UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUIMICA

México, D. F.

1976

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

ULAD TRESIL ABQ_ -+=+= FICHA. AROC_ 7 2 367

QUINIGA

Presidente H		Prof.	ALBERTO BREMAUNTZ MONGE				
Voca	1	prof.	:	RUDI	₽.	STIVALET	CORRAL
Secr	etario	Prof.	:	ANTCI	VIO	VALIENT.	E BARDERAS
ler.	Suplente	s Prof.	:	ANTO	VIO	FRIAS E	ENDOZA
20.	Suplente	e Prof.	,	GILD	ARD	O ACOSTA	SEGURA

Sitio donde se desarrolló el tema: FACULTAD DE QUIMICA

ABRAHAM RODAS LECONA

ING. ANTONIO VALIENTE BARDERAS

" A MIS PADRES "

TNDICE

		PAGINA
INTHODU	CCION	III
	CAPITULO I	ι.
1.1	Generalidades	1.1
1.2	Teorías yenerales elementales para los pro-	
	cesos de transferencia de masa	1.11
1.2a	Teoría de la película	1.12
1.2b	Módelc de penetración	1.13
1.2c	Teoría de doble capa	1.14
1.3	Transferencia de masa hacia una corriente	
	fluyendo bajo convección forzada	1.18
1.4	Transferencia hacia una fase cuyo movimien-	
	to es debido a convección natural	1.19
1.5	Analogías	1.20
1.5a	Analogía de Reynold	1.21
1.50	Analogía de Chilton-Colburn	1.21
	CAPITULO II	
2.1	Generalidades sobre Torres de Pared kojada	2.1
2. 2	Frabajos realizados sobre torres ue pared-	
	mojada	2.3
	CAPITULO III	
3.1	Descripción des equipo	3.1
3.2	Experimentación	3.4
3.3	Técnico de operación	3.6
	CAPITUIO IV	
4.1	kétodo de Chiculo	4.1
4.2	Secuencia de cálculo	4.4
4.3	Programa usado para cálculo y resultados	A 10
4.4	Análisis de resultados	4.10
4.5	Conclusiones	4.59

CAFITULO V.-

Práctica a desarrollar en el laboratorio.

INTRODUCCION .-

El trabajo aquí presentado tiene por objeto dar un arna más al estudiante de la carrera de Ingeniería Química, que le d<u>e</u> je entrever con mas objetividad los fenómenos de transferencia de masa.

El trabajo aquí presentado está constituído en cuatro etapas, y son:

I.- Presentación de los conceptos básicos y generalidades sobre la transferencia de masa.

Esta primera parte tiene la finalidad de introducir al le<u>c</u> tor, en el proceso que se lleva a cabo en la transferencia de m<u>a</u> sa, así como presentar diferentes teorías y puntos de vista desde los cuales se aborda este tipo de operaciones de Ingeniería.

II.- Presentación del trabajo experimental en torres de p<u>a</u> redes mojadas.

En esta parte se da en general las ventajas que reviste la experimentación de una torre de pared mojada; las correlacionesy deducciones que con este equipo se han llevado a cabo: se bosqueja el trabajo y la operatoria que se sigue para la obtenciónde datos experimentales, por último se fijan los objetivos prácticos que se pretenden de la práctica desarrollada en esta tesis.

III.- La tercera etapa contiene los datos experimentales obtenidos, el modo en que se obtuvieron, puntos ae vista prácticos sobre la mejor operación del equipo, precauciones que se tomaron y que se deben tomar con el método de análisis, así como el tratamiento que se le aplicó a los datos experimentales y los resultados obtenidos.

- III -

IV.- Esta etapa es la conclusión en la cual se da ya la es tructura física de la práctica que se dará en el laboratorio lacual contiene:

Conceptos básicos, descripción del equipo, operatoria, finalidad, correlaciones válidas para el equipo y un sencillo cues tionario que persigue darle un enfoque más didáctico a la prácti ca aquí desarrollada.

Como se ve, esta tesis esta enfocada a tratar de elevar el nivel académico y a preparar ingenieros que apoyen su criterio – en bases prácticas y objetivas, que les permitan en su futuro – profesional desarrollar mejores técnicas y tecnologías para el – mejoramiento de nuestra industria.

Esta tesis no pretende ser solo un requisito para obtenerun título Universitario, sino que se hace con la conciencia de tratar de contribuir en una forma modesta en la mejor formaciónde futuros profesionistas.

CAPITULO I

1.1- GENERALIDADES.

En la Ingeniería química la trasferencia de masa representa una de las partes medulares para el diseño, operación, reformación y comprensión de una planta química.

Difícilmente se podrá encontrar una industria química en que la trasferencia de masa no sea un proceso crítico dentro del contexto general de la planta o complejo industrial.

Dentro de la transferencia de masa se clasifican varias – operaciones unitarias, tales como son la absorción, extracción – 4 líquido-líquido, destilación simple y fraccionada, secado, etc.-Pero todas ellas tienen similitud entre si en lo que respecta alos mecanismos de transferencia de masa, o dicho de otra manera, todos los mecanismos se pueden explicar desde un solo punto de – vista, dando diferentes restricciones o circunstancias de operación especiales para cada tipo de operación unitaria.

Para entender lo anterior comenzaremos por exponer, que en tendemos por transferencia de masa:

La transferencia de masa, es el proceso por el cual una cantidad de material físicamente localizable se transporta de un punto 3 otro de un sistema por acción de una fuerza directora.

Esta fuerza directora, en general, es un gradiente de concentración (difusión molecular) una fuerza mecánica como la agitación (transferencia de masa por convección), o puede ser un gradiente térmico, eléctrico, magnético, etc.

Para los fines prácticos ae este trabajo hablaremos del -

- 1.1 -

transporte de material debido a una fuerza directora llamada gr<u>a</u> diente de concentración.

Este transporte de material puede ser llevado a cabo por un mecanismo molecular llamado "Difusión Holecular", o por un m<u>e</u> canismo turbulento llamado "Transferencia de masa por Convec+--ción".

El primer mecanismo es el que se lleva a cabo cuando en una mexcla un componente dado (llámase componente A), se mueve por el seno de máa mexcla en virtud de un gradiente de concentra ción existente en la mexcla desde un punto rico en A hasta un punto pobre en A. Este movimiento del componente A, origina unflujo en el sentido de llegar a un equilibrio (llámase dirección Z) en el cual la concentración de la mexcla sea homogénea en todos sus puntos y el flujo de material sea cero. Este flujo de componente A puede definirse:

$$FLUJO = - \begin{pmatrix} densidad \\ total \end{pmatrix} \begin{pmatrix} coef. de \\ difusión \end{pmatrix} \begin{pmatrix} gradiente de \\ concentración \end{pmatrix}$$

$$\int_{A} = -C \int_{A} merclo \frac{dy_{A}}{dz}$$
(1)

a esto es lo que llamamos primera ley de Ficks o de difusión; en ella se encuentran los siguientes términos:

 $J_{A} = Flujo de A en la dirección Z$ C = Concentración total de la mexcla $D_{A-mez} = Coeficiente de difusión del componente A en la - mexcla$ $\frac{dY_{A}}{dZ} = Gradiente de concentración$ Para mayor claridad definiremos la difusión como: "Es el movimiento bajo la influencia de un estímulo físico

- 1.2 -

interno, de un componente individual a través de una mexcla". En estas circunstancias el coeficiente de difusión no es mas que la capacidad que tiene un componente A de difundirse por una mexcla (para el caso de una mexcla binaria sería la capaci--dad de A de difundirse por 3) a una temperatura y presión determinadas, ya que en general es independiente del gradiente o va--riación de la concentración.

Aunque un componente'A se puede transportar por virtud deun gradiente, también puede ser transportado en virtud de un movimiento conjunto de la mezcla.

Lo anterior puede ser deducido matemáticamente y se llegaa una expresión como la siguiente (todo partiendo de la primeraley de Ficks):

 $N_A = c D_A$ -mezela $\nabla y_A + Y_A \sum_{l=1}^n N_l \cdots (2)$

En la que encontramos un operador "nabla" que le da más generalidad a la ecuación, ya que denota un gradiente tridimensional y engloba cualquier gradiente particular en una dirección – privilegiada.

Ahora bien en la ecuación viene compuesta de dos partes: $-CD_{A-comercela}\nabla y_A = Que nos da el flujo molar debido exclu$ sivamente a un gradiente de concentra--

> ción. $Y_{A}\sum_{i=1}^{n} N_{i} = Que nos refleja el flujo molar del com$ ponente A como el resultado del movi--miento conjunto de la mezcla.

Particularmente para una mexcla binaria y flujo en una sola dirección Z.

- 1.3 -

$$N_{Az} = -c D_{A-0} \frac{d Y_A}{d z} + Y_A (N_A + N_B) - \dots (3)$$

Ahora bien, aunque parecieran bastante fáciles estas ecuaciones y perfectamente desarrolladas, se tiene el gran problemade que no existen aún relaciones teóricas lo suficientemente con fiables que nos den con un buen grado de exactitud el valor delsusodicho coeficiente de difusión $D_A - B$; dado que en la mayoría de los casos es necesario su determinación experimental.

Enfoquemonos a mezclas binarias; muchos investigadores han propuesto ecuaciones para la determinación de dichos coeficien-tes. Así podemos mencionar:

Para mezclas gaseosas isotopicas Jeans, Chapman, & Sutherland, a partir de argumentos de Teoría de Colisión, desarrolla-ron una ecuación para la difusividad de un componente A en la mezcla de A y su isótopo A', de la siguiente manera:

$$D_{A-A^{2}} = \frac{2}{3\pi^{3}} \frac{2}{d^{2}} \frac{(-k^{3}T^{3})}{m} \frac{k^{2}}{m} - \cdots - (4)$$

donde:

P = Presión total

d = Diámetro de la molécula esférica

k = Constante de Boltzmann

m = Masa de las moléculas

De esta ecuación y basados en teorías más modernas de Col<u>i</u> sión Hirschfelder, Bird, & Spotz, usando el potencial de Lennard Jones, derivaron la siguiente expresión:

$$D_{A-B} = 0.001858 T^{3/2} \left(\frac{1}{M_A} + \frac{1}{M_B}\right)^{1/2} \left(P T_{AB}^2 \Omega\right) \cdots \cdots (5)$$

donde:

$$D_{A-B} = Es \ la \ difusividad \ del \ componente \ a \ través \ de B \ (cm^2/seg.)$$

$$T = Temperatura \ absoluta \ ^{\circ}K$$

- 1.4 -

- #i = Pesos moleculares respectivos
- P = Presión absoluta (atm.)
- J_{AB} = Diámetro de Colisión, parámetro Lennard-Jones (2)
 - Ω = Integral de colisión, que es una función adimensional de la temperatura y del campo poten cial intermolecular entre una molécula de A y otra de B.

Otra correlación para una mezcla gaseosa es la dada por -Gilliland:

$$D_{A-B} = 0.00945 \frac{T^{\gamma_2}}{(\gamma_A^{\gamma_3} + \gamma_B^{\gamma_3})^2} \left(\frac{1}{M_A} + \frac{1}{M_B}\right)^{\gamma_2} - \dots - (6)$$

donde:

$$D_{A-B} = 0.00945 \frac{1}{(V_{A}^{1/3} + V_{B}^{1/3})^{2}} \left(\frac{1}{M_{A}} + \frac{1}{M_{B}}\right) - \dots - (0)$$

$$D_{A-B} = Es \ 1a \ difusividad \ molar \ (1b.mol/ft-hr)$$

$$T = Temperatura absoluta (°R)$$

k'i = Pesos moleculares respectivos

Vi = Volúmenes moleculares respectivos a la tempera tura de ebullición.

Estas relaciones son aplicables para mezclas gaseosas no polares, dando la ecuación (5) errores del 6%.

Para mesclas líguidas existen otras relaciones, pero éstas presentan mucha menor exactitud, ya que la investigación sobre dijusión en líquidos ha cosechado menores logros; así podemos mencionar las relaciones de filke-Chang:

$$\frac{D_{A \cdot B} \mathcal{M}_{B}}{T} = \frac{7.4 \times 10^{18} (\Gamma_{B} M_{B})^{\frac{1}{2}}}{V_{b}^{\circ \cdot \circ}}$$
(7)
donde: $D_{A-B} = Difusividad masa de A a través de B$
 (cm^{2}/seg)
 $\mathcal{M}_{B} = Viscosidad de solvente$

- 1.5 -

T = Temperatura absoluta °K

N_p = Peso molecular de solvente

 $V_b = Volúmen molecular de soluto a su temperatura$ normal de ebullición (cm³/g mol)

 $\prod_{B} = Parámetro de asociación específico para cada solvente.$

Esta ecuación es medianamente válida para soluciones dilu<u>f</u> das.

Pero en general todo lo anterior también presupone una experimentación para la determinación de los parámetros que influgen directamente sobre el coeficiente de difusividad, de ahí que en general se recomienda solo usarse como último recurso para la determinación de los coeficientes de difusión en carencia de datos experimentales disponibles.

Ahora bien, a partir de datos experimentales para mexclasbinarias se ha desarrollado y encontrado como satisfactorio el cálculo de coeficientes de difusión en mexclas multicomponentespor el uso de las siguientes ecuaciones:

 $D_{A-comezcla} = \frac{1}{(\frac{y_0'}{D_{A-0}} + \frac{y_c'}{D_{A-c}} + \dots) \dots (8)}$ $Y_0' = \frac{y_0}{(\frac{y_0}{B} + \frac{y_c}{A} + \frac{y_0}{A} + \dots + \frac{y_n}{A}) \dots (9)}$ Para el desarrollo más sistemático de los procesos de ----

transferencia de masa se puede aefinir la siguiente ecuación decontinuidad:

Ec. general deducida a partir del principio de conserva--ción de masa, la cual puede ser particularizada para cada tipo -

- 1.6 -

de transporte de material,

donds: $\nabla \cdot N_A = Flujo$ neto de A $\frac{dCA}{dt} = Acumulación de A$ $R_A = Aparición o desaparición de A por reacción$ química

o sea el principio fundamental de:

Lo que entra = lo que sale - acumulación - reacción química.

El coeficiente de difusión o difusividad masa para un gaspuede ser medido experimentalmente en una celda de difusión de -Arnold. Esta celda se ilustra en la figura No. 1. El tubo an-gosto, el cual es parcialmente llenado con líquido puro A, se mantiene a una temperatura y presión constantes. Un gas B se ha ce fluir transversalmente por la parte abierta del tubo, siendoeste gas inmicíple e inerte con respecto a A. El componente A se vaporiza y se difunde dentro de la fase gaseosa; esta velocidad de vaporización puede ser físicamente medida y puede también ser matemáticamente expresada en términos del flujo molar.

Considérese el volumen de control <u>SAZ</u>, donde <u>S</u> es el áreatransversal del tubo. El balance de masa en estado estable para dicho volumen de control será:

$$SN_{A_z} = ON_{A_z} = O$$

Dividiéndo entre el volumen $S\Delta z$, y evaluando el límite -cuando $\Delta z \longrightarrow 0$ se obtiene:

UZ "" Esta relación estipula que el flujo molar de A es constan-

CELDA DE ARNOLD

Fig. No. 1

- 1.8 -

te a través de la fase gaseosa desde 🛛 🛪 hasta 🛪 2.

La ecuación B puede ser obtenida a partir de la ec. 10, la cual desarrollada será:

$$\frac{d}{dx} N_{Ax} + \frac{d}{3y} N_{Ay} + \frac{\delta}{\delta z} N_{Az} + \frac{\delta c_A}{\delta z} - R_A = 0$$

Para un proceso en estado estable y sin reacción química,se obtiene la ec. B por reducción de la ec. 10; tomando en cuenta que la difusión se lleva a cabo en una sola dirección (la dirección z).

Una deducción similar se puede hacer para el componente B

$$\frac{d}{dz}$$
 N_{ez}=0....C

y de acuerdo con la ec. C el flujo molar de B es constante desde x_1 hasta x_2 . Ahora, si consideramos el plano x_1 y tomando – en cuenta la condición inicial de insolubilidad de B en A, se – concluye que $N_{BZ} = 0$ en el plano Z_1 ; aplicando esta condición a la ec. C se concluye que $N_{BZ} = 0$ a través de la columna. De ahí queB es un gas estacionario.

El flujo molar constante de A está descrito por:

$$N_{AZ} = -C D_{A-B} \frac{dy_{A}}{dz} + Y_{A} (N_{AZ} + N_{BZ}) - ----(3)$$

aplicando $N_{RZ} = 0$ queda:

Esta ecuación puede ser integrada para las siguientes condiciones:

 $Z = Z_1 Y_A = Y_{A1}$ $Z = Z_2 Y_A = Y_{A2}$

De la ecuación B, y suponiendo que el coeficiente de diju-

- 1.9 -

sión es independiente de la concentración queda:

$$N_{AZ} \int_{z_1}^{z_2} dz = c D_{A-B} \int_{y_{A_1}}^{y_{A_2}} \frac{Jy_{A}}{1-y_{A}} = E$$

Integrando:

$$N_{AZ} = \frac{c}{(z_2 - z_1)} \ln \frac{(1 - Y_{A_2})}{(1 - Y_{A_1})} - \cdots - F$$

Si la concentración media logarítmica del componente B sedefine como:

$$y_{BIN} = \frac{y_{B_2} - y_{B_1}}{\ln(y_{B_2} / y_{B_1})}$$

y para el caso de una mexcla binaria, esta puede ser expresada como:

$$Y_{BIN} = \frac{(1 - y_{A_2}) - (1 - y_{A_1})}{\ln[(1 - y_{A_2})/(1 - y_{A_1})]} = \frac{Y_{A_1} - Y_{A_2}}{\ln[(1 - y_{A_2})/(1 - y_{A_1})]} - (11)$$

sustituyendo (11) en (F)

$$N_{A_{Z}} = \frac{c D_{AB} (Y_{A_{1}} - Y_{A_{2}})}{Z_{2} - Z_{1}} + \frac{c D_{AB} (Y_{A_{1}} - Y_{A_{2}})}{Y_{B} | n} - - - (12)$$

En función que N_{AZ} es posible medirla físicamente, de -aquí se puede medir experimentalmente la difusividad del compo-nente A en un gas estacionario B.

A esta ecuación se le llama: "Ecuación de difusión de un gas a través de otro gas estacionario, en estado estable".

Existe el proceso en el cual el componente en movimiento – no es único (destilación), es decir, la difusión es equimolecu-lar; para este caso se usa la siguiente ecuación, deducida igual mente a partir de la ecuación (3) y (10).

- 1.10 -

 $N_{AZ} = \frac{\overline{D}_{A-B}}{\overline{Z_2} - \overline{Z_1}} \left(C_{A_1} - C_{A_2} \right) = \frac{\overline{D}_{A-B}}{(\overline{Z_2} - \overline{Z_1})RT} \left(\widetilde{\overline{P}}_{A_1} - \widetilde{\overline{P}}_{A_2} \right) - (13)$

A esta ecuación se le llama "Ecuación de difusión equimol<u>e</u> cular en estado estable".

1.2.- TEORIAS GENERALES ELEVENTALES PARA LOS PROCESOS

TRANSFERENCIA DE MASA.

Como se mencionó al principio, existen dos tipos de transferencia de masa, molecular y tubulento (por convección).

En la sección anterior se bosquejó y se dió una pequeña r<u>e</u> seña de las ecs. útiles en difusión molecular. Sin embargo la mayoría de los procesos se llevan a cabo por transferencia de m<u>a</u> sa por convección, sea esta natural (térmica, o por diferencia de densidades) ó forzada (agitación mecánica); este tipo de ---transferencia se lleva a cabo, en el transporte de que es objeto un componente <u>A</u> en virtud del acarréo que sufre al estar la mezcla afectada por una fuerza externa que lo mueve como un todo.

Este proceso de transferencia de masa por mecanismo turbulentos, ha sido poco estudiado, debido a las dificultades que -presenta para su representación matemática, de ahí que solo se ha postulado una ecuación general empírica de la siguiente forma:

$$N_{AZ} = R_{c} (C_{A2} - C_{A}) - \dots (14)$$

donde:

 $R_{C} = Es$ el coeficiente de transferencia de masa por convección.

 $C_{Ai} = Es$ la concentración en la interfase $C_{A} = Ia$ concentración en el seno del fluído con flujo turbulento.

En general existen dos tipos de coeficientes de transfe-rencia de masa:

Los llamados individuales (que se denominan con letras m_{1}^{i} núsculas), los cuales son los coeficientes que miden la resis-tencia a la difusión de un componente A en forma turbulenta deun solo lado de la interfase, es decir, mide la resistencia que opone una sola de las fases a la transferencia de masa.

Los llamados coeficientes totales (overall) (expresados con letras mayúsculas), que miden la resistencia total que oponen ambas fases en conjunto para la transferencia de masa, refe ridos dichos coeficientes a una de las fases.

Dentro de estos dos tipos de coeficientes se pueden clasi ficar cada coeficiente de acuerdo a la forma en que esté expresada la fuerza directora, es decir, en función de presiones, 6en fracción mol., relación mol, etc.

Resumiendo, existen dos tipos de coeficientes, individuales, que miden la resistencia a la transferencia de masa en una sola fase, y totales, que miden la resistencia total de ambas fases a la transferencia masa; dentro de cada tipo, estos coefi cientes son particulares según el tipo de fuerza directora a la que estén relacionados.

Ahora bien, algunas teorías se han propuesto, mismas quese presentan en una forma somera aquí.

1.2a.- TEORIA DE LA PELICULA.-

El concepto de película está basado en un modelo, en el cual la resistencia total a difundirse desde una superficie líquida a una corriente gaseosa se supone comprendida en una capa

- 1.12-

estacionaria de prosor S.

En otras palabras, para este modelo, des una longitud ficticia, la cual representa al grosor de una capa de fluído es tacionario que ofrece la misma resistencia de difusión molecu-lar, como la encontrada por los procesos combinados de difusión molecular y difusión debida al arrastre del fluído en movimiento. Si este modelo fuera el correcto, el coeficiente de transferencia de masa por convección podría expresarse en función del coeficiente de difusión gaseosa, esto es:

$$h_e = \frac{D_{A-B} P}{B \ln S} - - - - - - - (15)$$

donde:

P = Presión total (atm) $P_{B \mid n} = Presión parcial media logarítmica del componente B.$

Todo esto, cuando el componente que se difunde se trans-porta a través de un gas que no se difunde.

Esto dice claramente que el R_C es directamente propor-cional al D_{1-R^2} lo cual no es totalmente cierto.

En general esta teoría no ha sido debidamente comprobadaexperimentalmente, ya que no se ha podido medir con exactitud el grosor de dicha película; si es que ésta existe.

1.2b. - MODELO DE PENETRACION. -

Dice que el componente A después de penetrar en el medioabsorbente una distancia corta (esto es, el medio de interés) desaparecería vía reacción química de solvatación, de tal manera que es relativamente corto el tiempo de contacto. así:

- 1.13 -

$P_{C} = (D_{A-B} | q_{T} texposición)^{1/2} - - - - (16)$

Toor y l'archello han apuntado que el concepto de penetración de Danckwerts, es válido solamente cuando la superficie se renueva con relativa rapidez, de tal manera que es básica una provisión de elementos nuevos continuamente alimentados a la su perficie. Para elementos no nuevos en la superficie, una condi ción de gradiente de concentración en estado estable es estable cida, tal como lo predice la teoría de película; de esta manera velocidades de transferencia de masa pueden ser directamente -proporcionales a la difusividad.

Cuando la superficie de contacto está formada por una can tidad equilibrada de elementos nuevos y no nuevos, un estado en que R_C es proporcional a D_{A-B} a una potencia que está entre-0.5 y 1.0 se presenta. Esto es un hecho que se ha medido experimentalmente; tal cosa sugiere que en general se podría considerar que ambos mecanismos son válidos y funcionan durante el proceso de transferencia de masa.

1.2c.- TECRIA DE LA DOBLE CAPA.-

Otra teoría es la postulada por #hitmann, la cual dice – que la transferencia de masa entre dos fases en contacto está – compuesta de tres pasos: Transporte del material desde el senode la fase rica a la interfase, paso del material por la interfase y transporte del material desde la interfase al seno de la fase pobre.

La teoría tiene dos suposiciones fundamentales que son: La velocidad de transferencia entre las dos fases es con-

trolada por la velocidad de difusión para cada lado de la inter fase, y la resistencia que ofrece la interfase para la transferencia de masa es nula.

Esta última aseveración ha sido comprobada experimental-mente.

La teoría se ilustra en la Fig. No. 2, donde la fuerza d<u>i</u> rectora en la fase gaseosa será el gradiente: $(P_{AG}-P_{Ai})$ siendorespectivamente la presión parcial volumétrica y de interfase,y la fuerza directora en el líquido será: $(C_{Ai}-C_{AB})$ donde respectivamente serán la concentración en la interfase y volumétr<u>i</u> ca; ahora bien, P_{Ai} y C_{Ai} serán las composiciones de equilibrio.

A partir de esto se define:

$$N_{AZ} = \Re_{c} (P_{AG} - P_{Ai}) - - - - - - (17)$$
$$N_{AZ} = \aleph_{L} (C_{Ai} - C_{Ak}) - - - - - - (18)$$

donde $k_{g} y k_{L}$ son los coeficientes individuales de transfere<u>n</u> cia de masa por convección; y donde la ecuación:

$$-\frac{h_{L}}{h_{G}} = \frac{(P_{AG} - P_{Ai})}{(C_{Ai} - C_{AE})} - - - - - - (19)$$

da la pendiente de la línea de unión (muy útil en el diseño deequipo), como se ve en la Figura No. 3.

Debido a la dificultad que representa la medición de loscoeficientes de transferencia de masa individuales por convec-ción se define:

$$\begin{split} N_{AZ} &= K_G \qquad (P_{AG} - P_A^*) \\ N_{AZ} &= K_L \qquad (C_A^* - C_{AL}) \end{split}$$

- 1.15 -

donde P es la presión en equilibrio con C ,

y C, la concentración en equilibrio con P_{AG}

siendo K_G y K_L los coeficientes totales de transferencia de masa basado en la fuerza directora de presiones parciales y de -concentraciones respectivamente.

La transferencia de masa por convección que involucra eltransporta de material entre una superficie límite y un fluídoen movimiento, 6 entre dos fluídos en movimiento, relativamente inmicibles entre ellos, se ha dicho que es descrita por la ecu<u>a</u> ción.

$$N_A = R_c \Delta C_A$$

donde el flujo de masa, N_A , **25** en la dirección del decrecimiento de la concentración. Esta ec. es la definida para a_C , que es el coeficiente para transferencia de masa por convección, yes análoga a la definida para el coeficiente de transferencia de calor por convección.

Esta similitud nos da una pista de la posibilidad de calcular este coeficiente de transferencia de masa; ya que es unode los grandes problemas para la Ingeniería Química, el cálculo de dichos coeficientes.

Hay cuatro métodos para su evaluación, y son: I.- Análisis dimensional acopalado con la experimentación. 2.- Análisis exacto de la capa límite. 3.- Análisis aproximado de la capa límite. 4.- Analogías entre momentum, energía, y transferencia de

masa.

- 1.17 -

Los métodos más importantes y únicos que se trataran aqui son el análisis dimensional y las analogías.

El análisis dimensional predice varios parámetros adimensionales, los cuales son útiles para correlacionar datos experimentales. May dos procesos importantes de transferencia de masa los cuales consideraremos: transferencia de masa hacia una corriente fluyendo bajo convección forzada y transferencia de masa a una fase que se está moviendo bajo condiciones de convec ción natural.

1.3. - TRANSFERENCIA DE MASA HACIA UNA CORRIENTE

FLUYSNDO BAJO CONVECCION FORZADA .-

En una forma general podremos decir que los parámetros -que son significativos dentro de la convección forzada son:

Longitud característica	L	L
Densidad del fluido	z	M/L ³
Viscosidad de fluido	М	H/Lt
Velocidad del fluido	υ	L/t
Difusividad del fluido	, D _{AB}	L^2/t
Coeficiente de transferencia de	emasa ka	L/t

Con las variables anteriores describimos geometría del -sistema, el flujo, las propiedades del fluido, y la cantidad que es de nuestro interés primario.

Por el método de Buckingham se ve claramente que este sis tema se puede resolver con tres grupos adimensionales: asi $\dot{s}i$ tomamos como variables centrales D_{A-B} , f, L tenemos:

- 1.19 -

$$TT_{1} = D_{AB}^{a} j^{b} l^{c} kc$$

$$TT_{2} = D_{AB}^{a} j^{c} l v$$

$$TT_{3} = D_{AB}^{a} j^{h} l^{i} \mu$$

resolviendo tendremos que:

$$sh = \Pi_1 = \frac{k_e L}{D_{A-0}}; \Pi_2 = \frac{Lv}{D_{A-0}}; \Pi_3 = \frac{\mathcal{U}}{\int D_{A-0}} = S_e; \frac{\Pi_2}{\Pi_3} = \frac{Lv}{\mathcal{U}} = Re_L$$

El resultado del análisis dimensional de transferencia de masa por convección forzada será:

$$Sh = f(R_{\ell}, Sc)$$

que es análogo al de transferencia de calor.

1.4.- TRANSFERE"CIA HACIA UNA FASE CUYO MOVINIENTO

ES DEBIDO A CONVECCION NATURAL.

La convección natural ocurre cuando existe una variaciónen la densidad dentro de una fase líquida o gaseosa, La variación de densidad puede ser debida a una diferencia de temperat<u>u</u> ra o a una gran diferencia de concentraciones.

En general las variables que influyen en el proceso son:

L	L
D_{A-B}	L^2/t
P	M/ L ³
М	≟/Lt
o A P.	$E/L^2 t^2$
kc	L/t
	L D _A -B P M S A P _A k c

De nuevo usando el método de Suckingham y utilizando como

variables centrales a $D_{A-B.L.}$ \mathcal{M} obtendremos:

$$TT_{1} = D_{AB}^{a} L^{b} \mathcal{U}^{c} kc$$

$$TT_{2} = D_{AB}^{d} L^{f} \mathcal{U}^{S} g$$

$$TT_{3} = D_{AB}^{b} L^{i} \mathcal{U}^{S} g \Delta \tilde{g}_{A}$$

resolviendo se encuentran los siguientes números:

$$TI_{1} = \frac{keL}{D_{A}-B} \equiv Sh; TI_{2} = \frac{\beta D_{A}}{\mu} \equiv \frac{1}{5e} \quad y \quad TI_{3} = \frac{1^{3}}{\mu} \frac{3 \beta A}{\mu} D_{AB}$$

que da por resultado:

$$TI_{2}TI_{3} = \frac{1^{3} g \Delta SA}{\beta v^{2}} \equiv Gr_{AB}$$

$$Sh = f \quad (Gr_{AB}, Sc)$$

Estas son las dos más importantes relaciones para la de-terminación de coeficientes de transferencia de masa forzada ynatural.

1.5. - ANALOGIAS. -

La similitud que existe entre las ecuaciones de transfe-rencia de masa, energía y momentum, podrían dar una solución al cálculo de los coeficientes de transferencia de masa, así las condiciones importantes para la aplicación de este cálculo se-rían:

- 1.- Las propiedades físicas son constantes.
- 2.- No hay producción de masa o energía dentro del sist<u>e</u>
 ma, es decir, no hay reacción química homogénea.
- 3.- No hay emisión o absorción de energía radiante.

4.- No hay discipación viscosa.

5.- Los perfiles de velocidad no son afectados por la transferencia de masa; esto es, la transferencia de-

masa es lenta.

1.5a.- ANALOGIA DE RETNOLDS.-

Esta analogía dice que los mecanismos de transferencia de masa son idénticos a los de momentum; esto es cierto si consid<u>e</u> ramos que el Sc = 1 dándonos:

$$\frac{d}{dy} \quad \frac{C_A - C_{AS}}{C_{A \, \text{cd}} - C_A} \begin{vmatrix} z & d \\ z & d \\ z & 0 \end{vmatrix} = \frac{d}{dy} \quad \frac{vx}{v_{co}} \quad y = 0$$

a partir de esto y si tomamos en cuenta que en un punto cual--quiera de la superficie de la interfase (y=0) podemos escribir:

$$N_{Ay} = -D_{A-B} \qquad \frac{d}{dy} \left(C_A - C_{AS} \right) \qquad y=0 \qquad = k_e \left(C_{AS} - C_{AB} \right)$$

combinando estas ecuaciones nos queda:

tomando en cuenta que el coeficiente de piel está definido como

$$C_{p} = \frac{T_{o}}{\beta u_{o}^{2}/2} = \frac{2\mu \left(\frac{dv_{*}}{dy}\right)|_{y=0}}{\beta v_{o}^{2}}$$

usando esta definición y rearregrando queda:

$$\frac{k_e}{v_{\infty}} = \frac{c_f}{2}$$

Datos experimentales para transferencia de masa dentro de una c<u>o</u> rriente gaseosa se aproximan a este resultado, si el Schmidt es cercano a uno, si la resistencia al flujo es debida a fricciónsobre superficie lisa, y no siendo válida cuando se presenta r<u>e</u> sistencia a la forma.

1.5B.- ANALOGIA DE CHILTON-COLBURN.-

ütilizando el resultado que da el análisis exacto de la 🗕

capa límite que es de:

$$Nux_{AB} = 0.332 Rex Sc$$

1/0

1

Si dividimos ambos lados de la ec. por Rex S_r 1/3 obtenemos:

$$\frac{N_{ux}}{RexSc} = \frac{0.332}{Rex} \frac{1}{2}$$

Esta ec. se reduce a la analogía de Chilton-Colburn cuando sustituimos dentro de esta expresión la solución de Blasius para la capa límite laminar:

$$\frac{N_{UXAB}}{R_{UY}S_{c}^{\prime}} = \frac{N_{UXAB}}{R_{UX}S_{c}} S_{c}^{\prime} = \frac{Cf}{2}$$

$$O' \left(\frac{k_{e} \chi}{D_{A} \cdot B}\right) \left(\frac{\mathcal{U}}{\chi V_{W}f}\right) \left(\frac{f}{D_{A-B}}\right) \left(S_{c}\right)^{\frac{\gamma_{3}}{2}} = \frac{k_{e} S_{e}^{\prime}}{V_{w}} = \frac{Cf}{2}$$
El factor $Nux_{AB/Rex} Sc^{1/3} = \left(\frac{k_{e}}{V_{w}}\right) Sc^{2/3}$ fue derivado empíri-
camente por Chilton-Colburn y es simbolizado por J_{D} . Esta ana
logía es válida para gases y líquidos dentro del rango 0.6
calor fue definida:

$$I_{\mu} = \frac{h}{Pv_{\infty}c_{p}} P_{r}^{3} = \frac{c_{f}}{2}$$

Así la analogía completa es:

$$\vec{J}_H = \vec{J}_D = \frac{Cf}{2}$$

La cual relaciona los tres tipos de transporte en una sola expresión. La última ec. es exacta para placas planas, y satis-factoria para otros sistemas de diferente geometría en los cuales no exista resistencia a la forma. Para los sistemas dondela resistencia a la forma es importante se ha encontrado:

$$\mathbf{J}^{\mathsf{M}} = \mathbf{J}^{\mathsf{D}} \neq \frac{\mathbf{c}^{\mathsf{A}}}{\mathbf{z}}$$

- 1.22 -

La ec. (L) relaciona la transferencia de masa y calor por convección; y permite la evaluación de uno de los coeficientes por determinación experimental del otro. Esto es válido para gases y líquidos dentro del rango 0.6 < Sc < 2500 y 0.6 < Pr < 100 +En general existen otras analogías como la de Prandtl y Von Kar man cuyo resultado es el siguiente:

$$sh = \frac{(c_{f/2}) R_{e} S_{c}}{1 + 5 (C_{f/2})^{1/2} [S_{c-1} + \ln [(1 + 5S_{e})/6]]}$$

Pero se ve su relativa inmanuabilidad conforme se van complica<u>n</u> do.

Ahora bien, precisamente en el cálculo de los coeficien-tes de transferencia de masa individuales, es en lo que la exp<u>e</u> rimentación en torres de pared mojada es útil, dado que puedenser determinados para diferentes sistemas de transferencia de masa entre fases.

La siguiente correlación ha sido deducida a partir de los resultados del análisis dimensional por Gilliland and Sherwood, para los coeficientes individuales en la fase gaseosa en una t<u>o</u> rre de pared mojada:

$$\frac{k_{C} D}{D_{AB}} \frac{P_{Bln}}{P} = 0.023 \ Re^{0.83} \ Sc^{0.44}...(22)$$

donde:

- 1.23 -

$$\begin{split} D_{A-B} &= Difusividad masa \ (cm^2/seg) \\ P &= Presión total \\ P_{Bln} &= Presión media logarítmica de B (presión parcial). \end{split}$$

y para el coeficiente de transferencia de masa individual por convección en la película líquida bajante:

$$\frac{\aleph_L z}{D_{A-B}} = 0.433 (Sc)^{1/2} \left(\frac{9^2 g z^3}{2} \right) \left(\frac{R_{eL}}{2} \right)^{-0.4}$$

donde:

$$D_{A-B} = Difusividad masa de A en B (cn2/seg)$$

$$\int = Densidad del líquido B$$

$$\mathcal{M} = Viscosidad de B$$

$$g = Aceleración de la Gravedad$$

$$Re_{L} = Reynolds del líquido bajante = 4 \Gamma / \mathcal{M}$$

$$Sc = Schmidt evaluado a la temperatura de la$$

$$película líquida$$

$$\Gamma = La velocidad másica de líquido por uni-
dad perimétrica.$$

Como se ve estas dos ecs. combinadas con el hecho de queen la torre de pared mojada, podemos calcular el área de transferencia con bastante exactitud, nos resulta un equipo bastante completo para experimentación y determinación de dichos coefi-cientes individuales.

Con todo lo anterior se ha intentado dar una visión muy general de lo que es la transferencia de masa, sus mecanismos,teorías básicas, así como conceptos que son útiles para el presente trabajo.

BIBLIOGRAFIA

CAPITULO I

Unit Operation of Chemical Engineering.-McCabe and Smith; Kc Graw Hill, 1965.-Fundamentals of Homentum Heat and Hass Transfer.-Helty, Hicks and Hilson; #iley, 1969. Principles of Unit Operations. -Foust, #enzel, Clump and Haus.-Wiley Toppan, 1960.-Transport Phenomena Bird, Steward Lightfoor.-Wiley and Son, 1960.-Diffusion Coefficients in Caseous Systems. Guilliland and Sherwood; Ind. Ing. Chem. 26 (5) 516-525. 1935.lass Transfer from solid shapes to water in streamiline and turbulent flow. -Linton and Sherwood; Chem. Eng. Progr. 46; 258-264-,

1950.-

CAPITULO II

2.1.- GENERALIDADES SOBRE TORRES DE

PARED MOJADA .-

a) .- QUE ES UNA TOPRE DE PARED MOJADA.-

En general podemos decir que una torre de pared mojada, no es más que un tubo vertical por cuyas paredes interiores se deja escurrir un líquido, mientras que por la parte inferior se alimenta un gas u otro líquido inmisible con el fin de proveerun contacto entre ellos, por medio del cual se pueda llevar a cabo una absorción, desorción, humidificación, o extracción líquido-líquido.

Como es lógico pensar, estas torres tienen una longitud conocida, además se conoce el diámetro interior de dicho tubo,y si pensamos además en una torre hecha de vidrio, presenta dos ventajas fundamentales que son: permisibilidad para la medición del grosor de la película que escurre por sus paredes y una superficie bastante humectable; tenemos como consecuencia necesaria, que dichas torres nos proveen de una área de contacto de interfase bien definida y fácilmente calculable, por lo tanto conocida.

Esta ventaja es una de las más importantes que presenta el equipo, ya que como es sabido, en la mayoría de los equipos-2 de transferencia de masa, se presenta el problema de la medi--ción del área de transferencia atraves de la cual se lleva a c<u>a</u> bo el transporte del material.

Debe tomarse en cuenta y no perderse de vista en ningún -

- 2.1 -

momento, que en este equipo existe al mismo tiempo una transferencia de momentum y masa; sin embargo, se puede considerar que para tiempos de contacto cortos (de hecho una torre o columna de pared mojada presenta cortos tiempos de contacto) los dos m<u>e</u> canismos no se interfieren entre sí.

Otra característica de este equipo es la de que el tiempo de contacto entre las dos fases es pequeño (en general las to-rres son ae pequeña longitud, 0.5 -1.5 m) y por lo tanto una p<u>e</u> queña transferencia de masa se lleva a cabo, con lo que la fase líquida que escurre se puede considerar (a excepción de extracción líquido-líquido) como inalterada, ventaja que también es muy importante en los trabajos experimentales que se realizan en este equipo.

Todo lo anterior lo hace un equipo muy aceptable para los estudios sobre transferencia de masa.

Uno de los mayores problemas que presentaba este equipo en sus principios era el efecto que había en los bordes de la columna, llamados efectos finales. Estos efectos son aprecia-bles. Tomando en cuenta que es deseable que no haja otro con-tacto entre las fases que no sea el presentado en la columna, se idearon muescas tanto de alimentación de líquido como de recolección de este con el fin de que estos efectos finales fue-rán eliminados en lo más posible. Podemos decir que aproximad<u>a</u> mente este equipo, con los aditamentos anteriores da una exact<u>i</u> tud de medición mucho muy aceptable. El detallamiento del equi po será más explícitamente reseñado cuando se describa.

- 2.2 -

Una desventaja existente en la torre de pared mojada es la dificultad que presenta para que no aparezcan ondulaciones (en la capa líquida, ja que éstas ondulaciones provocan puntos de turbulencia localizados en los cuales existe una mayor trans ferencia de masa. Este fenómeno en condiciones críticas provoca datos experimentales falsos.

L'Ahora bien, esto puede ser resuelto con un buen control – de flujo y con una longitud de columna conta, con el fin de ob tener pocas o uniformes ondulaciones las cuales pueden tener un efecto despreciable.

2.2. - TRABAJOS REALIZADOS SOBRE TORRES

DE PARED HOJADA. -

[Por la faciliuad que presenta este equipo para su manejose ha usado para diferentes fines, en los estudios sobre transferencia de masa.

Así Gilliland & Sherwood ⁽⁺⁾ presentaron datos de la vel<u>o</u> cidad de vaporización de nueve diferentes líquidos (puros) en una corriente de aire flugendo en una columna de pared mojada. La resistencia difusional o la vaporización fué expresada en términos del grosor de película efectiva, x, o grosor de una capa de gas estacionario, la cual ofrecía la misma resistencia ala difusión como la existente realmente. Los resultados obten<u>i</u> dos en flujo turbulento están bien relacionados por las ecuacio nes:

$$\frac{d}{\chi} = 0.023 \left(\frac{dvf}{x}\right)^{0.83} \left(\frac{\mu}{PD}\right)^{0.44} \cdots A$$

- 2.3 -
donde d = diámetro interior de la columna; v, p, k = velocidadlineal, densidad, viscosidad de la corriente turbulenta de gas, respectivamente; y D = Coeficiente de difusión para el sistema gas, vapor.

De esta ecuación se desprende:

$$\frac{\mathbf{k}_{cd}}{D} \quad \frac{P_{B \ln \gamma}}{P} = 0.023 \ Re^{0.83} \ Sc^{0.44} \ \dots \ B$$

Las pruebas fueron hechas bajo un rango de presión totalde 110 a 2330 mm. hg. y los datos fueron muy apegados a la ecu<u>a</u> ción de Stefan para difusión a través de una película.

 $Na = D P \blacktriangle p / R T x P_{Blm} \dots C$ Los resultados fueron comparados con la teoría de Colburn y la teoría de Arnold, y los datos obtenidos en flujo viscoso jueron correlacionados de acuerdo a la ecuación B similar a lausada en transmisión de calor, basada en la ecuación teórica de Graetz.

El aparato usado consistía en un tubo vertical de 2.67 cm. de diámetro interior y 117 cm. de longitud, siendo que la vaporización se lleva a cabo desde la película de líquido que escurría sobre las paredes interiores de la columna a la corrientedel aire. Arriba y abajo de la pared húmeda existen seccionesde calma con el fin ae minimizar ejectos turbulentos en la co-rriente de aire tanto en la entrada como a la salida de líquido, estando separados de tal manera que el líquido no moje las secciones de calma de la columna. Como medida de precaución del interior de la columna fué limpiado varias veces durante la experimentación; no se tomaron precauciones con las pérdidas de -

- 2.4 -

calor por ser muy pequeñas con respecto al calor necesario en la vaporización.

El líquido usado fué recirculado a través del sistema por medio de una pequeña bomba centrífuga, de tal manera que la can tidad de líquido absorbido fué medido por la cantidad de líquido de reposición que fue necesario después de un razonable tiem po de operación; el gasto de líquido se mantuvo en 790 cc/min.-La columna fué soportada en una base de concreto sobre la cimen tación del edificio, por lo que quedaba libre de vibraciones; la temperatura fué medida con termómetros en las secciones de calma, en las cámaras de alimentación y descarga de líquido. De esta manera se llevó a cabo los experimentos cuyos resultadosya fueron reseñados. (Ver Fig. 2.0)

También Chilton & Colburn (=) usaron las torres de paredmojada para la obtención de coeficientes de transferencia de ma sa, logrando a partir de estos estudios lo que normalmente se conoce como la Analogía de Chilton-Colburn, por medio de la -cual se predice el cálculo de coeficientes de transferencia demasa a partir de datos de coeficientes de transferencia de calor y no solo para flujo dentro de tubos, sino también para fl<u>u</u> jo a través de bancos de tubos y superficies planas. (ver generalidades, Cap. I).-

Un autor previo sugirió que un conjunto de curvas propue<u>s</u> tas para estimar coeficientes de transferencia de calor por medio de un factor de transferencia de calor (h/cG) (C//h) 2/3, podría también usarse para estimar coeficientes para transferen cia de material por difusión. Como se muestra, en este reporte,

esas curvas predicen valores de coeficientes de transferencia de masa con muy buena aproximación con los datos obtenidos: las columnas de paredes mojadas tomados por Gilliland & Snerwood, para flujo a través de un tubo simple de los trabajos de Sarisch y para flujo sobre superficies planas de los trabajos de Thieseu busm.

[Así el jactor queda definido como:

$$\left(\frac{d}{A}\frac{P}{P}\right)\left(\frac{P_{B1n}}{P_{B}}\right)\left(\frac{S}{dA}\right)\left(\frac{M}{g_{D}}\right)^{2/3}=\left(\frac{K_{c}}{G/M}\right)\left(\frac{M}{p_{D}}\right)^{2/3}=\int_{D}$$

Donde d = diámetro interno; P = presión parcial del comp<u>o</u> nente inerte; S = área de flujo; A = área de transferencia de masa; K = coeficiente de transferencia de masa.

En series más recientes de pruebas,^(...) se estudió la disolución de un tubo de ácido benzoico sólido por el cual fluíauna corriente de agua. Estos experimentos han sido conducidosusando otros materiales, y se ha encontrado que:

$$\frac{R_{LD}}{D_{AB}} = 0.023 \text{ Re}^{-0.83} \text{ sc}^{-1/3}$$

para 2000 < 3e < 70000 y 1000 < 5c < 2260siendo $\frac{h_{LD}}{D_{AB}} = Nu = No_{NU}$

Con el fin de explorar el efecto del número de Schmidt en transferencia de masa en flujo turbulento, los datos fueron obtenidos para la velocidad de disolución de un tubo cilíndrico,placas y esferas moldeados con ácido benzoico, ácido cinámico,y paftol. Los objetos de prueba fueron colocados en agua y probados en líneas de corriente laminar y flujo turbulento.

- 2.5 -

8

Los datos a bajas velocidades de agua se ajustan a la -teoría de flujo laminar. [En flujo turbulento, buena aproxima-ción fué obtenida con las predicciones de Chilyon-Colburn en el cual predice que el Schmidt está elevado a la 2/3.

9
$$]d = \frac{R_L}{V} \left(\frac{\mathcal{U}}{P^D}\right)^{2/3}$$

En vista del hecho de los nuevos datos, representa 1000 veces mayor extensión a la teoría en el rango experimental del-Número de Schmidt./

Dos conductos verticales fueron empleados uno de 5.23 y otro de 1.9 cm. de diámetro interior, y en cada caso la sección de prueba fué precedida por 750 diámetros más de tubería rectapara establecer un gradiente normal de velocidad en la corriente de fluído.

Los períodos de prueba fueron generalmente de una hora, – durante la cual la temperatura del agua se mantuvo constante – con una variación de l a $3^{9}C$; el agua fué medida con un orifi-cio calibrado para el fin, y las velocidades de agua variaron – de 0.5 a 500 cm. 3^{3} /seg. en las columnas.

Los correspondientes Reynolds variaron desde 230 a 65000.

Las columnas fueron formadas colocando varios cilindros cortos de 0.9 a 7.6 cm. de longitud en la sección de prueba, no habiendo una apreciable discontinuidad entre la sección de calma j el primer cilindro, o entre los sucesivos cilindros que -formaban la columna. Los cilindros fueron cuidadosamente secados y pesados antes y después de la prueba j la pérdida de peso se usaba para calcular el X como una función de la distancia de

contacto del agua entrante. Las pérdidas de peso fueron lo suficiente^{madu} constante, y los pesos **su** fueron determinando cada 5 a 10 min.de operación.

Por otro lado Cains and Roper ^(#) realizaron trabajos sobre transferencia de masa y calor a altas humedades en columnade pared mojada.

Los datos de transferencia de masa y calor fueron obtenidos a partir de la operación de una columna de pared mojada -adiabática con flujo a contra corriente de aire-agua. Las co-rridas fueron hechas bajo un rango limitado del Número de Rey-nolds, de 2390 a 9095 y desde 0.03 a 0.85 fracción molecular del vapor difundible en la película gaseosa. Los datos fueroncomparados con las ecuaciones de investigadores previos obtenidos a bajas humedades. [Una correlación de los datos por medio, de una ecuación del tipo Nusselt; como sigue:

$$J_{H} = (h/CG) P_{r}^{2/3} (P_{B|n}/P)^{-0.27}$$
$$= J_{L} = (k_{G}P_{B|n} k_{\pi}/G) Sc^{2/3} (P_{\theta|n}/P)^{-0.17}$$
$$= 0.025 Re^{-0.2}$$

por lo tanto la teoría de Colburn & Drew para el efecto de una-

Fig 2.1 - Diagramic complete de une esturna de pared humoda usada para humiditicación

transferencia de masa y calor fué incapaz de explicar los datos obtenidos. (Ver Fig. 2.1).

L'ás recientemente <u>Vivian & Peaceman</u> (3) desarrollaron una correlación para el coeficiente de transferencia de masa del l<u>a</u> do líquido en un sistema de absorción en una columna de pared – mojada, podríamos resumir el Artículo de la siguiente manera.

La teoría de película para la resistencia del lado líquido en una absorción gaseosa, incluye la suposición de la exis-tencia de una delyada capa de líquido estacionario adyacente ala interfase en la cual ocurre una difusión en estado estable,lo cual es una gran interrogación principalmente en torres emp<u>a</u> cadas. La teoría de penetración de Higbie, puede ser más razonable, ya que describe al líquido como fluyendo sobre un pedazo de empaque por un muy corto período de tiempo hasta que la mezcla fluye a la siguiente pieza de empaque. En el módelo de penetración la absorción ocurre durante una serie de contactos instantáneos, j un estado inestable prevalece en el líquido durante la transferencia de masa.

Varias columnas ae pared mojada cortas de vidrio de 1.9 – a 4.3 cm. de longitud fueron construídas para simular las suposiciones de la teoría de penetración. Es posible nacer esto ya que en longitudes cortas hay una total ausencia de ondulaciones a no ser que el número de Reynold en el gas sea major de 2200. La desorción de dióxido de carbono desde agua, y de cloro desde una solución diluída (0.16 a 0.18 N) de ácido clorhíprico fueron estudiadas. La velocidad de desorción no fué afectada por unavelocidad de gas mayor a Re = 2200 y se incrementó $1.13/^{0}C$. so-

- 2.10 -

bre un rango de temperatura de 22° a 31° C.

De los experimentos realizados se desprendió que existe – una buena aproximación a la teoría de penetración ya que k_L varía aproximadamente a la raíz cuadrada de la difusividad. La – ecuación obtenida fué:

$$\frac{R_{LZ}}{D} = 0.433 \left(\frac{M}{PD}\right)^{1/2} \left(\frac{p^{2}gZ^{3}}{M^{2}}\right)^{1/6} \left(\frac{4\Gamma}{M}\right)^{0.4}$$

Los datos experimentales verifican el efecto de la altura; pero indican que el k_L varía con la velocidad de líquido a la – 0.4 y no a la 1/3 lo que provoca que el k_L sea de lo a 30% me-nor que lo previsto teóricamente. Esta discrepancia es atribu<u>í</u> da al desconocimiento de la naturaleza verdadera del flujo dellíquido sobre la pared de la columna. De todas maneras la apr<u>o</u> zimación es buena y es posible que pueda usarse esta correla--ción para torres empacadas. (Ver Fig. 2.2)

Trabajos de destilación fueron realizados por Johnstone -& Pigford ^(I).

Los datos presentados en destilación son de una columna de pared mojada de 1.17 in de diámetro interior y o jt de longi tud. Cinco sistemas fueron investigados, incluyendo etanol ---agua, acetona-cloroformo, benzeno-tolueno, dicloro etileno-tolueno, y benceno-dicloro etileno. El aparato fué operado a reflujo total en los primeros cuatro sistemas y como columna de absorción en los dos últimos. En el caso anterior el vapor demenos volatil fué introducido en el fondo de la columna mien--tras que en el domo fué introducido el componente más volatil como un líquido o gestos molares menores e mayores que el gasto

- 2.11 -

Columna de pared mojada (corta) montada

Seccion superior de la columna

Fig 2.2. - Columna usada para cálaulo de coeficientes der kido líquido

Fig 2.3. - Diagrama esquematico de una torre de pared húmeda para destilación

de vapor.

El resultado indica que no más del 10⁴ de la resistencia total a la transferencia de masa en la columna de pared mojada está situada en la fase líquida. Los valores observados parala resistencia total son apenas majores que los predichos porla ecuación teórica de Karman Sherwood.

$$\frac{(H.T.U.)_{v}}{d} = \frac{1}{4\alpha^{2}} \left(\frac{2}{f}\right) \left[1 + 5\sqrt{\frac{f}{2}} \left(\frac{\Psi - 1 - \ln \frac{1 - 5}{G}\Psi}{G}\right)\right]$$

donde \ll 'expresa aparoximadamente la proporcionalidad entre ladifusividad turbulenta para transferencia de masa y la difusivi dad turbulenta para transferencia de momentum, siendo encontrada experimentalmente por Sherwood # Moertz igual a 1.6, y Υ es un número modificado de Schmitd e igual a (\ll '. Sc).

Cayendo todo lo anterior entre los valores predichos porla correlación de Chilton & Colburn y las de Gilliland & Sher-wood (+). Los datos experimentales para los cuatro sistemas estudiados a rejlujo total y en la absorción de dicloro etileno vapor por benceno se ajusta a la ecuación:

$$\frac{(H.T.V.)_{ov}}{d} = 7.63 (Rev)^{-0.23} (Sc_v)^{-0.67}$$

La resistencia observada en la fase líquida es considerablemente baja y es de esperarse sea debido a difusión a travésde una capa laminar de líquido. Esta discrepancia es atribuída al efecto por la formación de ondas en la superficie líquida. El efecto de difusión equimolecular de los componentes es dis-tinguida desde la transferencia de un componente a través de un estacionario inerte, y es pequeña (Ver Fig. 2.3).

Una buena referencia para primera investigación sobre los trabajos hechos sobre columna de pared mojada soría la tesis -profesional del Ing. <u>Pernando Duedas</u>.(:+)

Con lo anteriormente reselado se puede dar una idea de -las aplicaciones tan grandes que tienen las columnas de pared mojada por las ventajas ya enunciadas anteriormente.

- (+) E. R. Gilliland & T. K. Sherwood. Ind. Eng. Chem. (26 (5) p. 516, 1934.
- (=) T. H. Chilton & A. P. Colburn
 Ind. Eng. Chem. 26 (11) 1183-1186, Nov. 1936.
- ("), W. R. Linton & T. K. Sherwood Chem. Eng. Prog. 46, 258, 1950.
- (#) Cairns R. C. & C. H. Roper.
 Chem. Eng. Science 3 p. 97-109, 1954.
- (\$) J. E. Vivian & D. ". Peaceman.
 A. I. Ch. E. J. 2, 437, 1956.
- (:-) Fernando Saucedo Dueñas. Estudio Monográfico de Torres de pared mojada. Tesis Profesional, Néxico 1975.
- (I) H. F. Johntone & R. L. Pigjord.
 Trans. A. I. Ch. E. 30, 25-51 1942.
- (II) Chilton T. H. & Colburn A. P. Ind. Eng. Chem. 27, 266, 1935.

- 2.16 -

CAPITULO III

3.1. - DESCRIPCION DEL EQUIPO. -

El devarato usado para la experimentación consiste en: [D [1]).- Dos columnas de pared mojada: la columna A de 3.03 cm. de diámetro interior y la columna B de 2.24 cm. de diámetro interior, hechas de vidrio Pyrex y latón; equipadas con termo-pares de cobre constantano (Tipo "T") de baja temperatura, conrango de trabajo de $-100^{\circ}C$ a $+ 100^{\circ}C$ (identificados en el dia-grama con la clave T-N), para medición de la temperatura de entrada y salida del gas y líquido; además cuenta con dos cámaras de líquido, una en la parte superior con el fin de obtener un flujo uniforme en la película de líquido, y una en la parte inferior la cual esta calibrada para medición del líquido de repo sición necesario durante la operación; ambas cámaras tienen undiámetro interior de 9.37 cm.; además cuenta con un cambiador de calor que permite mantener la temperatura del-líquido cons-tante.

2).- Un rotámetro para medición de flujo de yas en SCFH.

3).- Un " " de "líquido en GPH.

3).- Un pirómetro fijo para registro de temperatura en $^{\circ}C$ contando además con un selector de puntos con una capacidad máxima de 10 termopares (solo existen 8 en el equipo) cuya numer<u>a</u> ción y localización se puede ver en el diagrama de tubería y en el equipo mismo.

5).- Una bomba centrífuga para mantener el flujo de líqui do a través de la columna de pared húmeda (con una potencia de-0.01 H.P. 60 ciclos, 110 volts, monofásica, con motor eléctrico cuya ca acidad máxima es de 3 gal/ min. bajo 4 psig. de cabeza). -3,16).- Compresora de aire de 3 H.F. con una presión máxima de alimentación de 6 Kg/cm^2 . monométricos.

7).- Una válvula reguladora de presión en la línea de alimentación de aire.

8).- l'uberlas y equipo de bombeo.]10

Detalles de construcción de la columna se muestran en la figura 3-1, el aparato usado en la Fig. 3-2 y un diagrama de tubería para el equipo en la Fig. 3.3.

El aparato está diseñado con secciones de calma a la entrada y salida de aire siendo estas secciones de calma tubos de PVC con un diámetro igual al diámetro de la columna respectiva; tienen la finalidad de uniformizar el flujo de aire para evitar zonas de turbulencia provocadas con cambios súbitos dediámetro en la tubería.

Es de notar que la comba se encuentra montada por separ<u>a</u> do al resto del equipo; la finalidad es de evitar al máximo <u>po</u> sible la vibración en las columnas, y tener una película de l<u>í</u> quido lo más uniforme y lisa posible; ja que las ondulacionesque se provacan distorsionan en cierto grado el área de transferencia lo que podría provocar una mala medición del coefi--ciente de transferencia; que es la finalidad inmediata del ap<u>a</u> rato.

Otra parte del aparato montada por separado es el piróm<u>e</u> tro, que por ser un aparato que funciona bajo el principio del galvanómetro es muy sensible a la vibración; además no necesita corriente externa para medición sino únicamente la corriente suministrada por lo termopares. Su precisión es buena y es

de fácil instalación, teniendo que calibrarlo a temperatura ambiente únicamente ya que compensa automáticamente.

El aparato fué diseñado para trabajar con el sistema agua -aire originalmente; durante el desarrollo de este trabajo se intentó introducir otros líquidos con el fin de ampliar este es tudio; pero tanto los niveles como el pegamento de las juntas existentes fueron fuertemente afectados por los líquidos disponibles (etanol, benceno, heptano, etc.), por dicha ragón el desarrollo experimental solo se llevó para el sistema agua-aire.

Entre los detalles de construcción se puede ver que la c<u>o</u> lumna tiene en sus zonas inicial y final aditamentos de latón,que están finamente maquilados de tal manera que presentan un bisél que permite el derrame uniforme de líquido y la recolec-ción de este; con el fin de solo tener una interfase a lo largo de la columna.

El recipiente de líquido en la parte final de la columnacuenta con una escala de cm. de altura, siendo que su diámetrointerior es de 9.3? cm., es de hacer notar que el tubo de calma pasa por el centro de dicho recipiente por lo que el área efectiva será: (Ver Fig. 3:2)

$$A = TT \left(D_r^2 - D_c^2 \right) / 4$$

donae: Dr = Diámetro interno de recipiente (0.37 cm.)

Dc = Diámetro externo de tubo de calma (3.36 cm.)

11.1

por lo tanto el área será de 55.137 cm.², mismos que multiplicados por la diferencia de alturas o niveles provocados en un tiempo de operación, nos da el ajua de reposición necesaria y como consecuencia la cantilad de gramos transferidos du--

rante la operación.

3.2.- EXPERIMENTACION .-

Para llevar a cabo la experimentación es necesario lla--mar la atención en los siguientes puntos:

1).- La bomba es muy suceptible a trabajar sin una dota-ción adecuada de líquido, por lo que es necesario cerciorarse de que esta dotación de líquido sea suficiente, y que la bombaeste debidamente purgada, aún más, su tiempo máximo de opera--ción es de l hr. y 30 min.; siendo recomendable no usarla más de l hr. continua ya que el motor eléctrico que mueve a la bomba corre el seligro de quemarse.

2).- Para el correcto funcionamiento del aparato hay quecerciorarse que las secciones de calma por las cuales pasa el aire no contengan agua al igual que las tuberías de aire, y ensu caso será necesario eliminar dicha agua.

Esto tiene la finalidad de evitar otro contacto agua-aire que no sea el de la torre.

3).- La medición de los rotámetros es en la parte supe--rior del balín indicador.

Dentro de las opciones que se tienen en el aparato para llevar a cabo la experimentación y levantar datos experimenta-les se tienen:

 A).- La medición de la cantidià de material transferido desde el líquido al gas se lleva a cabo por meaio del agua de r<u>e</u> posición que se necesita después de un ciclo de operación.
 B).- La medición de la cantidid de material transferido desde -

el líquido al gas se lleva a cabo por medio de un balance de material.

Tômese en cuenta que en ambos casos son necesarias medici<u>o</u> nes de temperaturas de bulbos seco y húmedo; con el fin de obt<u>e</u> ner la fuerza directora que rige el transporte de material; ad<u>e</u> más se debe contar con una carta psicométrica adecuada.

La opción A requiere un mínimo de mediciones por condición de estudio, pero implica la posible existencia de errores de apreciación en los niveles de líquido y en la medición del tiempo.

La opción B requiere un mayor esfuerzo de cálculo, pero presenta mayor exactitud en los resultados.

Para la experimentación llevada a cabo en el presente trabajo se escogió la opción B.

Los datos experimentales que se tomaron son: Temperatura de bulbo húmedo = Tw Temperatura bulbo seco = Tbs Temperatura del agua = T gasto de aire = Q gasto de agua= GT

Dato	Localización
To entrante	Antes de la válvula de suministro de
ч. · ·	aire
Tbs entrante	Antes de la vélvula de suministro de
	aire j termopares 3 o 7
Tw saliente	Salidas de aire S-A Ó S-B
Tbs siliente	Salidas de aire S-A Ó S-B y termopares
	4 u 8
<i>T</i> entrante	Permopares 1 6 5

- 3.5 -

T	saliente	Termopares 2 8 6

Rotâmetro inferior en equipo (supe-rior en la Mig. 3-2) Rotâmetro superior en quipo (infe--rior en la Mig. 3-2)

Para la medición se usaron simultáneamente tanto las temperaturas registradas por los termopares, como los termómetrosde mercurio de bulbo seco y húmedo usados como equipo extra.

3.3.- TECNICA DE OPERACION.-

Ŷ

G W

(Ver diagrama de Fig. 3-3)

 1).- Localizar y determinar la función de todas las válvu las y familiarizarse con la operación de equipo (Nota: las co-lumnas de pared húmeda están construídas de vidrio por lo que deben trabajarse con cuidado).

2).- Asegúrese de que el indicador de temperatura está trubajando correctamente.

3).- Opere la columna A Ó B como sigue:

- a).- Abra totalmente la Válvula V-1A & V-1B y ajuste el flujo de gas con la válvula V-5 a 200 SCFH.
- b).- Llene el tanque de suministro con agua destilada.
- c).- Abra las válvulas V-24 ó V-28 y la válvula V-4 totalmente, asegúrese que la bomba esté debid<u>a</u> mente purgada, y comience a bombear el líquido desde el tanque se suministro al recipiente r<u>e</u> ceptor colocado en la parte inferior de la columna. Pegule el flujo de agua con las válvu-

- 3.6 -

las V-2A 6 V-2B de tal manera que el líquido se derrame al vertedero sin que lo arrastre el gas.

- d).- Cuando el recipiente receptor esté lleno aproximadamente hasta 7 cms. de la escala cierre la válvula V-4 y abra totalmente la válvula -V-34 6 V-38 simultáneamente.
- e).- Ajuste el flujo de líquido hasta que se formeuna película lo mas lisa 6 uniforme posible.
- f).- Ajuste el flujo de gas a través de la columnaal nivel deseado (Nótese que las válvulas V-1A ó V-1B deben estar totalmente abiertas o total mente cerradas. Estas válvulas no deben ser usadas con fines de regulación.)

4).- Para determinar la transferencia de masa puede sernecesario reajustar el flujo de líquido; haga funcionar el cam biador de calor y espere a que el sistema se estabilice; luego de lo cual se lleva a cabo el levantamiento de datos en un míni mo de tres ocasiones con intervalos entre medición de cinco mi nutos, (mínimo).

Se puede en caso de desarlo una vez terminada la iectura anterior, reajustar el flujo de gas y llevar a cabo una nuevacondición experimental.

Fara cada condición experimental se hizo un mínimo de nueve lecturas, de las cuales se sacó un promedic cuando fue – necesario, dando como resultado los datos experimentales si--guientes:

	Entra	da. e	salida aire	en ti a:	rada yua	salida ajua	g ista aire	yasin agua	Diámetri torre
Corri da	Tbs	rw	rbs	<u>"</u> :D	T	Ţ	تو	04	ID .
	°c	°c	°c	°C	°c	°c	SCFH	GPH	cm.
.1	13	7	11.5	9	14	14	300	40	3.03
2	13	7	12	9.5	14	13.5	500	40	3.03
3	11.5	4	20	7	13	13	.300	40	3.03
4	18	8	13.5	11	15	15	400	40	3.03
5	18.5	8	12.5	11	15	15	450	40	3.03
6	18	8	12	10.5	15	15	250	40	3.03
7	13	5.5	11.5	10	14.5	14.5	250	40	2.24
Э	13	6	9	8	12	11	300	30	2.24
9	14	6	10	9	14	13.5	350	30	2.24
10	13	7	12.5	10.5	15	15	100	4 0	3.03
11	13	7	12	10	15	15	150	40	3.03
12	13	7	12	10	14	14	500	40	3.03
13	15	8	12	10	14.5	14.5	600	40	3.03
14	17	8	14.5	12	16	16	200	40	3.03
15	12.5	6	13	10	15	15	100	40	2.24
16	12	6	12.5	10	14	14	150	40	2.24
17	13	6	12.5	9.5	15	15	200	40	2.24
18	14	6	10.5	9.5	14	14	400	30	2.24
19	14	5	10	9	13	13	450	55	2.24

Siendo los datos anteriores los que se tomaron para ha--. cer los cálculos de este equipo

- 3.8 -

e .

.

.

Algines détuilles de una terre dé Fig 2 pares mijude

COLUMNA A DIAGRAMA DE TUBERIA frg 3-3

CAPITULO IV.

4.1.- # BTODO DE CALCULO

Para desarrollar una relación teórica que nos relacioneel coeficiente de transferencia con propiedades fácilmente medibles del sistema, se escoyió llevar a cabo la determinaciónde los coeficientes y exponentes de una ecuación de análisis dimensional del tipo:

 $Sh = a Re^{b} Sc^{c}$ $donde: Sh = RTD_{2}Kg/D_{AB}$ $Re = GD/\mu$ $SC = \mu Vh/D_{AB}$ $W = P_{t} / P_{bln}$

Para tales fines se diseñó un programa de computadora c<u>u</u> ya forma y result_ados se dan al final de este capítulo.

Los datos adicionales que se alimentaron a la computadora fueron: las densidades y viscosidades del agua a las dife-rentes temperaturas promedio de operación para cada corrida; la viscosidad de la mexcla gaseosa en cada caso, además de las humedades volumétricas y de saturación en cada caso.

Como valores X se colocó el factor E_{ab} / kT y como Y val<u>o</u> res de Omega; siendo los anteriores los potenciales Lennard-J<u>o</u> nes para corrección de las difusividades por interpolación en_ cada caso.

La lista de identificación de variables es la siguiente: HTI = Humedad ds entrada

HTB = Humedad de salida

-4.1 -

HTIS	=	Humedad de salida saturación correspondiente a la
		entrada de aire.
HTES	-	Humedad de salida saturación correspondiente a la
		salida de aire
VHI	=	Volumen húmedo de aire entrante
VHB *	#	» » de aire saliente
PTI	=	Presión parcial del agua en aire entrante
PTE	#	n n agua en aire saliente
PTIS	=	» de equilibrio a las condiciones de entrada
PTES	=	» » » » condiciones de salida
PF	=	Gradiente logarítmico medio de presión ó fuerza
		directora de transporte
GAS	=	Flujo de inerte en el proceso
GAI	=	" " aire húmedo a la entrada
GAB	=	n n n a la salida
GAA	#	" " " promedio
VHA	=	Volumen húmedo přomedio
TESI	ų	Temperatura de bulbo seco a la entrada
TBS2	1	» » seco a la salida
TBA	=	" " seco promedio
24	=	Flujo de aire en SCFH
G.TI	=	" "llyuido en GPH
ROI	=	Densidad de líquido
V#I	=	Viscosidad de líquido
ESPEI	=	Espesor de película que resbala por las paredes de la columna
G#2	2	Flujo de líquido en cm. ³ /seg.

- 4.2 -

VIS	-	Viscosidad de la mexcla gaseosa
DIF	=	Difusividad de agua en aire
XI	8	Pracción mol a la entrada
VER y	OĽ.	EG = Potenciales Lennard-Jones
TNA	=	Cantidad de masa transferida desde líquido al gas
TNU	=	Nusseld de transferencia de mas a 6 Sherwood (Sh)
CG	=,	Kg (coeficiente de transferencia)
RE	=	Reynold
SC	=	Schmidt
Ħ	- H -	Relación de P_t a presión parcial media logarítmica del aire
PB	=	Presión parcial media logarítmica de aire
JD	=	Factor de Sh/ Sc ^C Re W
JDP	=	Factor J _d predicho de la relación ajustada
A 2	=	Coeficiente <u>a</u> en la ec. de análisis dimensional
В	=	Exponente <u>b</u> " " de análisis dimensional
C	=	" <u>c</u> en la ec. de análisis dimensional
REL	=	Logaritmo de Re
TNL	=	" de JD
BP	=	Exponente <u>c</u> tanteado para las ecs.
ERROR	=	Error existente entre los JD exp. y los predichos
B	II.	Error total de la expresión deducida
N	=	Número de datos
NCN	=	" de iteraciones del exponente <u>c</u>
IIJJ	y i	K y ¥ son sub-Índices de iteración
DP	=	Diámetro de la torre
D	=	" efectivo de flujo de aire

- 4.3 -

4.2. - SECHENCIA DE CALCULO 1. X. CONSTANTES DE EQUIPO: Tanque de recepción: DI = 9.37 cm. Torres: Núm. de torre diámetro int. A max trans. S max de glujo 3.03 cm. 967.15 cm². 7.21 cm.² 1 2.24 cm. 820.3 cm². 5.19 cm.² 2 longitud δ altura de ambas = 101.6 cm. Constantes de sistema: $R = 82.06 \ atm - 1t/g - mol^{\circ}k$ $Pt = 0.771 \ atm \ g = 981 \ cm/seg.^{2}$ Potenciales Lennard-Jones para sistema: $E_{ab}/K = 185.82$; $\Omega = 1.2134 \Omega$ $D_{AB} = .2 \ cm.^2/seg. = 720 \ cm.^2/hr$ NETODO DE CALCULO a).- Datos Experimentales. I).- Temp. de bulbo seco y húmedo a la entrada y salida de la torre ($^{\circ}C$.) II).- Temp. de entrada y salida del agua (^aC.) III) .- Gasto de aire (SCFH) IV). - Gasto de agua (GPH) ejemplo corrida No. 3 $Tbs_1 = 17^{\circ}C; Tw_1 = 3^{\circ}C; Tbs_2 = 14.5^{\circ}C; Tw_2 = 12^{\circ}C; T_1 = 14.5^{\circ}C;$ To= 14°C; Q= 300 SCFH; G71 = 40 GPH b). - Datos alimentados a la computadora: I).- Humedad de entrada y saliãa II).- Humedad de sat. entrada / salida III).- Diámetro de columna, viscosidad de aire, viscosidad de agua, y densidad de agua. - 4.4 -

IV).- Gasto de aire y apus

V).- Temperatura de entrada y salida de aire

Ast guedarta:

$$\begin{split} H_{1} &= 0.0035 \ ; \ H_{2} &= 0.0055 \ ; \ Hs_{1} &= 0.011 \ ; \ Hs_{2} &= 0.010 \\ DI &= 3.03 \ cm.; \ viscosid_{a}d \ aire &= 0.0197 \ g/cm.hr; \ viscosid_{a}d \\ de \ agua &= 0.01 \ g/cm.seg.; \ densid_{a}d \ de \ agua &= 0.9994 \ g/cm.^{3} \\ cm.^{3} \\ ^{1}Q \ oire &= 300 \ SCFH \ ; \ CHI = 40 \ GPH \ ; \ Tbs_{1} = 11.5 \ ^{0}C \ ; \ tbs_{2} = 10.0 \ ^{0}C. \end{split}$$

Cálculos:

a).- Pasar gasto de agua de GPH a cm. 3 /seg.

$$G#2 = 1.0514 (cm. 3/sey.)/GPH x G#1$$

ast GN2 = A2.63 cm. 3/seg.

 b).- Cálculo de espesor de película que escurre (Bird, Penónenos de Transporte)

 $\# = 3.1415g \ x \ 3.03 \ cm. = 9.5 \ cm.$

$$= 3/52.05 \frac{3}{24.3} x 3 x(0.01 \text{ g/cm.seg})/. \text{JUBA G/cm}^2 x 3 x001 \text{ cm.seg}^2 x 5 cm. = .0513 cm.$$

c). - Cálculo de diámetro efectivo por corrección de diámetro -

- de torre:
- De = D efectivo = DI Torre 28

De = 2.9674 cm.

d).- Procede a calcular las presiones de vapor de a_oia con: $P = \begin{pmatrix} C.771 \end{pmatrix} / (1 + 12/29 \ P) & donde:$ H humedad absoluta P presión

 a_{3} $P_{g} = P$ entrada = .004323 atm. $P_{p} = P \text{ salida} = .0067772$ $Ps_1 = P \ sat. ent. = 0.01343$ $Ps_2 = P \ sat. sal. = 0.01222$

e).- Procede a calcular la fuerza directora Pin

$$\Delta Pi_n = (P_{s_1} - P_1) - (Ps_2 - P_2) /_{th} (Ps_1 - P_1) / (Ps_2 - P_2) \\ \Delta P_{1n} = 0.007123 \text{ atm.}$$

f). - Calcula la fracción mol a la entrada:

$$X = \begin{pmatrix} \frac{29}{18} & \text{H} \\ \hline 1 + \frac{29}{18} & \text{H} \end{pmatrix} \text{ donde } H \text{ es humedad absoluta a la entrada}$$
$$X = 0.005607$$

g). - Calcula un flujo de inerte:

$$\widetilde{G} = \frac{Q \ alre \ ft^{3/} \ hr}{359.146} \ x \ 454 \ \frac{9 \ mol}{15} \ x \ 29 \ \frac{9 \ A \ S}{3} \ (1-I)$$

$$\widetilde{G} = 36.659 \ Qa \ (1-I)$$

$$ast \ \widetilde{G} = 10936 \ \frac{9}{hr}$$

h).- Calcula la cantidad de agua transferida: $Na = \frac{\widetilde{G} (H_2 - H_1)}{\widetilde{\Pi} L De (18)} = G (H_2 - H_1) / 5745.3446 De$ $Na = 0.0013 g mol H_20 / Wrycm.^2$

i).- Calcula en coeficiente de transferencia de masa del lado gas.

$$R_g = \frac{Na}{\Delta P_{1n}}$$
 \therefore $R_G = 0.1826 \ g \ mol/nr \ cm.^2 \ atm$

j). - Calcula Pb logaritmico medio y Pt/Pbln

$$P_{Bln} = \frac{P_1 - P_2}{P_T - P_2} \quad y \quad w = \frac{P_t}{P_{Bm}}$$

- 4.6 -

... P_{Blp} = .7655 atm # = 1.007 k).- Calcula la temperatura media del aire: $Tav \begin{vmatrix} air \\ = \left(\frac{T_1 - T_2}{\ln \left(T_1/T_2\right)}\right)$ $air = 15.6^{\circ}C.$ 1).- Calcula el factor KT/Eab de potencial Lennard-Jones $\frac{KT}{E_{12}} = 0.00538 \left(T \right)_{av}^{afr} + 273$ Y de interpolación de datos (sacados de Welty. Fundamentos de Trans. de momentum, masa ycalos). se obtiene: O KT/ KAB = 1.526 $\Omega = 1.1921$ m).- Corrección de la D_{AB} por $\Omega y T$ ${}^{D}_{AB} = {}^{T}_{av} = 720 \ 9/cm.hr. \left(\frac{T_{av} + 273}{273}\right)^{1.5} \left(\frac{1.2184}{\Omega r_{av}}\right)$

 $D_{AB} = 734.8 \frac{cm^2}{hr}$

n).- Calcula el volúmen húmedo a la entrada y salida y el promedio.

$$V_{H} = \left(\frac{H}{18} \pm \frac{1}{29}\right) \frac{1}{.771} \pm 22400 \frac{cm^{3}}{9mol} \pm \frac{Tav + 273}{273} = 63.26 \pm x$$
$$x \left(T_{av} + 273\right) \left(\frac{H}{18} + \frac{1}{29}\right).$$
$$V_{H_{1}} = 621 \frac{cm^{3}}{9As} \quad V_{H_{2}} = 629 \frac{cm^{3}}{9As}$$
$$V_{H_{1}} = \frac{V_{21} - V_{H2}}{\ln \frac{V_{H1}}{V_{H2}}} = 624 \text{ cm}.^{3}$$

 f).- Calcula el gasto de aire a la entrada y salida y el gasto promedio.

 $G_{1} = G_{0}(1 + H_{1})$ $G_{av} = \frac{G_{1} - G_{2}}{\ln \frac{G_{1}}{G_{2}}}$ $G_{1} = 10974 \frac{gAhum}{hr}$ $G_{2} = 10996 \frac{gairhimedo}{hr}$ $G_{av} = 10985 \frac{gairhimedo}{hr}$

o).- Calcula el Reynold, Schmidt y Sherwood.

$$Sh = \frac{kg D_e R T}{D_{AB}} = \frac{\left(9 \text{ mol/hr cm.}^2 \text{ atm}\right) x \text{ cm.} x \frac{a \text{tm} \text{ cm}^3}{\sigma_K^{5} \text{ mol}} x {}^{\circ}K}{\frac{cm.^2}{hr}}$$

$$R_e = \frac{G_{av} D_e}{\mathcal{M} (\mathcal{M} \frac{De^2}{4})} = \frac{g/_{hr} cm}{(g/_{hr.cm})x cm^2}$$

$$S_c = \frac{\mathcal{M} v_{Hav}}{D_{AB}} = \frac{(g/_{hr.cm}) \frac{cm.^3}{3}}{\frac{cm.^2}{hr}}$$

ast: Sh = 16.09 Re = 77.16 S_c = .499

p).- Supone una ecuación de la forma:

$$J_D = \frac{Sh}{c} = a Re^{b}$$

Sc Re W

De ahí que se tantean valores de <u>c</u> entre 0.0 a 0.95 y - se hace una regresión lineal con los parámetros:

$$ln \quad J_{D} = b \ ln \ Re + lna$$

dando como resultado a y b
si c = 0.33
$$J_{D} = 0.002609 \quad Re = 7716$$

$$a = 0.0491 \qquad b = -0.197$$

- 4.8 -

 $Para J_{D} = \frac{Sh}{N Re Sc} \frac{1}{3} = 0.04391 R_{e}^{-0.197} \delta$ Sh=0.04391 x R_{e}^{.803} sc \frac{1}{3} m

q).- Predica valores de J_D y los compara con los experimentales en cada caso dando el error por punto y el error total:

Además sigue el criterio:

c = 0.0

"Ajuste	Perfecto"	error	total	Z	2%
"Ajuste	Bu eno »	**	*	Ł	5%
"Ajuste	Aceptable"	*	**	\swarrow	10%
"Ajuste	rechazado"		*	>	10%

El mejor ajuste encontrado jué de:

$$J_{D} = \frac{S}{N} \frac{h}{Re} = a Re^{b} ; \quad \alpha = 0.003484 ; b = -0.197$$

$$J_{D} = \frac{S}{N} \frac{h}{Re} = 0.003484 Re^{-0.197}$$

$$\delta \frac{Sh = 0.003484 Re}{Sh = 0.003484 Re} = 0.803 \text{ g}$$

Brror Total = 8.6 \$

4.3.- PROGRAFA USADO PARA CALCULO

Y

RESULTADOS.

- 4.10 -

CONTRACTOR AND CONTRACTOR ANALY	86700/B7700	FO	RTRAN	COMP	ILATI	ON	MARK	2,7,48
---------------------------------	-------------	----	-------	------	-------	----	------	--------

	REA	L	30		1	DF	•																																			
	DTM	FM	31	0	4	XI	11	33		۲	1	13)		DF	> (11	50)																							
	DIM	ĒN	SI	0	1	H	r i	(1	ò	0)		H	TI	1	10	00	j.	H	TI	IS	(10	0) .	H	T	ES	(10	0),	V	HI	1	10	00)					
	*VHE	11	00	11	. v	H	11	10	00	١.	p	TI	(0	0		p	TE	1	10	0	1.	P	ŤÌ	S	1	10	0	۱.	P	TE	S	(1	0	0	۱.	Ġ	49	11	10	01	
	*PF (10	0)		TN	A	ii	00	1)	. 1	NI	ie	i	00	5	. 0	A	11	10	00	1	G	A	EC	11	0	0)		RE	1	10	0	ì.	v	1	3 (1	00	ŝ			
	OTF	61	00	i.	W	11	10	01		0.	1	1 0	0	1	30	1	11	00	i.	G		1 (1	00	11	. 1	cG	1	10	0	i.	-	BS		i	10	n	١.	*	,		
		ŝi	10	0		X	ir	10	0	57	Ŷ	R A	1	0	0	1.	ŧ	in	MI	11	11	00	19	. 6	.c.	4	11	0	0 3		Ŕŕ	ľ	11	ñ	0	1.	Ť	NI	1	10	01	
	+001	10	61			2		00	11		M	ĒC			~		1	1	11	20	5		F	61	1				2	F	c /	-		19	• .	• •		-				,
	NOM	= 3	0		-			vu				- 0	~		21	••		~	• •		•	• •				4	• •	"	Jr.			٠										
	Alest	2	v																																							
	00	2																																								
-	00	έ,	-	1	14											u						ч		- 6								•										
6	REA		2.	2		"	1	1		1	n	IL	•	.,		n	Ϊ.	10		.,	1		1	60	, (1			1	9	11											
	FOR									•																																
, >	FUR	MA	<u>!</u> _		r	10	, e ,	ų,																																2		
۹_	00	2.	1.	1	N									-																												
2	REA	DI	21	0)	81	10	1)		7	(1)	1	T	65	5 I	0	()	, 1	8	30	- (1	ð																		
6	FOR	MA	TO	41	1	0,	, 0)		2			2																			_										
	DIM	EN	SI	0	1	GV	٧1	(2	20),	1	20	1	2	0)		,	۷	W	11	S	,,		E	3	PI	1	(20)	1	G	W 2	1	2())						
	DO	30	5	1:	=1	.1	\$																																			
305	REA	D(5,	36)6)	G	W1	(1)		R	01	(1)	ł.																										
306	FOR	MA	T	21	1	0.	0)																																		
	00	30	7	I	= 1	.1	1																																			
307	G#5	(1) =	Gł	11	()	:)	*1	. (05	14	4																														
	DO	13	00	1	-	1,	N	•																																		
1300	VW1	(1) =	0.	0	1																																				
	CAL	Ĺ	AB	E	(Gł	SI	, R	10	۱,	V	11	, {	P	. N	10	ES	sp	EI)																						
	Do	61	I	=		N																																				
	DÖ	10	56		Ja	1.	1	3																																		
1056	REA	DC	5.	5	1)	5	11	1)		¥	1.	1)								•																						
57	FOR	MA	TO	21	1	0	0	3													ų.																					
	WRI	TE	16		iç	9								*																												
												,		2																												
190	FOR	MA	TO	11	41	. 1	5 Y	. 1	0	4	н	U	N)			. 1	5 X	. 1	0 1	H	H	1	DC	3				. 3	X	. 1	0	н	H	S	U	N	0			3x	
• • •	\$10H	H	0	0	10		-	1	X.	. 1	0)	٢V	14	C	ne	1	ċ.	D		SX		10	H	G	A	e'	rn		-	~		X	. 1	0	H	37		MF	1	ne		
	+34.	10	HI	FI	10	1	IN	0		. 1	¥.	. 1	â	17	FN	ip	1	20	Ś		1	11	1		×	0										•	-					
		00	1	1					. '		-			. 1					*			'	1																			
302	WRT	+6	14		-			H.		۰.	١				٢.			H	• 1	. 9	1	•)		H	4+	e	sc	1	1		v .	S	17	1		C		i 7	1			
JOE	+001	+ 5	• •	4	20	T		2	٠.	- 8	à	ς,	8	5		. "	"			1.0	•	r é	,	1	. 1	5.		4			• 1	~		1	8		4			,		
100	KOD	# J	f .	0	17		1	00			2		1	1																												
100	WDT	TE	1		10	3					3	• •	"	'																												
102	E00	1 L		1	10	-	12	10	D			2.0		181	2					24	101	DF		Tr	121		0	9		1	v											
144	- VAN	110			141	1	E	- -			1	1		114	4.	, n	-	1	10	DAL			-	• •	111		20	3.	."	-	^											
	*101		52	1	114		A			10		10	3	1	01	16	PC C		10	2.4				ι	U	3	.!	-	×													
	#1/n	ru	C. M	2'	•	U	H		. 11	3 11	×	'	"	1			P	117	1	7 X	P	1	١.			2	1 1	!	7 X													
	wan			A	111	.1	0	×,	. 81	-			,	17	m,	1	0	× f	91	7				AT	m	/	<i>''</i>	1														
	DO	61	1		11	N			-		-																															
61	DUI) =	DF	•	1)	•	(5	• *	E	SP	E.	11	I.	,,																												
7	DO	13	1	3	1,	N							-					-																								
8	PTI	(1):	1()	Ο.	7	71)/	1	1,	+	(1	8	./	((2	9	,)	*	(H	IT	1 (I))))))															
9	PTE	(1):	:(0.	7	71)/	(1.	+	(1	8	./	((2	9	;)	*	(H	T	E (I	"))))															
10	PTI	Sí	1)	=	(0)		77	1)	11	(1		+ (11	3.	1	((2	٩.)1	* (H	TI	3	(1	()))))														
11	P	TE	S	1)=	(1	0.	77	71)/	(1.	+	11	8	1	((2	9	.)	*	(H	T	ES	3(I)))))	1												
12	PF (I)	=	())	PT	E	s(I) - (PI	Έ	(1)) -	(7	I	5 (I) =	P	TI	ť	I))))	1			18												
1	* CAL	OG	()	P	TE	S	(I	>.	P	TE	1	1)).	10	P	I	S	11	; .	.P	T	I	1))))	>																
13	WRI	TE	10		14)	P	TI	11	II		P	TI	= (I),	1	PŤ	1	5 (İ),		PI	E	S	(1)	,	P	F	I)									
14	FOR	MA	T	i	PF	i	0.	3	i	x.	1	PF	1	٥.	3	. 6	X	. 1	PI	EI	0	. 3		8)		1	PF	i	0.	3		-	-									
					-			- 1	-		-				-		~				-		•	-				-														

- 4.11-

```
+0X, 1PE10, 3///)
        DC 20 I #1.N
  15
         X1(I)=(1,6111*HTI(I))/(1,+(1,6111*HTI(I));
  16
        GA8(I)#36,659+0A(I)*(1,_X1(I))
TNA(I)=(GA8(I))*(HTE(I)=HTI(I))/(5745,3446*D(I))
 19-
  18
  19
        CG(I) #TNA(I)/PF(I)
        WRITE(6,21) X1(1), GAS(1), TNA(1), CG(1)
Format(13H Fraccion Mol, X, 10HAIRE SECO ,8X, 13HG. MOL TRANS ,4X
  20
  21
       #24HCOEFICIENTE DE TRANS PRA///
       *1PE10,3,6X,1PE12,5,6X,1PE10,3,7X,1PE10,3///)
        WRITE (6, 271
  270
        FORMAT(17H PRESION LOG DE B , 10X, 17HRELACION DE PB=PT///)
  271
  299
        D0 300 I=1,N
PB(I)=(PTI(I)=PTE(I))/(ALOG((0,771=PTE(I))/(0,771=PTI(I))))
  895
        W(1)=0,771/PB(1)
WRITE(6,301) PB(1),W(1)
FORMAT(4x,1PE10,3,15x,1PE10,3////)
- 297
  300
  301
        D0 29 1#1,N
TBA(I)=(TBSI(I)=TB92(I))/ALOG(TBSI(I)/TBS2(I))
-- 29
        DO 500 1=1.N
        VER(I)=0,00538*(TBA(I)+273,)
CALL LUIS (VER, N , OMEG, X, Y )
  500
        DO 501 I=1.N
  501
        DIF(I)=(720,*((TBA(I)+273,)/273,)**1,5)*(1,2086/OMEG(I))
        00-33 I#1,N
  -55
        VHI(I)=((HTI(I)/18,)+(1,/29,))*(TBSI(I)+273,)*63,26
VHE(I)=((HTE(I)/18,)+(1,/29,))*(TBS2(I)+273,)*63,26
VHA(I)=(VHI(I)-VHE(I))/ALOG(VHI(I)/VHE(I))
  23
  24
  25
  26
        GAI(I)=GAS(I)*(1.+HTI(I))
        GAE(I)=GAS(I)+(1,+HTE(I))
GAA(I)=(GAI(I)-GAE(I))/ALOG(GAI(I)/GAE(I))
  27
  28
  30
        RE(I)=(GAA(I)+D(I))/(VIS(I)+((3,14159/4,1+D(I)++2,))
        SC(1)=(VIS(1)*VHA(1))/DIF(1)
TNU(1)=((82,06*D(1))*(TBA(1)+273,0)*CG(1))/DIF(1)
  31 32
        WRITE(6,34) RE(I), SC(I), TNU(I)
FORMAT(9H REYNOLDS,9X,8HSCHMIDT ,16X,9HSHERWGOD ///
  33
  34
       *1PE12.3,6%,1PE12.3,6%,1PE12.3///)
DIMENSION JD(100), JDP(100),ERRUR(100), CP(100)
        DO 71 K81, NOM
READ(5, 76) EP(K)
  78
        FORMAT(F10.0)
   76
  75
        X=1
        GO TO 74
   76
        KaX+1
         IF(K,GT, NOM) GO TO 60
   74
        EX#EP(K)
        WRITE(6,600) EX
FORMAT(1H1,3X," EXPONENTE DE SCHMIDT C = ",3X, 1PE20.9 ////)
CALL PACO(TNU,RE,SC,W,H,TNL,REL,JD,EX)
  600
        CALL BETO (REL, N, TNL, A1, B)
        WRITE(6,99)
  99
        ****
        WRITE (6,54) 8,A1
  54
        FORMAT (25H EXPONENTE REYNOLD B = , 3x, 1PE10,3,
       *10X, 35H FACTOR DE PROPORCIONALIDAD A1 = ,1PE10,3///)
        WRITE(6,56) EX
FORMAT(3x, " JD=A1(RE**R) ",3x
  56
       #27H EXPONENTE DE SCHMIDT C = ,3X, 1PE10.3 ///)
          WRITE(6,98)
```

- 4.12-
| 98 | FORIAT(3X, "***************************** | ****** |
|----------------|---|--|
| | *********** | *************************************** |
| | CALL ROSA (RE, N, JOP, JD, ERROR, A1, B, E1) | \
 |
| | ERABS(E1) | 2.44 Ab |
| 96 | WRITE(6,95) | |
| 95 | FORMAT (3x, 20H******* JD***************************** | OH++++++ ERROR +++++ |
| | *3X, 20H***** REYNOLD******, 3X, 20H**** | JD TEORICO **** ///) |
| 94 | DO 93 I=1,N | |
| 93 | WRITE(6,92) JD(1), ERROR(1), RE(1), JDP(1 |) |
| 92 | FORMAT(4(3X, 1PE20, 9)) | |
| 91 | IF(E.LE.0.02) GO TO 90 | at the |
| | GOTO 88 | |
| - 90 | WRITE(6,89) | a standing the |
| . 89 | FORMAT(12X, "AJUSTE PERFECTO DE CURVA D | E REGRESION #///) |
| | 60 TO 80 | |
| | IF(E.LE.0.05) GO TO 87 | - 1/A |
| | GO TO 85 | · · · · |
| 87 | WRITE(6,86) | ANE TO BE |
| 86 | FORMAT (201 "A HISTE BUENO DE CHRVA DE R | FORESTON HII |
| 1 | GO TO 80 | نېد کې د ا |
| 85 | 5 JE(E.I.E.O.1) GO TO 84 | |
| | 60 10 82 | |
| 84 | WRITE(6.83) | |
| 83 | FORMATCIZX. " AJUSTE ACEPTABLE DE CURV | A DE REGRESION#///) |
| a a silaa | -SO TO BO | H an Healtedtold tott |
| 82 | WRITE (A.B.) | |
| 81 | FORMAT (12%, "AJUSTE NO ACEPTADO POR DEE | 1CTENTE . EDBODE 1 # ///) |
| | MOTIFIA TON F | TOTENTE FERRORDES FIT |
| 79 | BORNATISY, "FORD TOTAL DETECTADO # 5.3 | V.10F20 9///) |
| | CO VO 78 | AF 81 2 2 3 1 1 1 1 |
| 60 | CALL FYIT | 2 6.1 |
| ••• | END | 15 M 45 |
| | Line | |
| | | 20 |
| | | 30 |
| | | |
| | | |
| | | |
| 1 | | |
| - | | |
| and the second | francis de la desta de la de la de la de la de la d | the second s |
| | | |
| | | . All said |
| | | |
| | | |
| | | |
| | | |
| | | het. c |
| | | · · · · · · · · · · · · · · · · · · · |
| | | and a second |
| | | • • • • • • • • • • • • • • • • • • • |
| | | |
| | | |
| | | |
| | | |
| | | · ···································· |
| | | |
| | | |
| | | an in the second s |
| | | |
| | | and the second |
| | | 2.5 |
| | | |
| | - 1.12- | |

		SUBROUTINE LUIS (FAC. N . DMEGA . X .)	1)		
		DIMENSION X(13), Y(13), FAC(N), OMEGA(A	(V		
	1.1.1	00 200 I=1 N			2 - 212 day 1012
		IF(FAC(I).LT. X(1))STOP			15
		Ja2			
-	69	IF(FAC(I)=X(J)) 112, 111, 110			
	110	· J=J+1			
		IF(J.LT. 13) GO TO 69			-
		-870P			
4	111	DMEGA(I)=Y(J)			
		GO TO 200			2
	+12-	- OMEGA(1)=Y(J_1)+(Y(J)=Y(J=1))/(X(J)=X(J)	1-1)	T+(FAC-	I)_X(J=1))
;	-200	WRITE(6,201) FAC(I), OMFGA(I)			
	201	FORMAT (21H DAVAS AURALITYNA LITE . 192515	5 7/	13	
-		DETION			
1		PUD			
1		ENV			1 - TA

	SUBROUTINE BETO (REL, N, TNL, A, B)
	DIMENSION REL(N), THL(N)
	REAL U
39	SREL=0.0
42	STNL=0.0
45	SSRT=0.0
48	SR2=0.0
40	00 50 TR1.N
41	SREL#SRELAREL (T)
44	STAL=STAL+TAL(T)
47	SSRT=SSRT+(REL(I)+TNL(I))
-50	SR2=SR2+RFL(1)++2.
599	UaN
51	BE(SSRT=(SRF1 +STN1)/11)/(SD2=SPF1 ++2./11)
52-	A=EXP((STNL=B+SREL)/U)
	RETURN
	END

	SUBROUTINE PACO (NU, R, S, W, M, ALOGL, ALOGR, JD, EX)
	REAL NU,L, JD
	-DIMENSION NU(M), R(M), S(M), W(M), L(100), ALOGL(M), ALOGR(M)
	DIMENSION JD(M)
	WRITE(6,33)
33	FORMAT(40H************************************
12126	DO 39 Ka1.4
30	L(K)=NU(K)/(W(K)+R(K)+(S(K)++EX))
31	ALOGL (K) = ALOG(L(K))
32	
41	JD(K) #L(K)
39-	WRITE(6.40) JD(K), P(K)
40	FORMAT(2(3X,1PF20.9)/////)
34	RETURN
	END

		SUBROUTINE P	ROSA (R.	HI, JDP, JD.	ERROR, A, B	ET)	
-		REAL Z		e si la se se como si si			
		DIMENSION ER	ROR(100	, JDP(MI)	JD(MI).	R(MI)	
		00 25 M#1, M1	1				
	20	JOP(M)=A+(R)	(M) **B)				
	21	ERROR (M) = (JC	D(M) JDP	(M))/JD(M)			
	25	CONTINUE					
		ERT#0.0	•	· · · · · · · · · · · · · · · ·		-	
н Ю	27	ZEMI		,			
	28	DO 30 Ma1, M]	I				2
-	29	ERTRERT+ ERF	ROR (M)				
1	30	CONTINUE		-			
	31	ET=ERT/Z					
L	35	RETURN					
1		END					
1			1.0				

- 4-18-

	ESPESOR	DE	PELICULA	1		5.1325723E-02
	ESPESOR	DE	PELICULA	2	2	5,1324182E=02
- an -	ESPESOR	DE	PELICULA	3	8	5,1323497E=02
	ESPESOR	DE	PELICULA	4	8	5.1329490E=02
	ESPESOR	DE	PELICULA	5		5,1328120E-02
•	E8PE SOR	DE	PELICULA	6		5,132812GE=02
	ESPESOR	DE	PELICULA	7		5.67638298=02
	ESPESOR	DE	PELICULA	8	8	5.1570093E-02
	ESPESOR	ĐE	PELICULA	9		5,1572759E=02
	ESPESOR	DE	PELICULA	10	=	5,1326922E=02
	ESPESOR	DE	PELICULA	11	3	5,1328120E-02
	ESPESOR	DE	PELICULA	12	2	5.1325723E=02
	ESPESOR	DE	PELICULA	13	*	5,1326322E=02
	ESPESOR	DE	PELICULA	14		5,1328120E=02
	ESPESOR	DE	PELICULA	15		5,6763924E=02

- 4019-

	ESPESOR	DE	PELICULA	16		5.6	63166E=0	50
			•		• •	•		-
	ESPESOR	DE	PELICULA	17		5.6	65817E-0	2
-	ESPESOR	DE	PELICULA	18	8-	- 5,1	727592-0	2
••	ESPESOR	DE	PELICULA	19		6,31	23024E-0	2

*

H UNO	H DOS	HS UNO	HS DOS	VISCOSIDAD
5,000 E-03	8,000E-03	1,200E-02	1,050E.02	6,3008-01
5,000 <i>E</i> -03	9,500 E- P3	1,200E-02	1,050E.02	6,300 E-01
3,500E-03	5,000 E-0 3	1,1005-02	1,000E-02	6,192 E- 01
4,000E-03	8,500 B-03	1,6005-02	1,200 E-0 2	6 ,480E-01
4, 000 E-0 3	9,500 B-03	1,7COE-02	1,150E-02	6,480B+01
4,000E-03	1,0005-02	1,250E-02	1,1005-02	6,048 E- 01
3,750E-03	9,000 E- 03	1,200E-02	1,100 E-0 2	5,976 E- 01
4,250E-03	8,750E-03	1,2008-02	9,000B-03	5,960E-01
4,000 E- 03	8,500E-03	1,27 6 E-02	1,0005-02	6,012 E- 01
5,0003-03	9,700 <i>E</i> -03	1,200 E-0 2	1,2005-02	6,1925-01
5,000 E- 03	8,700 E- 03	1,2005-02	1,100B-02	6,250E-01
5,000 <i>B</i> -03	9,000B-03	1,200E-02	1,1105-02	6,250 E- 01
5,000 E-03	8,700E-03	1,350E-02	1,110 8- 02	6,320 E-0 1
4,500 E-0 3	9,500E-03	1,500 E- 02	1,300 B-0 2	6,480 E- 01
4,500 <i>E-</i> 03	1,100E-02	1,1508-02	1,2005-02	6,0 43E- 01
5,000 E- 0 3	1,1205-02	1,1108-02	1,1505-02	5,996 E- 01
4,250E-03	1,025E-02	1,2005-02	1,150 E-0 2	6,048 <u>8</u> -01
4,000 5-0 3	9,0005-03	1,2755-02	1,0505-02	6,020B-01
4,000 E- 03	8,500E-03	1,2755-02	1,0005-02	6,012 E- 01

GASTO	DI AL'ETRO	TEMP UNO	TEMP DOS
3,500 5+ 02	3 ,0 30E+00	1,3005+01	1,150E+01
5,000 E+ 02	3,030E+00	1,300 <i>E</i> +01	1,150E+01
3,000E+02	3,0305+00	1,150 <i>E</i> +01	1,0005+01
4,000 E+ 02	3 , 0 3 0 <i>Б</i> +00	1,1800E+01	1,3 50 E+01
4,500 <i>3+</i> 02	3,030E+00	1,350E+01	1,250 B+ 01
2,500E+02	3,030E+00	1,800 E+01	1,200E+01
2,500 <i>5</i> +02	2,2405+00	1,300E+01	1,150E+01
3,0005+02	2,240E+00	1,300E+01	9,000 E+0 0
3,500 E+ 02	2 , 2 4 0 <i>5</i> +00	1,4005+01	1,000E+01
1,000E+02	3,030E+00	1,3005+01	1,301 <i>B</i> +01
1,5005+02	3, 030E+00	1,3005+01	1,2003+01
5,300 E+ 02	3,030 6+ 00	1,300 <i>E+</i> 01	1,200B+01
6,000 <i>E+</i> 02	3,030E+00	1,5003+01	1,2005+01
2,000 E+ 02	3,030 <i>B</i> +00	1,700E+01	1,450E+01
1,0003+02	2,240E+00	1,250E+01	1,3002+01
1,5005+02	2,240 <i>6</i> +00	1,2005+01	1,250E+01
2,000 E+ 02	2, 240 E+ 00	1,300 E+ 01	1,250 <i>E+</i> 01
4,0005+02	2,240 E+ 00	1,4005+01	1,050E+01

-4.23-

PRESION UND	PRESION DOS	PRESION SAT UND	PRESION SAT DOS	FUERZA DIF
6,161E=03	9,811E-03	1,462E=02	1,283E=02	5,316E=05
6.161E=03	1.1625-02	1.462E=02	1.263E=02	
-4,323E=03	6,772E=03	1.343E-02	1,2225-02	+.125E=03
4,937E=03	1.0428-02	1.9385=02	1.462E=02	
4,937E=03	1,162E-02	2.055E=02	1,403E=02	7,059E=03
4,937E=03	1.222E+02	1.522E=02	1,34 3E =02	4,230E-03
4,6302-03	1,1026-02	1.462E=02	1,3436-02	5.358E=02
5+243 €≈ 63	1.0725-02		1.1025-02	a.6682E=03
4.9376=03	1.0426-02	1,592E=02	1.2226-02	4,9678=03
6,161E-03	1.186E-02	1.4625-02	1.4625-02	28°E-03
6,161E=03	1.066E=02	1,462E=02	1,343E=02	18.096E=03
6,161E=03	1.102E=02	1,462E=02	1.3555-02	- 4.9102-03
6,161E=03	1,066E=02	1,641E=02	1,3555=02	5,8136-03
5,5508-03	1.1628-02	1.8196=02	1.582E=92	

<u>۲</u>	5,550E=Q3	1.343E-02	t,403E=02	1,4628-02	3,719E=03
5	6,101E=03	1.367E-02	1.3558-02	1.4038-02	2,3245-03
111.00	5,2436-03	1,253E=02	1,462E=02	1,403E=02	4,298E=03
	4.937E-03	1.102E-02	1.552E=02	1.283E=02	0.964E=03
1	4 937E=03	1.042E=02	1,552E=02	1,2225-02	4.967E-03
	FRACCION MOL	AIRE SECO	G, MOL TRANS	COEFICIENTE DE	TRANS PRA
x 90	7,991E=03	1,27281E+04	2.270E=03	4,301E-01)
	FRACCION MOL	AIRE SECO	G. MOL TRANS	COEFICIENTE DE	TRANS PRA
	7.991E=03	1,81830E+04	4,865E=03	1.307E400	
	FRACCION HOL	AIRE SECO	G. MOL TRANS	COEFICIENTE DE	TRANS PRA
-4	5,6072-03	1,09360E+04	1,300E=03	1,826E=01	
-	FRACEION MEL	AIRE SECO	G. MUL TRANS	COEFICIENTE DE	TRANS PRA
	6,403E=03	1,456976+04	3.898E=03	4,698E=01	
ł	FRACCION MOL	AIRE SECO	G. MOL TRANS	COEFICIENTE DE	TRANS PRA
1	6,403E=03	1.63909E+04	5,360E=03	7,593E=01	
r.	FRACCION MOL	AIRE SECO	G. MOL TRANS	COEFICIENTE DE	TRANS PRA
(6,403E=03	°,10607E+03	3,249E=03	7,680E=01	

÷	FRACCION HOL	AIRE SECO	G. MOL TRANS	COEFICIENTE DE	TRANS PRA
	6,005E=03	9,10971E+03	3,915E+03	7.347E=01	
	FRACCION MOL	AIRE SECO	G, MOL TRANS	COEFICIENTE DE	TRAUS BRA
12 - 1	6;80\$ E ≈03	1.092292+04	4.004E=03	1.5168+00	
-	FRACCION MOL	AIRE SECO	G. MOL TRANS	COEFICIENTE DE	TRANS PRA
k	6,403E=03	1.27485E+04	4.673E=03	9.4092=01	
Ļ	FRACCION HOL	AIRE SECO	G. MOL TRANS	COEFICIENTE DE	TRANS PRA
F	7,991E=03	3,63661E+03	1.016E=03	1.997E=01	
	FRACCION HOL	AIRE SECO	G. MOL TRANS	COEFICIENTE DE	TRANS PRA
	7,991E=03	5,45491E+03	1,2005=03	2.355E=01	
	FRACCION MOL	ATRE SECO	G. MOL TRANS	COEFICIENTE DE	TRANS PRA
r	7,9912-03	2,00013E+04	4,757E=03	9.6685-01	
	FRACCION MOL	AIRE SECO	G. MOL TRANS	COEFICIENTE D	TRANS-PRA
	7,991E=03	2,18196E+04	4.800E-03	8,258E=01	2
1	FRACCION MOL	AIRE SECO	G, MOL TRANS	COEFICIENTE DE	TRANS PRA
	7,198E=03	7,27903E+03	2.164E=03	2.8265=01	·
	FRACCION HOL	AIRE SECO	G. MOL TRANS	COEFICIENTE DE	TRANS PRA

- 4.25-

7	.198E=03	3,63951E+03	1.9362-03	5.207E-01	
P	RACCION MOL	AIRE SECO	G, MOL TRANS	COEFICIENTE DE	TRANS PRA
7	,991E=03	5,45491E+03	2,768E=03	1.191E+00	
	RACCION MOL	AIRE SECO	G, MOL TRANS	COFFICIENTE DE	TRANS PRA
6	.001E-03	7.28194E+03	3,576E=03	8.350E=01	
F	RACCION MOL	AIRE SECO	G, MOL TRANS	COEFICIENTE DE	TRANS PRA
6	403E=03	1,45697 E+ 04	5,934E=03	1,195E+00	
F	RACCION HOL	AIRE SECO	G. MOL TRANS	COEFICIENTE DE	TRANS PRA
6	.403E-03	1,63909E+04	6,074E=03	1,223E+00	
- P	RESION LOG DE	B RE	ACION DE PB-PT		
	7,630E=01		1.010E+00-	y	• •
	7.621E=01		1.0125+00		
	7,655E=01	•	1.007E+00		
	7 .633E= 01	,	1.0105+00		
	7,627E=01		1.011E+00		
×		-	4.26-		

/•0246=01	π a	1.0116400
7,632E=01		1.010E+00
		
7,630E=01		1.010E+00
7,633E-01	-	1,0102+00
7.620E=01		- 1.012E+00
7,626E=01	••••••••••••••••••••••••••••••••••••••	1.011E+00
7,624E-01		1.0112+00
7.5265=01		1 011E+00
7,624E-01	· ·	1,011E+00
7,615E=01	:	1,012E+00
7,611E=01		1.013E+00
7,621E=01		1.012E+00

--

- 4.27-

7,630E-01	1.010E+	00
7,633E=01	1.0105+	00
DATOS SUBRUTINA LUIS	1,5345626E+00	1,19039622+00
DATOS SUBRUTINA LUIS	1.5345626E+00	1.1903962E+00
DATOS SUBRUTINA LUIS	1,5264810E+00	1.19217422+00
DATOS SUBRUTINA LUIS	1,5528954E+00	1,1858418E+00
DATOS SUBRUTINA LUIS	1.5510781E+00	1,1865688E+00
DATOS SUBRUTINA LUIS	1,5483523E+00	1,1873625E+00
DATOS SUBRUTINA LUIS	1,53456262+00	1,1903962E+00
DATOS SUBRUTINA LUIS	1,5272620E+00	1.1920024E+00
DATOS SUBRUTINA LUIS	1,5326977E+00	1,1908965E+00
DATOS SUBRUTINA LUIS	1,5387069E+00	1.18948452+00
DATOS SUBRUTINA LUIS	1,5359541E+00	1.1900901E+00
DATOS SUBRUTINA LUIS	1,5359541E+00	1.1900901E+00
DATOS SUBRUTINA LUIS	1,5410701E+00	1.1859646E+00
DATOS SUBRUTINA LUIS	1,5532968E+00	1,1856813E+00
DATOS SUBRUTINA LUIS	1.5373262E+00	1,1897882E+00
DATOS SUBRUTINA LUIS	1,5346358E+00	1,1903801E+00
DATOS SUBRUTINA LUIS	1,5373262E+00	1.1897882E+00
	-4.78-	

- 429-

SCHMIDT SHERWOOD

 4,0412403	2.1016-01	4,0032+01
×.		
 REYNOLDS	SCHMIDY	
1.108E+04	5,179E=01	6,607E+01
REYNOLDS	SCHMIDT	SHERWOOD
6,595E+03	4.844E-01	6,693E+01
REYNOLDS	SCHMIDT	SHERWOOD
9,186E+03	4,812E=01	4.6845+01

REYNOLDS

REYNOLDS			31	CHAID	18		SHE	RWC	000		
	~ ~ ~		-				 	*:			
-		. e.	-						-		
9,841E+	03			5.1	67	- 41		4.0	831	+01	
······································	() () () ()				-		 		$(1,0,1,\infty)$	-	
· .											

REYNOLDS	SCHMIDT	SHERWOOD
7,716E+03	4,9925-01	1,609E+01

8.844E+03	5.074E-01	3.775E+01	
l i i i i i i i i i i i i i i i i i i i		•	XN 5
REYNOLDS	SCHMIDT	SHERWOOD	
-1.264E+04	5-080E-01	1.1476+02	

DATOS SUBRUTINA LUIS 1.5341942E+00 1.1904773E+00 DATOS SUBRUTINA LUIS 1.5326977E+00 1.1908065E+00

REYNOLDS SCHMIDT SHERWOOD

1,099E+04	4.8195-01	9.746E+01
REYNOLDS	SCHMIDT	SHERWOOD
1.271E+04	4,846E-01	6,033E+01
REYNOLDS	SCHMIDT	SHERWOOD
2,573E+03	4.983E-01	1,749E+01
REYNOLDS	SCHMIDT	SHERWOOD
3,822E+03	5,033E-01	2,065E+01
REYNOLDS	SCHMIDT	SHERWOOD
1,402E+04	5.034E-01	8,497E+01
REYNGLDS	SCHMIDT	SHERMOOD
1,512E+04	5.0772-01	7,2246+01
REYNOLDS	SCHMIDT	SHERWOOD
4,920E+03	5,1718-01	2,4566+01
REYNOLDS	SCHMIDT	SHERWOOD
3,631E+03	4.873E-01	3,315E+01
REYNOLDS	SCHMIDT	SHERWOOD
5,491E+03	4.841E=01	7,593E+01
L ·		

REYNOLD	S 5	SCHMIDT	SHERW	000
7,261	E+03	4,8702-01	- 5,	2976+01
REYNOLD	5 5	SCHMIDT	SHERW	000
1,451	E+04	4,850E-01	7.	660E+01
REYNOLD	,	CHMIDT	SHERW	OOD
1,653	2+04	4.8465-01	7.	757E+01
		8 P C	×	

EXPONENT	E REYNOLD		-1,966E	-01	FACTO	DR DE PROPO	REIONALICAD	A1 # 5.104E	-02
		An and and	in the second	N. N.			A CARE A		Calification and the second
	IRPORT				and the second second	and the set		222 - 11 - T	
						18 mm - 63	- ter		12
	· · · · · · · · · · · · · · · · · · ·			······································		e and a second			
-	***	*****		****	*****	in waawaa		*****	*****
- Barrow		14.	84.34	3		A Sta	A Star		يې در د مېر د م
••••••••	1		enn er in gener			and and the second			
****	***30****	****	******	ROR ****	*****	W REYNOLDA	REARS PARA	JO TEORICO ww	\$\$
	-		and street	A.	1				
4		0.0.07	5. 07	497.98.00					
1	30188086	72-02	-3,88	0594864Em	04	1-26443867	52+04	7.96673646350	03
3	03390102	16-03	-1.89	3723554E+	00	7,71638814	05+03	8,779270843E=	03
8	47383886	28-03-	\$ 50	93304175+	91	9,84052226	48403 18444	8.369345853E	03 0
1	49539710	50+36	3,94	4928415E=	A1	6.59453228	22408	9.054736540E=	03 \$
	31095048	62~03		05416728P	01	9 18551844	92+03	8.4834823985-	03 -
	99790179	9E=03-	1.37	218756284	91	1.27139531	2E+04	7.958145389E=	03
	85274761	7E-03	-1.05	327089Em	91	2,57324555	12+03	1,089549059E=	02
8	74367230	SE#03	1.07	131873120	01 01	3,02212083	72903	1.0079921406=	02
6	86149477	0E-03 -	-1.20	7325166=	M 52	1,51192711	42+04	7.691552103E-	03
1	.33884998	42-03	-3,52	1988701E=	01	4 91998397	42403	9,591655220E=	03
2	03436481	98=02		5956876E	01.	5,49134244	32+03	9.386647006E=	03
1	07154391	72402	1.70	5072485EH	1	7,26144113	5E+03	8 884812304E-	03
	92225077	45-03	18	7547334E	02	1.45264568	52404	7-5582358400=	03
	AJUST	E ACEPT	ABLE DE CUI	AVA DE REA	RESION				• -
							· · · · · · · · · · · · · · · · · · ·		
			1			1. L			
ERROR	TUTAL DET	ECTADO	a (5,6276051	55m02				

EXPONE	NTE REYNOLD B	-1,970E=01	PAC	TOR DE PROPORCIONALID	AD A1 = 3.4848-02	
	e.					
JD=	AT (REWARD) EXPO	NENTE DE SCHMIDT C .			00 BC 83 F	
1000 miles						
**	***	***	南京由央由内由	实际者 古安的没有头颅的支索的交向内有	**	******
		E	6			
	in the second second second			x		
***	*****JD********	******* ERROR ****	* ***	*** REYNOLDWARANN *	*** JD TEORICO ****	
		(1969) No. 4940 (1. 1977)	-			
· · · · · · · ·	4,2241973602-03		1	8,8444976812+03	5.8158387022-03	
	8,969963507E=03	3,9571368795-0	1	1,264438675E+04	5,420426167E=03	
	2,070275011E903	#1,005/1/0/5E40	0	7,7163883496+03	5 49/8534775-03	d)
	5.901031376EmA3	5 71458132820	3	7 040066604CTU2	5 5626935355-03	3
	1 0034701448-03	2 8405843835 - 0	2	1,10/0007012704	5 162081709Emot	
and an a	5.0478253880003		4	Q 1458184998603	5 7726546515003	-
	8,7748629905=03	3 6499205765=0	1	1 0991428435+04	5.5721076925=03	
	4.6982230382=03	-1.524720181F=0	i	1 2713953125+04	5.414570587F=03	
	-6.716883277E=03	=1.042648251E=0	1	2,5732455516+03	7.4172179375-03	
	5.3447507872-03	-2.837012879E=0	1	3.8221564375+03	6.861063469E=03	
	5,9943042552=03	1.1390603582=0	1	1.4016635882+04	5,311516820E-03	
	4.725873349E=03		24	1.511927114E+04	5,2328691916-03	
	4.9353942162=03	-3,227194480E=0	1	4 9199839742+03	6,528141913E=03	
	9,0165988866=03	2.313355876E=0	1	3,6310619948+03	6,930738685E=03	
	1,3650177528-02	5,3199384545=0	1	5,4913424432+03	6,308367049E=03	
	1,2103441742=03	1.614493560E=0	1	7,2614411532+03	6,040238750E=03	
	D,222815144E=03	■1,001453427E=0	2	1,4514526398404	5.275114205E#03	
	43041438134Em03		1	1.0059126025404	2.14104504E=03	
	AVUSIE ACEPT	ABLE DE CURVA DE REG	RESION	×.		
		2 Alter an index				
				1. A. C. A.		
ERRO	IR TOTAL DETECTADO	8 8,61427639	42-02			
	e e e e e e e e e e e e e e e e e e e	· · ·	10 to 12			

· · · · · · · · ·

and an addition of the last of

EXPONEN	TE REYNOLD	8	41-970	E=01	PACTO	OR OR PROPORCION	ALIDAD A	1 8. 3.6078-02	
. 16	- जुन्दी मुन्		2388 ····		The second second	The second second second			Mar and the state
1.21 92		5 m -	A CONTRACTOR OF A		C. A.	and the second sec	and the second second	E and the second se	
	· (88	-	PAPE NO.	PAULERS - Cam	10 10 10	Children and Children	1		1. H.
	Constraint MA.		10112 02	acturation form	261	0.0 <i>0.0</i> 00.05	· · · · ·	100 A 100 A	
***	and see a	· · ·						94 A.S. 91	
			and the state						
會會會會会 ?!	非由 由自由自由自由自由自	·····································	*******	****	*****	an sunnumenter	****	中国的新作业的新作业的新作业	****
		* 2 A	A. T.	is	*	A Start Providence			in and and a
-			-			La inc.			
官會會會會	****JD*****	古宾古有	· · · · · · · · · · · · · · · · · · ·	ERROR *****	* ****	W REYNOLDANAAAA	****	ID TEORICO WANA	
		7.			· · · · ·				
				1. A.	1990 - T. S. S.				
	1 160080108	Bale 2		34.00044500		A RANDATLA PAAT		A 3904781 50047	
	278932182	F=03	3.9	50218265508		1-2644306755444		5 6135514445-03	
1 A 1	143485227	E=03	-1.8	36444749E+0		7.7163881402+03		187051677F=03	-
	1.246023832	2-03		99956418EP0		9,8405222642+03		5.897708597E=03	
	098379776	E=03	5,5	17542080EP0	1 T. S. 1	8,107603901E+04		5,7618991062=03	-
6 8	040727109	2003	3,8	6229502E=0	5	645945322828403		5.381499787E=03	
č	101021703	E-0%	1.4	59381845EmA		1 A30+//3E438+A4		7702004535403	
	.871514653	2=03		10769462F=0		1.27:3553125+04		5.6074582105003	
	954951803	E=03	-1-0	440727216=0	and the second second	215732455516+03		7.6810993495=03	
	5,531432847	E-03 .	#2,8	45221136EP0	1 1 7	3, 3221564372+03		7.105247812E=03	
	,203600053	E=03	1,1	32923336E=0		1,491693588E+04		5,500779725E=03	
	0000014884	E=03		85188753EPO		1,5119271142+04		5.4193426972=03	
i	146530732	5-03		33/682/35 W		1 419923974E405		5,700551705E=03	
	415441695	F=03		259789545-0	1. A.	5. 8913424435+03		6158042715=03	
	474487497	2003	1.6	227667158=0	V 8.	7.2614411552403		6.261551050F=03	
	,415221038	E=03	#8.8	39930991E=0	5	1.451452239E+04		5,4630912196-03	
- 6	818850400	2=03		508916395=0	francia and a	1.6528136858404	!	325260017E-03	
	AJUSTE	ACEPTI	BLE DE C	JRVA DE REGI	ASSION				
						,			
PCT-09.5	1000					······································			
FRROR	TOTAL DETE	PRADO I				1 A			

and a segment of a company of a second

EXPUNEN	TE REYNOLD B a	=1,969E=01	FAC	TOR DE PROPORCIONA	LIDAD A1 = 3.735E-02	
JĐBA	1 (RE**B) EXP	ONENTE DE SCHMIDT	C # - 1	.000E=01	· · ·	
	• • • • • • • • • •	· •	-	X === X == C		
***	****	***	****	1大夫子 意名的知识应名的名词名的	****	*****
,						
***	***********	******* ERROR *	***	TANK REYNCLOAAAAA	**** JD TEORICO ****	
		e de la companya de la				
	4,5207511662-03	-3,79750152	52-01	8,8444976812+03	6.2375071102-03	
	7, 3703432248403	3,94329171	45=01	1,2844386752+04	5.813557628E=03	5
	4 3885313482003	-1 00/1/10(-7 0+7////+7	45-00	7,7163003402403	6 40739000/E=03	
	6.3023281065=03	5 31807254	25-02	1 1074049015404	8 9671657245=03	4
	1.0791425935=02	3 87594291	45-001	6 5945322825003	6 6087308465=03	
	5,430372207F=03		55001	9.1855186995+03	6.1912069265=03	
	9.439307774E-03	3,66882900	7E=01	1.099:428435+04	5.976187158E-03	
	5.051198043E=03	-1,49683565	7E-01	1.2713953128+04	5.807279377E=03	
	7,201458264E=03	=1.04549729	9E=01	2.573245551E+03	7.954368780E=03	
	5,724635359E=03	#2,85343458	3E=01	3.8221564376403	7,358122610E=03	
	6.4202035762=03	1,12678204	126=01	1.401363588E+04	5.696786567E=03	
· · · ·	5,057374417E=03	-1,09757900	1E=01	1.51:927114E+04	5,6124612135=03	
*	5.271860063E=03	-3,28031124	7E-01	4,919983974E+03	7.001194248E=03	
	v. 000553954E=03	2,32824486	4E=01	3,631061994E+03	7,432821356E=03	
	1,40/728305En02	5,33201166	AE=01	5,4913424432+03	6.851338602E=03	
	1.140307432E=03	1,63103571	0E-01	7,2614411552+03	6.484530820E=03	
	2,014/130/0E=03	-7,06664684	14E=03	1,4514522396+04	2.02/1013006=03	

ERROR TOTAL DETECTADO #

the second se

t-

8,6515361425-02

	AI (RENOD)	CHPONENTE	AE SCHHIEDT	C. Marine Parts	-2092e01		Kana ana ang sana sana sana sana sana san		4 . · · ·
				·····	· · · · · · · · · · · · · · · · · · ·		-		
****	****	****	***	****		*****	****	*****	ANSA
				the second	and a section of			· ` ــ`	·
****	*********			****			. ID PEORIS	0	
		1.66							
		- # Think .	ж. у	a flat at - be	T isin				
·····	4-6767462228-	03	3,81231899	5E401	86844497681	2+03	6.4596710	#FE=03	
	9,929103207E=	03 -	3 93635724 1 AATAOGA4	5E#01	1 264438675	2+04	5,0206898	55E=03	
	4.5358050412	03	3 94538703	66001	4.840522264	2403	6,3253556	825-03	
	6,513097087E	03	3,11010204	46=02	1,107606901	E+04	6.1797449	21E=03	
	1,1109700702	202	3,00364661	75-01	6 394532282	2+03	5.8440531	076-03	
	9,7901658288=	03	3-67826210	16-01	1.099142843	E+04	6.1890662	355=03	
	5.2375089648-	03	48291869	8E=01	1.271395312	老+04	6.0141889	622-03	
· · · · · · · · · · · · · · · · · · ·	-7 456701728E	03	1.04692211	6E=G1	2,573245551	E+03	8,2373601	24E=03	
	6.64436998004	50	4,00193333 • 12063651	25001	1 401663588	E+05	5 8997774	146-03	
	5,2317456478=	03	1 10998487	3E=04	1.511927114	2+04	5,8124615	00F=03	
	5,448399506E-	03	3,30694957	56-04	4 919983974	2+03	7,2504238	89E=03	
	1,0043083385	50	2,33567853	12001	3,631061994	2403	7,6973419	54E=03	
11.000	8.032155870F	03	1.61929454	20201	2 4 7 2 3 4 2 9 4 2 9 4 3	ET03	6 7154514	165-03	
	5.821558361E=	03	49482477	5E=05	1.451452239	2+04	5.8593683	62F=03	
· · · ·	5,180888718Em	03	1,02433694	16-01-		2+44	5,7115862	89E=03	
	A THEYE A	PEDTABLE	E CURVA OF	REARESTAN					

A state of the sta

EXPONENTE REYNOL	D B = #1.969	E=01 7/	ACTOR DE PROPORCIONALI	DAD A1 8 4,003E+02	
		a and a second second second	and a manage of a set of a set again		
IDAA (PEAAR)	EVBONENTE DE	BALLHERT C.	t mark and		
Anavi (LEAND)	CAPONENTE DE		5.000cm01		
******	**********	******			
	****************	*****	医原尿管管管管管管管管管管管管管管管管管管管管管管管管管管管管管管管管管管管管	,	***
	• • • • • • • • • • • • • • • • • • •				
			PEVNOL Destate	TEOPICO	
			ANNER NEINGLUNARNAN	HANN OF ICONICO WANN	
		1			
4 8381361	110m47	571 83431. mil		4 4807/170750-07	
1.0271171	33E=02 3.9	29414828E=01	1.264438675E+04	6.235202039E=03	1
2,3789470	11E=031,8	886264655+00	7.716386149E+03	6.871889296E=03	Ċ.
4 6880297	10E=03	731852446=01	9.840522264E+03	6.550670756E=03	
1,1602798	225#02 4,4 985#02 1 8	170074442002	1.1076009010+04	0.399097219E=03	2
5,8424888	50E=03 == == == == == == == == == == == == ==	652022892=04	9,185518699E+03	6.640106766E=03	-
1,0154065	248=02 3,6	87681136E=01	1.099142843E+04	6.409569756E=03	
5,4306918	72E=03	69018599E=01	1,271395312E+04	6,228470608E=03	
6.1315206	832803 828	698772935#01	2,2732422312703 3 8221564378403	7 8911918815-03	
6,0763633	292-03 1.1	144867136=01	1.401663588E+04	6.110001772E-03	
5,4121289	568m03	22404632E=01	1.511927114E+04	6.019588817E=03	
5.0312041	518-03 -3,3	33641315E=01	4.919983974E+03	7.508525635E=03	
1.5781672	998=02 5.3	440537405=01	5 4913424435463	7 3478621345=03	
8,3264080	90E=03 1.6	47545228E-01	7.261441155E+03	6 954594699E=03	
6,0360216	55E=03 =5,3	243171162-03	1.451452239E+04	6,068159349E=03	
	16E=03 ==1:0	11083541Er01	1.6525196852+04	5,915135547E=03	
4400	IS ACEPIABLE DE C	NAA DE KEGHEBIOI	N		
an a		20 T T			
	7849400 8				
ERRUR JUIAL UE	ILCIADU #	0,0048/09495=05			

Augura and	Authorn 1	a mean		-1 p 70	2 C - 40 ft S + 3		PALTU	It was water on	C I rula	SURD A	1.8	4 8 \$ CO 46 E 48	C State
		1 de la		× 8.	4.2		2. 4. 24		And an	1	Ju-	.7.	
Ni wi			. +	1 24	÷.,			C. C. Stand Provent	1201 08				
	ADBAT (HE	NNUU	EXPON	KENTE DE	SCHM30	T C IS	2.5	Defeat	angele Briter e vite berie 1		-	n smarr	
1	1		-	(and a)			- ·	ine gange in a serie and a series and a series of the seri					
	48	20 100											
	*****	****	de de slide de de de	*****		-	AL BRIER	A THE A SH WAR	12. 17 · 16		******		
				************	1 36 10 10 10 10 10 10	N 17 10 19 19 19 19 19 19 19 19 19 19 19 19 19	क्षेत्र व विश्व स्वय	N	1438 H B 80 CO		RBRHEN	对新发展的情绪 。	2方音大方关张的 使
for an and		and as in					· · ····· · ·		A			-	• •
								- man magine					
*	****	10 gazag	朝静黄黄	****	ERROR	****	****	* REYNOLD **	新雄田英	****	JO TEO	RICO ATT	*
	-							VX.		•••			• • • •
								1.31					
* *	5.00	5474584	Ø an A Z		134444	DECAL		R LOPHER LAS	A.A.X			65/17mmA	
	1.06	2495986	F=82		>>>4644	748-01		1 - 26/10 78698	E+0,3 ##0/1		6 4573	571655-0	3
	2.46	3047912	E-03	-1.6	893540	715480		71716308100	6003		7.1166	175145-0	1
-	- 4.84	5363141	E=03	-04 (010388	556-01		9.840522264	2903		6.7840	11760E-0	3 .
	6,95	6017043	2=03	4.1	171340	56E=02		1.107605901	E+04		6,6276	92394E=0	3
	1,20	3108334	E=05	. 3.	\$990249	65E=01		6,594532282	6+03		7,3401	33999E=0	3
	6,00	0131379	E-03		6473093	385-01		9,185518699	E+03		6.8766	18539E=0	3
	5 63	10003149013	E=02	5.0	970001	436=01		1,099142043	2404		6,6379	07899E=0	3
	7.99	4449315	E=03		107723	8/5-01		1.671377316	6404		0,4905	06790E=0	3
1	6.34	5683131	F=03	-2"	781065	655001		2 8220000000	Fent		A 1920	LALSOF AN	3
	7.11	6456905	E=03	1.	083326	74E=01		1.401663583	2408		6.3277	167345=0	ĩ
·	5,59	8734629	E-03		348382	488-04	-	1.511927114	2484		6.2340	97108E=0	3
	5,82	0052640	E=03	-3,-1	603866	276-01		4 9:9983974	E+C3		7.7758	15346E-0	3
	1.07	9153641	E=05	5.	505242	70E=01		3,631061994	E+03		8,2549	59583E=0	3
V KAR C	1,03	0465016	E-03	- 5.	500631	126=01	2	5,498342443	E403		7,6094	59039E=0	3
	5 35	1437234 A788470	E=03	1.	557877	005-01		7,261441155	2403		2202.	54416E=0	3
	5 57	0126110	2-03		331005 78/660	205-03	÷ .	1,451452239	E+C4		0,2843	90316E=0	3
1		AJUSTE	APEDTA	DIE DE	HOW P	E RECOR	STAN	14eb4212999	管中针导	***	041924	704/1E=0	3
			nump in	DEP DE L	Unite D	- negre	0101		2				
		2 - 14 -				-							

the grant and the second second

EXPONENTE REYNOLD B .	=1,968E=01	FAC	TOR DE PROPORCIONALI	DAD A1 = 4.291E=02	
	NENTE OF SCHMIN				
Constructions Const	MENTE DE SCHRAD		•000cmij1		
- and the second se					
***	****	***	essitestestestestestestestestestestestestest	**	******
安安安安安安安安安安安安安安安安安安安安安安安安	****** ERROR	****	NANA REYNOLDARMANA	**** JC TEORICO ****	
5 13777777900-41		C & D m A A	0 644399764848487	7	
1.099093457E=02	3,9155061	515001	1 2644386758404	6.6874273795=03	'n
2,550121961E=03	-1.8900818	60E+00	7.7163881405+03	7.3700612215-03	3
5.007976788E=03	-4.0289479	7E-01	9.8405222642+03	7.025664593E=03	-7
7.188647366E=03	4 5159747	71E-02	1,107606901E+04	6,864009865E=03	
1,2475176398=02	3,9066996	37E=01	6,5945322828+03	7.601499807E=03	
0,20001517003	-1,3294445	b1E=01	9,1855186996+03	7.121554550E=03	
1 0 V C C V 4 D 1 3 E 4 0 C 5 8 8 8 6 9 4 9 1 5 - 6 7	3,1064//1	51E=01	1,0991425435+04	6 67438047/E=05	
	al 0511976	405 - V1	1 = = 1 3773162704	9 148188116F#03	
6.567325869F=03	-2 8863410	538-01	3 833+564375+03	8 4628800965=03	
7,364933536E-03	1.1021743	53E-01	1.4016635885+04	6.553189451E=03	
5,7917681038=03	-1 1472857	91E=01	1.5119271148+04	6 456249428E=03	
6,015170275E-03	-3, 3871855	54E=01	4.9199839742+03	8_052620061E=03	
1.118642683E=02	2,3579363	67E=01	3,6310619946+03	8,548738566E=03	
1-0404105206=05	5,3560647	426=01	5,4913424436403	7 880369241E=03	
6 18891+14/2m03	1.0640221	756-01	7,2614411556+03	7,4587335278=03	
5_7755774658-A3	B 8/430/8	102-03	1,4014026375404	6 3442549665×43	
AJUSTE APED	ANTE OF CURVA DI	F RECEPTION	8 6 6 6 6 8 8 8 9 6 6 9 C 4 1 4	0,3442,54,002-03	
	i n s = 2				
ERROR TOTAL DETECTADO	8 8.728	093285Fm02			
The second fraction of	0.140	- WEV VE VE			

	我保護公共会	在市会会会会会 为	****	*****	****	· · · · · · · · · · · · · · · · · · ·	****	*****	*****
	EXPONENTE	REXNOLD	B	-1.958E-	01	ACTOR DE P	ROPORCIONALIDAD	A1 # 4,391E=02	
		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	S	1		3 18 9		and the second	jt.e
	JDSA1 (REWER	- EXPONE	NTE DE SCI	INTOT C-8	7. 1716001	a an		-
÷ -		ar ar				222020-01	÷.		
i	· · · ·					8 - 8 - 9			
	the second second				والمستوجبين والمراجع	na nagan ang sang sang sang sang sang sa			
*	会保住的 自由会	有实为的需要病的有	***	****	自由自由实际使用科学生的	网络古鲁会 会会	陈安女杂教师 会会都会会会会	****	****
					and the second			·	
	****	**JD*****	***		108 watawa 40	Pares REVN		JD TEORICO ++++	
						14 P			
	-								
٣		246205555	E=03	-3,866	850122-01	8,8444	976812+03	7 3441297598=03	7
1	2.	164100716	E=02	3,910	363503E=01	7 7444	50075E404	6,845527761E=03	0
1		119195144	EDOJ EDOJ	-2 040	ATITICALI	9 84AS	222688603	7 10151316//5-03	
	7.	348024396	F=03	4.381	460835=02	1,1076	069015+04	7.0260599735=03	-4
1	1.	278027789	E=02	3.911	102128=01	6.5945	32282E+03	7.7808757355-03	,
	- 6.	441018687	E-03		515308=01	9,1855	18699E+03	7.289650090E-03	
	- 1.	119193801	E=05	3,712	293856-01	1.0991	428432+04	7.036674300E=03	
	5,	981385614	€=03	-1.432	34789E-01	1,2713	953122+04	6,837940842E=03	
		472448715	E=03	-1.052	478178=91	2,5732	455512+03	9.363875557E=03	
	2,	117330004	2003	#2.891	533067E-01	3,8221	564372+03	8,6624824692-03	
	5	924120265	5-03	1,095	0003/E=01	1,4018	933092904	6.7079349075=03	
	6.	148855866	F=03	=3 405	79557Fw01	4 9199	6/114C+04 A39740003	8 242590206Emol	
	1.	145765523	E=02	2.362	373294E=01	3.6310	61994F+03	8.7503564735-03	
	1.	738448450	E=02	5,300	10#1127E#01	5,4913	42443E+03	8,066294544E=03	
	9.	164830744	2=03	1,669	06720E=01	7,2614	41155E+03	7.634756092E=03	
	6.	647328857	E=03	-2,209	90664E=03	1,4514	522392+04	6,6620173982=03	
	- · · · 5 ₁	916723667	5=03		984826=02	1,4525	15685E+04	6.494089306E-03	
		AJUSTE	ACEPTAB	LE DE CUR	A DE REGRESIO	itsi -			

.

ERROR TOTAL DETECTADO = 8.7411148892-92

	***	***	****	****	****
EXPONE	INTE REYNOLD B	=1.967E=01	FACTOR DE PROPORCIONAL	IDAD A1 = 4,599E+02	ر
JDs	A1(RE##B) EXP	NENTE DE SCHMIDT C .	4.0005-01		
****	【常常常会讨论论论的方面的变形。	***************************************	安会发达委会支 会 资格产交大支支运支会会大	******	******
с - то на			g angeoint an en c'ho		
****	****	*****	****** REYNOLD*****	**** JD TEORICO ****	
			San De Lange C. a		
·	5,541276351E=03 1,176113598E=02 2,733613648E=03 5,349759507E=03 7,677507786E=03 1,341314551E=02 6,762923596E=03 1,175004567E=02 6,277355070E=03 6,875204898E=03 7,034106432E=03 7,034106432E=03 6,425248836E=03	<pre>*3 686645394E*01 3 01565596E=01 =1 891537987E*00 *4 084933292E*01 4 112381255E*02 3 92202029E*01 3 725217150E*01 =1 41358624E*01 =1 054048830E*01 *2 902825630E*01 1 089844913E*01 =1 17222868E*01 =3 440944780E*01</pre>	5.844497681E+03 1.264438675E+04 7.16388140E+03 5.840522264E+03 1.107606901E+04 6.594532282E+03 1.099142843E+04 1.271395312E+04 2.573245551E+03 3.602156437E+03 3.401363588E+04 1.511927114E+04 4.919983974E+03	7,694973971E=03 7,172451629E=03 7,904347703E=03 7,535100578E=03 7,561779396E=03 8,152482974E=03 7,5617910205E=03 7,372898504E=03 7,164713346E=03 9,810694832E=03 9,075985016E=03 7,028523668E=03 6,924585391E=03 8,636141481E=03	- 4,41-
* *	1,202008655E=02 1,824600465E=02 9,615223631E=03 6,975846630E=03 6,209493536E=03 AJUSTE ArEE	2,372739022E=01 5,368044768E=01 1,680466623E=01 =6,558807902E=04 =9,582290481E=02	3,631061994E+03 5,491342443E+03 7,261441155E+03 1,451452239E+04 1,652515685E+04	9,168033786E=03 8,451467669E=03 7,999417392E=03 6,980421954E=03 6,804505244E=03	

ERROR TOTAL DETECTADO .

6,767388338E-02

4 - - - -

. .

RERAWAT		*****	******	****************	****	******
JDBA; (f	1Eww8)E	XPONENTE DE SCHM	IOT C .	5-400E-01		t z
				na nakalapan inaka di sina nanar Salaha na nangadi ni sina sinaka na nangga nagga na nanggi si nangga si nanga		· * ×
*****	******	*****	80************************************	**** *********************************	***** JD TEORICO ****	*****
	0037234662=0 2084122822=0 3106554312=0 322371962=0 322371962=0 2098164232=0 46191152=0 259786182=0 259786182=0 2597785182=0 2397797822=0 237978518=0 3783249592=0 3783249592=0 3783249592=0 3783249592=0 3960099642=0 397000000000000000000000000000000000000	3 -3 69857 3 -1 89598 3 -1 89212 3 -4 10738 3 -5 95046 2 -3 92813 3 -4 27957 2 -3 73269 3 -4 105548 3 -4 105548 3 -4 08496 3 -4 08496 3 -4 2504 3 -5 37865 2 2 37865 3 1 68703' 3 2 75200	4001201 04305001 06425400 99235001 2675201 2675201 2675201 2675201 2675201 2675201 2675201 3492501 56205001 56205001 56205001 53192001 20575001 53192001 553192001 06265004		7 - 9134640802 = 03 $7 \cdot 3761722202 = 03$ $8 \cdot 126754591 = 03$ $7 \cdot 5708520542 = 03$ $7 \cdot 5708520542 = 03$ $7 \cdot 5622854662 = 03$ $7 \cdot 5622854662 = 03$ $7 \cdot 36821571 = 03$ $1 \cdot 0056942292 = 02$ $9 \cdot 3334886222 = 03$ $7 \cdot 2261751462 = 03$ $7 \cdot 2261751462 = 03$ $7 \cdot 22613242 = 03$ $8 \cdot 8913324212 = 03$ $8 \cdot 6913324212 = 03$ $8 \cdot 2265106492 = 03$ $7 \cdot 1787134202 = 03$	-14.42-

AJUSTE ACEPTABLE DE CURVA DE REGRESION

ERRIR TOTAL DETECTADD . 8.783296550E#02

***	***	*****	****	***** * **
EXPONENTE REYNOLD B #	=1,967E=01	FACTOR DE PROPORCIONA	LIDAD A1 = 4.930E=02	
JD=A1 (RE##8) EXP	ONENTE DE SCHMEDT C .	5.0002=01		
		а		
******	****			
			*****	*****
		a a a a a a a a a a a a a a a a a a a		
*****	****** ERROR *****	****** REYNOLD******	**** JD TEORICO ****	
5,9302938262=03		8-8444976815+03	8,252866182F=03	
1.256531007E-02	3,887593105E-01	1.264438675E+04	7.692653606E=03	1
5,714868098E=03	-4,141142004E=01	9,8405222642+03	8,081476131E=03	-7
0.199612919E=03	3,7070818562+02	1,107506901E+04	7.8956465568-03	4
7 2761689632=02		9,1855186992+03	8,191704758E=03	-
1.263977541E=02	3,743901371E=01	1,099142843E+04	7,9075681608=03	
9,515487321E=03	-41.056900800E=01	2,5732455512+03	1,052117994E=02	
7.534063983E=03 8.448680049E=03	-2,919331710E-01	3,822156437E+03	9,7335071718-03	
6,6328048892=03		1.5119271146+04	7,426894412E=03	
6,863284117E=03	-3 494919898E=01	4 9199839742+03	9.261946940E=03 9.8321925455=03	
1,9618922505=02	5.3799938865=01	5,491342443E+03	9.063954191E=03	
1,0332614772=02 7,4992872848=03	1.6768786302-01	7,2614411552+03	8,579295452E#03 7,486761966F=03	
6.676009491E=03	-9,318979235E=02	1.6525156855+04	7,2981448296-03	
AJUSTE ACEP	TABLE DE CURVA DE REGRE	SION		

- v - av

ERROR TOTAL DETECTADO = 8,807362843E=02

and particular and an and particular second

.

	****	***********	********	****	****		******	*****
X	ENPORE N	ie mernyeu	a diretar	#19300C=01		UTON DE PROPORC	LOUNDEREND AL R	3,6842002
<u>1</u>		1 (REWND7	EXPONE	NTE DE SCHM	107 C-10	2.000E-01	2000 	
	n an	n ann ann a		na internet interne		and	·	
	***	****	****	*****	*****		***	****
Ì	·	45.4 .	14 12				en den sen se	
1	*****	nowad Barbara	and	Antata FOR	P and the main set	DEWAN DEWAN	ANA ANA IN TEOD	160
k				SASSAN PUNC	**************************************	тиния пертерия	ANK . NOR OF ILON	SCO WARA
			s - 1		· .			
(6,346621721 1,34672390	48=02		43812-01		+03 8,85124 +04 8,25058	89542=03 46635=03
		3,14115595	55=03	-1 89445	24435+00	7,7163881405	+03 9,09192	5533E=03
1		8,75722355	32-03	3,30006	94476202	1,107606901E	+04 8,46822	9094E=03 Y
		1,550595444 7,82836505	46=02 96=03	3,95254	53396001	6,594532282E 9,185518699E	+03 9,37715 +03 8,78565	5644E=03
		1.35968767	20~35	3.76252	99635-01	1,0991428435	+04 6,48101	11112-03
3		1.02019615	38=02	-1.05975	35625=01	2,573245551E	+03 1,12831	1804E=02
		8.048955661 9.04896443	62R03	-2,93535	8749E=01	3,822156437E	+03 1,04386 +04 8,08512	6445£ 02 7751£=03
		7 09806955	98=03	-1,22224	37632001	1,5119271148	+04 7,96564	0880E=03
		1,38784198	8E=02	2,40225	8322E=C1	3.6310619946	+03 1,05444	6491E=02
8.80	-	2,10951453	52=02-	5,39191	21706=01	5 491342443E	+03 9,72082	8256E=03 8900F=03
		8,06200490	72-03	3,99087	82245-93	1,451452239E	+04 8,02983	0427E-03
1		1111134434	9E-16-9	- ma 02056	44108n08		7082759	2404E #02

1 × 11 × 10

AJUSTE ACEPTABLE DE CURVA DE REGRESION

The second se

ERROR TOTAL DETECTADO # 0g8480176565#02

.

EXPONENTE PEYNOL	D B = -1.966	E=01 F	ACTOR DE PROPORCIONA	LIDAD A1 # 5,535E=02	
JD#A1 (RE##8)	EXPONENTE-DE	SCHMIDT C -	5-667E=01		
***	****	******		****	******
	the second second				
	******	50000 ++++++	AAAAA BRYNOL DAAAAAA	THAT ID TEOPICO	
			RAMAN KEINGLUNNENNA	WARM OD ICONICO ****	
6.6402574 1.4089201 3.2900685 6.3795623 9.1498348 1.6273677 8.2195457 1.4274807 7.61506159 8.4474947 9.4776207 9.4726226 7.46606704 1.4559576 2.2140393 1.546914 8.4603761 7.5326789 AJU8	472=03 -5,9 20E=02 3,4 46E=03 -4,2 47E=03 -4,2 47E=03 -4,2 97E=02 3,9 08E=03 -1,1 10E=02 3,7 54E=03 -1,3 44E=03 -1,3 45E=03 -2,9 70E=03 -2,9 70E=03 -2,9 70E=03 -3,3 55E=03 -2,4 50E=02 5,3 50E=02 5,3 50E=02 5,3 50E=03 -3,5 50E=03 -3,5 50E=03 -4,2 50E=03 -3,5 50E=03 -4,2 50E=03 -3,5 50E=03 -4,2 50E=03 -4,2 50E=03 -4,2 50E=03 -5,5 50E=03 -6,8 7 50E=03 -6,8 55E=03 -6,8 7 55E=03 -6,8 55E=03 -6,8 55E=0	663657682001 164235384E=01 195424484E=00 135318321E=61 27799655E=02 16288328E=01 199295088E=01 140094801E=01 16405554E=01 156836692=01 156836692=01 156836692=01 152892248E=01 152856260E=01 152856255=01 152582825=01 152582825=01 152582825=01 152582825=01 152582825=01 152582825=01 152582825=01 15258285=01 15258255 15258255 15258255 15258255 15258255 15258255 1525855 1525855 152585 1	8,84497681E+03 1,264438675E+04 7,716388140E+03 9,84052264E+03 1,1076069012+04 6,594532262E+03 1,099142843E+04 1,271395312E+04 2,573245551E+03 1,401663588E+04 1,511927114E+04 4,919983974E+03 3,631061994E+03 5,491342443E+03 7,261441155E+03 1,451452239E+04 1,652515685E+04	9,274026444E=03 8,644802270E=03 9,56144945E=03 9,081510078E=03 9,82190935E=03 9,205311788E=03 8,635483500E=03 1,182143577E=02 1,093687631E=02 8,471473650E=03 1,040729418E=02 1,040729418E=02 1,040729418E=02 1,04473564E=02 1,06493564E=02 9,640621715E=03 8,413549358E=03 8,201695785E=03	-64-4-
ERREN TOTAL DE	TECTADU .	0.0124434215.60%	. 'a		

~

The state of the s

CRONEN	ITE REXNOLO &	s	10-3d	FACTOR	DE PROPORCION	AL LEAD	1. w 5.	664E=08	2.5
	14.5			Con Antistan	A STATE OF A	Maria -	142 - 144.	And the second se	· · · · ·
1	dame the second	and a second		A State State	A Design of the second s			1. 1. 1. 1.	380 A.Y.
	1-17E 4407	RPONENTE- DE	SCHARDT & a	7.00	95001	internation .	and an an an an an an		S
-			57 48 4 7 1 -		and a second			* *	
							Marchi & an occasi o		
会就能需要	****		****			***	**	****	
S. 6.1		1 mg		1					and the set of the life
	i angene ana taga		· · 4	ernen en	Aller in Miller in				• • • • •
8 10 1 10 10 1					a (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	* *			
前南方南方	有方的内心的内容的方向的内容的内	* *****	ERROR adates	* 黄黄黄黄黄素	月空节秋日山日本省会市市市	*********	JD TEORIC	0 2222	
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		•		* san
				- 1. A	2.				
-	6.7921793320-0	3	763652110001	-8			9-4999956	80+38P	
	1.4410970120-0	2 3.8	595520208001	- 4	2000386955404		8.8489812	335=03	
	3.3671749525=0	3 01.6	959107738+00	7	7163881002003		9.7510382	165-03	~
	6.5215392888=6	3	542312508-04		8465222645403		9.2959542	1-75-05	-
	9.332754228800	3 2.8	913365555402	. 1	1076069017+04		9.0823346	22F=05'	-
	1.6671797912=0	2 3.9	677904998-01		5245322828403		1.0056844	1538002	
	8,4224678958=0	J	875551496=01	si in in in in its	1855186992403		9.0226655	625-03	
	1.462645106E=0	a . 3.7	811030788-01	- 1	099142543E+04		9.096039	48E=03	
	7.8011565450=0	3 -1.3	30939637E-01	1	2713953128+04		8 8394433	191F=03	
	1.0917959948=0	2	62607003Ea01		3732455512403		1.2100235	522F=02	
	8.6431160305000	3 -2.9	524868868001	3	8221564375003		1,1194905	7795002	
	9. 591899399000	5 . 1.0	52754029Fm01	. 1	401463988++04		8.6715801	1855-013	
	7.595970681840	1	471481298#A4	1	51+9271142404		8.5434684	2042405	
	7.830978467856	3	ALARABE LEETO	3	9199839745+03		1.0652884	8225 = 0.2	
	1.491269860800	2 24	1169251168001	ž	6310619945403		1.1308330	5315 002	
	2_2682446368=0	2 54	117997175m01	1	4913424479=03		1 0425304	6645 0 02	
	1.193494602955	2 1 7	20645557 18mAI	7	SALEAISEREANT		9 8682041	A7150A3	
	8.66690669385A		LAS (REAREDUSE		LIG + ARD 3 2 GRAAA		A 613291	55/15-03	
	7.714821010000		013961848-03		SERE SAROBAAA		A SOUTHER	68.65-07	
	A.THOTE AN	EnTANIE AR	**************************************	COTAN .			089474204	6445 × 0.2	
	HOUDIE AC	aringserve (UNAN DE REGR	C0100					
					- en				
1000			· · · ·		r el				
ERROR	TOTAL DETECTA	00 9	8.889353611	F#62					
			~844.848.848.943	2- V K					
			· · · · · · ·						

· 特殊特性

EXPONE	NTE REYNOLD	8 s	=1,965E=01	PACT	OR DE PROPORCIONA	LIDAD A1 a 5,864E	02
					5 14 000 1 000 1 0 000 1000 1		
	4. (#HOANE		Y .A	820E-04		
	(CULERAD)	CALONE	THE DE GUIMAL	1 9 8 76	2002-01		
					2 a		
	ar	. <u>.</u>			er er er		
***	****************	****	144000000000000000000000000000000000000	*会会会会会会会会会会会会会	黄素 影会的演会会会会会会	治诊院会会会会会会会会会会会会会会会会	(会会会会会会 大 会会
				۲.			
						× ·	
****	******	barata di	AAAAAA FRROR	and the standard standards and the standards and	AN REVNOI Dunnen	ATTA IN TEARICO AND	
-					EN HEINGGERRAN	RARA OD ILONALO RAR	
	10			-	10 - 1 - L - L - L - L - L - L - L - L - L		
c	/ 0205512338	-03-		746-01	8.844976812403	9.831111164E=0	13
	1,490/553228	-02	3,8525210	00E=01	1.2644386752404	9.164263092E=0	13
	5 70000110370	-03	m1 0400405	136400	767103051402+03	1,004650140E=0	51
	0 **********			016-01	4 840822284E+03	4,02/004/09Em(15
	· **********	005	2,0002280	045=02	1,1076089038404	4.403041135E=C)3
	1 1 201 104401	20-	3,9753586	105-01	6,5745322822+03	1.041494647E=(20
	01100518400	1403 -	-1,1044534	14E=01	2-182314699E+03	9,750288303E=(33
	1,51/01140/	-96	3,7903688	90E=01	1.0991428435+04	~,420081608E=() 3
	0.0000403135	5e03	-1,3172235	105-01	1,271395312E+04	9,154387018E=()3
	1,132563736	E#08	-1.0640339	190E=01	2,5732455512+03	1,253072367E=()2
	0,944997555	-03	-2,9606888	83E=01	3.822156437E+03	1,159333304E=()2
	1,003029961	-02	1,0465572	15E-01	1,401563588E+04	8,980571366E=(33
	7,0578691778	03		68E=01	1.511927114E+04	8 847914857E=(33
	8,093512514	E=03	-=3,6308079	045-01	4,9199839748+03	1.103211143E=0	20
	1,5458392888	50=1	2,4243228	242=01	3.631061994E+03	1.171077941E=0	20
	2,3520339056		5,4097319	875=01	5.4913424438403	1.079646600E=0	50
	1.2369078888	-02	1.7377671	36E=01	7.2614411556+03	1.021962101E=0	20
	8,986232669	03	7.4617791	515-03	1.4514522396+04	8.919179385F=0	03
	8.001451040	1003	m.8 6634342	905402	1 6535156857+04	6 6946536665	3
	AJUSTE	ArEstas	F. DE CURVA C	F RECRESTON			

.

a anter a transit of

ERROR TOTAL DETECTADD = 8,910277286E=02

a cara di secondo di s

nare new an assis

1

1

.....

• • • • • • • • •

te company management of a second
	A;{(REw#0)	PONENTE DE SCH	MIDT C -	8.000Ewp1	15 A		
enter :		·			an a		
*****	nengansyngsgangenen	****	****	****		****	*****
		· · · · · · · · · · · · · · · · · · ·			11.5		
				4 · · · ·			
****	5方有分为JD有有余有有有有余有。	******* ERR	DR ****** **	**** REYNOLD***	南京 · 大曲大中 ·	ID TEORICO ****	
	9 3/ 8 · · · · · · ·				3		
- Max an - 1	209012543E=0		004492001	8.8449768124	03	1.018127006E-02)
	3.6094569375=01	3,0404	52200C=U1	7 7141881007224	A2	AUS701/0102100	
a servera	5.966619113PmA	-4 3:55	175915041	9 84052226484	03	9760105335-03	~
	9.988783664E=0	2,4808	75989E=82	1.10760690154	04	740974328F=03	~
	1,7925297462=08	3,9829	17351E=01	6.59453228284	03	078579963E=02	,
	9,061657820E=0		364105=01	9.185518699E+	03	1.010586564E=02	
(a), (3)	1.573398620E=0	3,7996	20887E=01	1.09914284324	04	9,755667941E-03	
	8,387253297E=0	-1,3035	239856=01	1,271395312E4	04	9,480551882E-03	
	1,1/4/000055E=00	-1,0654	61161E=01	2,5732455516+	.03	1,297652755E=02	
	* "CD1454445EmD	······································	7.6177E=01	3,82215643764	- 53	200593819E-02	
	8.12899987AFMAT	1,0405	50104E=01	1,40100330021	54	-300372072E=03	
	8.3648484348		10555E=04	1,01176/11464	04	149/87//305-03	
	1. 6024055735#02	2 4316	63412EmA1	3 63406199484	03	2127544735=02	
	2.438918360Fm6	5 4156	566005=01	5 49134244364	03	1180839295802	
	1.2822206995-02	1.7459	20644F=01	7 26144115564	03	1.058355140F=02	
	9,317280980E=01	8,6160	55908E=03	1.45145223964	04	2370027665=03	
1.00	8,2965826468=03	-8,5327	99677E=02	1.65251568524	04	9.0045134245-0-	
	AJUSTE ACE	PTABLE DE CURV.	A DE REGRESION				
			2				

~
****	****	****	****	有力力力力力力力力力力力力力	*****	***
EXPONEN	TE REYNOLD	B #	=1,965E=01	FACTOR DE PROPORCIONA	IDAD A1 = 6.286E=02	
				2 819 a. t. 1914 a.		
JONA	1 (REweb)	EXPONE	TE DE SCHMIDT C .	8.500E=01		
• (10 140 U 11		
*****	***	*******	***	in the second seco	医骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨	***
• • •			tot a so a	e emerica es	-	
***	****JD****	****		****** REYNOLD*****	**** JD TEORICO ****	
		* ~ ~	(C)			
	7,519840332 1,595200183 3,737059014	E=03	-4,021442262E=01 3,838436813E=01	8,844497681E+03 1,264438675E+04 7,714384145+03	1,054390070E=02 9,828926722E=03	
a na mar a c	7,200423537 1,032283891 1,858695888	E=03 E=02 E=02	-4,339644826E=01 2,274995638E=02 3,990486487E=01	9,84052264E+03 1,107606901E+04 6,594532282E+03	1.032515161E=02 1.008799477E=02 1.116985805E=02	
	9,399219803 1,631881678 8,696612954	E=03 E=02 E=03	=1,1347785882=01 3,808859108E=01 =1,289841031E=01	9,1855186992+05 1,099142843E+04 1,271395312E+04	1,046582314E=02 1,010320938E=02 9,818337776E=03	4.47
1. (19. (B).	1,074295910	E=02 E=03	=1,066388554E=01 =2,977268799E=01 1,034150721E=01	2,573245551E+03 3,822156437E+03 1,401663588E+04	1,343819179E=02 1,243322793E=02 9,631975206E=03	τ,
	8,645280098 1.661041766	E=03 E=02	=1,285130511E=01 =3,685545471E=01 2,438996869E=01	1,511927114E+04 4,919983974E+03 3,631061994E+03	9,489742078E=03 1,183153739E=02 1,255914200E=02	
2 (\$34))	2,529012339 1,329193497 9,660524945	E=02 E=03	5,421573561E=01 1,754066103E=01 9,768991848E=03	5,4913424436+03 7,2614411556+03 1,4514522396+04	8.157889696E=02 1.096044171E=02 9.566151356E=03	
	8,602597962 AJUSTE	E=03	-8.402321900E=02	1.652515685E+04	9 325415934E=03	

ERROR TOTAL DETECTADO #

8,952636596E-02

.

.

JOBAT (REwy8) EXPONEN	TE-DE SCHMTDT C-0-			
and and a second se				
t men men same sa men same	10 A.C.			
会我我我的自我能能会你们你我要我的我的我我的我的我	****		**************************************	******
		the set of the set	<u></u>	
		and a spectrum of the second of the		
NARATERON UDROBRED AND A	*****	****** REYNOLD*****	www JD TEORICO anaw	
			*	
7 77088-7804				
1.6501465485.02	5.831382384Em01	5 004077001240J	1,091994733E=02	,
3.8691720995-03	=1.898829636E+00	7.716386140E+03	1,121607075F=02	
7,4420745968-03	- 4- 368228933E=01	- \$ 646522264E+03	1,069294315E=02	~
1,066806597E#02	2.0686805532-02	1.107606901E+04	1.044737777E-02	-
1,9273043655=02	3,9980461045-01	6,594532282E+03	1,1567591942-02	,
1_69251850/05-02	S. 6180835405m01	7153510099E403	1.0030001092-02	
9-017383188F=03	-1 2761746545p01	1 27 1920425404	1 0168158785002	
1.257307835Em02			1.391628054F=02	
9.915412342E=03	-2,985566694E-01	3.822196437E+03	1.287572483E-02	
1,111805787E-02	1.0279410225=01	1,491653588E+04	9,975187096E=03	
0,0490001286=03		1,51:927114E+04	9.827909447E=03	
0 8 7 3 3 1 1 300 3 E = 0 3		4,919963974E+03	1.225271834E=02	
2.6224344028=02	5 1271828905+01	34931001794E703	1,300909900E=02	
1.3778878938-02	1.7622035277=01	7 2644411558+03	1 1350753436#02	
1,0016413855#02	1.0920565396-02	1.4514522396+04	9.9070287455-03	
8,9199004992=03			9.657754776E=03	
AJUSTE-ACEPTADL	E DE CURVA DE REGRESI	00		
The second		- provide the same of the same	· · · · ·	

many and send the second

EXPONENTE REYNOLD	B = -1,964E≈01	PACTOR DE PROPORCIONALIDAD	A1 # 6,738E=02
JDWA1 (RE**B)	EXPONENTE DE SCHMEDT Ç -	9,500E=01	
***	***	***	***
*****	**** ******* ERROR *****	****** REYNOLD****** ****	JD TEORICO ****
0 047760095 1 706985529 4 005955667 7 691835626 1 102403246 1 978445329 1 011253645 1 75545001 9 349964872 1 301870977 1 0261735899 1 150625352 9 234663917 1 784829617 1 784829621 2 719307489 1 428364528 1 038541352 9 248696583 4 038541352 9 248696583 4 038541352 9 248696583 4 038541352	E=03 -4,051574373E=01 E=02 3,224319676E=01 E=03 -1,86955981E+00 E=02 1,86959864E=02 E=02 4,005596215E=01 E=02 3,827294266E=01 E=02 -1,099745836E=01 E=02 3,827294266E=01 E=02 -1,069745797E=01 E=02 -2,993869880E=01 E=02 -2,993869880E=01 E=02 1,021727015E=01 E=03 -1,310375731E=01 E=02 2,453642518E=01 E=02 5,433384595E=01 E=02 1,2770332922E=01 E=02 1,277033891E=02 E=02 1,277033891E=02 E=02 1,277033891E=02 E=02 3,414837274E=02 ACEPTABLE DE CURVA DE REGRES	5.8444976812+03 1.2644386752+04 7.7163&81402+03 9.8405222642+03 1.1076069012+04 0.5945322822+03 9.1855186992+03 1.0991428432+04 1.2713953122+04 2.573245512+03 3.8221564372+03 1.4016635882+04 1.5519271142+04 4.9199839742+03 5.4413424432+03 7.2614411552+03 1.4514522392+04 1.6525156852+04	1.130836995E=02 1.054179695E=02 1.161550806E=02 1.07383577E=02 1.081956372E=02 1.12748825E=02 1.12748825E=02 1.122465844E=02 1.083587640E=02 1.053044367E=02 1.441137817E=02 1.333397011E=02 1.333397011E=02 1.033662651E=02 1.268889256E=02 1.241803147E=02 1.2460326E=02 1.026005286E=02 1.026005286E=02 1.000393751E=02 1.000393751E=02
ERROR TOTAL DETE	CTADO = 8,995679231E=	1 5 (La A 50	

ANALISIS DE RESULTADOS.

Para poder llevar a cabo este análisis, tenemos que emp<u>e</u> zar por saber la forma en que se obtuvieron estos resultados y lo que significan.

En la sección anterior se siguió el cálculo hasta el pu<u>n</u> to en el cual se outuvieron todos los números adimensionales que se necesitan para el ajuste.

Por principio de cuentas se partió de una ecuación del ti po: $Sh = a Re^{b} Sc^{c} #$

en la cual como se ve claramente tenemos tres incógnitas, a sa ber los exponentes de los números adimensionales \underline{b} \underline{j} \underline{c} \underline{j} \underline{el} valor de factor pre-exponencial \underline{a} .

Normalmente la determinación del valor de estas constantes presupone un diseño de experimentos en el cual sea posible un número de corridas suficiente, tal que el Re en un caso y el Sc en otro permanezcan constantes; es decir, presupone la existencia de una cantidad de corridas y una facilidad ó dispo nibilidad experimental para en un caso podamos obtener un núm<u>e</u> ro de corridas de Sc = cte., como para llevar a cabo un ajuste estadístico. Al tener el Sc=cte. este se absorbe en el factor pre-exponencial y se llega a una expresión del tipo:

$$Sh = a' Re^{b} W$$

lo que en una gráfica de fn (Sh/MA) vs. fn Pe la pendiente se-ría el factor b (Nótese que a' = a).

El mismo procedimiento se seguiría para determinar \underline{c} , a partir de mantener constante el de lo que produciría una ec. -

del tipo:

en donde el Re=cte. ha sido absorbido en el factor pre-exponen cial; por lo que, en una gráfica de la $\ln (Sh/\pi)vs$. In Sc la – pendiente sería el exponente <u>c</u> (Nótese que a" \neq a' y a[•]) de – tal manera que la determinación del factor pre-exponencial segría muy fácil.

Ahora bien, en este caso, sólo se dispone de un sistemade agua-aire; por el efecto disolvente que ejercen las substan cias disponibles en el laboratorio sobre el peganento de las juntas del aparato, esto obliga a pensar en una forma de deter minación de los valores de <u>a</u>, <u>b</u>, <u>c</u> diferente a la tradicio-nal ja descrita.

El método de cálculo fué el siguiente:

Chilton-Colburn presentaron un factor definido como:

$$J_D = \frac{Sh}{Re Sc^{1/3}} = \frac{Re Sc^{2/3}}{V e Q}$$

para tr_ansferencia de masa en platos planos, siendo este su punto de partida para sus analogías.

Con el fin de tener un mejor manejo de los datos, el autor de la tesis propone un nuevo factor del tipo:

$$J_D = \frac{Sh}{Re T Sc^{\circ}}$$

donde como se ve, se deja indeterminado el exponente <u>c</u> del número Schmidt usando este factor de la siguiente manera:

 $J_D = a R e^b$ 5 $J_D = b I n R e + ln a$

como se ve esta es una ec. simple que se puede ajustar meaiante una forma lineal sencilla, de ahí que el método de cálculo-

haja sido:

1).- Suponer un valor de c

2).- Calcular el factor J_D

3).- Sacar el logarítmo a cada par (J_D, Re) de los 19 pares p<u>o</u> sibles δ corridas disponibles.

4).- Ajustar una recta calculando la pendiente y ordenada al <u>o</u> rigen por mínimos cuadrados simples, de tal manera que:

$$b = \frac{\overline{Z}(\ln Re)(\ln J_D) - (\overline{Z}\ln Re \overline{Z}\ln J_D)/N}{\overline{Z}(\ln Re)^2 - (\overline{Z}\ln Re)^2/N}$$
$$a = EXP\left(\frac{\overline{Z}\ln J_D - b\overline{Z}\ln Re}{N}\right)$$

donde: N = número de datos o corridas. de aquí se puede ver que se tendrán un conjunto de (a, b, c,)para cada valor de c supuesto

Analizando los experimentos repordados anteriormente seve que el rango de c es .2 < c < .8, ahora bien, a partir de esto se propusieron valores de c desde c=0.00 a c=0.95 con unincremento de 0.05 aprox.

Con lo anterior se obtuvieron las tablas ya mostradas $p\underline{a}$ ra cada conjunto de valores (a, b, c,).

Con el fin de encontrar el mejor ajuste se llevó a cabouna predicción de los valores J_D por medio de la ecuación en-contrada en cada caso, y comparándolos con los valores experimentales se encontró un error entre puntos el cual fue después combinado para encontrar el error total detectado, mismo qué aparece al final de cada tabla.

Este fué el criterio que se usó para la selección del me

jor ajuste.

Ahora bien, si se analizan los datos, se encuentra conque la tendencia y en si el menor error detectado es para cuan do c = 0.00; esto fue algo inesperado pero muy lógico; para aclarar lo anterior veamos:

l).- Por deficiencias del equipo solo se trabajo un sistema, agua-aire.

2).- El coeficiente para el cual se busca una relación era del lado gas ya que del lado líquido nosotros no encontramos resistencia alguna (líquido puro).

Y por último un punto que no se consideró:

3).- El SC <u>no</u> es función de la temperatura en gases o mexclas gaseosas, solo es función del tipo de gas o mexcla específica.

Este último punto que parece poco relevante es la causade que el valor de c = 0.00 sea el que mejor ajuste a la curva.

Desde un principio se dijo que una torre de pared húmeda es un equipo en el cual se tiene la ventaja de tener una super ficie de transferencia calculable con buena exactitud, pero -también se dijo que es un equipo en el cual se cumple que

Na \rightarrow 0 6 Um Na = C t \rightarrow 0 es decir, la cantidad de transporte de masu es muy pequena j solo apreciable en largos períodos de operación; luejo enton-ces la posibilidad de que la composición varíe en una forma tal que varíe el Sc no es detectable j por tanto despreciable; por otro lado se ha cambiado de sistema ja que se trabajó con-

- 4.55

un sistema ínico, lo que reduce la posibilidad de cambio del -Sc; de hecho si se ven los valores tabulados de Sc se encuentra que casi no varía teniendo como valor base el de 0.5 y las variaciones son prácticamente despreciables; de ahí que el mejor ajuste sea = para los valores de:

c = 0.00; b = .97; a = 0.034

Si se analizan todas las tablas se ve que el valor de <u>b</u>no varía aunque varie <u>c</u>, si no lo que varía es el valor de <u>a</u>,-La explicación es simple, cuando $c \neq 0.00$ entonces el valor de- $Sc^{c} \neq 1$ y por lo tanto se traduce realmente un valor del lado de la ecuación donde se encuentra el J_D. Esto debe compensarse por otra variación en el lado de ARe^b; pero no se compensaen el valor de <u>b</u> sino en el de <u>a</u>. De esto se concluye que elvalor que introducimos no es una variable sino una constante y esto no es más que una confirmación de que el Sc=cte., ya --que si Sc=cte. \Rightarrow Sc² = cte. también, sea cual sea el valor de <u>c</u> per Asi se refuerza el hecho de escoger como mejor ajustea c=0.00 por lo tanto, la mejor ecuación válida para el equipo es:

$$J_D = \frac{Sh}{RRe} = 0.034 \ Re^{-.197}$$
 of $Sh = 0.034 \ Re^{-.803}$

En el error total se ve que la tendencia es a 8% y no a-0% de error, para explicar lo anterior veamos:

1).- Si nosotros estuvieramos presentes en alguno de los experimentos, una de las características que encontrariamos se ría que las ondulaciones en la película de líquido no es posible eliminarlas por completo, solo es posible reducirlas al mí nimo en cada corrida.

2).- También fue notorio el hecho de que la longitud decolumna fué muy grande, ya que al final de ésta las ondulaciones, aún en el mejor de los casos son muy fuertes.

3).- Por último al aumentar el flujo de aire aumenta lafricción de interfase, lo que hace que las ondulaciones se -vuelvan críticas en puntos extremos de máxima capacidad del equipo. Esto hace pensar que ese 8% de error es el error míni mo esperado en este equipo, debido a las ondulaciones, por loque se recomienda usar torres de pared húmeda de menor longi-tud con el fin de obtener mejores resultados. Por otro lado,se concluye que aunque en todos los casos el error es mayor de 8% nunca excede el 9% por lo que se dice que el grado de con-fiabilidad del equipo es de un 9%.

Por último entre las relaciones que se han encontrado en este equipo se tiene v.g. la de Cairns & Roper cuya ec. dice: Sh = 0.021 $Re^{0.83} Sc^{0.44} g^{-0.83}$

y la más aceptada generalmente, la de Gilliland & Sherwood: Sh = 0.023 $Re^{0.33} Sc^{0.44}$ W

contra la que se concluye en la presente tesis:

 $Sh = 0.034 \ Be^{0.803}$

se encuentra gran similitud, como se ve el valor del exponente del Reynold no varía realmente, pero la variación existente en el factor pre-exponencial realmente presenta una gran interrogante.

La respuesta es el hecho de que dicho factor pre-exponen cial engloba en su valor el efecto de Sc=cte. Nótese que aquíse ve claramente que el Sc realmente no ha desparecido de la -

ecuación, sino que solo ha sido absorbido por el factor pre-ex ponencial. Además de que esta expresión engloba, como se di--jo, un error de un 9%; lo que hace lógico la diferencia exis--tente entre las expresiones de la literatura. Se puede decirque la expresión propuesta en esta tesis está muy acorde realmente con las derivadas por los investigadores nombrados.

4.5. - CONCLUSIONES.

De la experimentación se encontró que la siguiente ecuación es válida para todo el rango de trabajo del equipo.

Sh = 0.034 Re⁻⁸⁰³

Se puede ver que en esta ecuación no aparece el Schmidt. Esto era de esperarse debido al hecho que el lado de transferencia que estudiamos es del lado yas, y en las mezclas gase<u>o</u> sas el Sc \neq Sc (T) dependiendo solo de los cambios de sistema que se le apliquen al equipo. Dado que como se expresó anteriormente el equipo solo puede trabajar el sistema, agua-aire, dicho Sc^C se convierte en una constante que es absorbido porla constante <u>Al</u> o <u>a</u> en la ec. adimensional.

También se puede asegurar que los coeficientes obteni-dos de la ecuación anterior para un sistema agua-aire tienen un máximo de un 95 de error.

Este 9% de error existente en la relación, puede ser -atribuído a la cantidad de ondulaciones que peresenta la pelí cula de líquido, que debido a la longitud de la torre se presentan mas evidentemente en la parte inferior de la columna.

Por lo anterior se recomienda el uso de columnas más pequeñas para obtener resultados más exactos.

Por último se podría concluir que los coeficientes solo de enaen del sistema de trabajo y no de las propiedades del equipo.

-1.59-

LABORATORIO DE INGENIERIA QUIMICA

TORRES DE PARED HUMEDA

FACULTAD DE QUIMICA , DIVISION DE ESTUDIOS PROFESIONALES Area de Ingenieria

Universidad Nacional Autónoma de México

- 1.- Familiarizar al alumno con la transferencia de masa por convencción.-
- 2.- Determinar los coeficientes de transferencia de masa porconvección de modo experimental.
- 3.- Introducir al alumno en los fenômenos de transferencia de masa.
- 4.- Familiarizar al estudiante con el manejo de una Torre depared mojada.

TEORIA.-

La transferencia de masa según se ha visto, se lleva a cabo por medio de dos mecanismos: Difusión y Convección.

En el mecanismo por Difusión el transporte se lleva a c<u>a</u> bo desde una interfase de 2 fluídos o sólidos, a una de las <u>fa</u> ses, la cual, se alla en estado estacionario. Es un mecanismo lento en el cual las moléculas pason desde la interfase a la fase estacionaria por los hue**g**os intermoleculares del fluído estacionario siguiendo un camino lento y tortuoso.

En la convección, la transferencia de masa se lleva porun mecanismo predominantemente de arrastre, es decir, es un m<u>e</u> canismo que se presenta en la interfase de dos fluídos ó sólidos en movimiento, bajo el cual, cierta cantidad de material es prácticamente acarreado de la interfase por el mismo movi--miento del fluído, y llevado al seno de alguna de las fases. Este mecanismo es más evidente en fluidos con flujo turbulento donde porciones de fluido con un movimiento desordenado y - - abrupto, se pueden acercar a la interfase y de ella tomar el material, a transportar pasandolo al seno del fluido por mez-clado; es natural pensar que no cualquier material se va a ac<u>a</u> rrear desde la interfase a la condición volumétrica del fluido pero si es de esperarse que los materiales que se transportansean aquellos que están en deficiencia en la fase a la cual -llegan, es decir, aquellos en los que hay un gradiente de concentración, de ahí que es factible pensar:

Na = Na
$$(f)$$

donde:
Na = cantidad de material transportado
 F = gradiente director

Ahora bien como hesos dicho con anterioridad, el fenómeno de difusión se presenta prinordialmente en fluidos estacionarios; pero este en una pequeña parte contribuye también al transporte en fluidos en movimiento; aunque debido a que el m<u>e</u> canismo de convección es muy importante, la Difusión es poco manifiesta o despreciable en algunos casos.

Se sabe que los coeficientes de Difusión pueden ser med<u>i</u> dos experimentalmente desde una celda de Arnold por ejemplo; ó en su defecto estimados de ecuaciones desarrolladas de com-plejas teoríos atómicas y cinéticas.

Ahora bien si la Difusión ha sido estudiada con detalleno sucede lo mismo con el mecanismo de convección que presenta grandes problemas para las teorías actuales, de ahí que la e-cuación característica de transporte sea para este mecanismo:

$$Ia = Kg A$$

donde:

Na = La cuntidal de material transferido -por unidad de tiespo y unidad de ucea. Kg = El coeficiente de transferencia de masa.
F = El gradiente director que rige el transporte.

Como se puede ver esta ecuación nada nos dice de como se realiza el transporte, y únicamente nos da la cantidad de mat<u>e</u> rial transferido en un punto dado con una fuerza directora determinada, siempre y cuando se conozca el coeficiente de tran<u>s</u> porte.

Normalmente estos coeficientes son difíciles de obtener, de ahí que este tipo de representaciones presentan grandes pr<u>o</u> blemas para su manipul_ación.

Ahora bien existen diferentes tipos de coeficientes, estando basados unos en la fuerza directora que los rige (gra--dientes de concentración, presión, fracción mol, etc.) ó por la fase cuya resistencia representan. En sistemas normales existen dos fases en contacto, siendo que en ambas se realizaun transporte de material; en una desorbiéndolo y en la otra absorbiendolo, de ahí que en estos casos existan coeficientesque representan únicamente la resistencia de algunas de las fa ses; a dichos coeficientes se les llama individuales. Otros que representon la resistencia total iel sistema basados en -las propiedades ó fuerzas directoras de alguna de las fases se les llaman coeficientes totales.

El camino que sigue un material que es transportado en un sistema de dos fases es el siguiente:

1.- Transporte desde una de las fases, del material a transfe rir, desde su condición volumétrica a la interfase. -2.- Transporte a través de la interfase.

3.- Transporte del material desde la interfase a la condición volumétrica de la segunda fase.

Experimentos realizados han determinado que la interfase no opone ninguna resistencia a la transferencia de mása.

Viendo lo anterior se ve claramente que el problema radi cal de la transferencia de masa, radica principalmente en la d<u>e</u> terminación de dichos coeficientes.

Un aparato que nos puede dar una idea de como calcular dichos coeficientes es la torre de pared húmeda.

La columna de pared húmeda no es mas que un tubo verti-cal de diámetro conocido por el cual se deja resbalar un líqu<u>i</u> do (ver Figs. 1 y 2) y se pone en contacto en contracorrientecon otro flúido más ligero (normalmente un gas).

La ventaja de este aparato es el hecho de que el área de transferencia, la cual es el área de interfase, puede ser de-terminada con bastante exactitud, y la cantidad de material -transferido puede ser determinada con relativa facilidad, lo que nos permite calcular los coeficientes de transferencia para un sistema dado.

Ahora para lo presente práctica el sistema utilizado esagua-aire; en este sistema al usar un líquido puro podemos ver que la resistencia de la fase pesada no existe, ya que el mat<u>e</u> rial a transferir es el mismo líquido, con lo que esta dispon<u>i</u> ble enteramente en la interfase.

De ahí que para este sistema la determinación que se hará será la del coeficiente total de transferencia de masa basa do en el lado g_{as} , que será igual a la resistencia del lado l_{gbs}^{evid} , por ser la única presente. De lo anterior se desprende que el coeficiente total será igual al individual.

La ecuación base para los cálculos será:

$$Na = Kg \left(\widetilde{P} - P^* \right)$$

Que en esencia es la ecuación usade en el experimento. CALCULOS.-

Hay que hacer notar que durante la operación, el gradien te de presiones no es constante, debido de que a cada instante que pasa el mismo transporte de material varía dicho gradiente; por lo que abrá que redefinir el gradiente de la siguiente ma nera;

$$\Delta P_{f} = \frac{P_{f} - P_{1} - P_{2} - P_{2}}{\left(n + \frac{\overline{P}_{1} - P_{1}}{\overline{P}_{1} - P_{2}^{*}} \right)}$$
 [7]

Donde el sub-índice l es de entrada y el dos de salida.

P es la presión parcial del agua en la fase gaseosa.
 P^{\$} es la presión de saturación a la temperatura en el punto de lectura.

De ahl que:

$Na = Kg \Delta Pf$

Ahora bien si se toman datos de Tbs y Th a la entrada ysalida del gas, temp. a la entrada y salida del líquido, gasto de gas y líquido, bajo un balance de material se podrá calcu-lar la cantidad de material transferido por unidad de tiempo.

Otra forma de calcular esta masa es aprovechando el he-cho de que el equipo viene dotado de un recipiente calibrado,- que por diferencia de niveï nos revela que ha habido una cierta cantidad de masa transferida, es decir, al estarse transfiriendo la masa, una cierta cantidad de agua de reposición es necesaria, la cual puede ser medida en el aparato para un cier to tiempo de operación, con lo que también obtendríamos el dato de masa transferida por unidad de tiempo.

Hay que notar que el órea de transferencia no es el área de la pared interior de la columna, sino el área de interfase, la cual puede ser calculada desde el diámetro interno de la c<u>o</u> lumna al cual se la restará el espesor de película de líquidoque cae.

Las formulas utiles serán para este último punto son:

0 0

$$Q_{agua} = \frac{\int g_{agua} \int J^{3}}{J_{\mu}}$$

donde $\int = densidad líquido cons--
tante
$$g = constante de gravedad$$

 $\overline{M} = Perímetro de columna$
 $M = \Pi D.$
 $M = Viscosidad$
 $\int e espesor de película$
 $\therefore Ae = (\Pi (ID - 2S)^{2}/4) L$
donde: $]D = Diám. int. columna$
 $L = Long.$
 $S = Espesor de película$$

Columna de Pored humeda existente en el laboritorio

Fig. 2

columna A

columna B

DIAGRAMA DE TUBERIA

fig 3

DESCRIPCION DEL EQUIPO

PARA "TORRES DE PARED HUNEDA"

El equipo consta de dos torres de pared húmeda de 3.03 y 2.24 cm. de diámetro con una longitud efectiva de 101.6 cm. de vidrio Pyrex y Bronce las cuales tienen dos cámaras de líquido; una en la parte superior con el fin de tener un derramamientode líquido uniforme y una inferior la cual está calibrada conel fin de observar la cantidad de líquido transferido; cuentacon un cambiador de calor de doble tubo de cobre, donde por el anulo pasa agua y por el tubo interior el líquido a transferir; además cuenta con un tanque de alimentación o suministro, y -una bomba centrífuga de .01 HP y una cabeza de 4 psig. para 3gal/min. El aire es suministrado por una compresora de 3 H.P. y regulado por un regulador de presión colocado antes de la -válvula de suministro de aire.

				Las u	obloulas ex	istente	s en el e	quipo	son:
V	-	14	= 70	l p ula	de paso de	aire p	ara colum	na A ('D.=3.03 cm)
V	-	18	=	50	29	33	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	в ('D.=2.24 cm)
V	-	21	=	39	reguladora	de lly	uido colo	cada d	a la entrada
					de columna	A .			
y	-	2B	=	**	reguladora	de líq	uido colo	cada a	la entrada
					de columna	В.			
y	-	3A	=	29	de paso de	llquid	o colocad	a a la	salida de-
					columna A.				
V	-	3 B	=	19	de paso de	llquid	o colocad	a a la	salida de-
					columna 3.				

$V - 4 = V \Delta l v u l a de suministro de líquido colocada a la salida del tanque de suministro.$

V - 5 = " reguladoro de aire identificada como "Supplyair".

Además cuenta con termopares de cobre constantano en diferentes puntos del equipo numerados progresivamente, siendo necesario para lectura seleccionar el termopar con el detector de puntos, y observar la lectura en el pirómetro que está colo cado para este fin en la parte izquierda inferior del equipo. (Nótese que existen solo 8 termopares NUNCA MEDIR en 9 ó 10 del selector de puntos).

Con el fin de asegurarse las dimensiones del equipo me-dir ID de columnas, longitud de columna, ID de cámara de calibración (Indirecta, mida E.D. y el espesor de pared del plexiplass en el tanque de suministro de líquido).

Es bueno hacer notar que existen xonas de calma a la entrada y salida del aire con el fin de obtener un flujo uniforme; y que la zona de calma inferior puede inundarse por paso de líquido a ella lo cual se detecta por muy bajas temperatu-ras en los termopares 3 6 7.

Además nótese que el detalle de construcción de la torre permite que el flujo de líquido sea lo más uniforme posible ya que la parte alta de la torre está biselada y en la parte baja existen unas muescas que aseguran contacto de fases solo en la longitud efectiva de la columna.

- 1).- Familiarizarse con el equipo y el efecto de cada una delas válvulas existentes en él (Manéjese con cuidado ya que las columnas son de vidrio y por tanto muy delica--das); cierre todas las válvulas.
- 2).- Llenar el tanque de suministro con el líquido a estudiar (agua en este caso) hasta un nivel de 22 cm.
- 3).- Asegúrese de que el regulador de presión este a 10 psig. de presión y si no es así corregir; purgar las líneas de aire, y la zona de calma inferior con los purgadores -existentes junto a los termopares 3 ó 7.
- 4).- Abra totalmente la válvula V−1A 6 V−1B, alimente aire aun nivel bajo de flujo (200 SCFH) con la válvula V−5
- 5).- Abra la válvula V-4 y haga funcionar el cambiador.
- 6).- Verificar que la bomba esté purgada debidamente y si noes así purgarla; asegurarse que el tanque de suministroesté lleno.
- 7).- Abra a una vuelta la válvula V-2A ó V-2B y encienda la bomba (NUNCA HAGA TRABAJAR LA BOMBA EN SECO, SE QUEMA -RAFIDAMENTE EN ESTE CASO), esperando a que la cámara calibrada llegue a un nivel de 7 cm. luego de lo cual se cierra totalmente la válvula V-4 y simultáneamente abrela Válvula V-3A ó V-3B (tiempo máximo de operación cont<u>í</u> nua es de l hr.)
- 8).- Regúlese el flujo de líquido con las válvulas V-24 ó V--28 hasta que la película de líquido sea lo más lisa pos<u>i</u> ble.

- 9).- Regule el flujo de aire al nivel deseado; es probable -que sea necesario reajustar el flujo de líquido para al<u>i</u> sar la película (Nótese que las válvulas V-1A Ó V-1B deben estar totalmente abiertas o cerradas no son válvulas reguladoras).
- 10).- Espere a que se estabilice el equipo y tome los datos n<u>e</u> cesarios.

DATOS A TOMAR. -

- 1).- Temps. de bulbo húmedo y seco a la entrada de aire.
- 2).- " " " salida de aire.
- 3).- " de agua a la entrada y salida de líquido.
- 4).- Tiempo de operación y agua de reposición originado en es ta operación.
 (Nótese que para este fin se usará la cámara calibrado en la parte final de la columna).
- 5).- Gastos de gas y líquido para la corrida. CALCULOS.-
- Calcule el coeficiente de transferencia de masa usando un balance de material y usando los datos tomados de -agua de reposición.
- 2).- Compare los dos coeficientes, ¿son iguales?, ¿si no lo son, cuál es la causa? ¿Cuál es el coeficiente correcto?
- 3).- Una relación encontrada para este equipo es:

$$Sh = 0.03 Re^{-803} \frac{PT}{P_{BIN}}$$

donde $Sh = D R T Re/D_{AB}$

$$Re = \frac{G D}{\mathcal{M}}$$

Compare el coeficiente obtenido con la ec. empírica conlos coeficientes experimentales.

- 4).- Que limitaciones ve Ud. para la determinación de los co<u>e</u> ficientes obtenidos y las limitaciones de dichos coefi-cientes.
- 5).- Gráfique Coeficientes VS Re (¿Existe alguna tendencia?
- 6) .- CONCLUSIONES.-

BIBLIOGRAFIA. -

Tesis profesional de Abraham Bodas Lecona.

Cairns. R.C., and, Roper G.H. CHEM.ENG. SCIENCE 1954 (3) 97-109

Bird, R.B. Stewart, W. E. and Lightfoot, E.N. "Transport Phenomena" John W. Wiley Son, Inc. N.Y. (1960) 2.J-2.18

- ¿Qué es un coeficiente de transferencia de masa por convección?
- 2).- ¿Qué es un coefciente de difusividad?
- 3).- ¿Cual es una fuerza directora o gradiente útil, que provoque un transporte de material?
- 4).- Clasifique los coeficientes de acuerdo a: Fuerza directora. Fase dominante.

1. 13.8 . COM STELLE 0.8 .

Fase donde se presenta la resistencia.

y haga una representación gráfica de todos ellos.

- 5).- Métodos de determinación de los coeficientes de transferencia por convección.
- 6).- Equipo usado para la determinación de dichos coeficien--tes (sin tomar en cuenta la torre de pared húmeda).
- 7).- ¿Qué es una torre de pared húmeda?
- B).- Descripción de una torre de pared húmeda, manejo, ventajas, utilidad.
- 9).- Operaciones unitarias en las que los coeficientes de -transferencia intervengon directa o indirectamente.
- 10).- Principal problema que se presenta en una torre de pared mojada.
- 11).- Principal ventaja de una torre de pared mojada.
- 12).- ¿Cuál es la solución para acterminación de coeficientespor análisis dimensional?
- 13).- ; Qué son las Analogías, porque pueden ser útiles, en que casos?

14).- ¿Qué resultados espera del experimento?

- 15).- ¿Cômo calcularía el espesor de una película de líquido que escurre?
- 16).- Identifique cual es la verdadera área de transferencia de masa en una torre de pared húmeda, ¿por qué?