

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE CIENCIAS QUIMICAS

METODO DE CALCULO PARA EL DISEÑO DE CONDENSADORES DE MEZCLAS INMISCIBLES.

T E S I S QUE PARA OBTENER EL TITULO DE INGENIERO QUIMICO P R E S E N T A JUAN ORTIZ PEÑA MEXICO, D. F. 1977

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Tesis 1977 313 PROC 6

Jurado asignado originalmente:

PRESIDENTE: Ing. Carlos Doorman Montero VOCAL: Ing. Mayo Martínez Kahn SECRETARIO: Ing. José A. Ortiz Ramírez 1er. SUPLENTE: Ing. Claudio A. Aguilar Mtnez. 20. SUPLENTE: Ing. Enrique Brevo Medina

Sitio donde se desarrolló el tema:

INSTITUTO MEXICANO DEL PETROLEO

JUAN ORTIZ PEÑA

ING. JOSE A. ORTIZ RAMIREZ

Con profundo Amor a mis padres:

Domitila Peña Peña Vicente Ortiz Montiel

Con Cariño y Gratitud a mis hermanos:

Vicente Amada Carmela Gilberta Martín Cruz Ma. Luisa Jorge Verónica Ma. Eugenia Ma. del Socorro

A quienes, con sus orientaciones y enseñanzas, han contribuido a mi formación profesional.

RECONOCIMIENTOS

EXPRESO MI MAS SINCERO AGRADECIMIENTO AL ING. JOSE A. ORTIZ RAMIREZ POR SU AMABLE ASESORIA; A MIS COMPAÑEROS DEL DEPTC. DE TRANSFERENCIA DE CALOR, POR SUS ORIENTACIONES; A LA PRINCE-SA CARMEN VELAZQUEZ PEREZ, POR SU COLABORACI-ON EN LA TRANSCRIPCION DE ESTE TRABAJO, Y A--MI HERMANA MA. FUGENIA POR LOS DIBUJOS QUE EN EL APARECEN.

RECONOCIMIENTOS

EXPRESO MI MAS SINCERO AGRADECIMIENTO AL ING. JOSE A. ORTIZ RAMIREZ POR SU AMABLE ASESORIA; A MIS COMPAÑEROS DEL DEPTC. DE TRANSFERENCIA DE CALOR, POR SUS ORIENTACIONES; A LA PRINCE-SA CARMEN VELAZQUEZ PEREZ, POR SU COLABORACI-ON EN LA TRANSCRIPCION DE ESTE TRABAJO, Y A--MI HERMANA MA. FUGENIA POR LOS DIBUJOS QUE EN EL APARECEN.

INDICE

INTRODUCCION

- 1.- TEORIA SOBRE LA CONDENSACION DE VAPORES QUE FORMAN LIQUIDOS INMISCIBLES.
- 1.8 ASPECTOS GENERALES SOBRE LA CONDENSACION.
- 1.b CONDENSACION DE VAPORES QUE FORMAN MEZCLAS INMISC<u>I</u> BLES.
- 1.c FORMAS EN QUE OCURRE EL FENOMENO DE LA CONDENSA---CION DE UNA MEZCLA DE VAPORES DE DOS LIQUIDOS IN--MISCIBLES.
- 1.d EQUILIBRIO DE FASES EN LIQUIDOS INMISCIBLES.
- 2.- EVALUACION DEL COEFICIENTE DE TRANSFERENCIA DE CA-LOR.
- 2.a MODELOS Y CORRELACIONES PARA CALCULAR EL COEFICIEN TE DE CONDENSACION.
 - 2.b EFECTO DEL VAPOR DE AGUA COMO INCONDENSABLE.
- .3.- DISENO TERMICO DEL CONDENSADOR.
- 3.a METODOS DE CALCULO.
 - 3.5 SELECTION DEL METODO EN LA PREDICTION DEL JOEFICIEN TE DE TRANSFERENCIA DE CALOR.
 - 4.- EJEMPLOS ILUSTRATIVOS.
 - 5.- CONSIDERACIONES ECONOMICAS.
 - 6.- CONCLUSIONES Y RECOMENDACIONES.

BIBLIOGRAFIA.

INTRODUCCION

Mucho tiene que ver la Ingeniería Química con algunas de las dificultades que se presentan al interaccionar la transferencia de calor con otros mecanismos; tales como la transferencia de calor en flujo turbulento; radiación atr<u>a</u> vés de gases luminosos; la ebullición y la condensación.

El uso y aplicación de la condensación, ha sido y es de mucha importancia en la Industria del Petróleo y en la Petroquímica.

Desde los estudios pioneros de Nusselt, se han investigado algunos problemas de la condensación; tales como la formación de niebla, extraños efectos hidrodinámicos, presencia de incondensables, etc. Sin embargo, un problema en el que no se ha profundizado mucho, es la condensación de vapores de líquidos inmiscibles. Pocos estudios experimentales se han efectuado y la teoría es relativamente escasa.

Aunque el fenómeno de condensación puede presentarse aunado a un desobrecalentamiento de los vapores y a un sub enfriamiento del condensado, dentro de una misma unidad, el presente trabajo se enfoca a la zona donde ocurre la con densación; y en particular, a la trayectoría donde se presenta la condensación de mezclas de vapores que forman líquidos inmiscibles.

Así mismo, se analizan los diferentes modelos y correlaciones que tratan de explicar el fenómeno de la conlensación de vapores de líquidos inmiscibles.

El modelo de "Nucleación Controlada" de Sykes Jr., que se selecciona, está de acuerdo al mecanismo de condensación que es más probable que ocurra y el cual, considera importantes variables que no se habían destacado, por ejemplo: la tensión superficial y la caída de temperatura através de las fases inmiscibles.

Con el objeto de precisar mejor el diseño térmico global de un equipo de condensación, se considera el efe<u>c</u> to que, como incondensable, puede tener el vapor de agua en la zona donde sólo condensa el hidrocarburo.

Posteriormente, se ilustra la aplicación del modelo seleccionado para predecir el coeficiente de transferencia de calor; así como un análisis de los resultados con los cálculos comparativos que se obtienen al aplicar otros modelos de referencia, tales como el de "Superficie Compart<u>i</u> da" de Berhardt y Westwater; y el método de la Cía. Kellogg.

Finalmente, se hace un interesante estudio económico, donde se expone la idea de separar en dos unidades, un fenómeno global de condensación. Es decir, un proceso de d<u>e</u> sobrecalentamiento de vapores y condensación del hidrocarburo solamente, en una unidad; y en la otra, el proceso de condensación simultánea.

Lo anterior, permite abatir costos en los materiales de fabricación, ya que desde el punto de vista de corrosión, en la primera unidad se pueden utilizar materiales baratos por ser mínima aquélla; y en la segunda unidad, por ser más significativa la corrosión, se usarán materiales reforzados pero más caros.

CAPITULO 1

1.a ASPECTOS GENERALES SOBRE LA CONDENSACION

La condensación ocurre cuando un vapor se pone en contacto con una superficie que se encuentra a una temperatura menor a la temperatura de rocío del vapor, éste cede su calor latente y condensa.

La condensación ocurre a diferentes velocidades de trans ferencia de calor, según se trate de un mecanismo de condensación por gotas ó por película. El primer caso ocurre cuando se forman gotas discretas sobre la superficie fría. Aun-que es el mecanismo deseable en la Industria, ya que al ofre cer menor resistencia al paso del calor, permite que éste se transfiera en un número 4 ó 6 veces mayor en comparación con la condensación por película. Sin embargo, dicho mecanismo solo se alcanza en condiciones especiales y en presencia de materiales promotores como el tetrafluoroetileno. La condensación por gota, también se favorece por la condensación simultánes de los dos componentes de la mezcla vapor y que for man líquidos inmiscibles. También puede darse el caso de que el proceso de condensación se dé por un mecanismo que cambia alternativamente de gota-película-gota, obstaculizando su -control.

De acuerdo con lo anterior, los condensadores a usar en la Industria, se diseñan sin considerar la condensación por gota; es decir, se considera un régimen de condensación por película.

El caso más simple de condensación, es cuando condensa un vapor puro.

Nusselt, en 1916 desarrolló la primere teoría importante para predecir el coeficiente de transferencia de calor en la condensación de un componente puro. Sus consideraciones fueron:

a) El vapor solo desprende calor latente.

b) El flujo del condensado es laminar y el calor se trang

fiere.

c) La película del condensado es tan delgada que permite una distribución lineal de la temperatura.

d) Se desprecian subenfriamiento y cambio de momentum en el conlensado .

e) Las propiedades del contensato y la temperatura de la superficie fría son constantes.

f) El vapor no ejerce efecto de arrastre sobre el conde<u>n</u> sado.

Partiendo de apreciaciones hidrolinámicas, lo primero --que obtuvo Nusselt, fue el espesor del condensado como una --función de las propiedades físicas y de la geometría. Así, --igualando la velocidad de transferencia de calor a la veloci-dad de condensación;

$$\mathbf{Q} = \lambda \Gamma = \frac{k}{S} \mathbf{A} \Delta T_{f} = \mathbf{h} \mathbf{A} \Delta T_{f} \qquad (1a)$$

y promediando el coeficiente de transferencia de calor,

$$h = 0.943 \left[\frac{\kappa^3 \rho^2 \lambda G}{M L \Delta T_{f}} \right]^{74}$$
(2a)

que es la expresión para el coeficiente de condensación de un vapor puro sobre una placa vertical de longitud L.

∆T es la diferencia de temperaturas entre la superficie de condensación y la corriente de vapor.

$$\Delta T_f = t_f - t_w \tag{3a}$$

$$t_{f} = \frac{1}{2} \left(T_{v} + t_{\omega} \right) \tag{4a}$$

Si la temperatura de la pared del tubo es menor a la de saturación del vapor a la entrada del condensador, entonces, aunque esté sobrecalentado el vapor, condensará sobre la su-perficie fría. Por el contrario, si la temperatura en la pa-re del tubo es mayor a la de saturación de los vapores, éstos simplemente pierden sobrecalentamiento y no se condensan.

Para superficies horizontales, Nusselt obtuvo:

$$h = 0.725 \left[\frac{\kappa^3 \rho^2 \lambda g}{\mu D \Delta T_{+}} \right]^{1/4}$$
(5a)

Asi por ejemplo, en la condensación de un metal líquido, la resistencia original no es por conducción através del condensado, sino através de una supuesta resistencia de vapor. Di cha resistencia se correlaciona por un coeficiente de ajuste (2). Monrad y Badger, mientras estudiaban el efecto de sobrecalentamiento, velocidad de condensado y velocidad de va por, respecto a las desviaciones de la predicción de Nusselt encontraron que la turbulencia del condensado es significati vamente responsable en las desviaciones observadas a la ec. de Nusselt.

Otros investigadores han sugerido que el calor total --transferido, es mayor que el calor latente de vaporización, debido al grado de enfriamiento del condensado. Por lo tan to, consideran que en la ecuación de Nusselt, el calor de vaporización se debe reemplazer, por:

 $\lambda' = \lambda + s \int_{-\infty}^{\infty} C_P dT$ (6a) Donde s es el grado de subenfriamiento. Para diferencias

Donde s es el grado de subeniriamiento. Fara diferencias moderadas de temperatura, se puede suponer constante a la capacidad calorífica y:

$$\lambda' = \lambda + S \left(P \Delta T_{f} \right)$$
(7a)

En forma dimensional, esta corrección sería:

$$H_{sc} = \left[1 + (sC_{P}\Delta T_{+})/\lambda\right]^{\gamma_{4}}$$
^(8a)

Bromley (3) también sugiere una corrección al calor laten te de vaporización, cuando se tienen condiciones de alta pre sión: $H_{RUP} = \left[1 + (0.4 C_P \Delta T_f)/\lambda\right]^{V_2}$ (9a)

Otros investigadores han considerado el efecto de arrastre sobre el condensado, debido al flujo de vapor. Consideran este efecto análogo al flujo sobre una placa con succión.

Recientemente, Henderson y Marchello (4) sugirieron una corrección para tubos horizontales, que tomara en cuenta la - mayor acumulación de condensado en la mitad inferior del tubo.

Considerando que mas del 60% del calor se transfiere enla mitad superior del tubo, la ec. de Nusselt es una buena <u>a</u> proximación. Así, el factor de corrección adimensional de He<u>n</u> derson y Marchello es: _____0.373

 $H_{MHO} = 0.057 \text{ N}_{OH}$ (10a)

donde N_{OH} es el Número de Ohnesorge, dado por:

$$N_{OH} = \mathcal{M}(P_{9}\nabla D)^{n}$$

y que por cierto, desempeña un papel importante en la -condensación de inmiscibles.

Myers y Rosson (5), encontraron que el coeficiente de trans ferencia de calor depende de la velocidad del flujo del condensado, pero es independiente de la velocidad del vapor.

Le consideración de la hidrodinámica y de ciertos patrones de flujo, en la transferencia de calor durante la condensación dentro de tubos, así como los trabajos efectuados por Baker (6) sobre flujo a dos fases, originó un nuevo enfoque al fenómeno de la condensación dentro de tubos.

Respecto a las correcciones a la ec. de Nusselt, se ob-serva que solo son importantes cuando se desvian significativamente de la unidad. Además, cada una de estas correcciones intenta analizar un efecto actuando independientemente; si--tuación que físicamente, no se presenta.

Estas correcciones, aparte de que pueden presentar una <u>u</u> tilidad práctica, son más ilustrativas para indicar el tipo de efectos secundarios que pueden ocurrir y que justificarían una corrección a la ec. de Nusselt.

1.b) Condensación de vapores que al condensar, forman -mezclas inmiscibles:

La mayoría de los experimentos y teorías desarrolladas a este respecto, se refieren principalmente a mezclas binarias formadas por un componente orgánico y vapor de agua. Al condensar una mezcla de multicomponentes, se pueden tener los siguientes resultados:

a) Una fase líquida con todos los componentes mutuamente solubles.

b) Dos fases líquidas parcialmente inmiscibles.

c) Dos fases líquidas inmiscibles.

El primer caso ya ha sido ampliamente comprendido.

No se han publicado trabajos que traten el segundo caso. Respecto al tercer caso, aún está pobremente entendido ya que se ha hecho un ataque teórico exitoso.

Una de las mayores dificulatades, es que el mecanismo de la condensación simultánea de dos fases es muy compleja.

Cuando una mezcla binaria de inmiscibles entra al conden sador, si no está a su composición eutéctica, el componente que se encuentre en exceso, condensará primero; actuando el segundo componente como incondensable. Al continuar la corrien te de vapor a lo largo del condensador, el componente en exce so seguira condensado hasta que se alcance la composición --eutéctica. A partir de este momento, los componentes de la mez cla condensan en forma simultánea.

1.c) Forme en que courre el fenómeno de la condensación de un vapor proveniente de una mezcla de dos líquidos inmisci bles.

Baker y Mueller (7), observaron una película del condensado y muchas gotas pequeñas. De acuerdo a sus cuantificaciones para cada fase en el tubo, dedujeron que la película de condensado era de orgánico y las gotas, de agua.

Baker y Tsao (8), también concluyeron que el orgánico -formaba la película y que las gotas de agua "flotaban" o esta ban sumergidas en la película.

Hozelton y Baker (9), listaron 6 tipos distintos de flujo para el condensado.

Tipo de flujo No. 1: El fluido orgánico humedece toda -la superficie de condensación, formando una película contínua, la cual desplaza al agua de cualquier punto en que haya estado en contacto con la superficie fría. Por lo tanto, el orgánico fluye como una película y el agua que forma gotas sobre la su perficie del fluido orgánico, fluye como una serie de gotas.

Tipo de flujo No. 2: Es el inverso del No. 1, es decir, el agua forma la película contínua.

Tipo de flujo No. 3: Algunas zonas de la superficie de condensación están humedecidas por orgánico, el resto por el agua. El orgánico condensa en forma de película y el agua con densa sobre esta superficie. Ya que el agua es la fase densa, sus gotas "caen" através del orgánico hacia la superficie de condensación, donde permanecen adheridas, mientras el orgánico fluye sobre ellas. Cuando se tieme una cantidad suficientemente grande de gotas, éstas fluyen através de la superficie de condensación. Con altos rangos de condensación, este tipo de flujo tiene la apariencia de flujo riachuelo (semejante --al flujo onda).

Tipo de flujo No. 4: Ninguno de los líquidos humedece -preferentemente la superficie de condensación, ya que en ambos fluidos ocurre la condensación por gota.

Tipo de flujo No. 5: Es intermedio de los tipos 1 y 3. El orgánico forma una película sobre la superficie de condensación con pequeñas gotas sobre esta película; sin embargo, por la relación del tamaño de gota a espesor de película, algunos -puntos del área de condensación están humedecidos por gotas aisladas de agua, las que se adhieren a la superficie mientras el orgánico resbala sobre ellas. Estas gotas, finalmente, se unen a otras fuera de la película o se juntan con otras, hasta formar una cantidad suficientemente grande para deslizarse -lentamente por debajo del condensado orgánico.

Tipo de flujo No. 6: Es el inverso del No. 5, es decir, el agua forma la película.

Akers y Turner (10), reportaron fotografías definiendo tres mecanismos de condensación:

- a) Caída de película.
- b) Película de lente.
- c) Estriamiento.

De sus consideraciones sobre equilibrio estático y coe-ficientes de reparto, concluyeron que el agua no puede estar en contacto con la pared del tubo. Esta conclusión es errónea, según lo demuestra Westwater (11).

Sikes Jr. (12). Después de minuciosa observación experimental, reportó lo siguiente: (figura 1). Como se puede obser var en la figura 1, en la región mas alta del tubo del con--densador una película contínua de la fase orgánica estaba expuesta al vapor en todas las regiones, excepto en aquellas cu biertas por pequeñas gotas de la segunda fase.

La fase orgánica, antes de ésto, era lisa al igual que en la condensación de un componente puro. Las gotas de la segunda fase (agua) aparecían espontáneamente y al azar sobre la superficie del condensado orgánico. No había formación de niebla o algo parecido que sugiriera que las gotas se forma-ban primero en la región de vapor. Por otra parte; la apari-ción de éstas era tan rápida, que no se podía determinar si primero se formaban en el líquido y luego se desplazaban a la superficie.

Al fluir las gotas alrededor de la superficie del tubo, su densidad de acumulación y tamaño aumentaban. Parece ser -que el aumento del tamaño se debió a la coalescencia. En algu nas regiones o zonas, la interacción de las gotas se hizo tan intensa que se produjo un movimiento lateral de éstas para -coalescer y hacer que dominara el flujo alrededor del tubo.

Al hacerse mas frecuente la coalescencia, se formaban riachuelos que actuaban como alimentadores a la región infe-rior. Al crecer estos riachuelos se fundían y producían un flu jo a dos capas en una corta región (según se observa en la -figura 1). En la linea media inferior del tubo, se observó un drene secundario. Esto era evidente ya que la tensión superf<u>i</u>

cial no podía resistir la densidad ni los efectos hidrodinámi cos de la segunda película.

Bernhardt y Westwater (11): Consideraron que aparte de los fe nómenos ya descritos, se podían imaginar otros, tales como:

a) Un modelo de superficie compartida, según el cual, c<u>a</u> da especie ocupa una parte del condensador. Incluso, ambos -líquidos pueden estar discontínuos, en cuyo caso, existirían un conjunto de riachuelos.

b) Un líquido puede estar como una especie de "hoja" con "hoyos", los cuales son ocupados por el otro líquido.

Se podrían imaginar modelos mas complicados. Las obser-vaciones visuales de estos autores, aplicando técnicas avanza das de observación, les permitió describir cuatro aspectos sig nificativos (fig. 2).

Observación: Todos los ángulos mostrados en la figura -son arbitrarios, ya que el mecanismo de observación contenía solamente un plano de vista y, por lo tanto, los ángulos verdaderos no se podían determinar.

I) Estas gotas son de un diámetro aproximado de 0.002 a 0.16 in. y permanecen estacionarias de 3 a 8 seg, para luego deslizarse sobre la superficie de condensación. Mediante prue bas eléctricas y otras, se comprobó que se trata de gotas de agua. Cada gota está rodeala por la película (IV) del orgánico y por lo tanto, el vapor esta en contacto con ambas fases líquidas; y éstas a su vez, están en contacto con la superficie del metal.

II) Estas pequeñas gotas estaban presentes en gran número; algunas flotando sobre la película de orgánico y otras -completamente sumergidas. La mayoría tenía diámetro mayor al espesor de la película y eran arrastradas sobre la pared me-tálica; las mas pequeñas se desplazaban con el orgánico, fluyendo le tal forma que las fuerzas principales que actuaban sobre dichas gotas, eran la gravedad y el cortante. Al acer-carse unas con otras, a veces coalescian y en otras ocasiones rebotaban, lo que hacía suponer la existencia de una capa lí-

Fig. 2 DIAGRAMA QUE MUESTRA CUATRO ASPECTOS DIFERENTES DURANTE LA CONDENSACION DE LIQUIDOS INMISCIBLES quida de orgánico interpuesta entre las gotas; y al mismo tiem po, porque las gotas no permanecían en esa posición suficiente tiempo para que escapara esa capa. Similarmente, cuando -estas gotas móviles se aproximaban a las estacionarias, unas rebotaban y otras coalescían; siendo ésto último, lacausa prin cipal del crecimiento de (I) y a la vez, una prueba adicional de que dichas gotas móviles eran de agua. El diámetro típico de estas gotas: 0.001 a 0.002 In., aumentaba con un incremen to en el flux de calor. Además, su tamaño era función del tipo de líquido orgánico presente.

III) La existencia de estas gotitas fue muy sorprenden-te. Con diámetro aproximado de 0.0006 In., aparecían en gran número sobre las gotas estacionarias de agua; en todo momen-to se desplazaban y giraban. Siempre que contactaban el menis co entre la gota estacionaria y el líquido orgánico del ent<u>or</u> no, se producía una coalescencia instantánea, lo cual, además probaba que se trataba de gotas de líquido orgánico. Parece ser que el movimiento de estas gotas sobre las estacionarias, era independiente de la fuerza de gravedad. No asi, las fuerzes de tensión superficial si eran importantes. También era importante la fuerza de corte de vapor.

Observaciones Importantes:

a) La gota de agua estacionaria, crece por coalescencia de las gotas móviles que chocan con ella. Finalmente esta go ta se escapa y fluye hacia abajo, en respuesta a la gravedad.

Es altamente probable que una mancha o "mota" de la go-ta de agua, permanezca en algún hoyo o "rasguñando" sobre la superficie. De esta manera, las gotas móviles que vienen después, coalescen con esta "mota" y dan nacimiento a una nueva gota estacionaria.

En este sentido el crecimiento de la fase ague, es un -fenómeno de nucleación.

b) El origen de las gotas móviles es incierto. Aparecen al microscopio aparentemente creciendo de gotitas móviles --- submicroscópicas; o sea aqui también parece ocurrir un fenó--meno de nucleación, solo que la identidad de los sitios de nu cleación se desconocen. Las que no coalescen con las gotas es tacionaries, se remueven con el condensado de salida.

Si lo que origina la nucleación son partículas de polvo, éstas deben estar presente en el vapor de entrada.

c) El origen de las gotas microscópicas, es todo un enre do. Se podría imaginar que los sitios de nucleación (quizá -partículas de polvo) están depositadas sobre las gotas de a-gua estacionarias, provenientes del vapor. O sea, se tendrían dos clases de partículas extrañas: una capaz de nuclear gotas de agua sobre la película orgánica; la otra, capaz de nuclear gotas de orgánico sobre el agua.

d) Considerando el coeficiente de extensión de Harkins y Feldman, se concluye que el líquido orgánico puede extenderse sobre el agua, pero no al revés. Lo anterior se concluyó en base a un cálculo en condiciones de equilibrio. Por lo tanto, puede no ser válido para una situación de No-Equilibrio, como la que puede existir en un condensador.

1.d) Equilibrio de fases en líquidos inmiscibles:

Un eutéctico líquido-vapor para dos líquidos inmiscibles está caracterizado por un estado puntual en un diagrama de f<u>a</u> se de Temperatura-vs-Composición para una mezcla binaria; de tal forma que dicho eutéctico ocurriré a una temperatura (T_E) que implica, se cumpla la siguiente condición: (fig. 3).

donde:

$$P_{T} = \overline{P}_{XS1} + \overline{P}_{XS2}$$
(10)

$$P_{xs1} = \chi_{22} P_{2}^{\circ} (1 - \chi_{s2}) + \chi_{12} P_{1}^{\circ} \chi_{s1}$$
(20)

$$P_{XS2} = V_{21}P_{2}^{2}X_{S2} + V_{11}P_{1}^{*}(1-X_{S1})$$
(30)

es la presión de vapor ejercida por una solución homo-génea (A) en donde el disolvente es agua y como soluto está - la pequeña concentración del líquido orgánico.

De igual forma, \overline{P}_{XS2} es la presión del vapor ejercida por la otra solución homogénea (B), donde ahora el solvente es el líquido orgánico y como soluto, esta la pequeña concen tración de agua.

Sustituyendo (2C) y (3C) en (1C): $P_{T} = \chi_{22} P_{2}^{\circ} (I-X_{51}) + \chi_{12} P_{1}^{\circ} \chi_{51} + \chi_{21} P_{2}^{\circ} \chi_{52} + \chi_{11} P_{1}^{\circ} (I-X_{51})$ (4C)

Sin embargo, para un sistema en donde la solubilidad es despreciable (como es el caso más frecuente), se tendrá lo siguiente; (fig. 4).

Se deduce de la fig. 4 que $X_{51} = 0$ y $X_{51} = 0$. Además, no será necesario corregir las concentraciones por los coefi--cientes de actividad; es decir, en este caso dichos coeficien tes adquieren el valor de la unidad. Considerando estas simplificaciones, la ec. (4C) se reduce a:

$$P_T = P_1^0 + P_2^0 \tag{50}$$

Vale la pene recalcar que al plantear las ecs. (1C) y -(5C), se considera la situación en que coexisten en equili-brio las tres fases (vapor y los dos líquidos inmiscibles), es decir, se refiere el punto eutéctico.

Le composición del vapor en este punto, es:

$$(y_{\alpha})_{\alpha} = (P_{\gamma}^{o}/P_{\gamma}) X_{\alpha}$$
(6C)

 $(Omo x_{i}=1 : (y_{e})_{i} = P_{e}^{o}/P_{T}$ (70)

Se cumple además la siguiente condición:

$$X_i = (\Im_e)_i = P_i / P_T \tag{8c}$$

donde (X_i) es la fracción del componente i, respecto -a todo el condensado, es decir:

$$X_{i} = \frac{N_{i}}{N_{1} + N_{2}}$$
(90)

Si aplicamos la regla de las fases en el punto eutéctico, tendremos:

$$F = (-P + 2) = 2 - 3 + 2 = 1$$
 (100)

o sea, el siteme es invariante, de tal forma que si fija

Fig. 3 DIAGRAMA P-T-X PARA UN SISTEMA EUTECTICO QUE PRESENTA SOLUBILIDAD

mos la presión total del sistema (lo que es usual), la con--densación será isotérmica.

Observación: Ya que en el punto eutéctico, se establece que las dos fases líquidas inmiscibles y la fase vapor están en contacto en la interfase líquido-vapor, se sigue que las condiciones de interfase están representadas por las condicio nes del eutéctico.

Estas condiciones de interfase son independientes de:

- a) La composición del vapor $(Y_u \delta Y'_u)$.
- b) La temperatura de la superficie de enfriamiento.
- c) El proceso de transferencia en las fases vapor líquido. Por otra parte, la fracción peso de cada componente, es-

$$W_{i} = M_{i} P_{i}^{\circ} / (M_{i} P_{1}^{\circ} + M_{2} P_{2}^{\circ})$$
(110)

por lo tanto:

tá dada por:

$$\frac{W_1}{W_2} = \frac{M_1}{M_2} \frac{P_1^{0}}{P_2^{0}} = \frac{M_1}{M_2} \frac{Y_1}{Y_2}$$
(120)

Se ha encontrado que la variación de esta composición -eutéctica, con la temperatura o presión, es muy pequeña.

Cuendo una mezcla de vapor saturado, como en V 6 V[•] (fig 5),está en contacto con una superficie de enfriamiento, conden--sará el componente que se encuentra en exceso respecto a la composición eutéctica, actuando el otro componente como incon densable.

Se puede observar en la misma fig. 5, que un vapor saturado en V 6 V', se encuentra en equilibrio con una sola fase líquida correspondiente a un componente puro.

Se puede tener el caso general en que la mezcla vapor se encuentre sobrecalentada (puntos P y Q de fig. 5) y se le someta a un proceso de desobrecalentamiento, condensación y sub enfriamiento lo que puede ocurrir cuando la temperatura de la superficie de enfriamiento, sea suficientemente menor a la -temperatura eutéctica.

Figs. 4 y 5 DIAGRAMA DE FASE PARA UNA MEZCLA BINARIA DE LIQUIDOS INMISCIBLES

CAPITULO 2

EVALUACION DEL COEFICIENTE DE TRANSFERENCIA DE CALOR

2.a MODELOS Y CORRELACIONES PARA CALCULAR EL JOEFICIEN-TE DE CONDENSACION:

Como ya se mencionó, el estudio experimental de inmisci bles se ha hecho principalmente utilizando mezclas binarias de vapor de agua con alguna otra substancia orgánica, como por ejemplo: Benceno, Tolueno, Tetracloruro de Carbono, Hexa no, Freón, etc. Las geometrías empleadas han sido tubos horizontales (en su mayor parte) y verticales con diferentes combinaciones de longitud y diámetro. Los materiales empleados para los tubos fueron: acero al carbón, cobre, bronce y oro.

En este trabajo se analizará unicamente el caso de condensación fuera de los tubos. Sin embargo, cabe aclarar que eixste información experimental y teórica para cuando la con densación ocurre en equipos que permiten el contacto directo del medio de enfriamiento y la mezcla de vapores.

CONDENSACION DENTRO DE TUBOS:

La condensación de inmiscibles dentro de tubos y el manejo de mezclas de hidrocarburos con vapor de agua ha recib<u>i</u> do poca atención. Así por ejemplo, Yusufova y Neikducht ----(13), realizaron un investigación para el caso de una conde<u>n</u> sación parcial y completa de vapores de gasolina-agua dentro de tubos.

Para correlacionar sus datos experimentales, investigaron el efecto sobre el proceso de condensación, de los siguien tes parámetros:

- Propiedades del material, limpieza de la superficie interna y dimensiones geométricas del condensador.

- Composición del hidrocarburo y remoción de condensa-dos intermedios. - Contenilo de vapor de agua y cantidad de incondensa-bles.

Resultados:

- h es independiente del materiel del tubo; pero se incrementa con el aumento del flux de calor, de acuerdo a una relación casi leneal:

- La calidad en la terminación de la superficie interna, sí tiene gran efecto sobre el coeficiente global de transferencia de calor (U), ya que ésta controla la formación de p<u>e</u> lículas de óxido, las cuales presentan una resistencia térm<u>i</u> ca mayor que la del tubo.

- Con un incremento hesta del 30% de vapor de agua, h aumenta; con un posterior aumento de vapor de agua (hasta un 55%), h disminuye. A mayores porcentajes, h vuelve a incre-mentarse y con mayor rapidez.

Las siguientes tres ecs. recomendadas para diseño de -condensadores de gasolina, dentro de tubos, presentan un error de \pm 20%. Para condensación parcial:

$$\frac{h}{\lambda} dv \simeq 0.072 \left(\frac{2}{\gamma_{0}0}\right)^{1/2} \left(\frac{1}{dv}\right)^{0.27} \left(\frac{9d^3}{y^2}\right)^{0.134} \left(\frac{1}{1-\varepsilon}\right)^3 \left(\frac{t_{in}-t_{out}}{t_{in}}\right)^{0.08} (2.1)$$

Para condensación total:

$$\frac{h}{\lambda} dv = 0.136 \left(\frac{gdv}{vyc}\right)^{1.1} \left(\frac{f}{dv}\right)^{0.27} \left(\frac{gdv}{v^2}\right)^{0.134} \left(1 - \frac{t_{out}}{t_{in}}\right)$$
(2.2)

$$\frac{h}{\lambda} \left(\frac{\nu \alpha}{9}\right)^{\gamma_3} = 0.06 \left(\frac{4\nu}{I}\right)^{0.27} \left(\frac{4l}{\gamma 9\mu}\right)^{0.36}$$
(2.3)

donde:

 λ : conductividad térmica del condensado (Btu/fthrºF).

- Y: calor de vaporización (Btu/lb).
- χ : peso específico del condensado (lb_r/ft³).
- 0-: difusividad térmica (ft²/seg).
- E : cantidad de incondensables.

M: viscosidad cinemática del condensado (lb, seg/ft²).

CONDENSACION DE INMISCIBLES FUERA DE TUBOS:

Kawasaki, Hayakawa y Fujita (14), estudiaron un aspecto que no se había considerado, y que sin embargo ocurre simultáneamente con la transferencia de calor; se trata de la --transferencia de masa.

Aunque no reportan detalles de la forma en que ésta ocu rre, hicieron determinaciones experimentales del coeficiente de transferencia de masa en la fase vapor.

Para la transferencia de masa en fase vapor y tratándose de la condensación de mezclas vapor de líquidos miscibles, Colburn y Drew definieron Kv. según:

 $N = K_V A \ln \left[(2 - y_i) / (2 - y_v) \right]$ (2.4)Esta ec. para sistemas de dos componentes, también apli ca a la condensación de mezclas de vapores de líquidos inmiscibles.

Graficando $\frac{N}{A} - VS - \ln \frac{Z-Y_i}{Z-Y_V}$, para diferentes combinaciones de masa velocidad y composición del vapor, se obtienen líneas rectas que pasan por el origen y cuyas pendientes nos dan Kv.

También graficaron Sh Sc⁻² en función del Re_v, optenien do la correlación: $5h = 0.53 R_{ev}^{0.6} S_c^{V_2}$

(2.5)

(2.6)

donde: Sh = Kv D/D + Sc = M/PDLas condiciones experimentales fueron: 100< Rev < 3000

$$0.25 < S_{c} < 0.75$$

Para determinar el coeficiente de condensación eutéctico (he). consideraron lo siguiente:

La ec. teórica de Nusselt para la condensación de un va por simple saturado en la superficie exterior de un tubo horizontal. es:

$$h = 0.725 (\kappa^3 \rho^2 \lambda g/\mu D \Delta T_f)^{4}$$

Rearreglando esta ec. y suponiendo que el vapor está -estancado y que el flujo del condensado es laminar se obtiene una expresión que incluye dos nuevos grupos adimensiona --

les: el No de Galileo y el No de Kutateladze.

$$N_{u} = 0.725 (G_{a} K_{u} P_{i})^{1/4}$$
 (2.7)

donde:

Nu = hD/K	Ga=	D3929/112
Pr = CPH/K	Ku=	X/CPATF

Para obtener una expresión para la condensación eutéc-tica análoga a la ec. (2.7), graficaron:

Nu = 0.0295 (GaKu Pr)^{V_{4}} R^{V_{2}}, respectivemente, ob teniendo la siguiente correlación:

Los rangos experimentales de los números adimensionales, fueron:

$$10^{7} \leq G_{R} \leq 8 # 10^{9}$$

 $5 \leq K_{L} \leq 10^{2}$
 $3.3 \leq P_{Y} \leq 5.5$
 $10^{2} \leq R_{CY} \leq 3 # 10^{3}$

Baker y Taso (8) buscaron una correlación basada en los siguientes argumentos hidrodinámicos:

Primero: Al formar el agua, gotas encajadas en la super ficie de la película orgánica, pensaron que se tendria una alta conductividad térmica efectiva, debido al valor de ésta para el agua localizada sobre el orgánico.

Para reflejar este efecto, buscaron un factor basado en el porciento en volumen de agua en el condensado:

$$1/(1-(Vw))$$

donde:

$$V_{w} = \frac{100}{1 + \frac{\infty}{\gamma}} = \frac{1}{\left[1 + \left(\frac{H_{1}P_{1}}{H_{2}P_{2}}\right) / \left(\frac{P_{1}}{P_{2}}\right)\right]}$$

C: es una constante, cuyo valor experimental promedio fué 0.0085.

Segundo: se refiere a la influencia del diámetro del tu

bo sobre el coeficiente eutéctico. Es decir, puntualizaron que en la parte baja del tubo horizontal, se tendría una película más gruesa, haciendo menor la transferencia de calor através de esta zona.

Para significar este efecto, propuesieron un factor de corrección empírico, dado por:

1 = 0.0167 / Ddonde: D - diámetro externo del tubo, ft. Así, la correlación que presentaron, fué:

$$h_{\ell} = \left[\frac{500}{(1-0.0085 V_{w})} + 80 \right] \left[1 - (0.0167/D) \right]$$
(2.9)

Estos investigadores establecieron las siguientes conclusiones:

a) La correlación predice un coeficiente universal para todo orgánico que condense como inmiscible con agua.

b) Que el coeficiente no depende de la temperatura.

Stepanek y Standart: (15), son quizá los primeros en intentar un enfoque teórico del problema; buscaron una cor relación para la transferencia de calor que tuviera sólidas bases teóricas.

Para su análisis, propusieron un modelo térmico y un - modelo hidrodinámico.

Para el modelo térmico consideran que:

a) Tode la resistencia a la transferencia de calor, es por conducción en la fase líquida.

b) El líquido que mejor humedece la superficie del tubo, lo hace en forma de película; el segundo líquido forma gotas sobre esta película.

c) La gota está modelada como un cilindro corto con -diámetro y volumen equivalentes a la gota.

d) El comportamiento promedio de la gota se describe -por un modelo con distribución uniforme en el tamaño de las gotas.

Suposiciones para el modelo hidrodinámico:

a) Les gotes de agua tienen el mismo efecto que una pelí cula de agua de un espesor equivalente.

b) La película de agua circula con un patrón de flujo t<u>a</u> pón, y con una velocidad igual a la velocidad máxima de la p<u>e</u> lícula orgánica.

Después de realizar su análisis hidrodinámico y de aco-plarlo con el modelo de transferencia de calor, consideraron dos casos especiales:

1.- el número de gotas por unidad de área es constante.

2.- el área cubierta por las gotas es constante.

El primer caso nos lleva a una relación insoluble analíticamente. Sin embargo, de esta correlación se sugiere que -si el calor de vaporización en la predicción de Nusselt, se sustituye por la ponderación del calor de vaporización por unidad de masa de orgénico que condensa:

$$\lambda_{35} = \frac{\lambda_1 W_1 + \lambda_2 W_2}{W_1}$$

entonces es necesaria una constante de corrección a la ec. de Nusselt.

Encontraron que esta corrección era función solamente del 5 en peso de orjánico, densidades y tensiones superficiales.

El segundo caso también nos lleva a una relación insoluble analíticamente. Este desarrollo, sin embargo, indicó que si se hacía la misma sustitución del calor de vaporización -en la ec. de Nusselt, era necesaria una segunda corrección, la cual era función de:

- el % en peso del eutéctico.

- conductividades térmicas.

- densidales.

- tensiones superficiales.

- diferencia de temperatura através de la película.

Aunque Stepanek y Standart no obtuvieron una solución analítica, su análisis está aún pendiente, pues sugirieron --- que la tensión superficial era importante y que la diferencia de temperatura es mas importante de lo que predice la ec. de Nusselt.

Su correlación empírica final, es:

$$h_{a} = 0.725 \left[\frac{\lambda_{55}}{M_{1}} \frac{\kappa_{1}^{2} R_{1}^{2}}{M_{1}}\right]^{\frac{1}{4}} \left[I - \kappa \left(\frac{W_{2}}{W_{1}}\right)^{m} \left(\frac{\rho_{1}}{P_{2}}\right)^{n} \left(\frac{\Delta \nabla}{\nabla_{2}}\right)^{p}\right]^{\frac{1}{4}} \\ \times \left[I + L \left(\frac{W_{1}}{W_{1}}\right) \left(\frac{\kappa_{1}}{\kappa_{2}}\right)^{\frac{q}{2}} \left(\frac{\rho_{2}}{R_{1}}\right)^{\frac{q}{2}} \left(\frac{\Delta \nabla}{\nabla_{2}}\right)^{\frac{1}{2}} \Delta T_{\frac{q}{2}}\right]$$
Equation of the observer que estos subcres considera-

11.

Es muy importante observar que estos autores consideraron que los dos casos propuestos actuaban independientemente, de tal forma que ambas correcciones se pueden aplicar simultáneamente. Usando los datos para los 4 sistemas eutécticos considerados (benceno, tolueno, dicloroetano, clorobenceno), estos autores determinaron las constantes:

Κ	=	4.38	L =	0.0584
n	=	0.033	q =	0.5
n	=	0.62	S =	1.4
P	=	3.2	t =	1.6

Aplicando las correcciones a la ec. de Nusselt y usando las propiedades físicas dimensionales que ya se definieron antes, se tiene la siguiente expresión:

$$H_{ss} = F_{\lambda} F_{P} (1 + F_{t} \Delta T_{t})$$
donde:

$$F_{\lambda} = (1 + \alpha l)^{\gamma_{4}}$$

$$F_{P} = [1 - 4.38 \alpha^{-0.033} \gamma^{0.62} (\frac{\Delta \delta}{\delta_{2}})^{3.2}]^{\gamma_{4}}$$

$$F_{t} = 0.0584 \alpha \kappa^{0.5} \gamma^{-1.4} (\frac{\Delta \delta}{\delta_{2}})^{1.6}$$

Estos autores no compararon sus datos ni correlaciones con los de otros autores . MODELOS DE LAS DOS PELICULAS LAMINARES:

Se treta de un modelo similar al de Stepanek y Standart, pero debido a su simplicidad, permite una solución analítica. Este modelo asume que el eutéctico condensa y libera to-

do su calor en la interfase líquido-vapor; además de que instantáneamente se separe (el condensado) en dos capas líquidas con viscosidades newtonianas que se mueven en flujo laminar.

En una posterior consideración del modelo se supuso que la conductividad térmica era infinita en la cape externa, de tal forma que la única resistencia a la transferencia de calor, la presentaba la capa adjunta a la pared del tubo.

Considerando el análisis de Nusselt y el usado para este modelo, se ve que cualquier modelo que comience por suponer que la velocidad es proporcional al cuadrado del espesor de la película, la ecuación de continuidad ($\Gamma = \sqrt{SP}$) y --- $Q = \lambda \Gamma = hA \Delta T_f = \frac{\kappa}{S} A \Delta T_f$, finalmente predecirán que el coeficiente dependerá de ΔT_f , según la potencia -0.25.

Por otra parte, se espera que el coeficiente eutéctico mínimo, se tendrá para un modelo que suponga que los dos lí-quidos fluyen como películas laminares separadas, una contra la pared y la otra resbalando sobre la primera.

En este modelo, se supone que:

a) El eutéctico condensa en la interfase líquido-vapor e instantáneamente se separa en dos capas líquidas.

 b) Todo el calor cedido por el condensado, se deposita en la interfase líquido-vapor y se transfiere por conducción en serie, através de las capas líquidas hacia la superficie -de enfriamiento.

c) Los dos líquidos están en flujo laminar y tienen visco sidades newtonianas.

Para la primera parte del análisis, primero se requeriran:

- 1) Expresiones para los perfiles de velocidad.
- 2) Velocidad promedio.
- 3) Razones de flujo.

4) Razones de espesores de película .

Posteriormente y en base a un balance de calor, se ob-tiene el coeficiente de transferencia de calor.

Perfiles de velocidad:

La solución hidrodinámica para el flujo laminar por gra vedad, a régimen permanente, de dos líquidos inmiscibles, re quiere la solución simultánea de las ecs. de movimiento para cada líquido.

Si consideramos que el régimen de flujo tiene lugar lejos de los extremos de la pared del tubo y que las perturbaciones a la entrada y a la salida, son despreciables (fig. 6), se tiene que la ecuación de movimiento para fluidos newtonianos, se reduce a:

$$\frac{d^2 V_z}{d x^2} = \frac{-P_z g_y}{u}$$
(2.12)

la solución general a la ec. (2.12) es parabólica:

Fig. 6 REGIMEN HIDRODINAMICO PARA EL MODELO DE CONDENSACION DE DOS PELICULAS

$$V_{i} = -\frac{P_{i}g_{3}}{2\mu_{i}} \chi^{2} + C_{i}\chi + A_{2} \qquad (2.13)$$

$$V_2 = -\frac{P_2 g_y}{2 \mu_2} \chi^2 + a_3 \chi + a_4 \qquad (2.14)$$

1- Índice que se refiere al líquido en la pared del tubo.
 2- Índice que se refiere al líquido exterior.

Y donde a_i , i = 1, ... 4 son constantes que se determinan por condiciones en la frontera (C.F.).

C.F. I: X = 0, $V_1 = 0$ (o sea, el líquido que contacta a la parei del tubo, no resbala).

C.F. II: X = = ; (es decir, no hay cortante en la interfase líquido-vapor).

C.F. III: X = ; (o sea, los esfuerzos constantes en la interfase, son iguales).

C.F. IV: $X = ; V_1 = V_2$ (es decir, no hay dislizamiento en la interfase).

Estas condiciones de frontera, aplicadas a las ecs. (2.13) y (2.14):

$$a_{3} = \frac{P_{2} g_{y}}{M_{2}} ST$$

$$a_{1} = \frac{P_{2} g_{y}}{M_{2}} S_{1} + \frac{P_{2} g_{y}}{M_{2}} S_{2} \qquad (2.15)$$

$$a_{4} = \left[\frac{P_{2} g_{y}}{M_{1}} - \frac{P_{2} g_{y}}{M_{2}}\right] S_{1}^{2} + \frac{P_{2} g_{y}}{M_{2}} S_{1} S_{2} \left[\left(\frac{M_{2}}{M_{1}}\right) - 1\right]$$

de tal manera que las velocidades locales para las pe-lículas, son:

$$V_{1} = \frac{P_{1}g_{3}}{M_{1}} \left[\left(2S_{2} \frac{P_{2}}{P_{1}} + 2S_{1} \right) X - X^{2} \right]$$
(2.16)

para:
$$V_{2} = \frac{P_{2} g_{3}}{M_{2}} \left[\left(\frac{P_{1}}{P_{2}} \frac{M_{2}}{M_{1}} - 1 \right) S_{1}^{2} + 2 S_{1} S_{2} \left(\frac{M_{2}}{M_{1}} - 1 \right) + 2 S_{T} X - X^{2} \right]$$

$$(2.17)$$

para: $J_1 \leq X \leq S_T$ Velocidades promedio:

La velocidad promedio en cada película, está definida

$$\overline{V}_{i} = \int_{0}^{S_{i}} V_{i} dx / \int_{0}^{S_{i}} dx ; \overline{V}_{2} = \int_{S_{i}}^{S_{T}} V_{2} dx / \int_{S_{i}}^{S_{T}} dx$$

de tal forma que:

como

por

$$\overline{\nabla}_{1} = \frac{P_{1}g_{3}S_{1}^{2}}{3\mu_{1}} \left[1 + \frac{3}{2} (P_{2}/P_{1}) (S_{2}/S_{1}) \right]$$
(2.18)

$$\overline{V}_{2} = \frac{P_{2}g_{3}S_{2}}{3M_{2}} \left[1 + 3\frac{S_{1}}{S_{2}}\frac{M_{2}}{M_{1}} + \frac{3}{2}\frac{P_{1}}{P_{2}}\frac{M_{2}}{M_{1}} \left(\frac{S_{1}}{S_{2}}\right)^{2} \right]$$
(2.19)

definición:

$$\Psi = S_1 / S_2$$

 $Y = P_1 / P_2$
 $M = M_1 / M_2$
 $G_1 = 1 + 3/2 Y^{-1} \Psi^{-1}$
 $G_2 = \pm + 3 m^{-1} \Psi + 3/2 Y m^{-1} \Psi^2$

Sustituyendo estas definiciones en las ecs. (2.18) y (2.19): $\overline{V_1} = \frac{P_1 g_y S_1^2}{3 M_1} G_1 \quad ; \quad \overline{V_2} = \frac{P_2 g_y S_2^2}{3 M_2} G_2 \quad (2.20)$ Razones de flujo de masa:

El flujo de masa para un componente, es:

por lo tanto, para cada película y sustituyendo Vi:

$$G = \frac{P_{1}^{2} g_{y} S_{1}^{3}}{3 \mu_{1}} G_{1} ; \quad \int_{2} = \frac{P_{2}^{2} g_{y} S_{2}^{3} G_{2}}{3 \mu_{2}} \qquad (2.21)$$

Y como una función del flujo de masa:

Para el subsecuente análisis de transferencia de calor, nos interesa conocer cómo se relaciona φ con \prec .

Por definición: $\ll = \Gamma_1 / \Gamma_2$

$$\alpha = \frac{(P_1 - g_y S_1^3 / 3 \mathcal{H}_1)G_1}{(P_2 g_y S_2^3 / 3 \mathcal{H}_2)G_2} = \frac{\gamma^2}{m} \frac{G_1}{G_2} \varphi^3 (2.22)$$

expandiendo G_1 y G_2 y resolviendo para Ψ por series de potencias:

$$\psi^{3}+1.5[(md)^{3/3}\gamma^{-1/3}-\gamma^{-1}x]\psi^{2}-3\gamma^{-1}x\psi-md\gamma^{-1}=0$$
 (2.23)

por lo tanto, vemos que Ψ es función de las relaciones de viscosidades, densidades y flujos de masa de los dos componentes; pero no de la fuerza de gravedad.

La ec. (2.23) se resolvió numéricamente, usando una com putadora digital para varias combinaciones de propiedades f<u>í</u> sicas y relaciones de flujo de masa (fig. 7).

Para una \propto dada, ψ pasa por un máximo a una Y dada. La contribución de M es en forma opuesta a como contribuye Y.

La ec. (2.23) ó la fig. 7, se pueden usar para determinar Velocidad Promedio ó flujo de masa con la ayuda de las ecs. (2.18) a (2.21). Por el contrario, si se conocen los flujos de masa, se pueden calcular los espesores de película y la velocidad promedio. Es de notar que en adición a las -suposiciones anteriores, el análisis también desprecia el efecto o los efectos de la tensión superficial.

COEFICIENTE DE TRANSFERENCIA DE CALOR EUTECTICO ATRAVES DE UNA RESISTENCIA DE DOS PELICULAS:

El calor total transferido en cualquier elemento diferen cial d_u, es:

$$dQ = \lambda_1 d\Gamma_1 + \lambda_2 d\Gamma_2 \qquad (2.24)$$

donde λ_i y λ_i representan términos combinados de calor - latente y sensible.

Usando:

$$d\Gamma_1 = \left(\frac{d\Gamma_1}{dS_1}\right) dS_1 \qquad (2.25)$$

y sustituyendo en la ec. (2.24):

$$dQ = \frac{\lambda_1 G_1 P_1^2 g_3}{M_1} \int_{1}^{2} dS_1 + \frac{\lambda_2 G_2 P_2^2 g_3}{M_2} \int_{1}^{2} dS_2 \quad (2.26)$$

puesto que: $J_1 = \Psi J_2 + J_3 = J_2 + J_3$ por lo tanto,

$$S_1 = \frac{\varphi}{1+\varphi} S_T ; \quad \partial S_1 = \frac{\varphi}{1+\varphi} \quad \partial S_T$$

$$S_2 = \frac{1}{1+\varphi} S_T ; \ \delta S_3 = \frac{1}{1+\varphi} \delta S_T$$

sustituyendo en la ec. (2.26):

$$dR = \frac{\lambda_1 P_1^2 G_1 9 + 9^3}{M_1 (1+9)^3} S_T^2 dS_T + \frac{\lambda_2 f_2^2 G_2 9 S_T}{M_2 (1+9)^3} dS_T (2.27)$$

factorizando:

$$dA = \left[\frac{\lambda_1 \beta_1^2 G_1 g_1 \psi^3}{M_1 (1+\psi)^3} + \frac{\lambda_2 \beta_2^2 G_2 g_2}{M_2 (1+\psi)^3}\right] S_T^2 dS_T (2.28)$$
Si definimos:

$$J = \left[\frac{\lambda_{1} \beta_{1}^{2} 6_{1} 9_{y} \varphi^{3}}{M_{1} (1+\varphi)^{3}} + \frac{\lambda_{2} \beta_{2}^{2} 6_{2} 9_{y}}{M_{2} (1+\varphi)^{3}}\right] (2.30)$$

20=15+25+

La conducción através de dos películas, es:

$$dQ = \frac{\Delta T}{\frac{S_1}{K_1} + \frac{S_2}{K_2}} dy = \frac{\Delta T(1+\Psi)}{\left(\frac{\Psi}{K_1} + \frac{1}{K_2}\right) J_T} dy \quad (2.31)$$
igualando las ecs. (2.30) y (2.31):

$$\int S_{T}^{2} dS_{T} = \frac{\Delta T (1+\varphi)}{\left(\frac{\psi}{\kappa_{1}} + \frac{1}{\kappa_{2}}\right) S_{T}} d\Psi \qquad (2.32)$$

$$\frac{\int J}{\Delta T_{f}(1+\psi)} \left(\frac{\psi}{k_{1}} + \frac{1}{k_{2}}\right) \frac{\int T}{4} = J \qquad (2.33)$$

El coeficiente eutéctico local y efectivo, será:

$$h_{a,loc} = \frac{1}{\frac{S_{i}}{K_{1}} + \frac{S_{z}}{K_{z}}} = \frac{1+\psi}{\left(\frac{\psi}{K_{1}} + \frac{1}{K_{z}}\right)ST}$$
sustituyendo S_{T} de ec. (2.33) en la ec. (2.34):

$$h_{a,loc} = \frac{1+\psi}{\left(\frac{\psi}{K_{1}} + \frac{1}{K_{z}}\right)} \left[\frac{4}{4} \sqrt{\frac{1}{4}} \sqrt{\frac{1}{$$

$$ha = \frac{1}{L} \int_{0}^{1} ha, bc dy$$

por lo tanto,

÷

$$h_{a} = \left[\frac{J(1+\gamma)^{3}}{\Delta T_{f}} \frac{1}{\left(\frac{\gamma}{\kappa_{1}} + \frac{1}{\kappa_{2}}\right)^{3}} \right]^{\prime 4} \frac{\sqrt{2}}{2L} \int_{0}^{-\gamma} \sqrt{4} d\gamma \quad (2.36)$$

Resolviendo la parte integral de la ec. anterior:

$$ha = \frac{2\sqrt{2}}{3} \left[\frac{J(1+q)^{3}}{\Delta T_{fL}} \frac{1}{\left(\frac{q}{\kappa_{1}} + \frac{1}{\kappa_{2}}\right)^{3}} \right]^{\gamma_{4}}$$
(2.37)

sustituyendo la expresión para J en la ec. (2.37): ha = 0.943 $\frac{\left(\frac{\lambda_1 R_1^2 G_1 \varphi^3}{M_1} + \frac{\lambda_2 R_2^2 G_2}{M_2}\right) \frac{9}{4}}{\Delta T_F L \left(\frac{\varphi}{K_1} + \frac{1}{K_2}\right)^3}$ (2.38)

Para un tubo horizontal: $g_y = g_{sin}\theta$, donde θ es el án-gulo radial alrededor del tubo. Sustituyendo esta relación en la ec. (2.38) e integrando entre los límites θ_{z0} ^c (parte superior del tubo) y θ_{z1} %^c (parte inferior del tubo) y reem-plazando L por D/2 (que es lo que barre el ángulo, al variar de 0º a 180º). Por lo tanto, el coeficiente promedio para el tudo horizontal. será:

$$ha = 0.725 \left[\frac{\left(\frac{\lambda_1 R_1^2 G_1 Y^3}{M_1} + \frac{\lambda_2 R_2^2 G_2}{M_2}\right) g}{\Delta T_F D \left(\frac{\Psi}{K_1} + \frac{1}{K_2}\right)^3} \right]^{\gamma_4}$$
(2.39)

Las ecs. (2.38) y (2.39), son válidas cuando se tienen valores límites en alguno de los dos componentes:

a) La composición eutéctica se aproxima al 100% del componente uno:

$$h_{\alpha,m_1} = \lim_{\varphi \to \infty} h_{\alpha} = 0.725 \left[\frac{\lambda_1 R_2 - 5}{M_1} + \frac{\gamma_3}{2} \right]^{1/4}$$

ya que:

$$\begin{array}{c}
\mathcal{U}_{m} G_{i} = 1 \\
\psi \rightarrow \infty \\
ha_{j} = 0.725 \left[\frac{\lambda_{i} f_{i}^{2} g K_{i}^{3}}{\mathcal{U}_{i} \Delta T_{f} D} \right]^{V_{4}} = h_{j}
\end{array}$$

b) La composición del eutéctico se aproxima al 100% delcomponente dos:

$$h_{a_{m2}} = \lim_{y \to 0} h_{a} = 0.725 \left[\frac{\lambda_2 \beta_2^2 g K_2^3}{\mu_2 b T_f D} \right]^{7/4} = h_2$$

ya que :
$$\lim_{y \to 0} G_2 = 1$$

Considerando que la mayoría de los eutécticos, principal mente los del tipo agua-orgánico, tienen altos porcentajes de la fase que moja la pared; por lo tanto, es conveniente tener una expresión que comprenda la corrección que se debe hacer a la ec. de Nusselt, para el componente uno. Para este modelo, la corrección es:

$$H = \frac{h\alpha}{h_1} = \begin{bmatrix} G_1 \psi^3 + \frac{\lambda_2}{\lambda_1} \left(\frac{\rho_2}{\mu_1}\right) \left(\frac{M_1}{M_2}\right) G_2 \\ \begin{bmatrix} \psi + \left(\frac{\kappa_1}{\kappa_2}\right) \end{bmatrix}^3 \end{bmatrix}^{V_4}$$
(2.39)

definamos: $l = \lambda_1 / \lambda_2$ y $K = K_1 / K_2$

sustituyendo en la ec. (2.39):

$$H = \begin{bmatrix} G_1 \varphi^3 + (m/J_1) & G_2 \\ (\varphi + \kappa)^3 \end{bmatrix}^{74}$$
(2.40)

expandiendo $G_1 y G_2 y$ ordenando términos: $H = \begin{bmatrix} \psi^3 + \frac{3}{2} \left(\frac{1}{2} + \frac{1}{2}\right) \psi^2 + \frac{3}{2\gamma} \psi + \frac{m}{2\gamma} \end{bmatrix}^{1/4} (2.41)$

COEFICIENTE DE TRANSFERENCIA DE CALOR ATRAVES DE UNA RE-SISTENCIA DE UNA SOLA PELICULA:

En la condensación de varios sistemas eutécticos, el segun do componente forma gotas localizadas sobre la superficie. En este caso, aunque el flujo es considerado como gotas sobre una películe laminar, la hidrodinámica está tomada como un pro medio en pase al comportamiento de las dos películas laminares.

Pare la transferencia de calor, solo la película orgénica provee resistencia. Se podría suponer razonablemente que es-tas gotas no ofrecen una resistencia significativa a la trans ferencia de calor por conducción, aunque de hecho, tienen un importante efecto sobre la hidrodinámica. Para reflejar la an terior situación en el modelo que se discute, se supone infinita la conductividad térmica de la segunda fase.

Por lo tanto, la expresión análoga a la ec. (2.39) será: $\mathcal{N} \rightarrow \mathcal{P}^2 \mathcal{P}^3 \rightarrow \mathcal{P}^2 \mathcal{F} \rightarrow \mathcal{P}^{(K_1)3} \vee \mathcal{I}$

$$h_{a} = 0.725 \left[\frac{5}{M_{1}} + \frac{1}{M_{2}} + \frac{1}{M_{2}}$$

la corrección dimensional, análoga a las ecs. (2.40) y -(2.41) serán, respectivamente:

$$H = \begin{bmatrix} G, \psi^3 + (m/lr) G_2 \\ \psi \end{bmatrix}^{74}$$
(2.43)

$$H = \begin{bmatrix} \frac{\eta^{3} + \frac{3}{2}(\frac{1}{\gamma} + \frac{1}{2})\eta^{2} + \frac{3}{2\gamma}\eta + \frac{m}{2\gamma}}{\eta} \end{bmatrix}^{7} q \qquad (2.44)$$

Discusión de los modelos de flujo laminar:

En le fig. 8 se muestra la variación de H = he/h_{HC} con les propiedades físicas, de acuerdo a la ec. (2.41).

Se ve que $K = \frac{K_1}{K_2}$ reduce a H solo cuando $K_2 = K_1 \delta K_2 > K_1$; o sea: K₁ controls cuando K<0.1 y K₂ controls cuando K > 10.

Los sistemas eutécticos formados por orgénico-agua, tienen valores de K alrededor de 0.2, de tal forma que para la mayoría de estos sitemas, la resistencia a la conducción tér-. mica en la fase externa, es practicamente despreciable.

El límite asintótico de H (ec. 2.44) se aproxima a aquel los valores mostrados en la fig. 8, donde $K = 0_0 I$

También se puede observar de las gráficas, que al aumentar Ψ , H tiende a un valor constante. Esto era de esperarse, ya que al aumentar Ψ , ésto es equivalente a hacer la resistensia externa despreciable.

Desafortunadamente, φ depende de las propiedades físicas en una forma compleja de tal manera que el efecto singular de las propiedades físicas, no puede ser visto facilmente.

Sin embargo, mediante la fig. 7 conjuntamente con la fig. 8, se puede observar el efecto de las propiedades físicas so-bre H.

La mayoría de los sistemas eutécticos tienen una relación eutéctica 🗠 entre 1 y 10 y muy pocos arriba de 30; ver fig. 7.

Usando K=0.1, las gráficas de la fig. 8 muestran que lamayoría de los sistemas agua-orgánico, estarán muy cerca del límite asintótico del modelo que considera la resistencia de una sola película.

Por otra parte, $\lambda = \lambda_1/\lambda_2$, al disminuir, origina que la cur va de H con respecto a K, cambie a valores más altos, fig. 8.

También se investigaron los efectos de las relaciones de densidades (r) y viscosidades (m), respectivamente, sobre las curvas de H - VS - K; encontrándose que:

r afecta tanto a H como a Ψ .

m tiene un efecto sobre H, análogo al de ♥ (ver fig. 9). Las curvas de las figs. 8 y 9 muestran la manera de como el modelo de dos películas en flujo laminar, se ve afectado -

Fig. 8 EFECTO DE LA RELACION DE ESPESORES DE PELICULA SOBRE H PARA EL MODELO DE DOS PELICULAS LAMINARES

por las propiedades del sistema.

Usando las propiedades físicas para los sistemas de los que se tenían datos (tolueno, benceno, tetracloruro de carbo no etc.), se calculó H. La variación en H, al variar las -- propiedades físicas en un rango de $\Delta T_{f} = 1$ a 100°F, fué de menos de un 5%. Además, la diferencia entre H_{DF} (para el modelo de dos películas) y H_{UF} (para el modelo con una sola pe lícula como resistencia), también es menor del 5%.

Estos resultados reflejan un valor para K de 5 a 10.

CORRELACION DE SIKES Y MARCHELLO:

Esta correlación pretende aplicar una relación simple en la forme $H = H_1 \Delta T_f^n$ para mostrar la variación del coeficiente eutéctico (he) como una función de la temperatura.

Por lo tanto, se trata de generar ciertas constantes -que se puedan correlacionar con las propiedades físicas.

Según la teoría de Nusselt, el coeficiente se relaciona al espesor de la película, de acuerdo con la relación:

h = K/S (2.45) La tendencia de (he) a tomar valore mayores a los predi

chos por Nusselt para orgánicos puros, sugiere que se podría basar una correlación simple en el concepto de una reducción en el espesor de película, decido al hundimiento de las alta mente conductivas gotas de agua.

Adamson (16), cita el trabajo de Lagmuir, quien estudió el espesor límite para un conglomerado de gotas que forman -una lente larga, soportada sobre una superficie líquida hor<u>i</u> zontal.

Langmuir mostró que a medida que una gota de substancia inmiscible, crecía y se formaba una lente, su espesor límite (t_{∞}) se obtenía, según la siguiente relación:

$$t_{\infty}^{2} = \frac{-S_{21}}{\Im \Delta F} \left(\frac{P_{i}}{P_{2}}\right)$$

donde $\Delta f = f_1 - f_2$ y S₂₁ es el coeficiente de extensión 6 -

reparto, del líquido dos sobre el líquido uno.

Los espesores reales de lente, pueden ser considerable--mente mayores de lo que predice la ec. (2.46), debido al efec to compresivo de la tensión lineal de la fase lente.

Se puede calcular el coeficiente de extensión por:

 $5_{2,1} = \overline{\nabla_{1(2)}} - \overline{\nabla_{2(1)}} - \overline{\nabla_{12}}$ (2.47) donde: $\overline{\nabla_{1(j)}}$ denota la tensión superficial de i con su vapor, cuendo el líquido está saturado con j.

Adamson muestra que al usar uno de los siguientes métodos estimativos (por ejemplo, la regla de Antanow ó las tensiones superficiales de los componentes puros), nos puede llevar a conclusiones erróneas.

En realidad, se cuenta con muy pocos datos satisfactorios para los coeficientes de extensión ó tensiones interfasiales.

Además y tomando en cuenta que el coeficiente de exten--sión, usualmente es pequeña (± 5 dinas/cm) comparado con la -tensión superficial de los componentes puros, para la mayoría de los eutécticos binarios agua-orgánico, resulta que el usodel coeficiente de extensión es muy crítico.

Sin embargo, ya que la sumergencia o hundimiento está da do por: Γ_{-} So: β_{-} $1\frac{1}{2}$

$$\mathcal{L}_{\infty} = \begin{bmatrix} \frac{-S_2}{9} & \frac{H}{P_2} \end{bmatrix}^{1/2}$$
(2.48)

Parece ser muy probable que la razón a la que el(he)se incrementa con la temperatura y $H = he/h_1$ se pueden correla-cionar usando:

$$R = \left[\frac{\Delta P P_2}{P_1} \right]^{\gamma_2}$$
(2.49)

donde se ha supuesto que el coeficiente de extensión es constante.

El inverso del parámetro t_{sD} , ha sido usado como lo su-giere la relación $h = \frac{K}{\sqrt{2}}$. Ya que se ha observado que la aparición de las gotas, --es la misma para todos los sistemas autécticos; por lo tanto, es muy probable que la variación en el coeficiente de extensión, sea pequeña para los sistemas estudiados.

Usando $r = \frac{p_1}{p_2}$ en la ec. (2.49):

$$R = \left[\begin{array}{c} \begin{array}{c} A^{Y} \\ P \end{array} \right]^{\gamma}$$
donde:
$$A^{Y} = \left[\begin{array}{c} A^{Y} \\ P \end{array} \right]$$

Las ecs. correlacionadas con el parámetro R y que se usa rán con la ec. propuesta, scn:

$H_1 = 1.0 - 0.80 R$	(2.50)
n = 0.67 R	(2.51)
$H = H_1 \Delta T_f^n$	(2.52)

El análisis original de Langmuir, se aplicó a una lente o gota estacionaria sobre una superficie horizontal infinita.

Es decir, se trata de una solución hidrostática al pro-blema de las lentes.

Sin embargo, no se conoce todavía ningún estudio teórico o experimental para la hidrodinámica de gotas en la interfase de un gas y una segunda fase líquida, bajo una fuerza de aceleración. O sea, la distorsión de la gota, así como el efecto de éstas sobre la superficie de la fase contínua, no están descritos en la literatura.

Como se mostró en la fig. 1, existen varios regimenes de condición de superficie alrededor del tubo, cuando condensa un eutéctico; y solamente para las gotas pequeñas que se en-cuentran en la porción más alta del tubo, se pueden aproximar a las condiciones de Langmuir.

Durante la condensación de eutécticos, la mayor parte de transferencia de calor puede ocurrir en la parte alta del tubo, donde mejor se puede aproximar el modelo de Langmuir. Pero, aún aquí, las gotas están en movimiento.

Igualmente importante es el hecho de que en varios eu--técticos orgánico-agua, la fase orgánica (que es la fase contínua durante la condensación) es menos densa que las gotas de agua; por eso, para esta correlación R se usó el valor absoluto de la diferencia de densidades.

Es de esperar que esta correlación obtenida (R) dé un mejor estimado de coeficiente eutéctico (he), tanto desde el --punto de vista de su magnitud, como por indicarnos una depen-dencia mas correcta respecto a la temperatura.

Tembién nos de una indicación del tipo de parámetros que son de importancia clave para un posterior entendimiento de la condensación eutéctica.

CORRELACION DE TRANSFERENCIA DE CALOR PARA LA NUCLEACION CONTROLADA:

El fraceso del modelo hidrodinámico de dos películas la-minares, aún considerando como única resitencia, a la fase que humedece la pared, indica la ocurrencia de otro importante mecanismo en la condensación de eutécticos.

Le evidencia experimental, en particular, la de Stepanek y Standart, de que el coeficiente eutéctico (he) tiene un va-lor menor a lo que Nusselt y el anterior modelo predicen, im-plica la existencia de una resistencia adicional y que es mas sensible a la ΔT_f que la conducción. Un mecanismo que satisfa ce razonablemente esta condición, es la NUCLEACION.

En el siguiente modelo se supone que una fase condensa -formando una película contínua, que resbala sobre la superfi-cie; y que la segunda fase, se núclea en gotas pequeñas sobre la superficie de la fase contínua. La falta de rugosidad de la fase contínua, señala la ausencia de sitios de nucleación para la segunda fase, lo cual da una base para suponer que una impor tante resistencia a la transferencia de calor, es la nucleación de esta segunda fase. Para caracterizar esta resistencia, es de observarse --primero que al condensar un eutéctico, el calor total transfe rido, es la suma de los calores cedidos por cada componente: (2.53)

 $Q_{12} = Q_1 + Q_2$ como: $Q_1 = \lambda_1 \Gamma_1$, por lo tanto, $Q_1/Q_2 = l\alpha$ donde: $J = \lambda_1 / l_2 \gamma \propto = \frac{\Gamma_1}{\Gamma_2}$

dividiendo la ec. (2.53) por \overline{Q}_2 y despejando Q_2 : $Q_2 = Q_{12}/(1+\alpha l)$ (2.54)

Por otra parte: $Q_{12} = h_1 T_1$; donde: $\Delta T_1 = \Delta T_2 - \Delta T_2$ ΔT_1 : diferencia de temperatura através de la película --

contínua.

▲ T₂: diferencia de temperatura através de la barrera de nucleación.

∆ T_f: diferencia total de temperatura = Te - Tw Además se tiene que:

$$\Delta T_2 = \frac{Q_2}{h_2} = \frac{Q_{12}}{h_2(1+\alpha l)}$$
(2.55)

por lo tanto;

$$Q_{12} = h'_{1} \Delta T_{1} = h'_{1} \left[\Delta T_{f} - \frac{Q_{12}}{(1+\alpha l)h_{2}} \right]$$
 (2.56)

donde: $h_1' y h_2'$ son los coeficientes asociados con $\Delta T_1 y \Delta T_2$ respectivamente.

Despejando Q₁₂ de la ec. (2.56):

$$Q_{12} = h'_1 \Delta T_f / [1 + h'_1 / h'_2 (1 + \alpha L)]$$
 (2.57)

Por analogía con: $Q_{12} = he M_f$, se ve claramente que:

$$h_a = \frac{1}{\frac{1}{k_1} + \frac{1}{k_2(1+\alpha 1)}}$$
 (2.58)

dividiendo por el coeficiente h, del componente puro:

$$\frac{h_a}{h_1} = \frac{1}{\frac{h_1}{h_1} + \frac{h_1}{h_2(1+\alpha l)}}$$
(2.59)

expresendo la ec. (2.59) en términos de relación de coeficientes:

$$H_{N} = \frac{1}{(1/H_{\infty}) + 1/(H_{20}(1+\alpha l))}$$
(2.60)

Para que ocuera la nucleación, ésta implica que debe e-xistir una fuerza motora de diferencia de temperatura (AT₂) através de esta zona de resistencia.

A bajas diferencias de temperatura la ΔT_2 en la zona de nucleación, requiere casi todo el gradiente total (ΔT_1); por lo tanto; la resistencia ofrecida por la fase contínua, es casi despreciable.

Al sumentar la ΔT_f , la nucleación controlará menos a la transferencia de calor y será la conducción através de la fase contínua, la que controle a dicha transferencia.

Finalmente, a granles ΔT_f , la resistencie en la zona de nucleación se hará casi despreciable, respecto a la ofrecida por la fase que humedece la superficie fría.

Por otra parte, al aumentar ΔT_f , también incrementa el espesor de la película. Sin embargo, este espesor tiende a re ducirse, debido a la intensa acción hidrodinámica de ambas fa ses y a la coalescencia de la segunda fase. Finalmente, alcan za un balance entre estos dos efectos opuestos, sobre el espe sor de la película, de tal manera que se tiene o aparece un máximo en la razón de transferencia de calor.

Experimentalmente se determinó la resistencia máxima a la transferencia de calor (ó bien, la máxima razón de transferencia de calor), observándose que se podía correlacionar con el No de Pr según la siguiente expresión:

$$H_{\infty} = 7.63 - 1.8(Pr_1 - Pr_2)$$
 (2.61)

Esta correlación presentó una desviación estándar de ---0.25, con una máxima desviación de 0.38.

OBJERVACION: Era de esperarse una correlación con el No dePr,

ya que ello refleja la importancia relativa de la hidrdinámica a la conducción molecular. Al aumentar el N_{Pr}, el régimen hi-drodinámico aumentaba en importancia y por lo tanto, la razón máxima de transferencia de calor, se aproximaba al valor de --Nusselt para el orgánico (fig. 10).

Se puede esperar que el coeficiente de transferencia para la nucleación, sea proporcional a la velocidad de formación de núcleos.

A partir de la teoría de nucleación, la velocidad crítica de formación de núcleos, esté dada por

$$Y_N = \mathcal{V} e^{-\Delta G/KT}$$
(2.66)

donde:

√- es el factor de frecuencia.

AG- es el cambio de energía libre para la formación crítica de núcleos.

K- es la constante de Plank.

T- es la temperatura absoluta.

El cambio de energía libre para la nucleación homogénea, está dada por:

$$\Delta G = \frac{16}{3} \frac{\pi \nabla^{3} V_{B}^{2}}{KT[\ln(P/P_{0})]^{2}}$$
(2.63)

donde:

V_B - volumen molar.

P.o - presión normal de vapor.

P - presión de vapor en un núcleo de tamaño crítico.

Para la nucleación heterogénea, la∆G para la nuclea--ción homogénea, debe multiplicarse por la corrección de ----Volmer:

$$\Delta G' = \Delta G \frac{(2 + \cos \theta')(1 - \cos \theta')^2}{4}$$
(2.64)

donde: 0' - es el ángulo de contecto.

Estas relaciones son complejas y los intentos por reducir la expresión de Δ G a su forma mas simple para correlacionarse, fracasaron.

Como una aproximación de primer orden, se podía esperar que ΔG fuera proporcional a la diferencia de temperatura, y por lo tanto, se decidió corrlacionar los datos, usando la -siguiente expresión:

$$\frac{1}{H_N} = \frac{1}{H_{\infty}} + \frac{1}{H'_{20} \mathcal{Q}^{B} \Delta T_f}$$
(2.65)

aplicando la correlación ya obtenida para H.o.

El coeficiente exponencial B no varió mucho. Se proba--ron diferentes valores y finalmente se seleccionó B = 0.035 para ser usado en todos los sistemas binarios.

Desde luego, se puede esperar que el parámetro $H'_{20} = H_{20}(1+\alpha)$ dependa de propiedades físicas, tales como el --- N_{OH} , N_{Pr} , tensión superficial e interfacial, así como de las viscosidades.

Estudios relacionados a la condensación por gota, ha demostrado que las energías de superficie, así como la densidad de sitios de nucleación, son importantes a la transferencia de calor.

Se mostró que al graficar el grupo adimensional:

 $H_{20}^{*}/(1+\alpha l)Pr-VS-N_{OH_1}(\Delta \sigma/\varsigma_1)^{\cdot 5}m(M_2/M_1)$, se obtenía una pendiente de -2.0 y se propuso la siguiente correlación:

$$\frac{H'_{20}}{(1+\alpha_{f})P_{r}} = H_{20}^{2} \left[N_{OH} \left(\frac{\Delta \sigma}{\sigma_{i}} \right)^{\gamma_{2}} m \frac{H_{2}}{M_{1}} \right]^{-2}$$
(2.66)

H" permaneció casi constante para todos los sistemas investigalos, computándose un valor promedio de:

 $H_{20}^{"} = 17.3 \times 10^{-10}$, basado en la ponderación del $H_{20}^{"}$ individual, por la raiz cuadrada de todos los puntos. La correlación final que se propuso, fué:

$$H_{N} = \left[\frac{1}{H_{\infty}} + \frac{1}{H_{20}(1+\alpha l) \mathcal{C}^{B \Delta T_{f}}} \right]$$
(2.67)

donde:

 $H_{00} = 7.6 - 1.8 (Pr_1 - Pr_2)$

$$H_{20} = \frac{17.30 \times 10^{-10} \text{ Pr}_{1}}{\left[\text{NoH}_{1}\left(\frac{\Lambda^{5}}{V_{1}}\right)^{\gamma_{2}} \mathcal{M}\left(\frac{N_{2}}{M_{1}}\right)\right]^{2}}$$

Esta correlación se reduce, casi aproximadamente a la --predicción de Nusselt para la condensación de un solo componen te.

CORRELACION DE:

Bernhardt y Westwater (11), probaron para áreas grandes y pequeñas. Para las primeras, obtuvieron valores del coeficiente eutéctico (he), cercanos a los que predice la ec. de Nusselt (alrededor de un 12%) para los orgánicos puros.

Para ambas pruebas, la mezcla de vapores siempre dió valo res del(he), intermedios entre los correspondientes valores del coeficiente de transferencia de calor para cada componente puro.

Es decir, la adición de vapor de agua al vapor orgánico, causo un incremento en el coeficiente de transferencia de ca-lor; siendo la magnitud de este incremento, una función del --% de agua.

Así, el eutéctico agua-freón 113, conteniendo 1.5% en vo lumen de agua, dió un incremento en el coeficiente de transferencia, de un 10%. En cambio, el eutéctico agua-xileno, conteniendo un 29% en volumen de agua, dió un incremento al coefi-ciente de un 110%.

La comparación de estos dos últimos casos, fue a una mis-

ma $\Delta T_f = 55$ °F. De esta manera, Bernhardt y Westwater, tomando los latos de nueve investigadores para doce mezclas con 11 geo metrias y 4 materiales diferentes, obtuvieron una muy buena -correlación para un modelo de superficie compartida, asumiendo que cada especie líquida ocupa una fracción de área, igual a su fracción volumen en la mezcla de condensado.

Aunque lo anterior no es estrictamente correcto, sin embar go, los llevo a resultado correctos.

La expresión final que recomendaron, fue:

 $he = h_1 V_1 + h_2 V_2$

donde: h₁ y h₂ son los coeficientes de transferencia atr<u>a</u> vés de una película, calculados por la ec. de Nusselt.

El ajuste es bueno y cubre el rango de 1.5 a 29% en volumen de agua en el condensado.

CORRELACION DE LA CIA. KELLOGG:

Kellogg (17), enuncia 3 ecs. para predecir el coeficiente de transferencia de calor y son muy utilizadas para el diseño de condensadores de mezclas inmiscibles.

Considerando que el coeficiente de condensación para una mezcla de vapor de agua-hidrocarburos, se incrementa con el % en peso de agua en el condensado, han establecido un método --para calcular, en forma aproximada, dicho incremento en el ---coeficiente.

El método es el siguiente:

En un papel semilogarítmico, se grafica en la escala li-neal, el % en peso de agua en el condensado, tomando valores de O a 100%; en la escala logarítmica, se representa el coe-ficiente de condensación. Después se calcula el coeficiente para cuando todo el condensado es hidrocarburo, lo cual sitúa un punto en el eje logarítmico, es decir, corresponde a un 0% de agua en el condensado. A partir de este punto, se traza una línea recta al punto que indique un valor de 1000 para la --- escala logarítmica y 100% de agua en la escala lineal.

Con esta línea así construida se lee el coeficiente corr<u>e</u> gido para el % en peso de agua que realmente se tiene en el -condensado.

Cabe observar que el valor de 1000 se usa como un punto de proyección y no significa que se trate de un valor para el coeficiente del vapor de agua puro.

Como la mayoría de las mezclas vapor de agua-hidrocarbu-ros, involucran bajos porcentajes del vapor de agua, se reco-mienda que el método de corrección anterior, se limite a un má ximo de 30% de agua.

Así, para el rango de O a 30% de agua, el coeficiente corregido se aproximó por la siguiente relación:

 $hm = h_{HC} + 0.7 (W)^{1.5}$ (2.69)

donde:

hm: coeficiente de condensación para la mezcla.

h_{HC}: coeficiente calculado, al considerar que todo el comdensado es hidrocarburo.

W: por ciento en peso de agua en el condensado.

Para condensados inmiscibles con un % en peso de agua, -que varian de 30 a 80%, el coeficiente corregido se determina por:

$$hm = hHc + 115$$
 (2.70)

Obsérvese que en este rango, el coefficiente solo se incrementa por la cantidad calculada para W = 30%.

Esta consideración de Kellogg se basa en que no contaba con información experimental firme, para porcentajes de agua mayores al 30%.

Finalmente, para condensados con 80% y más, de agua en el condensado, el coeficiente de la mezcla se calculó por:

 $hm = 2000 \times h_{HC} / (2000 + h_{HC})$ (2.71)

Es decir, se considera para el coeficiente del vapor de agua, un valor de 2000.

2.b EFECTO DEL VAPOR DE AGUA COMO INCONDENSABLE:

Como suele ocurrir en la mayoría de las aplicaciones in dustriales, una corriente de vapor de líquidos inmiscibles -al entrar al condensador, no se encuentra a su composición eu téctica, razón por la sual, habrá una zona en la curva de con densación, donde solo esté condensando el componente que se encuentre en exceso; el otro componente permanecerá como in-condensable hasta que se alcance la composición eutéctica.

Ahora bien, la importancia de considerar el efecto del incondensable, se debe a que éste presentará una resistencia adicional a la transferencia de calor, implicando por lo tanto, una área de transferencia adicional en el diseño global.

Aunque ya se han hecho estudios con cierta profundidad sobre la condensación con incondensables (18), se hará una -breve exposición al respecto.

Al ponerse en contacto la corriente de vapor con la superficie de enfriamiento, que se encuentra a una temperatura menor al punto de rocío de la mezcla de vapores con incondensables, el vapor que empieza a condensar, arrastra parte de los incondensables que por un momento se estacionan en la interfase líquido-vapor; ocasionando entonces, una mayor resistencia a la condensación.

El calor transferido através de esta capa, ocurre en dos formas:

a) Por difusión del vapor através de esta capa de incondensables hacia la superficie fría, debido a un gradiente de concentración. Ya que la presión parcial del incondensable -en la interfase líquido-vapor (a la salida del condensador), es mayor que su presión parcial en el seno de la corriente, se produce un gradiente para la difusión del gas en sentido contrario al flujo de vapor que condensa, lo cual desfavorece la condensación. Sin embargo, este desplazamiento se neutraliza por el movimiento le la mezcla gas-vapor hacia la superficie.

b) El calor sensible de la mezcla se transfiere debido a un gradiente de temperatura entre el seno de la corriente y la interfase.

Usualmente se considera a la temperatura de la interfase, igual a la temperatura de saturación; y esté asociada a la -presión parcial de los vapores en la misma interfase.

La fig. 11, presenta un mecanismo de la condensación en presencia de incondensables.

El análisis del fenómeno, considerando una superficie -plana, es el siguiente:

El flux molar de incondensables (Ja) que pasa através de un plano paralelo "a" y a una distancia "y" de la interfase, es:

$$J = D \frac{\partial C_a}{\partial y} + J C_a = 0 \qquad (2.72)$$

De igual forma, para el flux molar del vapor (Jg):

$$J_{g} = D \frac{\partial C_{g}}{\partial y} + J C_{g}$$
(2.73)

D es el coeficiente de difusión de masa; Ca y Cg son las concentraciones molares del inconlensable y del vapor respectivamente; J es el flux impulsor del seno de la corriente hacia la interfase.

Come la presión total del sistema es constante:

$$P_{g} + P_{a} = P = RT(C_{a} + C_{g})$$
 (2.74)

y además:

$$\frac{\partial P_3}{\partial y} = -\frac{\partial P_a}{\partial y}; \quad \frac{\partial C_9}{\partial y} = -\frac{\partial C_a}{\partial y} \quad (2.75)$$

Fig. 11 CONDENSACION DE UN VAPOR EN PRESENCIA DE UN GAS INCONDENSABLE

Fig. 12 DIFERENCIALES DE TEMPERATURA: METODO GILMOUR

Sustituyendo en la ec. (2.73):

$$J_{g} = JC_{g} - D \frac{\partial C_{a}}{\partial y} \qquad (2.76)$$

Eliminando J de las ecs. (2.76) y (2.72):

$$J_{g} = -D \frac{\partial C_{a}}{\partial y} \left(\frac{C_{g}}{C_{a}} + 1 \right) = \frac{D}{RT} \frac{P}{P_{a}} \frac{\partial P_{a}}{\partial y}$$
(2.77)

Integrando la ec. (2.77) entre los límites y=0 y el borde de la capa de difusión (y=S):

$$Jg = \frac{D}{RTS} P \ln (Pai/Pao)$$
 (2.78)

'Pai', es la presión parcial del gas en la interfase; -'Pao' es la presión parcial del gas en el seno de la mezcla. Se puede rearreglar la ec. 2.78 a la forma:

$$J_g = \left[\frac{D}{RTS} \frac{P}{P_{am}} \right] \left(P_{ai} - P_{ao} \right) \qquad (2.79)$$

'Pam', es la presión parcial media logarítmica del gas incondensable en la interfase y del seno de la mezcla; se define como:

$$P_{am} = \frac{P_{ai} - P_{ao}}{\ln(P_{ai}/P_{ao})}$$
(2.80)

El término entre corchetes de la ec. de (3.8), es identi ficado con el coeficiente de transferencia de masa (Kg):

$$Jg = Kg(P_{a_{i}} - P_{a_{o}}) = Kg(P_{g_{o}} - P_{g_{i}})$$
 (2.81)

En el análisis anterior, la transferencia de calor del seno de la mezcla a la interfase, está formado por:

a) calor sensible que se transfiere através de la capa de difusión, hacia la interfase; b) calor latente liberado por la condensación del vapor que está llegando a la interfase.

Este modelo de transferencia de calor y de mas, correspon de al propuesto por Colburn y Hougen en la forma:

$$\phi = (h_g T_{g_o} - T_{g_i}) + K_g P M_g \lambda_{fg} (P_{g_o} - P_{g_i})$$
(2.82)

Cuando la mezcla gas vapor se encuentra estangada, solo se considera el segundo término de la ec. (2.82).

Akers y colaboradores, concluyeron que la relación de transferencia de masa en la capa límite de espesor of para una longitud característica L, se podría expresar en términos del producto de los números de Grashof y Schmidt (Gr. y Sc.),

$$\frac{L}{S} \begin{bmatrix} K_{SL} RT & P_{am} \\ D & P \end{bmatrix} = f_n \begin{bmatrix} g L^3 P^2 \\ M_z & P \end{bmatrix} (2.83)$$

Expresando la función fn como una ley de potencia y usan do datos experimentales, llegaron a la siguiente ec. empfrica:

$$\begin{bmatrix} K_{9} LRT & Pam \\ \hline D & P \end{bmatrix} = C_{1} \begin{bmatrix} 9L^{3}P \\ HD & (P_{0} - 1) \end{bmatrix}^{0.3+3} (2.84)$$

para un rango de/ $0^{3} < (G_{Y}, S_{C}) < 10^{7}$ y valores de C₁ de 1.02 para superficies verticales y 0.62 para tubos horizontales; - P_{x} y P_{0} son las densidades del fluido adyacente a la interfase y en el seno de la mezcla, respectivamente.

Cuando la mezcla fluye paralelamente a la interfase, el coeficiente de transferencia de calor hg de la ec. (2.82), -se puede evaluar aplicando la correlación apropiada al tipo de régimen de flujo presente (laminar, transición, turbulen-to) y a la geometría del flujo (dentro de tubos sobre una pla ca o sobre un banco de tubos).

Nótese que en la ec. (2.82), el coeficiente de transferen cia de calor es independiente del coeficiente de transferencia de masa. Sin embargo, cuando la velocidad de transferencia de masa sea grande, la velocidad de transferencia sensible puede verse aumentada por el calor sensible transportado por las mo léculas de gas en el momento de la condensación.

En este caso:

$$h_{g} = h_{g}\left(\frac{\alpha}{1-\alpha^{\alpha}}\right) \qquad (2.85)$$

donde: a = (PMg Jg (pg/hg) (2.86)

$$J_{g} = K_{g} (P_{g_{c}} - P_{g_{i}})$$
 (2.87)

Esta corrección la derivó Ackerman (27) y sirve para cuantificar el efecto de la transferencia de masa sobre la transferencia de calor.

Para la consideración del efecto del vapor de agua como incondensable y cuantificarlo, sempresenta el método pro puesto por Gilmour.

Se trata de un método simplificado, cuyo fundamento es el siguiente: durante la condensación de mezclas vapor en presencia de incondensables, se presentan varios fenómenos y mecanismos en forma simultánea sobre una misma área. Respecto a los fenómenos, se tiene la transferencia de calor y masa; en relación con los mecanismos, se considera la --transferencia de calor sensible para los fluidos en fase lí quida y calor latente para los fluidos en fase vapor.

Al diseñar un equipo, por lo tanto, se tienen que considerar los coeficientes individuales de transferencia, y al mismo tiempo, prestar atención al potencial de temperatu ras.

Gilmour analiza las diferentes resistencias que se pr<u>e</u> sentan a la transferencia de calor, através de las diferentes películas (fig. 12):

1.- Resistencia que presenta la fase gaseosa cuando -tiene una baja concentración de incondensables, lo que ocurre a la entrada del condensador.

2.- Resistencia presentada por la fase gaseosa con alta concentración de incondensables, situación que ocurre a la salida del condensador.

3.- Resistencia de la película de condensado, durante el trayecto de condensación. 4.- Resistencia ofrecida por las capas de ensuciamiento a ambos lados de la pared de transferencia.

5.- Resistencia de la pared metálica de la superficie de transferencia.

6.- Resistencia que ofrece el medio de enfriamiento.

Se supone que dicho medio de enfriamiento no cambia de fase, durante el fenómeno de condensación.

Para evaluar estas resistencias, se considera que el -potencial total de temperatura, será igual a la suma de las diferencias de temperatura através de cada una de las resistencias ya mencionadas.

La ec. que representa estas resistencias es:

 $\leq \Delta T = \Delta T_E + \Delta T_{91} + \Delta T_{92} + \Delta T_{c} + \Delta T_R + \Delta T_{w} \qquad (2.88)$

donde:

 ΔT_E : diferencial de temperatura del medio de enfria---miento.

LT_{g1}: diferencial de temperatura através de la mezcla con baja concentración de incondensables.

NT_{g2}: diferencial de temperatura através de la mezcla con alta concentración de incondensables.

LT_C: diferencial de temperatura através de la capa de condensado.

AT_R: diferencial de temperatura através de las capas de ensuciamiento.

 ΔT_{W} : diferencial de temperatura através de la pared m<u>e</u>tálica.

Ahora bien, al integrar este método de Gilmour en el mé todo general de diseño, se tendrán los diagramas de flujo en la siguiente forme:

CAPITULO 3

DISENO TERMICO DEL CONDENSADOR

3.a METODOS DE CALCULO :

En esta parte, se trata de establecer una secuencia para diseñar térmicamente un condensador de mezclas inmisci--ples.

Es decir, se trata de diseñer un equipo que, cumpliendo con los requerimientos de proceso, dé el área más pequeña po sible.

Las variaciones de uno a otro método, se deben al tipo de fenómeno que ocurre durante la transferencia de calor.

Particularmente, para las dos unidades que se liseñan en este trabajo, se tienen los fenómenos zonificados en tres áreas.

Así por ejemplo, para la primera unidad se tiene:

- una área para desobrecalentamiento de la mezcla de va pores de agua-hidrocarburos.

- una área para la condensación del hidrocarburo sola-mente.

- una área para la condensación eutéctica.

A partir de la ec. fundamental de transferencia de ca-lor,

Q = A UDAT

(3.39)

y por información de proceso, conocemos Q y ΔT ; por lo - tanto, nos quedan dos incógnitas: A y $U_D^{}.$ Es decir, los cál-culos para el diseño, se efectuarán por pruesa y error .

A continuación y en forma de diagrama de flujo, se indi can los métodos de cálculo para diseñar las dos unidades que se aplican como ejemplo en este trabajo.

METODO DE CALCULO PARA EL EJEMPLO No 1

METODO DE CALCULO PARA EL EJEMPLO NO 2

METODO DE CALGULO PARA EL EJEMPLO No 1 (INGLUYENDO L METODO DE GILMOUR)

METODO DE CALDULO PARA "L'JEMPLO No 2 (INCLUYENDO EL METODO DE GILMOUR). 3.b SELECCION DEL METODO EN LA PREDICCION DEL COEFICIEN TE DE TRANSFERENCIA DE CALOR:

Considerando la discusión de los diferentes modelos --teóricos ya expuestos, y teniendo la información de como se comporta el coeficiente de condensación de una mezcla de inmiscibles para un gran número de equipos cálculados, se consideró oportuno seleccionar el método que propone el modelo de "Nucleación Controlada", de Sykes Jr, en base a lo siguien te:

- Es un modelo que toma en cuenta la forma en que ocurre el fenómeno de condensación, fenómeno que ha sido observado en la mayoría de las investigaciones experimentales. Es de-cir, la formación de una fase contínua y una fase nucleada.

- Toma en cuenta variables muy importantes, por relacionarse con el tipo de fenómeno que describe. Por ejemplo: La densidad, la tensión superficial y la influencia de la T -eutéctica.

- Al aplicarse este modelo a los demás datos experiment<u>a</u> les que se tenían, dió un buen ajuste en un rango aceptable de $\pm 20\%$.

- Es un modelo que preveé la posiblidad de obtener un coe ficiente eutéctico para la mezcla de inmiscibles, el cual pue de ser mayor o menor al coeficiente que se obtendría para una mezcla homogénea. Esto es importante, porque algunos investigadores indican en la literatura que es la realidad que presen tan los equipos usalos en la Industria.

Como modelos de referencia, para efectuar la comparación en los cálculos, se proponen el "Modelo de Superficie Compartida", de Westwater y Bernhardt; y el método propuesto por la Cía. Kellogg.

El primer modelo se selecciona en base al buen ajuste --que dió para la mayoría de los datos experimentales en mez---clas binarias, tanto para tubos horizontales, como para tu--- bos verticales.

El método de la Cfa. Kellogg, se selecciona para determinar su confiabilidad en el diseño de equipos en los que se presenta el fenómeno de inmiscibilidad para mezclas de hidr<u>o</u> carouros-vapor de agua.

MODELO DE NUCLLACION CONTROLADA:

$$H_{N} = \left[\frac{1}{H_{\infty}} - \frac{1}{H_{20} (1 + \alpha l) (l - \alpha l)} \right]^{-1}$$
(3.2)

$$H_{\infty} = 7.6 - 1.8 (P_{r_1} - P_{r_2})$$
(3.3)

$$H_{20} = \frac{17.30 \times 10^{-10} Pr_{1}}{\left[N_{0H_{1}} \left(\Delta 5/5_{i} \right)^{1/2} m \left(H_{2}/H_{1} \right) \right]^{2}}$$
(3.4)
$$H_{N} = he/h_{1}$$

h₁: coeficiente calculado para el orgánico puro, según la ec. de Nusselt ó por el método de Gloyer.

$$h_{1}\left(\frac{\mu^{2}}{\kappa^{3}\rho^{2}g}\right)^{\prime 3} = 1.51\left(\frac{4G''}{\mu}\right)^{-1/3}$$
(3.5)
$$\begin{array}{c} \mathcal{U} [=] \ 16 / hr + t \\ g [=] \ 16 / hr + t \\ g [=] \ 16 / hr + t \\ \nabla [=] \ 16 / ft \\ N [=] \ 16 / ft \\ N [=] \ 16 / ft^{3} \\ K [=] \ Btu / hr ft of \\ G'' [=] \ 16 / ft \\ N [=] \ Btu / hr ft of \\ G'' [=] \ Btu / hr ft of \\ Op [=] \ Btu / 16 \\ Cp [=] \ Btu / 16 \\ Op [=] \ Btu / 16 \\ Op [=] \ 16 / in^{2} \\ D [=] \ ft \\ \end{array}$$

Y = fracción mol en fase vapor para el eutéctico.

MODELO DE SUPERFICIE COMPARTIDA:

$$hc = h_1 V_1 + h_2 V_2 \tag{3.6}$$

donde:

h1, 2: coeficiente de condensación para el componente puro.

V2: fracción volumen del agua en el condensado. Está da da por:

$$V_2 = 100/(1+\alpha/r)$$

$$x - P_{i}/$$

$$Y = P, IP_2$$

$$I_{2} = \frac{100}{1 + \left[\frac{M_{1}P_{1}^{0}}{M_{2}P_{2}}\right]/\frac{R_{1}}{R_{2}}} = \frac{100}{1 + \left[\frac{M_{1}Y_{1}}{M_{2}Y_{2}}\right]/\frac{R_{1}}{R_{2}}}$$

MODELO PROPUESTO POR KELLOGG:

$$h_m = h_{HC} + 0.7 (W)^{1.5}$$
 (3.7)

CAPITULO 4

EJ MPLOS ILUSTRATIVOS

Se trata del siseño de los unidades de condensación de haz y envolvente, que manejan agua de enfriemiento en el in terior de los tubos y una mezcla de vapores de hidrocarburos -agua en el lado externo de los mismos.

Estos equipos están actualmente en funcionamiento. El primero, funciona en la refineria de Salamanca, Gto. Sin -embargo, presenta muchos problemas de servicio, por encon-trarse escaso de área.

El segundo equipo, se encuentra en la planta de destilación comoinada, en la refineria de Tula, Hgo.

Para su estudio, se cuenta con los datos de diseño ---proporcionalos por el fabricante; así como con la informa--ción suficiente para conocer el comportamiento de las co---rrientes en los rangos de temperatura y presión estableci--los para su operación.

Debido a problemas en la caila de presión para la corriente de proceso, así como problemas por cruce de temperaturas, le primera unidad se deberá operar en un arweglo ---2 serie- 2 paralelo (fig. 13); la segunda unidad, en un arre glo 2 serie- 4 paralelo (fig. 17).

En tablas se presentaré la información necesaria paralos métodos de sálculo.

Fig. 13 DIAGRAMA DE LA UNIDAD: 2 SERIE-2PARALELO PARA EL EJEMPLO NUMERICO 1.

EJEMPLO NUMERICO 1:

CONDICIONES DE OPERACION ACTUALES

Corriente	Hidrocarburos-	Agua de enfriamiento.
	vapor de agua.	
Temperatura de entrada °F	260	85
Temperatura de salida °F	105	125
Presión de entrada, psig	2	50
Presión de salida, psig	.5	40
Gasto total, 1b/hr	141250	984500
Gasto: hidroc./vap. agua, 1b/hr	132000/9250	-
Caida de presión permisible, psig	1.5	10
Velocidad permisible, ft/seg		3 a 10
Factor de ensuciamiento, hrft ² oF/B	tu 0.0014	0.003
Calor intercambiado, Btu/hr	39380000	39380000

DATOS DEL PABRICANTE

Calor total transferido:	$Q_{m} = 39 380 000 \text{ Btu/hr}$
Area por cuerpo:	$A_{0} = 2 \ 242 \ \text{ft}^{2}$
Tubos por cuerpo:	$N_{rp} = 714$
No de pasos por tubos:	$N_{\rm p} = 2$
Diámetro externo del tubo:	Do = 3/4"
Arreglo de tubos:	Cuadrado
Pitch:	1"
AT corregida:	60.2 °F
Diámetro de la envolvente:	33"
Longitud de los tuvos:	16 ft
No de cuerpos:	4
Arreglo de la unidad:	2 serie-2 paralelo
Coeficiente global de diseño:	$U_{\rm D} = 72.8 \ {\rm Btu/hrft}^{2}{\rm oF}$

Equilibrio de la vaporización para el hidrocarburo puro:

Temperatura °F	% en peso vaporizado
250	100
220	70
180	48
160	40
115	0

A partir de estos datos y siguiendo el método presentado por Kern (19), en el capítulo 13, es posible plantear las curvas necesarias (fig. 14), que finalmente permitirán obtener los datos para la curva de condensación (fig. 16 y tabla No 1).

La fig. 15, presenta el punto de rocío del vapor de a-gua, necesario para la correcta construcción de la curva de condensación.

.....

140 140

CEI De Referencia

5:4:

THE ...

130

.....

it the state

•••

120 110 100

4 4.7 :1: -1

a tit ð H. Curva de lectura 260 de Tablas 240 1.

.....

220 200 T 180 160 D.P.= 162 F 140

..... HE HIT - In. 1 . . . 11 Curva de puntos calculados -120 100 80

. 60 id if 1 Hip 40 20

. Hinai • 9 on. H 00 -* in ÷ -15 1 n² P 1111 11.12

PRESION DE VAPOR DEL AGUA: CALCULADA - VS- LECTURAS DE TABLAS Fig. 15

Hini Think hira. r i

..... 111 . -Er E Hitt .1

TABLA No 1:

Temperatura °F	Q _T Btu/hr	% Q
260	0	0
225	2 128 185	5.38
198	5 821 843	14.74
180	8 766 293	22.2
169	10 468 218	26.51
162	12 203 133	30.9
137	24 330 718	61.61
125	29 595 489	74.95
115	37 479 440	94.91
105	39 486 123	100

La AT balanceada, calculada a partir de estos datos, fué:

 $\Delta T_{BAL} = 42.11 \text{ °F}$

210-100

TABLA NO 2: PROPIEDADES FISICAS PARA EL EJ. NUMERICO 1.

Pare la zona de desobrecalentamiento: T = 242.5 °F Propiedades del vapor de hidrocarouro y vap. agua. $C_{HC} = 0.395$ Btu/lb °F $\mu = 0.0079$ lb/hrft K = 0.016 Btu/hrft°F $C_{H_20} = 0.46$ " $\mu = 0.013$ " K = 0.0144 "

Pare la mezcla gas-vapor a la entrada: $T = 225 \circ F$ $Cm = \leq Xwi Ci \qquad Xwi = fracción peso$ $Km = \leq y_i \quad K_i \quad (M_i)^{\cdot 33} \notin y_i \quad (M_i)^{\cdot 33} \quad y_i = fracción mol en vapor$ $\mu m = \leq y_i \quad \mathcal{M}_i \quad (M_i)^{\cdot 50} \quad / \leq y_i \quad (M_i)^{\cdot 50}$ $C_{HC} = 0.415 \quad Btu/lb^\circ F \qquad C_{H_20} = 0.46 \quad Btu/lb^\circ f$ $K_{HC} = 0.0155 \quad Btu/hrft^\circ F \qquad K_{H_20} = 0.01392 \quad Btu/hrft^\circ F$ $\mu HC = 0.00765 \quad lb/hrft \qquad \mathcal{M} H_20 = 0.0135 \quad lb/hrft$

Para la mezcla gas vapor a la salida: T = 162 °F $C_{HC} = 0.41 \text{ Btu/lb°F}$ $\mathcal{M} = 0.007 \text{ lb/hrft}$ K = 0.012 Btu/hrft°F $C_{H_2}0 = 0.45$ " $\mathcal{M} = 0.0115$ " K = 0.01282 "

Para la zona donde solo condensa el hidrocarburo: T = 193.5 °F: propiedades del hidrocarburo líquido. $K = 0.087 \text{ Btu/hrft}^{\circ}F \# = 0.32 \text{ lb/hrft}$ $C = 0.57 \text{ Btu/lb}^{\circ}F$ $M = 89 \text{ lb/mol S.G.} = 0.68 \lambda = 148 \text{ Btu/lb } P = 42.2 \text{ lb/ft}^3$ Para la zona de condensación eutéctica: T = 133.5 °F $\nabla = [P/M(P_2 - P_2)]^4 = dinas/cm; dinas/cm x 6.85 x 10^{-5} = 1b_p/ft$ H_0: K = 0.3729 M = 18 M = 0.485 C, P. C = 1.0S.G. = 0.9858 P = 61.49 $\lambda = 1000$ P = 55HC: M = 89 M = 0.43 C.P. C = 0.542 K = 0.0885 S.G. = 0.70 P = 43.4 $\lambda = 148$ P = 263

Cálculo del ejemplo 1, sin incluir Gilmour:

1.- Suposición del coeficiente global de transferencia de calor; $U_{D5} = 104.5 \quad B + u / h + ft^2 \circ F$ 2.- Jálculo del área total; $A = \frac{39486}{42.11 \times 104.5} = 8973.1 \quad ft^2$ 3.- Area por cambiador; $A_c = 897.3.1/q = 2243.2 \quad ft^2$ 4.- No de tubos por cambiador; $N_{tc} = 2243.2/(0.1963\times16) = 7/4$ De tablas de conteo de tubos y para No de pasos por tubos=2, se lee: Ds = 33" y OTL = 31.625" Do = 3/4" Di = 0.62"

00	=	3/4"		Di	=	0.62"	
a" f	=	0.302	in ²	° ʻf	=	0.1963	ft ² /ft

TABLA No 3: Propiedades del agua.

	85°F	105°F
(lb/ft^3)	62.16	61.93
5.6.	0.9965	0.993
K (Btu/hrft°F)	0.355	0.365
(lb/hrft)	0.813	0.650

Nota 1: Todas las propiedades físicas a utilizar en los cál culos siguientes, están tomados de las tablas 2 y 3.

5.- Caida de presión por tubos:

Area de flujo por tubos;

$$\alpha_{t} = \frac{N_{t} + \alpha_{f}^{*}}{144 + N_{P}} = 0.7487 ft^{2}$$

Masa velocidad por tubos;

Gt = Wramb / at = 657 465 16/ hrft 2 No Reynolds por tubos; $R_{\alpha} = \frac{D_{i} + G_{\pm}}{M} = \frac{D_{-62} + 652465}{73 \times 2.4240.7315} = 19189$ Factor de transferencia de calor para el agua de enfriamiento; ft = 0.000225 Ra = 19186 Caida de presiín por retorno; APr = 4+2/0.995 + 0.056 = 0.45 psig AP+ = 1.159 psig 6.- Cálculo del coeficiente para el agua de enfriamiento; Velocidad del agua de enfriamiento; $V_t = G_t /_{3600} P = 2.95 f t /_{seg}$ Temperatura del agua de enfriamiento; tm = (ti+te)/2 = 105 °F con V_m y t_m, de la fig. 25 del apéndice del Kern (19); hi = 840 Btu/hrft2 of $h_{10} = h_1 D_1 / D_0 = 694.4 Btw/h_r ft^2 oF$ 7.- Coeficiente de transferencia de calor para la zona de desobrecalentamiento, por el método Bell (20): WAC = 132000 16/hr; WH20 = 9250 16/hr Km= 0.01573 Btu/hrftof Cpm = 0. 3992 Btu/16 "F Mm= 0.00859 15 /hrft Porciento de corte en cada mampara; % corta = 1 = 25.45% D: = 33"

OTL = 31.62"

:. le = 8.4"

$$N_c = D_s [1 - 2(l_c / D_s)] / P_P = 16.2$$

De la fig. 10-16 (20), $F_c = 0.68$

$$N(w = 0.8 lc/P_{P} = 6.72$$

$$S_{m} = ls[D_{S} - 0TL + \frac{0TL - D_{O}}{P_{n}}(P^{1} - D_{O})] = 120.5 in^{2}$$

$$F_{b}P = ls(D_{S} - 0TL)/Sm = 0.1512$$

$$S_{tb} = 0.0245 D_{O}N_{t}(1+F_{c}) = 22 in^{4}$$

$$S_{sb} = \frac{D_{s} \sqrt{S_{sb}}}{2} [\sigma - \cos^{-1}(1 - 2\frac{l_{c}}{D_{s}})] = 12 in^{2}$$

$$R_{a} = 12 D_{O} W/M_{m}Sm = 253.855$$

$$J_{H} = 0.2307/R_{a}^{0.35}$$

Doeficiente de transferencia de calor para un banco de tuvos ideal $h_{K} = J_{H} \left(p_{M} \frac{144 W}{5m} \left(\frac{Km}{c_{P_{M}}} \frac{M}{m} \right)^{2/3} \phi = 152.83 \frac{34 v}{h_{V} H^{2} eF}$ $\phi = 1.0$ por no haber gran variación en la viscosidad $h_{K} = 152.83$ $P_{H} \frac{v}{h_{V}} \frac{41^{2} eF}{14^{2} eF}$ Por lo tanto: $\begin{bmatrix} \frac{Km}{c_{P_{M}}} \frac{M}{m} \end{bmatrix}^{2/3} = \begin{bmatrix} 0.01573 \\ 0.399242.4240.00858 \end{bmatrix}^{2/3} = 1.532$ Cálculo de factores de corrección; gráficas 10-20, 10-21 y 10-22 de la Ref (20). $J_{C} = 1.05$ $J_{L} = 0.69$ $J_{L} = 1.0$ Doeficiente corregilo: $h_{S} = h_{K} J_{C} J_{L} J_{L} = 10.72 \frac{9 tv}{h_{V} ft^{2}} eF$ 8.- $V_{DES} = \frac{h_{S} * hio}{h_{S} + hio} = 95.5 \frac{3 tv}{h} \frac{185}{18 \cdot 27} = 188.44 \frac{41}{7}^{2}$

Para los cálculos siguientes se harán dos columnas. En la izquierda, se ponirán los cálculos que se obtengan o deriven de usar la ec. de Nusselt. En la columna de la derecha, los cálculos que se obtengan o deriven de aplicar la ec. de Gloyer para el coeficiente de condensación del hidrocarburo puro.

10.- Coeficiente de condensación para la zona donde solo con densa el hidrocarburo:

$$G'' = W / L N_t^{2/3}$$

$$G'' = \frac{20715}{16x714^{2/3}} = 16.2 \frac{16}{hrft}$$

$$h_{\text{MUSS}} = \frac{1.51 (46"/_{\text{M}})^{-73}}{\left[\frac{2}{\kappa^{3} P^{2} g}\right]^{1/3}}$$

$$h_{NUSS} = \frac{1.51 \left(\frac{4 \# 14.2}{0.32 \# 2.42}\right)^{-73}}{\left[\frac{0.32 \# 2.42}{0.08 + 3 \# 42.4^2 \# 32.2 \# 3400^2}\right]^{\frac{1}{3}}}$$

houss = 323.63 Btu/h.ft oF

 $NTO = \frac{DTL - D_0}{P} + 1 = 31.87$ $C = \frac{W}{\sigma T L + L_T} = 40.6 \frac{1b}{hr + t}$ $Rac = 1.65 \frac{C}{M} = 86.54$ $Prc = \frac{C_P M}{K} = 5$

(on Rec, Prc y fig. 4 (21):

$$\int con = 0.38$$

hglo = 6540 JCON K $\left(\frac{56}{4}\right)^{2/3}$
hglo = 442

Unc = holo * hio holo + hio

12.- AHC = Q_{HC} U_{HC} ΔT_{HC}

$$A_{HC} = \frac{10074985}{220.74 \pm 70.57} = 646.7 ft^2$$

13.- Coeficiente eutéctico, según el modelo de Nucleación Controlada:

13.a Cálculo del coeficiente de condensación para el hidrocarbu ro:

$$W_{HC} = 90 570 \ 1b/hr ; W_{HC}/camb. = \frac{W_{HC}}{2} = 45 285 \frac{1b}{hr}$$

$$G'' = 35.43 \ 1b/hr + t \qquad C = 88.79 \ 1b/hr + t \\
Ra_{c} = 140.78 \\
Prc = 6.37 \\
H_{NUSS} = 233.43 \frac{B+v}{hr + t^{2} \circ F} \qquad J_{conc} = 0.44 \\
hglo = 352.4$$

13.b Cálculo de parámetros para el coeficiente eutéctico;

moles de HC = 62 040/82 = 756.58 lb mol moles de H_2^0 = 3 197/18 = 177.63 lb mol fracción mol del HC en el vapor + 756.58/934.21 = 0.8099

$$(J_{e})_{\mu c} = 0.8099 \qquad (J_{e})_{H_{20}} = 0.19$$

$$(J_{e})_{\mu c} / (J_{e})_{H_{10}} = 4.26$$

$$\ll = M_{H_{c}} J_{e_{H_{20}}} / M_{H_{20}} J_{e_{H_{20}}} = 19.4$$

$$m = M_{1} / M_{2} = 0.43 / 0.485 = 0.886$$

$$M = \lambda_{1} / \lambda_{2} = 148 / 1000 = 0.148$$

$$\nabla_{\mu c} = 0.001254 \frac{154}{44} ; \quad \nabla_{H_{20}} = 0.00553 \frac{154}{44}$$

 $A_{HC} = 528.7 ft^2$

$$N_{0H_1} = 0.00087336$$

$$AV = V_{H_20} - V_{H_c} = 0.0042764 \frac{154}{42}$$

$$Pr_{H_c} = (0.542 + 0.43 + 2.42) / 0.0885 = 6.37$$

$$Pr_{H_20} = (0.53 + 2.42) / 0.3729 = 3.439$$

$$H_{o0} = 2.3251$$

$$H_{a0} = 2.3251$$

$$H_{a0} = 0.1364$$

$$B = 0.035 \circ F^{-1}$$

$$AT_f = T_a - Tw$$

$$T_a = 133.5 \circ F$$

Sustituyendo todos estos valores en la expresión para el coeficiente eutéctico:

$$ha = huc \left[\frac{1}{Ho} + \frac{1}{H_{20}(1+\alpha l) Q^{0} \delta T_{f}} \right]^{-1}$$

donde h_{HC} se sustituye por $h_{NUSS} \delta h_{glo}$.

El cálculo del coeficiente eutéctico (he), se hace por prueba y error, suponiendo la temperatura de la pared del tubo (tw) y checándola según la ec. del capítulo 5, ref. (19).

$$T_{w} = t_{m} + \frac{h_{a}}{h_{a} + h_{io}} (T_{m} - t_{m}) \qquad (4.1)$$

Tm=Ta = 133,5 "F ; tm = 105"F

 $Tw sop = 115 \ ^{\circ}F \qquad Tw sop = 117 \ ^{\circ}F \qquad ha = 178.67 \ ^{\Theta^{4}V} \qquad ha = 257.2$ sustituyendo en la ec. (4.1);

Twisup = Tweale.

. Twosup = Tweate.

14.-
$$Ve = \frac{he \pm hio}{he \pm hio} = 142.1 \frac{B+U}{hv H^{20}F}$$
 $Ve = 187.7$

15. - Aa =
$$\frac{Qa}{Ve}$$

$$A_{a} = \frac{27/86}{142.1 \times 34.99} = 5467 \text{ ft}^{2} \qquad A_{a} = 4139.3$$

16. - Cálculo del coeficiente limpio balancealo: $U_{CBAL} = \frac{V_{DES} A_{DES} + U_{HC} A_{HC} + V_{C} A_{C}}{A_{DES} + A_{HC} + A_{C}}$

$$V_{CBAL} = 148.77 \frac{B+U}{hv H^{2} eF}$$
 $V_{CBAL} = 166.62$

17 .- Conductividad térmica del material del tubo:

18 .- Pesistencia de la pared del tubo:

 $R_{w} = \frac{2.3}{20Kb} \log \frac{D_{c}}{D_{c}} = 0.00 \, 1891 \, hr fl^{20} f/B + u$ 19.- Resistencia por ensuciamiento:

$$R_{d\tau} = 0.0044 \text{ hrft}^{2} \text{ of } / B + u$$

20.- Cálculo del coeficiente global de diseño:

Sustituyendo valores en la expresión anterior:

$$V_{DCALC} = 76.84 \frac{B+u}{W+t^{2} cF}$$
 $V_{DCALC} = 81.34$

21.- Cálculo del coeficiente eutéctico, según el modelo de su perficie Compartida:

$$h_a = h_1 v_1 + h_2 v_2$$

 $v = F_1/P_2 = 0.7/0.9858 = 0.71$

- 21.a Para h₁, ya tenemos dos valores calculados, conforme a las ecs. de Nusselt (233.43 Btu/hrft²°F) y Gloyer (352.41 Btu/hrft²°F).
- 21.b Para h₂, el coeficiente de vapor del agua. se consideraun valor de 1500 Btu/hrft²°F.

Así, sustituyendo valores:

he = 233.43 * 0.9647 + 1500 × 0.0353

22.- $V_{a} = \frac{278.13 \times 699.9}{278.13 + 694.4}$

23.- A = 3912 f +2

ha= 352,41 × 0.9647 + 1500 * 0.0353

ha = 392.9

Va = 250.92

 $A_{2} = 3099$

Para calcular U_{CBAL} y U_{DCALC} , se consideran los valoresya obtenidos de U y A para las otras dos zonas (desobrecalentamiento y condensación del hidrocarburo solo), ju<u>n</u> to con esta zona eutéctica:

$$U_{DES} = 75.49 \quad Bto /hr ft^{2} \circ F$$

A DES = 188.44 ft^{2}
UHC = 220.74 $Bto /hr ft^{2} \circ F$
AHC = 646.73 ft^{2}

24.- UCBAL = 197.5
$$\frac{B+U}{hr+H^{*}F}$$
 UCBAL = 245.8
UDCALC = 88 11 UDCALC = 96.5

25.- Cálculo del coeficiente eutéctico, según el modelo de --Kellogg:

$$hm = h_{HC} + 0.7 (W)^{1.5}$$

W = 6.55 % de agua an el condensado.

Sustituyendo pers h_{HC}, el valor de Nusselt y Gloyer, --respectivamente:

26

27

$$h_{m} = 233.4 + 0.7(6.55)^{1.5} \qquad h_{m} = 352.4 + 0.7(6.55)^{1.5}$$

$$h_{m} = 245 B tv /h_{r} ft^{2} eF \qquad h_{m} = 364$$
26.-
$$V_{\alpha} = 181.2 B tv /h_{r} ft^{2} eF \qquad V_{\alpha} = 238.9$$
27.-
$$A_{\alpha} = 4287 ft^{2} \qquad A_{\alpha} = 3251.5$$
28.-
$$V_{CBAL} = 183 \frac{B tv}{h_{r} ft^{2} eF} \qquad U_{CBAL} = 236$$
29.-
$$V_{DCALC} = 85 \qquad U_{DCALC} = 95$$

Cálculo del ejemplo numérico No 1, incluyendo el método de Gilmour.

Para considerar el efecto del agua como incondensable en la zona donde solo condensa el hidrocarburo, conviene cal cular las áreas netas por separado, para cada una de las zonas de la curva de condensación (desobrecalentamiento, conden sación con incondensables y condensación eutéctica).

Lo novedoso en este nuevo cálculo, es aplicar el método de Gilmour (descrito en el capítulo 3.a) para calcular el é-rea necesaria para la zona de :ondensación son incondensables.

El cálculo comienza con la suposición del área necesaria para esta zona.

30.- Suponiendo A_{INC} = 992 ft²:

Para el arreglo 2 serie-2paralelo, la carga térmica se reparte por igual en 2.

31.- Q_{TNC} = 10 074 985 Btu/hr

por lo tanto, $Q = Q_{INC}/2 = 5 037 492.5 Btu/hr.$ 32.- Cálculo de la ΔT_E del agua de enfriamiento:

donde hi = 840 Btu/hrft oF

:, $\Delta T_E = 5037492.5/(8404992) = 6.04 °F$ 33.- Cálculo de la ΔT de la mezcla gas-vapor a la entrada:

$$\Delta T_{g_1} = WCP \Delta T * 0.75 / (hg_1 * A_{INC})$$

$$\Delta T = (225 - 162) \cdot F = 63 \cdot F$$

33.a El coeficiente h_{g1} de la mezcla gas-vapor, se determina por el método de Bell.

Las propiedades de geometría, ya se determinaron en el cálculo anterior y son:

$N_c = 16.2$	F6P = 0.151
$F_c = 0.68$	5tb = 22 in2
New = 6.72	Ssb = 12 in2
Sm = 120.49 in2	

$$W = (132 \ 0 \ po \ + 9250)/2 = 70\ 625 \ 16/hr$$

$$Rag_{1} = \frac{12 \ 40. \ 62 \ \times 70625}{0.00844 \ 42.44 \ 120.49} = 258 \ 3D7$$

$$J_{H} = 0.2307/Rag_{1}^{0.35} = 0.002943$$

$$h_{K} = J_{H} \ x \ 0.4179 \ \times \frac{144 \ 70625}{120.49} \left[\begin{array}{c} 0.015232\\ 0.4179 \ \times 0.00844 \ 42.42 \end{array} \right]^{4/3}$$

$$h_{K} = J_{H} \ x \ 0.4179 \ \times \frac{144 \ 70625}{120.49} \left[\begin{array}{c} 0.015232\\ 0.4179 \ \times 0.00844 \ 42.42 \end{array} \right]^{4/3}$$

$$h_{K} = 152.74$$

$$J_{C} = 1.05 \ J_{b} = 1.0 \ J_{f} = 0.69$$

$$h_{S} = hg_{1} = h_{K} \ J_{C} \ J_{F} \ J_{F} = 110.46 \ \frac{BTu}{hr \ ft^{70}F}$$

$$\Delta T_{g_{1}} = 12.7 \ ^{0}F$$

$$- Cáloulo de la DT de la mezcla gas-vapor a la salida:$$

$$W = (90 \ 570 \ + 9250)/2 = 49 \ 910 \ 1b/hr$$

$$Rag_{2} = 194, 1/3 \ ; \ J_{H} = 0.003253$$

$$h_{K} = 107.66 \ B+u \ /h \ ft^{20}F$$

$$h_{S} = hg_{2} = h_{K} \ J_{C} \ J_{F} \ J_{F} = 78 \ B+u \ /h, \ ft^{70}F$$

$$\Delta T_{g_{2}} = \frac{499/0 \ x \ 0.4137 \ (225-162) \ x \ 0.25}{78 \ x \ 992}$$

$$\Delta T_{g_{2}} = 4.19^{0}F$$

35... Cálculo de la AT através de la capa de condensado:

$$\Delta T_c = \frac{Q}{H_{con} * A_{INC}}$$

34.

HON = hNUSS = 323.63 Btu/h Ht OF

$$\Delta T_c = \frac{5\ 037\ 492.5}{323.634\ 992} = 15.7\ ^{\circ}F$$

36.- Cálculo de la ΔT através de las capas de ensuciamiento: $R_{1T} = 0.00 \ 44 \ \frac{h_{T} H^{2} \circ F}{B + u} \longrightarrow h_{R} = 227.27 \ \frac{B + u}{h_{T} + 1^{2} \circ F}$ $\Delta T_{R} = \frac{5037}{227.27} \ \frac{492.5}{227.27} = 22.34 \circ F$

37.- Cálculo de la AT através de la pared metálica: $Rw = 0.001891 \frac{h + H^2 \circ F}{3 + u} \longrightarrow hw = 528.32 \ B + v/hr + t^2 \circ F$ $ATw = \frac{5037 \ 492.5}{528.8 \ 4992} = 9.02 \circ F$

 $\leq \Delta Ti = 6.045 + 12.7 + 4.193 + 15.69 + 22.34 + 9.02 = 69.99°F$ $\Delta T_{INC} = 70.57 °F$

por lo tanto, la convergencia de≤ ∆Ti y ∆T_{INC} es acept<u>a</u> ble y el área supuesta es la correcta.

Sin embargo, como esta área correspondió al arreglo 2 serie; para el arreglo 2 paralelo, el área total para inconden sables será:

 $A_{\rm INC} = 992 \, {\rm ft}^2 \, {\rm x} \, 2 = 1 \, 984 \, {\rm ft}^2$

Para expresar las otras dos áreas, correspondientes a las zonas de desobrecalentamiento y condensación eutéctica, y así obtener el área total calculada, se tienen otra vez, va-rias alternativas que dependen de aplicar la ec. de Nusselt ó Gloyer para el coeficiente de condensación del hidrocarburo pu ro; ó bien, que dependen de aplicar cualquiera de los tres mo delos ya discutidos.

Los datos requeridos para calcular estas áreas, ya se ob tuvieron en el cálculo anterior (sin Gilmour).

Otra vez, se expresarán los cálculos en dos columnas, que obe

decen a consideraciones ya establecidas.

38.a

38.- Cálculo del área total, según el modelo de Nucleación -- Controlada:

Area de desobrecalentamiento
$$(A_{DES})$$

 $U_{DES} = 95.49$ $B + 1/2 ft^2 \circ F$
 $Rw = 0.001891$; $R_{dT} = 0.0044$
 $U_{DDES} = (U_{DES} + Rw + P_{dT})^{-1}$
 $U_{DDES} = 59.65$ $B + v /hr ft^2 \circ F$
 $A_{DES} = \frac{Q_{DES}}{U_{DDES} \Delta T_{DES}} = \frac{2128185}{59.65 \pm 118.27}$
 $A_{DES} = 301.6 ft^2$

38.b Area de condenseción eutéctica (Ae)

$$Va = 142.1$$
 B+u/L $ft^{2} \circ F$ $Va = 187.7$
 $Vba = (Va^{-1} + Rw + PJT)^{-1}$
 $Vba = .75$ B+v/hr $ft^{2} \circ F$ $Vba = 86$
 $Aa = \frac{Qa}{Vba} = \frac{27.186}{Vba} \frac{123}{124.99}$

 $A_{a} = 10355 \text{ ft}^{2}$ $A_{a} = 9027$

38.0 . ATOT = AINC + ADES + AZ

$$A_{T0T} = 12.641 \text{ ft}^2$$
 $A_{T0T} = 11.312 \text{ ft}^2$

39.- Cálculo del área total, según el modelo de Superficie Com partida:

39.a Area de desobrecalentamiento (ADES) UDES = 95,49 BTU /h, +2 oF UDDES= 59.65 11 ADES = 301.6 ++2 39.b Area de condensación eutéctica (Ae) Ue = 198.6 B+u/h++2 oF Va= 250.9 Ube = 88.3 Uba= 97.3 A = = 8800 ft2 Aa= 7984 39.c por lo tanto, A_{TOT} = A_{INC} + A_{DES} + Ae ATOT = 10270 AT OT = 11 085 ff2 40.- Cálculo del área total, según el modelo de Kellogg: 40.a Area de desobrecalentamiento (A_{DES}) UDES = 95,49 Btulk ft of UDDES = 59.65 ADES = 301.6 H22 40.b Area de condensación eutéctica (Ae) Ue = 181.2 Btu/hrft2 of Va= 238.9 Upa = 84.6 " Una = 95,4 A a = 9175 ft2 A a= \$140 40.c ATOT = 11461 ft2 ATAT = 10 425

Fig. 17 DIAGRAMA DE LA UNIDAD: 2 SERIE-4 PARALELO PARA EL EJEMPLO NUMERICO 2.

EJEMPLO NUMERICO 2:

CONDICIONES DE OPERACION

Corriente	Hidrocarburos- vapor de agua.	Agua de enfriamiento.
Temperatura de entrada, °F	307	90
Temperatura de salida, °F	100	115
Presión de entrada, psig	8	50
Presión de salida, psig	5	40
Gasto total, 1b/hr	753 086	9 341 067
Gasto: hidroc/vap. agua, 1b/hr	693 083/60 003	-
Caida de presión permisible, psig	3	10
Velocidad permisible, ft/seg	-	3 a 10
Factor de ensuciamiento, hrft ² °F/H	Stu 0.0013	0.003
Calor intercambiable, Btu/hr	233 526:690	233 526 690

ķ.

DATOS DEL FABRICANTE

Calor total transferido:	$Q_m = 233526690$ Btu/hr
Area por cuerpo:	$A_{c} = 7 099 \text{ ft}^2$
Tubos por cuerpo:	$N_{m} = 1.860$
No de pasos por tubos:	$N_{p} = 2$
Diámetro externo del tubo:	Do = 3/4"
Arreglo de tubos:	Cuadrado
Pitch:	1"
∆ T corregida:	86 °F
Diámetro de la envolvente:	54"
Longitud de los tubos:	20 ft
No de cuerpos:	8
Arreglo de la unidad:	2 serie-4 paralelo
Coeficiente global de diseño:	U _D = 47.5 Btu/hrft ² •F

Cálculo del ejemplo 2, sin incluir Gilmour:

Para esta Unidad, la curva de condensación (fig. 18), indica la ocurrencia de los siguientes fenómenos:

a) zona donde solo condensa el hidrocarburo, y el agua actua como incondensable;
b) zona de condensación eutéctica;
c) zona de subenfriamiento de la mezcla líquida.

Como el tipo de cálculos es muy similar a los del ejemplo numérico 1, se presentarán en forma resumida, la metodologia de cálculo para este ejemplo numérico 2. Además, como se mencionó al principio, la finalidad de estos dos ejemplos, es obtener información de resultados que permiten valorar ---la utilidad del modelo seleccionado.

TABLA No 4

T oF	Q _m Btu/hr	
307	0	
298	11.6×10^{6}	
276	36.1 x 106	
247	66.1×10^6	
200	105×10^6	
192	170.9 x 10 ⁶	
180	200.9 x 10 ⁶	
100	233.5 x 10 ⁶	

T_{BAL} = 86.58 °F

1.- Suposición del coeficiente global de transferencia de calor:

U_{DS} = 46.2 Btu/hrft²°F

Por problemas de cruce de temepratura y caida de presión por la envolvente, se selecciona un arreglo 2 serie-4 paralelo. 2.- Area por cambiador = 233 526 690/86.58 x 46.2 x 4 x 2 = $7 297.7 \text{ ft}^2$.

3.- No de tubos por cambiador = 1 859.

De taolas, para No de pasos por tubos = 2: Ds = 54" y --OTL = 50.125"

Do = 3/4" Di = 0.62" $a_f^i = 0.1963 \text{ ft}^2/\text{ft}$ $a_f^r = 0.302 \text{ in}^2$.

4.- Cails de presión por tubos: $a_{f} = 1.95 \text{ ft}^{2}$ Gt = 1 197 316 lb/hrft² No Re_t = 37 870 $f_{t} = 0.0019$ $\Delta P_{+} = 4 \text{ psig.}$

4.a Caida le presión por retorno: $P_r = 1.53$ psig.

 $\Delta P_{camb} = 5.53$ $\Delta P_{mom} = 11$ psig.

5.- Célculo del coeficiente para el agua de enfriamiento:

 $V_t = 5.37 \text{ ft/seg}$ $t_m = 102.5 \text{ °F}$ con $V_t y t_m$, de la fig. 25 del Ap. del Kern (19): hi = 1 310 3tu/hrft² °F hio = 1 083.9

Observación: Aquí tembién se hace la observación ó anot<u>a</u> ción de utilizar dos columnas en los cálculos: la izquierda para los que se obtengan o deriven de usar la ec. de Nusselt; la derecha para los cálculos que se obtengan o deriven de usar la ec. de Gloyer para el coeficiente de condensación del hidrocarburo puro.

6.- Coeficiente de condensación para la zona donde solo condensa el hidrocarburo:

$$T = 250°F$$

$$Cp = 0.615 Btu/16°F$$

$$K = 0.0855 Btu/hr ft2%$$

$$M = 0.2.4 C. P.$$

$$S.G. = 0.65$$

$$W = 128725.4 1b/hr$$

$$1.51 (46″/u)^{-V3}$$

$$h_{NUSS} = \frac{\frac{7.57 (467,u)}{(1000)}}{\left[\frac{M^2}{K^3 P^2 g}\right]^{\gamma_3}}$$

7.- Unc =
$$\frac{hvs_3 + hio}{hvs_3 + hio} = 200.44 \frac{B+U}{hvH^2 oF}$$

$$A_{HC} = \frac{105 \pm 10^{2}}{200 \pm 142.86} = 3669 \text{ ft}^{2}$$

9.- Coeficiente eutéctico según el modelo de Nucleación Controlada:

9.a Cálculo del coeficiente de condensación para el hidrocar buro puro;

$$NC = \frac{072 - 90}{P_{T}} + 1$$

$$NC = 50.37$$

$$C = \frac{1}{NC + 1_{T}} = 127.7$$

$$Re_{c} = 363$$

$$Pr_{c} = 4.17$$

$$J_{CON} = 0.41$$

$$hglo = 391$$

$$T_{e} = 190°F$$

$$C_{p} = 0.579 B+v/16°F$$

$$K = 0.0872 B+v/hrft°F$$

$$M = 0.32 C.P$$

$$S. 6. = 0.675$$

$$W = 44 545.4 16 Jhr$$

$$h_{NUSS} = 336 \frac{B+v}{hrft^{2}PF}$$

hglo= 922

9.b Cálculo de los parámetros para el coeficiente eutéctico:

molas de
$$HC = 178/37/125.2 = 1422.8$$
 16 mol lhr
niolas de $H_2D = 60003/18 = 3333.5$ //
fr. mol dal HC an vaper = 0.2991 = Ya_{HC}
: Ja_{H20} = 0.7008
Ya_{HC} / Ja_{H20} =
 $= 5.177$
 $m = 1.0$
 $l = \lambda_{HC}/\lambda_{H2D} = 201.8/984 = 0.205$
 $U_{HC} = 0.000 8.093 164/44$
 $U_{H20} = 0.0005244$ //
 $\Delta U = U_{H20} - U_{HC} = 0.000434$
NoH1 = 0.000 8.166
 $Pr_{HC} = 5.138$
 $Pr_{H2D} = 1.856$
 $H_{20} = 0.11768$
 $\Delta T_{4} = Ta - Tw = 190°F - Tw$

100

Otra vez, el cálculo del coeficiente eutéctico (he), se hace por prueba y error, suponiendo Tw y checándola según la ec.: T

$$w = tm + \frac{he}{he+hio}(Te-tm)$$

donde:

$$t_{m} = 102.50F ; hio = 1082.9 Btv /hr ft^{2} oF$$

$$Tw_{svp} = 123^{o}F \qquad Tw_{svp} = 127$$

$$ha = 346.7 \frac{Btv}{hr ft^{2} oF} \qquad ha = 913.29$$

por lo tanto:

Tweale = 127.4 Twicale = 123.70 F 10.-Ua = 262.6 B+U hr H20F Va = 299

11.-

$$A a = \frac{Q a}{U_a \Delta T_a}$$
$$A a = \frac{95 \pm 10^6}{262.6 \times 93.8}$$

 $A_{0} = 3856 + t^{2}$

A0 = 3386

12.- Cálculo del coeficiente eutéctico, según el modelo de -Superficie Compartida: he = 551 ha = 475.3 Btu

Ve= 365 13.-Ve= 330 11 Ac= 2773.4 Ac= 3064.8 ft2 14.-

15.- Cálculo del coeficiente eutéctico, según el modelo de ha = 336 Btu britt = OF Kellogg; he = 422

16.-
$$V_{e} = 256.4 \frac{B+U}{h_{1}+1^{2}} \qquad V_{e} = 303$$

17.- $A_{e} = 3950 + 1^{2}$ $A_{e} = 3335$

18.- Cálculo del coeficiente le transferencia de calor --para la zona de subenfriamiento, por el método Bell (20):

$$T = 140°F$$

$$W_{nie3cla} = 188271.5 16/4r$$

$$Km = 0.0885 B+v /4r + °F$$

$$C_{Pm} = 0.55 B+v / 16°F$$

$$Mm = 0.41 C.P.$$

$$S.G. = 0.70$$

El significado de las siguientes variables, ya se defi-

 $\frac{1}{6} corte = \frac{1}{2} c / Ds = 0.46 \qquad \therefore \quad lc = 24.84"$ Nc = 4.32 Fc = 0.125 Ncw = 19.87 Sin = 875.8 Fbp = 0.238 Stb = 38.44 Ssb = 10 $Ra = 1990 \qquad Ju = 0.014$ $hx = 69.12 \quad Btu / h - 4t^{2} F$ $Jc = 0.62 \qquad Jx = 0.885 \qquad Jb = 1.0$ $hs = hosus = 37.42 \quad Btu / hr ft^{2} oF$

19.-

20.-

$$Asub = \frac{QSUB}{V_{3U3}} \frac{33526690}{36.63 \times 35.32} = 25914 \text{ ft}^{3}$$

21 .- Conductividad térmica y resistencia del tubo:

22.- Resistencia por ensuciamiento a ambos lados de la pared del tubo: $R_{\lambda T} = 0.0043$ hr $4t^{2}$ oF /84u

Para obtener el coeficiente limpio balanceado, el coeficiente de diseño calculado y el área total calculada, se tendrán variantes que dependerán del tipo de modelo utilizado para obtener el coeficiente eutéctico; así como del método para calcular el coeficiente de condensación del hidrocarburo puro.

23.- Cálculo de U_{CBAL}, U_{DCALC} y A_{TCALC} , en base al modelo de Nucleación Controlada:

24.- Cálculo de U_{CBAL} , U_{DCALC} y A_{TCALC} , en base al modelo de Superficie Compartida:

$$U_{CBAL} = 8257 B4v/hr H^2 oF$$
 $U_{CBAL} = 56.26$
 $U_{DCALC} = 56.89$
 ''

 $U_{DCALC} = 56.89$
 ''

 $U_{DCALC} = 56.89$
 ''

 $U_{CALC} = 56.89$
 ''

 $U_{DCALC} = 56.63$
 Acalc = 46000

25.- Cálculo de U_{CABL}, U_{DCALC} y A_{TCALC}, en base al método pr<u>o</u> puresto por Kellogg:

$$V_{CBAL} = 80.44 \frac{6+0}{hv+t^2 \circ F}$$
 $V_{CBAL} = 89.68$
 $V_{DCALC} = 55.87$
 V
 $V_{DCALC} = 57.87$
 $V_{DCALC} = 57.87$
 $A_{CALC} = 48.268 ft^2$
 $A_{CALC} = 46589$

Cálculo del Ejemplo Numérico No. 2, incluyendo el método de Gilmour:

26. - Suponiendo A_{INC} = 9 000 ft²;

Para el arreglo 2s-4p, la carga térmica se reparte en 4 cantidades iguales:

27.- QIUC = 105 # 104 Btulhr

28.- Cálculo de la ΔT del agua de enfriamiento: $\Delta T_E = Q / (h; * A_{TWC})$

donde:

. .

$$\Delta T_E = \frac{26250000}{1310 \pm 9000} = 8.9 \,^{\circ}F$$

29.- Cálculo de la ∆T de la mezcla gas-vapor a la entrada:

29.a hg1: se calcula por el método Bell;

$$\begin{aligned} V_{c} &= 4.32 \\ F_{c} &= 0.125 \\ N_{cw} &= 19.87 \\ S_{m} &= 875.8 \\ F_{b}P &= 0.238 \\ S_{tb} &= 38.44 \\ S_{5b} &= 10 \\ R_{eg_{1}} &= 97097 \\ J_{H} &= 0.00414 \\ h_{K} &= 80.44 B_{tv}/h_{r} + 14^{2} oF \\ J_{c} &= 0.62 \\ J_{d} &= 0.885 \\ J_{b} &= 1.0 \\ h_{s} &= hg_{1} &= 44.14 \\ B_{tv}/h_{r} + 14^{2} oF \\ AT_{g_{1}} &= 18.12 oF \end{aligned}$$

30.- Cálculo de la AT de la mezcla gas-vapor a la salida: $W_2 = (60003 + 178 137)/4 = 59535 16/hr$ $Rag_2 = \frac{12 \times 0.75 \times 59535}{0.00344 \times 2.42 \times 875.8} = 73491$ JH = 0.00457 hK = 43.11 Btv/hr $4t^{20}F$ hS = 23.65 // $ATg_2 = 2.970F$
31.- Cálculo de AT através de la capa de condensado: huuss = 244.52 Btu/hr $4t^2 \circ F$

32.- Cálculo de AT através de las capas de ensuciamiento: $R_{dT} = 0.004 \ 3 \ hr ft^{2} \ ^{o}F \ / B + v$ $h_R = 232.55 \ B + v \ / hr ft^{2} \ ^{o}F$ $\Delta T_R = \frac{105 \ \# 10^6}{232.55 \ \# 9000} = 50.16 \ ^{o}F$

33.- Cálculo de AT através de la pared del tubo:

34.- Suma de las ΔT_i parciales: $\leq \Delta T_i = 141.430F$ 35.- Valor de la ΔT balanceada para la zona de incondensables:

por lo tanto, es aceptable la convergencia.

36.- Cálculo del área total, según el modelo de Nucleación -Controlada:

36.a Area de condensación eutéctica (Ae):

$$U_{D\alpha} = 107.85 \frac{B+U}{h_{v}H^{2}0F}$$
 $U_{D\alpha} = 113.5$

$$Aa = Qa / (V Da ATe)$$

$$Aa = \frac{95 + 10^6}{107.85 + 93.8} = 9390.5 H^2$$
 $Aa = 8920$

36.b Area de subenfriamiento (ASUR);

$$U_{SUB} = 36.63$$
 B_{40} / $h_r + 1^{\circ} o_{F}$
 $U_{SUB} = 36.63$
 $U_{OSUB} = 30.52$
 H
 $U_{OSUB} = 30.52$
 $A_{SUB} = 31000$
 11°
 $A_{SUB} = 31000$
 $A_{SUB} = 31000$
 11°
 $A_{SUB} = 31000$
 $A_{TOT} = A_{INC} + A_{a} + A_{SUB}$
 $A_{SUB} = 31000$

36.0 ATOT = 58 390 ++2

ATOT = 57920

37.- Cálculo del área total, según el modelo de Superficie -Compartida:

37.a Area de condensación eutéctica (Ae)

$$Ua = 330 B + v/h + ft^2 0 F$$
 $Uc = 365$ $Vba = 117.7$ $Vba = 121.9$ $Aa = 8603 ft^2$ $Aa = 8308$

37.b Area de subenfrimaiento (ASUB);

37.0 At ot = 57 603 ft^2 38.- Cálculo del área total, según el modelo de Kellogg: 38.a Area de condensación eutéctica (Ae); $Va = 256.4 \ \theta t u/h ft^2 eF$ Va = 106.8

Aa= 9484

4+2

Aror = 57308

38.b Area de subenfriamiento
$$(A_{SUB})$$
;
Asub = 31000 ft^2

38.c

部

AT = AINC + Ae + ASUB

ATOT = 58 484 ft2

ATOT = 57 876

RESUMEN DE AREAS TOTALES CALQUIADAS TABLA No. 5: Ejemplo Numérico 1 (Equipo que funciona en Salamanca, 7to.) Area total actual del Equipo 8 968 ft²

	Sykes, Jr.		Bernhardt		Kellogg	
	Con	Sin	Con	Sin	Con	Sin
	Gilmour	Gilmour	Gilmour	Gilmour	Gilmour	Gilmour
A. le Desobrec.	301		301		301	
A. de Cond. del Hilrocarburo	1 984		1 984		1 984	
A. de Cond. Eu- téctica	10 355		8 829		9 140	
Nusselt	12 640	12 203	11 146	10 645	11 426	11 020
A. de Desobrec.	301		301		301	
A. de Cond. del Hidrocarburo	1 984		1 984		1 984	
A. de Cond. Eu- téctica	9 026		8 048		8 178	
Gloyer	11 311	11 526	10 333	9 709	10 464	9 867

TABLA No. 6: Ejemplo Numérico 2 (Equipo que funciona en Tula, Hgo.) Area total actual del Equipo 58 419 ft²

	Sykes, Jr.		Bernhardt		Kellogg	
	Con	Sin	Con	Sin	Con	Sin
	Gilmour	Gilmour	Gilmour	Gilmour	Gilmour	Gilmour
A. de Cond. del Hidrocarburo	18 000		18 000		18 000	
A. de Cond. Eu- téctica	9 390		8 603		9 484	
A. de subenfr. de la Mezcla líquida	31 000		31 000		31_000	
Nusselt	58 390	48 182	57 603	47 411	58 484	48 268
🛪 de Precisión	99.95	82.47	98.6	81.15	100.11	82.62
A. de Cond. del Hidrocarburo	18 000		18 000		18 000	
A. le Cond. Eu- téctica	8 920		8 308		8 876	
A. de subenfr. de la Mezcla líquida	31 000		31 000		31 000	
Gloyer	57 920	46 608	57 308	46 000	57 876	46 589
% de Precisión	99.16	79.78	98.09	78.74	99.07	79.74

ANALISIS DE RESULTADOS FINALES:

Las tablas 5 y 6, presentan un resumen de los resultados finales para las áreas totales calculadas.

Las áreas totales calculadas, considerando el efecto del agua como incondensable, son siempre mayores que en el caso de no considerar dicho efecto.

Debido a que la ecuación de Gloyer da coeficientes de condensación mayores a los de Nusselt, las áreas obtenidas usando Gloyer, son menores.

Por otra parte, el modelo que predice coeficientes eutécticos más altos, y por lo tanto, menores áreas, es el de Bernhardt o modelo de Superficie Compartida.

Observando la tabla 6, se ve que el área total calcu lada, que más se acerca al valor actual, es la que se basa en el modelo de Nucleación Controlada (modelo de Sykes Jr.), tomando en cuenta el efecto de incondensables y con siderando la ecuación de Nusselt.

CAPITULO 5

CONSIDERACIONES ECONOMICAS

Existen varios factores de importancia económica para el costo de una unidad de condensación; por ejmplo: arreglo, --disposición y tamaño de la unidad. Sin embargo un factor que destaca en importancia es el referente al tipo de material de fabricación.

Para hacer énfasis en este aspecto; en el presente trabe jo se hace un anélisis de costos, para estaclecer las venta--jas económicas que se pueden obtener cuando, en vez de proponer un tipo de material que sea muy costoso para toda la unidad de condensación, se proponen dos sub-unilades, a fin de -fabricar una de ellas con un material más barato y la otra, con el material más costoso.

Las anteriores apreciaciones son factibles de aplicar, cuando en un fenómeno global de condensación, existe una zona donde los efectos de corrosión no resultan ser muy drásticos.

El caso del ejemplo numérico 1, se presenta para un análisis de este tipo.

Como ya se anotó; este equipo maneja una corriente de -proceso, formada por una mezcla de vapores de hidrocarburos-<u>a</u> jua.

Los problemas de corrosión, se presentan por que las trazas de ácido sulfhídrico (H_2S) , que acompañan a los hibrocarburos, en presencia de humedad forman ácido sulfúrico (H_2SO_4) que al condensar, ataca a los materiales. Al mismo tiempo, el vapor de agua condensado, también es corrosivo en determinados materiales.

Es por estas razones que el fabricante propone un tipo de material (Monel), capaz de presentar buena resistencia a los ataques de corrosión, pero por lo mismo, es un material

muy caro.

Desde el punto de vista de corrosión: hay dos zonas, u na donde ésta es sensiblemente importante (zona de condensa ción eutéctica); y otra, donde la corrosión es mínima (zona de desobrecalentamiento y donde solo condensa el hidrocarbu ro).

En esta última zona, el vapor de agua se encuentra sobrecalentedo, es decir no está húmedo y por lo tanto no reag ciona con el ácido sulfhídrico, eliminándose los problemas de corrosión debidos al ácido sulfúrico y el agua como con-densado . Por lo tanto, es posible separar estas los zonas en uma misma unidad, fabricando la primera con materiales me nos adecuados y más baratos; como puede ser el acero al carbón.

Si consideramos el área total calculada para el ajemplo numérico 1, en base al modelo de Nucleación Controlada y a la ec. de Nusselt, vemos que el área requerida para las zo-nas de desobrecalentamiento y dondensación del hidrocarburo solo, así como el área para la condensación eutéctica, son:-

2 285 ft² y 10 354 ft², respectivamente.

Para el análisis comparativo de costos, se calculan éstos en base a una sola unidad con el material de construc-ción Monel; y después se obtienen los costos en base a dos subunidades, una con material Monel y la otra con acero al carbón:

a) Cálculo del costo para una sola unidad:

Area total = 12 640 ft^2

Les dimensiones de los tubos son los mismos del ejemplo numérico uno:

No de tubos por cambiador = $\frac{12.640/4}{0.1963 \times 16}$ = 1 006.6

de tablas para conteo de tubos, para No de pasos por tu bos = 2 y No de tubos = 1 007, se reporta un diámetro de envolvente de 39".

```
Ds = 39"; Nt = 1 007; L_m = 16 ft.
Material de los tubos: Cupro-Níquel (70-30).
Material de la envolvente: Monel.
1.- Costo base de la envolvente: 6 050 Dis
factor de corrección por aleación:
Envolvente y cubierta del envolvente: Monel = 70%
Cubierta del cabezal flotante: Acero al Carbón = O
Canal y cubierta de la canal: Acero al Carbón = O
Total extra = 70%
Por lo tanto, el factor de corrección por aleación = 1.7
2.- Costo del espejo: Monel = 256 Dls.
factor de corrección por aleación = 7.0 .
3.- Costo de los tubos = 8.49 Dis/tubo.
4.- Costo de las mamparas y soportes = 132.50 Dls.
Costo total de un equipo:
                    6050 x 1.7 = 10 285.00 Dls.
Envolvente :
                     256 x 7.0 = 1 792.00
Espejos:
                    1007 \times 8.49 = 8549.43
Tupos:
                                      132.50
                      1325
                                   -
Mamparas:
                                       20 758.93 Dls.
Como la Unidad consta de 4 equipos: 83 035.72 Dls.
```

b) Cálculo del costo en base a dos Sub-Unidades:

```
Area de desobrecalentamiento y con-
densación del hidrocarpuro solo:
A = 2 285 ft^2.
No tubos por cambiador = 728.
Ds = 33"; N_m = 728.
Material de los tubos: Admiralty.
Material de la envolvente: Acero al
Carbón.
1.- Costo base del envolvente:
4 800 Dls.
Factor de corrección por aleación: O
2.- Costo del espejo: Acero al Car_
bon = 169 Dls.
3.- Costo de los tubos = 5.63/tubo.
4.- Mamparas y soportes = 132.5 Dls
Costo total del equipo:
Envolvente:
                  = 4 800 Dls.
                  = 169
Espejos:
Tubos:
                  = 4 098
                  = 132.50
Mamparas:
                    9 200.00 Dls.
```

```
Area de condensación eutéctica:
A = 10 354 \text{ ft}^2.
Por problemas de cruce de temperatura
y caida de presión, es necesario un -
arreglo 2 serie-2 paralelo.
No tubos por cambiador = 824.
Ds = 35"; NT = 824.
Material de los tubos: Monel.
Material del envolvente: Monel.
1.- Costo base de la envolvente:
5 225 Dls.
Factor de corrección por aleación:
1.7
2.- Costo del espejo: Monel = 169 Dls
Factor de corrección por aleación:
7.0
3.- Costo de los tubos: Monel
8.49/tubo
4.- Mamparas: 132.5 Dls.
Costo total del equipo:
Envolvente:
                = 8 882.50 Dis.
Espejos:
                = 1 183.00
Tubos:
                 = 6 995.76
Mamparas:
                 = 132.50
                  17 193.76 Dls.
Como la Unidad consta de 4 equipos:-
17 193.76 x 4 = 68 775.04 Dls.
```

Por lo tanto, el costo total de estas dos sub-unidades, será: 9 200.00 + 68 775.04 = 77 975.04 Dls.

Comparando los costos finales de los incisos (a) y (b), se ve que la alternativa propuesta en este trabajo, reporta un ahorro del -6%, equivalente a 5 060.54 Dls.

CAPITULO 6

CONCLUSIONES Y RECOMENDACIONES

Por los resultados obtendios, en base a los dos ejem-plos numéricos presentados, se ve que el modelo seleccionado de Nucleación Controlada, funciona bien. Predice que para una mezcla dada, a bajas ΔT_f , el coeficiente eutéctico para la mezcla de inmiscibles, es menor al coeficiente que se calcula, considerando que toda la mezcla es hidrocarburo.

Sin embargo, a grandes AT_f, el coeficiente eutéctico es mayor al coeficiente para el hidrocarburo puro. Estas predi<u>c</u> ciones se cumplen en los ejemplos numéricos 1 y 2, respectiv<u>e</u> mente.

Es importante tomar en cuenta la siguiente consideración: el modelo de Nucleación Controlada, se desarrolló teoricamen te y se experimentó en mezclas binarias que condensan por -fuera de tubos; por lo tanto, la condensación eutéctica es isotérmica.

Lo anterior, no courre para mezclas de multicomponentes, ya que la condensación no es isotérmica, y se tiene el pro-blema de determinar o suponer una temperatura eutéctica que nos permita conocer la composición eutéctica en forma muy aproximada.

De los resultados obtenidos, se puede concluir que no hay una iesviación significativa, cuando se calcula la compo sición a una temperatura eutéctica promedio en el rango de condensación simultánea, siempre que éste no sea muy grande.

Por otra parte, aunque los modelos de Superficie Compar tida y Kellogg, se pueden usar para un rápido estimado del coeficiente eutéctico; éstos suponen que el coeficiente eutéctico, siempre será mayor al coeficiente para el hidrocarburo solo; lo cuel no siempre es cierto. Es muy necesario desarrollar un método integrado y más riguroso que el presentado en este trabajao, para tratar el problema combinado de la condensación con incondensables y en presencia de inmiscibles. Esto permitirá diseños más seguros, evitando excesos de áreas requeridas y, por lo tanto, costos en la fabricación de los equipos.

También es muy recomendable que la investigación sobre condensación de inmiscibles, se extienda a mezclas de mult<u>i</u> componentes.

Respecto a las consideraciones económicas, queda muy clara la necesidad de realizar un diseño que contemple las alternativas de obtener una sola Unidad ó dos Sub-Unidades, para un fenómeno global de condensación, que abarque zonas adicionales a la condensación eutéctica; y que permitan abatir costos en los materiales de construcción.

BIBLIOGRAFIA

- Mc Adams, W.H., "Heat transmission" 3d. Mc Graw-Hill Book, (1954)
- Meyrial, P.M. Mordn, M.L. "Heat transfer during film condems sation of Potassium vapor on a horizontal plate", Report -No DSR 70008-52, March 1, (1968).
- 3) Bromley, L.A., "heat transfer in condensation effect of -heat capacity on condensate", Ind. Eng. Chem. 44, 2966-9, (1952)
- 4) Henderson, C.L., Marchello, J. M., A. I. Ch.E. Journal 13, No 3, 613, (1967)
- 5) Myers, J.A. and Rosson H.F., "Condensing coefficient Inside a horizontal tube Near Atmospheric pressure", Chem. Eng. Prog. Symposium Series, Vol. 55, p. 150-155 (1961).
- 6) Baker, O. "Simu taneus Flow of Oils and Gas" The Oil and -Gas Journal, Vol. 53 p. 185-195 (1954).
- 7) Baker, E. M., Mueller, A.G., Ind. Eng. Chem. 29, 1065 (1937)
- 8) Baker, E.M., Tsao, U., Ind. Eng. Chem. 32, 1115 (1940).
- 9) Hozelton, R., Baker, E.M., Trans. Am. Inst.Chem. Engrs. 40, 1 (1944).
- 10) Akers, W.W., and M.M. Turner, AIChE J., 8, 587-9 (1962).
- Westwater, J.W., and S.H. Berhardt, "Condensation of Immisci ble Mixtures". Univ. Illinois. Urbana (1970).
- 12) Sykes, J.A., "Condensation heat transfer for vapors of Immig cible Liquids Outside Horizontal Coppers Tubes", Ph. d. the sis, University of Maryland, College Park, Md., (1968).
- V.D. Yusufova; and N.N. Neikdukht, International Chemical -Engineering. Vol. 10, No. 3 (1970).
- 14) Junjiro Kawasaki, Toyohiko Hayakawa and Shigefum Fujita; --Heat transfer- Japanese Research, vol 1, No. 1 (1972)
- Stepanek, J., Stadart, G., Collection of Czech. Chem. Communication, 23, 995 (1958)
- Adamson, A.W., "Physical Chemistry of surfaces", 2a Ed. Wiley, (1967).

- 17) The M.V. Kellogg Company: Exchanger Design Manual.
- 18) Murillo Parrales Alvaro; "Método de cálculo para diseño de condensadores de vapores en presencia de gases indon densables", Tesis Profesional. IPN (1976)
- Kern, D,K. " Procesos de transferencia de calor", C.E.
 C.S.A., 8a Impresión (1974).
- 20) Perry and Chilton, Chemical Engineers Handbook, 5a Ed.
- Gloyer W. "Thermal Design of Mixed Vapor Condenser", --Hydrocarbon Proc. Vol 6, No. 7 (1970).