Nº 101 2EJ.

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE INGENIERIA

PRUEBAS TRIAXIALES PARA EVALUAR LA RESISTENCIA DEL CONCRETO UTILIZANDO CRITERIOS DE MECANICA DE SUELOS.

ESTA TESIS NO DEBE Salia de la bislateca

T		E		S		1		S
OUE	P	ARA	OBTE	NER	EL	TITU	LO	DE
ΙN	G	ΕN	ΙE	\mathbf{R}	0	СI	V	IL
ρ	R	E	S	E	N	T	Α	:
JA۱	lΕ	R	RC	JA	S	GU	ΖM	IAN

Director de Tesis: Ing. Ricardo Rubén Padilla Velázquez

MEXICO, D. F. TESIS CON FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Indice.

- 1 Introducción. 1
- 2 Teorías de Resistencia.
 - 2.1 Adecuación del tamaño y de f'c para realizar las pruebas con el equipo disponible. 3
 - 2.2 Envolvente de resistencia de arena suelta, compacta y cementada.

- 2.3 Análisis de esfuerzos y presiones del agua en suelos. 15
- 2.4 Influencia de los poros en materiales porosos. 22
- 3 Preparación de Probetas y Equipo.
 - 3.1 Cabeceado de las probetas. 23
 - 3.2 Montaje de las probetas en la cámara triaxial. 26
 - 3.3 Calibración del medidor de presión de poro. Ecuaciones y operaciones. 29
 - 3.4 Procedimiento para la operación y calibración del medidor de presión de poro. 30
 - 3.5 Procedimiento para aplicar el confinamiento en la cámara triaxial.32
 - 3.6 Procedimiento para eliminar la presión de confinamiento en la cámara triaxial y regresar el líquido confinante al tanque. 33

4 Pruebas de Laboratorio.

4.1 Pruebas empleadas para evaluar la resistencia de los suelos. 35

4.2 Pruebas triaxiales. 36

4.3 Representación gráfica. 46

5 Resultados y Gráficas.

5.1 Corrección de áreas. 50

5.2 Tablas. (C U). 52

5.3 Curvas Esfuerzo - Deformación Unitaria. (C U). 58

5.4 Curvas Esfuerzo Desviador - Presión de Poro Normalizadas. (CU).

61

5.5 Plano p - q. (C U). 63

5.6 Plano de Mohr. (C U). 73

5.7 Tablas. (C D). 75

5.8 Curvas Esfuerzo - Deformación Unitaria. (C D). 78

5.9 Plano p - q. (C D). 81

5.10 Plano de Mohr. (C D). 86

6 Conclusiones. 88

7 Bibliografía. 90

1

Introducción.

El objetivo del presente trabajo fué el de analizar el comportamiento del concreto saturado en agua, utilizando los métodos de análisis de Mecánica de Suelos.

En la actualidad existe en México muy poca literatura acerca del análisis del comportamiento de probetas de concreto saturadas en agua haciendo uso de Cámaras Triaxiales. Una de las grandes ventajas del uso de dichas cámaras es que además de poder aplicar cargas verticales y laterales, (confinamiento) es posible medir la presión de poro en las pruebas no drenadas.

En esta Tesis se analizaron dos tipos de pruebas, la consolidada - drenada C D y la consolidada no drenada C U. A partir de estos dos tipos de pruebas se obtuvieron una serie de conclusiones interesantes acerca del comportamiento del concreto sumergido en agua.

Dicho trabajo de investigación requirió adaptarse a los recursos con los que se dispone, principalmente al equipo del laboratorio de Mecánica de Suelos de la Facultad de Ingeniería.

Debido a que un gran número de temas, tanto del área de Mecánica de Suelos como del área de Concretos están relacionados con esta investigación, se decidió tratar solo aquellos temas que tienen relación directa con las herramientas utilizadas en el desarrollo de este proyecto.

A continuación se describe muy brevemente el contenido de cada uno de los capítulos de que consta esta tesis. En el segundo capítulo se enumeran las Teorías de Resistencia relacionadas con la Mecánica de Suelos. En el tercer capítulo se describe la forma en la que se elaboraron las probetas de concreto. En el cuarto capítulo se hace una descripción detallada de los procedimientos que se siguieron para probar las probetas en la Cámara Triaxial en el Laboratorio de Mecánica de Suelos. En el quínto capítulo se presentan las tablas y gráficas que se obtuvieron de la parte experimental de dicho estudio. Y en el sexto y último capítulo se presentan las conclusiones respectivas a los resultados obtenidos en este trabajo de investigación.

2

Teorías de Resistencia.

2.1 Adecuación del tamaño y de f'c para realizar las pruebas con el equipo disponible.

Para el desarrollo de esta tesis hubiera sido deseable 1) utilizar cilindros de concreto de tamaño comercial (tamaño prototipo o estándar) de 15 x 30 cm. y 2) un f°c (resistencia a la compresión; kg/cm²) similar al utilizado en las grandes estructuras de concreto.

Debido a que no se contó con el equipo necesario para llevar a cabo las pruebas con dichas características, se tuvo que adaptar al que se tiene, y por lo tanto, reducir el tamaño de las probetas de concreto y el f'c. (En las cámaras triaxiales del Laboratorio de Geotecnia no se pueden probar probetas de 15 x 30 cm. ni aplicar las cargas tan elevadas necesarias para hacerlas fallar).

Con base en los estudios de O. Hernández del Instituto de Ingeniería y en los estudios de la Universidad de Illinois, E.U.A., se obtuvo la granulometría recomendada para el tamaño de las probetas que se requería.

4

El f'c necesario para el desarrollo de los experimentos de esta tesis no se utiliza en la industria de la construcción por ser demasiado bajo. Por lo tanto no existe información escrita a nivel comercial acerca de proporcionamiento de mezclas de concreto con un f'c de estas características. Fue necesario realizar pruebas de laboratorio ex profeso, apoyadas en los proporcionamientos ya existentes, para obtener un f'c adecuado para poder trabajar con el equipo de el Laboratorio de Geotecnia de la Facultad de Ingeniería, C.U.

Microconcreto.

En el campo de la Ingeniería, y en especial en el de la Ingeniería Civil es muy común el desarrollo y uso de modelos para la investigación en forma sistemática de fenómenos en las estructuras y en el diseño de las mismas.

Se tienen grandes ventajas al utilizar modelos estructurales en los campos de la investigación, diseño y construcción; pues a través de éstos, se obtienen datos acerca del comportamiento estructural y se pueden comprobar experimentalmente los resultados de los procedimientos analíticos.

Se ha denominado microconcretos a aquellos morteros utilizados para modelar estructuras de concreto y que reproducen el comportamiento del concreto (material original).

Componentes.

Cemento Portland - La Norma Mexicana D.G.N. c I-1955 lo define como el material que proviene de la pulverización del producto obtenido por fusión incipiente de materiales arcillosos y calizos que contengan óxidos de calcio, silicio, aluminio y fierro en cantidades convenientemente calculadas y sin más adición posterior que yeso sin calcinar y agua, así como otros materiales que no excedan del 1% en peso del total y que no sean nocivos para el comportamiento posterior del cemento.

Agregado- Material natural, natural procesado y artificial que se mezcla con un cementante hidráulico para hacer morteros o concretos.

Agregado fino- Material comúnmente conocido como arenas y que pasa por la criba NOM G 4.75 y cuya composición granulométrica varía dentro de los límites específicados en esta norma.

Agregado grueso- Material comúnmente conocido como grava y que es retenido por la criba NOM G 4.75 cuya composición granulométrica varía dentro de los límites especificados en esta norma.

El concreto hidráulico es una mezcla de agregados (arena y grava), cemento y agua. Una vez que el concreto ha fraguado, se transforma en un bloque monolítico cuyas características acción-respuesta están dadas por su curva esfuerzo-deformación unitaria.

Las propiedades de resistencia de un concreto están regidas principalmente por los siguientes tres parámetros básicos:

relaciones agua - cemento agregado - cemento

y velocidad de carga.

La relación agregado fino a grueso influye en menor grado.

Al reducir a escala la granulometría de los agregados del prototipo y el cemento, se obtiene un mortero que al reproducir sus características de resistencia y su relación $\sigma - \epsilon$ en compresión se le denomina comúnmente microconcreto.

O. Hernández en la primera parte de su estudio "Tecnología del Microconcreto" investigó a través de experimentación, los diversos proporcionamientos de los compuestos de un concreto (agregados, cemento y agua) de tal manera que se comportaran de manera similar a un concreto. Esto significa que la relación esfuerzo-deformación unitaria fuese similar a la del concreto, y también, que la relación existente entre la resistencia a tensión, a resistencia a compresión, resultara del mismo órden que la encontrada en los concretos prototipo.

En dicho estudio, O. Hdz. utilizó dos granulometrías prototipo diferentes, una de la F.I. de la U.N.A.M. y la otra de la Universidad de Illinois, E.U.A. . La primera se obtuvo tomando como base estudios de concretos a escala natural realizados en el laboratorio de dicha Facultad y la segunda, de estudios del mismo tipo (Figs. 1 y 2). Dicho proporcionamiento de agregados de las mezclas se hizo por peso.

En el presente estudio se decidió elaborar las probetas de microconcreto de I 1/8 " x 2 2/8" (3.18 cm x 6.35 cm) tamaño adecuado para trabajar con el equipo del Laboratorio de Suelos, y similares a su vez, a las utilizadas en el estudio de O. Hernández (1" x 2") (2.54 cm x 5.08 cm).

Los moldes se elaboraron con tubo de P.V.C. (Cloruro de Polivinilo) de dicho diámetro interior. No se recubrieron de ningún material adicional (grasas o silicones) para poder facilitar la saturación de agua de dichas probetas, por lo que se explicará más adelante.

A partir de las tablas de proporcionamientos de mezclas de concreto del libro " Costo y Tiempo en Edificación " se tabularon y graficaron los valores para los diferentes valores de f'c. (Revenimiento de 8 a 10 cm. y tamaño máximo de agregado de 3/4")

fc	Cemento	Arena	Grava	Agua
(kgf/cm²)	(t)	(m³)	(m³)	(m³)
100	0.260	0.500	0.680	0.195
150	0.323	0.480	0.670	0.210
200	0.355	0.470	0.650	0.195
250	0.423	0.465	0.640	0.190

A partir del Método de Extrapolación Lineal se obtuvieron valores de proporcionamiento de los agregados y del cemento, para valores de f'c menores a 100. Las gráficas se trazaron en papel logarítmico y semilogarítmico.

cemento	0.200 t	20 g
arena	0.530 m ³	53 cm ³
grava	0.700 m ³	70 cm ³
agua	0.182 m ³	18 cm ³

Proporcionamiento de una mezcla de concreto con un t'c = 50 kgf/cm²

	cemento	arena y grava	agua
f'c = 25 kgf/cm ²	34 gr.	246 cm ³	69.5 cm ³
f'c = 50 kgf/cm ²	40 gr.	246 cm ³	76 cm ³
f'c = 75 kgf/cm²	46 gr.	246 cm ³	69 cm ³

El procedimiento que se siguió para elaborar las mezclas de microconcreto fué el siguiente:

Se midió el volumen de agua a utilizar en una probeta, se pesaron los

agregados y el cemento y se depositaron en un matraz. Una vez que los agregados y el cemento fueron mezclados, se añadió el agua a dicha mezcla y esta a su vez fué mezclada. El mezclado se efectuó manualmente en todos los casos. El colado de las probetas se realizó conforme lo indica la N.O.M. (Norma Oficial Mexicana). Se utilizó la granulometría propuesta por la Universidad de Illinois, E.U.A., y cemento Portland Puzolana N.O.M. C - 2 340 - I.

número de	f'c	carga a	carga a	carga a	f'c
probeta	supuesto	7 dias	14 dias	28 dias	obtenido
	(kgf/cm²)	(kgf)	(kgf)	(kgf)	(kgf/cm²)
1	50	290	250	330	53.9
2	75	360	430	550	89.8
3	25	180	250	325	53.0
4	75	310	490	530	86.5
5	25	210	330	410	66.9
6	25	150	260	270	44.0

Una vez que quedó definido el proporcionamiento de agregados,

cemento y agua, se procedió a colar 30 probetas, en lotes de 5 probetas cada uno, para evitar de esta manera, el inicio del fraguado de la mezcla en el matraz.

Los resultados obtenidos con dichas probetas fueron los siguientes:

Tiempo	Carga de Falla		
7 dias	230 kgf		
14 dias	280 kgf		
28 dias	219 kgf		

con lo que se obtiene un f'c de 47 kgf/cm², con el siguiente proporcionamiento para cada cinco probetas :

> agregados (arena y grava) 293 gr. cemento 34 gr. 75 gr.

agua

2.2 Envolvente de resistencia de arena suelta, compacta y cementada.

La envolvente de resistencia de una arena suelta es una recta que pasa por el orígen y cuya ecuación es:

$$S = \sigma \tan \phi$$

φ, es el ángulo de fricción interna de la arena en estado suelto.

La envolvente de resistencia de una arena compacta es una curva de resistencia con concavidad hacia abajo. Se puede asociar a una recta secante cuya ecuación sería:

$$S = \sigma \tan \phi_{c}$$

 ϕ_c es el ángulo de fricción interna de la arena compacta. ϕ_c involucra, tanto efectos de fricción mecánica como el trabazón estructural por la resistencia de los granos, es por esta razón que $\phi_c > \phi_s$.

El valor de ϕ_c disminuye al incrementarse los niveles de esfuerzos, a partir de presiones nulas.

En presiones elevadas, el valor de ϕ_c se asemeja al de ϕ_s ; ($\phi_c \doteq \phi_s$) y el efecto de la trabazón estructural no es significativo en comparación al de fricción mecánica.

La envolvente de resistencia de una arena cementada, es una recta

cuya ecuación es;

$$S = C + \sigma \tan \phi$$

donde C y ϕ son parámetros de cálculo que varían con el grado de esfuerzos aplicados y con los intervalos de presiones utilizados. (Fig. 3)

Para estos tres casos, se consideró la arena totalmente seca.

2.3 Análisis de esfuerzos y presiones del agua en suelos.

La relación de áreas de contacto entre dos partículas sólidas se puede definir como:

$$a = \frac{A_{\mu}}{A}$$

donde "As" es el área de la superficie plana representativa de las áreas de contacto en toda la masa de suelo.

"A" es el área tributaria correspondiente a esas dos partículas y también representativa de la situación de las partículas en toda la masa.

Figura 4 Análisis del equilibrio de fuerzas de dos partículas de suelo sumergidas en agua. Los esfuerzos normales y cortantes se definen como:

$$\sigma = \frac{P}{A}$$

$$\tau = \frac{T}{A}$$

"P" es la fuerza total normal al plano de contacto y "T" es la cortante total. Los esfuerzos en la superficie interfacial son diferentes a los anteriores y, de acuerdo con un criterio semejante se definen como:

$$\sigma = \frac{P_{i}}{A_{i}}$$

"Ps" y "Ts" son las fuerzas normal y tangencial actuantes entre las dos partículas sólidas.

 $\tau_s = \frac{T_s}{A}$

Haciendo el análisis de equilibrio en la dirección normal al plano de contacto se obtiene:

$$P=P_{t}+(A-A_{t})U_{n}$$

donde "Un" es la presión en el agua intersticial.

(1)

(2)

(3)

Dividiendo entre "A" y sustituyendo las ecuaciones anteriores se

obtiene:

$$\frac{\mathbf{I}}{\mathbf{A}} = \frac{\mathbf{I}}{\mathbf{A}} + \left(\frac{\mathbf{A}}{\mathbf{A}} - \frac{\mathbf{I}}{\mathbf{A}}\right)\mathbf{U}_{n}$$
$$\frac{\mathbf{P}}{\mathbf{A}} = \frac{\mathbf{P}_{n}\mathbf{A}_{n}}{\mathbf{A}\mathbf{A}_{n}} + \left(\frac{\mathbf{A}}{\mathbf{A}} - \frac{\mathbf{A}_{n}}{\mathbf{A}}\right)\mathbf{U}_{n}$$

Se define a la presión intergranular como:

Desarrollando la ecuación (3) y la (5)

$$P=P_+(A-A_-)U_-$$

$$\frac{\mathbf{P}}{\mathbf{A}} = \frac{\mathbf{P}_s}{\mathbf{A}} + (\frac{\mathbf{A}}{\mathbf{A}} - \frac{\mathbf{A}_s}{\mathbf{A}})\mathbf{U}_s$$

$$\sigma = \sigma_{a} + (1-a)U_{a}$$

(4)

(5)

(6)

T=T,

Ατ =Α_sτ .

(7)

En la práctica no puede obtenerse en forma simple el valor de "As", como consecuencia, el valor de "a" que aparece en la ecuación (6) no suele poder calcularse numéricamente en la práctica. Debido a que en suelos dicho valor es sumamente pequeño, y en la mayoría de los casos despreciable, la ecuación (6) se reduce a:

 $\tau = a\tau$

 $\sigma = \sigma_{1} + U_{n}$

(8)

La ecuación (6) adquiere importancia cuando se estudia la repartición de presiones en materiales porosos, tales como el CONCRETO y otros tipos de rocas.

La ecuación (8) que deriva de la ecuación (6) es fundamental en

la Mecánica de Suelos.

"o" es la presión normal total y es la carga total aplicada al suelo en un nivel dado entre el área total de la masa del mismo.

"Un" es la presión del agua intersticial conocida tradicionalmente en la Mecánica de Suelos como "presión neutral".

" σ_{g} " es la presión intergranular obtenida del cociente entre la fuerza que soporta la estructura del suelo y el área total de la masa de suelo.

En el estudio del comportamiento mecánico de los suelos, se define a la presión efectiva o esfuerzo efectivo a aquellos esfuerzos normales que gobiernan los cambios volumétricos o la resistencia de un suelo (c²).

Se ha considerado tradicionalmente a la presión intergranular como la efectiva para efectos de cálculo y análisis teóricos.

 $\sigma = \sigma' + U_n$ $\sigma' = \sigma - U_n$

(9)

Esta hipótesis ha resultado en suelos altamente satisfactoria y se ha comprobado tanto experimentalmente como teóricamente.

En otros materiales diferentes al suelo tales como el CONCRETO o la roca, se han encontrado expresiones más complicadas para el esfuerzo efectivo, que se acercan más al comportamiento mecánico de esos materiales, que la consideración del esfuerzo intergranular como efectivo. Dichas ecuaciones son para el esfuerzo cortante: $\sigma' = \sigma - (1 - \frac{\mathbf{a} \cdot \tan \Psi}{\tan \phi'}) \mathbf{U}_{w}$

(10)

20

donde " ψ " es el ángulo de fricción intrínseca y " ϕ " es el ángulo de resistencia al cortante.

Para el cambio de volumen:

$$\sigma' = \sigma - (1 - \frac{Cs}{C})U_{\mu}$$

(11)

donde "Cs" es la compresibilidad de la sustancia sólida comprimiendo las partículas, y "C" es la compresibilidad del material poroso.

Para suelos, el cociente de " tan / tan ϕ ^{*}" se encuentra entre 0.15 y 0.30 donde "a" es un valor muy pequeño cuando se aplican las presiones normalmente encontradas en problemas de ingeniería o de geología. También, bajo presiones pequeñas, el cociente de " Cs / C " es extremadamente pequeño. Por lo tanto para suelos completamente saturados, las ecuaciones (10) y (11) degeneran en la forma:

(12)

que es la ecuación del Dr. Terzaghi para esfuerzos efectivos.

Esta hipótesis ha resultado en suelos altamente satisfactoria y se ha comprobado tanto experimentalmente como teóricamente.

En otros materiales diferentes al suelo tales como el CONCRETO

o la roca, se han encontrado expresiones más complicadas para el esfuerzo efectivo, que se acercan más al comportamiento mecánico de esos materiales, que la consideración del esfuerzo intergranular como efectivo.

En el caso de los suelos únicamente, por ser "a" despreciable, las expresiones para el esfuerzo efectivo coinciden con la expresión sencilla del esfuerzo intergranular.

2.4 Influencia de los poros en materiales porosos.

El movimiento del agua dentro de materiales porosos empobrece el medio cementante.

Las rocas sedimentarias, los morteros y las argamasas pierden un porcentaje de sus adhesivos, los cuales al disolverse con el agua, son transportados a la superfície. Durante el proceso de evaporación del agua, se precipitan en el siguíente órden:

Carbonato de calcio, carbonato de magnesio, sulfato de calcio y diversos cloruros. Consecuentemente, cerca de la superficie, los poros se van llenando gradualmente a expensas del debilitamiento interno, y es así como se forma una costra que contiene material calcáreo, yeso, cloruros, etcétera.

Dicha costra es solamente la capa superior de una corrosión estructurada en las siguientes zonas desde la superficie hasta el interior de la estructura.

- 1.- Costra
- 2.- Estrato de adhesivo empobrecido (constituido de varios subestratos).
- 3.- Núcleo sólido del material.

3

Preparación de Probetas y Equipo.

3.1 Cabeceado de las probetas.

Se debía decidir cuál era el producto más adecuado para el cabeceado de las probetas de este estudio. Dicho material debía ser resistente al agua y no perder su adherencia al concreto en presencia de la misma. El material comúnmente utilizado para cabecear probetas de concreto "en seco" es el azufre.

Se usó la preparación de azufre empleada comúnmente para el cabeceado de probetas de concreto para pruebas de resistencia a la compresión.

Se realizaron pruebas de resistencia a la solubilidad de la preparación de azufre en agua y de adherencia entre dicha preparación y el concreto en un medio acuoso.

Las pruebas demostraron que esta preparación no se desgastaba fácilmente y que la adherencia entre dicha preparación y el

concreto no variaba en un medio acuoso.

Las probetas de esta tesis fueron cabeceadas de la misma manera que los cilindros de concreto para pruebas de resistencia a la compresión.

En este caso por tratarse de probetas muy pequeñas, fué necesario diseñar un molde especial torneado para el cabeceado y armar una estructura de acero para garantizar la perpendicularidad entre la superficie de la cabeza de azufre y el eje longitudinal de la probeta al momento del vaciado del azufre. (Fig. 5).

Posteriormente se limaron los bordes de la cabeza para evitar que bordes con filo rasgaran la membrana de látex.

Para lograr la saturación de las probetas y poder garantizarla, fué necesario además de sumergirlas en agua, aplicarles vacío. Se colocaron todas las probetas en un desecador de cristal lleno de agua. A éste se conectó la manguera de un tanque metálico al cual se le extrajo el aire de su interior con ayuda de una bomba de vacío. Una vez que la bomba de vacío había extraído todo el aire que su capacidad le permitía, se cerraban las válvulas de dicho tanque. De esta manera se iba eliminando el aire contenido dentro de las probetas. Este proceso se repetió cada tercer día. Bajo estas condiciones se consideró que con 15 días de desaireado se tendría un nivel aceptable de saturación. Al alcanzar este nivel, se comenzaron a realizar las pruebas.

Figura 5 Proyección en perfil y en planta de la estructura y del molde para cabeceado de probetas y probeta terminada.

3.2 Montaje de las probetas en la cámara triaxial.

La cámara triaxial que se utilizó en la realización de esta tesis está diseñada para llevar a cabo pruebas con probetas de suelos. Por esta razón fué necesario hacerle algunas modificaciones para probar en ésta probetas de concreto. (Fig. 6)

I.- Se cambiaron las cabezas. La inferior que es de piedra porosa se sustituyó por una de bronce. De igual manera la superior que es de acrílico, por otra también de bronce. Este cambio se hizo debido a que se pensó que la piedra porosa y el acrílico no resistirían las cargas a las que se sometieron las probetas de concreto.

2.- Se colocaron tiras de papel filtro entre la probeta y la membrana de látex para permitir el drenaje de la misma debido a que la cabeza utilizada no es permeable. Dichas tiras de papel filtro fueron de 6 x 1 cms., y se colocaron 3 equidistantes en cada probeta.

Para obtener resultados confiables, se utilizaron 2 membranas en cada probeta, con el fin de garantizar la impermeabilidad.

Para llevar a cabo las pruebas C U se utilizó una cámara triaxial con características similares a las de la anterior, pero que contaba además con los bloques desaireadores para la conección de los transductores y el equipo medidor de presión de poro. Antes de realizar dicha prueba fué necesario desairear todos los conductos de la cámara haciendo varias corridas con agua destilada y previamente desaireada. Para desairear el agua, ésta se deposita en un matráz de bola y se pone en baño María, al mismo tiempo se le aplica vacío dejando pasar cierto tiempo para garantizar un desaireado adecuado.

Figura 6 Corte longitudinal de una cámara triaxial con probeta en su interior.

3.3 Calibración del medidor de presión de poro. Ecuaciones y operaciones.

 $p = \gamma h$ [KPa], [KN m / m³]

 $h = p/\gamma$ [m]

(1) p = 98.0665 [KPa], [KN m / m³]

 $\gamma = \rho_{Hg} g_{c u}$ [KN/m³] [mg/m³] [m/s²]

constantes

(II) $\gamma = 132.4679936 \, [KN/m^3]$

h = p / γ = 98.0665 [KPa], [KN/m²] / 132.4679936 [KN/m³] h = 0.7403033543 m de Hg

 $h = 740.3033543 \text{ mm de Hg.} = 1 \text{ kgf/cm}^2$

* _{c.u.} = Ciudad Universitaria

- 3.4 Procedimiento para la operación y calibración del medidor de presión de poro.
- I.- Se conecta el sensor de presión # 1 en el socket del canal # 1 del medidor de presión de poro.
- 2.- Se coloca el selector de canales en el canal # 1.
- 3.- Se aplica la presión atmosférica en el sensor. (condición cero)
- 4.- Con ayuda de un desarmador se gira el tornillo "zero" correspondiente al canal # 1 hasta que aparezcan ceros (0.00) en la pantalla digital.
- 5.- Se aplica la presión máxima deseada en el sensor de presión # 1, y se permite al sensor de presión medirla. (No mayor de 150 psi ó 10 kgf/cm²).

Dicha presión deberá ser medida por separado en otro equipo de alta precisión.

- 6.- Se ajusta el tornillo "span" hasta que la lectura del panel digital indique la presión deseada.
- 7.- Se repiten los pasos 3 a 6 por lo menos una vez más o las veces que sean necesarias hasta obtener la calibración deseada.
- 8.- Cuando el proceso de calibración ha sido satisfactoriamente completado, se aplica la presión máxima deseada y se permite que ésta sea medida por el sensor de presión. Posteriormente se presiona el botón "Cal", de esta manera dicha lectura será característica de este sensor en particular,

y será grabada para futuras referencias.

 * Este proceso se repetirá de igual manera para los canales 2 y 3 en caso de ser utilizados.

3.5 Procedimiento para aplicar el confinamiento en la cámara triaxial.

- I.- Se cierran las válvulas 1,3 y 4. (Fig. 7)
- 2.- Se incrementa la presión del tanque 5 a 2 kgf/cm².
- 3.- Se desatornilla el pivote 7 y se retira.
- 4.- Se cierra la válvula 6.
- 5.- Se abren las válvulas 3 y 4.
- 6.- Se cierra la válvula 4 cuando el nivel del vaso de policarbonato alcance el nivel medio de la probeta de concreto dentro de la cámara triaxial.
- 7.- Se abre la válvula 6 para llenar la cámara triaxial y se cierra cuando ésta esté completamente llena.
- 8.- Se atornilla el pivote 7.
- 9.- Se cierra la válvula 3.
- 10.- Se incrementa la presión en el tanque 5 hasta alcanzar una presión un poco mayor a la deseada (manómetro 8).
- 11.- Se abre la válvula 1.
- 12.- Se checa la lectura anterior con la del manómetro de mercurio que es más preciso y se decrementa la presión con el pivote 5 hasta que se alcance la presión deseada.
- 13.- Se abren las valvulas 4 y 6 para que se aplique el confinamiento a la probeta.
3.6 Procedimiento para eliminar la presión de confinamiento en la cámara triaxial y regresar el líquido confinante al tanque.

1.- Se elimina la presión en el tanque.

2.- Se desatornilla el pivote 5 y se retira.

3.- Se abre la válvula 3.

4.- Se desatornilla el pivote 7 y se retira.

5.- Se espera a que el líquido de la cámara triaxial baje por gravedad.

4

Pruebas de Laboratorio.

4.1 Pruebas empleadas para evaluar la resistencia de los suelos.

Las pruebas más comunes para evaluar la resistencia de los suelos

son:

En el laboratorio:

- Triaxiales
- De Corte Directo

y para programar las dos anteriores:

- Del Torcómetro de Boisillo

- Del Penetrómetro de Bolsillo

En el Campo:

- De la Veleta
- De Penetración Estándar
- Del Cono Holandés

4.2 Pruebas triaxiales.

a) Clasificación de acuerdo a como se aplican los esfuerzos:

Pruebas de Compresión ($\sigma_2 = \sigma_3$)

opciones:

- aumentando el esfuerzo axial.
- disminuyendo esfuerzos radiales.
- aumentando esfuerzos axiales y disminuyendo esfuerzos

radiales, de tal manera que : $\triangle \sigma_{ect} = 0$

 $\Delta \sigma_{oct} = \frac{\Delta \sigma_1 + \Delta \sigma_2 + \Delta \sigma_3}{2}$

Pruebas de extensión

opciones:

- disminuyendo el esfuerzo axial
- aumentando esfuerzos radiales
- disminuyendo esfuerzos axiales y aumentando esfuerzos

radiales, de tal modo que: $\triangle \sigma_{ost} = 0$

b) Clasificación de acuerdo a las condiciones de drenaje.

37

1º Etapa	no consolidada
2" Etapa	no drenada

Concepto de Resistencia.

Figura 8

A continuación se presentan las ecuaciones que derivan de las

figuras anteriores (Figs. 8, 9 y 10).

$$F_1 = \mu N$$

$$F_{t max} = \mu N$$

$$\mu = \tan \phi$$

$$F_{t max} = N \tan \phi$$

$$\tau = \frac{F_f}{A}$$

 $\sigma = \frac{N}{A}$

 $\frac{F_{fm \Delta x}}{A} = \frac{N}{A} \tan \phi$

 $\tau_{max} = \sigma \tan \phi$

S=T máx

Ley de Resistencia

8-σtanφ

Las pruebas triaxiales realizadas en la cámara estándar cumplen estas

tres condiciones:

(extensión y compresión respectivamente).

σ₁=σ₂>σ₃

 $\sigma_1^2 \sigma_2 = \sigma_3$

Para el desarrollo de esta Tesis se realizaron únicamente pruebas triaxiales de compresión aumentando el esfuerzo axial. En la Figura 11 se presenta una probeta sujeta a esfuerzos de compresión dentro de una cámara triaxial. Nótese que σ_2 y σ_3 son esfuerzos ortogonales.

A continuación se presentan un ejemplo de prueba triaxial C D y uno de prueba triaxial C U únicamente, por ser las que se utilizaron en el desarrollo de esta tesis. Los esquemas que se muestran respresentan cuadrados diferenciales en análisis plano de esfuerzos.

Ejemplo de Prueba Triaxial C D

σ

Δσ,

I^a Etapa

2" Etapa

Compresión aumentando el esfuerzo axial

 $\Delta \sigma_{\mathbf{a}}$ $U = \mathbf{0} \quad (\text{presión del agua})$

Esfuerzos totales

Estuerzos efectivos

σ'.

(U = 0)

1* Etapa

Compresión aumentando el esfuerzo axial

n

A A

2" Etapa

U ≠ 0

Esfuerzos totales

Esfuerzos efectivos

 $\sigma'_{1} = \sigma_{c} + \Delta \sigma_{s} - U$ $\sigma'_{3} = \sigma_{c} - U$ $\sigma'_{1} - \sigma'_{3} = \sigma_{c} + \Delta \sigma_{s} - U - \sigma_{c} + U$ $\therefore \Delta \sigma_{s} = \sigma_{1} - \sigma_{3}$

4.3 Representación gráfica.

Las dos formas comúnmente utilizadas para representar los esfuerzos totales y efectivos son el Plano p - q y el Plano de Mohr.

El punto de coordenadas p,q se obtiene con los esfuerzos mayor y menor (σ_1 y σ_3).

$$p = \frac{(\sigma_1 + \sigma_3)}{2}$$
$$q = \frac{(\sigma_1 - \sigma_3)}{2}$$

La envolvente de resistencia en el Plano p - q pasa por todos los puntos p,q, definiendo de esta manera el valor de "a" que es la intersección de dicha recta con el eje de las ordenadas. Al ángulo formado entre la envolvente y el eje de las absizas se le denomina «. (Figs. 12 y 14).

El círculo de Mohr se obtiene trazando una circunferencia con:

centro =
$$\frac{(\sigma_1 + \sigma_3)}{2}$$

radio -
$$\frac{(\sigma_1 - \sigma_3)}{2}$$

La envolvente de resistencia en el Plano de Mohr pasa tangente a todas las circunferencias (círculos de Mohr), definiendo de esta manera el valor de "c" que es la intersección de dicha recta con el eje de las ordenadas. Al ángulo formado entre la envolvente y el eje de las absizas se le denomina Ø. (Figs. 13 y 14).

q

.

P

7, q ~ đ С σ, ρ Figura 14 Sobreposición de los Planos p - q y de Mohr y parámetros asociados.

5

Resultados y Gráficas.

5.1 Corrección de áreas.

En Mecánica de Suelos, al probar probetas de suelos en la Cámara Triaxial, es necesario hacer correcciones del área transversal de la probeta para obtener los esfuerzos desviadores reales. Esto es debido a que al aplicar las cargas, dichas probetas se deforman tanto longitudinalmente como transversalmente y al momento de la falla el área transversal es mayor que al inicio de la prueba, cambiando el valor del esfuerzo desviador.

En el caso del concreto, esta deformación es despreciable, pues la falla se dá antes de que las deformaciones puedan considerarse significativas. A continuación se muestra esta corrección en la probeta 6 (Tabla 1). En ella se observa que el esfuerzo desviador de falla es de 40.37 kgf/cm² y sin hacer dicha corrección el esfuerzo resulta ser de 40.78 kgf/cm². Por esta razón, dicha corrección no se aplicó en el análisis de las probetas porque se aceptó considerarla despreciable.

Deformedan	Ē	Area Corregita	Darga	σ
mm		am2	Kgt	Kgf/cm2
0	0	627	0	D
004	000069991251	627439152513	159	253411025971
0065	000113735783	62771353636	319	506600191722
01	000174978128	62909909993	47.7	759434376923
D.15	000262457192	62965	635	10.1169172035
021	000367454068	629312434141	79.82	12663669175
023	000402449694	62953377899	95.4	151540770322
6250	000442694963	629799039034	1113	176726125741
0273	0.00477690299	63009494172	127.52	202409648076
029	00050743657	630197854379	1431	22,7071544297
031	000642432196	630419599974	159.32	252720559419
033	0.00577427822	530641499472	17395	2756302461
035	000612423447	6306376398	19334	30.6469804537
0.4	00000099912511	63141938326	_ 20702	3278644993994
0.43	0.00752405949	631753349788	22196	351339548732
D.47	0006223972	532199188426	23652	37.776068741
057	000997375328	633319542948	255.67	40.3700175234

Tabla 1

5.2 Tablas. (C U).

A continuación se anexan las tablas que presentan los resultados obtenidos en las pruebas C U de compresión aumentando el esfuerzo axial.

En la primera columna intitulada "Lectura Anillo", se muestra la lectura del micrómetro del anillo que mide las cargas aplicadas. Cada unidad de dicho anillo equivale a 0.318 kgf.

En la segunda columna, "Confinamiento", se muestra el confinamiento que se le aplicó a la probeta, usando como líquido confinante una mezcla de agua, alcohol y glicerina. Dicho confinamiento se mantuvo constante en cada prueba.

En la tercera columna, "Esfuerzos", se indican los esfuerzos obtenidos al dividir la carga entre el área transversal de la probeta. (5.715 cm² para todas las probetas).

En la cuarta columna, " σ_1 ", se obtiene el esfuerzo principal mayor.

 $\sigma_1 = \sigma_{\text{confinamiento}} + \Delta \sigma_a = \sigma_c + \Delta \sigma_a$

En la quinta columna, " σ_3 ", se obtiene el esfuerzo principal menor.

 $\sigma_3 = \sigma_{\text{continamianto}}$

En la sexta columna, "Presión de Poro", se muestra la lectura que se obtuvo directamente de la pantalla del medidor de presión de poro, En la séptima columna "ơ'," se obtiene el esfuerzo efectivo principal mayor.

$$\sigma'_1 = \sigma_{\text{confinamiento}} + \Delta \sigma_a - U = \sigma_1 - U$$

En la octava columna " σ'_3 " se obtiene el esfuerzo efectivo principal menor.

$$\sigma'_3 = \sigma_{\text{confinamiento}} - U = \sigma_3 - U$$

En las tablas de la 2 a la 5 se muestran los datos obtenidos durante las pruebas de las probetas 6, 8, 9, y 10.

Lectura Anillo	Confinamiento	Carga aplicada	Estuerzas	σī	σ₃	Presión de Poro	σ	σs
unidades	lgf/cm2	kgf	kgrl/cm2	lagt/cm2	logf/cm2	kgf/cm2	logf/cm2	lagt/cm2
0	0.4000	0.0000	0.0000	0.4000	0.4000	0.0000	0.4000	0.4000
50	0.4000	15.9000	2.5359	2.9359	0.4000	0.0300	2.9059	0.3700
100	0.4000	31.8000	5.0718	5.4718	0.4000	0.0500	5.4218	0.3500
150	0.4000	47.7000	7.6077	8.0077	0.4000	0.0600	7.9477	0.3400
200	0.4000	63.6000	10.1435	10.5435	0.4000	0.0700	10.4735	0.3300
251	0.4000	79.8180	12.7301	13.1301	0.4000	0.0800	13.0501	0.3200
300	0.4000	95.4000	15.2153	15.6153	0.4000	0.0800	15.5353	0.3200
350	0.4000	111.3000	17.7512	18.1512	0.4000	0.0900	18.0612	0.3100
401	0.4000	127.5180	20.3378	20,7378	0.4000	0.0900	20.6478	0.3100
450	0.4000	143.1000	22.8230	23.2230	0.4000	0.1000	23.1230	0.3000
501	0.4000	159.3180	25,4096	25.8096	0.4000	0.1000	25.7096	0.3000
547	0.4000	173.9460	27.7426	28.1426	0.4000	0.1100	28.0326	0.2900
608	0.4000	193.3440	30.8364	31.2364	0.4000	0.1000	31.1364	0.3000
651	0.4000	207.0180	33.0172	33.4172	0.4000	0.1000	33,3172	0.3000
698	0.4000 (221.9640	35.4010	35.8010	0.4000	0.1000	35.7010	0.3000
751	0.4000	238.8180	38.0890	38.4890	0.4000	0.0900	38.3990	0.3100
804	0.4000	255.6720	40,7770	41.1770	0.4000	0.0900	41.0870	0.3100
850	0.4000	270.3000	43.1100	43.5100	0.4000	0.0500	43.4600	0.3500

Tabla 2

ų

Lectura Anillo	Confinamiento	Carga aplicada	Esfuerzos	ភ	σ₃	Presión de Poro	σ,	03
unitades	lagf/cm2	Ъ	lgf/cm2	lagf/cm2	hpf/cm2	lng/cm2	lagt/cm2	ligt/ccc2
0	1.0000	0.0000	0.0000	1.0000	1.0000	0.0000	1.0000	1.0000
50	1.0000	15.9000	2.5359	3.5359	1.0000	0.0500	3.4859	0.9500
100	1.0000	31.8000	5.0718	6.0718	1.0000	0.1000	5.9718	0.9000
150	1.0000	47.7000	7.6077	8.6077	1.0000	0.1200	8.4877	0.8800
200	1.0000	63.6000	10.1435	11.1435	1.0000	0.1400	11.0035	0.8600
253	1.0000	80.4540	12.8316	13.8316	1.0000	0.1700	13.6616	0.8300
300	1.0000	95.4000	15.2153	16.2153	1.0000	0.1700	16.0453	0.8300
350	1.0000	111.3000	17.7512	18.7512	1.0000	0.1800	18.5712	0.8200
400	1.0000	127.2000	20.2871	21.2871	1.0000	0.1800	21.1071	0.8200
450	1.0000	143.1000	22.8230	23.8230	1.0000	0.1800	23.6430	0.8200
500	1.0000	159.0000	25.3589	26.3589	1.0000	0.1900	26.1689	0.8100
550	1.0000	174.9000	27.8947	28.8947	1.0000	0.1900_	28.7047	0.8100
600	1.0000	190.8000	30.4306	31.4306	i.0000	0.2000	31.2306	0.8000
625	1.0000	198,7500	31,6986	32,6986	1.0000	0.2000	32.4986	0.8000
650	1.0000	206.7000	32.9665	33.9665	1.0000	0.2000	33.7665	0.8000
678	1.0000	214.9680	34.2852	35.2852	1.0000	0.2000	35.0852	0.8000
700	1.0000	222.6000	35.5024	36.5024	1.0000	0.2100_	36.2924	0.7900
725	1.0000	230.5500	36.7703	37.7703	1.0000	0.2100	37.5603	0.7900
750	1.0000	238.5000	38.0383	39.0383	1.0000	0.2100	38.8283	0.7900
783	1.0000	248.9940	39.7120	40.7120	1.0000	0.2100	40.5020	0.7900
800	1.0000	254.4000	40.5742	41.5742	1.0000	0.2100	41.3642	0.7900
825	1.0000	262.3500	41.8421	42.8421	1.0000	0.2100	42.6321	0.7900
850	1.0000	270.3000	43.1100	44.1100	1.0000	0.2100	43.9000	0.7900
874	1.0000	277.9320	44.3273	45.3273	1.0000	0.2100	45.1173	0.7900
900	1.0000	286,2000	45.6459	48.6459	1.0000	0.2100	46.4359	0.7900
925	1.0000	294.1500	48.9139	47.9139	1.0000	0.2100	47.7039	0.7900
950	1.0000	302.1000	48.1018	49.1818	1.0000	0.2100	48.9718	0.7900
975	1.0000	310.0500	49.4498	50.4498	1.0000	0.2000	50.2498	0.8000
1000	1.0000	318.0000	50.7177	51.7177	1.0000	0.1700	51.5477	0.8300
1025	1.0000	325.9500	51.9856	52.9856	1.0000	0.1200	52.8656	0.8800
1050	1.0000	333.9000	53.2536	54.2536	1.0000	0.0500	54.2036	0.9500

Lecture Anillo	Confinamiento	Querge aplicade	Laforme	0,	(T)	Presión de Poro	σ.	σs
unitedes	lag/cm2 ·	ing	lgf/cm2	bg/cm2	lagt/cm2	logf/ccc2	lgf/cm2	liget/em2
		0.0000						
0	1.5000	0.0000	0.0000	1.5000	1.5000	0.0000	1.5000	1.5000
100	1.5000	31,8000	5.0718	6.5718	1.5000	0.0400	6.5318	1.4600
200	1.5000	63,6000	10.1435	11.6435	1.5000	0.0600	11.5835	1.4400
300	1.5000	95.4000	15.2153	16.7153	1.5000	0.0700	16.6453	1.4300
400	1.5000	127.2000	20.2871	21.7871	1.5000	0.0800	21.7071	1.4200
500	1.5000	159.0000	25.3589	26.8589	1.5000	0.0800	26.7789	1.4200
600	1.5000	190.8000	30.4306	31.9306	1.5000	0.0900	31.8406	1.4100
700	1.5000	222.6000	35.5024	37.0024	1.5000	0.1000	36.9024	1.4000
800	1.5000	254,4000	40.5742	42.0742	1.5000	0.1000	41.9742	1.4000
900	1.5000	286,2000	45.6459	47.1459	1.5000	0.1100	47.0359	1.3900
950	1.5000	302.1000	48.1818	49.6818	1.5000	0.1100	49.5718	1.3900
1000	1.5000	318,0000	50.7177	52.2177	1.5000	D.1100	52.1077	1.3900
1050	1.5000	333.9000	53.2536	54.7536	1.5000	0.1200	54.6336	1.3800
1100	1.5000	349.8000	55.7895	57.2895	1.5000	0.1200	57.1695	1.3800
1125	1.5000	357.7500	57.0574	58.5574	1.5000	0.1200	58.4374	1.3800
1150	1.5000	365.7000	58.3254	59.8254	1.5000	0.1100	59.7154	1.3900
1175	1.5000	373.6500	59.5933	61.0933	1.5000	0.0900	61.0033	1.4100
1175	1.5000	373.6500	59.5933	61.0933	1.5000	0.0800	61.0133	1.4200
1175	1.5000	373.6500	59.5933	61.0933	1.5000	0.0600	61.0333	1.4400
1175	1.5000	373.6500	59.5933	61.0933	1.5000	0.0600	61.0333	1.4400
1175	1.5000	373.6500	59,5933	61.0933	1.5000	0.0500	61.0433	1.4500

Tabla 4

PROBETA # 10

lecture Anillo	Confinamiento	Garge aplicada	Enforme	07	03	Presión de Poro	<u> </u>	
unidades	lagt/cm2	lagt	hgf/cm2	lagt/cm2	logf/cm2	http://cm2	lag1/cm2	lgg/cm2
				l				
0	2.0000	0.0000	0.0000	2.0000	2.0000	0.0000	2.0000	2.0000
100	2.0000	31.8000	5.0718	7.0718	2.0000	0.0300	7.0418	1.9700
200	2.0000	63.6000	10.1435	12.1435	2.0000	0.0500	12.0935	1.9500
300	2.0000	95.4000	15,2153	17.2153	2.0000	0.0800	17.1353	1,9200
400	2.0000	127.2000	20.2871	22.2871	2.0000	0,1000	22.1871	1,9000
500	2.0000	159.0000	25,3589	27.3589	2.0000	0.1100	27.2489	1.8900
600	2.0000	190.8000	30,4306	32.4306	2.0000	0.1200	32.3106	1.8800
700	2.0000	222.6000	35.5024	37.5024	2.0000	0.1300	37.3724	1.8700
800	2.0000	254.4000	40.5742	42.5742	2.0000	0.1400	42.4342	1,8600
900	2.0000	286.2000	45.6459	47.8459	2.0000	0.1500	47.4959	1.8500
950	2.0000	302.1000	48.1818	50.1818	2.0000	0.1500	50.0318	1.8500
1000	2.0000	318.0000	50.7177	52,7177	2.0000 (0.1500	52.5677	1.8500
1050	2.0000	333.9000	53.2536	55.2536	2.0000	0.1600	55.0936	1.8400
1100	2.0000	349.8000	55.7895	57.7895	2.0000	0.1600	57.6295	1.8400
1127	2.0000	358.3860	57.1589	59.1589	2.0000	0.1700	58.9889	1.8300
1150	2.0000	365.7000	58.3254	60.3254	2,0000	0.1800	60.1454	1.8200
1175	2.0000	373.6500	59.5933	61.5933	2.0000	0.1800	61.4133	1.8200
1200	2.0000	381.6000	60.8612	62.8612	2.0000	0.1800	62.6812	1.8200
1225	2.0000	389.5500	62.1292	64.1292	2.0000	0.1800	63.9492	1.8200
1250	2.0000	397.5000	63.3971	65.3971	2.0000	0.1800	65.2171	1.8200
1275	2.0000	405.4500	64.8851	36.6651	2.0000	0.1800	66.4851	1.8200
1300	2.0000	413.4000	65.9330	67.9330	2.0000	0.1800	67.7530	1.8200
1325	2.0000	421.3500	67.2010	69.2010	2.0000	0.1800	89.0210	1.8200
1351	2.0000	429.6180	68.5196	70.5196	2.0000	0.1800	70.3396	1.8200
1376	2.0000	437.5680	69.7876	71.7876	2.0000	0.1800	71.6076	1.8200
1400	2.0000	445.2000	71.0048	73.0048	2.0000	0.1800	72.8248	1.8200
1425	2.0000	453.1500	72,2727	74.2727	2.0000	0.1500	74,1227	1.8500
1425	2.0000	453.1500	72.2727	74.2727	2.0000	0.1400	74.1327	1.8600
1425	2.0000	453.1500	72.2727	74.2727	2.0000	0.1300	74.1427	1.8700
1425	2.0000	453.1500	72.2727	74.2727	2.0000	0.1200	74.1527	1.8800
1425	2.0000	453.1500	72.2727	74.2727	2.0000	0.1100	74.1627	1.8900
1425	2.0000	453.1500	72.2727	74.2727	2.0000	0.1000	74.1727	1,9000
1425	2.0000	453.1500	72.2727	74.2727	2.0000	0.0800	74.1927	1.9200

5.3 Curvas Esfuerzo - Deformación Unitaria. (C U).

Las siguientes 2 gráficas (Figs. 15 y 16) muestran las curvas esfuerzo - deformación unitaria de las probetas 6 y 8. Se puede observar que el Módulo de Elasticidad ó de Young varía entre 7369 kgf/cm² y 10000 kgf/cm². ($E = Tan \propto = m$).

Las curvas mostradas se presentan como típicas de las obtenidas en este tipo de prueba (C U).

5.4 Curvas Esfuerzo Desviador - Presión de Poro Normalizadas. (C U).

La siguiente gráfica muestra la curva Esfuerzo Desviador -Presión de Poro (σ - U), que al normalizaria se convierte en adimensional. (Fig. 17).

$$\frac{(\sigma_1 - \sigma_3)}{(\sigma_c)} - \frac{U}{\sigma_c}$$

Se observa claramente como decae la presión de poro poco antes de llegar a la falla, bajo la condición de permitir la estabilización de la presión de poro antes de la aplicación de la siguiente carga.

5.5 Piano p - q . (C U).

Probeta # 6

63

σ_1	=	43.510047847	kgf/cm²
σ_{3}	=	0.4	kgf/cm²
р	=	21.95502393	kgf/cm ²
q	Ħ	21.55502393	kgf/cm ²
σ',	=	43.460047847	kgf/cm ²
σ'3	F	0.35	kgf/cm²
р	=	21.90502395	kgf/cm ²

21.55502393

kgf/cm²

=

q

Probeta # 8

σ	=	54.253588517	kgf/cm²
σ,	=	1.0	kgf/cm²
р	=	27.62679426	kgf/cm²
q	=	26.62679426	kgf/cm²

σ'1	=	54.203588517	kgf/cm²
σ',	=	0.95	kgf/cm²
p	8	27.57679426	kgf/cm²
q	=	26.62679426	kgf/cm ²

Probeta # 9

σ_1	=	61.0933	kgf/cm²
σ,	=	1.5	kgf/cm²
p	=	31.29665	kgf/cm²
q	=	29.79665	kgf/cm ²

σ'1	=	61.0433	kgf/cm²
σ'3	=	1.45	kgf/cm²
р	=	31.24665	kgf/cm²
q	=	29.79665	kgf/cm²

σι	=	74.272727	kgf/cm²
σ_3	=	2.0	kgf/cm ²
p	=	38.1363635	i kgf/cm²
q	=	36.1363635	5 kgf/cm²
σ'.	, =	74.192727	kgf/cm²

Probeta # 10

σ'3	=	1.92	kgf/cm²
p	=	38.0563635	kgf/cm²
q	=	36.1363635	kgf/cm ²

(Figs. 18 a 21)

Ecuación de la envolvente de Esfuerzos Totales (σ) (Fig. 22)

q = 0.8997532106p + 1.757713691 (kgf/cm²)

Ecuación de la envolvente de Esfuerzos Efectivos (σ)

q = 0.9013802493p + 1.761132617 (kgf/cm²)

Las ecuaciones de las rectas anteriores (rectas de regresión) fueron definidas por el método de los mínimos cuadrados.

Dicha recta está definida por la ecuación q = mp + b , donde m representa la pendiente de la recta y b la intersección de la recta con el eie de las ordenadas (ordenada en el orígen).

Dado que los puntos no estarán perfectamente alineados, existe un medio para determinar la dispersión de los puntos introducidos con relación a la recta de regresión. Esta medida se llama coeficiente de correlación, y puede ser obtenida a partir de los coeficientes de la recta de regresión y de los datos.

pendiente m

 $m = \frac{\sum xy - \frac{\sum x \ge y}{N}}{\sum x^2 - \frac{(\sum x)^2}{N}}$

ordenada en el orígen b

$$b = \frac{\sum y - m \sum x}{N}$$

71

coeficiente de correlación R

$$R = \frac{m\sigma_{\mu}}{\sigma_{\nu}}$$

Desviación tipo de las x

$$\sigma_{x^{2}} \frac{\sum x^{2} - \frac{(\sum x)^{2}}{N}}{N-1}$$

Desviación tipo de las y

$$\sigma_{y} = \frac{\sum y^{2} - \frac{(\sum y)^{2}}{N}}{N-1}$$

5.6 Plano de Mohr. (C U).

La ecuación de la envolvente de resistencia es del tipo general en Teoría de Coulomb.

Esfuerzos Totales (Fíg. 23)

$$S = T_{1} = C_{1} + \sigma \tan \beta$$

$$S = T_{1} = 4.03_{1} + \sigma \tan 64.13^{\circ} \qquad (kgf/cm^{2})$$

$$S = T_{1} = 4.03_{1} + 2.06_{1}\sigma \qquad (kgf/cm^{2})$$

Esfuerzos Efectivos

 $S = T_{t} = C' + \sigma Tan \ \emptyset'$ $S = T_{t} = 4.07 + \sigma Tan \ 64.34^{\circ} \qquad (kgf/cm^{2})$ $S = T_{t} = 4.07 + 2.08 \ \sigma \qquad (kgf/cm^{2})$

ESTA	TESIS		NI	DEBE	
SALIR	Ū.	LA	63	LNITECA	

5.7 Tablas. (C D).

A continuación se anexan las tablas que presentan los resultados obtenidos en las pruebas C D de compresión aumentando el esfuerzo axial.

El formato presentado es el mismo que se utilizó en las pruebas C U, la única diferencia consiste en que la presión de poro en estas pruebas vale cero.

En las tablas 6 y 7 se muestran los datos obtenidos durante las pruebas de las probetas 18 y 19.

PROBETA # 18

Lecture épillo	Confirmention	Cargo aplicada	Educes:		σ,	Pressión de Paro	σ	03
ucichicher	lat/cm2	lagt .	loc/cm2	log:/cm2	ka¢/cm2	land/cms2	lag/cm2	lagt/cm2
0	1,0000	0.0000	0.0000	1.0000	1.0000	0.0000	1.0000	1.0000
50	1.0000	15.9000	2.5359	3.5359	1.0000	0.0000	3.5359	1.0000
100	1,0000	31.8000	5.0718	8,0718	1.0000	0.0000	6.0718	1.0000
150	1.0000	47.7000	7.6077	8.6077	1.0000	0.0000	8.6077	1.0000
200	1,0000	63.6000	10.1435	11.1435	1,0000	0.0000	11.1435	1.0000
250	1.0000	79.5000	12.8794	13.6794	1.0000	0.0000	13.6794	1.0000
300	1.0000	95.4000	15.2153	16.2153	1.0000	0.0000	16.2153	1.0000
350	1,0000	111.3000	17.7512	18.7512	1.0000	0.0000	18.7512	1.0000
400	1.0000	127,2000	20.2871	21.2871	1.0000	0.0000	21.2871	1.0000
450	1.0000	143.1000	22.8230	23.8230	1.0000	0.0000	23.8230	1.0000
500	1.0000	159,0000	25.3589	26.3589	1.0000	0.0000	28.3589	1.0000
550	1.0000	174.9000	27.8947	28.8947	1.0000	0.0000	28.8947	1.0000
600	1.0000	190.8000	30.4306	31.4306	1.0000	0.0000	31.4306	1.0000
850	1.0000	208,7000	32.9665	33.9665	1.0000	0.0000	33.9665	1.0000
700	1.0000	222,6000	35.5024	36.5024	1.0000	0.0000	36,5024	1.0000
750	1.0000	238.5000	38.0383	39.0383	1.0000	0.0000	39.0383	1.0000
800	1.0000	254.4000	40.5742	41.5742	1.0000	0.0000	41.5742	1.0000
850	1.0000	270.3000	43.1100	44.1100	1.0000	0.0000	44.1100	1.0000
900	1.0000	286.2000	45.6459	46.6459	1.0000	0.0000 1	46.6459	1.0000
950	1.0000	302.1000	48.1818	49.1818	1.0000	0.0000	49.1818	1.0000
1000	1.0000	318.0000	50.7177	51.7177	1.0000	0.0000	51.7177	1.0000
1050	1.0000	333.9000	53.2536	54.2536	1.0000	0.0000	54.2536	1.0000

P R O B E T A # 19

Lectura Anillo	Confinamiento	Carga aplicada	Lafoerma	σ	03	Premion de Poro		. 01
unidades	ed/cm2		lag/cm2	lgg/cm2	lgg/cm2	lad/cm2	ngf/cm2	leg/cm2
0	1.5000	0.0000	0.0000	1.5000	1.5000	0.0000	1.5000	1.5000
50	1.5000	15,9000	2.5359	4.0359	1.5000	0.0000	4.0359	1.5000
100	1.5000	31.8000	5.0718	6.5718	1.5000	0.0000	6.5718	1.5000
150	1.5000	47.7000	7.6077	9.1077	1.5000	0.0000	9.1077	1.5000
200	1.5000	63.6000	10.1435	11.6435	1.5000	0.0000	11.6435	1.5000
250	1.5000	79.5000	12.6794	14.1794	1.5000	0.0000	14.1794	1.5000
300	1.5000	95.4000	15.2153	16.7153	1.5000	0.0000	16.7153	1.5000
350	1.5000	111.3000	17.7512	19.2512	1.5000	0.0000	19.2512	1.5000
400	1.5000	127.2000	20.2871	21.7871	1.5000	0.0000	21.7871	1.5000
450	1.5000	143.1000	22.8230	24.3230	1.5000	0.0000	24.3230	1.5000
500	1.5000	159.0000	25.3589	26,8589	1.5000	0.0000	26.8589	1,5000
550	1.5000	174.9000	27.8947	29.3947	1.5000	0.0000	29.3947	1.5000
600	1.5000	190.8000	30.4306	31.9306	1.5000	0.0000	31.9306	1.5000
850	1.5000	206.7000	32.9665	34.4665	1.5000	0.0000	34.4665	1.5000
700	1.5000	222.6000	35.5024	37.0024	1.5000	0.0000	37.0024	1.5000
750	1.5000	238.5000	38.0383	39.5383	1.5000	D.0000	39,5383	1.5000
800	1.5000	254.4000	40.5742	42.0742	1.5000	0.0000	42.0742	1.5000
850	1.5000	270.3000	43.1100	44.6100	1.5000	0.0000	44.6100	1.5000
900	1.5000	286.2000	45.8459	47.1459	1.5000	0.0000	47.1459	1.5000
950	1.5000	302.1000	48.1818	49.6818	1.5000	0.0000	49.6818	1.5000
1000	1.5000	318.0000	50.7177	52.2177	1.5000	0.0000	52.2177	1.5000
1050	1.5000	333.9000	53.2536	54.7536	1.5000	0.0000	54.7536	1.5000
1100	1.5000	349.8000	55.7895	57.2895	1.5000	0.0000	57,2895	1.5000
1150	1.5000	365.7000	58.3254	59.8254	1.5000	0.0000	59.8254	1.5000
1200	1.5000	381.6000	60.8612	62.3612	1.5000	0.0000	62.3612	1.5000
1250	1.5000	397.5000	63.3971	64.8971	1.5000	0.0000	64.8971	1.5000
1300	1.5000	413.4000	65.9330	67.4330	1.5000	0.0000	87.4330	1.5000

Tabla 7

5.8 Curvas Esfuerzo - Deformación Unitaria. (C D).

Las siguientes 2 gráficas (Figs. 24 y 25) muestran las curvas esfuerzo - deformación unitaria de las probetas 18 y 19. Se puede observar que el Módulo de Elasticidad ó de Young varía entre 8333 kgf/cm² y 31914 kgf/cm². ($E = Tan \propto = m$).

Las curvas mostradas se presentan como típicas de las obtenidas en este tipo de prueba (C D).

5.9 Plano p - q . (C D).

Pro	beta	#1	8
-----	------	----	---

$\sigma_1 = \sigma_1' = 54.2535885167 \text{ kgf/cm}^2$					
$\sigma_3 = \sigma'_3 = 1.0$	kgf/cm²				
p = 27.62679426	kgf/cm ²				
q = 26.62679426	kgf/cm²				

Probeta # 19

 $\sigma_1 = \sigma_3^{\prime} = 67.4330143541 \text{ kgf/cm}^2$ $\sigma_1 = \sigma_3^{\prime} = 1.5 \text{ kgf/cm}^2$ $\mathbf{p} = 34.46650718 \text{ kgf/cm}^2$ $\mathbf{q} = 32.96650718 \text{ kgf/cm}^2$

(Figs. 27 y 28)

Ecuación de la envolvente de Esfuerzos Totales y Esfuerzos

Efectivos (σ y σ) (Fig. 29).

q = 0.9268975166p + 1.019587268 (kgf/cm²)

5.10 Plano de Mohr. (C D).

La ecuación de la envolvente de resistencia es del tipo general en Teoría de Coulomb.

Esfuerzos Totales y Efectivos. (Fig. 30)

 $S = \mathcal{T}_{1} = C + \sigma \operatorname{Tan} \vartheta$ $S = \mathcal{T}_{1} = 2.72 + \sigma \operatorname{Tan} 67.96^{\circ}$ $S = \mathcal{T}_{1} = 2.72 + 2.47 \sigma$

(kgf/cm²) (kgf/cm²)

6

Conclusiones.

Se concluye que la falla de las probetas de concreto se dá con una presión de poro similar a la presión atmosférica cuando se permite la estabilización de la presión de poro durante cada incremento de carga ($\Delta \sigma$).

En las pruebas Triaxiales no drenadas, el volumen de las probetas de concreto se supuso constante para calculos de esfuerzo desviador. Sin embargo el aumento de la presión de poro presupone una deformación volumétrica de la estructura sólida de la probeta por efecto del incremento del esfuerzo desviador. La caída de la presión de poro cerca de la falla y en la falla se explica por el aumento de volumen que sufre la probeta por distorsión desviadora.

Los resultados obtenidos muestran que los esfuerzos efectivos y los esfuerzos totales fueron prácticamente iguales en las pruebas no drenadas por lo comentado anteriormente (U = 0).

En las probetas drenadas no se midió la deformación volumétrica (pensando que sería muy pequeña). Se deduce de las pruebas no drenadas que en la condición drenada las probetas fallan aumentando su volumen por distorsión.

Comparando las pruebas no drenadas y drenadas, se observa que comparten la misma envolvente en esfuerzos efectivos. (Calculados estos para las pruebas no drenadas con el criterio aplicado a suelos como se comentó en el capítulo correspondiente).

Como la presión de poro se midió permitiendo la estabilización (dando tiempo para que se lograra), cabría esperar que en una falla muy rápida la presión de poro se eleve a valores mucho mayores que los medidos en estas pruebas. Lo anterior haría pensar que bajo estas condiciones la resistencia se vería muy disminuida, mucho mas que la medida en las pruebas de esta tesis.

Bibliografía

Hernández, O. * Tecnología del Microconcreto *. México, Instituto de Ingeniería, UNAM.

Holtz, Robert D. and Kovacs, William D. "An Introduction to Geotechnical Engineering" U.S.A., 1981. Prentice - Hall, Inc.

Juárez Badillo, Eulalio y Rico Rodríguez, Alfonso. "Mecánica de Suelos " Tomo I. Fundamentos de la Mecánica de Suelos. México, 1974. Edit. LIMUSA.

Padilla Velázquez, Ricardo Rubén. Notas del curso Geotecnia II.

Skempton, A. W., "Pore Pressure and Suction in Solls". Effective Stress in Solls, Concrete and Rocks. Conference of the British National Society. Butterworths, London. 1961.

Stambolov, T. y Van Asperen de Boer, J. R. J. " El Deterioro y la Conservación de Materiales Porosos en Construcción de Monumentos ". Una revisión bibliográfica. México, 1984. UNAM.

Suárez Salazar, Carlos. "Costo y Tiempo en Edificación". México, 1971. Edit. LIMUSA.

Torres H, Marco Aurelio. "Concreto" Teoría Elástica, Diseño al Límite. México, 1962. Edit. Patria.