2ej

UNIVERSIDAD NACIONAL AUTONOMA MEXICO DE

FACULTAD DE CIENCIAS

CONDICIONES FISICA S

EN LA

ESTRELLA SIMBIOTICA HMSGE

> S S 1 Т E

Que para obtener el título de:

FISICO

presenta

WILLIAM HENRY | LEE ALARDIN

Ciudad Universitaria

México, D.F. 1992

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. RESUMEN

En este trabajo se presenta un estudio de espectros obtenidos de 1977 a 1989 para la estrella simbiótica HM Sge, que tuvo un aumento en luminosidad equivalente a 6 magnitudes aproximadamente en 1975. Se tabulan las observaciones corregidas por errores de instrumentación y de extinción interestelar, y se presenta la teoría necesaria para llevar a cabo el análisis. Los resultados muestran un aumento en la temperatura del gas presente en la nebulosa alrededor de la estrella central, probablemente una enana blanca, y una disminución de la densidad al pasar el tiempo producida por la expansión de la cáscara de gas. Las temperaturas obtenidas van de 11000°K a 15000°K y las densidades electrónicas de 10^7 cm⁻³ a 2×10^6 cm⁻³ aproximadamente. Se calculan abundancias químicas para helio, oxígeno, nitrógeno y neón. Estas sugieren que ha operado el ciclo CNO en el material observado, ya que el nitrógeno se encuentra sobreabundante y el oxígeno ligeramente enrarecido con respecto al valor solar. Por otro lado se calcula el parámetro colisional para la transición $2^{3}S-4^{3}D$ del HeI v se encuentra un valor menor al conocido anteriormente por un factor de 1.3.

INDICE

Capítulo 1. Introducción.

Capítulo 2. Observaciones e intensidades de lineas.

2.1. Observaciones.

2.2. Intensidades de lineas.

Capítulo 3. Determinación de temperaturas y densidades. 21

3.1. Intensidades de líneas de emisión como función de Ne y Te.

3.1.1. Caso de equilibrio termodinámico.

3.1.2. Desviación del equilibrio termodinámico.

3.2. Determinación de las poblaciones relativas

de los niveles de energía.

3.2.1. Generalidades.

3.2.2. Modelo de tres niveles de energía.

3.2.3. Modelo de cinco niveles de energía.

3.3. Aplicaciones de los modelos atómicos.

3.3.1. Tres niveles de energia.

3.3.1.1. Oxígeno.

3.3.1.2. Nitrógeno.

3.3.2. Cinco niveles de energía.

3.3.2.1. Azufre.

3.3.2.2. Argón.

3.4. Determinación de temperaturas con HeI.

Capítulo 4. Abundancias químicas.

57

72

91

- 4.1. Generalidades.
- 4.2. Helio.
 - 4.2.1. He⁺.
 - 4.2.2. He⁺⁺.
- 4.3. Oxigeno.
 - 4.3.1. OIII.
 - 4.3.2. OII.
- 4.4. Nitrógeno.
- 4.5. Neón.

Capitulo 5. Resultados.

- 5.1. Diagramas de diagnóstico.
- 5.2. Temperaturas y densidades.
- 5.3. Abundancias químicas.
- 5.4. Efectos colisionales en HeI.

Capitulo 6. Conclusiones.

Apéndice.

Bibliografia.

CAPITULO 1

INTRODUCCION

Las estrellas simbióticas son sistemas binarios, compuestos por una gigante roja y una enana blanca o una estrella evolucionando a luminosidad constante hacia las regiones de alta luminosidad en el diagrama Hertzprung-Russell, que posteriormente se convertirá en una enana blanca (en el diagrama HR se grafican las estrellas como función de su temperatura y luminosidad). Estos sistemas presentan generalmente líneas de emisión intensas de OIII (oxígeno dos veces ionizado) y helio dos veces ionizado, entre otras, que son típicas de nebulosas de emisión. Al mismo tiempo poseen elementos espectrales, como bandas de TiO en absorción comunmente observadas en estrellas tardías, como gigantes rojas con temperaturas relativamente bajas. Los sistemas con estas características fueron llamados simbióticos por primera vez por Merrill y Humason en 1932. Para producir las líneas de emisión observadas es necesaria la presencia de una fuente caliente que pueda ionizar el gas presente en el sistema. Esta puede ser una enana blanca con una elevada temperatura superficial o con un disco de acreción (ver Viotti 1987 por ejemplo). Tipicamente las luminosidades y temperaturas de las estrellas centrales de sistemas simbióticos se encuentran entre 0.3 y 37000 L_ y 55000 y

210000 °K (Mürset, Nussbaumer, Schmid y Vogel 1991). Existen varios modelos para describir a estos objetos. Se ha sugerido que son proto-nebulosas planetarias, es decir estrellas que se encuentran en una etapa avanzada de su evolución, y cuya atmósfera se está escapando al espacio, o novas lentas que podrían ser recurrentes, presentando explosiones acompañadas de aumentos en luminosidad en forma periódica (Ciatti, Mammano y Vittone 1978; Mikołajewska y Kenyon 1992). La estrella fría parece ser siempre una gigante roja y en algunos casos se ha identificado como variable tipo Mira (Nussbaumer y Vogel 1989).

En este trabajo se estudia HM Sge, que es una estrella simbiótica situada aproximadamente a 3 Kpc de la tierra (Mürset, Nussbaumer, Schmid y Vogel 1991) y presentó un aumento en luminosidad equivalente a 6 magnitudes en 1975, pasando de magnitud 17 a magnitud 11 aproximadamente en un lapso de cercano a un año. Desde entonces ha mantenido una luminosidad prácticamente constante e igual a ${\simeq}2{\times}10^4$ L_ y la temperatura de la estrella central ha aumentado de ≃90000°K a ≃200000°K. Este fenómeno resulta muy interesante y se han mencionado diferentes modelos para explicarlo. Se ha sugerido que HM Sge puede ser una proto-nebulosa planetaria (Davidson, Humphreys y Merrill 1978 y Kwok y Purton 1979) mientras que el modelo de Mikołajewska y Kenyon (1992) propone una explosión debida a la acreción de material proveniente de la gigante roja. En este último, la gigante roja transfiere material a la enana blanca y este se calienta, posiblemente en un disco de acreción hasta hacer explosión y producir el aumento observado en luminosidad.

Las temperaturas y densidades calculadas por otros autores en publicaciones anteriores han resultado del orden de 15000 $^{\circ}$ K y 10 7 cm⁻³ (de Freitas Pacheco et al. 1992; Kwok y Purton 1979) respectivamente mientras que las abundancias calculadas por Schmid y Schild (1989) son de 10.94 para helio, 9.0 para nitrógeno, 9.0 para oxígeno y 8.3 para neón en unidades de 12+log[N(X)/N(H)] y de 11.03 para helio por de Freitas Pacheco et al.(1992). Estos resultados concuerdan con los obtenidos en esta tesis, excepto por la abundancia de oxígeno de Schmid y Schild (1990).

En este trabajo se estudiaron espectros tomados en el visible de 1977 a 1989 y se calcularon temperaturas y densidades así como abundancias químicas para helio, oxígeno, nitrógeno y neón dentro de la nebulosa alrededor de la estrella caliente. Los resultados obtenidos concuerdan con el modelo de Mikołajewska y Kenyon (1992), y se discuten en la conclusión.

La tesis está dividida en seis capítulos: en el Capítulo 2 se corrigen las lineas observadas por extinción interestelar para poder llevar a cabo el análisis; los Capítulos 3 y 4 están dedicados a exponer la teoria necesaria para determinar temperaturas y densidades electrónicas así como las abundancias químicas de varios elementos; en el Capítulo 5 se presentan los resultados y en el Capítulo 6 las conclusiones.

CAPITULO 2

OBSERVACIONES E INTENSIDADES DE LINEAS

Para poder realizar el análisis de los espectros disponibles para este trabajo, fué necesario primero llevar a cabo ciertas correciones, ya que la radiación captada por los detectores no refleja con fidelidad las condiciones en las que se encuentra el gas que emite. La corrección más importante es la debida a la extinción interestelar que sufre la luz al viajar de la fuente hasta el observador. La meta de este capítulo es obtener las intensidades relativas de las líneas de emisión producidas en HM Sge.

2.1. OBSERVACIONES.

Las observaciones que se utilizan en el presente trabajo cubren un periodo de 12 años, de 1977 a 1989 y fueron realizadas con el telescopio de 2.1m en el Observatorio Nacional de Kitt Peak por el Dr. Manuel Peimbert y la Dra. Silvia Torres. La reducción de datos fué hecha por Manuel Peimbert, Silvia Torres y el M. en C. Rafael Costero Gracia.

Los espectros de 1977 a 1987 fueron tomados con el

espectrógrafo Gold y el IDS (Intensified Image Dissector Scanner). El IDS es un espectrométro de doble haz con 1024 canales y 20mm por haz. Se utilizaron dos rejillas para observar los siguientes intervalos de longitud de onda: $\lambda\lambda3400-5200$ % y $\lambda\lambda5600-7400$ %. Además, para 1980 y 1981 se observó en el intervalo $\lambda\lambda4800-6600$ %; en 1977 sólo se observó en el intervalo $\lambda\lambda3400-5200$ %. Las dimensiones de las dos rendijas son de 0.30 × 0.98 mm. El primer valor es a lo largo de la dispersión y el segundo perpendicular a ella y corresponden a 3.8"×12.4" en el cielo. La separación entre los centros de las rendijas fué de 99" en el cielo. Para este trabajo los datos se corrigieron por el efecto de no linealidad del detector utilizando la relación (Peimbert y Torres- Peimbert 1987):

$$5 \propto F^{1.07}$$
, (2.1)

donde S es la señal del instrumento y F es el flujo real.

Los espectros de 1989 se tomaron con el espectrógrafo Gold con un CCD TI 800 × 315 (T15). El primer número representa la cantidad de pixels en la dirección de la dispersión y el segundo en la dirección perpendicular a ella .La resolución es de 0.78 segundos de arco por pixel y se utilizó una máscara en la dirección perpendicular a la dispersión. Mediante una combinación de filtros y rejillas se observaron los siguientes intervalos de longitud de onda: $\lambda\lambda$ 3700-4700 Å, $\lambda\lambda$ 3650-5610 Å y $\lambda\lambda$ 4980-6960 Å. La resolución para el primer intervalo es de 5 Å y de 10 Å para los restantes. La reducción de datos se llevó a cabo utilizando IRAF, que es una paquete de programas proporcionado por el observatorio NOAO-Kitt

Las fechas en las que se tomaron los espectros y su identificación a lo largo de este trabajo son: Julio 1977 (1977), Mayo 1978 (1978-I), Septiembre 1978 (1978-II), Octubre 1979 (1979), Octubre 1980 (1980), Octubre y Noviembre 1981 (1981), Marzo 1985 (1985), Marzo 1987 (1987) y Junio 1989 (1989).

2.2. INTENSIDADES DE LINEAS.

Peak.

En el medio interestelar entre cualquier objeto y un observador existe polvo que afecta la radiación que este recibe. Este polvo atenúa la luz preferencialmente a longitudes de onda cortas, hacia el azul en el espectro electromagnético. Esto se debe a que el polvo es transparente a las longitudes de onda largas, mientras que las cortas si llegan a interaccionar con él. Se dice entonces que el objeto está enrojecido: la radiación de mayor energía se atenúa más que la de menor energía. Este efecto se puede corregir para obtener cocientes de intensidades intrinsecos a partir de los observados, que es lo que finalmente se quiere para determinar las condiciones físicas a las que se encuentra el gas que emite la radiación observada. La atenuación de la radiación cumple (Osterbrock 1989):

$$F_{\lambda} = I_{\lambda} e^{-\tau} \lambda, \qquad (2.2)$$

donde I $_{\lambda}$ es la intensidad que se observaria de no existir extinción, F $_{\lambda}$ es la intensidad observada y τ_{λ} es la profundidad

óptica para una longitud de onda λ : $\tau_{\lambda} = N \perp a_{\lambda}$. Aqui N es la densidad del medio que atraviesa la radiación. L es la distancia que recorre a través de este medio y a_{λ} es la sección eficaz de absorción del medio para una longitud de onda λ . La extinción estará determinada por el valor de la profundidad óptica como función de λ . Se puede escribir (Osterbrock 1989);

$$\tau_{\lambda} = C [f(\lambda) + 1],$$
 (2.3)

donde C es una constante que depende solamente del objeto que se esté considerando y f(λ) es una función de λ . Podemos escribir τ_{λ} de esta forma suponiendo que la dependencia de la extinción en λ en general es similar en todas las direcciones y solo su magnitud cambia. Esto es equivalente a suponer que la distribución de polvo es homogénea en el espacio y por lo tanto la magnitud de la extinción depende sólamente de que tanto polvo debe atravesar la radiación para llegar hasta el observador, es decir de la distancia entre el objeto y el observador. Esta magnitud queda entonces fijada por C.

En la Figura 2.1 se muestra la función $f(\lambda)$ como función de 1/ λ (es casi lineal en esta variable) normalizada a la extinción en H β λ 4861 (H β es la línea producida por la tra-sición de Balmer del nivel 4 al 2 en Hidrógeno neutro) y se tiene f(H β) = 0 (ver Osterbrock 1989). Cuando $\lambda \rightarrow \infty$, $f(\lambda)$ tiende a -1 y recuperamos τ_{∞} =0. Esto está en acuerdo con lo que ya se mencionó acerca de la extinción, ya que a longitudes de onda extremadamente largas el polvo interestelar es transparente y la radiación no resulta afectada.

Si se observan dos líneas a longitudes de onda λ_1 y λ_2 se tendrá entonces:

$$\frac{F_{\lambda 1}}{F_{\lambda 2}} = \frac{I_{\lambda 1}}{I_{\lambda 2}} e^{-(T 1 - T 2)}$$

$$= \frac{I_{\lambda 1}}{I_{\lambda 2}} e^{-C \left[f(\lambda_1) - f(\lambda_2) \right]}$$

$$= \frac{I_{\lambda 1}}{I_{\lambda 2}} 10^{-C \left[f(\lambda_1) - f(\lambda_2) \right]}, \quad (2.4)$$

con c = C / ln(10) = 0.434 C: Generalmente se toman las intensidades con respecto a H β y la ecuación (2.4) queda entonces:

$$\frac{\Gamma_{\lambda}}{F_{H\beta}} = \frac{1}{I_{H\beta}} \frac{10^{-c \cdot f(\lambda)}}{I_{H\beta}}$$
$$\log \left[\frac{I_{\lambda}}{I_{H\beta}} \right] = \log \left[\frac{F_{\lambda}}{F_{H\beta}} \right] + c \cdot f(\lambda). \quad (2.5)$$

Para poder hacer la corrección, falta calcular la constante c.

En este trabajo, c se determinó utilizando dos líneas de emisión del azufre dos veces ionizado, SIII. En la Figura 2.2 se presenta un diagrama de energía del SIII y las transiciones utilizadas para este propósito (con longitudes de onda 6311 Å y 3722 Å). Al ser tan diferentes las longitudes de onda consideradas, la diferencia en extinción que sufrirán será apreciable. Por otro lado, como las líneas de emisión se originan por una transición espontánea en el mismo nivel de energía (¹So), su cociente no dependerá de las condiciones físicas del gas (densidad y temperatura electrónica). Esto se debe a que la intensidad de las líneas depende directamente de la población del

nivel donde se originan, y dicha población es función de la temperatura y densidad. Al tomar el cociente, este dependerá únicamente de los coeficientes de emisión espontánea de Einstein y de la energía de cada transición:

$$\frac{I(\lambda 6311)}{I(\lambda 3722)} = \frac{A({}^{1}S_{0} - {}^{1}D_{2}) h\nu(\lambda 6311)}{A({}^{1}S_{0} - {}^{3}P_{1}) h\nu(\lambda 3722)}$$

donde los valores de A₁₁ y de λ se han tomado de Mendoza (1983).

Figura 2.2. Diagrama de energia para SIII.

Aplicando la ecuación (2.5) a estas dos líneas tendremos:

$$\log \left[\frac{I(\lambda 5311)}{I(\lambda 3722)} \right] = \log \left[\frac{F(\lambda 6311)}{F(\lambda 3722)} \right] + c \left[f(\lambda 6311) - f(\lambda 3722) \right].$$

Utilizando la función $f(\lambda)$ y la ecuación (2.6) tendremos:

$$c = \frac{\log[F(\lambda 6311) \neq F(\lambda 3722)] - 0.216}{0.603}.$$
 (2.7)

Conociendo el valor observado del cociente se puede determinar directamente la constante c. Para conocer el cociente se requiere de una correción a los datos debido a que la linea en λ 3722 es una combinación de SIII y HI (la linea de Hidrógeno proviene de la transición 14-2 de la serie de Balmer). Utilizando el hecho de que:

 $\frac{I(H14-\lambda 3722)}{I(H9 -\lambda 3835)} = 0.268,$

(Osterbrock 1992) se puede restar la contribución de H14 λ 3722 a la linea de azufre. Se utilizó H9 λ 3835 para minimizar el error, ya que la diferencia en enrojecimiento que sufren estas lineas es pequeña por tener longitudes de onda similares. En la tabla 2.1 se presentan los datos utilizados, así como los valores calculados para c. En el primer renglón se tabulan los datos medidos de la combinación de SII y HI; en el segundo se muestra la parte correspondiente al SII, después de haber restado la contribución de Hidrógeno; en el tercero se encuentran los datos medidos para SII[λ 6311] y en el cuarto el cociente medido de H9 a H β . Los valores calculados para c mediante la ecuación (2.7) aparecen en el último renglón. Se tomaron en cuenta solamente los valores para 1978-II, 1980 y 1981, ya que para fechas posteriores existe una contribución de oxigeno (OII) en λ 3727 que afecta el resultado. El valor adoptado para c fué:

 $c = 0.9 \pm 0.2$.

Tabla 2.1.

Año	1978-11 1980 1981
$\log \frac{F(3722)}{F(H\beta)}$	-1.46 -1.32 -1.43
log ^{F(3722)SII} F(Hβ)	-1.75 -1.60 -1.74
$\log \frac{F(6311)}{F(H\beta)}$	-1.05 -0.92 -0.77
log <u>F(3835)</u> F(Hβ)	-1.20 -1.07 -1.15
C	0.80 0.77 1.25

Los datos así corregidos por extinción interestelar se presentan en la tabla 2.2. junto con los valores de la función $f(\lambda)$ para las longitudes de onda señaladas. En la primera columna se muestra la longitud de onda de la línea observada; en la segunda su identificación; la tercera contiene el valor de $f(\lambda)$ y en las restantes se presentan las observaciones para cada año. Las intensidades están normalizadas a H β en logaritmos, i.e. se muestra Log[I(λ)/I(H β)]. En los lugares donde aparece (en la tabla, quiere decir que esa línea fué medida junto con la que se encuentra en el renglón anterior. Las incertidumbres en los cocientes son menores a 0.04 dex para las líneas más intensas y 0.08 dex para las más débiles.

En las Figuras 2.3(a) a 2.3(d) se presentan espectros representativos para varios intervalos de longitud de onda.

- ,	ID	F()	1977	1978-1	1978-11	1979	1980	1981	1985	1987	1989
3444	OIII	0,386	. · ·	-	-	-1,05	-0,55	-0,63		-0,49	
3530	Hel	0,367	-	-	-2,12	er 1 - 38					
3554	Hel	0,360	4 19	1 1 - 1	-2,00		-1,53	-1,72	-1,81	-1,93	
3587	Hel	0,351	-	-	-2,01	-	-1,63	0,32	-0,68	-0,79	
3634	Hel	0,337	-		-1,72		化学的变形				
3704	Hel	0,316	-	-	-1,59	•	방문을 성실 것이 기타 있는 것이 같이 같이.	-2,05			
3721	[SIII], HI	0,310	-0,99		-1,18	-1,03	-1,04	-1,15	-0,74	-0,73	-0,68
3734	н	0,306	-1,21	-1,21	-1,36						
3750	HI	0,301	-1,22		-1,30	-1,01	-0,97	-1,26	-0,41	-0,47	-0,35
3760	Oll	0,298	_		-		{ {	() ·	. {	1	{
										있는 동안 전 가격 것 	
3771	HI	0,294	-1,08	- 11	-1,23	-1,12	•	-1,51	{	-1,35	{
3797 3806	Hl,Hel	0,284	1,04	-1,06	-1,06	-0,82	-	-1,08	-1,14	-1,13	-1,18
362 0	Hel	0,279	-1,69	-	-1,59	•	•	-1,54	-1,66	-1,68	
3835	HI	0,274	-0,82	-1,03	-0,95	-0,76	1 - 1 - 1	-0,90	-0,94	-0,96	-1,02
3869, 3872	[Nelli],Hel	0,263	0,78	0,00	0,06	0,20	0,17	0,25	0,24	0,19	0,22
3889	HI	0,257	-0,54	0,60	-0,59	-0,49	-0,50	-0,51	-0,54	-0,58	-0,65
3967,3970	Ne[III],HI	0,232	-0,53	-0,31	-0,27	-0,18	-0,23	-0,14	-0,16	-0,19	-0,20
4026	Hel	0,215	-1,41	-1,37	-1,41	-1,42	-1,61	-1,54	-1,55	-1,54	-1,72
4069,4076	SII],CIII,OI	0,202	-1,42	-1,20	-1,14	-1,00	-0,99	-0,92	-0,72	-0,71	-0,65
4102	HI	0,193	-0,35	-0,42	-0,44	-0,42	-0,48	-0,44	-0,49	-0,48	-0,49
4121	Hel	0,187	-	-	-1,67	-1,76	-	-	-	. - -	
4144 , 4152	Hel, Clii	0,179	-2,06	-1,65	-1,63	-1,65	-1,92	-1,94	-2,17	-2,16	-
4180	[FeV]	0,170	-	-	-	-1,73	-1,82	-1,76	-1,95	-2,05	
4200	Hell	0,164	-	-1,99	-1,96	-	-1,85	-1,78	-1,70	-1,66	-1,76
4244	[Fell]	0,153	-1,89	-	-2,07	-2,13	-2,08	-2,27	-2,07	-2,03	-1,95
4267	Cli	0,146	-2,18	-2,36	-2,48	-2,40	-2,40	-	-2,17	-	-
4276	Oli	0,144	-2,12	-	-2,24	-	5 - Se	-2,02	-1,83	-	
4289	Oli	0,140	-1,94	-2,05	-2,14	-		-	-		•
4340	HI	0,126	-0,23	-0,26	-0,25	-0,26	-0,30	-0,26	-0,28	-0,31	-0,30
4363	[011]	0,120	-0,78	-0,33	-0,22	-0,11	-0,11	-0,06	-0,04	-0,11	-0,11

Tabla 2.1. INTENSIDADES DE LINEAS

λ μρ f(λ) 1977 1978-1 1978-μ 1979 1980 1981 1985 1987	989
1379, 1380 NIII,Hel 0,115 -2,031,92	-
4.115 Oll 0,107 -1,811,99 -1,97 -2,16 -2,32 -2,26 -2,19	1,88
4.171 Hel 0,092 -1,10 -1,10 -1,06 -1,13 -1,24 -1,23 -1,43 -1,43	1,48
4511 [KIV] 0,082	1,93
4542 Hell 0,075 1,78 - 1,871,631,62	1,55
4568_4571_Nell.Mgl=_0,068=_2,15=1,85=_1,50=_2,00=_2,01=_2,13=_2,12	• 2
4607 [Fell] 0,0592,26 -2,04 -1,96	2,00
46.11 NIII 0,051 -0,96 -1,62 -1,04 -0,97 -0,94 -1,04 -1,07	1,30
4568 [Fell] 0.046 -1.02 -1.53 -1.56 -1.22 -1.35 -1.32 -1.52 -1.44	1,53
4636 citeli 0,640 0,39 0,45 0,20 0,16	0,12
化化合物 化合物合物 化合物合物合物合物合物合物合物合物合物合物合物合物合物合物	
470: (Felli) 0.637	1,61
1/11 4/13 16/0V[1181 0,034 {1,56 -1,38 -0,98 -1,17 -1,17	1,19
4/75 (NelV) 0.031	1,07
1734 4740(FGBLARV) 0,028 -1,94 -2,17 -2,03 -1,67 -1,65 -1,52 -1,57 -1,63	1,45
4755 [Fell] 0.024 -1.952.452.52	-
4769 [Fell] 0.020 -1.862.222.42 -2.23	•
4815 (eli 0,010 -2,362,452,222,47 -2,48	i - Nesis
4861 Hi 0,000 0,00 0,00 0,00 0,00 0,00 0,00	0,00
4893 [FeVII] -0,0082,691,971,70 -1,61	1,55
4906 (Fell) -0.011 -2.321.82 -1.551.782.00	
4922 Hei -0.015 -1.39 -1.59 -1.56 -1.53 -1.86 -1.66 -2.14	
4942 [FeVII] -0,019	1,09
4959 [Oill] -0.023 -0.58 -0.17 -0.12 -0.04 -0.08 -0.02 0.04 0.06	0,12
4989 [FeVil] -0.030	1,55
5007 [Oiii] -0.034 -0.12 0.25 0.25 0.31 0.36 0.37 0.44 0.49	0,55
5044 [Fell Sill -0.042 -1.62 -1.56 -1.51 -1.34 -1.60 -1.47 -1.93 -1.97	2,03
5056 Sill -0.045 -1.772.292.24 -	
5112 (Foll) -0.057 -2.70 -2.54 -2.662.71	
5146 (FeVi) -0.065	1,52
5158 [FeVIII][FeIII] -0.067 -1.97 -2.01 -2.06 -2.03 -1.42 -1.40	1,36

λ	١D	f(2)	1978-I	1978-ll	1979	1980	1981	1985	1987	1989
5179	[FeVI]	-0,071	-	-	•	-	-1,06	-1,14	-1,18	-1,22
5192	(IIhA)	-0,075	-	-2,14	-2,30	-2,40	•			-2,02
5237	[FeVI]	-0,084		•	-1,94		-2,18	-2,09	-2,34	
5278	[FeVI] [FeVII]	-0,093	- 11	-	•	•	-1,63	-1,58		
5309	[CaV]	-0,100	-	-	•	-	-1,66	-1,68		
5336	[FeVI]	-0,105	• ·	-	•		-2,10	-2,02		
5412	Hell,[Fell]	-0,121	11. 1 . 1. 1	an - plan	. i . .	1 . .	-1,36	-1,32		사망 가는
5425	[FeVI]	-0,124				· · •	{ ¹	1		
5631	[FeVI],[CaVI]	0,166	-			-	-2,27	-2,11		-2,14
5678	[FeVI]	-0,175	-		-2,35	-2,45	-1,85	-1,76	-1,90	-1,82
5721	[FeVII]	-0,184		승규는 승규는 영화	an de la seconda	alai t a d	-1,77	-2,19	-0,75	-0,81
5755	[NII]	-0,191	•	-1,09	-1,16	-1,03	-1,01	-0,88	-0,62	-0,74
5802	CalV	-0,200	-	-2,06	-2,24	-2,14	-2,31	-2,38		-2,63
5876	Hel	-0,214	.	-0,51	-0,57	-0,58	-0,81	-0,65	-0,87	-0,99
5958	Sill, Ol	-0,230	- 1		-2,74	-	•	-2,76	이 같이 같이 같이 같이 같이 같이 같이 같이 많이	-2,90
6046	01	-0,246	-	-	-2,64	-	· •	· · · ·		-2,63
6086	[FeVII],[CaV]	-0,254	-				-1,54	-1,85	-0,52	-0,63
6102	[KIV]	-0,257	· - · ·	-	2,82	-2,19	-2,39	-2,19		-2,14
6118	Heli	-0,260	-	-	-	-2,67	-	-2,85	-	-2,55
6189	[Fell]	-0,272	-	-		· · · - ·	· -	-2,93	-2,73	-2,63
6231	Hell	-0,280	-	-	· -	-	-2,42	-	-2,28	-2,24
6300	[OI]	-0,292	-1,38	-1,43	-0,93	-1,26	-1,18	-0,91	-0,96	-0,92
6312	[SIII]	-0,294	-1,19	-1,31	{	-1,18	-1,03	-0,81	-0,95	-0,96
6347	Sill	-0,300	-2,23	-2,45	-2,10	-2,46	-2,32	-	-2,60	-
6364	[0]	-0,303	-1,74	-1,83	-1,63	-1,71	-1,56	-1,39	-1,43	-1,43
6406	Hell	-0,310	-	-	-	-	-2,55	-2,47	-2,44	-2,57
6435	[ArV]	-0,315	-	-	-2,37	-1,93	-1,83	-1,45	-1,45	-1,42
6548	[NII]	-0,333	-	-	-		-	-1,03	-0,96	-1,11
6563	н	-0,336	0,48	0,47	0,42	0,42	0,47	0,47	0,43	0,42
6583	[NII]	-0,339	-1,27	-1,37	-1,06	-1,02	-0,79	-0,61	-0,65	-0,67

Tabla 2.1.(cont) INTENSIDADES DE LINEAS

15

ł

•									
			Tabla	2.1.(cont)	NTENSID	ADES DE L	INEAS		
<u>λ</u>	ID	_f(λ)	1978-1	1978-ll	1979	1980	1981	1985	198
6678,6683	Hel,Hell	-0,354	-1,09	-1,19	-1,16	-1,39	-1,28	-1,46	1,f
6717	[SII]	-0,360	-	-3,15	-2,81	-2,90	-2,64	-2,48	-2,5
6731	[SII]	-0,363	-	-2,74	-2,54	-2,61	-2,36	-2,17	-2,0
6794	[KIV]	-0,372	-	-2,39	-2,35	-	-2, 44	-2,72	-2,6
6891	Hell	-0,387	-	-	-	-	-2,65	-2,34	-2,3
7006	[ArV]	-0,404	-2,03	-2,14	-1,89	-1,58	-1,47	-1,11	-1,1
7065	Hel	-0,412	-0,64	-0,74	-0,67	-1,00	-0,78	-1,12	-1,1
7136	[Arili]	-0,422	-0,93	-1,05	-0,90	-1,02	-0,78	-0,65	-0,7
7155	[Fell]	-0,425	-	-2,69	-2,05	-2,32	-2,02	-1,96	-2,1
7169	[AriV]	-0,427	-	-2,46	-1,72	-1,80	-1,46	-1,48	-1,6
7231,7236	Cll.[ArlV	-0,435	-	-2,37	-1,95	-2,10	-1,74	-1,82	-1.7
7263	[ArIV]	0,439	-	-	-2,12	-2,30	-1,78	-1,94	1.9
7281	Hei	-0,442	-1,74	-1,82	-1,64	-2,02	-1,67	-2,01	-2,2
7320	[OII]	-0,447	-1,24	-1,38	-1,09	-	-0,90	-0,43	-0,8
7330	(Oll)	-0,448	-1,36	-1,36	-1,13	-	-1,01	í.	-0,9
7368	[Feil]	-0,455	-	-2,60	-2,05	-	-2,25	-1,98	-2,2
7452	IFelli	-0.463		·	_	-	-	-2 36	

CAPITULO 3

DETERMINACION DE TEMPERATURAS Y DENSIDADES

En el presente capitulo se explica cómo determinar la temperatura y densidad de regiones ionizadas que presentan líneas de emisión, a partir de la intensidad de dichas líneas. En primer lugar se tratan las llamadas líneas prohibidas producidas por iones que han sido excitados colisionalmente, mediante diferentes modelos atómicos y a continuación se describe otro método, utilizando líneas de recombinación de helio.

3.1. INTENSIDADES DE LINEAS DE EMISION COMO FUNCION DE Ne y Te.

Si se tiene un gas en un estado excitado, es decir que los átomos que lo constituyen se encuentran fuera de su estado base energético, se producen desexcitaciones espontáneas de los electrones que generan radiación electromagnética al pasar de un nivel de energía a otro. La intensidad de dicha radiación depende de la abundancia del elemento considerado en el proceso así como de la densidad electrónica Ne y de la temperatura electrónica Te. En un gas ionizado se tienen colisiones entre iones y electrones, que inducen transiciones enérgeticas en los primeros. A continuación explicaremos cómo depende de Ne y Te la intensidad de

las lineas de emisión producidas por excitación colisional.

3.1.1. Caso de equilibrio termodinámico.

La emisividad de una linea de emisión con longitud de onda λ , proveniente de la transición del nivel i al nivel j de un ión X^{+m} , está dada por (ver Osterbrock 1989, por ejemplo):

$$\varepsilon(\nu_{ij}) = N_i (X^{\dagger m})^* A_{ij} h \nu_{ij}, \qquad (3.1)$$

en ergs cm⁻³ s⁻¹, donde ν_{ij} es la frecuencia correspondiente a la longitud de onda λ , h es la constante de Planck, A_{ij} es el coeficiente de Einstein para la probabilidad de transición espontánea por unidad de tiempo y $N_i(X^{\pm m})$ es la población del nivel i del ión considerado en cm⁻³. La densidad del ión considerado será entonces:

$$N(X^{*m}) = \sum_{i=1}^{\infty} N_i(X^{*m}).$$
 (3.2)

En el caso de estar en equilibrio termodinámico, la relación entre las poblaciones de cada nivel en un átomo o ión están dadas por la ecuación de Boltzmann:

$$\frac{N}{N_1} = \frac{\omega}{\omega_1} e^{-\beta \Delta E}.$$
 (3.3)

 $N_j \ y \ N_i$ son las poblaciones de los niveles j e i respectivamente, $\omega_j \ y \ \omega_i$ son los pesos estadísticos (o degeneraciones) de los niveles, ΔE es la diferencia de energías ($\Delta E = E_j - E_i$), β =1/kTe, y k es la constante de Boltzmann. Este caso es sencillo porque como se puede observar, las poblaciones relativas de los niveles no dependen de la densidad, únicamente de la temperatura a

través de la exponencial que aparece en (3.3). Se puede entonces determinar T_e si se conoce un valor para $e(v_{1j})$ y $N_i(X^{*m})$. En realidad el gas no siempre está en equilibrio termodinámico y las poblaciones relativas de los niveles dependen también de N_e. Este es el caso que nos interesa y lo veremos a continuación.

De aqui en adelante se utilizará la intensidad $I(\nu_{ij})$ en lugar de la emisividad $\varepsilon(\nu_{ij})$ para calcular los cocientes de interés. La intensidad está dada en ergs cm⁻² s⁻¹ y está relacionada con ε por: $I(\nu_{ij}) = \frac{\varepsilon(\nu_{ij}) V}{4 \pi r^2}$, donde V es el volumen ocupado por el ión que emite radiación y r es la distancia de la nebulosa al observador. Al tomar cocientes, no importa entonces si son de emisividades o intensidades.

3.1.2. Desviación del equilibrio termodinámico.

La ecuación de Boltzmann para este caso queda escrita como:

$$\frac{N_{j}}{N_{i}} = \frac{b_{j}\omega_{j}}{b_{i}\omega_{i}}e^{-\beta}\Delta E,$$
(3.4)

donde los nuevos factores b_j y b_i representan justamente la desviación del equilibrio termodinámico, y dependen de Ne y Te. El problema consiste entonces en determinar los coeficientes b_i para los diferentes niveles energéticos.

3.2. DETERMINACION DE LAS POBLACIONES RELATIVAS DE LOS NIVELES DE ENERGIA.

3.2.1. Generalidades.

Supongamos primero que tenemos un sistema de átomos de dos niveles (ver por ejemplo Osterbrock, 1987), de energias $E_1 \ y \ E_2$, con $E_2 > E_1$. Los átomos considerados pueden sufrir colisiones con electrones y producir transiciones energéticas. La sección eficaz de excitación $\sigma_{12}(v)$ es función de la velocidad de los electrones, y es nula si su energia es menor que $\chi = h\nu_{21} = E_2 - E_1$. Se suele expresar la sección eficaz de excitación en función de la fuerza de colisión $\Omega(1,2)$ como:

$$\sigma_{12}(v) = \frac{\pi h^2 \Omega(1,2)}{m^2 v^2 \omega}$$

(3.5)

para 1/2 m $v^2 > \chi$. Aqui ω_1 es el peso estadistico del nivel base. Se puede deducir una relación entre la sección eficaz de excitación y la sección eficaz de desexcitación. Bajo condiciones de equilibrio termodinámico cada proceso está balanceado por su inverso. Así, el número de excitaciones colisionales producidas por electrones con velocidades entre v_1 y v_1 + dv_1 es igual al número de desexcitaciones colisionales que dan lugar a electrones con velocidades en el mismo intervalo. Tendremos entonces:

Ne N₁ v₁ $\sigma_{12}(v_1)$ f(v₁) dv₁ = Ne N₂ v₂ $\sigma_{21}(v_2)$ f(v₂) dv₂. (3.6) N₁ y N₂ son las poblaciones de los dos niveles de energía y f(v) es la función de distribución de velocidades de Maxwell:

 $f(v)dv = 4 \pi \left[\frac{\beta m}{2 \pi}\right]^{3/2} v^2 e^{-\beta m v^2/2} dv.$

Esta distribución Maxwelliana de velocidades se produce debido a que los choques entre electrones tienden a repartir la energía cinética que poseen. Si ahora usamos la ecuación de Boltzmann (3.3) para los dos niveles obtenemos una relación entre $\sigma_{12}(v_1)$ y $\sigma_{21}(v_2)$:

$$\omega_1 v_1^2 \sigma_{12}(v_1) = \omega_2 v_2^2 \sigma_{21}(v_2)$$
(3.8)

(3.7)

son
$$1/2 m v_1^2 = 1/2 m v_2^2 + \chi$$
 (3.9)

Podemos entonces, usando (3.5) y (3.8) expresar σ_{21} en términos de $\Omega(1,2)$:

$$\sigma_{21}(v_2) = \frac{\pi \hbar^2 \Omega(1,2)}{m^2 v_2^2 \omega_2},$$
(3.10)

y calcular la tasa de desexcitación colisional por unidad de volumen y por unidad de tiempo:

Ne N₂ q₂₁ = Ne N₂
$$\int_{0}^{\omega} v \sigma_{21} f(v) dv.$$
 (3.11)

Utilizando la definición de f(v), (3.7) y la expresión para σ_{21} . (3.10) llegamos a :

No N₂ q₂₁ =
$$\frac{N_e N_2 [2 \pi \beta]^{1/2} h^2 \Omega(1,2)}{m^{3/2} \omega_2}$$

= $\frac{N_e N_2 8.629 \times 10^{-6} \Omega(1,2)}{T_e^{1/2} \omega_2}$. (3.12)

en cm⁻³ s⁻¹.La tasa de excitación colisional por unidad de volumen y por unidad de tiempo queda dada por una expresión similar, sólo que ahora la integral no es sobre todos lo valores de la velocidad, ya que existe un minimo de energia que debe tener el elctrón involucrado en la colisión para poder excitar al ión. Este mínimo corresponde a $1/2 m(v')^2 = \chi$, que es la diferencia de energías entre los dos niveles. Tendremos entonces, utilizando la expresión para f(v), (3.7) y (3.5) para σ_{re} :

$$le N_{1} q_{12} = Ne N_{1} \int_{v'}^{\infty} v \sigma_{12} f(v) dv,$$

$$= \frac{Ne N_{1} [2 \pi \beta]^{1/2} h^{2} \Omega(1,2)}{m^{3/2} \omega_{1}} e^{-\beta \chi},$$

$$= \frac{Ne N_{1} 8.629 \times 10^{-6} \Omega(1,2)}{T_{0}^{1/2} \omega_{1}} e^{-\beta \chi},$$

$$= Ne N_{1} \frac{\omega_{2}}{\omega_{1}} q_{21} e^{-\beta \chi}.$$

 $q_{12} = \frac{w_2}{w_1} q_{21} e^{-\beta \chi}$ (3.13)

A partir de (3.12) y (3.13), se puede escribir la ecuación de equilibrio estadístico entre excitaciones y desexcitaciones para el nivel excitado:

Ne N₁ q₁₂ = Ne N₂ q₂₁ + N₂ A₂₁, (3.14)

cuya solución es:

$$\frac{N_2}{N_1} = \frac{N_e q_{12}}{A_{21}} \left[\frac{1}{1 + \frac{N_e q_{21}}{A_{21}}} \right].$$
 (3.15)

Finalmente, los coeficientes que expresan la desviación del equilibrio termodinámico están relacionados por:

$$\frac{b_2}{b_1} = \frac{N_2 \omega_1}{N_1 \omega_2} e^{\beta \chi},$$
 (3.16)

con N₂ y N₁ relacionados por (3.15).

Hemos resuelto entonces el problema de las poblaciones de los niveles para un modelo de dos niveles de energía. Se puede entonces calcular la intensidad de una línea de emisión producida por la transición 2 - 1, siempre y cuando se conozca la abundancia del ión utilizado, $N(X^{*m})$. En realidad para determinar densidades y temperaturas se utilizan los cocientes de dos líneas del mismo ión y entonces este dato ya no es necesario.

Si el modelo consta de más niveles la solución es más complicada. Las ecuaciones de equilibrio estadistico para las excitaciones y desexcitaciones en cada nivel son las siguientes:

$$\sum_{j \neq i} N_{j} N_{e} q_{ij} + \sum_{j>i} N_{j} A_{ij} = \sum_{j \neq i} N_{i} N_{e} q_{ij} + \sum_{j < i} N_{i} A_{ij}, \quad (3.17)$$

donde i,j = 1,...,n y n es el número de niveles del sistema considerado. Además de estas ecuaciones se usa una más para normalizar:

$$\sum_{i=1}^{n} N = N.$$
(3.18)

De hecho, al calcular la solución del sistema (3.17) solo se usan n-1 ecuaciones, y la última es la (3.18) porque por si solas las (3.17) no forman un sistema linealmente independiente. Esto se debe a que la información acerca del n-ésimo nivel por ejemplo, está contenida en las excitaciones y desexcitaciones de los otros n-1, y así para todos. En el presente trabajo se hicieron modelos para tres y cinco niveles de energía, que se presentan a continuación.

3.2.2. Modelo de tres niveles de energia.

Supongamos ahora un modelo de tres niveles de energía. Los niveles tienen energías E_1 , E_2 y E_3 , con $E_1 < E_2 < E_3$. Las ecuaciones que relacionan las poblaciones relativas de cada nivel son:

$$\frac{N_3}{N_1} = \frac{b_3 \omega_3}{b_1 \omega_1} e^{-\beta \chi_{31}},$$
(3.19a)
$$\frac{N_2}{N_1} = \frac{b_2 \omega_2}{b_1 \omega_1} e^{-\beta \chi_{21}},$$
(3.19b)

$$\frac{N_3}{N_2} = \frac{N_3 N_3}{N_2 \omega_2} e^{-\beta \chi_{32}}$$
(3.19c)

En este sistema hemos definido $\chi_{j1} = E_j - E_i$. Además tenemos las ecuaciones de balance de excitación y desexcitación para cada nivel, junto con la de normalización:

Ne
$$[N_1 q_{13} + N_2 q_{23}] = N_3 \{ Ne [q_{32} + q_{31}] + A_{32} + A_{31} \},$$
 (3.20a)

$$N_{e} [N_{1} q_{12} + N_{3} q_{32}] + N_{3} A_{32} = N_{2} A_{21} + N_{2} N_{e} (q_{21} + q_{23}), \qquad (3.20b)$$

Ne
$$[N_3 q_{31} + N_2 q_{21}] + N_3 A_{31} + N_2 A_{21} = Ne N_1 (q_{12} + q_{13}),$$
 (3.20c)

$$N_1 + N_2 + N_2 = 1.$$
 (3.20d)

La ecuación (3.20a), por ejemplo, es para el nivel 3. El miembro izquierdo representa las maneras posibles de poblar este nivel (por excitaciones colisionales de los niveles 1 y 2) y el miembro derecho las maneras posibles de despoblarlo (por desexcitaciones colisionales a los niveles 1 y 2 y por transiciones radiativas a

estos mismos). Las ecuaciones (3.20b) y (3.20c) son análogas, para los niveles 1 y 2. En la normalización se hizo N = 1. Como se mencionó anteriormente, para resolver el sistema es necesario tomar dos de las tres primeras ecuaciones (3.20) y además (3.20d). En ellas sustituimos N₁ por b₁ usando (3.19), y la solución se puede obtener de manera explicita. Primero introduzcamos unas variables auxiliares que resultarán convenientes más adelante:

 $x \equiv 0.01 \text{ Ne} / T^{1/2}$.

 $C = 8.629 \times 10^{-4} x.$

La solución para b, b y b es (ver por ejemplo Aller, 1968):

Ъ ₃	1	+	$\frac{\Omega_{23}}{\Omega_{12}} \frac{\exp(-\beta\chi_{32})}{1+\Omega_{23}/\Omega_{13}} + \frac{1}{CG}$	213)	(2.21-)	
b_2	1	+	$\frac{(A32+A31) \omega_3}{\Omega_{13}C(1+\Omega_{23}/\Omega_{13})} +$	$\Omega_{32} + \frac{A_{32}\omega_3}{C}$	$\frac{\exp(-\beta\chi_{32})}{\Omega_{12}(1+\Omega_{23}/\Omega_{13})}$	(3,214)

$$\frac{b_2}{b_1} = \frac{\Omega_{12} + \Omega_{13} d \exp(-\beta\chi_{23})}{\Omega_{12} + A_{21}\frac{\omega_2}{C} + \Omega_{23}(1-d) \exp(-\beta\chi_{23})},$$
(3.2)

donde d = $\frac{\Omega_{32} + A_{32}\omega_{3}/C}{\Omega_{13} + \Omega_{23} + (A_{32}+A_{31})\omega_{3}/C}$, (3.21c)

y $\frac{b_3}{b_1} = \frac{b_3}{b_2} \frac{b_2}{b_1}$. (3.21d)

1b)

Sustituyendo la solución en las ecuaciones (3.19) se obtienen las poblaciones relativas entre todos los niveles para un valor de Te y Ne. Podemos ahora calcular el cociente de intensidades entre dos líneas de un mismo ión. Por ejemplo, el cociente de la línea producida por la transición 2 - 1 y la 3 - 2 es:

$$\frac{I_{21}}{I_{32}} = \frac{N_2 A_{21} h\nu_{21}}{N_3 A_{32} h\nu_{32}}$$
(3.22)

Si se conoce el cociente de intensidades observacionalmente, se puede determinar una relación entre Te y Ne, pero no cada una por separado, en general. Se deben usar entonces varios iones para determinar la densidad y temperatura del gas en la región en la que emite.

La solución para los factores de desviación de equilibrio termodinámico b₁ coincide con la de equilibrio en el caso de alta densidad. Si Ne $\rightarrow \infty$ a una temperatura fija, entonces $\times \rightarrow \infty$ y por lo tanto C $\rightarrow \infty$. En (4.21a) se obtiene, eliminando los términos que contienen el factor 1/C:

$$b_{3} \rightarrow \frac{1 + \frac{\Omega_{23}}{\Omega_{12}} \exp(-\beta\chi_{22})}{1 + \Omega_{22} \exp(-\beta\chi_{22})} = 1,$$

ya que $\Omega(i,j) = \Omega(j,i)$. De la misma forma si $C \to \infty$, $b_2'b_1 = 1$ y por lo tanto $b_3'b_1 = 1$. De esta manera se recupera la ecuación de equilibrio termodinámico de Boltzmann para cada par de niveles.

Para este trabajo se hicieron programas en BASIC para calcular los cocientes de los factores de desviación de equilibrio b_i como función de Ne y Te. Los datos necesarios para tal programa son las energías de cada nivel (se toma $E_i = 0$), los coeficientes de emisión espontánea de Einstein, A_{ij} , los pesos estadísticos de cada nivel, ω_i , y las fuerzas de colisión, Ω_{ij} . Estas últimas dependen de la temperatura y se encuentran tabuladas en la literatura (ver por ejemplo Mendoza, 1983) para varios iones, asi que se hicieron ajustes polinomiales para obtener una función de Te. El grado del ajuste realizado depende de la forma que presente la curva a partir de los datos conocidos. Las energías de los

niveles también se encuentran en la literatura, así como los coeficientes A₁₁. Los pesos estadísticos están dados por :

$$\omega_{1} = 2 J_{1} + 1,$$
 (3.23)

donde J es el número cuántico de momento angular total del nivel i (momento angular órbital más momento angular de spin).

3.2.3. Modelo de cinco niveles de energía.

Con cinco niveles la solución es mucho más complicada, y no se resuelve el sistema analiticamente, sino que numericamente. Las ecuaciones son las mismas que para tres niveles, solo que ahora son cinco, más la de normalización. Se toman para resolver el sistema cuatro de las cinco de equilibrio estadístico de excitación y desexcitación y la de normalización:

$$N_1 + N_2 + N_3 + N_4 + N_5 = 1.$$
 (3.24)

La solución numérica encuentra los valores de N₁, i = 1,...,5, y entonces se pueden calcular los cocientes de las líneas deseadas.

Para este caso se hicieron programas en C, tomando las ecuaciones de equilibrio estadístico de excitación y desexcitación de los primeros cuatro niveles y la de normalización, ec.(3.24). Los datos necesarios al programa son los mismos que en el caso del modelo de tres niveles, y se procedió de la misma manera. Para cada valor de Te y Ne que se fije, el programa resuelve el sistema de cinco incógnitas con las cinco ecuaciones y calcula N₁. Se puede entonces calcular el cociente de una linea de emisión a otra
Estos modelos fueron utilizados por Torres-Peimbert y Peña (Reporte Técnico #87, IAUNAM) para diferentes iones con el fin de diagnosticar temperaturas y densidades electrónicas en nebulosas. Los cálculos se hicieron para densidades menores a 10⁶cm⁻³, por lo que para realizar esta tesis fué necesario extenderios a densidades más altas y escribir nuevos programas.

3.3. APLICACIONES DE LOS MODELOS ATOMICOS.

3.3.1. Tres niveles de energia.

Se hicieron modelos de tres niveles para OIII y NII. Fn realidad estos iones tienen cinco niveles de energía, pero las diferencias de energía entre ellos son pequeñas comparadas con valores típicos de kTe. Estos tres son los niveles ${}^{3}P_{1}$, con i = 0,1,2. Agrupamos entonces estos niveles como el primero en el modelo, el segundo es el ¹D2, y el tercero el ¹So. El coeficiente de emisión espontánea A21 se vuelve la suma de los coeficientes $A(^{1}Dz - ^{3}Pi)$, con i = 0.1.2 (en realidad sólo se tomaron dos de los coeficientes porque hay uno que se puede despreciar en todos los casos). La fuerza de colisión $\Omega(1,2)$ es también la suma de las fuerzas de colisión $\Omega({}^{3}P_{1}, {}^{1}D_{2})$, i = 0,1,2, y por último para las energias se calculó un promedio con la energía de cada transición pesado por las Aij. Los pesos estadísticos son ω_{1} = 1, ω_{2} = 5 y ω = 9, porque se suman los de cada nivel ³Pi que se están juntando.

1

En la Figura 3.1 aparecen diagramas de energía para OIII y NII. Se pueden observar algunas transiciones importantes, que son las que aparecen en los espectros utilizados en el presente trabajo. Vemos que en realidad la transición 2-1 en estos iones está compuesta de tres líneas, dos de las cuales son generalmente observables (la tercera no se ve porque uno de los coeficientes de Einstein que es mucho más pequeño que los otros dos, y por lo tanto esa línea es mucho más débil). Al resolver el sistema y calcular la intensidad de la línea producida por esta transición, estaremos en realidad estimando el valor de la suma de las dos líneas que podemos observar. Para el caso del OIII estas son λ 5007 y λ 4959 y para el NII son λ 6548 y λ 6583.

a) OIII

b) NII

Figura 3.1. Diagramas de energia para OIII y NII.

3.3.1.1. Oxigeno.

Se calculó mediante el programa el cociente:

Los parámetros atómicos necesarios fueron tomados de Aggarwal (1983).

(3.25)

 $\log \left[\frac{I(\lambda 5007) + I(\lambda 4959)}{I(\lambda 4363)} \right] = f(Ne, Te).$

En la Figura 3.2 aparecen varias curvas de f(Ne, Te) definida en (3.25). De hecho se graficó el cociente para varios valores de x y no de Ne (x está definido en § 3.2.2.), como función de la temperatura electrónica Te. Se puede ver que las gráficas tienen un valor asintótico cuando $x \rightarrow \infty$, i.e. a una temperatura Te fija cuando Ne $\rightarrow \infty$: la separación entre las curvas disminuye al aumentar x en pasos constantes. Este limite es el de equilibrio termodinámico: las colisiones entre lones y electrones son tan frecuentes que las poblaciones de los niveles energéticos quedan relacionadas por la ecuación de Boltzmann (3.3), como ya se mostró en § 3.2.2.

Para cada valor del cociente observado de la ecuación (3.25)podemos entonces construir una curva en el plano Te - x. Para ello se buscan los puntos de intersección entre las curvas de la Figura 3.2. (para el caso del OIII) y la recta horizontal definida por el valor del cociente de la ecuación (3.25). Cada intersección produce una pareja de datos (x,Te) y se obtiene la curva mencionada. Este proceso se puede realizar para cada observación que se tenga y se hizo para todos los iones que se mencionan más adelante en este capítulo (NII, SII y ArIV). Los valores observados de λ 5007 se corrigen con respecto a la intensidad de λ 4959 utilizando el hecho de que como provienen del mismo nivel

superior (¹D2, ver Figura 3.1.a)), su cociente no depende de Ne ni Te, sino sólamente de los coeficientes de Einstein y de la energía de cada transición:

$$\frac{I(\lambda 5007)}{I(\lambda 4959)} = \frac{A({}^{1}\text{Dz}{}^{-3}\text{Pz}) h\nu(\lambda 5007)}{A({}^{1}\text{Dz}{}^{-3}\text{P1}) h\nu(\lambda 4959)}$$

3.3.1.2. Nitrógeno.

En este caso de calculó el cociente:

$$\log \left[\frac{1(6583)+1(6548)}{1(5755)} \right] = f(N_e, T_e).$$
(3.27

Los parámetros atómicos fueron tomados de la compilación de Mendoza (1983).

Dado que en los espectros utilizados λ 6548 se confunde con la línea de hidrógeno H α (transición del nivel 3 al 2 para el hidrógeno, correspondiente a la serie de Balmer), en la mayoria de los casos sólo se mide λ 6583. Se realiza entonces una corrección análoga a la del oxigeno, ya que λ 6583 y λ 6548 provienen de transiciones del mismo nivel superior (¹D₂, ver Figura 3.1.b)). Se tiene entonces:

$$\frac{I(\lambda 6583)}{I(\lambda 6548)} = \frac{A({}^{1}D_{2} - {}^{3}P_{2}) h\nu(\lambda 6583)}{A({}^{1}D_{2} - {}^{3}P_{1}) h\nu(\lambda 6548)}$$

= 2.94 .

(3.28)

Figura 3.3. f(Ne, Te) para NII (ec. 3.27).

De la misma forma que con el oxígeno, se construye una línea en el plano Te - x para cada observación, según el valor observado del cociente de la ecuación (3.27). En la Figura 3.3 aparecen algunas curvas del cociente de la ecuación (3.27) como función de Te para varios valores de x.

3.3.2. Cinco niveles de energia.

Para cinco niveles, se hicieron programas para SII y ArIV. En la Figura 3.4 aparecen los diagramas de energia de estos lones, así como las transiciones observadas en los espectros.

Figura 3.4. Diagramas de energia para SII y ArIV.

En este caso se consideraron todos los niveles por separado para todos los iones.

3.3.2.1. Azufre.

Se calculó el cociente:

$$\log \left[\frac{I(\lambda 4069) + I(\lambda 4076)}{I(\lambda 6731) + I(\lambda 6717)} \right] = f(Ne, Te), \qquad (3.29)$$

Las líneas $\lambda 4076$ y $\lambda 4069$ están confundidas en los espectros utilizados, así que representan un solo dato. Las líneas nebulares ($\lambda 6717$ y $\lambda 6731$) se distinguen por separado. Para el programa, se utilizaron los parámetros atómicos de la compilación de Mendoza (1983). Con cada valor observacional del cociente de la ecuación (3.29), se construye una línea en el plano Te - x, de manera análoga a los iones anteriores. En la Figura 3.5 se muestran algunas curvas de f(Ne, Te) definida en (3.29) como función de Te para varios valores de x.

3.3.2.2. Argón.

El cociente calculado fué:

$$\log \left[\frac{I(\lambda 7263)}{I(\lambda 4740)} \right] = f(Ne, Te).$$
(3.30)

No se utilizaron las demás lineas observadas debido a que se encuentran contaminadas por contribuciones de otros iones. La línea en λ 4711 tiene contribución de NeIV, λ 7332 tiene contribución de OII, λ 7169 de FeII y λ 7236 de CII. Los parámetros atómicos fueron tomados de Mendoza (1983) para los coeficientes de Einstein A_{ij} y de Zeippen et al. (1987) para las fuerzas de colisión. Con los cocientes observados se construye una línea en el plano Te - x para cada observación. Las gráficas de f(Ne, Te)

definida en (3.30) como función de Te para diferentes valores de x aparecen en la Figura 3.6.

Dada la pequeña diferencia de energia con respecto a kTe entre los niveles 5 y 4 (${}^{2}P_{3/2,1/2}$) y los niveles 3 y 2 (${}^{2}D_{5/2,3/2}$) (ver Figura 3.4.b)),la temperatura influye muy poco en las poblaciones de estos niveles, uno con respecto a otro. Lo que importa en este caso es la densidad, ya que a través de los efectos colisionales se producen diferencias en dichas poblaciones. Entonces, para un valor de x fijo, hay ciertos cocientes de transiciones que no dependen de Te. En particular se hicieron los cálculos para los siguientes cocientes:

$$\log \left[\frac{I(\lambda 7169)}{I(\lambda 7263)} \right] = f(x), \qquad (3.31)$$
$$\log \left[\frac{I(\lambda 7236)}{I(\lambda 7263)} \right] = f(x). \qquad (3.32)$$

Los resultados obtenidos coinciden con lo que se esperaría en los límites de alta y baja densidad. Consideremos primero el caso de alta densidad, i.e. Ne $\rightarrow \infty$. Las colisiones llevan al gas al equilibrio termodinámico y entonces las poblaciones de los niveles están relacionadas por la ecuación de Boltzmann (3.3). Tendremos entonces, para las poblaciones de los niveles ²P3/2 y ²D3/2 (5 y 2 respectivamente en el modelo), y ²P1/2 y ²D3/2 (4 y 2 en el modelo):

$$\frac{N_{5}}{N_{2}} = \frac{\omega_{5}}{\omega_{2}} e^{-\beta \chi_{52}},$$
(3.33)
$$\frac{N_{4}}{N_{4}} = \frac{\omega_{4}}{\omega} e^{-\beta \chi_{42}},$$
(3.34)

Si la diferencia de energias es muy pequeña con respecto a kTe, entonces se puede hacer la aproximación $e^{-\beta\chi}_{ij} \approx 1$ para cualquier valor de la temperatura para los niveles 4 y 5 en la ecuación (3.35). El cociente de las poblaciones de los niveles asi considerados queda dado entonces por el cociente de los pesos estadísticos. Se sigue entonces que el cociente entre las lineas producidas por las transiciones 5 - 2 y 4 - 2 está dado por:

 $\frac{N_{5}}{N_{a}} = \frac{\omega_{5}}{\omega_{a}} e^{-\beta \chi_{54}}.$

(3.35)

(3.36)

$$\frac{I(\lambda 7169)}{I(\lambda 7263)} = \frac{N_5}{N_4} \frac{A_{52}}{A_{42}} \frac{h\nu(\lambda 7169)}{h\nu(\lambda 7263)},$$
$$= \frac{\omega_5}{\omega_4} \frac{A_{52}}{A_{52}} \frac{h\nu(\lambda 7169)}{h\nu(\lambda 7263)},$$

2.65 .

De igual manera, para el cociente de las transiciones 5 - 3 y 4 - 2 se obtiene:

$$\frac{I(\lambda 7236)}{I(\lambda 7263)} = 1.99 , \qquad (3.37)$$

donde los valores para las ecuaciones (3.36) y (3.37) se han tomado de Mendoza (1983).

Veamos ahora el caso de baja densidad, Ne \rightarrow 0. Cada excitación colisional es seguida por una desexcitación radiativa, y por lo tanto por la emisión de un fotón (la concentración de electrones es tan baja que no hay ninguna desexcitación colisional). La desexcitación se puede producir a cualquier nivel, y esto depende de los valores de los coeficientes A_{ij} . La intensidad de la línea

que nos interesa será entonces proporcional al cociente del coeficiente de la linea observada y de la suma de los coeficientes correspondientes a todas las maneras posibles de producir la desexcitación, y al peso estadístico del nivel superior de la transición. Tendremos entonces:

$$\frac{I(\lambda7169)}{I(\lambda7263)} = \frac{\omega_{5}}{\omega_{4}} \frac{A_{52}}{A_{42}} \frac{[A_{41}+A_{42}+A_{43}]}{[A_{51}+A_{52}+A_{53}]} \frac{h\nu(\lambda7169)}{h\nu(\lambda7263)}$$

= 1.2 .

(3.38)

(3.39)

Para el cociente de las transiciones 5 - 3 y 4 - 2 resulta:

 $I(\lambda 7236) = 0.9$

Los valores de Aıj y λ para las ecuaciones (3.38) y (3.39) se han tomado de Mendoza (1983).

Las gráficas correspondientes aparecen en las Figuras 3.7(a) y 3.7(b) y fueron hechas con Te =15,000 $^{\circ}$ K., pero no se desplazan apreciablemente si se varia Te. Si se tiene un valor para alguno de los cocientes mencionados, se puede obtener directamente el valor de x, y por lo tanto una relación entre Ne y Te.

3.4. DETERMINACION DE TEMPERATURAS CON HeI.

Hasta este punto hemos considerado únicamente líneas de emisión producidas por iones excitados colisionalmente. Vamos a ver ahora el caso de líneas producidas por recombinaciones, en particular de helio una vez ionizado. Al capturar un electrón

libre, el helio se desexcita de manera espontanea, emitiendo radiación a ciertas longitudes de onda. Las intensidades de las líneas producidas son también función de la temperatura y la densidad en general. Para el caso estudiado en este trabajo, la dependencia en densidad es prácticamente nula, acercándose al caso de densidad infinita. Es por esto que se puede realizar una determinación de temperatura, que se explicará a continuación.

En la Figura 3.8 se muestra un diagrama de niveles de energía para HeI, con algunas transiciones y sus longitudes de onda respectivas señaladas. El nivel 2³S del triplete resulta ser metaestable, con una población relativamente grande. Esto se debe

3.8 Diagrama HeI. Se pueden Figura de 105 niveles de energia de apreciar transiciones utilizadas sección DALA 188 en esta determinación de temperaturas.

a que todas las recombinaciones a niveles del triplete en última instancia decaen a este nivel, que solo se puede despoblar por fotolonización, por transiciones inducidas colisionalmente o por transiciones radiativas al nivel 1¹5. Sin embargo estas últimas son prácticamente prohibidas dado que el coeficiente de emisión espontánea de Einstein es muy pequeño, por lo que centraremos la atención sobre los efectos colisionales.

La población del nivel 2³5 está dada por (Peimbert y Torres-Peimbert, 1987):

$$N(2^{3}S) = \frac{N(He^{+})}{D_{T}} = \frac{N(He^{+})}{Ne} \frac{n}{\alpha_{T}},$$
 (3.40)

donde

$$\alpha_{T} = 2.04 \times 10^{-13} t_{-4}^{-0.07} cm^{3} s^{-1}$$

 $\alpha_{_{\rm T}}$ es el coeficiente de recombinación efectiva a todos los niveles del triplete, t4 = Te / 10⁴ y D_{_{\rm T} es la tasa total de despoblación del nivel 2³S, que queda dada por:

$$D_{T}(2^{3}S) = A(2^{3}S,1^{1}S) + N_{e}[q(2^{3}S,1^{1}S) + q(2^{3}S,2^{1}S) + q(2^{3}S,2^{1}P)],$$

 $= A(2^{3}S, 1^{1}S) + Ne D_{c},$

$$= 1.13 \times 10^{-4} + \text{Ne} 3.5 \times 10^{-8} \text{t}_{4}^{0.24} \text{s}^{-1}$$

despreciando otros efectos, como ionización por el campo de radiación y colisiones ionizantes. Los valores se han tomado de Drake (1971) para A(i,j) y de Berrington y Kingston (1987) para D_c, que representa el intercambio colisional entre el triplete y el singulete.

De esta manera la ecuación (3.40) queda escrita como:

 $N(2^{3}S)$ 5.82×10⁻⁶ t₄ $N(He^{+})$ (1+3229 t4^{-0.24} Ne⁻¹)

La excitación colisional del nivel 2^3 S produce un aumento en la intensidad de las lineas del helio: En particular veremos sus efectos sobre λ 5876 (3^3 D - 2^3 P), λ 6678 (3^1 D - 2^1 P) y λ 4471 (4^3 D - 2^3 P).

(3, 41)

Para el caso de λ 5876, una excitación colisional de 2³S a 3³D puede decaer al nivel 3³P o al 2³P. La segunda forma es la que produce un fotón de longitud de onda 5876 Å. Por otro lado, una excitación colisional de 2³S a 4³F puede decaer a 4³D o a 3³D, y de ahí a 2³P, dando lugar a otro fotón λ 5876. El cociente de emisiones inducidas colisionalmente a las de recombinación quedará dado entonces por (ec. (3.42)):

$$\frac{1(\lambda 5876)c}{1(\lambda 5876)R} = \frac{N(2^{3}S)N_{0}\{[q(2^{3}S,3^{3}D)+q(2^{3}S,4^{3}F)R(4^{3}F,3^{3}D)]R(3^{3}D,2^{3}P)\}}{N(He^{+}) N_{e} \alpha(\lambda 5876)err},$$

con

$$R(4^{3}F,3^{3}D) = \frac{A(4^{3}F,3^{3}D)}{A(4^{3}F,3^{3}D) + A(4^{3}F,4^{3}D)},$$
 (3.43)

$$R(3^{3}D, 2^{3}P) = \frac{A(3^{3}D, 2^{3}P)}{A(3^{3}D, 2^{3}P) + A(3^{3}D, 3^{3}P)},$$
 (3.44)

y $\alpha(\lambda 5876)$ err es el coeficiente efectivo de recombinación para la transición 3³D - 2³P.

Se tiene entonces, utilizando los valores de A de Weise et al.(1966), $\alpha(\lambda 5876)_{eff}$ de Brocklehurst (1972) y q(1,j) de Peimbert y Torres-Peimbert (1987):

$$\frac{I(\lambda 5876)c}{I(\lambda 5876)R} = \frac{7.27 \text{ t}^{-0.39} \text{e}^{-3.776/t_4} + 3.01 \text{ t}^{-0.04} \text{e}^{-4.544/t_4}}{(1+3229 \text{ t}^{-0.24} \text{ Ne}^{-1})}.$$
 (3.45)

Para llegar a la ecuación (3.45) se despreció la contribución del término $q(2^3S, 4^3P)$.

Para $\lambda 6678$ se consideró la contribución de $q(2^3S, 3^1D)$ y $q(2^3S, 4^1F)$, despreciando $q(2^3S, 4^1P)$. Una excitación colisional del nivel 2^3S al 3^1D puede decaer solamente a 2^1P y producir un fotón $\lambda 6678$. Por otro lado, una excitación colisional de 2^3S a 4^1P puede decaer a 4^1D o a 3^1D , y luego a 2^1P , produciendo otro fotón $\lambda 6678$. El cociente de emisiones debidas a colisiones a las debidas a recombinaciones está dado entonces por (ec (3.46)):

 $\frac{I(\lambda 6678)c}{I(\lambda 6678)c} = \frac{N(2^{3}S)Ne\{(q(2^{3}S,3^{1}D)+q(2^{3}S,4^{1}F)R(4^{1}F,3^{1}D)\}A(3^{1}D,2^{1}P)\}}{N(He^{*}) Ne \alpha(\lambda 6678)err},$

donde
$$R(4^{1}F, 3^{1}D) = \frac{A(4^{1}F, 3^{1}D)}{A(4^{1}F, 3^{1}D) + A(4^{1}F, 4^{1}D)},$$
 (3.47)

y $\alpha(\lambda 6678)_{eff}$ es el coeficiente efectivo de recombinación para esta transición.

De la misma forma que para λ 5876, se obtiene:

ł,

$$\frac{I(\lambda 6678)c}{I(\lambda 6678)R} = \frac{3.25 \text{ t4}^{-0.16} \text{e}^{-3.777/\text{t4}} + 0.99 \text{ t4}^{-0.28} \text{e}^{-4.544/\text{t4}}}{(1+3229 \text{ t4}^{-0.24} \text{ Ne}^{-1})}.$$
 (3.48)

Es importante notar que en los espectros utilizados, $\lambda 6678$ está contaminada por una linea de HeII en 6683 $\stackrel{\circ}{k}$ y para obtener resultados correctos hay que restar esta contribución. Para ello, se utiliza el hecho de que log[I($\lambda 6683$)/I($\lambda 4686$)] = -2.14 (Aller, 1937). Los datos utilizados para la determinación de Te se corrigieron de esta manera.

Por último, para $\lambda 4471$ se consideró la contribución de $q(2^3S,4^3D)$. Una excitación colisional del nivel 2^3S al 4^3D puede decaer a 3^3P o a 2^3P , produciendo de la segunda manera un fotón de longitud ce onda 4471 Å. El cociente de las emisiones debidas a colisiones a las producidas por recombinaciones es entonces:

$$\frac{I(\lambda 4471)c}{I(\lambda 4471)R} = \frac{N(2^{3}S)Ne}{N(He^{+})} \frac{Q(2^{3}S, 4^{3}D)}{R(4^{3}D, 2^{3}P)}, \quad (3.49)$$

donde
$$R(4^{3}D, 2^{3}P) = \frac{A}{A(4^{3}D, 2^{3}P)} + A(4^{3}D, 3^{3}P)}$$
 (3.50)

Como para los casos anteriores, $\alpha(\lambda 4471)$ err es el coeficiente efectivo de recombinación. Se obtiene de la ecuación (3.49):

$$\frac{I(\lambda 4471)c}{I(\lambda 4471)R} = \frac{12.25 t_4^{0.32} e^{-4.544/t_4}}{(1 + 3229 t_4^{-0.24} Ne^{-1})}.$$
(3.51)

En las Figuras 3.9(a) a 3.9(e) se grafican las ecuaciones (3.45), (3.48), (3.51) y los cocientes:

$$\frac{[1(\lambda 5876)/1(\lambda 6678)]_{R+C}}{[1(\lambda 5876)/1(\lambda 6678)]_{R}} = f(Ne, Te), \qquad (3.52)$$

$$\frac{[I(\lambda 6678)/I(\lambda 4471)]_{R+C}}{[I(\lambda 6678)/I(\lambda 4471)]_{R}} = f(N_e, T_e).$$
(3.53)

Las curvas se hicieron como función de la temperatura, manteniendo la densidad constante para cada una de ellas. Si se conoce el valor de algún cociente considerando únicamente recombinaciones, se puede determinar la temperatura y la densidad a partir del valor observado del mismo cociente, utilizando las gráficas mencionadas. De hecho para densidades altas (Ne > 10^5 cm⁻³) no se necesita un valor preciso de Ne porque las curvas ya casi no se mueven, acercándose al límite de alta densidad. Se obtiene

entonces un diagnóstico de temperaturas para el gas en emisión.

Los valores teóricos considerando recombinaciones son, para los cocientes utilizados:

$$\log \left[\frac{I(\lambda 6678)}{I(\lambda 4471)} \right] = -0.11 .$$
(3.54)
$$\log \left[\frac{I(\lambda 5876)}{I(\lambda 6678)} \right] = 0.54 .$$
(3.55)

CAPITULO 4

ABUNDANCIAS QUIMICAS

Este capítulo está dedicado a exponer la manera en la cual se lleva a cabo el cálculo de las abundancias químicas de algunos de los elementos presentes en nebulosas gaseosas. Los resultados generales se pueden aplicar a cualquier objeto pero los cálculos aqui presentados se hicieron para los intervalos de temperaturas y densidades correspondientes a HM Sge.

4.1. GENERALIDADES.

Al determinar temperaturas y densidades electrónicas, se utilizaron líneas de emisión producidas por un mismo ión, para evitar el tener que conocer su abundancia. Una vez determinadas Ne y Te podemos calcular las abundancias iónicas justamente con ayuda de cocientes de líneas de diferentes especies. Las abundancias químicas se calculan con respecto al hidrógeno, por ser este el elemento más abundante en una nebulosa gaseosa y en todo el universo. Veamos primero como se relaciona la intensidad de las líneas de este elemento con su abundancia, Ne y Te.

Las líneas de emisión observadas en los espectros para H son

las de la serie de Balmer, i.e. transiciones de algún nivel n, con n > 2 al nivel 2. Estas líneas se producen al recombinarse los núcleos de hidrógeno con electrones libres en la nebulosa. La emisividad de estas líneas está dada por (Osterbrock 1989):

$$\varepsilon(\lambda) = N(H^{\dagger}) Ne h\nu(\lambda) \alpha eff,$$
 (4.1)

en ergs cm⁻³ s⁻¹, donde N(H⁺) es la abundancia de hidrógeno ionizado, ν es la frecuencia de la radiación emitida con longitud de onda λ y α err es el coeficiente efectivo de recombinación para la transición considerada.

En el presente trabajo se utilizó la línea producida por la transición 9 - 2 (H9) para determinar las abundancias de los elementos. La longitud de onda asociada a esta transición es de 3835 Å. Se acostumbra utilizar Hß para este fin, pero en este caso estaba afectada por problemas de autoabsorción. Esto se debe a que un fotón emitido por esta transición es reabsorbido por el gas de la nebulosa, no escapa, y por lo tanto no puede ser observado. La intensidad de HB se ve entonces disminuida con respecto a su valor teórico y las abundancias calculadas con esta radiación no serían correctas. Este efecto disminuye al tomar líneas de la serie de Balmer provenientes de niveles cada vez más elevados del átomo de hidrógeno, por lo que se utilizó la línea ya mencionada. Los valores de los coeficientes de recombinación varían aproximadamente como Te^{-1} y se realizó un ajuste para calcular. $\alpha(\lambda 3835)_{eff}$ a partir de los datos de Hummer y Storey (1987). Se encontró:

 $\alpha eff(\lambda 3835) = 1.06 \times 10^{-11} Te^{-0.94}$

en cm s .

4.2. HELIO.

Dentro de la región ionizada de la nebulosa, se puede tener helio una o dos veces ionizado, que produce líneas de emisión al recombinarse y formar helio neutro o una vez ionizado.

4.2.1. He⁺.

d

La emisividad de una línea de recombinación de He^{*} está dada por:

$$\varepsilon(\lambda) = N(He^{+}) Ne h\nu(\lambda) \alpha eff.$$
 (4.3)

(4.2)

Se utilizó la línea proveniente de la transición $3^{1}D - 2^{1}P$, con longitud de onda 6678 Å. Para el coeficiente efectivo de recombinación se utilizaron los datos de Brocklehurst (1972) y se obtuvo:

$$\alpha eff(\lambda 6678) = 4.99 \times 10^{-10} Te^{-1.12},$$
 (4.4)

en cm³ s⁻¹. El cociente de He^{*} a H^{*} queda entonces dado por:

$$\frac{N(He^{*})}{N(H^{*})} = \frac{\alpha e_{ff}(\lambda 3835) h\nu(\lambda 3835) Irec(\lambda 6678)}{\alpha e_{ff}(\lambda 6678) h\nu(\lambda 6678) I(\lambda 3835)},$$
(4.5)
londe
$$Irec(\lambda 6678) = \frac{I(\lambda 6678)}{1 + \gamma ec}.$$
(4.6)

Aqui yec es el exceso colisional que depende de la temperatura y

la densidad a la que se encuentra el gas, como se explicó en el capitulo anterior, $I_{rec}(\lambda 6678)$ es la intensidad que se tendria. considerando solamente recombinaciones e I($\lambda 6678$) es la intensidad observada ya corregida por extinción. El valor de yec se calcula con la ecuación (3.48), dada en el Capitulo 3. Sustituyendo los valores para los coeficientes efectivos de recombinación se obtiene:

$$\frac{N(He^{+})}{N(H^{+})} = 3.69 \times 10^{-2} T_e^{0.19} \frac{I(\lambda 6678)_{rec}}{I(\lambda 3835)}.$$

4.2.2. He⁺⁺.

En este caso se utilizó λ 4686. El ajuste para $\alpha(\lambda$ 4686)err se hizo a partir de los datos de Hummer y Storey (1987) y se obtuvo:

$$\alpha eff(\lambda 4686) = 4.67 \times 10^{-9} Te^{-1.03}$$
, (4.8)

(4.7)

en cm³ s⁻¹. El cociente de He⁺⁺ a H⁺ queda entonces dado por:

$$\frac{N(He^{++})}{N(H^{+})} = 2.76 \times 10^{-3} T_{e}^{0.10} \frac{I(\lambda 4686)}{I(\lambda 3835)}.$$
(4.9)

Conociendo los valores observados de los cocientes aquí mencionados, se puede calcular la abundancia del He^{*} y He^{**} con respecto al hidrógeno. La abundancia total de helio a hidrógeno quedará dada entonces por:

$$\frac{N(He)}{N(H)} = \frac{N(He^{+}) + N(He^{++})}{N(H^{+})}.$$
 (4.10)

Esta ecuación no toma en cuenta la presencia de helio neutro, por lo que para que sea válida se requiere que la temperatura de la

estrella que ioniza al gas sea mayor a 40,000 $^{\circ}$ K, evitando asi la presencia de He $^{\circ}$ ya que se produce el suficiente número de fotones para ionizar todo el helio al menos una vez.

4.3 OXIGENO.

Para el caso del oxígeno, se pueden observar en ios espectros las líneas producidas por excitación colisional de OII y OIII. La determinación de abundancias es un poco más complicada que para el helio porque se deben de usar los modelos de tres y cinco niveles de energía ya que las líneas son producidas por excitación colisional de los diferentes iones. Se determinaron las abundancias de estas dos especies iónicas utilizando los mismos programas que para la determinación de densidades y temperaturas. Se hizo un programa análogo al de ArIV y SII para OII con cínco niveles de energía, tomando los parámetros atómicos de Mendoza (1983).

4.3.1. OIII.

Para la determinación de abundancia de OIII, se utilizó la línea producida por la transición ${}^{1}S_{0} - {}^{1}D_{2}$, con longitud de onda 4363 Å (ver Figura 3.1(a)). Como se explicó en el capítulo anterior, dados un valor de Te y de Ne se puede calcular la población del nivel donde se origina la transición (${}^{1}S_{0}$ en este caso). Haciendo el cociente con λ 3835 HI tendremos:

 $\frac{I(\lambda 4363)}{I(\lambda 3835)} = \frac{N(0^{++}) N_3 A_{32} h\nu(\lambda 4363)}{N(H^{+}) N_6 \alpha(\lambda 3835) err h\nu(\lambda 3835)},$

(4.11)

y por lo tanto $\frac{N(0^{++})}{N(H^{+})} = K(N_e, T_e, 0^{++}) \frac{I(\lambda 4363)}{I(\lambda 3835)},$ (4.12)

donde $K(N_{e}, T_{e}, O^{++}) = \frac{N_{e} \alpha(\lambda 3835)_{eff} h\nu(\lambda 3835)}{N_{3} A_{32} h\nu(\lambda 4363)}$. (4.13)

La nomenclatura de los niveles de energía es la misma que en el Capitulo 3, siendo A32 el coeficiente de emisión espontánea de Einstein para la transición considerada y N3 la población del nivel en el cual se origina la transición, con respecto al primer nivel (aquí se trata de poblaciones relativas). En la Figura 4.1 se grafica log(K) como función de Te. La gráfica se hizo con x =400 pero esta función prácticamente no depende de Ne y la curva es válida para x > 100. Conociendo los valores de Ne y Te y el valor observado del cociente de intensidades en la ecuación (4.12) se puede determinar la abundancia de O^{**} con respecto a H^{*}.

4.3.2. OII.

Para OII se hizo un programa de cinco niveles de energía completamente análogo al de ArIV y SII. Los parámetros atómicos se tomaron de la compilación de Mendoza (1983). En la Figura 4.2 se muestra un diagrama de niveles de energía para OII.

Para los cálculos de abundancias se utilizó la línea en 7322%, que de hecho es la suma de las líneas producidas por las transiciones ${}^{2}P_{3/2} - {}^{2}D_{5/2}$ y ${}^{2}P_{1/2} - {}^{2}D_{5/2}$. Se utilizó sólo esta línea ya que la que se encuentra en 7332 % está contaminada por ArIV, como se mencionó en el capítulo anterior. Se tiene entonces:

 $\frac{I(\lambda 7322)}{I(\lambda 3835)} = \frac{N(0^{+}) [N_{5} A_{52} h\nu(\lambda 7322) + N_{4} A_{42} h\nu(\lambda 7322)]}{N(H^{+}) N_{6} \alpha(\lambda 3835) err h\nu(\lambda 3835)}, \quad (4.14)$

y por lo tanto $\frac{N(0^+)}{N(H^+)} = K(N_e, T_e, 0^+) \frac{I(\lambda 7322)}{I(\lambda 3835)}$, (4.15)

donde K(Ne, Te, O^*) = $\frac{Ne \alpha(\lambda 3835)erf h\nu(\lambda 3835)}{Ns Asz h\nu(\lambda 7322) + N4 A42 h\nu(\lambda 7322)}$. (4.16)

En la Figura 4.3 se grafica $\log(K)$ como función de la temperatura para varios valores de x. De la misma manera que para el OIII, conociendo Te. Ne y un valor observado del cociente de la ecuación (4.14) se puede determinar la abundancia de OII con respecto a la de H^{+} .

En principio para conocer la abundancia de oxígeno (o cualquier otro elemento) con respecto a la de hidrógeno, deberíamos tener valores observados para las líneas de cada especie iónica. En la práctica esto no es siempre posible, así que hay que corregir de alguna manera para tomar en cuenta las especies que no se observan. Se usan los potenciales de ionización para lograrlo, ya que si son similares para dos especies estas se encontrarán en aproximadamente las mismas proporciones. Para el oxígeno esta corrección toma entonces la siguiente forma (Peimbert

1990):

$$\frac{N(O)}{N(H)} = \frac{N(O^{+}) + N(O^{++})}{N(H^{+})} \frac{N(He^{+}) + N(He^{++})}{N(He^{+})}$$

(4, 17)

y se puede entonces conocer la abundancia total de oxigeno con respecto a la de hidrógeno.

4.4. NITROGENO.

En este caso sólo se determinó la abundancia de NII con respecto a la de hidrógeno. Se utilizó la línea proveniente de la transición ¹So - ¹D2, con longitud de onda 5755 $\mathring{\lambda}$ (ver la Figura 3.1.(b) para un diagrama de los niveles de energía). Se tiene entonces:

$$\frac{I(\lambda 5755)}{I(\lambda 3835)} = \frac{N(N^*) N_3 A_{32} h\nu(\lambda 5755)}{N(H^*) N_e \alpha(\lambda 3835) eff h\nu(\lambda 3835)}, \qquad (4.18)$$

y por lo tanto	$\frac{N(N^{*})}{K(N_{e})} = K(N_{e})$	Te, N ⁺⁺)	<u>$I(\lambda 5755)$</u> (4.19)
an an Britshan an	N(H ⁺)		Ι(λ3835)

donde $K(Ne, Te, N^*) = \frac{Ne \alpha(\lambda 3835)erf h\nu(\lambda 3835)}{N3 A32 h\nu(\lambda 5755)}$. (4.20)

En la Figura 4.4 se ha graficado log(K) como función de Te para x = 100 y x = 500 y como se puede apreciar, la variación con Ne es pequeña. Para encontrar la abundancia de N⁺ con respecto a la de H⁺ se procede de igual manera que para los iones mencionados anteriormente. Como no se tiene la abundancia de las demás especies iónicas de nitrógeno, se necesita hacer una corrección análoga a la que se utilizó para el oxígeno para encontrar la abundancia total, como sigue (Peimbert 1990):

$$\frac{N(N)}{N(H)} = \frac{N(N^{+})}{N(H^{+})} \frac{N(O^{+}) + N(O^{++})}{N(O^{+})},$$

donde las abundancias de 0^{+} y 0^{++} se calcularon utilizando los resultados de § 4.3.

4.5. NEON.

Para determinar la abundancia de Ne se utilizó NeIII. En la Figura 4.5 se muestra un diagrama de los niveles de energía. Se resolvió un sistema de tres niveles análogo al que se usó para OIII y NII. Los parámetros atómicos se obtuvieron de Mendoza (1983). La linea producida por la transición ${}^{1}D2 - {}^{3}P2$, de longitud de onda 3870 $\stackrel{\circ}{\lambda}$ fué la que se usó para determinar la abundancia de NeIII. Como se han agrupado los tres niveles más bajos en uno solo, al calcular la intensidad de la transición 2 -1 se estan tomando en cuenta las transiciones ${}^{1}D2 - {}^{3}Pi$, con i = 0,1,2. Para corregir es necesario entonces restar la línea en 3969 3 (¹D2 - ³Pi) al resultado (la tercera transición, ¹D2 - ³Po, se puede despreciar ya que su coeficiente de emisión espontánea es mucho más pequeño que los otros dos). Para llevar a cabo esta corrección, recordamos que las dos líneas provienen del mismo nivel superior y por lo tanto como se ha mencionado antes su cociente depende solamente de las energías de las transiciones y de los coeficientes Au. Para este cociente se tiene:

$$\frac{I(\lambda 3870)}{I(\lambda 3969)} = \frac{A(^{1}D_{2} - ^{3}P_{2}) h\nu(\lambda 3870)}{A(^{1}D_{2} - ^{3}P_{1}) h\nu(\lambda 3969)},$$

= 3.24 ,

(4.22)

(4, 21)

donde los valores se han tomado de Mendoza (1983). Tendremos entonces, definiendo $\gamma = 3.24$:

$$\frac{I(\lambda 3870)}{I(\lambda 3835)} = \frac{N(Ne^{++})[N_2 \Lambda_{21} h\nu_{21}][\gamma/(\gamma+1)]}{N(H^+) N_e \alpha(\lambda 3835)err h\nu(\lambda 3835)}, \qquad (4.23)$$

por lo tanto
$$\frac{N(Ne^{+})}{N(H^{+})} = K(N_{e}, T_{e}, Ne^{++}) \frac{I(\lambda 3870)}{I(\lambda 3835)}, (4.24)$$

$$\operatorname{con} \quad K(\operatorname{Ne}, \operatorname{Te}, \operatorname{Ne}^{++}) = \frac{\operatorname{Ne} \alpha(\lambda 3835) \operatorname{err} \operatorname{h\nu}(\lambda 3835)}{\left[\operatorname{N2} A21 \operatorname{h\nu}21 + \right] \left[\gamma/(\gamma+1)\right]}$$
(4.25)

Y

Figura 4.5. Diagrama de energia para NeIII.

En estas ecuaciones hemos tomado A21 = A(${}^{1}D2 - {}^{3}P2$) + A(${}^{1}D2 - {}^{3}P1$) $\nu_{21} = \frac{A({}^{1}D2 - {}^{3}P2) \nu(\lambda 3870) + A({}^{1}D2 - {}^{3}P1) \nu(\lambda 3969)}{A({}^{1}D2 - {}^{3}P2) + A({}^{1}D2 - {}^{3}P1)}$. Estos promedios

pesados con los coeficientes de emisión espontánea se hicieron para todos los sistemas de tres niveles de energía, como se mencionó en el capitulo anterior. El factor $[\gamma/(\gamma+1)]$ tiene por objeto restar la contribución de λ 3969 al resultado. En la Figura 4.6. se grafica log(K) como función de Te para varios valores de x. Para realizar los cálculos de abundancias de NeIII es necesario primero hacer una corrección ya que en 3869 & hay también una

linea de HeI que contamina la que se quiere observar. Para restarla, se tiene (Osterbrock, 1992):

$$\frac{I(\lambda 3869)HeI}{I(\lambda 4471)HeI} = 0.0203 .$$
 (4.26)

Los datos fueron corregidos de esta forma para calcular N(Ne)/N(H).

Pira obtener la abundancia total de neón con respecto a hidrógeno se corrige de la siguiente manera, analogamente a los iones anteriores (Peimbert 1990):

$$\frac{N(Ne)}{N(H)} = \frac{N(Ne^{++})}{N(H^{+})} \frac{N(O^{+}) + N(O^{++})}{N(O^{++})},$$
(4.27)

nuevamente utilizando las abundancias de 0° y 0° calculadas en § 4.3.

RESULTADOS

En este capítulo se expondrán los resultados del presente trabajo, obtenidos mediante la teoría desarrollada en los Capítulos 3 y 4. Se calculan las temperaturas, densidades y abundancias químicas de helio, oxigeno, nitrógeno y neón, así como el parámetro colisional $q(2^{3}S, 4^{3}D)$ de HeI.

5.1. DIAGRAMAS DE DIAGNOSTICO.

Utilizando los resultados del Capítulo 3, se construyeron las líneas de diagnóstico en el plano x - Te para cada espectro y los diferentes cocientes mencionados de OIII, ArIV, SII y NII. Estos diagramas aparecen en las Figuras 5.1.(a) a.5.1.(i), y nos permiten determinar las temperaturas y densidades en la nebulosa. En principio, las curvas de diagnóstico de iones diferentes pero con potenciales de ionización se cruzan, y la intersección determina Te y Ne. Esto se debe a que si requieren de energías similares para tener un cierto grado de ionización, se encontrarán en la misma región dentro de la cáscara de gas y por lo tanto las

1

노망 관련

्र ह

1.4 64

: : : :

.

-~1

4.5

ESTA TESIS NO DEBE Salib de la bibliotec.

1

no estan sencillo y se puede apreciar en las Figuras 5.1.a) a 5.1.i) que las curvas no siempre se cortan y no se puede obtener la información deseada.

5.2. TEMPERATURAS Y DENSIDADES.

La temperatura electrónica se determinó en primera instancia con He⁺, utilizando los resultados del Capítulo 3, en particular la Figura 3.9.(d) y el cociente dado por la ecuación 3.52. Las temperaturas obtenidas de esta manera aparecen en la Tabla 5.1. Se puede apreciar una cierta tendencia a un aumento en temperatura al pasar el tiempo pero también variaciones debidas a errores de medición. Para simplificar se supuso una temperatura uniforme dentro de toda la nebulosa y dos regiones esféricas de densidad, cumpliéndose la relación:

Ne(alta) = 2 Ne(baja) (5.1)

En la región de alta densidad se agruparon los iones OIII, ArIV, NeIII y He^{**}, y en la de baja densidad OII, SII, NII y He^{*}. La región de alta densidad es la más cercana a la estrella central y la de menor densidad se encuentra más alejada.

Con estas temperaturas se puede entonces determinar la densidad electrónica utilizando los diagramas de diagnóstico para las dos regiones. Se determinó $N_e(alta)$ utilizando las líneas de diagnóstico de OIII y se sigue inmediatamente $N_e(baja)$. Las densidades electrónicas así calculadas (N_e (alta)) aparecen en la Tabla 5.1. junto con las temperaturas electrónicas.

TABLA 5.1. 1978-II 1979 1980 1981 1985 1987 1989 Te(10³⁰K) 11.8 9.7 14.5 13.3 13.3 14.3 11.8 $N_{e}(10^{6} cm^{-3})$ 6.9 18 4.7 5.1 4.9 3.4 4.7

Las incertidumbres en las temperaturas electrónicas son de $\begin{pmatrix} +600 \circ K \\ -500 \end{pmatrix}$ y en las densidades electrónicas de ±8×10⁵ cm⁻³.

Con las temperaturas y densidades de la Tabla 5.1, se procedió a calcular la abundancia de oxigeno, utilizando los resultados del Capitulo 4, va que conociendo Ne y Te se pueden calcular las funciones K(Ne, Te, OIII), K(Ne, Te, OII) y, junto con las observaciones, las abundancias de O⁺⁺ y de O⁺. Finalmente se determina la abundancia total de oxígeno con respecto a la de hidrógeno N(O)/N(H). La abundancia calculada no resultó constante, contrario a lo que se esperaba. Esto es porque en la nebulosa no se producen reacciones nucleares que puedan transformar un elemento en otro y alterar la composición química al pasar el tiempo porque no se tiene una temperatura suficientemente alta (para transformar hidrógeno en helio se necesita de al menos 10 millones de grados Kelvin, y para fusionar elementos más pesados hacen falta temperaturas aún más elevadas. La abundancia no fué constante porque las temperaturas y densidades calculadas no reflejan con suficiente precisión las condiciones físicas en el gas. Dado el aumento en luminosidad que presentó HM Sge en 1975 y las características conocidas del sistema, se esperaría un aumento en temperatura de la estrella central y por lo tanto del gas, así

como una disminución de la densidad va que la cáscra que rodea a la estrella caliente se está expandiendo. Por lo tanto se tomo la abundancia constante e igual al promedio, que fué de 8.71 en unidades de $12+\log[N(O)/N(H)]$ y se procedió a recalcular Te y Ne. Manteniendo N(O)/N(H) constante se calculó nuevamente la temperatura y la densidad. El procedimiento fué el siguiente: suponiendo la densidad obtenida a partir de las temperaturas del He⁺ y de los diagramas de diagnóstico (utilizando las curvas de OIII), se buscó un valor de Te tal que la abundancia de oxígeno fuera de 8.71, calculando las funciones K(Ne, Te, OIII) y K(Ne, Te, OII) (se mantuvo Ne constante y se calculó la abundancia de oxígeno como función de la temperatura, tomando el valor de Te que correspondiera a 8.71 para $12+\log[N(O)/N(H)])$. Con este valor de Te, mediante los diagramas de diagnóstico se determinó un nuevo valor de Ne y se repitió el proceso hasta eliminar las variaciones. La convergencia fué rápida, y se requirieron tres o menos iteraciones para todos los ca: s. Los resultados asi obtenidos aparecen en la Tabla 5.2 (las densidades tabuladas son Ne(alta)). Las tendencias antes mencionadas son mucho más claras. La temperatura aumenta como función del tiempo y la densidad disminuye. En las Figuras 5.2.(a) y 5.2.(b) se muestran estas variaciones. Se ha incluido también en esta tabla la variación del cociente de He⁺⁺ a He⁺+He⁺⁺. Este cociente es un indicador del grado de ionización del gas en la nebulosa, y claramente crece como función del tiempo.

						Co. 1	1. A.		1.1	TADI									
						1.000				100					- 14 y 2				
					- 1910 - Se	11 h. 4A		e 12 B V				1.77.14		No. 10 10 10		1.1.14			
				1.00	1.110.000	1211211				1.11.11.11		10. ALC: 170	erie in mine Ca	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		1.1.1.1.1.1.1.1		- 10 a	
			10 A A A A			- 6 AG - 1		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	N 11267 1	1.1.1.1.1.1.1.1	en 2011		N. 33A M		1.1.2	1 100 1000	1998 <u>- 1</u> 14		
			10.000		i a serie de la companya de la comp	12.000	-1.4 (5.42) - 5		いいてんり	1 – Alvá A.	11 I ST	10.11.20		그는 말을 했다.	e 3. S. W.		1.111.2		
									1.000		S. 1771 af		ani ang		10. A. A. A.		- 10 A -		
					- 107	Q I · I		a.7a.		agn	S	981		u x		X / / ····	- 1 - 1 - 4	XU.	
				1.1.1.1	I	0.11		1.2	1997	200	~ ~ 승규.	201	📼 نې د د د د د	200		••••	1999 A. 19	0.5	
			1 al 25 a co	1.000	10 2 102 No. 10	والمسترك المجريدات	100000-0000-000	C P & C P			, 网络白色的		8				. T. De A. S.	أحاده والأليوت	
		1.17	10 A 17	 Charles 	- 1 - A. ()	and the second sec	1992 - Dates	y to as	A State Stream				·		Section and Sec.	S. 16 S. 28	5 Mar 10 Mar	 A.g., 735 	
						1.1.1.1	2 GB 8672 .			- 1 - 1 - <u>1</u> - 1	an shiite	10 45000	A DAY AND	A REAL PROPERTY.					÷.,
		·		- CY 6.1	- 1 A - 1	10.00					计计数字符号	- 100 Miles	S. 11 (12) (27)		1000		- P. Street P.	1.000	
	- m /	1000	~ `		1 1 1 7 P 4	4			1 - 1 1 - 1 -	1 O	1 S. A. S. 41	ີ່	A 144		1.1.1.1.1	0	- 1 A	A 1	
	161	10 1	N J 😒	1. 20.20	· · · · · · · ·	1.3	- Cont 1 -		1 1 -	1.7.	. S 1	2.3		J. J.	ಿಗಾ		Se 1 9		
	1 . I. I. I.	- T 5.27					T 2 10 T.	1000	100 million (14	 A. A. A. A. A. 	1.1.1.1.1.1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	A Star Star	10.10 at 260	Contractor of	alares fa	1015.0.0	- Contraction - 1995	
						1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	10 ang	1.10.14	10000	1 M 1 M 1	1.111.111			- 11 Y = 7166.		- 10 C (10)			
	1.4				1 - 10 G.A.A	1.066.011	1.1646.00		11.10.10	1.00000	216 216 62	4	1.0	and the second second	1. C	1.1.1	Constraint State		
	- 5	· .		10.000	- N. G. G.	146 and 1		1.12.21.21	1.1.1.1.1.1.1.1			· · · · · · · · · · · · · · · · · · ·	1.1.1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	C. 15 S. W	22.000	17. The second	1.15.020	
		a O	-3.		1.0.04.0		11 1 6 m a		1. A MARCON		1.1.1.1.1.1.1.1	- C - C - C - C	1.11.11.11	- 12 A 114	1 C	1 M 1	10000		
	Nel	10.c	m	S. 3572		X 4	5.0626pt	· · · ·	1.1.1.1.1.1.1	X 4	Se 12. 622	1.5	1. Sec. 1997.	5 . 2 S		. X	1	. 9	
				• • • • • • •	1. O. P. MAR -	•••••			the states of the	-				· · · · · · · · · · · · · · · · · · ·	Carlos and	· · · · · · · · · · · · · · · · · · ·	1.20126		
				- A. C. S.	 Contraction 	1.1.100.00	and the second sec	- A. S. C. S				1. 2. 9. 1.	1.	5 m	110034467	the second second	24/22/0000		
		1 A. A. A. A. A.				(a) (3) (4) (4)	1.000	1 1 20 10	1.618.1	N. 1965.				S. C. S. S. S. S.	1.	2.1	100	10/02/20	
			1.11		11. L. M.		en Gran e pr	 Contraction 	 A. Devis (195) 			the Constant	· · · · · · · · · · · · · · · · · · ·	1	(1) (1) (2) (2)	2983 beste di	1.6.2.2.2.2		
	**					- No	. 2.2		· · · · · · · · · · · · · · · · · ·	_ 129 C 1	1940 - E. P. 1927			and the second	214.444				
-I-O-I	·· 71	Uo -1	La ·		. n	nna	- n 1	າວວ		201	n -	2010	റം	A A Q	n 5	57	05	97	
10		116 11		1		005	····	102.	. U.	20-1					i, 			a 4	
				1.1.1.1					t taga a	. 16 A	1.		Section Access	1. C. March	16	3.1.4.1.2	CTT 5453	245,224,7	
													- 10 AV	(1) (1) (2) (2) (3) (3)			the second second	1. 1. South Col.	

Los errores en temperaturas y densidades son los mismos que en la Tabla 5.1.

5.3. ABUNDANCIAS QUIMICAS.

Para determinar las abundancias, se procedió como se explicó en el Capítulo 4, conociendo las temperaturas y densidades electrónicas de la Tabla 5.2. Se realizaron los cálculos para cada observación y se tomó la abundancia total como el promedio de los datos. Se calcularon las abundancias para helio, nitrógeno y neón además de oxígeno. Estas aparecen en la Tabla 5.3., en unidades de 12 + log[N(X)/N(H)], junto con las abundancias solares como comparación.

TABLA 5.3. ABUNDANCIAS QUIMICAS.

	HM Sge	Sol
He	10.93 ±0.1	10.99 ±0.035
0	8.71 ±0.2	8.93 ±0.035
N	8.65 ±0.1	8.00 ±0.05
Ne	8.07 ±0.07	8.09 ±0.1

Las abundancias solares se han tomado de Grevesse & Anders (1989) y Grevesse et al. (1990).

5.4. EFECTOS COLISIONALES EN HeI.

Como ya se ha mencionado, las colisiones entre HeI y los electrones libres de la nebulosa dan lugar a excesos en la intensidad de algunas líneas de emisión con respecto al caso de recombinación sin colisiones (ver Capítulo 3). La línea producida por la transición $4^{3}D-2^{3}P$ ($\lambda 4471$) no se utilizó para determinar temperaturas, densidades o abundancias porque el parámetro colisional necesario, $q(2^{3}S, 4^{3}D)$, no se conoce con precisión. Sin embargo, una vez determinadas las condiciones físicas por otros métodos se puede recalcular este parametro para encontrar un nuevo valor. Además de esto, hay otro factor que interviene, ya que puede haber desviaciones de la población del nivel 23S del HeI con respecto a la que se usa en la ecuación (3.40). Estas desviaciones pueden deberse a ionizaciones a partir del nivel 2³S, ya sea por radiación de la estrella central o por colisiones, que se habían despreciado en un principio (ver ecuación (3.40) y la expresión para D_ que le sigue). Para tomar en cuenta estos cambios en N(2³S) podemos reescribir (3.40) como (ver Peimbert y Torres-Peimbert, 1987):

$$N(2^{3}S) = \gamma \frac{N(He^{2}) Ne \alpha_{T}}{D_{T}},$$
(5.2)

donde γ es el factor que indica el cambio en la población. Este factor se tomo como la unidad para todos los cálculos de temperaturas y densidades, pero si $\gamma \neq 1$ los cambios se propagan a todas las líneas mencionadas en el Capítulo 3. Al tomar las temperaturas de la Tabla 5.2. y buscar de nuevo el exceso medido como función de γ para el cociente [5876/6678]R+c/[5876/6678]R

(ver ecuación (3.52) y Figura 3.9.d) se encontró que y diferia ligeramente de la unidad, obteniendo $\gamma = 0.91$. Este dato es el promedio de los diferentes valores que se obtuvieron, uno para cada observación. Después se introdujo este valor de γ en la ecuación (3.51), correspondiente a λ 4471 y se buscó el exceso promedio medido, pero esta vez como función del parámetro colisional que en la ecuación (3.51) aparece como 12.25, que proviene de $q(2^3S, 4^3D)$. Todos estos cálculos se hicieron manteniendo la temperatura constante e igual al promedio de los datos obtenidos de la Tabla 5.1., que es de 12,700 °K. El parámetro colisional pasó asi de 12.25 a 9.2 . Este análisis se repitió dos veces más, aumentando y disminuyendo la temperatura en 1,000°K. Los resultados aparecen en la Tabla 5.4.

TABLA 5.4.

r	<te 10<sup="">3K></te>	qobs/qteo N(O)/N(H)
0.68	13.7	0.710 8.53
0.91	12.7	0.751 8.71
1.29	11.7	0.792 8.97

En la última columna se ha tabulado la abundancia de oxígeno en unidades de 12 + $\log[N(O)/N(H)]$ para los diferentes valores de γ . El cociente qobs/qteo es el resultado del parámetro colisional para la transición 2³S-4³D calculado como se explicó arriba (9.2 para γ =0.91) dividido entre el valor inicial de 12.25, tomado de los cálculos no publicados de Berrington y Kingston (1987) y mencionado por Peimbert y Torres- Peimbert (1987) y Clegg (1987). Es muy interesante notar que este cociente es prácticamente

independiente del valor de γ , lo que podría representar una diferencia real con respecto al valor de 12.25 .

÷.,

CAPITULO 6

CONCLUSIONES

Los resultados obtenidos muestran claramente una tendencia hacia una mayor temperatura electrónica en la nebulosa en HM Sge, así como una disminución en densidad sobre los doce años para los cuales se tienen observaciones.

La disminución en Ne se debe a la expansión de la cáscara de gas que rodea la estrella central. Las densidades encontradas fueron relativamente altas (por haber comenzado la expansión recientemente) y estó llevó a realizar cálculos para valores más altos de x que los que se encontraban comunmente en la literatura (Torres-Peimbert y Peña, Reporte Técnico #87, IAUNAM). Los resultados pueden ser de utilidad para otros objetos, y en particular las curvas 3.7.a) y 3.7.b) definidas por las ecuaciones (3.31) y (3.32), con la tabla correspondiente, A-5, proporcionan un diagnóstico de densidad de utilidad para el intervalo $10^5 cm^{-3} < Ne < 10^7 cm^{-3}$, complementando las curvas bien conocidas (ver Osterbrock, 1989, de OII, C[III], SII) para Ne < 10⁵ cm⁻³.

El aumento observado en la temperatura se debe al

calentamiento de la estrella central, que produce la radiación ionizante. Esto gueda además confirmado por el hecho que el grado de ionización del helio (ver Tabla 5.2.) aumenta considerablemente al pasar el tiempo. Como se mencionó anteriormente. las determinaciones de Te se hicieron en primera instancia utilizando los efectos colisionales en HeI. El cálculo del parámetro colisional para la transición $2^{3}S-4^{3}D$ muestra que el valor anterior estaba sobreestimado por aproximadamente un factor de 1.3 (ver Tabla 5.4.) y por lo tanto determinaciones realizadas anteriormente de Te y Ne usando $\lambda 4471$ para otros objetos pueden resultar afectadas, siendo mayor la nueva estimación. En el Apéndice aparecen los datos calculados para λ 4471 (Tabla A-6 c) y A-6 e)) con el valor anterior de 12.25 para $g(2^{3}S-4^{3}D)$ y en la Tabla A-6 f) los valores para $I(\lambda 4471)c/I(\lambda 4471)R$ utilizando la nueva determinación de $q(2^{3}S-4^{3}D)$ ($q_{obs}/q_{teo}=0.751$). El hecho de que q no dependa de y es de gran importancia ya que podria representar una predicción a nivel de cálculos de física atómica, siendo y un parámetro puramente observacional.

La comparación de las abundancias quimicas obtenidas con las solares (ver Tabla 5.3.) muestra que estas son similares en primera aproximación. El nítrogeno se encuentra en sobreabundancia (por un factor de 4.5 aproximadamente con respecto al sol) y el oxígeno ligeramente enrarecido mientras que el neón y el helio presentan valores prácticamente iguales a los solares, dentro de las incertidumbres. Las diferencias se podrian explicar utilizando el modelo de Mikołajewska y Kenyon (1992) mencionado en la Introducción. El exceso de nitrógeno es debido al ciclo del CNO: a

bajas temperaturas el carbono es transformado en nitrógeno y a altas temperaturas es posible que parte del oxígeno también se transforme en nitrógeno. La transformación de carbono en nitrógeno se dá en estrellas con masas entre una y ocho veces la masa del sol en la secuencia principal (si la masa es mayor, la estrella explota como una supernova) y la transformación de oxígeno en nitrógeno sólamente se produce en estrellas con masas entre tres y ocho veces la masa del sol. La evidencia en favor de la transformación de oxígeno en nitrógeno se basa en el alto valor de N(N)/N(H) y en el valor de N(O)/N(H) que es marginalmente menor que el solar (ver Tabla 5.3.). Si se confirma el hecho de la transformación de oxígeno en nitrógeno, suponiendo que el exceso de nitrógeno se produjo en la gigante roja, esto implicaría que la gigante proviene de una estrella de más de tres masas solares en la secuencia principal, y por lo tanto la enana blanca también. Si la enana blanca tuvo una progenitora de más de tres masas solares en la secuencia principal su masa actual sería mayor a 0.6 masas solares y este parece ser el caso, ya que Mikołajewska y Kenyon (1992) estiman una masa de 0.9 masas solares para la enana blanca en HM Sge. Queda por averiguar si el exceso de nitrógeno se produjo en la gigante roja o en la enana blanca durante la explosión. La escala de tiempo sobre la cual se han observado los cambios sugiere que este objeto no es una protonebulosa planetaria ya que en esos casos la evolución es mucho más lenta. En la Figura 5.3. se muestra la trayectoria que habría seguido HM Sge en un diagrama Hertzprung - Russell antes de que se presentara el aumento observado en luminosidad y durante el período comprendido en las observaciones utilizadas para este trabajo. Material de la

Figura 5.3. Travectoria de HM Sge en un diagrama Hertzprung explosion Russell. del material adguirido de ۱a gigante roia 11evô 18 estrella central de1 punto B al punto С v después se desplazò 18 izquierda, aumentando su temperatura hacia Y manteniendo luminosidad aproximadamente constante. Tomado de Hikolajewska y Kenyon 1992.

gigante roja (principalmente hidrógeno) se encontraba cayendo hacia la enana blanca, calentándola y cuando la temperatura se elevó lo suficiente se produjo una explosión, expulsando el gas para formar una cáscara alrededor de la enana. Las líneas de emisión observadas provienen de esta cáscara que se está expandiendo. La estrella central está aumentando su temperatura a luminosidad aproximadamente constante, y después de cierto tiempo se podrá repetir el fenómeno, si la enana blanca sigue acumulando gas de la gigante roja.

En conclusión, los resultados de esta tesis muestran que la estrella simbiótica HM Sge está evolucionando hacia una temperatura más alta y la nebulosa de gas que rodea a la enana blanca se está expandiendo, disminuyendo su densidad. Las abundancias químicas encontradas para helio, oxigeno, nítrogeno y

neón sugieren que ha operado el ciclo CNO en el material, ya sea en la gigante roja o en la enana blanca al producirse el pronunciado aumento en luminosidad observado en 1975.

APENDICE

En este apéndice se han incluido tablas que contienen los datos utilizados para la determinación de temperaturas, densidades y abundancias en este trabajo. Primero aparecen las tablas correspondientes a las figuras del Capítulo 3 y a continuación las del Capítulo 4.

En las tablas A-1 a A-4 se tabulan los datos de las funciones de temperatura y densidad definidas en las ecuaciones (3.25) para OIII, (3.27) para NII, (3.29) para SII y (3.30) para ArIV respectivamente.

TABLA A-1.

log[I(λ5007)+I(λ4959)]/I(λ4363) - ΟΙΙΙ

Te(`K)	x=100	x=200	x=300	x=400	x=500	x=600	x=700	x=800
5000	3.077	2.834	2.688	2.584	2.505	2.441	2.389	2.345
6000	2.582	2.338	2.191	2.088	2.009	1.946	1.894	1.850
7000	2.226	1.982	1.835	1.732	1.653	1.591	1.539	1.495
8000	1.959	1.714	1.567	1.464	1.386	1.324	1.272	1.229
9000	1.751	1.506	1.359	1.256	1.178	1.116	1.065	1.022
10000	1.584	1.339	1.193	1.090	1.012	0.950	0.899	0.856
11000	1.448	1.203	1.057	0.954	0.876	0.814	0.763	0.721
12000	1.335	1.090	0.944	0.841	0.764	0.702	0.651	0.608
13000	1.240	0.994	0.848	0.746	0.668	0.607	0.556	0.513
14000	1.159	0.913	0.767	0.665	0.587	0.525	0.475	0.432
15000	1.088	0.843	0.697	0.594	0.517	0.455	0.405	0.362
16000	1.027	0.781	0.635	0.533	0.455	0.394	0.343	0.301
17000	0.973	0.728	0.581	0.479	0.402	0.340	0.290	0.247
18000	0.926	0.680	0.534	0.431	0.354	0.292	0.242	0.199
19000	0.883	0.637	0.491	0.389	0.311	0.250	0.199	0.157
20000	0.844	0.599	0.452	0.350	0.273	0.212	0.161	0.118

TABLA A-2.

$\log[I(\lambda 6548)+I(\lambda 6583)]/I(\lambda 5755) - NII$

Te(°K)	x=100	x=150	x=200	x=250	x=300	x=350	x=400	x=450
5000	1.626	1.467	1.356	1.272	1.205	1.149	1.102	1.061
6000	1.263	1.104	0.993	0.909	0.841	0.786	0.738	0.698
7000	1.003	0.844	0.733	0.649	0.582	0.526	0.479	0.438
8000	0.808	0.649	0.538	0.454	0.38	0.331	0.284	0.243
9000	0.657	0.498	0.387	0.302	0.235	0.179	0.132	0.091
10000	0.535	0.376	0.265	0.181	0.114	0.058	0.011	-0.030
11000	0.436	0.277	0.166	0.081	0.014	-0.042	-0.089	-0.130
12000	0.353	0.193	0.083	-0.002	-0.069	-0.125	-0.172	-0.213
13000	0.282	0.123	0.012	-0.072	-0.139	-0.195	-0.242	-0.283
14000	0.221	0.062	-0.048	-0.133	-0.200	-0.256	-0.303	-0.343
15000	0.169	0.010	-0.101	-0.185	-0.253	-0.308	-0.355	-0.396
16000	0.123	-0.036	-0.147	-0.231	-0.299	-0.354	-0.402	-0.442
17000	0.081	-0.077	-0.188	-0.272	-0.340	-0.395	-0.442	-0.483
18000	0.045	-0.114	-0.225	-0.309	-0.376	-0.432	-0.479	-0.520
19000	0.012	-0.147	-0.258	-0.342	-0.409	-0.465	-0.512	-0.552
20000	-0.018	-0.178	-0.288	-0.372	-0.439	-0.495	-0.542	-0.582

TABLA A-3.

$\log[I(\lambda 4076)+I(\lambda 4069)]/[I(\lambda 6731)+I(\lambda 6717)] - SII$

Te(°K)	x=100	x=150	x=200	x=250	x=300	x=350	x=400	x=450
5000	0.807	0.923	0.995	1.044	1.081	1.109	1.132	1.150
6000	1.011	1.126	1.198	1.248	1.284	1.312	1.335	1.353
7000	1.157	1.272	1.344	1.393	1.430	1.458	1.480	1.498
8000	1.267	1.382	1.453	1.502	1.539	1.567	1.589	1.607
9000	1.352	1.467	1.538	1.587	1.623	1.651	1.674	1.692
10000	1.420	1.535	1.606	1.655	1.691	1.719	1.741	1.759
11000	1.476	1.590	1.662	1.711	1.747	1.775	1.797	1.815
12000	1.522	1.637	1.708	1.757	1.793	1.821	1.843	1.861
13000	1.561	1.675	1.747	1.796	1.832	1.860	1.882	1.900
14000	1.594	1.709	1.780	1.829	1.865	1.893	1.915	1.933
15000	1.622	1.737	1.808	1.857	1.894	1.921	1.944	1.962
16000	1.647	1.762	1.833	1.882	1.918	1.946	1.968	1.987
17000	1.668	1.783	1.855	1.904	1.940	1.968	1.990	2.008
18000	1.687	1.802	1.873	1.923	1.959	1.987	2.009	2.028
19000	1.703	1.818	1,890	1.939	1.976	2.004	2.026	2.045
20000	1.717	1.833	1.904	1.954	1.991	2,019	2.041	2.060

TABLA A-4.

logI(λ7263)/I(λ4740) - ArIV

Te(°K)	x=100	x=200	x=300	x=400	×=500	x=600	x=700	x=800
5000	-1.821	-1.575	-1.442	-1.354	-1.290	-1.241	-1.202	-1.169
6000	-1.530	-1.285	-1.153	-1.065	-1.001	-0.952	-0.913	-0.881
7000	-1.323	-1.078	-0.946	-0.858	-0.795	-0.746	-0.707	-0.675
8000	-1.167	-0.923	-0.791	-0.703	-0.640	-0.591	-0.552	-0.520
9000	-1.047	-0.802	-0.670	-0.583	-0.520	-0.471	-0.432	-0.400
10000	-0.950	-0.706	-0.574	-0.487	-0.424	-0.376	-0.337	-0.305
11000	-0.872	-0.628	-0.496	-0.409	-0.346	-0.298	-0.259	-0.227
12000	-0.807	-0.564	-0.432	-0.345	-0.282	-0.233	-0.194	-0.162
13000	-0.754	-0.510	-0.379	-0.292	-0.228	-0.180	-0.141	-0.109
14000	-0.707	-0.464	-0.332	-0.245	-0.182	-0.133	-0.095	-0.062
15000	-0.667	-0.424	-0.292	-0.205	-0.142	-0.093	-0.054	-0.022
16000	-0.632	-0.389	-0.257	-0.170	-0.107	-0.058	-0.019	0.013
17000	-0.600	-0.358	-0.226	-0.139	-0.076	-0.028	0.011	0.044
18000	-0.573	-0.330	-0.199	-0.112	-0.049	0.000	0.039	0.071
19000	-0.548	-0.306	-0.175	-0.088	-0.025	0.024	0.063	0.095
20000	-0.526	-0.284	-0.153	-0.066	-0.003	0.046	0.085	0.117

En la tabla A-5 se muestran los datos que se usaron para las Figuras

3.7.a) y 3.7.b) de ArIV.

TABLA A-5.

ArIV

		그는 그는 영양을 가장에 많이 많이 했다.
×	log[I(λ7169)/I(λ7263]	log[1(λ7236)/I(λ7263]
0.01	0,071	-0.0530
0.11	0.076	-0.0480
0.21	0.080	-0.0440
0.31	0.084	-0.0400
0.41	0.087	-0.0370
0.51	0.091	-0.0340
0.61	0.093	-0.0310
0.71	0.096	-0.0280
0.81	0.098	-0.0260
0.91	0.100	-0.0240
5	0.124	-0.0001
10	0.123	-0.0013
15	0.119	-0.0054
20	0.115	-0.0093
25	0.112	-0.0126
30	0.109	-0.0153
35	0.107	-0.0175
40	0.105	-0.0193
45	0.104	-0.0207
50	0.102	-0.0218
60	0.101	-0.0234
70	0.100	-0.0243
80	0.099	-0.0247
90	0.099	-0.0247
100	0.099	-0.0245
200	0.108	-0.0159
300	0.120	-0.0040
400	0.132	0.0080
500	0.144	0.0194
600	0.154	0.0300
700	0.164	0.0400
800	0.174	0.0492
900	0.182	0.0578
1000	0.190	0.0659
5000	0.321	0.1960
10000	0.360	0.2360
100000	0.409	0.2850
000000	0.413	0.2710

1000000

A-4

En las tablas A-6 a) a A-6 e) se muestran los datos utilizados para las Figuras 3.9.a) a 3.9.e), incluyendo además un valor adicional para la densidad en Ne = 10^5 cm⁻³. En la tabla A-6 f) se muestran los cálculos para I(λ 4471)c/I(λ 4471)_R como función de Te y Ne utilizando el nuevo parámetro colisional determinado en el Capitulo 5. En todas estas tablas se usa la misma convención que en el texto, con t4 = Te/10⁴ y en todas las tablas Ne está dado en cm⁻³.

TABLA A-6 a).

: I	(\ 5876)c/II	(λ587	6) R
_				

t4 Ne= 10^4 Ne= 10^5 N 1.0 0.150 0.192 0 1.1 0.222 0.283 0 1.2 0.308 0.391 0 1.3 0.408 0.516 0 1.4 0.520 0.655 0 1.5 0.642 0.807 0 1.6 0.774 0.969 0 1.7 0.914 1.141 1 1.8 1.060 1.321 1 1.9 1.213 1.506 1		· · · · · · · · · · · · · · · · · · ·	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ne=∞	Ne=10 ⁵	• •
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.199	0.192	.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.292	0.283	.,1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.403	0.391	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.531	0.516	3
1.5 0.642 0.807 0 1.6 0.774 0.969 0 1.7 0.914 1.141 1 1.8 1.060 1.321 1 1.9 1.213 1.506 1	0.674	0.655	4
1.6 0.774 0.969 0 1.7 0.914 1.141 1 1.8 1.060 1.321 1 1.9 1.213 1.506 1	0.830	0.807	
1.7 0.914 1.141 1 1.8 1.060 1.321 1 1.9 1.213 1.506 1	0.997	0.969	.6
1.8 1.060 1.321 1 1.9 1.213 1.506 1 2.0 1.200 1.506 1	1.173	1.141	.7
1.9 1.213 1.506 1	1.358	1.321	
	1.548	1.506	9
2.0 1.369 1.698 1	1.744	1.698	

TABLA A-6 b).

 $I(\lambda 6678)c/I(\lambda 6678)B$

		1(110070)01 1(110070)				
t4	Ne=10 ⁴	Ne=10 ⁵	Ne≕∞			
1.0	0.064	0.082	0.085			
1.1	0.090	0.115	0.119			
1.2	0.120	0.152	0.157			
1.3 🗟	0.152	0.193	0.198			
1.4	0.187	0.235	0.242			
1.5	0.223	0.280	0.288			
1.6	0.260	0.326	. 0.335			
1.7	0.298	0.372	0.383			
1.8	0.336	0.418	0.430			
1.9	0.374	0.465	0.477			
2.0	0.412	0.510	0.524			

A-5

TABLA	A-6	c).	

t4 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

1 - S - S - S	Ne=10 ⁴ .	Ne=10 ⁵			Ne≖∞.
	0.098	0.126			0.130
	0.154	0.197			0,203
	0.225	0.286		· .	0.294
	0.310	0,392			0.404
옷 관광 같이 다.	0.409	0.516	•		0.531
명령 사망감이 있는 것 것 것 다양한 사람이 있는 것	0.522	0.655			0.674
	0.646	0.809			0.832
	0.781	0.975			1.002
2월 11일 - 11일 - 11일	0.925	1.152			1.184
	1.078	1.339			1,376
	1.238	1.535			1.577

I(λ4471)c/I(λ4471)R

TABLA A-6 d).

[I(λ5876)/I(λ6678)]R+c/[I(λ5876)/I(λ6678)]R

Ne=10 ⁴	Ne=10 ⁵	Ne=∞
1.081	1.102	1.105
1.121	1.150	1.155
1.168	1.207	1.213
1.222	1.271	1.278
1.280	1.339	1.348
1.343	1.411	1.421
1.408	1.485	1.496
1.474	1,560	1.572
1.542	1.636	1.649
1.610	1.711	1.725
1.679	. 786	1.800

	- 1		- 1		•	
TARI		A	6		١.	
1000	•	- n	υ.	-		٠

 $[I(\lambda 6678)/I(\lambda 4471)]_{R+C/}[I(\lambda 6678)/I(\lambda 4471)]_{R}$

t4	Ne=10 ⁴	Ne=10 ⁵	Ne=∞				
1.0	0.969	0,961	0,960				
1.1	0.945	0.932	0.930				
1.2	0.914	0.896	0.894				
1.3	0.880	0.857	0.853				
1.4	0.842	0.815	0.811				
1.5	0.804	0.773	0.769				
1.6	0.766	0.733	0.729				
1.7	0.729	0.695	0.690				
1.8	0.694	0.659	0.655				
1.9	0.661	0.626	0.622				
2.0	0.631	0.596	0.592				

A-6

TABLA	A-6	- 1)
C 101 (2010)	1.1	- 19 Mar

	de Tradit - Ansar generation and	en la resta de terra sobre en substances	
t4	Ne=10 ⁴	Ne=10 ⁵	Ne=∞
1.0	0.074	0.095	0.098
1.1	0.116	0.148	0.152
1.2	0.169	0.214	0.221
1.3	0.233	0.295	0.304
1.4	0.307	0.387	0.399
1.5	0:392	0.492	0.506
1.6	0,485	0.607	0.625
1.7	0.586	0.732	0.753
1.8	0.695	0.865	0.889
1.9	0.809	1.006	1.034
2.0	0.930	1.153	1.184
- とえだ かんたい ふたい			(A) A set of the se

I(λ4471)c/I(λ4471)R

En las tablas A-7 a A-10 se tabulan las funciones de temperatura y densidad utilizadas para determinar las abundancias químicas. Las tablas son de las funciones definidas en las ecuaciones (4.13) para OIII, (4.16) para OII, (4.20) para NII y (4.25) para NeIII respectivamente.

TABLA A-7.

log(K)[λ4363/H9] - OIII

Te(°K)	x=100	x=200	x=300	x=400	x=500	x=600	x=700	x=800
5000	-0.815	-0.863	-0.875	-0.876	-0.872	-0.865	-0.856	-0.850
6000	-1.766	-1.812	-1.823	-1.824	-1.819	-1.813	-1.804	-1.796
7000	-2.451	-2.496	-2.507	-2.506	-2.501	-2.494	-2.486	-2.476
8000	-2.968	-3.013	-3.022	-3.022	-3 016	-3.008	-3.000	-2.990
9000	-3.373	-3.417	-3.426	-3.424	-3.418	-3.410	-3.401	-3.391
10000	-3.699	-3.741	-3.750	-3.748	-3.741	-3.733	-3.723	-3.713
11000	-3.968	-4.008	-4.016	-4.013	-4.007	-3.998	-3.988	-3.978
12000	-4.192	-4.231	-4.238	-4.235	-4.228	-4.219	-4.209	-4.198
13000	-4.382	-4.420	-4.427	-4.423	-4.416	-4.406	-4.396	-4.385
14000	-4.546	-4.583	-4.589	-4.585	-4.577	-4.568	-4.557	-4.546
15000	-4.689	-4.724	-4.729	-4.725	-4.717	-4.707	-4.697	-4.686
16000	-4.814	-4.848	-4.853	-4.848	-4.840	-4.830	-4.819	-4.808
17000	-4.924	-4.958	-4.962	-4.957	-4.948	-4.938	-4.927	-4.916
18000	-5.023	-5.055	-5.059	-5.054	-5.045	-5.035	-5.024	-5.012
19000	-5.112	-5.143	-5.146	-5.141	-5.132	-5.121	-5.110	-5.099
20000	-5.192	-5.222	-5.225	-5.219	-5.210	-5.200	-5.188	-5.177

TABLA A-8.

log(K)[λ7322/H9] - ΟΙΙ

Te([°] K)	x=100	x≖150	x=200	x=250	x=300	x=350	x=400	x=450
5000	-1.489	-1.465	-1.442	-1.420	-1.399	-1.378	-1.359	-1.341
6000	-2.366	-2.342	-2.319	-2.297	-2.276	-2.256	-2.236	-2.218
7000	-2.996	-2.972	-2.949	-2.927	-2.905	-2.885	-2.866	-2.847
8000	-3.470	-3.446	-3.422	-3.400	-3.379	-3.359	-3.339	-3.321
9000	-3.839	-3.814	-3.791	-3.769	-3.747	-3.727	-3.707	-3.689
10000	-4.133	-4.109	-4.085	-4.063	-4.041	-4.021	-4.001	-3.983
11000	-4.373	-4.349	-4.325	-4.302	-4.281	-4.260	-4.241	-4.222
12000	-4.572	-4.547	-4.524	-4.501	-4.479	-4.459	-4.439	-4.420
13000	-4.740	-4.715	-4.691	-4.668	-4.646	-4.625	-4.606	-4.587
14000	-4,882	-4.857	-4.833	-4.810	-4.788	-4.767	-4.747	-4.728
15000	-5.005	-4.979	-4.955	-4.932	-4.910	-4.889	-4.869	-4.850
16000	-5.112	-5.086	-5.061	-5.038	-5.016	-4.995	-4.974	-4.955
17000	-5.205	-5.179	-5.154	-5.131	-5.108	-5.087	-5.067	-5.047
18000	-5.288	-5.261	-5.236	-5.213	-5.190	-5.169	-5.148	-5.129
19000	-5.361	-5.335	-5.309	-5.286	-5.263	-5.241	-5.221	-5.201
20000	-5.427	-5.400	-5.375	-5.351	-5.328	-5.306	-5.285	-5.266

TABLA A-9.

log(K)[λ5755/H9] - NII

Te(°K)	x=100	x=150	x=200	x=250	x=300	x=350	x=400	x=450
5000	-2.136	-2.130	-2.122	-2.113	-2.104	-2.094	-2.085	-2.075
6000	-2.848	-2.842	-2.834	-2.825	-2.816	-2.806	-2.797	-2.787
7000	-3.360	-2.354	-3.346	-3.337	-3:328	-3.318	-3.309	-3.299
8000	-3.746	-3.740	-3.732	-3.723	-3.713	-3.704	-3.694	-3.685
9000	-4.048	-4.042	-4.034	-4.025	-4.015	-4.005	-3.996	-3.986
10000	-4.291	-4.285	-4.276	-4.267	-4.258	-4.248	-4.238	-4.229
11000	-4.491	-4.485	-4.476	-4.467	-4.457	-4.447	-4.437	-4.428
12000	-4.659	-4.652	-4.643	-4.634	-4.624	-4.614	-4.604	-4.595
13000	-4.801	-4.794	-4.785	-4.776	-4.766	-4.756	-4.746	-4.737
14000	-4.924	-4.917	-4.908	-4.898	-4.889	-4.879	-4.869	-4.859
15000	-5.031	-5.024	-5.015	-5.005	-4.995	-4.985	-4.976	-4.966
16000	-5.126	-5.119	-5.109	-5.100	-5.090	-5.080	-5.070	-5.060
17000	-5.210	-5.203	-5.193	-5.183	-5.173	-5.163	-5.153	-5.143
18000	-5.285	-5.278	-5.268	-5.258	-5.248	-5.238	-5.228	-5.218
19000	-5.353	-5.346	-5.336	-5.326	-5.316	-5.305	-5.295	-5.285
20000	-5.415	-5.407	-5.398	-5.387	-5.377	-5.367	-5.357	-5.346
	Te(°K) 5000 6000 7000 8000 10000 10000 12000 13000 14000 15000 17000 18000 19000	$\begin{array}{rrrr} Te({}^{\circ}K) & x=100 \\ \\ 5000 & -2.136 \\ 6000 & -2.848 \\ 7000 & -3.360 \\ 8000 & -3.746 \\ 9000 & -4.048 \\ 10000 & -4.291 \\ 11000 & -4.491 \\ 12000 & -4.659 \\ 13000 & -4.659 \\ 13000 & -4.801 \\ 14000 & -4.924 \\ 15000 & -5.031 \\ 16000 & -5.126 \\ 17000 & -5.210 \\ 18000 & -5.285 \\ 19000 & -5.353 \\ 20000 & -5.415 \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
TABLA A-10.

log(K)[λ3870/H9] - NeIII

T₀(°K)	x=100	x=200	x=300	x=400	x=500	x=600	x=700	x=800
5000	-3.325	-3.286	-3.250	-3.217	-3.186	-3.157	-3.131	-3.105
6000	-3.893	-3.855	-3.819	-3.786	-3.755	-3.726	-3.700	-3.674
7000	-4.304	-4.265	-4.230	-4.197	-4.166	-4.137	-4.110	-4.085
8000	-4.615	-4.576	-4.541	-4.508	-4.477	-4.448	-4.421	-4.396
9000	-4.860	-4.821	-4.785	-4.752	-4.721	-4.693	-4.666	-4.640
10000	-5.058	-5.018	-4.983	-4.949	-4.919	-4.890	-4.863	-4.837
11000	-5.221	-5.182	-5.146	-5.112	-5.081	-5.052	-5.025	-5.000
12000	-5.358	-5.319	-5.283	-5.249	-5.218	-5.189	-5.162	-5.137
13000	-5.476	-5.436	-5.400	-5.366	-5.335	-5.306	-5.279	-5.253
14000	-5.577	-5.537	-5.501	-5.467	-5.436	-5.407	-5.379	-5,354
15000	-5.666	-5.626	-5.589	-5.555	-5.524	-5.495	-5.467	-5.441
16000	-5.745	-5.704	-5,667	-5.633	-5.602	-5.572	-5.544	-5.519
17000	-5.815	-5.774	-5.737	-5.703	-5.671	-5.641	-5.614	-5.588
18000	-5.877	-5.836	-5.799	-5.765	-5.733	-5.703	-5.675	-5.649
19000	-5.934	-5.893	-5.855	-5.820	-5.788	-5.759	-5.731	-5.704
20000	-5.985	-5.944	-5,906	-5.871	-5.839	-5.809	-5.781	-5.755

BIBLIOGRAFIA

- Aggarwal, K.M., 1983, Ap. J. Suppl. Series., 52, 387.
- Aller, L.H., 1987, Physics of Thermal Gaseous Nebulae (Physical processes in gaseous nebulae), Astrophysics and Space Science Library, Vol.112, D. Reidel Publishing Company.
- Aller, L.H., Liller, W., 1968, en Stars and Stellar Systems, Vol
 VII: Nebulae and Interstellar Matter (Cap. 9, Planetary
 Nebulae). Ed. Kuiper, G.P., Middlehurst, B.M., Univ. of Chicago
 Press.
- Berrington, K.A., Kingston, A.E., 1987, J. Phys. B., 20, 6631.
- Brocklehurst, M., 1971, Mon. Not. Roy. Astron. Soc., 153, 471.
- Brocklehurst, M., 1972, Mon. Not. Roy. Astron. Soc., 157, 211.
- Ciatti, F., Mammano, A. y Vittone, A., 1978, Astron. Astrophys, 68, 251.
- Clegg, R.E.S., 1987, Mon. Not. Roy. Astron. Soc., 229, 31p.
- Davidson, K., Humphreys, R.M.y Merrill, K.M., 1978, Ap. J., 220, 239.
- de Freitas Pacheco, J.A., Costa, R.D.D., 1992, Astron.
 Astrophys., 257, 619..
- Drake, G.W., 1971, Phys. Rev. A., 3, 908.
- Grevesse, N. & Anders, E., 1989, en *Cosmic Abundances of Matter*, ed. Waddington, J., New York: American Institute of Physics, p.1.
- Grevesse, N., Lambert, D.L., Sauval, A.J., van Dishoeck, E.F., Farmer, C.B. & Norton, R.H., 1990, Astron. Astrophys., 232, 22.

- Hata, J., Grant, I.P., 1981, J. Phys. B., 14, 2111.
- Hummer, D.G., Storey, P.J., 1987, Mon. Not. Roy. Astron. Soc.,
 - 224, 801 y microfichas MN 224/1, 224/2, 224/3.
- Kwok, S. y Purton, C.R., 1979, Ap. J., 229, 187.
- Mendoza, C., 1983, en Symp. IAU #103, Planetary Nebulae, (Reidel, Dordrecht), ed. Fowler, p.143.
- Mikołajewska, J. y Kenyon, S.J., 1992, Mon. Not. Roy: Astron. Soc., 256, 177.
- Mürset, U., Nussbaumer, H., Schmid, H.M. y Vogel, M., 1991, Astron. Astrophys, 248, 458.
- Nussbaumer, H., Vogel, M., 1990, Astron. Astrophys. 236, 117.
- Osterbrock, D.E., 1989, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, (University Science, California).
- Osterbrock, D.E., Tran, H.D., Veilleux, S., 1992, Ap. J., 389, 305.
- Peimbert, M., Torres-Peimbert, S., 1987, Rev. Mex. Astron. Astrof., 14, 540.
- Peimbert, M., 1990, Rep. Prog. Phys., 53, 1559.
- Plavec, M.J., en Effects of Mass Loss on Stellar Evolution, ed. Chiosi, C. y Stalio, R., 1981, Astrophysics and Space Science Library, Vol.89, p.431.
- Sahade, J., en Stellar Atmospheres, ed.Greenstein, J.E., 1960, Stars and Stellar Systems, Vol. VI, p.466.
- Schmid, H.M., Schild, H., 1990, Mon. Not. Roy. Astron. Soc., 246, 84..
- Torres-Peimbert, S., Peña, M., Reporte Técnico #87, Instituto de Astronomía, UNAM.
- Viotti, R., en Planetary and Proto-Planetary Nebulae: From IRAS

to ISO, p.163, 1987, A. Preite Martinez, ed., Astrophysics and Space Science Library Vol. 135.

- Weise, W.L., Smith, M.W. y Glennon, B.M., 1966, Atomic Transition Probabilities (NSRDS-NBS4).
- Zeippen, C.J., Butler, K., Le Bourlot, J., 1987, Astron. Astrophys., 188, 251.