 100.00  | 1320.00 | 77.00   |         |         |
| 63 | 9 0.35  |         |         |         |         |         |         |         |
|    | 0.00    | 26.00   | 40.00   | 26.00   | 60.00   | 21.00   | 60.00   | 16.00   |
|    | 90.00   | 12.00   | 100.00  | 12.00   | 100.00  | 30.00   | 0.00    | 30.00   |
|    | 0.00    | 26.00   |         |         |         |         |         |         |
| 64 | 8 0.05  |         |         |         |         |         |         |         |
|    | 1290.00 | 16,00   | 1320.00 | 14.00   | 1350.00 | 14.00   | 1420.00 | 15.00   |
|    | 1420.00 | 22.00   | 1320.00 | 21.00   | 1290.00 | 26.00   | 1290.00 | 16.00   |
| 65 | 5 0.20  |         |         |         |         |         |         |         |
|    | 1316.00 | 1.60    | 1324.00 | 1.80    | 1324.00 | 6.00    | 1316.00 | 6.00    |
|    | 1316.00 | 1.60    |         |         |         |         |         |         |
| 9  | 2       |         |         |         |         |         |         |         |
|    | 18.00   | -25.00  | 0.00    | 16.00   | -26.00  | -14.00  | -14.00  | -4,00   |
|    | -8.00   | -16.00  | -28.00  | -26.00  | -41.00  | -28.00  | -15.00  | -4.00   |
|    | -8.00   | -12.00  | -11.00  | -36.00  | -80.00  | -116.00 | -114.00 | -168.00 |
|    | -186.00 | -198.00 | -208.00 | -218.00 | -222.00 | -228.00 | -230.00 | -235.00 |
|    | -238.00 | -240.00 | -226.00 | -220.00 | -216.00 | -209.00 | -207.00 | -207.00 |
|    | -207.00 | -208.00 | -212.00 | -208.00 | -211.00 | -202.00 | -189.00 | -182.00 |
|    | -168.00 | -163.00 | -158.00 | -158.00 | -140.00 | -102.00 | -77.00  | -42.00  |
|    | -30.00  | -21.00  | -15.00  | -13.00  | -10.00  | -4.00   | -5.00   | -20.00  |
|    | -35.00  | -30.00  | 6.00    | -11.00  | -32.00  | -38.00  | -41.00  | -50.00  |
|    | -50.00  | -48.00  | -54.00  | -62.00  | -57.00  | -55.00  | -53.00  | -42.00  |
|    | -35.00  | -28.00  | -18.00  | -9.00   | -4.00   | -9.00   | -20.00  | -32.00  |
|    | -37.00  | -40.00  | -43.00  | -44.00  |         |         |         |         |

Tabla A.3. Valores de la primera derivada horizontal d $\Delta$ g/dx, de la primera d $\Delta$ g/dz y de la segunda d $^{2}\Delta$ g/dz<sup>2</sup> derivadas verticales.

|    | dq/dx   | dg/dz   | d2g/dz2 |
|----|---------|---------|---------|
| 1  | -3      | 0.84    | 0.11    |
| 2  | -0.51   | -1.35   | -0.24   |
| З  | 1.96    | 0.96    | 0.059   |
| 4  | -1.35   | 2.14    | 0.18    |
| 5  | -0.97   | -1.04   | -0.17   |
| 6  | 0.72    | -0.25   | 0.0041  |
| 7  | 0.066   | 0.48    | 0.025   |
| 8  | 0.24    | 0.34    | -0.012  |
| 9  | -0.36   | 0.93    | 0.064   |
| 10 | -0.62   | -0.0025 | -0.025  |
| 11 | -0.18   | -0.094  | -0.021  |
| 12 | 0.13    | 0.203   | 0.046   |
| 13 | 0.25    | -0,77   | -0.073  |
| 14 | 0.45    | -0.22   | -0.013  |
| 15 | 0.31    | 0.78    | 0.033   |
| 16 | 0.16    | 1.04    | 0.033   |
| 17 | -0.37   | 0.89    | 0.019   |
| 18 | 0.083   | 0.71    | -0.029  |
| 19 | -0.4    | 1.7     | 0.079   |
| 20 | -1.89   | 1.6     | 0.096   |
| 21 | -2.46   | -0.49   | -0.042  |
| 22 | -0.37   | -1.42   | -0.129  |
| 23 | -1.11   | 0.89    | 0.202   |
| 24 | -2.1    | -1.73   | -0.111  |
| 25 | -0.42   | -1.85   | -0.027  |
| 26 | -0.6    | -1.39   | -0.0099 |
| 27 | -0.51   | -1.46   | 0.00069 |
| 28 | -0.36   | -1.68   | -0.034  |
| 29 | -0.21   | -1.4    | 0.0058  |
| 30 | -0.24   | -1.57   | -0.024  |
| 31 | -0.15   | -1.41   | 0.0013  |
| 32 | -0.19   | -1.49   | -0.0092 |
| 33 | -0.23   | -1.65   | -0.0062 |
| 34 | 0.35    | -2      | -0.064  |
| 35 | 0.65    | -1.1    | 0.024   |
| 36 | 0.14    | -1      | 0.0074  |
| 37 | 0.32    | -1.2    | -0.029  |
| 38 | 0.25    | -0.74   | 0.033   |
| 39 | 0.013   | -0.96   | -0.013  |
| 40 | -0.0063 | -0.97   | 0.00071 |
| 41 | 0.017   | -0.96   | 0.0033  |
| 42 | -0.21   | -1.1    | -0.0022 |
| 43 | 0.033   | -1.38   | -0.029  |
| 44 | 0.051   | -1.14   | 0.018   |
| 45 | -0.015  | -1.62   | -0.039  |
| 46 | n. 68   | -1.48   | -0.029  |

| 47 | 0.45   | -0.93  | 0.023   |
|----|--------|--------|---------|
| 48 | 0.52   | -1.13  | -0.03   |
| 49 | 0.57   | -0.72  | 0.018   |
| 50 | 0.2    | -0.77  | 0.00017 |
| 51 | 0.07   | -0.93  | 0.015   |
| 52 | 0.2    | -1.79  | -0.064  |
| 53 | 1.56   | -1,62  | -0.07   |
| 54 | 1.69   | -0.25  | 0.044   |
| 55 | 1.52   | -0.13  | -0.042  |
| 56 | 1.35   | 1.05   | 0.077   |
| 57 | 0.34   | 0.88   | 0.019   |
| 58 | 0.45   | 0.61   | -0.0012 |
| 59 | 0.2    | 0.79   | 0.028   |
| 60 | 0.078  | 0.44   | -0.0093 |
| 61 | 0.25   | 0.46   | -0.0063 |
| 62 | 0.25   | 0.83   | 0.024   |
| 63 | -0.35  | 0.95   | 0.04    |
| 64 | -0.89  | 0.38   | 0.023   |
| 65 | -0.56  | -0.91  | -0.064  |
| 66 | 1.28   | -0.87  | -0.12   |
| 67 | 1.1    | 2.07   | 0.176   |
| 68 | -1.49  | 1.03   | 0.036   |
| 69 | -0.74  | -0.39  | -0.053  |
| 70 | -0.1   | -0.38  | -0.039  |
| 71 | -0.3   | 0.28   | 0.064   |
| 72 | -0.37  | -0.7   | -0.065  |
| 73 | 0.15   | -0.18  | 0.014   |
| 74 | 0.006  | -0.092 | -0.0007 |
| 75 | -0.47  | -0.04  | 0.036   |
| 76 | -0.17  | -0.97  | -0.74   |
| 77 | 0.33   | -0.23  | 0.031   |
| 78 | -0.005 | -0.44  | -0.013  |
| 79 | 0.3    | -0.52  | -0.02   |
| 80 | 0.56   | -0.18  | 0.00021 |
| 81 | 0.28   | -0.05  | 0.015   |
| 82 | 0.41   | -0.12  | -0.022  |
| 83 | 0.51   | 0.32   | 0.016   |
| 84 | 0.41   | 0.45   | -0.0034 |
| 85 | 0.086  | 0.91   | 0.049   |
| 86 | -0.43  | 0.54   | 0.0071  |
| 87 | -0.63  | 0.28   | 0.018   |
| 88 | -0.49  | -0.37  | -0.027  |
| 89 | -0.16  | -0.32  | -0.014  |
| 90 | -0.16  | -0.52  | -0.0091 |
| 91 | -0.11  | -0.69  | -0.033  |
| 92 | -0.023 | -12.6  | -15.2   |

# Anexo B

Tabla B.1. Valores de: 1) elevaciones del terreno, 2) espesor de la corteza, 3) anomalía de Bouguer, 4) correcion de Bouguer, 5) anomalía de Aire Libre y 6) anomalias gravimétricas utilizadas en la interpretación (anomalía de Bouguer en el continente y la anomalía de Aire Libre en la parte oceánica) a lo largo del transecto.

| Ν | punto | Distan- | Altura   | Espesor | Anom.   | Correc.  | Anom.  | Anom.     |
|---|-------|---------|----------|---------|---------|----------|--------|-----------|
|   |       | cia     | promedio | corteza | Bouguer | Bouguer  | Aire   | Bouguer/  |
|   |       |         | de punto |         |         |          | Libre  | Aire Lib. |
|   |       | km      | km       | km      | mGal    | mGal     | mGal   | mGal      |
|   |       |         |          |         |         |          |        |           |
|   | 1     | 0       | 0.6      | 26.6    | 18      | 67.14    | 22.38  | 18        |
|   | 2     | 20      | 1.8      | 27.8    | -25     | 201.42   | 22.38  | -25       |
|   | 3     | 40      | 0.2      | 26.2    | 0       | 22.38    | 22.38  | 0         |
|   | 4     | 60      | 0        | 16      | 16      | 0        | 16     | 16        |
|   | 5     | 80      | -1.6     | 18      | 83.92   | -109.92  | -26    | -26       |
|   | 6     | 100     | -2.4     | 10      | 150.88  | -164.88  | -14    | -14       |
|   | 7     | 120     | -2.34    | 9.5     | 146.758 | -160.758 | -14    | -14       |
|   | 8     | 140     | -2.36    | 9       | 158.132 | -162.132 | -4     | -4        |
|   | . 9   | 160     | -2.64    | 9.5     | 173.368 | -181.368 | -8     | -8        |
|   | 10    | 180     | -2.56    | 12      | 159.872 | -175.872 | -16    | -16       |
|   | 11    | 200     | -1.8     | 15.5    | 95.66   | -123.66  | -28    | -28       |
|   | 12    | 220     | -1.65    | 17      | 87.355  | -113.355 | -26    | -26       |
|   | 13    | 240     | -1.3     | 18      | 48.31   | -89.31   | -41    | -41       |
|   | 14    | 260     | -0.94    | 18.5    | 36.578  | -64.578  | -28    | -28       |
|   | 15    | 280     | -0.24    | 19.4    | 1.488   | -16.488  | -15    | -15       |
|   | 16    | 300     | -0.14    | 20      | 5.618   | -9.618   | -4     | -4        |
|   | 17    | 320     | -0.06    | 20.5    | -3.878  | -4.122   | -8     | -8        |
|   | 18    | 340     | 0        | 21      | -12     | 0        | -12    | -12       |
|   | 19    | 360     | 0.08     | 21.58   | -11     | 8.952    | -2.048 | -11       |
|   | 20    | 380     | 0.32     | 22.32   | -36     | 35.808   | -0.192 | -36       |
|   | 21    | 400     | 1.1      | 29      | -80     | 123.09   | 43.09  | -80       |
|   | 22    | 420     | 1.3      | 33      | -116    | 145.47   | 29.47  | -116      |
|   | 23    | 440     | 1.6      | 35.08   | -144    | 179.04   | 35.04  | -144      |
|   | 24    | 460     | 1.9      | 39.7    | -168    | 212.61   | 44.61  | -168      |
|   | 25    | 480     | 2.1      | 40.4    | -186    | 234.99   | 48.99  | -186      |
|   | 26    | 500     | 2.3      | 41.3    | -198    | 257.37   | 59.37  | -198      |
|   | 27    | 520     | 2.4      | 41.56   | -208    | 268.56   | 60.56  | -208      |
|   |       |         |          |         |         |          |        |           |

Tabla B.1. Valores de: 1) elevaciones del terreno, 2) espesor de la corteza, 3) anomalia de Bouguer, 4) correcion de Bouguer, 5) anomalia de Aire Libre y 6) anomalias gravimétricas utilizadas en la interpretación (anomalia de Bouguer en el continente y la anomalía de Aire Libre en la parte oceánica) a lo largo del transecto.

| N punto | Distan- | Altura   | Espesor | Anom.   | Correc.  | Anom.  | Anom.     |
|---------|---------|----------|---------|---------|----------|--------|-----------|
|         | cia     | promedio | corteza | Bouguer | Bouguer  | Aire   | Bouguer/  |
|         |         | de punto |         |         |          | Libre  | Aire Lib. |
|         | km      | km       | km      | mGal    | mGal     | mGal   | mGal      |
|         |         |          |         |         |          |        |           |
| 1       | 0       | 0.6      | 26.6    | 18      | 67.14    | 22.38  | 18        |
| 2       | 20      | 1.8      | 27.8    | -25     | 201.42   | 22.38  | -25       |
| 3       | 40      | 0.2      | 26.2    | 0       | 22.38    | 22.38  | 0         |
| 4       | 60      | 0        | 16      | 16      | 0        | 16     | 16        |
| 5       | 80      | -1.6     | 18      | 83.92   | -109.92  | -26    | -26       |
| 6       | 100     | -2.4     | 10      | 150.88  | -164.88  | -14    | -14       |
| 7       | 120     | -2.34    | 9.5     | 146.758 | -160.758 | -14    | -14       |
| 8       | 140     | -2.36    | 9       | 158.132 | -162.132 | -4     | -4        |
| 9       | 160     | -2.64    | 9.5     | 173.368 | -181.368 | -8     | -8        |
| 10      | 180     | -2.56    | 12      | 159.872 | -175.872 | -16    | -16       |
| 11      | 200     | -1.8     | 15.5    | 95.66   | -123.66  | -28    | -28       |
| 12      | 220     | -1.65    | 17      | 87.355  | -113.355 | -26    | -26       |
| 13      | 240     | -1.3     | 18      | 48.31   | -89.31   | -41    | -41       |
| 14      | 260     | -0.94    | 18.5    | 36.578  | -64.578  | -28    | -28       |
| 15      | 280     | -0.24    | 19.4    | 1.488   | -16.488  | -15    | -15       |
| 16      | 300     | -0.14    | 20      | 5.618   | -9.618   | -4     | -4        |
| 17      | 320     | -0.06    | 20.5    | -3.878  | -4.122   | -8     | -8        |
| 18      | 340     | 0        | 21      | -12     | 0        | -12    | -12       |
| 19      | 360     | 0.08     | 21,58   | -11     | 8.952    | -2.048 | -11       |
| 20      | 380     | 0.32     | 22.32   | -36     | 35.808   | -0.192 | -36       |
| 21      | 400     | 1.1      | 29      | -80     | 123.09   | 43.09  | -80       |
| 22      | 420     | 1.3      | 33      | -116    | 145.47   | 29.47  | -116      |
| 23      | 440     | 1.6      | 35.08   | -144    | 179.04   | 35.04  | -144      |
| 24      | 460     | 1.9      | 39.7    | -168    | 212.61   | 44.61  | -168      |
| 25      | 480     | 2.1      | 40.4    | -186    | 234.99   | 48.99  | -186      |
| 26      | 500     | 2.3      | 41.3    | -198    | 257.37   | 59.37  | -198      |
| 27      | 520     | 2.4      | 41.56   | -208    | 268.56   | 60.56  | -208      |

52

.

| kmkmkmmGalmGalmGalmGalmGal285402.442-218268.5650.56-218295602.440.5-222268.5646.56-222305802.441.2-228268.5640.56-228316002.341.34-230257.3727.37-230326202.341.3-235257.3722.37-235336402.641.6-240290.9450.94-240356802.4239.42-226270.79844.798-22636700237-220223.83.8-22037.7202.0532.05-216229.39513.395-21638740230-207223.816.8-20740780230-207223.816.8-207418001.9630-207219.32412.324-208438402.3830.38-212266.32254.322-212448602.2831.78-208255.13247.132-20845880233.5-21123.821.8-202479202.136.06-189234.9945.99-189489401.935-182212.6130.61-182499601.9                                                                                                                                                                                                                                                                                                                                        | N punto | Distan-<br>cia | Altura<br>promedio<br>de punto | Espesor<br>corteza | Anom.<br>Bouguer | Correc.<br>Bouguer | Anom.<br>Aire<br>Libre | Anom.<br>Bouguer/<br>Aire Lib. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|--------------------------------|--------------------|------------------|--------------------|------------------------|--------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | km             | km                             | km                 | mGal             | mGal               | mGal                   | mGal                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                |                                |                    |                  |                    |                        |                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28      | 540            | 2.4                            | 42                 | -218             | 268.50             | 50.56                  | -218                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29      | 560            | 2.4                            | 40.5               | -222             | 268.56             | 46.56                  | -222                           |
| 31 $600$ $2.3$ $41.24$ $-230$ $257.37$ $27.37$ $-230$ $32$ $620$ $2.3$ $41.3$ $-235$ $257.37$ $22.37$ $-235$ $33$ $640$ $2.6$ $41.6$ $-228$ $290.94$ $52.94$ $-238$ $34$ $660$ $2.6$ $41.6$ $-220$ $290.94$ $50.94$ $-240$ $35$ $680$ $2.42$ $39.42$ $-226$ $270.798$ $44.798$ $-226$ $36$ $700$ $2$ $37$ $-220$ $223.8$ $3.8$ $-220$ $37$ $720$ $2.05$ $32.05$ $-216$ $229.395$ $13.395$ $-216$ $38$ $740$ $2$ $30$ $-209$ $223.8$ $14.8$ $-209$ $39$ $760$ $2.02$ $30.02$ $-207$ $226.038$ $19.038$ $-207$ $41$ $800$ $1.96$ $30$ $-207$ $219.324$ $12.324$ $-207$ $42$ $820$ $2.26$ $30.26$ $-208$ $255.132$ $47.132$ $-208$ $43$ $840$ $2.38$ $30.38$ $-212$ $266.322$ $54.322$ $-212$ $44$ $860$ $2.28$ $31.78$ $-202$ $223.8$ $12.8$ $-207$ $44$ $860$ $2.28$ $31.78$ $-202$ $223.8$ $12.8$ $-202$ $47$ $920$ $2.1$ $36.06$ $-189$ $234.99$ $45.99$ $-189$ $48$ $940$ $1.9$ $35$ $-182$ $212.61$ $49.61$ < | 30      | 580            | 2.4                            | 41.2               | -228             | 268.56             | 40.56                  | -228                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31      | 600            | 2.3                            | 41.24              | -230             | 257.37             | 27.37                  | -230                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32      | 620            | 2.3                            | 41.3               | -235             | 257.37             | 22.37                  | -235                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33      | 640            | 2.6                            | 41.6               | -238             | 290.94             | 52.94                  | -238                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34      | 660            | 2.6                            | 41.6               | -240             | 290.94             | 50.94                  | -240                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35      | 680            | 2.42                           | 39.42              | -226             | 270.798            | 44.798                 | -226                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36      | 700            | 2                              | 37                 | -220             | 223.8              | 3.8                    | -220                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37      | .720           | 2.05                           | 32.05              | -216             | 229.395            | 13.395                 | -216                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38      | 740            | 2                              | 30                 | -209             | 223.8              | 14.8                   | -209                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39      | 760            | 2.02                           | 30.02              | -207             | 226.038            | 19.038                 | -207                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40      | 780            | 2                              | 30                 | -207             | 223.8              | 16.8                   | -207                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41      | 800            | 1.96                           | 30                 | -207             | 219.324            | 12.324                 | -207                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42      | 820            | 2.26                           | 30.26              | -208             | 252.894            | 44.894                 | -208                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43      | 840            | 2.38                           | 30.38              | -212             | 266.322            | 54.322                 | -212                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44      | 860            | 2.28                           | 31.78              | -208             | 255.132            | 47.132                 | -208                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45      | 880            | 2                              | 33.5               | -211             | 223.8              | 12.8                   | -211                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46      | 900            | 2                              | 34.9               | -202             | 223.8              | 21.8                   | -202                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47      | 920            | 2.1                            | 36.06              | -189             | 234.99             | 45.99                  | -189                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48      | 940            | 1.9                            | 35                 | -182             | 212.61             | 30.61                  | -182                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 49      | 960            | 1.9                            | 36.7               | -168             | 212.61             | 44.61                  | -168                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50      | 980            | 1.9                            | 36.7               | -163             | 212.61             | 49.61                  | -163                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51      | 1000           | 1.8                            | 35.5               | -158             | 201.42             | 43.42                  | -158                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52      | 1020           | 2                              | 34.6               | -158             | 223.8              | 65.8                   | -158                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53      | 1040           | 1.8                            | 32.1               | -140             | 201.42             | 61.42                  | -140                           |
| 55         1080         1.2         27         -77         134.28         57.28         -77           56         1100         0.4         26.4         -42         44.76         2.76         -42           57         1120         0.1         26.1         -30         11.19         -18.81         -30           58         1140         0.5         26.5         -21         55.95         34.95         -21           59         1160         0.6         26.6         -15         67.14         52.14         -15                                                                                                                                                                                                                                                                                                                                                                                          | 54      | 1060           | 1.6                            | 28.8               | -102             | 179.04             | 77.04                  | -102                           |
| 56       1100       0.4       26.4       -42       44.76       2.76       -42         57       1120       0.1       26.1       -30       11.19       -18.81       -30         58       1140       0.5       26.5       -21       55.95       34.95       -21         59       1160       0.6       26.6       -15       67.14       52.14       -15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55      | 1080           | 1.2                            | 27                 | -77              | 134,28             | 57.28                  | -77                            |
| 57       1120       0.1       26.1       -30       11.19       -18.81       -30         58       1140       0.5       26.5       -21       55.95       34.95       -21         59       1160       0.6       26.6       -15       67.14       52.14       -15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56      | 1100           | 0.4                            | 26.4               | -42              | 44.76              | 2.76                   | -42                            |
| 58 1140 0.5 26.5 -21 55.95 34.95 -21<br>59 1160 0.6 26.6 -15 67.14 52.14 -15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 57      | 1120           | 0.1                            | 26.1               | -30              | 11.19              | -18.81                 | -30                            |
| 59 1160 0.6 26.6 -15 67.14 52.14 -15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58      | 1140           | 0.5                            | 26.5               | -21              | 55,95              | 34.95                  | -21                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 59      | 1160           | . 0.6                          | 26.6               | -15              | 67.14              | 52.14                  | -15                            |

| N punto | Distan- | Altura   | Espesor | Anom.   | Correc.  | Anom. | Anom.     |
|---------|---------|----------|---------|---------|----------|-------|-----------|
|         | cia     | promedio | corteza | Bouguer | Bouguer  | Aire  | Bouguer/  |
|         |         | de punto |         |         |          | Libre | Aire Lib. |
|         | km      | km       | km      | mGal    | mGal     | mGal  | mGal      |
|         |         |          |         |         |          |       |           |
| 60      | 1180    | 0.16     | 26.16   | -13     | 17.904   | 4.904 | -13       |
| 61      | 1200    | 0.1      | 26.1    | -10     | 11.19    | 1.19  | -10       |
| 62      | 1220    | 0.04     | 26.04   | -4      | 4.476    | 0.476 | -4        |
| 63      | 1240    | -0.02    | 26      | -3.626  | -1.374   | -5    | -5        |
| 64      | 1260    | -0.12    | 26      | -11.756 | -8.244   | -20   | -20       |
| 65      | 1280    | -0.6     | 26      | 6.22    | -41.22   | -35   | -35       |
| 66      | 1300    | -1.2     | 24      | 52.44   | -82.44   | -30   | -30       |
| 67      | 1320    | -1.9     | 21      | 136.53  | -130.53  | 6     | 6         |
| 68      | 1340    | -2.16    | 21.5    | 137.392 | -148.392 | -11   | -11       |
| 69      | 1360    | -2.2     | 21.5    | 119.14  | -151.14  | -32   | -32       |
| 70      | 1380    | -2.4     | 22      | 126.88  | -164.88  | -38   | -38       |
| 71      | 1400    | -2.6     | 22      | 137.62  | -178.62  | -41   | -41       |
| 72      | 1420    | -2.9     | 22      | 149.23  | -199.23  | -50   | -50       |
| 73      | 1440    | -3.1     | 21.5    | 162.97  | -212.97  | ~50   | -50       |
| 74      | 1460    | -3.2     | 21      | 171.84  | -219.84  | -48   | -48       |
| 75      | 1480    | -3.5     | 21      | 186.45  | -240.45  | -54   | -54       |
| 76      | 1500    | -3.64    | 21      | 188.068 | -250.068 | -62   | -62       |
| 77      | 1520    | -3.7     | 20.5    | 197.19  | -254.19  | -57   | -57       |
| 78      | 1540    | -3.7     | 20      | 199.19  | -254.19  | -55   | -55       |
| 79      | 1560    | -3.7     | 19.5    | 201.19  | -254.19  | -53   | -53       |
| 80      | 1580    | -3.7     | 19.5    | 212.19  | -254.19  | -42   | -42       |
| 81      | 1600    | -3.7     | 19      | 219.19  | -254.19  | -35   | -35       |
| 82      | 1620    | -3.7     | 18.6    | 226.19  | -254.19  | -28   | -28       |
| 83      | 1640    | -3.7     | 18.4    | 236.19  | -254.19  | ~18   | -18       |
| 84      | 1660    | -3.7     | 18      | 245.19  | -254.19  | -9    | -9        |
| 85      | 1680    | -3.7     | 18      | 250.19  | -254.19  | -4    | -4        |
| 86      | 1700    | -3.7     | 18      | 245.19  | -254.19  | -9    | -9        |
| 87      | 1720    | -3.7     | 18      | 234.19  | -254.19  | -20   | -20       |
| 88      | 1740    | -3.7     | 18      | 222.19  | -254.19  | -32   | -32       |
| 89      | 1760    | -3.7     | 18      | 217.19  | -254.19  | -37   | -37       |
| 90      | 1780    | -3.7     | 18      | 214.19  | -254.19  | -40   | -40       |
| 91      | 1800    | -3.7     | 18      | 211.19  | -254.19  | -43   | -43       |
| 92      | 1820    | -3.7     | 18      | 210.19  | -254.19  | -44   | -44       |

\* f

.

Tabla B.2. Coeficiente aproximado del grado de compensación isostática, i y equilibrio isostático expresado en %.

N punto

k aprox. equilibrio isost. en % -0.26809 0.124118 ERR 0.763464 0.915089 0.912912 0.975328 0.955890 0.909024 0.773572 0.770632 0.540924 0.566415 0.090247 0.584113 -0.94080-94 ERR 1.228775 1.005361 0.649930 0.797415 0.804289 0.790179 0.791523 0.769320 0.774501 0.811736 0.826630 0.848972 0.895655 0.913082 0.818038 0.824912 0.834570 0.983020 0.941607 0.933869 0.915775 0.924932 0.943809 0.822478 0.796028 

| 0.815264 | 82         |
|----------|------------|
| 0.942806 | 94         |
| 0.902591 | 90         |
| 0.804289 | 80         |
| 0.856027 | 86         |
| 0,790179 | 79         |
| 0.766661 | 77         |
| 0.784430 | 78         |
| 0,705987 | 71         |
| 0.695065 | 70         |
| 0,569/05 | 57         |
| 0.5/3420 | 57         |
| 2 680965 | 268        |
| 0.375335 | 38         |
| 0.223413 | 22         |
| 0.726094 | 73         |
| 0.893655 | 89         |
| 0.893655 | 89         |
| -2.63901 | -264       |
| -1.42600 | -142       |
| 0,150897 | 15         |
| 0.636098 | 64         |
| 1.045966 | 105        |
| 0.925872 | 93         |
| 0.788275 | 79         |
| 0.769529 | 77         |
| 0.770462 | 77         |
| 0.749033 | 75         |
| 0.781659 | 78         |
| 0.775421 | 78         |
| 0.752067 | 75         |
| 0.775758 | 78         |
| 0.783626 | 78         |
| 0.791494 | 79         |
| 0.834769 | 83         |
| 0.862307 | 86         |
| 0.889846 | 89         |
| 0,929186 | 93         |
| 0.964593 | 96         |
| 0.984263 | 98         |
| 0.964593 | 96         |
| 0.921318 | 92         |
| 0.8/4109 | 87<br>05   |
| 0.834439 | C 8<br>N 0 |
| 0 830835 | 04<br>21   |
| 0.826901 | 20<br>83   |
|          |            |

Tabla B.3. Profundidad del Moho bajo el nivel del mar a lo largo del transecto para TA=20 km, TA=25 km, TA=30 km. El contraste de densidad es  $\Delta p=0.45$  g/cm<sup>3</sup> para los tres casos.

| N | punto    | altura,<br>prof.mar<br>km | Distanc.<br>km | Profundidad del Moho bajo<br>el nivel del mar (km) para<br>contraste de dens. 0.45 g/c<br>Ta=20km Ta=25km Ta=30km |
|---|----------|---------------------------|----------------|-------------------------------------------------------------------------------------------------------------------|
|   | 1        | 0.6                       | 0              | 23.56 28.56 33.56                                                                                                 |
|   | 2        | 1.8                       | 20             | 30.68 35.68 40.68                                                                                                 |
|   | 3        | 0.2                       | 40             | 21.18666 26.18666 31.18666                                                                                        |
|   | 4        | 0                         | 60             |                                                                                                                   |
|   | 5        | -1.6                      | 100            | 14.10888 19.10888 24.10888                                                                                        |
|   | 7        | -2.4                      | 100            |                                                                                                                   |
|   | ,<br>8   | -2.34                     | 140            | 11 39911 16 39911 21 39911                                                                                        |
|   | 9        | -2.64                     | 160            | 10.37866 15.37866 20.37866                                                                                        |
|   | 10       | -2.56                     | 180            | 10.67022 15.67022 20.67022                                                                                        |
|   | 11       | -1.8                      | 200            | 13.44 18.44 23.44                                                                                                 |
|   | 12       | -1.65                     | 220            | 13.98666 18.98666 23.98666                                                                                        |
|   | 13       | -1.3                      | 240            | 15.26222 20.26222 25.26222                                                                                        |
|   | 14       | -0.94                     | 260            | 16.57422 21.57422 26.57422                                                                                        |
|   | 15       | -0.24                     | 280            | 19.12533 24.12533 29.12533                                                                                        |
|   | 16       | -0.14                     | 300            | 19.48977 24.48977 29.48977                                                                                        |
|   | 17       | -0.06                     | 320            | 19.78133 24.78133 29.78133                                                                                        |
|   | 18       | 0                         | 340            | 20 25 30                                                                                                          |
|   | 19       | 0.08                      | 360            | 20.47466 25.47466 30.47466                                                                                        |
|   | 20       | 0.32                      | 380            | 21.89866 26.89866 31.89866                                                                                        |
|   | 21       | 1.1                       | 400            | 20.52000 31.52000 30.52000                                                                                        |
|   | 22       | 1.5                       | 420            | 2/./1333 32./1333 3/./1333                                                                                        |
|   | 24       | 1.9                       | 440            | 31, 27333, 36, 27333, 41, 27333                                                                                   |
|   | 25       | 2.1                       | 480            | 32.46 37.46 42.46                                                                                                 |
|   | 26       | 2.3                       | 500            | 33,64666 38,64666 43,64666                                                                                        |
|   | 27       | 2.4                       | 520            | 34.24 39.24 44.24                                                                                                 |
|   | 28       | 2.4                       | 540            | 34.24 39.24 44.24                                                                                                 |
|   | 29       | 2.4                       | 560            | 34.24 39.24 44.24                                                                                                 |
|   | 30       | 2.4                       | 580            | 34.24 39.24 44.24                                                                                                 |
|   | 31       | 2.3                       | 600            | 33.64666 38.64666 43.64666                                                                                        |
|   | 32       | 2.3                       | 620            | 33.64666 38.64666 43.64666                                                                                        |
|   | 33       | 2.6                       | 640            | 35.42666 40.42666 45.42666                                                                                        |
|   | 34       | 2.6                       | 660            | 35.42666 40.42666 45.42666                                                                                        |
|   | 35       | 2.42                      | 680            | 34.35866 39.35866 44.35866                                                                                        |
|   | 36       | 2                         | 700            | 31.86666 36.86666 41.86666                                                                                        |
|   | 37       | 2.05                      | 720            | 32.10333 37.10333 42.10333                                                                                        |
|   | 70<br>70 | 2 02                      | 740            | JI.80000 J0.80000 41.80000<br>31 00533 36 00533 /1 00533                                                          |
|   | 39       | 2.02                      | 700            | 31 86666 36 86666 41 86666<br>31 86666 36 86666 41 86666                                                          |
|   | 40<br>41 | 1 96                      | 200            | 31.62933 36.62933 A1 62933                                                                                        |
|   |          |                           | 000            | JT . OF J J . OF J J . J . OF J J . J . OF J J J                                                                  |

| 42 | 2.26  | 820  | 33.40933            | 38.40933 | 43.40933 |
|----|-------|------|---------------------|----------|----------|
| 43 | 2.38  | 840  | 34.12133            | 39.12133 | 44.12133 |
| 44 | 2.28  | 860  | 33.528              | 38.528   | 43.528   |
| 45 | 2     | 880  | 31.86666            | 36.86666 | 41.86666 |
| 46 | 2     | 900  | 31.86666            | 36.86666 | 41.86666 |
| 47 | 2.1   | 920  | 32.46               | 37.46    | 42.46    |
| 48 | 1.9   | 940  | 31.27333            | 36.27333 | 41.27333 |
| 49 | 1.9   | 960  | 31.27333            | 36.27333 | 41.27333 |
| 50 | 1.9   | 980  | 31.27333            | 36.27333 | 41.27333 |
| 51 | 1.8   | 1000 | 30.68               | 35.68    | 40.68    |
| 52 | 2     | 1020 | 31.86666            | 36.86666 | 41.86666 |
| 53 | 1.8   | 1040 | 30.68               | 35.68    | 40.68    |
| 54 | 1.6   | 1060 | 29.49333            | 34.49333 | 39.49333 |
| 55 | 1.2   | 1080 | 27.12               | 32.12    | 37.12    |
| 56 | 0.4   | 1100 | 22.37333            | 27.37333 | 32.37333 |
| 57 | 0.1   | 1120 | 20.59333            | 25.59333 | 30.59333 |
| 58 | 0.5   | 1140 | 22.96666            | 27.96666 | 32,96666 |
| 59 | 0.6   | 1160 | 23.56               | 28.56    | 33.56    |
| 60 | 0.16  | 1180 | 20.94933            | 25.94933 | 30.94933 |
| 61 | 0.1   | 1200 | 20.59333            | 25.59333 | 30.59333 |
| 62 | 0.04  | 1220 | 20.23733            | 25.23733 | 30.23733 |
| 63 | -0.02 | 1240 | 19.92711            | 24.92711 | 29.92711 |
| 64 | -0.12 | 1260 | 19.56266            | 24.56266 | 29,56266 |
| 65 | -0.6  | 1280 | 17.81333            | 22.81333 | 27.81333 |
| 66 | -1.2  | 1300 | 15.62666            | 20.62666 | 25.62666 |
| 67 | -1.9  | 1320 | 13.07555            | 18.07555 | 23.07555 |
| 68 | -2.16 | 1340 | 12.128              | 17.128   | 22.128   |
| 69 | -2.2  | 1360 | 11.98222            | 16.98222 | 21.98222 |
| 70 | -2.4  | 1380 | 11.25333            | 16.25333 | 21.25333 |
| 71 | -2.6  | 1400 | 10.52444            | 15.52444 | 20.52444 |
| 72 | -2.9  | 1420 | 9.431111            | 14.43111 | 19.43111 |
| 73 | -3.1  | 1440 | 8.702222            | 13.70222 | 18./0222 |
| 74 | -3.2  | 1460 | 8.337777            | 13.33777 | 18.33/// |
| 75 | -3.5  | 1480 | 7.244444            | 12.24444 | 17.24444 |
| 76 | -3.64 | 1500 | 6.734222            | 11.73422 | 10./3422 |
| 77 | -3.7  | 1520 | 6.515555            | 11.51555 | 10.01000 |
| 78 | -3.7  | 1540 | 6.515555            | 11.51555 | 16.01000 |
| 79 | -3.7  | 1560 | 6.515555            | 11.51555 | 16.51555 |
| 80 | -3.7  | 1580 | 6.515555            | 11.51555 | 16,51555 |
| 81 | -3.7  | 1600 | 6.515555            | 11.51555 | 16,51555 |
| 82 | -3.7  | 1620 | 6.515555            | 11.51555 | 16.51555 |
| 83 | -3.7  | 1640 | 6.515555            | 11.51555 | 16.51555 |
| 84 | -3.7  | 1660 | 0.010000            | TT.01000 | 16 51555 |
| 85 | -3.7  | 1680 | 0.010000            | TT.27222 | 16 51555 |
| 86 | -3.7  | 1700 | 6.515555<br>6 E1EEE | TT·2T222 | 16 51555 |
| 87 | -3.7  | 1720 | 0.010000            | TT.27222 | 10.01000 |
| 88 | -3.7  | 1740 | 6.515555            | TT*27222 | 10.01000 |

| 89 | -3.7 | 1760 | 6.515555 | 11.51555 | 16.51555 |
|----|------|------|----------|----------|----------|
| 90 | -3.7 | 1780 | 6.515555 | 11.51555 | 16,51555 |
| 91 | -3.7 | 1800 | 6.515555 | 11.51555 | 16.51555 |
| 92 | -3.7 | 1820 | 6.515555 | 11.51555 | 16.51555 |

Tabla B.4. Valores de la anomalía isostática correspondientes a los casos de la Tabla B.3.

| punto | Dist.<br>km                                                                                                                        | Anomalia<br>contrast<br>Ta=20km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | isostatica<br>e de densio<br>Ta=25km 1                                                                                                                                                                                                                                                                                                                                                                                                                            | (mGal) para<br>1. 0.45 g/cm3<br>3a=30km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | 0                                                                                                                                  | 53.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50.14                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2     | 20                                                                                                                                 | 18.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.97                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3     | 40                                                                                                                                 | 19.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.02                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4     | 60                                                                                                                                 | -3.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.54                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -7.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5     | 80                                                                                                                                 | 12.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.01                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6     | 100                                                                                                                                | 36.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47.68                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7     | 120                                                                                                                                | 16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.98                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8     | 140                                                                                                                                | 20.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.11                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9     | 160                                                                                                                                | 29.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39.79                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10    | 180                                                                                                                                | 25.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34.61                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11    | 200                                                                                                                                | -13.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -8.83                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12    | 220                                                                                                                                | -2.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.27                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6,55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13    | 240                                                                                                                                | -20.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -16.55                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -13.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14    | 260                                                                                                                                | -7.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -5.59                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 15    | 280                                                                                                                                | -18.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -18.13                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -17.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16    | 300                                                                                                                                | 2.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.93                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 17    | 320                                                                                                                                | 5.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.87                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 18    | 340                                                                                                                                | 10.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 19    | 360                                                                                                                                | 30.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33.27                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20    | 380                                                                                                                                | 34.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.73                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21    | 400                                                                                                                                | 25.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23.72                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 22    | 420                                                                                                                                | 19.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.29                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 23    | 440                                                                                                                                | 17.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.13                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 24    | 460                                                                                                                                | 15.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.77                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 25    | 480                                                                                                                                | 17.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.37                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 26    | 500                                                                                                                                | 19.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.01                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 27    | 520                                                                                                                                | 19.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 28    | 540                                                                                                                                | 15.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.88                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 29    | 560                                                                                                                                | 17.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.65                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 30    | 580                                                                                                                                | 12.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.61                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.4/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 31    | 600                                                                                                                                | 12.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.4/                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 32    | 620                                                                                                                                | 9.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.56                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 33    | 640                                                                                                                                | 8.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.89                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 34    | 660                                                                                                                                | 4.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 35    | 680                                                                                                                                | 12.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A*12                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 30    | 700                                                                                                                                | 10.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.58                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20    | 720                                                                                                                                | 8.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.9/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 30    | 740                                                                                                                                | 12.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 39    | 700                                                                                                                                | 12.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.84                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9<br>0 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 40    | 780                                                                                                                                | 12.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.0/                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0./                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 41    | 800                                                                                                                                | 14.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.25                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 42    | 820                                                                                                                                | 10.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.07                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 43    | 840                                                                                                                                | 14.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.65                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | punto 1 2 3 4 5 6 7 8 9 10 111 12 2 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 2 33 34 35 36 37 38 39 40 41 42 43 | punto         Dist.<br>km           1         0           2         20           3         40           4         60           5         80           6         100           7         120           8         140           9         160           10         180           11         200           13         240           14         260           15         280           16         300           18         340           19         360           20         380           21         400           22         420           23         440           24         460           25         480           26         500           27         520           28         540           30         580           31         600           32         620           33         640           34         660           35         680           36         700 | puntoDist.<br>kmAnomalia<br>contrast<br>Ta=20km1053.6622018.0434019.78460-3.7658012.92610036.98712016.9916029.611018025.0611200-13.9712220-2.3513240-20.4114260-7.9915280-18.53163002.29173205.181834010.261936030.162038034.282140025.272242019.222344017.932446015.252548017.442650019.332752019.592854015.862956017.263058012.783160012.29326209.54336408.38346604.963568012.963670010.97377208.733874012.213976012.564078012.514180014.214384014.214466015.25 | puntoDist.<br>kmAnomalia isostatica<br>contraste de densid<br>Ta=20km1053.6650.1422018.0411.9734019.7819.02460-3.76-2.5458012.9219.01610036.9847.68712016.925.98814020.9329.11916029.6139.791018025.0634.6111200-13.97-8.8312220-2.352.2713240-20.41-16.5514260-7.99-5.5915280-18.53-18.13163002.292.93173205.186.871834010.26131936030.1633.272038034.2835.732140025.2723.722242019.2216.292344017.9314.132650019.3314.012752019.5914.32854015.8610.882956017.2612.653058012.788.613160012.299.543568012.969.553670010.978.58377208.736.933874012.51 |

| 45 | 880  | 7.03   | 3.88   | 0.71   |
|----|------|--------|--------|--------|
| 46 | 900  | 10.98  | 7.96   | 4.92   |
| 47 | 920  | 18.93  | 15.76  | 12.63  |
| 48 | 940  | 21.18  | 18,06  | 14.93  |
| 49 | 960  | 28.91  | 25.66  | 22.41  |
| 50 | 980  | 28.6   | 25     | 21.44  |
| 51 | 1000 | 28.96  | 24.76  | 20.68  |
| 52 | 1020 | 20.22  | 15.3   | 10.68  |
| 53 | 1040 | 25.42  | 20.33  | 15.63  |
| 54 | 1060 | 43.91  | 39.44  | 35.41  |
| 55 | 1080 | 39.52  | 37.3   | 35.28  |
| 56 | 1100 | 41.24  | 42.76  | 43.69  |
| 57 | 1120 | 30.62  | 33.53  | 35.55  |
| 58 | 1140 | 33.31  | 33.43  | 33.59  |
| 59 | 1160 | 31.96  | 30.55  | 29.52  |
| 60 | 1180 | 19.2   | 18.82  | 18.36  |
| 61 | 1200 | 8.51   | 8.37   | 8.1    |
| 62 | 1220 | 3.61   | 2.81   | 2.03   |
| 63 | 1240 | -7.03  | -8.77  | -10.27 |
| 64 | 1260 | -30.37 | -32.64 | -34.45 |
| 65 | 1280 | -35.82 | -37.14 | -38.1  |
| 66 | 1300 | -19.97 | -19.07 | -18.08 |
| 67 | 1320 | 32.41  | 36.27  | 39.56  |
| 68 | 1340 | 11.52  | 15.86  | 19.7   |
| 69 | 1360 | -19.71 | -16.71 | -13.69 |
| 70 | 1380 | -25.41 | -22.71 | -19.97 |
| 71 | 1400 | -29.56 | -26.73 | -23.81 |
| 72 | 1420 | -34.64 | -30.82 | -27.18 |
| 73 | 1440 | -34.88 | -30.77 | -26.85 |
| 74 | 1460 | -37.35 | -33.79 | -29.99 |
| 75 | 1480 | -37.83 | -32.62 | -27.74 |
| 76 | 1500 | -46.65 | -41.02 | -35.71 |
| 77 | 1520 | -42.79 | -37.43 | -32.3  |
| 78 | 1540 | -42.53 | -37.79 | -33.13 |
| 79 | 1560 | -41.27 | -36.9  | -32.57 |
| 80 | 1580 | -30.66 | -26.5  | -22.35 |
| 81 | 1600 | -23.84 | -19.77 | -15.72 |
| 82 | 1620 | -16.84 | -12.78 | -8.74  |
| 83 | 1640 | -6.65  | -2.54  | 1.56   |
| 84 | 1660 | 2.73   | 6.99   | 11.22  |
| 85 | 1680 | 8.37   | 12.86  | 17.32  |
| 86 | 1700 | 4.36   | 9.21   | 14.01  |
| 87 | 1720 | -5.13  | 0.26   | 5.58   |
| 88 | 1740 | -14.74 | -8.51  | -2.41  |
| 89 | 1760 | -15.67 | -8.08  | -0.77  |
| 90 | 1780 | -10.69 | -0.73  | 8.47   |
| 91 | 1800 | 6.87   | 20.69  | 31.83  |
| 92 | 1820 | 86.49  | 87.61  | 88.73  |

. . . . . . . .

Tabla B.5. Profundidad del Moho bajo el nivel del mar a lo largo del transecto para  $\Delta p=0.35$  g/cm<sup>3</sup>,  $\Delta p=0.45$  g/cm<sup>3</sup>. Ta=25 km para los dos casos.

|   |       |          |          | Profundidad del Moho bajo                              |
|---|-------|----------|----------|--------------------------------------------------------|
| N | punto | Altura,  | Distanc. | el nivel del mar para Ta=25                            |
|   |       | prof.mar |          | y contraste de densidad (g/                            |
|   |       | km       | km       | 0.35 0.45 0.55                                         |
|   |       |          |          |                                                        |
|   |       |          |          |                                                        |
|   | 1     | 0.6      | 0        | 29.57714 28.56 27.91272                                |
|   | 2     | 1.8      | 20       | 38.73142 35.68 33.73818                                |
|   | 3     | 0.2      | 40       | 26.52571 26.18666 25.97090                             |
|   | 4     | 0.2      | 60       | 25 25 25                                               |
|   | 5     | -1 ĕ     | 80       | 17.50285 19.16888 20.22909                             |
|   | 6     | -2 4     | 100      | 13.75428 16.25333 17.84363                             |
|   |       | -2.4     | 120      | 14 03542 16 472 18 02254                               |
|   | , ,   | -2.34    | 120      |                                                        |
|   | 0     | -2.30    | 140      | 12 62071 15 27066 17 128                               |
|   | 9     | -2.64    | 160      |                                                        |
|   | 10    | -2.56    | 160      |                                                        |
|   | 11    | -1.8     | 200      |                                                        |
|   | 12    | -1.65    | 220      |                                                        |
|   | 13    | -1.3     | 240      |                                                        |
|   | 14    | -0.94    | 260      | 20.59542 21.57422 22.19709                             |
|   | 15    | -0.24    | 280      | 23.87542 24.12533 24.28436                             |
|   | 16    | -0.14    | 300      | 24.344 24.48977 24.58254                               |
|   | 17    | -0.06    | 320      | 24.71885 24.78133 24.82109                             |
|   | 18    | 0        | 340      | 25 25 25                                               |
|   | 19    | 0.08     | 360      | 25.61028 25.47466 25.38836                             |
|   | 20    | 0.32     | 380      | 27.44114 26.89866 26.55345                             |
|   | 21    | 1.1      | 400      | 33.39142 31.52666 30.34                                |
|   | 22    | 1.3      | 420      | 34.91714 32.71333 31.31090                             |
|   | 23    | 1.6      | 440      | 37.20571 34.49333 32.76727                             |
|   | 24    | 1.9      | 460      | 39.49428 36.27333 34.22363                             |
|   | 25    | 2.1      | 480      | 41.02 37.46 35.19454                                   |
|   | 26    | 2.3      | 500      | 42.54571 38.64666 36.16545                             |
|   | 27    | 2.4      | 520      | 43.30857 39.24 36.65090                                |
|   | 28    | 2.4      | 540      | 43.30857 39.24 36.65090                                |
|   | 29    | 2.4      | 560      | 43.30857 39.24 36.65090                                |
|   | 30    | 2.4      | 580      | 43.30857 39.24 36.65090                                |
|   | 31    | 2.3      | 600      | 42.54571 38.64666 36.16545                             |
|   | 32    | 2.3      | 620      | 42.54571 38.64666 36.16545                             |
|   | 33    | 2.6      | 640      | 44.83428 40.42666 37.62181                             |
|   | 34    | 2.6      | 660      | 44.83428 40.42666 37.62181                             |
|   | 35    | 2 4 2    | 680      | 43,46114, 39,35866 36,748                              |
|   | 36    | 2        | 200      | 40.25714 36.86666 34.70909                             |
|   | 37    | 2 05     | 720      | 40 63857 37 16333 34 95181                             |
|   | 30    | 2.00     | 720      | 40.25714 36.86666 34.70909                             |
|   | 20    | 2 02     | 740      | 40.2071 36 08533 34 80618                              |
|   | 39    | 2.02     | 760      | 40.35714 36 86666 34 70000                             |
|   | 40    | 1        | 780      | 40.20714 30.00000 34.70909<br>20 052 26 22022 24 51400 |
|   | 41    | 1.96     | 800      | 33.325 30.05333 34.21430                               |

| 42 | 2.26  | 820  | 42.24057 | 38.40933 | 35.97127 |
|----|-------|------|----------|----------|----------|
| 43 | 2.38  | 840  | 43.156   | 39.12133 | 36.55381 |
| 44 | 2.28  | 860  | 42.39314 | 38.528   | 36.06836 |
| 45 | 2     | 880  | 40.25714 | 36.86666 | 34.70909 |
| 46 | 2     | 900  | 40.25714 | 36.86666 | 34.70909 |
| 47 | 2.1   | 920  | 41.02    | 37.46    | 35,19454 |
| 48 | 1.9   | 940  | 39.49428 | 36.27333 | 34.22363 |
| 49 | 1.9   | 960  | 39.49428 | 36.27333 | 34.22363 |
| 50 | 1.9   | 980  | 39.49428 | 36.27333 | 34.22363 |
| 51 | 1.8   | 1000 | 38.73142 | 35.68    | 33.73818 |
| 52 | 2     | 1020 | 40.25714 | 36.86666 | 34.70909 |
| 53 | 1.8   | 1040 | 38.73142 | 35.68    | 33.73818 |
| 54 | 1.6   | 1060 | 37.20571 | 34.49333 | 32.76727 |
| 55 | 1.2   | 1080 | 34.15428 | 32.12    | 30.82545 |
| 56 | 0.4   | 1100 | 28.05142 | 27.37333 | 26.94181 |
| 57 | 0.1   | 1120 | 25.76285 | 25.59333 | 25.48545 |
| 58 | 0.5   | 1140 | 28.81428 | 27.96666 | 27.42727 |
| 59 | 0.6   | 1160 | 29.57714 | 28.56    | 27.91272 |
| 60 | 0.16  | 1180 | 26.22057 | 25,94933 | 25.77672 |
| 61 | 0.1   | 1200 | 25.76285 | 25.59333 | 25.48545 |
| 62 | 0.04  | 1220 | 25.30514 | 25.23733 | 25.19418 |
| 63 | -0.02 | 1240 | 24.90628 | 24.92711 | 24.94036 |
| 64 | -0.12 | 1260 | 24.43771 | 24.56266 | 24.64218 |
| 65 | -0.6  | 1280 | 22.18857 | 22.81333 | 23.21090 |
| 66 | -1.2  | 1300 | 19.37714 | 20.62666 | 21.42181 |
| 67 | -1.9  | 1320 | 16.09714 | 18.07555 | 19.33454 |
| 68 | -2.16 | 1340 | 14.87885 | 17.128   | 18.55927 |
| 69 | -2.2  | 1360 | 14.69142 | 16,98222 | 18.44    |
| 70 | -2.4  | 1380 | 13.75428 | 16.25333 | 17.84363 |
| 71 | -2.6  | 1400 | 12.81714 | 15.52444 | 17,24727 |
| 72 | -2.9  | 1420 | 11.41142 | 14.43111 | 16.35272 |
| 73 | -3.1  | 1440 | 10.47428 | 13.70222 | 15.75636 |
| 74 | -3.2  | 1460 | 10.00571 | 13.33777 | 15.45818 |
| 75 | -3.5  | 1480 | 8.6      | 12.24444 | 14.56363 |
| 76 | -3.64 | 1500 | 7.944    | 11.73422 | 14.14618 |
| 77 | -3.7  | 1520 | 7.662857 | 11.51555 | 13.96727 |
| 78 | -3.7  | 1540 | 7.662857 | 11.51555 | 13.96727 |
| 79 | -3.7  | 1560 | 7.662857 | 11.51555 | 13.96727 |
| 80 | -3.7  | 1580 | 7,662857 | 11.51555 | 13.96727 |
| 81 | -3.7  | 1600 | 7.662857 | 11.51555 | 13.96727 |
| 82 | -3.7  | 1620 | 7,662857 | 11.51555 | 13.96727 |
| 83 | -3.7  | 1640 | 7.662857 | 11.51555 | 13.96727 |
| 84 | -3.7  | 1660 | 7.662857 | 11.51555 | 13.96727 |
| 85 | -3.7  | 1680 | 7.662857 | 11.51555 | 13.96727 |
| 86 | -3.7  | 1700 | 7,662857 | 11.51555 | 13.96727 |
| 87 | -3.7  | 1720 | 7.662857 | 11.51555 | 13.96727 |
| 88 | -3.7  | 1740 | 7.662857 | 11.51555 | 13.96727 |

| 89 | -3.7 | 1760 | 7.662857 | 11.51555 | 13.96727 |
|----|------|------|----------|----------|----------|
| 90 | -3.7 | 1780 | 7.662857 | 11.51555 | 13.96727 |
| 91 | -3.7 | 1800 | 7.662857 | 11.51555 | 13.96727 |
| 92 | -3.7 | 1820 | 7.662857 | 11.51555 | 13.96727 |

Tabla B.6. Valores de anomalía isostática a lo largo del transecto correspondientes a los casos de la Tabla B.5.

|   |       |           | Anomalia | isostatica  | (mGal) para    |
|---|-------|-----------|----------|-------------|----------------|
|   |       |           | Ta=25 km | y contrast  | e de densidad: |
| N | punto | Distancia |          | (en g/cm3): |                |
|   |       | km        | 0.35     | 0.45        | 0.55           |
|   | 1     | 0         | 48.43    | 50.14       | 50.08          |
|   | 2     | 20        | 8.08     | 11.97       | 12.25          |
|   | 3     | 40        | 14.57    | 19.02       | 18,56          |
|   | 4     | 60        | -4.56    | -2.54       | -3.54          |
|   | 5     | 80        | 17.84    | 19.01       | 18.64          |
|   | 6     | 100       | 45.32    | 47.68       | 48.47          |
|   | 7     | 120       | 24.1     | 25.98       | 26.76          |
|   | 8     | 140       | 27.46    | 29.11       | 29.87          |
|   | 9     | 160       | 37.23    | 39.79       | 41.1           |
|   | 10    | 180       | 32.55    | 34.61       | 35.66          |
|   | 11    | 200       | -8.86    | -8.83       | -8.91          |
|   | 12    | 220       | 2.68     | 2.27        | 1.88           |
|   | 13    | 240       | -15,75   | -16.55      | -17.15         |
|   | 14    | 260       | -4.39    | ~5.59       | -6.42          |
|   | 15    | 280       | -16,67   | -18.13      | -19.16         |
|   | 16    | 300       | 4.43     | 2.93        | 1.87           |
|   | 17    | 320       | 8.42     | 6.87        | 5.79           |
|   | 18    | 340       | 14.69    | 13          | 11.85          |
|   | 19    | 360       | 35.1     | 33.27       | 32.02          |
|   | 20    | 380       | 37.4     | 35.73       | 34.56          |
|   | 21    | 400       | 24.76    | 23.72       | 22.96          |
|   | 22    | 420       | 16.74    | 16.29       | 15.94          |
|   | 23    | 440       | 13.99    | 14.13       | 14.2           |
|   | 24    | 460       | 9.99     | 10.77       | 11.28          |
|   | 25    | 480       | 11       | 12.37       | 13.31          |
|   | 26    | 500       | 12.23    | 14.01       | 15.28          |
|   | 27    | 520       | 12.33    | 14.3        | 15.8           |
|   | 28    | 540       | 8.95     | 10.88       | 12.54          |
|   | 29    | 560       | 10.84    | 12.65       | 10.0           |
|   | 30    | 580       | /.01     | 8.01        | 10.9           |
|   | 31    | 600       | /        | 8.47        | 10.90          |
|   | 32    | 620       | 3.92     | 2.20        | 7.04<br>E 90   |
|   | 33    | 640       | 1.89     | 3.09        | 2 13           |
|   | 34    | 600       | -1.53    | 0.47        | 10 39          |
|   | 35    | 580       | 7.93     | 9.55        | 8 95           |
|   | 20    | 700       | 6 71     | 6 93        | 6.95           |
|   | 27    | 720       | 10 41    | 10.52       | 10.43          |
|   | 20    | 740       | 10.41    | 10.32       | 10.71          |
|   | 39    | 700       | 10.71    | 10.67       | 10.55          |
|   | 40    | 200       | 11 74    | 10.07       | 12.3           |
|   | 41    | 820       | 12.53    | 13.61       | 14.04          |

ŧ

| 43  | 840  | 8.85   | 10.27  | 10.93  |
|-----|------|--------|--------|--------|
| 44  | 860  | 10.38  | 11.65  | 12.18  |
| 45  | 880  | 3      | 3.88   | 4.09   |
| 46  | 900  | 7.25   | 7.96   | 8.04   |
| 47  | 920  | 15.06  | 15.76  | 15.79  |
| 48  | 940  | 17.46  | 18.06  | 18.02  |
| 49  | 960  | 25.09  | 25.66  | 25.54  |
| 50  | 980  | 24.36  | 25     | 24.9   |
| 51  | 1000 | 23.94  | 24.76  | 24.79  |
| 52  | 1020 | 14.31  | 15.3   | 15.38  |
| 53  | 1040 | 19.48  | 20.33  | 20.28  |
| 54  | 1060 | 39,13  | 39.44  | 39.03  |
| 55  | 1080 | 37,93  | 37.3   | 36.17  |
| 56  | 1100 | 44.33  | 42.76  | 40.94  |
| 57  | 1120 | 35,34  | 33.53  | 31.45  |
| 58  | 1140 | 34.91  | 33.43  | 31.38  |
| 59  | 1160 | 31.84  | 30.55  | 28.39  |
| 60  | 1180 | 20.23  | 18.82  | 16.35  |
| 61  | 1200 | 9,85   | 8.37   | 5.42   |
| 62  | 1220 | 4.35   | 2.81   | -0.9   |
| 63  | 1240 | -7.11  | -8.77  | -13.87 |
| 64  | 1260 | -30.81 | -32.64 | -40.44 |
| 65  | 1280 | -35.25 | -37.14 | -49.42 |
| 66  | 1300 | -17 54 | -19 07 | -37.23 |
| 67  | 1320 | 36.84  | 36.27  | 11.99  |
| 68  | 1340 | 16.02  | 15.86  | -12.93 |
| 69  | 1360 | -16.22 | -16.71 | -48.5  |
| 20  | 1380 | -22 21 | -22 71 | -57.41 |
| 71  | 1400 | -26 4  | -26 73 | -64.58 |
| 72  | 1420 | -31 18 | -30 82 | -72.05 |
| 73  | 1440 | -31.48 | -30.77 | -74.95 |
| 74  | 1460 | -34 32 | -13 79 | -80.52 |
| 75  | 1480 | -34.32 | -32.62 | -82.27 |
| 76  | 1500 | -43.22 | -41.02 | -92.83 |
| 77  | 1520 | -30 56 | -37 43 | -90.41 |
| 78  | 1540 | -39.50 | -37 79 | -91.25 |
| 70  | 1560 | -39.34 | -36 9  | -90.55 |
| 20  | 1500 | -30,43 | -26 5  | -80.24 |
| 01  | 1600 | -27.91 | -19 77 | -73 53 |
| 01  | 1620 | -14 12 | -12 78 | -66.51 |
| 02  | 1640 | -2 00  | -2 54  | ~56 18 |
| 0.0 | 1640 | -5.69  | 6 99   | -46 5  |
| 04  | 1680 | 11 26  | 12.04  | -40.41 |
| 00  | 1700 | 11.30  | 4 2 1  | -40.41 |
| 00  | 1720 | -1 (   | 5.41   | -43.74 |
| 0/  | 1740 | -10 7  | U.20   | -52.21 |
| 80  | 1740 | -10.7  | -0.01  | -00.24 |
| 89  | 1760 | -10.81 | -0.08  | -40.01 |
| 90  | 1780 | -4.41  | -0.73  | -40.91 |

91180015.3420.69-22.0492182087.3587.6159.98

Tabla B.7. Valores de la anomalia isostática a lo largo del transecto para el caso de TA=25 km y  $\Delta \rho$ =0.45 g/cm<sup>3</sup> calculados con y sin considerar la topografia.

|   |       |           | Anomalia  | isostatica p   | ara Ta=25 km                 |
|---|-------|-----------|-----------|----------------|------------------------------|
|   |       |           | y contra: | ste de dens.   | $0.45 \text{ g/cm}^3$        |
| N | punto | Distancia | con top.  | sin top.       |                              |
|   |       | Km        | 1         | nGal           |                              |
|   | 1     | 0         | 50.14     | 50.73          |                              |
|   | 2     | 20        | 11.97     | 15.25          |                              |
|   | 3     | 40        | 19,02     | 19.28          |                              |
|   | 4     | 60        | -2.54     | -2.54          |                              |
|   | 5     | 80        | 19.01     | 19.01          |                              |
|   | 6     | 100       | 47.68     | 47.68          |                              |
|   | 7     | 120       | 25.98     | 25.98          |                              |
|   | 8     | 140       | 29.11     | 29.11          |                              |
|   | 9     | 160       | 39.79.    | 39.79          |                              |
|   | 10    | 180       | 34.61     | 34.61          |                              |
|   | 11    | 200       | -8.83     | -8.83          |                              |
|   | 12    | 220       | 2.27      | 2.27           |                              |
|   | 13    | 240       | -16.55    | -16.55         |                              |
|   | 14    | 260       | -5.59     | -5.59          |                              |
|   | 15    | 280       | -18.13    | -18.13         |                              |
|   | 16    | 300       | 2.93      | 2.93           |                              |
|   | 17    | 320       | 5.8/      | 0.8/           |                              |
|   | 18    | 340       | 51 CC     | 13 13          |                              |
|   | 19    | 300       | 33.2/     | JJ.22<br>25 65 |                              |
|   | 20    | 380       | 33./3     | 33.03          |                              |
|   | 21    | 400       | 23,72     | 17 11          |                              |
|   | 22    | 420       | 14 13     | 14.94          |                              |
|   | 23    | 440       | 10 77     | 13.17          |                              |
|   | 25    | 480       | 12.37     | 13.77          |                              |
|   | 26    | 500       | 14.01     | 16.43          |                              |
|   | 27    | 520       | 14.3      | 16.99          |                              |
|   | 28    | 540       | 10.88     | 13.86          |                              |
|   | 29    | 560       | 12.65     | 14.03          |                              |
|   | 30    | 580       | 8.61      | 10.45          |                              |
|   | 31    | 600       | 8.47      | 10.19          |                              |
|   | 32    | 620       | 5.56      | 7.39           |                              |
|   | 33    | 640       | 3.89      | 6.2            |                              |
|   | 34    | 660       | 0.47      | 2.78           |                              |
|   | 35    | 680       | 9.35      | · 11.08        |                              |
|   | 36    | 700       | 8,58      | 9.55           |                              |
|   | 37    | 720       | 6.93      | 7.69           |                              |
|   | 38    | 740       | 10.52     | 11.21          |                              |
|   | 39    | 760       | 10.84     | 11.55          |                              |
|   | 40    | 780       | 10.67     | 11.42          |                              |
|   | 41    | 800       | 12.25     | 13.18          |                              |
|   | 42    | 820       | 13.61     | 15.09          | and the second states of the |
|   | 43    | 840       | 10.27     | 12.12          |                              |

| 44       | 860  | 11.65         | 13.34  |
|----------|------|---------------|--------|
| 45       | 880  | 3.88          | 5.15   |
| 46       | 900  | 7.96          | 9.12   |
| 47       | 920  | 15.76         | 17.38  |
| 48       | 940  | 18.06         | 19     |
| 49       | 960  | 25.66         | 27.55  |
| 50       | 980  | 25            | 27.09  |
| 51       | 1000 | 24.76         | 26.01  |
| 52       | 1020 | 15.3          | 17.81  |
| 53       | 1040 | 20.33         | 22.41  |
| 54       | 1060 | 39.44         | 40.12  |
| 55       | 1080 | 37.3          | 37.73  |
| 56       | 1100 | 42.76         | 42.67  |
| 57       | 1120 | 33.53         | 33.48  |
| 58       | 1140 | 33.43         | 33.42  |
| 59       | 1160 | 30.55         | 30.69  |
| 60       | 1180 | 18.82         | 18.83  |
| 61       | 1200 | 8.37          | 8.37   |
| 62       | 1220 | 2.81          | 2.82   |
| 63       | 1240 | -8.77         | -8.77  |
| 64       | 1260 | -32.64        | -32.64 |
| 65       | 1280 | -37.14        | -37.14 |
| 66       | 1300 | -19.07        | -19.07 |
| 67       | 1320 | 36.27         | 36.27  |
| 68       | 1340 | 15.86         | 15.86  |
| 69       | 1360 | -16.71        | -16.71 |
| 70       | 1380 | -22.71        | -22.71 |
| 71       | 1400 | -26.73        | -26.73 |
| 72       | 1420 | -30.82        | -30.82 |
| 73       | 1440 | -30.77        | -30.77 |
| 74       | 1460 | -33.79        | -33.79 |
| 75       | 1480 | -32.62        | ~32.02 |
| 76       | 1500 | -41.02        | -41.02 |
| 77       | 1520 | -17.43        | -37.70 |
| 78       | 1540 | -37.79        | -36 9  |
| /9       | 1560 | -30.9         | -26.5  |
| 80       | 1580 | -10 77        | -19 77 |
| 81       | 1600 | -10 79        | -12 78 |
| 82       | 1620 | -12.78        | -2.54  |
| 0)       | 1640 | -2·J4<br>6 99 | 6.99   |
| 04<br>95 | 1690 | 12.86         | 12.86  |
| 86       | 1700 | 9,21          | 9.21   |
| 27       | 1720 | D. 26         | 0.26   |
| 20       | 1740 | -8,51         | -8.51  |
| 20       | 1760 | -8.08         | -8.08  |
| 90       | 1780 | -0.73         | -0.73  |
| 91       | 1800 | 20.69         | 20.69  |
| -        |      |               |        |

### 92 1820

### 87.61 87.61

# Anexo C

A continuación se presentan las bases matemáticas del análisis espectral de perfiles magnéticos.

Este método es independiente de la declinación e inclinación magnética pero la dirección del perfil debe ser constante.

El tipo de cuerpo más usado en la formulación matemática de las técnicas estadístico espectrales de interpretación aeromagnética es el prisma vertical uniformemente magnetizado. El modelo de prisma usado en el análisis estadístico de mapas por Spector y Grant (1970) es igualmente aplicado por Green (1972) al análisis del caso de dos dimensiones para la interpretación de perfiles magnéticos.

El eje X coincide con la linea de vuelo y forma un ángulo  $\theta$  con respecto del norte geográfico.  $\theta$  es positivo cuando se mide en la dirección de las manecillas del reloj a partir del norte.

El prisma que modela el cuerpo magnétizado, se extiende en  $\pm \infty$  en la dirección de Y (Fig. C.1)

I

#### LA ANOMALIA MAGNETICA DE UN PRISMA.

Iniciaremos nuestro análisis con el espectro de potencia de un prisma. El espectro de potencia (el cuadrado de la transformada de Fourier de la intensidad de la anomalía del campo magnético total) producido por el prisma es (Green, 1972):

$$E(u,\theta) = |F(\Delta T)|^2 = 4\pi^2 K^2 R_T R_F S C P$$
(1)

donde F - transformada de Fourier,  $\Delta T$  - anomalia del campo magnético 1) K/2a =moménto magnético / volumen unitario del cuerpo 2) R<sub>T</sub> = sin<sup>2</sup> I<sub>T</sub> + cos<sup>2</sup> (D<sub>T</sub> -  $\theta$ ) cos<sup>2</sup> I<sub>T</sub>

 $I_{\tau}$  - inclinación del vector geomagnético T

D<sub>2</sub> - declinación del vector geomagnético T

3)  $R_{\kappa} = \sin^2 I_{\kappa} + \cos^2(D_{\kappa} - \theta) \cos^2 I_{\kappa}$ 

I. - inclinación del vector momento magnético K

D\_ - declinación del vector momento magnético K

U - equivalente del número de onda angular de la variable espacial x .

2a - ancho del prisma. 4) S=sin<sup>2</sup>(ua)/(ua)<sup>2</sup> 5) C=(1-exp(-tu))<sup>2</sup> t - el espesor del cuerpo

6) P = exp(-2hu)

h = la profundidad hasta la cima del cuerpo.

Los términos S, C y P contienen toda la información sobre ancho, espesor y profundidad del cuerpo respectivamente.

ΙI

EL PERFIL MAGNETICO INTERSECTA UNA SECUENCIA DE LOS CUERPOS.

Ahora generalisamos nuestro análisis para un ensamble de prismas magnéticos.

La ecuación (1) se aplica solamente a una anomalia. Para analizar un perfil aeromagnético que puede contener muchas anomalías, se hacen varias suposiciones:

1) La aproximación estadística del conjunto.

Para estos fines se utilizó el postulado fundamental de la mecánica estádistica: el valor más probable (esperanza) de la función del espectro de potencia del conjunto de los cuerpos es igual al promedio del conjunto de los espectros de potencia.

2) La segunda suposición consiste en que el perfil contiene la contribución de un conjunto definido por los parametros { K,  $D_T$ ,  $D_K$ ,  $I_T$ ,  $I_K$ , a, t, h } que varian independientemente uno de otro y distribuidos dentro de los rangos:

 $(O\pm 2k)$ ,  $(D_{T} \pm \Delta D_{T})$ ,  $(D_{r} \pm \Delta D_{r})$ ,  $(I_{T} \pm \Delta I_{T})$ ,  $(I_{r} \pm \Delta I_{r})$ ,

 $(0 - 2a), (0 - 2t), (h \pm \Delta h)$ 

El promedio del conjunto de los espectros de potencia de anomalías magnéticas de los cuerpos respectivos será:

$$\langle E(u) \rangle = \langle 4\pi^2 K^2 \rangle \langle R_r \rangle \langle R_r \rangle , S \rangle \langle C \rangle \langle P \rangle$$
 (2)

donde < > significa promedio del conjunto.

Para hacer la expresión (2) aditiva, simplemente tomamos el logaritmo de esta expresión y obtenemos:

 $\ln(E(u)) = \ln(4\pi^2 K^2) + \ln (R_{T}) + \ln (R_{R}) + \ln (S) + \ln (C) + \ln (P)$ 

Es obvio , que solamente los tres últimos términos (<S>, <C>, <P>)

afectarán el gradiente de la gráfica del logaritmo del espectro de potencia ln<E(u)> contra el número de onda u. Su influyencia es simplemente aditiva. Esta propiedad aditiva es uno de las razones principales para preferir el espectro logarítmico para realizar el análisis.

## EVALUACION Y DESCUSION DE LOS TERMINOS RELACIONADOS AL ESPECTRO.

A continuación se discute la importancia de cada uno de estos miembros. Para ello seguimos el análisis de Green (1972)

1) El término asociado con el vector campo geomagnético:

$$\begin{array}{c} I_{T} + \Delta I_{T} D_{T} + \Delta D_{T} \\  = 1/(4\Delta I_{T} \Delta D_{T}) \qquad \int \qquad \int R_{T} (I_{T}, D_{T}) dD_{T} dT_{T} \\ I_{T} - \Delta I_{T} D_{T} - \Delta D_{T} \end{array}$$

<R >  $\approx$  R (I , D ) cuando  $\Delta$ I < 20°,  $\Delta$ D < 20° T T T T T T T T

 El término asociado con el vector momento magnético (magnetización inducida + remanente):

$$(R_{K}) \cong R_{K}$$
 (I<sub>K</sub>, D<sub>K</sub>) cuando  $\Delta I_{K} < 20^{\circ}$ ,  $\Delta D_{K} < 20^{\circ}$ 

a) Si la componente de magnetización inducida es dominante, <br/> <br/> <br/> <br/> <br/> <br/> (I\_r, D\_r)> será igual a <br/> <br/> <br/> <br/> <br/> <br/> (I\_r, D\_r)

b) Si la componente remanente es dominante, el término  $R_{\mu}(I_{\mu},D_{\mu})$  puede variar a lo largo del perfil.

Las secciones del perfil para los cuales se cumpla la condición ( $\Delta I_{\mu} < 20^{\circ}$ ,  $\Delta D_{\mu} < 20^{\circ}$ ) deben analizarse separadamente.

Es importante notar, que la determinación de  $R_{K}$  y  $R_{T}$  es necesaria solamente para la estimacion de K.

Pero estos factores no afectan la estimación del espesor (t) y la profundidad (h) hasta los cuerpos magnetizados.

3) El término que incluye el ancho de los cuerpos:

2a  

$$~~=1/2a \int [(\sin (ua))/ua]^2 da = [(\sin(2ua))/2ua]^2 - 2a 0~~$$
  
 $+1/a \int (\sin(2ua))/2ua da = - [(\sin(2ua)/2ua)^2 + 0 4ua - 1/2ua \int (\sin z)/z dz - 0$ 

donde z=2ua.

La estimación del ancho promedio del cuerpo 2a puede ser obtenido encontrando la distancia entre los zeros de la segunda derivada vertical de los datos. Si la estimación del ancho promedio de los cuerpos puede ser obtenido (por ejemplo utilizando la segunda derivada ), la forma final de la gráfica dependerá solamente de la profundidad y del espesor promedio de los cuerpos.

 El término que contiene la profundidad promedio h del conjunto de los cuerpos magnéticos.

 $h+\Delta h$ <P>=1/(2 $\Delta$ h)\_ $\int exp(-2hu) dh =[exp(-2hu) sin h (2<math>\Delta$ h)] /4u $\Delta$ h h- $\Delta$ h

Para los valores ∆h≤ 0.5 h , u<1/h

 $\langle exp(-2uh) \rangle = exp(-2uh)$ 

y el logaritmo de este factor es ln (exp(-2hu)=-2hu es aproximadamente una linea recta con pendiente - 2h.

El término  $\exp(-2hu)$  es invariablemente el factor dominante en el espectro de potencia. El espectro de  $\ln\langle E(u) \rangle$  es siempre una función lineal de u. La velocidad de decaimiento del espectro depende principalmente de la profundidad promedia del conjunto de los cuerpos. De este modo se puede determinar la profundidad  $\tilde{h}$ hasta el conjunto de cuerpos por la pendiente del logaritmo de espectro.

5) El término que contiene el espesor de los cuerpos

- <C>=(1/2t)  $\int [1 - \exp(-tu)]^2 dt =$ 

=1-[(3-exp(-2tu)) (1-exp(-2tu))]/4tu

El espectro de potencia también permite estimar la profundidad hasta la base del conjunto magnético completo. Existen dos tipos de bases magnéticos:

1) El fondo magnético representa una interfase litológica.

Por ejemplo: derrames volcánicos sobre las rocas sedimentarias.

2) La base magnética representa el punto de Curie. En este caso la

unidad litológica que causa la anomalía (arriba de la profundidad del punto de Curie) puede continuar bajo el fondo magnético. Para la magnétita pura  $Fe_{304}^{0}$  el punto de Curie es 580 <sup>°</sup>C. Pero se reduce significativamente cuando el Fe se substituye por el Ti. Para las rocas de la corteza profunda y el manto superior la temperatura de Curie es 520-560 <sup>°</sup>C (Shuey et al., 1977).

Para decidir sobre que tipo de base magnética se trata, se necesita de conocimientos geológicos sobre el área estudiada.

De este modo, la temperatura en este rango, por ejemplo, indica el fondo magnético de los cuerpos plutónicas.

La profundidad del punto de Curie varia de algunos kilómetros hasta decenas de kilómetros bajo la superficie (Okubo et al., 1985).

Hay que notar que usamos el término "profundidad del punto de Curie " y no "isoterma de Curie" porque no sabemos con exactitud el valor de la temperatura del punto de Curie.

De todo lo dicho, está claro que este método aporta información vallosa sobre la distribución regional de la temperatura a profundidad.

Ahora analizaremos el procedimiento de determinación de la profundidad hasta la base de basamiento magnético.

La determinación de la profundidad hasta la base del basamento magnético está relacionada con la parte de baja frecuencias del espectro de potencia.

La influyencia del término <C> (relacionado con el espesor promedio  $\overline{t}$  de los cuerpos del conjunto) conjuntamente con el término <P> (relacionado con la profundidad h) en la introducción de un pico ancho en la parte de bajas frecuencias del espectro.

Esta claro que la profundidad hasta el fondo de basamento magnético se puede expresar como  $z_r=h+t$ 

La presencia de un máximo bién definido indica que el fondo está resuelto por los datos magnéticos en cuestión.

La profundidad de resolución del método está relacionada con la longitud del perfil estudiado. De un perfil de longitud L se puede obtener información hasta una profundidad máxima  $L/2\pi$ 

De tal modo, para llegar a la isoterma de Curie, se necesita que la longitud del perfil sea por lo menos  $2\pi z_r$ 

Como z<sub>r</sub> se estima en la parte de números de onda bajos, el

cálculo de z<sub>r</sub> puede verse afectado en grán parte por la tendencia regional del campo magnético.

El pico del máximo está definido por:

( d ln <E(u)> )/du =0

[ d(ln<S>+ln<C>+ln<P>) ]/ du =0

d (ln<C>+ln<P>) /du =0

 $-2h - 2/U_{plco} + 4t[1 - exp(-2tU_{plco})]^2 /$ 

 $/ [4tU_{plco} - (3-exp(-2tu)) (1-exp(-2tU_{plco})) ] = 0$  (1)

Sustituyendo en la ecuación (1):

el valor de  $\bar{h}$ , obtenido de la pendiente de la curva del espectro y el valor de U<sub>pico</sub> - del número de onda (en ciclos/km) a que se da el máximo, es posible obtener una estimación de  $\bar{t}$  mediante iteración.

Existe otra forma de calcular la profundidad hasta el fondo magnético. Boler (1978) indicó que para mapas aeromagméticos, la relación entre la frecuencia que corresponde al máximo espectral y las profundidades promedias hasta la cima y el fondo Z<sub>F</sub> de las fuentes magnéticas está dada por:

 $U_{pleo} = [\ln (Z_{p} \land h)] \land [2\pi (Z_{p} - h)]$ 

Tomando en cuenta, que la contribución de los dos términos principales ( $Z_F$  y h) a la porción de baja frecuencia del espectro para los mapas y perfiles aeromagnéticos es idéntica, la última relación puede ser también aplicada a perfiles aeromagnéticos.

## POSIBLES FUENTES DE ERRORES EN LA DETERMINACION $\label{eq:def_def} \text{DE} \quad \textbf{Z}_{_{\!\!P}} \; .$

1) De las formulas (1) y (2) está claro, que la identificación de la frecuencia del máximo no es suficiente para determinar el espesor t (o equivalentemente  $Z_F$ ). En la fig.(C.2) están representados conjuntos de valores (h, $Z_F$ ) para los cuales el pico se localiza a una misma frecuencia (Shuey et al., 1977).

A pesar de que los modelos del conjunto  $(h,Z_F)$  predicen la misma localización del máximo espectral (en la misma frecuencia) se presentan diferentes formas de pico.

El máximo es más estrecho para un cuerpo delgado con  $Z_F^{\approx}$  h y más ancho para cuerpos de grán espesor con

 $Z_{p}>>h$  De la fig. C.2 se ve que desafortunadamente un error muy pequeño de  $\bar{h}$  producirá un error muy grande en  $\bar{t}$ .

2) Existe también el otro problema de diferenciar entre los picos que se deben al efecto anterior y aquellos picos que pueden presentarse cuando se usa la cantidad limitada de los datos.

3) La determinación de la frecuencia en la cual ocurre el pico es acompañada por la incertidumbre  $\pm \frac{1}{2}\Delta U_0$ , donde  $\Delta U_0$  - el número de onda fundamental.

4) Aunque no se puede determinar las dimensiones horizontales de los cuerpos atravez del espectro de potencia, clias influyen en la determinación de  $Z_p$ . La forma del cuerpo afecta el espectro y por consiguiente los valores inferiores de  $Z_p$ .

Si asumimos que el ancho del cuerpo es más grande, cambia la forma de la pendiente derecho del máximo y ligeramente se desplaza el pico hacía izquierdo.

Para un cuerpo de dimensiones infinitas el pico se desplaza a la frecuencia O. (El cuerpo es "infinito" si sus dimensiones son comparables con el área del mapa).

#### MODELADO DIRECTO BIDIMENSIONAL.

El algoritmo tipo Talwani sirve para calcular la respuesta magnètica de cuerpos, cuya profundidad, forma, etc. se puede variar. La respuesta obtenida se compara con la anomalia magnètica observada.

De la comparación de estos resultados se modifican los parámetros (profundidad, forma, etc.) y se vuelve a calcular el efecto magnético. Este proceso se repite hasta tener el ajuste deseado entre modelo y datos reales. Como base para obtener la respuesta magnética, Talwani y Heirtzler (1964) usaron la fórmula de atracción de un prisma semi~infinito de dos dimensiones.

KLMN - representa el prisma semi-infinita.
El prisma se extiende al infinito:
1) a lo largo del eje X positivo;
2) y a lo largo del eje Y (positivo y negativo).

La intensidad en el origen de la anomalía magnética causada por este prisma es:

T=V sin I + H cos I cos (C-D)

donde V=2(I Q -I P)

$$H=2(I P + I Q)$$

donde  $P=z_{21}^2(\theta_1-\theta_2)/(z_{21}^2+x_{12}^2)+[z_{21}x_{12}\log(r_2/r_1)]/(z_{21}^2+x_{12}^2)$ 

$$Q = z_{21} x_{12} (\theta_1 - \theta_2) / (z_{21}^2 + x_{12}^2) - [z_{21}^2 \log(r_2 / r_1)) / (z_{21}^2 + x_{12}^2)$$

V- la intensidad magnética vertical V=-dU/dz H - la intensidad magnética horisontal h=-dU/dx I<sub>x</sub>, I<sub>z</sub>- componentes de la I intensidad de magnetización en la dirección de los ejes X y Z  $\theta_1$ ,  $\theta_2$  - angulos entre el vector (que une el origen de coordenadas con vértice ) y el eje X positivo  $X_{12}=X_1-X_2$   $X_1$ ,  $X_2$  - abscisas de los vértices sucesivos  $Z_{21}=Z_2-Z_1$   $Z_1$ ,  $Z_2$  - ordenadas de los vértices sucesivos  $r_1=(X_1^2+Z_1^2)^{1/2}$  distancias entre el origen de coordenadas  $r_2=(X_2^2+Z_2)^{1/2}$  y vértice de la sección poligonal

Para obtener la anomalia magnètica para el curpo de la sección poligonal KNPQRK (Fig. C.4), primero debe evaluarse las anomalias para los diferentes prismas (como KLMN) y sumarlos con su signo correspondiente.

En la fig. C. 3 están representados los polígonos que se restan, en la fig. C.4. los polígonos que se suman.


Fig. C.1 Representación esquemática del prisma bi-dimensional usado como base del modelo.



Fig. C.2 Familia de valores (ZT,ZB) para los cuales el pico del factor principal exp(-2.pi.fZT) exp(2.pi. fZB) ocurre a la misma frecuencia FP, las unidades usadas son ciclos por km.



Fig. C.3 Definición de variables y parámetros usados en la formulación del problema de modelado bi-dimensional



Fig. C.4 Definición de variables y parámetros usados en la formulación del problema de modelado bi-dimensional

Tabla C.1. Las coordenadas geográficas y la altura de vuelo en los puntos donde se calculó el IGRF (para el perfil total se utilizaron 5 puntos a lo largo del transecto, para cada de los perfiles I, II, III y IV se tomó elpunto iniciai y elpunto final). Año de observación. El valor del campo geomagnético principal F (IGRF), sus componentes X,Y,Z, su declinación y inclinación.

#### a) Perfil total.

| Latitud                 | 2 <b>3</b> °30 | 23°28   | 23°22               | 23°16    |
|-------------------------|----------------|---------|---------------------|----------|
| Longitud                | 105°           | 103°    | 101°                | 99°      |
| Año                     | 1987           | 1987    | 1987                | 1987     |
| Colatitud               | 66.5°          | 66.53°  | 66.64°              | 66.74°   |
| Longitud este           | 255.00°        | 257.00° | 259.00 <sup>°</sup> | 261°     |
| Altitud, km             | 3.5            | 3.5     | 3.5                 | 3.5      |
| Comp. X                 | 28086          | 28015   | 27952               | 27870    |
| Comp. Y                 | 4399           | 4120    | 3812                | 3471     |
| Comp. Z                 | 34766          | 35146   | 35418               | 35677    |
| Campo total F<br>(IGRF) | 44909.2        | 45133   | 45279.45            | 45404.75 |
| Inclinación             | 50.73°         | 51.14°  | 51.46°              | 51.79°   |
| Declinación             | 8.9            | 8.37°   | 7.77°               | 7.1°     |

# b) Perfiles I y II.

|                         | l inic.    | I final          | II inic. | II final |
|-------------------------|------------|------------------|----------|----------|
| Latitud                 | 23"19'N    | 24°59′ N         | 22°50'N  | 23°57' N |
| Longitud                | 100° 32' W | 97"03 <b>'</b> W | 100° W   | 97°41' W |
| Año                     | 1987       | 1987             | 1987     | 1987     |
| Colatitud               | 66.68      | 65.02            | 67.12    | 66.05    |
| Longitud este           | 259.40     | 262.90           | 260.00   | 262.30   |
| Altitud, km             | 3.5        | 3, 5             | 3.5      | 3.5      |
| Comp. X                 | 27943      | 27185            | 28046    | 27568    |
| Comp. Y                 | 3747       | 3030             | 3660     | 3198     |
| Comp. Z                 | 35449      | 37889            | 35070    | 36665    |
| Campo total F<br>(IGRF) | 45293.19   | 46730.87         | 45054.13 | 45984.21 |
| Inclinación             | 51.50      | 54.17            | 51.11    | 52.88    |
| Declinación             | 7.69       | 6.36             | 7.44     | 6.62     |

# c) Perfil III.

III fin.

| Latitud                 | 21°05' N | 22°22'N  |
|-------------------------|----------|----------|
| Longitud                | 99°42′W  | 97°22′W  |
| Αñο                     | 1987     | 1987     |
| Colatitud               | 66.87    | 67.63    |
| Longitud este           | 260.30   | 262.80   |
| Altitud, km             | 3.5      | 3.5      |
| Comp. X                 | 28542    | 28028    |
| Comp. Y                 | 3673     | 3177     |
| Comp. Z                 | 3314S    | 34995    |
| Campo total F<br>(IGRF) | 43896.66 | 44947.54 |
| Inclinación             | 49.04    | 51.13    |
| Declinación             | 7.33     | 6.47     |

III inic.

.

Tabla C.2. Valores magnetomètricos medidos a lo largo del perfil. Campo geomagnético Principal (IGRF) a lo largo del perfil para el año 1987 (interpolado entre los puntos indicados en la Tabla 5.1). Anomalia magnética a lo largo del perfil (la diferencia entre el campo medido y el IGRF). Componente regional de la anomalia magnética (calculada por minimos cuadrados). Componente residual de la anomalía magnética. (Distancia entre los puntos 10 km).

### a) Perfil total.

N punto Medido

Medido

IGRF Anomalia Comp.regional

Comp.residual

| 1  | 48080 | 44968 | 3112 | 3032.604 | 79.396   |
|----|-------|-------|------|----------|----------|
| 2  | 48080 | 44978 | 3102 | 3024.709 | 77.291   |
| 3  | 48080 | 44990 | 3090 | 3016.815 | 73.185   |
| 4  | 48120 | 45000 | 3120 | 3008.92  | 111.08   |
| 5  | 48040 | 45012 | 3028 | 3001.026 | 26.974   |
| 6  | 48018 | 45023 | 2995 | 2993.131 | 1.869    |
| 7  | 48020 | 45038 | 2982 | 2985.237 | -3.237   |
| 8  | 48100 | 45045 | 3055 | 2977.342 | 77.658   |
| 9  | 48100 | 45055 | 3045 | 2969.448 | 75.552   |
| 10 | 48070 | 45066 | 3004 | 2961.553 | 42.447   |
| 11 | 48060 | 45076 | 2984 | 2953.659 | 30.341   |
| 12 | 48092 | 45088 | 3004 | 2945.764 | 58.236   |
| 13 | 48102 | 45095 | 3007 | 2937.87  | 69.13    |
| 14 | 48102 | 45105 | 2997 | 2929.975 | 67.025   |
| 15 | 48101 | 45115 | 2986 | 2922.081 | 63.919   |
| 16 | 48095 | 45123 | 2972 | 2914.186 | 57.814   |
| 17 | 48084 | 45130 | 2954 | 2906.292 | 47.708   |
| 18 | 48070 | 45138 | 2932 | 2898.397 | 33.603   |
| 19 | 48060 | 45145 | 2915 | 2890.503 | 24.497   |
| 20 | 48050 | 45152 | 2898 | 2882.608 | 15.392   |
| 21 | 48040 | 45160 | 2880 | 2874.714 | 5.286    |
| 22 | 48030 | 45168 | 2862 | 2866.819 | -4.819   |
| 23 | 48020 | 45176 | 2844 | 2858.925 | -14.925  |
| 24 | 48010 | 45184 | 2826 | 2851.03  | -25.03   |
| 25 | 48002 | 45190 | 2812 | 2843.135 | -31.135  |
| 26 | 47994 | 45198 | 2796 | 2835.241 | -39.241  |
| 27 | 47986 | 45205 | 2781 | 2827.346 | -46.346  |
| 28 | 47978 | 45212 | 2766 | 2819.452 | -53.452  |
| 29 | 47970 | 45219 | 2751 | 2811.557 | -60.557  |
| 30 | 47966 | 45226 | 2740 | 2803.663 | -63.663  |
| 31 | 47960 | 45232 | 2728 | 2795.768 | -67.768  |
| 32 | 47957 | 45240 | 2717 | 2787.874 | -70.874  |
| 33 | 47954 | 45248 | 2706 | 2779.979 | -73.979  |
| 34 | 47950 | 45255 | 2695 | 2772.085 | -77.085  |
| 35 | 47947 | 45262 | 2685 | 2764.19  | -79.19   |
| 36 | 47943 | 45268 | 2675 | 2756.296 | -81.296  |
| 37 | 47920 | 45272 | 2648 | 2748.401 | -100.401 |
| 38 | 47860 | 45278 | 2582 | 2740.507 | -158.507 |
| 39 | 47858 | 45285 | 2573 | 2732.612 | -159.612 |
| 40 | 47876 | 45292 | 2584 | 2724.718 | -140.718 |
| 41 | 47900 | 45300 | 2600 | 2716.823 | -116.823 |

| 42 | 47920 | 45305 | 2615 | 2708.929 | -93.929 |
|----|-------|-------|------|----------|---------|
| 43 | 47940 | 45311 | 2629 | 2701.034 | -72.034 |
| 44 | 47960 | 45317 | 2643 | 2693.14  | -50.14  |
| 45 | 47974 | 45322 | 2652 | 2685.245 | -33.245 |
| 46 | 47990 | 45328 | 2662 | 2677.351 | -15.351 |
| 47 | 48000 | 45334 | 2666 | 2669,456 | -3.456  |
| 48 | 48000 | 45340 | 2660 | 2661.562 | -1.562  |
| 49 | 48002 | 45350 | 2652 | 2653.667 | -1.667  |
| 50 | 48000 | 45350 | 2650 | 2645.772 | 4.228   |
| 51 | 47980 | 45357 | 2623 | 2637.878 | -14.878 |
| 52 | 47926 | 45363 | 2563 | 2629.983 | -66.983 |
| 53 | 47920 | 45368 | 2552 | 2622.089 | -70.089 |
| 54 | 47920 | 45375 | 2545 | 2614.194 | -69.194 |
| 55 | 47924 | 45380 | 2544 | 2606.3   | -62.3   |
| 56 | 47940 | 45385 | 2555 | 2598.405 | -43.405 |
| 57 | 47957 | 45392 | 2565 | 2590.511 | -25.511 |
| 58 | 47960 | 45398 | 2562 | 2582.616 | -20.616 |
| 59 | 47960 | 45403 | 2557 | 2574.722 | -17.722 |
| 60 | 47960 | 45408 | 2552 | 2566.827 | -14.827 |
| 61 | 47960 | 45412 | 2548 | 2558.933 | -10.933 |
| 62 | 47960 | 45416 | 2544 | 2551.038 | -7.038  |
| 63 | 47970 | 45420 | 2550 | 2543.144 | 6.856   |
| 64 | 48020 | 45426 | 2594 | 2535.249 | 58.751  |
| 65 | 48090 | 45430 | 2660 | 2527.355 | 132.645 |
| 66 | 48108 | 45433 | 2675 | 2519.46  | 155.54  |
| 67 | 48120 | 45438 | 2682 | 2511.566 | 170.434 |
| 68 | 48120 | 45440 | 2680 | 2503.671 | 176.329 |
| 69 | 48080 | 45443 | 2637 | 2495.777 | 141.223 |
| 70 | 48040 | 45448 | 2592 | 2487.882 | 104.118 |
| 71 | 48020 | 45450 | 2570 | 2479.988 | 90.012  |
| 72 | 47988 | 45454 | 2534 | 2472.093 | 61.907  |
| 73 | 47950 | 45458 | 2492 | 2464.198 | 27.802  |
| 74 | 47920 | 45460 | 2460 | 2456.304 | 3.696   |
| 75 | 47900 | 45464 | 2436 | 2448.409 | -12.409 |
|    |       |       |      |          |         |

•

and the second second

# b) Perfil I.

| N | punto | Medido | IGRF  | Anomalia | Comp.regional | Comp.residual |
|---|-------|--------|-------|----------|---------------|---------------|
|   | •     | 47000  | 45000 | 2625     |               | 10 261        |
|   | 1     | 47930  | 45293 | 2637     | 2655.261      | -18.261       |
|   | 4     | 4/955  | 45330 | 2625     | 2623.605      | 1.395         |
|   | 3     | 47973  | 45360 | 2613     | 2591.95       | 21.05         |
|   | 4     | 4/983  | 45400 | 2583     | 2560.294      | 22.706        |
|   | 5     | 47980  | 45440 | 2540     | 2528.638      | 11.362        |
|   | 6     | 47960  | 45470 | 2490     | 2496.982      | -6.982        |
|   | 7     | 47940  | 45500 | 2440     | 2465.327      | -25.327       |
|   | 8     | 47930  | 45540 | 2390     | 2433.671      | -43.671       |
|   | 9     | 47924  | 45580 | 2344     | 2402.015      | -58.015       |
|   | 10    | 47920  | 45620 | 2300     | 2370.359      | -70.359       |
|   | 11    | 47918  | 45650 | 2268     | 2338.704      | -70.704       |
|   | 12    | 47922  | 45680 | 2242     | 2307.048      | -65.048       |
|   | 13    | 47938  | 45720 | 2218     | 2275.392      | -57.392       |
|   | 14    | 47956  | 45760 | 2196     | 2243.737      | -47.737       |
|   | 15    | 47982  | 45790 | 2192     | 2212.081      | -20.081       |
|   | 16    | 48000  | 45830 | 2170     | 2180.425      | -10.425       |
|   | 17    | 48100  | 45860 | 2240     | 2148.769      | 91.231        |
|   | 18    | 48168  | 45900 | 2268     | 2117.114      | 150.886       |
|   | 19    | 48182  | 45940 | 2242     | 2085.458      | 156.542       |
|   | 20    | 48182  | 45970 | 2212     | 2053.802      | 158.198       |
|   | 21    | 48145  | 46010 | 2135     | 2022.146      | 112.854       |
|   | 22    | 48015  | 46050 | 1965     | 1990.49       | -25.49        |
|   | 23    | 47978  | 46080 | 1898     | 1958.835      | -60.835       |
|   | 24    | 47980  | 46120 | 1860     | 1927.179      | -67.179       |
|   | 25    | 48006  | 46150 | 1856     | 1895.523      | -39.523       |
|   | 26    | 48028  | 46190 | 1838     | 1863.867      | -25.867       |
|   | 27    | 48042  | 46220 | 1822     | 1832.212      | -10.212       |
|   | 28    | 48051  | 46260 | 1791     | 1800.556      | -9.556        |
|   | 29    | 48059  | 46300 | 1759     | 1768.9        | -9.9          |
|   | 30    | 48068  | 46330 | 1738     | 1737.245      | 0.755         |
|   | 31    | 48077  | 46370 | 1707     | 1705.589      | 1.411         |
|   | 32    | 48100  | 46400 | 1700     | 1673.933      | 26.067        |
|   | 33    | 48123  | 46440 | 1683     | 1642.277      | 40.723        |
|   | 34    | 48123  | 46480 | 1643     | 1610.621      | 32.379        |
|   | 35    | 48118  | 46510 | 1608     | 1578.966      | 29.034        |
|   | 36    | 48104  | 46550 | 1554     | 1547.31       | 6.69          |
|   | 37    | 48090  | 46590 | 1500     | 1515.654      | -15.654       |
|   | 38    | 48073  | 46620 | 1453     | 1483.998      | -30,998       |
|   | 39    | 48060  | 46660 | 1400     | 1452.343      | -52.343       |
|   | 40    | 48058  | 46690 | 1368     | 1420.687      | -52.687       |
|   | A 1   | 49050  | 46720 | 1120     | 1290 021      | -60.031       |

.....

## c) Perfil II.

| N | punto | Medido | IGRF  | Anomalia | Comp.regional | Comp.residual |
|---|-------|--------|-------|----------|---------------|---------------|
|   | 1     | 47950  | 45050 | 2900     | 2869.074      | 30.926        |
|   | 2     | 47945  | 45098 | 2847     | 2838.664      | 8.336         |
|   | 3     | 47940  | 45150 | 2790     | 2808.253      | -18.253       |
|   | 4     | 47935  | 45152 | 2783     | 2777.843      | 5.157         |
|   | 5     | 47930  | 45190 | 2740     | 2747.433      | -7.433        |
|   | 6     | 47925  | 45230 | 2695     | 2717.023      | -22.023       |
|   | 7     | 47921  | 45260 | 2661     | 2686.613      | -25.613       |
|   | 8     | 47918  | 45300 | 2618     | 2656.202      | -38.202       |
|   | 9     | 47920  | 45330 | 2590     | 2625.792      | -35,792       |
|   | 10    | 47932  | 45370 | 2562     | 2595.382      | -33.382       |
|   | 11    | 47956  | 45400 | 2556     | 2564.972      | -8.972        |
|   | 12    | 47963  | 45430 | 2533     | 2534.561      | -1.561        |
|   | 13    | 47940  | 45470 | 2470     | 2504.151      | -34.151       |
|   | 14    | 47940  | 45500 | 2440     | 2473.741      | -33.741       |
|   | 15    | 47960  | 45540 | 2420     | 2443.331      | -23.331       |
|   | 16    | 48080  | 45570 | 2510     | 2412.92       | 97.08         |
|   | 17    | 48160  | 45610 | 2550     | 2382.51       | 167.49        |
|   | 18    | 48130  | 45640 | 2490     | 2352.1        | 137.9         |
|   | 19    | 48070  | 45680 | 2390     | 2321.69       | 68.31         |
|   | 20    | 48060  | 45710 | 2350     | 2291.28       | 58.72         |
|   | 21    | 48062  | 45750 | 2312     | 2260.869      | 51.131        |
|   | 22    | 48025  | 45780 | 2245     | 2230.459      | 14.541        |
|   | 23    | 47978  | 45810 | 2168     | 2200.049      | -32.049       |
|   | 24    | 47960  | 45850 | 2110     | 2169.639      | -59.639       |
|   | 25    | 47990  | 45880 | 2110     | 2139.228      | -29.228       |
|   | 26    | 48000  | 45920 | 2080     | 2108.818      | -28.818       |
|   | 27    | 48000  | 45950 | 2050     | 2078.408      | -28.408       |
|   | 28    | 48000  | 45980 | 2020     | 2047.998      | -27.998       |

d) Perfil III.

| N | punto | Medido | IGRF  | Anomalia | Comp.regional | Comp.residual |
|---|-------|--------|-------|----------|---------------|---------------|
|   |       |        |       |          |               |               |
|   | 1     | 47980  | 43900 | 4080     | 4065.3        | 14.7          |
|   | 2     | 47974  | 43930 | 4044     | 4032.4        | 11.6          |
|   | 3     | 47971  | 43960 | 4011     | 3999.6        | 11.4          |
|   | 4     | 47968  | 44000 | 3968     | 3966.7        | 1.3           |
|   | 5     | 47965  | 44030 | 3935     | 3933.8        | 1.2           |
|   | 6     | 47962  | 44060 | 3902     | 3900.9        | 1.1           |
|   | 7     | 47960  | 44100 | 3860     | 3867.9        | -7.9          |
|   | 8     | 47960  | 44140 | 3820     | 3835          | -15           |
|   | 9     | 47960  | 44170 | 3790     | 3802.1        | -12.1         |
|   | 10    | 47960  | 44200 | 3760     | 3769.2        | -9.2          |
|   | 11    | 47963  | 44240 | 3723     | 3736.3        | -13.3         |
|   | 12    | 47966  | 44270 | 3696     | 3703.4        | -7.4          |
|   | 13    | 47968  | 44300 | 3668     | 3670.5        | -2.5          |
|   | 14    | 47976  | 44340 | 3636     | 3637.6        | -1.6          |
|   | 15    | 47995  | 44380 | 3615     | 3604.77       | 10.23         |
|   | 16    | 48002  | 44410 | 3592     | 3571.88       | 20.12         |
|   | 17    | 48002  | 44450 | 3552     | 3538.98       | 13.02         |
|   | 18    | 47990  | 44480 | 3510     | 3506.1        | 3.9           |
|   | 19    | 47960  | 44520 | 3440     | 3473.18       | -33.18        |
|   | 20    | 47960  | 44550 | 3410     | 3440.29       | -30.29        |
|   | 21    | 47960  | 44580 | 3380     | 3407.39       | -27.39        |
|   | 22    | 47956  | 44620 | 3336     | 3374.5        | -38.5         |
|   | 23    | 47940  | 44660 | 3280     | 3341.6        | -61.6         |
|   | 24    | 48000  | 44690 | 3310     | 3308.72       | 1.28          |
|   | 25    | 48070  | 44730 | 3340     | 3275.9        | 64.1          |
|   | 26    | 48110  | 44760 | 3350     | 3243          | 107           |
|   | 27    | 48110  | 44800 | 3310     | 3210.1        | 99.9          |
|   | 28    | 48060  | 44830 | 3230     | 3177.2        | 52.8          |
|   | 29    | 48000  | 44860 | 3140     | 3144.2        | -4.2          |
|   | 30    | 47957  | 44900 | 3057     | 3111.3        | -54.3         |
|   | 31    | 47913  | 44930 | 2983     | 3078.4        | -95.4         |

# Anexo D

| Sta-<br>tion | Lati-<br>tude | Longi-<br>tude | Depth<br>(m) | Thermal<br>con-<br>duc-<br>trvity* | lieat<br>flowt |
|--------------|---------------|----------------|--------------|------------------------------------|----------------|
|              |               | Gulf of Cali   | fornia       |                                    |                |
| V.1          | 27*08'N       | 111*38'W       | 1840         | 1.77                               | 2.80           |
| V.2          | 27"17'N       | 111*22'W       | 1870         | 1.65                               | 2.94           |
| v.1          | 27'38'N       | 111*44'W       | 1775         | 1.64                               | 4.19           |
| ý.a          | 26*46'N       | 111*04'W       | 1750         | 1.75                               | 2 95           |
| v.i –        | 24 "09'N      | 108*55'W       | 3020         | 1.99                               | 4.24           |
| V.6          | 27158'N       | 108 '04'W      | 2900         | 181                                | 0.62           |
| V.7          | 21"59'N       | 107"41'W       | 3055         | 1.86                               | 5.51           |
| V.R          | 21*00*N       | 107°04'W       | 3300         | 1.89                               | 3.98           |
| V.9          | 20"55'N       | 106*25'W       | 4450         | 2.00                               | 2.14           |
| V-10         | 20°10'N       | 107*43'W       | 3290         | 1.76                               | 1.25           |
| v.11         | 19"45"N       | 108°28'W       | 26(0)        | 182                                | 1.43           |
| V-12         | 20°48'N       | 10N1341W       | 2910         | 181                                | 2.40           |
| V-13         | 22*33'N       | 109°29'W       | 2860         | 2.08                               | 6.15           |
|              |               | Gulf of A      | den          |                                    |                |
| Z-1'         | 12*27'N       | 47°07'E        | 1820         | 2.03                               | 5.98           |
| Z-2'         | 12*57'N       | 48'16'E        | 2205         | (1.92)                             | 3.62           |
| 2.3'         | 13*17'N       | 49°15'E        | 2425         | 1.8.1                              | 3.22           |
| 2.4'         | 12"34'N       | 49 38 E        | 2200         | (1.92)                             | 2.43           |
| Z-5'         | 12"25'N       | 50*33'E        | 2420         | 2.02                               | 3.05           |



Tabla D.1(a). Valores de flujo de calor en el Golfo de Califórnia (tomado de Von Herzen, 1963).

Fig. D.1. Flujo de calor en el Golfo de Califórnia (Von Herzen, 1963).



Fig. D.2(b). Valores de flujo de calor en el sur de México (tomado de Ziagos et al., 1985).



Fig. D.2(a). Distribución del flujo de calor (en Heat Flow units) en el norte de México (Smith et al., 1979).



Fig. D.3. Flujo de calor en el Golfo de México (en  $\mu$ cal/cm<sup>2</sup>sec) (tomado de Epp et al., 1970).



Fig. D.4. Temperatura en sedimentos en función de la profundidad. Los estaciones 1, 2, 3 están localizados en los domos de Sigsbee (tomado de Epp et al., 1970).



Fig. D.5. Gradiente de temperatura en los sedimentos del Golfo de México como función de su profundidad. Símbolos sombreados representan estaciones ubicados al este del Golfo de México, símbolos con bara representan domos de Segsbee. En la figura de la derecha se representa la conductividad contra la profundidad para el Golfo de México (tomado de Epp et al., 1970).

|          | North<br>Latitude | West<br>Longitude | Depth.<br>m | Bottom<br>Temper-<br>ature, °C | ∆ <i>T</i> i.<br>°C | Δ <i>Τ</i> ι.<br>•C | 71''' | ۲۲.<br>۲۰ | ∆ <i>T</i><br>•C | Penetra-<br>tion,<br>cm | Q. µcal/<br>cm <sup>2</sup> s<br>(mW/m <sup>4</sup> ) | Tilt    |
|----------|-------------------|-------------------|-------------|--------------------------------|---------------------|---------------------|-------|-----------|------------------|-------------------------|-------------------------------------------------------|---------|
| HYPO-2   | 25°11.1'          | 109° 27.5'        | 2024        | NT                             | 0.24                | 0.20                | NA    | NA        | 0.20             | 220                     | 3.5(147)                                              | v       |
| HYPO-5   | 25°23.5'          | 109° 54 6'        | 3204        | NT                             | 0 19                | 0.16                | NA    | NA.       | 0.16             | 220                     | 2.8(117)                                              | v       |
| HYPO-6   | 25° 26.2'         | 109° 44 8'        | 2230        | NT                             | 0.35                | 0.21                | 0 24  | 0.24      | 0.24             | 445                     | 4.2(176)                                              | v       |
| HYPO-9   | 25°328            | 109*47.3          | 3182        | NT                             | 0.21                | 0.17                | 0.18  | 0.17      | 017              | 420                     | 3.1(130)                                              | v       |
| HYPO-55  | 25° 21.4'         | 109°42 0          | 2193        | NT                             | 0.64                | OS                  | 05    | 0.42      | 0.42             | 450                     | 7.1(297)                                              | v       |
| HYPO-66  | 25° 19-3'         | 109*48.5          | 2335        | 2 262                          | 0.20                | 0.44                | 05    | 0.43      | 0.44             | 345                     | -8.9(373)                                             | > 30*   |
| EXT 2-14 | 25°40.8'          | 110*06.2          | 2242        | NT                             | 0.37                | 0.27                | 0.26  | 0.24      | 0.26             | 435                     | 4.6(193)                                              | v       |
| ENT 2-15 | 255293            | 109° 57 0'        | 2022        | 2.281                          | 0.38                | 0.29                | 0.29  | 0.26      | 0.29             | 430                     | 5.1(214)                                              | v       |
| EXT 2-16 | 25° 30.4'         | 109~59.0          | 1987        | 2.238                          | 0.36                | OS                  | 05    | 0.49      | 0.49             | 375                     | ~ 9.9(415)                                            | > 30°   |
| EXT 2-17 | 25° 35.4'         | 109*50.5          | 2178        | 2.234                          | NP                  | PP                  | OS .  | 0.30      | 0.30             | >200                    | ~6.1(255)                                             | > 30*   |
| ENT 2-18 | 25° 29.7'         | 109*45 0          | 2438        | 2.267                          | 0.48                | OS                  | OS    | 0.35      | 0.35             | 435                     | ~ 7 0(294)                                            | > 30*   |
| ENT 2-20 | 25°15 0'          | 109° 39 0'        | 2236        | 2.233                          | 0.13                | 0.25                | 0.24  | 0.25      | 0.25             | 350                     | ~ 5.0(209)                                            | > 30°   |
| EXT 2-22 | 25°12.6°          | 109° 38 2'        | 2248        | NT                             | 0.07                | 0.21                | 0 20  | 0.18      | 0.20             | 330                     | 3.8(159)                                              | 15°-30° |
| EXT 2-23 | 25°15.5'          | 109°45.2'         | 2310        | 2.208                          | 0.06                | 0.35                | OS    | 0.45      | 0.48             | 275                     | ~ 9,7(406)                                            | > 30°   |
| EXT 2-24 | 25° 21.0'         | 109*40.0          | 2205        | NT                             | 0.08                | 0.33                | OS    | 0.34      | 0.34             | 325                     | ~68(285)                                              | > 30°   |
| EXT 2-25 | 25°23'            | 109*36            | 2068        | 2.234                          | 0.22                | 0.20                | 0 20  | 0.18      | 0.20             | 410                     | ~4 (x167)                                             | >30°    |
| EXT 2-26 | 25° 25.5'         | 109° 38.2'        | 2105        | NT                             | 0.20                | 0.21                | 0.21  | 0.22      | 0.21             | 395                     | ~4.2(176)                                             | > 30°   |
| EXT 2-27 | 25°21.6'          | 109*49.0          | 2365        | NT                             | NOS                 | 0.25                | NUS   | NOS       | 0.25             | ~400                    | ~4.4(184)                                             | 7       |
| EXT 2-28 | 25°24 6           | 109° 56 8'        | 3202        | NT                             | 0.35                | 0.26                | 0.24  | 0.26      | 0.26             | 435                     | ~ 5 2(218)                                            | > 30*   |
| EXT 2-32 | 25° 36.7'         | 110°02.2'         | 2330        | NT                             | 0.22                | 0.17                | 0.16  | 0.13      | 0.16             | 425                     | 3.1(130)                                              | 15°-30° |
| EXT 2-33 | 25° 33.3'         | 110,16.3          | 2070        | NT                             | 0.27                | 0.20                | 0.19  | 017       | 0 19             | 435                     | 3,3(138)                                              | v       |
| 7404-8   | 25° 20.3'         | 109*41.4*         | 2240        | 2.257                          | OS                  | OS                  | OS    | 05        | US               | > 400                   | >16. (670)                                            | 15°-30° |

V means vertical, i.e., <15° tilt: NT means that no trace for that data segment appeared on the record: OS means off scale; and  $\sim$ 8.9 indicates that the probe was at a >30° angle (the measured value was corrected by + 15%).

| -        |                   |                   |             | Bottom       | -                  |                    |                  |                    |         | Penetra-    | K, cal/               | Q. ucat           |        |
|----------|-------------------|-------------------|-------------|--------------|--------------------|--------------------|------------------|--------------------|---------|-------------|-----------------------|-------------------|--------|
|          | North<br>Latitude | West<br>Longitude | Depth.<br>m | ature.<br>°C | ∆ <i>۲</i> ,.<br>℃ | <i>∆T</i> ₁.<br>°C | <i>۲۱.</i><br>°C | . <i>ד</i> د<br>۲۰ | ∆۲<br>℃ | tion,<br>cm | °C cm s<br>(₩. m °K ) | _cm² s<br>(m₩/m²) | Tilt   |
| HYPO-22  | 28°42 3'          | 113°03.6'         | 1572        | 11.34        | -0.08              | os                 | 013              | 0 13               | 013     | 1:0         | 1 05(0.69)            | 2.3(90)           | 15°-30 |
| HYPO-26  | 28°46.5'          | 113°05 3'         | 1370        | 11.34        | -0.06              | OS                 | -0.04            | -0.02              | -0.04   | 450         | 1.67(0.69)            | -0.6(-25)         | v      |
| HYPO-40  | 26°23 3           | 110° 44 9'        | 2785        | NT           | 0.32               | 0.16               | 0.16             | 015                | 0.16    | 490         | 1.68(0.70)            | 2.7(113)          | v      |
| EXT 2-11 | 26*20.6           | 110°45.2'         | 2804        | 2.549        | 0.11               | -0.01              | -0.01            | -0.01              | -0.01   | >400        | 1.68(0.70)            | -0.2(-8)          | v      |
| EXT 2-12 | 26°13 3'          | 110°40 7'         | 2456        | 2.513        | NP                 | 0.14               | 0.21             | 0 19               | 0.20    | 265         | 1 68(0 70)            | ~3.9(173)         | > 30*  |
| ENT 2-34 | 25" 54 3          | 110°13 8.         | 2032        | 2.519        | PP                 | PP                 | PP               | 0 12               | 0.12    | 57          | 2 0(0 84)             | 2.7(113)          | v      |
| EXT 2-35 | 26°07'            | 110°29'           | 2333        | 2.492        | 0.04               | 0 12               | 0.12             | 0.12               | 012     | 330         | 1.68(0.70)            | 2.4(100)          | v      |
| EXT 2-36 | 26°21 9'          | 110°46 0'         | 2758        | 2.540        | 0.43               | 0 26               | 0.28             | 0.25               | 0.26    | 470         | 1.68(0.70)            | 4.4(184)          | v      |
| HYPO-68  | 23°27.7           | 108° 20.7'        | 2651        | 1.810        | OS                 | OS                 | os               | 0.35               | 0.35    | >400        | 2.0(0.84)             | 7.0(293)          | v      |
| HYPO-69  | 23°02.1'          | 107° 59.6'        | 2554        | 1.799        | 0.14               | 0.12               | 0.10             | 0.11               | 011     | 430         | 2.0(0.84)             | 2.2(92)           | Ŷ      |

Data are Bullard probe heat flow measurements from other basins and the East Pacific Rise. V means vertical, i.e., <15°. NP means no penetration; NT means no trace: OS means off scale; and  $\sim$ 3.9 indicates that the probe penetrated at a >30° angle (the measured value was corrected by +15%). PP means partial penetration.

Tabla D.1(b). Valores de flujo de calor en el Golfo de Califórnia (tomado de Lowver et al., 1979).

| Locality                                    | Position, deg         | Elevation,<br>m | Depih,<br>m     | N    | K, µca1∕em s *C  | ľ,*C∘km          | Corrected<br>F. *C 'km | Q. HFU                | General<br>Rock Type               | Category |
|---------------------------------------------|-----------------------|-----------------|-----------------|------|------------------|------------------|------------------------|-----------------------|------------------------------------|----------|
| San Jose, Raja                              | 30° 59' N, 115*46' W  | 730             | 254             | 12   | 5.60 ± 0.06      | 14 88 ± 0.10     | 14 92                  | 0.84 ±0.01(35 L)      | quartz diorite                     | 1        |
| California Norte (SJ)*                      |                       |                 |                 |      |                  |                  |                        |                       |                                    |          |
| El Arco, Baja                               | 28°00'N, 113°20'W     | 290             | 280             | 6    | 7 29 ± 0 72      | $16.83 \pm 0.17$ |                        | $1.23 \pm 0.12(51.4)$ | quartz diorite                     | 1        |
| California Norte (EA)*                      |                       |                 |                 |      |                  |                  |                        |                       |                                    |          |
| Santa Rosalia, Baja<br>California Sur (SR.) | 27°24'N, 112°23'W     | 185             | 125             | 8    | 2.08 ± 1.49      | 59 54 ± 0 42     | 58.38                  | 1.21 ± 0.90(50.6)     | sandstone                          | 2        |
| Caborca Sonora/CAB)*                        | 31°05'N 112°07'W      | 670             | 150             | 5    | $10.02 \pm 1.83$ | 38 19 ± 0.35     | 38.00                  | 181±0.70(159.1)       | quartz monzonite                   | 2        |
| Cananea Sonora (CAND)                       | 31°10'N 110°25'W      | 1390            | 250             | 5    | 9 55 + 1 02      | 23.95 ± 0.10     | 23.26                  | 2 22 + 0 24 (92 8)    | quartz monzonile                   | ī        |
| Cananza Sonota (CAN2)                       | 30°52'N_110°11'W      | 1610            | **              | 2    | 9 10 + 0.61      | 17.25 + 1.07     | 19.06                  | $1.77 \pm 0.13(74.0)$ | diotite                            | ż        |
| Nacarari Sanata (N7)*                       | 10220'N 109211'W      | 1585            | 480             | - 7  | 7 74 + 0 14      | 10.97 + 0.10     | 77.55                  | $1.75 \pm 0.08173.21$ | arandic                            | ī        |
| Careo Blanco Sonora (CB)                    | 20913'N 100930'N      | 1455            | 121             | á    | 9511306          | 14 40 4 0 30     | 17.16                  | 163 . 0 68 68 11      | durate                             | ;        |
| Cerro Blanco, Soliora (CB)                  | 10 12 N, 107 37 N     | 1655            | 145             |      | 7 11 1 3 79      | 14 40 2 0 30     | 17 10                  | 103 10 05 05 11       | userne                             | ÷        |
| PL Libertad, Sonora (FAC)*                  | 30.04 N, 112.30 W     | 200             | 202             | - 24 | 6.76 + 1.10      | 20 90 ± 0.10     | 10 10                  | 1 44 2 0 04 (8) 2)    | quartz diorne                      | Ę        |
| Suaqui Grande, Sonora (SG)                  | 28°21' N, 109°58' W   | 380             | 120             | 4    | 575±1.89         | 19 14 2 0 17     | 20.25                  | 1.03/239/24103-11     | monzonite                          | ÷        |
| San Antonio, Sonora (SA)*                   | 28°38'N, 109°40'W     | 763             | 190             | ł    | 8 95 ± 0 90†     | 17.52 ± 1.45     | 21.25                  | 1 90 ± 0 [7(79 4)     | granitic and<br>metavolcanic       | 3        |
| Hermosilla, Sonora (EV)*                    | 29*15'N_111*25'W      | 425             | 150             | 8    | 6 87 ± 0.04      | 32.78 ± 0.17     |                        | 2 25 ± 0.02 (94 1)    | granodiorite                       | 2        |
| Nuevo Casa Grandes,                         | 30*50'N, 107*29'W     | NA              | 140(55*)‡       | 6    | 7.60 ± 0.17      | 16 08 ± 0 41     | 16.12                  | 1 23 ± 0 (4 (51 4)    | micrite and                        | 2        |
| Chihuahua (SP)                              |                       |                 |                 |      |                  |                  |                        |                       | diorite                            |          |
| Parral, Chihuahua (RG)                      | 26°46'N, 105°36'W     | NA              | 64(45°)‡        | - 5  | 8 i9 ± 0 63      | 17.66 ± 0.18     |                        | 1 45 ± 0 11 (60 6)    | slate                              | 3        |
| Santa Barbara, Chihuahua (SB)               | 26°49'N, 105°48'W     | 1364            | 84(600)%        | - 5  | 6.55 ± 0.33      | 35 04 ± 0 05     |                        | 2 29 ± 0 12 (95 7)    | shale                              | 2        |
| Santa Eulaha, Chihuahua (SE)                | 28°19'N, 105°47'W     | NA              | 550(550)5       | 11   | 7.34 ± 0.44      | 34 54 ± 3 10     |                        | 2 54 ± 0 03(106 2)    | rhyolite                           | 1        |
| Aldama, Chihuahua (NO)                      | 28°30'N, 106°05'W     | 1379            | 190             | 4    | 5 80 ± 0 21      | 35 10 ± 0 22     | 39.32                  | 2.38 ± 0.09 (99.5)    | rhyolite                           | 2        |
| Los Piomosas, Chihuahua (LP)                | 28°42'N, 105°15'W     | 1052            | 143             | 7    | 691±016          | 7.93 ± 0.33      | 7 94                   | 0.55 ± 0.03(23.0)     | shale and<br>metavolcanics         | 2        |
| Tavoltita, Durango (TAY)                    | 24*20'N, 106*04'W     | 1475            | 90(640)5        | 2    | 6.95 ± 0.01      | 24.89 + 0.09     | 75 79                  | $1.80 \pm 0.01(75.2)$ | munumie                            | 2        |
| Manimi Duranen (MAP)                        | 74°18'N 104°00'W      | 742             | 71(60° it       | 4    | 7 95 + 0.03      | 12 78 + 0.44     | 12.30                  | 0.98 + 0.01(41.0)     | share                              | i        |
| Velardena Durango (VD)                      | 24*31'N, 103*27'W     | 1400            | 21N/ROX 57* 115 | 7    | 9 32 + 0 12      | 19 74 + 0 30     | 19 91                  | $1.84 \pm 0.03176.91$ | skarn                              | ÷        |
| La Linda, Coabult (LT)                      | 29° 18' N. 102° 20' W | 1433            | 122(70° it      | 9    | 6 70 + 0 21      | 26 67 + 3 47     | 25 84                  | 1 51 + 0.01(63.1)     | rhyolde                            | ;        |
|                                             |                       |                 |                 |      | $5.92 \pm 0.30$  | 23 34 + 0.41     | 21.96                  |                       |                                    | -        |
| Hercules Coahula (HFR)                      | 28*00'N, 103*45'W     | 1372            | 70              | 6    | 5 97 + 1 17      | 10 41 + 0 71     |                        | 1.92 ± 0.04(76.1)     | monzonite                          | ,        |
| Subinas Conhula (SAB)                       | 77*47'N 101*08'W      | 346             | 200             | ĩ    | 6 51 + 0.651     | 17 99 + 0.64     |                        | 7 15 + 0.07(89.9)     | sedimentary                        | î        |
| Lamontos Nuevol con (17)                    | 27*18'N 100*30'W      | NA              | 280             | 10   | 6 46 + 0 21      | 12 56 + 0.76     |                        | $0.41 \pm 0.01(11.9)$ | limestone                          | ,        |
| Villa Gateia Nuevol con (VG)                | 25*40'N_100*16'W      | 967             | 370             | 14   | 5 16 + 1 K7      | 20.07 + 2.98     | 19.16                  | 1/15 + 0/14/43 9)     | shale                              | ī        |
| Concepcion Del Oro,                         | 24*36'N, 101*24'W     | 2150            | 147             | 6    | 7.32 ± 1.28      | 24.94 ± 1.04     | 17.40                  | 1 N4 ± 0 02 (76 9)    | granitic                           | ż        |
| Fresnillo, Zacatecas (FS)                   | 23*11'N, 102*53'W     | 2225            | 661 55° )‡      | 2    | 7.52 ± 0.75†     | VI.47 ± 3.65     |                        | 2.17 ± 0.36(99.1)     | rhyolite and                       | 3        |
| Sombrerete, Zacatecas (SMB)                 | 23*38'N, 103*36'W     | 2365            | 103(240)(76°)‡© | П    | 10.25 ±2.08      | 28.67 ± 0.11     |                        | 2.94 ± 0.06(122.9)    | limestone and                      | 1        |
| Calderon, Zacatecas (CA)                    | 22°19'N, 102°19'W     | 2096            | 77(60*)‡        | 5    | 5 47 ± 0.08      | 31.58 ± 0.30     |                        | 1.82 ± 0.08(76.1)     | granite<br>metamorphic<br>(skarn?) | 2        |
|                                             |                       |                 | •               |      | Estimates        |                  |                        |                       |                                    |          |
| Choir Sinalos (CX)                          | 26*54'N 308*15'W      | 560             | 60              | 10   | 8 27 + 1 01      | $16.50 \pm 0.01$ | 23.11                  | 1 91 + 0 73/79 81     | montonile                          | 1        |
| Malaian Condon (MAT)                        | 21914'N 106904'W      | 105             | 56              |      | 10 11 4 5 79     | 19.88 ± 0.01     | 41.22                  | 4 18 4 7 17/374 74    | manaduarite                        | í        |
| Tamage Sindor (TAM)                         | 15910'N 107909'N'     | 175             | 46              | í    | 1 78 1 0 13      | 17.86 ± 0.07     | 31.67                  | 7.10 2 2.17(1747)     | granounorite                       | ,        |
| rancapa, Sinaioa (17(81)                    | 47 N 101 N 107 C4     | 1250            | 81              | ſ    | 1.40 I W.JJ      | (4.39 ± 0.37     | 47 08                  | 1.97 1.0 949(124 I)   | Young anoung                       | ,        |

Locations and values of temperature gradients F, gradients corrected for topography, thermal conductivity K, and heat flow Q (values in parentheses for Q are in nulliwatts per square meter). NA is not available. Quality categories from Sass et al. [1971a]. N is number of samples measured for conductivity.

\*From Smith [1974]. \*Depth below surface in mine of collar.

§Average for two horeholes.

†Estimated error.

Inclination.

Tabla D.2(a). Datos de flujo de calor y gradiente de temperatura medidos en pozos (tomado de Smith et al., 1979).

|         |                |               |                    |                 |         |             |           | Gradient, °C, km                  |      | Thermal        |             | <b>.</b> | Heat Flow, mW m <sup>-2</sup> |        |                            | Quality |  |
|---------|----------------|---------------|--------------------|-----------------|---------|-------------|-----------|-----------------------------------|------|----------------|-------------|----------|-------------------------------|--------|----------------------------|---------|--|
|         |                |               |                    | Depth           | Uncorr  | Uncorrected |           | W m <sup>-1</sup> K <sup>-1</sup> |      | of             | Uncorrected |          |                               | Heat   |                            |         |  |
| Hole*   | Date           | N<br>Latitude | W<br>Longitude     | Intervat,<br>n1 | Average | S.E.        | Corrected | Average                           | S-E. | Conductivities | Average     | S E.     | Corrected                     | Values | Lithology<br>Summary       |         |  |
| TAX     | June 18, 1977  | 18~32.00      | 99°35.90'          | 20.0-180.0†     | 14.7    | 0.1         | 16.3      | 3.94                              |      | 1              | 55          |          | 64‡                           | в      | schist and                 |         |  |
| TELO    | Aug. 15, 1978  | 18118.90      | 99155.601          | 85.0-215.0      | 11,7    | 0.1         | 11.0      | 2.76                              | 0.33 | 2              | 32          | 4        | 30                            | в      | greenstone<br>and tuff     |         |  |
| CUA     | Aug. 1, 1978   | 20123-601     | 105"03.30"         | 12.5-50.0       | 31.8    | 0.5         | 59 R      | 3.01                              |      | I              | 96          |          | 180                           | C.     | diorite and granite        |         |  |
| ING     | June 15, 1978  | 18~53.50      | 101"38.50"         | 35.0-180.0t     | 14.0    | 04          | . 13.5    | 2.80                              |      | I              | 39          |          | 38                            | ¢      | granodiorite<br>and gneiss |         |  |
| LA MIN  | Aug. 6, 1978   | 18:53.10      | 103-19-00          | 30.0-120.0      | 49      | 01          | 4.9       | 2.76                              | 0.20 | 7              | 13          | 1        | 13                            | 4      | basalt juff                |         |  |
| SUL     | July 9, 1979   | 18-51.00      | 99:59.60           | 50.0-100.0      | 9.1     | 08          | 8.4       | 2.80                              | 0.19 | 2              | 26          | 3        | 24                            | C      | shale and schist           |         |  |
| LOS POZ | June 28, 1979  | 21114/00      | 100 - 30,60        | 100.0-270.0     | 41.1    | 04          | 61.0      | 3.14                              | 0 26 | 5              | 128         | 16       | 191‡                          | н      | limestone<br>sandstone     |         |  |
| MOR     | June 26, 1979  | 22"13.40"     | 100.48.30          | 145.0-200.01    | 184     | 0.6         | 18.5      | 2.76                              | 0.05 | 3              | 51          | 2        | 51                            | Я      | basalt tuff                |         |  |
| PAC     | July 23, 1979  | 20 07.50      | 93"42.50"          | 150.0-265.0     | 10.9    | 0.2         | 17.8      | 2.76                              | 0.04 | 3              | 30          | 1        | 49:                           | В      | schist                     |         |  |
| LA NEG  | July 30, 1979  | 20:51.10      | 99-30 <u>,</u> 30' | 40.0-70.0       | 184     | 0.4         | 20.2      | 3.56                              | 0.14 | • 3            | 65          | 3        | 72                            | В      | gness and schist           |         |  |
| IXT     | Jan. 12, 1973  | 19102.701     | 100°10.80°         | 105.0-155.0     | 320     | 90          | 32.0      | 3.35                              | 0.07 | 3              | 107         | 30       | 107                           | D      | schist                     |         |  |
| τερο    | Oct. 15, 1973  | 18:58.00*     | 99.13.10           | 45.0-80.0       | 56.5    | 21          | 56.5      | 1 59                              | 0.11 | 3              | 90          | 7        | 90                            | C      | volcanic<br>tuff           |         |  |
| TER COL | Jan. 16, 1975  | 17.08.70      | 99131.001          | 1250-1450       | 9.5     | 0.3         | 90        | 2.38                              | 0.04 | 5              | 23          | 1        | 21                            | B      | granile                    |         |  |
| ACC     | Jan. 16, 1973  | 16 42.30      | 99:49.10           | 190-0-190-0     | 164     | 01          | 15.9      | 2.43                              | 0.13 | 4              | 40          | 2        | 39                            | A      | granite and                |         |  |
| TUL.    | Jan. 13, 1973  | 20.05.80      | 99:20.50           | 30.0-250.0      | 48.8    | 01          | 48.8      | 1.51                              | 0.10 | . 12           | 73          | 5        | 73                            | A      | clav                       |         |  |
| тех     | Aug. 6, 1972   | 19 28.60      | <b>99 (</b> 0000)  | 1000.0-1800.0   | 36.9    | 05          | 36.9      | 2.26                              | 0.07 | 3              | 83          | 2        | *3                            | A      | hasalt and<br>clastic      |         |  |
| RIO BAL | Jan. 16, 1975  | 17:59.90      | 99:46,70           | 110.0-195.0     | 10.1    | 03          | 9.7       | 1.38                              | 0.11 | 4              | 14          | 1        | 13                            | А      | andesite<br>breccia        |         |  |
| LA ANG  | Jan. 30, 1975  | 16 23.80      | 92 45.50           | 20.0-260.0      | 56      | 0.2         | 5.6       | 2.89                              | 0.06 | 7              | 16          | 1        | 16                            | В      | limestone                  |         |  |
| CHI     | Jan. 22, 1975  | 16:55.50      | 93 05 00           | 160.0-255.0     | 17.2    | 0.2         | 16.2      | 2.76                              | 0.05 | 10             | 47          | 1        | 45                            | A      | Intestone                  |         |  |
| GUA     | April 10, 1972 | 20 59.50      | 100-13.60'         | 140.0-300.0     | 36.8    | 0.2         | . 358     | 3.14                              | 0.04 | 24             | 115         | 2        | 96‡                           | в      | rhyolite<br>breccia        |         |  |

S.E., standard error.

\*These are abbrevated hole names. Hole names were assigned under different criterion, in most cases, location. The full names are TAX, Taxco; TELO, Telolopan; CUA, Cuale; ING, Inguran; LA MIN, La Minita; SUL, Sultepec; LOS POZ, Los Pozo; MOR, Morena; PAC, Pachuca; LA NEG, La Negra, IXT, Ixtapontongo; TEPO, Tepositlan; TER COL, Tierra Colorado, ACC, Acapulce; TUL, Tule; TEX, Texcoco; RIO BAL, Rio Balsas; LA NG, La Ansoltar, GH, Guanajuato.

tLocated within a working mine.

Correction for deviated hole was applied.

.

Tabla D.2(b). Datos de flujo de calor medidos en pozos (tomado de Ziagos et al., 1985).

| Locality                                | Rock Type            | Uranium,<br>ppm | Thorium,<br>ppm | Potassium,<br>% | A, HGU | q*, HFU |
|-----------------------------------------|----------------------|-----------------|-----------------|-----------------|--------|---------|
| San Jose, Buja California (SJ)          | quartz diorite       | 0.14            | 0.86            | 0.44            | 0.42   | 0.80    |
| El Arco, Baja California (EA)           | quartz diorite       | 0.36            | 0.32            | 0.13            | 0.31   | 1.20    |
| Santa Rosalia, Baja California Sur (SR) | tuffs                | 1.79            | 6.25            | 2.39            | 2.72   | 1 10    |
| Caborca, Senora (CAB)                   | quartz monzonite     | 3,78            | 19.11           | 3.34            | 6.36   | 3.20    |
| Cananea, Sonora (CAN1)                  | quartz monzonite     | 6.14            | 15.45           | 2.74            | 7 06   | 1.51    |
| Cananea, Sonora (CAN2)                  | andesite             | 3.30            | 18.65           | 3.50            | 6.02   | 1 17    |
| Nacozari, Sonora (NZ)                   | rhvolite             | 11.03           | 31.04           | 5.12            | 13.29  | 0.42    |
| Cerro Blanco, Sonora (CB)               | rhyolite             | 11.03           | 31.04           | 5.12            | 13.29  | 0.30    |
| Pt. Libertad, Sonora (FAC)              | quartz diorite       | 2.10            | 4,93            | 1.95            | 2,38   | 1.75    |
| Suaqui Grande, Sonora (SG)              | monzonite            | 3.16            | 18.87           | 6.63            | 6.70   | 0.96    |
| San Antonio, Sonora (SA)                | granitic             | 4.75            | 2.49            | 2.61            | 3 97   | 1.50    |
| Hermosillo, Sonora (LV)                 | granodiorite         | 1.80            | 7.95            | 2.79            | 311    | 1.94    |
| Nuevo Casas Grandes, Chihuahua (SP)     | basalt               | 4.12            | 5.32            | 1.12            | 3 72   | 0.86    |
| Parral, Chihuahua (RG)                  | rhvolite             | 2.65            | 13.97           | 3.63            | 4.85   | 0.96    |
| Santa Barbara, Chihuahua (SB)           | rhyolite             | 3.61            | 21,13           | 4.43            | 6 87   | 1.60    |
| Santa Eulalia, Chihuahua (SE)           | rhyolite and diabase | 2.88            | 8.77            | 2.67            | 3.91   | 2.15    |
| Aldama, Chihuahua (NO)                  | rhyolite             | 5.36            | 36.41           | 6.35            | 11.02  | 1.18    |
| Los Piomosas, Chihuahua (LP)            | rhyolite             | 1.25            | 2.69            | 0.40            | 1.32   | 0.45    |
| Tayoltita, Durango (TAY)                | monzonite            | 8.80            | 25,83           | 3.93            | 10.75  | 0.72    |
| Mapimi, Durango (MAP)                   | rhyolite             | 2.78            | 10.45           | 2.77            | 4.13   | 0.57    |
| Velardena, Durango (VD)                 | rhyolite             | 3.89            | 12.16           | 4.58            | 5.53   | 1,29    |
| La Linda, Coahuila (LL)                 | rhyolite             | 8.04            | 28.81           | 4.66            | 10.95  | 0.41    |
| Hercules, Coshuila (HER)                | quartz monzonite     | 3.85            | 14,10           | 3.85            | 5.58   | 1.22    |
| Lampozos, Nuevo Leon (LZ)               | granitic             | 3.10            | 7.40            | 2.90            | 3.80   | 0.43    |
| Villa Garcia, Nuevo Leon (VG)           | rhyolite and gabbro  | 5.14            | 20.39           | 4.73            | 7.84   | 0.27    |
| Concepcion del Oro, Zacatecas (CDO)     | granite              | 3.80            | 10 00           | 3.20            | 4.80   | 1.36    |
| Fresnillo, Zacatecas (FS)               | rhyolite             | 6.45            | 28.20           | 6.05            | 10.15  | 1.35    |
| Sombrerete, Zacatecas (SMB)             | granite              | 9.60            | 24.10           | <u>\$.10</u>    | 12 20  | 1.72    |
| Calderon, Zacatecas (CA)                | rhyolite             | 3.11            | 23.15           | 3.06            | 6.56   | 1.16    |
| Choix, Sinaloa (CX)                     | monzonite            | 5.96            | 19.25           | 3.39            | 7.78   | 1.13    |
| Malpica, Sinaloa (MAL)                  | granodiorite         | 6.83            | 17.04           | 3.02            | 7.83   | 3,40    |
| Tameapa, Sinaloa (TAM)                  | quartz diorite       | 2.67            | 10.31           | 2 84            | 4.06   | 2.56    |

Tabla D.3. Abundancias promedio de elementos radioactivos, generación de calor A y flujo de calor proveniente del manto  $q^*$  en el Norte de México (tomado de Smith et al., 1979).

6 Z L

|             |       |                   | Grad<br>m*C       | ient†,<br>/cm     |                          |                        |                           |            |        |      |
|-------------|-------|-------------------|-------------------|-------------------|--------------------------|------------------------|---------------------------|------------|--------|------|
| Lat.,<br>*N | Long. | Depth.*<br>meters | Above<br>5 Meters | Below<br>5 Meters | Cond.,<br>meal on "C see | Cond. Meas 1<br>Method | Heat Flow,<br>prai/cm*sec | Спліав     | T-Grad | Year |
| 25 33       | 85-01 | 3347              | 0.58              | 0.34              | 2 35                     | MWL                    | 0.80                      | RCy        | 11     | 1964 |
| 27 49       | 56 23 | 3162              | 0 48              | 0 45              | 2 04                     | MWL                    | 0 92                      | RCy        | 12     | 1964 |
| 27 59       | 69 00 | 1277              | 0 46              | 0 28              | 2 43                     | MWL                    | 0 68                      | RC9        | 13     | 1964 |
| 25 11       | 9L 33 | 3375              | 0 40              | 0 42              | 2 44                     | MWL                    | 1 02                      | RC9        | 14     | 1964 |
| 25 57       | 96 02 | 960               | 0 54              | 0 32              | 2 41                     | MWL                    | 0 77                      | RC9        | 17     | 1964 |
| 26 17       | 94-17 | 1995              | 0 45              | 0 42              | 2 20                     | MWL                    | 0 92                      | RC9        | 18     | 1964 |
| 26 03       | 92 34 | 2112              | 0 49              | 0.50              | 2 78                     | MWL                    | 1 39                      | RC9        | 19     | 1964 |
| 24 49       | 91 20 | 3570              | 0 25              | 0.35              | 2 56                     | MWL                    | 0 97                      | RC9        | 21     | 1964 |
| 25 30       | 95 18 | 2028              | 0 51              | 0.55              | 2 16                     | MWL                    | 1 19                      | RC9        | 22     | 1964 |
| 20 33       | 94 11 | 2169              | 0 77              | 0.95              | 2 26                     | MWL                    | 2 18                      | RC9        | 23     | 1964 |
| 23 27       | 92 27 | 3012              | 0 80              | 0 85              | 2 18                     | MWL                    | 1 85                      | RC9        | 24     | 1964 |
| 24 50       | 90.56 | 3696              | 0 49              | 0 37              | 2 15                     | MWL NIWL               | 0.80                      | RC9        | 25     | 1964 |
| 24 59       | 86 57 | 3475              | 0 38              | 0 38              | 2 07                     | MWI.                   | 0 79                      | RCS        | 26     | 1964 |
| 21 30       | 80 14 | 3405              | 0.39              | 0 27              | 2 50                     | 31.5                   | 0.69                      | RC12       | 2      | 1963 |
| 20 24       | 01 22 | 2011              | 0 37              | 0.10              | 2 34                     | NIN                    | 0.07                      | BC12       | 2      | 1909 |
| 29 21       | 05 32 | 2024              | 0 40              | 0 25              | 2 31                     | MAX N                  | 0.93                      | RC12       |        | 1908 |
| 22 54       | 93 40 | 3751              | 0 10              | 0.42              |                          | MAX                    | 0.05                      | BC12       |        | 1068 |
| 24 42       | 80 48 | 3563              | 0.42              | 0 33              | 2 77                     | MN                     | 0 93                      | RC12       | 10     | 1049 |
| 26 35       | 89 40 | 2580              | 0 20              | 0.00              | 2 26                     | MN                     | 0.46                      | VIR        | 153    | 1962 |
| 27 28       | 86 49 | 3027              | 0.49              | 0 49              | 2 18                     | MN                     | 1 07                      | V24        |        | 1967 |
| 27 17       | 87 57 | 2652              | 0 28              | 0.05              | 2 36                     | MN                     | 0 19                      | V24        | 9      | 1967 |
| 24 23       | 90.06 | 3842              | 0 39              | 0.39              | 2 50                     | MN                     | 0.98                      | V24        | 10     | 1987 |
| 23 35       | 92 08 | 3740              | 0 95              | 0 77              | 2 38                     | MN                     | 1.83                      | V24        | 11     | 1967 |
| 23 44       | 92 38 | 3740              | 0 85              | 0 88              | 2 16                     | MWL                    | 1.90                      | ALA        | 1      | 1965 |
| 23 26       | 92 34 | 3740              | 0 85              | 0 85              | 2 43                     | MWL                    | 2 07                      | AL4        | 2      | 1965 |
| 23 26       | 92 20 | 3560              | 0 95              | 0.95              | 2 22                     | MWL                    | 2 11                      | AL4        | 3      | 1965 |
| 22 37       | 93 07 | 3560              | 0.55              | 0.55              | 2 25                     | MWL.                   | 1 24                      | AL4        | 4      | 1965 |
| 20 44       | 83 08 | 1755              | 0 32              | 0 12              | 2 28                     | MWL                    | 0.27                      | ALA        | 5      | 1965 |
| 20 11       | 92 58 | 1065              | 0 58              | 0 25              | 2 07                     | MWL                    | 0 52                      | ALA .      | 6      | 1965 |
| 20 29       | 94 31 | 2997              | 0 50              | 0 38              | 2 36                     | MWL                    | 0 90                      | AL4        | 7      | 1965 |
| 20.51       | 95 47 | 2315              | 0 75              | 0 38              | 2 03                     | MWL                    | 0 77                      | ALA        | 8      | 3905 |
| 21 13       | 96 37 | 995               | 060               | 0 32              | 2 02                     | MWL                    | 0 65                      | ALI        |        | 1902 |
| 22 05       | 96 11 | 2635              | 0 56              | 0 33              | 1 95                     | MWL                    | 0 64                      | AL4        | 10     | 1045 |
| 24 14       | 95 40 | 2955              | 0 57              | 0 40              | 2 00                     | MWL                    | 0.84                      | ALA        | 12     | 1065 |
| 24.41       | 94 32 | 3725              | 0 51              | 0 27              | 2 49                     | MWL                    | 0.67                      | ALA        | 1.4    | 1965 |
| 20 17       | A4 18 | 2012              | 0 72              | 040               | 2 77                     | MWL                    | 1 11                      | 104        | 62     | 1969 |
| 23 53       | 85 52 | 3462              | 0 11              | 0 41              | 2 25                     | MN                     | 0.05                      | V20<br>V24 | 64     | 1969 |
| 27 50       | 00.00 | 34.17             | 0 15              | 0 43              | 2 15                     | ALX<br>MAX             | 0.02                      | V26        | 65     | 1969 |
| 23 02       | 92 02 | 3760              | 0.18              | 0 18              | 2 10                     | 61.5                   | 1 01                      | V24        | 61     | 1969 |
| 23 29       | 02 35 | 3357              | 1 20              | 1 20              | 2 10                     | ACN                    | 2 59                      | V.6        | 67     | 1969 |
| 23 27       | 92 30 | 3548              | 1 17              | 1 17              | 2 26                     | MN                     | 2 64                      | V26        | 65     | 1969 |
| 25 32       | 92 33 | 3321              | 0.38              | 0.38              | 2 11                     | MN                     | 0 80                      | V26        | 70     | 1969 |
| 25 53       | 92 17 | 2500              | 0 35              | 0 35              | 2 25                     | MN                     | 0 79                      | V26        | 71     | 1969 |
| 23 46       | 93 35 | 3753              | 0 45              | 0 36              | 1 98                     | MN                     | 0 71                      | V26        | 72     | 1969 |
| 24 14       | 91 41 | 3742              | 0 59              | 0 59              | 2 38                     | MN                     | 1 40                      | V26        | 73     | 1969 |
| 25 50       | 88 08 | 3107              | 0 35              | 0 23              | 2 21                     | MN                     | 0 51                      | V28        | 74     | 1999 |

\* Depth corrected for sound velocity by Matthews' [1939] tables.

† Temperature gradient is given for depths less than 5 meters, measured from the acdiment-water interface, and from 5 meters.

T remperature granient is given for depine test that a meters, measured took its science is to the depth of penetrations of the depent probe. The abbreviations used are: MWL when conductivity is determined from the water content using the relationship of LacAen-bruch and Marshall [1966], and MN when it is measured with the needle probe.

Tabla 5.4. Válores de flujo de calos en el Golfo de México (tomado de Epp et al , 1975; .

| 2 (km) | 10* dep /         | ap (km s <sup>-1</sup> MPa <sup>-</sup> | 1)                 | - 10 <sup>4</sup> ∂v <sub>r</sub> | /ð7 (km s <sup>-1</sup> K <sup>-1</sup> ) | Ъ.                 |
|--------|-------------------|-----------------------------------------|--------------------|-----------------------------------|-------------------------------------------|--------------------|
|        | granite<br>gneiss | amphibolite<br>gabbro                   | ultrabasic<br>rock | granite<br>gneiss                 | amphibolite<br>gabbro                     | ultrahasie<br>rock |
| 0-15   | 4                 | 3                                       | 3                  | 4                                 | 4                                         | 5                  |
| 15-30  | 3                 | 3                                       | 2                  | 4                                 | 4                                         | 5                  |
| > 30   |                   | 1                                       | 1                  | 4                                 | 4                                         | 5                  |

(a) Temperature and pressure derivatives

(b) Assumed temperature-depth distribution

i

| z (km) | TPre (°C) | T <sub>Phan</sub> (°C) |  |
|--------|-----------|------------------------|--|
| 3      | 50        | 150                    |  |
| 10     | 150       | 400                    |  |
| 20     | 300       | 600                    |  |
| 30     | 400       | 750                    |  |
| 50     | 550       | 1000                   |  |
|        |           |                        |  |

| ······                                                   | z (km): | 3    | 10   | 20   | 30   | 50   |
|----------------------------------------------------------|---------|------|------|------|------|------|
| Granite                                                  | Prec.   | 0.99 | 0.99 | 0.99 | -    | -    |
| $v_p(100 \text{ MPa}) = 6.02 \text{ km/s}$               | Phan.   | 1.00 | 1.01 | 1.01 | -    | -    |
| Gneiss                                                   | Prec.   | 0.99 | 0.99 | 0.99 | 0.97 | -    |
| v <sub>p</sub> (100 MPa) = 5.97 km/s                     | Phan.   | 1.00 | 1,01 | 1.01 | -    | -    |
| Amphibolite<br>Gabbro                                    | Prec    | 1.00 | 1.00 | 0.99 | 0.97 | -    |
| $v_{\rm p}(100 \text{ MPa}) = 6.88 \text{ km}/\text{ s}$ | Phan.   | 1.01 | 1.01 | 1.00 | 0.99 | -    |
| Ultrabasic rock                                          | Prec.   | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 |
| v <sub>p</sub> (100 MPa) = 8.00 km∕s                     | Phan.   | 1.01 | 1.01 | 1.02 | 1.02 | 1.02 |

Tabla D.5(b). Factores de corrección para la velocidad sísmica para áreas Precámbricas y Fanerozóicas, que deben ser aplicados a Vp para calcular A (tomado de Rybach et al., 1984).

| Seismic velocity      | Correction factor for a depth z [km] of |       |       |       |       |       |  |  |  |  |  |
|-----------------------|-----------------------------------------|-------|-------|-------|-------|-------|--|--|--|--|--|
| v <sub>p</sub> [km s] | 5                                       | 15    | 20    | 25    | 30    | 35    |  |  |  |  |  |
| 6.0-6.4               | 1.020                                   | 1.016 | 1.021 | 1.039 | _     | -     |  |  |  |  |  |
| 6.5 - 7.5             | 1.013                                   | 1.016 | 1.017 | 1.022 | 1.032 | 1.042 |  |  |  |  |  |
| > 7.5                 | 1.019                                   | 1.016 | 1.015 | 1.020 | 1.022 | 1 022 |  |  |  |  |  |

Tabla D.5(c). Factores para realizar correciones por efecto de presión y por efecto de temperatura que deben ser aplicados a la velocidad de las ondas Vp para determinar la producción de calor A usando la fig. 5.9 (para una presión P=400 MPa) (tomado de Buntebarth, 1984).

### CONCLUSIONES

Este estudio debe considerarse en el marco de trabajo del General Geotraverse Project del Pragrama Internacional para la Litósfera. El Transecto aquí estudiado corresponde parcialmente a uno de los transectos propuestos para su estudio en México.

Una busqueda bibliográfica muy extensa fue realizada con el objeto de reunir datos geológicos y geofísicos relacionados con el objetivo de nuestro estudio: la determinación de la estructura de la corteza y del manto superior a lo largo del Trópico de Cáncer república mexicana. En particular se realizó una en la recopilación de estudios sismicos basados en estudios de propagación de ondas de volumen y superficiales creadas por fuentes naturales (terremotos) así cono artificiales (pruebas nucleares), en estudios de refracción sísmica realizados en la parte continental como marítima. Estos estudios definen la estructura signica de la corteza y del manto superior en nuestra zona de estudio.

La síntesis de esta información sísmica permite constreñir la interpretación de la información gravimétrica correspondiente. La información sísmica permitió elaborar un modelo de distribución de la densidad en la litósfera. El modelo así establecido fue corroborado mediante modelado gravimétrico númerico directo. En efecto, solo cambios menores fueron necesarios realizar en el modelo gravimétrico inicial, para obtener un ajuste entre la respuesta teorica gravimétrica del modelo de distribución de la densidad en el subsuelo y los datos gravimétricos observados (anomalía de Bouquer en la parte continental, y de Aire Libre en la parte marina del transecto respectivamente). Este es un resultado fundamental debido a sus repercusiones en el estudio del . equilibrio isostático de nuestra zona de estudio.

De acuerdo a los datos de sismología y gravimetría la estructura cortical continental se puede explicar en términos de una cubierta de productos volcanicos, sedimentarios, etc., una corteza superior de tipo granitico, una corteza inferior de tipo básica. Intrusiones corticales son inferidas en la Planicie Costera del Golfo de México y en la zona de transición con el Golfo de México.

Desde el punto de vista de su espesor la corteza presenta una asimetría: el Moho se encuentra a 42 , 30 y 36 km de profundidad en la SMOc, Mesa Central y SMOr respectivamente.

En general la estructura de la corteza y del manto superior a lo largo de nuestro transecto de estudio comprende caracteristicas propias al mecanismo de compensación isostatica de Pratt como de Airy: es decir cambios laterales de densidad, así como cambios en la profundidad, del Noho por ejemplo. Esta información es de importancia funadamental en estudios de equilibrio isostatico, ya que permite partir de una base concreta y evitar la asignación apriori y mas o menos subjetiva del macanismo de compensación isostatico que opera.

Para determinar el grado de compensación isostatica se siguieron varios caminos. De acuerdo a los resultados obtenidos, el área de estudio, y en particular la Meseta Central, se encuentran aproximadamente en equilibrio isostático. Como segundo paso de nuestro estudio isostático se realizaron cálculos de la estructura cortical de acuerdo a la topografía del área y a supuestos mecanismos de compensación isostática. Iqualmente se calculó la anomalía isostatica correspondiente al modelo cortical establecido en base a la información sismológica y gravimétrica. En general los resultados basados en nuestro modelo cortical no concuerdan con los ejercicios basados en modelos de compensación isostática asigandos de manera más o menos subjetiva, ni tampoco concuerdan con las determinaciones de otros autores (en particular de la anomalía de Aire Libre e Isostática). Se hace un analísis de razón de estas diferencias y se llega a la conclusión por una parte que nuestros cálculos estan basados en un modelo que está basado en información sísmica y gravimétrica, así como geológica, y por lo tanto más cercana de la realidad que aquellos calculos

basados en la asignación apriori y más o menos subjetiva del mecanismo de compensación isostática (esto compete al cálculo de la anomalia isostática). En lo que se refiere a la Anomalía de Aire Libre la diferencia se basa al esquema seguido en su calculo: nosotros utilizanos datos puntuales, y en general otros autores utilizan datos promediados.

Basados en datos de un perfil aeromagnético se trato de realizar estimaciones de la profundidad al isoterma de Curie y al basamento magnetico. Se interpretan anomalías magnéticas en las planicies costeras del Golfo de México en terminos de intrusiones básicas en concordancia con nuestra inferencia gravimétrica. Cualitativamente, se puede interpretar la falta de relieve magnético en la Mesa Central como un indício de una isoterma de Curie relativamente somera. El analísis espectral permitio realizar estimaciones regionales de la profundidad a la isoterma de Curie en la Mosa Central, SMOr y en la Planicie Costera del Golfo de México (23, 28 y 33) km respectivamente). Debido a la esparcidad de los datos y a su estructura no fue posible realizar estadístico más detallado. Se calcularon un analisis las profundidades al basamento magnético en la Mesa Central, la SMOr y la Planicie Costera del Golfo de México.

Se procedió a una recopilación de datos de flujo de calor para la zona de estudio. En particular se elaboró un perfil de flujo de calor con datos provectados al transecto. Se analiza su representatividad. Para calcular el flujo de calor proveniente del manto, se calcula la producción radiogénica de calor de origen cortical. Para esto se utiliza las relaciones establecidas estos últimos años entre las velocidades sismícas y la producción de calor. Como resultado se tiene una producción relativamente baja de calor en la corteza por debajo de la Mesa Central y un flujo de calor proveniente del manto relativamente elevado. Se realizan cálculos preliminares de temperaturas, y correspondientemente del espesor de la litósfera térmica.

Enseguida se hace un analísis de toda la información geológica y geofísica con relación de la evolución tectónica de la Mesa

### Central (levantamiento y extensión tectónica).

El volumen y diversidad de la natureleza de la información manejada en este trabajo es muy grande y variada. Así mismo lo es la calidad de los diversos estudios en que se basó este trabajo. Por lo que muchas de las conclusiones concerniendo las cuestiones del flujo de calor deben considerarse de caracter preliminar. Esta tesis representa una contribución al estudio integrado de la litósfera en el norte de México.