

Universidad Nacional Autónoma de México

Facultad de Química

UN EJEMPLO DE CALCULOS AB-INITIO INCLUYENDO INTERACCION DE CONFIGU-RACIONES, LA MOLECULA DE HIDROGENO.

TESIS para obtener Que el título de U 1 M 1 С 0 Q e n t а . р e S JOSE LUIS MORALES PEREZ

México, D. F.

1978

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

TESIS 1970 M.T. RAM 293 PECHA

22

BIB INTECT

4 A 15. 1

JURADO ASIGNADO ORIGINALMENTE SEGUN EL TEMA

PRESIDENTE	FCO. JAVIER GARFIAS AYALA			
VOCAL	GUILLERMO DEL CONDE PONTONES			
SECRETARIO	ANDONI GARRITZ RUIZ			
ler.SUPLENTE	JOSE LUIS GAZQUEZ MATEOS			
2do.SUPLENTE	CARMEN VAREA GILABERT			

Sitio donde se desarrolló el tema:

DEPARTAMENTO DE QUIMICA TEORICA DIVISION DE ESTUDIOS SUPERIORES FACULTAD DE QUIMICA U.N.A.M.

Nombre completo y firma del sustentante:

JOSE LUIS MORALES PEREZ

malese

Nombre completo y firma del asesor del tema:

tellour

GUILLERMO DEL CONDE PONTONES

CONTENIDO.

Referencias Generales	Pag.
Sinopsis	1
Capítulo I. Método de Cálculo	
y Aproximaciones Involucradas.	2
Capítulo II. Expresión de la Energía en Términos de Inte-	
grales Básicas.	5
Capítulo III. Método de Inte-	
racción de Configuraciones.	11
Resultados y Conclusiones	17
Apéndice I. Teorema sobre Gaussianas.	20
Apéndice II. Programa de Com putadora Elaborado.	22
Referencias	26

Agradecimientos.

Al profesor Guillermo del Conde por su ayuda y supervisión durante la realización de este trabajo.

A todos aquellos que colaboraron con opiniones y sugerencias.

A la Sra. Irma Vigil de Aragón por la preparación del manuscrito.

Al personal del C.S.C. de la U.N.A.M.

Referencias Generales.

- Richards, W.G. y Horsley, J.A., Ab-Initio Molecular Orbital Calculations for Chemists. Oxford University Press, 1970.
- 2. Roothaan, C.C.I., Rev. Mod. Phys. 32, 179 (1960).
- Schaefer, H.F., The Electronic Structure of Atoms and Molecules, Addison Wesley Pub. Co., Reading, Massachussets (1972).
- Del Conde, G., Ab-Initio Calculations on Small Molecules, Ph.D. Thesis, Univ. of Birmingham, Birmingham, England (1974).
- Lang, S., Linear Algebra, Addison Wesley Pub. Co., Reading, Massachussets (1972).

SINOPSIS

El presente trabajo está dividido en tres capítulos, en el primero de ellos se describen cualitativamente, el método de cálculo y las aproximaciones involucradas. En el capítulo dos, se obtiene la expresión para la energía electrónica en términos de integrales básicas. El capítulo tres contiene una descripción breve del método de interacción de configuraciones y su aplicación a la molé cula de hidrógeno. Finalmente se presentan los resultados y conclusiones del trabajo.

Se han adicionado a este trabajo, dos apéndices, en el primero de ellos se demuestra un teorema importante sobre gaussianas, y en el segundo aparece un listado del programa (escrito por el autor de esta tesis) utilizado en los cálculos.

CAPITULO I.

La introducción de la ecuación de Schrödinger en 1926 y el descubrimiento del "spin" del electrón en el mismo año aportaron los elementos necesarios para tener un modelo com pleto de la estructura de átomos y moléculas; de tal manera que todos los problemas de la química cuántica se hallaban resueltos por lo menos en principio.

Sin embargo es bien conocido que la ecuación de Schrödinger admite soluciones analíticas solo en unos cuantos casos de interés, y por tanto los esfuerzos de los químicos cuánticos debieron ser encaminados a encontrar métodos aproximados de solución.

En el tratamiento de moléculas, la primera aproximación consiste en despreciar el movimiento de los núcleos que cons tituyen la molécula, frente al movimiento electrónico.

Esta aproximación es debida a Born y Oppenheimer (1).

Quizá la aproximación clave, sea la llamada aproximación de campo autoconsistente, hecha por Hartree (2) en 1928 para tratar átomos polielectrónicos. En ella se supone que sobre cada electrón actúa un promedio de la distribución de carga de los demás electrones, entonces se calcula la densidad electrónica total y el potencial electrostático proveniente de tal densidad es llevado a la autoconsistencia.

La energía es calculada basándose en un principio variacional (3), que establece que la energía calculada para el estado basal utilizando funciones aproximadas, es siempre

- 2 -

mayor que la energía exacta del estado basal.

Sin embargo las funciones de onda usadas por Hartree (productos de funciones monoelectrónicas) tenían el inconveniente de no cumplir con el principio de exclusión de Pauli (4).

Fock introdujo el intercambio en las funciones de Hartree de tal manera que cumpliesen con el principio de Pauli y finalmente Slater (5) mostró que tales funciones podían ser represen tadas como determinantes.

En 1930 Slater (6) sugirió el uso de exponenciales para aproximar orbitales atómicos y dió ciertas reglas para calcular los exponentes de tales funciones. En este punto el problema de tratar moléculas llegó a una etapa crítica, puesto que el n<u>ú</u> mero de integrales a evaluar era verdaderamente impresionante y algunas de esas integrales representaban serias dificultades de tipo técnico para ser calculadas (7).

La solución se alcanzó en parte, aproximando algunas integrales por parámetros empíricos y despreciando otras, constituyendo estos hechos, la esencia de los métodos semiempíricos.

Sin embargo algunos químicos teóricos siguieron haciendo cálculos ab-initio y buscando métodos que facilitaran la evaluación de integrales. En 1950 Boys (8) y McWeeny (9) sugieren el uso de gaussianas en lugar de las funciones de Slater, puesto que las propiedades matemáticas que presentan (descritas en el apéndice I) facilitan enormemente el cálculo de integrales multicentradas.

En química cuántica, los cálculos de la molécula de hidró-

- 3 -

CAPITULO II.

5

El hamiltoniano electrónico para la molécula de hidrógeno (compuesta de dos protones A, B y dos electrones denotados como 1, 2, fig. I) tiene la siguiente expresión en unidades atómicas:

 $\widehat{H} = -\frac{1}{2}\nabla_{1}^{2} - \frac{1}{2}\nabla_{2}^{2} - \frac{1}{r_{A1}} - \frac{1}{r_{B1}} - \frac{1}{r_{A2}} - \frac{1}{r_{B2}} + \frac{1}{r_{12}} =$ $= H_{1}^{C} + H_{2}^{C} + \frac{1}{r_{12}}$

$$H_{1}^{C} = -\frac{1}{2} \nabla_{1}^{2} - \frac{1}{r_{A1}} - \frac{1}{r_{B1}}$$

 $H_2^{C} = -\frac{1}{2}\nabla_2^2 - \frac{1}{r_{A2}} - \frac{1}{r_{B2}}$

De la ecuación de Schrödinger, tenemos que el valor esperado de la energía electrónica para Ψ , una función de onda aproximada (normalizada) es el siguiente:

Fig I

 $E_{\rho} = \langle \Psi | \hat{H} | \Psi \rangle$

Y la expresión para la energía total es:

$$E_{T} = E_{e} + \frac{1}{r_{AB}}$$

La función de onda Ψ será expresada ahora como un producto antisimetrizado de funciones monoelectrónicas que a su vez constan de una parte espacial (dependiente de las coordenadas) y una fu<u>n</u> ción del "spin" ($\alpha \circ \beta$)*. Esta aproximación es conocida como aproximación del orbital molecular, y las funciones espaciales comparten el mismo nombre

- 6 -

$$\Psi = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \, \sigma_{g}(1) \, \alpha(1) & 1 \, \sigma_{g}(1) \, \beta(1) \\ 1 \, \sigma_{g}(2) \, \alpha(2) & 1 \, \sigma_{g}(2) \, \beta(2) \end{vmatrix} = \frac{1}{\sqrt{2}} \, 1 \, \sigma_{g}(1) \, 1 \, \sigma_{g}(2) \left[\alpha(1) \, \beta(2) - \alpha(2) \, \beta(1) \right]$$

Cada orbital molecular es expresado como una combinación lineal de orbitales atómicos (aproximación LCAO)

$$I \sigma_{q}(1) = N_{q}(1S_{A}(1) + 1S_{B}(1))$$

Donde $1S_A$ y $1S_B$ son orbitales atómicos 1S centrados en los átomos A y B respectivamente, por tanto, la energía electrónica E_e en el estado basal queda expresada en términos de orbitales moleculares como:

$$E_{e} = \frac{1}{2} \left\langle 1 \sigma_{g}(1) 1 \sigma_{g}(2) | \hat{H} | 1 \sigma_{g}(1) 1 \sigma_{g}(2) \right\rangle$$

$$\underbrace{\left\langle \alpha(1) \beta(2) - \alpha(2) \beta(1) | \alpha(1) \beta(2) - \alpha(2) \beta(1) \right\rangle}_{2}$$

* \propto, β forman un conjunto ortonormal.

$$= \left\langle 1 \sigma_{g}(1) 1 \sigma_{g}(2) \right| \hat{H} \left| 1 \sigma_{g}(1) 1 \sigma_{g}(2) \right\rangle$$

Expresando H en la forma

$$\hat{H} = H_1^C + H_2^C + \frac{1}{r_{12}}$$

el desarrollo anterior es llevado a la forma siguiente:

- 7 -

$$\begin{split} \mathbf{E}_{e} &= \left\langle 1 \, \sigma_{g}(1) \, 1 \, \sigma_{g}(2) \ \middle| \ \mathbf{H}_{1}^{c} \ \middle| \ 1 \, \sigma_{g}(1) \, 1 \, \sigma_{g}(2) \right\rangle + \\ &= \left\langle 1 \, \sigma_{g}(1) \, 1 \, \sigma_{g}(2) \ \middle| \ \mathbf{H}_{2}^{c} \ \middle| \ 1 \, \sigma_{g}(1) \, 1 \, \sigma_{g}(2) \right\rangle \\ &= \left\langle 1 \, \sigma_{g}(1) \, 1 \, \sigma_{g}(2) \ \middle| \ \mathbf{H}_{1}^{c} \ \middle| \ 1 \, \sigma_{g}(1) \, 1 \, \sigma_{g}(2) \right\rangle = \\ &= \left\langle 1 \, \sigma_{g}(1) \, 1 \, \sigma_{g}(2) \ \middle| \ \mathbf{H}_{1}^{c} \ \middle| \ 1 \, \sigma_{g}(1) \, 1 \, \sigma_{g}(2) \right\rangle + \left\langle 1 \, \sigma_{g}(2) \ \middle| \ 1 \, \sigma_{g}(2) \right\rangle = \\ &= \left\langle 1 \, \sigma_{g}(1) \ \middle| \ \mathbf{H}_{1}^{c} \ \middle| \ 1 \, \sigma_{g}(2) \right\rangle + \left\langle 1 \, \sigma_{g}(2) \ \middle| \ 1 \, \sigma_{g}(2) \right\rangle = \\ &= \left\langle 1 \, \sigma_{g}(2) \ \middle| \ \mathbf{H}_{2}^{c} \ \middle| \ 1 \, \sigma_{g}(2) \right\rangle + \left\langle 1 \, \sigma_{g}(1) \ \middle| \ 1 \, \sigma_{g}(1) \right\rangle \\ &= \\ &= \left\langle 1 \, \sigma_{g}(2) \ \middle| \ \mathbf{H}_{2}^{c} \ \middle| \ 1 \, \sigma_{g}(2) \right\rangle + \left\langle 1 \, \sigma_{g}(1) \ \middle| \ 1 \, \sigma_{g}(1) \right\rangle \\ &= \\ &= \left\langle 1 \, \sigma_{g}(2) \ \middle| \ \mathbf{H}_{2}^{c} \ \middle| \ 1 \, \sigma_{g}(2) \right\rangle + \left\langle 1 \, \sigma_{g}(1) \ \middle| \ 1 \, \sigma_{g}(1) \right\rangle \\ &= \\ &= \left\langle 2 \mathbf{E}_{1}^{c} \ + \ \mathbf{J}_{11} \right\rangle \end{split}$$

Substituyendo los orbitales moleculares por sus expresiones en orbitales atómicos tenemos:

$$\mathbf{E}_{1}^{\mathbf{C}} = \mathbf{N}_{g}^{2} \left\langle \mathbf{1S}_{A} + \mathbf{1S}_{B} \right| - \frac{1}{2} \nabla^{2} - \frac{1}{\mathbf{r}_{A}} - \frac{1}{\mathbf{r}_{B}} \left| \mathbf{1S}_{A} + \mathbf{1S}_{B} \right\rangle$$

Desarrollando la expresión anterior tenemos a E_1^c expresada en términos de integrales básicas.

Por simetría las integrales siguientes son iguales:

$$\left\langle 1 \mathbf{s}_{A} \right| - \frac{1}{2} \nabla^{2} \left| 1 \mathbf{s}_{A} \right\rangle = \left\langle 1 \mathbf{s}_{B} \right| - \frac{1}{2} \nabla^{2} \left| 1 \mathbf{s}_{B} \right\rangle = \mathbf{T}_{11}$$

$$\left\langle 1 \mathbf{s}_{A} \right| - \frac{1}{2} \nabla^{2} \left| 1 \mathbf{s}_{B} \right\rangle = \left\langle 1 \mathbf{s}_{B} \right| - \frac{1}{2} \nabla^{2} \left| 1 \mathbf{s}_{A} \right\rangle = \mathbf{T}_{12}$$

$$\left\langle 1 \mathbf{s}_{A} \right| - \frac{1}{r_{A}} \left| 1 \mathbf{s}_{A} \right\rangle = \left\langle 1 \mathbf{s}_{B} \right| - \frac{1}{r_{B}} \left| 1 \mathbf{s}_{B} \right\rangle = \mathbf{V}_{11}^{A}$$

$$\left\langle 1 \mathbf{s}_{A} \right| - \frac{1}{r_{B}} \left| 1 \mathbf{s}_{A} \right\rangle = \left\langle 1 \mathbf{s}_{B} \right| - \frac{1}{r_{A}} \left| 1 \mathbf{s}_{B} \right\rangle = \mathbf{V}_{11}^{B}$$

$$\left\langle 1 \mathbf{s}_{A} \right| - \frac{1}{r_{A}} \left| 1 \mathbf{s}_{B} \right\rangle = \left\langle 1 \mathbf{s}_{B} \right| - \frac{1}{r_{A}} \left| 1 \mathbf{s}_{B} \right\rangle = \mathbf{V}_{11}^{B}$$

$$\left\langle 1 \mathbf{s}_{A} \right| - \frac{1}{r_{A}} \left| 1 \mathbf{s}_{B} \right\rangle = \left\langle 1 \mathbf{s}_{B} \right| - \frac{1}{r_{B}} \left| 1 \mathbf{s}_{A} \right\rangle =$$

$$= \left\langle 1 \mathbf{s}_{A} \right| - \frac{1}{r_{B}} \left| 1 \mathbf{s}_{B} \right\rangle = \left\langle 1 \mathbf{s}_{B} \right| - \frac{1}{r_{A}} \left| 1 \mathbf{s}_{A} \right\rangle = \mathbf{V}_{12}$$

$$\mathbf{V}_{11}^{A} + \mathbf{V}_{11}^{B} = \mathbf{V}_{11}$$

y la expresión para E_1^c se reduce a:

$$E_{1}^{C} = 2N_{g}^{2} \left\{ T_{11} + T_{12} + V_{11} + 2V_{12} \right\}$$

Donde N $_g$ es la constante de normalización de 1 σ g y está dada por la expresión:

$$N_{g} = \frac{1}{\sqrt{2(S_{12} + 1)}}; \quad S_{12} = \langle 1S_{A} | 1S_{B} \rangle$$

Desarrollando J₁₁ se tienen integrales de cuatro términos

$$\begin{aligned} J_{11} = N^{4} \left\{ \left\langle \left(1S_{A} + 1S_{B}\right)^{2} (1\right) \left| \frac{1}{r_{12}} \right| \left(1S_{A} + 1S_{B}\right)^{2} (2\right) \right\rangle \right\} = \\ = N^{4} \left\{ \left\langle 1S_{A}^{(1)} 1S_{A}^{(1)} \right| \frac{1}{r_{12}} \left| 1S_{A}^{(2)} 1S_{A}^{(2)} \right\rangle + 2 \left\langle 1S_{A}^{(1)} 1S_{A}^{(1)} \right| \frac{1}{r_{12}} \left| 1S_{A}^{(2)} 1S_{B}^{(2)} \right\rangle \\ + \left\langle 1S_{A}^{(1)} 1S_{B}^{(1)} \right| \frac{1}{r_{12}} \left| 1S_{B}^{(2)} 1S_{B}^{(2)} \right\rangle + 2 \left\langle 1S_{A}^{(1)} 1S_{B}^{(1)} \right| \frac{1}{r_{12}} \left| 1S_{A}^{(2)} 1S_{A}^{(2)} \right\rangle \\ + 4 \left\langle 1S_{A}^{(1)} 1S_{B}^{(1)} \right| \frac{1}{r_{12}} \left| 1S_{A}^{(2)} 1S_{B}^{(2)} \right\rangle + 2 \left\langle 1S_{A}^{(1)} 1S_{B}^{(1)} \right| \frac{1}{r_{12}} \left| 1S_{B}^{(2)} 1S_{B}^{(2)} \right\rangle \\ + \left\langle 1S_{B}^{(1)} 1S_{B}^{(1)} \right| \frac{1}{r_{12}} \left| 1S_{A}^{(2)} 1S_{A}^{(2)} \right\rangle + 2 \left\langle 1S_{B}^{(1)} 1S_{B}^{(1)} \right| \frac{1}{r_{12}} \left| 1S_{A}^{(2)} 1S_{B}^{(2)} \right\rangle \\ + \left\langle 1S_{B}^{(1)} 1S_{B}^{(1)} \right| \frac{1}{r_{12}} \left| 1S_{A}^{(2)} 1S_{B}^{(2)} \right\rangle + 2 \left\langle 1S_{B}^{(1)} 1S_{B}^{(1)} \right| \frac{1}{r_{12}} \left| 1S_{A}^{(2)} 1S_{B}^{(2)} \right\rangle \\ + 2 \left\langle 1S_{B}^{(1)} 1S_{B}^{(1)} \right| \frac{1}{r_{12}} \left| 1S_{A}^{(2)} 1S_{B}^{(2)} \right\rangle + 2 \left\langle 1S_{B}^{(1)} 1S_{B}^{(1)} \right| \frac{1}{r_{12}} \left| 1S_{A}^{(2)} 1S_{B}^{(2)} \right\rangle \end{aligned}$$

9 --

Por simetría las siguientes integrales son iguales

$$\left\langle 1S_{A}^{(1)} 1S_{A}^{(1)} \middle| \frac{1}{r_{12}} \middle| 1S_{A}^{(2)} 1S_{A}^{(2)} \right\rangle = \left\langle 1S_{B}^{(1)} 1S_{B}^{(1)} \middle| \frac{1}{r_{11}} \middle| 1S_{B}^{(2)} 1S_{B}^{(2)} \right\rangle =
\left\langle 11 \middle| 11 \right\rangle = \left\langle 22 \middle| 22 \right\rangle
\left\langle 1S_{A}^{(1)} 1S_{A}^{(1)} \middle| \frac{1}{r_{12}} \middle| 1S_{A}^{(2)} 1S_{B}^{(2)} \right\rangle = \left\langle 1S_{B}^{(1)} 1S_{B}^{(1)} \middle| \frac{1}{r_{12}} \middle| 1S_{B}^{(2)} 1S_{A}^{(2)} \right\rangle =
\left\langle 11 \middle| 12 \right\rangle = \left\langle 22 \middle| 21 \right\rangle$$

y de la propiedad:

$$(ij | Kl) = (ji | Kl) = (ji | lK) = (ij | lK) =$$

 $(Kl | ij) = (Kl | ji) = (lK | ij) = (lK | ji)$

Se siguen las siguientes igualdades:

$$(11 | 22) = (22 | 11)$$

 $(11 | 12) = (11 | 21) = (12 | 11) = (21 | 11)$
 $(12 | 22) = (22 | 12) = (22 | 21) = (21 | 22)$

Por tanto el desarrollo de J_{11} en integrales se simplifica bastante con la nueva notación:

$$J_{11} = 4N_{g}^{4} \left\{ \frac{1}{2} \left(11 \mid 11 \right) + \frac{1}{2} \left(11 \mid 22 \right) + \left(12 \mid 12 \right) + 2 \left(11 \mid 12 \right) \right\}$$

- 10 -

CAPITULO III.

La función de onda para el estado basal de H₂ es:

$$\Psi_{g} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \sigma_{g}(1) \alpha(1) & 1 \sigma_{g}(1) \beta(1) \\ 1 \sigma_{g}(2) \alpha(2) & 1 \sigma_{g}(2) \beta(2) \end{bmatrix}$$

$$\Psi_{g} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \sigma_{g}(1) \alpha(1) 1 \sigma_{g}(2) \beta(2) - 1 \sigma_{g}(2) \alpha(2) 1 \sigma_{g}(1) \beta(1) \end{bmatrix}$$

$$\frac{1}{\sqrt{2}} = 1 \sigma_{g}(1) 1 \sigma_{g}(2) \begin{bmatrix} \alpha(1) \beta(2) - \alpha(1) \beta(2) \end{bmatrix}$$

$$1 \sigma_{g}(1) = 1 s_{A}(1) + 1 s_{B}(1)$$

$$1 \sigma_{g}(2) = 1 s_{A}(2) + 1 s_{B}(2)$$

$$\Psi_{g}(esp) = \begin{bmatrix} 1 s_{A}(1) + 1 s_{B}(1) \end{bmatrix} \begin{bmatrix} 1 s_{A}(2) + 1 s_{B}(2) \end{bmatrix} =$$

$$= 1 s_{A}(1) 1 s_{A}(2) + 1 s_{A}(1) 1 s_{B}(2) + 1 s_{B}(1) 1 s_{A}(2) + 1 s_{B}(1) 1 s_{B}(2)$$

En $\Psi_{g(esp)}$ puede notarse que los términos $(1S_A(1)1S_A(2), 1S_B(1)1S_B(2))$ son de carácter iónico y tienen el mismo peso que los términos de carácter covalente $(1S_A(1)1S_B(2), 1S_A(2)1S_B(1))$ y por tanto de acuerdo a esta función de onda existe la misma posibilidad de que la molécula se disocie en dos átomos de hidrógeno neutro que en 2 iones; un hidruro y un protón. Por tanto, se esperará que la función de onda Ψ_g no describa correctamente la disociación de la molécula de H₂.

Una manera de disminuir la importancia de las contribuciones de los términos iónicos, consiste en suponer a la función de onda como una com binación lineal de determinantes de Slater, donde cada determinante de Slater representa una configuración de la molécula:

$$\Theta = C_1 \psi_1 + C_2 \psi_2 \cdots C_n \psi_n$$

Haciendo un tratamiento variacional al conjunto de coeficien tes $\{C_i\}$, se llega a la condición que deben cumplir los mejores C_i (aquellos que minimizan la energía).

$$\begin{bmatrix} H_{11} & H_{12} & \cdots & H_{1n} \\ \\ \\ H_{n1} & H_{n2} & \cdots & H_{nn} \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \\ C_n \end{bmatrix} = E \begin{bmatrix} C_1 \\ C_2 \\ C_n \end{bmatrix}$$

donde $H_{ij} = \langle \psi_i | \hat{H} | \psi_j \rangle$. Y H es el hamiltoniano.

En la molécula de H₂ tenemos seis configuraciones posibles:

Sin embargo por el teorema de Brillouin (18) los elementos de matriz que involucran excitaciones simples, valen cero, este hecho será ilustrado en el caso H_{12} .

12 -

$$\begin{split} \Psi_{1} &= 1 \,\mathcal{G}_{g}(1) \, 1 \,\mathcal{G}_{g}(2) \left[\alpha \left(1 \right) \beta \left(2 \right) - \alpha \left(2 \right) \beta \left(1 \right) \right] \\ \Psi_{2} &= \left[1 \mathcal{G}_{g}(1) 1 \,\mathcal{G}_{u}(2) - 1 \,\mathcal{G}_{u}(1) \, 1 \,\mathcal{G}_{g}(2) \right] \alpha \left(1 \right) \alpha \left(2 \right) \\ H_{12} &= \left\langle \Psi_{1} \right| \hat{H} \middle| \Psi_{2} \right\rangle = \\ &= \left\langle 1 \,\mathcal{G}_{g}(1) \, 1 \,\mathcal{G}_{g}(2) \middle| \hat{H} \middle| 1 \,\mathcal{G}_{g}(1) \, 1 \,\mathcal{G}_{u}(2) - 1 \,\mathcal{G}_{u}(1) \, 1 \,\mathcal{G}_{g}(2) \right\rangle \\ \left\langle \alpha \left(1 \right) \beta \left(2 \right) - \alpha \left(2 \right) \beta \left(1 \right) \middle| \alpha \left(1 \right) \alpha \left(2 \right) \right\rangle \\ \left\langle \alpha \left(1 \right) \beta \left(2 \right) - \alpha \left(2 \right) \beta \left(1 \right) \middle| \alpha \left(1 \right) \alpha \left(2 \right) \right\rangle = \left\langle \alpha \left(1 \right) \beta \left(2 \right) \middle| \alpha \left(1 \right) \alpha \left(2 \right) \right\rangle \\ &= \left\langle \alpha \left(2 \right) \beta \left(1 \right) \middle| \alpha \left(1 \right) \alpha \left(2 \right) \right\rangle \end{split}$$

13 -

$$\underbrace{\left\langle \alpha(2) \beta(1) \middle| \alpha(1) \alpha(2) \right\rangle}_{0}$$

 $H_{12} = 0$

Por tanto los únicos elementos de matriz distintos de cero, serán H_{11} , $H_{16} = H_{61}$, H_{66} , a continuación se calculan estos elementos de matriz

$$\begin{split} \mathbf{H}_{16} &= \left\langle \Psi_{1} \right| \hat{\mathbf{H}} \left| \Psi_{6} \right\rangle = \left\langle \mathbf{1} \, \sigma_{g}(1) \, \mathbf{1} \, \sigma_{g}(2) \right| \hat{\mathbf{H}} \left| \mathbf{1} \, \sigma_{u}(1) \, \mathbf{1} \, \sigma_{u}(2) \right\rangle \\ &= \left\langle \mathbf{1} \, \sigma_{g}(1) \, \mathbf{1} \, \sigma_{g}(2) \right| \mathbf{H}_{1}^{C} + \mathbf{H}_{2}^{C} + \frac{1}{\mathbf{r}_{12}} \right| \mathbf{1} \, \sigma_{u}(1) \, \mathbf{1} \, \sigma_{u}(2) \right\rangle = \\ &= \left\langle \mathbf{1} \, \sigma_{g}(1) \, \mathbf{1} \, \sigma_{g}(2) \right| \mathbf{H}_{1}^{C} \left| \mathbf{1} \, \sigma_{u}(1) \, \mathbf{1} \, \sigma_{u}(2) \right\rangle + \\ &\left\langle \mathbf{1} \, \sigma_{g}(1) \, \mathbf{1} \, \sigma_{g}(2) \right| \mathbf{H}_{2}^{C} \left| \mathbf{1} \, \sigma_{u}(1) \, \mathbf{1} \, \sigma_{u}(2) \right\rangle + \\ & \underbrace{\left\langle \mathbf{1} \, \sigma_{g}(1) \, \mathbf{1} \, \sigma_{g}(2) \right| \frac{1}{\mathbf{r}_{12}} \left| \mathbf{1} \, \sigma_{u}(1) \, \mathbf{1} \, \sigma_{u}(2) \right\rangle}_{\mathbf{K}_{12}} \end{split}$$

$$\begin{array}{l} \left\langle 1 \ \boldsymbol{\sigma}_{\mathrm{g}}(1) \ 1 \ \boldsymbol{\sigma}_{\mathrm{g}}(2) \ \left| \ \mathrm{H}_{1}^{\mathrm{c}} \ \right| 1 \ \boldsymbol{\sigma}_{\mathrm{u}}(1) \ 1 \ \boldsymbol{\sigma}_{\mathrm{u}}(2) \right\rangle & = \\ \left\langle 1 \ \boldsymbol{\sigma}_{\mathrm{g}}(1) \ \left| \ \mathrm{H}_{1}^{\mathrm{c}} \ \right| 1 \ \boldsymbol{\sigma}_{\mathrm{u}}(1) \right\rangle & \cdot & \underbrace{\left\langle 1 \ \boldsymbol{\sigma}_{\mathrm{g}}(2) \ \left| \ 1 \ \boldsymbol{\sigma}_{\mathrm{u}}(2) \right\rangle}_{\mathrm{c}}_{\mathrm{c}} \\ \left\langle 1 \ \boldsymbol{\sigma}_{\mathrm{g}}(1) \ 1 \ \boldsymbol{\sigma}_{\mathrm{g}}(2) \ \left| \ \mathrm{H}_{2}^{\mathrm{c}} \ \right| 1 \ \boldsymbol{\sigma}_{\mathrm{u}}(1) 1 \ \boldsymbol{\sigma}_{\mathrm{u}}(2) \right\rangle & = \\ \left\langle 1 \ \boldsymbol{\sigma}_{\mathrm{g}}(2) \ \left| \ \mathrm{H}_{2}^{\mathrm{c}} \ \right|^{2} \ \left| 1 \ \boldsymbol{\sigma}_{\mathrm{u}}(1) \ 1 \ \boldsymbol{\sigma}_{\mathrm{u}}(2) \right\rangle & = \\ \left\langle 1 \ \boldsymbol{\sigma}_{\mathrm{g}}(2) \ \left| \ \mathrm{H}_{2}^{\mathrm{c}} \ \right|^{2} \ 1 \ \boldsymbol{\sigma}_{\mathrm{u}}(2) \right\rangle & \cdot & \underbrace{\left\langle 1 \ \boldsymbol{\sigma}_{\mathrm{g}}(1) \ \left| \ 1 \ \boldsymbol{\sigma}_{\mathrm{u}}(1) \right\rangle}_{\mathrm{c}}_{\mathrm{c}} \\ \end{array} \right.$$

$$\begin{split} &H_{16} = K_{12} \\ &K_{12} = N \left\langle (1S_{A}(1) + 1S_{B}(1)) (1S_{A}(2) + 1S_{B}(2)) \middle| \frac{1}{r_{12}} \middle| (1S_{A}(1) - 1S_{B}(1)) (1S_{A}(2) - 1S_{B}(2)) \right\rangle \\ &N \text{ está dada por } N_{g}^{2} + N_{u}^{2} \\ &N_{g} \text{ es la normalización de } 1 \sigma_{g} = \frac{1}{\sqrt{2(1 + S_{12})}} \\ &N_{u} \text{ es la normalización de } 1 \sigma_{u} = \frac{1}{\sqrt{2(1 - S_{12})}} \\ &K_{12} = 2N(\langle 11|11 \rangle - \langle 11|22 \rangle) = \frac{1}{2(1 - S_{12}^{2})} \left\{ \langle 11|11 \rangle - \langle 11|22 \rangle \right\} \\ &H_{66} = \langle \psi_{6} \middle| \widehat{H} \middle| \psi_{6} \rangle = \frac{1}{2} \langle 1\sigma_{u}(1)1\sigma_{u}(2) \middle| H_{1}^{c} + H_{2}^{c} + \frac{1}{r_{12}} \middle| 1\sigma_{u}(1)1\sigma_{u}(2) \rangle \\ &\cdot \underbrace{\langle \alpha(1) \not| \beta(2) - \alpha(2) \not| \beta(1)}_{2} \\ &H_{66} = \langle 1 \sigma_{u}(1)1\sigma_{u}(2) \middle| H_{1}^{c} + H_{2}^{c} + \frac{1}{r_{12}} \middle| 1\sigma_{u}(1)1\sigma_{u}(2) \rangle \end{split}$$

14 -

$$\begin{split} {}^{\mathrm{H}_{66}} &= \left< 1 \, \mathcal{G}_{\mathrm{u}}(1) \, 1 \, \mathcal{G}_{\mathrm{u}}(2) \ \right| \, {}^{\mathrm{C}}_{1} \ \left| 1 \, \mathcal{G}_{\mathrm{u}}(1) \, 1 \, \mathcal{G}_{\mathrm{u}}(2) \right> \ + \\ &\left< 1 \, \mathcal{G}_{\mathrm{u}}(1) \, 1 \, \mathcal{G}_{\mathrm{u}}(2) \ \right| \, {}^{\mathrm{H}_{2}^{\mathrm{C}}} \ \left| 1 \, \mathcal{G}_{\mathrm{u}}(1) \, 1 \, \mathcal{G}_{\mathrm{u}}(2) \right> \ + \\ &\left< 1 \, \mathcal{G}_{\mathrm{u}}(1) \, 1 \, \mathcal{G}_{\mathrm{u}}(2) \ \right| \, {}^{\frac{1}{r_{12}}} \ \left| 1 \, \mathcal{G}_{\mathrm{u}}(1) \, 1 \, \mathcal{G}_{\mathrm{u}}(2) \right> \\ {}^{\mathrm{H}_{66}} &= \left. \underbrace{\left< 1 \, \mathcal{G}_{\mathrm{u}}(1) \ \right| \, {}^{\mathrm{H}_{1}^{\mathrm{C}}} \ \left| 1 \, \mathcal{G}_{\mathrm{u}}(1) \right> \cdot \left< 1 \, \mathcal{G}_{\mathrm{u}}(2) \ \right| \, 1 \, \mathcal{G}_{\mathrm{u}}(2) \right> \\ &\left. \begin{array}{c} {}^{\mathrm{F}_{6}^{\mathrm{C}}} \\ & {}^{\mathrm{H}_{66}} \end{array}\right| \\ &+ \left. \left< 1 \, \mathcal{G}_{\mathrm{u}}(2) \ \right| \, {}^{\mathrm{H}_{2}^{\mathrm{C}}} \ \left| 1 \, \mathcal{G}_{\mathrm{u}}(2) \right> \cdot \left< 1 \, \mathcal{G}_{\mathrm{u}}(1) \ \right| \, 1 \, \mathcal{G}_{\mathrm{u}}(2) \right> \\ &\left. \begin{array}{c} {}^{\mathrm{F}_{6}^{\mathrm{C}}} \\ & {}^{\mathrm{H}_{66}} \end{array}\right| \\ &+ \left. \left< 1 \, \mathcal{G}_{\mathrm{u}}(1) \, 1 \, \mathcal{G}_{\mathrm{u}}(2) \ \right| \, {}^{\mathrm{H}_{2}^{\mathrm{C}}} \ \left| 1 \, \mathcal{G}_{\mathrm{u}}(2) \right> \cdot \left< 1 \, \mathcal{G}_{\mathrm{u}}(1) \ \right| \, 1 \, \mathcal{G}_{\mathrm{u}}(2) \right> \\ &\left. \begin{array}{c} {}^{\mathrm{H}_{66}} \right> \\ & {}^{\mathrm{H}_{66}} \end{array}\right| \\ &+ \left. \left< 1 \, \mathcal{G}_{\mathrm{u}}(1) \, 1 \, \mathcal{G}_{\mathrm{u}}(2) \ \right| \, {}^{\mathrm{H}_{2}^{\mathrm{C}}} \ \left| 1 \, \mathcal{G}_{\mathrm{u}}(2) \right> \cdot \left< 1 \, \mathcal{G}_{\mathrm{u}}(1) \ \right| \, 1 \, \mathcal{G}_{\mathrm{u}}(1) \right> \\ &+ \left. \left< 1 \, \mathcal{G}_{\mathrm{u}}(1) \, 1 \, \mathcal{G}_{\mathrm{u}}(2) \ \right| \, {}^{\mathrm{H}_{2}^{\mathrm{C}}} \ \left| 1 \, \mathcal{G}_{\mathrm{u}}(1) \, 1 \, \mathcal{G}_{\mathrm{u}}(2) \right> \\ &- \left< 1 \, \mathcal{G}_{\mathrm{u}}(1) \, 1 \, \mathcal{G}_{\mathrm{u}}(2) \right> \\ &- \left< 1 \, \mathcal{G}_{\mathrm{u}}(1) \, 1 \, \mathcal{G}_{\mathrm{u}}(2) \right> \\ &+ \left< 1 \, \mathcal{G}_{\mathrm{u}}(1) \, 1 \, \mathcal{G}_{\mathrm{u}}(2) \ \left| 1 \, \mathcal{G}_{\mathrm{u}}(1) \, 1 \, \mathcal{G}_{\mathrm{u}}(2) \right> \\ &- \left< 1 \, \mathcal{G}_{\mathrm{u}}(1) \, 1 \, \mathcal{G}_{\mathrm{u}}(2) \right> \\ &- \left< 1 \, \mathcal{G}_{\mathrm{u}}(1) \, 1 \, \mathcal{G}_{\mathrm{u}}(2) \right> \\ &+ \left< 1 \, \mathcal{G}_{\mathrm{u}}(1) \, 1 \, \mathcal{G}_{\mathrm{u}}(2) \ \left| 1 \, \mathcal{G}_{\mathrm{u}}(1) \, 1 \, \mathcal{G}_{\mathrm{u}}(2) \right> \\ &- \left< 1 \, \mathcal{G}_{\mathrm{u}}(1) \, \mathcal{G}_{\mathrm{u}}(2) \right> \\ &- \left< 1 \, \mathcal{G}_{\mathrm{u}}(1) \, \mathcal{G}_{\mathrm{u}}(2) \right> \\ &+ \left< 1 \, \mathcal{G}_{\mathrm{u}}(1) \, \mathcal{G}_{\mathrm{u}}(2) \ \left| 1 \, \mathcal{G}_{\mathrm{u}}(2) \right> \\ &- \left< 1 \, \mathcal{G}_{\mathrm{u}}(2) \, \mathcal{G}_{\mathrm{u}}(2) \right> \\ &- \left< 1 \, \mathcal{G}_{\mathrm{u}}(2) \, \mathcal{G}_{\mathrm{u}}(2) \right> \\ &- \left< 1 \, \mathcal{G}_{\mathrm{u}}(2) \, \mathcal{G}_{\mathrm{u}}(2) \, \mathcal{G}_{\mathrm{u}}(2) \, \mathcal{G}_{\mathrm{u}}(2) \right> \\ &- \left< 1 \, \mathcal{G}_{\mathrm{u}}(2)$$

La expresión para J_{22} se calcula en forma similar a J_{11} :

$$J_{22} = \left\langle (1S_{A}(1) - 1S_{B}(1)) (1S_{A}(2) - 1S_{B}(2)) \middle| \frac{1}{r_{12}} \middle| (1S_{A}(1) - 1S_{B}(1)) (1S_{A}(2) - 1S_{B}(2)) \right\rangle$$

$$= 4N_{u}^{2} \left\{ \frac{1}{2} \left\langle 11 \middle| 11 \right\rangle + \frac{1}{2} \left\langle 11 \middle| 22 \right\rangle + \left\langle 12 \middle| 12 \right\rangle - 2 \left\langle 11 \middle| 12 \right\rangle \right\}$$

$$= \frac{1}{(1 - S_{12})^{2}} \left\{ \frac{1}{2} \left\langle 11 \middle| 11 \right\rangle + \frac{1}{2} \left\langle 11 \middle| 22 \right\rangle + \left\langle 12 \middle| 12 \right\rangle - 2 \left\langle 11 \middle| 12 \right\rangle \right\}$$

- 15 -

Finalmente tenemos la expresión para el elemento de matriz H_{11} (obtenida en el Capítulo II).

 $H_{11} = 2E_1^C + J_{11}$

La diagonalización de la matriz de interacción de configuraciones proporciona los valores de los coeficientes C_1 , C_6 . Así como el valor de la energía electrónica.

RESULTADOS Y CONCLUSIONES

En todos los cálculos, el orbital atómico 15 de cada hidrógeno fue aproximado por una gaussiana

$$A \exp(-\alpha r_A^2) \approx 1s_A$$

con exponente 🗙 variable. Las integrales se calcularon utilizando las fórmulas reportadas por Boys (8). Estas integrales aparecen en la Tabla I junto con las integrales sobre funciones de Slater calculadas por Dewar y Kelemen (16). Notándose que los valores concuerdan aceptablemente salvo en casos excepcionales.

Con los valores de las integrales se construyó la curva de energía total vs. distancia internuclear Fig. II (LCAO-MO), tal curva alcanza el mínimo a una distancia internuclear de 1.6 u.a, valor que coincide con el calculado por Dewar y que aparece en la Tabla II.

El cálculo con una gaussiana se mejoró de una manera interesante optimizando variacionalmente el exponente a cada longitud de enlace. La variación del exponente con la distancia internuclear (Fig. III) muestra que el orbital se "contrae" cuando la distancia entre hidrógenos es menor que la distancia de equilibrio. Sin embargo a distancias grandes, el exponente alcanza un valor constante que coincide con el mejor exponente para el átomo de hidrógeno no ligado ($\propto = 0.2829$).

- 17 -

Un análisis de la Figura II muestra que el cálculo LCAO-MO no explica correctamente la disociación de la molécula $(H_2 \rightarrow 2H)$, puesto que la curva LCAO-MO no es asintótica. Este "defecto" es corregido utilizando una segunda configuración en la función de onda. Los resultados obtenidos luego de utilizar una configuración adicional (ψ_6) se observan en la Fig. II (curva LCAO-MO-CI). El hecho de usar una segunda configuración en la función de onda introduce además una mejora en la energía del orden del 1.7%. En los cálculos en los que se utilizan dos configuraciones, esto es interacción de configuraciones, no se reoptimizó el exponente puesto que se determinó que para una longitud de enlace dada, el exponente óptimo utilizando interacción de configuraciones y en la aproximación SCF era esencialmente el mismo.

La Tabla III ilustra la variación del cuadrado de los coeficientes de las configuraciones 1 y 6 con la longitud de enlace. Puede notarse que la configuración 1 es la predominante en regiones cercanas a la longitud de equilibrio, mientras que la segunda configuración contribuye solo cuando la distancia internuclear es muy grande. Es interesante hacer notar que ambas configuraciones tienen el mismo peso estadístico a distancias grades (Fig. IV).

A la distancia de equilibrio (1.6 ua), $C_1^2 = 0.985$ y $C_6^2 = 0.015$ (ver Tabla III) por lo tanto la parte espacial de la función de onda incluyendo interacción de configuraciones es:

 $\theta = 0.992 \psi_1 - 0.122 \psi_6$

(el signo negativo debe escogerse debido a que es el eigenvector que dá el menor eigenvalor) en donde las partes espaciales de ψ_1

- 18 -

 $y \neq_6$ son: $N_g 1 \sigma_g(1) 1 \sigma_g(2)$, $N_u 1 \sigma_u(1) 1 \sigma_u(2)$ respectivamente (ver capítulo III para definiciones de términos).

$$\Theta = 0.870 \left[1S_{A}(1)1S_{A}(2) + 1S_{B}(1)1S_{B}(2) \right]$$

+ 2.228 $\left[1S_{A}(1)1S_{B}(2) - 1S_{A}(2)1S_{B}(1) \right]$

En donde se observa que el peso de los términos iónicos es de un 39% del peso de los covalentes, y <u>no de igual peso</u> como se obtiene sin hacer un cálculo incluyendo interacción de configuraciones. Ahora bien, el hecho de que los términos iónicos sean considerables se puede entender escribiendo las estructuras de resonancia del H₂; H_A-H_B, H_B-H_A, H_A⁺-H_B⁻ y H_A⁻-H_B⁺ las cuales muestran que es importante utilizar términos iónicos en la función de onda. Es ilustrativo analizar el comportamiento de θ cuando la distancia internuclear tiende a infinito (C₁ = C₆ = $\frac{\sqrt{2}}{2}$). En tal caso se tiene:

 $\Theta = \sqrt{2} \left[1S_{A}(1) 1S_{B}(2) + 1S_{B}(1) 1S_{A}(2) \right]$

Y esta es precisamente la función de Heitler y London sin incluir términos iónicos, lo cual demuestra que en el límite $r_{AB} \rightarrow \infty$ el Método del Orbital Molecular incluyendo Interacción de Conf<u>i</u> guraciones es equivalente a la Teoría de Unión Valencia.

En la Tabla IV aparecen los coeficientes viriales calculados a distintas longitudes de enlace. Así como los potenciales de ionización y las energías de disociación.

Finalmente se puede concluir que los resultados obtenidos con gaussianas son aceptables en términos generales.

APENDICE I.

TEOREMA SOBRE GAUSSIANAS.

El teorema siguiente constituye la pieza clave de los cálculos ab-initio con gaussianas.

Este teorema asegura que el producto de 2 gaussianas es una tercera gaussiana centrada en el segmento que une los centros de las dos primeras.

 $G_A \ y \ G_B$ son gaussianas centradas en A y B respectivamente.

$$\begin{aligned} G_{A} &= \exp\left(-\propto r_{A^{2}}\right); \quad G_{B} = \exp\left(-\beta r_{B^{2}}\right) \\ G_{A}G_{B} &= \exp\left(-\propto r_{A^{2}}\right)\exp\left(-\beta r_{B^{2}}\right) = \exp\left(-\propto r_{A^{2}} - \beta r_{B^{2}}\right). \\ &\propto r_{A^{2}} + \beta r_{B^{2}} = + \propto |r-A|^{2} + \beta |r-B|^{2} = \\ &= \alpha |r|^{2} - 2\alpha A \cdot r + \alpha |A|^{2} + \beta |r|^{2} - 2\beta B \cdot r + \beta |B|^{2} \\ &= |r|^{2}(\alpha + \beta) - 2r \cdot (a \alpha + B\beta) + \alpha |A|^{2} + \beta |B|^{2} \\ &\text{este exponente es de la forma} \\ \delta^{4} |r-c|^{2} + \kappa. \\ &\text{donde } \delta^{4} = \alpha + \beta \end{aligned}$$

 $A \propto + B \beta = \delta' c$ $c = \frac{\alpha A + \beta B}{\delta'} = \frac{\alpha A + \beta B}{\alpha + \beta}$

y K es tal que

$$\propto |\mathbf{A}|^{2} + \beta |\mathbf{B}|^{2} = \langle \mathbf{A} | \mathbf{c} |^{2} + \mathbf{K} = (\alpha + \beta) |\mathbf{c}|^{2} + \mathbf{K}$$

$$\mathbf{K} = \alpha |\mathbf{A}|^{2} + \beta |\mathbf{B}|^{2} - (\alpha + \beta) |\mathbf{c}|^{2}$$

$$\mathbf{K} = \frac{\alpha \beta (|\mathbf{A}|^{2} + |\mathbf{B}|^{2} - 2\mathbf{A} \cdot \mathbf{B})}{\alpha + \beta} = \frac{\alpha \beta}{\alpha + \beta} \overline{\mathbf{A}} \mathbf{B}^{2}$$

Esto demuestra que existe una gaussiana

$$G_c = Lexp(-\delta r_c^2)$$

Ahora demostraremos que c está en el segmento que une a A con B.

sea
$$t = \frac{\beta}{\alpha + \beta}$$
; $0 < t < 1$
 $c = (1 - t)A + tB = A + t(B - A)$.

QED

- 22 -

APENDICE II.

PROGRAMA DE COMPUTADORA ELABORADO.

SRESE	I FREE LINEINFO
FILE	5=FILE5,UNIT=READER 4=FILE4,UNIT=PRINTER
8	ALFA TS THE GAUSSTAN FEB BY J.L. MORALES AND G. DEL CONDE
Č	BOND IS THE DISTANCE BETWEEN TWO HYDROGEN ATOMS IN ATOMIC UNITS
	ETRENSICK CT(2,2), ID(2,2)
	EXTA PLIFERTS 11962254,0.33333333
. 999	APATESSES ADDIALFA
	IF FEND: FJACFA, BONEXIT
	BD=BOND+FCND GH=ALFA+0.5
	\$129EXP(-90+0H)
	R12=GA*(3,0=2.0*BD*GM)*S12
	ARG2=SGRT(ED+ALFA+C+5)
	PUT11=2-0*(1+0+(BPJ/ARG1)*EBF(ARG1))*SQBT((2+0*ALFA)/PI)
	AAAA=SGRT(ALFA2P1)*2.0
	ASSE=AAAAA*(RPI/AR1)*ERF(4R1)
	ABAB#AAAA#EXP(=2.0*BD+GM) #R2=SC#T/BD+41FA+0.25
	AATTE(AA) = EXP(_BD * GW) * (RPI/AR2) * ERF(AR2)
	HRIIE(6,6) HRIIE(6,6) HRIIE(6,6) HRIIE(6,6)
	C2=S0BT(1+0/(2+C=2+0+S12))
	RK12=2095961:82592#1444592677888888885+ABAB+2.0*AAAB)
	R123=4CA112901+(A444+0+51++880+0+5=+848)0+0+0=0 0++++
	EIC=K11-POTI1+K12-POTI2
	E&E=4.0+102++2.0)+1K11-PC+11-K12+POT12)+RJ22
	RRITE(2)11) NRITE(4)12)RJ11-RJ12-RJ02-RK10
	PCINUC=1.0/BOND
	ARTESGATATESPOTNUCAETOTAEGE
	EI{2;};=EY{2,2)
	£4{\$#\$}=\$\$\$
	CC 30 1=1,2
30	WRITE(6,15)(CI(I)J),J=1,2) IC(1,2)=0.0 IC(2,4)=0.0

- 23 -

	$ID(2 \neq 2) = 1 \cdot C$
	ID(1,1)=1,0
	CALL JACCBI(2,0.000001,CI,ID)
20	KRITE(8, 157(ID(I,J),J=1,2)
	C = 1 D (2) 1 + 7 = 40 C = 1 D (2) 1 + 7 = 7 + PO T N + PO T
	KRITE(6,17)CI(1,1)
	FGBCEN#CCC1C1/10/201010100+0

	KRTTE (2,16)
	kRTTF(5,21)C1+C2
2	FCRMAT(2FIA-5)
3	EEBKATG181420X, "A LCAD-MO SCF CALCULATION FOR H2 MOLECULE WITH GAU
	2331AN DA313"//// EDDW17/14 152, Nation FyDowrygen, F40 F. RV, NDOWD I FWCTWEN, F40 F. //)
<u></u>	FURVATELA SZOZINBASIC FATURAL SHIJY STOND LENGTH- FIO.STIT
5	FCRMAT(1H 20X, "S12", 9X, "T11", 9X, "T12", 9X, "V11", 9X, "V12", 9X, "AAAA"
	1,4,4,2,2,4,4,5,4,4,4,4,4,4,4,4,4,4,4,4,4
-	
Ĩo	FURMATESSSZZZZZZMADOLEDELEARTESKATUSMIJJS
11	EGRMAI(14,20×,111,9×,111,9×,9×,+J22+,9×,+K12+,//)
12	FORMATCODY 4F1240
14	FORMAT(//2003 HFIF=" FILS ALV "POTNUCH'SFILS ALAY""FTOTE"-FILSALAY"
* 7	1+ESE**;F11-3;7/) - FT1-0704, State - FT1-0704, Elet FT1-0704,
15	EHBUAT (208 E 13 . 0 . 5
10	FORMATIONY HIGHLINA BARAGE ARTHERAD BALLS
18	
19	FURMATC20X;"STATISTICAL WEIGHTS";27)
21	
	END
	- SHORDHTINE JACOBICNERHOLE / Y)
Ş.	IT PIAGUNALIZES & JIMMETRIC FEAL MATRIX US ORDEBEN
č	V TS THE FIGENVECTOR NATERY TARANGER IN COLUMNS
	DINENSTON F(Nen)+V(Nen)
	DUBLE PRECISION SINT/COST/SINCOS
	R=I=1
	ÝĀ=ð
	A#N
	TEARNOR - RHUJ GU TU 3
	3 NROTENROT 1
103	

- 24 -

- 1, 114	
	IF(ABS(F(TI)J))-TE) 10.0.0
4	
	V3=F(II)
	YE22855644437554737222
5	
5	
•	2=1.0
	IE(U+GE+C+C) GD ID 27
7	ĆŌŇŤINUE.
,	CMEGA=DMEGA+Z
	SINT=DKEG7/SUNTSINT+SINT+SUNTSINTSINTSINTSINTSINTSINTSINTSINTSINTSI
	If (I=II) 9,848
,	ftistisfftisussistatist ftistonst
	F(I,JJ)=TEM
	FCT-J3 10-11-11
	fev=F(J),I)*COST=F(II,I)*SINT
	ESII'IS=EEUJ+I)+SINT+FCII+I)+COST
	G0 T0 12
L	IEV=FCIEJ)+GGSTZECIIAI)+SINT
	F(1)]]=[[]]
	TEH=V(1, J)*COST=V(1, II)*SINT
	V(1,11)=+F(1,33)+3[(1+V(1,11)+CU2)
	É(JJ)=X1*COSI*COST+93*SINT*SINT*2**X2*SINI*COSI
	F(II+II)=VI*SINT*SINT+V3*COST+COST+2.*V2*SINT*COST
F	CRNTINUE
	IC(MA=1) 10/10/10 Ma=0
	60,10 3
2	
1	RETURN
	END

- 25 -

Referencias.

- Pilar, F.L., Elementary Quantum Chemistry, McGraw-Hill Book Co., N.Y. (1968).
- 2. Hartree, D.R., Proc. Cambridge Phil. Sol., 24, 111 (1928).
- Eyring, H., Walter, J. y Kimball, G.E., Quantum Chemistry, John Wiley and Sons (1944).
- Slater, J.C., Quantum Theory of Atomic Structure, Vol. I, McGraw-Hill Book Co. (1960).
- 5. Slater, J.C., Phys. Rev., 34, 1293 (1929).
- Slater, J.C., Quantum Theory of Matter, McGraw-Hill Book Co. (1968).
- 7. Harris, F.E., J. Chem. Phys., 32, 3 (1960).
- 8. Boys, S.F., Proc. Roy. Soc., A200, 542 (1950).
- McWeeny, R., Nature, <u>166</u>, 21 (1950); Acta Cryst., <u>6</u>, 631 (1953).
- 10. Heitler, W. y London, F., Z. f. Phys. 44, 455 (1927).
- 11. Hund, F., Z. f. Phys. 51, 759 (1928).
- 12. Hund, F., Z. f. Phys. 73, 1 (1931).
- 13. Mulliken, R.S., Phys. Rev. <u>32</u>, 186, 761 (1928).
- 14. Huckel, E., Z. f. Phys. 60, 423 (1930).
- McLean, A.D., Weiss, A., y Yoshimine, M., Rev. Mod. Phys., 32, 25 (1960).
- 16. Dewar, M.J.S. y Kelemen, J., Journal of Chem. Ed. <u>48</u>, 494 (1971).
- 17. Coulson, C.A. y Fischer, I., Phil. Mag., 40, 386 (1949).
- Brillouin, L., Les Champs "Self-Consistents" de Hartree et de Fock, Act. Scie. et Ind. No. 159, Ed. Hermann & Cie., Paris (1934).

TABLA I

TABLA DE INTEGRALES BASICAS CALCULADAS A DIFERENTES LONGITUDES DE ENLACE.

S = Base minima de Slater*

G = Base minima Gaussiana**

r _{AB} (1	ıa)	s ₁₂	^T 11	^T 12	-v ₁₁	-V ₁₂	<11 11>	<11 12>	<12 12>	<11 22>
1.0	S	0.85839	0.50000	0.30658	1.72933	1.47152	0.62500	0.50705	0.43665	0.55452
	G	0.78270	0.73500	0.48132	1.95553	1.61573	0.78987	0.59389	0.48389	0.67780
1.5	S	0.72517	0.50000	0.19524	1.58369	1.11565	0.62500	0.4C537	0.29684	0.49033
	G	0.64848	0.58500	0.26689	1.62256	1.11964	0.70467	0.42325	0.29302	0.54317
	s	0.58465	0.50000	0.11278	1.47253	0.81201	0.62500	0.30804	0.18416	0.42597
2.0	G	0.51685	0.49500	0.14327	1.40591	0.77466	0.64820	0.3C155	0.17316	0.44790
3.0	s	0.34851	0.50000	0.02489	1.33003	0.39830	0.62500	0.16074	0.05851	0.31980
	G	0.28365	0.42000	0.01906	1.17724	0.33569	0.59708	0.13962	0.04804	0.32508
5.0	s	0.96580	0.50000	-0.00780	1.19995	0.08086	0.62500	0.03495	0.00372	0.19957
	G	0.03019	0.42000	-0.01691	1.04440	0.02395	0.59708	0.01134	0.00054	0.19996
7.0	S	0.02219	0.50000	-0.00381	1.14286	0.01456	0.62500	0.00654	0.00017	0.14284
	G	0.00105	0.42000	-0.00157	0.98726	0.00060	0.59708	0.00030	0.00000	0.14286

* Exponente 1.0.

**Exponente optimo en cada caso (ver Fig.III).

TABLA II

Energía Total a Diferentes Longitudes de Enlace.

S	=	Base	minima	de	Slater

G = Base minima Gaussiana

r _{AB} (ua)		- Energía ((ua)	
	G(CI) *	S	G	
1.0	0.8956	0.9859	0.8850	
1.5	0.9962	1.0972	0.9800	
2.0	0.9805	1.0808	0.9580	
3.0	0.9089	0.9828	0.8613	
5.0	0.8525	0.8343	0.6942	
7.0	0.8488	0.7708	0.6250	

* Energía calculada utilizando las configuraciones 1,6.

TABLA III.

Pesos estadísticos (C_1^2, C_6^2) a Diferentes Longitudes de Enlace.

r _{AB}	c_1^2	c_6^2
1.1	0.992	0.008
1.2	0.991	0.009
1.4	0.988	0.012
1.6	0.985	0.015
1.8	0.980	0.020
2.2	0.966	0.034
3.0	0.906	0.094
4.0	0.758	0.242
6.0	0.534	0.466
8.0	0.507	0.499

TABLA IV.

	STO	GTO	EXP.
PI	16.3787	13.2540	15.88
ED	-2.644	-4.043	-4.746

PI = Potencial de Ionización en eV ED = Energía de Disociación en eV

Coeficientes Viriales a Diferentes Longitudes de Enlace.

r _{AB}	STO	GTO
1.0	2.13579	1.64855
1.5	2.36130	1.946098
2.0	2.39906	1.13834
3.0	2.26247	2.259062
5.0	1.929375	1.887095
7.0	1.79395	1.747623

Impresiones "LOPITA"

and the

Medicina 25 Frac. Copilco Universidad Cindad Universitaria, D. F