0.3062

UNIVERSIDAD NACIONAL AUTONOMA (

UNIDAD ACADEMICA DE LOS CICLOS PROFESIONALES Y DE POSGRADO DEL COLEGIO DE CIENCIAS Y HUMANIDADES

EL Mg²¹ LIBRE ES UN ACTIVADOR ESENCIAL DE LA CINETICA DE HIDROLISIS DE LA PIROFOSFATASA DE MEMBRANA DE LA BACTERIA FOTOSINTETICA Rhodospirillum rubrum.

TESIS CON FALLA DE CRIG**en**

I E S I S

QUE SUSTENTA EL BIOLOGO ALEJANDRO SOSA PEINADO Para obtener el grado de: M. EN C. EN I.B.B. DEL AREA BIOQUIMICA

CIUDAD UNIVERSITARIA D,F.

MAYO 1992

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE.

RESUMEN		
ABREVIATURAS		
CAPITULA	DI. INTRODUCCION	
1.1 CAR	ACTERISTICAS GENERALES DE LA FOTOSINTEBIS EN BACTERIAS	
1.1.2.	BACTERIAS FOTOSINTETICAS RHODOSPIRILLALES.	
1.1.3.	DESCRIPCION DE Rhodospirillum rubrun	
1.2.	TRANSFORMACIONES DE ENERGIA EN MEMBRANAS12	
1.3.	ESTRUCTURA DEL PPI Y PROPIEDADES GENERALES DE LAS PIROFOSFATASAS15	
1.4.	PIROFOSFATASA, PROPIEDADES GENERALES	
T.5.	ORJETTYOS	
CAPITOL	JII. MATERIALES I METUDUS	
II.1.	CULTIVO DE BACTERIAS	
TT.1.3.	COSECHA DE BACTERIAS	
11.2	OBTENCION DE CROMATOFOROS.	
11.3.	DETERMINACION DE PROTEINA	
11.3.1.	DETERMINACION DEL CONTENIDO DE BCL	
11.4.	DETERMINACION DE LA ACTIVIDAD DE PIROFOSFATASA	
11.5.	CALCULO DE LAS CONCENTRACIONES DE LOS METALES, LIGANDOS	
11.6.	MODIFICACIÓN DEL POTENCIAL DE SUPERFICIE DE LOS CROMATOFOROS	
11.7.	ESTIMACION DEL POTENCIAL DE SUPERFICIE DE LOS CROMATOFOROS	
CAPITUL	D III. RESULTADOS Y DISCUSION41	
111.1.	CONDICIONES PRELIMINARES	
111.2.	EFECTO DEL MAGNESIO LIBRE SOBRE LA ACTIVIDAD HIDROLITICA	
	DE LA PIROFOSFATASA DE MEMBRANA42	
III.3	EFECTO DEL Mg ² LIBRE EN LA HIDROLISIS DEL COMPLEJO MgPP144	
111.3.1	EFECTO DEL SUSTRATO (MG-PPI) EN LA ACTIVACION DEBIDA AL MG"	
111.4.	ESTUDIOS CON INNIBIDORES COMPETITIVOS DEL SUSTRATO	
	Y DEL ACTIVADOR PARA EVIDENCIAR EL MECANISMO CINETICO	
	DE LA PIROFOSFATASA DE MEMBRANA	
111.5.	PAPEL DEL PPI LIBRE EN EL MECANISMO DE LA PIROFOSPATAS DE MEMBRANA58	
111.5.1	DETERMINACION DE LA CONSTANTE DE INHIBICION PARA EL PP1 LIERE62	
111.0.	HIDROLTTICA DE LA PIROFOSFATASA DE MEMBRANA.	
111.6.1	FUSION DE LIPOSOMAS CON CROMATOFOROS DE LA BACTERIA	
	Rhodospirillum rubrum	
111.6.2	ESTIMACION DE LA MODIFICACION DEL POTENCIAL DE SUPERFICIE	
	EN LOS CROMATOFOROS FUSIONADOS CON LIPOSOMAS	
111.6.3	AUDIFICACION DEL POTENCIAL DE SUPERFICIE DEL CROMATOFORO	
111.7.	ESTINACION DE LA MODIFICACION DEL POTENCIAL DE SUPERFICIE	
	EN LAS DIFERENTES PREPARACIONES DE MEMBRANA.	

CAPITULO 4.	CONCLUSIONES	Y PERSPECTIV	 • • • • • • • • • • • • • •	
BIBLIOGRAFI	A		 	

RESUMEN .

de la actividad hidrolítica de El sustrato real 1a pirofosfatasa de membrana es el complejo Mg-PPi. El Mg²⁺ libre es un activador esencial de la reacción, ya que la enzima no presenta actividad cuando la concentración de Mg^{2*} libre es menor de 10 μM , a pesar de que la concentración del sustrato es 0.5 mM. La Km para el sustrato disminuve al aumentar la concentración del activador esencial, produciendo un aumento en la afinidad para el sustrato. Asimismo, la Km para el Mg2+ libre cambia con la concentración del sustrato. Los estudios cinéticos en equilibrio rápido sugieren que el complejo catalítico es ternario: Enzima-(Mg)-(Mg-PPi), con un mecanismo ordenado para la formación del complejo, en donde el Mg²⁺ libre interactua antes que el Mg-PPi (sustrato) con la enzima. Estudios con inhibidores competitivos sugieren un mecanismo ordenado, aunque se discute si el mecanismo es equilibrio rápido o estado estacionario.

Con el fin de conocer si el potencial de superficie ejerce un efecto en la afinidad de la enzima por el sustrato, se utilizaron dos métodos para modificar la carga de superficie de los cromatóforos: fusión de liposomas con cromatóforos e incorporación de detergentes aniónicos o catiónicos a los cromatóforos. Se encontró que la modificación del potencial de superficie no ejerce efecto sobre la cinética de hidrólisis y se discute que la distancia desde el sitio activo de la enzima a la superficie de la membrana del cromatóforo podría explicar esta ausencia del efecto.

ABREVIATURAS

ANS Anilino Naftaleno Sulfonato.	
ATP Trifosfato de adenosina.	
RCl Bacterioclorofila.	
Albúmina de suero de bovino.	
CCCP n=triclorometori carbonil-cianuro-fenilbidra	2003
cl Clorofila	20114.
CTAB Cetil Trimetil Amonio	
2.6 DCP 2=6 Diclorofenol indofenol	
DEAE Dietil amino etil	
DTT Ditiotraitol.	
DTE Ditiogration.	
EDTA Acido etilén diamino tetracético.	
FCTA Acido etilénglicol bis (amino-etil-eter) NN	
tetracético.	
FCCP p-trifluorometoxi carbonil-cianuro fenilhidr	azona.
fom Fuerza protón motriz.	
IDP Imidodifosfato	
MalNET N-etil maleimida.	
MDP Metilén difosfonato.	
MOPS Acido morfolino propano sulfónico.	
NBF-Cl 4-cloro 3 nitrobenzo-trifluoruro.	
PEP Fosfoenol piruvato.	
Pi Fosfato.	
³² Pi Fosfato radioactivo.	
PPi Pirofosfato inorgánico.	
PPiasa Pirofosfatasa.	
SDS Dodecil sulfato de sodio.	
TCA Acido tricloroacético.	1.17
Tris Tris (hidroximetil) amino metano.	
UQ., Ubiguinona 10.	

INTRODUCCIÓN

I.1. CARACTERISTICAS GENERALES DE LA FOTOSINTESIS EN BACTERIAS.

En el proceso conocido como fotosíntesis, la energía de las radiaciones electromagnéticas se convierte en energía química, ya sea en la membrana tilacoidal de los cloroplastos o bien en la membrana plasmática de las bacterias fotosintéticas. Durante la fotosíntesis oxigénica se produce oxígeno con base en la siguiente reacción:

 $2H_2O^* + CO_2 ----- (CH_2O) + H_2O^* + O_2^*$

Sin embargo, la mayoría de las bacterias fotoautotróficas llevan a cabo fotosíntesis anoxigénica, descrita por van Niel en 1935:

 $2H_{2}A + CO_{2} \longrightarrow (CH_{2}O) + 2A + H_{2}O$

En esta reacción no existe liberación de oxígeno molecular y el agua es reemplazada por otros reductores como el S_2 , $S_2O_3^{-2}$, H_2S o el hidrógeno molecular. Asimismo, algunas bacterias fotosintéticas pueden reemplazar tanto al agua como a los compuestos de azufre, por compuestos orgánicos, tales como el malato, succinato, 8-hidroxibutirato, etc. (Gottschalk, 1986).

Los procesos que intervienen desde la fotosíntesis hasta la síntesis de ATP, están comprendidos en cuatro fases: 1) Captura de la energía radiante por los pigmentos cosechadores de la luz, 2) Transferencia de energía hacia el centro de reacción (contiene bacterioclorofila, bacteriofeofitina, quinonas y un Fe no hémico en

donde ocurre el proceso primario de separación de carga (energía de oxido-reducción), 3) El transporte de electrones iniciado por el centro de reacción genera un gradiente electroguímico de H*, 4) la energía derivada de la cadena de transporte de electrones (gradiente electroquímico de H*) es utilizada para la síntesis de ATP, transporte de solutos, etc. (Dawes, 1986). Es decir la energía derivada de 1a luz, se utiliza para generar el ATP (fotofosforilación) por medio de un circuito de protones análogo al de la mitocondrias y membranas bacterianas, alternativamente esta energía del gradiente electroquímico de protones se acopla a la síntesis de PPi a través de la H^{*}Pirofosfatasa de membrana (Baltschefsky, 1967a).

I.1.1 TAXONOMIA DE LAS BACTERIAS FOTOSINTETICAS.

Las clasificaciones taxonómicas entre los organismos toman en cuenta relaciones fenotípicas para la determinación de los taxa, pero estas agrupaciones no siempre reflejan las relaciones de parentesco o linaje (relaciones evolutivas) entre los grupos. Al respecto, se ha propuesto (Woese, 1978, Woese y col 1990) tres dominios para agrupar a los organismos vivos: Eubacteria, Archaea y Eucarya (Fig. 1). Dentro de Eucarya (eucariontes) se encuentra los reinos de Animalia, Plantae y Fungi. Estas agrupaciones se basan en la similitud de la secuencia del ácido ribonucléico ribosomal (RNAr), dado que esta molécula se encuentra presente desde los primeros organismos los cambios en su secuencia sirven para establecer relaciones filogenéticas.

Las bacterias fotosintéticas estan presentes en los dominios de Eubacteria y Archeae (arqueobacterias, ver Fig.1).

Figura 1. Relaciones filogenéticas entre los organismos, con base en las comparaciones del RNAr tomado de Woese (1990). Los números corresponden a los siguientes grupos: 1 termotogales; 2 falvobacterias; 3 cianobacterias; 4 bacterias púrpuras; 5 Grampositivas; 6 verdes no sulfurosas; 7 género Pyrodictium; 8 género Thermoproteus; 9 Thermococcales; 10 Methanococcales; 11 metanobacterias; 12 metanomicrobiales; 13 halófilas; 14 animales; 15 ciliados; 16 plantas; 17 hongos; 18 flagelados y 20 microsporidia.

Dentro del dominio de Eubacteria se encuentra el mayor número de especies de bacterias, en donde las bacterias fotosintéticas no forman un grupo genealógico diferente de las bacterias no fotosintéticas, es decir los grupos autótofos y

heterótrofos no estan filogenéticamente separados, por ejemplo en el grupo de las bacterias púrpuras tanto encontramos bacterias fotosintéticas como heterótrofas. Las bacterias fotosintéticas que pertenecen a este dominio se encuentran representados en los siguientes grupos (Fig 1): el de bacterias purpuras no sulfurosas (<u>Rhodospirillum, Chromatium, Rhodobacter</u>); el de bacterias gram positivas (<u>Heliobacterium</u>); el de cianobacteria; el de bacterias verde-sulfurosas (<u>Chlorobium</u>) y el de las verdes no sulfurosas (<u>Chloroflexus</u>).

El dominio de las arqueobacterias comprende cuatro fenotipos generales: las metanógenas, las reductoras de compuestos de azufre, las termófilas extremas y las halófilas. Desde el punto de vista filogenético no se encuentran separados estos grupos (Fig 1), sino qué, muestran una relación evolutiva muy particular entre estos. Dentro del grupo de las halobacterias, se encuentran las únicas arquoebacterias fotosintéticas, estos organismos viven concentraciones salinas elevadas (4.3 M de NaCl) y realizan fotosíntesis no oxido-reductora. Su aparato fotosintético es muy diferente al resto de los organísmos fotosintéticos, ya que en lugar de BCl (bacterioclorofila) o Cl (clorofila), presenta una proteína asociada a membrana llamada bacteriorrodopsina. Esta proteína puede llegar a representar el 90% de la proteína de la membrana de la bacteria, si se cultiva en presencia de luz y bajas tensiones de oxígeno. La bacteriorrodopsina es una proteína monomérica que atraviesa 7 veces la membrana; el polipéptido tiene un peso molecular de 26 Kilodaltones (Eisenbach y Caplan, 1979).

I.1.2. BACTERIAS FOTOSINTETICAS RHODOSPIRILLALES.

De acuerdo con la clasificación de Pfenning y Truper (1971), las bacterias fotosintéticas usadas en este trabajo pertenecen al orden Rhodospirillales y de acuerdo con la clasificación de Woese (1987) pertenecen al subgrupo α -1 de las bacterias púrpuras. Este orden incluye dos subórdenes (Pfenning y Truper 1971) que son: Rhodospirillineae y Chlorobiineae.

El suborden Rhodospirillineae comprende organismos que contienen Bcl "a" o "b", los pigmentos se localizan en la membrana plasmática, que se invagina al interior del citoplasma, formando los cromatóforos. Este suborden contiene dos familias: Rhodospillineae y Chromatiaceae.

El suborden Chlorobiniieae comprende bacterias con Bcl "c", "d", o "e", los pigmentos están localizados en estructuras especiales llamadas clorosomas, los cuales están unidos a la membrana citoplásmica. Este suborden contiene dos familias: Chlorobiaceae y Chloroflexaceae.

1.1.3. DESCRIPCCION DE Rhodospirillum rubrum

Tomando en cuenta la clasificación de Trupper (1976) la bacteria <u>Rhodospirillum rubrum</u> pertenece al:

Orden:	Rhodospirillales
Suborden:	Rhodospirillineae
Familia:	Rhodospirillaceae
Género:	Rhodospirillum
Especie:	Rhodospirillum rubrum

La especie Rhodospirillum rubrum, poseé una forma espiral

y mide 0.8 µm de ancho por 7 a 10 µm de largo; se multiplica por fisión binaria; presenta flagelos polares y una pared celular separada de la membrana celular por un espacio periplásmico. La membrana celular envuelve al citoplasma y contiene el sistema de transporte de electrones, los completos cosechadores de luz y el centro de reacción (Fig 2). Si el crecimiento se lleva a cabo en condiciones de baja concentración de oxígeno y luz, presenta invaginaciones de la membrana plasmática denominadas cromatóforos (Clayton y Sistrom, 1978). En el espacio periplásmico existen proteínas que participan en el transporte de electrones como el citocromo C2. En condiciones aeróbicas sin luz, obtiene energía a partir de la oxidación de substratos orgánicos. En esta fase respiratoria no desarrolla los cromatóforos. Esta bacteria almacena glucógeno o polis-hidroxibutirato como reservorio de energía (Merrick, 1978) y requiere de biotina para su crecimiento. Utiliza como donadores de electrones y como fuente de carbono los siguientes compuestos: acetato, butirato, propionato, piruvato, lactato, succinato, etanol y requiere de los aminoácidos: aspartato, glutamato y arginina o bien amonio o N,, por lo tanto esta bacteria es fijadora del nitrógeno molecular. Baio condiciones respiratorias presenta las siguientes actividades enzimáticas: NADH oxidasa, fumarato reductasa dependiente de NADH. NADH deshidrogenasa,

deshidrogenasa succínica y citocromo c oxidasa (Laskin y Lechevalier, 1988). <u>R. rubrum</u> es una bacteria Gram-negativa que contiene en su membrana 19% de fosfatidiletanolamina, 10% de

Figura 2. Esquema de la transducción energética en bacterias púrpuras no sulfurosas

P-870 : Centro de reacción I: Bacteriofeofitina Fe:Q₁: Fierro-Quinona Q₁₁: Quinona Secundaria b_1 y b_h : Citocromos b Fe-S: Complejo Fierro-Azufre C:Citocromo C, FoF: ATP sintasa PPi: pirofosfatasa fosfatidilcolina y 5% de cardiolipina (Rogers, 1986). Al igual que todas las bacterias Gram-negativas, posee una cubierta de peptidoglicano de 2 nm de grosor que cubre la pared celular, juntas estas dos estructuras le dan rigidez y su forma característica a la bacteria.

Las quinonas que contiene son ubiquinonas y el caroteno predominante es espiriloxantina. El espectro de la membrana del cromatóforo presenta una banda de absorción a los 550 nm debido a la espiriloxantina y un pico de absorción sencillo y simétrico de bacterioclorofila a los 825 nm (Clayton y Sistrom 1978)

La ubiquinona 10 (UQ₁₀) se encuentra en la membrana tanto en el cultivo fotosintético como en el cultivo respiratorio, pero su concentración es mayor durante el cultivo fotosintético. La actividad de NADH-oxidasa disminuye por la destrucción de la UQ₁₀ por luz ultravioleta (Nishikawa y col, 1973).

I.2. TRANSFORMACIONES DE ENERGIA EN MEMBRANAS.

Un avance crucial en el campo de la bionergética, fue el descubrimiento de que la mayor parte del ATP sintetizado en la célula, proviene de los complejos enzimáticos asociados a las membranas de la mitocondria (membrana interna), la membrana tilacoide de los cloroplastos y la membrana citoplasmática de los procariontes (Harold, 1986). Estas membranas, acopladas a la transformación energética, estan caracterizadas por dos tipos de estructuras protéicas:

a) la H'ATP-sintetasa, que se encarga de la síntesis del ATP, y

b) un segundo sistema que está determinado por la fuente de energía primaria, de tal suerte que en la membrana interna de la mitocondria y en la membrana plasmática de las bacterias se encuentra la cadena respiratoria, que cataliza la transferencia de equivalentes de óxido-reducción hasta el oxígeno u otro aceptor (fosforilación oxidativa), mientras que en plantas y en bacterias fotosintéticas se encuentra la unidad fotosintética, compuesta de complejos cosechadores de luz y centros de reacción además de los complejos de citocromos que forman una cadena de transporte de electrones cíclica (Nicholls, 1982) y estos en su regreso impulsan la síntesis de ATP a través de la ATP sintasa (ver Fig 3).

La teoría que ha permitido explicar de el mecanismo de transferencia de la energía de oxido-reducción del transporte de electrones para fosforilar el ADP es la teoría quimiosmótica.

TEORIA QUINIOSMOTICA. La teoría quimiosmótica postula que las enzimas y los acarreadores de electrones están dispuestos asimétricamente en la membrana, de tal manera que catalizan el transporte vectorial de protones, con la concomitante formación de un gradiente de potencial tanto químico como eléctrico en la membrana (Mitchell, 1966 y Mitchell, 1979)

Los puntos esenciales de esta teoría son (Fig 3.) :

a) La transferencia de electrones por la cadena redox provoca el bombeo de protones en dirección de la región electropositiva de la membrana.

b) La membrana es impermeable a iones, en especial a los H^{*} y los
OH^{*}, excepto por los sistemas de transporte de iones.

c) La existencia de una proteína integral de membrana, la ATPasa translocadora de protones, que cataliza la siguiente reacción. $H^* + ADP^{3-} + HPO_2^{2-} + nH^*_{avt}$, ------ nH^*_{int} . + $ATP^{4-} + H_2O$

En donde "n" es el número de gramos-iones de H+ translocados por mol de ATP, lo que es expresado como el cociente H*/ATP. El otro protón en la ecuación corresponde a un proceso escalar (Mitchell,1967). Dado que esta reacción es reversible, la acumulación de protones en el exterior, puede dirigir la síntesis del ATP con la concomitante entrada de protones. El resultado de la translocación de protones trae consigo la generación de un gradiente eléctrico o gradiente de potencial de membrana ($\Delta \psi$) y un potencial químico expresado como la diferencia de la concentración de protones Δ pH (pHext-pHint). Estos dos parámetros sumados forman la fuerza protón motriz, que no es mas que la expresión de una diferencia de potencial electroquímico de H* (Fig 3). La expresión que define la fuerza protónmotriz (fpm) es:

 $fpm = \Delta \psi - Z \Delta pH$

En donde $\Delta \psi$ es el gradiente de potencial electrico y "Z ΔpH " es una expresión del potencial químico en unidades de milivoltios (mV).Z equivale a 2.303 RT/F, en donde R es la cte. universal de los gases, T es la temperatura y F es la cte. de Faraday.

Figura 3. Esquema general de la teoría quimiosmótica. C.R. es la cadena respiratoria.

 $\Delta p = \Delta \psi - Z \Delta p H$

I.3. LA ESTRUCTURA DEL PPI Y PROPIEDADES GENERALES.

La estructura del enlace fosfoanhidro 0-P-0-P-0 juega un papel importante en los procesos de transducción de energía, ya que este enlace es la principal forma de energía química en los sistemas vivos. El pirofosfato inorgánico (PPi) es el compuesto más simple que contiene esta estructura . El PPi es producto de diversas reacciones biosintéticas tales como la síntesis de DNA, RNA, aminoácidos, nucleótidos, lípidos, urea, ácidos grasos, etc. Ya que muchas de estas reacciones son reversibles, se pensó durante mucho tiempo que el único papel del PPi era el de ser hidrolizado por las pirofosfatasas citoplásmicas (PPiasas), formándose así una barrera termodinámica que impide el reverso de estas reacciones

biosintéticas. Además se ha visto que el PPi es fuente de fosfatos y de energía para diversas reacciones (Reeves, 1976, Wood, 1977). Asimismo se ha medido la concentración del PPi libre en el citoplasma de células animales (Guynn y col, 1973) y células vegetales (Black y col, 1987) bajo condiciones fisiológicas, lo que muestra que la concentración del PPi se encuentra por arriba de la concentración predicha por el equilibrio de la reacción de la PPiasa citoplásmica. especie En la de arqueobacteria Methanobacterium thermoautotrophicum el PPi se encuentra en una concentración de 2.5 a 40 mM (Keltjens y col, 1988), dependiendo de las condiciones del medio de cultivo. Lo que sugiere, una participación más compleja del PPi en el metabolismo.

Estudios del ΔG° de hidrólisis del PPi, muestran que no es posible descartarlo como donador de energía para distintas reacciones metabólicas. Se ha visto que la energía libre de hidrólisis de la reacción, es muy parecida a la energía de hidrólisis del enlace gama del ATP en ausencia de cationes divalentes, pero en presencia de estos, el ΔG° se vuelve menos negativo, ya que el ADP es mas afin por el Mg²⁺ que el Pi. El valor calculado por Flodgard y Fleron en 1974 para la hidrólisis del PPi fue de -4.0 Kcal/mol, en presencia de 1mM de Mg²⁺, 150 mM de K y pH de 7.4, y de -5.63 Kcal/mol en ausencia de Mg²⁺2+, lo cual está en concordancia con lo publicado por Lawson y col (1976), quienes calcularon una energía libre de hidrólisis de -5.27 Kcal/mol, en presencia de 1mM de Mg2+. Estos valores de nuevo nos sugieren que no es posible eliminar al PPi como fuente de energía.

1.4. PIROFOSFATASA, PROPIEDADES GENERALES.

Las Pirofosfatasas son enzimas que se encargan de hidrolizar la unión fosfoanhidro del PPi inorgánico, de acuerdo con la siguiente reacción:

PPi + H,O ←----→ 2Pi.

Se conoce la existencia de tres tipos de pirofosfatasas: a) **PIROFOSFATASA CITOPLASMICA.** Se encuentra en el citoplasma de todas las células y se ha purificado de diferentes organismos, lo que ha permitido conocer algunos aspectos de su estructura y de sus propiedades catalíticas (Cooperman, 1962, Rapoport y col 1972, Barry y Dunaway-Mariano, 1987). Asimismo se conocen dos tipos de PPiasa citoplásmicas: una con actividad óptima en medio ácido y otra con actividad óptima en medio alcalino.

La PPiasa citoplásmica se ha estudiado extensamente en levadura, y se sabe que es una enzima homodimérica, la cual requiere de iones Mg², para presentar actividad. Uno de los cuales forma complejo con el PPi y los otros dos funcionan como cofactores (Knigth y col, 1984). En general, se ha visto que los cationes divalentes regulan su actividad (Ridlington y Butler, 1972).

En la PPiasa de la bacteria fotosintética <u>R</u>. <u>rubrum</u>, se ha propuesto una regulación alostérica debida al efecto de los cationes divalentes (Klemme y Gest, 1971). Las reacciones parciales de la enzima son: el recambio del oxígeno isotópico pesado de HPO_4-H_2O y el recambio radioactivo del PPi-³²Pi (Cooperman, 1982). b) **PIROFOSFATASA DE MEMBRANA.** La PPiasa de membrana fue descubierta por Baltscheffsky y col en 1966, en la bacteria fotosintética <u>R</u>.

rubrum. Esta enzima no solo cataliza la hidrólisis del PPi, sino también su síntesis, al utilizar el gradiente electroquímico de H^{*} generado por el transporte de electrones. La PPiasa de membrana se ha encontrado en otras 3 especies de bacterias fotosintéticas: en <u>Rhodobacter viridis</u> se reportó reducción del succinato en la oscuridad con PPi como fuente de energía (Jones y Saunders, 1972); en

<u>Rhodobacter palustris</u> se demostró actividad de transhidrogenación debida al PPi (Schwarm y col, 1986); en cromatóforos de <u>Chromatiun D. sp</u> se ha observado un cambio electrocrómico del espectro de absorción del caroteno, inducido por la hidrólisis del PPi (Kneffy col, 1979). También existe una PPiasa de membrana acoplada a la cadena de transporte de electrones en las mitocondrias de levadura (Mansurova y col, 1975) y en mitocondrias de hígado y corazón de res (Volk y col, 1982 y Volk y Mansurova, 1984).

c) **PIROFOSFATASA DE TONOPLASTO.** Recientemente se ha descubierto una pirofosfatasa membranal en la membrana vacuolar de plantas y de algas (Rea y Poole 1985). Esta enzima actua como bomba de protones, utillizando al PPi como fuente de energía. Su actividad es independiente de la H*ATP sintetasa. Ambas enzimas generan un gradiente electroquímico de protones, a través de la membrana del tonoplasto, el cual se utiliza para el transporte de iones y la regulación del pH interno. Dupaix y col (1989) ha logrado utilizar el gradiente electroquímico de H* generado por la pirofosfatasa para llevar a cabo síntesis de ATP.

Dadas todas estas evidencias, es clara la importancia del PPi y de las PPiasas en las reacciones metabólicas de muchos organismos, por lo que sería interesante conocer los mecanismos que regulan las pirofosfatasa y su papel en el metabolismo celular.

PIROFOSFATASA DE MEMBRANA DE Rhodospirillum rubrum

La bacteria fotosintética no sulfurosa <u>R. rubrum</u> contiene pirofosfatasa citoplásmica y de membrana. Klemme y Guest (1971a) encontraron que más del 90% de la actividad de PPiasa corresponde a la citoplásmica. La PPiasa de membrana de <u>R. rubrum</u> no solo hidroliza el PPi, sino también lo sintetiza con la energía derivada de la cadena de transporte de electrones, que es alimentada por la luz. Asimismo se ha encontrado actividad de PPiasa en membranas de <u>R. rubrum</u> crecidas en condiciones respiratorias en la obscuridad (Romero y col 1991).

La PPiasa es una enzima muy parecida a la ATPasa, en el sentido de que se encarga de hidrolizar la unión fosfoanhidro del enlace fosfoanhidro, por lo que se pensó en algún tiempo que era una reacción parcial de la ATPasa. Sin embargo las siguientes pruebas evidenciaron que es una enzima diferente:

 La PPiasa es insensible a oligomicina (Baltscheffsky y col, 1967b) a diferencia de la ATPasa que es sensible a oligomicina.
Fisher y Guilloiry (1969) lograron distinguir actividad de la ATPasa de la actividad de la PPiasa con inhibidores específicos: la ATPasa se inhibe con cloruro de litio 2 M, en cambio la PPiasa se

inhibe con 3.1% de butanol. De esta manera, se concluyó que son dos sistemas enzimáticos diferentes acoplados al gradiente de potencial electroquímico protones.

- Johanson (1975), inhibió la actividad de H*-ATPasa con anticuerpos monoespecíficos, sin modificar la actividad de la PPiasa.

- En cromatóforos de <u>R</u>. <u>rubrum</u>, que contienen actividad tanto de ATPasa como de PPisa, Keister y Minton (1971) demostraron la síntesis de ATP debido a la formación de un gradiente electroquímico de protones durante la hidrólisis del PPi; por esta razón no se encontró el fosfato marcado del ³²PPi en el ATP. De esta manera, se concluyó que son dos sistemas enzimáticos diferentes, acoplados al gradiente electroquímico de protones. Con respecto a la actividad hidrolítica de la PPiasa de membrana de la bacteria fotosintética <u>R</u>. <u>rubrum</u>, se sabe que está acoplada a muchos procesos dependientes de energía (Fig 4)

tales como: la reversa de transporte de electrones (Baltscheffsky y col, 1968); la formación de un gradiente de potencial eléctrico evidenciado por el corrimiento electrocrómico del espectro de absorción del caroteno (Baltcheffsky y col, 1969); la alcalinización del espacio externo del cromatóforo (Moyle y col, 1976); el transporte de iones (Isaev y col, 1970); las reacciones de transhidrogenación (Keister y Yike, 1967); la formación de ATP como consecuencia de la formación de un gradiente de potencial electroquímico de protones (Keister y Minton, 1971). La PPiasa de

Figura 4. Esquema de las reacciones acopladas a la pirofosfatasa de membrana a través del gradiente electroquímico de protones membrana de <u>R. rubrum</u>, es capaz de sintetizar PPi, como respuesta a la formación de un gradiente de potencial químico (Δ pH),o a la presencia de un gradiente de potencial eléctrico (Δ \u00et), generado por un gradiente de iones K+ (Strid y col, 1987). Estas evidencias demostraron que la PPiasa es una enzima que cataliza la translocación electrogénica de protones en un proceso totalmente reversible. La PPiasa de membrana de <u>R. rubrum</u> cataliza dos reacciones: hidrólisis del PPi y síntesis del PPi y es posible medir dos reacciones parciales: intercambio radioactivo ³²Pi-PPi y el intercambio isotópico pesado de HPO₄-H₂O. El estudio de estas reacciones de intercambio ha sido muy útil, porque ha permitido conocer los pasos intermedios de la actividad de síntesis e hidrólisis del PPi.

a) Actividad de PPiasa (hidrólisis).

La hidrólisis del PPi requiere del catión divalente Mg^{2^*} , tanto para formar el complejo de hidrólisis, como para activar a la enzima (Randahl, 1979 y Celis y col, 1985). Estudios de Celis y Romero (1987), sobre el efecto de los cationes divalentes y de los protones sobre la actividad de PPiasa y de intercambio Pi-PPi, indican que el Zn^{2^*} a bajas concentraciones, es buen substituto del Mg^{2^*} en la hidrólisis, mientras que otros cationes divalentes como el Ca^{2*}, y el Fe^{2*}, no substituyen al Mg^{2^*} en la hidrólisis. El pH óptimo para la reación de hidrólisis en el cromatóforo de <u>R. rubrum</u> es de 6.5, mientras que el pH óptimo para la reacción de recambio 12 Pi-PPi es de 7.5. Se ha visto (Celis y Romero, 1987) en la reacción de recambio 12 Pi-PPi que la Km para el Pi varia con el pH,

por lo que se concluye que los cationes divalentes y los protones juegan un papel importante en las modulaciones cinéticas de la enzima. La oligomicina (inhibidor específico de la ATPasa) no modifica la actividad de la PPiasa sino que la estimula en R. rubrum (Baltscheffsky v col, 1968). La actividad de PPiasa es inhibida por la diciclohexil-carbodiimida (DCCD), fosfato (Pi), y arsenato, mientras que la gramicidina, el 2-4 dinitrofenol (2-4 DNP) y el FCCP desacoplantes que colapsan el gradiente de potencial electroquímico de protones, estimulan la actividad (Baltscheffsky y col, 1966b, Baltscheffsky, 1986, Nyren y col 1984), mientras que los análogos del sustrato como el metilendifosfato (MDP) y el imidodifosfato (IDP) son inhibidores. Randahl (1979) observó que los reactivos de grupos -SH, ejercen una inhibición a 0°C, mientras que a 30°C, casi no inhiben. Esto podría explicarse como resultado de cambios conformacionales dependientes de temperatura, lo que traería como consecuencia la exposición de los grupos -SH de la proteína. Nishikawa y col (1973), han visto que la actividad de PPiasa disminuye en la luz a pesar de que existan condiciones de baja síntesis de PPi. Asimismo se ha visto que el Li'. el Na' y el K'estimulan la actividad de PPiasa. La PPiasa de membrana, al igual que la ATPasa, es una enzima que depende de fosfolípidos particulares de la membrana, ya que bajo la acción de la fosfolipasa A, la actividad disminuye y al agregar fosfolípidos totales de soya esta se recupera (Klemme y col, 1971b).

b) Sintesis del PPi.

La sintesis del PPi se lleva a cabo en condiciones de

iluminación y también requiere de MgCl₂ para la actividad. La oligomicina no inhibe, sino que estimula. En presencia de luz y bajo condiciones desacoplantes con FCCP y valinomicina se inhibe la síntesis. En presencia de 10 mM de NaF se inhibe totalmente la síntesis (Nyren y col, 1986).

Guillory y Fisher (1972), estudiaron el efecto de la intensidad luminosa sobre la síntesis del ATP y del PPi, y encontraron velocidades máximas de síntesis de PPi a intensidades luminosas menores que las requeridas para el ATP. El pH óptimo para esta actividad es de 7.5.

Strid y col, (1987) generaron gradientes de potencial eléctrico con el ion K+ ($\Delta \psi$), y gradientes de protones en los cromatóforos de <u>R. rubrum</u>, logrando las síntesis del PPi y del ATP, ya que los cromatóforos contienen ambas actividades. Al respecto concluyeron: son diferentes las cantidades de protones translocados para formar ATP o PPi; es necesario que la ATPasa se active por el gradiente de potencial de membrana para que se de la síntesis del ATP a diferencia de la PPiasa que con bajos gradiente de potencial de membrana (respecto a la ATPasa) es capaz de sintetizar el PPi.

c)Intercambio Pi-PPi.

La actividad del intercambio del Pi con el PPi, presenta el mismo pR óptimo que en la actividad de síntesis (7.5), ya que de hecho, este tipo de intercambio es una reacción parcial de la síntesis. Esta actividad fue descubierta por Keister y Minton (1971b) en los cromatóforos de <u>R. rubrum</u>.

La reacción se inhibe por desacoplantes de la fosforilación tales como el p-triclorometoxi carbonil-cianuro-fenilhidrazona (CCCP) y el antibiótico S-13 y se estimula por oligomicina. Se inhibe por adición de ADP. Los protones y los cationes divalentes ejercen un papel modulador en las propiedades catalíticas de la enzima (Celis y Romero, 1987), ya gue el pH afecta la Km para el Pi y para el Mq²⁺. Asimismo, los cationes divalentes como el Mn²⁺ y el Co²⁺ son substitutos del Mg²⁺ para formar el sustrato (con un 50 % de la actividad obtenida con el Mq²⁺), mientras que los cationes Ca²⁺ y el Zn²⁺, no sustiuyen al Mg²⁺ en la reacción. Por otro lado, los requerimientos de Mg2* añadido a la reacción son mayores que para la actividad hidrolítica (Celis y col, 1985). Los mismos autores sugieren que el sustrato para la actividad de recambio es el MgHPO, con una Km de 1.5 mM. Se ha visto que para la actividad de recambio el Mg²⁺ libre es importante y probablemente juega un papel activador.

d)Intercambio HPO,³⁻-H₂O.

Los cromatóforos de <u>R. rubrum</u>, catalizan un rápido recambio del oxígeno del pirofosfato por el oxígeno del agua. Esta reacción es inhibida por inhibidores de la PPiasa de membrana, como el fluoruro y el metilendifosfato (Harvey y Keister 1981) y se considera una reacción parcial de la hidrólis del PPi. Se requiere de MgCl₂ en una relación MgCl₂/Pi de 0.8 para alcanzar las velocidades óptimas. Harvey y Keister (1981), utilizando inhibidores específicos, encontraron que esta actividad de intercambio en la bacteria fotosintética <u>R. rubrum</u>, se debe

exclusivamente a la PPiasa membranal, a pesar de que la ATPasa tiene el potencial suficiente parà llevarla a cabo.

El desacoplante CCCP no presenta un gran efecto sobre la reacción, por lo que podría sugerirse que el intercambio $Pi-H_2O$ no depende de un gradiente de protones. Esto parece estar apoyado por el hecho de que la luz no estimula el recambio.

II.9. OBJETIVOS

El objetivo de este trabajo es la caracterización cinética de la actividad hidrolítica de la pirofosfatasa de membrana de Rhodospirillum rubrum, en especial los siguientes aspectos:

 Estudiar la cinética del efecto activador del Mg²⁺ libre sobre la velocidad de hidrólisis, para discriminar el mecanismo cinéticos de activación (esencial o no esencial).

 Determinar la cinética de hidrólisis con respecto al sustrato, manteniendo constante la concentración del activador.

 Determinar el efecto del sustrato sobre la activación debida al Mg²⁺ libre.

 Conocer el orden de adición del sustrato y del activador a la enzima, es decir si es ordenado o al azar.

5) Determinar el tipo de inhibición debida al PPi libre, dada la dificultad de determinar directamente la Ki, se emplearán métodos de competencia para evaluar esta constante.

6) Confirmar, con inhibidores competitivos para el sustrato y el activador, el tipo de mecanismo cinético obtenido bajo condiciones de equilibrio rápido.

7) Determinar si el efecto activador del Mg²⁺ libre, es por la interacción directa del magnesio sobre la enzima, o por el enmascaramiento de la carga de superficie negativa del cromatóforo. Por lo tanto se modificará el potencial de superficie de la membrana del cromatóforo y se estudiará el posible efecto que tenga en la actividad enzimática en estas preparaciones de membrana.

CAPITULO II.

MATERIALES Y METODOS

II.1. CULTIVO DE LAS BACTERIAS

Se utilizó la cepa silvestre (ATCC 11170) de la bacteria fotosintética <u>Rhodospirillum rubrum</u> en todos los experimentos.

II.1.1. MEDIOS DE CULTIVO

Los cultivos de esta bacteria se realizaron en medio sólido y líquido:

A) MEDIO SOLIDO: En un volumen final de 1 litro se disuelven: Extracto de Levadura o de Carne......3 g Peptona de gelatina.....2 g Agar Bacteriológico.....1 %

El medio fue esterilizado en el autoclave durante 15 min en frascos de tapa con rosca de 15 a 20 ml de volumen, conteniendo solamente 10 ml de medio.

B) MEDIO LIQUIDO: Se preparó el medio líquido con base al método de Cohen-Bazire y col (1957), el cual es una modificación del propuesto por Hunter (1950). El medio de cultivo requirió preparar las siguientes soluciones:

i) Base concentrada. Un volumen de 2 L contiene:

N(CH,COOH),	g
MgS0, 7H,0	ġ
CaC1, 6H.O8.7	ġ.
(NH,),Mo,O, 4H,00.185 c	rī -
FeS0, 7H,0	a
Solución de Metales "44"100	ml

Se ajusta a un pH de 6.8.

La solución de metales "44" que se utiliza contiene:

EDTA.	
FeSO,	7H,05.0 g
ZnSO,	7H,011.0 mg
MnSO	
MnC1	4H,01.37 g
CuSO	5H,00.392 g
Co (NO), 6ĥ,0
Na,B,O	6H,00.177 g
H ₂ SO	

La solución se afora a 1.0 L con agua destilada y se ajusta el pH a 6.8.

ii) KH_2PO_4 , 136.08g se aforan a 1.0 L con agua destilada. se ajusta el pH a 6.8.

iii) Acido succínico, 100g se aforan a 1.0 L con agua destilada, se ajusta el pH a 6.8.

iv) (NH₄)₂SO 4, 100g se aforan a 1.0 L con agua destilada.

v) NaCl, 50g se aforan a 1.0 L con agua destilada.

vi) Acido L-glutámico, 25g se aforan a 250 ml con agua destilada.

vii) Acido L-aspártico, 5g se aforan a 250 ml con agua destilada y se ajusta el pH a 6.8.

Finalmente el medio líquido contiene por cada 12.5 L, las siquientes cantidades de las soluciones mencionadas:

i)	Base Concentrada
ii)	KH_PO
iii)	Acido Succínico
iv)	(NH ₄) ₃ SO ₄
v)	NaCl
vi)	Acido L-glutámico
vii)	Acido L-aspártico
viii)	Extracto de Carne 12.5 g
ix)	Acido Nicotínico12.5 mg
x)	Tiamina6.25 mg
xi)	Biotina0.125 mg

El medio se ajustó a un pH de 6.8 y se esterilizó en el

autoclave durante 45 minutos. Cuando el medio está caliente se forma un precipitado que se disuelve a temperatura ambiente . El medio es translúcido y de un color amarillo claro.

II.1.2. SIEMBRA DE BACTERIAS.

La siembra de las bacterias se realizó en placa, en inóculos muy diluídos para formar colonias sencillas. Se tomó una muestra del inóculo para sembrarlas por punción en frascos con medio sólido. Posteriormente se incubaron durante 12 hrs en la obscuridad para consumir el oxígeno debido al crecimiento respiratorio de las bacterias. A continuación se expusieron los inoculos a la luz (focos con filamento de tugsteno de 40 watts colocadas a 30 cm de distancia de los frascos a una temperatura de 30°C.)

Una vez formado el cultivo bajo condiciones fotosintéticas, este puede conservarse viable para las resiembras durante varios meses. La obtención de grandes cantidades de bacteria se realiza en cultivos líquidos de la siguiente manera:

Se le agrega medio líquido a los frascos de medio sólido y se agitan para desprender alguna colonia. Se guardan los frascos en la obscuridad durante 12 hrs, posteriormente se exponen a la luz a una temperatura de 30°C. A los 6 días aproximadamente se obtiene el cultivo fotosintético, el cual se vacía en matraces de 100 ml con medio líquido, agregando la suficiente cantidad para no mojar el tapon de hule esteril, pero dejando la menor cantidad de oxígeno posible. Se repite de nuevo el ciclo obscuridad-luz indicado para obtener un cultivo en condiciones fotosintéticas.

Este procedimiento se repite transladando el cultivo a un frasco de 1.0 L y posteriormente a uno de 9 L.

II.1.3. COSECHA DE BACTERIAS.

Se procedió a cosechar el cultivo a los 7 días aproximadamente, cuando este alcanzó la fase logarítmica tardía en la curva de densidad óptica del cultivo contra tiempo. La densidad óptica del cultivo de bacterias se detectó con un fotocolorímetro con filtro rojo (fotocolorímetro Klett-Summerson).

La cosecha se realizó por centrifugaciones sucesivas del medio de cultivo a 8,000 x g durante 15 minutos, obteniéndose pastillas de bacterias, las cuales se lavaron dos veces en un amortiguador MOPS 50 mM, KCl 50 mM pH 7.5. De nuevo se centrifugaron a 8,000 x g durante 15 minutos eliminando asi los residuos del medio. Las pastillas son pesadas y registradas como peso húmedo, para ser almacenadas en un ultrarrefrigerador a -70°C.

II.2. OBTENCION DE CRONATOFOROS.

Los cromatóforos se obtienen (Fig 5) a partir de las bacterias utilizando el procedimiento reportado por Baccarini-Melandri y col, (1970):

-Se resuspenden las bacterias en un amortiguador Tris-Cl pH 7.5 en relación 1:10 (peso:volumen), se homogenizan y se les agrega MgSO₄ y DNAasa esta última en proporción de 1 mg por 100 g de peso húmedo de bacterias.

-Se sonican en volúmenes de 20 ml durante 2 minutos en un

sonicador tipo M.S.E. a la máxima potencia, en un baño de hielo a 0°C (Scholes y col., 1969).

-Se centrifugan a 20,000 x g durante 20 min, para remover las células sin romper, cápsulas, etc, que quedan en el precipitado. -Se toma el sobrenadante y se centrifuga a 100,000 x g durante 80 min.

-El precipitado de cromatóforos se resuspende en un amortiguador Tris-Cl 10 mM con EDTA 5 mM y EGTA 2mM a pH de 7.5, para remover los cationes divalentes como el Mg²⁺ presentes en la preparación y se centrifuga a 100,000 x g durante 80 min.

-El precipitado obtenido se resuspende en Tris-Cl 50 mM se centrifuga a la 100,000 x g duante 80 min para lavar el exceso de quelantes.

-Se resuspende la pastilla de cromatóforos en el amortiguador del paso anterior a una concentración de proteína aproximada de 25 mg/ml y se almacena a 4°C durante los siguientes tres días en donde conservan su actividad o bien a -70°C en donde conservan su actividad durante 6 meses.

II.3. DETERMINACION DE PROTEINA.

La cantidad de proteína para los ensayos se determinó por el método de Lowry y col, (1951), utilizando estandares de albúmina de suero de bovino (BSA), con un intervalo de sensibililidad de 5 a 400 µg de proteína/ ml.

Las bacterias se resuspenden en Tris-HCl 10 mM, pH 7.5 en relación 1/10 (p/v) Se agrega 1 mg de DNAasa y 5 mg de MgSO4 Se sonican en lotes de 15 ml durante 2 min a 0°C. Se centrifuga a 20 000 X g, durante 20 min a 4°C. Se elimina el Precipitado Se recupera el Sobrenadante Se centrifuga a 100 000 X q durante 80 min a 4°C. Se resuspende el precipitado en EDTA 5mM y EGTA 3 mM y se centrifuga a 100 000 X g durante 80 min. Se resuspende el precipitado en Tris HCl 50mM pH 7.5 y se centrifuga a a 100 000 X q durante 80 min a 4°C. Se resuspende el pecipitado (cromatóforos) en Tris HCl 50 mM pH 7.5 en relación 1:3 (p/v)

y se determina la concentración de proteína.

Figura 5. Esquema de la obtención de los cromatóforos.

II.3.1. DETERMINACION DEL CONTENIDO DE BC1

El contenido de bacterioclorofila de los cromatóforos se determinó por la absorción a 770 nm de un extracto de acetona / metanol (7/2, v/v), agitándose vigorosamente durante algunos minutos y se centrifugó a 3000 rpm durante 5 minutos en una centrífuga clínica. La absorbencia del sobrenadante se lee en el espectrofotómetro a una longitud de onda de 770 nm (Clayton y Sistrom, 1978).

II.4. DETERMINACION DE LA ACTIVIDAD DE PIROFOSFATASA.

La actividad enzimática se determinó a partir de la cuantificación del fosfato (Pi) liberado, por la hidrólisis del PPi, a 30°C en presencia de MqCl₂.

El ensayo se realizó en la obscuridad, para evitar la síntesis del PPi promovida por la energía de la luz y por tal motivo se utilizó un cuarto iluminado con luz verde (Schiff, 1972).

La reacciones se llevaron a cabo en un volumen de 0.5 ml, agregando 1mg de proteína de cromatóforo por tubo. El medio de reacción contiene Tris-maléico 50 mM pH 6.5, pirofosfato de sodio, cloruro de magnesio, EDTA, necesario para obtener la concentraciones que se indican en el pie de figura de las gráficas. La reacción se inició con la adición de enzima (cromatóforos) al medio de reacción. El tiempo de reacción correspondió a un avance máximo de la reacción de 15% (velocidades iniciales). La aparición de producto (Pi) bajo las condiciones experimentales, no produjo
ningún efecto inhibitorio. La reacción enzimática se paró agregando al medio de reacción 0.1ml de ácido tricloroacático (TCA) al 30 % (p/v). Finalmente se centrifugó el ensayo a 3,000 rpm durante 10min y se determinó la cantidad de Pi liberado en el sobrenadante. Para la determinación de Pi se utilizó el método de Summer (1944), el cual es una modificación del de Fiskie y Subarrow (1925) con un máximo de detección de fosfatos de 1600 nmoles. El método se basa en la formación del complejo de molibdato-fosfato (color amarillo huevo), el cual se reduce con sulfato de p-metilamino fenol (ELON), que da una coloración azul.la absorbencia se determina a 660 nm de longitud de onda.

Para la cuantificación se realizaron curvas patrones con estandares de H₃PO₄. La velocidad de hidrólisis se expresó en nmoles de Pi producido/min/mg de proteína.

II.5. CALCULO DE LAS CONCENTRACIONES DE LOS METALES, LIGANDOS Libres y los complejos presentes en el medio de reacción.

Para calcular la concentraciones de pirofosfato de sodio, cloruro de magnesio y EDTA necesarias para mantener la concentración del catión libre constante y variar la concentración del complejo Mg-PPi o viceversa, se utilizó el programa de Fabaiato (1988). Asimismo en los experimentos de inhibición, para mantener constante la concentración de los inhibidores (Ca²⁺ libre o Mg-IDP) y variar la concentración del Mg²⁺ libre o el Mg-PPi se utilizó también este programa.

El programa permite calcular, a partir de los equilibrios

químicos entre el metal y ligando,

$M + L \leftarrow --- ML$

la concentración del complejo, el cual está caracterizado por una constante de asociación:

 $K_{L} = [ML] / [M] [L]$

donde: M = metal; L = ligando y ML = complejo metal-ligando.

El programa utiliza en su calculo una serie de aproximaciones susecivas a través de interaciones, con el fin de obtener la concentración de metal o ligando libre, partiendo de la concentración del complejo especificado, o bien el calculo inverso que consiste en obtener las concentraciones de complejos formados, a partir de las concentraciones de metales y ligandos empleados.

Las constantes de asociación (K_s) utilizadas, se tomaron de Martell y Sillén (1971) y de Fabiato (1988). El logaritmo de la constante de asociación es:

Complejo	Log de la K
PPi H	8.3
PPi H ₂	6.0
PPi H ₃	2.7
PPi H ₄	2.5
PPi-Mg	6.0
PPi-Ca	5.46
IDP-Mg	4.5
IDP-Ca	4.39
EDTA-Mg	4.61

II.6. MODIFICACION DEL POTENCIAL DE SUPERFICIE DE LOS CRONATOFOROS.

La carga de superficie de los cromatóforos se modificó, por dos métodos: 1)fusión de los cromatóforos con liposomas (con diferentes proporciónes de carga positiva y negativa) e 2)incubación de los cromatóforos con detergentes aniónicos y catiónico.

1-Fusión de liposomas con Cromatóforos:

Se prepararon liposomas sonicando dos gramos de α -L-fosfatidilcolina (Tipo II. obtenida de Sigma Corp, San Luis, Mo) en 10 ml de un amortiguador Tris-HCl 10 mM pH 7.8. La sonicación se realizó en un baño de hielo, con un sonicador modelo Sonifier 250, en la posición número 4, durante tres intervalos de 2 min (para evitar calentamiento de la muestra).

La fusión de liposomas (Fig 6) se realizó mezclando 3 ml de cromatóforos (concentración 3mg/ml) con 3 ml de liposomas a una concentración de 200mg lipido/ml. La mezcla se mantuvo a 30°C y la fusión se inició al disminuir el pH a 6.0, por la adición de HC1. A los 15 y 30 min se agregan dos alícuotas de 1.5 ml de liposomas y se mantuvo el pH en 6.0. A los 45 minutos, el pH se ajustó a 7.8 añadiendo NaOH. Las relaciones p/p en mg de las mezclas que contenían dos lipidos fueron las siguientes: 120mg/40mg por ml de fosfatidilcolina/dicetilfosfato, respectivamente y 120 mg/20 mg por ml de fosfatidilcolina/ estearilamina respectivamente. En el control, se añadió el amortiguador sin liposomas a los cromatóforos y se siguió el cambio de pH mencionado. Este método es una modificación del propuesto por García y Drews (1984).

LA FUSION SE LLEVA ACABO A 30°C

3 ml de cromatóforos a una concentración de 3mg/ml en presencia del amortiguador Tris-Cl 50mM pH 7.8

3 ml de liposomas a una concentración de 200 mg de lipido/ml ↓ SE AÑADE HCL Y SE CAMBIA EL pH A 6.0 0 min Se inicia la fusión ↓ 1.5 ml de liposomas a una concentración de 15 min 200 mg lipido/ml, se mantiene el pH en 6.0 ↓ 1.5 ml de liposomas a una concentración de 30 min 200 mg lipido/ml, se mantiene el pH en 6.0 ↓ SE AÑADE NaOH Y SE LLEVA EL pH A 7.8 45 min fin de la fusión

Figura 6. Fusión de liposomas con cromatóforos, por el método de cambio de pH.

Para corroborar la fusión de liposomas con los cromatóforos, se corrieron las muestras en gradientes continuos de sacarosa de 10 al 40%, en un rotor SW41 a 35,000 rpm durante 12 hrs. Se fraccionaron las muestras del gradiente de sacarosa y se determinó la bacterioclorofila con la absorbencia a 880nm, que corresponde a los complejos pigmento-proteína del cromatóforo (Clayton, 1963). Se encontraron dos fracciones de diferente densidad, una que correspondió a los cromatóforos intactos con una densidad alta (35% p/v de sacarosa) y otra de menor densidad que corresponde a los proteoliposomas (25% p/v de sacarosa, ver RESULTADOS Y DISCUSION).

2-Incubación de cromatóforos en detergentes aniónicos o catiónicos.

Se preicubaron los cromatóforos durante 20 min en agitación suàve a 4ºC en presencia de dodecil sulfato de sodio (SDS) 200µM

y en cetil trimetil amonio (CTAB) 200µM, se centrifugaron a 100,000 X g durante 80 min y se resuspendió la pastilla en Tris HCl 10 mM pH 7.5 a una concentración de proteína de 30mg/ml. Este método está reportado por Wojtczak y Nalecz, (1978).

11.7. ESTIMACION DEL CANDIO DEL POTENCIAL DE SUPERFICIE.

Se estimó el cambio del de superficie, utilizando el 8anilino-naftaleno sulfonato (ANS), el cual fluoresce cuando se particiona en membranas (Robertson y Rottemberg, 1983). El ANS se ha utilizado de manera amplia para estimar cambios en el potencial de superficie de la membrana (Wojtjak y Nalecz, 1978). Para evaluar

la modificación del potencial de superficie se determinó la fluorescencia a diferentes concentraciones de ANS en las preparciones de membrana mencionadas, a partir del regrafico de dobles recíprocas, se determinaron Ks para el pegado de ANS. Se utilizó un fluorómetro Perkin-Elmer utilizando una longitud de onda de excitación de 366 nm y de emisión de 460 nm.

CAPITULO III.

RESULTADOS Y DISCUSION.

III.1. CONDICIONES PRELIMINARES.

La actividad hidrólitica de la pirofosfatasa de membrana se midió en el cromatóforo de la bacteria fotosintética <u>Rhodospirillus</u> rubrum.

Se realizaron estudios preliminares de la actividad hidrolítica, para determinar las condiciones de velocidades iniciales. El tiempo que se escogió para la incubación fue de 1.5 a 2 min, lo que corresponde a un avance de la reacción del 15%, es decir el 15% del substrato como máximo se transformo en producto. La medida de la actividad enzimática se realizó incubando a la enzima en presencia del sustrato (Mg-PPi) y del activador (Mg²⁺ libre), a 30°C, en el amortiguador Tris-maléico 50 mM pH 6.5, y la reacción se inició agregando las membranas del cromatóforo como se indica en "MATERIAL Y METODOS".

El pH óptimo para la reacción de hidrólisis es de 6.5 (Celis y Romero 1986). Ya que una parte importante del análisis involucra fijar la concentración del complejo (Mg-PPi) y conjuntamente variar la concentración del metal libre (Mg^{2*}) o viceversa, se utilizó el programa de computadora de Fabiato (1988), con el cual se calcularon las concentraciones totales de MgCl₂ y pirofosfato de sodio necesario para obtener las concentraciones deseadas del complejo Mg-PPi y de Mg^{2*} libre.

En las condiciones experimentales descritas en este trabajo, la aparición del producto (Pi), no ejerce ningún efecto inhibitorio

sobre la reacción de la hidrólis del sustrato. Asimismo, parece que la falta de regulación en la osmolaridad de los ensayos, no ejerce ninguna modificación en las condiciones estudiadas, ya que las determinaciones en presencia de detergentes no modifican la cinética de hidrólisis, es decir las preparaciones probablemente no se encuentran acopladas.

III.2. EFECTO DEL MAGNESIO LIBRE SOBRE LA ACTIVIDAD HIDROLITICA DE La Pirofosfatasa de membrana

El sustrato real de la pirofosfatasa de membrana, al igual que para otras pirofosfatasas, es el complejo metal-PPi, en este caso, el complejo Mg-PPi (Randahl, 1979 y Celis y col, 1985). Asimismo se ha visto que los metales libres, como el Mq2*, juegan un papel activador en la cinética de diversas pirofosfatasas (Unquryte y col, 1989, Barry y Dunaway-Mariano, 1987). Por esta razón, se investigó la dependencia de la hidrólisis del sustrato con respecto a la concentración de Mg²⁺ libre. El diseño experimental consistió en variar la concentración del Mg²⁺ libre desde 0.01µM hasta 1.0 mM, manteniendo constante la concentración del complejo Mg-PPi (0.5 mM). Como se puede observar en la figura 7, el incremento en la hidrólisis del sustrato depende extrictamente de la concentración del Mg²⁺ libre, mostrando una cinética de saturación, con una Km aparente para el Mg²⁺ libre de 0.28 mM. Además, con 0.5 mM de Mg-PPi no se presenta actividad a concentraciones menores de 10 uM. lo cual sugiere fuertemente que el Mg2* libre es un activador esencial

Figura 7. Efecto del Mg²⁺ libre sobre la actividad hidrolítica de la pirofosfatasa de membrana. Se calculó la cantidad necesaria de MgCl₂ y Na₂P₂O₂ para mantener la concentración de Mg-PPi en 0.5 mM y la concentración indicada de Mg²⁺ libre. El medio de incubación contiene Tris-maléico 50 mM pH 6.5 y 1 mg de poteína. El tiempo de incubación fue de 1.5 min.

de la reacción de hidrólisis. La nomenclatura de activador esencial proviene de los estudios en equilibrio rápido propuesto por Segel (1975). Este complejo catalítico sería, el complejo ternario enzima-activador-sustrato.

En la pirofosfatasa de membrana, tanto de la bacteria fotosintática <u>Rhodospirillum rubrum</u> como de la bacteria <u>Rhodopseudomonas palustris</u> (Schwarm y col, 1986), se ha visto que el Mg²⁺ libre es un activador de la reacción de hidrólisis, pero lo que no se había planteado es que el Mg²⁺ libre fuera un activador esencial en <u>Rhodospirillus rubrum</u>.

III.3. EFECTO DEL MG²⁺ LIBRE EN LA HIDROLISIS DEL COMPLEJO MG-PPi.

Otro de los objetivos importantes de este trabajo, es caracterizar la cinética de activación de la pirofosfatasa de membrana de <u>Rhodospirillum rubrum</u>, por lo que se consideró al activador y al sustrato como diferentes ligandos de la enzima. Según el efecto que se desee estudiar, se fijó o varió la concentración de cualquiera de estos ligandos. Por lo tanto, para estudiar el efecto del Mg²⁺ sobre la hidrólisis del sustrato, se fijó la concentración del Mg²⁺ libre en cuatro diferentes concentración del sustrato en cada condición (Fig 8A). Estas cuatro concentraciones de Mg²⁺ libre permitieron estudiar estos efectos en un intervalo amplio de concentracion . Es claro que conforme se incrementa la concentración del Mg²⁺ libre la actividad de

Figura 8. Efecto del Mg² libre sobre la hidrólisis del del complejo Mg-PPi. A) Las condiciones experimentales fueron las mismas de la figura 1. La concentración del Mg² libre se mantuvo constante en 0.03mM (0), 0.1mM (4), 0.5 mM (A) 1.0 mM (A) y se varió la concentración del Mg-PPi como se indica. B)regráfico de Lineawever-Burk de la fig 2A. C) Regráfico de la Km aparente contra el inverso de la concentración del Mg⁴ libre.

hidrólisis aumenta. Esto mismo se ha visto en la bacteria fotosintética <u>Rhodobacter palustris</u> (Schwarm y col 1986), lo que sugiere similitudes cinéticas entre estas dos enzimas transductoras de energía.

En la figura 8B se muestran las dobles recíprocas de los datos de la figura 8A, en donde practicamente la Vmax no cambia: de 512 a 482 nmol de Pi producido/mg de poteína/min de 0.03 a 1.0 mM de Mg²⁺ libre respectivamente. Mientras que la Km aparente para el sustrato cambia con la concentración de Mg²⁺

libre, de manera que la Km para el Mg-PPi disminuye de 10.26 a 0.6 mM conforme la concentración del activador aumenta de 0.03 a 1.0 mM de Mg²⁺; es decir, el incremento de Mg²⁺ libre produce un aumento en la afinidad de la enzima por el sustrato. La figura 8C. muestra la relación lineal que existe entre Km aparente para el sustrato y el inverso de la concentración del Mg²⁺. La ordenada al origen muestra que el valor de la Km para el sustrato cuando el Mg²⁺ libre está en concentraciones saturantes es de 0.17 mM, mientras que a baja concentración de Mg²⁺ libre, la enzima pierde afinidad por el sustrato. Este resultado concuerda con la activación esencial por el Mg²⁺ libre, es decir, el complejo catalítico sería un complejo ternario formado por: enzima-(Mg)-(Mg-PPi).

III.3.1 HFECTO DEL SUSTRATO (MG-PPI) PARA LA ACTIVACION DEBIDA AL MG²⁺ LIBRE.

Continuando con la caracterización cinética de la actividad hidrólitica de la pirofosfatasa de membrana, se estudió el efecto

de la concentración del sustrato (Mg-PPi) sobre la activación del Mg²⁺ libre. Para ello se fijó la concentración del Mg-PPi en tres concentraciones, 0.25, 0.5 y 0.75 mM, y se varió en cada condición la concentración del Mg²⁺ libre (Figura 9A). Se escogieron estas concentraciones de sustrato, porque una se encuentra por abajo y otra por arriba de la Km par el sustrato en condiciones de activación. En los tres casos la actividad de hidrólisis muestra una curva de saturación con respecto a la concentración de Mg²⁺, con una mayor actividad hidrolítica conforme se presenta mayor concentración del sustrato.

Asimismo en la gráfica de dobles recíprocas de la Fig. 9A, se observa un aumento de la Vmax aparente conforme se incrementa la concentración del sustrato (el valor de la Vmax aparente es 270.6, 362.9 y 370 nmol de Pi producido/mg de poteína/min para los valores de 0.25, 0.5 y 0.75 mM de Mg-PPi respectivamente). Se observó que la constante de disociación para el Mg^{2*} libre disminuye (0.51, 0.28, 0.12 mM) conforme se incrementa la concentración del sustrato (0.25, 0.5 y 0.75 mM de Mg-PPi respectivamente), como si se presentaran efectos cooperativos entre el activador y el sustrato; es decir, al incrementar la concentración del sustrato se produce un incremento en la afinidad de la enzima con respecto al activador esencial (Mg^{2*} libre). En el regráfico que se muestra en la figura 9B, se aprecia una familia de rectas que intersectan a la izquierda del eje de la ordenadas y dado que la pendiente de estas rectas aumenta al disminuir la

Figura 9. Dependencia de la concentración del Mg-PPi, sobre la activación debida al Mg² libre en la reacción hidrolítica. A) Las condiciones experimentales son las mismas de la Fig 7. Se fijó la concentración de Mg-PPi en 0.25 mM ($_{O}$) 0.5 mM ($_{O}$) y 0.75 mM ($_{A}$) y se varió la concentración del Mg² libre como se indica en la figura. B) Regráfico de Lineawever-Burk para los datos de la figura 9A.

concentración de Mg-PPi, cuando la pendiente tiende a infinito se obtendría una curva "teórica", que permitiría determinar la Km para Mg^{2*} en ausencia de sustrato (Segel, 1975), por lo que interpolando en el eje de las abscisas por debajo de la intersección, da un valor de 0.73mM, que se interpreta como la constante de disociación para el activador en ausencia del Mg-PPi.

El estudio de enzimas que presentan un activador esencial puede ser tratado bajo las condiciones de equilibrio rápido (Segel, 1975) o bien suponiendo condiciones de estado estacionario (Morrison, 1973).

En condiciones de equilibrio rápido, se puede plantear la ecuación de velocidad para cada uno de los mecanismos posibles: al azar u ordenado. A su vez, la ecuación de velocidad inicial se rearregla en función de uno de los ligandos (activador o sustrato). De aqui la importancia de fijar la concentración de un ligando y variar la concentración del otro. Para obtener la ecuación de velocidad en función una sola variable, ya sea el activador o el sustrato. Finalmente la ecuación se rearregla (por ejemplo en Lineawever-Burk) y se obtienen los diferentes patrones segun el mecanismo cinético (Tabla I). La ecuación de velocidad en función de la concentración de Mg-PPi, suponiendo condiciones de equilibrio rápido y un mecanismo ordenado donde interacciona primero el Mg²⁺ con la enzima es:

En donde se observa que el parámetro de Vmax no se modifica, mientras que la Km para el substrato se modifica en función de la concentración de Mg²⁺. Por otro lado la ecuación de velocidad en función de Mg²⁺, suponiendo condiciones de equilibrio rápido y un mecanismo ordenado donde interacciona el Mg²⁺ primero con la enzima, es la siguiente ecuación:

$$\frac{1}{v} - \frac{K_{Mg}}{Vmax} \left(\frac{K_{MPPi}}{MgPPi} \right) \frac{1}{Mg} + \frac{1}{Vmax} \left(1 + \frac{K_{MgPPi}}{MgPPi} \right)$$
(2)

En dode se observa que tanto la Vmax como la pendiente se modifican por el mismo factor de concentración de Mg-PPi.

En este sentido se encontró un regráfico del tipo "competitivo" cuando, la concentración del Mg²⁺ libre se mantiene constante y la del Mg-PPi se varió (Fig 8.B). Asimismo, se observó un patron "mixto" con intersección a la izquierda del eje de las ordenas y con valor positivo, cuando se fijó la concentración del Mg-PPi y se varió la concentración del Mg²⁺ libre (Fig. 9B). Si el sistema se encuentra en equilibrio rápido (Tabla I) entonces la cinética de hidrólisis sigue un mecanismo ordenado deacuerdo con el siguiente esquema:

 $Mg^{2*} + E \approx E-(Mg) + Mg-PPi = (Mg)-E-(Mg-PPi) \Rightarrow$ Productos en donde el Mg^{2*} libre interacciona con la enzima antes que el sustrato, y precisamente la formación del complejo enzima-activador favorece la unión del Mg-PPi, para dar lugar al complejo catalítico enzima-activador-sustrato.

Tabla I. Patrones Cinéticos para los posibles mecanismos de la pirofosfatasa, considerando al Mg-PPi como sustrato y al Mg² como activador esencial.

Mecanismo:	Variación del Mg ²⁺ Se Fija el Mg-PPi	Variación del MgPPi Se fija el Mg ²⁺
λzar	NC [*] α = 1 M [*] α ≠ 1	NC α = 1 Μ α ≠ 1
Ordenado: Mg ^{2*} libre interacciona, con la enzima antes que el MgPPi	Mixto	Competitivo
Ordenado: MgPPi interacciona con la enzima antes que el Mg ²⁺ libre.	Competitivo	Mixto

* NC= nocompetitivo; M= Mixto

 α significa que tanto modifica el pegado del primer ligando al segundo. En $\alpha = 1$ no existe ninguna modificación.

La pirofosfatasa citoplásmica de levadura (Knight y col 1981), también requiere de Mg²⁺ libre como activador y se ha encontrado un mecanismo ordenado para esta enzima, pero a diferencia de la pirofosfatasa de membrana, en la pirofosfatasa citoplásmica se pega primero el sustrato y después el Mg²⁺ libre. Esta diferencia particular en los mecanismos podría tener implicaciones en la posible regulación y en el papel de ambas enzimas "in vivo."

III.4. ESTUDIOS CON INNIBIDORES COMPETITIVOS DEL SUSTRATO Y DEL ACTIVADOR PARA EVIDENCIAR EL MECAMISMO CIMETICO DE LA PIROFOSPATASA DE MEMBRANA.

Una herramienta muy utilizada en cinética enzimática, son los inhibidores competitivos, con el fin de evidenciar el tipo de mecanismo cinético (Fromm, 1979). En el caso de la cinética de la pirofosfatasa de membrana, se utilizó este enfoque con la idea de confirmar si el mecanismo cinético de la enzima es ordenado, como sugieren los datos de las figuras 8B, 9B, las ecuaciones 1 y 2 y la tabla I.

Se eligió al imidodifosfato ya que es un inhibidor competitivo de la pirofostfatasa citoplásmica (Moe y Butler, 1972). Previamente se observó que el complejo Mg-IDP y el complejo Zn-IDP no son sustratos de la pirofosfata de membrana (datos no mostrados). Asimismo, por trabajos previos del laboratorio (Celis y Romero 1987), se sabe que el calcio ejerce un papel inhibitorio, por lo cual se escogió al Ca²⁺ libre como inhibidor de la activación debida al Mg²⁺.

En este tipo de estudio se escogien inhibidores competitivos de la enzima para el sustrato y para el activador, y posteriormente se estudia el efecto del inhibidor competitivo para e discute que la DP) sobre el activador (Mg^{2*}) y se estudia el efecto del inhibidor competitivo para el activador (Ca^{2*}) sobre el sustrato (Mg-PPi). El tipo de patrones inhibitorios (competitivo, nocompetitivo o acompetitivo) es característico de cada mecanismo, ya sea en condiciones de equilibrio rápido o estado estacionario. Dado que se plantearon los diferentes mecanismos cinéticos, se formularon las ecuaciones de velocidad en función del activador o el sustrato suponiendo que el Ca^{2*} libre es un inhibidor competitivo de la activador y el Mg-IDP es inhibidor competitivo del sustrato y se determinó el tipo de patrón inhibitorio correspondiente para cada mecanismo cinético, lo que se resume en la tabla II.

El imidodifostato es un análogo estructural del pirofosfato. Para estudiar su efecto inhibitorio sobre el sustrato se fijó la concetración del Mg-IDP en 0.5 y 1.0 mM y la del Mg²⁺ libre en 1.0 mM, mientras que se varió la concentración del sustrato. La figura 10A, muestra que el Mg-IDP es un inhibidor competitivo, ya que la Km para el sustrato se incrementa desde 0.68 mM a 2.44 mM cuando se incrementa el Mg-IDP de 0.0 a 1.0 mM, mientras que la Vmax no cambia (331 mmol de Pi producido/mg de poteína/min). Es claro que el Ng-IDP compite con el Mg-PPi por su unión al complejo enzima-Mg.

Se ha reportado que el Ca²⁺ es un inhibidor de diferentes

Tabla II. Patrones observados y esperados para diferentes mecanismos cinéticos, utilizando inhibidores competitivos para el Mg²⁺ y el Mg-PPi.

Variación de :	Inhibidor	Patron observado+
Mg-PPi	Mg-IDP	с
Mg ²⁺	Ca ²⁺	с
Mg-PPi	Ca ²⁺	UC
Mg ²⁺	Mg-IDP	UC

Patrones Inhibitorios Esperados

Equilibrio Rápido al Azar	Estado Estacionario al Azar	Equilibrio Rápido Ordenado *	Estado Estacionario Ordenado *
c	с	с	с
с	с	с	с
с	NC	с	UC
с	NC	UC	NC

* El Mg²⁺ libre interacciona con la enzima antes que el Mg-PPi

+ Inhibición Competitiva= C ; Inhibición Acompetitiva= UC ; Inhibición Nocompetitiva= NC pirofosfatasas (Baykov y col 1989, Moe y Butler, 1972). Se estudió su efecto fijando la concentración del Ca²⁺ libre en 0.05 y 0.1 mM, a una concentración de Mg-PPi de 0.5 mM, mientras que se varió la concentración del Mg²⁺ libre. La figura 10B muestra que el calcio libre es un inhibidor competitivo de la activación por el Mg²⁺ libre, ya que la Km para el Mg²⁺ libre se incrementa siete veces, de 0.25 a 1.71 mM cuando el Ca²⁺ libre varía de 0.0 a 0.1 mM, mientras que la Vmax no cambia (237 nmoles de Pi producido/mg de poteína/min). Este dato muestra que el Ca²⁺ libre se une a la enzima para formar el complejo enzima-Ca, es decir el Ca²⁺ libre compite con el Mg²⁺ libre para formar el complejo enzima-metal.

Ya que en el medio de reacción se encuentra presente el complejo Ca-PPi (posible inhibidor de la reacción), se calculó la concentración de éste complejo bajo las condiciones del experimento anterior (Fig 10B). El complejo Ca-PPi varió de 0.77 hasta 0.007 mM cuando el Ca²⁺ libre se mantuvo constante en 0.05 mM y varió desde 0.15 hasta 0.015 mM cuando el Ca²⁺ libre se fijó en concentración de 0.1 mM. Sin embargo, debido a que se presenta un efecto claramente competitivo del Ca²⁺ libre y no una inhibición mixta, podemos eliminar un posible efecto del Ca-PPi, bajo estas condiciones experimentales.

Para completar este análisis se estudió el efecto del Mg-IDP sobre la activación debida al Mg² libre, para lo cual se fijó la concentración del inhibidor Mg-IDP en 0.1 y 0.15 mM, mientras que se varió la concentración del activador (Mg²) a una

Figura 10. Patrones Inhibitorios, utilizando al Mg-IDP y al Ca²⁺ libre como inhibidores competitivos del sustrato y del activador. Las condiciones experimentales son las de la figura 6. Regráficos de Lineavever-Burk para : A) Velocidades iniciales (Vo) a concentraciones de Mg-PPi con concentración fija de Mg-IDP; B) Vo a concentraciones de Mg²⁺ libre con concentración fija de Ca²⁺ libre; C) Vo a concentraciones de Mg²⁺ libre con concentración fija de Mg-IDP; D) Vo a concentraciones de Mg²⁺ libre con concentración fija de Mg-IDP IDP y D) Vo a concentraciones de Mg-PPi con concentración fija de Ca²⁺ libre

concentración fija del Mg-PPi (0.5 mM). La figura 10C, muestra una inhibición del tipo acompetitivo, ya que la Km cambia de 0.23 a 0.74 y la Vmax también cambia de 201 a 150 nmol de Pi producido/mg de poteína/min desde 0.0 a 0.15 mM de Mg-IDP respectivamente. Este dato sugiere que el Mg²⁺ libre se pega a la enzima antes que el Mg-PPi, lo cual es consistente con el patrón de

inhibición esperado para el mecanismo ordenado (tabla II).

Se estudió la inhibición del Ca²⁺ libre sobre la hidrólisis del sustrato, fijando su concentración en 0.05 y 0.1 mM, mientras que la concentración del sustrato se varió en presencia de una concentración fija de Mg2 libre (1.0 mM). El tipo de inhibición es acompetitiva (Fig 10D), ya que la Km para el sustrato disminuye de 0.73 a 0.19 mM, y la Vmax de 433 hasta 113 nmol de Pi/mg de poteína/min. Este dato no es consistente con el patrón de inhibición competitivo esperado (tabla II). Por otro lado el tipo de inhibición acompetitiva sugiere que el Ca2+ libre se une al complejo enzima sustrato. Esta discordancia puede deberse a la formación del complejo Ca-PPi. En el medio de reacción se encuentra presente el Ca-PPi a una setenta y siete veces menor que el sustrato cuando la concentración del Ca²⁺ libre es de 0.05 mM. mientras que el Ca-PPi se encuentra a una concentracion treinta y tres veces menor que el sustrato en concentraciones de 0.1 mM de Ca²⁺ libre. Al respecto, en la pirofosfatasa de membrana de mitocondria, Unguryte y col,(1989) encuentran al igual que en este trabajo, una inhibición acompetitiva para el Ca2+ libre con respecto al sustrato y explican que la formación del complejo Ca-PPi,

podrían interferir en la obtención de efectos limpios en la cinética de inhibición, por lo que es difícil, a través de este tipo de experimentos, determinar las constantes cinéticas para la inhibición del Ca²⁺ libre o del complejo Ca-PPi.

Como está indicado en la tabla II, los patrones de inhibición para el mecanismo ordenado son consistentes, excepto por la inhibición acompetitiva del Ca²⁺ libre cuando el sustrato se varía. Es claro que no se presenta un mecanismo al azar, sino uno ordenado, en donde el Mg²⁺ se interacciona con la enzima antes que el sustrato. Este mecánismo se apoya en el análisis de la cinética en la figura 8A y 9A. Con los datos de la tabla II, no es claro si la simplificación del mecanismo en equilibrio rápido es la más adecuada o se requiere hacer ecuaciones de velocidad en estado estacionario y este es un punto que deberá ser clarificado. Es importante hacer notar que, en la pirofosfatasa citoplásmica de levadura , el estudio con inhibidores competitivos y con sustratos débiles tales como el Cr(H.O)-PPi, sugiere un mecanismo en equilibrio rápido, pero cuando se utiliza el Mg-PPi como sustrato, se encuentra que el mecanismo es en estado estacionario (Barry y Dunaway-Mariano 1987). Este resultado contrasta con el mecanismo en equilibric rápido propuesto para <u>R. rubrum</u> utilizando Mg-PPi como sustrato.

III.5. PAPEL DEL PIROFOSPATO LIBRE EN EL MECANISMO DE LA Pirofospataga de membrana.

Se ha propuesto que el PPi libre es un inhibidor competitivo

para diferentes pirofosfatasas (Lathi, 1983). Por tal motivo se estudió el efecto del pirofosfato libre en la cinética de hidrólisis. Para ello, se fijó la concentración del PPi libre en 0.03, 0.1, 1.0 y 5.0 mM, y se varió la concentración del sustrato. Se eligieron estas concentraciones porque es un intervalo amplio en concentración para estudiar el efecto del PPi. En la figura 10A se aprecia una aparente inhibición del PPi a concentraciones de 1.0 y 5.0 mM, asimismo, se aprecian curvas sigmoideas, en lugar de las curvas hiperbólicas. Para analizar este efecto y el de la inhibición por PPi, se calculó la concentración del Mg²⁺ libre, ya que en el momento de fijar la concentración del PPi libre y variar la concentración del Mg-PPi, se produce un incremento en la concentración del Mg libre y mientras se fije el PPi a mayor concentración la del Mg²⁺ disminuye, acorde con las siguientes ecuaciones:

Kd_{wg-PP1} = [Mg][PP1] / [Mg-PP1](3)
Kd_{wg-Pp1} / [PP1] = Constante = [Mg] / [Mg-PP1].....(4)

A concentraciones de 0.03 y 0.1 mM de PPi libre , no se ve inhibición, ya sea porque el la concentración del PPi libre se encuentra por debajo de su Ki y/o porque la concentración del Mg² libre es lo suficientemente grande para activar la enzima, (tabla III). Por otro lado, a concentraciones de PPi libre de 1.0 y 5.0 mM se presenta una inhibición, que puede deberse al PPi libre y/o a la disminución del Mg² libre, ya que, la Km para Mg libre es de 0.12 mM en presencia de 0.75 mM de sustrato y calculando la Km para el

Figura 11. Efecto del PPi libre en la reacción hidrolítica. Las condiciones experimentales son las mismas de la figura 7. A) Se fijó la concentración del PPi libre en cuatro concentraciones, 0.03 mM (°), 0.1 mM (°), 1 mM($_{\Delta}$) y 5mM ($_{\Delta}$) y se varió la concentración del Mg-PPi como se indica en la figura. B) Regráfico de Lineweaver-Burk de la Fig 11A. Mg en presencia de 3.0 o 5.0 mM de MgPPi es 50 y 30 µM respectivemente (tabla III).

Tabla III. decremento de la concentración de Mg^{2*} libre , bajo las condiciones de la Figura 11A.

PPi constante	Variación del	Constante	Variación del
[mM]	Mg-PPi [mM]	Mg /Mg-PPi	Mg libre [mM]
0.03	0.1 a 5.0	3.3 X 10 ⁻²	0.003 - 0.15
0.1	0.1 a 5.0	1.0 X 10 ⁻²	0.001 - 0.005
1.0	0.1 a 5.0	1.0 X 10 ⁻³	0.0001- 0.005
5.0	0.1 a 5.0	2.0 X 10 ⁻⁴	0.00002-0.001

Es decir, en este tipo de inhibición se pueden presentar efectos mezclados de inhibición por el PPi libre, y una disminución en la concentración del activador esencial.

En la figura 10B, se observa que la gráfica de las dobles recíprocas para estos datos muestra una aparente inhibición no competitiva para el PPi libre, lo cual no concuerda, con la inhibición competitiva reportada para otras pirofosfatasas reportadas (Moe y Butler 1972). Dada esta mezcla de efectos, este enfoque no es un método adecuado para obtener la constante de inhibición del PPi libre.

Se fijó la concentración del sustrato y se varió la concentración del PPi libre, pero como se observa en la ecuación 3, al 🗌 fijar la concentración del sustrato e incrementar la concentración del PPi libre, se produce una disminución del Ma2* libre. Al calcular la concentracione del Mg2+ libre presente en el medio de reacción, resultó que el Mg2+ libre disminuve en dos ordenes de magnitud de la Km para el Mg2*. Dicho de otra manera, la inhibición en este diseño experimental (datos no mostrados), se debe a la disminución en la concentración del Mg²⁺ libre, ya que se ha propuesto al Mg2 libre como un activador esencial, por lo que impide la formación del complejo catalítico: enzimase activador-sustrato.

III.5.1. DETERMINACION DE LA CONSTANTE DE INHIBICION PARA EL PPI LIBRE.

Dado que por métodos directos no es posible evaluar la constante de inhibición del PPi libre (Ki), se determinó la constante a través de un método indirecto, que consiste en proteger la actividad de la enzima por la inactivación del modificador químico EDC. El diseño de protección consistió en preincubar a la enzima con diferentes concentraciones de PPi, en presencia de EDC. Para realizar la medida de la actividad se completó la cantidad necesaria de Na₄P₂ O₇ y MgCl₂, para mantener la concentración de 1.0 mM del sustrato y 1 mM del Mg² libre. Este tipo de estudios cinéticos, empleando modificadores químicos irreversibles, permite evaluar las constantes cinéticas con resultados comparables a los

obtenidos con los estudios de velocidades iniciales (Franco y col 1985). La efectividad en la protección depende de la afinidad de la enzima por el ligando, por lo que este método permite evaluar la constante de disociación del ligando a la enzima.

Por trabajos del laboratorio (Romero, I. 1991) se demostró que el EDC es un modificador irreversible de la reacción de hidrólisis del sustrato. A partir de la gráfica del logaritmo del porcentaje de actividad remanente de la inhibición con EDC en función del tiempo, se obtuvieron las constantes de inactivación de pesudoprimer orden para las diferentes concentraciones de EDC. El regráfico de estas constantes de inactivación en función de la concentración del EDC, está determinada por la ecuación:

donde: $K_A = 1a$ constante de pseudo primer orden; K = 1a constante de 2º orden; M = 1a concentración del modificador y 1 = e1 orden de la reacción. Este regráfico dió una linea recta (datos no mostrados), lo que quiere decir que el modificador químico no forma un complejo reversible con la enzima (Horique y col, 1979). Asimismo presenta una constante de 2ª orden de 36.9 M⁻¹ min⁻¹. A partir del regáfico del logaritmo de la constante de pseudoprimer orden en función del logaritmo de la concentración del modificador, se obtuvo un orden de reacción de 0.9 (Romero, 1991).

Estos datos son importantes para fundamentar la determinación de la constante de disociación del PPi a la enzima (K_{ppi}) , ya que el pegado del PPi protege de alguna manera a la enzima de la inhibición por EDC. La reacción que describe la formación del

complejo enzima-EDC y la enzima-PPi-EDC se ilustra de la siguiente manera:

K₁ Enzima + EDC ----- Enzima-EDC (forma inactiva) + PPi

Kpp

Enzima-PPi ------ productos.

En donde la constante aparente de inactivación esta dada por la ecuación:

K 1 1/ Kapp = -----(6) (1 + PPi / Kpp)

La ecuación rearreglada en su forma inversa nos da:

 $1/Kapp = (1/K, Kpp) [PPi] + 1/K_1 \dots (7)$

un regráfico del inverso de la Kapp en función de la concentración del PPi durante la preincubación, nos da una linea recta, en donde su abscisa al origen es el valor negativo de de la constante de disociación del PPi (Kpp), y este valor puede ser comparado con una constante de inhibición del PPi

Utilizando este enfoque se determinó la constante de inactivación de pseudo primer orden a diferentes concentraciones

Figura 12. Protección del PPi de la inhibición por el EDC. A) Logaritmo de la actividad remanente de la PPiasa inhibida por EDC (3 mN), en función del tiempo de preincubación, a diferentes concentraciones de PPi. La actividad se midió a laM de Mg-PPi y laM de Mg^{2^*} libre. B) Regráfico de las inverso de la constante de inactivación aparente (1/Kapp) en función de la concentración de PPi preincubado. del PPi, graficando curso temporal del logaritmo de la actividad remanente (Fig 12). El regráfico del inverso de la constante aparente de inactivación, en función de la concentración del PPi utilizado en la preincubación, es lineal como lo indica la ecuación 7, con una abscisa al origen de 3.16 mM que es la Kd para el PPi, el cual sería el valor de la constate de inhibición.

Este dato es muy importante, ya que establece que las concentraciones del orden milimolar de PPi libre producen efectos inhibitorios. Este valor de 3.16 mM concuerda con la figura 10, ya que solamente a concentraciones mayores de 0.1 mM se observa la inhibición por el PPi libre, mientras que en el orden de μ M, no se aprecia inhibición. Asimismo, bajo las condiciones de los experimentos en las figuras 8 y 9, la concentración del PPi libre se encuentra por debajo de concentraciones μ M (K_{ppi} es de 3.16 mM), por lo que revalida, que bajo las condiciones empleadas en los experimentos de activación por magnesio, no se presentan efectos de una aparente activación debida a la disminución en la concentración del PPi libre como lo indica la ecuación 3.

III.6. EFECTO DEL POTENCIAL DE SUPERFICIE SOBRE LA ACTIVIDAD DE Hidroliĝis de la pirofosfatasa de membrama.

Uno de los objetivos de el trabajo, consistió en determinar si el efecto activador atribuido al Mg² libre, se debía a un efecto directo del Mg² sobre la enzima o bien al enmascaramiento del potencial de superficie de la membrana del cromatóforo. Dado que la carga de la superficie de la membrana y del sustrato (Mg-PPi²)

son negativas, podrían darse efectos de repulsión entre el sustrato y el potencial de superficie de la membrana. Al agregar el Mg^{2*} libre, estas cargas positivas apantallan la carga de la membrana y así el sustrato fuera más accesible al sitio activo de la enzima (Figura 13). Es importante hacer notar que en diferentes enzimas membranales, el potencial de superficie puede ser un factor que modifique la actividad enzimática (Wotjack y Nalecz 1978), por lo cual fue necesario esclarecer si existía un papel del potencial superficie en la cinética de esta enzima. Para tal estudio se modificó la carga de superficie del cromatóforo de <u>R. rubrum</u> con dos técnicas: 1) fusión de liposomas (con diferente proporción de carga) con los cromatóforos y 2) la incubación con detergentes aniónicos (SDS) o catiónicos (CTAB), a concentraciones inferiores a la concentración micelar crítica. El cmc del SDS es 1.0 mM y del CTAB es 5.0 mM.

III.6.1. FUSION DE LIPOSONAS CON CROMATOFOROS DE LA BACTERIA FOTOSINTETICA Rhodospirillum rubrum.

Para la fusión de liposomas con los cromatóforos, se prepararon tres tipos de liposomas: a) liposomas de asolectina fosfatidilcolina (Sigma type III); b) liposomas de asolectina con dicetil fosfato en relación 120 mg/40 mg ml⁻¹ y c) liposomas de asolectina con estearilamina en relación 120 mg /20 mg ml⁻¹. El procedimiento de fusión consistió en un cambio de pH, de 7.5 a 6.5 y para el término de la fusión los liposomas se regresaron al pH original, como se describe en "Material y Métodos".

Figura 13. Esquema hipotético de la posible participación del potencial de superficie en la modulación de la enzima.

Para comprobar la fusión de los liposomas, se corrió un gradiente de sacarosa de 10 a 40% (p/v) con las muestras fusionadas y se midió la absorbencia a 880 nm que corresponde a los complejos pigmento proteína de los complejos antena que estan presentes en los cromatóforos. En la figura 14, se observa dos poblaciones de diferente densidad en el gradiente de sacarosa, la fracción de alta densidad (35% de sacarosa p/v), que corresponde a los cromatóforos intactos, como se aprecia en el control, y la fracción de baja densidad (25% de sacarosa p/v), que corresponde a los cromatóforos fusionados con los liposomas. Una vez demostrada la fusión, se midió la actividad hidrolítica de la enzima con las tres preparaciones de membrana mencionadas, como se observa en la figura 14, la modificación cinética se da en la Vmax, pero no en la Km que se mantiene en un valor de 0.29 mM. Es difícil explicar porqué diminuye la Vmax, pero una posiblidad es la dependencia de lipidos que presenta la pirofosfatas de membrana para su actividad (Klemme y col, 1971), ya que si ésta se incuba con fosfolipasa "A" se pierde la actividad, y si a la misma preparación se le incuba con fosfolípidos, la actividad se recupera, por lo que la dilución de lípidos durante la fusión de los cromatóforos con los liposomas puede ser un factor en los cambios de la Vmax. Se hacer notar que no existen modificaciones en la Km, asimismo, se ha visto (Nalecz y col 1980) que las modificaciones cinéticas producidas por el potencial de superficie se dan a nivel de la Km de las enzimas o las Km para procesos de transporte, debido a que el potencial repele o atrae los sustratos positivos o negativos, produciendo una

Figura 14. Fusión de los cromatóforos con liposomas. Absorbencia a 800 nm que corresponde a los pigmentos-proteína A) Corresponde a la fusión de liposomas con fosfatidil colina (FC) y dicetil fosfato (DF). B) Corresponde a la fusión de liposomas con fosfatidilcolina (FC) y estearil amina (EA)

Figura 15. Actividad hidrolítica de la PPiasa de las diferentes preparaciones de membrana. Se varió el sustrato como se indica en la figura y se mantuvo constante la concentración del Mg^{2+} libre en 1.0 mM.

mayor o menor concentración del sustrato (según su carga) en la vecindad de la superficie de la membrana, y por lo tanto, se presenta diferente accesibilidad al sitio activo de las enzimas (Wotjack y Nalecz 1979, Theuvenet y Borst-Puawels, 1976).

III.6.2. ESTINACION DE LA MODIFICACION DEL POTENCIAL DE SUPERFICIE EN LOS CROMATOFOROS FUSIONADOS CON LIPOSOSNAS.

Una parte importante de este estudio consistió en demostrar que el potencial de superficie de los cromatóforos se modificó por el procedimiento de fusión , para lo cual se titularon los cromatóforos con Anilino naftaleno sulfonato (ANS', Fig 16). Esta sustancia fluorescente se ha utilizado para estimar el potencial de superficie de diferentes preparaciones de membrana (Nalecz y col 1980). Debido a la carga negativa del ANS, esta molécula fluoresce cuando interactua con las cargas de la superficie de la membrana, de tal manera que los cambios en la Kd del ANS se pueden relacionar con la modificación del potencial de superficie en la membrana del cromatóforo.

Cabe aclarar que la magnitud de la modificación de la Km producida por el efecto del potencial de superficie, debe ser comparable a la magnitud de la modificaciónde la Kd para el ANS. Deacuerdo con la distribución de Boltzman la realción entre la Kd o la Km y el potencial de superficie esta dado por la siguiente ecuación:

 $Kd=K^{\circ}d \exp (2F \Delta \phi s / RT)$(8) Donde Kd = la constante de disociación de la molécula en

Figura 16. Titulación de los cromatóforos y estimación de Kd para ANS en las diferentes preparaciones de membrana. A) Fluorescencia en unidades arbitrarias a las diferetes concentraciones de ANS. B) regráfico de dobles recíprocas para los datos de la fig 16A. presencia de potencial de superficie; K^od es la constante de disociación de la molécula en ausencia de potencial de superficie; $\Lambda \phi$ es el cambio en el pontencial de superficie.

Por lo tanto, es posible determinar el cambio en el potencial de superficie de acuerdo con el cambio en las Kd para el ANS, con base en la siguiente ecuación:

$$\Delta \psi - RT/ZF \ln (Kd/Kdo) \dots (9)$$

En donde Kd es igual a la cte de disociación para el ANS en membranas controles y Kdo es igual a la cte de disociación del ANS en las preparaciones fusionadas con liposomas.

Asimismo, la ecuación análoga en función de las Km de las diferentes preparaciones de membrana:

En donde Km corresponde a las membranas sin modificar y la Km_o corresponde a las preparaciones con la Km modificada.

En la tabla se observan los cambios en el potencial de superficie calculados con la Kd para el ANS, los cuales deberían coincidir con los cambios obtenidos utilizando la Km. Los resultados sugieren que el potencial de superficie no altera la afinidad del sustrato a la enzima. Es decir no se modificó la accesibilidad del sustrato a la enzima.

accesibilidad del sustrato a la enzima.

Diferencias en el potencial de superficie $\Delta \psi$ en mV

Preparación de membrana	Calculado a partir de la Kd para ANS	Calculado a partir de las Km
Cromatoforos +PC	-0.3	0
Cromatóforos + PC +PC	-46.2	O
Cromatóforos + PC + EA	14.0	0

III.6.3. MODIFICACION DEL POTENCIAL DE SUPERFICIE DEL CROMATOFORO Com detergentes anionicos o cationicos.

Dado que durante la fusión de los liposomas con los cromatóforos se modificó la velocidad máxima de la reacción (Vmax) y no la Km, se empleó otro método para alterar la carga de superficie del cromatóforo. El segundo tipo de metodología empleado, consistió en incubar los cromatóforos con detergentes aniónicos o catiónicos como se indica en "Material y Métodos", los cuales se particionan en la membrana del cromatóforo y modifican el potencial de superficie del cromatóforo. Los detergentes empleados fueron el aniónico SDS[•] y el catiónico CTAB[•] a una concentración 200 µM (el cmc del SDS es 1.0 mM y del CTAB es 8.0 mM). Se de determinaron las constantes cinéticas en presencia de la variación en la concentración del sustrato y 1mM de Mg2+ libre constante en las diferentes preparaciones de membrana: cromatóforos incubados en SDS, cromatóforos incubados en CTAB y el control. En la figura 17A no se observa ninguna modificación en la Km ni en la Vmax de estas preparaciones de membrana. Asimismo, al variar el Mg^{2*} libre y fijar la concentración de sustrato en 0.5 mM no aprecia ninguna alteración en la constante de activación de la enzima (Fig 17B).

III.7. ESTINACION DE LA NODIFICACION DEL POTENCIAL DE SUPERFICIE EN EN LAS DIFERENTES PREPARACIONES DE MEMBRANA.

De igual manera que las membranas fusionadas con liposomas, se procedió a titular con ANS las preparaciones de membrana incubadas con detergentes aniónicos o catiónicos. Se obtuvo la Ks

Figura 17. Cinética de las preparaciones de membrana preincubadas A) Actividad hidrolítica CTAB. diferentes en SDS v a del comlejo Mg-PPi y 1 mM de M de la hidrólisis del Mg-PPi a Mg² concentraciones libre . B) Activación diferentes concentraciones de Mg2* libre y una concentración fija de Mg-PPi en 0.5 mM

para el ANS en las tres preparaciones de membrana. Se puede apreciar (Fig. 18) que la Kd para las preparaciones con SDS es más grande (29.4 mM) que la Ks del control (10.3 mM). Asimismo para las preparaciones con CTAB la Kd para el ANS (6.3 mM) es menor que la Kd del control (10.3 mM), lo que quiere decir que el potencial de superficie se modificó en las diferentes preparaciones. Dado que la Km para estas preparaciones y la cinética de activación no se modificó, se concluye que el potencial de superficie no modula la accesibilidad del sustrato a la pirofosfatasa de membrana.

De la misma manera que se calculó, el cambio del potencial de superficie en la fusión de cromatóforos con liposomas, acorde con las ecuaciones 9 y 10, se calculó la diferencia de potencial para estas preparaciones:

Diferencia en el potencial de superficie $\Delta \neq$ en mV.

Preparación de	Calculada a partir	Calculada a partir
membrana	de la Kd para ANS	de la Km
Cromatóforos incubados con SDS	-26.4 mV	0
Cromatóforos incubados en CTAB	12.4 mV	0

Esta falta en la modulación del potencial de superficie

ESTA TESIS NO DEBE Salir de la biblioteca

Fig 18. Titulación con ANS de las preparaciones de membrana preincubadas con SDS y CTAB. A) Fluorescencia en unidades arbitrarias a diferentes concentraciones de ANS. B) regráfico en dobles recíprocas de la sección A. sobre la actividad de hidrólisis, puede deberse a que el sitio activo de la pirofosfatasa de membrana se encuentra a una distancia mayor de los 30 A° de la superficie de la membran, ya que entre los 0 y los 30 A° es donde el potencial de superficie ejerce su acción. Esto es muy raro, ya que una gran cantidad de enzimas y acarreadores que se encuentran en la membrana son modificados por el potencial de superficie e inclusive enzimas citoplásmicas que son adheridas a una matriz con carga, presentan modificada la Km para el sustrato por la influencia del potencial de superficie.

Por todo esto se concluye que la potencial de superficie no modifica la accesibilidad del sustrato a la enzima , lo que se reflejaría en cambios en la Km, tanto para el sustrato como para el activador, asimismo, la activación del Mg²⁺ libre demostrada en la primera parte de la tesis, se debe al efecto directo del magnesio sobre la pirofosfatasa, lo cual apoya la presencia de sitios de pegado para el magnesio en diferentes pirofosfatas citoplásmicas, con un papel modulador de la actividad de estas enzimas.

III.8. CONCLUSIONES Y PERSPECTIVAS.

El complejo catalítico de la pirofosfatasa de membrana es el complejo ternario formado por pirofosfatasa-(Mg)-(Mg-PPi). La formación de este complejo se lleva a cabo a través mecanismo cinético ordenado en condiciones de equilibrio rápido, en donde el pegado del Mg² libre precede al del sustrato, es decir sin la adición del Mg² libre a la enzima, esta no reconoce al sustrato.

El mecanismo de la reacción puede secribirse: Mq²⁺ + E = E-Mq + Mq-PPi = E-(Mq)-(Mq-PPi) ----- Productos

A diferencia del modelo cinético de Randahl (1979) para la pirofosfatasa de membrana de la misma bacteria, se eliminó la formación del complejo E-(Mg-PPi), previo al pegado del Mg² libre.

El estudio con inhibidores competitivos, permite concluir que la cinética de hidrólisis presenta un mecanismo ordenado, aunque no es claro, si la simplificación de un mecanismo en equilibrio rápido es la más adecuada o se requiere plantear una ecuación de velocidad en estado estacionario, por lo que es importante continuar este análisis.

Es importante hacer notar que las pirofosfatasas, tanto citoplásmicas como de membrana, son activadas por magnesio libre, aunque existen ciertas diferencias, como el intervalo de concentración donde ejercen su papel. Asimismo, en la PPiasa citoplásmica de levadura, se encontró un mecanismo ordenado donde se añade antes el sustrato que el activador. Estas diferencias podrían tener alguna razón en función de la regulación "in vivo"

entre las pirofosfatas.

La modificación de potencial de superficie, no produjo efecto sobre la Km del sustrato, lo cual indica que las modificaciones en el potencial de superficie no modula la actividad de la enzima. Una explicación de este hecho, sería la magnitud de la distancia entre el sitio activo de la enzima y la superficie de la membrana de la bacteria.

Proponemos que el estudio de la pirofosfatasa de membrana es un modelo experimental de la transducción de energía entre un enlace de alta de energía y la translocación de protones de manera reversible. Es por lo tanto importante considerar al protón como una parte más de la reacción, para lo cual se debería calcular la estequiometría protón/PPi. Asimismo, plantear modelos considerando al sustrato, al activador y al protón. Por lo que sería importante conocer si los efectos de activación del Mg²⁺ libre, se reflejan en el bombeo de protones.

Por otro lado Nyren y col, (1991) reportaron una purificación de la pirofosfatasa de membrana con una columna de afinidad, en el laboratorio hemos reproducido parcialmente la purificación de la proteín, lo que permitiría abrir nuevos enfoques en nuestra investigación, como por ejemplo conocer aspectos de la estructura de esta enzima, conocer el número de subunidades que contiene la proteína, determinar la estequiometría del pegado de los metales a la enzima, y corroborar, por metódos directos el mecanismo propuesto para la enzima. También se podrían hacer estudios de modificación química y espectofotométricos para correlacionar

aspectos entre la estructura y la función de la proteína.

BIBLIOGRAFIA

- Baccarini-Melandri, A. y Melandri B.A., (1978) En: The photosynthetic Bacteria (Clayton R.K. y Sistrom, W.R eds) Plenum. Press. New York y London, pp. 615-628.
- Barry, B. S. y Dunaway-Mariano, D., (1987) The Kinetics of Yeast Inorganic Pyrophosphatase. Arch. Biochem. Biophys. 259, 196-203.
- Baltscheffsky, H., von Stedingk, L.V., Heldt, M.W. y Klingenberg, M., (1966a), Inorganic pyrophosphate: Formation in bacterial photophosphorylation, Science, 153, 1120-1121.
- Baltscheffsky, M., Baltscheffsky, H., y von Stedingk, L.V., (1966b), Light-induced energy conversion and the inorganic pyrophosphatase reaction in chromatophores from <u>Rhodospirillum rubrum</u>, Brookhaven Symp. Biol. 19, 246-257.
- Baltscheffsky, M., (1967a) Inorganic Pyrophosphate as an Energy in photosynthetica and Respiratitry electron trasnport phosphorilation system. Biochem. Biophys. Res. Commun. 20,
- Baltscheffsky, M., (1967b) Inorganic Pyrophosphate and ATP as energy donors in chromatophores from <u>R</u>. <u>rubrum</u>, Nature (London). 216:241-243.
- Baltscheffsky, M., (1968) Inorganic Pyrophosphatase as energy donor in photosynthetic and respiratory structures, en:Regulatory Functions of Biological Membranes (J. Jarnefelt, ed.) B.B. Libr. 11:277-286.
- Baltscheffsky, M., (1969) Energy conversion-linked changes of carotenoid absorbance in <u>Rhodospirillum rubrum</u> chromatophores. Arch. Biochem. Biophys. **130**,646-652.
- Balstscheffsky, M. y Nyren P., (1986a) The synthesis and utilization of inorganic Pyrophosphate en: Bionergetics (ed. Ernester,L.). Elsevier Science Publishers.
- Baltscheffsky, M. y Nyren, P., (1986b). Preparations and Reconstitution of protom-pumping Membrane-Bound Inorganic Pyrophos phatase. en: Methods in Enzymology (Ed. Purich, D.L.) Vol 126. pp: 538-545 Academic Press.New-york London.
- Black, C.C. (1987) PPi Metabolism and its regulation by fructuose 2-6 biphosphate in plants. En Phosphate Metabolism and Cellular Regulation in microorganisms.

(ed. Torriani-Gorni). American Society for Microbiology. Washington, D.C.

- Baykov, A.A., Volk, E.S. y Unguryte, A.A., (1989) Inhibition of inorganic pyrophosphatse of animal mitochondria by calcium. Arch. Biochem. Biophys. 273, 287-291
- Butler, L.G., (1971) en: The Enzymes (Ed. Boyer, P.D.) 3a. Ed. Vol. 4, pp. 529-541, Academic Press, New York.
- Celis, H., Romero, I., y Gómez-Poyou. A., (1985) The Phosphate-Pyrpphosphate exchange and hydrolitic Reactions of the Membrane-Bound Pyrophosphatase of <u>Rhodospirillum</u> <u>rubrum</u>: Effects of Mg2+, phosphate and pyrophosphate. Arch. Biochim. Biophys. 236, 766-774.
- Celis, H., y Romero, I., (1987) The phosphate-pyrophosphate Exchange and Hydrolitic reactions of Membrane-bound Pyrophosphatase of <u>Rhodospirillum rubrum</u>: Effects of pH and Divalent Cations. J. Biomerg. Biomem. **19**, 225-271.
- Clayton R.K. (1963) Toward the isolation of a photochemical reaction center of <u>Rhodopseudomonas</u> <u>sphaeroides</u>. Biochem et Biophysica. Acta. **75**. 312-323.
- Clayton, R.K. y Sistrom W.R. (1978) The Photosynthetic Bacteria. New York y London. Plenum Press.
- Cohen-Bazire, G., Sistrom, W.B., Stainer, R.Y., 1957. The kinetic studies of pigment synthesis by non-sulfur purple bacteria. J. Cell. Comp. Physiol. **49**.
- Cooperman, B.S., Panakal, A., Springs, B., Hann, D.J., (1981) Divalent Metal Binding and Inorganic Phosphate Analogue Binding to Yeast Inorganic Pyrophosphatase. 20, 6051-6060.
- Cooperman, B.S., (1982) The Mechanism of action of YeastInorganic Pyrophosphatase. en: Methods in Enzymology (Ed. Purich, D.L.) Vol. **07**, Parte C, pp. 526-548, Academic Press. New York y London.
- Dawes, A.E. (1986) Microbial Energetics. Blackie & Sons. Glasgow.
- Dupaix, A. Johannin, G. y Arrio B., (1989) ATP synthesis and pyrophosphate-driven proptn transport in tonoplastenriched vesicles isolated from <u>Chatarantus roseus</u>, FEBS lett. 249,13-16.
- Eisenbach, M. y Caplan, S.R., (1979) The light driven proton pump of Halobacterium halobium: mechanism and

function. Current Topic in Membranes and Transport. 12, 165-248.

- Fabiato A. (1988) Computer programs for calculating total from specified free or free specified total ionic in aqueous solutions containing multiple metals and ligands. In Methods in Enzymology. (Fleisher S. y Fleisher B. eds.) Vol 157, pp 378-417. Academic. Press. New York y London.
- Fisher, R.R. y Guillory, R.J.,(1969) Partial resolution of energy-linked reactions in <u>Rhodospirillum rubrum</u> chromatophores. FEBS Lett. **3**, 27-35.
- Fiskie , C.A. y Subarrow, Y., (1925) The colorimetric determination of phosphorus. J.Biol. Chem. 177, 751-756
- Flodgaard, H. y Fleron, P., (1974) Thermodynamic parameters for the hydrolysis of inorganic pyrophosphate pH 7.4 as a function (Mg2+), (K+) an ionic strengh determined from equilibrium studies of the reaction. Biol. Chem.11, 3465-3474.
- Fromm, J.H. (1979). Use of competitive inhibitors for study substrate bindig order. In Methods in Enzymology. (Purich Ed). Vol 63 pp 234-250. Academic Press. New-York and London.
- García, F.A. y Drews G., (1984) Properties of membrane fractions preparaded by chromatophore-liposome fusion. Z. Naturforsch. 396,1112-1119.
- Gottschalk. (1986) Bacterial Metabolism. New York and Berlin. Springer Verlang.
- Guillory, R.J. y Fisher, R.R. (1972) Studies on the lighdependent synthesis of inorganic pyrophosphatase by <u>Rhodospirillum rubrum</u>. Biochemical Journal 129, 471-481.
- Guynn, R.W., Veloso, D., Randolph, L. y Veech, R., (1973) The concentration and control of cytoplasmic free inorganic pyrophosphate in rat liver in vivo. Biochem. J. 140, 369-375
- Harold, F.M., (1972) Conservation and transformation of energy by bacterial membranes. Bacteriological Rev. 36, 172-230.
- Harold, F.M. (1986) The vital force: a study of bionergetics. New York. Feeman Company. pp 577.

- Harvey, G.W. y Keister, D.L. (1981) Energy-linked reactions in photosynthetic bacteria: Pi - HOH Oxygen Exchange catalyzed by Membrane-bound inorganic Pyrophosphatase of <u>Rhodospirillum rubrum</u>. Arch. Biochem. Biophys. 208, 426-430.
- Isaev, P.I., Liberman, E.A., Samuilov, V.D., Skulachev, V.P. y Tsofina, L.M., (1970) Conversion of Biomembrane produced energy into Electric Form. Biochim. Biophys. Acta. 216, 22-29.
- Johansson, B.C., (1975) Partial resolution of the energy transfer system in chromatophores from <u>R. rubrum</u>, purification and characterization of the "coupling factor" ATPase, Ph.D. Thesis, University of Stockholm.
- Josse, J., (1971) en: The Enzymes, (Ed. Boyer, P.D.) 3era. Ed. Vol. 4, pp. 499-527. Academic Press, New York.
- Keister, D.L. y Yike, N.J., (1967) Energy-Linked reactions in photosynthetic bacteria. II The energy-dependent reduction of oxidized nicotinamide-adenine dinucleotide phosphate by reduced nicotinamide-adenine dinucleotide in chromatophores of <u>R. rubrum</u>. Biochemistry 6, 3847-3857.
- Keister, D.L. y Minton, N.L. (1971) ATP synthesis driven by inorganic pyrophoshate in <u>Rhodospirillum rubrum</u> chromatophores. Biochem. Biophys. Res. Commun. 42, 932-939.
- Keister, D.L. y Minton, N.L. (1971) Energy-linked reactions in photosynthetic bacteria. VI Inorganic pyrophosphatedriven ATP synthesis in <u>Rhodospirillum rubrum</u>. Arch. Biochem. Biophys. **147**, 330-338.
- Kelly, S., Feldman, F., Sperow. y Butler., (1973) Kinetic effects of inorganic pyrophosphate analogs on several inorganic pyrophosphate hydrolysing enzymes. Biochemistry. 12, 3338-3341.
- Keltjens T., Erp, R., Mocijart, R, Drift, C. Vogels. (1988) Inorganic pyrophosphate synthesis during methanogenesis from methicoenzyme M by cell-free extracts of <u>Methanobacterium thermoautotrophicum</u> (stain AH). Eur. J. Biochem. 172, 471-476.
- Klemme, B., Klemme, J.H. y San Pietro, A. (1971). PPiase, ATPase and Photophosphorylation in Chromatophores of <u>Re</u>. <u>rubrum</u>: Inactivation by phospholipase A, Reconstitution by phospho lipids. Arch. Biochem. Biophys. 144, 339-342.

- Klemme, J.H. y Gest, H., (1971) Regulation of the Cytoplasmic Inorganic Pyrophosphatase of Rs. rubrum. Eur. J. Biochem. 22, 529-537.
- Klemme, J.H., Klemme, B. y Gest, H. (1971) Catalytic Properties and regulatory diversity of inorganic Pyrophosphatases from Photosynthetic Bacteria, J. Bacteriol. 109, 1122-1128.
- Klemme, J.H. y Gest, H. (1971) Regulatory properties of an Inorganic Pyrophosphatase from the Photosynthetic bacterium <u>Rhodospirillum rubrum</u>, Proc. Nat. Acad. Sci. USA 68, 721-725.
- Knigth, W.B., Fitts, W.S. y Dunaway- Mariano (1981) Investigation of the catalytic mechanism of yeast inorganic pyrophosphatase. Biochemistry. 20, 4079-4086.
- Knight, W.B., Dunaway-Mariano, D., ransom, S.C. y Villafranca, J.J., (1984) Investigations of the metal ion-binding sites of yeast inorganic pyrophosphatase. J. Biol. Chem. 259, 2886-2893
- Lahti, R. 1983. Microbial Inorganic Pyrophosphatases, Microbiol. Rev. 47: 169-179.
- Lawson, J.W.R., Guynn, R.W., Cronell, N. y Veech, R.L. (1976) en: Gluconeogenesis: Its Regulation in Mammalian Species., (Ed. Hanson, R.W. y M.A. Mehlman), pp. 481, Wiley, New York.
- Laskin, A. I. y Lechevalier. 1980. Handbook of Microbiology. vol. I CRC Press.
- Lowry, O.H., Rosebrough, N.J., Farr, A.L. y Randal, R.J. (1951) Protein measurement with the folin phenol reagent, J. Biol. Chem. 193: 265-275.
- Mansurova, S.E., Shakhov, Yu, A. y Kulaev, I.S. (1975) Synthesis of inorganic pyrophosphate by animal tissue mitochondria, FEBS Lett. 55, 94-98.
- Merrick, J.M., (1978) Metabolism of reserve materials en: Photosynthetic Bacteria (ed. Clayton,K.R. y Sistrom, R.W.) New York-London Plenum Press.
- Martell, A. y Sillen, L.G. (1971) Stability Constants of Metal-Ion Complexes: Supplement No. 1, Special Publication No. 25. The Chemical Society, London.
- Mitchell, P., (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Revs. 41 445-502.

- Mitchell, P., (1967) Proton-translocation phosphorylation in mitochondria, chloroplasts and bacteria: Natural Fuel cells and solar cells. Fed. Proc. **26**, 1370-1379.
- Mitchell, P., (1982) Compartamentation and comunicatio in living sistems. Ligand conduction: a general catalitic principle in chemical, osmotic and chemiosmotic reaction systems. Eur. J. Biochem. 166, 255-272.
- Moe, 0.A. y Butler L.G., (1972) Yeast inorganic pyrophosphatase. II Kinetics of Mg^{2*} activation. J. Biol. Chem. 247, 7308-7314.
- Morrison, F.J., (1973) Aprouches to kinetics studies on metal activated enzymes. (Ed. Purich). vol 63: 257-294 Elseviers Publishers Amsterdam.
- Moyle, J., Mitchell, R., y Mitchell, P., (1972) Protontranslocating pyrophosphatase of Rs. rubrum FEBS Lett. 23, 233-236.
- Nalecz, M., Zborowski, J., Famulski, K. y Wojtczak, L., (1980) Effect of phospholipid composition onthe surface potencial of liposomes and the activity of enzymes incorporated into liposomas. Eur J. Biochem. 112,75-80.
- Nicholls, D.G. 1982. Bioenergetics: An introduction chemiosmotic theory. London and New York. Academic Press.
- Nishikawa, K., Hosi, K., Suzuki, J., Yoshimura, S. y Horio, T. (1973) Formation and Descomposition of Pyrophosphate Related to Bacterial Photophosphorylation. J. Biochem. 73, 537-553.
- Nore, B.F., Husain, I., Nyren, P. y Baltscheffsky, M.(1986) Synthesis of pyrophosphate cojpled to the reverse energy linked transhydrogenase reactions. in: <u>Rhodospirillum rubrum</u> chromathophores. FEBS Lett. 200, 133-139.
- Nyren, P. y Baltscheffsky, M. (1983) Inorganic pyrophosphatedriven ATP-synthesis in liposomes containing membrane-bound inorganic pyrophosphatase and Fo-F₁ complex from <u>Rhodospirillum</u> rubrum FEBS Lett. **155**, 125-130.
- Nyren, P., Hajnal, K., y Baltscheffsky, M. (1984) Purification of the membrane-bound proton-translocating inorganic pyrophosphatase from Rs. rubrum Biochim. Biophys. Acta. 766, 630-635.

- Nyren, P., Nore, F.B. y Baltscheffsky, M., (1986) Inorganic pyrophosphate synthesis after a short light flash in chromatophores from Rodospirillum rubrum. Photobiochemistry and Photobiophysics 11, 185-196.
- Nyren, P. Nore, F. y Strid, A., (1991) Proton pumping N.N'dicyclohexylcarbodiimida- sensitive inorganic pyrophosphate synthase from <u>Rhodospirillum rubrum</u>: purification, Characterization and reconstitution. Biochemistry.30, 2883-2887.
- Pnefinig, N., y Truper, H.G., (1971) Higher taxa of the phototrophic bacteria, Int. J. Syst. Bacteriol. 21, 17.
- Pfennig, N., y Truper, H.G., (1974) The phototrophic bacteria, en: Bergey's Manual of Determinative Bacteriology, 8th Ed. (Editores: R.E. Buchanan y N.E. Gibbons), pp. 24-64. The Williams & Wilkins Co., Baltimore.
- Randahl, H. (1979) Characterization of the membrane-bound inorganic pyrophosphatase in <u>Rhodospirillum</u> rubrum, Eur. J. Biochem. 102, 251-256.
- Rao, P.V., y Keister, D.L. (1978) Energy-linked reactions in photosynthetic bacteria. Solubilization of the Membrane-bound energy-linked inorganic pyrophosphatase of Rs. rubrum. Biochem. Biophys. Res. Commun. 84, 465-473.
- Rapoport, T.A., Höhne, W.E., Heitman, P.R., Rapoport, S.M., (1972) A kinetic model for the action of the inorganic pyrophospahtase from backer's yeast. The activity influence of magnesium ions. Eur J. Biochem. 26,237-246.
- Rea, P.A., y Poole, J.R. (1985) Proton translocating inorganic pyrophosphatase in red beet (<u>Beta vulgaris L</u>.) Tonoplast vesicles. Plant Physiol. 77, 46-52.
- Reeves, E.R., South, J.S., Blytt, J.H., Warren, G.C.(1974) Pyrophosphate: D-fructuosa 6-phosphate 1-phosphotransferasa. J. Biol. chem. 249, 7737-7741.
- Reeves, E.R., (1976). How useful is the energy in inorganic pyrophosphate? Trends in Biochemical Sciences 1, 53-55.
- Renosto, F., Seubert A. P. y Segel H.I. (1985) Adenosine 5'phosphosulfate kinase form <u>Penicillium chrymogenum</u>. Determinating ligand disociation constants of binary and tertiary complexs from the kinetics of ensyme inactivation. J.Biol. Chem. **260**, 11903-11913.

- Ridlington, W.J. y Butler, G.L. (1972) Yeast inorganic pyorphosphatase. J. Biol. Chem. 247, 7303-7307.
- Robertson, E.D. y Rottemberg, H., (1983) Membrane potential and surface potential in mitochondria. J. Biol. Chem 258,11039-11048.
- Rogers, A.J., (1983). Bacterial cell structure. Workingham: Van Nosrand. Reinhold (U.K.)
- Romero I, Gomez-Priego a, Celis, H. (1991) A membrane-bound pyrophosphatase from respiratory membranes of <u>Rhodospirillum rubrum</u>. J. Gen. Microbiol. **137**,2611-2616.
- Segel, I. (1975) Enzyme kinetics. Behavior and analysis of rapid equilibrium and study state enzyme kinetics. New York. John Willey & Sons.
- Schiff, J.A., (1972) A green safelight for the study of Chloroplast Development and other Photomorphogenetic Phenomena, en: Methods in Enzymology (Ed. San Pietro, A.) Vol. 24, Parte B, pp. 321-322. Academic Press. New York, London.
- Scholes, P. Mitchell, P. y Moyle, J. (1969) The polarity of proton translocation in some Phothosynthetic microorganims. Eur. J. Biochem. 8,450-454.
- Schwarm, H. S., Vigenschow y Knobloch, K., (1986) Kinetics characterization and parcial purification of the membrane-bound inorganic pyrophosphatases from <u>Rhodopseudomonas palustris</u>, J. Biol. Che. 367,127-133.
- Shakov, Y.A., Nyren, P. y Baltscheffsky, M. (1982) Reconstitution of higly purified proton translocating pyrophosphatase from Rhodospirillum rubrum, FEBS. Lett. 146,177-180.
- Strid, A. Karlsson, M.J. y Baltscheffsky, M (1987) Demosntration of pH and induced synthesis of inorganic phyrophosphatase from <u>Rhodospirillum</u> rubrum. FEBS. Lett. 224,348-352.
- Summer, J.B. (1944) A method for the colorimetric determination of phosphorus. Science. 100,413-415.
- Trupper, H.G. (1971) Higher taxa of the pothotrophic bacteria. Int. Syst. Bacterial. 21, 217-220
- Theuvenet, A. y Borst-Pawlws, G. (1976) The influence of surface charge on the kinetics of ion translocation across biological membranes. J. Theor. Biol. \$7,313-329.

- Unguryte, A. Smirnova, N. Baykov, A., (1989) Kinetics models of action of cytosolic and mitochondrial inorganic pyrophosphatases of rat liver. Arch. Biochem. Biophysics. 273, 292-300.
- van Niel, C.B., (1935) Photosynthesis of bacteria, Harbor Symp. Quant. Biol. 3, 138-150.
- Volk, S.E., Baykov, A., Duzhenico, S., Avaeva, M., (1982) Kinetics studies on the interaction of two forms of inorganic pyrophosphatases of heart mitochondria with physiological ligands. Eur. J. Biochem. 135, 215-220.
- Woese, C.R., (1987) Bacterial Evolution. MIcobiol. Rev. 51. 221-271.
- Woese, C.R., Kandler, O. and Wheelis, W.L. (1990). Proc. Natl. Acad. Sci. USA. 87. 4576-4579.
- Wood, H.G., (1977) Some reactions in wich inorganic pyrophosphate remplaces ATP and serves as source of energy. Fed. Proc. 36, 2137-2205.
- Wotczack, L. y Nalecz, M., (1979) Surface charge of biological membranes as possible regulator of membrane-bound enzymes. Eur. J. Biochem. 96, 99-107.

Mg²⁺ is an essential activator of hydrolytic activity of membrane-bound pyrophosphatase of *Rhodospirillum rubrum*

Alejandro SOSA, Héctor ORDAZ, Irma ROMERO and Heliodoro CELIS* Departamento de Bioenregética, Instituto de Fisiología Cetular, Universidad Nacional Autóoma de México, Apartado Postal 70-600, 04510 México, D.F. México

The subtrate for the hydrolytic activity of membrane-bound pyrophonsphatase is the PP_-Mg¹⁺ complex. The exzyme has a sativity when the free Mg¹⁺ is concentration is lower than 10 µ₀ t at 0.3 mePf₁-Mg¹⁺), and therefore free Mg¹⁺ is an essential activator of the hydrolytic activity. The K_n for the subtrate changes in response to writation in free Mg¹⁺ depends on the subtrate concentration. If ever Mg¹⁺ concentration is lower than 0 µ₀ t at 0.3 mePf₁-Mg¹⁺), and therefore free Mg¹⁺ depends on the subtrate concentration in the K_n for decreases from 0.30 to 1.0 mit respectively. The K_n for Mg¹⁺ depends on the subtrate concentration in the K_n for Mg¹⁺ and free Ca¹⁺ were used at competitive inhibitors of substrate is down the subtrate is 0.37 ms. Imidod[indeplice] and P₁-Mg¹⁺ and free Ca¹⁺ were used at competitive inhibitors of substrate is Mg¹⁺ forms bind the enzyme before PP₁-Mg¹⁺ in the formation of the catalytic complex, membrane-bound pyrophonphataset-(Mg¹⁺) (PP₁-Mg¹⁺).

INTRODUCTION

Membrane-bound pyrophosphatase (EC 3.6.1.1) of *Riodoparitiliun rahvam* chromalophores catalyses not only the hydrolysis of pyrophosphate but also the synthesis of pyrophosphate withenergy derived from photosynthetic electron (ramport (Baltschelliky, 1978): Baccarini-Medandri & Melandri, 1978). Pyrophosphate hydrolysis in the chromatophore membrane is linked to the electrogenic translocation of protons in a fully reversible process (Baltscheffsky 1968; Keister & Minton, 1971; Moyle et al., 1972).

Most inorganic pyrophosphatases, both cytoplasmic and membrane-bound, use the $PP_r - Mg^{t*}$ complex as the real substrate for hydrolysis; free PP_r^{t*} is an inhibitor of this reaction (Lathi, 1983).

Randhal (1979) suggested that Mg⁺⁺ ions modulate the properties of the enzyme. Indeed, it has been shown (Cells et al., 1985) that P₁/P₂, exclange reaction and pyrophosphate hytoloysis catalysed by membrane-bound pyrophosphatase have sharply different requirements for Mg⁺⁺ ions. In the same way, Cells & Romero (1987) have demonstrated that the two reactions have a markedly different pH requirement.

Studies on the effect of bivalent cations on the hydrolytic reaction and P_i/P₁ exchange (Celis & Romero, 1987) show that M^{**} and Co^{**} partially support the P_i/P₂ exchange reaction (50%), whereas bivalent cations such as $2n^{**}$ and Ca^{**} do not, in the hydrolytic reaction, $2n^{**}$ at low concentration can replace Mg^{**} in the formation of the substrate. In the presence of high concentrations of substrate for the hydrolysis (PP_i-Mg^{**}), free bivalent eations are inhibitory.

These sets of observations suggest that bivalent cations and protons regulate the catalytic properties of membrane-bound prophosphates. However, it is difficult to determine the regulatory effect of free Mg⁴⁺ on hydrolytic activity because, as has been stated, it also forms the substratic complex. The regulatory properties and kinetics of Mg⁴⁺ activation of cytophasmic prophosphates have been studied previously (Klemme & Gest, 1971; Moe & Butler, 1972a; Burry & Dinaway-Mariano, 1987). However, to our knowledge, these properties have not been studied for a membrane-bound pyrophosphatase. Since this

* To whom correspondence should be addressed.

pyrophosphatase is coupled to the proton gradient, whereas the cytoplasmic enzyme is not, the study of the regulation of the membrane-bound enzyme is important for the understanding of the mechanism of energy transduction. In the presence work, the role of free Mg⁴ as an essential activator of the hydrolytic reaction of membrane-bound pyrophosphatase was studied. An ordered mechanism for the hydrolytic activity of the enzyme is suggested in which Mg⁴⁺ binds to the enzyme before PP_Mg⁴⁺ in the formation of the catalytic complex.

MATERIALS AND METHODS

Bacterial growth and preparation of chromatophores from wild-type R, rubrum

Wild-type R. rubrian A.T.C.C. 11170 was grown anaerobically in the light (tongsten lamps of 40 W at 30 cm) at 30 °C in a medium described by Cohen-Bazire *et al.* (1957). Bacterial cells were harvested in the late-exponential phase.

The cells were vashed with 50 mm+KCl/30 mm+Mops buffer, pH 7.5, and chromatophores were prepared by sonication for 2 min in an MSE sonicutor at full power, in 10 mm-Tris/HCl buffer, pH 7.5. After centrifugation at 26000 g for 20 min, the superastant wascellected and centifuged at 105000 g for 90 min. The residual Mg^{1*} was eliminated from the chromatophores by washing with 5 mm+EDTA/5 mm+EGTA/10 mm+Tris/HCl buffer, pH 7.5, followed by a second washing with 10 mm-Tris/HCl buffer, pH 7.5. at a protein concentration of 30-35 mg/ml. The chromatophore preparation was kept at $4 \degree C$ and used within the next 3 days. No change in the hydrolytic activity was detected within this time. Protein was determined by the method of Lowry et al. (1951), with 1824 as standard.

Hydolysis of pyrophosphate

The hydrolytic reaction was determined in the dark with a green safety light under the conditions described in the Results and discussion section. The reactions were initiated by adding the chromatophores to the reaction medium, and were arrested with δ^{*}_{n} (w/y) trichternactic acid (linal concentration). Phosphate was determined in the supernatant as described by Fiske & SubbaRow (1925). In the initial-velocity studies, the maximum amount of PP-Mg⁺ complex hydrolysed was only 15% in 1.5 min; in this period the product formation (phosphate) had no effect on the hydrolytic velocity. Initial velocities are defined as monol of P, produced/min per mg of protein.

Calculation of free metal ions, ligands and complex

Concentrations of metal ion complex and free ions in the reaction media were calculated with the computer program of Pablato (1988), using published association constants for all components of the reaction media. All values were taken from Martell & Silker (1971) cacerol for the association constant for the formation of Mg¹⁰-EDTA complex, which was taken from Pablato (1988). In the computations, adjusted values of the association constants suitable to temperature and pH of reaction media were used. The program was run in an IBM AT computer with an arithmetic co-processor.

RESULTS AND DISCUSSION

Effect of free Mg¹⁺ on the hydrolytic activity of membranebound pyrophosphaiase

The substrate for the hydrolytic activity of membrane-bound prophosphates is the PP-, Mg* complex, and free Mg* has an apparent activating effect (Randahi, 1979; Celis *et al.*, 1985; Celis & Romero, 1987). In order to investigate the effect of free Mg* on the hydrolytic activity, free Mg* concentration was increased from 0.01 μ M to 1.0 mm, keeping PP-Mg* constant at 0.3 mm (Fig. 1). It and be observed that the hydrolytic activity depends strictly on free Mg* concentration; the apparent K_m for Mg* (K_{manner}) is 0.2 mm. No PP-Mg* hydrolytis activity of the Mg* concentration is lower than 10 μ m. Therefore Mg* content for substrate recognition by the enzyme.

Effect of free Mg1* on PP--Mg1* hydrolysis

In order to determine the effect of free Mg* on the hydrolytic activity, free Mg* was fixed at four different concentrations, and for each case the concentration of PP_Mg* was varied (Fig. 20). An increase in free Mg* produced an enhanced hydrolytic activity, but hydrolysis depended on substrate concentration in a suturable maner; this is in agreement with the report by

Fig. 1. Effect of free Mg¹⁺ on the hydrolytic activity of membrane-bound pyrophosphatase

The necessary concentrations of todium pyrophosphate and MpCl, were calculated to maintain the PP-Mg⁺ concentration at 0.5 mm and the indicated free Mg⁺⁺ concentration in the second of 1.0 mm-EDTA. The ineubation medium contained 50 mm⁺ Tritymalated buffer, pH 6.5, and 1 mg of chromatophore protein. Incubation time was 1.5 min.

Schwarm et al. (1986) working with the membrane-bound prophosphates of Rhodeprendommus publicity. The data shown in Fig. 2(a) were replotted as Linewaver-liver plots. A small change in M_{sm}^{-} was obtained (515 to 482 mmol of lymin per ng of protein as fixed Mg¹¹ concentrations of (0.03 to 10 mm respectively). When the free Mg¹¹ concentrations was raised, the apparent M_{sm}^{-} for PP', Mg¹¹ (M_{ep}^{-} mouse), decreased. The calculated M_{sm}^{-} values were 10.25, 292, 0.84 and 0.6 mm at free Mg¹¹ concentrations of 0.00, 0.1, 0.5 and 1 mm respectively. Fig. 2(c) shows a linear relationship between the apparent M_{sm}^{-} for PP', Mg^{12} obtained from Fig. 2(d) and the reciprocal fixed free Mg¹² concentration. The intercept on the ordinate axis (0.17 mm) gives the M_{sm}^{-} for PP', Mg^{11} is starting concentrations of free Mg^{22} . This is in agreement with the role of free Mg^{21} as an essential activator for PP', Mg^{21} hydrolysis.

Free Nig** activation and its dependence on PP₁-Nig** concentration

The effect of various free Mp¹⁺ concentrations was studied at three concentrations of PP₁-Mg¹⁺ (Fig. 3a). The increase in hydrolytic activity depended on free Mp¹⁺, but the hydrolytic activity also increased as the concentration of PP₁-Mg¹⁺ network and a straight of the state of the straight of the strai

Segi (1975) has described rapid-equilibrium analysis between an essential activator and a substrate. and we have applied this approach to determine the type of mechanism. If the netivator concentration is fixed and that of the substrate is varied giving rise to a competitive pattern, and if the substrate is varied giving rise to a competitive pattern, and if the substrate concentration is fixed and that of the activator is varied giving rise to a mixed type in the double-reciprocal plot (Figs. 2b and 3b), these patterns are characteristic of an obligated ordered mechanism for the binding of (ree Mg⁺ and Pf⁻_m Mg⁺). In which Mg⁺ binds to the enzyme before Pf⁻_m Mg⁺. This mechanism contrasts with the pattern described for the yeast tytoplasmic psycolhospitatase, in which the substrate binds to the enzyme before Mg⁺ ions (Knight et a., 1981).

Imidodiphosphate-Mg²⁺ and free Ca²⁺ as competitive inhibitors of PP,-Mg²⁺ hydrolysis and activation by free Mg²⁺

In order to substantiate the ordered mechanism in the formation of the catalytic complex, an imidodiphosphate-Mg⁴⁺ complex was used as a competitive inhibitor of PP-Mg¹⁺ hydrolysis. In addition, the effect of Cu⁴⁺ ions was studied on the activator effect of free Mg¹⁺. The cross-inhibitory patterns (imidodiphosphate-Mg¹⁺ versus free Mg¹⁺ and free Cu⁴⁺ versus PP-Mg¹⁺) were analysed to charify whether the binding of PP₁-Mg¹⁺ and free Mg¹⁺ is ordered or random and whether it is in rapid equilibrium or in a steady state (Segel, 1975; Morrison, 1979).

Imidodiphosphate has been reported to inhibit the cytoplasmic prophosphatease of yeast (Kelly *et al.*, 1973). The effect of imidodiphosphate-Mg¹⁺ on the hydrolytic activity was analyzed by fising its concentration at 0.5 mm and 1.0 mm while that of the Pf₂-Mg¹⁺ was varied at face free Mg²⁺ concentration (1.6 mm). Fig. 4(a) shows imidodiphosphate-Mg¹⁺ as a competitive inhibitor of PP-Mg¹⁺ Mg²⁺ hydrolysis, since the K_m for PP, Mg¹⁺ increased from 0.68 mm to 2.44 mm, whereas Γ_{m} , did unit change (3.11 mm) of P_Mmin per mg of protein). These data clearly Mg** activation of membrane-bound pyrophosphatase

Fig. 2. Effect of free Mg1+ lons on the hydrolysis of the PPr-Mg1+ complex

(a) The experimental conditions were as in Fig. 1, but the concentrations of sodium pyrophosphate and MgC1, were calculated to have four different concentrations of if (re Mg¹¹: 0.03 mM (O), 0.1 mM (\odot), 0.5 mM (Δ) and 1.0 mM (Δ). The apparent A_{g} for the substrate obtained in (h) was reploted in (h).

Fig. 3. Dependence of PPr-Mg** concentration on the activation of free Mg**

(a) The experimental conditions were as in Fig. 1. The concentrations of sodium pyrophosphate and MgCl, were calculated to give three flated concentrations of PP,-Mg^{2*}: 0.25 mM (O), 0.5 mM (●) and 0.35 mM (○), (b) Lineware-Durk piot of the results from (a).

indicate that imidodiphosphate-Mg** competes with PP,-Mg** for binding to the enzyme-Mg** complex.

Ca¹⁺ is an inhibitor of several types of pyrophosphatase (laykov *et al.*, 1989; Moe & Butler, 1972b). The effect of free Ca¹⁺ on PP-Mg¹⁺ hydrolysis was analysed by using fixed free Ca¹⁺ concentrations while that of free Mg¹⁺ was varied and

Vol. 283

$$\begin{split} & P_P-M_R^{-1} \mbox{ was kept at 0.5 mm (Fig. 4b). Linewenver-Burk$$
analysis shows that free Ca*+ sets as a competitive inhibitor ofMg* activation, since the K, for Mg* increased 7-fold. from0.25 to 1.71 mm, whereas the V_{en} did not change (237 nmolofP₁/min per mg of protein). Free Ca* binds to the enzyme to forman enzyme-Ca** complex, competing with free Mg* binding $the PP_Ca** complex, was present in the reaction medium at$ concentrations ranging from 0.77 mm to 0.007 mm when freeCa** was fixed with 0.1 mm. Since a clearly competitive effectof free Ca** or the activation of free Mg* is observed, and a $mixed-type inhibition is not present, an effect of PP_Ca** on the$ enzyme can be ruled out.

To complete the analysis, the effect of imidodiphosphate-Mg⁺ on Mg⁺ activation and free Ca⁺ on the substrate was studed. Imidodiphosphate-Mg⁺ concentration was fixed at 0.1 and 0.15 mit and free Mg⁺⁺ concentration was varied (at PP-Mg⁺) 0.5 mit). Fig. 4(c) shows a change in K_{yac} . From 0.23 to 0.074 mit and a decrease in V_{acc} (201 to 150 mmol of P/min per mg of protein) showing uncompetitive inhibition. This inhibition pattern is in agreement with rapid equilibition. This ordered mechanism, indicating that PP-Mg⁺⁺ binds to the enzyme after free Mg⁺⁺.

Free Co⁴⁺ concentration was fired at 0.05 and 0.1 mut while that of the substrate was varied (with free Mp⁴⁺ fixed at 1.8 mu). The inhibition pattern again is uncompetitive (Fig. 4a). The $K_{Fig.,ue^+}$ decrease changed from 0.73 to 0.19 and the Γ_{ueat}^{+} also decreased from 433 to 118 mol of $P_{d,min}^{+}$ mp err mg of potein. These data are not consistent with the predicted inhibition pattern (Table 1); they indicate that free Ca²⁺ binds to the enzyme substrate complex, but that the $PP_{e}(Ta^{1+})$ is formed in the reaction medium at a concentration of 0.05 mst, and 33 times lower than that of PP_{e} Mg²⁺ at a free Ca²⁺ concentration of 0.1 mst. For this reason binding constants televant for Ca²⁺ multibiliton in the presence of PP_e Ca²⁺ are daticult to analyse (Haykov et al., 1989).

Fig. 4. Inhibition patterns for imidodiphosphate-Mg** and free Ca** as inhibitors for the substrate and the activator effect of free Mg**

The experimental conditions were as in Fig. 1. (a) Lineweaver-Burk plot of initial velocity versus $[PP_-Mp^{+1}]$ at imidodiphosphate-Mg⁺ concentrations of 0 mm (0), 0.0.5 mm (0) and 1.0 mm (1), 1.0 Lineweaver-Burk plot of initial velocity versus free Mg⁺ at iree Ca⁺ concentrations of 0 mm (0), 0.03 mm (0) and 0.1 mm (1), 1.0 Lineweaver-Burk plot of initial velocity versus free Mg⁺ at irree Ca⁺ concentrations of 0 mm (0), 0.03 mm (0) and 0.1 mm (1), 1.0 Lineweaver-Burk plot of initial velocity versus (PP_P-Mg⁺⁺) at irree Ca⁺⁺ concentrations of 0 mm (0), 0.01 mm (0) and 0.15 mm (10), (2), (4) Lineweaver-Burk plot of initial velocity versus [PP_P-Mg⁺⁺] at irree Ca⁺⁺ concentrations of 0 mm (0), 0.01 mm (0) and 0.15 mm (10), (4).

Table 1. Predicted and observed inhibition patterns from the data of Fig. 4

Types of inhibition: competitive (C), uncompetitive (UC) and non-competitive (NC).

Substrate whose concentration was varied			Predicted inhibition patterns			
	Inhibitor	Observed inhibition pattern	Rapid equilibrium tandom	Steady-state random	Rapid equilibrium ordered	Steady-state ordered
PP,-M8** Mg** PP,-M8** Mg**	imidodiphasphate-Mg** Ca** Ca** Imidodiphosphate-Mg**	C C UC UC	0000	C C NC NC	C C C UC	C C UC NC

Effect of free PP, on hydrolytic activity

Free PP, is present in the reaction medium, and it is an inhibitor of pyrophosphatases (Ridlingson & Buller, 1972; Lathi, 1983). The concentration of free PP, was fixed at 0.03, 0.1, 1.0 and 5.0 mm, and that of PP-Mg⁺ was varied for each case (Fig. 50). An increase in free PP, has an apparent inhibitory effect on the hydrolytic activity. When free PP, concentration was kept constant and that of PP-Mg⁺ was varied to reaster act deterate in free Mg⁺ concentration in a constant failo described by eqn. (1):

$$K_{pp_1 M q^{**}} = \frac{[Mg][PP_1]}{[PP_1 - Mg^{**}]} \qquad \frac{K_{pp_1 M q^{**}}}{[PP_1]} = \frac{[Mg^{**}]}{[PP_1 - Mg^{**}]} \quad (1)$$

There were no apparent inhibitory effects at 0.03 and 0.1 mai-

PP, but the corresponding free Mg⁺ concentrations were enough for the enzyme to recognize the substrate $(X_{uu^+} + a \ 0.57 \text{ mm})$ substrate is 0.12 mm). At 1.0 and 5.0 mm free PP₁, the corresponding concentrations of free Mg⁺ were at the lower limit for substrate recognition by the enzyme (Table 2). Although there was a high concentration of free PP₁ (5.0 mm), the enzyme activity increased in response to variations in substrate concentration. Therefore free PP₂ scents to be a weak inhibitor. Since free Mg⁺ is essential for hydrolytic activity, its decrement produces an inhibitory effect.

The inverse of PP₁-Mg² concentrations from Fig. S(a) were squared, and a modified Lineweaver Burk pior was obtained (Fig. 5b). The latter data indicate an apparent non-competitive inhibition. This effect is not convisient with the previously Mg** activation of membrane-bound pyrophosphatase

Fig. 5. Effect of the free PP, on the hydrolytic activity

The experimental conditions were as in Fig. 1. (a) Concentrations of sodium pyrophosphate and MgCl, were calculated to give four concentrations of free PP; 0.1 mM (O), 0.5 mM (\oplus), 1.0 mM (Δ) and 5.0 mM (Δ). (b) Double-reciprocal plots of the results from (a).

Table 2. Decrease in Mg1+ concentration in the experiment of Fig. 5(a)

Constant PP, (ma)	Variation in PP ₁ ~Mg ^{t+} (MM)	$C = \frac{1Mg^{42}}{(PP_q + Ng^{42})}$	Variation in free Mg** (mst)
0.03	0.1 to 50	3.3 × 10-3	0.00J tu 0.165
0.1	0.1 to 5.0	1 × 10-1	0.001 to 0.05
1.0	0.1 to 5.0	t × 10-3	0.0001 to 0.005
5.0	0.1 to 5.0	2 × 10-*	0.00002 to 0.001

reported competitive inhibition for other pyrophosphatases (Josse, 1966). The observed inhibition is probably due to a decrease in Mg* concentration, although an additional inhibitory effect by free PP, cannot be ruled out.

CONCLUSION

Free Mg^{an} is an essential activator for the hydrolytic activity of membrane-bound pyrophosphatase of *R*. rubrum. The catalytic complex is enzyme' [Mg^{an}]-[PP_P-Mg^{an}]. The binding of Mg^{an} modifies the enzyme's allinity for the substrate: a similar effect was described from cytoplasmic pyrophosphatuse of yeast (Knight *et al.*, 1981) and for cytosolic and mitochondrial pyrophosphatases, (Ungurytecut, 1989). In the above-mentioned pyrophosphatases, (Ungurytecut, 1989), in the above-mentioned pyrophosphatases, three bivalent cations per active site are required for activity (Cooperman, 1982; Unguryte *et al.*, 1989). One of these metal ions binds to PP, to form the substrate. For *R*. rubrum, the number of Mg^{ba} ions that bind to the enzyme is not known.

The binding of the substrate (PP_1-Mg^{2*}) produces an increase in free Mg^{2*} allinity for the enzyme (Fig. 3a). The K_m for Mg^{2*} is 0.73 ms in the absence of substrate. The rapid-equilibitum treatment between the estendial activator and the tubstrate suggests an ordered mechanism in which free Mg¹⁺ binds to the enzyme before the substrate. For the cytopfastike pyroposed an ordered mechanism in which the substrate binds to the enzyme before Mg¹⁺. In the case of slow substrates such as Cr(11,0)PP, the binding steps are in rapid equilibitum, whereas for PP,-Mg¹⁺, the binding steps are in a rapid equilibitum, whereas in hibitition suggest an ordered mechanism which may be rapid equilibrium or steady state. Formulation of a complete model should be the ord of a complete model should be the goal of future research.

The proposed model for rapid-equilibrium kinetics for the hydrolytic activity of membrane-bound pyrophosphatase of *R*, rubrum is:

In a different way from Randahl's (1979) model, the cuzyne-(PP₁-Mg⁺¹) complex is ruled out, since it predicts that, in the absence of free Mg⁺¹, the \mathcal{K}_{a} for the substrate approaches infinity, Indeed, all other routes for catalytic complex-formation were eliminated from our model.

Randahl (1979) proposed PP, inhibition of pyrophosphatase of *R. rubrum*. We suggest an additional strong inhibitory effect due to the decrease in free Mg²⁺ in experimental conditionat direct determination of the inhibition constant for PP, is impracticable.

Both membrane-bound and cytoplasmic pyrophosphatases of several organisms require free netal for netivation (Rapoport et al., 1972; Unguryte et al., 1989), and their substrate is a metal lon-PP, complex. In spite of similar requirements for all kinds of pyrophosphatases, specific differences in their kinetic properties sould be important in their regulation. Since the membranebound pyrophosphatase provides the simplest model for the study of hytoplysis and synthesis of phosphoanhydro bonds, the characteristics and properties of this enzyme are relevant in the mechanism of energy transduction.

This work was partially supported by Grant D11-903553) from Contejo Nacional de Ciencia y Tecnologia, Méricio A.S. was a fellow of D.G.A.P.A., U.N.A.M. We thank Susana Magallón and Dr. Dirgo Gonzáter-Halphen for helping us with the English.

REFERENCES

- Baccarini-Melandri, A. & Melandri, B. A. (1978) in The Photosynthetic Bacteria (Clayton, R. K. & Sistrom, W. R., eds.), pp. 615–628, Plenum Press, New York and London
- Baltscheffsky, M. (1968) in Regulatory Functions of Biological Membranes (Jainefelt, J., ed.), vol. 2, pp. 277–286, Elsevier Amsterdam, New York and London
- Baltscheffsky, M. (1978) in The Photosynthetic Bacteria (Clayton, R. K. & Sistrom, W. R., eds.), pp. 598-613, Plenum Press. New York and London.
- Barry, R. J. & Dunaway-Mariano, D. (1987) Arch. Biochem. Biophys. 259, 196–203
- Baykov, A. A., Volk, S. E. & Unguryte, A. (1989) Arch. Biochem. Biophys. 273, 287-291
- Celis, 11. & Romero, J. (1987) J. Bioenerg, Biomembr. 19, 255-272
- Celis, H., Romero, J. & Gómez-Puyou, A. (1985) Arch. Biochem. Biophys. 236, 766-774
- Colien-Barile, G., Sistrom, W. R. & Stainer, R. Y. (1987) J. Cell Comp. Physiol. 49, 25-68
- Cooperman, B S (1982) Methods Enzymol. 87, 526 548

- Fabiato, A. (1988) Methods Enzymol. 157, 378-417 Finke, C. A. & SubbaRow, Y. (1925) J. Biol. Chem. 117, 751-766
- Josse, J. (1966) J. Biol. Chem. 214, 1948-1957
- Keister, D. L. & Minton, N. J. (1971) Arch, Biochem, Biophys. 147, 330-338
- Kelly, S. J., Feldman, F., Seposu, J. W. & Butler, L. G. (1973) Bio-chemistry 12, 3338-3340
- Klemme, J. H. & Gest, N. J. (1971) Eur. J. Biochem. 22, 529-537
- Knight, B. W., Fitts, S. W. & Dunaway-Mariano, D. (1981) Biochemistry 20, 4079-4086
- Lathi, R. (1983) Microbiol. Rev. 47, 169-179
- Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951) J. Biol. Chem. 193, 265-275
- Martell, A. & Sillén, L. G. (1971) Spec. Publ. Chem. Soc. 25, Suppl. 1, 10 112-120 . The Chemical were 1, landon

Received 10 July 1991/30 September 1991; accepted 14 October 1991

Moe, O. A. & Butler, L. G. (1972a) J. Iliol. Chem. 247, 7308-7314 Moe, O. A. & Butler, L. G. (1972b) J. Biol. Chem. 247, 7315-7319

- Morrison, J. F. (1979) Methods Enzymol. 63, 257-294 Moyle, J. Mitchell, R. & Mitchell, P. (1972) FEBS Lett. 23, 233–236 Randahl, H. (1979) Eur. J. Biochem. 102, 251-256
- Rapoport, T. A., Hohne, W. E., Heilman, P. R. & Rapoport, S. M. (1972) Eur. J. Biochem. 26, 237-246
- Ridlington, J. W. & Butler, G. L. (1972) J. Biol. Clicm. 247, 7303-7307 Schwarm, H., Vigenschow, H. & Knobloch, K. (1986) Biol. Chem. 267,
- 127-133
- Segel, I. H. (1975) in Enzyme Kinetics: Behaviour and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems, pp. 227-272, John Wiley and Sons, New York
- Unguryte, A., Smirnova, I. N. & Baykov, A. A. (1989) Arch. Biochem. Biophys. 273, 292-300