N=53 2.EJ.

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE INGENIERIA

VNIVERSDAD NACIONAL AVFMMA DE MEXICO

SOCAVACION AL PIE DE LAS CUBETAS DE LANZAMIENTO FORMULACION TEORICA

TESIS

Que para obtener el Título de:

INGENIERO CIVIL

Presenta

SHURABE CORA LILIA GUIDO AGUILAR

DIRECTOR DE TESIS: ING. JAIME CAMARGO H.

MEXICO, D.F.

1992

TESIS CON VALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

		에는 것이 가지 않는 것이 가지 않는 것이 가지 않는 것을 가지 않는 것이 가지 않는 것이다. 같은 것이 아니는 것이 같은 것이 같은 것이 같은 것은 것은 것은 것을 알려졌다. 것이 같은 것이 없다. 것이 있는 것이 있		
	ningan na sa		المراجع المعلى المراجع المراجع . محمد المحاجية المحمد المراجع المحمد المحمد	
	1.	INTRODUCCION	1000 (1000) 1000 (1000)	
	1.1	Consideraciones generales	0.000 - 1000 - 1000 - 1000 2007 - 1000 - 1000 - 1000	
	1.2	Formulación del problema	1	
	1.3	Objetivos	2	
	1.4	Desarrollo del trabajo	2	
	2.	VERTIDO DE LA CUBETA DE LANZAMIENTO	4	
	2.1	Introducción	4	
	2.2	Disipación de la energía en el vertido libre	6	
		2.2.1 Características generales del flujo en el foso	6	
		2.2.2 Condiciones del flujo en el foso en función del	도 사람 홍수	
		tirante aguas abajo	8.	
	2.3	Vertido libre	11	gi di di Antilia A peper di A
		2.3.1 Características de la cubeta de lanzamiento	2013년 1월 1일 1월 1일 - 1일 - 1일 - 1일 1일 - 1일 - 1일 - 1일 - 1	
		y forma de la lámina vertida	11. (1997) 11. (1997)	
	2.4	Socavación en el cauce	14	
	_			
	3.	METODOLOGIA NUMERICA	22	
	3.1	Introduccion	22	
	3.2	Programas de calculo	24	
	3.3	contribución de formulaciones para el calculo de la	26	
		3.2.1. Diseño de experimentos	20	
		3.3.2 Correlación múltiple	20	
		3.3.3 Generación de datos	35	•
		3.3.4 Análisis de resultados	40	این در در د ایک میشان آمر
n nghinh Ng	3.4	Aplicación práctica	41	
		3.4.1 Descripción del proyecto de la Presa de		
		Aguamilpa, Nay.	41	
		3.4.2 Características hidráulicas	43	
	4.	CONCLUSIONES, APORTACIONES Y FUTUROS DESARROLLOS	53	
	4.1	Conclusiones y aportaciones	53	
	4.2	Posibles desarrollos	54	

REFERENCI AS

56

59

65

INDICE DE VARIABLES

TABLAS Y FIGURAS

1. INTRODUCCION

1.1 Consideraciones generales

En el diseño de las presas, especialmente aquellas que generan grandes cargas y/o están localizadas en rios con caudales importantes, se asume una especial consideración en la correcta definición de la estructura terminal de la obra de excedencias que generalmente es un tanque amortiguador o una cubeta deflectora-foso disipador, contando con un buen diseño para obtener el valor mínimo de energía cinética y así reducir el problema de la socavación aguas abajo de la estructura terminal.

1.2 Formulación del problema

La complejidad del flujo tridimensional resultante y la característica anisotrópica y no homogénea de la turbulencia inducida en el foso de disipación de energía, no permite estudiar el flujo por desarrollos analíticos. Por lo tanto, los estudios en modelo hidráulico son la herramienta básica.

Uno de los problemas es saber conducir estos estudios en modelo para la cuantificación de las acciones hidrodinámicas que actúan sobre las paredes del foso disipador.

El otro problema es que debido a la naturaleza aleatoria del proceso, no es posible describirlo por medio de una función analítica explícita en el tiempo. Sin embargo existen buenos procedimientos para caracterizar el fenómeno aleatorio, en una forma cuantitativa, por medio del análisis estocástico.

La confiabilidad de la información obtenida por el modelo hidráulico, esto es, los datos obtenidos por medio de los instrumentos de medición es fundamental; pues, de esta información dependen los resultados obtenidos en el proceso de tratamiento de la información.

1.3 Objetivos

El objetivo principal del estudio es llegar a resolver con seguridad y economía, aquellas estructuras hidráulicas sometidas a la acción de cargas hidrodinámicas, como son el caso de los fosos disipadores de energía al pie de una cubeta de lanzamiento. Así los objetivos principales que se persiguen, se circunscriben a los puntos siguientes.

- a. Presentar las formulaciones numéricas para el estudio de la socavación en el foso disipador de la energía hidráulica.
- b. Diseñar, poner a punto y formular una metodología experimental para el estudio del campo de presiones en el foso disipador de la energía hidráulica.

En el presente trabajo, se aborda sólo el primer punto, el segundo será tema de otro estudio.

1.4 Desarrollo del trabajo

El trabajo se ha dividido en varios capítulos. El capitulo uno, del cual forma parte esta sección, ha tenido la finalidad de formular el problema y los objetivos propuestos.

En el capítulo dos, se presenta en primer lugar un análisis global de la disipación de energía en la base del foso de caída. Se determinan las condiciones del flujo en el foso disipador por vertido libre de la cubeta de lanzamiento en función del remanso aguas abajo, para finalmente las formulaciones principales de las expresiones más conocidas, que determinan las socavaciones máximas.

En el capitulo tres, se presentan los programas necesarios y la metodología numérica, para poder discutir y proponer una unificación de las formulaciones principales para calcular la socavación al pie de las cubetas de lanzamiento. Para finalmente presentar una aplicación real.

En el capítulo cuatro, se presenta un resumen de las conclusiones y aportaciones más importantes obtenidas en este trabajo, así como propuestas de futuros desarrollos.

and shared share a starting a second share a start of the parameters are

conocidas, que determinan las socavaciones máximas.

En el capitulo tres, se presentan los programas necesarios y la metodología numérica, para poder discutir y proponer una unificación de las formulaciones principales para calcular la socavación al pie de las cubetas de lanzamiento. Para finalmente presentar una aplicación real.

En el capítulo cuatro, se presenta un resumen de las conclusiones y aportaciones más importantes obtenidas en este trabajo, así como propuestas de futuros desarrollos.

2. VERTIDO DE LA CUBETA DE LANZAMIENTO

2.1 Introducción

Un aspecto muy importante en el diseño de una presa, lo constituyen las obras de seguridad "vertedero-tanque disipador de energía" o "vertedero-cubeta de lanzamiento-foso disipador de energía", que permiten restituir al cauce natural el agua excedente del embalse.

El objetivo de los fosos disipadores de energía hidráulica es eliminar gran parte de la energía de los flujos de alta velocidad; ya sea por fricción del agua con el aire, con las paredes del suelo o formación geológica o por fricción interna; por lo tanto, limitan las socavaciones en el punto de restitución al cauce aguas abajo del foso y proporcionan un régimen de circulación lo más estable posible aguas abajo del foso.

En la Fig 2.1, se presentan los principales tipos de los fosos disipadores de energía hidráulica de las presas.

De todos los tipos, el vertido libre ver Fig 2.1(c y g), constituyen una forma de disipación de energía simple, al incidir el flujo en un colchón de agua, pudiendo ser el fondo el cauce natural del río (roca sana de buena calidad), una plancha de concreto armado, el foso labrado

por las descargas de la estructura en formaciones de poca resistencia ó el formado por una contrapresa.

El estudio realizado se circunscribe al foso labrado por las descargas y al estanque formado por la contrapresa. Su misión consiste en retornar los caudales excedentes al cauce del río, pero de una forma Para ello, el flujo de la obra de excedencias en su parte racional. terminal es guiada por la cubeta de lanzamiento; posteriormente cae libremente por la atmósfera hasta alcanzar el foso disipador, que se encuentra ubicado al pie de la estructura y que está constituido por el suelo y un colchón de agua en donde la vena líquida se difunde. Α continuación forma resalto hidráulico se บท ahogado, para posteriormente retornar al cauce del río.

El foso disipador de energía, se encuentra sometido a una fuerte acción erosiva, como consecuencia de las altas velocidades que se obtienen de la transformación de la energía potencial creada por el embalse.

Actualmente se presentan dudas a la hora de preveer sí la caída de un chorro de gran potencia junto al pie de la estructura, provocará socavaciones serias en el lecho del río. Por tanto, aúnexisten muchos problemas por esclarecer en relación a la acción del chorro en el lecho del río, tanto a nivel teórico como práctico [5].

La acción destructiva del chorro sobre el lecho y márgenes es motivada por las presiones hidrodinámicas y a sus fluctuaciones, estrechamente relacionadas con la altura de la presa, el caudal descargado, la posición relativa del chorro, etc. Así como las características geotécnicas y geológicas del lecho.

En el proyecto de un tanque disipador, problemas importantes a resolver son el determinar las condiciones de la acción mecánica del chorro y fijar la altura y longitud del colchón de agua. El diseño de estos tanques es de carácter interactivo. Una vez que se define a nivel de prediseño la forma y dimensiones del vertedero y del tanque disipador (altura del colchón y su longitud), se construye el modelo hidráulico, que determinará las presiones actuantes en el tanque. Posteriormente, al tomar en cuenta dichas presiones y los costos económicos se modifican las dimensiones y geometría del tanque disipador, con objeto de llegar a una solución adecuada.

En este capítulo, se presenta el análisis de la disipación de la energía hidráulica en el foso, en donde se definen las características generales de la disipación y la geometría del flujo. Posteriormente, se determina de una forma más detallada, las condiciones del flujo en el foso disipador en función del remanso aguas abajo.

Parte de la información que se presenta, ha sido tomada de las **refs [3]** y [25], con algunas adiciones encaminadas a definir la socavación al pie de las cubetas de lanzamiento.

2.2 Disipación de la energía en el vertido libre

La disipación de la energía se produce por el frenado del aire y la emulsión en la caída, por la difusión del chorro en el colchón de agua. El impacto en el lecho del disipador y el remanso o contrapresa crea un flujo altamente turbulento con elevada disipación de energía.

2.2.1 Características generales del flujo en el foso

Moore [16], presenta un estudio teórico-experimental de la disipación de energía bidimensional con base a las estructuras de caída vertical, ver Fig 2.2.

Sin considerar pérdidas de carga

$$H_1 = H + \frac{3}{2} Y_c$$
 (2.1)

$$\frac{H_{1}}{V_{c}} = \frac{H_{0}}{V_{c}} = \frac{H}{V_{c}} + \frac{3}{2}$$
(2.2)

siendo

$$= \left[\frac{q^2}{g}\right]^{\frac{1}{3}}$$
(2.3)

La diferencia entre las curvas teórica y experimental, ver Fig 2.3, representa la pérdida de energía entre el tirante crítico $\Delta H/Y_c$. La disipación puede llegar a ser hasta las 2/3 partes de la altura de caída, H. Se consigue incrementar la disipación de la energía de un caudal y una altura de una caída determinada, al aumentar el ancho del vertedero, lo que significa una reducción del tirante.

6

Y

La velocidad media real en la base de la caída, se expresa como:

$$V_1 = C_v \left[2g(H_o - Y_1) \right]^{\frac{1}{2}}$$
 (2.4)

en donde $H_o = H + \frac{3}{2}Y_c$ (ver Fig 2.2).

Sí en la ec (2.4) se sustituye el valor de H_o, se toma en cuenta la ecuación de continuidad y se reordenan términos se obtiene

$$\left[\frac{Y_{c}}{Y_{1}}\right]^{3} - C_{v}^{2} \frac{Y_{c}}{Y_{1}} \left[\frac{2H}{Y_{c}} + 3\right] + 2 C_{v}^{2} = 0$$
(2.5)

a partir de la ec (2.5), y teniendo en cuenta el valor de C_y (Fig 2.3), se puede calcular Y₁. La energía Y₁ + $V_1^2/2g$, se obtiene de la ec (2.1).

El tirante $\mathbf{Y}_{\mathbf{p}}$, se determina de la ecuación de cantidad de movimiento, y cuya ecuación es

$$\left[\frac{Y_{p}}{Y_{c}}\right]^{2} = \left[\frac{Y_{1}}{Y_{c}}\right]^{2} + 2\left[\frac{Y_{c}}{Y_{1}}\right] - 3 \qquad (2.6)$$

Esta expresión concuerda con los resultados experimentales presentados por Moore [16], ver Fig 2.4.

El conjugado Y_2 , se obtiene a partir de Y_1 , para el caso de una sección rectangular con la ecuación siguiente

$$\frac{Y_2}{Y_1} = \frac{1}{2} \left[\left[1 + 8 F_{r_1}^2 \right]^{0.5} - 1 \right] = \frac{1}{2} \left[\left[1 + 8 \left(\frac{Y_2}{Y_1} \right)^3 \right]^{0.5} - 1 \right]$$
(2.7)

$$F_{r_1} = \frac{V_1}{(g Y_1)^{0.5}}$$
(2.8)

la ec (2.7) se puede presentar de la manera siguiente

$$\frac{Y_{c}}{Y_{c}} = \frac{Y_{1}}{2 Y_{c}} \left[\left[1 + 8 \left(\frac{Y_{c}}{Y_{1}} \right)^{3} \right]^{0.5} - 1 \right]$$
(2.9)

Moore [16] comprobó experimentalmente la ec (2.9), Fig 2.5.

W. Rand [18], de los datos experimentales de Bakhmeteff y Feodoroff [3], Moore [16] y de sus propios resultados, encontró que la geometría del flujo en las estructuras de caída, se pueden describir en función de un parámetro adimensional, denominado número de caída, el cual se define como

$$D_{c} = \frac{q^{2}}{\sigma H^{3}}$$

(2.10)

las relaciones geométricas son las siguientes

$$\frac{L_{d}}{H} = 4.30 D_{c}^{0.27}$$

$$\frac{Y_{p}}{H} = 2.00 D_{c}^{0.22}$$

$$\frac{Y_{1}}{H} = 0.54 D_{c}^{0.425}$$

$$\frac{Y_{2}}{H} = 2.66 D^{0.27}$$

aplicables al caso particular de no socavación al pie de la estructura, Fig 2.2.

La longitud del foso de disipación es función de la trayectoria del chorro y de la longitud del resalto hidráulico libre $L_r = 6.9 (Y_2 - Y_1)$, así : $L_c = L_d + L_r$.

Los resultados que se obtengan, se pueden aplicar solamente a nivel de prediseño; de esta forma, se pueden definir las dimensiones del modelo hidráulico del prototipo en estudio. Las características finales del foso disipador de energía se obtendrán del análisis de resultados de los ensayes realizados en modelo.

2.2.2 Condiciones del flujo en el foso en función del tirante aguas abajo.

Las condiciones del flujo en el foso, pueden clasificarse de acuerdo al

remanso aguas abajo Y_{h} , en tres tipos diferentes (Fig 2.6).

Tipo I $Y_{L} < Y_{2}$

En estas condiciones no se forma un verdadero colchón aguas abajo del punto de caída; sin embargo, aguas arriba de este punto se forma un colchón de agua de espesor Y_p , creado en la zona de caída del chorro de tirante Y_{p} .

Tipo II
$$Y_{b} > Y_{c}$$

Se forma un resalto hidráulico ahogado, de esta forma aguas arriba y aguas abajo del punto de caída, se tienen verdaderos colchones de agua.

Para obtener este tipo de flujo, se debe verificar que $Y_{co}/b_o < 20$, donde b_o es el espesor del chorro a la entrada del foso disipador [1], Fig 2.6.

Tipo III Y /b > 20

La inclinación de la superficie libre, aguas arriba y abajo del punto de caída, disminuye rápidamente, la diferencia entre Y $_{co}$ y Y $_{b}$ tiende a cero.

En donde se presente un remanso natural o artificial, suelen garantizarse las condiciones de flujo tipo II ó III.

Para obtener el tirante Y_p , en función del remanso aguas abajo Y_b (flujos tipos II y III), se aplica el teorema de la cantidad de movimiento entre estas dos secciones, Fig 2.6, sumándole un término adicional correspondiente a las fuerzas de resistencia del flujo; esto es:

 $\rho q v_{o} \cos \theta_{o} + \frac{1}{2} \rho g Y_{p}^{2} = \rho q V_{b} + \frac{1}{2} \rho g Y_{b}^{2} + \beta_{o} \rho q v_{o} \cos \theta_{o}$ (2.11)

haciendo $\beta = 1 - \beta_0$, y reordenando

en donde, $F_b = V_b^2/g Y_b$ representa el cuadrado del número de Froude en la sección aguas abajo; β_o es un coeficiente que se le puede atribuir el sentido físico de tomar en cuenta las pérdidas de carga continuas.

(2.12)

 $\frac{Y}{Y_{L}} = \left[1 - 2 F_{b} \left[\left(\frac{V}{V_{c}} \right) \beta \cos \theta_{o} - 1 \right] \right]^{2}$

Cui Guang Tao [5] presentan los resultados de cálculo de β , por medio de la ec (2.12), a partir de valores experimentales de Y_p. Estos valores están comprendidos entre 0.5 y 0.7, pudiéndose considerar un valor medio de 0.6, ver Fig 2.7. La ec (2.12) y la Fig 2.7 permiten calcular Y_p.

Cui Guang Tao [5] presenta que los resultados analíticos ($\beta = 0.6$) y experimentales, obtenidos para un modelo en particular, concuerdan razonablemente, Fig 2.8.

El cálulo de Y_{co} se realiza utilizando un método aproximado. Para aplicar el teorema de la cantidad de movimiento entre las secciones a Y_{co} y Y_b, es preciso tener en cuenta la influencia de los vórtices, las inclinaciones de la superficie libre en esas secciones, así como dos términos adicionales correspondientes a la resistencia del flujo y a la no distribución uniforme de velocidades en la sección de caída o de incidencia Y_{co}. Así se tiene que

$$\rho \theta V_{o} \cos \theta_{o} + \frac{\rho g Y_{co}^{2}}{2} + \alpha \rho q V_{o} = \beta_{o} \rho q V_{o} \cos \theta_{o} + \rho q V_{b} + \frac{\rho g Y_{b}^{2}}{2} \qquad (2.13)$$

en donde β tiene el mismo significado que el descrito en la ec (2.12), en tanto que α es un coeficiente que toma en cuenta la no distribución uniforme de velocidades. Por tanto:

 $\frac{Y_{co}}{Y_{b}} = \left(1 - 2 F_{b} \left[\left(\frac{V_{o}}{V_{b}}\right)\beta \left(\frac{\alpha}{\beta} + \cos\theta_{o}\right) - 1\right]\right]^{1/2}$ (2.14)

El valor de Y_{co} es muy difícil de determinar experimentalmente, de modo que no se puede obtener α , en la misma forma en que se obtuvo β .

La ec (2.14) se ajusta razonablemente a los datos experimentales, cuando $\alpha/\beta = 1$ [1], [5].

2.3 Vertido libre

La literatura contempla un aspecto, sobre las características del desagüe de los vertedores y la forma de la lámina vertida.

2.3.1 Características de las cubetas de lanzamiento y forma de la lámina vertida

Las características hidráulicas de una cubeta se pueden determinar, conocida la geometría de esta, tomando como base un método matemático, el cual transformado en un programa de computadora, permite verificar, a bajo costo y en corto tiempo, diferentes alternativas de diseño. La característica hidráulica que se pretende determinar es: la distribución de velocidades al paso de un gasto con un tirante dado.

Definida la característica geométrico-hidráulica de la cubeta de lanzamiento, se hace necesario determinar la dispersión del chorro, es decir, obtener entre otros parámetros: la longitud y ancho máximo de lanzamiento, y el ángulo de entrada en la superficie del agua.

A. Longitud de lanzamiento

La longitud teórica se determina a partir de la trayectoria parabólica que describe un proyectil que es lanzado con una velocidad inicial, V, y forma un ángulo θ , con la horizontal. En las diversas expresiones propuestas, las diferencias están en los parámetros empleados como datos iniciales.

El USBR [21] determina la trayectoria del chorro, tomando como origen de las coordenadas el labio de la cubeta, Fig 2.9, con la ecuación

$$y = x \tan \theta - \frac{x^2}{K \left[4 \left(d + h_v \right) \cos^2 \theta \right]}$$
(2.15)

Para tomar en cuenta la reducción de la velocidad del chorro, por la resistencia del aire, turbulencias internas y su propia desintegración, el valor teórico de K, que es igual a la unidad, se reduce a 0.9.

El alcance horizontal del chorro en la salida se obtiene considerando

"y" igual a cero; de esta forma-

$$x = 2 K (d + h) sen 2\theta$$

(2.16)

el valor máximo de x es igual a 2 K (d + h_o), cuando θ es 45°.

Para calcular la longitud de lanzamiento del flujo, medida a partir de la estructura terminal, Fig 2.10, se pueden aplicar las siguientes expresiones propuestas por diferentes investigadores soviéticos [13].

a) Vizgo calcula teóricamente la distancia relativa, λ_{λ}

$$\lambda_{o} = \frac{L_{v}}{Z_{o}} = 2 \cos \theta \left[m_{v} \sin \theta + \sqrt{m_{v} \left(1 - m_{v} \cos^{2} \theta + \frac{d}{2 \cdot Z_{o}} \cos \theta\right)} \right]$$
(2.17)

En esta expresión no se consideran las pérdidas de energía, ni el comportamiento de lanzamiento real del chorro en el aire respecto a la trayectoria ideal supuesta.

b) Kiseliov propone la expresión

c)

$$L_{v} = 2\psi_{1}^{2} n_{K} Z \cos \theta \left[sen \theta + \sqrt{sen^{2} \theta} + \frac{d \cos \theta + 2 Z(1 - n_{K})}{2\psi_{1}^{2} n_{K} Z} \right]$$

$$(2.18)$$

Eliasberk propone una fórmula que utiliza la velocidad al final de la cubeta

$$L_{v} = \frac{V^{2} \sin \theta \cos \theta}{g} + V \cos \theta \sqrt{\frac{V^{2} \sin^{2} \theta}{g^{2}} + \frac{2 Z'}{g}}$$
(2.19)

Para calcular la longitud de lanzamiento de la parte superior del chorro, en lugar de Z' se considera (Z' + d) y para la parte media del chorro (Z' + 0.5d).

El USBR toma en cuenta el comportamiento real del chorro en el aire,

que difiere de la trayectoria ideal asumida por un coeficiente K.

$$L_{V(real)} = K_1 L_{V(teorica)}$$

B. Ancho máximo de lanzamiento del chorro

El ancho máximo de lanzamiento del chorro, a_o se produce cuando éste penetra en el remanso formado aguas abajo de la estructura terminal, Fig 2.10.

Vizgo [22] lo determina con la expresión

$$a_{n} = B + 2 L_{u} \tan \varepsilon \qquad (2.21)$$

(2.20)

El ángulo de divergencia del chorro, ε , ha sido calculado, por Rhone y Peterka [19], en función del número de Froude a la salida y de la geometría de la cubeta de lanzamiento (Fig 2.11). En cubetas de lanzamiento prismáticas de fondo plano, la divergencia está comprendida entre 2 y 5° para números de Froude de 6 y 12; para cubetas del tipo USBR, la divergencia es mayor, entre 3 y 14° para números de Froude entre 6 y 11.

C. Angulo de entrada del chorro en la superficie del agua

El ángulo de entrada teórico del chorro en la superficie del remanso aguas abajo de la estructura terminal, se determina con la expresión

$$\theta_{o} = \arg \tan \left[\sqrt{\tan^{2} \theta + \frac{2 g Z'}{V^{2} \cos^{2} \theta}} \right]$$
(2.22)

Debe procurarse que el ángulo θ_{0} no sea muy grande, para disminuir el componente vertical de la velocidad que cae sobre la masa de agua y con ello la socavación en el cauce; se recomienda que no sea inferior el ángulo a 40°.

D. Velocidad de entrada del chorro en la superficie del agua

La velocidad teórica del chorro al entrar en la superficie del remanso aguas abajo de la cubeta de lanzamiento, se determina con la expresión

Tanto para el ángulo como para la velocidad de entrada del chorro en la superficie del remanso, parte superior y media, se hacen las mismas consideraciones anotadas para Z' con anterioridad.

 $V_{o} = \left[V^{2} + 2 g Z' \right]^{1/2}$

2.4 Socavación en el cauce

Al penetrar el chorro en el cauce se producen pérdidas de energía por el choque de las masas de líquido y por la compresión de las burbujas de aire contenidas en el remanso; fuera de esta zona las burbujas de aire se expanden y circulan hacia la superficie, perpendicularmente al flujo, incrementando la turbulencia de este, lo que contribuye a mejorar la disipación de energía dentro del remanso.

P.J. Mason y A. Kanapathypilly [12], después de estudiar la información disponible para calcular la profundidad máxima de socavación, han agrupado las ecuaciones propuestas por diferentes investigadores en los siguientes grandes grupos.

Grupo Uno

Expresa la profundidad máxima de socavación, t_g , en función de la caida Z_o (diferencia entre el NAME y el nivel de la superficie libre del remanso), el gasto unitario, q, y el tamaño del material D.

$$t_{s} = \frac{K_{D} q^{a} p Z_{o}^{b}}{D^{D}}$$
 (2.24)

(2.23)

los valores propuestos por varios investigadores, para los coeficientes $K_{\rm D}$, ${\rm a}_{\rm D}$, ${\rm b}_{\rm D}$, $C_{\rm D}$ y el tamaño de material representativo, se indican en la Tabla 2.1.

Grupo Dos

Además de los datos requeridos en el grupo uno (Z_o, q, D) interesa la profundidad del remanso Y_b ; Jaeger [10] propone la expresión siguiente

$$t_{s} = 0.6 q^{0.5} Z_{o}^{0.25} (Y_{b}/D)^{0}$$

Martins [11] presenta la ecuación

$$t_s = 0.14 N_{-} = 0.73 \frac{Y_b}{N_{-}} + 1.7 Y_b$$
 (2.26)

$$N_{\rm m} = \sqrt[7]{\frac{Q^3 \ Z_{\rm s}^{1.5}}{D^2}}$$
(2.27)

(2.25)

(2.28)

donde

<u>Grupo</u> <u>Tres</u>

La profundidad máxima de socavación es estimada en forma empírica por Cola [12] como t_s = 4B; por Davis y Sorensen [12] como t_s = 2/3 Z_o; Hartung, Hausler y Cola [12] como t_s = 20 d₁, donde d₁ es el diámetro del chorro.

 $0 = \alpha B$

Grupo Cuatro

Los criterios conocidos actualmente para predecir la socavación que produce el chorro el penetrar en el remanso del cauce, han sido desarrollados principalmente por investigadores soviéticos [9]. Los métodos propuestos se presentan a continuación:

A. Método de Mirtsjuslava

En este método **[14, 15]** se toma en cuenta la dispersión del chorro en un medio líquido, **Fig 2.12**, considerando que el líquido del chorro X_{1M} + X_{2M} , hasta el fondo del foso de socavación, es igual a la distancia Z_{M} , desde este hasta la zona de la barra que se forma aguas abajo del mismo.

La profundidad del foso de socavación, se determina en función del tipo de suelo.

Para suelos granulares

$$t_{s} = \left[\frac{3 \mu_{o} Y_{o} b_{o}}{\omega} - 7.5 b_{o}\right] \frac{-sen \theta_{o}}{1 - 0.175 \cot \theta_{o}} + 0.25 Y_{b} \quad (2.29)$$
donde
$$b_{o} = 0.8 \frac{q}{V_{o}} \quad (2.30)$$

$$\omega = \left[\frac{2g (\gamma_{s} - \gamma_{o})}{1.75 \gamma_{o}} D_{p}\right]^{0.5} \quad (2.31)$$

$$\gamma_{\alpha} = \% \text{ aire } \gamma$$
 (2.32)

si el material del cauce es suelto (arenas y gravas), el diámetro medio de la partícula se calcula con

$$D_{p} = \frac{D_{1} n_{1} + D_{2} n_{2} + \ldots + D_{1} n_{1}}{100}$$
(2.33)

donde n, es el porcentaje del contenido de las diferentes fracciones.

Si no se cuenta con suficiente información, en una primera aproximación, se considera $D_p = D_{_{SO}}$.

b) Para suelos cohesivos

$$t_{s} = \left[\frac{8.3 \ V_{o} \ b_{o}}{V_{c}} - 7.5 \ b_{o}\right] \frac{\text{sen } \theta_{o}}{1 - 0.175 \ \text{cot} \ \theta_{o}} + 0.25_{b}Y \qquad (2.34)$$

donde

$$V_{c} = 1.25 \left[\frac{2 \text{ g m'}}{0.3 \gamma_{o} \text{ n'}} (\gamma_{s} - \gamma_{o}) D_{p} + 1.25 (C_{f}^{c} K_{s} + P_{d} + P_{H}) \right]^{0.5}$$
(2.35)

$$P_{d} = \frac{1.88 \gamma_{o} \alpha_{1} V_{f}^{2} \operatorname{sen} \theta_{o}}{g}$$
(2.36)

$$P_{h} = \alpha_{1} t_{S} \gamma_{o} \qquad (2.37)$$

cuando el material es cohesivo (arcillas, limos, etc.), se caracteriza

con un diámetro equivalente, $D_p = D_{eq}$, de acuerdo con la Tabla 2.2. Si el material cohesivo se desprende en forma de flóculos con un tamaño medio de 4 mm, se tomaría otro criterio.

Al sustituir 2.36 y 2.37 en 2.35, y esta en 2.34, se obtiene una expresión implícita en V_c y t_s que es necesario resolver por iteraciones.

c) Para suelos rocosos fracturados

$$t_{s} = \left[\frac{8.3 V_{o} b_{o}}{V_{c}} - 7.5 b_{o}\right] \frac{\text{sen } \theta_{o}}{1 - 0.175 \text{ cot } \theta_{o}} + 0.25 Y_{b}$$
(2.38)

donde

$$V_{c} = \left[\frac{2 \text{ g m}}{\gamma_{c}}, \frac{b_{r}^{2} (R_{f} + c_{r} (\gamma_{g} - \gamma_{o}))}{\sin \theta_{o} (0.6 b_{r}^{2} + 0.2 c_{r}^{2})}\right]^{0.5}$$
(2.39)

Si dentro de las fisuras se deposita material cementante, el proceso de erosión es análogo al de un material semicohesivo y la expresión anterior es válida. Cuando no existe material cementante $R_r = 0$.

B. Método de Matsman

Matsman [9] considera que el agua en forma de chorro libre que procede de la cubeta de lanzamiento y causa la socavación, detiene su acción erosiva al alcanzar el nivel aguas abajo un tirante, h_d , con el cual la velocidad del flujo alcanza el mismo valor que la velocidad crítica permisible para el suelo de que se trate.

El tirante h_d (Fig 2.14) es fisicamente el resultado de la formación de un salto hidráulico en el tramo inferior que tiene a h_c y $h_{c"}$ como primera y segunda conjugada, respectivamente. El aumento del tirante contraido h_c hasta el valor permisible h_d ocurre después del establecimiento del salto.

El valor de h_d se obtiene de

$$h_{d} = \frac{q}{V_{c} \psi_{H}}$$
17

(2.40)

de acuerdo con la Fig 2.14

$$Y_{b} + Y_{s} = t_{s} = h_{c''} - h_{c} + h_{d}$$
 (2.41)

Matsman propone para calcular los conjugados del salto hidráulico

q =
$$\psi_{\rm H} h_{\rm c} \sqrt{2g \left[z' + d + \alpha_{\rm c} \frac{V^2}{2 g} + (h_{\rm c}^{\rm "} - h_{\rm c}) - Y_{\rm b}\right]}$$
 (2.42)

$$h_{c''} = \frac{h_c}{2} \left[\sqrt{1 + 8 F_r^2} - 1 \right]$$
 (2.43)

la curva adimensional de Matsman (Fig2.15) permite calcular rápidamente $t_{\rm c},$ con la siguiente secuencia

$$Y_{c} = \sqrt[3]{\frac{q^{2}}{g}}$$
 (2.44)
 $h_{d} = \frac{q}{V_{c} \psi_{H}}$ (2.45)

la velocidad crítica permisible del suelo, V_c , se obtiene a partir de las expresiones 2.35 y 2.39 presentadas por Mirtsjuslava

$$Z_{o} = Z' + d + \frac{V^{2}}{2g} - Y_{b}$$
 (2.46)

$$N = \frac{2 Z_o}{Y_c}$$
(2.47)

$$T_{\rm R} = \frac{t_{\rm S} - h_{\rm d}}{Y_{\rm c}}$$
(2.48)

El valor de $T_{_{N}}$ se obtiene de la curva adimensional de Matsman (Fig 2.15), conocido el valor de N, y de esta manera, se obtiene el valor de $t_{_{S}}$ mediante la ec 2.48.

c) Método de Vizgo

En 1940 Vizgo [22] presenta un esquema de la dispersión del chorro dentro del foso de disipación (Fig 2.16), que implica un análisis más

elaborado que el de Matsman. En dicho esquema estima que la disipación de la energía se realiza en dos partes, una superior y otra inferior; por esta razón su desarrollo teórico considera la relación entre los tirantes conjugados del salto hidráulico por cada parte. Después de una serie de transformaciones llega a

$$L_{s} = 0.95 \left[X_{v} q Z_{o}^{0.5} \right]^{0.5} + 0.95 \left[(1 - X_{v}) q Z_{o}^{0.5} \right]^{0.5}$$
 (2.49)

$$t_{s} = 0.95 \left[X_{v}^{0.5} + (1 - X_{v})^{0.5} \right] \left[q Z_{o}^{0.5} \right]^{0.5}$$
 (2.50)

$$t_{s} = K_{v} \left[q Z_{o}^{0.5} \right]^{0.5}$$
 (2.51)

donde X_v representa el espesor del chorro que contribuye a la formación del salto de la parte superior y K_v corresponde a un coeficiente que se valora experimentalmente, el cual depende del ángulo de incidencia del chorro θ_v y del tipo de suelo (Tabla 2.3).

Al tomar en cuenta el efecto de la aireación del chorro A $_{\rm v}$ (Fig 2.17) como una función del número de Froude, la ec 2.51 puede escribirse

 $t_{s} = A_{v} K_{v} \left[q Z_{o}^{0.5} \right]^{0.5}$ (2.52)

la aireación del chorro puede calcularse también a partir de

$$A_{v} = 0.55 + 0.3 \frac{q}{Z_{o}}$$
(2.53)
$$A_{v} = \left[\frac{(g \ b_{o})^{0.5}}{v_{o}}\right]^{0.2}$$
(2.54)

d) Método de Studenichnikov

El autor [20] desarrolló en el laboratorio del Instituto de Bodego de Moscú, un método que toma en cuenta las velocidades críticas permisibles sobre diversos tipos de suelo, tanto en régimen subcrítico como supercrítico. Para evaluar la profundidad de socavación propone las expresiones siguientes

$$t_{s} = K_{sb} \left[3.4 + 0.45 \frac{2}{\gamma_{c}^{o}} \zeta^{2} n_{s} \right] \left[\frac{q \sigma_{ch}}{1.15 g^{0.5} D_{n} 0.25} \right]$$
(2.55)

el factor K_{Sb} (Fig 2.18) toma en cuenta la disposición geométrica de la estructura terminal y adopta valores desde 0.4 hasta 1.0. El coeficiente de velocidad lo valora con la expresión de Skrebkova

$$\zeta = 1 - 0.0155 \frac{2 - d}{H_o}$$
 (2.56)

(2.57)

El valor del coeficiente de aireación, n_s (Fig 2.19), se determina en función del número de Froude, F_r, y la dispersión del chorro, $\sigma_{\rm Ch}$, con la expresión

$$\sigma_{\rm Ch} = \frac{\rm B}{\rm B + L_y \ sen \ c}$$

Grupo Cinco

Se toma en cuenta el parámetro tiempo, para estimar la profundidad máxima de socavación.

Doddiah et al [6] presenta la siguiente expresión

$$t_{s} = Y_{b} + \frac{2Y_{b}}{3} \left[\frac{q}{Z_{o}\omega}\right]^{2/3} \left[\frac{Z_{o}}{Y_{b}}\right]^{2} \left[\frac{q}{Z_{o}\omega}\right]^{1/6}$$
(2.58)

donde ω es la velocidad de caída de la partícula D.

Hason y Kanapathypilly [12], partiendo del análisis de datos de laboratorio y campo obtenidos por diferentes investigadores, proponen la expresión

$$t_{s} = K_{H} \frac{q^{a} H Z^{b} H Y^{e} H}{q^{c} H D}$$
(2.59)

donde $K_{\mu} = (6.42 - 3.10 Z_0^{0.10}); f_{\mu} = 0.30; e_{\mu} = 0.15; a_{\mu} = (0.6 - \frac{Z_0}{300});$

 $b_{H} = (0.15 + \frac{2}{200}); c_{H} = 0.10;$ considerando un diámetro equivalente D = 0.25 m en prototipo.

Las profundidades de socavación máxima medidas en laboratorio y campo se compararon con las calculadas mediante la ec 2.79 (Fig 2.20). Al hacerlo se consideraron los valores de Z_o comprendidos entre 0.325 y 2.15 para modelo, y entre 15.82 y 109 m para prototipo; los de q, entre 0.15 y 0.426 m³/s para modelo, y entre 2.36 y 226 m³/s (gasto máximo) para prototipo; los de D entre 0.001 y 0.028 m para modelo y se consideró para prototipo un tamaño equivalente de 0.25 m cuando el material es rocoso (arenisca, pizarra, cuarcita, gneis y granito).

Ubicación del cono de socavación

Para calcular la erosión local en las zonas adyacentes a la estructura terminal, es importante conocer la ubicación del foso de socavación y su punto de máxima profundidad en relación con el final de la estructura (Fig 2.21). Al respecto, Eliasberk [7] presenta una expresión para ángulos de entrada del chorro (θ_{1}) mayores de 15°

$$L_{c} = V \cos \theta \left[\frac{V \sin \theta + (V^{2} \sin^{2} \theta + 2 Z'g)^{0.5}}{g} + \frac{t_{s}}{(V^{2} \sin^{2} \theta + 2 Z'g)^{0.5}} \right]$$
(2.60)

el talud superior del foso hacia la estructura terminal, se determina de acuerdo con el tipo de material existente: para arenas y gravas, 2.5:1; para arcillas, 1.7:1; para roca agrietada, entre 1.5 y 1.25:1.

3. METODOLOGIA NUMERICA

3.1 Introducción

El análisis de las diversas fórmulas para el cálculo de la socavación al pie de las cubetas de lanzamiento, se realiza a través de un problema de diseño, al tomar en cuenta las características que intervienen, como son las variables cinemáticas, la geometría de la estructura y el tipo de material al pie de la estructura.

A. Variables cinemáticas

El gasto unitario, q El tirante a la entrada de la cubeta de lanzamiento, d La aceleración de la gravedad, g La profundidad del remanso, Y₂

B. Geometría de la estructura

La distancia entre el nivel de aguas máximas y el nivel del remanso al pie de la estructura, Z

El ángulo de lanzamiento del chorro, 0

C. Del tipo de material

La velocidad permisible del material del lecho. En el caso de suelos grunulares sueltos, se considera que la velocidad permisible (V_p) es igual a la velocidad de caida (ω_o) de la partícula característica (D₉₀); para el caso de lechos rocosos la velocidad permisible es la definida por Mirtsjuslava.

La aireación del chorro se considera dependiente de algunas de las variables presentadas, razón por la cual no se enlista en las variables independientes.

El análisis inspeccional como un método complementario al dimensional, permitirá elegir los parámetros adimensionales del estudio experimental, al analizar las ecuaciones que lo rigen. Requiere entonces, como elementos indispensables y de partida, el conocer las ecuaciones descriptivas del fenómeno que se está estudiando.

De las ecuaciones presentadas en el subcapítulo 2.4, las diferentes variables que afectan la profundidad en el foso disipador, se pueden expresar como

 $f_{1}(\ldots,Z_{o}, Z', b_{L}, \kappa, \theta, R, \ldots, q, d, V, L_{v}, a_{o}, \varepsilon, \theta_{o}, Vo, g bo, Y_{p}, Y_{2}, t, \ldots, \gamma, \mu, \ldots, t_{g}, L_{g}, \omega, \sigma_{\omega}, \gamma_{g}, R_{c}, E, \gamma_{v}, \ldots, c_{f}^{c}, c_{g}, \ldots, R_{f}, R_{c}, a_{r}, b_{r}, c_{r}, \ldots) = 0$ (3.1)

el significado de las variables, se indica en el indice de variables ó en la Fig 2.4.

De las primeras seis variables, que se refieren a la geometría de la estructura, la Z_o , Z' y θ , tienen mayor significancia en el estudio; de las siguientes trece variables, que se refieren al flujo, q, V, Y_p , Y_2 , g y t, tienen mayor intervención significativa en el estudio y la d, Lv, a_o , ε , θ_o , V_o , b_o son una función de θ , Z', q y V pueden ser omitidas; los dos factores siguientes se refieren al líquido, de las cuales μ puede ser omitida. Las otras tres grupos de ocho, dos y cinco variables, se refieren al material tratándose éste si es no cohesivo o suelos rocosos fracturados respectivamente; para el caso particular de

no cohesivos, las variables que se consideran que tienen una intervención significativa en el estudio son Ys, Ls, ω , γ_v . Al adimensionar la ec (3.1), se tiene

$$f_{2}\left[\frac{Z'}{Z_{o}}, \theta, F_{D}, F_{r}, D_{c}, \frac{Y_{p}}{Z_{o}}, \frac{Y_{2}}{D}, \frac{\omega t}{Y_{2}}, \frac{t}{z_{o}}, \frac{L_{s}}{Y_{2}}, \frac{\gamma_{v}}{\gamma}\right] = 0 \qquad (3.2)$$

 $F_p = q/[g(Z_o + Y_2)^3]^{1/2}$, el cual **Doddiah** [1] lo identifica como un parámetro de descarga; $F_r = q/g^{1/2} Y_2^{3/2}$ el número de Froude de abajo de la cubeta; $D_c = q^2/g (Z_o + Y_2)^3$, el número de caída; $\omega t/Y_2$ representa una función del tiempo. La relación σ_{ω}/ω puede considerarse igual a cero, si el sedimento es uniforme.

De la combinación de los parámetros adimensionales, se establece que

$$\frac{t_s}{Z_o} = f_3 \left({}^F_D, {}^F_r, {}^{Y_2}_D, {}^{Z'}_o, {}^{\psi_1}_{Y_2}, {}^{\theta_1}, {}^{\vartheta_1}_{\gamma} \right)$$
(3.3)
$$\frac{L_s}{Z_o}, {}^{Y_p}_{Z_o} = f_4 \left({}^t_{Z_o}, {}^{D}_o \right)$$
(3.4)

no obstante las hipótesis presentadas, en los análisis que se realicen se tomaran en cuenta los parámetros que se consideran más significativos.

Para suelos cohesivos y suelos rocosos fracturados, el análisis es similar al presentado para suelos no cohesivos, solo que se considera un parámetro adimensional que toma en cuenta la resistencia del suelo $\operatorname{Rc}/\gamma_{2}Y_{2}$.

En los subcapitulos que preceden se presentan solo los programas de cálculo, así como la unificación de formulaciones para el cálculo de la socavación para suelos granulares y suelos rocosos fracturados; y finalmente se presenta una aplicación numérica, para el caso particular de la Presa Aguamilpa, Nay.

3.2 Programas de cálculo

En el presente subcapítulo, se presentan los programas de cálculo para estimar la dispersión del chorro y la socavación en el cauce. A. Dispersión del chorro

Entre los parámetros a determinar por la proyección del chorro lejos de la obra de control y/o de excedencias, por medio de una cubeta de lanzamiento, están

A.1 La longitud de lanzamiento del chorro, medida a partir de la estructura terminal, con las expresiones propuestas por diversos investigadores

Criterio	Tabla	Nombre del programa
USBR	3.1	Lanzamiento del chorro, USBR
Vizgo	3.2	Lanzamiento del chorro, Vizgo
Kiseliov	3.3	Lanzamiento del chorro, Kiseliov
Eliasberk	3.4	Lanzamiento del chorro, Eliasberk

- A.2 El ancho máximo de lanzamiento del chorro, que se produce cuando este penetra en el remanso formado aguas abajo de la estructura terminal, con la expresión propuesta por
- Criterio Tabla Nombre del programa

Vizgo 3.5 Ancho lanzamiento del chorro, Vizgo

A.3 El ángulo y velocidad de entrada del chorro en la superficie del remanso aguas abajo de la estructura terminal

Parámetro	Tabla	Nombre del programa
ຍູ	3.6	Angulo de entrada del chorro
v	3.7	Velocidades de entrada del chorro

B. Socavación en el cauce

De acuerdo a la información disponible, para calcular la profundidad de socavación, se presentan algunoscriterios propuestos por diferentes investigadores.

والمؤرك والمراجع المتحار فالمحاج فالمحاجب الأراجع ويواد	والمراد بمؤنيهم ومملقات		
Criterio	Tabla	Nombre del programa	
Veronese (a)	3.8	Socavación,	Veronese (a)
Veronese (b)	3.9	Socavación,	Veronese (b)
Jaeger	3.10	Socavación,	Jaeger
Martins	3.11	Socavación,	Martins
Mirtsjuslava			
suelos granulares	3.12	Socavación,	Mirtsjuslava (granulares)
rocosos fracturados	3.13	Socavación,	Mirtsjuslava (rocosos)
Matsman	3.14	Socavación,	Matsman
Vizgo	3.15	Socavación,	Vizgo
Studenichnikov	3. 16	Socavación,	Studenichnikov
Doddiah	3.17	Socavación,	Doddiah
Mason y Kanapathypilly	3.18	Socavación,	Mason y Kanapathypilly

3.3 Unificación de formulaciones para el cálculo de la socavación al pie de la cubeta de lanzamiento

La información contenida en los subindices 3.3.1 y 3.3.2, ha sido tomada de la ref [2], con algunas adiciones, encaminadas a definir la unificación de formulas

3.3.1 Diseño de experimentos

Si el resultado de un experimento "Y" depende de los factores X1 y X2, y se establece la relación lineal

$$Y = b_0 + b_1X_1 + b_2X_2 + \epsilon$$
 (3.5)

donde ε es el error que se pueda cometer al valuar "Y" mediante esa relación.

De realizarse i = 1,2,3,...,n ensayos y al emplear el método de errores mínimos cuadrados

$$\varepsilon = Y - Y_{i} \tag{3.6}$$

al sustituir en la ec 3.5 se tiene $\varepsilon = b_0 + b_1X_1 + b_2X_2 - Y_1$

Haciendo la suma de los errores al cuadrado, desarrollando los términos y teniendo en cuenta que las constantes bo, bi y bz no se conocen, se calcula su derivada con respecto a cada una de ellas y se igualan a cero para minimizar el error, obteniéndose un sistema de ecuaciones. La solución del sistema dará como resultado los valores de las constantes bo, bi, bz, que puede escribirse en forma matricial.

$$\begin{bmatrix} n & n & n & n \\ i = 1 & i & 1 & 1 \\ n & n & n & n \\ \sum X_{1} & \sum X_{1}^{2} & \sum X_{1} & X_{2} \\ i = 1 & i & 1 & 1 & 1 \\ n & n & n & n \\ \sum X_{2} & \sum X_{2} & \sum X_{1} & X_{2} \\ i = 1 & i & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} b_{0} \\ b_{1} \\ b_{2} \end{bmatrix} \begin{bmatrix} n \\ b_{1} \\ b_{2} \end{bmatrix} = \begin{bmatrix} n \\ \sum Y_{1} \\ i = 1 \\ n \\ i = 1 \\ i = 1 \\ i = 1 \end{bmatrix} (3)$$

7)

Al aplicar el teorema estadístico que dice "la dispersión o variación de los resultados SST es igual a la suma de las variaciones de cada uno de los términos de bs que depende (SS b₀), (SS b₁), (SS b₂) más la dispersión o variación de los errores SSF (ref 2)

$$\sum_{i=1}^{n} Y_{i}^{2} = b_{0} \sum_{i=1}^{n} Y_{i} + b_{1} \sum_{i=1}^{n} X_{1}Y_{i} + b_{2} \sum_{i=1}^{n} X_{2}Y_{i} + \sum_{i=1}^{n} \varepsilon_{1}$$
(3.8)
$$\bigcup_{i=1}^{n} \bigcup_{i=1}^{n} \bigcup_{i=1}^{\dots$$

con lo que se puede concluir que si la variación de algunos términos es menor que la variación del error, significaría que ese o esos términos servirían de muy poco para explicar la variación de Y_i y por lo tanto no serían factores importantes en la ecuación lineal propuesta ec (3.5) y podrían eliminarse.

Suponiendo que la relación fuera lineal para determinar el número de cálculos necesarios, se propone escoger valores de X1 y X2 máximos y mínimos alternativamente, según se muestra en la **Tabla 3.19**. Además, es conveniente hacer un cierto número de k de cálculos complementarios,

con el fin de ver en que medida se cometería un error al obtener el resultado en el experimento, en este caso sería igual a tres. Así, en la tabla los primeros cuatro valores de Y muestran los resultados al valuar con las combinaciones de los valores máximos y mínimos que puedan tomar variables dependientes X1 y X2, y los últimos tres serían los valores que tomaría y haciendo los cálculos con los valores promedios de X1 y X2. De esta forma se obtiene el número total de cálculos mínimos a realizar.

Para saber si la relación lineal propuesta es la adecuada, se aplica el criterio de la prueba F de Fisher, de la manera siguiente

Con las condiciones expuestas en la **Tabla 3.19**, la media de los resultados complementarios sería

$$\overline{Y}_{c} = \sum_{i=1}^{k} \frac{Y_{i}}{k}$$

y la variancia entre ellos estará dada por

$$S_{yc}^{2} = \sum_{i=1}^{k} \frac{(Y_{1} - \overline{Y}_{c})^{2}}{(k-1)}$$
(3.10)

(3.9)

Los ensayes complementarios k serían del 5 al 7 de la Tabla 3.19.

De esta manera se puede suponer que SSE, ec (3.8), está formada por la suma de los errores que se podrían cometer en los ensayes complementarios, representados por $\sum_{i=1}^{k} (Y_i - \overline{Y}_c)^2$ más un error que se atribuye a la falta de concordancia de los resultados con el modelo seleccionado, que en este caso es lineal; este error de concordancia se puede valuar a partir de la ec (3.8) mediante

Para evaluar $\sum_{i=1}^{n} Y_{i}^{2}$ se emplean n datos, de tal forma que el número de grados de libertad asociado a esta suma será $v_{j} \approx n$; además para valuar

cada una de las constantes de la correlación bi, se utiliza una de las ecuaciones utilizadas para minimizar el error, de esta manera $v_{bo} = v_{b1}$ = v_{b2} = 1 será el número de grados de libertad de cada uno de los términos encerrados en el paréntesis de la ec (3.11). Finalmente, como el número de grados de libertad asociado a SSL será v_{L} = n -(1 + 1 + 1) - (k - 1).

De esta manera, un estimador de la variancia producida por la falta de concordancia será

$$S_{LF}^2 = \frac{SSL}{\nu_L}$$
(3.12)

y como el estimador de la variancia producida por el error al hacer las mediciones está dada por la ec (3.10), mediante la F de Fisher se puede comparar si la variancia debida a la falta de concordancia difiere significativamente de la variancia debida a los errores en la determinación del resultado Y, es decir

$$F_{calc} = \frac{S_{LF}^2}{S_{vc}^2}$$
(3.13)

Si $F_{calc} > F_{0.05} \operatorname{con} \nu_1 = \nu_L y \nu_2 = k - 1$ grados de libertad, donde $F_{0.05}$ es la F de Fisher calculada en tablas, puede decirse que el modelo seleccionado no es el adecuado, si la desigualdad se invierte se dice que el modelo es el adecuado.

3.3.2 Correlación múltiple

Cuando se pretende de encontrar una ecuación que relacione todas las variables para poder predecir el resultado del experimento, existen varios tipos de correlación multiple, las más usuales son

a) Lineal

 $y = a_0 + a_1X_1 + a_2X_2 + a_3X_3 + \dots + a_n X_n$

b) Polinomial

 $Y = a_0 + a_1X_1 + a_2X_2^2 + a_3X_3^3 + \dots + a_n x_n^n$

c) De potencias

$$Y = a_0 X_1^{a_1} X_2^{a_2} X_3^{a_3} \dots X_n^{a_n}$$

En la mayoría de los casos el experimentador busca una correlación que de alguna forma pueda ajustarse a una lineal; así, por ejemplo, si se tiene una correlación de potencias de la forma.

$$Y = a_0 X_1^{a_1} X_2^{a_2} X_3^{a_3} \dots X_n^{a_n}$$
(3.14)

Esta puede ajustarse a una lineal de la manera siguiente

Si se aplica logaritmos a ambos miembros de la ecuación queda

 $\log Y = \log a_0 + a_1 \log X_1 + a_2 \log X_2 + a_3 \log X_3 + \ldots + a_n \log X_n$

Haciendo los cambios de variables siguientes

Con base en lo anterior la ec 3.14 se puede escribir de la forma siguiente

$$Y' = A0 + a_1X_1' + a_2X_2' + a_3X_3' + ... + a_nX_n'$$
 (3.14a)

Suponiendo que tenemos una correlación lineal o cualquier otra ajustada a una correlación lineal del tipo siguiente

$$Y = a_0 + a_1X_1 + a_2X_2 + a_3X_3 + ... + a_nX_n + \varepsilon$$
 (3.15)

Donde ε es el error que se puede cometer al valuar el experimento con la ec. 3.14a, además del posible error cometido al hacer las mediciones del experimento, por tanto la ec.3.15 se expresa

$$\varepsilon = Y - (a_0 + a_1X_1 + a_2X_2 + a_3X_3 + \dots + a_nX_n)$$
(3.16)

Si aplicamos el método de mínimos cuadrados para hacer que la suma de los errores al cuadrado sea mínima se tiene $-\sum_{i=1}^{n} c_{i}^{2} = \sum_{i=1}^{n} \left[Y_{i} - \left[a_{0} + a_{1}X_{i} + a_{2}X_{i} + a_{3}X_{i} + \dots + a_{n}X_{n} \right] \right]^{2}$ (3.17)

Donde "n" es el número total de experimentos realizados. Para hacer mínimo $\sum \epsilon^2$ se deben calcular las derivadas parciales de $\sum \epsilon^2$, con respecto a cada incógnita, que en este caso son ao, ai, a2, a3,..., an, e igualarlas a cero.

 $\frac{\partial \sum_{i=1}^{n} \varepsilon_{i}^{2}}{\partial a_{0}} = 2 \sum_{i=1}^{n} (a_{0} + a_{1}X_{i} + a_{2}X_{i} + a_{3}X_{i} + \dots + a_{n}X_{n} - Y_{i}) = 0$

Nao+ ai $\sum_{i=1}^{n} X_{i}^{i}_{i}^{i}$ + az $\sum_{i=1}^{n} X_{i}^{i}_{i}^{i}$ + az $\sum_{i=1}^{n} X_{i}^{i}_{i}^{i}$ + ... + an $\sum_{i=1}^{n} X_{n}^{i}_{i}^{i}$ - $\sum_{i=1}^{n} Y_{i}^{i}_{i}^{i}$ = 0 (3.18a)

 $\frac{\partial \sum_{\substack{i=1\\i=1}}^{n} \varepsilon_i^2}{\partial a_i} = 2 \sum_{i=1}^{n} (a_i + a_1 X_i + a_2 X_i + a_3 X_i + \dots + a_n X_n - Y_i) X_i = 0$

 $a_{0}\sum_{i=1}^{n}X_{1} + a_{1}\sum_{i=1}^{n}X_{1}^{2} + a_{2}\sum_{i=1}^{n}X_{2}X_{1} + a_{3}\sum_{i=1}^{n}X_{3}X_{1} + \dots + a_{n}\sum_{i=1}^{n}X_{n}X_{1} - \sum_{i=1}^{n}Y_{1}X_{1} = 0$

(3.18b)

 $\frac{\partial \sum_{i=1}^{n} \varepsilon_{i}^{2}}{\partial a_{2}} = 2 \sum_{i=1}^{n} \left(a_{0} + a_{1}X_{i} + a_{2}X_{i} + a_{3}X_{i} + \dots + a_{n}X_{n} - Y_{i}\right) X_{2} = 0$ ao $\sum_{i=1}^{n} X_{2} + a_{1} \sum_{i=1}^{n} X_{i} X_{2} + a_{2} \sum_{i=1}^{n} X_{2}^{2} + a_{3} \sum_{i=1}^{n} X_{3} X_{2} + \dots + a_{n} \sum_{i=1}^{n} X_{n} X_{2} - \sum_{i=1}^{n} Y_{i} X_{2} = 0$

(3.18c)

$$\frac{\partial \sum_{i=1}^{n} \varepsilon_{i}^{2}}{\partial a_{3}} = 2 \sum_{i=1}^{n} \left(a_{0} + a_{1}X_{i} + a_{2}X_{i} + a_{3}X_{3} + \dots + a_{n}X_{n} - Y_{i} \right) X_{3} = 0$$

$$a_{0} \sum_{i=1}^{n} X_{3} + a_{1} \sum_{i=1}^{n} X_{i}X_{3} + a_{2} \sum_{i=1}^{n} X_{2}X_{3} + a_{3} \sum_{i=1}^{n} X_{3}^{2} + \dots + a_{n} \sum_{i=1}^{n} X_{n}X_{2} - \sum_{i=1}^{n} Y_{i}X_{2} = 0$$
$2 \sum (a_0 + a_1X_{1_1} + a_2X_{2_1} + a_3X_{3_1} + \ldots + a_nX_{n_1} - Y_1) X_{n_1} = 0$ $ao \sum_{i=1}^{n} Xn + ai \sum_{i=1}^{n} Xi_{i} Xn_{i} + az \sum_{i=1}^{n} X2_{i} Xn + az \sum_{i=1}^{n} X3_{i} Xn + \ldots + an \sum_{i=1}^{n} Xn_{i}^{2} - \sum_{i=1}^{n} Y_{i} Xn_{i}$ = 0

(3.18e)

(3.18d)

De las ecs 3.18, se forma un sistema de ecuaciones lineal de n+1ecuaciones y n+1 incógnitas, siendo n el número de variables independientes que influyen en el resultado del experimento, siendo las incógnitas las constantes ao, aí, az, az, ..., an. Para resolver el sistema se puede construir una matriz, como la expresada por la ec 3.19.

Como se mencionó antes, ésta solución es aplicable a cualquier tipo de correlación que se tenga, siempre y cuando pueda ajustarse o transformarse por medio de artificios matemáticos a una correlación del tipo lineal.

N	$\sum_{i=1}^{n} X_{i}$	$\sum_{i=1}^{n} X_{2_{i}} \dots$	$\begin{bmatrix} n \\ \sum_{i=1}^{n} X_{n_i} \end{bmatrix}$	ao		$\sum_{i=1}^{n} Y_{i}$	
$\sum_{i=1}^{n} X_{i}$	$\sum_{i=1}^{n} X_{i}^{2}$	$\sum_{\substack{i=1\\i=1}}^{n} X_{i_{1}} X_{2_{i_{1}}} \dots$	$\frac{\sum_{i=1}^{n} X_{i} X_{n_{i}}}{\sum_{i=1}^{n} X_{i} X_{n_{i}}}$	a1		$\sum_{i=1}^{n} Y_{i} X_{i}$	
$\sum_{i=1}^{n} X_{2_i}$	$\sum_{i=1}^{n} X_{i} X_{i}^{X_{2}}$	$\sum_{i=1}^{n} X 2_{i}^{2} \dots$	$\frac{\sum_{i=1}^{n} X_{2i} X_{ni}}{\sum_{i=1}^{n} X_{2i} X_{ni}}$	a2	=	$\sum_{i=1}^{n} Y_i X_{i}^{i}$	
						•	
$\sum_{i=1}^{n} X_{n_{i}}$	$\sum_{i=1}^{n} X_{i} X_{i} X_{n_{i}}$	$\sum_{i=1}^{n} X_{2_i} X_{n_i} \dots$	$\sum_{i=1}^{n} X_{n_{i}}^{2}$	an		$\sum_{i=1}^{n} Y_{i} X_{n_{i}}$	

(3.19)

CONFIABILIDAD DE LOS RESULTADOS OBTENIDOS CON LA CORRELACION

Para valuar el grado de confiabilidad con el cual se puede aplicar la correlación obtenida, existen dos métodos.

El primero es un método gráfico el cual está basado en calcular el error típico de la estima o desviación estandar de los resultados obtenidos al aplicar la correlación [4]. Para esto es necesario dibujar la Ycalc (que es el valor obtenido de Y al aplicar la correlación) contra la Ymedida (que es el resultado real obtenido en el experimento), colocando en el eje de las absisas el Ycalc y en el de las ordenadas el Ymedido. Posteriormente se traza una recta de 45° la cual representa los valores que deberían tomar los resultados si al valuar Ycalc fueron iguales a los obtenidos al realizar el experimento (Ycalc = Ymed). La distancia vertical que existe entre los puntos y la recta es el error cometido (e) al valuar el experimento por medio de la correlación. De esta forma se puede valuar el error por medio de la ecuación siguiente

Esta gráfica representa la dispersión de los resultados al valuar la correlación. Si se calcula la desviación estándar de los resultados por medio da la ecuación siguiente

$$S = \sqrt{\frac{\sum_{i=1}^{n} e^2}{\frac{1}{n}}}$$

(3.21)

(3.20)

donde \overline{e} es la media de los errores.

Se podría decir que la desviación estándar representaría el error típico cometido al estimar Y, por lo que se podría trazar dos rectas paralelas a la de 45° a una distancia S, medida verticalmente, por encima y por debajo de la misma. Estas rectas delimitarían una zona que representa que para cualquier punto que caiga dentro de la misma se estaria cometiendo un error menor al típico. Con esto se trata de lograr que al valuar Y_{calc} pueda llegar a caer dentro del error típico o aceptable, o lo que es lo mismo, el grado de confiabilidad al valuar Y estaría dado por

Confianza = <u># de resultados que caen dentro de la zona</u> # total de resultados (3.22)

El segundo método consiste en valuar la confiabilidad por medio de intervalos de confianza. Este método tiene dos variantes, la primera es suponer que la distribución de los errores se comporta como una distribución normal de probabilidad, siempre y cuando el tamaño de la muestra sea mayor de 30, por lo que el intervalo de confianza estaría dado por [3]

$$\Delta Y = \overline{e} \pm Z \sigma \qquad (3.23)$$

donde σ_{e} es la desviación estandar de los errores. La segunda es similar a la primera pero en vez de suponer que la distribución de los errores siguen una distribución normal, éstos se comportarían como una distribución T de Student, esto se usa cuando n es menor de 30, valuando el intervalo de confianza como sigue

$$\Delta Y = \vec{e} \pm t \sigma \qquad (3.24)$$

En donde los valores de Z_c y t_c dependen del nivel de confianza que se necesite según el criterio del estimador, y se pueden obtener de tablas de distribución normal y de distribución T de Student, respectivamente; para esta última también se necesitará definir los grados de libertad que es igual a $\nu = n-1$, en la Tabla 3.20 se pueden ver los valores que tomarían Z_s y t_s para diferentes niveles de confianza requeridos.

El error medio (e) y la desviación estandard de los errores (σ_{e}) se pueden valuar mediante las ecuaciones siguientes

$$\overline{e} = \frac{\sum_{i=1}^{n} e_i}{n}$$
(3.25)

(3.26)

En ambos criterios el valor real de Y (Yreal) estaria dentro del intervalo siguiente

Ycalc + ΔY < Yreal < Ycalc - ΔY

De esta forma se obtendría un rango de valores según el nivel de confianza requerido por el estimador, dentro del cual se encontraría el resultado real del experimento.

3.3.3 Generación de datos

Para llegar a una formulación que pueda dar como resultado la profundidad de la socavación aguas abajo de una estructura terminal, se hace necesario generar información de la profundidad de socavación, y con ello tener los datos suficientes para aplicar el método de correlación múltiple.

La generación de información, se realiza a través de un problema de diseño, utilizando por una parte, los criterios para obtener la profundidad de socavación, t_g (subcapítulo 2.4) y por otra parte, los parámetros adimensionales que se consideran más significativos (subcapítulos 3.1), ec (3.3); lo que permitirá relacionar $Y_2/D - t_g/Z_o$, a través de los parámetros adimensionales F_p , F_r ó D_c , lo cual se expresa como

$$\begin{bmatrix} \frac{t_s}{z_o} \end{bmatrix} = a_o \begin{bmatrix} \frac{Y_2}{D} \end{bmatrix}^{a_1}$$
(3.27)

aplicando logaritmos en ambos miembros, esta se puede escribir de la forma siguiente

$$\log\left[\frac{t_{s}}{Z}\right] = \log a_{0} + a_{1}\log\left[\frac{Y_{2}}{D}\right]$$
(3.28)

haciendo cambio de variables

$$Y = \log \left[\frac{t_s}{Z_o} \right], A_o = \log a_o, X_1 = \log \left[\frac{Y_2}{D} \right]$$

Se puede escribir la ec (3.28) de la forma siguiente

$$Y = A_0 + a_1 X_1$$
 (3.29)

siguiendo el procedimiento de diseño de experimentos visto en el subcapítulo 3.3.2, se tiene que la variable t_s/Z_o , depende de Y_2/D y de los parámetros F_n , F_r ó D_c , que a su vez son función de q, Z_o y Y_2 .

Para realizar el experimento, es conveniente contrastar los valores de las variables en cada uno de los análisis, escogiendo los valores máximos y mínimos que podrían tomar las variables, y hacer análisis complementarios con valores medios con el fin de ver en que medida se cometería un error al realizar el análisis.

A. Para Y /D

Para la relación profundidad remanso (Y_2) a tamaño de las partículas (D), se consideraron como valores extremos 1 y 100 (mínimo y máximo) y como valores intermedios 5, 10 y 50 (medios). Al tomar Y_2 los valores de 2, 5 y 10 m, se obtienen los correspondientes a D.

Por ejemplo, para las relaciones Y_2/D consideradas y un valor de $Y_2 = 5$ m, se obtienen tamaños de partículas de 5, 1, 0.5, 0.1 y 0.05 m.

B. Para Z

Para la distancia entre el nivel de aguas máximas y el nivel del remanso al pie de la estructura, Fig 2.10, se consideraron valores de 20, 50, 100 y 150 m.

C. Para q

Como descargas unitarias, q, se consideraron valores de 10, 50, 100 y $200 \text{ m}^3/\text{s/m}$.

Para correlacionar las relaciones adimensionales $Y_2/D - t_2/2$, se consideraron los parámetros adimensionales

De los parámetros adimensionales anteriores $D_c = F_D^2$, motivo por el cual, se considerarán los parámetros F_r y D_c . Para F_r , número de Froude aguas abajo de la estructura terminal, se consideran valores de 0.1 y 1 y 10; y para D_r , número de caída, valores de 0.001, 0.01 y 0.1.

La secuencia de cálculo, por ejemplo, al utilizar el parámetro de descarga F_r , propuesto por Froude, y el criterio de Mirtsjuslava, sería la siguiente:

a. Se fija una relación de
$$Y_0/D = 5$$

d.

- b. Para un valor de $Y_2 = 5$ al tomar en cuenta Y_2/D , se tiene un tamaño de material de D = 1.0 m.
- c. Al fijar un valor de $Z_o = 20 \text{ m y un parámetro de descarga, } F_r = 0.1$; se obtiene un gasto unitario de 3.50 m³/s/m.
 - Con los valores de Y_2 , D, Z_o y q, obtenidos en los incisos anteriores, se determina la profundidad de socavación t_g , medida a partir del remanso aguas abajo de la estructura terminal, con los criterios presentados en el cap 2.

Por ejemplo, al utilizar el criterio de Mirtsjuslava para suelos granulares, se obtiene t_ = 3.29 m.

e. Obtener la relación $t_2/Z_2 = 3.29/20 = 0.16$

Los cálculos para correlacionar $Y_2/D - t_z/Z_o$, para el caso particular de $F_r = 0.1$, utilizando el criterio de Mirtsjuslava (suelos granulares) para calcular t_z , se presentan en la Tabla 3.21a.

Para predecir el resultado del análisis se construye la matriz expresada por la ec (3.19).

$$\begin{bmatrix} 44 & 48.28 \\ 48.28 & 70.07 \end{bmatrix} \qquad \begin{bmatrix} A_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} -46.77 \\ -43.90 \end{bmatrix}$$

los términos de la matriz, se tomaron de la **Tabla 3.21a**, columnas (1), (9) (10), (11) y (12).

Al resolver la matriz se obtienen los valores de a_0 = ant log A_0 y ai, de la correlación

$$\frac{t_s}{Z_o} = a_0 \left[\frac{Y_2}{D}\right]^{a_1} = 0.02889 \left[\frac{Y_2}{D}\right]^{0.43046}$$
(3.33)

Para valuar el grado de confiabilidad con la cual se puede aplicar la correlación obtenida, se aplicaron los métodos indicados en el inciso 3.3.2.

PRIMER METODO

a. El error cometido, e, con la ec (3.19)

$$c = \begin{bmatrix} t_{g} \\ Z_{o} \end{bmatrix}_{t \in orico} - \begin{bmatrix} t_{g} \\ Z_{o} \end{bmatrix}_{calculado}$$

en la Tabla 3.21b, columna (14), se indica el error cometido para cada uno de los datos.

b. La dispersión de los resultados

La desviación estandard S, dada por la ec (3.21), representará el error típico cometido al estimar t_{g}/Z_{o} calculado, por lo que se podrían trazar dos rectas a 45° a una distancia S = 0.130, ver Fig 3.1. Con la ayuda de la Tabla 3.21a, columnas (14) y (1), se estima el valor de S.

c. El porcentaje de confiabilidad

De la ec (3.22), el grado de confiabilidad al valuar $\begin{bmatrix} t \\ z \end{bmatrix}$ calculado es del 84.1%.

SEGUNDO METODO

Como el tamaño de la muestra es mayor de 30, se acepta que la distribución de los errores se comporta como una distribución normal de probabilidades

a. El error medio cometido, \overline{e} ,

De la ec (3.25) y Tabla 3.21a, columnas (14) y (1), se tiene que

$$\bar{e} = \frac{\sum_{i=1}^{n} e}{\sum_{i=1}^{n} = \frac{2.46}{44}} = 0.06$$

b. La desviación estandard de los errores; σ

De la ec (3.26) y Tabla 3.21a, columnas (16) y (1), se tiene que

$$\sigma_{e} = \left[\frac{1.68}{44-1} \right]^{0.5} = 0.20$$

c. El intervalo de confianza

De la ec (3.23), al tomar en cuenta \overline{e} , σ_{e} y la variable Z_{c} estandarizada de la distribución normal, para un nivel de confianza del 95%.

 $\Delta y = 0.060 \pm 1.96 (0.20) = 0.452$

y para un nivel de confianza del 99%, $\Delta y = 0.576$

d. El porcentaje de confiabilidad

De la ec (3.22), el grado de confiabilidad al valuar $\begin{bmatrix} t_{g}/Z_{o} \end{bmatrix}$ calculado es del 84.1% para un nivel de confianza del 95%.

Cuando el tamaño de la muestra fuere menor de 30, la distribución de

los errores se comportarían como una distribución T de student, valuando el intervalo de confianza con la ec (3.24).

La relación $Y_2/D - t_g/Z_o$, obtenida a través del parámetro de descarga F_r , con el criterio de Mirtsjuslava (suelos granulares), se muestra en la Fig 3.2 y a través del parámetro D_o, en la Fig 3.3.

3.3.4 Análisis de resultados

Con el fin de encontrar una formulación con la cual se pueda calcular la profundidad de socavación al pie de las cubetas de lanzamiento, se hace previamente el análisis delos resultados obtenidos con cada uno de los criterios utilizados, Figs 3.2 a 3.15 y posteriormente presentar una sola formulación. Las simplificaciones de cálculo de cada uno de los criterios, se resumen en la Tabla 3.22.

El valor de t_{g}/Z_{o} , se incrementa conforme Y_{2}/D aumenta, cuando se utiliza el número de caída, $D_{c} = q^{2}/g(Z_{o} + Y_{2})^{3}$, y el número de Froude, $F_{r} = q/g^{1/2} Y_{2}^{3/2}$.

Con los parámetros obtenidos a partir de los 7 criterios desarrollados, Tabla 3.23, se correlacionaron los parámetros $F_r - a_0$, $F_r - a_1$; $D_c - a_0$ y $D_c - a_1$, para los valores de $F_r = 0.10$, 1.0, 10.0 y $D_c = 0.001$, 0.01 y 0.10; lo cual se expresa como

$$a_1 = w_0 P^{W1}$$
 (3.34)

(3.35)

siendo a_i = coeficiente a₀ ó exponente ai y P el parámetro adimensional F₂ ó D₂.

Aplicando logaritmos en ambos miembros, ésta se puede escribir de la forma siguiente

$$\log (a_1) = \log (w_0) + w_1 \log (P)$$

haciendo cambio de variables

$$Y = \log (a_1), W_0 = \log (w_0), X_1 = \log (P)$$

se puede escribir la ec (3.24) de la forma siguiente

 $Y = W_0 + w_1 X_1$ (3.36)

y así obtener el error medio con la ec (3.25) y la desviación estandard de los errores con la ec. (3.26); ver Tablas 3.24 a 3.27.

Para valuar la confiabilidad por medio de intervalos de confianza, en este caso se supuso que la distribución de los errores se comporta como una distribución normal de probabilidad, por lo que el intervalo de confianza estaria dado por:

$$a_0 = \overline{e} \pm Z_c \sigma_c$$
, $a_1 = \overline{e} \pm Z_c \sigma_c$ (3.37)

Posteriormente se obtuvo el valor máximo y mínimo:

 $a_0 = \overline{e} + a_0^+$ $a_0 = \overline{e} - \overline{a_0}$ (3.38) $a_1 = \overline{e} + a_1^+$ $a_1 = \overline{e} - \overline{a_0}$

En la Tabla 3.28, se muestra la dispersión de los resultados al correlacionar F y D con ao y ai.

Finalmente, en las Figs 3.16 a 3.19 se presenta la correlación de ao y ai para F_r y D_c , así como la dispersión para diferentes intervalos de confianza.

Con la metodología numérica desarrollada es posible obtener

$$\left[\begin{array}{c} \frac{t_s}{z_o} \end{array}\right] = a_o \left[\begin{array}{c} \frac{Y_2}{D} \end{array}\right]^{a_1}$$

a través de los parámetros adimensionales del número de Froude (F_r) y el número de caída (D_c) . Los valores del coeficiente (a_o) y el exponente (a_1) , que se obtienen de la **Tabla 3.29**, en función del intervalo de confianza, ellos presentan una dispersión de valores muy amplia, que imposibilitan su aplicación.

3.4 Aplicación práctica

3.4.1 Descripción del proyecto de la Presa Aguamilpa, Nay.

El proyecto Hidroeléctrico Aguamilpa, que se ubica en la parte central

del Edo. de Nayarit, al NE de la ciudad de Tepic, tiene como finalidad principal la generación de energía eléctrica, en operación conjunta con las otras plantas previstas a lo largo del río.

El embalse de Aguamilpa reduce el riesgo de inundaciones en la planicie costera, permitiendo la incorporación de 75 000 nuevas hectáreas y garantizar dos ciclos al año mediante riego.

La obra de excedencias ubicada en la margen izquierda (Figs 3.20 y 3.21) esta constituída por una estructura de control, formada por 6 compuertas radiales de 12×18.50 m y 24 m de radio; descarga por medio de un canal a cielo abierto, con un muro divisorio de 3.80 m que divide a los dos canales de descarga de 45.5 m de ancho, la pendiente longitudinal de los mismos cambia de 0.10 a 0.392 y posteriormente a 0.436. La estructura terminal, es una cubeta de lanzamiento de 30 m de radio y tiene un ángulo de lanzamiento del chorro de 15° .

La obra de excedencia está desplantada en la unidad Aguamilpa (T_{ua}) y en la unidad Colorín (T_{uc}) , Fig 3.22; la unidad Aguamilpa, está formada por una tobalítica riodacítica de coloración rojiza, masiva y compacta, construida principalmente por líticos de composición andesítica; la unidad colorín es una roca volcánica, seudo estratificada, los 15 m superficiales son de mala calidad.

Los principales datos del proyecto se indican a continuación

Elevación de la corona	325	m. s.	n.	m.
Elevación del NAME	232	m. s.	n.	m.
Elevación de la cresta vertedora	210	m. s.	n.	m.
Elevación del labio de la cubeta	99	m. s.	n.	m.
Elevación de la plantilla del				
canal de salida	94	m. s.	n.	m.
Longitud de la cresta vertedora	72	m.		
Gasto de diseño del vertedor	15,000	m ³ /s		
Radio de curvatura de la cubeta				
deflectora	30	m		
Angulo de lanzamiento de la cubeta	15	grados	5	

3.4.2 Características hidráulicas

Entre las características hidráulicas, que se pretenden conocer, para los gastos de operación de 500, 3000, 6500 y 15,000 m³/s con que operaría la obra de excedencia de la Presa Aguamilpa, Nay., están: el obtener el funcionamiento hidráulico de la estructura, como son el tirante y la velocidad del flujo; la dispersión del chorro, es decir, la longitud de lanzamiento, el ancho máximo del chorro, el ángulo de entrada y velocidad del chorro en la superficie del agua; y finalmente la socavación que el flujo produce en el cauce.

a. Funcionamiento hidráulico de la estructura

En la **Tablas 3.30** a **3.33** se presentan los resultados del funcionamiento hidráulico de la estructura, para diversos gastos de operación; para las condiciones de operación siguientes:

Q	CANAL	DESCARGA	ABERTURA DE	ELEV. DEL	d
(m ³ /s)			COMP. (m)	EMBALSE (m)	(m)
500	•		1.00	228	0.68(+)
3000			9.00	228	4.75(+)
6500	**:		8.26	229	6.46(+)
15000	**		abiertas	232	15.30(-)

Por el canal de servicio (45.50m)

** Por el de servicio y el de emergencia a (94.30 m)

Con descarga controlada

- Con descarga libre
- + Tirante en la est 0 + 031

- Tirante en la est 0 + 000

En el extremo de la estructua terminal, cubeta deflectora, los valores de tirantes y velocidades, son las siguientes:

Q	ď	v
(m ³ /s)	(m)	(m/s)
500	0.68	16.24
3000	1.77	37.17
6500	3.54	40.35
15000	4.33	38.09

Dispersión del chorro

La obtención de las características geométricas de la dispersión del chorro se presenta para el gasto de $3000 \text{ m}^3/\text{s}$; mientras que para los otros gastos, como son para 500, 6500 y 15000 m $^3/\text{s}$, se presentan solo los resultados.

Para el significado de las variables consultar el índice de variables del cap dos.

b.1 Longitud de lanzamiento

a. Criterio del USBR

Se considera que al final de la estructura terminal el ángulo de lanzamiento del flujo $\theta = 15^{\circ}$, el tirante d = 1.77 m y la carga de velocidad h_v = 13.44; así como que el factor de reducción, por resistencia del aire, turbulencias internas y desintegración del chorro, K₁ = 0.80; con ayuda de la ec (2.5), se obtiene la trayectoria del chorro tomando el labio de la cubeta como origen de las coordenadas (Fig 3.23), y se concluye que el chorro incide a una distancia de 81.5 m, desde su salida de la obra de excedencia hasta su incidencia en la plantilla del canal de descargas, elev 94.00; al tomar en cuenta el factor de reducción K₁ = 0.8, la longitud de lanzamiento se reduce a 65.2 m.

b. Criterio de Vizgo

Se considera la diferencia de niveles Z_o , entre el de aguas máximas (NAME, elev 228.00) y el de un tirante estimado (elev 95.77), dado que el chorro incide en el canal de descarga, así mediante la ec (2.17), se obtiene que la longitud de lanzamiento del chorro es 168.27 m. De incidir el chorro en el remanso del cauce (elev 74.10), Fig 3.24, la longitud de lanzamiento es 188.10 m.

c. Criterio de Kiseliov

Se toma en cuenta la diferencia de niveles Z_o , entre el de aguas máximas (NAME, elev 228) y la elevación del cauce (elev 64); la diferencia entre el NAME (elev 228) y la elevación del labio de la cubeta (elev 299); los valores θ y d anotados en el primer inciso; así

como el coeficiente de velocidad $\psi_1 = 0.85$, que considera las pérdidas de energía desde la cresta vertedora hasta la cubeta deflectora. Así mediante la ec (2.18), se obtiene que la longitud de lanzamiento del chorro es de 150.71 m.

d. Criterio de Eliasberk

Se toman en cuenta la diferencia de niveles Z' entre el labio (elev 99) y el remanso para el gasto de diseño (elev 74.10), así como los valores la velocidad del flujo al final de la estructura terminal V, la gravedad g y el valor de θ . Utilizando la ec (2.19), resulta que cuando el chorro incide en el remanso ha recorrido una distancia de 123.43 m, desde su formación como tal.

En la Tabla siguiente se comparan los resultados obtenidos con los cuatro criterios presentados, con los medidos en el modelo hidráulico.

. Q		LONGITUD DE VUELO (m)						
m ³ /s	USBR(1)	USBR(2)	Vizgo	Kiseliov	Eliasberk	Mod Hid		
500	18.4	36.8	92.9	147.7	40.6	25.5		
3000	64.0	94.4	188.1	150.7	123.4	141.7		
6500	72.8	98.4	192.9	151.7	130.1	135.4		
15000	69.6	86.4	185.6	155.0	109.1	142.5		

(1) Condición inicial; (2) Condición final

b.2 Ancho máximo del chorro

El ángulo de divergencia del chorro, ε , se valora con el criterio de Rhone y Peterka, en función del número de Froude $F_r = 8.92$, y el ángulo de lanzamiento, $\theta = 15^{\circ}$; obteniéndo de la **Fig 2.11**, un valor de $\varepsilon =$ 48°. De esta manera, según el criterio de Vizgo, el ancho máximo de vuelo es 77.05 m si se considera que $L_v = 188.1$ m, como se obtuvo anteriormente, y el ancho del labio de la cubeta es 45.50 para 3000 m³/s. Para los otros gastos de 500, 6,500 y 15,000 m³/s el ancho máximo del chorro es de 59.6, 125.1 y 122.7 m, respectivamente.

b.3 Angulo y velocidad de entrada del chorro en la superficie del agua

De acuerdo con la ec (2.22), que calcula el ángulo de entrada en función de θ , g, Z' y V anotados anteriormente, se obtiene un valor de $\theta_{\perp} = 19.18^{\circ}$ para la parte inferior del chorro.

Con la ec (2.23), que determina la velocidad teórica de entrada del chorro en la superficie del remanso, esta tiene un valor de 38.01 m/s, para la parte inferior del chorro.

De esta forma, para los otros gastos de operación, se tiene que

Q (m ³ /s)	θ (°)	V _o (m∕s)
500	30.11	19.62
3 000	19.18	38.01
6 500	15.57	40.46
15 000	14.51	38.00

b.4 Socavación que el flujo produce en el cauce

Para predecir la erosión que produce el chorro al penetrar en el remanso del cauce, se aplican los criterios expuestos en el subcapítulo 2.4 para la condición de suelos rocosos fracturados.

CRITERIO DE VERONESE (a y b)

Al expresar la profundidad máxima de socavación, t_s , en función de la caída Z_o (diferencia entre el NAME y el nivel de la superficie del remanso) igual a 132.20 m, un gasto unitario descargado por la obra de excedencias, canal de servicio, de 65.9 m³/s/m, un tamaño de roca de 0.30 m, resulta que la profundidad del cono de socavación, dada por la ec 2.24 y tabla 2.1, es de $t_s = 9.65$ m; si no se toma en cuenta el tamaño del material $t_s = 54.74$ m.

CRITERIO JAEGER

Al tomar en cuenta la profundidad del remanso $Y_2 = 1.77$ m, así como los valores de q, Z, y D anotados con el primer criterio, mediante la ec (2.46) se obtiene que la profundidad de socavación es $t_2 = 29.67$ m

CRITERIO DE MARTINS

Al tomar en cuenta la profundidad del remanso Y_2 , el gasto untario de descarga q, la caída Z_0 y el tamaño del material D, anotados con anterioridad; mediante la ec (2.26), se obtiene que la profundidad de socavación es t_ = 26.70.

CRITERIO DE MIRTSJUSLAVA (Suelos granulares)

Para estimar la profundidad de la socavación, se obtiene previamente la velocidad de caída de las partículas con la ec (2.31), el valor del espesor del chorro en el punto de incidencia sobre el nivel del agua con la ec (2.30), y finalmente el valor de la profundidad, t_g , con la ec (2.29)

a) Velocidad de caída de las particulas, ω

Al considerar un peso específico de las partículas y del agua $\gamma_{\rm g}$ = 2250 kg/m³ y γ = 1000 kg/m³, respectivamente; el tamaño de la roca es de D_p = 0.30 m. De acuerdo con los datos anteriores la velocidad de caída de las partículas, dada por la ec (2.31), es 2.05 m/s.

b) Espesor del chorro, b

Para el gasto de 3000 m³/s, q = 65.93 m³/s/m y la velocidad de entrada del chorro en las superficie del agua V_o = 38.01, m/s obtenida con anterioridad el espesor del chorro, dado por la ec (2.30), es 1.4 m.

c) Profundidad de socavación, ts

Tomando los valores consignados en el inciso anterior, así como la variación del chorro sumergido $\mu = 2$, y el ángulo de entrada del chorro en la superficie del agua $\theta_0 = 18.01^\circ$, así como la profundidad del remanso Y₂ = 1.77 m. La profundidad de socavación, obtenida con la ec (2.29), es 76.43 m, medida a partir del remanso aguas abajo de la estructura terminal.

La profundidad Y_2 se considerÓ igual al tirante del flujo a la salida de la cubeta deflectora d = 1.77 m (elev 95.77); al incidir el flujo en el canal de descarga y no en el cauce para 3000 m³/s, se tiene una elev 19.34.

CRITERIO DE MIRTSJUSLAVA (Suelos rocosos fracturados)

Para estimar la profundidad de la socavación, primeramente se obtiene la velocidad crítica de arrastre con la ec (2.39), y posteriormente, el valor de la profundidad, t_{_}, con la ec (2.38).

a) Velocidad critica de arrastre

Considerando la variación de la velocidad para condiciones naturales n' = 4.0, y la infuencia del sedimento en suspensión, m' = 1, es decir, sin transporte de sedimento; se determinó que el peso específico del agua con aire es γ_{o} = % aire γ , igual a 788 Kgf/m³, para γ = 1000 Kgf/m³ y % aire = 0.78, obtenido de la Fig 2.13, para una velocidad de entrada del chorro en la superficie del agua de 38.01 m/s. El ángulo de entrada del chorro θ_{o} = 18.01°; el tamaño de la roca, b_r = c_r = 0.30 m; la resistencia al desprendimiento de los bloques fracturados R_r = 0.002 R_c y R_c = 1500 kgf/m³ y un peso específico de la roca de 2250 kgf/m³. De acuerdo con los datos anteriores la velocidad crítica de arrastre, dada por la ec (2.39), es 2.72 m/s.

b. Profundidad de socavación

Tomando los valores consignados en el inciso anterior, asi como el espesor del chorro en el punto de incidencia en el remanso, proporcionado por la ec (2.30), b = 1.40 m y el tirante del flujo aguas abajo de la estructura terminal $Y_2 = 1.77$ m. La profundidad de socavación obtenida con la ec (2.39), es 56.57 m, medida a partir del remanso aguas abajo de la estructura terminal.

CRITERIO DE MATSMAN

La secuencia de cálculo, para estimar la profundidad de socavación es la siguiente:

a. Colchón de agua característica

Considerando la velocidad crítica de arrastre obtenida con el criterio de Mirtsjuslava, $V_c = 2.72$ m/s, un coeficiente que disminuya la velocidad crítica permisible del suelo igual a 0.75 y un gasto unitario

descargado por la obra de excedencias de 65.93 m³/s/m, resulta que el colchón de agua característico dado por la ec (2.40), es $h_{a} = 32.31$.

b. Valor de Z_w

Se determinan la distancia vertical desde el labio de la cubeta hasta el remanso que se produce en el cauce (Fig 2.10), es decir Z', cuyo valor es 5.0 m; las características hidráulicas en el labio de la cubeta de lanzamiento, que son tirante d = 1.77 m y velocidad V = 37.17 m/s; así como el tirante del flujo en el remanso $Y_2 = d = 1.77$ m. Mediante la ec (2.46) se obtiene un valor de $Z_{\mu} = 73.64$ m. c. Valor de N

Se determina el tirante crítico, con la ec (2.44), y su valor es $Y_c = 7.62$ m; con este y el valor de Z_{μ} , determinado en el inciso anterior, resulta N = 19.32, mediante la ec (2.47).

d. Profundidad de erosión

Conocida N, el valor de $T_{_{H}}$ se obtiene de la curva adimensional de Matsman (fig 2.15), donde $T_{_{H}} = 2.8$. Al sustituir los valores de $h_{_{d}}$, $Y_{_{C}}$ y $T_{_{H}}$ en la ec (2.47), la profundidad de socavación, $t_{_{g}}$, resulta ser 53.64 m, medida a partir del nivel del remanso.

CRITERIO DE VIZGO

La secuencia de cálculo, para obtener la profundidad de socavación, sería la siguiente:

a. obtención del factor A.

El factor que toma en cuenta la aireación del chorro, se calcula con la Fig 2.17, o con las ecs (2.53 ó 2.54), de las cuales Vizgo recomienda usar la última. Así, conocidas V = 38.01 m/s; el gasto unitario q = $65.93 \text{ m}^3/\text{s/m}$; y la gravedad g = 9.81 m/s, se obtiene A = 0.628.

b. Obtención del coeficiente Kv

Utilizando la tabla 2.3, puesto que $\theta_0 = 18.01^\circ$, el coeficiente para suelo común, es 2.10 m.

Profundidad de socavación

Mediante la ec (2.52), una vez conocidos los valores de $A_v y K_v$, el gasto unitario q, así como la distancia entre el nivel de aguas máximas y el nivel del remanso, al pie de la estructura $Z_o = 132.23$, se obtiene $t_z = 32.8$ m.

CRITERIO STUDENICHNIKOV

Para estimar la profundidad de la socavación, se calcula: a. El factor K_{sb}

El factor K_{gb} , que toma en cuenta la disposición geométrica de la estructura terminal (fig 2.18), es 0.56, que corresponde a una estructura terminal tridimensional.

b. Coeficiente n

El valor del coeficiente de aireación n_g , se determina con la Fig 2.19, que toma en cuenta el número de Froude. Para un número de Froude de 8.92 en la descarga de la cubeta deflectora, se obtiene $n_g = 1.0$, es decir, no se produce aireación.

c. Dispersión del chorro, σ_{ch}

Mediante la ec (2.57), una vez conocidos el ancho de la estructura terminal, B = 45.50 m, la longitud de lanzamiento del chorro libre $L_v = 64$ m, y el ángulo de divergencia del chorro, $\varepsilon = 5^{\circ}$, se obtiene $\sigma_{ch} = 0.91$.

d. Coeficiente de velocidad

De la ec (2.56), conocidas la carga hidráulica total al final de la estructura terminal, Z = 129 m, el tirante d = 1.77 m, y la carga hidráulica sobre el cimacio H_a = 18 m, se obtiene ζ = 0.89.

e. Profundidad de socavación

Conocidos los valores de K_{gb} , n_{g} , ξ , π_{ch} , Y = 7.62 m, Z = 132.23 m, q = 65.93 m³/s/m, g = 9.81 m/s² y $D_{p} = 0.30$ m, con la ec (2.55) se obtiene t = 118.28 m.

CRITERIO DE DODDIAH

La secuencia de cálculo, para estimar la profundidad de socavación, sería la siguiente.

a. Velocidad de caída

Mediante la ec (2.52), una vez conocidos el peso específico de las partículas $\gamma_{\rm g}$ = 2250 kgf/m³; el peso específico del agua con aireación, ec (2.53), que toma en cuenta el peso específico del agua γ = 1000 kgf/m³ y el porcentaje del aire que el chorro introduce, Fig 2.13; y el diámetro de las partículas D_s = 0.30 m, se obtiene ω = 2.05 m/s.

b. Profundidad de socavación

Conocidos los valores de ω , q = 65.93 m³/s/m, Z = 132.23 m, Y = 1.77 m, con la ec (2.58) se obtiene t = 10.12 m.

CRITERIO DE MASON Y KANAPATHYPILLY

Para estimar la profundidad de la socavaciión, primeramente se obtienen los exponentes de la ec (2.59), posteriormente, el valor de la profundidad, t_.

a. Exponentes a_{μ} , b_{μ} , c_{μ} , e_{μ} , f_{μ} y K_{μ}

Para un valor de $Z_0 = 132.23$ m, los exponentes a_{H} , b_{H} y K_{H} tienen un valor de 0.16, 0.81 y 1.37, respectivamente. Los exponentes c_{H} , e_{H} y f_{H} tienen valores constantes iguales a 0.10, 0.15 y 0.30, respectivamente.

b. Profundidad de socavación

Tomando los valores consignados en el inciso anterior, así como q = $65.93 \text{ m}^3/\text{s/m}$, Y₂ = 1.77 m, g = 9.81 m/s^2 , y D = 0.30 m. La profundidad de socavación, obtenida con la ec (2.59), es de 86.73 m, medida a

partir del remanso aguas abajo de la estructura terminal.

En la Tabla 3.34, se resumen los resultados obtenidos para estimar la socavación aguas abajo de la cubeta deflectora, para gastos de operación de 500, 3 000, 6 500 y 15 000 m^3/s .

4. CONCLUSIONES, APORTACIONES Y FUTUROS DESARROLLOS

4.1 Conclusiones y aportaciones

Tal como se indicó el subinciso 1.3, los objetivos generales, que se pretenden alcanzar son:

- A. El presentar formulaciones numéricas para el estudio de la socavación en el foso disipador de energía hidráulica, al pie de las cubetas deflectoras.
- B. Diseñar, poner a punto y formular una metodología experimental para el estudio del campo de presiones en el foso disipador de la energía hidráulica.

Con el presente trabajo, se abordó el primer punto, el segundo será tema de otro estudio.

Las principales aportaciones y conclusiones de este trabajo son

a. Se ha realizado una revisión del estado actual del conocimento del vertido libre presentando las formulaciones principales de las expresiones más conocidas, que determinan las socavaciones máximas. Se presentan los programas de cálculo en BASIC, para determinar la profundidad de socavación en el foso disipador, aguas abajo de la cubeta deflectora.

Se ha desarrollado una metodología numérica, con el objeto de tratar la información teórica y caracterizar la profundidad de socavación en el foso disipador, a través de un problema de diseño, utilizando por una parte, los criterios para obtener la profundidad de socavació, t_, y por otra parte, los parámetros adimensionales que se consideran más significativos; 10 permitirá relacionar profundidad que la de la socavación (Y₂) y el diámetro de las particulas (D) contra la profundidad de socavación (t_) y la distancia entre el nivel de aguas máximas y el nivel del remanso al pie de la cubeta deflectora de la obra de excedencias (Z_), es decir

 $\begin{bmatrix} t_{s} \\ Z_{o} \end{bmatrix} = a_{0} \begin{bmatrix} Y_{2} \\ D \end{bmatrix}^{a_{1}}$

a través de los parámetros adimensionales, del número de Froude (F_r) y del número de caída (D_c) . Los valores del coeficiente (a_o) y el exponente (a_1) presentan una dispersión muy amplia, que imposibilita su aplicación.

d. Finalmente, como aplicación a un problema real, se usaron las formulaciones numéricas propuestas para el estudio de la socavación máxima al pie de la cubeta deflectora del Proyecto Hidroeléctrico de Aguamilpa, Nay.

4.2 Posibles desarrollos

ć.

La metodología numérica propuesta en este trabajo, al ser de carácter general, constituyen una herramienta de utilidad para el análisis de la profundidad de socavación en el foso disipador. En este sentido y teniendo en cuenta el estado actual del conocimiento, creemos de interés el ampliar el estudio con otros criterios para determinar la socavación, a efecto de proponer una unificación de las principales formulaciones. En particular, cabe señalar la necesidad de establecer criterios de prediseño del foso disipador que permitan conocer la profundidad de socavación, en función del caudal especifico, la altura de vertido, el remanso al pie de la estructura, y del tamaño del material. Para ello, sería preciso construir un dispositivo experimental que permitiera presentar una metodología experimental para realizar ensayos con una amplia gama del valor de las variables antes citadas, para un proyecto específico. Adicionalmente se podrían registrar las presiones en la zona de impacto del chorro al realizar dichos ensayos y con ello obtener un criterio de diseño del foso disipador.

REFERENCIAS. CAPITULO 2

1.

5.

6.

7.

8.

9.

- Aki, S, "Estudio de la eficiencia de los colchones de agua en relación a los chorros libres", Journal del Instituto de Investigación de las Centrales Hidroeléctricas, 1969.
- 2. Albertson, H L, Dai, Y B, Jensen, R A and Rouse, H, "Diffusion of sumerged jets", Transactions ASCE, paper No 2409, vol 115, 1950.
- Bakhmeteff, B A and Feodoroff, N V, "Discussion on energy loss at the base of the overall", by Moore, W, Transaction American of Civil Engineers, vol 108, pp 1364-1373, 1943.
- 4. Cola, R, "Energy dissipation of a high-velocity vertical jet entering a basin", Proceedings of the 11th International Association for Hydraulic Research Congress Leningrado, USSR, vol 1, 1965.
 - Cui, G T *et al*, "Efeito do impacto, no leito do rio, da lámina descarregada sobre una barragem abobada" I C T, TR 829 LNEC, Lisboa 1986.
 - Doddiah, D *et al*, "Scour from jets", V Congress of the International Association for Hydraulics Research, Minneapolis, Minn, pp 161-169, 1953.
 - Eliasberk, S E, "Sobre la ubicación de la sección inferior del chorro en caídas y trampolines", Laboratorio de Ingeniería Hidráulica, Ministerio de Construcción, La Habana 1967.
 - Hartung, F and Hausler, E, "Scours, stilling basins and downstream protection under free overfall jets and dams". Transactions of 11th Congress of ICOLD, vol II, Q.41, pp 39-56, Madrid, Spain 1973.
 - Instituto de Hidroeconomía, "Pronóstico de la erosión aguas abajo de las estructuras terminales de tipo trampolín", Revista del Instituto de Hidroeconomía, La Habana 1983.

 Jaeger, C, "Engineering fluid Mechanics", Blackie and Sons Ltd, p 502, London 1965.

11.

- Martins, R, "Accao erosiva de jactos livres a justance de estructuras hidraulicas", Laboratorio Nacional de Enginharia Civil, Memoria No 424, Lisboa 1973.
- Mason, J, and Kanapathypilly, A, "Free jet scour below dams and flip buckets", Journal of Hydraulic Engineering, vol. III, No 2, february 1985.
- Ministerio de Educación Superior de Cuba "Revista de Ingeniería Hidráulica", No 3, La Habana, septiembre 1984.
- 14. Mirtsjuslava, T E, "Mechanics and computation of local and general scour in non cohesive, cohesive soils and rock beds", XII Congress of the International Association for Hydraulics Research, vol 3, september 1967.
- Mirtsjuslava, T E, "La erosión de los cauces y el método de la valorización de su estabilidad", Instituto de Hidroeconomía, La Habana 1983.
- Moore, W L, "Energy loss at the base of a free overall", Transactions American Society of Civil Englneers, vol 108, pp 1343-1360, 1943.
- Ramos, C M, "Hydrodinamic actions on hydraulic structures", LNEC-65/53/315, Lisboa 1988.
- Rand, W, "Flow geometry at straight drop spillways", paper 791, Proceedings American Society of Civil Engineers, vol 81, pp 1-13, september, 1955.
- Rhone, T J, y Peterka, A J, "Improved tunnel spillway flip buckets", Proceedings American Society of Civil Engineers, vol 85, No HY12, paper 2316, diciembre 1959.

Studenichnikov, B N, "Protección contra la erosión de los cauces y de los tramos inferiores de los aliviaderos", Instituto Bodego, Moscú 1967.

- 21. U S Bureau of Reclamation, "Design of small dams", Denver, Colorado 1965.
- 22. Vizgo, M S, "Medidas de exploración, pronóstico y posibilidades de disminución de la erosión local en las construcciones hidrotécnicas", Revista de Ingeniería Hidráulica, No 3, La Habana, septiembre 1984.
- 23. Wallis, B G, "One-Dimensional Two-phase Flow", Mc Graw Hill, Inc, 1969.
- 24. Xu Duo-Ming and Yu Chang-Zhao "Pressao no fundo de un canal devido ao chogue de um jacto plano, e suas características de fluctuacao", ICT 841 LNEC, Lisboa 1986.
- Camargo, J y Franco, V, "Diseño y funcionamiento hidráulico de cubetas deflectoras", Series del Instituto de Ingeniería, UNAM, No 523, octubre 1989.

REFERENCIAS. CAPITULO 3

20.

- Doddiah, D, "Scour below sumerged solid bucket type energy dissipators", XI Congress of the International Associaton for Hydraulic Research, C13, Leningrado 1968.
- Espino, C, "Gasto de despegue en cubetas de lanzamiento. Estudio experimental", Tesis Profesional, Facultad de Ingeniería, UNAM, México 1992.
- Sánchez Bribiesca J L, "Primeras nociones de estadística para experimentadores", Informe Interno, Instituto de Ingeniería, UNAM, México, febrero 1982.
- Spiegel, M.R., "Probabilidad y Estadística", Serie Schaum, McGraw Hill, México 1984.

INDICE DE VARIABLES. CAPITULO 2

INDICE	DE VALIABLES. CATILOED Z	
A	factor que toma en cuenta la aireación del chorro, Fig 2.17 ó	
v	ecs (2.53) y (2.54)	
a	coeficiente definido en la Tabla 2.1	
a	coeficiente definido en la ec (2.59)	
a	ancho del chorro en el punto de incidencia del chorro, Fig 2.10	
в	ancho de la cubeta de lanzamiento, Fig 2.10	·홍수의 중소 등 전 등 총 영국 전 등 등 전 등 총
B, B	relación de flujos aire/agua, prototipo y modelo	
Ъ,	coeficiente definido en la Tabla 2.1	
b ั	coeficiente definido en la ec (2.59)	
ь. Ъ	espesor del chorro en el punto de incidencia sobre el nivel del	
-	agua, Fig 2.6	
b,a	dimensión, perpendicular al flujo, del paralelepípedo que	
•••	representa el tamaño promedio de las rocas fracturadas	
ь _г	ancho longitudinal del labio de la cubeta	
c_	coeficiente de velocidad	
Cc	resistencia a la ruptura del material cohesivo en estado	
f	saturado, $C_{c}^{c} = 0.035 C$, siendo C la cohesión del suelo	
C	cohesión del suelo	
s C_	coeficiente definido en la Tabla 2.4	
c.	coeficiente definido en la ec (2.59)	
c_	dimensión vertical de un paralelepípedo que representa el tamaño	
г	promedio de las rocas fracturadas	
D	diámetro de las partículas	
D	número de caída, ec (2.10)	
D	diámetro equivalente para suelos cohesivos	
D,	diámetro de las partículas asociadas a un porcentaje de tamaños	
ם,	diámetro medio de las partículas	
ď	tirante del flujo en la cubeta de lanzamiento	
E_	módulo de elasticidad del material	and the second sec
E.	energía total en la entrada del colchón, $y = 0$	
е́м	coeficiente definido en la ec (2.59)	
F.	cuadrado del número de Froude, aguas abajo del foso disipador,	
-	Fig 2.6	
F _{r1}	número de Froude en la sección contraída, ec (2.8)	
f	coeficiente definido en la ec (2.59)	
g	aceleración de la gravedad	
н	altura de caída de la presa o del salto	

		energía total en el embalse, Fig 2.2 (en la sección 0)	n an an Art Marine Anna An Anna Anna Anna
الم مرکز میں میں میں ا	H	carga hidráulica sobre la cresta vertedora	
	H,	energía total en la base de la caída, Fig 2.2 (en la sección 1)	
	h	altura del colchón de agua	가가 가장이 있다. 승규는 사람이 가장이 가장이 있다.
	h,	colchón de agua característica para cada tipo de suelo y	
n - Northern and an	a	definido por la ec 2.40, en m	
	h, h	tirantes conjugados que se producen en la formación del salto	
	C C	hidráulico, en m, Fig 2.14	el selles est
	н	altura del nivel del embalse al labio de la cubeta	
	h.	carga de velocidad. $h = V^2/(2g)$	
	ĸ	factor para compensar la reducción de la velocidad del chorro	
		por la resistencia del aire, turbulencias internas y	
		desintegración, ec (2.16)	
	K_	coeficiente definido en la Tabla 2.1	
	K	coeficiente definido en la ec (2.59)	
	ĸ	coeficiente de homogeneidad e igual a 0.5	
	s K	factor que toma en cuenta la disposición geométrica de la	an an Airte Anns an Airte
	SÞ	estructura terminal. Fig 2.18	
	K	coeficiente de corrección de Vizgo que toma en cuenta el ángulo	
	Y	de incidencia del chorro. θ y el tipo de suelo. Tabla 2.3	
•	ĸ	coeficiente de corrección de longitud de vuelo, al considerar la	
	1	diferencia de comportamiento del chorro en el aire y en el	
		vacío, ec 2.20, que toma un valor entre 0.6 y 1.00	
	L	longitud del foso disipador de energía	
	С L	longitud del foso al pie de la caída. Fig 2.2	
	d L	longitud del resalto hidráulico. Fig 2.2	
	L L	longitud del vuelo del chorro. Fig 2.10	
	TV m'	coeficiente que toma en cuenta la influencia del sedimento en	
		suspensión, cuando el fluio no transporta sedimento m' = 1 v	
		cuando si lo hace $m' = 1.6$	
	m	parámetro utilizado por Vizgo, $m = h/Z$	
	N	parámetro adimensional de Matsman, definido por la ec (2.47)	
	N	parámetro utilizado por Martins, definido por la ec (2.27)	
	п'	coeficiente que toma en cuenta la variación de la velocidad.	
		para condiciones naturales n' = 4 y para ensaves realizados en	
		laboratorio n' = 2.25	
	n	porcentale de contenido de las diferentes fracciones del	
	···1	material D. ec (2.33)	
	•		
	n _K	parámetro utilizado por Kiseliov, $n_{\rm g} = \frac{1}{Z}$	

coeficiente de aireación, Fig 2.19 n, Ph presión hidrostática en el canal de descarga, ec (2.37) valores de modelo y prototipo p,m Q gasto de agua descargada q caudal unitario R radio de curvatura de la cubeta de lanzamiento. Fig 2.9 R resistencia a la compresión de la roca en estado saturado, en kg/cm^2 R límite estadístico de la resistencia al desprendimiento de los bloques fracturados, $R_r = 0.002 R_s$, en kg/cm² radio del chorro a la entrada del foso R T parámetro adimensional de Matsman, definido por la ec (2.48) t, profundidad de la socavación, Fig 2.14 t tiempo V: velocidad media del flujo en la cubeta de lanzamiento ٧ velocidad del flujo aguas abajo del foso disipador, Fig 2.6 ۷_f velocidad del chorro en el fondo del cono, es decir la velocidad permisible del suelo cohesivo ٧, velocidad media real en la base de la caída, ec (2,4)Vc velocidad crítica permisible del suelo velocidad de incidencia del chorro, Fig 2.6 ٧ velocidad del chorro a la entrada del colchón de agua velocidad longitudinal a una distancia y de la entrada del foso ٧, v, carga de velocidad en el eje del chorro a una profundidad y X_{2M} distancia de recorrido del chorro, según Mirtsjuslava, Fig Х_{1Н}, 2.21 distancia del viaje necesaria para la difusión total de un У chorro dentro del colchón del agua Y tirante aguas abajo del foso disipador, Fig 2.6 Y_c tirante crítico en una sección rectangular, ec (2.3) Y tirante en el punto de caída o de incidencia del flujo, Fig 2.6 tirante al pie de la estructura, Figs 2.2 y 2.4 Yp profundidad del cono de socavación Ys conjugado menor en la base de la caída Y, conjugado mayor, ec (2.7) Υ2 profundidad del remanso Υ2 distancia entre el nivel deguas máximas y el labio de la cubeta z de lanzamiento, Fig 2.10 Z distancia de recorrido del chorro, según Mirtsjuslava, Fig 2.12 distancia entre el nivel de aguas máximas y el nivel del remanso z

	al pie de la estructura, Fig 2.10
Z'	distancia vertical entre el labio de la cubeta y el nivel del
	remanso al pie de la estructura, Fig 2.10
α	coeficiente, que toma en cuenta la no distribución uniforme de
	velocidades en la sección de caída Y
α	coeficiente de Coriolis
α	coeficiente igual a 0.01
β	coeficiente, ec (2.12) y Fig (2.7)
β	coeficiente, que toma en cuenta las pérdidas de carga
ຈັ	peso específico del agua con aireación, ec 2.32
ຈັ	peso específico de la partícula
ĸ	pendiente de la parte inferior del labio
າ	peso volumétrico del suelo
ເັ	ángulo de divergencia del chorro, Fig 2.10, en grados
ω	velocidad de caída del material
Ψ _H	coeficiente de minorización de la velocidad crítica permisible
	del suelo V_c ; toma un valor entre 0.7 y 0.8
Ψ_1	coeficiente de velocidad; considera las pérdidas de energía
	desde la cresta vertedora hasta la cubeta de lanzamiento. Toma
	un valor entre 0.85 y 0.92
ΔH	pérdida de carga
λ	distancia relativa de vuelo del chorro, e igual a L_{γ}/Z_{o} ,
	adimensional
σ _{ch}	dispersión del chorro, ec (2.57)
σ _ω	desviación estandard de la velocidad de caída
μ	coeficiente que toma en cuenta la variación de la velocidad del
	chorro sumergido, en protototipo toma el valor de 2, mientras
	que en modelo el valor de 1.5
e_	ángulo de incidencia del chorro, Fig 2.6
0	ángulo de lanzamiento del chorro, Fig 2.9
ζ	coeficiente de velocidad, ec (2.56)
% aire	porcentaje del aire que el chorro introduce, Fig 2.13

and the first

INDICE DE VARIABLES. CAPITULO 3

coeficientes o exponentes, i = 1, 2, 3a coeficientes i = 0, 1, 2, ...Ъ, diámetro de las partículas Ð D número de caída, ec (3.32) error medio, ec (3.25) ē F F de Fisher, ec (3.13) parámetro de descarga, ec (3.30) F número de Froude, ec (3.31) Fr gravedad e igual a 9.81 m/s² g número de cálculo complementarios, diseño de experimentos ĸ n número de variables independientes que influven en e1 resultado del experimento gasto unitario. m³/s/m q S desviación estándard de los resultados promedio, ec (3.21) SS(b) dispersión o variación de cada uno de los términos SSE variación de los errores SLF² estimador de la variancia producida la falta por de concordancia, ec (2.12) SSL. error de concordancia, ec (3,11) SST dispersión o variación de los resultados, ec (3.8) s²y_ variancia de los resultados coplementarios, ec (3.10) t_c variable estandarizada de la distribución t de Student, Tabla 3.20 t profundidad de erosión aguas abajo de la estructura terminal variable independiente, i = 1, 2x,, x, У, У variable dependiente У_с media de los resultados complementarios, ec (3.9) valor obtenido de Y al aplicar la correlación Y variable dependiente medida, resultado real obtenido de 1 Ymed experimento Y₂ profundidad del remanso distancia entre el nivel de aguas máximas y el nivel del z remanso al pie de la estructura, Fig 2.10 variable estandarizada de la distribución normal, Tabla 3.20 z_ error, ec (3.6), ec (3.16), ec (3.20) ε ΔY intervalo de confianza, c (3.23)

desviación estandard de los errores, ec (3.26) grados de libertad grados de libertad de cada uno de los términos grado de libertad, asociado a SSL.

σ ν

V_{bi}

V.

NOTA: EL SIGNIFICADO DE LAS VARIABLES CORRESPONDIENTES AL SUBCAPITULO 3.4, CONSULTAR INDICE DE VARIABLES DEL CAPITULO DOS.

64.,

TABLA 2.1

DIAMETROS EQUIVALENTES PAAR SUELOS COHESIVOS [12]

AUTOR	К _D	a _D	ь _р	С _р	D
Schoklitsch	0.521	0.57	0.200	0.32	D
Veronese (a)	0.202	0.54	0.225	0.42	
Veronese (b)	1.900	0.54	0.225	0	-
Eggenburger	1.440	0.60	0.500	0.40	D
Hartung	1.400	0.64	0.360	0.320	D
Franke	1.130	0.67	0.500	0.500	D
Damle (a)	0.652	0.50	0.500	0	- "
Damle (b)	0.543	0.50	0.500	0	-
Damle (c)	0.362	0.50	0.500	0	-
Chee y Padiyar	2.126	0.67	0.180	0.063	D_
Bizas y Tchopp*	2.760	0.90	0.250	1.000	D
Chee y Kung	1.663	0.60	0.200	0.100	D
Martins	1.500	0.60	0.100	o	- :
Taraimovich	0.663	0.67	0.250	0	-
Machado	1.350	0.50	0.314	0.064	D
SOFRELEC	2.300	0.60	0.100	0	- "
INCYTH	1.413	0.50	0.250	0	- 1
1			1		

* Diferente forma de expresión

 $t_{g} = \frac{k_{D} q^{a} D Z_{o}^{b} D}{D^{C} D}$

١,

TABLA 2.2 DIAMETROS EQUIVALENTES PARA SUELOS COHESIVOS [9]

	PORCE	TAJE DE ICULAS	DIAMETROS EQUIVALENTES, en mm, PARA PARTICULAS DE DISTINTOS SUELOS				
SULLOS	diámetros 0.005 mm	ámetros diámetros c 005 mm 0.005-0.05 mm		$\begin{array}{c} \text{compactos} \\ \varepsilon_v > 1.2 \\ 1.2 > \varepsilon_v > 0.6 \end{array}$		$compactos \varepsilon_v < 0.3$	
Arcilla	30-50	50-70	0.15	3.0	10.0	50.0	
Arcilla arenosa pesada	20-30	70~80	0.15	3.0	10.0	50.0	
Arcilla arenosa ligera	10-20	80-90	0.15	3.0	10.0	50.0	
Lo es complet <u>a</u> mente s <u>e</u> dimenta- do	-	-	0.05	1.5	10.0	50.0	
ε rela- ción de vacios							

TABLA 2.3 COEFICIENTE k, DE VIZGO [22]

	Angulo 0 ₀ , en grados						
Suelo	0	12	25	40	50	70	90
Duro y roca Común Muy débil	1.4 1.4 1.4	1.7 1.9 2.2	2.1 2.4 3.0	2.5 3.0 3.8	2.8 3.3 4.7	3.2 4.1 5.6	3.4 4.5 6.0

```
...... TABLA 3.1 LANZAMIENTO DEL CHORRO, USBR .....
20
    REM
30
    REM
40
    REM
    REM
                                 PROGRAMA LONGCHORRO, BAS
    REM
                                    VERSION DIC 1991, SGA
60
70
    REM
                      VARTARLES DE ENTRADA
80
    REM
90
    REM
100
    REM
                      Se proporciona con la instrucción INPUT
    REM
                       distancia desarrollada apartir del inicio de la cubeta o del
110
              x
120 REM
                      cimacio, en m
                      cimacio, en m
factor para compensar la reducción de la velocidad del chorro
por la resistencia del aire, turbulencias internas y
    REM
              к
130
140
    REM
150
    REM
                       desintegración.
                       velocidad media del flujo en la cubeta, en m/s
aceleración de la gravedad, em m/s2
ángulo de lanzamiento del chorro
160 REM
              v
170
    REM
              s
B
180 REM
100 854
              d
                       tirante del flujo, en #
200 REM
210 REM
220 REM
                       VARIABLES DE SALIDA
230 REM
                       Se proporciona con la instrucción LPRINT
240 REM
                       longitud de lanzamiento del chorro, en m
              v
250 REM
                       VARIABLES DEL PROGRAMA
260 REM
270 REM
280 REM
              hv
                       carga de velocidad, en m
290 REM
300 REM
         310 REM
320 DIM X(15).Y(15)
320 DIM X(15), Y(1
330 INPUT "K*", K
340 INPUT "K*", G
350 INPUT "E*", G
360 INPUT "B*", B1
370 INPUT "d*", D
380 FOR N=1'TO 14
390 READ X(N)
400 NEXT N
420 REM
440 ANU*2/(2*C)
440 B+B1*3.1416/180
450 FOR N=1 TO 14
450 Y(N)=(X(N)*TAN(B))-((X(N)*2)/(K*(4*(D+HV)*(COS(B))*2)))
470 NEXT N
480 REM
500 REM
510 LPRINT
520 LPRINT" LONGITUD DE LANZAMIENTO DEL CHORRO METUDO USBR"
530 LPRINT
540 LPRINT"
                               VARIABLES DE ENTRADA"
540 LPRINT USING"
550 LPRINT USING"
560 LPRINT USING"
570 LPRINT USING"
590 LPRINT USING"
590 LPRINT USING"
600 LPRINT
610 LPRINT
                                K = ###.5# ":R
V = ###.## #/6":V
g = ###.## #/52":G
B = ###.## grados":B1
d = ###.## grados":B1
 610 LPRINT"
                               VARIABLES DE SALIDA"
610 LPRINT "", "X (m)", "Y (m)"
620 LPRINT "", "X (m)", "Y (m)"
630 FOR N#1 TO 14
640 LPRINT "", X(N), Y(N)
 650 NEXT N
 660 REM
 680 REM
 690 INPUT "QUIERE DEJAR DE ITERAR, SI=9",X
 700 IF X=9 THEN GOTO 720
710 GOTO 310
 720 END
 730 LPRINT
. 740 DATA 0.5.10.15.20.30.40.50.60.70.80.90.100.120
  LONGITUD DE LANZAMIENTO DEL CHORRO METODO USBR
                   VARIABLES DE ENTRADA
               = 0.60
= 37.17 m/s
             к .
             ŵ
             5 =
B =
                    9.81 #/52
                   15.00 grados
1.77 m
             d
               .
                   VARIABLES DE SALIDA
                  X (m)
                                   Y (m.)
                   ΰ
                                    0
                                    1.223755
                   5
                                    2.215523
                   10
                                    2.975302
                   15
                   20
                                    3.503094
                                    3.862713
                   40
                                    3.294382
                   50
60
                                    1.7981
                                   -.6261368
                    70
                                   -3,978321
                   80
                                   -8.25846
                                   -13.40655
                   90
                                   -19,60259
                   100
                    120
                                   -34.65853
```

10 R.F.M
10 REM 20 REM TABLA 3.2 LANZAMIENTO DEL CHORRO, VIZGO 30 REM 40 REM PROGRAMA LONGCHORRO, BAS VERSION DIC 1991, SGA 50 REM 60 REM 70 REM 80 REM VARIABLES DE ENTRADA Section of the sectio 90 REM Se proporciona con la instrucción INPUT 100 REM 20 distancia entre el nivel de aguas máximas y el nivel del 110 REM remanso, en m 120 REM v velocidad media del flujo en la cubeta, en m/s 130 REM g aceleracion de la gravedad, en m/s2 140 REM B ángulo de lanzamiento 150 REM đ tirante del flujo, en m 160 REM . 170 REM VARIABLES DE SALIDA 180 REM 190 REM Se proporciona con la instrucción LPRINT Lv 200 REM longitud de lanzamiento del chorro 210 REM 220 REM VARIABLES DEL PROGRAMA 230 REM 240 REM I distancia relativa de vuelo, adimensional 250 REM 270 REM 280 INPUT "Zo=",Z 290 INPUT "V=",V 300 INPUT "S=",G 310 INPUT "B=",B1 320 INPUT "d=",D 330 REM 350 REM 360 HV= V^2/(2*G) 370 MV= HV/2 380 B=B1*3.1416/180 390 I= 2*COS(B)*((MV*SIN(B))+(MV*(1-(MV*(COS(B))*2)+(D/(2*Z)*COS(B))))*(1/2)) 400 LV= I*Z 410 REM 430 REM 440 LPRINT 450 LPRINT" LONGITUD DE LANZAMIENTO DEL CHURRO METODO VIZGO " 460 LPRINT 470 LPRINT" VARIABLES DE ENTRADA" 480 LPRINT USING" 20 = ###.## m'';2490 LPRINT USING" V = ###.## m/s";V 500 LPRINT USING" g = ###.## m/s2";G S10 LPRINT USING" 520 LPRINT USING" = ###.# grados";B1 8 d = ###.## m'':DSTO LPRINT" VARIABLES DE SALIDA" 530 LPRINT Lv = ###.## m":LV 560 LPRINT 570 REM 500 REM 600 INPUT "OUIERE DEJAR DE ITERAR, SI=9",X 610 IF X=9 THEN GOTO 630 620 GOTO 280 630 END 640 LPRINT LONGITUD DE LANZAMIENTO DEL CHORRO METODO VIZGO VARIABLES DE ENTRADA 20 = 132.20 mv = 37.17 m/s g = 9.81 m/s2

B = 15.0 grados

d = 1.77 m

VARIABLES DE SALIDA Lv = 168.25 m

10 20 30 REM TABLA 3.3 LANZAMIENTO DEL CHORRO, KISELIOV REM 40 REM 50 REM PROGRAMA LONGCHORRO, BAS -----60 REM VERSION DIC 1991, SGA חל REM 80 REM VARIABLES DE ENTRADA 90 REM 100 REM Se proporciona con la instrucción INPUT Р coeficiente de velocidad, considera las pérdidas de energía 110 REM 120 REM desde la cresta vertedora hata la cubeta de lanzamiento. 145 REM Toma un valor entre 0.85 y 0.92. 130 REM TI distancia entre el nivel de aguas máximas y el fondo del 155 REM cauce, en m т 140 REM distancia entre el nivel de aguas máximas y el labio de la 150 REM cubeta de lanzamiento, en m. 165 REM R ángulo de lanzamiento del chorro 166 REM d tirante del fluio, en m 160 REM 170 REM VARIABLES DE SALÍDA. 180 REM Se proporciona con la instrucción LPRINT 190 REM 200 REM Ĺν longitud de vuelo del flujo, en m 210 REM VARIABLES DEL PROGRAMA 220 REM 230 REM 240 REM nk. parámetro utilizado por Kiseliov. 250 REM TATALANTA (1) LECTURA DE DATOS 260 REM 270 REM 280 INPUT "P=" P 290 INPUT "T1=",T1 300 INPUT "T=",T 310 INPUT "B=",B1 (a) A set of the se 320 INPUT "d=",D 330 REM 350 REM 360 NK=T1/T 370 B=B1*3.1416/180 380 LV=2*P*2*NK*T*COS(B)*(SIN(B)+((SIN(B))*2+((D*COS(B)+2*T*(1-NK)*2)/(2*P*2*NK* $T)))^{(1/2)}$ 390 REM 410 REM 420 LPRINT 430 LPRINT" LONGITUD DE LANZAMIENTO DEL CHORRO METODO DE KISELIOV" 440 LPRINT 450 LERINT" VARIABLES DE ENTRADA" 460 LPRINT USING" P = ###.## ";P 470 LPRINT USING" T1 = ###.## m";T1 480 LPRINT USING" T = ###.## m";T 490 LPRINT USING" 500 LPRINT USING" B = ###.# grados";B1 d = ###.## m";D 510 LPRINT 520 LPRINT" VARIABLES DE SALIDA" 530 LPRINT USING" Lv = ###.## m":LV 540 LPRINT 550 REM 560 REM ***********************(4) CALCULOS ADICIONALES 570. REM. 580 INPUT "QUIERE DEJAR DE ITERAR, SI=9",X 590 IF X=9 THEN GOTO 610 600 COTO 280 610 ENU 620 LPRINT LONGITUD DE LANZAMIENTO DEL CHORRO METODO DE KISELIOV VARIABLES DE ENTRADA P = 0.85 T1 = 164.00 mT = 128.00 mB = 15.0 gradosd = 1.77 m VARIABLES DE SALIDA Lv = 150.71 m · 69

10 REM TABLA 3.4 LANZAMIENTO DEL CHORRO, ELIASBERK 20 30 REM 40 REM PROGRAMA LONGCHORRO, BAS SO REH VERSION DIC 1991, SGA 60 REM 70 REM VARIABLES DE ENTRADA 80 REM 90 REM Se proporciona con la instrucción INPUT z' distancia vertical media desde el labio de la cubeta hasta 100 REM 110 REM el remanso que se produce en el cauce, en m el remanso que se produce en en m/s2 120 REM ġ B V 160 REM ángulo de lanzamiento del chorro velocidad media del flujo en la cubeta, en m/s 130 REM 140 REM VARIABLES DE SALIDA 150 REM 160 REM 170 REM Se proporciona con la instrucción LPRINT 180 REM LV longitud de vuelo del flujo, en m 190 REM 210 REM 220 INPUT "z'=".Z 230 INPUT "g=",G 250 INPUT "B=",B1 260 PT 260 REM 280 REM 1.100 290 B=B1*3.1416/180 300 LV= ((V^2*SIN(B)*COS(B))/G)+(V*COS(B)*(((V^2*(SIN(B))*2)/(G*2))+((2*Z)/G))*(1/2))310 REM 330 REM 340 LPRINT 350 LPRINT" LONGITUD DE LANZAMIENTO DEL CHORRO METODO ELIASBERK" 360 LPRINT 370 LPRINT" VARIABLES DE ENTRADA" 3AO LPRINT USING" 2' = ###.## m";Z 390 LPRINT USING" = ###.## m/s2";G g 400 LPRINT USING" B = ###.## grados"; B1410 LPRINT USING" V = ###.## m/s";V 420 LPRINT 430 LPRINT" VARIABLES DE SALIDA" 440 LPRINT USING" Lv = ###.## m":LV 450 LPRINT 460 REM 480 REM 490 INPUT "QUIERE DEJAR DE ITERAR, SI=9",X. 500 IF X=9 THEN GOTO 520 510 GOTO 220 520 END 530 LPRINT LONGITUD DE LANZAMIENTO DEL CHORRO METODO ELIASBERK VARIABLES DE ENTRADA z' = 24.90 m 9.81 m/s2 g = 15.00 grados R = v = 37.17 m/s VARIABLES DE SALIDA Lv = 123.43 m

10 REM 20 REM ********* TABLA 3.5 ANCHO LANZAMIENTO DEL CHORRO, VIZGO ************* 30 REM 40 REM PROGRAMA ANCHOMAXIMO . BAS VERSION DIC 1991, SGA 50 REM 60 REM 70 REM VARIABLES DE ENTRADA 80 REM Se proporciona con la instrucción INPUT B ancho de la cubeta de lanzamiento, en m Lv longitud de vuelo del flujo, en m E ángulo de divergencia del chorro, en grados,ver fig.3.18 90 REM 100 REM 140 REM 110 REM 120 REM 130 REM VARIABLES DE SALIDA 140 REM 150 REM Se proporciona con la instrucción LPRINT 160 REM Bvuelo ancho máximo de vuelo del chorro en m 170 REM 190 REM 200 INPUT "B=",B 210 INPUT "Lv=".LV 220 INPUT "E=".E1 230 REM 250 REM 270 BVUELO=B+2*LV*TAN(E) A CALCULATION OF THE OWNER OF THE 280 REM 300 REM 310 LPRINT 320 LPRINT" ANCHO MAXIMO DE LANZAMIENTO DEL CHORRO (METODO VIZGO) 330 LPRINT 340 LPRINT" VARIABLES DE ENTRADA" 350 LPRINT USING" B = ###.## m";B 360 LPRINT USING" L∨ = ###.## m";LV 370 LPRINT USING" E = ###.# grados":E1 380 LPRINT 390 LPRINT" VARIABLES DE SALIDA" 400 LPRINT USING" Bvuelo= ###.## m": BVUELO 410 LPRINT 420 REM 440 REM 450 INPUT "QUIERE DEJAR DE ITERAR, SI=9",X 460 IF X=9 THEN GOTO 480 470 GOTO 200 480 END 490 LPRINT ANCHO MAXIMO DE LANZAMIENTO DEL CHORRO (METODO VIZGO) VARIABLES DE ENTRADA B = 45.50 mLv = 188.01 mE = 4.8 grados VARIABLES DE SALIDA Bvuelo= 77.08 m

10 REM 20 REM TABLA 3.6 ANGULO DE ENTRADA DEL CHORRO 30 REM 40 REM PROGRAMA ANGUENTRADA. BAS 50 REM VERSION DIC 1991, SGA 60 REM 70 REM VARIABLES DE ENTRADA 80 REM 90 REM Se proporciona con la instrucción INPUT distancia vertical medida desde el labio de la cubeta hasta 100 REM z.* el remanso que se produce en el cauce, en m 110 REM 120 REM v velocidad media del flujo en la cubeta, en m/s 130 REM B ángulo de lanzamiento del chorro 140 REM g aceleración de la gravedad, en m/s2 150 REM VARIABLES DE SALIDA 160 REM 170 REM 180 REM Se proporciona con la instrucción LPRINT 190 REM Α. ángulo de entrada del chorro en la superficie del agua, 200 REM en grados 210 REM 230 REM 240 INPUT "z'=",Z 250 INPUT "V=",V 260 INPUT "B=",B1 270 INPUT "g=",G 280 REM 300 REM 310 B=B1*3.1416/180 320 A=ATN(((TAN(B))^2+((2*G*Z)/(V^2*(COS(B))^2))^(1/2)) 330 A= A*180/3.1416 340 REM 360 REM 370 LPRINT 380 LPRINT" ANGULO DE ENTRADA DEL CHORRO" 390 LPRINT 400 LPRINT" VARIALES DE ENTRADA" 410 LPRINT USING" z'= ###.## m";Z 420 LPRINT USING" V = ###.## m/s":V 430 LPRINT USING" B = ###.# grados";B1 440 LPRINT USING" g = ###.## m/s";G450 LPRINT 460 LPRINT" VARIABLES DE SALIDA" 470 LPRINT USING" A = ###.## grados":A480 LPRINT 490 REM 510 REM 520 INPUT "QUIERE DEJAR DE ITERAR, SI=9",X 530 IF X=9 THEN GOTO 550 540 GOTO 240 550 END 560 LPRINT ANGULO DE ENTRADA DEL CHORRO VARIALES DE ENTRADA 3.23 m z'= V = 37.17 m/s B = 15.0 grados 9.81 m/s g ≈ VARIABLES DE SALIDA A = 19.18 grados

10 20 30 REM REM REM 40 REM PROGRAMA VENT. BAS VERSION DIC 1991, SGA 50 REM 60 REM 70 REM V A RIABLES DE ENTRADA. 80 REM 90 REM Se proporciona con la instrucción INPUT ż' 100 REM distancia vertical medida desde el labio de la cubeta hasta 110 REM el remanso que se produce en el cauce, en m ν 120 REM velocidad media del flujo en la cubeta, en m/s 130 REM aceleración de la gravedad, en m/s2 g 140 REM 150 REM VARIABLES DE SALIDA 160 REM Se proporciona con la instrucción LPRINT 170 REM 180 REM VENT velocidad de entrada del chorro en la superficie del agua. 190 REM en m/s 200 REM 220 REM 230 INPUT "z'=",Z 240 INPUT "V=",V 250 INPUT "g=".G 260 REM 280 REM 290 VENT= (V^2+(2*G*Z))^(1/2) 300 REM 320 REM 330 LPRINT 340 LPRINT" VELOCIDAD DE ENTRADA DEL CHORRO" 350 LPRINT 360 LPRINT" VARIABLES DE ENTRADA" 370 LPRINT USING" z'= ###.## m";Z' 380 LPRINT USING" V = ###.## m/s";V 390 LPRINT USING" g = ###.## m/s2":G400 LPRINT 410 LPRINT" VARIABLES DE SALIDA" 420 LPRINT USING" VENT= ###.## m/s":VENT 430 LPRINT 440 REM 460 REM 470 INPUT "QUIERE DEJAR DE ITERAR, SI=9",X 480 IF X=9 THEN GOTO 500 490 GOTO 230 500 END 510 LPRINT VELOCIDAD DE ENTRADA DEL CHORRO VARIABLES DE ENTRADA 3.23 m z'= V = 37.17 m/s 9.81 m/s2 e =

> VARIABLES DE SALIDA VENT= 38.01 m/s

10 REM 20 30 REM 40 . REM PROGRAMA SOCVERONESE(A), BAS 50 REM VERSION DIC 1991, SGA 60 REM VARIABLES DE ENTRADA 70 REM 80 REM 90 REM Se proporciona con la instrucción INPUT 100 REM gasto unitario, en m3/s/m a 110 REM distancia entre el nivel de aguas máximas y el nivel del 20 120 REM remanso, en m 130 REM n diámetro de las particulas, en m 140 REM 150 REM VARIABLES DE SALIDA 160 REM 170 REM Se proporciona con la instrucción LPRINT 180 REM t1 profundidad del cono de socavación, en m 190 REM 200 REM VARIABLES DEL PROGRAMA 210 REM 220 REM KD, aD, bD, cD, coeficientes definido en la tabla 3.3 230 REM 240 REM 250 REM 250 INPUT "q=".Q 260 INPUT "Zo=".ZO 270 INPUT "D=",D 280 REM 290 REM ********(2) CALCULOS HIDRAULICOS*** ************ 300 REM 310 KD = .202320 AD = .54330 BD = .225340 CD = .42350 T1 = (KD*Q^AD*ZO^BD)/D^CD 360 REM 380 ' REM 390 LPRINT 400 LPRINT" PROFUNDIDAD DEL CONO DE SOCAVACION CON EL METODO DE VERONESE (A)" 410 LPRINT 420 LPRINT" VARIABLES DE ENTRADA" 430 LPRINT USING" g = ###.## m3/s/m";Q 440 LPRINT USING" Zo = ###.## m";ZO 450 LPRINT USING" D = ###.## m";D 460 LPRINT 470 LPRINT" VARIABLES DE SALIDA" 480 LPRINT USING" t1 = ###.## m":T1 490 LPRINT 500 REM 520 REM 530 INPUT "QUIERE DEJAR DE ITERAR, SI=9",X 540 IF X=9 THEN GOTO 560 550 GOTO 250 560 END 570 LPRINT PROFUNDIDAD DEL CONO DE SOCAVACION CON EL METODO DE VERONESE (A) VARIABLES DE ENTRADA q = 65.93 m3/s/m $Z_0 = 132.20 \text{ m}$ 0.30 m D = VARIABLES DE SALJDA ti = 9.65 m

10 REM 20 30 REM 40 REM PROGRAMA SOCVERONESE(B).BAS 50 REM VERSION DIC 1991, SGA 60 REM 70 VARIABLES DE ENTRADA REM 80 REM Se proporciona con la instrucción INPUT 90 REM 100 REM gasto unitario, en m3/s/m 0 distancia entre el nivel de aguas máximas y el nivel del 110 REM Zo 120 REM remanso, en m 130 REM VARIABLES DE SALIDA 140 REM 150 REM 160 REM Se proporciona con la instrucción LPRINT 170 REM +1 profundidad del cono de socavación, en m 180 REM 190 REM VARIABLES DEL PROGRAMA 200 REM 210 RĖM KD,aD,bD,cD, coeficientes definido en la tabla 3.3 220 REM 230 REM 250 REM 240 INPUT "q=",Q 영화는 영화 문화를 통하는 것을 수 있다. 250 INPUT "Zo=".ZO 260 REM 280 REM 290 KD = 1.9300 AD = .54310 BD = .225320 CD = 0330 T1 = ($KD^*Q^AD^*ZO^BD$) 340 REM 350 LPRINT 360 REM *********(3) IMPRESION DE RESULTADOS******************************* 370 REM 380 LPRINT" PROFUNDIDAD DEL CONO DE SOCAVACION CON EL METODO DE VERONESE (B)" 390 LPRINT VARIABLES DE ENTRADA" 400 LPRINT" 410 LPRINT USING" q = ###.## m3/s/m";Q 420 LPRINT USING" Zo = ###.## m":ZO 430 LPRINT 440 LPRINT" VARIABLES DE SALIDA" 450 LPRINT USING" t1 = ###.## m":T1 460 LPRINT 470 REM 490 REM 500 INPUT "QUIERE DEJAR DE ITERAR, SI=9".X 510 IF X=9 THEN GOTO 530 520 GOTO 240 530 END 540 LPRINT PROFUNDIDAD DEL CONO DE SOCAVACION CON EL METODO DE VERONESE (B) VARIABLES DE ENTRADA

q = 65.93 m3/s/m Zo = 132.20 m VARIABLES DE SALIDA

t1 = 54.74 m

10 REM 30 REM 40 REM PROGRAMA SOCJAEGER, BAS 50 REM VERSION DIC 1991.SGA 60 REM 70 REM VARIABLES DE ENTRADA 80 REM 90 REM Se proporciona con la instrucción INPUT 100 REM gasto unitario, en m3/s/m a 110 REM Ζo distancia entre el nivel de aguas máximas y el nivel del 120 REM remanso, en m 130 REM t2 profundidad del flujo en el remanso que se produce aguas abajo 140 REM de la cubeta, en m 150 REM D diámetro de las partículas, en m 160 REM 170 REM VARIABLES DE SALIDA 180 REM Se proporciona con la instrucción LPRINT 190 REM 200 REM t1 profundidad del cono de socavación, en m 210 REM 220 REM 240 REM 230 INPUT "g=".Q 240 INPUT "Zo=",ZO 250 INPUT "t2=" .T2 260 INPUT "D=",D 270 REM 280 REM 300 REM $310 T1 = .6^{0}.5^{2}Z0^{2}.25^{2}(T2/D)^{3}.33$ 320 REM · 340 REM 350 LPRINT 360 LPRINT" PROFUNDIDAD DEL CONO DE SOCAVACION CON EL METODO DE JAEGER" 370 LPRINT 380 LPRINT" VARIABLES DE ENTRADA" 390 LPRINT USING" q = ###.## m3/s/m";Q400 LPRINT USING" Zo = ###.## m";ZO 410 LPRINT USING" t2 = ###.## m":T2 420 LPRINT USING" D = ###.## m'':D430 LPRINT VARIABLES DE SALIDA" 440 LPRINT" 450 LPRINT USING" t1 = ###.## m'';T1460 LPRINT 470 REM 500 INPUT "QUIERE DEJAR DE ITERAR, SI≅9",X 490 REM 510 IF X=9 THEN GOTO 530 520 GOTO 230 530 END 540 LPRINT PROFUNDIDAD DEL CONO DE SOCAVACION CON EL METODO DE JAEGER VARIABLES DE ENTRADA q = 65.93 m3/s/mZo = 132.20 m

76

¥. ...

0.30 m . VARIABLES DE SALIDA t1 = 29.67 m

1.77 m

t2 =

D = 10 REM REM ********* TABLA 3.11 SOCAVACION, MARTINS 20 30 REM 40 REM PROGRAMA SOCMARTINS, BAS 50 REM VERSION DIC 1991.SGA 60 REM -70 REM Se proporciona con la instrucción INPUT REM q 80 gasto unitario, en m3/s/m diámetro de las partículas, en m 90 REM D Zo distancia entre el nivel de aguas máximas y el nivel del 100 REM 110 REM remanso, en m 120 REM t2 profundidad del flujo en el remanso que se produce aguas 130 REM abajo de la cubeta, en m 140 REM 150 REM VARIABLES DE SALIDA 160 REM 170 REM Se proporciona con la instrucción LPRINT profundidad del cono de socavación, en m 180 REM t 1 190 REM 200 REM VARIABLES DEL PROGRAMA 210 REM 220 REM Nm parámetro utilizado por Martins 230 REM 240 REM 290 REM 250 INPUT "g=",Q 260 INPUT "D=",D 270 INPUT "Zo=",ZO 280 INPUT "t2=".T2 290 REM 310 REM 320 NM= 7*((Q^3*ZO^1.5)/D^2)^(1/7): 330 T1= .14*NM-.73*(T2^2/NM)+1.7*T2 340 REM 360 REM 370 LPRINT PROFUNDIDAD DEL CONO DE SOCAVACION CON EL METODO DE MARTINS" 380'LPRINT" 390 LPRINT 400 LPRINT" VARIABLES DE ENTRADA" 410 LPRINT USING" q = ###.## m3/s/m";Q 420 LPRINT USING" D = ###.## m";D 430 LPRINT USING" Zo = ###.## m";ZO 440 LPRINT USING" t2 = ###.## m":T2 450 LPRINT 460 LPRINT" VARIABLES DE SALIDA" 470 LPRINT USING" t1 = ###.## m":T1480 LPRINT 490 REM 510 REM 520 INPUT "QUIERE DEJAR DE ITERAR, SI=9",X 530 IF X=9 THEN GOTO 550 540 GOTO 250 S50 END 560 LPRINT PROFUNDIDAD DEL CONO DE SOCAVACION CON EL METODO DE MARTINS VARIABLES DE ENTRADA q = 65.93 m3/s/m Ď = 0.30 m Zo = 132.20 m1.77 m +2 =VARIABLES DE SALIDA t1 = 26.70 m

10 REM 20 REM ******** TABLA 3.12 SOCAVACION, MIRTSJUSLAVA (GRANULARES) ********** 30 REM 40 REM PROGRAMA SOCMIRTS-GRA. BAS VERSION DIC 1991.SGA 50 REM 60 REM VARIABLES DE ENTRADA 70 REM 80 REM Se proporciona con la instrucción INPUT 90 REM 100 REM gasto unitario, en m3/s/m q 110 REM distancia entre el nivel de aguas máximas y el nivel del 20 120 REM remanso, en m 130 REM t2 profundidad del flujo en el remanso que se produce aguas 140 REM abajo de la cubeta, en m 150 REM Ð diámetro de las partículas, en m VENT velocidad de entrada de chorro en la superficie del agua. 160 REM 146 REM en m/s 170 REM coeficiente que toma en cuenta la variación de la velocidad del m 180 REM chorro sumergido, en prototipo es igual a 2, mientras que en 160 REM modelo el valor es de 1.5 190 REM ángulo de entrada del chorro en la superficie del agua, en Α 200 REM grados 210 REM P1 peso específico de la particula, en kg/m3 220 REM P peso específico del flujo, en kg/m3 g 230 REM aceleración de la gravedad, en m/s2 AIR porcentaje de aire que el chorro introduce,fig.3.24 240 REM 250 REM 260 REM VARIABLES DE SALIDA 270 REM Se proporciona con la instrucción LPRINT 280 REM profundidad del cono de socavación, en m 290 REM t1 300 REM 310 REM VARIABLES DEL PROGRAMA 320 REM 330 REM P2 peso específico del agua con aireación, en kg/m3 340 REM W velocidad de caída del material, en m/s 350 REM espesor del chorro en el punto de incidencia sobre el nivel ьо 360 REM del agua, en m 370 REM 390 LPRINT 400 REM 410 INPUT "q=",Q 420 INPUT "Zo=", ZO 430 INPUT "t2=", T2 440 INPUT "D=".D 450 INPUT "VENT=", VENT 460 INPUT "m=",M 470 INPUT "A=",A1 480 INPUT "P1=",P1 490 INPUT "P=",P 500 INPUT "g=",G 510 INPUT "AIR=", AIR 520 REM 540 REM 550 A=A1*3.1416/180 560 BO= .8*(Q/VENT) 570 P2 = AIR*P/100 580 W=(((2*G*(P1-P2))/(1.75*P2))*D)*.5 590 T1=((((3*M*VENT*BO)/W)~(7.5*BO))*(SIN(A)/(1-.175*(1/TAN(A)))))+(.25*T2) 600 REM 610 REM **********(3) IMPRESION DE RESULTADOS *********************************** 620 REM 630 LPRINT

ESTA TESIS NO DEBE Salir de la biblioteca

640 LPRINT" PROFUNDIDAD DEL CONO DE SOCAVACION CON EL METODO DE MIRTSJUSLAVA." " PARA SUELOS GRANULARES" 650 LPRINT 660 LPRINT 670 LPRINT" VARIABLES DE ENTRADA" 680 LPRINT USING" a = ###.## m3/s/m":Q 690 LPRINT USING" Zo = ###.## m":ZO 700 LPRINT USING" t2 = ###.## m":T2710 LPRINT USING" D = ###.## m''; D720 LPRINT USING" VENT= ###.## m/s";VENT m = ###.##";MA = ###.## gra 730 LPRINT USING" 740 LPRINT USING" ###.## grados";A1 P1 = 750 LPRINT USING" ####.## kg/m3";P1 P = ####.## kg/m3";P g = ###.## m/s2";G 760 LPRINT USING" 770 LPRINT USING" 780 LPRINT USING" ###.## %":AIR AIR = 790 LPRINT 800 LPRINT" VARIABLES DE SALIDA" 810 LPRINT USING" t1 = ###.## m";T1 820 LPRINT 830 REM 850 REM 860 INPUT "QUIERE DEJAR DE ITERAR, SI=9",X 870 IF X=9 THEN GOTO 890 880 GOTO 410 890 END 900 LPRINT

PROFUNDIDAD DEL CONO DE SOCAVACION CON EL METODO DE MIRTSJUSLAVA, PARA SUELOS GRANULARES

VARIABLES DE ENTRADA a = 65.93 m3/s/m $Z_0 =$ 132.20 m 1.77 m t2 = Ď = 0.30 m 38.01 m/s VENT= 2.00 m = 19.81 grados A = P1 = 2250.00 kg/m3 P = 1000.00 kg/m3 9.81 m/s2 g = 78.00 % AIR =

VARIABLES DE SALIDA t1 = 76.43 m

	2		
10	REM		가지 않는 것이 가지 않는 것이 가지 않는 것이 있는 것이 같은 것이 있는 것 같은 것이 있는 것
20	REM		TABLA 3.13 SOCAVACION, MIRTSJUSLAVA (ROCOSOS)
30	REM		· · · · · · · · · · · · · · · · · · ·
40	REM		PROGRAMA SOCMIRTS-ROC. BAS
	REM		VERSION DIC 1991, SGA
70	REM		
70	REM		VARIABLES DE ENIRADA de la companya de la
80	REM		
400	REM	_	Se proporciona con la instrucción inpui
110	REM	q 7-	gasto unitario, en mays/m
120	DEM	20	Unstancia entre el nivel de aguas maximas y el nivel del
120	DEM	+ 2	remainso, en m
140	REM	44	piolulatada del titujo en el remanso que se produce aguas
150	REM		acelaración de la gravedad en m/s?
160	REM	VENT	velocidad de entrada de chorno en la superficie del agua
146	REM	A 1714 1	An m/s
170	REM	 •	coeficiente que toma en cuenta la influencia del sedimente en
100	DEM	10	cuertorente que doma en cuenca la influencia del secimento en
160	DEM		suspension, chando el liujo no clansporta sedimento m =1 y
100	REM	•	$\frac{1}{2}$
790	DEM	н	anguto de entrada del chorro en la superificie del agua, en
210	DEM	Rc	pracis a la compresión de la roca en estado saturado
220	REM	NC.	an ka/om2
220	REM	n'	conficiente que toma en cuenta la variación de la velocidad
220	DEM	H 2	conticiente que coma en cuenta la variación de la velocidad.
250	REM		an laboratorio n'-2 25
250	DEM	hr	en laboratorio n'2,25 dimensión perpedicular al fluio, del paralelepinedo que
270	REM	01	representa el tamano promedio de las rocas fracturadas en m
280	RFM	Cr	dimensión vertical de un paralelenípedo que representa el
290	REM	0.	tamano promedio de las rocas fracturadas en m
300	REM	P1	peso específico de la particula en kg/m3
310	RFM	P	peso específico del fluio en kg/m3
320	REM	ATR	porcentaie de aire que el chorro introduce fig 3 24
330	REM		
340	REM		VARTABLES DE SALTDA
350	RFM		
360	RFM		Se proporciona con la instrucción LPRINT
370	RFM	±1	profundidad del cono de socavación en m
380	REM	~ 1	proranditable der cono de socavieron, en m
390	RFM		VARTABLES DEL PROGRAMA
400	REM		
410	REM	P2	peso específico del agua con aireación en kg/m3
420	RFM	vc	velocidad crítica permisible del suelo en m/s
430	REM	bo	espesor del chorro en el punto de incidencia sobre el nivel
430	RFM	50	del agua, en m
450	REM	Rf	límite estadístico de la resistencia al desprendimiento de
460	RFM		Rf= 002Rc. en kg/cm2
470	REM		
480	REM *		****(1) LECTURA DE DATOS **********************************
490	REM		
500	INPUT	"a="	.0
510	INPUT	"Zo=	·** , zo
520	INPUT	"t2=	"T2
530	INPUT	' "g="	$\mathbf{r}_{\mathbf{c}}\mathbf{\hat{c}}$. The second se
540	TNDIT	"VEN	T=",VENT
550	1145.01		
	D INPUT	''m=''	
560) INPUT	"m="	, π , Α1
560 570	INPUT INPUT INPUT INPUT	"A=" "Rc=	, μ
560 570 580) INPUT) INPUT) INPUT) INPUT	"A=" "Rc= "n'=	, n , Al , R , N
560 570 580 590	INPUT INPUT INPUT INPUT INPUT	"A=" "Rc= "n'= "br=	, A1 ; A1 ; ", R ", N ; ", B
560 570 580 590 600	INPUT INPUT INPUT INPUT INPUT INPUT	"A=" "Rc= "n'= "br= "Cr=	, M , A1 *', R '', N '', B '', C
560 570 580 590 600 610	INPUT INPUT INPUT INPUT INPUT INPUT INPUT	"A=" "Rc= "n'= "br= "Cr= "P1=	, M , A1 ", R ", N ", N ", C ", P1
560 570 580 590 600 610 620) INPUT) INPUT) INPUT) INPUT) INPUT) INPUT) INPUT) INPUT	"m=" "A=" "Rc= "n'= "br= "Cr= "P1= "P1=	, M , A1 ; ", R ; ", N ; ", B ; ", C ; ", P1 ; P

80

۰,

640 REM 660 REM 670 A=A1 3.1416/180 680 BO= .8* (Q/VENT) 690 RF= .002*RC 700 P2 = AIR*P/100 710 VC=(((2*G*M)/(P2*N))*(((B^2)*(R+C*(P1-P2)))/((SIN(A))*(.6*B^2+,2*C^2)))/*,5 720 T1=((((8.3*VENT*BO)/VC)-7.5*BO)*(SIN(A)/(1-,175*(1/TAN(A)))))+(.25*T2)730 REM 750 REM 760 LPRINT 770 LPRINT" PROFUNDIDAD DEL CONO DE SOCAVACION CON EL METODO DE MIRTSJUSLAVA, " 780 LPRINT " PARA SUELOS ROCOSOS" 790 LPRINT 800 LPRINT" VARIABLES DE ENTRADA" 810 LPRINT USING" q = ###.## m3/s/m";Q 820 LPRINT USING" Zo = ###.## m";ZO t2 = ###.## m';T2
g = ###.## m/s2";G
VENT= ###.## m/s";VENT
m = ###.##";M
A = ###.## grados";A1 830 LPRINT USING" 840 LPRINT USING" 850 LPRINT USING" 860 LPRINT USING" 870 LPRINT USING" Rc = ####.## kg/cm2";R n' = ###.##.'';N 880 LPRINT USING" 890 LPRINT USING" br = ###.## m";B Cr = ###.## m";C 900 LPRINT USING" 910 LPRINT USING" 920 LPRINT USING" P1 = ####.## kg/m3";P1 P = ####.## kg/m3";P 930 LPRINT USING" 940 LPRINT USING" AIR = ###.## %":AIR 950 LPRINT 960 LPRINT" VARIABLES DE SALIDA" 970 LPRINT USING" t1 = ###.## m":T1 980 LPRINT 990 REM 1010 REM 1020 INPUT "QUIERE DEJAR DE ITERAR, SI=9",X 1030 IF X=9 THEN GOTO 1050 1040 GOTO 500 1050 END 1060 LPRINT

PROFUNDIDAD DEL CONO DE SOCAVACION CON EL METODO DE MIRTSJUSLAVA. PARA SUELOS ROCOSOS

VARIABLES DE ENTRADA q = 65.93 m 3/s/m132.20 m Zo = t2 = 1.77 m g = 9.81 m/s2 VENT= 38.01 m/s m = 2.00 A = 19.18 grados 0.00 kg/cm2 Rc = -n' = 4.00 br = 0.30 m Cr = 0.30 m P1 = 2250.00 kg/mP = 1000.00 kg/m3AIR = 78.00 % VARIABLES DE SALIDA

t1 = 56.57 m

			그는 그는 사람이 있는 것이 같아요. 그는 것이 가지 않는 것을 받은 것을 받았는 것을 수 없는 것을 알고 있다.
10 20 30	REM		** TABLA 3.14 SOCAVACION, MATSMAN ************************************
40	REM		PROGRAMA SOCMATSMAN BAS
50	REM		VERSION DIC 1991 SGA
60	REM		
70	REM		VARTARIES DE ENTRADA
80	REM		
00	DEM		So propondiona con la instrucción INPUT
100	DEM	a'	se proprietoria on la inscriteción in or
110	DEM	÷ 0	gasto unitalito, en mororno el popone en el servicio de se Servicio de servicio de servici
100	DEM	62	profundidad der riujo en er remanso due se produce aguas
120	REM	- 1	abajo de la Cubeta, en m
130	REM	2	distancia vertical medida desde el labio de la cubeta nasta el
140	REM		remanso que se produce en el cauce, en mana a sa sestere presententes
150	REM	g	aceteración de la gravedad, en m/sz
160	REM	VENT	velocidad de entrada de chorro en la superfície del agua,
170	REM	-	en m/s
180	REM	RC	resistencia a la compresión de la roca en estado saturado,
190	REM		en kg/cm2
200	REM	br	dimension perpendicular al flujo, del paralelepipedo que
210	REM		representa el tamaño promedio de las rocas fracturadas, en m
220	REM	Cr	dimensión vertical de un paralelepipedo que representa el
230	REM	m '	coeficiente que toma en cuenta la influencia del sedimento en
240	REM	•	suspensión, cuando el flujo no transporta sedimento m'=1 y
250	REM		cuando si lo hace m'=1.6
260	REM	n'	coeficiente que toma en cuenta la variación de la velocidad,
270	REM		para condiciones naturales n'=4 y para ensayes ralizados
280	REM		en laboratorio n'=2.25
290	REM	А	ángulo de entrada del chorro en la superficie del agua, en
300	REM		grados
310	REM		tamano promedio de las rocas fracturadas en m
320	REM	P1	peso específico de la partícula en kg/m3
330	REM	Þ	ness especifics del fluis en kg/m3
340	REM	ATR	porcentais de aire que el chorpo introduce fig 3 24
250	DEM	d	porcenta de altre que el chorro incroduce, rig.5.24
320	DEM	. u. 	condicionate de la velocidad entrica persiciple
300	DEM	r m	del cuele Ve transvision de la velocidad critica permisible
370	DEM	.,	der suero ve; coma varores entre 0.7 y 0.8
380	REN	- -	Verocidad media del filijo en la cubeca, en m/s
390	REM	1 m	parametro de Matsman, definido en la fig. 3.26
400	REM		
410	REM		VARIABLES DE SALIDA
420	REM		
430	REM		Se proporciona con la instruccion LPRINT
440	REM	tl	profundidad del cono de socavación, en m
450	REM		
460	REM		VARIABLES DEL PROGRAMA
470	REM		
480	REM	Vc	velocidad crítica permisible del suelo, en m/s
490	REM	hd	colchón de agua característico para cada tipo de suelo, en m
500	REM	. Zm	distancia de recorrido del chorro segun Mirtsjuslava, fig.3.23
510	REM	N	parámetro utilizado por Matsman
520	REM	P2	peso específico del agua con aireación, en kg/m3
530	REM	Rf	límite estadístico de la resistencia al desprendimiento de
540	REM		bloques fracturados, cuando no existe material cementante.
550	REM		Rf=.002Rc. en kg/cm2
560	REM		
570	REM	****	
580	REM		

590 INPUT "q=",0 600 INPUT "t2=",T2 610 INPUT "z'=",Z 620 INPUT "g=",C 630 INPUT "VENT=",VENT 640 INPUT "Rc=",R 650 INPUT "cr=",C 660 INPUT "Cr=",C 670 INPUT "m'=",M 680 INPUT "n'=",M 680 INPUT "n'=",A1 700 INPUT "A=",A1 700 INPUT "P=",P 720 INPUT "AIR=",AIR 730 INPUT "d=",D 730 INPUT "d=",D 740 INPUT "Pm=",PM 750 INPUT "V=",V 760 INPUT "Tm=",TM 770 REM 780 REM 800 REM 810 A=A1*3.1416/180 820 RF= .002*RC 830 P2 = AIR*P/100840 VC= (((2*G*M)/(P2*N1))*(((B^2)*(R+C*(P1-P2)))/((SIN(A))*(.6*B^2+.2*C^2))))^ S 850 HD = Q/(VC*PM) 860 ZM= Z'+D+(V^2/(2*G))-T2 870 N= (2*ZM)/D 880 T1 = TM*D+HD 5 $880 T1 = TM^*D+HD$ 890 REM 900 REM TITITITITITITI (3) IMPRESION DE RESULTADOSTATATATATATATATATATATATATATATATATATA 910 REM 920 LPRINT 930 LPRINT" PROFUNDIDAD DEL CONO DE SOCAVACION CON'EL METODO DE MATSMAN" 940 LPRINT 950 LPRINT" VARIABLES DE ENTRADA" q = ###.## m3/s/m";Q 960 LPRINT USING" 960 LPRINT USING" q = ###.## m3/s/m ;u 970 LPRINT USING" t2 = ###.## m";T2 980 LPRINT USING" z' = ###.## m's? 990 LPRINT USING" g = ###.## m/s?';G 1000 LPRINT USING" VENT = ###.### m/s";VENT 1010 LPRINT USING" Cr = ###.### m';E 1030 LPRINT USING" Cr = ###.## m";C 1040 LPRINT USING" m' = ###.## ";M 1050 LPRINT USING" n' = ###.## ";M 1060 LPRINT USING" n' = ###.## ";N1 1060 LPRINT USING" A = ###.### grados";A1 1070 LPRINT USING" P1 = ###.## kg/m3";P1 1080 LPRINT USING" AIR = ###.## kg/m3";P1 1090 LPRINT USING" AIR = ###.## kg/m3";P1 1090 LPRINT USING" AIR = ###.## kg/m3";P1 1100 LPRINT USING" AIR = ###.## kg/m3";P1 1110 LPRINT USING" AIR = ###.## kg/m3";P1 1110 LPRINT USING" MIR = ###.## kg/m3";P1 1110 LPRINT USING" AIR = ###.## kg/m3";P1 1110 LPRINT USING" AIR = ###.## kg/m3";P1 1110 LPRINT USING" MIR = ###.### ";D 1110 LPRINT USING" MIR = ###.### ";D 1110 LPRINT USING" V = ###.### ";D 1110 LPRINT USING" IM = ###.### ";M 1150 LPRINT USING" IM = ###.### ";M 1150 LPRINT USING" IM = ###.### ";TM 1170 LPRINT USING" IM = ###.#### ";TM 1170 LPRINT USING" IM = ###.### ##### ";TM 1170 LPRINT USING" IM = ###.###### ";TM 1170 LPRINT USING" IM = ###.#### ##### 970 LPRINT USING" 1170 LPRINT 1180 LPRINT" VARIABLES DE SALIDA" 1190 LPRINT USING" t1 = ###.##.m";T1

1200 LPRINT 1210 REM 1220 REM 1220 REM 1230 REM 1240 INPUT "GUIERE DEJAR DE ITERAR, SI=9",X 1250 IF X=9 THEN GOTO 1270 1260 GOTO 590 1270 END 1280 LPRINT

PROFUNDIDAD DEL CONO DE SOCAVACION CON EL METODO DE MATSMAN

V.	ARI	ABLES DE ENTRADA
g	=	65.93 m3/s/m
t2	=	1.77 m
z'	=	5.00 m
g	=	9.810 m/s2
VENT	=	38.010 m/s
Rf	=	0.000 kg/cm2
br	=	0.30 m
Cr	=	0.30 m
m'	=	2.00
່ ກ '	=	4.00
А	=	19.180 grados
P1	=	2250.00 kg/m3
P	=	1000.00 kg/m3
AIR	=	78.00 %
d	=	1.77 m
Pm •	=	0.75
v	=	37.17 m/s
HD	=	19.136 m
ZM	=	5.000
N	=	5.650
Tm	=	4.000

VARIABLES DE SALIDA t1 = 26.22.m 10 8EM REM ********* TABLA 3.15 SOCAVACION. 20 VIZGO 30 REM 40 REM PROGRAMA SOCVIZGO, BAS VERSION DIC 1991, SGA 50 REM 60 REM VARIABLES DE ENTRADA 70 REM 80 REM 90 REM Se proporciona con la instrucción INPUT gasto unitario, en m3/s/m 100 REM 0 distancia entre el nivel de aguas máximas y el nivel del remanso. 110 REM Zo 120 REM en m 130 REM Κv coeficiente que se valora experimentalmente y que depende del. 140 RFM ángulo de incidencia del chorro y del tipo de suelo tabla 2.6 150 REM £ aceleración de la gravedad, en m/s2 160 REM VENT velocidad de entrada del chorro en la superficie del agua. 170 REM en m/s 180 REM 190 REM VARIABLES DE SALIDA 200 REM 210 REM Se proporciona con la instrucción LPRINT profundidad del cono de socavación, en m 220 REM t1 230 REM VARIABLES DEL PROGRAMA 240 REM 250 REM espesor del chorro en el punto de incidencia sobre el nivel 260 REM ьо 270 REM del agua, en m 280 REM Av factor que toma en cuenta la aeración del chorro 290 REM 300 REM 260 REM 310 INPUT "q=",Q 320 INPUT "Zo=",ZO 330 INPUT "Kv=",K 340 INPUT "g=",G 350 INPUT "VENT=",V 360 REM 360 REM 390 BO= .8*(Q/V) 400 AV= (((G*BO)^.5)/V)^.2 410 T1= AV*K*((Q*ZO^.5)^.5) 420 REM 440 REM 450 LPRINT 460 LPRINT" PROFUNDIDAD DEL CONO DE SOCAVACION CON EL METODO DE VIZGO". 470 LPRINT 480 LPRINT" VARIABLES DE ENTRADA" 490 LPRINT USING" q = ###.## m3/s/m";Q 500 LPRINT USING" 510 LPRINT USING" 520 LPRINT USING" Zo = ###.## m";ZO Kv = ###.##";K g = ###.'## m/s2";G 530 LPRINT USING" VENT= ###.## m/s";V 540 LPRINT 550 LPRINT" VARIABLES DE SALIDA" 560 LPRINT USING" t1 = ###.## m":T1 570 LPRINT 580 REM 600 REM 610 INPUT "OUIERE DEJAR DE ITERAR, SI=9",X 620 IF X=9 THEN GOTO 640 630 GOTO 310 640 END 650 LPRINT PROFUNDIDAD DEL CONO DE SOCAVACION CON EL METODO DE VIZGO VARIABLES DE ENTRADA q = 65.93 m3/s/m $Z_0 = 132.20 \text{ m}$ Kv = 2.10 9.81 m/s2 2 = VENTE 38.01 m/s VARIABLES DE SALIDA t1 = 36.26 m

10 REM REM ******** TABLA 3.16 SOCAVACION, STUDENICHNIKOV *********** 20 30 REM PROGRAMA SOCSTUDENICH. BAS 40 REM 50 REM VERSION DIC 1991,SGA 60 REM 70 REM VARIABLES DE ENTRADA 80 - REM 90 REM Se proporciona con la instrucción INPUT q gasto unitario, en m3/s/m 100 REM distancia entre el nivel de aguas máximas y el nivel del zo 110 REM 120 REM remanso, en m factor que toma en cuenta la disposición geométrica de la 130 RFM ksh 140 REM estructura terminal en m 150 REM Dp diámetro medio de las partículas, en m 160 REM coeficiente de aeración DS. 170 REM E aceleración de la gravedad, en m/ s2 180 REM Ŧ distancia entre el nivel de aguas máximas y el labio de la cubeta de lanzamiento, en m 190 REM 200 REM d. tirante del flujo, en m' 210 REM Но carga hidráulica sobre la cresta vertedora ancho de la cubeta de lanzamiento,, en m 220 REM в longitud de vuelo del flujo, en m 230 REM Lv 100 REM F ángulo de divergencia del chorro, en grados 240 REM 250 REM VARIABLES DE SALIDA 260 REM 270 REM Se proporciona con la instrucción LPRINT t1 · 280 REM profundidad del cono de socavación, en m 290 REM 300 REM VARIABLES DEL PROGRAMA . 310 REM 320 REM dc tirante crítico del flujo, en m L coeficiente de velocidad S dispersión del chorro 330 REM 340 REM 350 REM 360 REM 280 REM 370 INPUT "q=",Q 380 INPUT "Zo=",ZO 390 INPUT "ksb=",Ks .KSB 400 INPUT "Dp=",DP 410 INPUT "ns=",NS 420 INPUT "g =",G 430 INPUT "T=",T 440 INPUT "d=" 440 INPUT "d=",D 450 INPUT "Ho=",HO 460 INPUT "B=",B 470 INPUT "LV=",LV 480 INPUT "E=".E1 490 REM 510 REM 520 DC= (Q^2/G)^(1/3) 530 E=E1*3.1416/180 540 S =B/(B+LV*SIN(E)) 550 L =1-.0155*((T-D)/HO) 560 T1 =KSB*(3.4+.45*(ZO/DC)*L^2*NS)*((Q*S)/(1.15+G^.5*DP^.25)) 570 REM 580 REM ANALASSA (3) IMPRESION DE RESULTADOS 590 REM -600 LPRINT 610 LPRINT" PROFUNDIDAD DEL CONO DE SOCAVACION CON EL METODO DE STUDENICHNIKOV" 620 LPRINT 630 LPRINT" VARIABLES DE ENTRADA" 9 = ###.## m3/s/m":Q 640 LPRINT USING" 650 LPRINT USINC" Zo = ###.## m":ZO ksb = ###.## ";KSB 660 LPRINT USING" Dp = ###.## m";DP ns = ###.## ";NS 670 LPRINT USING" 680 LPRINT USING" 690 LPRINT USING" 700 LPRINT USING" 710 LPRINT USING" g = ###.## m/s2";G T = ###.## m";T d = ### ## m";D Ho = ###.## ":HO B = ###.## m":B 720 LPRINT USING" 730 LPRINT USING" Lv = ###.## m";LV 740 LPRINT USING" 750 LPRINT USING" E = ###.## grados";E1

-

÷.,

PROFUNDIDAD DEL CONO DE SOCAVACION CON EL METODO DE STUDENICHNIKOV

87

VARIABLES DE ENTRADA q = 65.93 m3/s/m Zo = 132.20 m ksb = 0.56 . Dp = 0.30 m 1.00 9.81 m/s2 ns = g .= T = T = 129.00 m d = 1.77 m Ho = 18.00 B = 45.50 m≈ 64.00 m Lv 5.00 grados E = VARIABLES DE SALIDA

t1 = 118.28 m

REM 10 REM ******** TABLA 3.17 SOCAVACION. DODDIAH 20 REM 30 40 REM PROGRAMA SOCDODDIAH, BAS 50 RFM VERSION DIC 1991.SGA 60 REM 70 REM VARIABLES DE ENTRADA 80 REM 90 REM Se proporciona con la instrucción INPUT gasto unitario, en m3/s/m distancia entre el nivel de aguas máximas y el nivel del 100 REM 110 REM Zo 120 REM remanso en m 130 REM +2 profundidad del flujo en l remanso que se produce aguas abajo de la cubeta, en m diámetro de las partículas, en m aceleracion de la gravedad, en m/s2 peso específico de la partícula, en kg/m3 140 REM 150 REM D 160 REM g 170 REM P1 180 REM P peso específico del flujo, en kg/m3 190 REM AIR porcentaje de aire que el chorro introduce, fig.3.24 200 REM 210 REM VARIABLES DE SALIDA 220 REM Se proporciona con la instrucción LPRINT 230 REM 240 REM t1 profundidad del cono de socavación, en m 250 REM 260 REM VARIABLES DEL PROGRAMA 270 REM P2 280 REM peso específico del agua con aireación, en kg/m3 290 REM w velocidad de caída del material, en m/s 300 REM ------(1) LECTURA DE DATOS 310 REM 270 REM 320 INPUT "q=".Q 330 INPUT "Zo=" 330 INPUT "Zo=".Z 340 INPUT "t2=".T2 350 INPUT "D=",D 360 INPUT "g=",G 370 INPUT "P1=". . P1 380 INPUT "P=",P 390 INPUT "AIR=", AIR 400 REM 420 REM 430 P2= AIR*P/100 440 W= (((2*G*(P1-P2))/(1.75*P2))*D)*.5 450 T1= T2+((2*T2)/3*(0/Z*W)*(2/3)*((Z/T2)*2)*(0/Z*W)*(1/6)) 460 REM 480 REM 490 LPRINT 500 LPRINT" PROFUNDIDAD DEL CONO DE SOCAVACION CON EL METODO DE DODDIAH" 510 LPRINT 520 LPRINT" VARIABLES DE ENTRADA" 530 LPRINT USING" q = ###.## m3/s/m";Q Zo = ###.## m";Z t2 = ###.## m";Z D = ###.## m";D 540 LPRINT USING" 550 LPRINT USING" 560 LPRINT USING" 570 LPRINT USING 580 LPRINT USING" 590 LPRINT USING" 600 LPRINT USING" g = ###.## m/s2";G P1 =####.## kg/n3";P1 P =####.## kg/n3";P AIR = ###.## %";AIR 610 LPRINT 620 LPRINT" VARIABLES DE SALIDA" 630 LPRINT USING" r.1 = ###.## m";T1 640 LPRINT 650 REM 670 REM 680 INPUT "QUIERE DEJAR DE ITERAR, SI=9".X 690 IF X=9 THEN GOTO 710 700 COTO 320 710 END 720 LPRINT PROFUNDIDAD DEL CONO DE SOCAVACIÓN CON EL METODO DE DODDIAH VARIABLES DE ENTRADA a = 65.93 m3/s/m Zo = 132.20 mt2 = 1.77 m 0.30 m D = 9.81 m/s2 E P1 =2250.00 kg/m3 P ≈1000.00 kg/m3 AIR 78.00 % -VARIABLES DE SALIDA t1 = 10.12 m

10 REM ****** TABLA 3.18 SOCAVACION, MASON Y KANAPATHYPILLY ****** 30 REM 40 REM PROGRAMA SOCMASON Y KANAPAT, BAS 50 REM VERSION DIC 1991,SGA 60 RFM 70 VARIABLES DE ENTRADA REM 80 REM 90 REM Se proporciona con la instrucción INPUT 100 REM gasto unitario, en m3/s/m a 110 REM distancia entre el nivel de aguas máximas y el nivel del 20 120 REM remanso, en m 130 REM profundidad del flujo en el remanso que se produce aguas abajo t2 de la cubeta deflectora, en m 140 REM 150 REM diámetro de las particulas, en m Ð 160 REM aceleración de la gravedad, m/s2 g 170 REM 180 REM VARIABLES DE SALIDA 190 REM 200 REM Se proporciona con la instrucción LPRINT profundidad del cono de socavación, en m 210 REM t.1 220 REM VARIABLES DEL PROGRAMA 230 REM 240 REM 3.67 250 REM KM,FM,EM,AM,BM,CM coeficientes definidos en la ec. 260 REM 270 REM 250 REM 280 INPUT "g=".0 290 INPUT "Zo=",ZO 300 INPUT "t2=",T2 310 INPUT "D=",D 320 INPUT "g=",G 330 REM 350 REM 360 KM= (6.42-(3.1*ZO*.1)) 370 FM =.3 380 EM = 15 390 AM = (.6-Z0/300) 400 BM = (.15+20/200) 410 CM = 1 420 T1 = (KM) * ((O*AM*ZO*BM*T2*EM) / (G*FM*D*CM)) 430 REM 450 REM 460 LPRINT 470 LPRINT" PROFUNDIDAD DEL CONO DE SOCAVACION CON EL METODO DE MASON" **480 LPRINT** Y KANAPATHYPILLY" 490 LPRINT 500 LPRINT" VARIABLES DE ENTRADA" 510 LPRINT USING" q = ###.## m3/s/m";Q520 LPRINT USING" Zo = ###.## m";ZO 530 LPRINT USING" $t_2 = ###.## m":T_2$ 540 LPRINT USING" D = ###.## m":D 550 LPRINT USING" g = ###.## m/s2";G 560 LPRINT 570 LPRINT" VARIABLES DE SALIDA" 580 LPRINT USING" t1 = ###.## m";T1 590 LPRINT 600 REM 620 REM 630 INPUT "QUIERE DEJAR DE ITERAR, SI=9",X 640 IF X=9 THEN GOTO 660 650 GOTO 280 660 END 670 LPRINT PROFUNDIDAD DEL CONO DE SOCAVACION CON EL METODO DE MASON Y KANAPATHYPILLY VARIABLES DE ENTRADA 65.93 m3/s/m a Ħ Zo = 132.20 mt2 = 1.77 m 0.30 m D = 9.81 m/s2 g = VARIABLES DE SALIDA t1 = 86.73 m

 $\mathfrak{I}_{\mathfrak{l}}$

		and the second	
Ensayo	X ₁	X ₂	Y I
1	máximo	máximo	Y ₁
2 .	máximo	minimo	Y,
3	minimo	máximo	Y ₃
4	minimo	minimo	Y
5	medio	medio	Y ₅
6	medio	medio	Y
7	medio	medio	Y ₇

TABLA 3.19 CALCULOS NECESARIOS PARA EL DISEÑO DE EXPERIMENTOS

TABLA 3.20 VALORES DE Z_c y t_c PARA DIFERENTES NIVELES DE CONFIANZA

Niv Conf	Z _c	tc
99%	2.58	2.75
97.5%	2.24	2.11
95%	1.96	1.74
90%	1.645	1.33
85%	1.439	1.096
80%	1.28	0.863
75%	1.151	0.776
70%	1.038	0.689
65%	0.935	0.473
60%	0.842	0.257
55%	0.755	0.128
50%	0.674	

TABLA 3-21A CALCULOS PARA CORRELACIONAR Y2/D-ts/Zo A TRAVES DEL PARAMETRO FR = 0.1, UTILIZANDO EL CRITERIO DE MIRTSJUSLAVA, (SUELOS GRANULARES), PARA CALCULAR ts.

1997 - Series A. 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19				1.			g di shi i	- 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19		18,517,551				1.1.1.1	المتحرك أرزار		
្(1)្ន	(2)	(3)	(4)	(5)	(6)	(D)	(8)	· (9) j	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
DATOS	Y2/D	¥2	D	Zo	q	ts	ts/20	X1	i Y	X1*2	X1 Y	ts/Zo	Error	e*2	(e-ei)*2	Set	Se-
	(1)	(2)	(#)	{ m }	(m3/s/m)	(m)	TEORICO					CALCULADO	e				
		an n i i a															
1	1.00	2.000	2.00	20.00	0.89	0.81	0.040	0.0000	-1.39/9	0.00000	0.00000	0.02889	0.01	0.00	0.00	0.17	-0.09
2	5.000	2,000	0,40	20.00	0.89	1.43	0.070	0.6990	-1.1549	2.48856	-0.80/24	0.05810	0.01	0.00	0.00	0.20	-0.06
3	10.000	2.000	0.20	20.00	0.89	1.89	0.090	1.0000	-1.0458	1.00000	-1.04576	0.07850	0.01	0.00	0.00	0.22	-0.04
- 4	5.000	5.000	1.00	20.00	3.50	3.29	0.160	0.6990	-0./959	0.48856	-0.55630	0.05810	0.10	0.01	0.00	0.29	0.03
5	10.00	5.000	0,50	20.00	3,50	4.46	0,220	1.0000	-0.65/6	1.00000	-0.65/58	0.07850	0.14	0.02	0.01	0.35	0.09
6	50.00	5.000	0.10	20.00	3.50	3.50	0.470	1.6990	-0.3279	2.88650	-0.55/10	0.15785	0.31	0.10	0.07	0.60	0.34
	100.00	5.000	0.05	20.00	3.50	13.03	0.650	2.0000	-0.18/1	4.00000	-0.3/41/	0.21325	0.44	0.19	0.14	0.78	0.52
. 8	5.00	10.000	2.00	20.00	9.90	5.96	0.300	0.6990	-0,5229	0.48855	-0.36548	0.05810	0.24	0.05	0.03	0.43	0.17
9	10.00	10.000	1.00	20.00	9.90	8.28	0.410	1.0000	-0.38/2	1.00000	-0.38722	0.07850	0.33	0.11	0.08	0.54	0.28
10	100.00	2,000	0.10	20.00	9.90	25.43	1.2/0	2.0000	0.1038	4.00000	0.20761	0.21325	1.05	1.12	1.00	1.40	1.14
11	1.00	2,000	2.00	50.00	0.89	0.8/	0.020	0.0000	-1.6990	0.00000	0.00000	0.02889	-0.01	0.00	0.00	0.15	-0.11
12	5.00	2.000	0.40	50.00	0.89	1.51	0.030	0.6990	-1.5229	0.48856	-1.06445	0.05810	-0.03	0.00	0.01	0.10	-0.10
13	10.00	2.000	0.20	50.00	0.89	1.96	0.040	1.0000	-1.39/9	1,00000	-1,39/94	0.07850	-0.04	0.00	0.01	0.17	-0.09
14	50.00	2,000	0.04	50.00	0.89	3.93	0.080	1.6990	-1.0969	2.88650	-1.86362	0.15785	-0.08	0.01	0.02	0.21	-0.05
15	1.00	5.000	0.20	50.00	3.50	7.04	0.140	0.0000	-0.8539	0.00000	0.00000	0.02889	0.11	0.01	0.00	0.27	0.01
15	5.00	5.000	1.00	50.00	3.50	3.5/	0.070	0.6990	-1.1549	0.48856	-0.80724	0.05810	0.01	0.00	0.00	0.20	-0.06
- 17	10.00	5,000	0.50	50.00	3.50	4.75	0.100	1.0000	-1.0000	1.00000	-1.00000	0.07850	0.02	0.00	0.00	0.23	-0.03
18	50.00	5.000	0.10	50.00	3.50	8.56	0.170	1.6990	-0.7696	2.88650	-1.30744	0.15785	0.01	0.00	0.00	0.30	0.04
19	100.00	5.000	0.05	50.00	3.50	13.37	0.270	2.0000	-0.5686	4.00000	-1.1372	0.21325	0.06	0.00	0.00	0.40	0.14
20	5.00	10.000	2.00	50.00	9.90	6.74	0.130	0.6990	-0.8861	0.48856	-0.61933	0.05810	0.07	0.01	0.00	0.26	0.00
21	10.00	10,000	1.00	50.00	9,90	9.07	0.180	1.0000	-0.7447	1.00000	-0.7447	3 0.07850	0.10	0.01	0.00	0.31	0.05
22	100.00	10.000	0.10	50,00	9.90	26.22	0.520	2.0000	-0.2840	4.00000	-0.56799	0.21325	0.31	0.09	0.05	0.65	0.39
23	5.00	2,000	0.40	100.00	0.68	1.54	Ú.150	0.6990	-0.8239	0.48856	-0.5758	0.05810	0.09	0.01	0.00	0.28	0.02
24	10.00	2,000	0.20	100.00	0.88	2.00	0.020	1.0000	-1.6990	1.00000	-1.69897	0.07850	-0.06	0.00	0.01	0.15	-0.11
25	50.00	2.000	0.04	100.00	0.88	3.96	0.040	1.6990	-1.3979	2.88650) -2.37506	5 0.15785	-0.12	0.01	0.03	0.17	-0.09
26	5.00	5.000	1.00	100.00	3.50	3.71	0.030	0.6990	-1.5229	0.48856	-1.06445	0.05810	-0.03	0.00	0.01	0.16	-0,10
27	10.00	5.000	0.50	100.00	3.50	4.88	3 0.050	1.0000	-1.3010	1.00000) -1.3010.	3 0.07850	-0.03	0.00	0.01	0.18	-0.08
28	50.00	5.000	0.10	100.00	3.50	9.78	0.097	1.6990	-1.0132	2.88650	-1.72144	0.15785	-0.05	0.00	0.01	0.23	-0.04
29	100.00	5.000	0.05	100.00	3.50	13.4	5 0.130	2.0000	-0.8861	4.0000	0 -1.7721	0.21325	-0.08	0.01	0.02	0.26	0.00
30	5.00	10.000	2.00	100.00	9.90	7.15	0.072	0.6990	-1.1427	0.48856	-0.79869	0.05610	0.01	0.00	0.00	0.21	-0.06
31	10.00	10.000	1.00	100.00	9.90	9.4	7 0.095	1.0000	-1.0223	1.0000	0 -1.0222	8 0.07850	0.02	0.00	0.00	0.23	-0.04
32	100.00	10.000	0.10	100.00	9,90	26.62	0.270	2.0000	-0.5686	4.00000) -1.13727	0.21325	0.06	0.00	0.00	0.40	0.14
33	1.00	2.000	2.00	150.00	0.89	0.9	3 0.006	0.0000	-2.2218	0.0000	0.0000	0 0.02889	-0.02	0.00	0.01	0.14	-0.13
34	5.00	2.000	0.40	150.00	0.89	1.55	5 0.010	0.6990	-2.0000	0.48856	5 -1.39794	0.05810	-0.05	0.00	0.01	0.14	-0.12
35	10.00	2.000	0.20	150.00	0.89	2.0	2 0.013	1.0000	-1,8861	1.0000	0 -1.8860	6 0.07850	-0.07	0.00	0.01	0.15	-0.12
36	1.00	2.000	0.04	150,00	3.50	7.24	0.050	0.0000	-1.3010	0.0000	0.00000	0.02889	0.02	0.00	0.00	0.18	-0.08
37	5.00	5.000	1.00	150.00) 3.50	3.7	0.025	0.6990	-1.6021	0.4885	6 -1.1197	9 0.05810	-0.03	0.00	0.01	0.16	-0.11
38	10.00	5.000	0.50	150.00	3.50	4.94	0.030	1.0000	-1.5229	1.0000) -1.52288	3 0.07850	-0.05	0.00	0.01	0.16	-0.10
39	50.00	5.000	0.10	150.00	3.50	<u> </u>	4 0.070	1.6990	-1.1549	2.8865	Ú -1,9621	4 0.15785	-0.09	0.01	0.02	0.20	-0.06
40	100.00	5.000	0.05	150.00	3.50	13.59	5 0.090	2.0000	-1.0458	4.0000	J -2.0915	0.21325	-0.12	0.02	0.03	0.22	-0.04
41	5.00	10.000	2.00	150.0	9.90	7.3	2 0.050	Ú.6990	-1.3010	0.4885	6 -0.9093	8 0.05810	-0.01	0.00	0.00	0.18	-0.08
42	10.00	10.000	1.00	150.00	9.90	9.6	7 0.064	1.0000	-1.1938	1.0000	0 -1,1938	2 0.07850	-0.01	0.00	0.00	0.20	-0.07
43	50.00	10.000	0.50	150.0	0 9.90	12.9	3 0.086	1.6990	-1.0655	2.8865	0 -1.8102	6 0.15785	-0.07	0.0	0.02	0,22	-0.05
44	100.00	10.000	0.10	150.00	9.90	26.7	9 0.180	2.0000	-0.7447	4.0000	0 -1.4894	5 0.21325	-0.03	0.00	0.01	0.31	0.05
												•		1 04			
								48.20	-40.//	/0.9	/ -45.9	U	2.40	1.8	: 1.08		

NOTAS: (6)	de ec (3.30)	Ac= -1,5392	0.06	0.02	0.20
(7)	de ec (2.50) y tabla 3.22	ao= 0.028893	ned e	Se*2	des e
(9)	X1=log(Y2/D)	A1= 0.434046		0.13	
(10)	Y=log(ts/2o)			Se	
(13)	de ec (3.33)	[1] A. M. Martin and M. M. Martin and M. Martin Martin and M. Martin and M. Mar Martin and M. Martin and M. Martin And M. Martin and M. Mar			
(14)	(8)-(13)				

	TABI	_А З.	21B	CALC PARA MIRT	CULOS METRO SJUSL	PARA FR AVA,	CORR = 0. (SUE)	ELACI 1, l LOS G	ONAR JTILIZ RANUL	Y2/D- ANDO ARES)	∙ts/Z₀ EL , PAR	A TRA CRITE A CALC	VES E ERIO CULAR)EL DE ts.			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
ATOS	Y2/D	¥2	D	Zo	q	ts	ts/2o	X1	Y	X1*2	X1 Y	ts/Zo	Error	e*2	(e-ei)*2	Se+	Se-
	(1)	(1)	(1)	(=)	(s3/s/n)	(z)	TEORICO					CALCULADO	е				
1	1.00	2.00	2.00	20.00	8,86	3.59	1.79	0.0000	0.2529	0.00000	0.00000	2.05490	-0.26	0.07	33.63	8.92	-7.13
2	5,000	2.00	0.40	20.00	8.86	9.79	0.49	0.6990	-0.3098	0.48856	-0.21654	4.20767	-3.72	13.82	5.51	7.62	-6.43
3.	10,000	2.00	0.20	20.00	8.86	14.44	0.72	1.0000	-0.1427	1.00000	-0.14267	5.72916	-5.01	25.09	1.11	7.85	-6.13
4	50.000	2.00	0.04	20.00	8.86	34.05	1.70	1.6990	0.2304	2.88650	0.39153	11.73119	-10.03	100.62	15.74	8.83	-5.43
5	5.00	5.00	1.00	20.00	35.02	21.69	1.08	0.6990	0.0334	0.48856	0.02336	4.20767	-3.13	9.78	8.62	8.21	-6.43
6	10.00	5.00	0.50	20.00	35.02	33.30	1.67	1.0000	0.2227	1.00000	0.22272	5.72916	-4.06	16.48	4.02	8.80	-6.13
7	50.00	5.00	0.10	20.00	35.02	82.33	4.12	1.6990	0.6149	2.88650	1.04469	11.73119	-7.61	57.93	2.39	11.25	-5.43
8	100.00	5.00	0.05	20.00	35.02	119.07	5.95	2.0000	0.7745	4.00000	1.54903	15.97315	-10.02	100.46	15.67	13.08	-5.13
9	5.00	10.00	2.00	20.00	99.05	37.07	1.85	0.6990	0.2672	0.48856	0.18675	4.20767	-2.36	5.56	13.74	8.98	-6.43
10	10.00	10.00	1.00	20.00	99.05	60.30	3.02	1.0000	0.4800	1.00000	0.48001	5.72916	-2.71	7.34	11.26	10.15	-6.13
11	100.00	10.00	0.10	20.00	99.05	231.82	11.59	2.0000	1.0641	4.00000	2.12817	15.97315	-4.38	19,21	2.83	18.72	-5.13
12	5.00	2.00	0.40	50.00	8.86	10.50	0.21	0.6990	-0.6778	0.48856	-0.47375	4.20767	-4.00	15.98	4.27	7.34	-6.43
13	10.00	2.00	0.20	50.00	8.86	15.15	0.30	1.0000	-0.5229	1.00000	-0.52288	5.72916	-5.43	29.48	0.40	7.43	-6.13
14	50.00	2.00	0.04	50.00	8.86	34.76	0.70	1.6990	-0.1549	2.88650	-0.26317	11.73119	-11.03	121.69	24.67	7.83	-5.43
15	1.00	5.00	0.20	50,00	35.02	71.65	1.43	0.0000	0.1553	0.00000	0.00000	2.05490	-0.62	0.39	29.59	8.56	-7.13
16	5.00	5.00	1.00	50.00	35.02	24.48	0.49	0.6990	-0.3098	0.48856	-0.21654	4.20767	-3.72	13.82	S.51	7.62	-6.43
17	10.00	5.00	0.50	50.00	35.02	36.09	0.72	1.0000	-0.1427	1.00000	-0.14267	5.72916	-5.01	25.09	1.11	7.85	-6.13
18	50.00	5.00	0.10	50.00	35.02	85.12	1.70	1.6990	0.2304	2.88650	0.39153	11.73119	-10.03	100.62	15.74	8.83	-5.43
19	100.00	10.00	0.05	50.00	35.02	121.86	2.44	2.0000	0.3874	4.00000	0.77478	3 15.97315	-13.53	183.15	55.78	9.57	-5.13
20	5.00	10.00	2.00	50.00	99.05	44.98	0.90	0.6990	-0.0458	0.48856	-0.03198	4.20767	-3.31	10.94	7.60	8.03	-6.43
21	10.00	10.00	1.00	50.00	99.05	68.29	1.35	1.0000	0.1335	1.00000	0.13354	5.72916	-4.37	19.09	2.8/	8.49	-0.13
22	100.00	10.00	0.10	50.00	99.05	239.73	4.79	2.0000	0.6803	4.00000	1.3000/	15.9/315	-11.18	125.06	26.20	11.92	-5.13
23	1.00	2.00	2.00	100.00	5.85	4.00	0.05	0.0000	-1.3010	0.00000	0.00000	2.05490	-2.00	4.02	10.48	7.18	-7.13
24	5.00	2.00	0.40	100.00	8.85	10.85	0.11	0.6990	-0.9586	0.48855	-0.6/004	4.20/6/	-4.10	16.79	3.8/	7.24	-6.43
23	50.00	2.00	0.20	100.00	0.00 0.00	15.50	0.10	1.0000	-0./959	1.00000	0.79580	3 3,72910	-5.5/	31.02	0.25	7.29	-6.13
20	50,00	2,00	0.04	100.00	8.60	35.11	20.0	1.0330	-0.4339	4.00050	-0.//401	111/3119	-11.38	129.53	28.27	7.48	-5.43
21	3,00	5.00	1.00	100.00	35.02	20.94	0.20	0.0330	-0.5050	1,00000	0 / 3033	4.20/0/	-3.95	15.58	4.48	1.39	-6.43
20	50.00	5.00	0.50	100.00	35.04	3/.13 02 E/	0.30	1.0000	-0.4202	2 00450	0.42022	5.72910	-2.35	20.01	0.51	7.51	-0.13
20	100.00	5.00	0.10	100.00	35.02	100.34	0.00 1.00	2 0000	0.0000	4.00000	0 17001	10 07010	-10.8/	217.26	75 22	7.99	-3.43
31	5.00	10.00	2.00	100.00) 99.05	48.9	7 0.49	0.6990	-0.3098	4.00000	-0.2165	4 4.20767	-14.74	13.82	15.51	7.62	-6.43
32	10.00	10.00	1.00	100.00	99.05	72.20	0.72	1.0000	-0.1427	1.00000	-0.14267	5.72916	-5.01	25.09	1.11	7.85	-6.13
33	50.00	10.00	0.50	100.00	99.05	105.06	5 1.05	1.6990	0.0212	2.88650	0.0360	0 11.73119	-10.68	114.09	21.31	8.18	-5.43
34	10.00	10.00	0.10	100.00	99.05	243.72	2.44	1.0000	0.3874	1.00000	0.38739	5.72916	-3.29	10.82	7.70	9.57	-6.13
								38.18	-1.32	54.60	3.74	L I	-206.19	1726.60	476.19		
NOTAS	: (6)	de ec la	3.301					Ao-	.3198				-6 06	50 76	3 3 80		
	(7)	de ec (2	.50) v t	tabla 1	22			30=	2.0549				ned e	Se*7	des e		
	(9)	X1=log()	(2/0)					A1=	0.445	1				7 1	1		
	(10)	Yalopits	(Zo)											Se			

(13) de ec (3.33) (14) (8)-(13)

Ľ

	TABL	.А З	21C	CALC PARA MIRT	ULOS METRO SJUSL	PARA FR AVA,	CORRI = 0 (SUEL	ELACI 1, 1 LOS C	ONAR UTILI RANUL	Y2/D- ZANDO ARES)	ts/Zo EL , PARA	A TRA CRITRI A CALC	VES D O ULAR	EL DE ts.			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
DATOS	Y2/D	Y2 (-)	D (-)	ZO	q (=2/c/=1	ts		XI	Ŷ	X1*2	X1 Y		Error	e*2	(e-ei)*2	Set	Se-
	₩	. (11)	(#)	(8)	(#3/5/4)	(=)	LOKICO					CALCULADO	e				
· 1	1.00	2.00	2.00	20.00	88.59	31.42	1.57	0.0000	0.1959	0.00000	0.00000	2.91016	-1.34	1.8	65.90	21.48	-18.34
2	5.000	2.00	0.40	20.00	88.59	93.43	4.67	0.6990	0.6693	0.48856	0.46783	7.03247	-2.36	5.6	83.54	24.58	-15.24
3	10.000	2.00	0.20	20.00	88.59	139.90	7.00	1.0000	0.8451	1.00000	0.84510	10.28347	-3.28	10.8	101.23	26.91	-12.91
4	50.000	2.00	0.04	20.00	68.59	336.01	16.80	1.6990	1.2253	2.88650	2.08176	24.85024	-8.05	64.8	219.87	36.71	-3.11
5	1.00	5.00	0.20	20.00	350.18	552.27	27.61	0.0000	1.4411	0.00000	0.00000	2.91016	24.70	610.1	321.21	47.52	7.70
6	5.00	5.00	1.00	20.00	350.18	205.61	10.58	0.6990	1.0245	0.48856	0.71608	7.03247	3.55	12.6	10.43	30.49	-9.33
7	10.00	5.00	0.50	20.00	350.18	321.78	16.09	1.0000	1.2066	1.00000	1.20656	10.28347	5.81	33.7	0.94	36.00	-3.82
8	50.00	5.00	0.10	20.00	350.18	812.04	40.60	1.6990	1.6085	2.88650	2.73284	24.85024	15.75	248.1	80.50	60.51	20.69
- 9	100.00	5.00	0.05	20.00	350.18	1179.40	58.97	2.0000	1.7706	4.00000	3.54126	36.33808	22.63	512.2	251.36	78.88	39.06
10	5.00	10.00	2.00	20.00	990.45	348.17	17.41	0.6990	1.2408	0.48856	0.86728	7.03247	10.38	107.7	13.0	37.32	-2.50
11	10.00	10.00	1.00	20.00	990.45	580.51	29,03	1.0000	1.4628	1.00000	1.46285	10.28347	18.75	351.4	143.3	4B.94	9.12
12	50.00	10.00	0.50	20.00	990.45	909.09	45.45	1.6990	1.6575	2.88650	2.81610	24.85024	20.60	424.4	191.1	65.36	25.54
13	100.00	10.00	0.10	20.00	990.45	2295.74	114.79	2.0000	2.0599	4,00000	4.11981	36.33808	78.45	6154.7	5137.2	134.70	94.88
14	1.00	2.00	2.00	50.00	88.59	38.49	0.77	0.0000	-0.1135	0.00000	0.00000	2.91016	-2.14	4.6	79.5	20.68	-19.14
. 15	5.00	2.00	0.40	50.00	88.59	10.50	0.21	0.6990	-0.6778	0.48856	-0.47375	7.03247	-6.82	46.5	185.0	20.12	-19.70
16	10.00	2.00	0.20	50.00	88.59	146.98	2.94	1.0000	0.4683	1.00000	0.46835	10.28347	-7.34	53.9	199.4	22.85	-16.97
17	50.00	2.00	8.04	50,00	88.59	343.08	6.86	1.6990	0.8363	2.88650	1.42089	24.85024	-17.99	323.6	613.4	26.77	-13.05
18	1.00	5.00	0.20	50.00	350.18	580.24	11.60	0.0000	1.0645	0.00000	0.00000	2.91016	8.69	75.5	3.7	31.51	-8.31
19	5.00	5.00	1.00	50.00	350.18	223.58	4.67	0.6990	0.6693	0.48856	0.46783	7.03247	-2.36	5.6	83.5	24.58	-15.24
20	10.00	5.00	0.50	50.00	350.18	349.75	6.99	1.0000	0.8445	1.00000	0.84448	10.28347	-3.29	10.8	101.4	26.90	-12.92
21	50.00	5.00	0.10	50.00	350.18	850.00	16.80	1.6990	1.2253	2.88650	2.08176	24.85024	-8.05	64.8	219.9	36.71	-3.11
22	100.00	5.00	0.05	50.00	350.18	1207.36	24.15	2.0000	1.3829	4,00000	2.76583	36.33808	-12.19	148.5	359.7	44.06	4.24
23	5.00	10.00	2.00	50.00	990.45	427.28	8.55	0.6990	0.9320	0.48856	0.65142	7.03247	1.52	2.3	27.7	28.46	-11.36
24	10.00	10.00	1.00	100.00	990.45	659.62	32.98	1.0000	1.5183	1.00000	1.51825	10.28347	22.70	515.1	253.4	52.89	13.07
25	100.00	10.00	0.10	100.00	990.45	2374.85	47.49	2.0000	1.6766	4.00000	3.35320	36.33808	11.15	124.4	19.1	67.40	27.58
								26.69	26.23	39.36	33.96		169.44	9913.6	8765.2		

NOTAS:	(6) (7) (9) (10)	de ec (3.30) de ec (2.50) y tabla 3.22 X1=log(Y2/D) Y=log(ts/Zo)	Ac= 0.463917 ac= 2.910160 A1= 0.548222	6.78 wed e	396.54 Se [*] 2 19.91 Se	19.11 des e	
	(13)	de ec (3.33)					
	(14)	(8)-(13)					

TABLA 3.22 CONSIDERACIONES DE CALCULO PARA VALUAR t_

Criterio de Mirtsjuslava (suelos granulares) Α. $\gamma_{o} = 1000 \text{ kg/m}^{3}$ $V_{o} = (2 \text{ g } Z_{o})^{1/2}$ $\theta_{o} = 30^{\circ}$ $\mu = 2 (\text{prototipo})$ $\gamma_{\rm c} = 2650 \text{ kg/m}^3$ Criterio de Mirtsjuslava (suelos rocosos fracturados) В. θ = 30° $R_c = 0$ m' = 1.0 $\gamma = 2650 \text{ kg/m}^3$ n' = 4.0 $\gamma = 1000 \text{ kg/m}^3$ $\mathbf{b}_{r} = \mathbf{c}_{r} = \mathbf{D}$ C. Criterio de Jaeger D = 0.30 mD. Criterio de Vizgo K_ = 2.10 Ε. Criterio de Doddiah $= 1000 \text{ kg/m}^3$ D = 0.30 mຈຼ $%_{aire} = 78.0$ $\gamma = 2250 \text{ kg/m}^3$ F. Criterio de Martins D = 0.30 mB = 45.50 mG. Criterio de Mason y Kanapathypilli D = 0.30 me_ = 0.15 $c_{\mu} = 0.1$ $f_{\mu} = 0.3$

Cattonio	F _r =	0.10	F _r =	= 1.0	F _r =	10.0	Fig
CITCEIIO	ao	aı	ao	aı	ao	a1	L18
1	0.0470	0.3481	0.4168	0.4315	3.7301	0.2764	3.4
2	0.0288	0.4304	0.4076	0.3124	2.9106	0.5482	3.2
3	0.0652	0.2873	0.3866	0.3063	7.0038	0.3971	3.6
4	0.1623	0.0803	0.7679	0.0485	2.3760	0.0310	3.8
5	0.0541	0.3182	0.2419	0.1564	0.7948	0.1403	3.10
6	0.0478	0.2131	0.1294	0.1552	0.3476	0.1261	3.12
7	0.2394	0.1178	0.5347	0.0251	1.2309	0.0836	3.14
D _c = .001			D_ =	= 0.01	D_ =	= 0.1	Fig
	ao	aı	ao	aı	ao	aı	**8
1	0.7604	0.2834	1.5863	0.3394	5.3513	0.1743	3.5
2	0.3126	O.4943	0.6664	0.5431	2.2027	0.4566	3.3
З	1.1242	0.0238	1.9418	0.1883	5.9420	0.0175	3.7
4	0.8195	0.0376	1.5446	0.0095	2.7076	0.0496	3.9
5	0.2809	0.2419	0.5631	0.1751	0.6748	0.3473	3.11
6	0.1072	0.1278	0.2408	0.1015	0.3574	0.1251	3.13
7	0.5581	0.0749	0.9767	0.0401	1.7378	0.0776	3.15
	$= a_0 \int \frac{Y_2}{D}$	-a1	<u> </u>		•		

TABLA 3.23 PARAMETROS DE LAS ECUACIONES DE CALCULO DE LA SOCAVACION EN EN EL FOSO DISIPADOR AL PIE DE LAS CUBETAS DE LANZAMIENTO

Criterios:

 $F_r = \frac{1}{g^{1/2}}$

(1) Mirtsjuslava, suelos rocosos

y^{3/2}

- (2) Mirtsjuslava, suelos granulares
- (3) Doddiah
- (4) Vizgo

(5) Jaeger

+ Y₂)³

g (Z

- (6) Martins
- (7) Mason y Kanapathypilly

D

- (11) - (11)	121	/31	141	(5)	(6)	(7)	(8)	(9)	(10)	/111	[12]	(12)
	141 Fr	30	(4) ¥1	(J) Y	(0) X1*2	¥1 Y	20	(7) Frror	e*2	(11) (e-ei)^2	(12) Sol	(13) Se-
DAIVS	in criston Un sec	TEORICO	71			A1 1	CALCULADO	e		(1/ 4		
1	0.10	0.0470	-1.0000	-1.3279	1.00000	1.32790	0.07118	-0.02	0.00	0.10	1.94	-1.85
2	0.10	0.0288	-1.0000	-1.5406	1.00000	1.54061	0.07118	-0.04	0.00	0.11	1.93	-1.87
3.	0.10	0.0652	-1.0000	-1.1858	1.00000	1.18575	0.07118	-0.01	0.00	0.09	1.96	-1.83
4	0.10	0.1623	-1.0000	-0.7897	1.00000	0.78968	0.07118	0.09	0.01	0.04	2.06	-1.73
5	0.10	0.0541	-1.0000	-1.2668	1.00000	1.26680	0.07118	-0.02	0.00	0.10	1.95	-1.84
6	0.10	0.0478	-1.0000	-1.3206	1.00000	1.32057	0.07118	-0.02	0.00	0.10	1.94	-1.85
7	0.10	0.2394	-1.0000	-0.6209	1.00000	0.62088	0.07118	0.17	0.03	0.02	2.14	-1.66
8	1.00	0.4168	0.0000	-0.3801	0.00000	0.00000	0.35912	0.06	0.00	0.06	2.31	-1.48
9	1.00	0.4076	0.0000	-0.3898	0.00000	0.00000	0.35912	0.05	0.00	0.06	2.30	-1.49
10	1.00	0.3866	0.0000	-0.412/	0.00000	0.00000	0.35912	0.03	0.00	0.07	2.28	-1.51
11	1.00	0.7679	0.0000	-0.114/	0.00000	0.00000	0.35912	0.41	0.17	0.01	2.00	-1.13
12	1.00	0.2419	0.0000	-0.6164	0.00000	0.00000	0.35912	-0.12	0.01	0.17	2.14	-1.60
13	1.00	0.1294	0.0000	-0.8881	0.00000	0.00000	0.35912	-0.23	0.05	0.28	2.03	-1.//
14	1.00	0.5347	0.0000	-0.2/19	0.00000	0.00000	0.35912	0.18	0.03	0.01	2.43	-1.30
15	10.00	3.7301	1.0000	0.5/1/	1.00000	0.5/1/2	1.811/4	1.92	3.08	2.03	5.03	1.65
10	10.00	2.9106	1,0000	0.4040	1.00000	0.40398	1.0117/	1.10	1.41	0.04	4.01	1.01
17	10.00	7.0038	1.0000	0.8433	1.00000	0.04000	1.811/4	5.19	20.90	23.9/	6.90	5.11
10	10.00	2.3/00	1.0000	0.3/30	1.00000	0.3/303	1.01174	1 00	1 02	0.07	4.4/	0.40
-00 19	10.00	0.7940	1,0000	-0.0997	1.00000	-0.09974	1.01174	-1.02	2.03	2 10	2.09	-1.10
21	10.00	1.2309	1.0000	0.0902	1.00000	0.09022	1.81174	-0.58	0.34	U.77	3.13	-0.67
		-	0.00	-9.34	 14.00	 9.84	-	6.23	35.99	34.14		
•												
			¥o=	-0.44476		-	•	0.30	3.60	1.31		100
			NO=	0.359118				med e	Se^2	des e		
			¥1=	0,702857					1.90			

ligi dendi. Mini dendi

- Y=log(ao) de ec (3.34) (3)-(8) (5)
- (8)
- (9)

TABLA 3.25 ERROR MEDIO Y SU DESVIACION ESTANDAR AL CORRELACIONAR Fr - a_0 A TRAVES DEL PARAMETRO Fr = 0.10, 1.0, 10.0

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
DATOS	Fr	ai	Xi	Y	X1^2	X1 Y	ai	Error	e*2	(e-ei)^2	Set	Se-
		TEORICO					CALCULADO	e				
110000 an		A 2204		0.4500		A / FA3A	0.00000					0.10
1	0.10	0.3481	-1.0000	-0.4583	1.00000	0.45830	0.20328	0.14	0.02	0.01	0.58	0.12
2	0.10	0.4304	-1.0000	-0.3661	1.00000	0.36613	0.20328	0.23	0.05	0.03	0.65	0.20
3	0.10	0.28/3	-1.0000	-0.5417	1.00000	0.54166	0.20328	0.08	0.01	0.00	0.51	0.06
4	0.10	0.0803	-1.0000	-1.0953	1.00000	1.09528	0.20328	-0.12	0.02	0.03	0.31	-0.15
5	0.10	0.3182	-1.0000	-0.4973	1.00000	0.49727	0.20328	0.11	0.01	0.00	0.55	0.09
6	0.10	0.2131	-1.0000	-0.6714	1.00000	0.67142	0.20328	0.01	0.00	0.00	0.44	-0.01
7	0.10	0.1178	-1.0000	-0.9289	1.00000	0.92885	0.20328	-0.09	0.01	0.02	0.35	-0.11
8	1.00	0.4315	0.0000	-0.3650	0.00000	0.00000	0.17245	0.26	0.07	0.04	0.66	0.20
. 9	1.00	0.3124	0.0000	-0.5053	0.00000	0.00000	0.17245	0.14	0.02	0.01	0.54	0.09
10	1.00	0.3063	0.0000	-0.5139	0.00000	0.00000	0.17245	0.13	0.02	0.01	0.53	0.08
11	1.00	0.0485	0.0000	-1.3143	0.00000	0.00000	0.17245	-0.12	0.02	0.03	0.28	-0.18
12	1.00	0.1564	0.0000	-0.8058	0.00000	0.00000	0.17245	-0.02	0.00	0.01	0.38	-0.07
13	1.00	0.1552	0.0000	-0.8091	0.00000	0.00000	0.17245	-0.02	0.00	0.01	0.38	-0.07
14	1.00	0.0251	0.0000	-1.6003	0.00000	0.00000	0.17245	-0.15	0.02	0.04	0.25	-0.20
15	10.00	0.2764	1.0000	-0.5585	1.00000	-0.55846	0.14630	0.13	0.02	0.01	0.50	0.05
16	10.00	0.5482	1.0000	-0.2611	1.00000	-0.26106	0.14630	0.40	0.16	0.12	U.78	0.32
17	10.00	0.3971	1.0000	-0.4011	1.00000	-0.40110	0.14630	0.25	0.06	0.04	0.62	0.17
18	10.00	0.0310	1,0000	-1.5086	1.00000	-1.50864	0.14630	-0.12	0.01	0.03	0.26	-0.20
19	10.00	0.1403	1.0000	-0.8529	1.00000	-0.85294	0.14630	-0.01	0.00	0.00	0.37	-0.09
20	10.00	0.1261	1.0000	-0.8993	1.00000	-0.89928	0.14630	-0.02	0.00	0.01	0.35	-0.10
21	10.00	0.0836	1.0000	-1.0778	1.00000	-1.07779	0.14630	-0.06	0 00	0.01	0.31	-0.14
							-				0.54	0.14
			0.00	-16.03	14.00	-1.00		1.18	0.52	0.45		

Wo= -0.76333			0.06	0.05	0.15
wo= 0.172451			sed e	Se*2	des e
W1= -0.07142	in nation taken taken			0.23	
				Se	

al de tabla 3.23 Notas: (3)

- X1=log(Fr) Y=log(a1) (4)
- (5)
- (8) de ec (3.34)
- (3) (8)(9)

	TA	BLA 3.2	26 ERR	OR MEDI	O Y SU	DESVIA	CION ES	TANDAR	AL CO	RRELAC	IONAL	R
an ang ang Gran yang ang Gran yang ang		위 (1994) (4) 1995 - 1995 (4)	Dс	- ao A	IRAVE	S DEL	PARAMEIT	(U Dc =	0.001	, 0.01	, U.	1
(1) DATOS	(2) Dc	(3) ao	(4) X1	(5) Y	(6) X1*2	(7) X1 Y	(8) ao	(9) Error	(10) e^2	(11) (e-ei)*2	(12) Se+	(13) Se-
		TEORICO					CALCULADO	e				
1	0.001	0.7604	-3.0000	-0.1190	9.00000	0.35687	0.44497	0.32	0.10	0.00	20.03	-18.51
2	0.001	0.3126	-3.0000	-0.5050	9.00000	1.51503	0.44497	-0.13	0.02	0.27	19.58	-18.96
3	0.001	1.1242	-3.0000	0.0508	9.00000	-0.15253	0.44497	0.68	0.46	0.09	20.40	-18.15
4	0.001	0.8195	-3.0000	-0.0865	9.00000	0.25935	0.44497	0.37	0.14	0.00	20.09	-18.45
5	0.001	0.2809	~3.0000	-0.5514	9.00000	1.65434	0.44497	-0.16	0.03	0.30	19.55	-18.99
6	0.001	0.1072	-3.0000	-0.9698	9.00000	2.90942	0.44497	-0.34	0.11	0.52	19.38	-19.17
7	0.001	0.5581	-3.0000	-0.2533	9.00000	0.75986	0.44497	0.11	0.01	0.07	19.83	-18.71
8	0.010	1.5863	-2.0000	0.2004	4.00000	-0.40077	0.90108	0.69	0.47	0.09	20.86	-17.69
9	0.010	0.6664	-2.0000	-0.1763	4.00000	0.35253	0.90108	-0.23	0.06	0.38	19.94	-18.61
10	0.010	1.9418	-2.0000	0.2882	4.00000	-0.57641	0.90108	1.04	1.08	0.43	21.21	-17.33
11	0.010	1.5446	-2.0000	0.1888	4.00000	-0.37763	0.90108	0.64	0.41	0.07	20.82	-17.73
12	0.010	0.5631	-2.0000	-0.2494	4.00000	0.49883	0.90108	-0.34	0.11	0.52	19.84	-18.71
13	0.010	0.2408	-2.0000	-0.6183	4.00000	1.23669	0.90108	-0.66	0.44	1.09	19.51	-19.03
14	0.010	0.9767	-2.0000	-0.0102	4.00000	0.02048	0.90108	0.08	0.01	0.10	20.25	-18.30
15	0.100	5.3513	-1.0000	0.7285	1.00000	-0.72846	1.82470	3.53	12.44	9.87	24.62	-13.92
16	0.100	2.0270	-1.0000	0.3069	1.00000	-0.30685	1.82470	0.20	0.04	0.03	21.30	-17.25
17	0.100	5.9420	-1.0000	0.7739	1.00000	-0.77393	1.82470	4.12	16.95	13.93	25.21	-13.33
18	0.100	2.7076	-1.0000	0.4326	1.00000	-0.43258	1.82470	0.88	0.78	0.25	21.98	-16.56
19	0.100	0.6748	-1.0000	-0.1708	1.00000	0.17082	1.82470	-1.15	1.32	2.36	19.95	-18.60
20	0.100	0.3574	-1.0000	-0.4468	1.00000	0.44685	1.82470	-1.47	2.15	3.43	19.63	-18.91
21	0.100	1.7378	-1.0000	0.2400	1.00000	-0.24000	1.82470	-0.09	0.01	0.22	21.01	-17.53
		-	-42.00	-0.95	 98.00	6.19	-	8.09	37.14	34.03		

	0.39	371.43	1	. 30
	zed e	Se*2	des	s e
i pin	a saga at	19.27		under e
		Se		

Wo= 0.567619 Wo= 3.695038 W1= 0.306428

- Notas: (3) ao de tabla 3.23 (4) X1=log(Dc)
 - (5) Y=log(ao)
 - (8) de ec (3.34)
 - (9) (3)-(8)

	TAB	LA 3.27	7 ERRO Dc	R MEDIC al A 1) Y SU I TRAVES	DESVIAC	CION EST RAMETRO	ANDAR A $D_c = 0$.	L COR 001,	RELACIO	DNAR 0.1	
(1) DATOS	(2) Dc	(3) a1 TEORICO	{4] X1	(5) Y	(6) X1*2	(7) X1 Y	(8) a1 CALCULADO	(9) Error e	(10) e*2	(11) (e-ei)*2	(12) Se+	(13) Se-
		0.0027	2 0000	0 5176	0 00000	+ (1000	0 10000	0.16	0.00	0.01	0 00	0.00
. 1	0.001	0.2639	-3.0000	-0.34/0	9.00000	1.04280	0.12209	0.10	0.03	0.01	2.02	-2.20
2	0.001	0.4943	-2.0000	-0.3000	9.00000	V 26065	0.12209	-0.00	0.14	0.09	3.04	-2.05
د ۸	0.001	0.0300	-3.0000	-1.4202	9.00000	4.20003	0.12209	-0.00	0.01	0.02	2,50	-2.50
4	0.001	0.0370	-3.0000	-0 6164	0 00000	1 2/0/0	0.12209	-0.03	0.01	0.02	2.30	-2.50
6	0.001	0.12419	-3.0000	-0.0104	9.00000	2 68041	0.12203	0.12	0.01	0.00	2.70	-2.50
7	0.001	0.0740	-3 0000	-1 1255	9.00000	3 37655	0.12205	-0.05	0.00	0.00	2.62	-7 /7
8	0.001	0.0745	-2 0000	-0.4693	4 00000	0 93858	0 11659	0.22	0.05	0.02	2.88	-2.47
q	0.010	0.5554	-2.0000	-0 2651	4.00000	0 53024	0 11659	0 43	0.18	0 13	3 08	-2 00
10	0 010	0 1883	-2 0000	-0 7251	4 00000	1 45030	0 11659	0 07	0.01	0 00	2 73	-2 35
11	0 010	0.0095	-2.0000	-2 0223	4 00000	4.04455	0 11659	-0 11	0 01	0.00	2 55	-2 53
12	0 010	0 1751	-2 0000	-0 7567	4 00000	1 51343	0.11659	0.06	0 00	0.00	2 72	-2 37
13	0 010	0 1015	-2 0000	-0 9935	4.00000	1.98707	0.11659	-0.02	0.00	0.00	2 64	-2 44
14	0 010	0.0401	-2 0000	-1 3969	4.00000	2 79371	0 11659	-0.08	0.01	0.02	2 59	-2 50
15	0.100	0.1743	-1 0000	-0.7587	1 00000	0.75870	0.11080	0.06	0 00	0 00	2 72	-2 37
16	0.100	0.4566	-1.0000	-0.3405	1.00000	0.34046	0.11080	0.35	0.12	0.08	3.00	-2.08
17	0.100	0.0175	-1.0000	-1.7570	1.00000	1.75696	0.11080	-0.09	0.01	0.03	2.56	-2.52
18	0.100	0.0496	-1.0000	-1.3045	1.00000	1.30452	0.11080	-0.06	0.00	0.02	2.59	-2.49
19	0.100	0.3473	-1.0000	-0.4593	1.00000	0.45930	0.11080	0.24	0.06	0.03	2.89	-2.19
20	0.100	0.1251	-1.0000	-0.9027	1.00000	0.90274	0.11080	0.01	0.00	0.00	2.67	-2.42
21	0.100	0.0776	-1.0000	-1.1101	1.00000	1.11014	0.11080	-0.03	0.00	0.01	2.62	-2.46
		-	-42.00	-19.60	98.00	38.89	-	1.49	0.65	0.54		

0.07 6.46 0.16 med e Se^2 des e 2.54 Se

Wo= -0.97761 wo= 0.105288 W1= -0.02214

Notas: (3) a1 de tabla 3.23 (4) X1=log(Dc) (5) Y=log(a1) (8) de ec (3.34) (9) (3)-(8)

and a stranger State of the stranger	TABLA	3.28	DISPERS CON ao	ION DE y ai Y	LOS RESU SU INTER	LTADO VALO	S AL CORF DE CONFIA	RELACION	IAR Fr	∕ Dc			
Fr: ao						Fr al							
(14) confianz	(15) Zc	(16) ao+	(17) ao-	(18) aobax	(19) aomin		(14) confianza	(15) Zc	(16) a1+	(17) al-	(18) almax	(19) almin	
							•						
99.00	2.5800	3.6675	-4.4952	3.9642	-4.1986		99.00	2.5800	0.4433	-0.3310	0.4995	0.39	
97.50	2.2400	3.2233	-3.9148	3.5199	-3.6182		97.50	2.2400	0.3923	-0.2800	0.4484	0.34	
95.00	1.9600	2.8575	-3.4368	3.1541	-3.1402		95.00	1.9600	0.3503	-0.2380	0.4064	- 0.29	
90.00	1.6450	2.4459	-2.8991	2.7425	-2.6025		90.00	1.6450	0.3030	-0.1907	0.3592	0.25	
85.00	1.4390	2.1768	-2.5474	2.4734	-2.2508		85.00	1.4390	0.2721	-0.1598	0.3282	0.22	
80,00	1.2800	1.9650	-2.2760	2.2050	-1,9794		80,00	1.2800	0,2492	-0.1359	0.3044	0.19	
75.00	1.1510	1.8005	-2.0558	2.0971	-1.7592		75.00	1.1510	0.2289	-0.1166	0.2850	0.17	
70.00	1.0380	1.6528	-1.8629	1.9494	-1.5663		70.00	1.0380	0.2119	-0.0996	0.2681	0.16	
65.00	0.9350	1.5183	-1.6871	1.8149	-1.3904		65.00	0.9350	0.1965	-0.0842	0.2526	0.14	
60.00	0.8420	1.3967	-1.5283	1.6934	-1.2317		60.00	0.8420	0.1825	-0.0702	0.2387	0.13	
55.00	0.7550	1.2831	-1.3798	1.5797	-1.0832		55.00	0.7550	0.1694	-0.0572	0.2256	0.11	
50.00	0.6745	1.1779	-1.2424	1.4745	-0.9457		50.00	0.6745	0.1574	-0.0451	0.2135	0.10	
INTERVALÓ	DE CONVFI	ANZA: 19/3	21=0.905=90). 5%			INTERVALO D	E CONFIANZ	A: 17/21=0	0.809=80.09	97.		
	I)c - ao						[)c - a1		an a	1	
(14) confianz	(15) Zc	(16) ao+	(17) ao-	(18) aomax	(19) aomin		(14) confianza	(15) Zc	(16) a1+	(17) a1-	(18) almax	(19) almin	
99.00	2.5800	3.75	-4.51	4.14	-4.12		99.00	2.5800	1.92	1.07	1.99	-1.00	

INTERVALO DE CONFIANZA: 21/21=1.00=100%

INTERVALO DE CONFIANZA: 21/21=1.00=100%

NOTAS: (16),(17) de ec (3.37) (18),(19) de ec (3.38)

2.2400

1.9600

1.6450

1.4390

1.2800

1.1510

1.0380

0.9350

0.8420

0.7550

0.6745

3.31

2.94

2.53

2.26

2.05

1.89

1.74

1.60

1.48

1.37

1.26

-3.93

-3.45

-2.92

-2.57

-2.30

-2.08

-1.88

-1.71

-1.55

-1.40

-1.26

3.69

3.33

2.92

2.65

2.44

2.27

2.12

1.99

1.87

1.75

1.65

-3.54

-3.07

-2.53

-2.18

-1.91

-1.69

-1.50

-1.32

-1.16

-1.02

-0.88

97.50

95.00

90.00

85.00

80.00

75.00

70.00

65.00

60.00

55.00

50.00

2.2400

1.9600

1.6450

1.4390

1.2800

1.1510

1.0380

0.9350

0.8420

0.7550

0.6745

1.86

1.81

1.76

1.73

1.70

1.68

1.66

1.65

1.63

1.62

1.60

1.12

1.17

1.22

1.26

1.28

1.30

1.32

1.34

1.35

1.37

1.38

1.93

1.89

1.83

1.80

1.77

1.75

1.73

1.72

1.70

1.69

1.67

-1.05

-1.10

-1.15

-1.18

-1.21

-1.23

-1.25

-1.27

-1.28

-1.30

-1.31

NO)

97.50

95.00

90.00

85.00

80.00

75.00

70.00

65.00

60.00

55.00

50.00

NIVEL CONFIANZA		aomax	aomin*	almax	almin"	NIVEL CONFIANZA		aonax	ao n in' a	lmax	almin'
00		3 74				90		2.75		0.61	
- 98		3 29		0.60		98		2 1		0.01 11 5.5	
05		2 02		0.00 1.55		05		2.51		0.50 1 51	
30		2.55		0.55	0.01	00		2.24		0.46	
85		2.32		0.JI 8A II	0.01	85		2.33		1 44	
80	Fr=0 1	2.25	문서로	0.40	0 07	80	Dc=0.001	2.20		0 40	
75	11-0.1	1.87		0.43	0.07	25	DC-0.001	1 40		0.38	0.0
70	1997 - 1948 1997 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -	1.07		0.40	0.05	70		1.74		0.50	0.00
65		1.50		0.42	0.10	65		1 60	的機能	0.10	0.02
60		1.35		0.40	0.12	60		1.00		0.34	0.04
00 ζί		1-9/		0.37	0.15	55		1.40		0.33	0.03
50		1.05		0.37	0.15			1.57		0.32	0.07
50		1.27		0.30	0.10	70		1.20			v.vo
00		6 02		0.62		00		1. 65		0 61	
35 NA		2 50		0.02		08	نیت انجو بنا زرد. مراجع میشود انجو انجو انجو ورود وجون انجو انجو ا	4.0J / 91		0.01	
05		3.00		0.00		- 65		2.94	A	0.50	
00 0		2 91		0.52	이번 관재 이기	00 .		2.04		0.31	
20		9 54		0.40	0.01	85		2.45		0.40	
80	Sr-1 0	2.34	이는 물건	0.44	0.01	60	Dc=0.01	2 05		0.45	Gilliaden en State State de Legender
75	11-1.0	2.55	e e e Reconstruction	0.42	0.04	75	00-0.01	2.35		0.40	
70		2.10		0.40	0.00	70		2.13	الها بالم	0.30	0.02
65		1 88	_	0.30	0.00	65		2.04		0.30	0.02
60		1 76	_	0.37	0.05	60		2.30		0.34	0.04
55		1 64	_	0.35	0.10	55		2.30	-	0.32	0.05
50		1 54	-	0 33	0.13	50		2 16		0.30	0.08
50		1.54		0.55	0.15	50		2.10		0.50	0.00
99		5 48	-	0.59	-	99		5 57	-	0 60	_
98		5 04	_	0.56	-	98		5 13	·	11.55	
95		4 67	-	0.50	-	95		4 76	-	0.50	-
90		4 26	-	0.45	-	90		4 35	_	0 45	
85		3 94	-	0.45		85		4 09		0 42	_
80	Fr=10.0	3 78	-	0.42	0.01	80	Dc=0 10	3 117	·	0.92	5 <u>-</u> 5 5
75	11-10.0	3 61	· _ ·	0.39	0.01	75	00-0.10	3 71	• •	0.37	
70		3 46	-	0.36	0.05	70		3 56	_	11 35	0.01
65		3.33	0.12	0.34	0.06	65		3 42	0.11	0.33	0.03
60		3.21	0.28	0.33	0.08	60		3.30	0.27	0.32	0.04
55		3.09	0.43	0.32	0.09	55		3 14	0.42	0.30	0.06
50		2.99	0.57	0.30	0.10	50		3.08	0.56	0.29	0.07

TABLA 3.29 VALORES DEL COEFICIENTE (ao) Y EL EXPONENTE (a1), EN FUNCION DEL INTERVALO DE CONFIANZA

¹ Cuando no aparece ningun valor es debido a que este es negativo y por tanto carece de sentido fisico.

 \sim

n = 0.014	Q = 50	00.00 m ³ /s		
ESTACION	TIRANTE (m)	VELOCIDAD (m/s)		
31.09	0.68	16.16		
50.00	0.68	16.28		
100.00	0.67	16.49		
150.00	0.66	16.60		
200.00	0.66	16.67		
250.00	0.66	16.70		
300.00	0.66	16.73		
308.23	0.66	16.73		
338.18	0.60	18,30		
368.13	0.53	20.62		
398.08	0.47	23.20		
433.04	0.44	24.72		
468.00	0.43	25.47		
502.97	0.43	25.83		
524.98	0.46	24.02		
546.89	0.52	21.12		
568.80	0.68	16.24		

TABLA 3.30 PERFIL HIDRAULICO_DE_LA-OBRA-DE EXCEDENCIAS DE LA PRESA AGUAMILPA, NAY.

n = 0.014	$Q = 3000.00 \text{ m}^3/\text{s}$						
ESTACION	TIRANTE (m)	VELOCIDAD (m/s)					
31.09	4.75	13.88					
50.00	4.29	15.36					
100.00	3.59	18.34					
150.00	3.20	20.51					
200.00	2.94	22.45					
250.00	2.75	23.99					
300.00	2.61	25.30					
308.23	2.59	25.49					
338.18	2.39	27.57					
368.13	2.18	30.26					
398.08	1.96	33.59					
433.04	1.80	36.55					
468.00	1.68	39.18					
502.97	1.59	41.37					
524.98	1.62	40.62					
546.89	1.67	39.51					
568.80	1.77	37.17					

TABLA 3.31 PERFIL HIDRAULICO DE LA OBRA DE EXCEDENCIAS DE LA PRESA AGUAMILPA, NAY.
n = 0.014	Q = 6500.00 m ³ /s		
ESTACION	TIRANTE (m)	VELOCIDAD (m/s)	
31.09	6.46	11.06	
50.00	5.32	13.43	
100.00	4.17	17.15	
150.00	3.61	19.77	
200.00	3.27	21.86	
250.00	3.03	23 <i>.</i> 60	
300.00	2.85	25.08	
308.23	2.82	25.30	
338.18	5.31	26.90	
368.13	4.73	30.21	
398.08	4.19	34.12	
433.04	3.81	37.47	
468.00	3.50	40.79	
502.97	3.27	43.70	
524.98	3.35	42.68	
546.89	3.39	42.10	
568.80	3.54	40.35	

TABLA 3.32 PERFIL HIDRAULICO DE LA OBRA DE EXCEDENCIAS DE LA PRESA AGUAMILPA, NAY.

n = 0.014	$Q = 15000.00 \text{ m}^3/\text{s}$			
ESTACION	TIRANTE (m)	VELOCIDAD (m/s)		
00.00	15.30	12.25		
31.09	14.04	11.74		
50.00	14.04	11.74		
100.00	14.04	11.74		
150.00	14.04	11.74		
200.00	14.04	11.74		
250.00	14.04	11.74		
300.00	14.04	11.74		
308.23	14.04	11.74		
338.18	8.31	19.85		
368.13	6.64	34.82		
398.08	5.52	29.89		
433.04	4.85	33.96		
468.00	4.35	37.88		
502.97	3.99	41.29		
524.988	4.10	40.23		
526.89	4.14	39,78		
568.80	4.33	38.09		

TABLA 3.33 PERFIL HIDRAULICO DE LA OBRA DE EXCEDENCIAS DE LA PRESA AGUAMILPA, NAY.

TABLA 3.34

RESUMEN DE RESULTADOS DE LA SOCAVACION DE LA OBRA DE EXCEDENCIAS DE LA PRESA AGUAMILPA, NAY, CON DIFERENTES CRITERIOS

CRITERIO	$Q = 500 \text{ m}^3/\text{s}$ d = 0.68 m V = 16.24 m/s	$Q = 3000 \text{ m}^3/\text{s}$ d = 1.77 m V = 37.17 m/s	$Q = 6500 \text{ m}^3/\text{s}$ d = 3.54 m V = 40.35 m/s	$Q = 15000 \text{ m}^3/\text{s}$ d = 4.33 m V = 38.09 m/s
	ts (m)	ts (m)	ts (m)	ts (m)
Veronese (A)	3.67	9.65	10.08	15.83
Veronese (B)	20.81	54.74	57.16	89.79
Jaeger	8.84	29.67	38,83	63.03
Mirtsjuslava (granulares)	12.56	76.67	84.44	192.31
Mirtsjuslava (rocosos)	11.56	59.74	61.58	141.28
Matsman	5.69	26.22	26.81	54.77
Vizgo	15.47	36.26	37.16	62.41
Studenichnikov	40.91	118.28	124.12	209.00
Doddiah	0.91	10.12	18.50	225.80
Mason y Kanapathypilly	56.47	86.73	97.46	114.77

a) Salto de ski de medio fondo

b) Lámina libre y medio fondo

c) Salto de ski , descarga natural

d) Lámina libre

e) Lámina libre y compuerta de fondo

f) Chorros cruzados entre lámina libre y medio fondo

g) Salto de ski, con contrapresa

Fig 2.1 Algunos tipos de disipadores de energía hidráulica de las presas [3]

Fig 2.2 Magnitudes principales en los fosos disipadores de energía hidráulica al pie de la cubeta de lanzamiento

Fig 2.3 Energía en la base de una caída vertical, sin erosión al pie de la estructura [16]

Fig 2.4 Tirante Yp, sin erosión al pie de la estructura [16]

Fig 2.6 Condiciones de flujo en el foso, en función de Y_{b} [5]

Fig 2.7 Relación entre β y Y_b/H [5]

Fig 2.12 Esquema de dispersión del chorro en el cono de socavación, utilizado por Mirtsjustava[14]

Fig 2.13 Porcentaje de aireación en el agua dentro del cono de socavación en función de la velocidad del chorro [14]

age of the second second

a tetana in

K_{sb}=1.0 Después de una pared deflectora con lanzamiento del chorro

K_{sb}=0.56 Después de un salto en ski (tridimen sional)

K_{sb}=0.8 Después de una caída recta

K_{sb}= 0.44 Después de un trampolín (tridimensional)

Ksb=0.667 Después de un salto en ski dentado (tridimensional)

K_{sb}=0.40 Después de un salto en ski (tridimensional), con régimen supercrítico

Fig 2.18 Valor del factor K_{sb} utilizado por Studenichnikov [20]

Fig 2.19 Coeficiente de aireación dado por Studenichnikov [20]

CORRELACION $F_r = 0.1$

Fig 3.1 Dispersión de los resultados t_s/Z_0 teórico y calculado, para $F_r = 0.1$, utilizando el criterio de Mirtsjuslava (suelos granulares), para calcular t_s

Fig 3.2 Relación $Y_2/D - t_s/Z_0$, para $F_r = 0.1, 1.0 \text{ y } 10.0$; utilizando el criterio de Mirtsjuslava, (suelos granulares), para calcular t_s

Fig 3.3 Relación Y₂/D-t_s/Z₀; para D_c = 0.001,0.01 y 0.1, utilizando el criterio de Mirtsjuslava, (suelos granulares), para calcular t_s

MIRTSJUSLAVA, SUELOS ROCOSOS

Fig 3.4 Relación Y₂/D - t_s/Z₀, para F_r = 0.1, 1.0 y 10.0; utilizando el criterio de Mirtsjuslava (suelos rocosos), para calcular t_s

MIRTSJUSLAVA, SUELOS ROCOSOS

Fig 3.5 Relación Y₂/D - t_s/Z₀, para D_c = 0.001, 0.01 y utilizando el criterio de Mirtsjuslava, (suelos rocosos), para calcular t_s

Fig 3.6 Relación $Y_2/D-t_s/Z_0$, para F_r =0.1,1.0 y 10, utilizando el criterio de Doddiah para calcular t_s

DODDIAH

Fig 3.7 Relación Y₂/D-t_s/Z₀, para D_c=0.001,001 y 0.1; utizando el criterio de Doddiah para calcular Y_s

ts/Zo

Fig 3.8 Relación Y₂/D-t_s/Z₀, para F_r=0.1, 1.0 y 10, utilizando el criterio de Vizgo para calcular t_s

VIZGO

Fig 3.9 Relación Y₂/D-t_s/Z_o, para F_d=0.01, 0.1 y 1.0; utilizando el criterio de Vizgo para calcular t_s

VIŻGO '

JAEGER

Fig 3.10 Relación $Y_2/D-t_s/Z_0$, para $F_r=0.1$, 1.0 y 10; utilizando el criterio de Jaeger para calcular t_s

JAEGER

para calcular t_s

Fig 3.12 Relación Y₂/D-t_s/Z_o,para F_r=0.1, 1.0 y 10; utilizando el criterio de Martins para calcular t_s

MARTINS

MARTINS

Fig 3.13 Relación Y₂/_D-Y_s/Z₀; para D_c = 0.001,0.01 y 0.1, utilizando el criterio de Martins parar calcular Y_s

MASON Y KANAPATHYPILLY

Fig 3.14 Relación Y₂/D-t_s/Z_o; para F_r=0.1,1.0 y 10; utilizando el criterio de Mason y Kanapathypilly para calcular t_s

ts/Z.0

MASON Y KANAPATHYPILLY

 $^{\dagger}s/^{Z}o$

Fig 3.15 Relación Y₂/D-t_s/Z₀, para Dc=0.001, 0.01 y 0.1; utilizando el criterio de Mason y Kanapathypilly para calcular t_s

CORRELACION $F_r = 0.10, 1.0, 10.0$

Fig 3.16 Correlación de a_0 teórico y calculado para $F_r = 0.10, 1.0$ y 10.0 para diferentes intervalos de confianza, en %

Fig 3.17 Correlación de a_1 teórico y calculado para $F_r = 0.10, 1.0$ y 10.0 para diferentes intervalos de confianza, en %

Fig 3.22 Perfil geológico por el eje de la obra de excedencias del Proyecto Presa Aguamilpa, Nayarit

Fig 3.23 Trayectoria de chorro, para diversos gastos de operación Proyecto Presa Aguamilpa, Nayarit. Criterio USBR

Fig 3.24 Elevaciones – gastos del río