

Universidad Nacional Autónoma de México

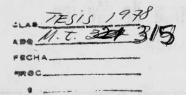
FACULTAD DE QUIMICA

ESTUDIO DE LA CALIDAD Y DISTRIBUCION OPTIMA DEL AGUA EN EL DELTA DEL RIO BALSAS

T E S I S
Que Para Obtener el Título de:
INGENIERO QUIMICO
Pres en ta

MARIA TERESA ORTA LEDESMA

México, D. F.



UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

PRESIDENTE RAMON VILCHIS ZIMBRON

VOCAL JORGE MENCARINI PENICHE

Jurado asignado originalmente

SECRETARIO ALBERTO DE LA FUENTE ZUNO

1er. SUPLENTE DARIO RENAN PEREZ PRIEGO

2do. SUPLENTE RAMON ARNAUD HUERTA

Sitio donde se desarrolló el tema:

Instituto de Ingeniería, UNAM

sustentante:

Maria Teresa Orta Ledesma

asesor del tema:

Alberto FCO. de la Frante Zuno

supervisor técnico:

Gastón Mendoza Gámez

Con agradecimiento y afecto a mis Padres Sr. Alvaro Orta L. y Sra.Ofelia L. de Orta

Con profundo respeto y admiración por su ejemplo a mi Abuelita Sra. Rosa Requena Vda. de L.

Con cariño a mis Hermanos

José
Pedro
Miguel
Eduardo
Rosi

A Octavio

Agradezco la revisión de este trabajo a M.en I.Gastón Mendoza Gámez, quien en todo momento me manifestó su disponibilidad para orientarme y sugerirme ideas, así como motivarme a la constante superación personal que todo profesionista desea.

Agradezco al Ing. Alberto de la Fuente Zuno su dirección en éste trabajo, así como sus valiosos consejos y observaciones.

CONTENIDO

TABLAS DEL CONTENIDO

FIGURAS DEL CONTENIDO

TABLAS DEL APENDICE

FIGURAS DEL APENDICE

RESUMEN

- √1. INTRODUCCION
- 2. CLASIFICACION Y USOS DEL AGUA
 - 2.1 Municipal
 - 2.1.1. Residual municipal
 - 2.2 Agricola
 - 2.2.1 Agua de drenaje agrícola
 - 2.3 Industrial
 - 2.4 Recreativo
 - 2.5 Usos del agua en la región
 - 2.5.1 Abastecimiento de agua para uso municipal, agrícola e industrial.
- √3. EVALUACION DE LAS CONDICIONES ACTUALES DE CONTAMINACION
 - 3.1 Campañas de muestreo
 - 3.2 Descripción y localización de las descargas municipales
 - 3.3 Parámetros evaluados en las aguas del río
 - 3.4 Estado de contaminación del río

- 4. ANALISIS DE LAS CONDICIONES FUTURAS PARA
 ABASTECIMIENTO DE AGUA Y DESCARGAS DE AGUAS
 RESIDUALES MUNICIPALES
 - 4.1 Demandas de agua potable
 - 4.2 Gasto y carga orgánica expresada como DBO para las descargas residuales municipales
 - Æ Efecto de las descargas en las alternativas de localización de la toma de agua para uso municipal
 - 4.4 Criterios para localizar las descargas
 - 4.5 Tratamientos recomendados
 - 4.5.1 Planteamiento del problema
 - 4.5.2 Características de la corriente receptora
 - 4.5.3 Cálculo de la Eficiencia necesaria de remoción de carga en DBO₅ del agua residual des cargada al río
 - 4.5.4 Tratamiento aplicable al sistema en estudio

5. EFECTO DEL DESARROLLO INDUSTRIAL

- 5.1 Demandas de agua para la siderúrgica Lázaro Cárdenas "Las Truchas".
- 5.2 Descargas de SICARTSA. Gasto, tipo de contaminantes y tratamiento
- 5.2.1 Evaluación de la carga de cianuros CN aportados por la siderúrgica en la primera y segunda etapas de producción
- 5.3 Industrias factibles a establecerse Caracterización de sus efluentes, efecto causado en el río, tratamiento recomendado

6. MODELO DE OPTIMIZACION PARA EL USO DEL AGUA

6.1 Descripción del Modelo

- 6.2 Análisis del Modelo
- 6.3 Aplicación al sistema de estudio
- 6.4 Matriz de asignación optima de las aguas

7. CONCLUSIONES

REFERENCIAS

BIBLIOGRAFIA

APENDICE

TABLAS DEL CONTENIDO

- 3.1 Localización de las estaciones de muestreo.
- 3.2 Estaciones con valores significativos de coliformes.
- 3.3 Carga de DBO, DQO y coliformes totales aportadas por las descargas al cuerpo de agua receptor.
- 4.1 Pronóstico de carga de DBO futura.
- 4.2 Resultados obtenidos del programa para la eficiencia total de tratamiento.
- 4.3 Requerimientos de cloro para la desinfección, considerando residuales de 0.5 mg/l después de 15 min. de contacto.
- 5.1 Producción en ton/año de SICARTSA en las etapas.
- 5.2 Descargas de SICARTSA tipo de contaminante y tratamien to.
- 5.3 Concentración y carga de Cianuro CN aportado por la s \underline{i} derúrgica en la primera y segunda etapas de producción.
- 6.1 Matriz de elementos empleados en el análisis de distr \underline{i} bución de agua en el sistema Lázaro Cárdenas Las Tr \underline{u} chas.
- 6.2 Distribución del agua en el sistema agrícola, urbano e Industrial Lázaro Cárdenas.

- 6.3 Matriz de diferenciales de la calidad del agua según la DBO en mg/l.
- 6.4 Matriz de diferenciales de calidad del agua según la concentración de sólidos totales en mg/l.
- 6.5 Matriz de costos relativos unitarios, Pesos/m³.
- 6.6 Matriz de Asignación óptima de las aguas en m³/s.

FIGURAS DEL CONTENIDO

- 4.1 Proceso convencional de Lodos activados
- 4.2 Diagrama de flujo propuesto.para tratamiento del agua residual municipal.
- 6.1 Diagrama de Flujo del método de la columna mínima.
- 6.2 Diagrama de asignación óptima del Agua del sistema urbano agrícola e Industrial Lázaro Cárdenas.

TABLAS DEL APENDICE

- 1. Normas Mexicanas de calidad para agua potable
- Características químicas de las aguas residuales municipales.
- 3. Características medias de aguas residuales municipales
- Clasificación de aguas de riego por salinidad.
- 5. Normas de calidad delagua para uso industrial.
- 6. Métodos de análisis y preservación de las muestras.
- Clasificación de las aguas de los cuerpos receptores superficiales en función de sus usos y características de calidad.
- 8. Resultados de los análisis físicoquímicos efectuados el 1º de mayo de 1976 en las estaciones del río.
- 9. Resultados de los análisis físicoquímicos efectuados el 16 de julio de 1976 en las estaciones del río.
- 10. Resultados de los análisis físicoquímicos y bacteriológicos efectuados en las descargas D-1, D-2 y D-3.
- 11. Estudio demográfico de la región de la desembocadura del río Balsas.

FIGURAS DEL APENDICE

- 1. Plano de localización del área de estudio.
- 2. Diagrama de flujo de la programación del modelo.

RESUMEN

El presente trabajo tiene como objetivo evaluar el efecto en el recurso hidráulico debido al acelerado desarrollo urbano e industrial de la ciudad Lázaro Cárdenas, para lo cual se estudiaron los siguientes aspectos:

Evaluación de las condiciones actuales de contaminación así como los niveles futuros esperados en el agua del delta del río Balsas.

Determinación de la carga orgánica permisible en la corrien te receptora y consecuentemente la eficiencia de remoción requerida para mantener condiciones aceptables para los usos del cuerpo de agua.

Distribución óptima del agua para satisfacer las demandas futuras del sistema urbano agrícola e industrial.

1. INTRODUCCION

El aprovechamiento de un yacimiento importante de mineral ferroso, localizado cerca de la desembocadura del río Balsas, decidió la conveniencia de construir el complejo siderúrgico Lázaro Cárdenas "Las Truchas", (SICARTSA) propiciando con ello, el desarrollo de una nueva área urbana e industrial y la realización de un conjunto de obras de infraestructura como son: un puerto de altura, obras de comunicación y la planta hidroeléctrica José Ma. Morelos.

Localización

En la desembocadura del río Balsas se localiza la región que integra los municipios Lázaro Cárdenas, Mich. y La Unión, Gro., está comprendida entre los 101°40' y los 102° 33' de longitud W Gr., y entre los 17°50' y los 18°02' de latitud N. y se sitúa en ambas margenes del delta del río y a lo largo de la faja costera de los estados de Guerrero y Michoacán. La altura de la región varía entre cero y 50 m.s.n.m., y su clima corresponde al semiseco cálido. La precipitación pluvial anual promedio es de 1,472 mm.

El delta del río está formado principalmente por dos brazos con algunas ramificaciones que se han ido cerrando artificialmente para quedar actualmente con solo dos salidas al mar. El brazo izquierdo recibe el nombre de San Francisco

y el derecho de Melchor Ocampo, nombre anterior de la población Lázaro Cárdenas.

La Siderúrgica y el puerto fueron construídos en la margen derecha del brazo Melchor Ocampo.

El surgimiento de la industria colateral a la siderúrgica generará empleos y consecuentemente atracción demográfica, y a su vez, demandas de servicios, como agua potable y alcan tarillados, lo cual, aunado a las modificaciones de la hidrología superficial y al desarrollo económico y social, representarán un centro productor de residuos, que pueden contaminar y modificar las características naturales de los recursos de agua, ya que los desechos producto de la vida urbana, sea esta doméstica, social, agrícola, recreativa o industrial que no son adecuadamente dispuestos ocasionan en los cuerpos de agua receptores, alteraciones físicas, químicas y biológicas, lo que representa uno de los problemas más importantes en el campo de la ingeniería ambiental.

Tomando en consideración los puntos anteriores, se estudiaron en el presente trabajo los siguientes aspectos:

- En el capítulo 2 se describen los diferentes usos del agua y la distribución de este recurso en la región.
- En el capítulo 3, se evalúan las condiciones físicas, quí

micas y biológicas del agua del delta del río Balsas y de las descargas de aguas residuales municipales que vierten a este cuerpo receptor.

- En el capítulo 4, se hace una proyección de los requerimientos de agua potable y de la carga orgánica aportada por las aguas residuales municipales al río. Así como el cálculo de la eficiencia necesaria de remoción. Con base en lo anterior, se sugieren alternativas de localización de la toma de agua para abastecimiento municipal y, se recomiendan tratamientos para disminuir dicha carga.
- En el capítulo 5, se muestra la caracterización de las descargas existentes en la siderúrgica, y el efecto que pueden causar en el río los desechos de cada una de las industrias factibles a establecerse.
- En el capítulo 6, se aplica un modelo para designar el uso óptimo del agua disponible en la región y minimizar los costos de tratamiento necesarios para lograr la calidad requerida para cada uso.

2. CLASIFICACION Y USOS DEL AGUA

2.1 Municipal

Es aquella que se destina para satisfacer los servicios de la comunidad y debe cumplir con las normas de calidad que aparecen en la tabla 1.

2.1.1. Agua residual municipal

Representa aproximadamente un 70 por ciento del agua de abastecimiento y se compone principalmente de materia orgánida en forma de sólidos en suspensión y estado coloidal. Las características químicas y su composición media, se muestran en las tablas 2, 3 respectivamente.

2.2 Agricola

Las normas de calidad de agua que se requieren satisfacer se muestran en la tabla 4.

2.2.1. Agua del drenaje agrícola

Es aquella que se usó para riego agrícola y por medio de corrientes de retorno se colecta en el drenaje. El efecto contaminante que se presenta en estas aguas se debe principalmente al uso de plaguicidas, herbicidas y fertilizantes

X

químicos, ya que estos actúan a través del nitrógeno y fósforo como nutrientes, produciendo fenómenos de eutrificación, por lo cual se deben establecer límites tolerantes antes de usarlos y así favorecer las medidas de control.

2.3 Industrial

La calidad del agua requerida por la industria varía en cada caso particular dependiendo de su uso, el cual puede ser:

Para procesos, para enfriamiento o para generación de vapor. Ver tabla 5.

2.3.1. Efluentes industriales

Los efluentes industriales pueden ser líquidos, sólidos o gaseosos; los dos primeros son susceptibles de producir daño al cuerpo de agua receptor, condiciones que se agravan o atenúan según el grado de dilución, por lo que es importante planear la localización de las descargas industriales y su tratamien to de tal manera que alteren al mínimo las condiciones ecológicas del cuerpo receptor.

2.4 Recreativo

Los criterios generales para determinar la calidad del agua para uso de esparcimiento o recreo son: Ausencia de materia

flotante o suspendida que provoque desagrado. Algunas normas se han establecido por consideraciones estéticas y no basadas en resultados de estudãos epidemiológicos bien fundados. (ref 5).

2.5 Usos del agua en la región

La distribución de este recurso para satisfacer las demandas municipales agrícolas e industriales se describe a continuación.

\(\sqrt{2.5.1.} \) Abastecimiento de agua para uso municipal, agrícola e industrial.

Uso municipal

El agua para la población Lázaro Cárdenas se toma directamen te del vaso de la presa José Ma. Morelos, y sus características de calidad no son adecuadas para uso municipal, por lo que se transporta por medio de un canal desde la presa hasta una planta potabilizadora. Dicha planta consta de 3 módulos de tratamiento con una capacidad total de 630 l/seg, trabajando actualmente sólo un módulo, con capacidad de 210 l/seg valor equivalente a una dotación de 290 l/hab-día

Uso agrícola

Actualmente se manejan dos distritos de riègo situados a am-

1

bos lados de los ramales de San Francisco y Melchor Ocampo del delta del río Balsas (plano 1) los cuales se abastecen de agua por medio de dos canales que se derivan del vaso de la presa. La superficie de riego son 15,000 Ha de las cuales, 2750 son para cocoteros, 1500 para frutas diversas, (mango, tamarindo, limón), 3100 para cultivos tradicionales, (maíz, frijol, etc), y 7700 son para uso futuro (ref 1).

El requerimiento mensual de agua por cultivo y hectárea y los requerimientos finales de acuerdo al sistema de riego, se pueden calcular por el método de programación matemática mixta (ref 2).

Uso industrial

SICARTSA demanda 6 m³/seg que son captados del río en el brazo Melchor Ocampo en una sección que se encuentra a 7.5 Km aguas abajo de la presa J. Ma. Morelos (plano 1).

- 3. EVALUACION DE LAS CONDICIONES ACTUALES DE CONTAMINACION
- 3.1 Campañas de muestreo

El objetivo es representar en diferentes puntos de muestreo del río, las características físico-químicas y bacteriológicas. Para ello es necesario establecer los períodos de muestreo y las condiciones de las muestras que deben colectarse.

Localización

El criterio que se siguió para determinar la localización de las estaciones, fué considerar la cercanía de descargas de aguas residuales existentes que pueden afectar la calidad del agua del río; su influencia se observa en los resultados de los análisis físico-químicos y bacteriológicos del cuerpo de agua receptor.

De esta manera se localizaron ocho estaciones como se muestra en la tabla 3.1

TABLA 3.1

Estación	Localización	
I'	Después de la presa J. Ma. Morelo y enfrente del poblado Zacatula	os
I	Entre el dique y el entronque de Guacamayas	
II	100 m después del entronque de Guacamayas	

III	50	m	antes	de	la	toma	de	agua	pa-
	ra	s:	CARTS	A					

IV	Entre la descarga del Fideicomiso
	w al ractro municinal

V Entre el rastro municipal y el dique - puente

VI 100 m después de la descarga prin

cipal, D-3

VII Entre el poblado de San Francisco

y la desembocadura

La localización geográfica de las estaciones anteriores se muestra en el plano 1.

La toma de muestras se hizo a 1/2 de la profundidad total, sobre tres ejes, uno al centro del río (eje 2), y los otros dos a 1/3 del ancho total, a partir de ambas márgenes (eje 1, derecha y eje 3, izquierda).

Campañas

En este estudio se realizaron dos campañas. En la primera se muestrearon las estaciones I a VI localizadas en el ramal Melchor Ocampo, la descarga D-2 y los pozos 1 y 2.(plano 1)

En la segunda, se incluyeron las estaciones I' y VII locali

zadas en el ramal de San Francisco, y las descargas D-3 y D-1. (plano 1).

La campaña del primer muestreo se realizó el 1º de mayo 1976 en las seis estaciones, y el 4 de mayo 1976 en la descarga D-2 y en los pozos 1 y 2.

La campaña del segundo muestreo fué el 16 de julio 1976 en las ocho estaciones, y el 17 y 18 de julio 1976 en las descargas D-1 , D-2 y D-3.

3.2 Descripción y localización de las descargas residuales

Descarga D-2 .

Proviene de la colonia del Fideicomiso, se encuentra localizada en
tre las estaciones III y IV, aporta un gasto promedio de 25 l/s.
(plano 1).

Descarga D-3 .

Corresponde a la ciudad Lázaro Cár denas, vierte al río entre la estación V y VI, con un gasto promedio de 120 1/s. (plano 1).

Descargas no puntuales.

Son las que se encuentran a lo la $\underline{\mathbf{r}}$ go del brazo Guacamayas que provi $\underline{\mathbf{e}}$ nen del campamento obrero y las co

lonias. Para representar a estas descargas, se localizó una estación de muestreo antes del entronque del brazo Guacamayas con el ramal Melchor Ocampo.

A esta estación se le, denominará D-1 (plano 1). Se midió un gasto promedio de 330 l/s.

3.3 Parametros evaluados en las aguas del río

Los análisis efectuados fueron los siguientes:

Químicos Cloruros, dureza total, calcio, nitrógeno

Temperatura, pH, profundidad

amoniacal, nitratos, ortofosfatos, sólidos

en todas sus formas.

Contaminación Demanda bioquímica de oxígeno DBO

Demanda química de oxígeno DQO

Calidad Oxígeno disuelto OD

Bacteriológicos Org/100 ml

Fisicos

La metodología seguida para la recolección, preservación y análisis de las muestras, fué señalada por los Métodos Estan

dar (ref 3). Ver tabla 6

A continuación se presentan los aspectos más importantes de cada uno de los parámetros determinados, con los cuales se puede evaluar el grado de contaminación del agua del río.

Temperatura

Los valores obtenidos en las estaciones del río, (tablas 8 y 91 indican que las descargas de aguas residuales no alteran al cuerpo receptor.

En las estaciones del rfo se obtuvieron intervalos de tempe ratura de 27°C a 32°C en el primer muestreo y de 29°C a 32°C en el segundo.

En las descargas, la temperatura máxima fué de 35°C, correspondiente a la descarga D-2.

Potencial Hidrogeno (pH)

El valor de pH promedio en las estaciones fué de 7.5 para ambos muestreos, por lo que el agua del río es aceptable para uso industrial, municipal y agrícola (ref 3 y 4).

En las descargas de aguas residuales, el pH varió de 5.2 a 8.0 que se considera aceptable (ref 5).

Cloruros

En todas las estaciones, a excepción de la VI, la concentra ción de este parámetro varió muy poco en ambos muestreos, ya que el dique puente que se encuentra aguas abajo de la estación V impide que se manifieste intrusión salina.

En el primer muestreo, la concentración mínima se tuvo en la estación III eje 1, con 38.8 mg/l, la máxima en la VI eje 1 con 19 228 mg/l.

En el segundo, la concentración mínima se tuvo en la I', eje 3, con 32.4 mg/l.

Dureza total (Ca y Mg)

La dureza total del agua incluye los cationes Ca, Mg, Fe, Cu, Ba, Pb, Zn, los cuales hacen que los jabones formen precipitados insolubles. No obstante, solamente la concentración del calcio y del magnesio alcanzan valores considerables en las aguas naturales, por lo que comunmente la dureza significa el contenido de calcio y de magnesio.

En el segundo muestreo se tuvo una concentración promedio de 343 mg/l en las estaciones, a excepción de la VI que registro la concentración máxima de 1328 mg/l en el eje 1.

Ortofosfatos

Los fosfatos pueden estar presentes en las aguas por dilución de los minerales existentes o por la descomposición de la materia orgánica.

En el primer muestreo se registró una concentración promedio de 0.31 mg/l y en el segundo 1.01 mg/l. En la estación VII no se detectó la presencia de este parametro.

Los fosfatos son sustratos esenciales para el crecimiento de las algas. Una concentración superior a 0.01 mg/l es suficiente para que las algas comiencen a reproducirse. Las concentraciones de ortofosfatos obtenidas de las estaciones I a VI indican la presencia de algas.

Sólidos en sus formas

Sólidos totales totales

Representan el contenido total de sólidos presentes en las aguas del río. Están constituídos por la suma de los sólidos totales fijos que representan la materia que no es suceptible a oxidarse por combustión y los sólidos totales volatiles, estos últimos son la materia oxidada por combustión.

En el primer muestreo se tuvo una concentración promedio de

490 mg/l de la I a la VI, y en el segundo una concentración promedio de 500 mg/l en las estaciones a excepción de la VI.

Los límites permisibles para agua potable son de 500 mg/l a 1000 mg/l (tabla 1), por lo tanto no existe contaminación de bida a sólidos totales.

Sólidos suspendidos totales

El origen de los sólidos suspendidos en las aguas receptoras se debe a la erosión del suelo por lluvias y al aporte de descargas residuales municipales.

La concentración máxima promedio de las estaciones del río correspondió a la I, con valores de 174.3 mg/l y 110.3 mg/l para el primero y segundo muestreo respectivamente; el valor mínimo correspondió a la estación VII con 50.0 mg/l en el segundo muestreo.

Sólidos disueltos totales

Corresponden a los sólidos filtrables totales. En el primer muestreo se tuvo una concentración promedio de 379 mg/l para las estaciones I a VI, y en el segundo 400 mg/l para todas las estaciones excluyendo la VI.

Los valores anteriores indican que es necesario tratar el agua del río para abastecimiento de agua potable, ya que el límite permitido es de 300 mg/l. Tabla 1.

Calcio (Ca)

Su presencia se debe al arrastre y disolución de sales existentes en el subsuelo y suelo por parte de las corrientes superficiales y subterráneas. En el primero y segundo muestreo se obtuvieron valores promedio de 20.5 y 80.6 mg/l respectivamente, excluyendo la estación VI que registró un valor de 320 mg/l en el eje 1 del primer muestreo.

Nitrógeno Amoniacal (N - NH3)

Representa la cantidad de nitrógeno orgánico que há sido transformado a la forma amoniacal.

En las aguas del río la concentración varió de 0.00 a 0.66 mg/l este último valor fué del primer muestreo y se registró en la estación VI eje 3.

Las concentraciones promedio en las estaciones del río fueron 0.26 mg/l y 0.20 mg/l para el primero y segundo muestreo respectivamente.

Las normas de calidad para agua potable fijan un límite de

0.5 mg/l. Por otro lado las normas biológicas establecen que concentraciones de 1 mg/l traen consigo una disminución en la capacidad de asimilar el oxígeno por la hemoglobina de los peces, los cuales pueden morir de anoxía (ref 4).

De acuerdo con lo anterior podemos decir que no existe contaminación con respecto a este parámetro.

Nitrógeno de Nitratos (N - NO3)

El nitrato puede estar presente en las aguas por la disolución de minerales. Sin embargo, la fuente más importante es la materia orgánica, la cual al descomponerse dá origen a los nitratos.

Las concentraciones promedio del agua del río para el prime ro y segundo muestreo fueron de 0.65 mg/l y 0.08 mg/l respectivamente. En el primer muestreo se tuvo el valor máximo en la estación VI eje 3 con 0.93 mg/l. En el segundo se tuvo el valor mínimo en las estaciones III eje 2, V ejes 1 y 3 con 0.008 mg/l.

Las normas de calidad para agua potable permiten hasta 5.0 mg/l, por lo tanto no existe contaminación en el río con respecto a este parámetro.

Demanda bioquímica de oxígeno (DBO₅)

Representa la cantidad de materia organica que se va a oxidar bajo condiciones naturales en el cuerpo de agua receptor.

Las concentraciones son bajas en todas las estaciones. La DBO_5 minima fué 0.24 mg/l en el primer muestreo de la estación II eje 1. La concentración máxima fue 1.5 mg/l, en el segundo muestreo de las estaciones IV y V eje 3.

Por otra parte, con los valores de DBO obtenidos en el laboratorio, se calculó la constante de velocidad de reacción k_1 , para lo cual se hicieron mediciones del oxígeno disuelto cada 24 horas. Para calcular la constante de velocidad de reacción y la DBO $_{\rm u}$ se usó el método de mínimos cuadrados de Reed Theriault (ref 16), el cual consiste en suponer valores de k_1 y DBO $_{\rm u}$ y escoger aquel juego para el cual la suma de los cuadrados de las diferencias de los valores de DBO observados y calculados es mínima.

La DBO satisfecha a cualquier tiempo t está dada por la ecuación:

$$DBO_{t} = DBO_{t} (1 - 10^{-k_1})$$

donde

DBO_t demanda bioquímica de oxígeno en el tiempo t en mg/l

DBO demanda bioquímica de oxígeno última en mg/l tiempo en días

k₁ constante de velocidad de reacción en día⁻¹, logarítmo base 10.

El valor promedio obtenido para la constante de velocidad de reacción fué de 0.045 días⁻¹ en el río y de acuerdo con esto, se clasifica como río poco contaminado, (ref. 13).

Las descargas D-1, D-2, D-3 aportan una DBO de 28 mg/l, 51 mg/l y 160 mg/l respectivamente, valores que actualmente representan poca contaminación en la calidad del agua del cuer po receptor.

Demanda Química de oxígeno (DQO)

Representa el contenido de materia susceptible a oxidarse en un medio ácido.

En el primer muestreo, los valores máximos correspondieron a la estación IV eje 1 y 2 con 10.47 mg/l, en el segundo muestreo a la estación II, ejes 2 y 3, con 19.39 mg/l y 18.25 mg/l respectivamente.

En el segundo muestreo se obtuvo un incremento en DQO para todas las estaciones, lo cual pudo deberse a que en época de lluvia se produce un arrastre de la materia orgánica que aportan las descargas no puntuales localizadas en la margen derecha del ramal Melchor Ocampo.

Oxígeno disuelto (OD)

El límite mínimo de oxígeno disuelto para la conservación de flora y fauna acuática es de 4.0 mg/l (ref 6). Unicamente la concentración en la estación I' fué inferior a es te valor con un mínimo de 3.70 mg/l, ejes 1 y 3 y un máximo de 3.90 mg/l en el eje 2. Los valores altos correspondieron a la estación III, con un promedio de 10.0 mg/l lo que pudo deberse a la presencia de algas, las cuales se visualizaron en esta estación. En general las concentraciones de OD en el río son satisfactorias.

Análisis bacteriológico

Uno de los mejores indices para evaluar la calidad bacterio lógica del agua es la determinación de la densidad de coliformes. Para determinar el efecto de las aguas negras en la corriente receptora se determinaron coliformes totales y coliformes fecales en el río, empleando el método de tubos múltiples de fermentación y filtro de membrana.

Las estaciones de muestreo correspondieron a las de los muestreos generales para análisis físicoquímicos.

En el primer muestreo solo fué posible determinar coliformes fecales. Los resultados reflejan alta contaminación bacteriológica en la estación III eje 1, con 11 000 organismos/100 ml lo que puede deberse a la aportación de la descarga D-1.

En el segundo muestreo se determinaron coliformes totales y fecales, en la siguiente tabla se presentan las estaciones en las que se obtuvieron los valores mas significativos.

TABLA 3.2

Eje	1			2	3	
Parámetro	No. org/	100 ml	No. org	/100 ml	No. org	/100 ml
Estación	total	fecal	total	fecal	total	fecal
II	430	200	200	34	220	1
III	1500	50	700	10	NC	10
IV	2.4×10 ⁵	160	NC	8	NC	31
٧	9300	600	NC	50	NC	60
VI .	1.1x10 ⁵	NC	NC	NC	NC	NC

NC no contables

Organismos/100 ml totales

De acuerdo con los estandares (ref 3), en las estaciones II eje 1 y III eje 2, el agua está poco contaminada, en la III eje 1 contaminada y en las IV eje 1, V eje 1 y VI eje 1 altamente contaminada.

Organismos/100 ml fecales

En las estaciones III eje 1, y V ejes 2 y 3, el agua está poco contaminada, en las estaciones II eje 1 y IV eje 1 es altamente contaminada. Los valores obtenidos en el eje 1, de la tabla anterior, indican que las descargas no puntuales de casas-habitación localizadas en la margen derecha del ramal Melchor Ocampo, tienen influencia en la calidad bacteriológica del agua del río.

Las estaciones y ejes restantes, a los que no se hace referencia en los párrafos anteriores se tuvo calidad del agua aceptable (Ver tablas 8 y 9).

3.4 Estado de contaminación del río.

De los parámetros físicoquímicos valuados en el río se concluye que la calidad del agua es aceptable.

Los resultados bacteriológicos de las estaciones II a VI,

lo clasifican como poco contaminado, aspecto que se debe a la influencia de descargas D-1, D-2, D-3 y a los escurrimientos de aguas residuales de las casas habitación localizadas en la margen derecha del río.

La tabla 3.3 resume las cargas de DBO, DQO y coliformes totales aportadas por las descargas al cuerpo de agua receptor.

	INDIA 3.3		
	DE	ESCARGA	
Parámetro	D-1	D-2	D-3
DBO ₅ en Kg/dfa	798	128	1658
DQO, en Kg/día	1023	286	5650
Coliformes totales	1.64×10 ¹²	3.024×10 ²⁰	1.62×10 ²²

Como se mencionó, sólo la carga bacteriana influye actualmente en la calidad de agua, por lo que el agua puede ser usada para la agricultura y recreación. Los requerimientos de la calidad del agua para uso industrial, ya sea para proceso o enfriamiento, varían en cada caso, por lo que es necesario realizar estudios particulares.

en org/dia

- 4. ANALISIS DE LAS CONDICIONES FUTURAS PARA ABASTECIMIENTO
 DE AGUA Y DESCARGAS DE AGUAS RESIDUALES MUNICIPALES.
- 4.1 Demandas de agua Potable

Las demandas futuras de agua potable se pueden valuar a partir de una proyección de población y una dotación de agua de 300 l/hab-día. Ver tabla 11,

La ciudad Lázaro Cárdenas tiene una planta potabilizadora con capacidad total de 630 l/s para dar servicio a 180 000 habitantes, la cual sería insuficiente para el pronóstico de población para el año 2000 con 268 000 que demandarían 930 l/s incluyendo la ciudad Lázaro Cárdenas y la colonia Fideicomiso.

4.2 Gasto y carga orgánica expresada como DBO, para descargas residuales municipales.

La proyección del gasto de aguas residuales municipales y la carga de DBO están basados en los siguientes datos:

Dotación de agua 300 l/hab-día
Un 80 por ciento del agua total abastecida se descarga como
agua residual.

Concentración máxima de DBO de la descarga 220 mg/l

La tabla 4.1 presenta los pronósticos para el año 2000. 2000.

TABLA 4.1

Población	No de hab <u>î</u> tantes	Agua aba <u>s</u> tecida, en 1/s	Agua re sîdual,en 1/s	Carga de DBO en Kg/dia
			Was .	
Lázaro				
Cárdenas	268 000	930	744	14 141
Fideicomiso	35 000	113	91	1 720

La colonia Fideicomiso cuenta con una planta de tratamiento primario (sedimentación) para las aguas negras, el gasto alimentado es de 25 l/s y la capacidad total de la planta es de 90 l/s. Con este tratamiento es posible eliminar un 30 por ciento en la carga de DBO y un 25 por ciento de sólidos suspendidos. (ref 8).

4.3 Efecto de las descargas en las alternativas de localización de la toma de agua para uso municipal.

Como se señala en el capítulo 3 el efecto causado por las descargas en la calidad bacteriológica del cuerpo receptor excluyen la posibilidad de una toma para agua de uso municipal a lo largo de brazo Melchor Ocampo, siendo factible una toma en el ramal de San Francisco donde la calidad del agua es aceptable.

4.4 Criterios para localizar las descargas

Descarga D-1. Es recomendable la localización actual ya que en el caso de verter hacia el ramal de San Francisco aportaría contaminación en el agua receptora. Se sugiere entubarla, lo que traería como consecuencia una localización puntual.

Descarga D-2. La localización actual es aceptable, ya que si se traslada hacia el norte afectaría la calidad del agua de la toma de SICARTSA, y hacia el sur podría causar una acumulación de carga debida al dique puente.

Descarga D-3. Si se localizara antes del dique puente, cau saria el mismo efecto de acumulación que la D-2. Una localización hacia la desembocadura representaria un estudio es pecífico del estuario para cuantificar la influencia de las mareas en la descarga y la posible dilución.

4.5 Tratamientos recomendados

Tomando en cuenta las alternativas de localización de las descargas de agua residual analizadas, se considera que la carga organica y la concentración de bacterias obliga a tratar las aguas antes de verterlas al cuerpo receptor, de manera de satisfacer los requerimientos de calidad para la prevención y control de la contaminación de las aguas superfi-

ciales, (Usos DIII tabla 7, donde se observa que la concentración bacteriológica no debe exceder 20 000 org/100 ml.*

Los muestreos efectuados en el río registraron concentraciones superiores a este valor (tablas 8 y 9 l. Esto último implica la necesidad de aplicar a las descargas por lo menos un tratamiento primario seguido de cloración.

El planteamiento de los procesos de tratamiento para un agua de desecho está basado en las características del agua residual así como el efecto que éstas causan en el cuerpo receptor, dependiendo esto último de la capacidad de asimilación, de contaminantes.

4.5.1. Planteamiento del problema

La selección de un proceso de tratamiento adecuado dependerá de las características obtenidas en la campaña de muestreo de la corriente receptora y la descarga. Con esto se puede obtener la carga orgánica expresada en DBO que puede soportar el río manteniendo una concentración mínima de 4 mg/l de oxígeno disuelto (límite recomendable para la existencia de vida acuática). Si la carga orgánica total de la población excede la carga orgánica que puede soportar el río, se rá necesario definir la remoción necesaria y el tratamiento consecuente, para mantener las condiciones mencionadas.

* Considerando que no hay explotación pesquera.

4.5.2. Características de la corriente receptora

El sistema de alcantarillado descargará en el brazo Melchor Ocampo del delta del río Balsas que tiene un gasto aproxima do de 50 $\rm m^3/s$ con las siguientes características:

$$\overline{v}$$
 = 0.10 m/s
s = 7.3 mg/l
 K_1 = 0.08 dfa⁻¹
DBO₅= 6.0 mg/l
 K_2 = 0.295 dfa⁻¹

donde

v = velocidad media. Ver figs

 $k_2 = -\alpha \frac{v^m}{D^n}$

s valor de oxígeno disuelto en el punto de vert \underline{i} do (tabla 9 estación V)

K₁ constante de desoxigenación (ref 13)

 ${\rm DBO}_5$ demanda bioquímica de oxígeno al quinto día y a ${\rm 20\,^{\circ}C}$

K₂ coeficiente de reaireación obtenida a partir de la fórmula de O' Connor y Dobbins. Ref (17).

 $\alpha = 1.7181$

D = profundidad, en metros

4.5.3. Cálculo de la eficiencia necesaria de remoción de carga en DBO₅ del agua residual descargada al río.

La metodología de cálculo consiste en suponer eficiencias de remoción hasta lograr el deficit crítico que se desea mantener en el río. Para esto se desarrolló un programa en la computadora H.P. 9866 A.

Simbología

- t tiempo
- N nivel mínimo de oxígeno requerido en el río
- Q₁ gasto del río
- Q₂ gasto del agua residual
- D₁ Deficit crítico de oxígeno que se desea mantener
- L, DBO, en el río
- L2 DBO, en la descarga de agua residual (tratada)
- L DBO, de la mezcla de la descarga y del rfo
- T₁ tiempo crítico
- C, DBO, en el río
- C₂ DBO₅ de la descarga de agua residual sin tratamiento
- C₃ DBO₅ de la descarga de agua residual después del tratamiento
- D Deficit inicial de la corriente

Bases teóricas y datos

$$N = 4 mg/1$$

$$Q_1 = 50 \text{ m}^3$$

$$Q_2 = 744 \, 1/s$$

$$D_a = 7.3 - 7.15 = 0.15 \text{ mg/1}$$

$$D_1 = S-N = 7.3 - 4.0 = 3.3 \text{ mg/l}$$

$$C_1 = 6 \text{ mg/l}$$

$$C_2 = 220 \text{ mg/l}$$

Ecuación de Streeter y Phelps

$$T_{1} = \frac{1}{K_{2} - K_{1}} \qquad \text{In } \frac{K_{2}}{K_{1}} \quad (1 - (\frac{K_{2}}{K_{1}} - 1)) \frac{D_{a}}{L}$$

$$D_{1} = \frac{Le^{-K_{1}t_{1}}}{K_{2}/K_{1}}$$

La cinética para la reacción de DBO puede considerarse como una reacción de primer orden que se expresa

$$\frac{dLt}{dt} - k_1 L_t$$

donde L_{t} es la cantidad de DBO al tiempo t, integrando

$$\frac{L_t}{L} = e^{-k_1 t}$$

donde L δ DBO $_{L}$ es la DBO al tiempo t = 0. La cantidad de

$$L = \frac{Y}{1 - e^{0.08(5)}} = \frac{1}{0.33} = 3.03 Y$$

L = 3.03 (7.2) = 21.82 mg/1

$$T_1 = \frac{1}{0.295 - 0.08}$$
 ln $\left\{ \frac{0.295}{0.08} - 1 - (\frac{0.295}{0.08} - 1) \frac{0.15}{21.82} \right\}$

 $T_1 = 4.66 \text{ ln } 3.61 = 5.98 \text{ dfas}$

$$D_1 = \frac{L e^{-k_1 t_1}}{\frac{\kappa_2}{\kappa_1}}$$

$$D_1 = \frac{21.88 e^{-0.08 (5.98)}}{\frac{0.295}{0.08}}$$

$$D_1 = 9.56 \text{ mg/l}$$

D₁ es el deficit crítico que se obtiene en la corriente del río al aplicarle un 60 por ciento de remoción a la descarga, valor mayor que el aceptable de 3.3 mg/l, lo que implica que la eficiencia de tratamiento debe ser mayor para obtener un valor máximo de 3.3 mg/l.

Los resultados obtenidos se presentan en la tabla 4.2. El listado del programa se anexa al final del capítulo.

DBO presente en cualquier tiempo t:

$$L_t = L (e^{-k_1 t})$$

y (Y), la cantidad de DBO que se ha satisfecho en el tiempo t:

$$Y = L - L_t = L (1 - e^{-k_1 t})$$
 $Y = L (1 - e^{-k_1 t})$
 $L = \frac{Y}{1 - e^{-k_1 t}}$

Metodología de cálculo.

Consiste en suponer eficiencias de remoción aplicadas a la descarga, hasta obtener la concentración de oxígeno fijada como déficit crítico.

Suponiendo una eficiencia de 60 por ciento

$$C_3 = 220 \text{ mg/1} (1 - 0.6) = 88 \text{ mg/1}$$

$$DBO_{5} = \frac{(6 \text{ mg/1}) (50 000 1/s) + (88 \text{ mg/1}) (744 1/s)}{(50 000 1/s) + (744 1/s)} 7.20 \text{ mg/1}$$

de la mezcla de la descar ga y el río.

$$E_2 = \frac{100 (E - E_1)}{100 - E_1}$$

$$E_2 = \frac{100 (81 - 32)}{100 - 32} 72\%$$

donde

E = eficiencia total (tabla 4.2)

E₁= eficiencia del trat<u>a</u> miento

E₂= eficiencia de tratamiento biológico (loodos activados)

Con un 72 por ciento de eficiencia deberá operar la planta para lograr las condiciones deseadas en la corriente del río.

Desinfección

La desinfección se refiere a la destrucción selectiva de microrganismos causantes de contaminación. El proceso por medios químicos es el más común, siendo el cloro el producto que más se emplea en nuestro medio por su eficiencia y costo.

En la tabla 4.3 se presentan estimaciones generales respecto a la dosificación de cloro según el tipo de agua tratada. La estimación final dependerá del pH, temperatura, calidad y concentración del efluente del tanque sedimentador.

TABLA 4.3

Requerimientos de cloro para la desinfección, considerando residuales de 0.5 mg/l después de 15 min. de contacto.

TABLA 4.2 Cálculo de la eficiencia total de tratamiento.

RESULTADOS

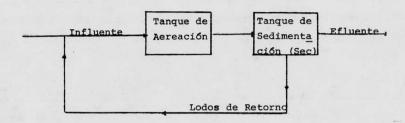
张子子子子类的 *** *** *** ** *** *** *** *** *** **
LA DBO(U) DE LA MEZCLA DE EL RIO Y LA DESCARGA, EN (MG./L) ES
12.66
3 X X X X X X X X X X X X X X X X X X X
DBO DE LA DESC. PARA MANTENER 4 5 5 (MG/L), DE O.D. EN EL RIO SERA DE 41.3143244 (MG./L)
· ************************************
LA CANT. DE DBO QUE SERA ELIMINADA DE LA DESC. EN (MG./L) ES DE 178.6856756
"秦襄江黄子黄星关大黄金长关子关关于关关关关关关关关关关关关关关关关关关系 医罗米米尔 法安全关关关关 计工术设计 计设计计划 化
EL DEFICIT INICIAL, EN (MG./L) ES DE 0.15

EL DEFICIT CRITICO, EN (MG./L) ES DE 3.3
**** * ** ******** *******************
:***********************
EL TIEMPO CRITICO EN (DIAS), ES DE 5.973707986

DATOS DEL PROBLEMA

	21.0
**************************************	*****
GASTO EN (L/S) 50000	
DBO EN (MG./L) 6 VELOCIIAD EN (M./S) 0.1	
VALOR IE SAT. DE O.D. EN EL PUNTO DE VERTIDO, EN (MG./L) CTE. DE DESOXIGENACION, EN (1/DIA) 0.88	7.3
CTE. DE REAIREACION, EN (1/DIA) 0.295	*****
******************************	****
CARACTERISTICAS DE LA DESCARGA GASTO EN (L/S) 744	
DBO EN (MG./L) 220 **********************************	*****
**************************************	Control of the Contro
NIMEL IE O.D. QUE SE DESEA MANTENER EN EL RIO, EN (MG./L) 4	*****

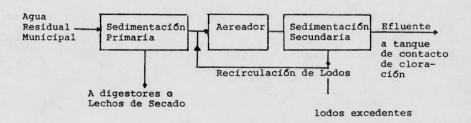
4.5.4. Tratamientos aplicable al sistema en estudio λ


De acuerdo con el análisis previo, las aguas residuales requerirán un tratamiento secundario a base de un proceso bio lógico donde se sintetiza y oxida la materia coloidal y disuelta por medio de microrganismos en presencia de oxígeno disuelto.

Los procesos que se consideran entre otros son: lodos activados, filtros rociadores y lagunas aerobías de estabilización.

El proceso de lodos activados se usa normalmente para desechos domésticos de grandes ciudades. Los filtros rociadores para altas cargas de desechos industriales y ciudades regulares; y las lagunas, en pequeñas ciudades donde existen grandes áreas disponibles.

El proceso de lodos activados es uno de los mas usados debido a que presenta ventajas en cuanto a flexibilidad de adaptación del proceso convencional a las características biológicas del agua contaminada.


El proceso convencional de lodos activados consiste de un tanque de aereación, un sedimentador secundario y una línea de recirculación de lodos. Fig. 4.1.

Con este tratamiento es posible obtener una remoción de 85 a 95 por ciento de DBO, con lo cual se satisface la calidad del agua requerida en el rfo.

En el siguiente esquema se muestra el diagrama de flujo del proceso que se propone.

FIGURA 4.2

Tomando en consideración la eficiencia de sedimentación primaria que es de 32 por ciento de DBO, la del tratamiento biológico será:

Dosis de cloro, en mg/l

Aguas negras con sedimentación primaria, según concentración.

3 - 18

Efluente de lodos activados, según el comportamiento

3 - 9

De acuerdo a lo anterior, las cantidades requeridas de cloro serían las siguientes:

Población
L. Cárdenas
268 000

Agua Residual, en 1/s Cloro requerido en kg/día

744

192 mínimo 576 máximo HOOF

EFECTO DEL DESARROLLO INDUSTRIAL

La realización del proyecto de la siderúrgica Lázaro Cárdenas - Las Truchas significa la posibilidad de desarrollo de proyectos industriales relacionados directamente con ella, así como de desarrollo urbano y actividades secundarias.

Cada una de las industrias que se establecen requieren de abastecimiento de agua y de la disposición de sus efluentes; estos últimos representan un peligro de contaminación y modificación de las condiciones ecológicas naturales del cuerpo receptor, de aquí la importancia de conocer las características de estos desechos industriales y con base a esto planear su disposición más adecuada de manera que afecte al mínimo las condiciones de calidad del agua del río.

5.1 Demandas de Agua para la Siderúrgica Lázaro Cárdenas
"Las Truchas".

La demanda actual es de 6 m³/seg que se captan del río en el brazo Melchor Ocampo a una distancia de 7.5 Km aguas abajo de la Presa. (plano 1). En la segunda etapa, el consumo será de 15 m³/seg, y en11984, año en que se inicia la tercera etapa, el requerimiento será de 25 m³/seg, (ref 10).

La producción industrial en cada una de las etapas se muestra en la siguiente tabla (ref 12).

TABLA 5.1

Etapa	Construcción	Iniciación producción	Capacidad,	en ton/año
Primera	1972-1975	1976	Laminados no planos	1,000.000
			Laminados planos	No se produce
			Palanqui- lla	250,000
			Total	1,250,000
Segunda	1977-1979	1980	Laminados no planos	1,000,000
			Laminados planos	1,000,000
			Palanquilla	250,000
			Total	2,250,000
Tercera	1981-1983	1984	No se tiener	n datos

5.2 Descargas de SICARTSA. Gasto, tipo de contaminantes y tratamiento.

TABLA 5.2

Planta	Gasto de agua arrojada al sistema de dre naje de la siderur gica.	Tipo contaminante	Tratamiento
Oxigeno	1224 m ³ /hr 0.28 m ³ /hr	ninguno jabón - aceite	ninguno ninguno
Coquizadora	0.86 m ³ /seg	cianuros, fenoles sulfocianuros	biológico
Peleťizadora	1.64 m ³ /seg 6 m ³ /min corresponden a 5 hr/dfa 2000-3600 m ³ /hr	escamas fierro agua de lavado fe rroducto escamas fierro 100 ppm de escamas fierro	planta de tratamie <u>n</u> to de efluentes (biológico)
Alto horno	200 - 250 m ³ /hr	escamas de fierro	filtro
Aceración	560 m ³ /hr en caso de purga 350 m ³ /hr	ninguno 200 mg/l óxidos de fierro y gra- fitos	ninguno ninguno

Las siguientes plantas no envían agua al drenaje

Colada continua 10 m³/día de aguas negras a fosa séptica bioenzimática después a pozos de absorción

Fuerza No tiene agua de desecho. Recirculación

Alto horno	10 m ³ /día de ag séptica bioenzi absorción	uas negras, se envían a mática, después a pozos	fosa de
Aceración	15 m ³ /día	Aguas jabonosas	a fosa séptica enzimática posterior- mente a po zos de ab- sorción

5.2.1. Evaluación de la carga de CN aportados por la Siderúrgica en la primera y segunda etapas de producción.

Los cianuros son uno de los principales contaminantes aportados por la Siderúrgica y se encuentran en el agua de dese cho que procede de la planta coquizadora.

Para evaluar la carga y concentración de este contaminante, se consideraron .0147 Kg/ton de producto, dato de (ref 13), y el gasto del efluente que aparece en la tabla (5.2).

En la siguiente tabla se presentan los valores calculados en la primera y segunda etapas de producción.

		TABLA 5.3		
Etapa	Gasto en 1/seg	Producción total en ton/año	CN en Kg/dia	CN en mg/l
Primera	860	1 250 000	50.68	0.69
Segunda		2 250 000	91.23	

El tratamiento que se aplica es un proceso biológico de lodos activados, donde los cianuros se degradan (ref 10). Este tratamiento tiene una eficiencia de 95 por ciento, valor que disminuye a 80 por ciento si la concentración de cianuros es mayor de 60 mg/l, (ref 14).

Industrias factibles a establecerse. Caracterización de sus efluentes, efecto causado en el río, tratamiento recomendado.

Los efluentes industriales representan uno de los mayores problemas de contaminación, ya que sus características están en función del tipo de industria, de la tecnología usada y del volumen de agua requerido.

A continuación se presentan las industrias factibles a establecerse, la caracterización de los efluentes aportados así como los tratamientos que pueden ser aplicables. Por otro lado, es importante considerar que la selección final de un proceso de tratamiento se basa en los siguientes aspectos:

Grado de tratamiento requerido, naturaleza de los desechos orgánicos, concentración de la materia orgánica, variación en el flujo del agua de desecho, capital y costos de operación.

5.3.1. Planta enlatadora de frutas y legumbres

Características del agua de desecho

Los desechos procedentes del proceso de alimentos usualmen-

te contienen materia orgánica (disuelta o en estado coloidal) en varios grados de concentración dependiendo de tipo de producto que se trate. La concentración de sólidos suspendidos es alta.

Efecto en el río

Los sólidos de los desechos forman bancos de lodos que cubren el lecho del río y se degradan, abatiendo el oxígeno.

Tratamiento

Sistemas de cribado o rejillas como etapa preeliminar. Entre los procesos más usados están: precipitación química y lagunas aereadas, la oxidación biológica es también factible pero no muy usada debido a que el enlatado es por estaciones. En muchos casos estos desechos pueden combinarse con los domésticos siendo aplicable el proceso de oxidación biológica.

5.3.2. Planta de bebidas embotelladas refrescos

Características del agua de desecho

Si el jarabe se produce en la planta se tienen los siguientes contaminantes: Alta alcalinidad, DBO y contenido de sólidos suspendidos superfor al de los desechos domésticos. Valores promedio:

pH = 10.8, $DBO_5 = 430 \text{ mg/l}$, solidos suspendidos = 220 mg/l

Efecto en el río

Los azúcares y jarabes causan una disminución de oxígeno en las corrientes debido a la acción bacteriana.

Tratamiento

Sistemas de cribado. Normalmente la disposición final es al drenaje municipal.

5.3.3. Planta de jabones y detergentes

Características del agua de desecho

Esta es una industria que produce volumenes relativamente pequeños de desechos líquidos. Los desechos tienen un alto contenido de DBO y jabones saponificados, interfieren en la transferencia de oxígeno en las corrientes receptoras.

Efecto en el río

La toxicidad afecta el crecimiento acuático, la espumación interfiere en el paso de los rayos solares y produce turbiedad.

Tratamiento

Flotación. Tanto la sustancia activa alkil bencil sulfonato

en un caso, como el lineal alkil sulfato, en el otro, se pue den remover por percolación a través de suelos limoarenosos (ref 15).

5.3.4. Planta empacadora de carne

Características del agua de desecho

Los desechos comparados con los domésticos, tienen mayor con tenido de materia orgánica así como organismos patógenos, grasa y partículas suspendidas. Los valores promedio son:

DBO de 14.4 Kg/1000 kg de carne procesada, sólidos suspendidos totales 17 mg/l, nitrógeno orgánico 11 mg/l, nitrógeno amoniacal 8 mg/l.

Efecto en el río

Los desechos contienen materia que se descompone rápidamente y remueve el oxígeno del agua a través de la acción bacteriana. Las grasas afectan el crecimiento acuático, producen aspectos desagradable e impiden el desarrollo de la flora en las margenes del río. Los sólidos forman depósitos de lodos.

Tratamiento

Flotación, sedimentación. El tratamiento biológico há sido

el más usado y efectivo.

5.3.5. Planta de madera aglomerada

El agua proveniente del lavado de madera es altamente contaminada por grasas. Los requerimientos de agua son 105000 gal/1000 Kg y el agua de desecho contiene aproximadamente de 200 a 250 Kg de DBO/1000 Kg de madera lavada.

Efecto en el río

Las fibras pueden obstruîr las agallas de los peces. Los desechos producen turbiedad. Se forman bancos de lodos los cuales al degradarse abaten el oxígeno. Las grasas afectan la vida acuática.

Tratamiento

Separación de grasas por flotación. Cuando las grasas se recuperan por destilación no es necesario el tratamiento.

5.3.6. Planta procesadora de leche y queso

Características del agua de desecho

Contienen altos contenidos de materia orgánica, grasas, materiales parcialmente caramelizados, lactosa, así como la presencia de la caseína, principio albuminoso de la leche.

DBO de 0.05 a 0.26 Kg/100 Kg, cuando se procesa leche.

En la elaboración de queso la demanda de oxígeno es mayor teniendo una DBO de 0.45 a 3.0 Kg/100 Kg.

Efecto en el río

El agua de desecho contiene sólidos disueltos, los que dan un aspecto turbio, además el contenido de materia orgánica origina una disminución de oxígeno.

Tratamiento

Los tratamientos más usados son aereación y modificación de lodos activados.

Las industrias descritas anteriormente se encuentran en el plan de desarrollo de proyectos agroindustriales presentado por SICARTSA; cabe mencionar que unicamente se citan las industrias más probables a establecerse, sin embargo están industrias en el plan anterior proyectos relacionados directamente con SICARTSA y proyectos de decisión Nacional, los cuales se llevaran a cabo dependiendo del crecimiento de la región y de la infraestructura.urbana.

6. MODELO DE OPTIMIZACION PARA EL USO DEL AGUA

El delta del río Balsas, tiene capacidad suficiente para cubrir las demandas actuales de agua para diversos usos. Sin embargo, las posibilidades de desarrollo agrícola, urbano e industrial que presenta esta región, traen como con secuencia el incremento en requerimiento de agua para satisfacer las demandas futuras, creando la necesidad de pla near su uso óptimo, y evitar situaciones críticas.

6.1 Descripción del modelo

El modelo que se presenta a continuación plantea la optimización de la distribución de agua de diferente calidad que proviene de diversas fuentes a un costo mínimo. Las fuentes de abastecimiento pueden ser: Aguas naturales y aguas residuales, allas que se les trataría de acuerdo a la calidad de agua requerida.

El criterio de asignación del agua de las fuentes (orfigenes) para determinados usos (destinos) en este trabajo se basa en los costos de tratamiento de las aguas disponibles.

La optimización se realizó mediante el modelo de programación lineal simplex . El problema de asignar agua de diferentes fuentes de suministro (orígenes) para diferentes demandas (destinos) puede ser planteado de la siguiente manera: Minimizar la función objetivo

sujeta a las siguientes restricciones

$$\sum_{j=1}^{n} x_{jj} = a_{j}$$
 $i = 1, 2, ... m$ (2)

$$\sum_{i=1}^{m} x_{ij} \leq b_{j}$$

$$j = 1, 2, ... n \qquad (3)$$

$$x_{ij} \geq 0 \text{ para todo i y j...(4)}$$

$$\sum_{i=1}^{m} a_i - \sum_{j=1}^{n} b_j \ge 0 \dots$$
 (5)

donde

- x
 ij
 cantidad de agua de origen i asignada para el des
 tino j.
- C_{ij} costo de tratamiento (si es requerido) de la cantidad unitaria de agua entregada del origen i al destino j.
- a_i cantidad de agua disponible en el origen i
 b_i cantidad de agua requerida por el destino j.

La disposición final de efluentes depende directamente del uso consuntivo y de la recirculación de gasto en el sistema, por lo tanto, la ecuación 5 se convierte en una desigualdad.

La disposición final de efluentes se considera como un sector de agua demandada en donde esta no es reusada y tiene asignado un costo de tratamiento igual a cero para el caso del origen "fuente primaria".

para los otros orígenes las restricciones de la calidad de los efluentes pueden ser impuestas mediante la asignación de los costos para los elementos $\mathbf{X}_{\hat{\mathbf{i}}}$ del destino "disposición final de efluentes", por ejemplo:

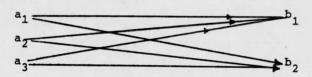
El desecho líquido municipal e industrial, debe tratarse a un costo determinado antes de que pueda ser enviado a la disposición final. El agua que procede de otros orígenes puede tener suficiente calidad y de aquí que se descargue, sin ningun costo a la disposición final de efluentes.

El costo de tratamiento para proporcionar agua que procede de alguna fuente para cualquier uso, dependerá:

De la calidad del agua del origen
De la calidad necesaria para el uso

6.2 Análisis del modelo

El planteamiento de minimizar los costos para satisfacer las condiciones de calidad y cantidad demandadas para cada uso 6 destino se lleva a cabo considerando los siguien tes origenes o fuentes de abastecimiento:


fuente primaria fuente secundaria

- agua del río Balsas
- agua residual municipal tra
- efluentes industriales tratados

En el siguiente esquema se muestra el mecanismo para el funcionamiento del modelo, que consiste en la asignación de uno o varios orígenes para satisfacer uno o varios destinos.

origenes (i)

destinos (j)

En la tabla 6.1 se enlistan las fuentes de suministro (or $\underline{\mathbf{f}}$ genes) y demandas (destinos).

TABLA 6.1 Matriz de elementos empleados en el análisis de distribución de agua en el sistema Lázaro Cárdenas - Las Truchas.

	destinos, usos 6 demandas j						
origenes i	municipal	industrial	agricultura	recreación	vida ani- mal	disposición final de efluentes	disponibi- lidades
fuentes primarias							
	x ₁₁				•	X ₁₆	
Agua superficial	Δ _{q11}	1. 5				Δ _{q16}	a 1
. (1)	c ₁₁	•	•	•	•	C ₁₆	
fuentes secundarias							
Efluente Municipal (2)				•	•		•
Efluente industrial (3)	•				•	•	•
Corrientes de retorn	o X41	x42				X46	
de riego	Aq41	Δq42				[∆] q46	a4
(4)	C41	Č ₄₂				Č46	
Requerimientos 6 demandas de un sector (5)	b ₁	b ₂		•		b ₆	Eb, fai

NOTACIONES

Xij - cantidad de agua del origen i asignada al destion J

qij - Diferenciales de calidad de agua

cij - Costo de tratamiento

a; - Cantidad de agua disponible de origen :

bi - Cantidad de agua requerida por destino 1.

TABLA 6.2

Agua de suministro y características de la demanda de un sistema agrícola, urbano e industrial. (valores en m³/seg)

Sîstema	sumînîstro princîpal	Demanda	Efluente	Consumo
Agua del r í o				
Balsas	50			
Municipal		1.5	1.0	0.5
Industrial		45.0	36.0	9.0
Agrícola		16.0		16.0
Refugio Vida				
Animal		20.0		20.0
TOTAL	50	82.5	37.0	45.5

Sistema de disposición = suministro principal - uso consuntivo = 50 - 45.5 = 4.5

El gasto de agua asignada para uso industrial considera la cantidad demandada en el arranque de operación. Es importan te hacer notar que dicho requerimiento puede disminuir dependiendo del sistema de recirculación de agua con que cuen te cada industria.

Los costos de tratamiento se asignan en base a las matrices diferenciales de calidad de agua de los parámetros más significativos del sistema en estudio.

Dichos costos dependen de la aplicación de un determinado tratamiento a un origen para satisfacer un destino.

6.3 Aplicación del modelo

El desarrollo del modelo está basado en las características del sistema en estudio las cuales incluyen:

- La distribución del agua del río Balsas en el área urbana, industrial y agrícola.
- La calidad del agua, dependiendo de la fuente de suministro y el sector de demanda.

Lo anterior está representado en las siguientes tablas

TABLA 6.3

Matriz de diferenciales de la calidad del agua según la DBO (valores

en mg/l)	requ	erimientos	de remoció	n refugio de	siste ma de	calidad del
Origen i	municipal	industrial	agricola	vida animal	dispo- sición	
río Balsas	5.0	<0	<0	<0	0	5
efluente municipal	200	190	70	180	195	200
efluente industrial	400	390	270	380	395	400
calidad aceptable del influente	0	10	130	20	5.0	

Los diferenciales de DBO se obtienen restando la calidad del efluente que corresponde a la filtima columna menos la calidad aceptable del influente; estas diferenciales indican la cantidad en mg/l de DBO que se debe remover. Los valores de 0 y <0 indican que la calidad del efluente de un determinado orígen es igual o mejor que la calidad (aceptable) de un destino partícular y por lo tanto, no es necesario aplicarle un tratamiento.

Los valores anteriores se basan en los análisis de calidad presentados en el capítulo 3, así como en las consideraciones de desarrollo urbano, agrícola e industrial. La cae racterización de los efluentes industriales están basados en los tipos de industrias que se presentan en el capítulo 5,

sin incluir la siderúrgica.

La consideración de reuso del agua en la industria está $ref\underline{e}$ rido solo al enfriamiento y no al agua de proceso.

TABLA 6.4

Matriz de diferenciales de calidad de agua según la concentra ción de sólidos totales (ST), en mg/l

		requeri	mientos de	remoción refugio de	sistema de	
origen i	municipal	industrial	agr í cola	vida animal	dîsposición	efluente
río						
Balsas	0	<0	0	<0	<0	500
efluente municipal	400	100	400	0	<0	900
efluente industrial	0	<0	0	< 0	<0	500
calidad aceptable del influente	500	800	500	2000	1500	

En la tabla 6.5 se presenta la matriz que da los valores aproximados de costos que se podrían tener para el sistema, considerando las remociones de DBO y S.T. Sin embargo, es importante tomar en cuenta que los costos finales estarán

en función de la capacidad de la planta de tratamiento así como del costo de transporte y descarga del agua.

TABLA 6.5

Matriz de costos relatívos unitarios, Pesos/m³

Destinos i

Descritos J						
origenes i	municipal	industrial	agrícola	refugio vi- da animal	sistema de dispo- sición	disponi bilidad de agua, m ³ /s
río						
Balsas	1.20	0.45	0	0	0	50
efluente municipal	2.50	0.65	0.25	0.45	0.25	1.0
efluente industrial	3.00	0.80	0.30	0.45	0.30	36
requerimien- tos en m ³ /s	1.5	45	16	20	4.5	87

El último renglón y la última columna de la matriz anterior representan las cantidades de agua de los requerimientos y de las disponibilidades, respectivamente.

Con base a la matriz anterior, podremos aplicar el método de la columna mínima para determinar la asignación óptima de las cantidades de agua disponibles a sectores determinados. Método de la Columna Minima

Se principia buscando la celda que tiene el costo mínimo en la columna 1. Supongase que es la (r,1) (renglón 1, columna 1) , luego $Xr_1 = \min (a_r, b_1)$

Si $b_1 < a_r$ se pasa a la columna 2 haciendo $a_r = a_r - b_1$. Si no es así se elimina el renglón r,esto es, no podrá se leccionarse posteriormente ninguna celda de ese renglón y se pasa en la misma columna 1 a la celda con el siguiente costo mas bajo haciendo

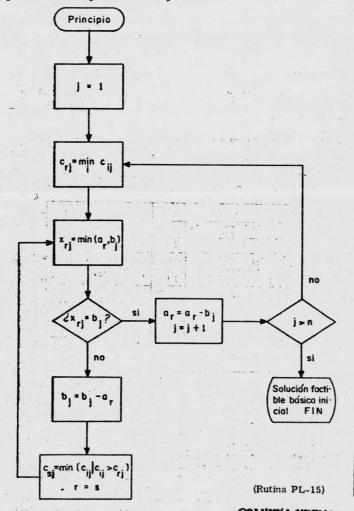
b₁ = b₁ - a_r, supongase que la celda es
(S ,1) entonces;

continuandose hasta que se satisfacen los requerimientos del destino 1.

Los datos se colocan como se muestra en la siguiente tabla

Z11	Cis Ziz		C1/	•••	C1.	a ₁	
Ca1	C23		C2/	•••	C2a	a ₁	3
:			81	•••			r = C
Ci1	Ci2	•••	C11		Ci.	a,	S = C
1.3.			N. 19.42	1			

donde:


 C_{ii} = costo de tratamiento del origen i al destino j

 $X_{\hat{1}\hat{1}}$ = cantidad de agua tratada del or**f**gen i al destino j

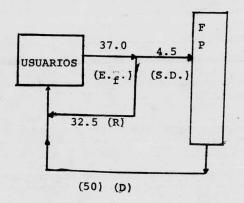
a = dîsponibîlîdad del orîgen i

b_j = requerimiento del destino j

FIG. 6.1 El diagrama de flujo es el siguiente

6.4 MATRIZ DE ASIGNACION OPTIMA DE LAS AGUAS

Los resultados obtenidos se presentan en la tabla 6.6. La programación del modelo se anexa al final del capítulo. 1


Destino j

orîgen î	municipal	industrial	agrícola	refugio vi- da animal	sistema de dis- posición	disponi- bilidad de agua
río						
Balsas	1.5	45	3.5	0.0	0.0	50
efluente municipal	0.0	0.0	1.0	0.0	0.0	1.0
efluente industrial	0.0	0.0	11.5	20.0	4.5	36.0
requerimie <u>n</u> tos	1.5	45.0	16.0	20.0	4.5	87.0

De acuerdo con los valores anteriores el diagrama de flujo del sistema sería el siguiente:

1 El diagrama de flujo del programa de la computadora se presenta en la Fig. 2.

FIGURA 6.2

FP = Fuente Princi pal río Balsas

 $E_f = Efluente$

R = Retornos

D = Disponibilidad

```
16700/17700
                                                                                                                                                                                      FURTRAN
                                                                                                                                                                                                                                                                                                                                                     COMPILATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                MARK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            2.8.060
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     TUESDAY, 10/11/77
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   04:53 PII
         FILE 2=LEC, HHIT=PEADLR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 00000001
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FIB IS 0006 LONG
         FILE
                                                               BROGRANICION DE UN HODELO PARA LA ASIGNACION OPTIMA DE AGUA DE DIF ERENTES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          59553521
STAFI OF SEGMENT 002
C 59553523
                                                               ORIGENES A DIFFRENTES DESTINOS
                      DITERSION DISP(10), REU(10), A(10), B(10), A(10), B1(10), CARE(10, 10), 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   08090451
                                                                 READ (2.10) 11. M.L.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                08090452
08090453
                                                                 L1'=1)
      E TOTALETTE LAS CALIBRACIA DE LAS AGUAS DE LOS ORIGENES Y DESTINOS BELLAN RESPICE-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   08090455
 C TITARIGOTE LAS CALIDADES DE LAS AGUAS DE LOS ORIGENES Y DESTINUS DEL SI STEMA
C SEGUL CYU DE LOS PARAMETROS.
100 ELAD (2.15) (PESCY) (1=1,0)
C HOTASILAS E ITERACIONES SEGUIENTES SIRVEN PARA CALCULAR LOS ELEMENTOS DE LA
C MATRIZ (CAUL), RESTABOD LOS VALOHES CORRESPONDIBLENTES DE LAS MATRICES (D ISP) Y
C MATRIZ (CAUL), RESTABOD LOS VALOHES CORRESPONDIBLENTES DE LAS MATRICES (D ISP) Y
C LA HALLIZ (CAUL), RESTABOD LOS VALOHES CORRESPONDIBLENTES DE LAS MATRICES (D ISP) Y
C LA HALLIZ (CAUL), RESTABOD LOS VALOHES CORRESPONDIBLES DE LA CALIDAD DEL
C MATRIZ (CAUL), RESTABOD LOS VALOHES DE DIFERENCIALES DE LA CALIDAD DEL
C MATRIZ (CAUL), PEPPLENTA A LA MATRIZ DE DIFERENCIALES DE LA CALIDAD DEL
DU JOU JELM
200 CAUL (1, 1)=13P(1)-PLC(1)
300 MITTE (1, 25) (CAUL), JELM, MITTE (1), DISP(1)
MOTAGALE (1, 1)=13P(1), DISP(1)
C MOTAGALE (1, 1)=13P(1), DISP(1), DISP(1)
MOTAGALE (1, 1)=13P(1), DISP(1), DISP(1)

C MOTAGALE (1, 1)=13P(1), DISP(1)

C MOTAGALE (1, 1)=13P(1)

C MOTAGALE (1, 1)=13P(1)

C MOTAGALE (1, 1)=13P(1)

C MOTAGALE (1, 1)=13P(1)

C MO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 23541003
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   92790801
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   04530001
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                045300045
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   04530006
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   04530007
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 07191451
C HOTAGES (1001) Y (2) LLEUTHO PURE SIBVEN PARA DARLE A LA MAQUINA LAS
C HATRICES (1001) Y (2) LLEUTHO PURE LLEUTHO PURE LLEUTHO PURE LLEUTHO PURE LLEUTHO PURE LLEUTHO PURE LUCATION DE CADA COLUN MATRIZ (INDI]
C MATRICES (1001) Y (2) PERFECTIVA A LA MATRIZ DE COSTOS DE CADA COLUN MATRIZ (INDI]
C MATRIZ (LA MATRIZ (LA MATRIZ DE COSTOS DE CADA COLUN MATRIZ (INDI]
C MATRIZ (LA MATRIZ CINT) (LA MATRIZ DE LA MATRIZ (C)
C MATRIZ (LA MATRIZ CINT) (LA MATRIZ REUGLON (B), RECRESENTAN RESPE CIIVA-
C MATRIZ (LA MATRIZ CINT) (LE MATRIZ REUGLON (B), RECRESENTAN RESPE CIIVA-
C MATRIZ (LA MATRIZ CINT) (LE MATRIZ REUGLON (B), RECRESENTAN RESPE CIIVA-
C MATRIZ (LA MATRIZ CINT) (LE MATRIZ REUGLON (B), RECRESENTAN RESPE CIIVA-
C MATRIZ (LA MATRIZ CINT) (LE MATRIZ REUGLON (B), RECRESENTAN RESPE CIIVA-
C MATRIZ (LA MATRIZ CINT) (LE MATRIZ REUGLON (B), RECRESENTAN RESPE CIIVA-
C MATRIZ (LA MATRIZ CINT) (LE MATRIZ REUGLON (B), RECRESENTAN RESPE CIIVA-
C MATRIZ (LA MATRIZ CINT) (LA MATRIZ REUGLON (B), RECRESENTAN RESPE CIIVA-
C MATRIZ (LA MATRIZ CINT) (LA MATRIZ REUGLON (B), RECRESENTAN RESPE CIIVA-
C MATRIZ (LA MATRIZ (LA MATRIZ DE LA MATRIZ DE LA MATRICES (AL)) (LE MATRIZ DE LA 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 07191452
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   07191455
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 52951001
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 52951003
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 65055353
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 41201002
```

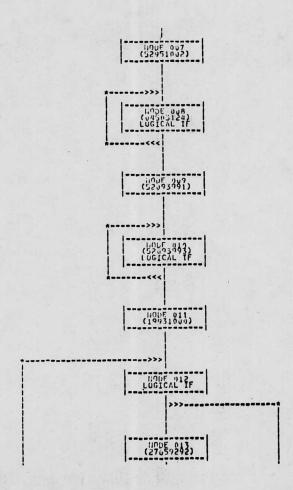
```
C DE LAS CANTIDADES DE AGUA DE C/U DE LOS ORIGENES.
                                                                                                                                                                                                                                                                                                                                                                                                                                                04503121
                                                                                                                                                                                                                                                                                                                                                                                                                                              045003120
                              W=0 550 J=1.N
                              #=" +B (J)
          550 CONTINUE
    52093991
                                                                                                                                                                                                                                                                                                                                                                                                                                                 52093993
                                                                                                                                                                                                                                                                                                                                                                                                                                                 52093994
                                                                                                                                                                                                                                                                                                                                                                                                                                                  35045332
   ELAPACION "GO TO 700" FORMAN LA PARTE DE LA DECLARACION "GO TO 1300"

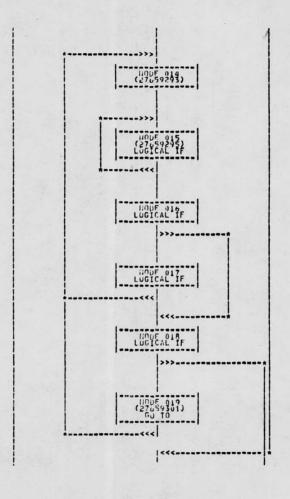
ENTRE LA DECLARACION EL CONTRE LA SIGUIENTE DEL SEGUIDO EN 15TE UN DISPONIBILIDAD EL COS DOS PROCESOS SE HACE CON LA SIGUIENTE DEL SEGUIDO EN 15TE UN DISPONIBILIDAD EL CARACTON "IF" BASICAMENTE LOS DOS PROCESOS SE HACE CON LA SIGUIENTE DEL SEGUIDO EN 15TE UN DISPONIBILIDAD EN CELARACION "IF" BASICAMENTE LOS DOS PROCESOS SE HACE CON LA SIGUIENTE DEL SEGUIDO EN 15TE UN DISPONIBILIDAD EL CLARACION "IF" BASICAMENTE LOS DOS PROCESOS SENTE SIGUIENTE LOS DOS PROCESOS SENTE SIGUIENTE LOS DOS PROCESOS SENTENCIAS, AL ASIGNIAR LAS A DIFERENTES SECTORES PARA DARRES EL VALOR DE CERRO, Y CONTRE LA MARCIA DE LA MARCIA DE LA MARCIA DE LA POPULA DE LA PARTE DE LA DECLARACION "IF" DI LAS DECLARACION "IS" FORMAN LA PARTE DE LA DECLARACION "IS" DI LA PARTE DE LA DESCRIPCION DE LA DES
                                                                                                                                                                                                                                                                                                                                                                                                                                                 39990551
                                                                                                                                                                                                                                                                                                                                                                                                                                                  19931001
                                                                                                                                                                                                                                                                                                                                                                                                                                                  50359699
                                                                                                                                                                                                                                                                                                                                                                                                                                                  13009001
                                                                                                                                                                                                                                                                                                                                                                                                                                                  30796351
                                                                                                                                                                                                                                                                                                                                                                                                                                                   10314101
        LIDADES.
                                                                                                                                                                                                                                                                                                                                                                                                                                                     765929
          700 K=K+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                       765929
                                11=0
                                                                                                                                                                                                                                                                                                                                                                                                                                                           18592
                              11=11+
                               if (in) ([11.J).FU.K) GO TO 900
                                                                                                                                                                                                                                                                                                                                                                                                                                                            6592
                           IF (A(I) - X(II, J-1)) 1100, 1000, 1100
IF (A(I) - GF, B(J)) GO TO 1600
X(II, J) = A(II)
       1000
                                                                                                                                                                                                                                                                                                                                                                                                                                                     7659300
7659301
      1100
                               A(T1)=0(J)-X(T1,J)
```

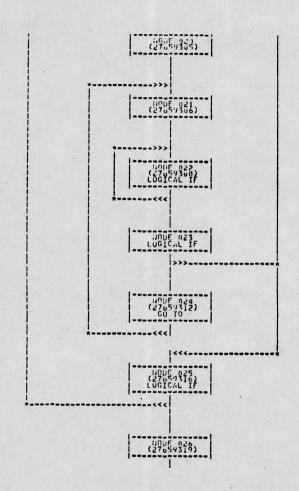
```
GO TO 700
                             1200 K=0
                                                                  K=K+1
                     1600 X 110 1309
1700 CATTULE

READ ($\frac{1}{2}\) \{\frac{1}{2}\} \{\frac{1}\} \{\frac{1}{2}\} \{\frac{1}{2}\} \{\frac{1}{2}\} \{\frac{1}{2}\} \{\frac{1}{2}\
                             GLON (V)
                                                                E=0
1930 J=1,H
                          1920 CUNTTIVE
1950 1950 J=1, M
E=0 1970 I=1, M
1970 CUITING
1950 CUITING
1950 CUITING
C NOTANICED LA ITERACION STGNIENTE SE LE INDICA A LA MAQUINA QUE ORDEN E E IM—
C PRINA LAS MATRICES: (COSTO), (F), (V).
2000 MRITE($5;(COSTO(I,J),J=1,N),F(I)
C NOTANICED LE JUITING COMPRENDIDO ENTRE LA SIGUIENTE PROP OSICION
C NOTANICO EL BLOGUE DE DECLARACIONES, COMPRENDIDO ENTRE LA SIGUIENTE PROP OSICION
                                                                   DO 1950 J=1.N
```

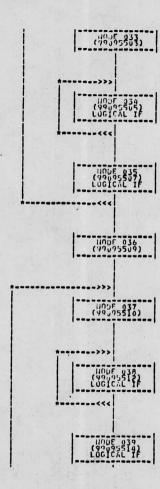
```
EJECHTACLE Y LA DECLARACION QUE SIGUE A LA ETIQUETADA CON EL HUMERO ORDENAN À LA DAGNICA DUE SIME LOS VALORES DE TODOS LOS ELEMENTOS DE LE COSTOS TOTALES PARA ORTENER EL COSTO TOTAL MINIMO, Y SE LE INDICA
      QUITTA OUF LU IMPPIMA.
                                    TOTAL =0.
                                    TOT=0.
                                    00 2200 I=1.14
                                    PAPC=0.
2100 PARC=COSTU(1,J)+PARC
                                     TOT=PAPC
 2200 TOTAL STOTATOTAL
            TOPE AT(/)

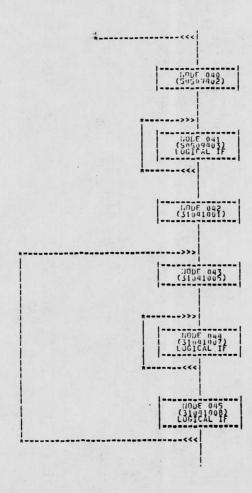

TO FOR AT(/)


TO AT(/)


TO
                                     EIID
```


 PROGRAM GRAPH FOR .MAIN. NOUE 001 (08090452) HOUE 002 (23541002) NODE 003 (04530003) HODE 004 (04530004) LUGICAL IF 110DE 005 (04530005) LUGICAL IF HOUF 006 (04530006) LOGICAL IF





****** (50509404) NODE 029 (07690003) ****** HODE 030 (99095501) LOGICAL IF (97075502)

......

SEGMENT 002 IS 0197 LONG

```
MATRICES DE DIFERENCIALES DE LA CALIDAD DEL AGUA SEGUN LA D.B.O. Y S.D. RESPECTIVAMENTE EN (MG./L.)
NOTA:LOS VALDES DEGATIVOS SE TOMAPAN COMO CERO
20.0000 -5.0000 -125.0000 170.0000 175.0000 200.0000
400.0000 370.0000 276.0000 380.0000 375.0000 400.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    195.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           20.0000
                                                                                                                  0.0000
                                                                                                                                                                                                                   10.0000
                                                                                                                                                                                                                                                                                                                                        130.0000
                                                                                                                                                                                                                                                                                                                                      0.0000-1500.0000-1000.0000
400.0000-1100.0000 -600.0000
0.0000-1500.0000-1000.0000
500.000 2000.0000 1500.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               500.0000
                                                                                        403.0000 100.0000
                                                                                                                0.0000 -300.0000
                                                                                          500.0000 800.0000
  MATRIZ DE CU3108 RELATIVOS UNITARIOS DE TRATAMÍENTO Y TRAUSPORTACION EN ( $ REL.) 1.2000 0.4500 0.4500 0.4500 0.5000 0.5000 0.4500 0.5000 0.4500 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.50
    MATRIZ DE ASTGUACION OPTIMA DE RECURSOS DE AGUA A LOSSECTORES EN (L/SEG.)
1.5000 45.6000 1.5000 0.0000 0.0000 55.0000 0.0000 1.5000 0.0000 0.0000 1.5000 0.0000 1.5000 0.0000 1.5000 0.0000 1.5000 0.0000 1.5000 0.0000 1.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00
    MATRIZ DE COSTOS RELATIVOS TOTALES DEBIDOS A LAS AGUA TRATADAS Y TRANSPORTADAS DE CADA SECTOS RESPECTIVO EN (SKEL. L/SEG.)

1.0000 20.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.0000 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3500
                                                                                                                                                                                                                                 20.2500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           9.0000
                                                                                                                        1.8900
                                                                                                                                                                                                                                                                                                                                                                      3.7000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       36.100
        EL COSTO RELATIVO TOTAL MINIMO EN (SPEL. L/SEO.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ES:
```

FORMAT SEGMENT IS 0087 LONG START OF SEGMENT 007 SEGMENT 007 IS 000C LONG

HO ERRORS DETECTED. HUMBER OF CARDS = 209.

COMPILATION TIME = 37 SECRIBS = 140 HORDS. PROCESSING.

2 STACK SIZE = 6 107805, FILESIZE = 140 HORDS. ESTIMATED CORE STORAGE REQUIREMENT = 1232 WORDS.

TOTAL PROGRAM CODE = 447 NORDS. ARRAY STORAGE = 580 HORDS.

HUMBER OF DISK SECRIFICATE OF PROGRAM SECRIFICATE OF PROGRAM CODE FILE = (EE89)SYMPLEX ON PACK, COMPILER COMPILED ON 08/27/76

7. CONCLUSIONES

Los resultados obtenidos del presente estudio indican que actualmente en términos generales, la calidad del agua en el delta del río Balsas es aceptable. Sin embargo, toman do en consideración la fuente de contaminación que representa el desarrollo urbano e industrial es, necesario aplicar tratamiento secundario a la descarga municipal, para mantener condiciones aceptables en la corriente receptora.

La eficiencia de remoción obtenida puede servir como base para la planeación de un sistema de tratamiento tomando en consideración que el cálculo se hizo en base a la proyección de población y desarrollo industrial presentado en los capítulos 4 y 5.

La distribución óptima del agua obtenida en el capítulo s seis dá la información necesaria para un análisis preliminar de alternativas de proyecto, requiriendose complementar en el modelo la información respecto a costos de transporte de agua.

REFERENCIAS

- CCIECA, Informe de la Comisión conferida en oficio
 4.6.4/75096 con fecha de 24 al 28 de octubre, 1975.
- Programación matemática mixta
 Instituto de Ingeniería, UNAM, contrato No SP 75-34/4.
- 3. APHA, AWWA, WPCF, Standard Methods for the Examination of Water and Waste Water, 13 th ed. 1971.
- 4. H.W, McKee and J.E. Wolf, "Water quality criteria. Sacramento Calif, 2a. ed, 1963.
- Diario Oficial, "Reglamento para la Prevención y Control de la Contaminación del Agua", 29 marzo 1973.
- 6. SRH, Reglamento para la Prevención y Control de las Aguas, 1973.
- G.A. Hibjan, XI Congreso de Asociación Interamericana de Ingeniería Sanitaria, Quito, Ecuador, 1968.
- G. M, Fair, J. C. Geyer, D. A. Okun, "Purificación de aguas y tratamiento y remoción de aguas residuales, Vol II, Limusa 1973.

- 9. L.Metcalf, H.Eddy, Inc. Wastewater Engineering; Colection treatment disposal. McGraw-Hill, 1972.
- 10. Datos proporcionados por Siderúrgica Lázaro Cárdenas Las Truchas, S.A, Abril 9 1976.
- 11. Dinámica de la población en la región de la desembocadura del río Balsas. Fideicomiso en el Banco de Obras y Servicios Públicos, S.A, mayo de 1976, Ciudad Lázaro Cárdenas, Mich.
- 12. La Industria Siderúrgica Nacional y el proyecto Siderúrgico Lázaro Cárdenas, Las Truchas. México 1972.
- 13. W. W. Eckenfelder, Jr., "Water Quality Engineering for Practicing Engineers". Cahners books, 1970.
- 14. Proceeding of the Industrial Waste Conference, Vol 1, pág 439, 1960.
- N.Nemerow, "Liquid waste of Industry Theories Practices Treatment". Addison Wesley Publishing Company, 1971.
- 16. D. M. Marske and L.B. Polkowski, "Evaluation of methodo for estimating bioquemical demand parameters". Water Pullution Control Federation, Journal JWPCF., Vol. 44, No 10 (1972).

17. Engineering Methodology for River and Stream. Reareation. U.S.

Environmental Protection Agency. Water Pollution Control Research Series.

BIBLIOGRAFIA

- L. G. Rich "Environmental Systems Engineering International Student Edition 1973.
- E. T. Chanlett Environmental Protection International Student Edition 1973.
- Manual para el uso del Programa Simplex
 J. Sánchez G.
 Instituto de Ingeniería 1977.
- E. Nordell, "Water treatment for Industrial and other uses".
 New York, Reinholds Publishing Corporation., 1951.
- W.W. Enckenfelder, "Water Pollution Control".
 Jenkins Publishing Company. Austin and New York. 1970.
- F.J. Jauffred, A. Moreno. Métodos de Optimización Representaciones y Servicios de Ingeniería, S.A. México 1976.

NORMAS MEXICANAS DE CALIDAD PARA AGUA POTABLE*

"Se considera agua potable a toda aquella cuya ingestión no cause efectos nocivos a la salud, para lo cual deberá llenar los requisitos siguientes:

I. Caracteres físicos:

De preferencia, la turbiedad del agua no excederá del número 10 (diez) de la esca la de silice, y su color del número 20 (veinte) de la escala de platino cobalto. El agua será inodora y de sabor y temperatura agradables. De no poderse cumplir con los requisitos anteriores, se admitirán aquellos caracteres físicos que sean tolerables para los usuarios, siempre que no sean resultado de condiciones objetables desde los puntos de vista bacteriológico y químico.

II. Caracteres químicos:

Un pH de 6.0 a 8.0 para aguas naturales no tratadas.

Para aguas tratadas o sometidas a su proceso químico, se aplicarán las normas es peciales de la fracción IV.

Un contenido por millón de elementos iones y substancias que a continuación se expresan:

Nitrógeno (N) amoniacal, hasta Nitrógeno (N) proteico, hasta	0.50
Nitrogeno (N) de nitritos (con análi	0.10
sis bacteriológico aceptable), hasta.	0.05
Nitrogeno (N) de nitrato, hasta	5.00
Oxígeno (O), consumido en medio áci-	2 00
do, hasta	3.00
lino, hasta	3.00
Sólidos totales de preferencia hasta	
500, pero tolerándose hasta100	0
Alcalinidad total, expresada en CaCO3	,
hasta 40	0
Dureza total, expresada en CaCO3,	_
hasta 30	
Dureza permanente o de no carbonatos, expresada en CaCO, en aguas natura-	*
les de preferencia hasta 15	0
Cloruros expresados en Cl, hasta . 25	

*Normas de la Secretaría de Salubridad y Asistencia, publicadas en el Diario Ofi cial del 2 de julio de 1953.

Sulfatos, expresados en	
S04, hasta	250
Magnesio, expresado en Mg, hasta	125
hasta	15.00
Cobre, expresado en Cu, hasta	3.00
en Fl, hasta	1.50
Fierro y manganeso, ex- presado en Fe y Mn, has	
Plomo, expresado en Pb,	0.30
hasta	0.10
Arsénico, expresado en As, hasta	0.05
Se, hasta	0.05
presado en Cr, hasta Compuestos fenólicos, expresados en fenol,	0.05
hasta	0.001
cloradas, no menos de . Cloro libre, en aguas	0.20
sobre cloradas, no menos de 0.20 ni más de	1.00

III. Caracteres bacteriol<u>6</u> gicos:

El agua estará libre de gérmenes pa tógenos procedentes de contaminación fecal humana.

Se considera que una agua está libre de esos gérmenes cuando la investiga ción bacteriológica dé como resultado final:

- a) Menos de veinte (20) organismos de los grupos coli y coliforme por litro de muestra, definiéndose como organismo de los grupos coli y coliforme todos los bacilos no esporógenos, Gram negativos, que fermenten el caldo lacto sado con formación de gas.
- b) Menos de doscientos (200) colonias bacterianas por centímetro cúbico

de muestra, en la placa de agar incubada a 37°C por 24 horas.

- c) Ausencia de colonias bacterianas licuantes de gelatina, cromógenas o fétidas, en la siembra, de un centrímetro cúbico de muestra, en gelatina incubada a 20°por 48 horas.
- IV. Las aguas tratadas químicamente para clarificación o ablandamien to, satisfarán los tres requisitos siguientes:
- a) La alcalinidad a la fenolftaleina calculada como CaCO3, será me nor de 15 partes por millón, más 0.4 veces la alcalinidad total, con un pH inferior a 10.6.

b) La alcalinidad de carbonatos nor males será menor de 120 partes por millón, para lo cual la alca linidad total, en función de pH estará limitada según la escala siguiente:

		The second secon		
Valo	or del pH	Alcalinidad en CaCO ₃	total	
8.0	a 9.6	400		
	9.7	340		
	9.8	300		
	9.9	260		
	10.0	230		
	10.1	210		
	10.2	190		
	10.3	180		
	10.4	170		
10.5	a10.6	160		

c) La alcalinidad total no excederá a la dureza total en más de 35 mg por litro o partes por millón, ambos calculados como CaCO₃.

TABLA 2. CARACTERISTICAS QUIMICAS DE LAS AGUAS RESIDUALES MUNICIPALES

CARACTERISTICA	TIPO	CONCENTRACION
ACIDOS VOLATILES	FORMICO, ACETICO, PRO- PIUNICO BUTIRICO Y VA LERICO	85-20 mg/l
ACIDOS SOLUBLES NO VOLATILES.	GLUTARICO, GLICOLICO, LACTICO CITRICO, BEN- ZOICO Y FENILACTICO	
ACIDOS GRASOS ALTOS	PALMITICO, ESTEARICO Y OLEICO	2 DEL CONTENIDO DE 3 ACIDOS GRASOS
PROTEINAS Y AMINOA CIDOS	MAS DE 20 TIPOS	45-50% DEL NITROGE NO TOTAL
CARBOHIDRATOS	GLUCOSA, SACAROSA, LACTOSA ALGO DE GALAC TOSA Y FRUCTOSA	

TABLA 3. CARACTERISTICAS MEDIAS DE AGUAS RESIDUALES MUNICIPALES

CARACTERISTICA	MAXIMO	MEDIA	MINIMO
рн	7.5	7.2	6.8
SOLIDOS SEDIMENTABLES, ml/1	6.1	3.3	1.8
SOLIDOS TOTALES, mg/l	640	453	322
SOLIDOS TOTALES VOLAT <u>I</u> LES mg/l	388	217	118
SOLIDOS SUSPENDIDOS, mg/l	258	145	83
SOLIDOS SUSPENDIDOS VOLATILES, mg/l	208	120	62
DEMANDA QUIMICA DE DXIGENO, mg/l	436	288	159
DEMANDA BIOQUIMICA DE DXIGENO, mg/l	276	147	75
CLORUROS, mg/1	45	35	25

TABLA 4. GUIA SUGESTIVA PARA LA CLASIFICACION DE AGUAS DE RIEGO POR SALINIDAD.

Respuesta del cultivo	Sólidos totales disueltos en mg/l	Conductibilidad eléctrica mmhos/cm
Agua que no ocasiona efectos perjudiciales notablemente.	5 500	0.75
Agua que puede ser per judicial en cultivos sensibles.	500-1,000	0.75-1.50
Agua que puede tener efectos adversos sobre varias cosechas y que requiere cuidado en las prácticas de manejo del suelo	1000-2,000	1.5 -3.00
Agua que puede ser usa- da para plantas toleran tes a las sales con cui dadosas prácticas de ma nejo y sobre suelos per meables	2000-5,000	3.00-7.50

TABLA 5

NORMAS DE CALIDAD DE AGUA PARA USO INDUSTRIAL

Industria	Textil	Pulpa y	Procesos	Petroleo	Alimentos	Cemento
Impureza		papel	quimicos			•
Dureza mg/l	25	100	250-900	350	250	7
рн	2.5-10.5	6-100	6.2-8.7	6-9	6.5-8.5	7
Calcio mg/l		20	60-100	75	100	7,5
Cloruros	_	200-1000	500	300	250	250
Manganeso	0.01-0.05	0.05-0.10	0.10-0.2	-	0.20	0.50
Fierro	0.01-0.30	0.10-0.30	0.10-0.3	1	0.20	25
Color	5	10-30	20	*	5	*
Alcalinidad		-	125-200		250	400
Sólidos sus-						
pendidos	5	10	5-30	10	10	500

^{*} No interfiere en los procesos.

/

METODOS DE ANALISIS Y PRESERVACION DE LAS MUESTRAS

TABLA 6

En la siguiente tabla se resumen los métodos y preservación us \underline{a} da. (ref 3)

PARAMETRO	METODO	PRESERVACION		
Oxígeno disuelto (OD)	Winkler modificado (Azida de sodio)	2 ml. Mn SO ₄ +2 ml.sol alcali-yoduro nitruro, agitación, refrigeración		
Demanda bioquímica de oxígeno (DBO)	Incubación de 5 días con determinación diaria de abatimien- to.	Refrigeración		
Demanda química de oxígeno (DQO)	Reflujo con dicroma- to de potasio	H ₂ SO ₄ A pH 3-4		
Dureza total y	Titulación con EDTA			
Cloruros	Argentométrico			
Nitr6geno - NH ₃ y N total	Destilación con Kjeldahl nesleriza- ción	8 ml H ₂ SO ₄ x litro y re- frigeración		
Nitratos	A. fenol disulfóni- co	8 ml H ₂ SO ₄ x litro y refrigeración		
2° muestreo	Brucina	8 ml H ₂ SO ₄ x litro y		
Ortofosfatos	Cloruro estanoso	refrigeración		
Sólidos en sus formas	Gravim é trico			
Bacteriológico	Tubos múltiples de fermentación y fil- tro de membrana.	refrigeración		

TABLA 7

CLASIFICACION DE LAS AGUAS DE LOS CUERPOS RECEPTORES SUPERFICIALES EN FUNCION DE SUS USOS Y CARACTERISTICAS DE CALIDAD*

Clase	Usos	(1) pH	(2) Tempera- tura (°C)	(3) O.D. (mg/1)	(4) Bacterias Coliformes NMP (Organismos/ 100 ml)	(5) Accites y Grasas (mg/1)	(6) Sólidos Disueltos (mg/1)		(8) Color (Escala Platino Cobalto)	(9) Olor y Subor	(10) Nutrientess Nitrógeno Fósforo	Flotan-	(12) Substan- cias Tóxicas
				Limite Minimo	Limite Máximo	Limite Máximo	Limite Máximo		Limite Máximo	Limite Máximo	Límite Máximo		
DA ,	Abastecimiento para sistemas de agua po- table e industria ali- menticia con desin- fección únicamente. Recreación (contac- to primario) y libre para los usos DI, DII y DIII	6.5 a 8.5	C.N. más 2.5 (a)	4.0	200 fecales (b)	0.76	No mayor de 1000	10	20	Ausentes	(c)	Ausente	(d)
DI	Abastecimiento de agua potable con tra- tamiento convencio- nal (congulación, se- dimentación, filtra- ción y desinfección) e industrial.	6.0 a 9.0	C.N. más 2.5 (a)	4.0	1000 fecales (e)	1.0	No mayor de 1000	C.N.	(f)	(g)	(c)	Ausente	(d)
וומ	Agua adecuada para uso recreativo, con- servación de flora, fauna y usos indus- triales.	6.0 a 9.0	C.N. más 2.5 (a)	4.0	10.000 coliformes totale como promedi mensual; ningú valor mayor d 20.000 (h)	pelicu- n la visi-	No mayor de 2000	C.N.	C.N.	C.N.	(c)	Ausente	: (d)
DIII	Agua para uso agri- cola e industrial.	6.0 a 9.0	C.N. más 2.5 (a)	3.2	1000 (j) y libr para los demá cultivos.	e Ausen- s cia de pelicu- la visi- ble.	(i)	C.N.	C.N. más 10		(c)	Ausente	e (d)
DIV	Agua para uso indus- trial (excepto pro- cesamiento de ali- mentos).	5.0 a 9.5		3.2	and the district of the second								(d)
4000-000	pH = Potencial O.D. = Oxigeno N.M.P. = Número	disuelt	.0	U.T.J. mg/1	= Unidades de tur = miligramos por		ckson	C.N. °C		ndiciones i ados centi			

Fecha de muestreo 1º de mayo de 1983

<u></u>	T			T	· · · · · · · · · · · · · · · · · · ·		T		-	T			Υ	reene	a de mue	1	de may	2 447
ESTACION		I			II	-		III			IV			v			VI	
ЕЈЕ	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
PROFUNDIDAD	1.00	1.00	1.00	1.25	0.25	0.25	2,00	1.25	0.25	2.00	0.37	0.50	1.00	0.50	0.75	3.00	3.00	1.75
HORA	14:00	14:00	14:00	14:40	14:40	14:40	15:25	15:25	15:25	15;50	15:50	15:50	16:20	16:20	16:20	16:20	16:20	16:20
pH	7.50	7.70	7.70	7.80	7.70	7.50	7.80	7.60	8.00	7.60	7.50	7.70	7.6	7.7	7.8	7.6	7.0	7.0
TEMPERATURA °C	28.00	27.50	28.00	29.00	28.00	28.00	30.00	30.00	32.00	28.00	2900	30.00	28	28	29	29	29	29
0.D, en mg/1	6.40	6.00	6.20	7.00	7.00	7.00	9.60	9.80	9.60	10.00	9.60	10.00	8.0	9.2	9.2	5.0	4.6	5.2
DEFICIT O, en mg/1	1.50	1.90	1.70	1.80	1.90	1.90	-2.00	-2.20	-2.20	-2.10	-1.80	-2.40	-0.1	-1.3	-2.4	1.2	1.7	1.1
SATURACION O, \$	81.01	75.9	78.5	89.74	86.60	88.60	126.31	128,94			123.07			116.3	117.9	80.0	72.7	82.0
DBO ₅ , en mg/1	1.084	0.465	1.084	0.240	0.465	0.722	0.722	0.465	0.240		0.722	0.463	1.40	1.40	1.30	0.24	0.72	0.96
DQO , en mg/1	4.50	5.20	3.49	3.49	3.49	6.98	3.49	6.98	0.98	10.47	10.48	6.98	3.6	3.6	3.6	15.0	15.0	14.4
CLORUROS, en mg/1	54.67	59.64	64.61	64.61	64.61	54.67	38.76	54.61	54.67	54.67	54.67	54.67	79.52	79.52	69.58	19229	417196	17196,79
DUREZA TOTAL, en mg/1	250	260	280	270	280	280	270	260	270	290	280	290	300	290	300	7000	6700	6300
CALCIO, en mg/1	20	18	20	. 18	20	20	20	20	16	18	18.	20	28	26	26	320	300	300
OI TOTAL, en mg/1	-	-	0.266	0.312	-	0.397	-	0.482	0.532	0.400		0.466	0.550	-	0.648	0.884	1.227	1-523
부용 AMONIACAL, en mg/1	0.206		0.206	0.280	0.206	0.180	0.300	0.186	0.206	0.140	0.280	0,240	0.206	0.180	0.350	U.350	0.467	0.648
NITRATOS, en mg/1	-	-	0.618	0.766	0.856	0.534	0.800	-	0.216	0.933	0.534	0,333	0.500	0.900	-	0.633	0.866	0.600
ORTOFOSFATOS, en mg/1	-	0.19	0.23	0.29	0.36	0.42	0.33	0.33	0.30	0.30	0.36	0.30	-	-	0.55	0.22	0.27	0.27
TOTALES, en mg/1	296	512	489	672	456	400	380	272	320	592	464	528	880	744	440	35480	39896	35800
FIJOS, en mg/1	188	304	236	396	320	340	328	236	276	480	356	396	532	240	140	30780	31228	31564
volatilES, en mg/1	108	208	248	276	136	60	52	36	44	112	108	132	348	524	300	4700	8668	4230
SUSP. TOTALES, mg/1	140	100	280	72	72	40	172	32	60	68	60	108	72	64	80	92	24	30
SUSP. FIJOS, mg/1	104	60	184	32	56	32	136	16	40	44	40	68	64	48	60	28	12	16
SUSP. VOLATILES "	40	40	96	40	16	8.0	36	16	20	24	20	40	8	16	20	64	12	64
TOTALES, en mg/1	156	412	204	600	384	360	208	240	260	524	404	420	808	700	360	35388	39872	35720
FIJOS, en mg/1	164	244	52	364	264	308	192	220	236	436	316	448	464	176	92	30180	31216	31548
C- VOLATILES, en mg/1	68	168	152	236	126	52.0	16	20	24	88	88	9 2	340	512	280	4636	8604	4172
COLIF.FECALES, NMP/100m	1 93	20	93	11000	15	90	2100	230	90	2800	700	400	-	110		-	110	-

							CONTRACTOR OWNERS OF THE	HERI SPRINGSTON	-	-	STATE AND PERSONS ASSESSED.	PROPERTY MAKE	SERVICE STREET
re-	FACTON		ı'			I			11			111	
EJI	TACION	1	2	3	1	2	3	1	2	3	1	2	3
-	CONTRACTOR OF THE PROPERTY OF	0,50	1.70	4.0	0.50	0.75	0.75	0,75	0.30	0.50	1.25	1,25	0,5
-	UNDIDAD M	- Carlina de la Carlo de la Ca	11.45	11.45	11.15	11.15	11.15	13.10		13.10	13.50	13.50	13.50
HORA		11.45				7.40	7.30	7,50	7,60	7.30	7.30	7.60	7.40
pll	PERATURA	7.60	7.50	7.40	7.40	30	30	32	32	31	32	32	32
	en mg/1	3.70	3.90	3,70	6.50	7.10	6.50	8.20	7,10	7.10	10.20	8.80	12.90
	ICIT O, en mg/l	3.80	3.70	4.10	1.30	0.50	1.10	-0.80	0.30	0.40	-2.80	-1.40	-5.5
	JRACION O. 1	48.6	51.3	47.4	83.3	93.4	85.5	110.8	95.9	94.6	137.8	118.9	174.3
		1.30	1.20	0.60	1.05	0.30	1.05	0.75	1.30	0.82	0.60	1.20	1.45
7	5, en mg/1	2.05	2.05	1.05	2.05	1.05	2.05	1.05	2.05	1.05	1.05	2.05	2.05
-	, en mg/1 , en mg/1	8.36	9.50	4.94	5.32	4.37	5.70	15.96	19.38	18.25	8.74	6.84	12.54
-	RUROS, en mg/1	40.32	40.32	32.42	56.43	52.42	40.32	52.42	48.39	52.42	52.40	52.40	52.40
-	EZA TOTAL, en mg/1	435	462	450	300	410	300	310	330	310	280	300	350
		84	88	84	88	84	80	82	90	80	80	82	78
	AMONIACAL, en mg/1	0.18	0.28	0.14	0.10	0.35	0.03	0.11	0.12	0.07	0.30	0.16	0.11
Nitr	AMONIACAL, en mg/1 NITRATOS, en mg/1	0.06	0.25	0.22	0.30	0.05	0.17	0.09	0.016	0.03	0.016	0.008	0.00
	OFOSFATOS, en mg/1	0.9	1.2	0.9	0.7	0.7	1.2	1.4	0.9	0.7	0.4	3.3	0.4
		240	150	80	460	220	310	430	200	220	1500	700	NC
coi	TEORMES TOTALES, o de org/100 ml TEORMES FECALES o de org/100 ml	10	28	18	24	23	8	200	34	1	56	10	10
П	TOTALES, en mg/1	380	414	428	459	440	386	466	480	472	490	416	496
s o	FIJOS, en mg/1	348	386	324	223	249	226	284	344	412	414	384	426
7	VOLATILES, en mg/1	32	28	104	236	110	130	182	136	60	76	62	70
1 1	SUSPENDIDOS TOTALES, en mg/1	80	60	115	120	110	98	85	92	100	115	115	90
So	FILTRABLES TOTALES, en mg/1	300	354	313	339	330	288	381	388	372	375	331	406

Fecha de muestreo 16 de julio de 1976

ESTACION	al numerous	īV			v			VI			VII	
EJE	1	2	3	1	2	3	1	2	3	1	2	3
PROFUNDIDAD M	2,25	0.50	0.50	1.50	1.50	1.20	3.50	3,50	3.00	0.70	3.00	4.00
HORA	14:15	14:15	14:15	14:30	14:30	14:30	15:10	15:10	15:10	13:15	13:15	13:15
pli	7.60	7.80	7.60	7.50	7.60	7.30	7.40	7.50	7.20	7.40	7,50	7.50
TEMPERATURA	31	31	3 32	31	31	31	30	30	31	32	32	32
OD, en mg/l	7.60	7.30	7.60	7.50	7.00	7.30	7.40	7,50	7.20	6,50	6.90	7.10
DEFICIT O, en mg/1	0 10	-0.30	-0.20	0.00	-0.10	0.20	0.20	0.10	0.30	0.90	0.50	0.30
SATURACION O. 1	98.7		102.7	100.0	101.3	97.3	97.3	98.6	96.0	87.8	93.2	94,6
DBOs, en mg/1	0.96	0.90	0.90	1.45	1,35	1,50	0.90	1.05	1.20	1.55	1.35	0.45
DBO, en mg/1	1.05	1.05	1.05	3,05	3.05	3.05	2.05	2.05	2.05	2.05	2.05	1.05
100, en mg/1	13.30	8.36	15.20	11.40	11.02	12.16	26.22	29.64	22,09	13.30	15.96	11.40
CLORUROS, en mg/1		52.42	52,42	60.49	64.50	60.49	2419	2056	1290	45.30	18.30	100.90
DUREZA TOTA, en mg/1	360	280	280	360	310	310	1328	1104	1056	390	360	320
CALCIO, en mg/1	120		84	80	76	80	260	200	300	60	56	56
CI AMONIACAL, en mg/1	0.140	0	0.060	0,140	0,20	0.26	0.213	0.333	0.300	0.373	0.16	0.380
NITRATOS, en mg/1	0.083	0	0	.0083	.0666	.0833	.066	.0416	0	.033	.0583	0.1
ORTOFOSFATOS, en mg/1	0.4	0.7	0.9	0.4	2.2	0.8	0.4	1.4	0.7	0	0	0
COLIFORES TOTALES,	2.4x10	NC	NC	9300	NC	NC	1.1x105	NC	NC -	150	89	73
No de org/100 ml	160	8	31	600	50	60	NC	NC	NC	14	7	9
TOTALES, en mg/1	444	516	474	476	488	446	5886	5728	3484	514	664	756
o Fijos, en mg/1	384	406	366	261	258	146	5426	5228	3226	372	536	588
VOLATILES, en mg/1	60	110	108	215	230	300	460	500	580	142	128	168
SUSPENDIDOS TOTALES, en mg/1	68	108	61	57	60	62	252	270	179	62	50	40
FILTRABLES TOTALES, en mg/1	376	409	413	419	428	384	5634	5458	3305	452	614	715

T

											-
Descarga Parametro)-1			D - 2				D -	3	
ПОРА	12:15	12:15	f3?15	6;00	12:00	18:00	24:00	6:00	12;00	18:00	24:00
pH	7.50	8.00	7.50	6.50	6.50	6.60	5.20	6.40	6,50	6.00	6.30
TEMPERATURA °C	34	34	35	28	28	30	29	29	28	31	30
0.0, en mg/1	15,30	11.80	12.90	0	0	0	0	0	0	0	Ω_
FATURACION	212.5	163.8	181.69	0	- 0	0	0	. 0	0	0	0
DBO _g , en mg/1	24.00	30.00	30.30	49.40	70.20	69.00	50.00	80.00	340.00	120.00	100.00
DBO _n , en mg/1	48	52	5.4	115	97	122	92	120	459	155	12
DQO , en mg/1	27.85	43.70	35.20	47.76	191.04	159.20	79.60	119.40	736,20	549.0	210.9
CLORUROS, en mg/1	40.32	44.35	48.38	48.38	68,53	52.42	48.38	80.64	258.04	104.8	100.9
DUREZA TOTAL, en mg/1	1162	2709	1002	1402	1122	1202	3851	1322	1402	1362	1442
CALCIO, on mg/1	440	380	410	1280	840	840	840	680	880	720	840
ORTOFOSFATOS, en mg/1	0.9	2.5	0.4_	6.87	45.0	23.3	8.37	31.5	70	61	42
J. TOTALES TOTALES, mg/1	410	332	356	676	942	918	814	898	1824	1558	1102
S. TOTALES FIJOS ,mg/1	296	236	268	558	798	704	694	630	1190.	1006	626
. TOTALES VOLATILES	115	96	88	118	144	214	120	268	634	552	406
S. SUSPENDIDOS T. mg/l	117	90	60	100	150	160	130	260	410	320	176
G. FIETRABLES T. mg/1	293	212	296	576	792	758	684	638	1414	1238	926
COLIFORMES FECALES, mg/1	300	100	.100	14 x 10	NC	22x108	NC	NC	NC	NC	76x10
COLI.TOTALES, NMP/100ml		4000	6667	16x109	NC	28x101	NC NC	NC	NC	NC	15x10

N.C. No contables

* El número entre paréntesis corresponde al eje

TABLA 11
Estudio demográfico de la región de la desembocadura del Río Balsas.

	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
Región de la Desembocadura del Río Balsas	124 926	150 051	166 826	184 559	203 319	220 042	242 617	259 792	278 397	298 755	372 279	464 684	560 429
Municipio de Lázaro Cárdenas, Mich.	99 669	123 385	138 122	153 624	169 939	183 982	203 619	217 567	231 627	249 089	313 291	394 626	477 025
Ciudad Lázaro Cárdenas	38 793	59 460	69 401	79 690	90 339	98 214	111 159	117 773	124 862	132 628	170 891	220 189	267 904
Las Guacamayas	25 343	26 185	27 808	29 532	31 363	33 308	35 373	37 566	39 895	42 368	54 591	70 339	85 581
La Mira	8 272	9 182	10 192	11 313	12 557	13 939	15 472	17 174	19 063	21 160	25 132	29 849	35 452
Playa Azul	9 842	10 168	11 286	12 527	13 905	15 434	17 132	, 19 016	21 108	23 430	27 828	33 050	39 346
El Habillal	2 069	2 296	2 548	2 829	3 140	3 486	3 860	4 295	4 767	5 292	6 285	7 465	8 866
El Bordonal	1 004	1 115	1 238	1 374	1 525	1 693	1 874	2 085	2 315	2 569	3 051	3 624	4 304
Buenos Aires	915	1 015	1 127	1 251	1 388	1 541	1 707	1 899	2 108	2 340	2 779	3 301	3 921
Acalpican de Morelos	834	926	1 028	1 141	1 266	1 406	1 557	1 732	1 922	2 134	2 535	3 010	3 575
La Orilla	746	772	799	827	856	886	917	949	982	1 016	1 016	1 016	1 016
Otras localidades	11 851	12 266	12 695	13 140	13 600	14 075	14 568	15 078	15 605	16 152	19 183	22 783	27 060

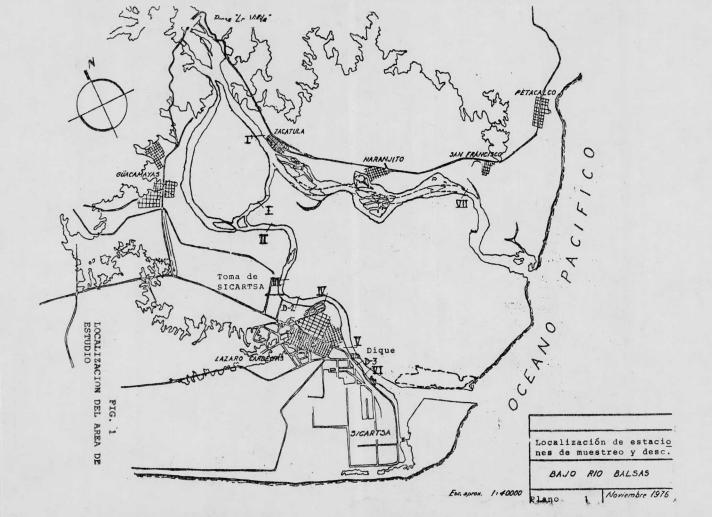
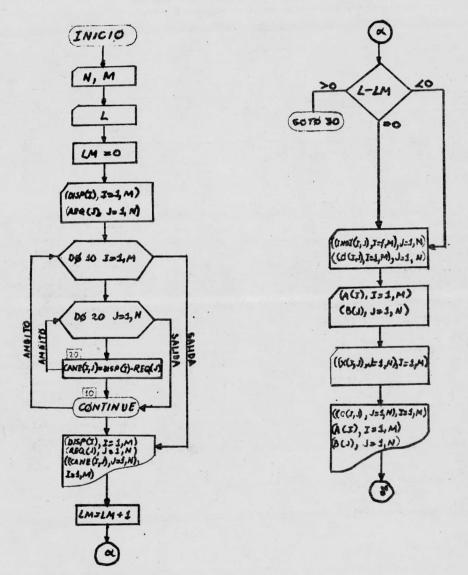
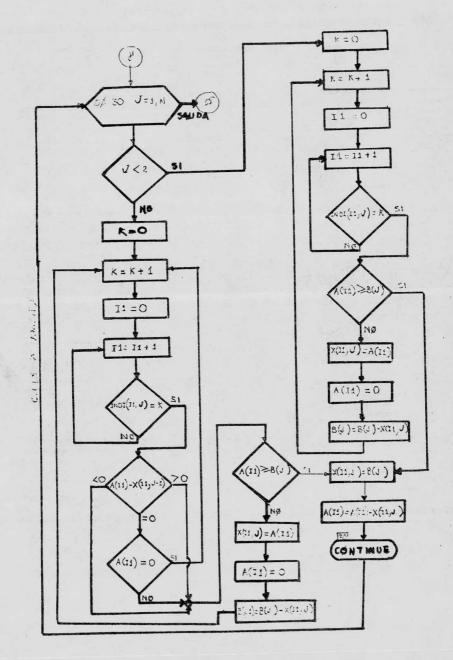
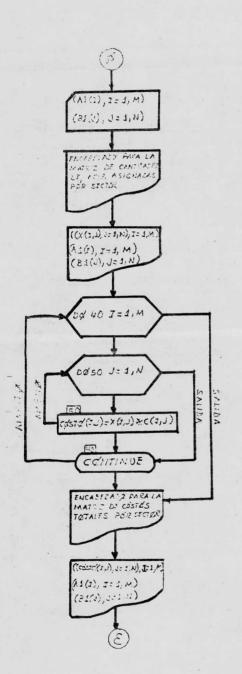
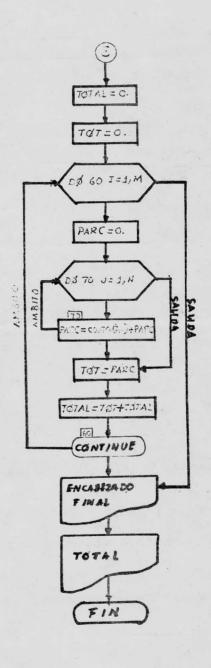






FIGURA 2
DIAGRAMA DE FLUJO DEL PROGRAMA

