

FACULTAD DE INGENIERIA

ANALISIS NUMERICO DE FLUJO EN CANALES CON OBSTACULOS SUMERGIDOS UTILIZANDO ELEMENTO FINITO Y SU COMPROBACION EXPERIMENTAL

]			E		S	;						5
Q	UE	P	ARA	OBTER	NER		EL	тп	ru	.0.	I	DE:
I	N	G	ΕN	ΙE	R	0		С	I	v	I	L
٢		R	E	S	E		N	т		A		:
FE	ELIF	ΡE	ALFC	NSO	1	BA	RRA		s/	٩LG	A	00

MEXICO, D. F.,

1992

N=61 2ES.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

CAPITULO

INTRODUCCION

1.1 Antecedentes

1.2 Conceptos básicos

1.3 Consideraciones

1.4 Flujo en canales

CAPITULO II

FORMULACION NUMERICA

 2.1 Ecuación Laplace
 15

 2.2 Método de residuos pesados y elemento finito
 16

 2.3 Formulación débil
 21

 2.4 Condiciones de frontera y obtención de la solución
 23

 2.5 Comprobación de resultados
 35

2

ä

5

p

CAPITULO III

MODELO COMPUTACIONAL

3.1 Funcionamiento

3.2 Listado

CAPITULO IV

RESULTADOS NUMERICOS

4.1 Interpretación

4.2 Tables y figuras

CAPITULO V

RESULTADOS EXPERIMENTALES

5.1 Características de las pruebas		106
5.2 Obtención de los obstáculos		108
5.3 Resultados experimentales		119

CAPITULO VI

COMPARACION DE RESULTADOS

CAPITULO VII

CONCLUSIONES

APENDICE

BIBLIOGRAFIA

139

142

146

129

70

INTRODUCCIOIL

1.1 ANTECEDENTES OF THE STATE O

A principios de este siglo, el estudio de los fluidos se realizaba, esencialmente, por dos grupos de personas, ingenieros hidráulicos y matemáticos. Los hidráulicos trabajaron siempre desde un punto de vista empírico; y los matemáticos. **9**0 concentraron en el desarrollo analítico. La amplia Y frecuentemente ingeniosa experimentación de los primeros, ha proporcionado mucha información de innegable valor para 105 ingenièros prácticos de hoy en día. No obstante, al carecer de una teoría general, estos resultados fueron restringidos y de חוו limitado valor al enfrentar nuevos problemas. Entre tanto. 108 matemáticos, al no disponer de información experimental, se vieron forzados a establecer hipótesis simplificativas para obtener resultados muy alejados, con mucha frecuencia de la realidad.

Investigadores tan eminentes como Reynolds y Froude, consideraron evidente que el estudio de los fluidos debía ser una mezcla de teoría y experimentación.

1.2 CONCEPTOS BASICOS

Un canal abierto es un ducto en el que fluye un líquido con una superficie libre. En contraste con el líquido en tubería, donde el flujo se produce normalmente a presión; el líquido que lleva un canal abierto no ejerce presión a parte de la que provoca su propio peso y la presión de la atmósfera.

Los canales abiertos pueden ser naturales o artificiales. Las corrientes subterráneas en cavernas son consideradas canales abiertos, en tanto tengan una superficie libre. Por lo común los canales naturales tienen una sección transversal irregular. lo mismo que su alineación y la rugosidad de sus paredes. Las corrientes de agua en materiales erosionables pueden cambiar con frecuencia o en forma continua su ubicación y su sección transversal. Estas irregularidades y cambios en las corrientes naturales presentan problemas de ingeniería, por ejemplo, en la navegación y el control de inundaciones. que se encuentran indes alla del alcance de este trabajo que se ocupa de canales rectangulares artificiales.

Se construyen canales artificiales para varios fines:

1.- Desarrollo de energía eléctrica: se lleva agua de los arroyos
o las presas a los sistemas de captación situados por encima de
las plantas hidroeléctricas.

2.- Riego: se lleva agua de embalses o arroyos a depósitos o estanques de almacenamiento, o directamente para regar las

tierras.

3.- Suministro municipal de agua: se toma agua de arroyos o embalses de almacenamiento hasta estanques que dan suministro a los sistemas de distribución de agua en las ciudades.

4.- Alcantariliado: el alcantariliado de las ciudades, aunque por lo común se trata de tuberías o ductos cubiertos, se diseña en la forma de canales abiertos, porque se supone que no llevarán un flujo completo, sino que tendrán una superficie libre bajo presión atmosférica.

5.- Drenaje: las tierras bajas, pantanosas o anegadas se hacen con frecuencia más productivas mediante el drenaje a través de zanjas abiertas o tendiendo y cubriendo tuberías que pueden llevar o no un flujo completo.

6.- Control de inundaciones: la protección de ciudades o terrenos valiosos contra las inundaciones requiere a menudo el mejoramiento de un canal natural mediante la limpieza o la pavimentación para incrementar su capacidad, o mediante la construcción de canales adicionales.

Todas las ciencias de la ingeniería constituyen un compromiso entre la realidad física y las simplificaciones necesarias exigidas para su estudio matemático.

1.3 CONSIDERACIONES

Ahora se estudiará un flujo idealizado, que es asequible al tratamiento matemático y que al mismo tiempo es útil para la comprensión de ciertos flujos reales. Las hipótesis básicas para el estudio que sigue, son las expuestas a continuación:

a) BIDIMENSIONAL.- Se distingue por la condición de que todas las propiedades y características del flujo son funciones cartesianas, por ejemplo, de "x" y "y", por lo tanto éstas no varían a lo largo del eje "z" en un instante dado. En todos los planos normales al eje "z" y en un instante determinado, existirá la misma configuración de las líneas de corriente.

b) INCOMPRESIBILIDAD.- La densidad y el peso específico se consideran como constantes.

c) IRROTACIONALIDAD. - Esto implica un fluido no viscoso, cuyas partículas se están moviendo inercialmente sin rotación.

d) FLUJO PERMANENTE.- Esto significa que todas las propiedades y características del flujo son independientes del tiempo.

Un fluido se considera estático si todas las partículas del mismo están en reposo o tienen la misma velocidad constante con relación a un plano de referencia inercial.

Al considerarse en condiciones estáticas diversos tipos de

fluidos, se encuentra que ciertos fluidos varian muy poco de densidad a pesar de estar sometidos a grandes presiones. Los fluidos que se comportan de tal manera están invariablemente en estado líquido; bajo tales circunstancias. el fluido se llama incompresible.

Entiendemos por superficie libre, a la superficie de separación entre un líquido y un gas o entre dos líquidos inmiscibles, en este caso un líquido y un gas que será el aire.

Un flujo se representa comúnmente de forma gráfica mediante las líneas de corriente. Estas son envolventes de los vectores velocidad de las partículas en el flujo. Esto se ilustra en la figura 1.1, cuando el flujo es permanente, las líneas de corriente permanecen fijas en el tiempo. En oste caso las partículas fluidas se moverán a lo largo de trayectorias coincidentes con las líneas de corriente.

El conjunto de líneas de corriente que pasan por el contorno de un área infinitesimal, en un instante determinado, forman un tubo que es muy útil en el estudio de fenómenos en los fluidos. Se le llama tubo de corriente o filete fluido, uno de los cuales se representa en la figura 1.2. De la definición de línea de corriente, es evidente que no existe paso de flujo a través de la superficie lateral de un tubo de corriente. Un tubo de corriente se comporta como un conducto de paredes impermeables y espesor nulo y de sección recta infinitesimal. Un número infinito de tubos de corriente adyacentes dan lugar a un tubo de sección recta

En la Fig. 1.3 se puede observar un tubo de flujo formado por dos sistemas diferentes de superficie de flujo (χ) cuyas intersecciones coinciden obviamente con líneas de corriente; si el flujo es no permanente o permanente, bidimensional, incompresible, viscoso o no viscoso, rotacional o irrotacional, entonces el valor de la línea de corriente será constante a lo largo de la intersección. Evidentemente esta misma consideración es válida para un flujo permanente en cualquier instante.

En el caso de un flujo bidimensional, la familia de planos paralelos (sobre los cuales la configuración del flujo es idéntica) se hace coincidir con el sistema de superficies " χ constante", donde el eje "z" es perpendicular a dicha familia. Con esa disposición, el vector "grad χ " es el mismo vector unitario "k" y la ecuación que define la velocidad es:

 $V = \text{grad } \psi = \text{grad } \chi$ $V = \text{grad } \psi = k$

cuyas componentes son:

$$V_{x} = \frac{\partial \psi}{\partial y}$$
(1.2a)
$$V_{y} = -\frac{\partial \psi}{\partial x}$$
(1.2b)

(1,1)

Para el flujo bidimensional la ecuación diferencial de la línea de corriente, según la ecuación siguiente es:

donde

Substituyendo las ecuaciones 1.2 en esta ecuación, se obtiene

$$d \psi = \frac{\partial \psi}{\partial x} dx + \frac{\partial \psi}{\partial y} dy = 0 \qquad (1.4)$$

and the second second

o bien, por definición de gradiente

$$d\psi = \operatorname{grad} \psi \cdot ds = 0 \qquad (1.5)$$

Así, obviamente, el vector diferencial de arco sobre una línea de corriente es perpendicular a "grad ψ " y la ecuación de la línea será " ψ (x.y) = constante", cuya representación es una familia de líneas de corriente (como se muestra en la Fig. 1.4) cada línea de corriente no es más que la intersección de la superficie " ψ " que corresponde con el plano coordenado "x - y".

Por otra parte, si "n" es un vector unitario en la dirección normal a las líneas de corriente, por definición de derivada direccional se tiene que:

10

$$\operatorname{grad} \psi \cdot \mathbf{n} = \frac{\partial \psi}{\partial \mathbf{n}}$$

(1.6)

(1.3)

Pero, toda vez que "grad ψ " y "n" son paralelos. "grad ψ n" (producto punto) es igual al módulo de "grad ψ " que de acuerdo con las ecuaciones 1.6, vale

$$/ \operatorname{grad} \psi / = \left[\left[\frac{\partial \psi}{\partial x} \right]^2 + \left[\frac{\partial \psi}{\partial y} \right]^2 \right]^{(z^2)}$$
$$= \sqrt{\left[\frac{\psi}{\partial x} + \frac{\psi}{\partial y} \right]^2} = 0$$

Entonces

(1.7)

(1,9)

Sin embargo, de esta ecuación "v dn" es el gasto que pasa entre dos líneas de corriente "ψ" y "ψ + dψ" (Fig. 1.4) por unidad de ancho normal al plano del flujo, esto es:

$$q = Q/b$$

 $dq = dw = V dn$

por lo cual el gasto entre dos líneas de corriente " Ψ_i " y " es:

$$- \left[\psi \right]_{i}^{2} - \psi_{2} - \psi_{i} \qquad (1.10)$$

La ecuación 1.10 indica que el gasto que circula entre dos líneas de corriente es igual a la diferencia de los valores que

adquiere la función de corriente en esas líneas.

FIGURA, 1. 4 FAMILIA DE LINEAS DE CORRIENTES.

1.4 FLUJO EN CANALES

El flujo de un fluido en un canal, se caracteriza por la exposición de una superficie libre a la presión atmosférica. Por esta razón, el fluido respectivo es siempre un líquido, por lo común agua.

Los problemas relacionados con el flujo en canales, representan una alta proporción del trabajo del ingeniero hidráulico y la aparente simplicidad resultante por la superficie libre es irreal, debido al incremento en la complejidad de dicho flujo en comparación con el de un conducto a presión. El agua que fluye en un canal se ve afectada por todas las fuerzas due intervienen en el flujo dentro de un tubo, con la adición de las fuerzas de gravedad y de tensión superficial que son 1.0 consecuencia directa de la superficie libre. En realidad la superficie libre se debe considerar como una intercara entre dos fluidos, el superior, un gas usualmente estacionario (o en movimiento) y el inferior, un líquido en movimiento. Las fuerzas de gravedad y tonsión superficial resistirán cualquier fuerza tendiente a distorsionar esta intercara. ۱a Cual siempre constituirá una frontera sobre la cual el ingeniero tiene control parcial.

Tomando en cuenta todo esto, se deduce la gran importancia de la aplicación de un método numérico, como lo es el método del elemento finito, con el cual podemos llegar a tener un gran ahorro en el tiempo de solución del problema dado.

En el presente trabajo se resolverá el flujo en un canal rectangular de pendiente constante con un obstáculo triangular sumergido, por el método de elemento finito, y se compararán los resultados con pruebas hechas en laboratorio. Se considera que el flujo es estacionario, bidimensional, e irrotacional, el fluido será tratado como no viscoso e incompresible, la gravedad será tomada en cuenta.

a de la construcción de la constru de la construcción de la construcción

FORMULACION CULLERIGA.

2.1 ECUACION DE LAPLACE

Se partirá de la definición de función corriente considerando que cumple con:

 $v = -\frac{\partial \psi}{\partial x}$

Tomando la ecuación de continuidad:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Si sustituimos los valores de "u" y "v" en la ecuación de continuidad queda:

$$\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \right) + \frac{\partial}{\partial y} \left(\frac{\partial y}{\partial x} \right) = 0 \equiv \frac{\partial^2 y}{\partial x \partial y} - \frac{\partial^2 y}{\partial y \partial x}$$

Tomando ahora en cuenta la condición de irrotacionalidad:

$$\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 0$$

Si sustituímos los valores de "u" y "v" en la ecuación de irrotacionalidad tendremos:

$$\frac{\partial}{\partial x} \left[-\frac{\partial}{\partial x} \psi \right] - \frac{\partial}{\partial y} \left[-\frac{\partial}{\partial y} \psi \right] = \left[\frac{\partial}{\partial y} \psi \right] + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial y^2} = 0 \right] (*$$

Con lo que se llega a que la formulación matemática de este tipo de flujos debe cumplir con la ecuación de Laplace(*).

2.2 METODO DE RESIDUOS PESADOS Y ELEMENTO FINITO

Por lo común las soluciones aproximadas de ecuaciones diferenciales satisfacen sólo parte de las condiciones del problema, por ejemplo, puede ser que la ecuación diferencial no se satisfaga en todos los puntos del mismo.

En general, la solución aproximada se expande en un conjunto de funciones con parámetros desconocidos; Una manera de determinar dichos coeficientes es aplicando el Método de los Residuos Pesados. En este método se trabaja directamente con la ecuación diferencial y con sus condiciones de frontera.

El Método de Residuos Pesados es un método general que se utiliza para obtener la solución de ecuaciones diferenciales parciales.

La solución que es a priori desconocida, se expande en un

conjunto de funciones de prueba que son definidas pero que tienen parámetros, constantes o variables que se pueden ajustar. Estos coeficientes se escogen de tal manera que den la mejor aproximación a la ecuación diferencial.

Sea la ecuación diferencial

 $L(u) = f \circ L(u) - f = 0$

donde "L" es cualquier operador diferencial.

En el esquema de Residuos Pesados la función desconocida "u" se sustituye por:

$$\iota (*) \approx \dot{u} (*) = \Sigma_{i=1}^{N} U_{i} \Phi_{i}(*)$$

donde "U_j", j=1.2,...,"N" son los coeficientes indeterminados de los que se habló en el párrafo anterior y "\$", j=1.2,...,"N" son funciones que se pueden definir tanto en el espacio como en el tiempo.

En el Método del Elemento Finito las funciones de prueba, también conocidas como funciones interpolantes, funciones de forma o funciones de base. Se escogen que sean funciones polinomiales que satisfagan algunas condiciones de frontera impuestas en el problema.

Si sustituimos "u (*)" por "ú (*)" en nuestra ecuación. ge tendra un residuo:

L(u(*)) - f = R(*)

pues "ú" no es la solución real.

Como ya se mencionó anteriormente, el objetivo del esquema de Residuos Pesados es determinar los coeficientes "U_j" de tal manera que este residuo sea minimizado. Una manera bastante directa de lograr esto sería simplemente igualar la integral de "R(*)" a "O", es decir:

 $J_{\Omega} R (*) d\Omega = 0$

pero esta manera de proceder sólo generaría una ecuación para los "N" coeficientes desconocidos "U_j". Esto puede ser modificado a "nuestro favor si se introducen las "funciones de peso":

₩, (*), *ε* = 1,2,...N

Ahora, si igualamos cada una de las integrales de los "residuos pesados" a "0", nos proporcionará "N" ecuaciones independientes:

 $S_{\Omega} R(*) W_{i}(*) d\Omega = 0$ i = 1, 2, ..., N

En teoría, el sistema anterior puede ser resuelto para los "N" coeficientes y representa la ecuación general que describe el Método de los Residuos Pesados. Dependiendo cómo se definan tanto las funciones base como las funciones de peso, se tendrán diferentes esquemas numéricos.

Como ya se expuso anteriormente, la función solución desconocida a priori se aproxima por un conjunto de funciones de prueba que, en Elemento Fínito, son de tipo polinomial. Ahora bien dependiendo el grado del polinomio que se utilice se tendran funciones base, lineales, cuadráticas, cúbicas etc. (Fig. 2.1). Por ejemplo para tener una configuración como la de la figura 2.2.

Si la función de peso se escoge igual a la función base se tiene el esquema Bubnov-Galerkin, que popularmente se conoce sólo con el nombre de Galerkin debido a que en 1915 el ingeniero ruso del mismo nombre lo desarrolló, pero Bubnov (también ruso), aplicó el mismo método en 1913. Si la función de peso es diferente a la función base se tendrá el esquema Petrov-Galerkin.

En este caso se analizará el flujo de líguidos, en particular el agua.

El método de elementos fínitos transforma la ecuación diferencial parcial, en un sistema de ecuaciones algebráicas lineales, que pueden resolverse con relativa facilidad con ayuda de una computadora.

FIG. 2.2 DIVISION DEL CAMPO DE FLUJO EN ELEMENTOS FINITOS

2.3 FORMULACION DEBIL

Primeramente se relaja la función continua para encontrar una función más sencilla de resolver llamada formulación débil de la ecuación, posteriormente se realiza la discretización del dominio. para lo cuál se divide la región en elementos colocando nodos sobre los límites de la región y dentro de la misma, y uniéndolos de tal manera que se formen figuras geométricas, en este caso triángulos. Cada triángulo que se forme es un elemento (Lo más recomendable es que sean triángulos equiláteros). Como en elemento finito se trabaja con cada elemento en forma independiente. las funciones son continuas dentro de cada elemento, su derivada tal vez no lo sea, pero tiene que ser integrable.

Se escogen unas funciones llamadas de prueba o base y otras llamadas de forma o de interpolación. Para el presente trabajo las funciones de prueba y de base son iguales para poder usar el esquema Bubnov-Galerkin.

Para reducir el orden de la ecuación diferencial se integrará sobre el dominio, para lo que se usarán los teoremas de Green-Gauss y de la divergencia, haciendo equivalencias de las variables del teorema de Green-Gauss con las variables del producto de la función corriente con la función base y sustituyendo estas igualdades en la integral que se resolverá, lo

que nos dejará como única incógnita el valor de la función corriente, con lo que obtenemos la formulación débil de la ecuación original.

Las funciones base se escogen de tal manera que al evaluar la función en algún nodo, el valor que se obtendrá es "1" en dicho nodo y "0" en el resto, el resultado que nos da al evaluar cada elemento forma la llamada matriz local que será del número de nodos por elemento por el número de nodos por elemento, en el caso de usar elementos triangulares es de 3x3.

Como ya se ha mencionado, en elemento finito se trabaja con cada elemento en forma independiente (la función se integra para cada elemento), obteniendo como resultado la matriz local de cada elemento. No tiene caso integrar en toda la región, pues en casi todos lados esa función vale "0", entonces se integra sobre los elementos y posteriormente se suma sobre todos los elementos.

Se conoce como coordenadas globales de un nodo a las coordenadas dentro del sistema real de coordenadas, pero para mayor facilidad se pueden utilizar coordenadas locales, referidas a un sistema local de coordenadas.

El cambio de coordenadas globales a locales y visceversa se hace usando funciones de mapeo, ya que las coordenadas locales se encuentran en función de "r" y "s", y las globales se encuentran en función de "x" y "y".

Cuando se terminan de evaluar todos los elementos y se tienen las matrices locales, éstas se ensamblan en una matriz llamada global, en la que se colocará la contribución de cada elemento, representado por la matriz local, según la posición de los nodos en el sistema global o real (la matriz global es del número total de nodos por se número total de nodos).

Una vez ensambleda la matriz global se aplicarán las condiciones de frontera en los puntos correspondientes, estos puntos y sus condiciones se dan debido a las condiciones físicas del problema.

Cuando ya se aplicaron las condiciones de frontera al problema se procederá a resolver el sistema de ecuaciones contenido en la matriz global y el vector de términos independientes para obtener la solución.

2.4 CONDICIONES DE FRONTERA Y OBTENCION DE LA SOLUCION

Las condiciones de frontera del problema físico que representa un canal rectangular con un obstáculo sumergido en cuanto a sus lineas de flujo se presentan en la figura 2.3, en la que podemos observar que el valor de la línea de corriente en la plantilla del canal es igual a cero debido a que el gasto está dado por " $P_{superficio} = P_{plantilla} = q$ " por lo que en la plantilla el gasto sera "O". la plantilla del canal representa el eje horizontal del sistema coordenado que se usará. Tambien en la

superficie del obstáculo el valor de la línea de corriente es igual a cero. así mismo el valor de la línea de flujo en la superficie libre del agua es igual al gasto por unidad de ancho, esto se debe a que la superficie libre del agua es el punto más alto del perfil formado en el canal, no puede haber ningún punto que tenga un valor mayor al gasto.

FIGURA 2.3

FIGURA 2.3

Recordando:

$$\frac{\partial \psi}{\partial n} - \frac{\partial \psi}{\partial x} \vec{n}_{x} + \frac{\partial \psi}{\partial y} \vec{n}_{y}$$
$$= u \vec{n}_{x} + v \vec{n}_{y}$$
$$= v + \vec{n}$$

Tomando la ecuación de Bernoulli en la superficie libre del agua.

$$\frac{1}{2} \left(\frac{\partial \psi}{\partial n} \right)^2 + \varrho \gamma = \varrho H_0$$

Siendo "Ho" la carga total.

Para obtener la formulación débil, usando los teoremas de la Divergoncia y de Green-Gauss se tiene:

(2.1)

$$\int_{\Omega} \beta \left(\vec{\nabla} \ \vec{\omega} \right) \ d\Omega = \int_{\gamma} \beta \vec{\omega} \cdot \vec{n} d\gamma = \int_{\Omega} \left(\vec{\nabla} \beta \cdot \ \vec{\omega} \right) \ d\Omega$$

1.1

donde

$$\beta = v_i$$

$$\vec{\omega} = \frac{\partial \psi}{\partial x} i + \frac{\partial \psi}{\partial y} j$$

2.5

$$\int_{\Omega} v_{i} \left[\frac{\partial}{\partial x} \left[\frac{\partial \psi}{\partial x} \right] + \frac{\partial}{\partial y} \left[\frac{\partial \psi}{\partial y} \right] \right] d\Omega = 0$$
$$\int_{\Omega} v_{i} \left[\frac{\partial^{2} \psi}{\partial x^{2}} + \frac{\partial^{2} \psi}{\partial y^{2}} \right] d\Omega = 0$$

sustituyendo estos valores en el lado derecho de la ecuación 2.1 tendremos:

$$\int_{\gamma} v_{i} \left(\frac{\partial \psi}{\partial x} i + \frac{\partial \psi}{\partial y} \right) \cdot \vec{n} dr - \int_{\Omega} \left(\frac{\partial v_{i}}{\partial x} \frac{\partial \psi}{\partial x} + \frac{\partial v_{i}}{\partial y} \frac{\partial \psi}{\partial y} \right) d\Omega = 0$$

$$\int_{\gamma} v_{i} \frac{\partial \psi}{\partial \gamma} dr = \int_{\Omega} \left(\frac{\partial v_{i}}{\partial x} \frac{\partial \psi}{\partial x} + \frac{\partial v_{i}}{\partial y} \frac{\partial \psi}{\partial y} \right) d\Omega$$

por lo tanto:

$$\int_{\Omega} \left(\frac{\partial v_{i}}{\partial x} - \frac{\partial \psi}{\partial x} + \frac{\partial v_{i}}{\partial y} - \frac{\partial \psi}{\partial y} \right) d\Omega$$

tomando Bubnov-Galerkin:

$$\psi = f_{\mu}(\mathbf{x},\mathbf{y}) \cdot \psi_{\mu}$$

sustituyendo """ en la ecuación anterior obtendremos:

$$\int_{\Omega} \left[\frac{\partial v_{i}}{\partial x} - \frac{\partial f_{j}}{\partial x} \psi_{j} + \frac{\partial v_{i}}{\partial y} - \frac{\partial f_{j}}{\partial y} \psi_{j} \right] d\Omega = 0$$

como los valores de "v," y de "/g" son dados la única. incognita es "w"

For lo tanto:

[K] { ¥ } - { o }

tomando triángulos lineales (Fig. 2.4):

Triángulos locales Triángulos Olobales

donde

$$\begin{array}{rcl} x & - & f_{j} \, x_{j} & - & f_{i} \, x_{i} & + & f_{2} \, x_{2} & + & f_{3} \, x_{3} \\ y & - & f_{j} \, y_{j} & - & f_{i} \, y_{i} & + & f_{2} \, y_{2} & + & f_{3} \, y_{3} \end{array}$$

teniendo que

Lap ordered

$$f_{j}(\mathbf{r},\mathbf{s}) = \begin{cases} \mathbf{r} \\ \mathbf{s} \\ \mathbf{1} - \mathbf{r} - \mathbf{s} \end{cases}$$

si obtenemos, las derivadas parciales de la función " f_j " con respecto a "r" y a "s" obtendremos:

$$\frac{\partial f_{j}}{\partial r} = \begin{cases} 1\\ 0\\ -1 \end{cases}$$
$$\frac{\partial f_{j}}{\partial s} = \begin{cases} 0\\ 1\\ -1 \end{cases}$$

si decimos que " $\nu_i = f_j$ " tenemos:

$$\int_{\Omega} \left[\frac{\partial f_{i}}{\partial x} \frac{\partial f_{j}}{\partial x} + \frac{\partial f_{i}}{\partial y} \frac{\partial f_{j}}{\partial y} \right] \Psi_{j} d\Omega = 0$$

usando la regla de la cadena

$$\frac{\partial f_{i}}{\partial x} = \frac{\partial f_{i}}{\partial r} \quad \frac{\partial r}{\partial x} = \frac{\partial f_{i}}{\partial x} \quad \frac{\partial r}{\partial x} = \frac{\partial f_{i}}{\partial x}$$

como:

de

esto podemos decir que:

 $x = f_i$ (r.s) X_i

partiendo de las ecuaciones 2.2 y 2.3

de aquí tenemos que: 나는 가는 가방을 하는 것이다. 2007년 1999년 - 1999년 - 1997년 - 1997년 1999년 - 1997년 - 1

ð 5	ð 8	-
9 X	ð y	_
ðr	ør	
ð x		
		- 194

la cual se conoce como matriz Jacobiana. Sustituyendo valores en las derivadas:

$$\frac{\partial x}{\partial r} = X_{1} - X_{2} = X_{12} \qquad \qquad \frac{\partial y}{\partial r} = Y_{1} - Y_{2} = Y_{12}$$

$$\frac{\partial x}{\partial s} = X_{2} - X_{3} = X_{23} \qquad \qquad \frac{\partial y}{\partial s} = Y_{2} - Y_{3} = Y_{23}$$

$$\begin{bmatrix} \frac{\partial f_{i}}{\partial r} \\ \frac{\partial f_{i}}{\partial s} \end{bmatrix} = \begin{bmatrix} X_{13} & Y_{13} \\ X_{23} & Y_{23} \end{bmatrix} \begin{bmatrix} \frac{\partial f_{i}}{\partial x} \\ \frac{\partial f_{i}}{\partial y} \end{bmatrix},$$

que es la matriz Jacobiana.

Para poder obtener $\frac{\partial f_i}{\partial x}$, $\frac{\partial f_i}{\partial y}$ calculamos la matriz

inversa de la matriz Jacobiana:

$$\frac{\partial f_1}{\partial x} = \frac{1}{|J|} \left[Y_{20} \quad \frac{\partial f_1}{\partial r} \quad + \quad Y_{31} \quad \frac{\partial f_1}{\partial s} \right]$$
$$\frac{\partial f_1}{\partial y} = \frac{1}{|J|} \left[X_{32} \quad \frac{\partial f_1}{\partial r} \quad + \quad X_{33} \quad \frac{\partial f_1}{\partial s} \right]$$

sustituyendo en la derivada de "f j" queda :

$$\frac{\partial f_1}{\partial x} = \frac{1}{|\mathbf{J}|} \begin{cases} \mathbf{Y}_{23} \\ \mathbf{Y}_{31} \\ -\mathbf{Y}_{23} - \mathbf{Y}_{21} = \mathbf{Y}_{10} \end{cases}$$

$$\frac{\partial f_{i}}{\partial y} = \frac{1}{|J|} \begin{cases} X_{3z} \\ X_{13} \\ -X_{3z} - Y_{13} = Y_{23} \end{cases}$$

sustituyendo en la integral
$$\int_{\Omega} \left[\frac{\partial f_i}{\partial x} \frac{\partial f_j}{\partial x} + \frac{\partial f_i}{\partial y} \frac{\partial f_j}{\partial y} \right] \frac{\psi}{\partial \Omega} = 0$$
tenemos para cada elemento.

tenemos para cada elemento.

$$\int_{\bullet} \left[\left(\frac{1}{|\mathbf{j}|}, \left\{ \frac{Y_{ij}}{Y_{ij}} \right\} - \frac{1}{|\mathbf{j}|} \right] \left\langle Y_{ij}, Y_{ij}, Y_{ij} \right\rangle \right]$$

$$+ \frac{1}{|\mathbf{J}|} \left\{ \begin{array}{c} \mathbf{X}_{00} \\ \mathbf{X}_{11} \\ \mathbf{X}_{21} \end{array} \right\} \frac{1}{|\mathbf{J}|} \left\{ \mathbf{X}_{00} , \mathbf{X}_{00} , \mathbf{X}_{00} \right\} \left[\begin{array}{c} \mathbf{\psi} \\ \mathbf{d} \end{array} \right] \mathbf{d} \mathbf{h}_{0}$$

$$\int_{\bullet} \frac{1}{|J|^2} \left[\left\{ \frac{Y_{aa}}{Y_{aa}} \right\} \langle Y_{aa}, Y_{aa}, Y_{aa} \rangle + \left\{ \frac{X_{aa}}{X_{aa}} \right\} \langle X_{aa}, X_{aa}, X_{aa} \rangle \right] \underline{\psi} \ dA_{\bullet}$$

como en este caso "|J|" y las matrices son constantes :

3.3

$$\frac{A_{\bullet}}{\left\|\mathbf{J}\right\|^{2}} \left(\left[\left[\mathbf{K}_{\mathsf{X}} \right] + \left[\mathbf{K}_{\mathsf{Y}} \right] \right] \right)$$
(2.4)

en general:

in dere

con |J| = constante

$$\int dA_{\bullet} = \frac{1}{2} ||J|$$

por lo que la ecuación 2.4 queda:

$$\frac{1}{2|\mathbf{J}|} \left[\left[K_{\mathbf{x}} \right] + \left[K_{\mathbf{y}} \right] \right]$$

o también haciendo:

| J | = 2 A queda

$$\frac{1}{4A_{\bullet}}\left[\left[K_{x} \right] + \left[K_{y} \right] \right]$$

esta última ecuación es usada en el modelo de computadora para su solución.

2.5 COMPROBACION DE RESULTADOS

Para poder comprobar resultados 51 105 Dumer 1 cos SOD correctos. se revisa que los valores obtenidos programa cumplan con las condiciones de frontera. 10 que se verificarán solo los puntos de la superficie libre del fluio usando la ecuación de la energia específica, encontrando aue no existe carga de presión en la superficie, es decir que "P/y" ee iqual a "0" (ver Fig. 2.5).

En donde se observa que en la superficie libre, el valor de la función corriente""y = q", siendo "q" el gasto unitario.

En la figura 2.5 "H" es la carga total de energía en el punto inicial, lugar en el que se conoce la altura del tirante, por consiguiente se puede conocer cual es la carga de velocidad.

Tomando la ecuación de Bernoulli entre dos puntos del flujo y despreciando perdidas por friccion ...obtendremos:

$$\frac{P_{a}}{r} + Z_{a} + \frac{V_{a}^{2}}{2\rho} - \frac{P_{n}}{r} + Z_{n} + \frac{V_{n}^{2}}{2\rho} - H \qquad (2.5)$$

Considerando que la plantilla del canal coincide con el eje horizontal del sistema coordenado, de la ecuación 2.5 se puede sustituir el velor de "Z" por el del tirante, quedendo como;

$$\frac{V^2}{H - y} + \frac{P}{2\sigma} + \frac{P}{2}$$
(2.6)

Ahora bien, si se considera la condición de presión en la superficie libre tenemos que "P/ γ = 0", por lo que

$$H = y + \frac{v^2}{2\rho}$$
(2.7)

Considerando la condición de presión en la superficie libre del agua y pasando el valor de "H" del lado derecho:

$$0 - y + \frac{v^2}{2g} - H$$
 (2.8)

por lo que para poder saber si el resultado del valor obtenido numéricamente para "y" es el correcto tendremos que evaluar la siguiente ecuación:

$$\frac{\mathbf{P}_{\bullet}}{\mathbf{y}} = \mathbf{H} - \mathbf{y} - \frac{\mathbf{v}^2}{2\rho}$$
(2.9)

La que debe ser igual a cero cuando el tirante "y" es el correcto.

Para lograr que se cumpla lo anterior se debe revisar primeramente el valor de la velocidad, debido a que se trata de un canal rectangular se tiene que:

$$J = \frac{q}{\gamma}$$
(2.10)

sustituyendo la ecuación 2.10 en la ecuación 2.9.

$$\frac{P}{r^{*}} = H - y - \frac{q^{*}}{2\rho' y^{*}}$$
(2.11)

La ecuación debe cumplir con:

$$\frac{P}{\gamma} = 0$$

tomando la derivada parcial en la ecuación 2.11 con respecto " e igualando a cero

$$\frac{1}{2} = \frac{\partial P_{\bullet}}{\partial y} = 0$$
 (2.12)

Derivando parcialmente el lado derecho de la ecuación 2.11 con respecto a "y" e igualando con la ecuación 2.12 se tiene:

$$\frac{1}{\gamma} \frac{\partial P}{\partial \gamma} = \frac{\partial H}{\partial \gamma} - \frac{\partial \gamma}{\partial \gamma} - \frac{\partial}{\partial \gamma} \left(\frac{q^2}{2\rho \gamma^2} \right)$$
(2.13)

debido a que "H" es constante

$$\frac{1}{\gamma} \frac{\partial P_{\bullet}}{\partial y} = 0 - 1 - \frac{\partial}{\partial Y} \left[\frac{q^2}{2\theta y^2} \right] \qquad (2.14)$$

despejando el valor de la derivada parcial de la presión en la superficie con respecto a "y":

$$\frac{\partial P}{\partial y} = \frac{\gamma q^2}{\varrho y^3} - \gamma \qquad (2.15)$$
38

cuando el valor de "y" es el correcto, la ecuación 2.15 resultará igual a cero, pero en caso de que no lo sea dará un valor diferente de cero. Para poder saber cual sería el factor de corrección del valor de "y" se usa la ecuación 2.15, sustituyendo la derivada parcial "ð" por su diferencial "A" y despejando el valor de Δy .

$$\Delta y = \frac{\frac{\Delta P}{\gamma}}{\frac{q^2}{q^2}} = 1$$

(2.16)

Cuando el valor de la ecuación 2.11 no es igual a cero o no cumple con la tolerancia de error elegida, la ecuación 2.16 determina el factor de corrección que debe aplicarse en los valores de "y". Se corrigen los valores iniciales del tirante con los que se alimentó el modelo y se resuelve ahora con los nuevos valores. Tomando los resultados obtenidos con las correcciones se revisa que la ecuación 2.9 cumpla siendo igual a "O", si esto no se da, nuevamente se calculará la corrección con la ecuación 2.16 repitiendo esto hasta cumplir con la tolerancia de error elegida.

MODELO COMPUTACIONAL.

3.1 FUNCIONAMIENTO

El modelo de computadora que a continuación se presenta, se elaboro en lenguaje Pascal y se basa en el modelo desarrollado por Alcaraz (1988). Su estructura está formada por procedimientos o subrutinas, integrados de la siguiente forma:

Primero se identifican las variables generales que intervendran en el modelo, colocándolas en la sección llamada "VAR" al principio del programa, estas variables intervendrán en todo el desarrollo.

Después de tener todas las variables generales identificadas. al iniciar un procedimiento se identifican las llamadas variables locales, que sólo intervendrán en el procedimiento que aparezcan en la sección "VAR". Los nombres de las variables principales y su significado se pueden ver en el apéndice.

Dentro del programa se cuenta con un procedimiento o subrutina generadora de redes, lo que facilita la entrada de datos al programa, esto se logra mediante la creación de elementos rectangulares que reciben el nombre de elementos maestros, puede

haber este tipo de elementos en la dirección "X" y en la dirección "Y", la ventaja de usar los elementos maestros es que sólo se le proporcionan datos de 8 nodos por cada elemento maestro, a partir de los cuales se generará la red, considerando para esto el número de divisiones tanto en la dirección "X", como en la dirección "Y" deseadas, se puede tener un número variable de divisiones en la dirección "X", pero las divisiones "Y" deben ser constantes. Alcaraz (1988).

El modelo está compuesto por los siguientes procedimientos;

Procedimiento "PRESENTA" : En el que se elabora la presentación del modelo.

Procedimiento "PREG-DATOS" : Durante su desarrollo se definen los diferentes parámetros con los que el modelo empieza a funcionar.

Procedimiento "INFGEN" : Aquí se nos muestran los datos con los cuales se alimentó el modelo, en el procedimiento "PREG-DATOS".

Procedimiento "MALLA" : Aquí se toman los datos del procedimiento "PREG-DATOS", para generar la malla mediante interpolación cuadrática (usando polinomios de segundo grado), para la formación de la malla se consideran las divisiones deseadas por elemento maestro, esto se hace en ambas direcciones. Una vez creada la malla, se inicia la generación de las

coordenadas locales de los nodos de cada elemento, (se usarán elementos triangulares) una vez obtenidas se procederá a mapear dichas coordenadas locales a coordenadas globales, para esto se usa la funcien llamada "SHAPE", que trabaja con interpolación cuadrática. Cuando ya se tienen las coordenadas globales de los nodos se realiza el suavizamiento de la red, se entiende por suavizamiento a le graduación en el cambio de un elemento maestro a otro, dependiendo del número de divisiones deseado en cada clomento maestro: Una vez suavizada la malla se realiza la definición de nodos por elemento.

Procedimiento "BNDRY" : Es aquí cuando se considerán las condiciones de frontera, en este caso todos los nodos que se encuentran en el fondo del canal al igual que los nodos que se encuentren en la superficie del obstáculo, tienen como valor de la función de corriente "O", también se les asigna valor a los nodos que estén en la superficie libre del agua y éste es igual al gasto unitario, estos valores son asignados por las condiciones físicas según Aitchison (1980) y O'Carroll (1984).

Procedimiento "ELEM2D" : En el se genera la matriz local, para lo cual se obtiene el área de cada elemento, se les asigna un numero a cada nodo, empleando las funciones "MAX1" y "MIN". Las cuales nos dan el valor máximo y mínimo de los tres nodos que forman al elemento, a su vez se obtienen también los valores de las matrices de rigideces de cada elemento y los vectores de términos independientes para cada elemento.

Procedimiento "ASEMBL" : Funciona realizando primeramente la localización de la diagonal en el vector skyline, para lo cual se hace uso en el desarrollo de la función "NIMAX". Posteriormente se realiza la inicialización de los vectores que contienen la matriz, para que con esto podamos realizar el ensamble de la matriz global a partir de las matrices locales, apoyándose en la función "MAX", para este procedimiento usamos lo obtenido en el procedimiento "ELEM2D".

Procediemiento "ACTCOL" : Realiza el método de solución de todo el sistema de ecuaciones concenidas en el procedimiento "ASEMBL", Zienkiewies (1977).

Procedimiento "REV-PRES": Revisa los resultados obtenidos, esto con ayuda de la función "MAXDP" que nos da como resultado el valor de error máximo en valor absoluto que se encuentra durante la revisión, si el valor del resultado obtenido no es el correcto, se obtiene un factor de corrección que se aplicará a los valores obtenidos con los que se iniciará nuevamente todo el desarrollo.

Procedimiento "RESUL" recibe los resultados obtenidos en cada iteración mostrándolos y preguntando si se quiere que se impriman en la pantalla o en la impresora, una vez elegida la opción se muestran los resultados según la opción.

El programa "PRINCIPAL" da el orden adecuado para el funcionamiento correcto del programa, además de darnos los resultados correctos.

3.2 LISTADO

A continuación se presenta el listado del programa con el que se realizó la modelación computacional.

(se a5520.0.655260) PROSAAN ELEN FIN 10: USES

CRT. DOS. PRINTES:

CONST

5*5.8::

TIPE

AS* ARRAY 11.. 40003 OF REAL: CD: ARTAY 11.. 500.1..... OF REAL; MATRIJ: 4FRAY 11..25,1..51 OF PEAL: IVED: AFFRAY(1..31 OF PEAL; IVECS. AFRAYEL., 15001 OF INTEGER: AB: + AEPAY [1... aNO] OF REALS SIN'S ARRAT [1... SO] OF INTEGER; SEDIA ARRAY 11. 5011 OF INTESEP:

V69

BACK, AFACK, ERROR: BOOLEAN: EPRORI, LOOP: INTESER:

DATOS, IMPRESONA, RESULTADOS: TEIT:

OFTICH: CHAR: SIL: STRING:

```
T1F54L.31, 410F1.3. E45, 10, TOL.51, LONE: FEAL:
11. 11: 4451:
11. "1. 1. ", YF: MATRIL;
ELEN: ARRAY [1.. 1500,1...3] OF INTEGER;
CORRECTOR AREA THE SUBJECT OF THE
CORRECTOR CONTRACT OF THE
JD1452 AFRAY CL. 15991 DF INTESET;
SD1: ARRAY CL. SOC) OF INTESET;
41 481
FEL: IVEC::
U: ARRAY (1.. 100) OF REAL:
KEL: ARRAY [1..3,1..3] OF REAL
TP: ARI
SI.ANCHO: PEAL:
8: 481;
```

1

1

3

1

3

)

INICIA

PROCEDIMIENTO PARA PRESENTACION

PROCESSIRE PRESENTAL

JP: STRINS

Ì t

1

ł

ł

t

ŧ

VAS

RESIN

714905) 55129+11.2-2 ALC: NO PHALISIS NUMERICO IE FLUZO EN CAMALES CON DESTACILOS"IS ALTE_M! SUMERGIZOS UTILIZANDO EL METOZO DE FLEMENTO FINITO ******

WITELS("	ELABORO:	ISARRA SALGADO FELIPE ALFONSO	.,I
SELTELN:"	DIRECTOR:	N.C. ALBERTO ALCARAL PAZ	.u
ARITELA ' REPEAT	OPRIME COA	REQUIER TECLA PARA CONTINUAR	
UNTIL READLEY	0''1		

,

1

1

1

ា

1

-14

ENG:

ł

٢

1

ţ

ŧ

ż

ł

ŧ

INICIA PROCEDIMIENTO PARA DEFINIR LOS

DIFERENTES PAPAMETEDS USADOS EN EL

PROCEDIAIENTO MALLA.

PROCEDURE PRES_ 14105;

REGIN

CLRSCR; 50701746,111 WRITER WUMEROS INFARES DE DIVISIONES EN EL SENTIDO DEL EJE (***) 50731Y-5,21: WRITE!'LCS DATES DEBEN DE BER EN "METROS" Y "SESUNDER"TE SETELY (5. 4): AFTERNAMENT AFTER DE FLEMENTOS EN LA REFERENTA A TA AEAD (MMAST); 50101116.alt WRITE! WIMERD WEESTRO DE ELEMENTOS EN LA DIRECCION 1 = ":1 READ (WAST:) 50"01"16.51: AFITE ('TIRANTE INICIAL AGUAS ATOISA + "1; 4E40(HEAZ): 60101Y (6, 10); WRITE ("TIRANTE INICIAL AGUAS ABAJO = "1: READITIRSAL SOTOIY (6.12); WRITE: WERERD DE ITERACIONES = '1: ACADITER) 63TOIY(6.141: WRITE! MUMERO DE VECES QUE DESEAS SUAVIZAR LA RED = "" READ (NOOTH) ; 501011(6.16): WRITE!'TOLERANCIA = '); READITCLI; SOTORY (6. 18): WRITE('SASTO UTILIZADO = ''; READ IDD : 60101*(6.23): WRITE ("ANCHO DEL CANAL + "1; READ (ANCHO); 50101716,221; WITE: PENDIENTE + 14 READISON RE-0:124511 VP1::=}; 275 1+21 23 VRAL 50

```
FOR JINI TO WERE OU
                                 REGIN
                                     WRITE("11",1,",",1,1,") = "1)
                                     READ "IEI,J];;
WRITE("YE',I,',',J,'] = ");
                                     READIVEL, JUIT
                                     READ ( PET. J11:
                                     Y[1,J]:=(P[1,J]+(SOB(LCNG-1(1,J1));
                                                                          1
                                ENDI
                         WRITE("ARE", 1, 1) + 11;
                         READ(NICID):
                        . WITE ("NYC". 1, "] = "])
                         READINYLII
                     E'D:
                                                            1
           INICIA PROCEDIMIENTO PARA LA INFOESION
                                                             3
                                                             1
          DE LA INFORMACION SENERAL DE LOS ELEMENTOS
                                                            : $
                                                             1
PROCEDURE OVEREN
......
      CL $5051
      PEPEAT
           WRITELAS' INFOESION DE DATOS EN PANTALLA (2) D IMPRESORA (11 7 1);
           7E42(192-;
      UNTIL 11FD = 11 GP 11PD = 21;
      IF 193 = 1 THEN
         PES:N
             ARITELN('COMPRUERE BLE LA INPRESORA SATE PREPARADA ");
                        WITE NO
             REPEAT
             INTIL READERTON'S
             ASSISH(DATES, "LPT:");
             RESETIDATOSI
             SCT017(8,4);
             50T01*19,5);
             WRITELNILST, "ADALATER
                                    INFORMACION SENERAL DE LOS
                                                                  1111111111111
             S0701112,611
             WRITELNILST, "BBIBBERS
                                            ELEMENTOS
                                                                  1111111111111
             60TOT+18, 7+;
             $01011(3.3);
             MITELNILET, 'HIMMIN
                                   SATOS EN " METROS Y SEGUNDOS "
                                                                  11111111111111
             3: = ?!
             FOR Is=: TO MPASE TO
                BESCN
                    - 10101118,011
                     4521E.50.57, "########
                                                 millin, 1 + ,mill,
                    2:23-11
                23.04
```

BESTN.

ł

END:

đ

1

ź

t

1

¢

12:

JESTY

÷

mmm?;;

	FOR IT TO MASY DO			
	BESIN			
	WRITELA LST.	RTE', 112, '1 ='	WIII, '	\$6552469"}1
	2:*/*1; END:			•
	60TOIY (8, 3);			
	BRITELNILST, 10000000 601019(8.241):	NUMERO MATINO DE ITERACIONES	* ',ITER12,' #######'15	
	MITELMILST, 'SSSSSSS	ELENENTOS LINEALES	***********	
	60'011(9,3+2); KRITELWII ST. 18882888	MINERO DE VECES DUC DE CHAVITAND		
	50101V (8, 3+3);	ADIEND DE VELLS NOC SE SUMMILIA	* *************	
	ARITELMILST, 'SSEEREE	LA FED=",MCOTH,"	\$\$1\$\$\$\$ \$ }	
	WITELX(LST, 'REPORTE	TOLERANCIA = ", TOL: D:6,"	****** *********	
	601011(8,J+5);	**************************************		
	601011'3,J+61;	TINNANE HOUNS HARIEM #	011131, 11111111,1	
	RITELNILST, BRITTER	TIPANTE AGUAS ABAJO = 1,1153	ALIZ:3," #######***	
	FITELSILET, TISTESST	54910 071212400 = "LOD: 2:5."	ttititi'''	
	60101112,2+9:1			
	GUTUIT (8, 2+7);	ANCHU DEL CANAL * ', ANCHU	(2:2, ' (((((())))	
	WRITELSULST, 'BISSBASS	RUNCED OF ELEMENTING = 1,4E	in,' mmmmri:	
	URITELNILST, '11111111	MUMERO DE NOCOS = ".NOC	NE.' \$\$\$\$\$\$\$\$\$	
	50TOIY (E, J+11);			in the Alternation
	CLOSE (DATOS) ;		*****************	
	201			
 March 199 	60101V(8,4);			
	60TOIY (8,5);			
	VRITELRI'IIIIIIII	INFORMACION GENERAL CE LOS	*************	
	ARTIELM! ********	ELEXENTOS	**********	
	ECTOIN (9,7); MR1TE) #(***************	******		
	SOTOLY (B, 8);			in independent en
	HRITELN(*#1111111 Jung:	DATOS EN " NETROS Y SEGUNDOS "	***********	
	FOR Is=1 TO MASS 30			
and the second sec	EEGIN AUTOIVIR. J1:			
···· ·································	HRITELHI'SITT	1111 NT(",112,") =",KI(11. ⁴	
	j:≠j+1; END:		a star and a star and a star a st	
	FOR 1:=1 TO MMASY DO			
	BEDIX 601017(3.J):			
	WRITELN('1111	aasa #YC',[:2,'3 +',KYC	t),' s	1111111
	4:#4*1; END:			
	50T037(8,2.)		All and a second	
	507013-5.2+1/t	MUMERC MAXING DE ITERACIONES = "	, ITER: 2." HIMMIN''I	
	SRITELSI SISISIS	ELEMENTOS L'INEALES	111111111111	
	\$\$!*E_\$!*1111111	WHERE HE VECES QUE SE SUAVITARA	GEELELET''S	
	30131712.2-0 :			
	50°011 3.3+415	La ALUMI, SUDIA, "	tarearas.,1	
a the second state of the second state of the				
		and the state of the second state of the secon	an an an an Ann	an marine and an an star
	and and an end	an a		
and the standard stands				n e ser en same de la composition. La composition
		terre de la problema		

END: \$1:=-1]-\$1\$11-\$1414-\$-\$3/44211.13t 12(++)+5+1(1-3)+14-5-1)/+1((L,2)/ 53:=11-314(1+518(R+5-11/447(L,51; 341211-414(1+3)212-6-11.45[[1,4]] 55:=:)- iffitt(:-)/[157..... Sesa-1+Rists-- 2131-121212......... 37:*11-14th: | #11+31/2122.,721

WRITELNI'VALOR DE R = ",RI; WRITELAN WALDA DE E * ',AS) WRITELAN COALDA LE * ',AS) WRITELAN COALDA E E * ',SS: WRITELAN COALDA E E * ',SS: WRITELAN COALDA E E * ',LS; FOR 1:=1 10 8 20 SEGIN

31: **): \$2:=0: \$32=0: \$4:=0; 35: #0: 56: = 7; 571 = 01 58: =0:

WRITELNI'SAFIETO PUNCTEN SHOPE'IS

\$1,32, 50,54,35,56, 57,52: REAL;

UAD SEST

ł

THETELN SHAPE AN TEALS IN TEALS IN MATPLES IN INTEREPANTEN.

INICIA \$7:00 10 V SHAPE

i Na

1

i

!

En2:

TELEPANCIA = ". TOL: 0:4." MITELME' INFIIII 44111111111 SGTOIY (8, 3+5); WITELSt' 1222231 TIRANTE AGUAS ARRIBA + *. #EAD:215.* 607317 (3, 3+a); uRITEL #1'33511116 TERANTE AGUAS REATO * ', TERSALIZ: 2. " filfetet*); GOTOIN(9, 3+7); 54513 STILLIADO * '.OD:215.' WETELMI'SISSIES 1111111111111111 601CIV:9.J+81: MITELNI'MINITTE ANCHO SEL CANAL = ".ANCHO: 2:2." second 111'); 40T017'3, J.+**; #17FLW: 1111111 MUMERO DE ELEMENTOS + ".NELN." 11111111111111 SCT017-3, 3+1011 WEITELM: INTERES NOMERO DE NODOS » ", KRODE, " man's 50721718,2+1111 50701**5.2+121: #RITELYS TPRIME CUALGUIER TECLA PARA CONTINUAR PEPEAT UNTEL REPORTS I'VE

3

3

à 3 •

4

#17EXT VMLDR CE 51 = ',511; #17EXT VMLDR CE 51 = ',527; #17EXT VMLDP 05 52 = ',527; #17EXT VMLCP 05 53 = ',501; #17EXT VMLCP 05 54 = ',501; #17EXT VMLCP 05 54 = ',551; #17EXT VMLCP 05 54 = ',551; #17EXT VMLCP 05 54 = ',571; #17EXT VMLCP 05

3

1

1

5

3

;

```
END;
```

¢

٢

t

INICIA PROCELIMIENTO PARA LA GENERACION

DE LA MALLA

PROCEIVIRE MALLAS

```
VAR
```

3651X

ł

ŝ

11, UT, IY, UT, II, K1, K2, K3, K5, K6, SHE1: INTEGER: M. BI. F.RI. SMT: REAL! WHITELS ("EMPLETE PROCEDIMIENTO MALLA"); 101111 Wifer?: NUTLISA 45 VEASTALS MUNTI=NRAS/NRASI+1: l:=1: REPEAT 1:=!-##ASY; 2011 124MASI FOR LET: TO MMASY IC RESIN 10KY:=XXY+XY[]]-1; ĐC; Wil:+Wil+1: HNY1=4017+1; HODE: -WEITHNY: WRITELN('NAI = ',NUI); WRITELN('NNY = ',NUY); WRITELWI'ND. DE HODOS = ', HNODE); HELN: +0: FOR 11=1 TO MMAS DO BEG1N HELM:=KELM+2#(HEET1-1)#(KYE13-1); EX0; WRITELNING, OF ELEMENTOS . ", NELMA 3 WILL:=XHCDE-4XY+1: IF ITEP1 + 1 THEM 32511 WEEV END:

INICIA LA SEVERACION DE DOCADENARAS LOCALES

```
SE POALIZA EL MAPEO DE COOPDEMADAS LOCALES
                                                                          3
                 A CECEPTRADAS SLODAL 25
                                                                          3
                                                                          ì
                                                                          1
WEITELMI'MAPED COOPCEMADAS LOCALES & COORDENADAS GLOBALES');
                                                                             3
K: 10;
5:=2:
Iterts
REFEAT
         -K11=11-1;
         IF [1=1 THEN
                  10111
          ELSE
                  ¥3:+2;
         FOR IN:*K3 10 MIC111 00
                  BESIN
                           FOR JITT TO WARY DO
                                     BESIN
                                              Landerty
17 Jan THEN
                                                        111
                                              71.5E
                                                       (2)*4)
                                              FCP IT:=== TO NYEJ1 CO
                                                       92514
                                                                 1111111
                                                                 ir*(25#1.7,11:
                                                                1005014,114+3HAPE/COORLER,11,2005114,21,4,214
1018014,214+3HAPE/2008108,11,2018114,21,4,214
```

```
Istivatasy;
Latic Clamas;
Aritelatic = (182)
```

Ż

1

ENDI

```
END;
```

DY:=2/(XY[J]-1); IF J=1 T4EN K2:=1 EL3E

r

```
ELTE

K2:+2;

YT+-1:

723 | f+=22 t0 \V(1) 0

SESIN

K1<6+1;

COORL(K,1):=UI+014([K-1);

COORL(K,2):=UV+094(]Y-1);

ED0;
```

1

```
MRITELM('MRICIA GENERACION DE COORDEMADAS LOCALES');

X:=0;

1:=1;

0EFEAT

0FFEAT

1:=1;

1:=1;

0EFEAT

1:=1;

1:=1;

0EFEAT

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;

1:=1;
```

WRITELN('COORLI', C, ', 1] + ', COORLEK, 1], ', 'COORLI', K, ', 2] = ', C

COPLIK, 211;

WRITELK(' '); WRITELV('COC#GE';K,',1] + ',ECORD(K,1],' ','COC#P(',K,',2] = ',C

CORDIX, IJ); J

-4

4

. (

7

:

114:

1741

ŝ

111

END:

à

3

1

3

ENCE Els=Il+NUSEY; UNTIO EL1 MUSS;

INICIA EL BLAVIDAPIENTO DE LA PED

22/7211 04.3 1942124 200018 11 17 10500(3) 728 70 Liss 10 05010 30 EESIN Viremai-2; Xiremai-2; Kiremai-2; FOR 1:=1 10 41 33 BEGEN

43:#73+33 F07-3:#1 75 X1 35 P07-3:#1 75 X1 35 PEELS

*T#*T*18 20082070.11##161086641-1.11-20186687-0.11-20185640-484,11-20180640484.11

COURDEND. 231***COURDEND+1, 23+COURDEND+1, 21+COURDEND+N+, 23+COURDEND+N+, 23

ENC; INT;

SEFINICISM DE NORDE POR ELEMENTO

WRITELNI' SE DEFINEN LOS YODOS POR ELEMENTO "1: Isti REFEAT ELENTI. 11:+0; ELEMII. 23:=0: ELEME :+:.13:*0; ILE#[[+:.2]:=0; 11=!-:: INTE CARLES \$5:=11 ¥5:=1: I:=i: REFEAT ZIMI. Isefe RPU.II.ed-Web GMI.TISHI-I .1.1-1..... WE. 6.D.L...

```
ELENII+(,1)+*5+MM*+);
ELENII+(,2)+#5+);
ELENII+(,2)+#5+MM;
MATTELNIELENII+(,1),'',ELENII+(,2),''',ELENII+(,3));
MATTELNIELENII+(,1),'',ELENII+(,2),''',ELENII+(,3));
ESI+T5+MM;
ESI+
```

à

1

```
K1:="6+1;
K2:==K6+1;
NN11:=NN11+1;
EN0;
I:==1-2;
```

```
UNTIL DHELM
```

:

PROCEDINIENTO PARA LAS CONDICIONES DE

```
FRONTERA
```

```
PROCEDURE BNORTS
```

```
/44 -
=1: 4884¥ [[...]006] 08 3841
Val2: 481
```

```
14611 723.1
1333, 63411 (312622)
```

```
BESIN
```

í

ŧ

```
WRITELNI' SE ASIGNAN LAS CONDICIONES DE FRONTERA 'II
VAL1:=0.0;
1:*1:
REPSAT
       VALICITIEN
        1:=1+1:
UNTIL INNIGRE;
1:*1:
REFEAT
        VAL2:11:=30/AKCH0;
        heith;
UNTIL LONNODE:
K:=KNODE-WHY+1;
KONT:=1;
leri:
REPEAT
        30Y(KONT1:=1;
        B[1]:=VAL1810000000;
        KONT:=KONT+1:
        1:=[+#KY;
 3712 194
(Ek:+0;
I:==#KY:
SEPEAT
        KFK1=FCX+1:
        SDY()CaT1:=1:
        BET 1: #VAL 11 :F#1#10000000:
        40HT:== 04T+11
        L:=I*NMT:
 INTE INVOTE:
```

50;

ł

ł

ŧ

ŧ

FUNCION NISAL

3

ž

3

3

3

;

١

;

1

\$

3

3

FUNCTION MINALIVECITVECT; MPTS:INTEGER): INTEGER;

I: INTESEF; XDIF.WIMAITEMP: INTESER:

REFLA

ENQ:

i

(

ŧ

(

1

VAR

ł

;

{

vAR

MRITELM(' USANDO NETMAI '); MINATEMP:=TVEC(1); FOR 1:=210 MFT5 DO BESIM VEDF::#RIA4TEMP:=TVEC(1); ; # AI[= <) THEN V:=AIEMP:=TVEC(1); EV:

NINALIANINALTERP: WRITELM: SERMIND NIMAL ();

FUNCION NIMALL

(N 55570,0,635360) FUNCTION NIMAII(IVEC):IVEC3; NPTS:INTEGER): INTEGER;

> 1: INTEGER; NDIF1,NIMIITEMP: INTEGER;

8E61N

HeitElaf USANCO ATASI '1; MIMAIILEA:SIVECICI; SJ IVET VYES 20 SEGV (JIF::=VIAAITEAP-IVECICI; (F VIA: / 0 THEN (SVIE) / 0 THEN (SVIE) / 0 THEN

END; 11141::=#[#41:TEMF:

AFT.FERS TEAHING START T

ENC:

```
HEEN

HITELMI' GEAGO MIN '1)

HITELMI' GEAGO MIN '1)

HITELMI' GEAGO

'1)

HITELMI' TEAMNO MIN '11

ALTELMI' TEAMNO MIN '11
```

(; 3E4L:

FUNCTION MINIA, B. C: REALIS REALS

and the second second

FUNCTION NON

ens;

ĩ

ĩ

ł

٢

64R

```
IN

VR[]ELN(* USARCO YATI *);

I=*1;

IF 1 C B THEN 1:=0;

IF 1 C C THEN 1:=C;

AUI1=2;

MUTELN(* TERNINO RAII *);
```

DEGIN

(

٤

II PEAL;

VAR

FUNCTION MILLIA.B. C: REALIS REALS

FUNCTION MALL

DIC:

: ; ;

(

ŧ

ť

ŝ

:

:

¢

t: INTEGER;

VAR

FUNCTION MALIA, S: INTEGERI: INTEGERI

3

ì

ŝ

i

1

4

)

3

١

3

3

1

1

ł

FRECEDIAIENTO PARA GENERAR LA

١

1

1

1

٩

1

• }

2

1

1

١.

1

2

3

MATRIZ LCCAL

PROCEDURE ELENCO:

VAR

1

t

ŧ

đ

4

LC2.LC7.Y1.LC3: REAL; DDYPT: INTESER; AE_DCTAC.ACCA: REAL; YL1.YL2.T1.Y1.T2.Y2.C3.T3.YL1.SL2: REAL; IJN: [V*1527]

36621

1

1

FELTING FELTINEFELTIN FELTINEFELTIN WRITELANT TERFING TON FLETCT

ENC:

APITELYL' EXPLEIA EL PPOLEDIALENTO ELENZO 13; #RITELNL' VA A EMPETAR LA SEMERACION DE LA MATRII LOCAL 13;

11:=CSGRD[ELER[],1],1]; WRITELWI'ELENII,13 ',ELENII,13); WRITELS("11 =", 11); Y1:=COGROLELEN(1,11,2); WRITELN/'ELE*[1,11 ',ELE*[1,11); ##1"EL4(**1 #1.41)1 Altered and altered altered and alter 8807EL8/172 #1,7031 HADELM (2 44444) 13:+COUPGELEMEL, 03,10; HROTELMINELEMEL, 03 7,2284(1,00); 48:TELMINELEMEL, 03:; Co-2000222421,01,01 WRITELN" ELEMET, 31 ",ELEMET, 3111 WRITELNI'YS #1,YGH:-DETJACI=(11Y2-/3)8(11-G))-((12-13)8(Y1-Y3)3); APEA: SETJAC. 21 WATELSS AFEA +1 AREATS AE:+1/14448E+1: WRITELNI'AE +', AE'; KEL1,11: AE#((Y2-*3))(Y2-Y3:-(13-12))(13-12)) KEL12.23:=46\$1(Y3-f1)1(Y3-f1)+(11-13)1(11-13)); KEL13,11:+AE1((Y1-V2)1:Y1-Y2)+(12-11)1(12-11)) KELC1, 21:=#E#1(Y2-Y31#1Y3-f1)+(13-12)#(11-13)); KEL[1,3]:=AEt((Y2-Y3)t(f1-Y2)+(13-(2)1(12-11)); XEL12, 31: #4E#1(Y3-4); \$(Y1-Y2)+(\$1-T3)\$(\$2-\$1)); sEL12.11: *SEL:1.23: KEL13,13:=KEL11.71; XEL13, 21: =< E.12, 75:

```
FUNCTON
            201
```

,

)

\$ i

3

2

•

3

ş

1

3

```
FUNCTION DOTIE, F: AB; N, KKEL, KKLI: INTEGERT: REAL:
```

```
VAR
        In INTEGER
```

DOTTERP: SEAL:

```
FEGIN
```

ŝ

٢

Ċ

: i

```
WITER' SANDO DOT '
```

```
DOTTEMP:=0.0;
li=1:
REPEAT
     DOTTERP:=COTTERP+TELKKK11#FEFKL111:
     CX1:+0X1+1;
     KC.:==(1:1+1;
     1:=!+1;
WTIL I > st
DOT: - DOTTEMP:
```

```
50:
```

ŧ t

(

1

1

```
FUNCTION
            2073
```

VAR

REG IN

EXO; ł

ŝ

ŝ :

144

1

FUNCTION DOT: IE: AD; 7: AD1; N, JR1, IS1: INTEGEN): REAL;

I: INTERED:

DETTEMPI: REAL!

DOTTERF1:=0.07 II=1; REPERT

WRITELNE" USANGO DOTI "11

TR1= 171 +11 1511-151-1; 1:=[+]; UNTEL E > No NOTI: DOTTERPI;

FUNCTION MINE ALES INTERENT INTEREST

A: INTEGER:

BOTTEMP1:=COTTEMP1+(ELSP1)(FIIS1));

FUNCTION VIAL

```
REGIN
WRITELM('USANOO MIME')
Teat
IF I > 5 THEN (1=8;
MINII=1;
WRITELN('TEFMINO MIMI');
END
```

PROCEDINIENTO PARA RESOLVER EL SISTEMA DE ECUACIONES

`\$

3

}

3

\$

```
PROCEDURE ACTOR
```

¥.

¢

ć

¢

1

1

1

4

.

```
742
      SALIR, MAL, BACKS BOOLEANS
      DE TEALS
      NEGIN
    HRETELSI' INICIA SOLUCION DE LAS ECUACIONES "IL
                                                         5
   AFACI= TRUE
   BACK1= TRUET
   381=01
   FOR 7:=: 10 14055 DC
       Hilly
            IN STREET
            74:10-19:
            Bel-Beat
            15 124-21 2 3 THEY
              3E5:N
                   LF AFAC THEN
                     BESIN
                          His-J-11
                          -1-2.2-2:
                          15:=40146113-11:
                                                           3
                                                           1
          REDUCE TOCAS LAS ECUACIONES EXCEPTO LA DIAGONAL
                                                           )
                                                           3
                                                           1
                          FOR 1:=15 TO IE DO
                              26514
                                  IR:sID:
                                  10:=40145(1):
                                  18:=#IN1(10-IR-1,1-IS+1);
                                   IF IH > O THEN
                                     BEGIN
                                         KKX:*K-IN
                                         KK1:=10-1H:
                                         ALKSI=ALKS-DOT (A, A, IH, KKK, KKL) ;
                                          WRITELSI'SC', F. 'Is . ALKID:
                                         *:={+:;
                                     Enga
                              END:
                      283
                TESUCE
                            11-2-54
                   T 442 465
```

erste IR:+JR+1: 1E: -JE-1; Ka=1-10: FOR 1:+19 10 15 30 REGIN KKI:=**1: ID:=JDIAG(KXR); IF A(ID) () C THEN REGIN D:=A(1); ACI3:=ACI3/ACI93; ALJOI:=ALJOI- DIALII; WRITELE('AC', J3, 'J= ', ACJD)); EXC: EXC: 6 C;) 3 REDUCE EL LADO DERECHO DE LA SCUACIÓN ŝ 1 2 IF BACK THEM PESIN BLJ3:=ELJ1-BOT1 (A, B, JH-1, JR+1, IS-1); WRITEL#('St', J, ']= ',B(J1); ĐO R:577 £KC1 IF (24-2) = 0 THEN 6ESIN . 17 4FAC THEN 101 IR:=JR+1; 1E:--7-1; K1=3-32: FOR 11=19 TO 1E 20 85618 Witter (+); 101=1016514KK1: IF ACIDE () O THEN DESIN D:=A[]]; 4717: #4713/67101: ALCOI: #ALIO1-DUALII: WRITELNS'AL', JD. 'I= '.ALJEIII £101: EKØ: 3 3 REDUCE FL LADO DERECHO DE LA ECUACIÓN ì 2 ż ENDI IF BACK THEN 9E51N 3673+2571-2071 (A.B. 28-1, CR+1, 15-1); #RITELN'SC',., 1= ',3[]]]; 1 EXD: JR:+Jb: ENDI LIF (JH-2) Besin) THEN JR1=001 END:

ES2:

1

1

ŧ

٠. t

î

ŧ

t

ł

ł

t

(

ŝ

```
DIVIDIA ENTRE PIVOTES DIAGONALES
     FOR 1s=1 TO MMODE DO
          RESIN
               ID: =JBIAGITI:
              IF ALIBS () & THEN
                  22511
                       $111:=P(1)/A(10):
                        WRITELN('B(', I, '!= ', B(I));
                  END
         2321
             SUSTITUCION HACIA ATRAS
       WRITELN: SUSTITUCION HACIA ATRAS'I
      11:01
      JI MAQDE
      78:+10146133:
     PEPEAT
           8:=8(3);
           ]:=]-1;
]R:=]D[46[]];
            JDJR:=JD-JE;
            IF (3 > 01 THEN
BESTN
                     17 2237 > 1 THEN
                       5E634
                            15:=3-30+3=+1;
                            r.1=2k-15+11
                            FOR 11-15 TO 3 20
                                 SEGIN
                                      KKK:=1+C:
                                      BLID:=BLID-AUNKLID;
                                      WRITELK('BC',1,'1*'',8113);
                                 END:
                       END;
                     JD:=IR;
               ENG
            FI SF
                2011
       1017.0
             (d c b) Gi (G = 3);
 210:
 t
 ۲
            REVISA LOS ERRORES CON RESPECTO A LA TOLERANCIA
 t
 t
 i
- FORETION MAXOPROPIL (ABI) DII, DII: DODI: (PEAL)
 722
         HANDATO, MANDRI, 42 PEALS
 3E51V
         WRITELSU' USANDO MANOF
         tesa65/091:011:1:1.
```

122

3

4

3

3

;

3

3

3

4

1

1

111

1

ł

ť

1

```
FOR 1:=2 TO MMAS-L DO
   BEGIN
       IF I C ARSIDPIOLITIES THEN IN ARSIDPICALITIES
       IF 1 < ABS(DP1(D2)([])(MAY1) THEN 1:-ABS(DP1(D2)([])(MAY1))
   END:
IF I ( ABSIDPILD211114MY)) THEN 1:=ABSIDPILD211134MBY1);
IF I ( ABS: BPI(D1: (KHAS))) THEN I: ABS(CPI(D1)(MHAS)));
MITTIN
MR I TEL XI
            REPEAT
UNTIL READ/ET > " :
                                                    ١
```

```
EX$:
```

£

ł

ŧ

ć

UAD

4

PROCEDIMIENTO PARA REVISAR LOS VALORES OBTENIDOS

PROCESSOE REV_PRES

.;r=0;

REPEAT

```
$Y33,6Y3,0Y2,0Y1,9,Y1: ANRAY [1,.1000] OF REAL;
927, M0907, W0003, 82, 81: 8731;
B: ARRAY .1... 10001 DF INTEGER
V2, V3, ALFA, SI11, S11, DU, H, D1: REAL:
814, 21, 424, 400017, 405013, 4047: INTEGER:
```

28511

ARITELANT SCH FEVISADOS LOS VALORES OFFENIDOS TO: 901×39/ARC:01 H==:00000000,23+((100/100000000,2)-2000001,23))=(00/10000000000,23))/(216)); MRITELW('N = ',8);

١

١

3

```
Dill:=Willit:
     3:=3+1;
     REPEAT
           IF J=1 THEN
               BEG10
                    IF (MI.11 MOD 2) =0 THEN
                       DESIN
                           ¥3:=(%1(1/2):
                      ÐŬ
                   ELSE
                       BEGIN
                             V3:=(((U)(1)-1)/2)+1)+
                       Đă:
               EKO
            ELSE
                BEGIN
                     0[31:=0[3-11+(MB[2]-13;
                     IF INITED HER DI NO THEN
                        BESIN
                             V3:=((#1())/2)+0(J-1))
                        END
                     ELSE
                         BEGIN
                              /5==(()(EC3-1)+2)+0[3-17)+
                         EN2:
                END:
            1050
```

```
V2:=V3ENNY:
          REPEAT
          DICJ1:=XXY$[1;
[1:=11+1;
[VT1L:D1CJ] = V2) GR (D1CJ) - V21;
     UNTIL (01(33 + V2) CR (01(33 > V2))
UNTIL (2 ) HMAS) GR (2 = HMAS);
02(1):=W1(1):
FOR 1:=2 TO #MAS-1 DO
   8551W
        02013:=0201-13+1#2011-191
   END:
M60517:=01[1]:
N02011:=02113100*;
Y16N023173: =: 06601809017.21;
Y1[H000131:=C0020[H00013,21:
YEM020171: =: (8(M000171-8(M00017-11)) / (Y11M050171-COORDEM02017-1,2)))
V[KCC013]:+(18(KCC012]-91N00013-1))/(V1[KC0013]-C00R0[KC0013-1.2]));
0P1#020171:=3;
2FLMC5017711H-V1CKC50171-44VEN0D01714VEN0D017337(216)11
#FITELNE'SPC', N00017,"1= 1,0PEN00017331
SPENDOB101: =U:
#RITELM("DP(",MCC013,")= ",DP[MCC0131);
FOR 1:=2 TO MPAS-1 DO
    REGIN
        #0007[1]:=01[1];
        NCD03(1):=02(1)#NMT:
        /1[x3037[1]]:=C3089[W0007[1],2];
         r1(N00071173)=000406400003611,21;
         +1405011111=++*SINCO031131-FENDC5111-130/*Y11400030771-COURDEMOS05272-1,2307
         1F14033711226 = 11
        CPENDED3(111:+0)
         PF(#0003(1)):=H-11(#0003(1))-((V(#0003(1))*V(#0003(1)))/(246));
        WRITELWI'DPI', HODODIID, 'J: ', OPINCEODIID);
    ENC:
40"A7:=01144453:
111 NOMA71: +COCKDENGMA7.71:
VENCHA7):=:(5[HOHA7]-B[NORA7-1])/(Y1[NORA7]-COORD[NONA7-1,2]));
EP[ #0#A71:=0;
DP[ND#A7];=#-/:[NC#A7]-(19[#C#A7]$VENC#A7]}/(215));
WPITELNI'OP[',SCHAT,']: ',SP[NOMA77);
ARTIECH!!
            REPEAT
UNTIL READERCO"':
MAICF1:=MAICP(DP, 01, 02);
WRITELN( VALOR ABSOLUTS MAXIMO DEL ERFOR = ", MAIDPI);
9E613
     WRITELNI COPRISES EL VALCE DE DE CON UN ALFA DIFERENTE A * 1 *,*);
     WRITELNITST, TECLEA UN NUMERO "2"; NO, TECLEA CUALQUIER DIRO NUMERO "1;
     READISTID
     IF SUL + 2 THEN
        RESIN
            WRITELSCOAME EL VALOR DESEADO DE ALFA = "by
            AEADLANALFAI
        210:
     17 31 0 1 7454
       JE31N
            427494.5
        501
END:
 17 161021 : TOL THEN
   HENRY STATES
```

```
FOR 1:=: TO MMAS-: DO
            BEG18
                 D21(1):=02(1):00();
570(1):=(5471(0):1))*1(0)(1))*1(0)((1));
                 0Y2151(11)1=+(+:B(D1(1))-5(51(1)-1))#(B(B(1))-B(D1(1)-1))/(6Y3(1))-1);
                 BY1($1[1]]:=0:
                 BY1(B1(1)):=4(F44(BP(D1)))/BY2(B1(1)))
                 WRITELM: "DVIC", DIELD, "I* ", DVICBICIDD);
SVIDED:==GRVICB2VEDDI8×ICD2VEDD8×ICS2VEDD);
                 0Y2102YE113:+(*(#E02*E13)-BECZYE13-13+*(#E02*E13)-BEDZYE13-E313/(5Y33E13+)-E31
                 DY1[02Y11]];=0;
                 DY1(D2Y(1)):=ALFA8(0P(02Y(1))/0Y2(D2Y(1)))+
                 #GITELK(*3Y10*.32Y01).*1* *.3Y002Y011);
           END:
        017:=01(MAS):
        $Y2CD1Y1==(((BC21Y1-BC21Y-12)#(BL2CY1-ECD1Y-13))/(SEV1(D1Y1EY1(D1Y1EY1(D1Y1)))-1);
        971(017);=:::
        BYILDIY1:=ALFAX:OFIDILWN4511/DY2(D11XMA511);
        WRITELY: 'DYIL', DICHMAS:, 'J= ', DY: (DILWHAS) );
                      SPRIME CLALDUIER TESLA PARA CONTINUAR.
        WITELS("
        REPEAT
        MALE READIENCESS
        YE1, 4]: #EAS;
        YE1, 33:=CGORDID2(1):888, 23-04102(1):80043;
        YE1, 61:=((YE1, 21-YE1, 21)/2)+YE1, 21;
        YE1.73: -COOKDID:(11.2)-DY1[51(11):
        Y[1,8]:=(:Y[1,4]-Y[1,1])/2)+Y[1,1];
        IF MHAS > 1 THEN
           REGIN
                FOR 11+2 TO HEAR-1 00
                    HES:N
                         /11.31:=002F002010388(,23-04100003388();
                         *11.els*: (*(1.1)-*(1.20)/2)-*(1.2);
                         *[1.31:=*[1-1,=11
                         VE1, 71==COOPDED10113, 21-0V10010133;
                    ĐO;
                TINAS, 31:=TIPSAL;
                +13445, 21: +1 (Y(WAS, 11-Y)MAS, 21: /21+(1MAS, 21:
                VIWAS, 81:=+(**A5-1, 81:
                TENTAS, 71:=10080601048451, 21-071001(MRAS1);
                FOR 1:=2 10 MIAS DO
                    PESIN
                         111,4]:=1[1-1,3];
                    30:
           E:0:
  ĐĐ:
RITER
               OFRINE CUALCULEP TEELA PARA CONTINUAR.....
REPEAT
URTIL READVEY (?**)
                                                             1
```

)

PROCEDIMIENTO DE REPULTADOS

F*CCEDURE 3820.1

VAR IPISEALI

2

-

.

f

```
85514
       WRITEL' IMPRESION DE PESULTADOS EN PONTALLA IZI O IMPRESORA (1) 7 "):
      READIERS
              THEN
         165In
             WRITELAT' COMPRUESE QUE LA INPRESCRA ESTE PREPARADA");
             NPTTELM!"
                       SCPEAT
             UNTIL PERMEYON'S
             ASSIGNTEPPRESONA, "LPT1":
             SESET IMPRESCRAFT
             WPITELALST, "ITERACION + ", ITERIA;
WRITELN.LST, "VALOP RESCLUTO MALINO DEL ERROR + ", MAIDPI:2:5):
                                                                     3
             FOR LAST TO NAME TO
                6261N
                    #RITELS-LST, "D0053 (", D008011, 13:2:3.",", C00RD01, 23:2:3.") "," PSI* ",8013:2:3);
                E)IØ1
             ARTITELAT
                        REPEAT
             UNTEL REPORT INTO
         ENGT
       UP IP A C THEN
         BESTY
             ASSIGNER I (RESULTADGE);
             REVELTE (RESULTADOS) :
             WPITELRC'ITERACION = ', ITERIN
              WRITELN('VALOR ABSOLUTO MATIMO DEL ERROR = '.MAEDP1:2:51:
             FOR Is=1 TO NHODE DO
                RESIN
                    411.34
                    UNTER READ EN LIN
                640:
             CLOSE (*ESOL TADOS) ;
         END;
```

3

2

1

5

```
IF IP CO (1 OR 2) THEN EXITY
```

PROCEDIMIENTO GENERAL PARA EL ESANDLE DE LA

MATERE BLOBAL ISANDO LAS MATRICES LOCALES

PRECEDURE ASEMBLE

```
VAR
```

ŧ

1

1

1

ł

F1: AGRAY [1..:000] DF REAL: VALZ: AB: VALI: FEAL: KYALKONT: INTEGED:

t EN EL VECTOR SKYLIKE ŝ ł 3 ¢ BES:N WRITELKI" INICIA ASSEMBL CON LA LOCALITACIÓN DE LA DIAGONAL EN EL VECTOR "IN JD:/6[11:=1; FOR JUST TO MACHE 10 6E513 et in a fin FOR IS=1 TO NELR DO PEGIN FOR (1=1 TO NPE DO BESZN _ IF ELEVII,KIN THEN 2ESTN FOR KIS=1 TO WE DO RUN RDIFIKI::=ELEMII,K]-ELEMII,KIJ; DØ: HDIFICKTIJ: WIMAX (HDIF, KPE); KT1:=KT1+1; END: 242: Ð0; sit:=G1-1; TOR SHERAY ENDERST. CONS. J0145133:=J014513-13+1+LCGL; WRITELMI" TOLASE", 2, "1", 20146(71); 2 EO: ŧ t 2 INICIALIZACION DE LOS VECTORES 3 ť (3 ċ GUE CONTIENER & LA MATRIC ł i 1 4 3 WRITELAS' SE INICIALIZAN LOS VECTORES QUE CONTIENEN A LA MATRIZ "1 \$ KK:=JDIAGIJDADE): FOR Is=1 TO KY DO REFIX A[[]:=0:

1

1

3

All1:=0; ENG; FUR 1:=? TU VADE DO SESTM 3[]:=0; END;

t

ŝ

¢

ŧ

٤

ί

LOCALIZACION DE LA DIGEONAL

ENVIO | A FRACEDIMIENTO DIESY

WRITELNY' ENVIO AL PROCEDIMIENTO CONDICIONES DE FRONTERA (BRDIV) '); BUDRY: WRITELAL' RESPETO DEL PROCEDIMIENTO CONDICIONES DE FRONTERA (SNORY) "):

4

1

1

3 1 3

ENSAMPLE DE LA MATRIZ SLOGAL

1

1

ě

1

,

٢

ł

(

Ċ

ç

t

1

ł

```
WRITELMI' SE EMSAMBLA LA MATRIZ GLOBAL ""IL
           FOR INAL TO HELP DO
                       36514
                               WRITELM! ENVIO & ELEMOD "De
                                                                                               3
                             ELEM2D;
                               WRITELVI' REGRESO AL ENSAMPLE DE LA MATRIZ SLOBAL 'D:
                                                                                                                    3
                              FOR LL:=1 TO MPE DO
                                             SEGIN
                                                        LIN-ELENT, LL1;
                                                        JJ:=JDIAGILIJ;
                                                        4817614(*33=301466*,11,*3= *,33);

WRITELN(*13=101466*,11,*3= *,33);

WRITELN(*13=6664(*,1,*5*,11,*3= *,61);

ACJJJ:=ACJJ3*KELCLL,LL];
                                                                                                                       ,
                                                        MCJJYMCJYKELCLELTY
WRITELM(*AC,JJ,(2 AC,JJ,')KEL(',LL,',',LL,') ',ACJJ)
WRITELM(*KEL(',LL,',LL,') * ',KEL(LL,LL))
STL1):=SLL1)=FEL(LL)
                                                        WRITELM('81',L1,'1+81',L1,'1+FEL1',LL,'1 ',8(L1))
WRITELM('FEL1',LL,')= ',FEL1L1);
                                             END:
                             115+=*4416E2*61,12,512*712,22+;
215+=12148(*102-428-50E*61,12-4EE#61,12+;
4(3123+=4(3123+#E261,23);
                              *131=#44:ELEAC1.11.ELEACT.31):
                              J13:=JD146(#13)-405(ELEM(1,1)-ELEM(1,3));
                              M23:=5A1(ELEMI1.23.ELEMI1.31):
                              JZD: = J2145(H251-485(ELEN(1,21-ELEN(1,31);
                              40101:=40101-KE_01,01;
                              ALJ233:*AL3233+KEL12,33;
                             #IJIJJ##IJIJ##IJIJ#
#RITEL#('A[J]2]# ',A[J]2]);
#RITEL#('A[J]3]# ',A[J]3]);
#RITEL#('A[J23]# ',A[J23]);
                                                                                               }
                      EU:
 APITELAN' TERMINO ASE BL 'IT
                                                                                                 )
£1121
                 .
(
                                                                                                    3
                                                                                                    1
                                   SCOCESSING SPERCESSING
                                                                                                    •
                                                                                                    1
                                                                                                    1
35611
           CLRSCR
           OUTSTNTA:
           SEPENT
                       CLRSCF:
                       HALLS AUE:
                       AFACCHATRUES
                       WEITE
                      PRES JATOS
                       1751:10:
```

```
REPEAT
    17691:=176R1+1:
    HALLAR
    WITELS, The
    WRITELNI'REAL: ZANDO CALCULOS'I;
    WRITELN(" ');
    ASENSL:
    42103.;
    REV PRESS
    RESUL:
UNTIL "ITERI DE ITERI DE «TOL DE MAIOPIDE
HRITELIII'
            TEPEAT
UNTIL READSEMINT;
                                                           2
WRITELMI'REALIZAS DIPA CORRIDA (SI TECLEA ELL / VO TECLEA CUALGUIER MUMERO )
                                                                       11:
                                                                   .
READISIDE
```

۰,

UNITIL SI CO 1; END.

Ŀ 0 D D

DEBULTADOS LULIERICOS.

4.1 INTERPRETACION

En este capítulo se presentem primeramente las tablas 4.1 a 4.3 con los datos usados en los análisis realizados con el modelo de computadora, en dichás tablas se tiene lo siguiente:

-Tipo de régimen aguas arriba del escalón -Tipo de régimen aguas abajo del escalón -Tirante aguas arriba del escalón -Tirante aguas abajo del escalón -Gasto utilizado -Número de elementos maestros en dirección "Y" -Número de elementos maestros en dirección "X" -Pendiente do la plantilla del canal -Coordenadas de 8 nodos por elemento maestro, considerando primero en dirección "X", despues en dirección "Y"

Posteriormente se observan las tablas 4.4 a 4.6 en ellas aparece primero una tabla resumen de la información más importante proporcionada al modelo, dentro de esta información se tienen algunos datos que no aparecen en las tablas 4.1 a 4.3, debido a que estos se pueden variar para la realización de diferentes

pruebas, por ejemplo se pueden tener diferente número de divisiones en la dirección "X" por elemento maestro; las divisiones en la dirección "Y" deben ser las mismas en todos 109 elementos maestros para que exista una continuidad, también se puede variar el número de veces que se guiera suavizar la red. Otro de los datos susceptible a cambios es el de la tolerancia de error máximo que se desea obtener con el modelo. Después de la tabla resumen se muestra un listado de los resultados obtenidos numéricamente, por cuestiones de espacio sólo se presenta la última iteración, que cumple con la tolerancia de error elegida, en este listado se puede distinguir una columna compuesta por coordenadas de los nodos resueltos, en la columna siguiente se muestra el valor obtenido de """ en cada nodo resuelto. Posteriormente aparecen los resultados obtenidos en forma gráfica pudiéndose observar el comportamiento de las líneas de corriente en el canal antes, sobre y después del obstáculo (ver gráficas 4.1 a 4.3) tomando como base estas gráficas se puede realizar una mejor comparación con los resultados teóricos y experimentales. (ver graficas 4.4 a 4.6 con los resultados teoricos). Finalmente aparecen las tablas 4.7 a 4.9 en las que se observan los datos iníciales del análísis numérico contra los resultados finales. La escala vertical de la gráfica esta ampliada en el caso del flujo subcrítico-subcrítico un 3,703.7%, en el caso del fluio subcrítico-supercrítico un 1,666.7%, en el caso del flujo supercrítico-supercrítico un 2,525.3% en comparación a la escala horizontal, para poder apreciar los resultados, en lo que respecta a la escala horizontal esta se deformo en las cercanias del obstáculo con un 200%.

				TABLA	NO. 4.1				
					an an an Araba. An Araba an Araba an Araba	n in de la calaga. L'élister d'atér			
	REG	MEN SUE	acameo • s	SUBCRITICO					
GASTO = Q	X3 M3/SE	a			1.1			다는 말씀이 ? 같은 말씀이 ?	
TIRANTE AG	UAS ARI	PICA = 0.290	51 14						a terra e Geografia
TRANTE AG	UAS ABI	AUCI = 0 268	вм				i indiana india	Maria Adam	
NUMERO DE		NTOS MAES	STROS EL D	FECTION Y	°≈1			et i serie i	
NUMERO DE	ELEME	NTOS MAE	STROS EL D	RECCION	= 5				
So = 0.0007						•			
				r		·		· · · · · ·	
COORDERADA	َ ب	1	2	3	4	5	6	7	e
x	1)	2130	2139	0	1.07	2139	104	
Y	1	0 0063	0.0048	0.2936	0.2951	0.0056	01492	0 2943	C 1
x	2	2139	2 2 4 4	2 2 4 4	2.139	2.181	2.244	2191	2.1
Y	2	0 00-16	0.1097	0 2392	0.2938	0.0573	01745	0.2665	0.
x	3	2.244	2.49	2.49	2.244	2.367	2.49	2.367	22
Ŷ	3	0.1097	0 0046	0.2934	0 2392	0.0571	01489	0 2063	01
x	4	2.49	5.745	5.745	2.49	4 118	5.745	1118	24
Y	4	0.0046	0 0023	0.2911	0.2934	0.0034	0.1467	0 29922	014
x	5	5.745	9	- 2	5.745	7 373	8	7 373	57

TABLA No 4 2

GASTO = 0.0254/3/550 TRANTE AGUAS AE4/2A = 0.2894 M TRANTE AGUAS AE4/0 = 0.09 V NUMEFO DE ELEMENTOS MAESTROS EL DIRECCION Y = 1 NUMEFO DE ELEMENTOS MAESTROS EL DIRECCION X = 5 50 = 3.0009

. DORDERAZA		1	2	Э	4	5	8	7	8
×		0	2 202	2 202	0	1,101	2.202	1.101	0
	•	0.0061	0 0061	0 291 4	0.2934	0 0071	0.1488	0 2824	0.1508
	2	2 202	2.32	2.32	2 202	2.261	2.32	2.281	2.202
1	2	3 30061	0 1155	0 2415	0 291 4	0.0609	0.1785	0 2691	0.1458
۲.	3	2.32	2 438	2 438	2.32	2,379	2.438	2 379	232
¥.	3	0 1155	0 0059	0.0959	0 241 5	0.0603	0.0509	0.1688	0.1735
Y	1	2 2 4 3 7	5 710	5719	2 439	4.079	5.710	4,070	2.433
· · ·	1	0.0059	0.0029	0.0929	0.0053	0 0044	0.0479	0.0944	0.0509
¥	5	5719	9	9	5,719	7.259	8	7 359	5.719
¥	5	0.0029	0	0.00	0.0929	0.0015	0 045	0.0015	0.0479

TABLA No 4.3

REGIMEN SUPERCRITICO - SUPERCRITICO

AASTO = 2005 M3/SEQ TRANTE ACLICS AFRIBA = 0.2449 M TRANTE ACLICS AFRIBA = 0.2449 M NUMERO DE ELEMENTOS MAESTROS EL DIRECCION Y = 1 NUMERO DE ELEMENTOS MAESTROS EL DIRECCION X = 5 So = 2 0.07

COORDERADA	, , ,	1	2	3	4	5	6	7	8
X	1	0	2,2698	2 2663	Ó	1 1349	2 2026	1 1349	0
Ý	1	0,1530	01144	0 2063	0.2449	0.1327	0.1603	0.2256	01999
X	2	2.2608	2,329	2.323	2 2699	2.2929	2.329	2,2999	2,2696
Y	2	0 1144	01717	0 2707	0.2083	0.1431	0.2212	0.2385	0.1603
x	3	2,328	2.3362	2 3852	2.325	2.3571	2,3062	2.3571	2 322
Ŷ	3	0.1717	0.1124	0.2043	0 2707	01421	0 1578	0 2375	0.2212
×	4	2 3962	5.6931	5.6931	2 3362	4 0398	5.6931	4 0398	2 3062
Ÿ	4	0.1124	0.0562	0.1481	0 2043	0 0843	0 1021	0.1782	0.1583
x	5	5.0931	9	e	5.9931	7.3466	e	7 3466	5 6331
Y	5	0 0562	0	0,0919	0.1481	0.0294	0.0456	0.1200	01021

********** ******** ******** ****** *** DATOS EN " METROS Y SEGUNDOS " ***** ******* NXE 13 =9 NXE 23 =9 NXE 33 =9 NXE 33 =9 NXE 43 =9 NXE 53 =9 ******* ******* *** ******* ******* ******* ******* NYE 13 =9 ******* NUMERO MAXIMO DE ITERACIONES = 10 ******* ELEMENTOS LINEALES ********* NUMERO DE VECES QUE SE SUAVIZARA ******** ... ******* LA RED=0 ******* TOLERANCIA - 0.000010 ******* ******* TIRANTE AGUAS ARRIBA = 0.295 TIRANTE AGUAS ABAJO = 0.295 GASTO UTILIZADO = 0.030 0.295 *** ******* ******* ******** ******* ******* ANCHO DEL CANAL = 0.20 NUMERO DE ELEMENTOS = 640 NUMERO DE NODOS = 369 ******* ******* ******* ******* *******

TABLA 4.4

75

4.2

	general and the second second	and the second secon
ITERACION = 10		
COURD [0.000.0.006]	PSI= 0.000	
COORD [0.000,0.078]	PSI= 0.019 PSI= 0.038	
COORD [0.000,0.115] COORD [0.000,0.151]	PSI= 0.056 PSI= 0.075	
COOPD C0.000,0.1873	PSI= 0.074	
COORD [0.000,0.259]	PSI= 0.131	
COURD [0.000,0.295] COURD [0.268,0.006]	PSI= 0.150 PSI= 0.000	
COORD (0.268,0.042) COORD (0.268,0.078)	PSI= 0.019	and a start of the second start A start of the second start of t
COORD [0.268.0.115]	PSI= 0.056	
COORD [0.268,0.187]	PSI= 0.075 PSI= 0.094	
COORD [0.268,0.223]	PSI= 0.113 PSI= 0.131	
CODRD [0.268,0.295] CODRD [0.535.0.006]	PSI= 0.150 ⁻ PSI= 0.000	
COORD [0.535,0.042]	PSI= 0.017	a ser a Ser a ser
CDORD [0.535.0.115]	PSI= 0.056	
COURD [0.535,0.151] COURD [0.535,0.197]	PSI≖ 0.075 PSI= 0.094	
COORD [0.535,0.223] COORD [0.535.0.259]	PSI= 0.113 PSI= 0.131	
COORD C0.535,0.2951	PSI= 0.150	
COORD [0.803,0.042]	PSI= 0.019	
COORD 10.803,0.0783	F51= 0.038 F5I≖ 0.036	
COORD [0.803,0.151] COORD [0.803,0.187]	PSI= 0.075 PSI= 0.094	
CODRD [0.803,0.223]	PSI= 0.113	
COORD [0.803,0.295]	PSI= 0.150	
COORD [1.070,0.042]	FSI= 0.000 FSI= 0.019	
COORD [1.070.0.078]	PSI= 0.038 PSI= 0.054	
COORD [1.070,0.150]	PSI= 0.075	المرتبة المجتبة المنهوري أيشي المراجعات بيسالم الدروار
COORD [1.070.0.223]	PSI= 0.044 PSI= 0.113	
COURD [1.070,0.259] COURD [1.070,0.295]	PSI= 0.131 PSI= 0.150	
CODRD [1.337,0.005] CODRD [1.337,0.042]	PSI≏ 0.000 PSI= 0.019	
COORD [1.337,0.078]	PSI= 0.037	
COORD [1.337,0.150]	PSI= 0.075	
COORD [1.337,0.186] COORD [1.337,0.222]	PSI= 0.094 PSI= 0.112	
COORD [1.337.0.259] COORD [1.337.0.295]	PSI= 0.131 PSI= 0.150	
COURD [1.605.0.005]	PSI = 0.000	
CODRD [1.605,0.077]	PSI= 0.037 PSI= 0.037	
COORD [1.605.0.114] COORD [1.605.0.150]	PSI= 0.056 FSI= 0.075	
COORD [1.505.0.185]	PSI= 0.094	أحاجتها بمارية المراجعة المتحاذ فراجع المراجع
COORD [1.605.0.258]	FSI= 0.131	
COUND 11.805.0.2943	-51= 0.150	
	•	an an an an an an ann an Anna a Anna an Anna an
		and the second secon

		an a
CDORD [1,872 0.0051		
COORD [1.872.0.041]	PSI= 0.018	
COORD [1.872,0.077]	PS1= 0.037	
COORD [1.872,0.113]	PSI= 0.055 PSI= 0.074	
COORD (1.872,0.185)	PSI= 0.093	그는 것이 물건을 알았는 것이 많이 많이 있다.
COORD [1.872,0.222]	PSI= 0.112	
COORD [1.872,0.258]	PSI= 0.131	이 이 가지 않는 것 같은 것 같아요.
COORD [1.872,0.294]	PSI= 0.150 PSI= 0.000	
COORD [2.139,9.041]	PSI= 0.013	
COORD [2.139.0.077]	PSI= 0.029	그는 것은 물건을 위해 집에 많이 없다. 이번 문제가 있다.
COORD [2.139,0.115]	PSI= 0.047	
CODED (2.139.0.1951	PSI= 0.088	
CODRD [2.139,0.221]	PSI= 0,109	
COORD [2.139,0.257]	PSI= 0.130	
COURD [2,139,0,293]	PSI= 0.150 PSI= 0.000	
COUPD [2.152.0.054]	PSI= 0.014	이 사람은 승규는 것이라. 것이 많이 하는 것이 없는 것이 없다.
COORD (2.152,0.089)	FSI= 0.031	an an an an an an an an ann an Anna an Anna. An an Ann An an Anna Anna
COORD [2.152,0.125]	PS1= 0.051	
COURD (2.152,0.161)	PSI= 0.073 PSI= 0.084	그는 사람이 가격하는 것을 통해 모습이 많다.
COORD [2.152.0.233]	PS1= 0.117	- 그는 말에서 중심한 가슴을 물었다.
COORD [2.152,0.268]	PSI= 0.136	a service a service service service and the service service service service of the service service of the servi Service service
COORD [2.152,0.304]	PSI= 0.150	
COORD [2,165,0.031]	PSI= 0.000 PSI= 0.015	
COORD [2.165,0.101]	PSI= 0.034	그는 그는 그렇는 것 것 못 다 나는 것 같아.
COOPD [2.165.0.136]	PSI= 0.055	
COUPD [2.145,0.171]	FSI= 0.079	
COURD L. 165.0.2401	PS14 0,101 PS14 0,102	이 이 가지 않는 것이 아파 가지 않는 것 같아?
COORD [2.165,0.275]	PSI= 0.137	
COORD [2.165.0.310]	PSI= 0.150	
COORD [2.178,0.044]	PSI= 0.000	이 같은 것 같은 방법에 가지 않는 것 같은 방법이 있다.
COORD [2.178,0.111]	PSI= 0.036	
COORD [2.178,0.144]	PSI= 0.059	
CODED [2.178.0.177]	PSI≍ 0.083	
COORD [2.178,0.244]	PSI= 0.126	
COORD (2.178,0.277)	PSI= 0.141	
CDDRD [2.17B,0.310]	FSI= 0.150	
COURD [2,191,0.057]	PSI= 0.000 PSI= 0.017	이는 것 이 전에 가는 것은 것이 가지는 것은 것을 하는 것이다.
COORD (2.191.0.119]	PSI= 0.038	
CODRD (2.191,0.150]	PSI= 0.061	
COOPD [2.191,0.181]	PSI= 0.086	
CODED [2.191.0.243]	PSI= 0.128	
COORD [2.191.0.274]	PSI= 0.142	그는 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같이 없는 것 같이 없
COORD [2.191,0.305]	PSI= 0.150	그는 이번 가슴을 가지 않는 것을 하지 않는 것을 하셨다.
COORD (2.204.0.0781	PSI= 0.017	이 같이 있는 것은 것이 같이 많은 것은 물질 것을 알 수 있다.
COORD (2.204.0.127)	PSI= 0.039	
COORD (2.204.0.155)	PSI# 0.063	
CODED (2.204.0.185)	PSI= 0.087	가는 생활한 것을 주인 가슴이 지려올랐다.
COORD (2.204.0.237)	PSI= 0.129	이는 지 않는 것 같은 것 같은 것 같은 것 같이.
COOPD [2.204.).2671	FSI= 0.142	
COURD [2.204.0.295]	PSI= 0,150	그들은 물건 그는 것이 잘 가지 않는 것 같아요. 것 같아요.
COORD [2.217.0.1081	PSI= 0.000	그 그는 것을 가지 않는 것을 잡고 있었다.
COORD [2.217.0.172]	FS1= 0.040	
	n an an an a' an	e ta sun contra e construction e construction de la construction de la construction de la construction de la co Casa de la construction de la const
· · · · · ·	and the providence of the	چې درې د وې شو وو و کې د د وليد د مېکې کې و کې و د کې و د کې

i le le le					
14.1					
COORD	[2.217.0.157]	PS1= 0.064			
COORD	[2.217.0.2061	PS1# 0.087			
COORD	[2.217.0.230]	FSI= 0.128			
COORD	[2.217.0.255]	PSI= 0.142			
COORD	[2.231,0.097]	PSI= 0.000			
COORD	[2.231,0.117]	PSI= 0.019			
COORD	12.231.0.1371	PSI = 0.042			
COORD	[2.231,0.177]	PSI= 0.084			
COORD	[2.231,0.197]	PSI= 0.104			
COORD	[2.231.0.238]	PSI= 0.124 PSI= 0.140			
COORD	C2.231,0.258)	PSI= 0.150			
COORD	[2.244,0.110]	PSI= 0.000			
COORD	[2.244,0.140]	PSI= 0.024 PSI= 0.043			
COORD	[2.244.0.155]	PSI= 0.061			
COOPD	[2.244,0.170]	PSI= 0.078			그는 이는 물건이 가슴을 물었다.
COORD	[2.244.0.2011	PSI= 0.045			
COORD	[2.244.0.216]	PSI= 0.131			
COORD	[2.244,0.231]	PSI= 0.150			
COORD	(2.275.0.116)	PSI= 0.000			
COORD	[2.275,0.136]	PSI= 0.041			
COORD	[2.275,0.156]	PSI= 0.061			
COORD	(2.275.0.195)	PSI= 0.080			
COORD	(2.275.0.2151	PSI= 0.118			
CODED	[2.275,0.234] [2.275,0.254]	PSI= 0.136			
COORD	(2.305,0.065)	FSI= 0.130			
COORD	£2.305.0.1071	PSI= 0.020			
COORD	12.305.0.1311	PSI= 0.040			
CDORD	[2.305,0.178]	PSI= 0.081			
COORD	[2.305,0.202]	PSI= 0.101			
COORD	12.305.0.2251	PSI= 0.119 PSI= 0.136			
COORD	[2.305,0.272]	PSI= 0.150			
COORD	12.336,0.0701	PSI= 0.000			
COORD	12.335,0.0971	PSI = 0.019 PSI = 0.040			
C00RD	12.336,0.1511	PSI= 0.060			
COORD	[2.336,0.178]	PSI≠ 0.081			
COORD	12.336.0.2051	PSI= 0.101 PSI= 0.119			
COORD	[2.336,0.260]	PSI= 0.136			
COORD	[2.336,0.287]	PSI= 0.150			
COORD	(2.367.0.087)	PSI= 0.019			
COORD	[2.367,0.117]	PSI= 0.039			
COORD	[2.367,0.147]	PSI= 0.060			
COORD	[2.367.0.207]	PSI= 0.100			
COORD	[2.367,0.237]	PSI= 0.118			
COORD	[2.367.0.267]	PS1= 0.135			
20080	(2.398.0.044)	PSI= 0.150 PSI= 0.000			
COORD	(2.398.0.076)	PSI= 0.019			
COORD	[2.398.0.108]	PSI= 0.008			
COGRD	12.398.0.1773	FS18 0.038 PS18 0.079			
COORD	12.798.0.2051	PSI= 0.098			
				1 North 1	
			х на на -		and the second second
			- 1- 1- 1-		
					Marken Ward and Article

				·	ini ya Lini ta ng		an a	
COORD 12	.378,0.2371 .378,0.2701	PSI= 0.117 PSI= 0.135						
COOPD [2 COOPD [2 COOPD [2	428,0.3021 428,0.0311	PSI= 0.150 PSI= 0.000 PSI= 0.019			- 			
COORD C2	2.428.0.0791 .428.0.1331	PSI= 0.037 PSI= 0.057						
COORD [2 COORD [2	.428.0.1671 .428.0.2011	PSI= 0.077 PSI= 0.097						
COOFD [2 COORD [2	426,0.2353	PSI= 0.116 PSI= 0.134						
COORD 12 COORD 12	.428,0.0000 .459,0.0180	PSI= 0.150 PSI= 0.000 PSI= 0.017						
COORD 12 COORD 12	459,0.0883	PSI= 0.036 PSI= 0.055						
COORD CO	.459.0.1591	PSI= 0.074 PSI= 0.094					teriter (s. t. Sector (s. t.	
COORD [2 COORD [2 COORD [2	2.459.0.2301 .459.0.2651	PSI= 0,114 PSI= 0.132						
200RD 12	490.0.0053	PSI= 0.130 PSI= 0.000 PSI= 0.017						
COORD 12 COORD 12	490,0.0771	PSI= 0.034 PSI= 0.052			s seed. Seedaanse			
COORD [2 COORD [2	.490,0.149] .490,0.185]	PSI= 0.071 PSI= 0.071			n an an Canadairte Canadairte		nin an	
COORD [2 COORD [2	.490.0.2213 .490.0.2573	PSI= 0.130						
COORD CO	.897.0.0041 .397.0.0403	PSI= 0.000 FSI= 0.019					1. 	
COOFD (2)	.897.0.0773	FSI= 0.037 FSI= 0.036						
COORD [2 COORD [2 COORD [2	.897.0.1851 .897.0.2711	PS1= 0.075 PS1= 0.094 PS1= 0.115						
COORD C2	.897.0.2581 .897.0.2941	PSI= 0.131 PSI= 0.150	•					
COORD 13 COORD 13	.304,0.0041	PSI= 0.000 PSI= 0.019						
COORD 13 COORD 13	. 304,0.0773 . 304,0.1133	PSI= 0.037 PSI= 0.056 PSI= 0.075						
COORD CO	5.304.0.1861	PSI= 0.094 PSI= 0.112				المراجع متحمد الإلى		n de la constante de la consta En esta porte de la constante d
COORD CO	.304,0.258) .304,0.295]	PSI= 0.131 PSI= 0.150					e de Vela V	
COORD 13 COORD 13	.711.0.040]	PSI= 0.000 PSI= 0.019						
COORD C3	.711.0.1133	PSI= 0.056 PSI= 0.075						
COORD C3	.711.0.1841 .711.0.2221	FSI= 0.094 PSI= 0.113						
	3.711.0.2951	PSI= 0.131 PSI= 0.150 PSI= 0.000	1					
COORD C4	.118.0.0403	PSI= 0.019 PSI= 0.038	l.					
COUPD C4	.118.0.1133	PSI= 0.056 PSI= 0.075						
COORD [4	.118.0.2221	PSI= 0.007 PSI= 0.113 PSI= 0.131						
COOFD [4	.118.0.2951	PSI⇒ 0.150		· · .	n na ser			a parte de la construcción de la c Construcción de la construcción de l
						i se e Leonardos		
					a de la composición d			

00000 54 505 4 4454		
COORD [4.525.0.003]	PSI= 0.000 PSI= 0.019	
COORD [4.525.0.076] COORD [4.525.0.113]	PSI= 0.038 PSI= 0.056	
COORD (4.525,0.149) COORD (4.525,0.186)	PSI= 0.075 PSI= 0.094	
COORD [4.525.0.223] COORD [4.525.0.259]	PSI# 0.113	
COORD (4.525.0.296)	PSI= 0.150	
COORD 14.932,0.0391	PSI= 0.019	ال المحمد الذي يعام المراجع المحمد المحم المحمد المحمد
COORD [4.932,0.076]	PSI= 0.038 PSI= 0.056	
COORD [4.932,0.149] COORD [4.932,0.186]	PSI= 0.075 PSI= 0.074	
COORD [4.932,0.223] COORD [4.932,0.259]	PSI= 0.113	
COURD [4.932,0.296]	PSI= 0.150	그는 것 같은 것 같
COORD [5.338,0.037]	PSI# 0.000 PSI# 0.019	
COURD [5.338,0.076] COURD [5.338,0.112]	PSI≖ 0.038 PSI= 0.056	
COORD [5.308,0.149]	PSI= 0.075 PSI= 0.094	
CODRD [5.338,0.2221	PSI= 0.113	
COORD [5.338,0.296]	PSI= 0.150	
COORD [5.745,0.002]	PSI= 0.000 PSI= 0.019	
COORD [5.745.0.076] COORD [5.745.0.112]	PSI= 0.037 PSI= 0.056	
COORD [5.745,0.149]	PSI= 0.075	
COURD 15.745,0.2223	PSI= 0.112	
COORD [5.743,0.275]	PSI= 0.150	
COORD [6.152.0.002] COORD [6.152.0.039]	PSI= 0.000 PSI= 0.019	
COORD [6.152,0.076] COORD [6.152,0.112]	PSI= 0.038 PSI⇒ 0.056	
COORD [6.152,0.149]	PSI= 0.075	그는 것이 아이지 않는 바람이 가 있다.
COORD [6.152,0.223]	PSI= 0.113	
COOPD [6.152,0.296]	PSI= 0.131 PSI= 0.150	· · · · · · · · · · · · · · · · · · ·
COORD [6.559.0.002] COORD [6.559.0.039]	PSI= 0.000 PSI= 0.019	
COORD [6.559,0.075] CODRD [6.559.0.112]	PSI= 0.038 PSI= 0.056	
COORD [6.557.0.147]	PSI= 0.075	
COORD [6.559,0.223]	PSI= 0.113	
COORD [6.559,0.296]	PSI= 0.131 PSI= 0.150	그는 것 같은 것 같은 것 같은 것 같은 것을 가지 않는 것을 수 있다. 말했다. 말했다. 말했다. 말했다. 말했다. 말했다. 말했다. 말했
CODRD [6.966,0.001] CODRD [6.966,0.038]	PSI= 0.000 PSI= 0.019	그는 것 같은 것이 같은 물건물건물
COORD 26.966.0.0751	PSI= 0.038 PSI= 0.056	그는 그는 것이 많은 것이 많이 많이 많이 없다.
CODRD [6.966.0.149]	PS1= 0.075	
COORD [6.966.0.186]	FSI= 0.094 PSI= 0.113	· · · · · · · · · · · · · · · · · · ·
COORD [6.966.0.259] COORD [6.966.0.296]	PSI= 0.131 PSI= 0.150	
COORD 17.373,0.0013	PSI= 0,000	그는 것 같은 것 같은 것 같아요.
COOFD [7.373.0.075]	PSI= 0.038	
		그는 것에 비용하는 것이 많이
		이 승규는 것이 가지 않는 것 같아요. 같이 같이 같이 같이 같이 않는 것이 같이 많이 많이 했다. 말했다. 말했다. 말했다. 말했다. 말했다. 말했다. 말했다.
	and the second second	an a

			the second s
COOPD 17 373 0 1121	087- 0 054		ويقدر المراجع والمتوقي متراجع المراجع المراجع
COORD 17.373.0.1491	PS1= 0.038		
CODRD (7.373.0.1851	PSI= 0.094		
COORD [7.373,0.222]	PSI= 0.113		
COORD (7.373,0.259)	PSI = 0.131		
COORD [7.373.0.296]	PSI= 0.150		
COORD 17.780,0.0011	PSI= 0.000		
COORD [7,780,0.0741	PSI= 0.038		
COOPD [7.780.0.111]	PSI= 0.056		
COORD [7.780.0.148]	PSI= 0.075		
COORD (7.780.0.184)	PSI≕ 0.094		
COORD [7.780,0.221]	PSI= 0.113		
CDORD [7.780,0.258]	PSI = 0.131		
CODRD [7.780.0.295]	PSI= 0.150		
COORD (8.197.0.0371	PSI= 0.017		
COURD [8.187.0.074]	PSI= 0.038		
COORD [8.187,0.110]	PSI= 0.056		
COORD [8.187.0.147]	PSI= 0.075		
COORD [8.187,0.183]	PSI= 0.094		그는 것은 것은 물건을 가지 않는 것이다.
COURD 19.107.0.2201	PSI# 0.113		
COORD 18,187,0.2931	PSI= 0.150		and the second secon
COORD (8.593.0.000)	PSI= 0.000		
COORD [8.593,0.037]	PSI= 0.019		
COORD [8.593,0.073]	PSI= 0,038		그는 그는 것은 것이 많이 많다. 강화는 것이 없다.
COORD [8.593,0.109]	PSI= 0.056		ويكفر والمحاج والمتعمين والمتعاد
COURD [8.593,0.146]	PSI= 0.075		
COORD 18.595.0.1821	PS1= 0.094		
COORD (8.593.0.255)	FSI# 0.131		
COOFD (3.593.0.291)	PSI= 0.150		
COCRD (9.000.0.000)	PS1= 0.000		
COORD [9.000.0.036]	PSI= 0.017		
COORD [9.000.0.072]	PSI= 0.037		그는 것 같은 것 같
COOPD 19.000,0.1081	PS1= 0.035		
COORD [9.000.0.180]	PSI= 0.073		
COORD 19.000.0.2171	FSI# 0.112		an an an an an an an an Arang San Ara
COORD [9.000,0.253]	PSI= 0.131		
COORD 19.000,0.2891	PSI= 0,150		
			يونية المراجع المراجع المراجع المراجع
		and the second se	

*********	INFORMACION GENERAL DE LOS	**********	
********	ELEMENTOS	*******	
*********	***************************************	*********	
*******	DATOS EN " METROS Y SEGUNDOS "	*******	
********	NXC 11 47	*******	
*******	NXC 33 =9	*******	
*******	NX[4] =9	*******	
*******	NX[5] =9	*******	
*******	NYL 1J =9 NYIMERO MAYIMO DE ITERACIONES =		
111111111	ELEMENTOS LINEALES	*******	
*******	NUMERO DE VECES QUE SE SUAVIZARA	*******	
*******	LA RED=0	*******	
*******	TOLERANCIA = 0.000100	*******	
*******	TIRANTE AGUAS ARAJO a 0.090	*******	
111.1111	GASTO UTILIZADO =-0.015	*******	1
*******	ANCHO DEL CANAL = 0.20	*******	
*******	NUMERO DE ELEMENTOS = 640	*******	
********	NUTERU DE NUDUS = 369	*******	
	TARIA 45		
	TABLE 4.5		an gai

	ale di Antonio di Stata del Secondo de Secondo de Carlos de Secondo de Secondo de Secondo de Secondo de Second Secondo de Secondo de S
ITERACION = 10	사람이 가장 이렇게 잘 가지 않는 것이 같아.
COURD [0.000,0.008] PSI= 0.000	
COORD [0.000, 0.044] PSI= 0.016 COORD [0.000, 0.079] PSI= 0.031	이는 김 사람은 물건을 가운다.
COURD [0.000,0.115] PSI= 0.047	
COUPD (0.000,0.1261 PSI= 0.073	
COURD [0.000,0.222] PSIM 0.094 COURD [0.000,0.252] PSIM 0.109	
CODRD (0.000, 0.2911 PSI= 0.125	
COUAD (0.275.0.044) PSI= 0.016	
CCCFD (0.275.0.0791 PS1= 0.031 CCCRD (0.275.0.1131 PS1= 0.047	
COORD [0.275.0.151] PSI= 0.063	
COURD [0.275,0.186] PS1= 0.078 COURD [0.275,0.222] PS1= 0.094	
CCORD (0.275,0.258) PSI= 0.109	· · · · · · · · · · · · · · · · · · ·
COORD (1.550, 0.003) PSI= 0.000	
COUFP (0.530,0.043) PSI= 0.013 COURD [0.530,0.079] PSI= 0.031	
COOPD (0.550,0.115) PSI= 0.047	
COORD [0.550,0.186] PSI= 0.078	
COORD [0.550,0.222] PSI= 0.094	
10060 (0.550.0.293) PSI= 0.125	이 이 것이 같아. 아파는 것 같아. 나는 것을 같아.
CO2P1 C0.915, 0.0473 PSI= 0.015	
10060 ().212 (.079) / 214 (.031 50060 (0.876.0.1141 / PSIA (.047	
CGGRD (0.826.0.150] PSI= 0.062	
COCRD (0.826,0.196) PSI= 0.079 COCRD (0.826.0.221) PSI= 0.094	
CCCRD (0.325,0.2573 PSI= 0.109	
CREAD [1.101.0.007] PSI= 0.000	
COCRD [1.101,0.043]	
COOFD [1.101,0.114] P51= 0.047	
COCKD (1.101,0.156) FSI= 0.078	
COGRE 11.101.0.2017 PSI= 0.094 CCGRE 11.101.0.2071 PSI= 0.109	
CODF0 [1.101.0.273] PSI= 0.125	
20040 (1.376,0.043] PSI# 0.016	· · · · · · · · · · · · · · · · · · ·
COOFD 11.376.0.0781 FSI= 0.031 COOST 11.775.0.1143 PSI= 0.047	
CODED [1.375.0.120] PSI= 0.051	
COORD [1.375,0.221] PSI= 0.078	
COORD (1.074,0.257) FST# 0.109	
20052 (1.851.4.1) PSI= 0.000	
7808051.0042 - 2915 0.006 6608051076 25.50031	
UGCRD 11.521/0.1141 PCIM 0.047	
100000 (1210) 1071 (P31# 0.001	
10069 (1.53),(101) FB1= (.094) 100680 (1.55), 1023 FR4= (.005	
170FC 11	

C3RFD [1, 127, 0, 002] P31 • 0, 002 C3RFD [1, 127, 0, 042] P31 • 0, 012 C3RFD [1, 127, 0, 123] P31 • 0, 042 C3RFD [1, 127, 0, 123] P31 • 0, 128 C3RFD [1, 127, 0, 127] P31 • 0, 128 C3RFD [1, 128, 0, 128] C3RFD [1, 128,				
COURD [1: 477.0.0042] P21 0.012 COURD [1: 477.0.042] P21 0.012 COURD [1: 477.0.042] P21 0.012 COURD [1: 477.0.042] P21 0.012 COURD [1: 477.0.021] P21 0.023 COURD [1: 477.0.021] P21 0.023 COURD [1: 477.0.021] P21 0.023 COURD [1: 477.0.022] P21 0.023 COURD [1: 477.0.023] P21 0.010 COURD [1: 470.0.023] P21 0.012 COURD [1: 470.0.024] P21 0.013 COURD [1: 470.0.024] P21 0.014 COURD [1: 470.0.024] P21 0.045 COURD [1: 470.0.024] P21 0.04				
COUPD [1:177.0.000] #310 0.000 COUPD [1:177.0.002] #310 0.015 COUPD [1:177.0.002] #310 0.021 COUPD [1:177.0.105] #310 0.073 COUPD [1:177.0.107] #310 0.074 COUPD [1:170.0.107] #310 0.074				
COMPD [1:47, 0.002] F91 0.015 COMPD [1:47, 0.076] F91 0.015 COMPD [1:47, 0.185] F91 0.073 COMPD [1:47, 0.185] F91 0.073 COMPD [1:47, 0.185] F91 0.073 COMPD [1:47, 0.185] F91 0.073 COMPD [1:47, 0.185] F91 0.031 COMPD [1:47, 0.185] F91 0.041 COMPD [1:47, 0.185] F91 0.185 COMPD [1:44, 0.185] F91 0.185				
Largen Li, Arr. 6, 1937 PFE 0, 104 CGMP Li, Arr. 6, 1437 PFE 0, 164 CGMP Li, 477, 6, 1437 PFE 0, 164 CGMP Li, 477, 6, 1257 PFE 0, 164 CGMP Li, 477, 6, 1257 PFE 0, 162 CGMP Li, 477, 6, 1257 PFE 0, 162 CGMP Li, 477, 6, 1257 PFE 0, 162 CGMP Li, 277, 6, 1257 PFE 0, 162 CGMP Li, 277, 6, 1257 PFE 0, 162 CGMP Li, 277, 6, 1257 PFE 0, 104 CGMP Li, 202, 6, 1257 PFE 0, 104 CGMP Li, 277, 6, 1257 PFE 0, 104 CGMP Li, 277, 6, 1257 PFE 0, 104 CGMP Li, 277, 6, 1257 PFE 0, 145 CGMP Li, 274, 6, 0767 PFE 0, 145 CGMP Li, 274, 6, 1257 PFE 0, 145 CGMP Li, 274, 6, 1257 PFE 0, 145 CGMP Li, 274, 6, 1257 PFE 0, 145 CGMP Li, 274, 6, 1457 PFE 1, 3, 34 CG	c	JOFD (1.927.0.0061	FEI= 0.000	
COUND 1: 427:0; 1251 F31:0; 0,078 COUND 1: 427:0; 1251 F31:0; 0,011 COUND 1: 427:0; 1251 F31:0; 0,012 COUND 1: 427:0; 1251 F31:0; 0,012 COUND 1: 427:0; 1251 F31:0; 0,125 COUND 1: 427:0; 1251 F31:0; 0,125 COUND 1: 427:0; 1251 F31:0; 0,125 COUND 1: 427:0; 0,1251 F31:0; 0,125 COUND 1: 427:	0 OC	COPP [1.927.0.041]	PSI= 0.012 PSI= 0.071 PSI= 0.044	
C000P 01.977,0.2211 F31 0.097 C000P 01.977,0.221 F31 0.097 C000P 01.977,0.221 F31 0.010 C000P 01.020,0.037 C000P 01.020,0.041 C000P 01.020,0.041 C000P 01.020,0.0201 F31 0.041 C000P 01.021,0.0201 F31 0.041 C000P 01.021,0.0201 F31 0.041 C000P 01.021,0.0201 F31 0.040 C000P 01.021,0.0201 F31 0.040 C000P 01.021,0.0201 F31 0.040 C000P 01.021,0.0201 F31 0.040 C000P 01.021,0.0101 F31 0.040 C000P 01.021,0.0201 F31 0.012 C000P 01.021,0.0001 F31 0.021 C000P 01.021,0.0001 F31 0.021 C000P 01.021,0.0001 F31 0.021 C000P 01.024,0.0001 F31 0.021 C000P 01.024,0.0000 F31 0.021 C000P 01.024,0.00000 F31 0.021 C000P 01.024,0.0000 F31 0.021 C00	ō	COND 11.927,0.1493 COND 11.927,0.1853	PS1= 0.062 PS1= 0.078	
CCMAD 11.4C ²¹ , 0.15C1 P510 0.412 CCMAD 11.4C ²¹ , 0.15C1 P510 0.401 CCMAD 11.4C ²¹ , 0.15C1 P510 0.412 CCMAD 11.4C ²¹ , 0.15C1 P510 0.412 CCMAD 11.4C ²¹ , 0.15C1 P510 0.412 CCMAD 11.4C ²¹ , 0.15C1 P510 0.424 CCMAD 11.4C ²¹ , 0.15C1 P510 0.425 CCMAD 11.4C ²¹ , 0.15C1 P510 0	C C	OORD E1.927.0.2211 CORD E1.927,0.2563	FS1= 0.093 FSI= 0.109	
Lubbe L:::::::::::::::::::::::::::::::::::	C C	CORD 11.927.0.2923 30FD 12.202.0.0063	PS1= 0.125 PS1= 0.000	
Codes C: 2010, 0:203 PS: 0.073 CODES C: 2010, 0:203 PS: 0.073 CODES C: 2010, 0:203 PS: 0.093 CODES C: 2010, 0:203 PS: 0.000 CODES C: 2110, 0:207 PS: 0.000 CODES C: 2110, 0:207 PS: 0.001 CODES C: 2110, 0:207 PS: 0.077 CODES C: 2110, 0:207 PS: 0.074 CODES C: 2110, 0:207 PS: 0.012 CODES C: 2100, 0:207 PS: 0.012 CODES C: 2440, 0:207 PS: 0.027 C: 2450, 0:277 PS: 0.027 C: 2450, 0:277 PS: 0.027 C: 2450, 0:277 PS: 0.027 C: 2450, 0:277 P	ć	00RD [2:202,0:042] SORD [2:202,0:078]	PSI= 0.011 PSI= 0.025	
CODED [1:200; 0:203] 95: 0.109 CCODE [1:203; 0:251] 95: 0.105 CCODE [1:7, 0:353] 95: 0.105 CCODE [1:7, 0:353] 95: 0.001 CODED [1:7, 0:153] 95: 0.001 CODED [1:7, 0:153] 95: 0.004 CODED [1:7, 0:254] 95: 0.007 CODED [1:7, 0:254] 95: 0.007 CODED [1:217, 0:254] 95: 0.007 CODED [1:217, 0:254] 95: 0.007 CODED [1:217, 0:254] 95: 0.001 CCODE [1:217, 0:251] 95: 0.001 CCODE [1:217, 0:251] 95: 0.001 CCODE [1:217, 0:251] 95: 0.011 CCODE [1:217, 0:253] 95: 0.125 CCODE [1:217, 0:253] 95: 0.125 CCODE [1:217, 0:253] 95: 0.125 CCODE [1:217, 0:253] 95: 0.125 CCODE [1:216, 0:253] 95: 0.125 CCODE [1:240, 0:76] 95: 0.001 CCODE [1:240, 0:76] 95: 0.000 CCODE [1:240, 0:76] 95: 0.000 CCODE [1:240, 0:76] 95: 0.000 CCODE [1:240, 0:76] 95: 0.000 CCODE [1:240, 0:77]		00FD (2.202.0.1101 00FD (2.202.0.149) 00FD (2.202.0.1851	PS1= 0.041 PS1= 0.058 PS1= 0.075	
CCOPP [C.202]0.2523 PSI 0.125 CCOPF [C.217,0.203] PSI 0.011 CCOPF [C.217,0.207] PSI 0.425 CCOPF [C.217,0.104] PSI 0.425 CCOPF [C.217,0.104] PSI 0.425 CCOPF [C.217,0.104] PSI 0.425 CCOPF [C.217,0.104] PSI 0.410 CCOPF [C.217,0.104] PSI 0.410 CCOPF [C.217,0.104] PSI 0.410 CCOPF [C.217,0.104] PSI 0.410 CCOPF [C.217,0.064] PSI 0.421 CCOPF [C.217,0.064] PSI 0.421 CCOPF [C.217,0.064] PSI 0.421 CCOPF [C.217,0.064] PSI 0.421 CCOPF [C.216,0.076] PSI 0.421 CCOPF [C.244,0.076] PSI 0.421 CCOPF [C.244,0.077] PSI 0.421 CCOPF [C.244,0.077] PSI 0.421	C.	00RD (2.102.0.220) 20RE 12.202.0.2201	PSI= 0.093 PSI= 0.093 PSI= 0.109	
CCOFD [C.217,0.2007 P51= 0.012 CCOFD [C.217,0.104] 951= 0.042 CCOFD [C.217,0.104] 951= 0.077 CCOPD [C.217,0.107] P51= 0.077 CCOPD [C.217,0.2001 P51= 0.1105 CCOFD [C.217,0.2001 P51= 0.1105 CCOFD [C.217,0.056] P51= 0.125 CCOFD [C.217,0.126] P51= 0.125 CCOFD [C.217,0.126] P51= 0.125 CCOFD [C.217,0.126] P51= 0.125 CCOFD [C.216,0.057] P51= 0.125 CCOFD [C.216,0.057] P51= 0.125 CCOFD [C.246,0.047] P51= 0.125 CCOFD [C.246,0.047] P51= 0.125 CCOFD [C.246,0.047] P51= 0.125 CCOFD [C.246,0.047] P51= 0.125 CCOFD [C.246,0.105] P51= 0.125 CCOFD [C.246,0.200] P51= 0.111 CCOFD [C.246,0.200] P51= 0.112 CCOFD [C.246,0.200] P51= 0.112 CCOFD [C.246,0.200] P51= 0.113 CCOFD [C.261,0.141] P51= 0.000 CCOFD [C.261,0.141] P51= 0.001 CCOFD [C.261,0.141] P51= 0.002 CCOFD [C.261,0.141] P51= 0.004 CCOFD [C.261,0.141] P51= 0.002 CCOFD [C.261,0.141] P51= 0.002 CCOFD [C.261,0.141] P51= 0.002 CCOFD [C.261,0.141] P51= 0.004 CCOFD [C.275,0.141] P51= 0.042 CCOFD [C.275,0.141] P51= 0.042 CCOFD [C.275,0.141] P51= 0.044 CCOFD [C.275,0.141] P51= 0.044 CCOFD [C.275,0.141] P51= 0.042 CCOFD [C.275,0.141] P51= 0.044 CCOFD [C.275,0.141] P51= 0.044 CCOFD [C.275,0.141] P51= 0.045 CCOFD [C.275,0.141] P51= 0.045 CCOFD [C.275,0.141] P51= 0.045 CCOFD [C.275,0.141] P51= 0.045 CCOFD [C.275,0.141] P51	с собрание селото с с Сбласти селото с с	00RD 12.202.0.2921 DCRD 12.217.0.0201	FSI= 0.125 FSI= 0.000	
Coope 12: 1: 7: 0. 1:00 PS1= 0. 4:2 Coope 12: 2: 7: 0. 1:00 PS1= 0. 0:00 Coope 12: 2: 7: 0. 1:00 PS1= 0. 1:00 Coope 12: 2: 7: 0. 2:00 PS1= 0. 1:00 Coope 12: 2: 7: 0. 0:00 PS1= 0. 1:00 Coope 12: 2: 7: 0. 0:00 PS1= 0. 1:00 Coope 12: 2: 7: 0. 0:00 PS1= 0. 1:00 Coope 12: 1: 7: 0. 1:00 PS1= 0. 1:10 Coope 12: 1: 7: 0. 1:00 PS1= 0. 0:10 Coope 12: 1: 7: 0. 1:00 PS1= 0. 0:100 Coope 12: 1: 7: 0. 0:00 PS1= 0:00 PS1= 0. 0:100 Coope 12: 1: 7: 0. 0:00 PS1= 0:00 PS1= 0. 0:100 Coope 12: 1: 7: 0. 0:00 PS1= 0:00 PS1= 0. 0:100 Coope 12: 1: 0:	а С. 1919 г. – С. 1919 г. С. 1919 г. – С. 1919	00FD (2/217,0.0503 10FD (2.217,0.0673	PEI= 0.012 F8I= 0.025-	
COMP 12.217,0.2871 PS1= 0.074 COMP 12.217,0.2871 PS1= 0.110 COMP 12.217,0.2871 PS1= 0.120 COMP 12.217,0.2871 PS1= 0.120 COMP 12.217,0.2871 PS1= 0.000 COMP 12.217,0.063 PS1= 0.012 COMP 12.217,0.1521 FS1= 0.221 COMP 12.217,0.2531 PS1= 0.112 COMP 12.240,0.7537 PS1= 0.312 COMP 12.240,0.775 PS1= 0.312 COMP 12.240,0.1531 FS1= 0.257 COMP 12.240,0.1531 FS1= 0.257 COMP 12.240,0.775 PS1= 0.312 COMP 12.240,0.297 PS1= 0.312 COMP 12.240,0.141 FS1= 0.027 COMP 12.240,0.141 FS1= 0.027 COMP 12.240,0.141 FS1= 0.027 COMP 12.240,0.141 FS1= 0.047 COMP 12.240,0.141 FS1= 0.047 COMP 12.240,0.141 FS1= 0.047 COMP 12.201,0.141 FS1= 0.047 COMP 12.201,0.141 FS1= 0.047 COMP 12.201,0.141 FS1= 0.045 COMP 12.201,0.241 FS1= 0.045 COMP 12.201,0.241 FS1= 0.045 COMP 12.201,0.241 FS1= 0.0		22PD 12.217.0.1203 OORD 12.217,0.1543	PSI= 0.041. PSI= 0.050	
CCORD C2 217,0,2071 PSI= 0.000 CCORD C2 217,0,0031 PSI= 0.001 CCORD C2 217,0,00451 PSI= 0.012 CCORD C2 217,0,0761 PSI= 0.02 CCORD C2 217,0,1783 PSI= 0.02 CCORD C2 217,0,1783 PSI= 0.02 CCORD C2 210,01201 PSI= 0.02 CCORD C2 240,0,0747 PSI= 0.02 CCORD C2 240,0,0765 PSI= 0.01 CCORD C2 240,0,0765 PSI= 0.01 CCORD C2 240,0,0765 PSI= 0.02 CCORD C2 240,0,1055 PSI= 0.02 CCORD C2 240,0,1055 PSI= 0.02 CCORD C2 240,0,1055 PSI= 0.02 CCORD C2 240,0,1057 PSI= 0.02 CCORD C2 240,0,1071 PSI= 0.029 CCORD C2 240,0,1071 PSI= 0.029 CCORD C2 240,0,1071 PSI= 0.029 CCORD C2 240,0,1071 PSI= 0.029 CCORD C2 240,0,1071 PSI= 0.04 CCORD C2 270,0,0751 PSI= 0.04 CCORD C2 270,0751 PSI= 0.05 CCORD		00RD [2.217,0.187] 00RD [2.217,0.220] 00RD [2.217,0.254]	PS1= 0.077 PS1= 0.094 PS1= 0.110	
CCGFD C: 25:.0.0053 / File 0.012 CCGFD C: 25:.0.0763 / File 0.02 CCGFC C: 25:.0.1753 / File 0.02 CCGFC C: 25:.0.1703 / File 0.02 CCGFC C: 25:.0.1003 / File 0.02 CCGFC C: 26:.0.1053 / File 0.02 CCGFD C: 26:.0.0763 / File 0.02 CCGFD C: 26:.0.1041 / File 0.02 CCGFD C: 26:.0.0753 / File 0.02 CCGFD C: 27:.0.0753 / File 0.02	C	CORD (2.217,0.287) CORD (2.231,0.034)	PSI= 0.125 FSI= 0.000	
20055 01.251.01.723 9218 0.42 20055 01.251.01.723 9518 0.561 20079 01.251.01.203 9518 0.771 20079 01.240.01471 9518 0.772 20070 01.240.01471 9518 0.000 20070 01.240.01471 9518 0.037 20070 01.240.01471 9518 0.037 20070 01.240.01471 9518 0.030 20070 01.240.01471 9518 0.037 20070 01.240.01471 9518 0.037 20070 01.240.01471 9518 0.037 20070 01.240.01471 9518 0.037 20070 01.240.01471 9518 0.037 20079 01.261.01401 9518 0.045 20079 01.276.01731 9518 0.058 20079 01.276.01731 9518 0.045 20079 01.276.0173 9518 0.045 20079 01.276.0174 0.045 20079 01.276.0174 0.045 20079 01.276.0174 0.045 20079 01.276.0174 0.045 20079 01.276.0174 0.045 20079 01.276 0.047 20079 01.	2 C	CORD 21.231.0.0651 CORD 12.231.0.0963	PS1= 0.012 PSI= 0.725	
CLUES 11.021.01571 F510.010 CLUES 11.021.01571 F510.010 CCCF2 [C.251.0.250] F510 0.125 CCCF2 [C.251.0.250] F510 0.125 CCCF3 [C.240.0105] F510 0.027 CCCF3 [C.240.0105] F510 0.027 CCCF3 [C.240.0105] F510 0.025 CCCF3 [C.240.0105] F510 0.026 CCCF3 [C.240.0105] F510 0.026 CCCF3 [C.240.0105] F510 0.027 CCCF3 [C.241.0.067] F510 0.015 CCCF3 [C.241.0.067] F510 0.027 CCCF3 [C.241.0.067] F510 0.027 CCCF3 [C.241.0.107] F510 0.027 CCCF3 [C.276.0.117] F510 0.027 CCCF3 [C.2		CORD (2.271.0.1273 CORD (2.271.0.128)	991= 0.040 F51= 0.061	
CCCRD C1.251,0.2521 PS1= 0.125 CCORD C1.246.0.0471 PS1= 0.012 CCORD C1.246.0.1051 PS1= 0.027 CCORD C1.246.0.1631 P51= 0.042 CCORD C1.246.0.1631 P51= 0.053 CCORD C1.246.0.2001 PS1= 0.096 CCORD C1.246.0.2001 PS1= 0.096 CCORD C1.246.0.2001 PS1= 0.000 CCCRD C1.246.0.2101 PS1= 0.000 CCCRD C1.246.0.1141 PS1= 0.027 CCCRD C1.261.0.1141 PS1= 0.027 CCCRD C1.261.0.1671 PS1= 0.047 CCCRD C1.261.0.1671 PS1= 0.047 CCCRD C1.261.0.1671 PS1= 0.065 CCCRD C1.261.0.1673 PS1= 0.065 CCCRD C1.261.0.173 PS1= 0.065 CCCRD C1.261.0.173 PS1= 0.000 CCCRD C1.275.0.0791 PS1= 0.000 CCCRD C1.275.0.0113 PS1= 0.002 CCCRD C1.275.0.0113 PS1= 0.028 CCCRD C1.275.0.0113 PS1= 0.028		LEAD (2.221.0.157) DUMU (1.231.0.220) CERD (2.271.0.285)	8514 0.072 8514 0.095 8614 0.110	
COGED 12. 244.0, 0763 PSI= 0.317 COGED 12. 244.0, 1053 PSI= 0.347 COGED 12. 244.0, 1053 PSI= 0.342 COGED 12. 244.0, 1051 PSI= 0.342 COGED 12. 244.0, 1251 PSI= 0.096 COORD 12. 244.0, 0201 PSI= 0.097 COGED 12. 244.0, 0271 PSI= 0.007 CCGED 12. 241.0, 0671 PSI= 0.013 CCGED 12. 241.0, 0671 PSI= 0.047 CCGED 12. 241.0, 1673 PSI= 0.045 CCGED 12. 241.0, 240 PSI= 0.047 CCGED 12. 241.0, 240 PSI= 0.047 CCGED 12. 241.0, 240 PSI= 0.045 CCGED 12. 241.0, 240 PSI= 0.045 CCGED 12. 241.0, 240 PSI= 0.047 CCGED 12. 241.0, 240 PSI= 0.045 CCGED 12. 241.0, 1473 PSI= 0.045 CCGED 12. 274.0, 0473 PSI= 0.045 CCGED 12. 274.0, 0474 PSI= 0.045 CCGED 12. 274.0, 0474 PSI= 0.045 CCGED 12. 276.0, 1473 PSI= 0.045 CCGED 12. 277.0, 1474 PSI= 0.045 CCGED 12. 277.0,	0 0 0	CORD [1.151,0.151] CORD [1.251,0.263] BOED (7.246.0 0471	PSIE 0.110 PSIE 0.125 PSIE 0.000	المراجعة (1997) من المراجع (1997) من المراجع (1997). المراجع (1997) من المراجع (1997) من الم
CODYD [2.244,0.134] F51= 0.342 COORD [2.244,0.191] F51= 0.365 COORD [2.244,0.220] F51= 0.096 CODYD [2.244,0.249] F51= 0.111 COURD [2.241,0.275] F51= 0.125 CCCF5 [2.241,0.067] F51= 0.027 CCCF5 [2.241,0.140] F51= 0.027 CCCF5 [2.241,0.140] F51= 0.047 CCCF5 [2.241,0.140] F51= 0.047 CCCF5 [2.241,0.193] F51= 0.046 CCCF5 [2.241,0.193] F51= 0.046 CCCF5 [2.241,0.240] F51= 0.046 CCCF5 [2.241,0.240] F51= 0.046 CCCF5 [2.241,0.240] F51= 0.046 CCCF5 [2.241,0.273] F51= 0.046 CCCF5 [2.241,0.240] F51= 0.125 CCCF5 [2.241,0.147] F51= 0.125 CCCF5 [2.275,0.075] F51= 0.112 CCCF5 [2.275,0.147] F51= 0.125 CCCF5 [2.275,0.147] F51= 0.046 CCCF5 [2.275,0.147] F51= 0.046 CCCF5 [2.275,0.147] F51= 0.125 CCCF5 [2.275,0.147] F51= 0.147 CCCF5 [2.275,0.147] F51= 0.147	ing a second second g	GOFD 12.246.0.0763 COFD 12.246.0.1053	PSI= 0.012 291= 0.027	
COORD [2, 244, 0, 191] FSI= 0,096 COORD [2, 244, 0, 249] PSI= 0,111 CGDFD [2, 244, 0, 249] PSI= 0,115 CCOFD [2, 241, 0, 067] PSI= 0,000 CCOFD [2, 241, 0, 067] PSI= 0,002 CCOFD [2, 241, 0, 141] PSI= 0,027 CCOFD [2, 241, 0, 142] PSI= 0,047 COOFD [2, 241, 0, 173] PSI= 0,047 CCOFD [2, 274, 0, 173] PSI= 0,047 CCOFD [2, 274, 0, 173] PSI= 0,047 CCOFD [2, 274, 0, 075] PSI= 0,047 CCOFD [2, 274, 0, 075] PSI= 0,047 CCOFD [2, 274, 0, 075] PSI= 0,047 CCOFD [2, 274, 0, 147] PSI= 0,045 CCOFD [2, 274, 0	C	DDRD (2.246.0.134) CORD (2.246.0.165)	FSI# 0.045 FSI# 0.053	
COURD C1. 240, 0, 2497) FSIE 0.111 CCURT C2. 241, 0, 0611 FSIE 0.105 CCCR5 C2. 241, 0, 0671 FSIE 0.000 CCCR5 C2. 241, 0, 0171 FSIE 0.027 CCCR5 C2. 241, 0, 1171 FSIE 0.027 CCCR5 C2. 241, 0, 1171 FSIE 0.065 CCCR5 C2. 241, 0, 1171 FSIE 0.065 CCCR5 C2. 241, 0, 1171 FSIE 0.065 CCCR5 C2. 241, 0, 1171 FSIE 0.075 CCCR5 C2. 276, 0, 1171 FSIE 0.015 CCCR5 C2. 276, 0, 1171 FSIE 0.014 CCCR5 C2. 276, 0, 1171 FSIE 0.027 CCCR5 C2. 276,		OGRD [2.246,0.191] OGRD [2.246,0.220]	FSI= 0.080 PSI= 0.096	
CCCCG 12.224.0.00971 PSI= 0.013 CCCGG 12.224.0.00971 PSI= 0.027 CCCGF 12.234.0.1141 PSI= 0.027 CCCGF 12.234.0.10771 PSI= 0.0465 CCCCF 12.241.0.1271 PSI= 0.0465 CCCCF 12.241.0.2773 PSI= 0.0498 CCCCF 12.241.0.2773 PSI= 0.112 CCCFF 12.241.0.2773 PSI= 0.112 CCCFF 12.274.0.0773 PSI= 0.115 CCCFF 12.274.0.0773 PSI= 0.000 CCCFF 12.274.0.1171 PSI= 0.027 CCCFF 12.274.0.1171 PSI= 0.117 CCCFF 12.275.0.1171 PSI=		0080 12.248,0.2491 0080 12.245,0.2751 0080 12.245,0.2511	PSI= 0.111 FSI= 0.125 PSI= 0.000	
CCGFD 12.101/0110 PSI= 0.037 COGFD 12.101/0171 PSI= 0.065 CCGFD 12.261,0.1933 PSI= 0.062 CCGFD 12.261,0.2403 PSI= 0.098 CCGFD 12.261,0.2403 PSI= 0.112 COGFD 12.261,0.2731 PSI= 0.115 CCGFD 12.276,0.0793 PSI= 0.000 CCGFD 12.276,0.1473 PSI= 0.000 CCGFD 12.276,0.1473 PSI= 0.000 CCGFD 12.276,0.1473 PSI= 0.033 CCGFD 12.276,0.1473 PSI= 0.000 CCGFD 12.276,0.1474 PSI= 0.000 CCGFD 12.2767 CCGFD 12.2776,0.1474 PSI= 0.000 CCGFD 12.2767 CCG	000	CC5D [2.261,0.087] SCFD [2.261,0.114]	PSI= 0.013 FSI= 0.029	
CCCRD [C: 261,0.193] FSI= 0.086 CCOPD [C: 261,0.246] FSI= 0.112 CDOPD [C: 261,0.273] PSI= 0.155 COCRD [C: 276,0.075] PSI= 0.000 COORD [C: 276,0.076] PSI= 0.011 COORD [C: 276,0.076] PSI= 0.014 COORD [C: 276,0.147] PSI= 0.014 COORD [C: 276,0.147] PSI= 0.014 COORD [C: 276,0.147] PSI= 0.025 CCOFD [C: 276,0.147] PSI= 0.025	C.	CGFD 12.201,0.1401 GGFD 12.261,0.1671	PSI= 0.047 PSI= 0.065	
CCCCP C1.251,0.273 PSI= 0.125 CCCCP C2.276,0.0753 PSI= 0.125 CCCCP C2.276,0.0753 PSI= 0.000 CCCCP C2.276,0.1231 PSI= 0.017 CCCCP C2.276,0.1231 PSI= 0.027 CCCCP C2.276,0.1713 PSI= 0.027 CCCCP C2.275,0.0247 PSI= 0.027 CCCCP PSI= 0.027 CCCCP C2.275,0.0247 PSI= 0.027 CCCCP PSI= 0.027 CCC	21 D	CCRD [2.261,0.193] DOFD [2.261,0.220]	FSI= 0.082 FSI= 0.098	
CODR5 [C1275,0.0992] File D.014 POG5 (C1275,0.123) File D.024 CODR5 [C1275,0.123] File D.025 C2075 [C1275,0.171] File D.025 C206F5 [C1275,0.171] File D.025 C206F5 [C1275,0.114] File D.025 C206F5 [C1275,0.114] File D.025 C206F5 [C1275,0.114] File D.025 C206F5 [C1275,0.024] File D.015 C2057 [1275,0.024] File D.015 File	0 0	DOFD [2.261,0.246) DOFD [2.261,0.273]	PSI= 0.112 PSI= 0.125 PSI= 0.000	
CORE 12.176,0.1171 FELE 0.027 CORE 21.276,0.1171 FELE 0.027 CORE 21.276,0.1171 FELE 0.027 CORE 21.276,0.1171 FELE 0.02 CORE 21.276,0.2171 FELE 0.107 CORE 21.276,0.2171 FELE 0.107 CORE 21.276,0.2171 FELE 0.107 CORE 21.276,0.1101 FELE 0.107 CORE 21.276,0.1101 FELE 0.107 CORE 21.276,0.1101 FELE 0.107		DDRD (2.275,0.099) DDRD (2.275,0.099) DDRD (2.276,0.123)	791= 0.014 791= 0.014	
CDCFD (2.170,01:95)	i i i i i i i i i i i i i i i i i i i	COFD (2.276,0.1473) 2030 (2.276,0.1713	PHI= 0.020 PHI= 0.067	
C30665 (12.272.0.01247) * 78(= 0.117) 12057 (11.99.1) * 79(= 112) 12057 (11.99.1) * 79(= 112) 12057 (11.99.1) * 79(= 112) 12057 (12.270.0.100) * 79(= 112) 12057 (12.270.0.		DCR0 (2.276,0.195) BCRD (2.276,0.219)	AGI= 0.025 AGI= 0.000	
		3066 12.274.0.2473 2093 .1.276.3.2681	· 13(부 : 0/117) 문화1는 · 128	
	-	2072 (11:17//01:025) 2072 (11:17:00:110) 3815 55.556 (1:10)	9515 (1997) 9515 (1997)	
	· · · · ·			
		ta da anti- Maria da Angla da Maria		

	COURS 07 280 0 1871	001	
	COORD 12.290,0.1751	PS1= 0.075	이는 물건에 가장 관계를 가운다.
	COORD [2:290,0.197] COORD [2:290,0.219]	PSI= 0.089 PSI= 0.102	
	COORD (2.290,0.240) COORD (2.290,0.260)	PS1= 0.114 PS1= 0.175	
	COOFD 12.005.0.1021	PS1= 0.000	그는 것은 전 것은 말을 했다. 것
	300FD (2.305, 0.1411	PSI= 0.042	
	CODFD (1,305,0,120) CDDFD (1,305,0,179)	PSI≠ 0.062 PSI= 0.070	
	COORD (1.305,0.199) COORD (1.305,0.218)	PS1= 0.074	
	COD40 12.305.0.2073	PSI= 0.116	
	COOPD 12.720.0.1151	PS(= 0.000	
	CDGF0 (2.320,0.132) - 30GFD 12.320,0.144}	≻SI≖ 0.051 PSI⇒ 0.054	
	-COORD (1.120.0.156)	PSI= 0.072	
	17100 (1,714-0,279)	FEI= 0.004	한 동양은 물을 받을까. 그렇는 사람은
	CCC+0 (2.320.0.234)	751= 0.110 751= 0.115	
a sa ha sa sa	COORD 12.020,0.2513 COORD (2.005,0.1021	PSI= 0.125 PSI= 0.000	
전에 관계 관계 유수	COOPD 12.005,0.1191 COOPD 12.005,0.1191	PSI= 0.023	
	COORD [2.335.0.152]	PSI= 0.064	
	COORC (1.733.0.1951	⇒Si≏ 0.065	에는 집에 가지 않는 것이 같아. 아이들 것이 같아.
	- 10050 /1.002.0.0/10 - 30061 /1.002.0.1.2197	 PSI= 0.107 PSI= 0.107 	
		491 = 0.122	
	CECSB (2. 244,0.105)	FS1= 0.020	
	CJCFD 12. 249.0.1571	PS1= 0.040 PS1= 0.057	
	CD060 (1.749.0.1543 10060 (1.349.0.1703	PSI= 0.076 ASI= 0.091	· 사이가 이 이 가지 않는 것 같은 것 같은 것 같이 있는 것 같이 있는 것 같이 있다. 이 가지 않는 것 같이 있는 것 같이 없는 것 같이 없는 것 같이 없는 것 같이 있는 것 같이 없는 것 같이 있는 것 같이 없는 것 같이 없 같이 없는 것 같이 없 같이 없는 것 같이 않는 것 같이 없는 것 않는 것 같이 않는 것 같이 없는 것 같이 않 않이
	COCAP 11.349.3.1851 20080 (349.0.2071	PSI# 6.104	
	CGORD [2. 549,0.219]	PSI= 0.125	
	COOPD [2.364,0.074]	PSI= 0.009	
	-1000F5 12.064/0.1970 -200FD 12.764.0.1203	PSI= 0.027 PSI= 0.035	그는 일 것 해 가 걸 것 같아.
	COUPE C2.154,0.1391 COUPE C2.164.0.1551	FSI# 0.072.	
	COURD (2.364.0.1711	PS7# 0.102	
	45060 11.364,0.1873	PSI= 0.125	
	LUCYD E1.379,0.0611 20040 12.379,0.0761	PSI= 0.000 PSI= 0.017	이 지지 않는 것 같은 것 같은 것 같이 많이
	COCRD (2.379,0.072) COCRD (2.379,0.108)	PSI# 0.005 PSI# 0.053	
	COURD 21.379.0.1231	-31= 0.059 021= 0.059	
	01390 12.579,0.1841	PSI= 0.100	
	COOPD C2.277.0.1761 COOPD C2.277.0.1261	921+0.115 931+0.125	
	COURD 01, 194, 0.0471 COORD 52, 174, 0.0471	951= 9.300 241= 5 0	
	10053 AD. 794.4.4775		그는 그는 가지 않는 것 같아.
	1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 10000 - 10000 - 10000 - 100		그 홍말 가슴을 가 많 같아?
	100R0 02.174,0.1213		
	and the second		
and the first states			

L COMP (2, 294, 0, 152) FSI= 0,049 COMP (2, 294, 0, 152) FSI= 0,047 COMP (2, 294, 0, 152) FSI= 0,047 COMP (2, 498, 0, 042) FSI= 0,040 COMP (2, 498, 0, 042) FSI= 0,047 COMP (2, 498, 0, 042) FSI = 0,047 COMP (2					
LOBES (1, 24, 7, 158) CODE (2, 74, 7, 158)					
CLOBE C1 294,7,1257 PSI = 0.099 CCOPE C1 294,7,1257 PSI = 0.105 CCOPE C1 294,7,1257 PSI = 0.005 CCOPE C1 496,0.027 PSI = 0.005 CCOPE C1 496,0.027 PSI = 0.005 CCOPE C1 496,0.027 PSI = 0.007 CCOPE C1 496,0.027 PSI = 0.007 CCOPE C1 496,0.1201 PSI = 0.007 CCOPE C1 425,0.0021 PSI = 0.007 CCOPE C1 446,0.0021 PSI = 0.007 CCOP		(and the second		방송 영화 이 것이 같이 많다는 것이 같아. 영화 문제
Coope C: -74, 4, 4, 62 Coope C: -74, 4, 4, 62 Coope C: -74, 4, 4, 62 Coope C: -44, 4, 64 Coope C: -44, 4, 64 Coope C: -44, 4, 64 Coope C: -44, 5, 7, 7, 7 Coope C: -44, 7 Coope		COORD	12,394,9,1383	FGI= 0.099	이 가슴에 방송한 것 같아요. 그 아파 나는 나는 것을 수 없다.
County C. 400, 0, 00000 CCUPS C2, 400, 0, 0772 PS14 0, 0, 042 CCUPS C2, 400, 0, 0772 PS14 0, 0, 042 CCUPS C2, 400, 0, 0772 PS14 0, 0, 042 CCUPS C2, 400, 0, 0773 PS14 0, 0, 000 CCUPS C2, 400, 0, 0773 PS14 0, 0, 000 CCUPS C2, 425, 0, 0774 PS14 0, 0, 000 CCUPS C2, 425, 0, 0774 PS14 0, 0, 078 CCUPS C2, 425, 0, 0775 CCUPS C2, 425, 0, 077		COOPD	(2.194,0.168)	PSI= 0.125	
CCCRP C2 (1.1.06) 0.021 F31 0.030 CCCRP C2 (406,0) 0721 F31 0.030 CCCRP C2 (406,0) 0721 F31 0.030 CCCRP C2 (406,0) 0721 F31 0.030 CCCRP C2 (406,0) 1231 F31 0.030 CCCRP C2 (406,0) 1331 F31 0.030 CCCRP C2 (420,0) 131 F31 0.030 CCCRP C2 (420,0) 131 F31 0.030 CCCRP C2 (420,0) 131 F31 0.030 CCCRP C2 (420,0) 117 F31 0.030 CCCRP C2 (430,0) 073 F31 0.030 <tr< th=""><th></th><th>CODED</th><th>12,408,0.0000</th><th>PSI= 0.000</th><th></th></tr<>		CODED	12,408,0.0000	PSI= 0.000	
C (2007) C (2, 406, 0, 077) Psi = 0, 046 C (2007) C (2, 406, 0, 106) Psi = 0, 046 C (2007) C (2, 406, 0, 106) Psi = 0, 046 C (2007) C (2, 406, 0, 103) Psi = 0, 112 C (2007) C (2, 406, 0, 103) Psi = 0, 010 C (2007) C (2, 425, 0, 073) Psi = 0, 000 C (2007) C (2, 425, 0, 073) Psi = 0, 000 C (2007) C (2, 425, 0, 073) Psi = 0, 000 C (2007) C (2, 425, 0, 073) Psi = 0, 000 C (2007) C (2, 425, 0, 073) Psi = 0, 075 C (2007) C (2, 425, 0, 103) Psi = 0, 075 C (2007) C (2, 425, 0, 103) Psi = 0, 075 C (2007) C (2, 425, 0, 103) Psi = 0, 075 C (2007) C (2, 425, 0, 103) Psi = 0, 075 C (2007) C (2, 425, 0, 103) Psi = 0, 075 C (2007) C (2, 425, 0, 103) Psi = 0, 021 C (2007) C (2, 425, 0, 103) Psi = 0, 021 C (2007) C (2, 425, 0, 103) Psi = 0, 021 C (2007) C (2, 425, 0, 103) Psi = 0, 027 C (2007) C (2, 425, 0, 103) Psi = 0, 027 C (2007) C (2, 425, 0, 103) Psi = 0, 027 C (2007) C (2, 425, 0, 103) Psi = 0, 027 C (2007) C (2, 425, 0, 103) Psi = 0, 027 C (2007) C (2, 425, 0, 103) Psi = 0, 027 C (2007) C (2, 425, 0, 103) Psi = 0, 027 C (2007) C (2, 425, 0, 103) Psi = 0, 027 C (2007) C (2, 425, 0, 103) Psi = 0, 027 C (2007) C (2, 425, 0, 103) Psi = 0, 027 C (2007) C (2, 425, 0, 103) Psi = 0, 027 C (2007) C (2, 425, 0, 103) Psi = 0, 027 C (2007) C (2, 425, 0, 113) Psi = 0, 127 C (2007) C (2, 426, 0, 123) Psi = 0, 027 C (2007) C (2, 426, 0, 123) Psi = 0, 047 C (2007) C (2, 426, 0, 123) Psi = 0, 047 C (2007) C (2, 427, 0, 113) Psi = 0, 047 C (2007) C (2, 427, 0, 113) Psi = 0, 047 C (2007) C (2, 427, 0, 114) Psi = 0, 047 C (2007) C (2, 427, 0, 114) Psi = 0, 047 C (2007) C (2, 427, 0, 114) Psi = 0, 047 C (2007) C (2, 427, 0, 114) Psi = 0, 047 C (2007) C (2, 427, 0, 114) Psi = 0, 047 C (2007) C (2, 427, 0, 114) Psi = 0, 047 C (2007) C (2, 427, 0, 114) Psi = 0, 047 C (2007) C (2, 427, 0, 114) Psi = 0, 047 C (2007) C (2, 427, 0, 114) Psi = 0, 047 C (2007) C (2, 427, 0, 114) Psi = 0, 047 C (2007) C (2, 427, 0, 114) Psi = 0, 047 C (2007) C (2, 427, 0, 114) Psi = 0, 047 C (2007) C (2, 427, 0, 114) Ps		20052	[2.406.0.062]	PSI= 0.015	
Labor L. 1008 (1) 772 (1) 781 (2) 0087 CODED L1.406 (0) 133 (2) 781 (0) 125 CADED L1.406 (0) 133 (2) 781 (0) 125 CADED L1.406 (0) 133 (2) 781 (0) 125 CADED L1.405 (0) 133 (2) 781 (0) 125 CADED L1.405 (0) 133 (2) 781 (0) 125 CADED L1.405 (0) 133 (2) 781 (0) 026 CADED L1.405 (0) 143 (2) 781 (0) 026 CADED L1.405 (0) 143 (2) 781 (0) 026 CADED L1.405 (0) 143 (2) 781 (0) 027 CADED L1.405 (0) 143 (2) 781 (0) 147 CADED L1.405 (0) 147 (2) 781 (0) 147 CADED L1.405 (0) 147 (2) 781 (COORD	12.408.0.0771	PS1= 0.049	
CORRE C: 400, 01, 111 451 451 451 451 451 451 451 451 451		20080	12:408,0:0921	FSI= 0.065	
C200PU 11.406,0.1331 P31* 0.112 C200PU 11.406,0.1331 P31* 0.100 C200PU 11.472.0.001 P31* 0.000 C200PU 11.472.0.001 P31* 0.000 C200PU 11.473.0.001 P31* 0.000 C200PU 11.473.0.001 P31* 0.000 C200PU 11.473.0.101 P31* 0.000 C200PU 11.473.0.111 P31* 0.000 C200PU 11.473.0.0461 P31* 0.000 C200PU 11.473.0.060 C200PU 11.473.0.072 C200PU 11.446.0.001 P31* 0.072 C200PU 11.446.0.001 P31* 0.072 C200PU 11.446.0.001 P31* 0.072 C200PU 11.446.0.001 P31* 0.072 C200PU 11.259.0.0461 P31* 0.017 C200PU 11.259.0.0461 P31* 0.017 C200PU 11.259.0.0461 P31* 0.017 C200PU 11.259.0.0461 P31* 0.018 C200PU 11.269.0.071		CODAD	(2.402,0.1211	FSI= 0.047	
Lucing Li, 100, 10, 100, 100, 100, 100, 100, 100		20080	L2.408,0.1351	PSI= 0.112	
CCGRD 12.425.0.0531 F31= 0.050 CCGRD 12.425.0.0611 F31= 0.046 CCGRD 12.425.0.0611 F31= 0.046 CCGRD 12.425.0.0611 F31= 0.046 CCGRD 12.425.0.1711 F31= 0.047 CCGRD 12.425.0.1711 F31= 0.017 CCGRD 12.425.0.1711 F31= 0.017 CCGRD 12.425.0.1751 F31= 0.007 CCGRD 12.426.0.172 F31= 0.007 CCGRD 12.436.0.072 F31= 0.007 CCGRD 12.436.0.071 F31= 0.007 CCGRD 12.546.0.071 F31= 0.007 CCGRD 12.546.0.071 F31= 0.007 CCGRD 12.550.0.051 F31=		CODED	12.423.0.0203	PSI= 0.125	
CCCPS 12. 423, 0.041 PSI 0.046 CCCPS 12. 423, 0.071 PSI 0.046 CCCPS 12. 423, 0.071 PSI 0.046 CCCPS 12. 423, 0.071 PSI 0.075 CCCPS 12. 423, 0.071 PSI 0.075 CCCPS 12. 423, 0.072 PSI 0.075 CCCPS 12. 423, 0.072 PSI 0.021 CCCPS 12. 439, 0.073 PSI 0.027 CCCPS 12. 439, 0.075 PSI 0.027 CCCPS 12. 549, 0.045 PSI 0.027 CCCPS 13. 259, 0.045 PSI 0.027 CCCPS 13. 259, 0.045 PSI 0.047 CCCPS 14. 479, 0.015 PSI 0.047 CCCPS 15. 467, 0.015 PSI 0.025 CCCPS 15. 467, 0.015 PSI 0.025		CCORD	[2.420.0.034]	PS1# 0.015	
CCCCD DC. 425,0,0073 COMPD C2, 425,0,0073 COMPD C2, 425,0,0073 COMPD C2, 425,0,0173 CCCCD L1,473,0,0173 CCCCD L1,473,0,0173 CCCCD L2,438,0,0073 CCCCD L3,438,0,0073 CCCCD L3,447,0,0073 CCCCD		COOFD	22.423,0.9473	PSI= 0.030	
GOOND C2.423.0:093 PSI • 0.075 COOND C2.423.0:173 PSI • 0.075 COOND C1.433.0:175 PSI • 0.005 COOND C1.433.0:175 PSI • 0.005 COOND C2.435.0:0401 PSI • 0.001 COOND C2.435.0:0401 PSI • 0.011 COOND C2.435.0:0401 PSI • 0.021 COOND C2.436.0:071 PSI • 0.041 COOND C2.436.0:0001 PSI • 0.041 C		CCCFD	[2,423,0.075]	FS1# 0.062	그는 그는 것 같은 것 같은 것 같아요. 문제 문제 문제
CLUMD L1.423,31702 PS10,009 COMPD L2.423,1714 PS10,009 COMPD L2.423,1714 PS10,011 COMPD L2.438,0,044 PS10,007 COMPD L2.438,0,044 PS10,007 COMPD L2.438,0,044 PS10,007 COMPD L2.438,0,049 PS10,007 COMPD L2.438,0,040 PS10,007 COMPD L2.438,0,040 PS10,007 COMPD L2.448,0,046 PS10,007 COMPD L2.448,0,046 PS10,007 COMPD L2.448,0,046 PS10,007 COMPD L2.448,0,046 PS10,007 COMPD L2.448,0,046 PS10,007 COMPD L2.459,0,042 PS10,017 COMPD L2.459,0,044 PS10,017 COMPD L2.459,0,047 PS10,017 COMPD L2.459,0,047 PS10,017 COMPD L2.459,0,047 PS10,017 COMPD L2.459,0,044 PS10,017 COMPD L2.459,00000		COORD	[2.423.0.089]	°SI≠ 0.07E	
CCORD 12.323, 11.311 + 51.4 11.35 CCORD 12.323, 17.30 + 51.5 0.000 CCORD 12.423, 0.023 + 51.5 0.021 CORD 12.433, 0.065 + 51.5 0.021 CCORD 12.434, 0.072 + 51.5 0.021 CCORD 12.434, 0.072 + 51.5 0.021 CCORD 12.434, 0.065 + 51.5 0.021 CCORD 12.434, 0.065 + 51.5 0.021 CCORD 12.344, 0.068 + 51.5 0.021 CCORD 12.344, 0.068 + 51.5 0.021 CCORD 12.344, 0.061 + 51.5 0.010 CCORD 13.257, 0.071 + 51.5 0.070 CCORD 14.444 + 44		COORD	12.423.3.1933	PS17 0.095	
C200FD 12.423.4.761 + 510.000 C200FD 12.428.0.0227 C00FD 12.428.0.0237 C00FD 12.428.0.0237 C00FD 12.438.0.0237 C00FD 12.438.0.0237 C00FD 12.438.0.0257 C00FD 12.438.0.0257 C00FD 12.438.0.0257 C00FD 12.438.0.0257 C00FD 12.438.0.0257 C00FD 12.438.0.0257 C00FD 12.438.0.0257 C00FD 12.448.0.0257 C00FD 12.448.0.017 C00FD 12.448.0.0257 C00FD 12.448.0.017 C00FD 12.549.0.027 C00FD 12.559.0.007 C00FD 12.259.0.027 C10FD 12.469.0.027 C10FD 12.469.0.027 C1		CCORD	12.423.9.1511	-61- 0.125	
CODED 11.1.10.1.117 F21 = 0.021 CODED 12.438.0.021 CODED 12.438.0.0271 P51 0.027 CODED 12.438.0.0271 P51 0.077 CODED 12.438.0.0261 P51 0.077 CODED 12.438.0.0261 P51 0.077 CODED 12.438.0.0261 P51 0.021 CODED 12.550.0461 P51 0.021 CODED 12.259.0461 P51 0.021 CODED 12.469.0.021 P51 0.021 CODED 12.477.1.1221 P21 0.031 CODED 12.477.1		COOPD	12.473,0.0063	FSI= 0.000	ويستعر والمرد الأصحاب والمرجع والمرجح والمرجح والمرجح والمرجح والمرجح والمرجح والمرجح والمرجح والمرجح
COOPD C2.450,0.0461 F51 0.057 COOPD C2.450,0.0451 P51 0.077 COOPD C2.450,0.051 P51 0.077 COOPD C2.450,0.051 P51 0.077 COOPD C2.450,0.051 P51 0.077 COOPD C2.450,0.051 P51 0.075 COOPD C3.250,0.071 P51 0.076 COOPD C3.250,0.060 P51 0.078 COOPD C3.460,0.073 P51 0.078 COOPD C3.460,0.073 P51 0.078 COOPD C3.460,0.074 P51 0.078 COOPD C3.477,0.078 P51 0.078 COOPD C3.477,0		COOFD	12.408.0.0323	PSI= 0.010	이 이 이 가지 않는 것이 같은 것은 것은 물건을 물을 가 없을 수물
CODRD 12.458,0.0593 PS1: 0.057 CODRD 12.458,0.0593 PS1: 0.057 CODRD 12.458,0.0593 PS1: 0.067 CODRD 12.458,0.0593 PS1: 0.067 CODRD 12.458,0.0593 PS1: 0.067 CODRD 12.458,0.0593 PS1: 0.067 CODRD 13.458,0.0593 PS1: 0.067 CODRD 13.259,0.0151 PS1: 0.077 CODRD 13.259,0.0421 PS1: 0.078 CODRD 13.259,0.0421 PS1: 0.063 CODRD 13.259,0.0421 PS1: 0.063 CODRD 13.259,0.0421 PS1: 0.064 CODRD 13.459,0.051 PS1: 0.064 CODRD 14.477,0.051 PS1: 0.064 CODRD 14.477,0.051 PS1: 0.078 CODRD 14.47		COORD	[2.438,0.046]	FSI= 0.041	
COURD C. 423,00,0651 PSI= 0.007 CCCPD C. 423,00,0761 PSI= 0.107 CCCPD C. 423,00,0751 PSI= 0.112 CCCPT C. 2430,00,0751 PSI= 0.125 CCCPT C. 2440,00,0751 PSI= 0.042 CCCPT C. 2440,00,0751 PSI= 0.042 CCCPT C. 3440,00,0751 PSI= 0.042 CCCPT C. 3440,00,0751 PSI= 0.047 CCCPT C. 345,00,0751 PSI=		COORD	[2.438,0.059]	FBI= 0.057	그는 것 같은 것이 물란 감독을 즐근을 얻을 수 있는
CCCPP C: 422,0,0,073 PSi= 0.125 CCCP3 C: 422,0,0,073 PSi= 0.125 CCCP3 C: 422,0,0,073 PSi= 0.125 CCCP3 C: 424,0,0,073 PSi= 0.062 CCCP3 C: 444,0,0,073 PSi= 0.067 CCCP3 C: 444,0,0,073 PSi= 0.077 CCCP3 C: 444,0,0,073 PSi= 0.077 CCCP3 C: 454,0,0,073 PSi= 0.077 CCCP3 C: 454,0,0,073 PSi= 0.077 CCCP3 C: 454,0,0,073 PSi= 0.067 CCCP3 C: 455,0,0,073 PSi= 0.067 CCCP4 C: 455,0,0,073 PSi= 0.067 CCCP5 C: 455,0,0,073 PSi= 0.078 CCCP5 C: 455,0,0,073 PSi= 0.078 CCCP5 C: 455,0,0,042 PSi= 0.067 CCCP5 C: 455,0,0,042 PSi= 0.067 CCCP5 C: 455,0,0,042 PSi= 0.078 CCCP5 C: 455,0,0,044 PSi= 0.078 CCCP5 C: 455,0,044 PSi= 0.078 CCCP5 C: 455,0,044 PSi= 0.078 CC		CODRD	[2.438,0.085]	PSI= 0.089	그는 것이 아이들은 것이 같은 것이 많이
CODA C 12, 42, 6, 7, 72 C 2000 C 12, 42, 7, 77 C 2000 C 12, 42, 6, 7, 75 C 2000 C 12, 42, 6, 7, 75 C 2000 C 12, 424, 6, 75 C 2000 C 12, 424, 7, 75 C 2000 C 12, 424, 7, 75 C 2000 C 12, 424, 75 C 2000 C 12, 427 C 2000 C 14 C 2000		COCPD	52.402,0.0983	PSI≠ 0.107	
CCCFP [2, 348, 3, 312] 42 4 3, 41 CCCFP [2, 348, 3, 323] 42 4 3, 41 CCCFP [2, 348, 3, 325] 42 4 3, 41 CCCFP [2, 348, 3, 325] 43 4 3, 41 CCCFP [2, 348, 3, 325] 43 4 3, 41 CCCFP [2, 348, 3, 325] 43 4 3, 43 CCCFP [2, 348, 3, 325] 43 4 3 CCCFP [2, 358, 3, 45] 45 4 3, 43 CCCFP [2, 258, 3, 45] 45 4 3, 43 CCCFP [2, 258, 3, 45] 45 4 3, 40 CCCFP [2, 258, 3, 45] 45 4 5 4 4 4 4 4 4 4 4 5 4 5 4 4 4 4		SCORE	12.646.0.1122		
C2080 11. 848. 1011 4214 0.021 C2080 12. 848. 1011 4214 0.021 C2080 12. 848. 1021 9514 0.047 C2080 12. 848. 0.063 9514 0.047 C2080 12. 848. 0.063 9514 0.047 C2080 13. 859. 0.041 9514 0.045 C2080 13. 859. 0.041 9514 0.047 C2080 13. 859. 0.112 9514 0.047 C2080 14. 974. 0.041 9514 0.047 C20		CCCFP	12.349,0.0143	551= J.C.5	
CCCFD 12.626.0.3553 PS1= 0.062 CCCFD 12.626.0.3553 PS1= 0.072 CCCFD 12.8346.0.771 PS1= 0.074 CCCFD 12.8346.0.0701 PS1= 0.074 CCCFD 12.8346.0.0051 PS1= 0.007 CCCFD 12.550.0.0151 PS1= 0.0016 CCCPPD 13.259.0.0423 PS1= 0.047 CCCFD 13.259.0.0423 PS1= 0.047 CCCFD 13.259.0.0451 PS1= 0.047 CCCFD 13.259.0.0051 PS1= 0.006 CCCPPD 13.259.0.01141 PS1= 0.109 CCCPPD 13.259.0.01141 PS1= 0.109 CCCPPD 13.259.0.0312 PS1= 0.0016 CCCPPD 13.259.0.0321 PS1= 0.0016 CCCPPD 13.259.0.0321 PS1= 0.0016 CCCPPD 13.259.0.0321 PS1= 0.0016 CCCPPD 13.669.0.0321 PS1= 0.0047 CCCPP 13.669.0.0051 PS1= 0.0047 CCCPP 14.77.0.0051 PS1= 0.0051 CCCPP 1		C2050	12.845.1.355	PS14 (.).)	
LCDKD [C.346.C.77] / JI = 0.072 CCCKD [C.346.0.066] PSI= 0.054 CCCKD [C.346.0.066] PSI= 0.065 CCCKD [C.346.0.066] PSI= 0.065 CCCKD [C.325,0.046] PSI= 0.047 CCCKD [C.325,0.046] PSI= 0.047 CCCKD [C.255,0.047] PSI= 0.045 CCCKD [C.325,0.047] PSI= 0.045 CCCKD [C.325,0.047] PSI= 0.045 CCCKD [C.325,0.047] PSI= 0.045 CCCKD [C.325,0.047] PSI= 0.047 CCCKD [C.325,0.047] PSI= 0.047 CCCKD [C.346,0.013] PSI= 0.047 CCCKD [C.346,0.005] PSI= 0.047 CCCKD [C.347,0.105] PSI= 0.04		Cacab	(2.646,0.059)	PSI= 0.062	
LCCRD 1346.0.086. 7512 0.074 CCCRD 1346.0.086. 7512 0.074 CCCRD 13.259,0.0731 7512 0.031 CCCRD 13.259,0.0421 7512 0.047 CCCRD 13.259,0.0421 7512 0.047 CCCRD 13.259,0.0421 7512 0.047 CCCRD 13.259,0.0421 7512 0.046 CCCRD 13.259,0.0421 7512 0.047 CCCRD 13.259,0.0421 7512 0.047 CCCRD 13.469,0.0451 7512 0.047 CCCRD 14.477,3.0451 7512 0.047 CCCRD 14.477,0.052 7512 0.047 CCCRD 14.477,0.052 7512 0.051 CCCRD 14.477,0.052 7512 0.051 CCCRD 14.477,0.052 7512 0.051 CCCRD 14.477,0.052 7512 0.051 C		CODED	[2.348.0.072]	-31= 0.072	
COMPT C1.345,0.0153 PSIE 0.015 COMPT C3.259,0.0231 PSIE 0.031 COMPT C3.259,0.0231 PSIE 0.047 COMPT C3.259,0.0461 PSIE 0.047 COMPT C3.269,0.0461 PSIE 0.047 C3079 C3.277,0.122 P		COCRD CDCRD	12.848.0.086.	PS1= 0.074 PSI= 0.107	
C20FD 13.255.00151 #51= 0.000 C20FD 13.257,00151 #51= 0.031 C20FD 13.257,00463 #51= 0.047 C20FD 13.257,00463 #51= 0.063 C20FD 13.257,00461 #51= 0.067 C20FD 13.257,00461 #51= 0.109 C20FD 13.257,00461 #51= 0.109 C20FD 13.257,00461 #51= 0.016 C20FD 13.257,00461 #51= 0.016 C20FD 13.257,00461 #51= 0.0016 C20FD 13.667,00461 #51= 0.047 C20FD 13.667,00461 #51= 0.047 C20FD 13.667,00461 #51= 0.047 C20FD 13.667,00461 #51= 0.047 C20FD 13.667,00161 #51= 0.047 C20FD 14.77,00051 #51= 0.047 C20FD 14.77,0005		C66F1	12,345,0.1100	-31= 0.11t	
COOPD [32,259,0.622] PSI= 0.031 COOPD [32,259,0.622] PSI= 0.047 COOPD [32,259,0.046] PSI= 0.063 COOPD [32,259,0.046] PSI= 0.063 COOPD [32,259,0.114] PSI= 0.064 COOPD [32,259,0.114] PSI= 0.094 COOPD [32,259,0.101] PSI= 0.016 COOPD [32,259,0.005] PSI= 0.001 COOPD [32,259,0.005] PSI= 0.031 COOPD [32,269,0.064] PSI= 0.047 COOPD [32,269,0.116] PSI= 0.047 COOPD [32,270,0.116] PSI= 0.047		C2080	13.259.0.0050 (7.354 6.0123	PS1= 0.000	
COOPD [3, 259, 0, 046] PSI= 0,047 COOPD [3, 259, 0, 046] PSI= 0,065 COOPD [3, 259, 0, 046] PSI= 0,065 COOPD [3, 259, 0, 046] PSI= 0,078 COOPD [3, 259, 0, 046] PSI= 0,078 COOPD [3, 259, 0, 046] PSI= 0,047 COOPD [3, 259, 0, 046] PSI= 0,047 COOPD [3, 259, 0, 046] PSI= 0,047 COOPD [3, 269, 0,046] PSI= 0,047 COOPD [3, 279, 0,046] PSI= 0,047 COOPD [3, 279, 0,046] PSI= 0,047 COOPD [3, 279, 0,046] PSI= 0,047 COOPD [4, 079, 0,046] PSI= 0,047		COORD	[3.259.0.032]	PSI= 0.031	
LUDAD 13.259,0.0601 P31= 0.063 CCOAD 13.259,0.0731 P31= 0.078 COAD 13.259,0.1011 P31= 0.109 CCOAD 13.259,0.1011 P31= 0.105 CCOAD 13.669,0.0051 P51= 0.001 CCOAD 13.669,0.0741 P31= 0.051 CCOAD 13.669,0.0741 P31= 0.078 CCOAD 14.679,0.0041 P31= 0.078		COOFD	[3.259,0.046]	PSI= 0.047	· · · · · · · · · · · · · · · · · · ·
□0066 (3:259,0.101) +SI= 0.109 □0068 (3:259,0.114) +SI= 0.125 □0068 (3:359,0.003) +SI= 0.001 □0068 (3:369,0.003) +SI= 0.001 □0068 (3:369,0.003) +SI= 0.001 □0068 (3:369,0.003) +SI= 0.001 □0068 (3:369,0.0041) +SI= 0.001 □0068 (3:369,0.0041) +SI= 0.004 □0069 (3:369,0.0041) +SI= 0.004 □0069 (3:369,0.0041) +SI= 0.004 □0068 (3:369,0.0041) +SI= 0.004 □0068 (3:369,0.0041) +SI= 0.004 □0069 (4:379,0.0141) +SI= 0.004		COORD	13.259,0.0601	PSI= 0.063 FSI= 0.078	그는 그는 것은 것은 것을 가지 않는 것을 했다.
CDCRD C3.259,0.1011 +91=0.109 CDCRD C1.359,0.1141 +91=0.105 CDORD C3.669,0.0051 P51=0.000 CDORD C3.669,0.0051 P51=0.001 CDORD C3.669,0.0041 P51=0.0047 CDCRD C3.669,0.0041 P51=0.0047 CDCRD C3.669,0.0081 P51=0.0043 CDCRD C3.669,0.0081 P51=0.0043 CDCRD C3.669,0.0081 P51=0.0044 CDCRD C3.669,0.0044 CDCRD C		COORD	(3.259,0.067)	PSI= 0.094	그는 것 같은 것 같
COCKD 11.2.37,0.111 F31 0.120 COOKD 13.669,0.0053 F51 0.0016 COUKD 13.669,0.051 F51 0.001 COCKD 13.669,0.0603 F51 0.0047 COCKD 13.669,0.0603 F51 0.0047 COCKD 13.669,0.0603 F51 0.0043 COCKD 13.669,0.0603 F51 0.004 COCKD 13.669,0.1021 F51 0.004 COCKD 13.669,0.1021 F51 0.004 COCKD 14.079,0.1121 F51 0.015 COCKD 14.079,0.0121 F51 0.015 COCKD 14.079,0.0121 F51 0.015 COCKD 14.079,0.0121 F51 0.015 COCKD 14.079,0.1121 F51 0.015 COCKD 14.070,0.015 COCKD 14.070,0.015 COCKD 14.070,0.015		COCRD	[3.259,0.101]	-51= 0.109	
COORD C3.669,0.0319 PSI= 0.016 COORD C3.669,0.0321 PSI= 0.031 COORD C3.669,0.0421 PSI= 0.047 COORD C3.669,0.0421 PSI= 0.043 COORD C3.669,0.0801 PSI= 0.048 COORD C3.669,0.0801 PSI= 0.078 COORD C3.669,0.0801 PSI= 0.078 COORD C3.669,0.0001 PSI= 0.109 COORD C3.669,0.0001 PSI= 0.109 COORD C3.669,0.0001 PSI= 0.109 COORD C3.67,0.1121 PSI= 0.010 COORD C4.079,0.0101 PSI= 0.047 COORD C4.079,0.0010 PSI= 0.047 COORD C4.079,0.0020 PSI= 0.047 COORD C4.079,0.0020 PSI= 0.047		COORD	[3.569.0.005]	PSI= 0.000	
COMPD C3.659,0.0341 PSI= 0.031 COOPD C3.669,0.0341 PSI= 0.047 COOPD C3.669,0.0341 PSI= 0.043 COOPD C3.669,0.0741 PSI= 0.078 COOPD C3.669,0.0341 PSI= 0.078 COOPD C3.669,0.1021 PSI= 0.078 COOPD C3.679,0.1021 PSI= 0.109 COOPD C4.079,0.0141 PSI= 0.015 COOPD C4.079,0.0141 PSI= 0.047 COOPD C4.079,0.0141 PSI= 0.142 COOPD C4.079,0.0141 PSI= 0.144 COOPD C4.079,0.0144 PSI= 0.144 COOPD C4.074 PSI= 0.144 COO		CDOKD	(3.669.0.019)	PSI= 0.016	a da anti-anti-anti-anti-anti-anti-anti-anti-
COCKD [C: 669,0:060] PSI= 0.040 COCKD [C: 669,0:074] PSI= 0.078 COCKD [C: 669,0:088] PSI= 0.094 COCKD [C: 669,0:102] PSI= 0.109 CCCKD [C: 669,0:102] PSI= 0.109 CCCKD [C: 679,0:041] FSI= 0.010 CCCKD [: 6079,0:041] FSI= 0.010 CCCKD [: 6079,0:041] FSI= 0.047 CCCKD [: 6079,0:041] PSI= 0.047 CCCKD [: 6079,0:041] PSI= 0.047 CCCKD [: 6079,0:041] PSI= 0.042 CCCKD [: 6079,0:041] PSI= 0.042 CCCKD [: 6077,0:042] PSI= 0.042		COORD	[3.559,0.032] [3.569.0.046]	PS1= 0.031	
COCKD UT.:669.0.0741 PSI= 0.078 COCKD UT.:669.0.0681 PSI= 0.094 COCKD UT.:669.0.1021 PSI= 0.109 COCKD UT.:679.0.1021 PSI= 0.105 COCKD U:.079.0.0121 PSI= 0.010 COCKD U:.079.0.0121 PSI= 0.010 COCKD U:.079.0.0121 PSI= 0.031 COCKD U:.079.0.0121 PSI= 0.047 COCKD U:.071.0.1021 PSI= 0.042 COCKD U:.071.01021 PSI= 0.042 COCKD U:.071.01021 PSI= 0.105		COCRD	(7.669,0.060)	PSI= 0.063	
CDOPD (1.2007,0.008) PSI= 0.004 CDOPD (2.2007,0.102) PSI= 0.109 CDOPD (2.2007,0.102) PSI= 0.109 CDOPD (4.007,0.004) PSI= 0.001 CDOPD (4.007,0.004) PSI= 0.001 CDOPD (4.007,0.004) PSI= 0.001 CDOPD (4.007,0.004) PSI= 0.007 CDOPD (4.007,0.004) PSI= 0.004 CDOPD (4.007,0.004) PSI= 0.105 CDOPD (4.007,0.004) PSI= 0.105 CDOPD (4.007,0.004) PSI= 0.105	1	COCRD	[3.669.0.074]	PS1= 0.078	그는 것이 아이는 것 같은 것 같은 것 같은 것 않는 것 같은 것 같
2000 10.5.27,0.1121 491 31: 3.000 10060 14.079,0.0131 491 3.000 10060 14.079,0.0131 491 0.0131 20060 14.079,0.0131 991 0.0431 20060 14.077,0.0461 991 0.047 20060 14.077,0.0461 991 0.047 20060 14.077,0.102 991 0.075 10.10 14.077,0.102 991 0.177 20060 14.077,0.102 991 0.177 20060 14.077,0.102 991 0.177		COORD	10.269.0.1023	PS1= 0.094	
10060 (4.079,0.004) 431-0.000 20060 (4.079,0.004) 431-0.000 20060 (4.079,0.004) 951-0.010 20060 (4.079,0.004) 951-0.047 20060 (4.071,0.044) 951-0.042 20060 (4.071,0.023) 951-0.042 20060 (4.071,0.023) 951-0.042		200HD	13.967,0.1121	991= 0.125	
IDDR0 14.079.0.0721 991= 0.031 20200 14.077.0.0421 791= 0.047 IDDR0 14.077.0.0421 791= 0.047 IDDR0 1.077.0.1021 991= 0.023 IDDR0 14.077.0.1023 991= 0.044 IDDR0 14.077.0.1023 991= 0.042 IDDR0 14.077.0.1013 991= 0.025		10040	24.019.0.0043	-3314 0.000 2814 0.014	
20080 14:070,300401 (%100,0047) 20070 14:070,1600 9960 (0000) 20070 14:070,1600 - 35.00076 20070 14:070,1001 9510 0.076 20070 14:0710,1013 9510 0.077 20070 14:0710,1013 9510 0.077 20070 14:0710,1013 9510 0.077		20080	14.279.0.0121	291= 0.031	
LUCCU -1112621 Mar Model LUCCU -1112211 - 027 LUCCU -1112211 - 027 LUCCU -1112211 - 021 LUCCU -1112211		00080	.4.077,0.0465	FSI= 0.047	그는 그는 것이 아이는 것이 같이 많이 많이 많이 많이 했다.
13140 14 000 000 000 000 000 COCHO 14,077.0010 PSIE 0107 20240 14,077.01113 P51E 01125 4,077.01113 P51E 01125 4,077.01114		20052		2974 N.023	
		- 1945 1945	4	-8.= 0.044	이 가지 않는 것 같은 것 같은 것 같은 것 같아요.
		10000 Tanan	NAN 07470-3923 Talioto (1949)	PSIA 0.107	
		1975 - 1975 -			지금 다시 않는 것 같은 것 같은 말을 받았다.
	a a ser en la serie de la s				그는 것은 것은 것이 같이 많이 많이 많이 많이 많이 했다.
	1997 - 1997 - 1998 1997 - 1997 - 1998	off in state of	and a state of the second s	a she bala ser	an a
는 가 가는 것은 것 같은 것을 가 있는 것은 것은 것 같은 것은 것 같은 것을 가 있다. 것 같은 것은 것을 가 있다. 같은 것은		and the second s	nan e na servici sur e conservici servici servici servici servici servici servici servici servici servici serv Servici servici	tigne of these	
an a					

					e e								
						1.1							
	COORD	C4.489,0.0043	PSI= 0.00	2			1.5						
	COORD	[4.489,0.032]	PSI= 0.00	1. 1.									
	COORD	14.467,0.0461	PSI= 0.04	7					1.1				
	COORD	[4.487.0.074]	PS1= 0.07						e de la composición La composición de la c				
	COORD	[4.489,0.088]	PSI= 0.09	4									
	CCORD	(4.489,0.102)	PS1= 0.12	5									
	COORD	14.899,0.0043	PSI= 0.00	2									
	COORD	[4.399.0.012]	PSI= 0.01: PSI= 0.03	5									
	COCRD	[4.899,0.046]	PSI= 0.04	7									
	COCRD	[4.899,0.060]	> PSI= 0.05 >≤t= 0.07	2					1.1				e
	CCORD	(4.999.0.086J	P01= 0.09	4									
	COORD	[4.397.0.102]	PSI= 0.10	ç									
	CCORD	13.309,0.00031	PSI= 0.00	5									
	00071	15.309.0.0173	PSI= 0.01	-				1.1					
	COGFD COOFD	12.209,0.0312		;				الىغى بىر بەرمەر بەر بەر			e filori Dura	<u></u>	
	00040	(3.349,0.059]	4514 (.05	3					1999 - 1999 - 1999 1999 -		9 a - 1	2	
	COORD	15.309,0.0731	PSI= 0.07	8							Y4.		
	COOPD	[5.309,0.102]	PSI= 0.10	9									
	COOPD	[5,309.0.116]	PSI= 0.12	5							. 11		
	00040	15.719.0.0173	PSI= 0.01	5				1973 - 19 1974 - 19		- 1911 - 791 - 1			
	2900°E	(5.719,0.001)	P31- 0.03	1				12					ing na san Na s
		1.1.717.0171	-914 0.04	ź									
	0.207	5.714.0.0777	751 * 4.00*	÷									
	10040	11.719.0.1013 151719.0.1013	PSI= 0.09	4								- -	
	COURD	(5.717.0.115)	PS1= 6.12	5									
	CCCRD	15.129.0.0031	PSI= 0.004 2314 0.01) 5							÷1.	1	
	1006	65.129,6.0711	F31= 0.03	1 -									
	20010	Cu. (22, 0.045)	PEI= 0.04										
	COORD	[6.129,0.074]	PSI= 0.07	Đ									
	COCAD	[6.129,0.088]	PSI= 0.09	4									
	12040	[8,129,0,117]	FSI= 0.12	Ś								$\{x_{i}\}_{i=1}^{n-1}$	pro s
	COCFO	16.539.0.0021	PGI= 0.00	Ş									
	00060	15.539,0.0171	FSI= 0.00	1				1.		50, S		1.11	18112
and a second second	C0070	[5.537,0.045]	FSI= 0.04	<u>z</u>				1-14 G	gal-b			199	4.49 - Q
	COC#D	[6.579,0.060]	PSI= 0.06 PSI= 0.07	3								de la	
	COURD	(5.509,0.0881	PSI= 0.09	4								14	
	COORD	16.539.0.1001	PS1= 0.10 ⁴ PS1= 0.12 ⁴	२ •,									
	CCOPD	[4.949.0.002]	PSI= 0.00	5									
	COOPO	(5.949.0.015) C. BIS 6 6763	PBI= 0.01:	-									
	COUPE	29,747,0,042	F31= 0.04	;							1.1		
	COORD		231= C.00	• 1.									
	- 100k0 - 000k0	(6,949,0,0/32)	29(= 0.09	2									
	000-0	25.449.0.1021	95(= 0.19	₽							i de se		
	12142	11,949,0,111.		5									
	222-9	01.087.0.0161	≓SI= 0.01	5									
	100-0		. Park 0.75									1	
					1.								
and the first street	that by	te chamhailte anns a bha Thail	(رقب مستقل ماند (می ا		en de l' Professione						n a la tra Ng		1997 - 199 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
							· ·	1					
		an e strand e strand e service. Service e strand e service e service e service e service e service e service e s					1000	- Second					
	. 4		بالمراجع مشائل						14				a ferra

			and a second s	and the second second second second second second
	1 COLO	797		
	crosp	17 750 0 0501	PE1= 0.047	
		17.359,0.0581	PSI= 0.063	
	200660	14.9 5 4.0.0723	FSI= 0.078	
	COORD	17.159.6.1001	PS1= 0.094	
	00080	17. 799.0.1147	PCI+ 0 135	
	COOPD	17.749.0.0011	PSI= 0.000	
	COURD	(7.769.0.015)	PSI 0.000	
	CODED	17.769.0.0055	PSta 0.013	and the second secon
	CDORD	17. 769.0.0471	PGI = 0.047	
	20080	7.759 (1.0551	PEI- 0.047	
	2006.5	17 742 0 0-03	POI- 0.000	
	COORD	7.749 0.0071	PC1= 0.004	
	CODED	77 748 0 7841	PS1= 0.094	
	COCED	FT 7-2 A 4+A4	FB1# 0.104	
	CODED	15 179 0 0011	F 31 4 V.123	
	CCCCD	15 158 0 0113	FS14 0.000	
	COORD	Ca 178 6 6273	PSI= 0.016	
	CODED	TE 179 0 0101		and the second
	C0000	10.179,000403	P31= 0.047	
	COCKD	19.129,0.0200	P51= 0.055	
	20062	12111-1-V-Vezz	-51- V.V.	
	00070	13.177.0.377.	2917 0. 044	
	CODRO	18.1.4,0.0421	-31-0.109	이 같은 것 같은
	CJUKD	18.179,0.1053	PS1= 0.125	
	CUURD	LE. 540, 0. 0003	PSI= 0.000	
	LUCKD	18.590.0.0131	PS1= 0.016	
	LOOKD	[8.590,0.025]	PSI= 0.031	
	COORD	18.590,0.0371	PSI= 0.047	
	COCKD	18.290, 2.0491	PSI= 0.057	
	COOFD	13.270.0.0613	FSI= 0.07S	
	22082	13.590.1.3741	£°St≠ 0.014	(a) A set of the se
	20095	19.500.00000	281a 0.100	
	03060	· 문, 원구인, () · 기적권)	H914 0.105	
	202222	17,001,012102	751- 1.000	
	090000	25.000.0.0113	FSI= 0.015	
	CCORD	17.000,0.0223	P31= 0.001	
	COORD	19.000,0.0340	PS1= 0.047	
	COCRD	[9.000,0.045]	FSI= 0.062	
	00040	57.000.0.065	PSI= ().078	
	23062	19.000.0.0373	PSI- 0.074	
	CCORD	19.000,0.0793	ASI= 0.109	
	0069	29.000,0.0903	PSI= 0.125	
				그는 것 같은 것 같은 것 같은 것 같은 것을 가지 않는 것을
· .				
				그 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같이 없는 것 같이 없다.
				이 동네는 동네는 것이 가지 않는 것이 가지 않는 것이 같이 했다.
				이 같다. 이 사람이 가지 않는 것은 것이 가지 않는 것이 같이 많이 했다.
for the second	es la facilit	an an Araba		

		a thurs and the second second
*********	****	******
******	INFORMACION GENERAL DE LOS Elsmentos	*******
**********	***************************************	**********
********	DATOS EN " METROS Y SEGUNDOS " NX[1] =9 NX[2] =9	******** ******** *******
********	NX[3] =9 NX[4] =7	*******
******	NVC 11 =9 NUMERO MAXIMO DE ITERACIONES =	10 *******
\$\$22\$£2 \$252£\$ 276255	ELEMENTOS LINEALES NUMERO DE VECES DUE SE SUAVIZARA: LA (CED=0	\$****** ******* *****
17711111 12474425 1144411	TILEGANCIA = 0.000010 TIGANTE AGUAS ARFIBA = 0.045 TIGANTE AGUAS ABAJO = 0.092	******* ******* *******
£111777 1177111	GASTO UTILIZADO = 0.035 Ancho Del Canal = 0.20	*******
***************************************	NUMERO DE ELEMENTOS = 540 NUMERO DE NODOS = 369	******** ******* *******
	TABLA 4.6	

and the second second	1700000 A		
	COORD [0.000,0.153]	PSI= 0.000	
	COORD [0.000.0.164]	PSI= 0.022	
	COURD [0.900,0.187]	PSI= 0.066	
	COORD [0.000,0.210]	PSI = 0.088 PSI = 0.110	
	COORD [0.000,0.222] COORD [0.000.0.233]	PSI= 0.131 PSI= 0.153	
	COORD [0.000,0.245]	PSI= 0.175	
	COURD [0.284.0.148]	PS1= 0.000 PS1= 0.022	
	COORD [0.284,0.171] COORD [0.284,0.183]	PSI= 0.044 PSI= 0.066	
	COORD (0.284,0.194)	PSI= 0.085	
	COORD [0.284.0.202]	PSI= 0.109 PSI= 0.101	
	CCORD [0.284.0.229]	PSI= 0.150	· · · · · · · · · · · · · · · · · · ·
	CODRD [0.567,0.143]	PSI= 0.000	
	COORD [0.567,0.155]	PSI= 0.022 PSI= 0.044	
	COORD 10.567,0.1781	PSI≈ 0.066	
	CODRD 10.567,0.2013	P51= 0.109	
	COORD [0.567,0.212]	PSI# 0.101 PSI= 0.153	
	CODRD [0.567.0.235]	PS1= 0.175	
	COORD [0.951.0.150]	PSI= 0.022	
	COURD 10.851,0.1623 COURD 10.851,0.1733	PSI= 0.044 PSI= 0.066	
	COORD [0.851,0.185]	PSI= 0.088	
	COORD [0.851,0.208]	PSI= 0.131	
	COORD [0.851.0.219] COORD [0.851.0.231]	PSI= 0.153 PSI= 0.175	
	COORD [1.135,0,134]	PSI= 0.000	
	COORD [1.135,0.157]	PSI= 0.044	and the second secon
	COORD [1.135,0,148] COORD [1.135,0,190]	PSI= 0.066 PSI= 0.088	
	COORD [1.135,0.191]	PSI= 0.109	
	COORD [1.135,0,214]	PSI= 0.153	
	COORD [1.135,0.224] COORD [1.417.0.119]	PSI= 0.175 Ful= 0.000	
a a a	COORD [1.419.0.140]	PS1= 0.022	
	COORD [1.419,0.163]	PSI= 0.044	
	COORD [1.419,0.175] COORD [1.419,0.186]	PSI= 0.088 PSI= 0.109	
	COORD [1.419.0.198]	PSI= 0.131	
	COORD [1.419,0.221]	PSI= 0.175	
	COURD [1,702,0,124] COURD [1,702,0,136]	PSI= 0.000 PSI= 0.022	
	COORD [1.702,0.147]	PSI= 0.044	
	COORD [1.702.0.170]	PSI= 0.087	
	COURD (1.702.0.181) COURD [1.702.0.193]	PSI= 0.109 PSI= 0.131	
	COORD [1.702.0.204]	PSI= 0.153	
	COORD (1.702.9.216)	PSI≇ 0.175	
			n and a second
		na an a	والمتحجين والمحمد ومحمد والشجاب والمحجد والمسا

COORD [1.986.0.119]	PSI= 0.000	and the second secon
COORD E1.986,0.1313	P61= 0.022	the second s
COOPD [1.986,0.142] COORD [1.986.0.154]	PSI= 0.044 PSI= 0.066	
COOPD [1.986,0.165]	PSI= 0.087	
COORD [1.986,0.198]	PSI= 0.131	
COORD [1.986,0.199]	PSI= 0.153	
COORD [2.270.0.114]	PSI= 0.000	
COORD [2.270.0.126]	PSI= 0.017	
COORD [2.270,0.137]	PSI= 0.056	
COORD (2.270,0.1601	PSI= 0.077	
COURD E2,270,0,1721 COURD [2,270,0,183]	PSI = 0.100 PSI = 0.124	and the second secon
COORD [2.270,0.194]	PSI= 0.149	
COURD [2.270.0.206]	PSI= 0.175 PSI= 0.000	
CODED 12.277.0.1333	PSI= 0.018	
COORD [2.277.0.144]	PSI= 0.037 PSI= 0.058	and the second secon
COORD (2.277,0.167)	PSI= 0.080	
COORD [2.277,0.178]	PSI= 0.103	
COORD [2.277,0.201]	PSI= 0.152	
COORD [2.277,0.212]	PSI= 0.175	
COORD [2.284,0.140]	FSI= 0.019	
COORD [2.284.0.151]	FSI= 0.039	and the second
COORD [2.284,0.174]	PSI= 0.084	
COUPD [2.284.0.185]	PSI= 0.108	
CODPD [2.284,0.207]	PSI= 0.155	
COORD [2.284.0.218]	PSI= 0.175	
COORD [2.292,0.138]	PSI= 0.000	
COOPD [2.292,0.158]	PSI= 0.042	· · · · · · · · · · · · · · · · · · ·
COORD [2.292,0.181]	PSI# 0.089	
COORD [2.292.0.192]	PSI= 0.114	
COORD [2.292,0.203]	PSI= 0.159	
COORD [2.292,0.226]	PSI= 0.175	
COORD [2.299.0.143]	PSI= 0.000	
COORD [2.299,0.166]	PS1= 0.045	
COORD [2.299,0.177]	PSI= 0.070 PSI= 0.096	الرواجي وراعيت والوقيسة متراجعهم بعرداني سوجع والمعادية
COORD 12.299.0.2001	PSI= 0.121	
COORD [2.299.0.211] COORD [2.299.0.222]	PSI= 0.143 PSI= 0.161	
COORD [2.299,0.234]	PSI= 0.175	
COORD 12.306,0.1503	PSI= 0.000 PSI= 0.024	
CCORD 12.306.0.1733	PSI= 0.050	
COORD [2.306.0.185]	PSI= 0.079 PSI= 0.106	
COOFD (2.306.0.208)	PSI= 0.130	
COORD [2.306,0.219]	PSI= 0.150 PSI= 0.1a5	
COORD [2.306.0.2423	PSI= 0.175	
COURD 12.313.0.1573 COURD 12.313.0.1691	PSI= 0.000 PSI= 0.027	
COORD [2.313.0.181]	PSI= 0.059	
×		
		a de la construcción de la constru
		e an ann an tha an tha ann an tha an tha an t Tha ann an tha ann an t
		أواليقور والإنجاز وأرتبا والمتحجر والمتحجر المحاور والمتحج

racen.	12 313 0 1971	Pete A ARA
COOPD	17 717 0 2072	101-0.070
	(2.515.0.2051	PS1= 0,117
CODAD	[2.313.0.215]	PS1= 0.137
COORD	(2.313.0.228]	PSI# 0.136
COORD	12.313.0.2401	PS1= 0.168
COORD	(2.313.0.2521	PC1- 0 176
CODED		F314 0.173
	12.021,0.1633	PS1# 0.000
CUURD	[2.321,0.177]	PSI≈ 0.035
COORD	[2,321,0.189]	PSI= 0.074
COORD	[2.321.0.201]	FS1= 0.105
COORD	12	PET# 0 170
00000	17 774 0 0000	131-0,130
LOURD	12.321,0.2233	PS1= 0.149
COOKO	[2.321,0.237]	PSI= 0.163
COORD	[2.321.0.250]	PSI= 0.171
COORD	(2.321.0.2621	PSI= 0.175
COORD	12.328.0.1721	PST= 0 000
ronen	17 778 0 1941	
COOND	12.028,0.1841	FB14 0.035
LUUKU	Ca. JaB, 0.1973	FSI= 0.093
COURD	[2.328.0.209]	PSI≈ 0.122
COORD	12.329.0.2221	PEI= 0.143
COORD	12.008.0.0351	PSt= 0.159
nopn	(2 778 0 7471	Pet- 0 1.9
COOD		001-0.137
LUURD	C	PSI = 0.174
COORD	[2.328,0.272]	PSI= 0.175
COORD	[2.335,0.164]	FSI≈ 0.000
COORD	(2.335,0.177)	PSI= 0.040
COORD	12.335.0.1991	PS1# 0.076
nanpn	17 775 0 2021	951-0 102
rnnpn	12 375 0 DIA1	001- 0 171
coopp	12.000,0.2141	FB12 0.131
LUURD	(2.353.0.22/1	PS1= 0.150
LUDRD	12.335.0.2393	PSI≈ 0.163
COCKD	(2.335.0.2521	FSI= 0.171
COORD	[2.335.0.264]	P5I≈ 0.175
COORD	[2.343.0.157]	FSI≈ 0.000
COORD	12.343.0.1691	PS1= 0.031
CODRD	17.343.0 1821	PST= 0.044
GUUED	17.343.0 (943	PG1= 0.004
COORD		-31- 0.074
20000	12.343,0.2001	F514 0.120
LUURD	62.340,0.2171	PS1= 0.142
COORD	[2.343.0.231]	PSI≃ 0.158
COORD	[2.343,0.244]	PSI= 0.169
COORD	[2.343,0.256]	PSI≈ 0.175
COORD	£2.350.0.1501	PSI= 0.000
COORD	12.350.0.1621	FS1= 0.077
nopp	17 750 0 1741	
taann	12.330,0.1741	F514 0.035
JUURU	12.330,0.1001	PSI= 0.085
COOKD	12.350.0.1993	PSI = 0.111
COORD	[2.350,0.211]	PSI= 0.134
CORP	[2.350.0.223]	PSI≈ 0.152
COORD	£2,350.0.2351	FSI# 0.166
COORD	12,350.0.2481	PG1= 0.175
DOPD	10 357 0 1203	PET- 0 000
DOGOD	(2.337,0.142)	P31- 0.000
LUURU	12.357,0.1341	PSI= 0.024
JUDRD	[2.357.0.166]	PS1= 0.050
COORD	(2.357,0.1781	PSI= 0.077
0060	12.357.0.1913	PSI= 0.103
COORD	12.357.0.2033	PSI= 0.127
COORD.	12.357.0.2153	PST# 0.147
70025	12 357 0 2221	RGT= 0.147
-oone		001-0100
-0080	12.037.0.2091	PS1= 0.175
JUGRD	12.364.0.1353	PSI = 0.000
COORD	C2.364.0.1473	PSI= 0.022
10060	[2.364.0.139]	PSI= 0.046
00FD	12.364.0.1713	PSI= 0.071
COORD	(2.044.0.1901	PSI= 0.097
CODED	17. 54.0 1951	RSTa 0. (C)
		COLM DEFET

COORD [2.364.0.207]	PSI= 0.142	
COORD [2.364,0.230]	PSI= 0.175	
COORD [2.372,0.127]	PSI= 0.000	
COORD [2.372,0.151]	PSI= 0.043	
COORD [2.372.0.175]	PSI= 0.06/	
COORD [2.372,0.186]	PS1= 0.115	
COORD [2.372.0.210]	PSI= 0.158	
COORD [2.372,0.222]	PSI= 0.175	
COORD [2.379.0.131]	PSI= 0.000	
CDORD [2.379.0.143]	PSI= 0.040	
COORD [2.379.0.166]	PSI= 0.062 PSI= 0.085	
COORD [2.379,0.178]	PSI= 0.109	
COORD [2.379.0.190]	PSI= 0.132 PSI= 0.155	
COORD 12.379.0.2131	PSI= 0.175	
COORD 12.386.0.1123 COORD 12.386.0.1243	PSI≠ 0.000 PSI≠ 0.019	
COORD (2. 386, 0. 135)	PSI= 0.008	
COORD [2.386,0.147]	PSI= 0.059 PSI= 0.080	
COORD [2.386,0.170]	PSI= 0.103	
COORD [2.386.0.181]	PSI= 0.126	
COORD (2.386,0.204)	PSI# 0.175	
CDORD (2.800,0.105)	PSI= 0.000	
COORD (2.800,0.128)	PSI= 0.044	
COORD [2.800,0.140]	FS1- 0.000	
COORD [2.800.0.163]	PSI= 0.109	
COORD [2.800,0.174]	PSI= 0.131	
COORD [2.800,0.197]	PSI= 0.175	
COORD [3.213,0.098]	PSI= 0.000	
COORD [3.213,0.121]	PSI= 0.044	
COORD (3.213.0.133]	PSI= 0.066	
COORD [3.213,0.156]	PSI= 0.109	
CDORD [3.213,0.168]	PSI= 0.131	
COORD [3.213,0.174]	PSI= 0.175	
COORD 13.626,0.0713	PSI- 0.000	
COORD [3.626,0.114]	PSI= 0.022 PSI= 0.044	and the second se
COORD [3.626,0.126]	PSI= 0.066	
COORD [3.626.0.138]	PSI= 0.087	
COURD [3.625,0.161]	PSI= 0.131	
COURD [3.626.0.172]	PSI= 0.153 PSI= 0.175	
COORD [4.040.0.084]	PS1= 0.000	
COORD [4.040.0.096]	P51 = 0.022 P51 = 0.044	
COORD [4.040.0.119]	PSI= 0.066	
CODRD [4.040.0.131]	PSI= 0.087 PSI= 0.109	
COORD [4.040.0.154]	PSI= 0.:31	
COORD [4.040.0.165]	PSI= 0.153	
GUORD 14.040.0.177]	PS19 0.175	
		and the second state of the second state
		an an an Artana an Argana Artana an Argana Artana Argana

						a sa
COOPE	14.453.0.07	71 PSI=	0.000			
COORD	[4.453,0.08	7] PS1=	0.022			
COORD	[4.453.0.10	01 P91=	0.044			
COORD	6 [4.453,0.1]	2] PSI# 4] PSI#	0.066			
COORD	[4.453,0.13	5) PSI=	0.109			
COORD	0 [4.453,0.14	7] PSI= B] PSI=	0.131			an an taon 1970. Taona taon
COORD	[4.453.0.17	0) PSI-	0.175			
COORD	[4.866, 0.07	01 PSI=	0.000			
COORD	[4.866.0.09	31 PSI=	0.044			
COORD	[4.866,0.10	5] PSI=	0.066			
COORD	[4.866.0.1]	7] PSI≠ A1 P≤I≠	0.088			
COORD	C4.866.0.14	0] PSI=	0.131			
COORD	[4.866,0.15	2) PSI=	0.153			
COORD	14.088.0.18	51 PSI=	0.1/5			
COOFD	(5.290.0.07	53 PSI×	0.022			나는 승규는 사람들이
COORD	(5.280,0.08 (5.280,0.09	6] PSI=	0.044			ا ملحق الأمر في الأن محمد المحمد المحمد ال
COORD	15.280.0.11	0] PSI=	0.088		1.1.1	
COORD	(5.280,0.12	11 PSI=	0.109			
COORD	[5.280,0.13	5) PSI=	0.151			
COOPD	15.280,0.15	6] PSI=	0.175			
COORD	5.493.0.05	6] PSI=	0.000			a service a servic
COORD	[5.693,0.07	9] PSI=	0.044			an a
COORD	15.693.0.09	1] PSI=	0.066			
COORD	0 15.893,0.19 0 15.895.0.11	3] PSI= 4] PSI=	0.087			and the
COORD	15.693,0.12	61 PSI=	0.131			
COORD	0 [5.693.0.13	8) PSI=	0.153			
COORD	6.106.0.04	9] PSI=	0.000			
COORD	£6.105.0.06	1) PSI=	0.027			
COORE	6.106.0.07	ZI PSI¤ 41 PSI≖	0.044			
COORD	6.104.0.09	61 PSI=	0.088			
COORD	[6.106.0.10	7] PSI=	0.109			
COORD	6.106.0.11	1] PSI=	0.153			
COORD	6.106.0.14	2) PSI=	0.175			
COORD	6.520.0.04	2] FSI= 4) PSI=	0.000			
COORD	[6.520,0.06	61 PSI=	0.044			
COOFE	16.520,0.07	7) PS1=	0.066		12102	
CODEL	6.520.0.10	4] PSI= 1] PSI=	0.088			
COORD	[6.520,0.11	2) PSI=	0.131			
COORD	0 [6.520,0.12	4] PSI=	0.153			
COORD	6.933.0.03	5) PSI=	0.000			
COOPD	16.933.0.04	71 PSI=	0.022			
CODRE	1 [6.933.0.07	01 PSI=	0.066			
COORD	6.933,0.08	2) PSI=	0.088			
COORD	16.933.0.09	41 PSI=	0.109			
COORD	E5.933.0.10	5J ⊬SI≉ 7] PSI≠	0.151			
COOPD	La.973.0.12	9) PSI=	0.175			
COOPD	(7.347.0.02 (7.347.0.04	B) PS[≖ ∩) Pet-	0.000			
COORD	17.347.0.05	1] FS1=	0.044			
					har in	يعرب متوجدة

COOPD	[7.347.0.063]	PSI= 0.066
CODRD	[7.347.0.075]	PSI# 0.088
COORD	[7.347.0.0861	PSI= 0.109
COORD	[7.347,0.098]	PSI= 0.131
COORD	[7.347.0.110]	PSI= 0.153
COORD	[7.347.0.121]	PSI= 0.175
COOPD	E7.760,0.0213	PSI= 0.000
COORD	[7.760.0.033]	PSI= 0.022
COORD	E7.760,0.0441	PSI= 0.044
COORD	[7.760.0.056]	PS1= 0.066
COORD	[7.760.0.068]	PSI= 0.088
COORD	[7.760,0.079]	PSI= 0.109
COORD	[7.760.0.091]	PS1= 0.131
COORD	[7.760.0.103]	PSI= 0.153
COORD	£7,760,0,114]	PSI= 0.175
COORD	[8.173,0.014]	PSI= 0.000
COORD	EB.173,0.0261	PSI= 0.022
COORD	[8,173,0.037]	PSI= 0.044
COORD	[8.173,0.049]	PSI= 0.066
COORD	C3.173.0.0601	PSI= 0.088
COORD	CB.173.0.0723	PSI= 0.109
COORD	[9.173,0.084]	PSI= 0.131
COORD	£8,173,0.0951	PSI= 0.153
COORD	CB.173.0.1071	PSI# 0.175
CCORD	LS.587.0.0071	PSI= 0.000
COORD	[8.587,0.019]	PSI= 0.022
COORD	CB.587,0.030}	PSI= 0.044
COORD	[8.587.0.042]	PSI= 0.066
COORD	£8.587.0.053)	PSI= 0.088
COOPD	[8,507,0.065]	PSI= 0.109
COORD	[8.587.0.076]	PSI= 0.131
CCORD	[8.587.0.088]	PSI¤ 0.153
COORD	CB.587,0.0991	PSI= 0.175
LUURD	19.000,0.0001	PSI≞ 0.000
COORD	[9.000,0.011]	P91= 0.022
CCORD	[9.000.0.023]	PSI= 0.044
C00F/D	[9.000,0.034]	PSI= 0.065
COORD	E9.000,0.0463	PSI≖ 0.087
COORD	[9.000.0.057]	PSI= 0.107
COORD	[9.000.0.069]	PSI= 0.131
COORD	[9.000,0.080]	PSI= 0.153
COORD	[9.000.0.092]	PSI= 0.175

ESTA TESIS NO DEBE Salib de la Biblioteca

FIG. 4.3

Υ. : (M) SUBCRITICO - SUBCRITICO 0 10 05 H-7 SEG. TEORICO 02 / 6 861 6756 6.11 5 6 4 7 3 2 T. Sele (M) 0 FIG 4.4

. (61) 0.035 #3/1E0 TEORICO oz 87302 6672 6 5130 111 0 8 7 8 4 FIG. 4.6

REGIMEN SUBCRITICO-SUBCRITICO

S0 = 0.0007

DATOS

RESULTADOS

COORDENADAS					
X	Y				
0.000	0.295				
1.070	0.294				
2139	0.294				
2.191	0.267				
2.244	0.239				
2.367	0.266				
2.490	0.293				
4.118	0.292				
5.745	0.291				
7.373	0.290				
9.000	0.289				

COORDENADAS		
Х	Y	
0.000	0.295	
1.070	0.295	
2139	0.293	
2.191	0.305	
2.244	0.231	
2.367	0.296	
2,490	0.293	
4.118	0.295	
5.745	0.295	
7.373	0.296	
9.000	0.289	

REGIMEN SUBCRITICO-SUPERCRITICO

S0 = 0.0009

DATOS

RESULTADOS

COORDENADAS	
X	Ý
0.000	0.293
1.101	0.292
2.202	0.281
2.261	0.269
2.320	0.242
2.379	0.169
2.438	0.096
4.079	0.094
5,719	0.093
7.359	0.092
9.000	0.090

COORDENADAS	
X	Y
0.000	0.293
1.101	0.293
2.202	0.292
2.261	0.273
2.320	0.251
2.379	0.119
2,438	0.112
4.079	0.116
5.719	0.115
7.359	0.114
9.000	0.090

REGIMEN SUPERCRITICO-SUPERCRITICO

S0 = 0.017

DATOS

RESULTADOS

COORDENADAS	
X	Υ·
0.000	0.245
1.135	0.226
2.270	0.206
2.299	0.239
2.328	0 271
2.357	0.238
2.386	0.204
4.040	0.176
5.693	0.148
7.347	0.120
9.000	0 092

COORDENADAS	
X	Y
0.000	0.245
1.135	0.226
2,270	0.206
2.299	0.234
2.328	0.272
2.357	0.239
2.386	0.204
4.040	0.177
5.693	0.149
7.347	0.121
9.000	0.092

RESULTADOS EXPERIMENTALES.

5.1 CARACTERISTICAS DE LAS PRUEBAS

Las pruebas experimentales se realizaron en el laboratorio de hidráulica de la Facultad de Ingeniería, utilizándose el canal "Plint" que se tiene ahí instalado.

Para la obtención de las características de los obstáculos que se usaron en las pruebas del laboratorio, se usó como base la teoría según Dias Frédéric (1989) y Sotelo Avila (1986), con lo que se calcularon las dimensiones de diferentes obstáculos, variando el gasto y la pendiente en el canal.

Según la teoría, la altura máxima posible en el obstáculo que evita modificaciones del flujo hacia aguas arriba, es igual a la diferencia entre la energía específica aguas arriba y la mínima posible (correspondiente al estado crítico). Es importante notar que cuando la altura del escalón corresponde a la que obliga que se presente el tirante crítico y es de corta longitud como en la figura 5.2, el régimen aguas abajo puede ser supercrítico o subcrítico, dependiendo de las condiciones ahí impuestas. De la figura 5.1 se observa que si el punto que representa al flujo se mueve de A a C, despues queda libre de volver a la rama de régimen Subcritico de la curva o de continuar a la de supercritico, según

sean las condiciones de aquas abajo.

FIGURA 5.1. USO DE LA CURVA DE ENERGIA ESPECIFICA EN LA

Si hay algun control del lado de aguas abajo, la tendencia sera hacia el regimen subcritico de lo contrario: haciesupercritico. La convergencia del fiujo hacia el escalon produce un efecto similar después del mismo; tal como se observa en la figura 5.2. Al observar que el mismo principio opera cuando el regimen le squas arrita es gupercritico, se concluye que cualquiera de los dos regimenes de fiujo de lado aguas arriba puede pasar a cualquiera de los del lado aguas abajo del obstaculo.

FIGURA 2. / EFECTO DE UN ESCALON CORTO ASCENDENTE Y DE ALTUR

CONTENCION DE LOS ORSTACULOS

CRITICA

para flujo subcrítico aguas arriba y supercrítico aguas abajo tenemos que " $\mu \leq 1$ "

 $F^{2} = 2/(\mu^{2} + \mu)$

Para la obtención de las curvas "E-Y" para diferentes gastos se considera lo siguiente:

Las paredes del canal en el que se realizan las pruebas de laboratorio son de vidrio pulido por lo que 'el valor de será de 0.009, así mismo como el canal tiene un ancho de plantilla igual a 0.2 m queda lo siguiente.

n= 0.009 b= 0.2 m

"n"

Q + Variable

Tomando la ecuación de la energía específica

$$E=Y+\left[q^{2}/(2gy^{2})\right]$$

el cálculo de las curvas E-Y se hizo para gastos iguales a 0.025 m^3 /seg, 0.030 m^3 /seg y 0.035 m^3 /seg.

A continuación se muestran las tablas 5.1, 5.2 y 5.3 que contienen los valores con los que se construyeron las curvas "E-Y", para los diferentes gastos, ademas de mostrarnos cuáles son los valores críticos para cada gasto usado.

En la figura 5.3 podemos observar las curvas obtenidas para los gastos ya mencionados usando los valores de las tablas 5.1, 5.2 y 5.3, en esta figura podemos obtener los datos necesarios para la construcción de los obstáculos que se usaron en las pruebas de laboratorio.

	Ω	= 0.025 m ³ /s	1
	Ye	- 0.1167 m	1
	Ee	= 0.1752 m	
	Se	- 0.0031	
ere e	q	= 0.125 m [°] /s/m	
	E	$= y + (0.0225/19.62y^{2})$	
	Fr	= 0.0479/y ^(3/2)	
		Q Ye Ec Se Q E Fr	$Q = 0.025 \text{ m}^3/\text{s}$ $Y_c = 0.1167 \text{ m}$ $E_c = 0.1752 \text{ m}$ $S_c = 0.0031$ $q = 0.125 \text{ m}^3/\text{s/m}$ $E = y + (0.0225/19.62y^2)$ $F_r = 0.0479/y^{(3/2)}$

	en service La constance			
Q = 0.025 m ³ /s	Y(m)	E(m)	Fr	V-q/y
Yc = 0.1167 m	0.0500	0.368	3.5696	2.5000
$E_{c} = 0.1752 m$	0.0700	0.233	2.1549	1.7857
Se = 0.0031	0.0900	0.188	1.4781	1.3888
$q = 0.125 \text{ m}^{1}/\text{s/m}$	0.1000	0.179	1.2620	1.2500
$E = y + (0.0225/19.62y^{-})$	0.1100	0.176	1.0939	1.1364
$F_{\rm F} = 0.0479/{\rm y}^{222}$	0.1168	0.175	0.9998	1.0702
	0.1200	0.176	0.9601	1.0417
	0.1300	0.177	0.8515	0.9615
	0.1500	0.165	0.6870	0.8333
(a) A set of the se	0.2000	0.219	0.4462	0.6250
	0.2500	0.263	0.3193	0.5000
	0.3000	0.309	0.2429	0.4167
	0.3500	0.357	0.1927	0.3571
	0.4000	0.405	0.1578	0.3125
	Tabla	5.1		

Tabla 5.1

 $Q = 0.030 \text{ m}^3/\text{s}$ $Y_c = 0.1319 \text{ m}$ $E_c = 0.1976 \text{ m}$ $S_c = 0.0048$ $q = 0.15 \text{ m}^3/\text{s/m}$ $E = y+(0.015625/19.62y^2)$ $F_r = 0.0399/y^{(3/2)}$

Y (m)	E(m)	Fr	V-q/y
0.0500	0.509	4.2835	3.0000
0.0700	0.304	2.5859	2.1428
0.0900	0.232	1.7738	1.6670
0.1000	0.215	1.5145	1.5000
0.1100	0.205	1.3127	1.3636
0.1200	0.199	1.1521	1.2500
0.1300	0.1979	1.0217	1.1538
0.1318	0.1978	1.0009	1.1381
0.1500	0.201	0.8244	1.0000
0.2000 -	0.229	0.5354	0.7500
0.2500	0.268	0.3831	0.6000
0.3000	0.313	0.2915	0.5000
0.3500	0.359	0.2313	0.4286
0.4000	0.407	0.1893	0.3750

Tabla 5.2

Y(m)	E(m)	F:	V-q/y
0.0500	0.674	4.9975	3.5000
0.0700	0.389	3.0169	2.5000
0.0900	0.283	2.0694	1.9440
0.1000	0.256	1.7669	1.7500
0.1100	0.239	1.5315	1.5909
0.1200	0.228	1.3441	1.4583
0.1300	0.222	1.1920	1.3462
0.1462	0.2192	0.9995	1.1969
0.1500	0.2193	0.9618	1.1667
0.2000	0.239	0.6247	0.8750
0.2500	0.275	0.4470	0.7000
0.3000	0.317	0.3400	0.5833
0.3500	0.363	0.2698	0.5000
0.4000	0.409	0.2209	0.4375

Tabal 5.3

Para el cálculo del tirante normal se usó la fórmula iterativa siguiente

 $\left[\begin{array}{c} \frac{Qn}{g^{4/2}} \left(2 Y_{0} + b\right)^{2/2} \right]^{2}$

que se obtiene a partir de la fórmula de Manning.

¥0

 $Q = 0.035 \text{ m}^3/\text{s}$ $Y_c = 0.1462 \text{ m}$ $E_c = 0.2192 \text{ m}$ $S_c = 0.0050$ $q = 0.175 \text{ m}^3/\text{s/m}$ $E = y+(0.030625/19.62y^2)$ $F_r = 0.0559/y^{(3/2)}$

$$\Omega = \frac{1}{n} + R_h^{2/2} + S^{1/2}$$

Una vez obtenido el valor del tirante normal para cada una de las pendientes con un gasto constante, se obtienen las características hidráulicas para cada caso, estas características se muestran en las tablas 5.4, 5.5 y 5.6 cada una con un gasto diferente.

Los resultados de las pruebas de laboratorio se muestran en las tablas 5.7 a 5.10, con los que podemos obtener los perfiles mostrados en las figuras 5.4 a 5.7, en las que se observa si el flujo va de régimen subcritico a subcrítico, de subcrítico a supercrítico o de supercrítico a supercrítico, lo obtenido en estas pruebas se comparará con los resultados obtenidos con el modelo numérico.

Los datos que podemos observar en estas tablas 5.4 a 5.6 son: Q'.- Gasto en m³/seg. So.- Pendiente en milesimas Yo.- Tirante normal en cada iteración en m Yo.- Tirante normal final en m A .- Area en m⁴ P .- Perimetro mojado en metros R .- Radio hidraúlico en m V .- Velocidad en m/s V⁴/2g .- Carga de velocidad en m E .- Energía específica en m Fr.- Número de Froude Az.- Altura del escalón en m

Q (m²/ii)	3,	۷.		A cm²s	7 (m)	1 (m)	R ^{3/3}	AR ^{2/3}	U (m/=>	Q (m²/#2	v"/2g	R	<i>r</i> ,	62 • CM3
». 441	1		1.1.7.68	8.04198	1.11111	*******	4.391648		0.184485	8.8494	4.11155	8.4663	sutchtites	8.8841
9.988	8:8178		1.171115	8.01495	1.5411	4.441983	6.120580	0.001791	1.748669	6. 0480	0. j8+94	•. 1 11	pufitetterco	0.6814
•. •.•	4		1.171001		•. 35•815	******	6.128.70	8.001037	1.000000	6.3219	8.141871	6.2168	1.6436 SvfIRLalfics	0.041488
1.030	0.000		8.822657	8.844 ISE		1.469987	6. 188378			6. 02500 j				

TABLA 5.4

Q (~^*/=)	s,	*	A (m²)	2 (m)	H Em2	,×**	A111	u (m/w)	ę (~*/=>)	u"/2g	E	7.	62 (m)
4.470	1	(*. *******	6.92818	4.472.00	*. : *****		*. E7746E	·	8. 81. 9448	*. 174676	#UBCB14168	a. 87675
5.939	8.4447	4.209752	b. 017753	8.199834	8.074E71	9.176786		8.818445	4.42115	4.413789	*. ******	8. 6996699 SubCBITICO	
a. 434	8.0174	4.441433					9. 881874	1.012690	4. 025 fo	4.171X24	4	8.448766 909396913568	0.056634
	4.0130	8.858675	8. 617138	0.371382		0. 1 X 0 L 4 0	6. 91226¢	1.788474	*. *****		4.1.1.047		4.04487
	b. 0045	4.333738					******		6. 92699	1	1.11111	BURCHITICS	

TABLA	5.5
-------	-----

q <m² #=""></m²>	8,	¥. (m)	A cm³s	7 (m2	8 (m)	R21.2	AR***	U (m/=>	q (m²/11)	υ [*] ∕2ç	z	τ,	62 (m)
8.995		4.259287	4.48.911	-63 106	•. •/11 • •	4.193391		0.177942	1	4.913942	6. 174 878		a. #7#784
0.035		4.319683	0.068914	·	8.878727			8.538489			4.144444		0.124413
0.418	4. 894K	\$. \$41741	0.07622*		0.479243		6,014007	8,480871	8. 82-143	0, 818783	4.372485		0.179884
0.038	0.0170	0.031479	4.419235	8.353376	*******	6. (3176)		1.501915		- 1. 1 × 1 × 3 3	6,877431	,	0.65619*
4.424	0,0104	0. ******	4.019206	4.312076		0.133046	6.'80287 <u>4</u>	1.921780	0.014911	0. (CO)()	*. 255229		8.0+1042

TABLA 5.6

5.3 RESULTADOS EXPERIMENTALES

A continuación se presentan la tablas 5.7 a 5.10 con los resultados obtenidos en el laboratorio, junto con las figuras 5.4 a 5.7 en la que se pueden observar el comportamiento del flujo.

X Y FONDO SUPER	-
9.0000 34.45	FICIE
$\begin{array}{c} \mathbf{r}, \mathbf{r},$	

∆h = 5.8 cm

TABLA 5.7

Sa=0.0009

X	Ŷ	FONDO	SUPERFICIE					
		1.60 4.620 3.61 0.60	32.50 32.31 31.63 31.63 31.45					
$\Delta h = 5.8 \text{ cm}$								

H_{TOT} 2 32.8 en la salida

TABLA 5.8

X	¥	FONDO	SUPERFICIE
	277778 2777778 27777778 27777778 22222 22222222	2: ••	87. +1 8777
	17419 .591 9991 9991 9991 9991 9991 9991 9991 9991 1.10 1.10	1	244.995 254.934 254.94 222.06

Sa=0.0009

TABLA 5.9

n an an an Arran an An Arran an Arran an Arra

Sa=0.017

X	¥	FONDO	SUPERFICIE
			20.60 20.65 20.40 13.90 13.60

TABLA 5.10

0 35

(14)

<u> 1969</u> .

; FIG.5.4

(#) 0

EXPERIMENTAL

SUBCRITICO -- SUBCRITICO S= +00007 0 +005 M³/ SE0. EXPERIMENTAL

Y (M) RCRITICO - SUPERCRITICO 035 H3/ HEQ. IMPATAL 07 (11) 0 3 1 6.85 6672 6512 6 3 • 1 8 FIG. 5.7

Comparaçion de gesultados.

Para realizar la comparación de los resultados obtenidos, numérica, experimental y teóricamente, aparecen las gráficas 6.1 a 6.3, en las que se muestran los resultados de los 3 casos, estas gráficas son las curvas de los tres tipos de calculo, con esto de puede hacer una mejor comparación.

Primeramente se comparan los resultados teóricos con respecto a los resultados numéricos, en este caso se observa que existe una gran similitud, ésta se debe a que las consideraciones tomadas en ambos casos son las mismas, flujo ideal y rotacional no viscoso y además no se consideran pérdidas por fricción.

Si se comparan los resultados numéricos con los resultados obtenidos en el laboratorio, se observa que la superficie libre del agua que arroja el modelo numérico y la teoría, se encuentran por debajo de la superficie libre del agua obtenida experimentalmente, esto se cumple para todos los casos estudiados.

Las razones para este comportamiento dependen de si se tiene el caso subcrítico-supercrítico ó supercrítico-supercrítico. Primoramente se analizará el caso subcrítico-supercrítico.

۷ (14) SUBCRITICO - SUPERCRITICO 54 + 0 0009 0 + 0 025 H³7383 030 EXPERIMENTAL TEDRICO MODELD COMPLITACIONAL (M) 9 6 2 202 232 2438 3 - 5 FIG, 6.2

a) Subcritico-supercritico:

En realidad la consideración de que el flujo es irrotacional no es verdadera, como todos sabemos la condición de irrotacionalidad depende de la vorticidad del fluido, la cual está dada por:

$$\eta = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$$

Por otro lado, el perfil de velocidades que se considera generalmente en la teoría de flujo en canales en régimen establecido es del siguiente tipo

Figura d. 4 Perfil de velocidad teorico

pero en realidad es como lo muestra la siguiente figura

Figura d.5 Perfil de velocidad real

En el presente trabajo se consideró un fluido ideal, por lo que por definición " η = 0", equivalentemente es como considerar el perfil de velocidades de la figura 6.4, tomando en cuenta el perfil de velocidades de la figura 5.5 se tiene evidentemente que en la parte cercana a la plantilla del canal " $v \neq$ 0" y además se tiene un gradiente de "u" con respecto a "y" por lo que

$$\eta = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \neq 0$$

es decir que existe vorticidad.

Si se considera, por simplificación, que "v - 0" entonces tendremos que

al pasar de regimen subcrítico a supercrítico la velocidad aumenta pues el tirante disminuye y se tendrá lo siguiente:

'n

Figura d. d
Es obvio que
$$\frac{\partial u}{\partial y} \begin{vmatrix} z \\ z \end{pmatrix} \frac{\partial u}{\partial y} \begin{vmatrix} z \\ z \\ z \end{vmatrix}$$

por lo que el efecto de vorticidad tenderá a impulsar hacia arriba a la superficie libre del agua, razón por la cual los resultados de laboratorio son mayores que los resultados numéricos. También se observa que las pérdidas por fricción no influyen considerablemente ya que de cualquier manera se esté obteniendo en un momento dado la energía específica mínima.

b) Supercritico-supercritico:

En este caso tendremos que buscar la explicación en las curvas de energía específica, considere la fig. 6.7.

Figura d. 7

Inicialmente se tiene E_{x} y por escalón se llega a E_{z} al ser régimen supercrítico y con tirante de menos de 10 cm, las pérdidas por fricción si son considerables, por lo que en realidad se llega a tener una energía $E_{x}^{(*)}$ que corresponderá a un tirante $Y_{z}^{(*)} > Y_{z}^{(*)}$ teórico, que independientemente coincide con el Y_{z} numérico. Así se explica el porqué de las diferencias de los resultados teóricos y numéricos con los resultados experimentales.

G A P I T U L O VII

CODCLUBICHES.

Para terminar con el deserrollo del presente trabajo, se puede concluir:

- 1.- Los resultados que se obtienen por medio del método numérico aplicado en computadora son bastante aceptables comparados con los resultados teóricos. En comparación con los resultados experimentales se tiene una diferencia méxima del 5% y del 15% con respecto a los resultados experimentales.
 - 2.- Para acercar más los resultados numéricos a los resultados experimentales se tendrían que hacer algunas consideraciones extras, como el tomar en cuenta la vorticidad, esto implicaría que ya no sería posible trabajar con la ecuación de Laplace, si no que habría que formular la ecuación de Poisson.

Los resultados obtenidos por medio de la simulación numérica son de muy buena calidad, es necesario impulsar el desarrollo de los métodos numéricos y sobre todo profundizar en el área de la Hidráulica, ciencia que tradicionalmente ha sido experimental, pero hay que reconocer la ayuda que métodos como el del Elemento Finito nos pueden prestar pues son más económicos que los métodos experimentales y pueden optimizar el uso de los laboratorios pues se podría acudir a estos ya con una muy buena idea de la posible

solución que se habría obtenido con la ayuda de la modelación computacional.

Es importante recalcar la interacción que debe existir entre modelos físicos (de laboratorio) y modelos numéricos, pues sin los primeros no será posible en ningún caso validar los segundos.

				- 1 A A A A													
									1. 1. 1. 1. 1.								
							1.1.1.1.1.1.1		- A								
-				1.													
					3 64.00				-								
 		 			1.00						-	-	-				
		 						L7 T									
 		 						_									
		 _		 	Sec. 14.				~			~~					
	_	 												-			
			1.1.1.1														
					Sec. 2	14										A	
	1.11						10 C 10 C	1. Sec. 1.		1.10				100.00			

VARIABLE	SIGNIFICADO
HEAD	Tirante inicial aguas arriba.
ITER	Número de iteraciones máximo.
моотн	Número de veces que se desea suavizar la
	red.
NMASX	Número de elementos maestros en la
	dirección "X".
NMASY	Número de elementos maestros en la
	dirección "Y".
NPME	Número de puntos por elemento maestro.
x.y	Arregios de coordenadas de elemento
	maestros.
NNX	Número total de nodos en la dirección "X".
NNY	Número total de nodos en la dirección "Y".
NNODE	Número total de nodos.
NELM	Número total de elementos.
C008D	Coordenadas globales de los nodos de cada
	elemento
C0091	Coordenadas locales de los nodos de sed
ELEM	Nouos por elemento.
NX[I]	Número de divisiones por elemento maestr

VARIABLE SIGNIFICADO

NY [I]	Número de divisiones por elemento maestro
	en dirección "Y".
A [1]	Toma los valores de la diagonal principal y
	los valores diferentes de cero tanto de
	arriba de la diagonal principal como
	abajo en la matriz global.
J [DIAG]	Nos indica la posición en la cual
	se encuentra el valor del vector
	A[I] dentro de la matriz global.
B [1]	Contiene inicialmente las condiciones
	de frontera. Al finalizar el programa
	contiene los valores de las líneas de
la se la substantia de la substantia de la substantia. La substantia de la substa La substantia de la substa	flujo.
KEL [I.J]	Son las matrices de rigideces de
	cada elemento.
DP(I)	Son los valores del error en los puntos de
	la superficie libre del agua.
DY[1]	Son los valores de las correcciones que se
	aplicarán a los puntos en la superficie
	libre para con los valores corregidos
	empezar nuevamente el cálculo.

The second state of the second st

VARIABLE SIGNIFICADO

FEL [I] ----- Es el vector de términos independientes de cada elemento. TIRSAL ------ Es el tirante aguas abajo del escalón en el

canal

1.- Aitchison, Joyce M.

A finite element solution for critical flow over a weir. 3rd International conference on finite elements in flow problems, Banff, Alberta, Canada 1980.

2.- Alcaraz Paz, Alberto

Desarrollo de un modelo computacional para resolver elproblema de flujo subterráneo regional en 2-D en estado estacionario, Trabajo Predoctoral, Instituto de Geofísica, U.N.A.M. 1989.

3.- Alcaraz Paz. Alberto

Finite element simulation of flow under a Sluice gate. Tesis de maestría, University of Alberta, Canadá 1908.

4.- Alcaraz Paz, Alberto

Apuntes de la materia "Temas especiales de Hidráulica". Facultad de Ingeniería. U.N.A.M., Semestre 90-I.

5.- Días Frédéric

Open channel flows with submerged obstructions. Journal of Fluid Mechanics (1989) vol. 206, pp. 155-170.

6.- King, Horace

<u>.</u>

Hidráulica, Ed. Trillas, México 1988.

7.- Lawrence, G.A.

Steady flow over an obstacle, Journal of Hydraulics Engineering, vol 113 No. 8, August 1987, pp. 981-991.

8.- Levi, Enzo

Mecánica de fluidos, Facultad de Ingeniería, U.N.A.M., México, D.F., 1965.

9.- O'Carroll, M.J.

Numerical computations of critical flow over a weir, International Journal for Numeric Methods in Fluids, 1984, vol. 4, pp. 499-509.

10.- Shames, Irving Herman

La mecánica de los fluidos, Mc. Graw-Hill Book Company, 1967.

11.- Sotelo Avila, Gilberto

Hidráulica General, Limusa, México 1985.

12.- Sotelo Avila, Gilberto

Apuntes de hidráulica II, Facultad de Ingenieria. U.N.A.M., México, D.F., 1986.

13.- Zienkiewies. O.C.

The finite element method, 3rd edition, Mc. Graw-Hill Book Company, London 1977.