

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

Optimización de un Electrolito para Acumuladores de Zinc - Oxido de Plomo

(Papel de los Inhibidores de Corrosión)

T E S I S

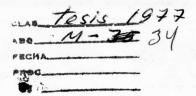
QUE PARA OBTENER EL TITULO DE

INGENIERO QUIMICO

P R E S E N T A

MARCELA ASTORGA ESCOLANO

México, D. F. 1977



UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE QUIMICA

OPTIMIZACION DE UN ELECTROLITO

PARA ACUMULADORES DE ZINC-OXIDO DE PLOMO

(El Papel de los Inhibidores de Corrosión)

MARCELA ASTORGA ESCOLANO

1977

JURADO DESIGNADO ORIGINALMENTE

Presidente ENRIQUE VILLARREAL DOMINGUEZ

Vocal FELIPE GUERRERO FERNANDEZ

Secretario SILVIA BELLO DE VILLARREAL

ler. Suplente SILVIA TEJADA DE ORTA

2do. Suplente ENRIQUE GIL FLORES

SITIO EN DONDE SE DESARROLLA EL TEMA

Laboratorio de Electroquímica

Facultad de Química

Universidad Nacional Autônoma de Mêxico

NOMBRE DEL SUSTENTANTE

Marcela Astorga Escolano

ASESOR DEL TEMA

Ing.Q. Enrique Villarreal Dominguez

A MI MADRE,
POR SU APOYO Y SU FE EN MI.

AL ING. QUIMICO. ENRIQUE VILLAREAL CON ADMIRACION Y AGRADECIMIENTO.

	Pagina
INTRODUCCION:	1
I ACUMULADORES,	2
1) Definición de Pilas	2
2) Clasificación de las Pilas	2
3) Definición y breve Historia de los Acum	nuladores 4
4) Acumulador Zn-PbO ₂	10
a) Características Principales	10
b) Reacción del sistema	12
c) Fuerza Electromotriz del sistema	13
II CARACTERISTICAS DE LOS ELECTRODEPOSITOS DE Z	INC 15
1) Generalidades del proceso electrolítico	15
a) Disociación electrolítica	15
b) Leyes de Faraday de la Electrolisis	17
2) Eficiencia de la Corriente	18
3) Mecanismo de los Electrodepósitos	20
a) Velocidad de reacción de los Electr	odos 23
b) Potenciales de los electrodos	24
4) Polarización y Sobrevoltaje	25
a) Polarización	25
b) Sobreyoltaje	27
c) Efectos de la polarización y el sobr	evoltaje
en los electro-depósitos	28
5) Factores que controlan el Caracter de 1	os Electrodepósitos. 29
a) Densidad de corriente	29
b) Agitación	30
c) Temperatura	30
d) Composición del Baño	30

	Pagina
e) Efectos del PH	31
f) Aditivos	32
g) Baños acidos de Zinc	32
III PARTE EXPERIMENTAL	33
1) Objetivos	33
2) Preparación de Experimentos	34
` a) Celdas	34
b) Limpieza de las Placas	35
c) Equipo	35
3) Descripción de los Experimentos	. 35
a) Electrolito	41
b) Pruebas y resultados	44
CONCLUSIONES	95
BIBLIOGRAFIA	96

INTRODUCCION

En este trabajo se estudia de manera introductoria, la influencia de ciertos inhibidores de corrosión, sobre el proceso de carga de un acumulador de ${\rm Zn/H_2SO_4/PbO_2}$.

Uno de los problemas de este sistema, es la disolución del zinc (pilas internas), por el medio (30% en volumen de H₂SO₄), en el que se introducen los electrodos. Con el fin de reducir en cierto grado este fenóme no, se requiere de algunas sustancias, que actúen como inhibidores de corrosión, tanto a circuito abierto, como a circuito cerrado. Los inhibidores que se estudiaron en estas pruebas fueron el sulfato de mercurio (II), con el que se amalgamaban las placas de zinc, y la dibutilamina.

El electrolito es una solución acuosa de sulfatos y ácido sulfúrico en el cual solo se varió la concentración de los inhibidores, paraque fuera este parámetro el que influyera sobre el depósito metálico.

I ACUMULADORES. S

1) .- DEFINICION DE PILA.

Es un dispositivo en el cual, mediante un proceso químico de Oxido-Reducción se obtiene corriente eléctrica.

La pila más simple consta de 2 electrodos metálicos (con ductores de primera clase) introducidos en una solución electrolítica(con ductor de segunda clase) y unidos entre si por un contacto metálico.

(Fig. I).

En un sistema electroquímico como el de la figura I , se tienen dos electrodos A y B, están puestos en contacto a través de una - membrana porosa.

Entre A y B se genera una diferencia de potencial denomi nada Fuerza Electromotriz.

Sí consideramos que en A hay reducción y en B oxidación, la fuerza electromotriz del sistema (Ec) estará dada por:

Ec = E red - Eox
o bien:
Ec = EA - EB

2) .- CLASIFICACION DE LAS PILAS:

Existen varias formas de clasificar las pilas, en base a sus diferentes propiedades; sin embargo, en este trabajo se usará la siguiente clasificación, por considerarla la más adecuada:

De potencia (fuentes (lo. Pilas primarias electroquímicas de (2o. Pilas secundarias corriente) (3o. Pilas de combustión

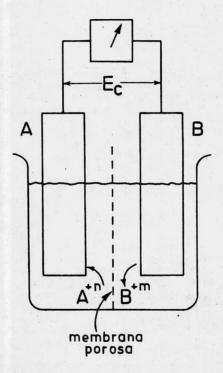


Fig. I.- ESQUEMA DE UNA PILA

((1.- Tipo galvánico (1a.- de medida(2.- Tipo voltaico)

De investigación ((3.- De concentración ((20. de referencia (

La parte que se estudiará en esta Tesis, es la que se refiere a las Pilas secundarias.

3) .- DEFINICION Y BREVE HISTORIA DE LOS ACUMULADORES.

Las pilas secundarias, llamadas también pilas reversibles o acumuladores son sistemas electroquímicos, cuyas reacciones, en principio reversibles, dan - lugar a la producción de Energía Eléctrica durante su descarga, pero tienen - la posibilidad de regenerarse, aplicando corriente directa del exterior y en - sentido contrario, de tal manera que se lleve el sistema en cuestión a sus condi ciones originales.

Aunque en este trabajo se estudiará una parte del desarrollo del Acumulador de Zn-PbO₂ hablaremos de una manera breve del desarrollo histórico de los acumuladores.

El proceso de la acumulación de Energía se conocía desde hace mucho - tiempo. Pero al principio no fué posible fabricar una pila secundaria práctica mente utilizable.

Las primeras pruebas las hizo Ritter en el añol801, con un dispositivo - que llamaba "Columna de Carga" y que se componía de cincuenta placas de cobre - (pequeñas), separadas por cuarenta y nueve discos de tela impregnados de una - solución de sal común.

Hacía circular por este dispositivo la corriente de una pila de volta yal desconectar esta pila, la "Columna de carga" suministraba una corriente du rante corto tiempo. En 1839, Grove utilizó los principios de electrolisis y polarización - para construir una llamada batería de gas que reunfa las propiedades de unacumulador, pero que para la práctica apenas tenía importancia, ya que tenía muy poca capacidad y requería del empleo de electrodos de platino, que resulta muy caro.

Grove usó gases como Oxido de Carbono, cloro, etc. Más tarde se comprobó que el efecto y la duración de la corriente podían aumentarse, si como - electrodos se usaban metales que se combinaran facilmente con los gases des prendidos en su superficie, absorbiéndolos en parte (oclusión).

En 1854 Sinstedten encontró que el plomo era el mas adecuado para ello.

El resultado práctico de todas estas investigaciones encaminadas a - construir el primer acumulador utilizable, se le debe a Gastón Planté, - quien desde 1860 se ocupó de estudiar y probar lo referente a los acumuladores, lanzando al mercado, en 1872, un acumulador construído de la siguientemanera:

2 placas deplomo de 60 cm. de largo, 20 cm. de ancho y 1 mm de espesor,se enrollan sobre un cilindro de madera, evitándose el contacto de las placas por medio de una cintas de caucho de 10X5 mm de sección.

El rollo así formado, sujeto por una cinta de goma, se pone dentro de un recipiente de vidrio que contiene ácido sulfúrico diluído (al 10% ó de 1.07-de peso específico).

La tapa lleva una abertura para añadir ácido y dar salida a los gases.

Un avez cargado el acumulador, puede mantenerse así largo tiempo en estado de reposo, sin sufrir una pérdida considerable de su carga.

En la descarga proporciona una corriente grande, la cual disminuye con eltiempo.

Planté adoptó el plomo, porque no lo ataca el electrolito y porque se combina muy fácilmente con el oxígeno, formandose en el ánodo Bióxido de Plomo, mientras que en el cátodo sólo se desprenderá hidrógeno, sin cambiar la superficie del Plomo. El oxígeno y el hidrógeno resultan de la electrólisis del agua que se lleva a cabo durante la carga en el seno de la solución.

Bajo estas condiciones, el sistema electroquímico que define esta pila es:

La reacción completa es:

 $PbO_2 + 2H_2 SO_4 + Pb = PbSO_4 + H_2O + PbSO_4 = Ec = 1.8 a 2.5 V$

En 1881, Camillé Fauré modificó el acumulador de Planté en lo que se refiere a los electrodos; patentó un procedimiento para el empastado de las placas, que consiste en preparar el electrodo positivo con una pasta de óxido rojode plomo o minio (Pb3⁰ 4) y ácido sulfúrico. Y la placa negativa la empastó conuna mezcla de Litargirio (Pb0) y ácido sulfúrico.

En estas condiciones, al realizar una electrolisis en medio ácido, se forman los electrodos tal como se requiere para la primera descarga del acumulador.

Los acumuladores construídos a base de plomo ó de óxido de plomo, tienen - uma vida muy corta; y además, en relación con su capacidad, tienen un peso consi derable; debido a estas desventajas, desde hace bastante tiempo se vienen tratan do de fabricar combinaciones galvánicas similares al acumulador de Planté, pero- con metales más ligeros.

Entre esas condiciones se encuentran los sistemas que sustituyen al plomopor un electrodo de zinc.

La finalidad de esta Tesis es precisamente la de estudiar estos sistemas.

En 1880 D'Arsonval comunicó a la Academia de Ciencias de París la descripción de su acumulador.

El sistema que propuso consistía en lo siguiente:

Una lámina de zinc (Cátodo)

Una barra de carbón impregnada de plomo pulverizado (Anodo).

Y como Electrolito una solución concentrada de sulfato de zinc; con esta solución evitaba el desprendimiento de Hidrógeno en el cátodo, ya que en vez -

de ésto, el zinc se deposita en el electrodo negativo.

El Oxígeno se dirige al ánodo, que es la barra de carbón plomizada, y oxida al plomo, formándose Bióxido de Plomo.

Las reacciones son las siguientes:

Para el proceso de carga:

$$H_2 \ 0 = H^+ + 0H^ Z_{nSO_4} = Z_{n}^{++} + S_{0}^{-} + S_{0$$

Cátodo:

El zinc metálico se deposita sobre el cátodo (lámina de zinc) y el ácido sulfúrico queda en la solución.

En la práctica, D'Arsonval sustituye la lámina de zinc por una placa o - amalgama de zinc. (esta amalgama la hace mezclando zinc líquido o zinc pastosocon el mercurio).

Las reacciones de los acumuladores de Planté y de D'Arsonval son análo - gas.

El acumulador Zn-Pb, tiene una gran ventaja sobre el de Planté; ésta es que reduce casi al mínimo la polarización del cátodo.

La gran desventaja de este acumulador es que el zinc se disuelve en gran cantidad, aún a circuito abierto; resultando un acumulador de costo excesivo.

Refiriéndose al desgaste del zinc a circuito abierto, Reynder publicó - un artículo en el año de 1883, del cual reproduciremos textualmente algunos - párrafos:

"El ataque local del zinc, por los líquidos ácidos es un obstáculo parael empleo de electrodos de zinc por las siguientes razones: Dicho desgaste au menta el consumo del zinc durante el trabajo .- Y ese desgaste continúa aúm cuam
do la pila esté en reposo.-Sería pues preciso para la mejoría de las pilas y de-

los acumuladores, buscar medios que impidiesen o que al menos atenuasen las reacciones inoportunas del zinc y de los líquidos que lo bañan en las pilas y los acumuladores.— Los procedimientos más eficaces y más conocidos son los siguientes:

lo).— El empleo de zinc puro que en teoría resiste la acción ácida, pero este remedio es poco.práctico.—20).— Amalgamar el electrodo, (haciendo esta amalgama con zinc líquido o pastoso), operación desagradable, costosa y que habría que repetir con frecuencia".

Atendiendo a todas estas razones, Reynier tuvo la idea de aprovechar umas experiencias de Leclanché, el cual había intentado el empleo de placas de zinc amalgamadas.- (o séa que la placa se introducía en mercurio, no siendo ya necesario fundir el zinc). Estudiando estas tres posibilidades, Reynier obtuvo los siguientes resultados:

No debe usarse el zinc puro porque el desgaste es considerable y el acumulador queda inutilizado rápidamente.

El electrodo que está compuesto por una amalgama con zinc líquido o pastoso, presenta algunas ventajas, pero en opinión de algunos investigadores. estas ventajas son transitorias, porque si bien es cierto que la parte exterior del electrodo es rica en mercurio y esta bien protegida, en cambio las capas interiores contienen menor proporción de mercurio, y a medida que la acción química vallegando a capas más y más profundas, la protección obtenida por medio del mercurio irá siendo cada vez menor.

En lo que se refiere a amalgamar la placa de zinc , si la masa del mer - curio es homogénea y está repartida uniformemente en la superficie del zinc, ofre ce mayores ventajas, que en los casos anteriores.

En 1884, Raynier construyó un acumulador que tenía el siguiente sistema:

Pb/ H₂ SO₄/Zn

El ánodo es una placa de peróxido de plomo; el cátodo es una placa de zinc, en lugar de la de Plomo esponjoso del acumulador de Planté. Como electrolito se-empleaba ácido sulfúrico diluído.

Durante la carga de este acumulador por el desprendimiento de Oxíge no, en el ánodo (plomo) se forma peróxido de Plomo y en el cátodo (zinc), sedeposita zinc en forma metálica.

En la descarga, el peróxido de plomo se convierte en un óxido de -Plomo de menor valencia y el zinc se disuelve.

Este acumulador no 11egó a utilizarse mucho porque Reynier no había resuelto el problema de la disolución del zinc a circuito abierto y también - porque el precipitado de zinc no se depositaba de una manera regular en el cátodo, ni era un depósito de cristales sólidos. A menudo se acumulaba en el --fondo del recipiente en forma de polvos sueltos.

En 1887, se utilizaban pilas con el sistema

 ${\rm Zn-H_2SO_4-PbO_2}$, en los transportes eléctricos en los Estados Unidos; se llamaban celdas Main, y durante la Segunda Guerra Mundial se utilizaban como pilas de reserva en las instalaciones militares.

Este acumulador ofrece enormes ventajas con respecto al acumulador-Plomo Acido convencional.

la.- Sería mucho más ligero, debido a que se usa zinc en vez de plomo. El peso total del acumulador resulta menor y la potencia es la misma.

2a.- La fuerza electromotriz de la combinación

 ${
m Zn-H_2SO_4-PbO_2}$, es de un orden superior a los 2.5V, mien---tras que el sistema Pb ${
m -H_2SO_4-PbO_2}$ es del orden de 1.9V.

Sin embargo, el acumulador de zinc presentaba en aquella época unaserie de desventajas, entre las cuales se contaban, el que no se lograba queel sistema (Zn-H₂SO₄PbO₂), fuera reversible debido a una serie de dificultades técnicas.

Los problemas específicos de mayor importancia eran:

lo.- La disolución del zinc. Se trata de evitarla amalgamando lasplacas; sin embargo, se necesita un alto grado de amalgamación, y ésto haceque las placas se tornen quebradizas.

20.- La reacción entre el zinc y el ácido sulfúrico es muy violenta, produciendo unas corrientes muy elevadas, pero de muy poca duración.

30.- Al cargar la batería, el desprendimiento de Hidrógeno es de tal cantidad, que no permite que el zinc iónico de la solución se deposite sobre la placa de zinc y por lo tanto impide la carga de la Batería.

4).- ACUMULADOR DE Zn - PbO2

En el año de 1973, el Ing. Enrique Villarreal logró, después de —
una serie de investigaciones, resolver el problema de la reversibilidad delAcumulador de Zn-PbO₂.

A.- Características Principales de la Batería.

Esta batería está conformada de la siguiente manera:

lo.- Los ánodos son placas de zinc amalgamado, con alma de aceroinoxidable.

20.- Los cátodos son rejillas de Pb-Sb empastadas con PbO2

3o.- El Electrólito es una solución acuosa que contiene los siguientes compuestos:

a).- H2SO4

e).- Na₂SO₄

b) .- ZnSO,

f) .- Glucosa o dextrina

c).- A1₂(S0₄)₃

g) .- Dibutil amina

- d) .- HgSO
- a) El ácido sulfúrico se usa como medio agresivo para el ataque de las placas de zinc.
- b) El sulfato de zinc tiene el objeto de estabilizar la fuerza -electromotriz del acumulador.
- c) El sulfato de aluminio se utiliza para que aumente la adherencia del zinc depositado en el proceso de carga de la baterfa.
- d) El Sulfato de Mercurio se adiciona a la solución, para la amalgamación de las placas de zinc.
- e) El sulfato de Sodio incrementa la conductividad eléctrica de la solución.
- f) La dextrina o la glucosa son agentes que mejoran la estructurafísica del depósito del zinc.
- g) La dibutil amina actúa como inhibidor de corrosión, cuando la -batería está a circuito abierto, y reduce el alto grado de amalgamación que era necesario para evitar el ataque del zinc.
- 40.- La fuerza electromotriz por celda es mayor a los 2.5 Volts.

50.- La capacidad en Wh/Kg, supera en más de un 20% a la de los -- prototipo ordinario equivalentes, del sistema:

B. - REACCIONES DEL SISTEMA:

1).- En el proceso de descarga se tiene lo siguiente:

Las reacciones en el ánodo son las siguientes:

$$1a.- Z_n - 2e = Z_n^{+2}$$

$$2a.- Zn^{+2} + SO_4^{-2} = ZnSO_4$$

Las reacciones en el electrólito son:

$$1a.- 2H_2 SO_4 = 2H^+ + 2 HSO_4^-$$

$$2a.-2 \text{ H SO}_{4}^{-} = 2\text{H}^{+} + 2 \text{ SO}_{4}^{-}$$

$$3a.- 4 H^+ + 40H^- = 4 H_20$$

Las reacciones en el cátodo son:

$$1a. - PbO_2 + H_2O = Pb(OH)_4$$

$$2a.-Pb(OH)_4 = Pb^{+4} + 4OH^{-}$$

$$3a. - Pb^{+4} + 2e = Pb^{+2}$$

$$4a.- Pb^{+2} + 2SO_4^{-2} = PbSO_4$$

En el proceso de carga se tiene lo siguiente:

Reacciones en el Anodo Original (Zn), que en este procesoes el cátodo.

$$1a.- ZnSO_4 = Zn^{+2} + SO_4^{-2}$$

$$2a.-z_n^{+2}+z_e=z_n^0$$

Reacciones en el Electrólito:

$$1a.- 4H_2O = 4H^+ + 40H^-$$

 $2a.- 4H^+ + 2 SO_4^{-2} = 2 H_2 SO_4$

Reacciones en el Cátodo Original (${
m Pb0}_2$), que en este proceso es án ${
m o}$

do.

1a. - 2Pb SO₄ =
$$2Pb^{+2} + 2SO_4^{-2}$$

2a. - Pb^{+2} - 2e = Pb^{+4}
3a. - Pb^{+4} + $40H^{-}$ = PbO_2 + 2 H_2O

Entonces la reacción total del sistema es:

$$(-)_{Zn} + H_2 + H_2SO_4 + PbO_2^{(+)} = ZnSO_4 + H_2O + PbSO_4$$

C .- FUERZA ELECTROMOTRIZ DEL SISTEMA:

Si : E red = E
$$pb^{+4}, pb^{+2}$$

y Eox =
$$E_{Z_n}^{+2}$$
, Z_n°

Consideramos que el potencial para la placa positiva (E_+ es se según la ecuación de Nerust:

$$E + = E_{pb} + 4_{pb} + 2 = E^{0}pb + 4_{pb} + 2 - \frac{0.0591}{2} \frac{\text{Log apb}^{+4}}{\text{apb}^{+2}}$$

y el potencial para la placa negativa (E-) según la ecuación de Nerust es:

$$E- = E_{Zn} + 2, z_{n}o = E^{O}Z_{n}^{+}, z_{n}^{O} - \frac{0.0591}{2} \text{ Log } a_{Zn} + 2$$

$$Ec = E_{+} - E_{-}$$

$$Ec = E^{O}_{pb+4, pb} + 2 - \frac{0.0591}{2} \text{ Log } \frac{a_{pb}^{+4}}{a_{pb}^{+2}} - E^{O}Z_{n}^{+2}, z_{n}^{O} - \frac{0.0591}{2} \text{ Log } a_{Zn}^{+2}$$

Debido a la gran dificultad que existe para la determinación de las actividades de los iones Pb⁺⁴ y Pb⁺², la fuerza electromotriz se determina --con mayor facilidad a partir de datos experimentales.

Se tiene que para la reacción catódica:

$$PbO_2 + SO_4^{-2} + 4H^+ + 2e = PbSO_4 + 2H_2O$$

 $E^O = 1.685 V$

y para la reacción anódica:

$$Zn + SO_4^{+2} = ZnSO_4 + 2e$$

 $E^0 = -0.763V$
 $Ec = 1.685 V + 0.763 - \frac{0.0591}{2} \log a_{Zn}^{+2}$

Cuando durante el proceso de carga la concentración del zinc disminuye en la solución considerablemente, el último término de la Ecuación ad---quiere un valor positivo tal que Ec llega a valores cercanos a los 2.7V.

II.- CARACTERISTICAS DEL ELECTRODEPOSITO DE Zn, DURANTE LA CARGA

1).- GENERALIDADES DEL PROCESO ELECTROLITICO:- El electrodepósito es un proceso, por medio del cual se van depositando capas metálicas sobre alguna superficie, a través de una electrolisis.

Esto tiene como objeto alterar las características de una superficie, así como mejorar la apariencia; tambien se utiliza para que la superficie quede protegida contra agentes corrosivos o abrasivos.

a) .- Disociación electrolítica:

Existe una gran variedad de substancias que son solubles en el agua; sólo algunas soluciones acuosas son capaces de conducir la corriente eléctrica.Estas soluciones son aquéllas en las cuales está disuelto el electrolito (sales, ácidos, bases).

A partir del estudio de algumas propiedades físicas (punto de ebu-llición), de las soluciones mencionadas, se ha llegado a la conclusión de que esas substancias, una vez disueltas, se disocian en mayor o menor grado en particulas cargadas eléctricamente (iones)

Cuando se hace pasar una corriente eléctrica a través de una solu - ción, los iones son transportados por la corriente y se descargan en los electrodos.

Los cationes se dirigen hacia el electrodo negativo (cátodo), y los amones hacia el electrodo positivo (ánodo). Al entrar los iones en contacto con los electrodos, sus cargas se neutralizan eléctricamente.

En la eléctrolisis, como en el caso de los depósitos metálicos, gracias a una corriente eléctrica, ésta pasa a través de una solución llamada electrolito, entre dos electrodos conductores llamados ánodo y cátodo.

En la electrólisis de soluciones galvanicas acuosas, el metal se dissuelve a partír de los ánodos, o bien el oxígeno se libera sobre ellos; y el me

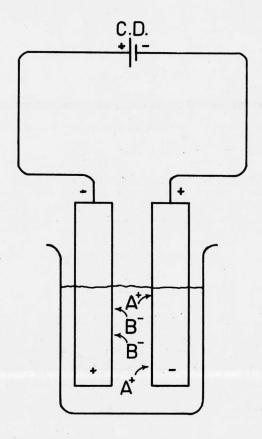


Fig. II: DIAGRAMA DE LA ELECTROLISIS

tal y/o el hidrogeno se depositan sobre los cátodos.

b): - Leyes de Faraday de la Electrólisis:

Las leyes de la electrólisis, formuladas por Faraday en 1833, fue - ron la primera demostración cuantitativa de la naturaleza eléctrica de la ma - teria y definen la unidad cuantitativa de la electricidad. A la fecha no se han modificado dichas leyes con los nuevos descubrimientos, por lo que están en los fundamentos de la Física.

Las bases para la teoría de la electroquímica, las dan las leyes de -Fraday de la Electrolisis. Estas leyes son las siguientes:

la.- "La cantidad de cualquier elemento (radical o grupo de elementos).,
liberada ya séa en el cátodo o en el ánodo, durante la electrólisis, es propor cional a la cantidad de electricidad que atravieza la solución".

2a "Las cantidades de elementos o radicales diferentes liberados por lamisma cantidad de electricidad, son proporcionales a sus pesos equivalentes".

Las Leyes de Faraday pueden ser resumidas en la siguiente ecuación:

$$W = \frac{I.L.A.}{ZF_1}$$

Donde:

W= Peso en gramos del depósito

I= Intensidad de corriente (Amp.)

L= Tiempo del depósito (seg.)

A= Peso atómico de la sustanc-a (en gramos) electrodepositada.

Z= Número de cargas involucradas.

F= Constante de Faraday.

El Faraday es la cantidad de electricidad necesaria para depositar un -

$$F=96,490 \frac{\text{Coul.}}{\text{eq.}}$$

Las leyes de Faraday especifican para electrodepósito, el producto I T

(corriente-tiempo) requerido para producir un peso definido del depósito.

La relación entre peso atómico en gramos (A) y el número de cargas-(electrones) (Z) involucrados por átomo, nos define el peso equivalente de ese elemento.

Peso equivalente
$$\Rightarrow \frac{MA}{Z}$$

Si se deposita más de una sustancia, como ejemplo en el caso de los codepósitos de metal e hidrógeno, o en los depósitos de aleaciones, las Leyes de Faraday se aplican para el número de equivalentes totales, pues no especifican proporciones.

2) .- EFICIENCIA DE LA CORRIENTE:

Cuando las Leyes de Faraday se aplican experimentalmente, se encuentran aparentes desviaciones. Entonces la electroquímica usa el concepto de Eficiencia de corriente, que se define como la proporción (%), de la corriente - eléctrica que se usa en una reacción específica. O séa que, cuando una corriente atraviesa una solución en la cual hay iones de varias especies, ya sabemos que los cationes se dirigirán hacia el cátodo y los aniones hacia el ánodo; ahí puede haber una reacción entre el anión y el metal del ánodo, o con - el agua de la solución.

Tanto en el ánodo como en el cátodo, la reacción total (o séa la suma de todas las reacciones), corresponde a la cantidad de electricidad que pasa de acuerdo con las leyes de Faraday.

No obstante, en un electrodepósito, en el que sabemos que el metal - que se va a depositar se disuelve a partir del ánodo y se deposita en el cátodo, cualquier corriente utilizada en otras reacciones de la misma celda, se considera como pérdida; y por eso es necesario calcular la eficiencia de corriente.

Para poder determinar la efeciciencia catódica de una electrólisis da da , es necesario medir exactamente la cantidad de electricidad que pasa a - través del proceso. La eficiencia catódica del proceso, se obtendrá, así como-

la relación que existe entre el peso de metal realmente depositado, y el máximo que se podrá depositar , de acuerdo a las Leyes de Faraday:

% Eficiencia catódica = Peso del metal depositado (real) X 100 Peso del metal depositado (teórico)

Entonces basta con pesar el cátodo antes y después del proceso para conocer la cantidad real del depósito y relacionado con la cantidad que se calculó a partir de la Ley de Faraday.

Sin embargo, para la eficiencia anódica no es práctico utilizar este método directo, porque aún cuando se usaran metales puros en los ánodos, algunas partículas metálicas pueden desprenderse para formar una suspensióny ésto conducirá a resultados erróneos.

Por esta razón , es más práctico estimar la eficiencia anódica indirectamente, lo cual implica compararla con la catódica.

Si las eficiencias anódicas y catódicas son iguales, quiere decir - que el contenido metálico de la solución puede aumentar. Si la catódica excede a la anódica. Entonces el contenido metálico de la solución baja.

Del cambio de concentración del metal en un baño dado, producido poruna determinada cantidad de electricidad, pueden calcularse las eficiencias re lativas, anódica y catódica. Así que si se conoce la catódica, podremos calcular la anódica.

Un indicio aún más sensible de cualquier diferencia entre la eficiencia catódica y anódica en soluciones prácticamente neutras, es el PH.

Si la eficiencia anódica es mayor que la catódica, el PH de la solución aumentará y viceversa.

Aunque la dirección del cambio en el PH es un medio válido para sa ber si la eficiencia anódica es mayor o menor que la catódica, este método no se utiliza mucho para saber el valor real de la eficiencia anódica porque re quiere que se usen curvas de titulación de la solución que indiquen la cantidad

de ácido o base de metal que se necesita para producir dicho cambio.

3).- MECANISMO DE LOS ELECTRODEPOSITOS:

Para explicar el mecanismo de los electrodepósitos, vamos a utilizar un e jemplo simple de una celda de depósito.

Esta celda está constituída de dos electrodos metálicos (por ejemplode Zinc) sumergidos dentro de una solución acuosa de una sal del metal (por ejemplo Zn SO 4), acidificada con H₂SO₄; y conectada externamente a una fuente de corriente directa (Batería generador, rectificador, etc.) (Fig.III).

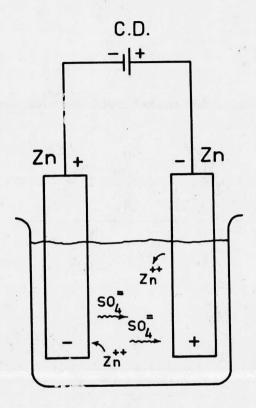


Fig.III: CELDA DE DEPOSITO

El sulfato de Zinc es completamente ionizado; entonces en la solución se encuentran iones Zn+2 y SO_4-2 , junto con pequeñas cantidades de iones H+ y OH- de la ionización del agua.

Puesto que la solución es bastante concentrada, los iones no pueden - comportarse completamente independientes unos de otros; ésto se debe a la atracción interiónica y a la formación de pares iónicos o de otras configuraciones.

De acuerdo con la actividad de los iones, se determina su influenciaen el potencial, en la conductividad y en los procesos de difusión.

En los baños acidificados, las actividades iónicas son bajas. La relación entre la actividad iónica y el potencial del electrodo está dada por la -e cuación de Nernst. (4-b)

La diferencia de Potencial dada a la celda por la fuente de corriente hace que haya un sobrante de electrones, aprovechables en el cátodo, en compara ción con los normalmente aprovechables en ausencia de ese potencial externo.

Con ésto, el cátodo se hace más negativo, por lo que atrae hacia él a los iones positivos; en nuestro ejemplo, a los iones Zn ++ y se depositan sobre la superfície del cátodo.

Los iones Zn++ ganan 2 electrones en el cátodo, quedando como átomoneutral del Zn.

o séa que:

Reacción en el cátodo

 $Zn ++ +2e=Zn^{\circ}$

en general:

 $M^{+n} + ne=M^{o}$

Sin embargo, de acuerdo con la teoría moderna de los metales, el zinc es todavía iónico en el estado metálico; por lo tanto hay suficientes electrones "libres" en el cátodo para balancear cargas iónicas, pero ellos no están unidos a iones específicos.

Por lo tanto, cuando un ión metálico M⁺ⁿ (Zn⁺²) es atrafdo al cátodo (donde se deposita), los electrones deben fluir de la fuente externa hacia el cátodo para neutralizar los iones depositados; pero no es esencial que los electrones que entran sean transferidos a algún ión específico. Ha sido comprobadoque la transferencia de 2 electrones en un solo paso es altamente improbable.

Como séa, el flujo de electrones es necesario para la reducción de algunas especies en el cátodo y para la oxidación de algunas especies en elánodo.

En el Cátodo los electrones son retirados del metal que forma el circuito externo, estos electrones son responsables de las fuerzas para unir los iones del metal al cátodo.

Los iones en la superficie del añodo se van hacia el electrólito, for man nuevas moléculas con el agua de la solución; de este modo llegan a ser - iones hidratados de Zinc libres para moverse dentro de la solución. Este pro ceso. En la formulación convencional se escribe:

$$Zn + 2 + 2e = Z_n^0$$

El símbolo Zn^+2 puede ser interpretado como representación del ion hi dratado ($\operatorname{Zn-(H_20)}_X^{+2}$; el símbolo Zno , es usado en esta ecuación como repre sentación de un peso atómico gramo (mol) del metal, o alternativamente como-um ión zinc individual dentro de la red metálica-cirstalina que constituye el depósito. Teniendo una carga cero.

La adición o sustracción de electrones, constituyen el flujo de corri ente, es un proceso que implica a todo el depósito y no a un ion individual.

a).- Velocidad de Reacción en los Electrodos

Las reacciones en el ánodo y el cátodo son diferentes por lo que las velocidades de reacción no son las mismas.

Esto implica que, si a cualquier instante la reacción en el ánodo no ocurre al mismo tiempo que la del cátodo, entonces el ánodo recibe una sobre_

carga de electrones; esta sobrecarga cambia potencial del ánodo en una dirección negativa, y la reacción del ánodo se hará más lenta.

Como la sobrecarga de electrones pasa a través del circuito exterior hacia el cátodo, el potencial en el cátodo tambien es cambiado en un sentido ne gativo, por 10 que la reacción ahí se acelera, hasta que las dos velocidades de reacción (anódica y catódica) lleguen a ser iguales.

Así pues, en una celda de electrodepósito, en el ánodo se empieza a disolver el metal, el cual deposita en el cátodo. La velocidad neta que gobier_ na el flujo de corriente en un proceso dado, es la velocidad debida a la reacción mas lenta en uno de los electrodos.

b).-Potenciales de los Electrodos:

Cuando un metal es introducido en una solución que contiene iones o - sales de ese metal, se establece una diferencia de potencial entre el metal y - la solución adyacente a él, a esta diferencia de potencial se le conoce como el potencial sencillo, o el potencial de solución o el potencial de equilibrio de - ese metal.

En la electrólisis, es necesario conocer los efectos de la corrienteque un baño, tales como la disolución y el depósito del metal, pero también tenemos que conocer el potencial que se requiere para obligar a la corriente a pasar a través del baño, de acuerdo con la Ley de Ohm.

$$(I = \frac{V}{R})$$

La resistencia de un baño determina la corriente que fluye cuando seaplica cierto potencial; sin embargo, en todas las electrólisis, llevadas a cabo con una densidad de corriente apreciable, los potenciales del ánodo y el cáto do (potenciales de equilibrio), cambian por el efecto de la polarización y porende, afectan el paso de la corriente, aparte de la resistencia de la solución.

Para poder comparar directamente los potenciales de diferentes metales es conveniente expresarlos en términos del potencial normal o standard, que es -

el potencial de ese metal en una solución de una sal metálica que tiene un - equivalente de los iones metálicos.

Entonces el potencial de equilibrio lo podemos calcular a partir - de la ecuación Nernst.

$$M^{+n}$$
 + $ne^ M^0$
 $E= E^0$ M^{+n} + RT \ln am $^{+n}$
 E^0 = Pottncial del electrodo

E^OM+n = potencial standard para la reducción del

ion metálico M+n al metal MO

R= Constante de los gases

T= Temperatura absoluta

F= Equivalente de Faraday

n= Número de carga formal del ion.

aM+n= Actividad del ion metálico en la solución.

4.- POLARIZACION Y SOBREVOLTAJE.

a).- Polarización:

Si se tiene el siguiente sistema: (Fig. IV)

Antes de que la electrólisis comience, los potenciales sencillos de los dos electrodos son semejantes, teniendo un valor que depende de la concentra ción de iones M+n del electrolito.

A medida que la electrólisis va avanzando, se observa que el potencial del ánodo se hace más positivo y el del cátodo más negativo que al principio, o séa que en el equilibrio de los potenciales.

Una explicación de tal cambio en el potencial, se debe al cambio en - la concentración de la solución cercana al electrodo, como resultado de la electrólisis.

En el ejemplo, el metal se disuelve a partir del ánodo, y por lo tanto la solución próxima a él, tiende a estar cada vez más concentrada en sales del metal y en iones metálicos (M^{+n}) , que el resto de la solución.

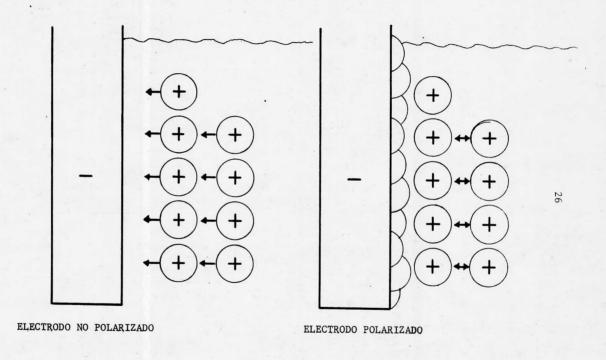


Figura IV: PROCESO DE POLARIZACION

For otra parte, en el cátodo el metal se deposita y la solución adyacente tiende a estar menos concentrada en iones M^{+n} y en aniones.

Al cambio de potencial debido a lo anterior se le llama POLARIZACION POR CONCENTRACION. Tal cambio en el potencial corresponde al cambio en la concentración de la solución , que se encuentra sobre la superficie del electrodo.

Sin embargo, la polarización de un sistema electrolítico no sólo se - debe a la concentración, sino a diversos fenómenos; el término Polarización - Química, se ha utilizado para que comprenda todas las formas de polarización - que no se pueden explicar en forma adecuada mediante los cambios en la concentración iónica de los metales; se cree que sea el resultado de diferentes procesos en el electrodo como la hidratación o deshidratación de los iones; la - descarga sobre los electrodos, la combinación de los átomos para formar crista les o gases moleculares, etc.

b) .- Sobrevoltaje:

Cuando hay desprendimiento de Hidrógeno en el cátodo, y/o de 0xí geno en el ánodo, la diferencia de potencial requerida, para que se mantenga - la electrólisis, es casi siempre superior a la que corresponde al PH de la solución o sea al potencial de equilibrio de un electrodo de Hidrógeno o de 0xígeno de esa solución.

A esta diferencia de potencial se le llama SOBREVOLTAJE.

Este Sobrevoltaje para el desprendimiento de H₂ o de O₂, varia en función de la composición del electrolito y de la estructura de los electrodos.

El Sobrevoltaje es la polarización desarrollada en el desprendimiento de un gas como el Hidrógeno, bajo una superficie especificada del electrodo.

También se usa el término Sobrevoltaje para referirse a la polariza - ción mínima o sea que se refiere al potencial en exceso (por encima del potencial de equilibrio), en el cual tiene lugar el primer desprendimiento visible-de gas.

El potencial total requerido para iniciar el desprendimiento gaseoso o cualquier otro proceso, se le llama Potencial de Descomposición.

- c) <u>Efectos de la Polarización y del Sobrevoltaje en los Electrodepó</u>sitos.
- 1).- La polarización en los electrodos, representa un incremento enel potencial requerido para el paso de una corriente dada.

El voltaje total puede consistir de 3 partes:

la. El potencial de reacción, que es la diferencia entre los poten - ciales de equilibrio del ánodo y el cátodo cuando no fluye corriente.

El potencial de descomposición, será mayor que el potencial de equilibrio en la misma cantidad en que la suma de los sobrevoltajes mínimos anódico y catódico lo séan.

2a. La caída IR, a través de la solución, esta depende de las formas y de las disposiciones de los electrodos o sea la distancia entre ellos y la resistividad de la solución.

Esta caída de potencial es proporcional a la densidad de corriente.

- 3a. La suma de la Polarización Anódica y Catódica.
- 2).- La polarización afecta la potencia de depósito del baño.
- 3).- Un incremento en la polarización catódica tiende a producir un depósito cuyo grano sea más fino.
- 4).- Un incremento en el sobrevoltaje de Hidrógeno, retarda el des prendimiento de éste, y por lo tanto facilita la formación del depósito metálico.

Un ejemplo de ésto nos lo ofrece el zinc, que puede depositarse conum buen rendimiento a partir de baños ácidos.

Si el Hidrógeno se descarga en su potencial de equilibrio, la corriente se utilizaría principalmente para descargar el Hidrógeno. En virtud del alto sobrevoltaje del Hidrógeno sobre zinc, éste se deposita, con algo de Hidrógeno.

En general, los cursos de sobrevoltaje para el Hidrógeno y el Oxígeno en un baño dado, influyen las eficiencias anódica y catódica, especialmente-para los metales, menos nobles que el Hidrógeno.

Lo anterior explica la relación entre el voltaje utilizado en los - electrodepósitos y la cantidad y la calidad del depósito obtenido.

5).- FACTORES QUE CONTROLAN EL CARACTER DE LOS ELETRODEPOSITOS.

En los electrodepósitos no es suficiente solamente cubrir el objeto - completamente, admás es necesario producir depósitos de un metal dado, que-muestren propiedades como tersura, brillo, dureza, ductibilidad, adherencia, etc.

Los metales electrodepositados están formados por cristales, los quea su vez están formados o integrados por un gran número de unidades arista les. Las propiedades de los metales depositados están determinadas principalmente por el tamaño y el arreglo de los cristales individuales.

En general, para un metal dado, los depósitos de grano fino son más - tersos, más brillantes, más duros, más resistentes, pero ménos dúctiles que- los de grano grueso.

Los depósitos arborescentes, producidos con altas densidades de corrien te, son en realidad depósitos de grano muy fino, constituídos por cristalesmuy pequeños, pero formando agregados más gruesos que dan una apariencia final opaca y rugosa.

Las dos formas que existen para cambiar la estructura de los depósitos son:

- la. Alterando la composición del baño.
- 2a. Cambiando las condiciones de operación.

Los tres cambios principales que pueden hacerse sobre un baño son:

a.- Densidad de Corriente.

Un incremento en la densidad de corriente disminuye el tamaño del cristal. Sin embargo, cuando la densidad de corriente exceda del valor límite para un baño y una temperatura dada, hay una tendencia hacia la producción de depósitos rugosos y arborescentes; un aumento posterior en la densidad de corriente proporcionará depósitos esponjosos o "quemados", los cuales contienen hidróxí dos o sales básicas ocluidas.

Todos estos cambios son consistentes con el hecho de que cuando la densidad de la corriente aumenta, la concentración disminuye, en tanto que la pola rización aumenta.

b. - Agitación.

La agitación de la solución produce un suministro constante de sales o de iones al cátodo, reduciendo el espesor de la película catódica y facilitando así el suministro de iones metálicos al cátodo.

La agitación rápida disminuye la polarización y puede reducir la potencia del depósito.

c. - Temperatura:

En general, un incremento en la temperatura ocasiona un aumento del tamaño de los cristales.

Los depósitos tersos y de grano fino, se producen frecuentemente mediante soluciones calentadas previamente.

La densidad de corriente elevada contrarresta el efecto de la temperatura.

Ia influencia de la temperatura se refleja en una solubilidad mayor de lasal metálica y por lo tanto, una conductividad más alta de la solución. tambiéna temperaturas altas, se reduce la absorción del Hidrógeno en los depósitos.

d.- Composición del baño:

Concentración del Metal.- Los metales se depositan solamente cuando los baños electrolíticos llevan disueltos compuestos de metal en cuestión; entonces es aconsejable tener las concentraciones más altas posibles de cada sal dada, lo que tiene varias ventajas; tales como:

la. Una conductibilidad mayor

- 2a. Permitir una densidad de corriente más alta.
- 3a. Una eficiencia catódica más elevada.

Concentración del ion metálico. - Debido a que los depósitos metálicos - son el resultado de la descarga de los iones metálicos de que se derivan.

En general, un descenso en la concentración de los iones metálicos aumen ta la polarización catódica, disminuye el tamaño de los cristales y mejora la potencia del depósito. Si la baja concentración en ión metálico se logra haciendo una dilución de la sal metálica, el suministro de metal al cátodo se agotará muy rápidamente y la densidad límite de corriente será tan baja, que no será práctico.

Se deben utilizar soluciones que tengan una alta concentración de compues tos metálicos, pero baja concentración en los iones; el compuesto metálico ser - virá como un recipiente que reaprovisionará iones a medida que se vayan descar - gando.

Las principales formas para reducir la concentración de los iones metálicos es:

- la. Agregando un compuesto que tenga un ión común.
- 2a. Formación de compuestos complejos e iones.
- e.- EFECTOS DEL PH:

Cuando la eficiencia anódica excede a la eficiencia catódica, el PH tien_de a subir y viceversa.

El PH alcanzado en la película catódica, bajo condiciones uniformes, de - pende del PH del resto de la solución.

En general, cuando se tiene un PH determinado en el seno de la solución, se puede observar que el PH en la película catódica es más bajo. Un PH bajo enel baño, permite utilizar corrientes de densidad más elevadas, para producir un depósito firme a una eficiencia relativamente alta.

El uso de PH bajos en los baños, principalmente para metales menos nobles

que el Hidrógeno, como es el caso del zinco el niquel, dá como resultado depósitos más pueros y más blandos, que permiten el empleo de densidades de corriente más elevadas.

En los baños más acidos, donde el PH es menor que 1, esto no es tan crítico, teniendo el PH efectos menos marcados en el comportamiento de los ba
ños y en las características del depósito.

f.- Aditivos

Ya en los inicios del desarrollo de la galvanotecnia, se sabía que adicionando pequeñas cantidades de compuestos orgánicos, los depósitos metálicos mejoraban su dureza y eran más finos.

La selección de los aditivos es más bien empírica que experimental.

Los aditivos más efectivos utilizados desde un principio, fueron las proteínas coloidales, como son: La cola, grenetina, albúmina, etc.

La adición de tales agentes es muy útil en baños ácidos para metales como Cu, Pb, Zn y Sn, ya que la ausencia de estos aditivos conduce a depósi tos cristalinos rugosos.

g.- Baños Acidos de Zinc.

El zinc, es un elemento anfotérico, o séa que puede actuar como ácido o como base, por esta razón se puede depositar el zinc a partir de soluciones - ácidas y también a partir de soluciones alcalinas.

Las soluciones alcalinas tienen mejor poder de depósito y se usan más - frecuentemente para revestir artículos de formas irregulares.

Las soluciones ácidas se emplearon para recubrir alambres y metales laminados.

Considerando las series electroquímicas se ve que el potencial normal - del zinc es de -0.76, de aquí se podría predecir que el zinc no se puede depositar con una buena eficiencia catódica a partir de las soluciones ácidas, elhecho de que sea posible hacerlo depende del alto sobrevoltaje del Hidrógeno - con respecto al zinc.

III.- PARTE EXPERIMENTAL

1.- Objetivos:

La finalidad de este trabajo, fué la de estudiar la influencia del Sulfato de Mercurio, y la de ciertos inhibidores en el electrodepósito - de Zinc , el cual se efectúa en el proceso de carga de un acumulador --- Zn-PbO₂.

El Sulfato de Mercurio, se adiciona al electrólito con el objeto - de amalgamar el electrodo de Zinc para protegerlo a circuito abierto del medio altamente ácido (30% en Volumen), pero a la vez tiene una tensión-superficial alta, por lo cual evita en cierto grado el depósito del Zinc.

Los experimentos que se realizaron estuvieron encaminados a encontrar la concentración adecuada de Sulfato de Mercurio que permitiera una buena protección de la placa de Zinc, pero que a la vez no interfiera en el depósito, o bien tratar de sustituirlo por ciertas sustancias que actúan como inhibidores a circuito abierto.

Se tomó como base la concentración de 5 g/1t de HgSO₄ porque en un trabajo anterior, se demostró que una concentración mayor, hace a las --placas de Zinc quebradizas.

Los inhibidores que se usaron, fueron la 2 Dimetil Amino etamo y - la Dibutilamina, se seleccionaron estas substancias, basándonos en los - resultados de un trabajo en el que se estudió el grado de inhibición a -

circuito abierto de ciertas substancias orgánicas.

2.- Preparación para los experimentos:

a).- Celdas: las pruebas se hicieron en unas pequeñas celdas que se construyeron con acrflico y tienen las siguientes dimensiones: 12 x 7 x 5.5 cm., y la separación entre los electrodos fue de 2.5 cm.

En estas cajas se introduc \mathbf{f} a una placa de Zinc y una de PbO $_2$ del mismo tama \mathbf{n} o, por lo que se conformaron celdas individuales. (Fig. V)

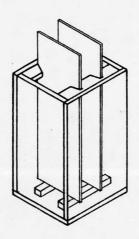


Fig. V.- DIAGRAMA DE LAS CELDAS QUE SE CONSTRUYERON PARA LA REALIZACION DEL TRABAJO EXPERIMENTAL.

b).- Limpieza de las Placas: las placas de PbO₂ se compran directamenteen una distribuidora de Acumuladores de Plomo Acido y se cortan para que el tamaño de la celda sea reducido.

Las placas de Zinc se lijan varias veces, usando lija de agua del número 220, hasta que la superficie quede brillante; después se introducen en una solución de Hidróxido de Sodio al 10%, para limpiar
les la grasa que pudieran tener.

Esta limpieza es necesaria para que las placas usadas en las diferentes pruebas queden en las mismas condiciones y se puedan comparar los resultados.

c) .- Equipo:

Para el proceso de descarga de las coldas se usan amperimetros de -0-5 Amp, se conecta cada celda a un amperimetro y se deja un tiempo
determinado; se lee periódicamente el voltaje, con un multimetro ocon un voltimetro de 0-10 Volts.

Para el proceso de carga, se concentran las cinco celdas que se están estudiando en serie, y se les aplica una corriente determinada. Esto se hace con una fuente de poder, o bien con un Tungar que se conecta a una resistencia variable y un amperímetro.

3.- Descripción de los Experimentos:

Para cada prueba se usaron 5 celdas que fueron sometidas a 10 ci--clos de carga y descarga; cada celda llevó una placa de Zinc y una de ---

PbO, del mismo tamaño.

Se tomó el peso de la placa de Zinc, después de la descarga, se somete al proceso de carga y se vuelve a tomar el peso.

Con estos datos se hicieron los siguientes cálculos:

$$DT = \frac{\mathbf{ft}}{F} \times \frac{Pat}{eq}$$

Donde:

DT = gramos de zinc depósito teórico.

i = intensidad de corriente.

t = tiempo de proceso de depósito.

F = (Constante de Faraday) = 96500 C

Pat = Peso atómico del Zinc.

eq = No. de valencia del Zinc.

$$DR = C-D$$

Donde:

DR = gramos de Zinc depósito real

C = Peso de la placa de Zinc después del proceso de carga.

D = Peso de la placa de Zinc después del proceso de descarga.

$$E = \frac{DR}{DT} \times 100$$

Donde:

E = Porcentaje de Eficiencia del Depósito.

Se hicieron diferentes pruebas y se estudió el depósito de Zinc, tanto

en su eficiencia como en su aspecto, firmeza, adherencia, etc.

Los ciclos de carga y descarga se realizaron de la siguiente manera:

Proceso de Descarga:

Las descargas se hicieron a corto circuito (fig.VI) durante una hora, después de este tiempo se pesa la placa de Zinc para conocer la cantidadque disolvió, se descargaba cada celda individualmente.

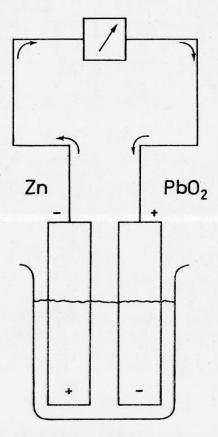
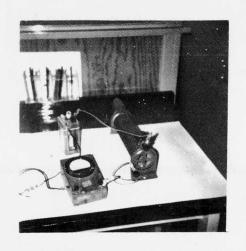
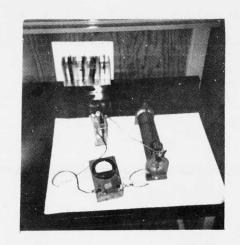
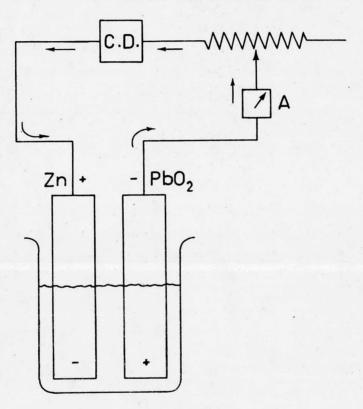
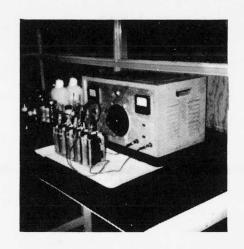
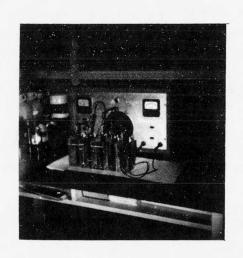




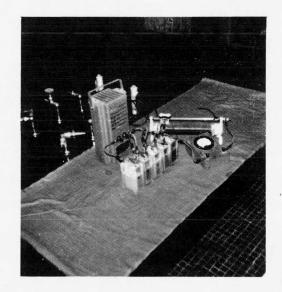
Fig. VI.- DIAGRAMA DEL PROCESO DE DESCARGA.

FOTOGRAFIAS DEL PROCESO DE DESCARGA

Proceso de carga:

Las cargas se hicieron conectando las 5 celdas en serie, en una in-tensidad de corriente determinada y durante una hora, después de este --tiempo se pesa la placa de Zinc, para saber qué cantidad se depositó. --(fig.VII).


Fig. VII.- DIAGRAMA DEL PROCESO DE CARGA.

FOTOGRAFIAS DEL PROCESO DE CARGA

En este estudio se usaron las siguientes formulaciones del Electrólito:

Electrólito 1	Electrólito 2
ZnSO ₄ 150 g	ZnSO ₄ 150 g
Na ₂ SO ₄ 50 g	Na ₂ SO ₄ 50 g
Al ₂ (SO ₄) ₃ 75 g	Al ₂ (SO ₄) ₃ 75 g
MgSO ₄ 20 g	MgSO ₄ 20 g
Glucosa 30 g	HgSO ₄ 5 g
H ₂ SO ₄ 300 m1	Glucosa 30 g
H ₂ 01000 m1	H ₂ SO ₄ 300 ml
Electrólito 3	Electrólito 4
ZnSO ₄ 150 g	ZnSO ₄ 150 g
NaSO ₄ 50 g	NaSO ₄ 50 g
A1 ₂ (SO ₄) ₃ 75 g	$\text{Al}_{2}(\text{SO}_{4})_{3}$ 75 g
MgSO ₄ 20 g	MgSO ₄ 20 g
Glucosa 30 g	01
	Glucosa 30 g
H ₂ SO ₄ 300 m1	H ₂ SO ₄ 300 m1
H ₂ SO ₄ 300 m1 H ₂ O 1000 m1	

Electrólito 5	Electrólito 6
ZnSO ₄ 150 g	ZnSO ₄ 150 g
Na ₂ SO ₄ 50 g	NaSO ₄ 50 g
A1 ₂ (S0 ₄) ₃ 75 g	Al ₂ (SO ₄) ₃ 75 g
MgSO ₄ 20 g	MgSO ₄ 20 g
Glucosa 30 g	Glucosa 30 g
H ₂ SO ₄ 300 m1	H ₂ SO ₄ 300 m1
H ₂ O 1000 m1	H ₂ 0 1000 m1
HgSo ₄ 5 g	HgSO ₄ 2.5 g
Bu ₂ NH 10m1/1t Sol.	Bu ₂ NH 10m1/1t So1.
Electrólito 7	Electrólito 8
Zn SO ₄ 150 g	Zn SO ₄ 150 g
Zn SO ₄ 150 g Na ₂ SO ₄ 50 g	Zn SO ₄ 150 g Na ₂ SO ₄ 50 g
Zn SO ₄ 150 g	Zn SO ₄ 150 g
Zn SO ₄ 150 g Na ₂ SO ₄ 50 g	Zn SO ₄ 150 g Na ₂ SO ₄ 50 g
Zn SO ₄ 150 g Na ₂ SO ₄ 50 g Al ₂ (SO ₄) 75 g	Zn SO ₄ 150 g Na ₂ SO ₄ 50 g A1 ₂ (SO ₄) 75 g
Zn SO ₄ 150 g Na ₂ SO ₄ 50 g Al ₂ (SO ₄) 75 g MgSO ₄ 20 g	Zn SO ₄ 150 g Na ₂ SO ₄ 50 g Al ₂ (SO ₄) 75 g MgSO ₄ 20 g
Zn SO ₄	Zn SO ₄ 150 g Na ₂ SO ₄ 50 g A1 ₂ (SO ₄) 75 g MgSO ₄ 20 g Glucosa 30 g

 $Bu_2^{NH} = Dibutil Amina$

2 DAE = 2 Dimetil Amino Etanol

Electrólito 9

ZnSO ₄					•	•	•	150	g
Na ₂ SO ₄								50	g
A1 ₂ (S0 ₂)	3						75	g
Mg SO ₄				•				20	g
Glucosa	ı							30	g
H ₂ SO ₄			•	•				300	m1
н ₂ о								1000	m1
HgSO ₄								1	g

El Electrólito se prepara de la siguiente manera: Se pesan las sales, se mide el litro de $\rm H_2^{00}$ y los 300 ml. de $\rm H_2^{SO}_4$.

La glucosa se disuelve en unos 100 m1- de $\rm H_2^{0}$; el $\rm HgSO_4$, se disuelve en unos 50 m1. de $\rm H_2^{0}$ y se le adiciona gota a gota $\rm H_2^{SO}_4$, hasta que - la solución se aclare.

En el resto de H₂O se ponen todas la demás sales y se le va adicionando poco a poco el Acido Sulfúrico, aprovechando así el calor desprendido por la disolución del ácido sulfúrico en el agua; para que las sales se disuelvan rápidamente, ya que la solución está fría, se le adiciona la glucosa disuelta previamente, y la Solución de Sulfato de Mercurio; los compuestos como el 2DAE y la BuNH, se adicionan con una pipeta y seagita la solución.

PRUEBA I

SISTEMA: Zn/ Electrolito 1/ PbO₂

5 Celdas, 10 Ciclos.

Electrólito 1

150 g ZnSO₄

50 g Na₂SO₄

75 g $A1_2(S0_4)_3$

20 g MgSO₄

30 g Glucosa

300 ml H₂SO₄

1000 m1 H₂0

Descarga: t = 1 Hora

v = 1.1 Volts (promedio)

I = 0.3 amp. (promedio)

Carga: t = 1 Hora

V = 3.1 Volts/celda

I = 1 Amp.

Peso original de las Placas:

Placa	Peso (g)
1	67.9535
2	68.6805
3	68.8650
4	68.5135
5	68.2635

OBSERVACIONES:- Como se puede observar por los resultados, la disolución del Zinc es muy grande; aun en el proceso de Carga, el Zinc no se deposíta, sino que se sigue disolviendo.

Durante el proceso de descarga, hay gran desprendimiento de gases y la temperatura de la celda aumenta considerablemente.

LACA	D	С	DT	DR	E	D .	С	DT	DR .	Е	
1 .	63,2715	63,2915	1.22	0.0200	1.64	61.8500	62.0760	1.22	0.2260	18.52	
2	62.9525	62.7700	1.22	-0.1825		61.3960	61.5070	1.22	0.1110	9.10	
3	62.3445	62,2360	1.22	-0.1085		60.8780	60.9485	1.22	0.0705	5.78	
4	62.7940	62,7660	1.22	-0.0280		61.6825	61.6215	1.22	-0.0610		
5	63,4210	63.4240	1.22	0.0030	0.24	62.4805	62.5760	1.22	0.0955	7.82	
					%					%	
1	60.3600	59.4895	1.22	-0.8705		57.6170	57.8320	1.22	0.2150	17.62	
2	59.9795	59.6305	1.22	-0.3490		58.1425	58,3575	1.22	0.2150	17.62	
3	59.5930	59.0285	1.22	-0.5645		57.6230	57.8205	1.22	0.1975	16.19	
4	60.3095	59.7710	1.22	-0.5385		58.3335	58.5985	1.22	0.2650	21.72	
5	61.3840	61.0480	1,22	-0.3360		59.9145	60.0865	1.22	0.1720	14.10	
					%					%	
1	56.2235	54.4850	1.22	-1.7385		54.0255	54.5265	1.22	0.5010	41.06	
2	56.8665	55.1660	1.22	-1.7005		54.6890	55.1500	1.22	0.4610	37.78	
3	56.3270	54.8755	1.22	-1.4515		54.3555	54.8270	1.22	0.4715	38.64	
4	57.0850	55,4670	1.22	-1.6180		54.9885	55,2385	1.22	0.2500	20.49	
5	58.7340	57.3920	1.22	-1.342		56.8210	57.1780	1.22	0.3570	29.26	
					%					%	
1	53, 3645	53.8845	1.22	0.5200	42.62	52.3990	52.5740	1.22	0.1750	14.34	
2	54.0415	54.5085	1.22	0.4671	38.28	53.0970	53.3115	1.22	0.2145	17.58	
3	53.5880	54.0225	1.22	0.4345	35.61	52.5205	52.7490	1.22	0.2285	18.72	
4	54.4460	54.8810	1.22	0.4350	35.65	53.5100	53.7645	1.22	0.2545	20.86	
5	56.3670	56.7350	1.22	0.3680	30.16	55,2705	55.3930	1.22	0.1225	10.04	
					%					%	
1	51.3220	51.5410	1.22	0.2190	17.95	50.0030	50.1465	1.22	0.1435	11.76	
2	52.2485	52.4445	1.22	0.1960	16.06	50.8825	51.0825	1.22	0.2000	16.39	
3	51.7685	52.0020	1.22	0.2335	19.14	50.6930	50.8215	1.22	0.1285	10.53	
4	52.8465	53.0450	1.22	0.1985	16.27	51.6730	51.7390	1.22	0.0660	5.40	
5	54.4555	54.6505	1.22	0.1950	15.98	53.1460	53,2420	1.22	0.0960	7.87	

4

PRUEBA II a

SISTEMA: Zn / Electrólito 2 /acero inoxidable 5 Celdas, 10 Ciclos.

Electrólito 2:

150 g ZnSO ₄	
50 g Na ₂ SO ₄	
75 g A1 ₂ (SO ₄) ₃	
20 g MgSO ₄	
30 g Glucosa	
300 m1 H ₂ SO ₄	
1000 ml H ₂ 0	
5 g HgSO ₄	
Descarga: t = 1 hora	
I = 0.25 Amp	
V = 1.1 Volts	
Carga: t = 1 hora	
I = 2 Amp.	
V = 4.15 Volts/celda	

Peso Original

Placa	Peso (g)
1	83.8510
2	92.8720
3	83.3730
4	92.6405
5	86.3125

OBSERVACIONES: El rendimiento del depósito ya es bastante aceptable, aun que se considera que podría ser mejor sin la amalgama, pero encontrando algún agente que proteja el Zinc de la disolución, como lo hace el mercurio.

PRUEBA II-a.

Zn-Acero

PLACA	D	С	DT	DR	Е	D	С	DT	DR	Е		
1	83.5785	84.7195	2.44	1.141	46.76	84.5165	85.8750	2.44	1.3586	54.85 %		
2	92.4870	93.8420	2.44	1.3547	55.52	93.6005	95.3706	2.44	1.7701	72.54 %.		
3	83.1385	84.3460	2.44	1.2074	49.48	84.1385	85.9300	2,44	1.7916	73.43		
4	92.5000	93.8456	2.44	1.3454	55.14	93.5090	95.4865	2.44	1.9774	81.04		
_5	86.2470	87,6735	2.44	1.4267	58.47	87.4615	89.1445	2.44	1.6831	68.98		
					%	%				- %		
1	85,6605	86.7270	2.44	1.0665	43.71	86.4815	87.5025	2.44	1.0210	41.84		,
2	95.1310	96.4540	2.44	1.3230	54.22	96.2110	97.2310	2.44	1.0200	41.80		
3	85.7005	86.9230	2.44	1.2225	50.20	86.6930	87.7710	2.44	1.0780	44.18		
4	95,2640	96.2730	2.44	1.009	41.35	96.1315	97.1490	2.44	1.0175	41.70		
5	88.9530	89.9910	2.44	1.038	42.54	90.7885	91.7990	2.44	1.0105	41.41		
					%					%		44
1	87.1030	88.1505	2.44	1.0475	42.93	87.8745	88,8760	2.44	1.0015	41.18		4
2	97.0085	98.1005	2.44	1.0920	44.75	97.8495	98.8610	2.44	1.0115	41.45		
3	87.5235	88.5395	2.44	1.0160	41.64	88,1025	89.1510	2.44	1.0485	42.97		
4	96.8920	97.9100	2.44	1.0180	41.72	97.6340	98.6405	2.44	1.0065	41.25		
5	91.4810	92.4915	2.44	1.0105	41.41	92.2015	93.2095	2.44	1.008	41.31		
					%					%		
1	88.6540	89.6750	2.44	1.0210	41.84	89.4210	90.4405	2.44	1.0195	41.78		
2	98.5215	99.5320	2.44	1.0104	31.31	99.2745	100.2790	2.44	1.0045	41.17		
3	88.8125	89.8215	2.44	1.0090	41.35	89.5570	90.5605	2.44	1.0035	41.12		
4	98.3310	99.3405	2.44	1.0095	41.37	99.1040	100.1550	2.44	1.0510	43.08		
_5	92.9005	93.9210	2.44	1.0205	41.82	93.6015	94.6190	2.44	1.0175	41.70		
		2		4.7	% .					%		
1	90.1275	91,2380	2.44	1,1105	45.51	90.8045	91.8150	2.44	1.0105	41.41	,	
2	100.0015	101.1010	2.44	1.0995	45.06	100.8715	101.8840	2.44	1.0125	41.49		
3	90.2230	91.2270	2.44	1.004	41.14	90.8910	91.9005	2.44	1.0095	41.37		
4	99.7125	100.7190	2.44	1.104	45.24	100.4715	101.5920	2.44	1.1170	45.77		
5	94.3070	95.3305	2.44	1.0235	41.95	95.1005	96.1210	2.44	1.0205	41.82		

La intensidad de corriente que usaré en adelante, será de 1 amperio, porque en esta prueba observé que la reacción a 2 amperios en la carga, es muy violenta.

Tanto en el proceso de carga como en el de descarga, el desprendi--miento de gases es menor que en la prueba I, pero todavía se presenta.

El depósito es fino, pero no muy homogéneo, pero no muy homogéneo,-aunque no se presentan arborescencias.

PRUEBA II - b

Sistema: Zn - Electrólito 2 - Pb; 5 Celdas, 10 ciclos.

Descarga: t = 1 hora

I = 0-025 Amp.

V = 0.5 Volts.

Carga: t = 1 hora

I = 1 Amp.

V = 3.4 V/ celda

Se utilizó Plomo, porque el medio es tan agresivo, que atacó la placa de acezo inoxidable.

Peso original de las placas:

Placa	Peso (g)
1	86.7040
2	95.9115
3	86.3710
4	96.1510
5	89.6795

OBSERVACIONES:

El desprendimiento de gas se reduce, en comparación a la prueba No. 1. El rendimiento de depósito, en general es bueno.

El depósito es bastante adherente y es fino, no presentando arborescencias. La adherencia va disminuyendo progresivamente, conforme se van sucediendo los ciclos.

Al final, el depósito se desprende fácilmente con las manos.

PRUEBA II-B

Zn-Pb

P LACA	D	С	DT	DR	Е	D	С	DT	DR	E	
1	86.0035	86.3590	1.22	0.3555	29.14	86.2315	86.5690	1.22	0.3375	27.66	14.
2	95,6215	95,9710	1.22	0.3497	28.86	95.8310	96.1930	1.22	0.3620	29.67	
3	86,1390	86.4770	1.22	0.3380	27.7	86.3730	86.6830	1.22	0.3100	28.97	
4	95.8100	96.1920	1.22	0.3820	31.31	96.1010	96.4545	1.22	0.3535	28.97	
5	89.3370	89.7340	1.22	0.3960	32.52	89.5850	89.9370	1.22	0.352	28.84	
					%					%	
1	86.4640	86.7430	1.22	0.2790	22.87	86.8000	87.735	1.22	0.935	76.64	
2	96.1045	96.3445	1.22	0.2400	19.67	96.2560	97.2085	1.22	0.9525	74.79	
3	86.5860	86.8350	1.22	0.2490	20.41	86.7825	87.7290	1.22	0.9465	77.58	
4	96.3440	96.5720	1.22	0.2280	18.69	96.5510	97.4830	1.22	0.9320	76.39	
5	89.8000	90.1070	1.22	0.3070	25.16	90.0555	91.0100	1.22	0.9545	78.23	
					%					%	
1	87,6290	88.4035	1.22	0.7745	63.48	88.2885	88.7530	1.22	0.4645	38.07	
2	97.0880	97.8490	1.22	0.7610	62.37	97.7240	98.1770	1.22	0.4530	37.21	
3	87.6290	88.4140	1.22	0.7850	64.34	88.3840	88,7620	1.22	0.3780	30.98	
4	97.3760	98.1015	1.22	0.7255	59.47	97.9760	98.5120	1.22	0.5360	43.93	
5	91.0010	91.7960	1.22	0.7950	65.16	91.7015	92.1980	1.22	0.4965	40.70	
1	88.5215	89,2110	1.22	0.6895	56.51	88,9115	89.5715	1.22	0.6600	54.10	
2	97.9230	98.3995	1.22	0.4765	39.06	98.0510	98,8310	1.22	0.7800	63.93	
3	88,51,45	89.3715	1.22	0.8570	70.24	89.1025	89.8725	1.22	0.7700	63.11	
4	98.4390	99.3210	1.22	0.8820	72.29	99.1120	99.9115	1.22	0.7995	65.53	
5	91.9010	92.6175	1.22	0.7165	58.72	92.3590	92.9930	1.22	0.6340	51.97	
					%					%	
1	89.2125	89.9285	1.22	0.7160	58.69	89.6170	90.4315	1.22	0.8145	66.76	
2	98.5090	98,9905	1.22	0.4815	39.47	98.7010	99.39.95	1.22	0.6985	57.25	
3	89.4315	90.1525	1.22	0.7210	59.10	89.8725	90.7670	1.22	0.8945	73.32	
4	99.5795	100.3375	1.22	0.7580	62.13	100.0550	100.9235	1.22	0.8685	71.19	
5	92.6320	93.4960	1.22	0.8640	70.81	93,2110	93.9910	1.22	0.7800	63.93	

PRUEBA II - c

Sistema: Zn/ Electrólito 2/PbO2; 5 celdas, 10 ciclos.

Descarga: t = 1 hora

I = 0.3 Amp.

V = 1.1 V

Carga: t = 1 hora

I = 1 Amp.

V = 3 volts/celda

Peso original:

Placa Placa	Peso (g
1	70.5035
2	74.6115
3	74.5720
4	71.5 385
5	74.8725

Se cambió el electro de Plomo por el de PbO₂, porque es este el sistema que se utilizó en el Acumulador.

OBSERVACIONES:

En la descarga hay desprendimiento de gases, pero moderado.

En la carga, en los primeros ciclos, el depósito no es firme, peroal final, ya lo es más, y no se presentan arborescencias.

La eficacia del depósito está en todos los ciclos dentro de un mismo rango.

PRUEBA II - c

Zn11PbO₂

PLACA	D	C	DT	DR	E	D	С	DT	DR	Ε .	
 1	70,2030	70.5280	1.22	0.3250	26.64	70.3165	70.7210	1.22	0.4045	33,15	
2	74.0200	74.2720	1.22	0.2520	20.65	74.0510	74.5115	1.22	0.4605	37.74	
3	74.1040	74.4575	1.22	0.3535	28.97	74.2215	74.6090	1.22	0.3875	31.76	
4	71.1920	71.5860	1.22	0.3940	32.29	71.3395	71.8180	1.22	0.4785	39.22	
5	74.4650	74.7790	1.22	0.3140	25.73	74.4310	74.8210	1.22	0.3900	31.97	
					%				<u> </u>	%	
1	70.4620	70.9215	1.22	0.4595	37.66	70.7225	70.9315	1.22	0.2090	17.13	
2	74.3190	74.6110	1.22	0.2920	23.93	74.3510	74.8710	1.22	0.5200	42.62	
3	74.3885	74.7995	1.22	0.4110	33.69	74.1830	74.6920	1.22	0.3410	47.75	
4	71.5965	71.9265	1.22	0.3300	27.05	71.6310	71.9395	1.22	0.3085	25.29	
5	74.6090	74.9730	1.22	0.3640	29.83	74.6925	74.9735	1.22	0.2806	23.00	
					%					%	
1	70.6780	71.1005	1.22	0.4270	35.0	70.8325	71.3910	1.22	0.5585	45.78	
2	74.6995	75.1210	1.22	0.4215	34.55	74.8090	75.3095	1.22	0.5005	41.02	
3	74.3720	74.9860	1.22	0.6140	50.33	74.6736	75.1525	1.22	0.4789	39.25	
4	71.6785	72.0050	1.22	0.3270	26.80	71.8005	72.3715	1.22	0.5710	46.80	
5	74.7160	75.1905	1.22	0.4745	38.90	74.9095	75.4210	1.22	0.5115	41.92	
					%					%	
1	71.1080	71.6710	1.22	0.5630	46.15	71.2205	71.5610	1.22	0.3405	27.90	
2	75.1320	75.5945	1.22	0.4625	37.91	75.2810	75.7990	1.22	0.5180	42.46	
3	74.9190	75.2790	1.22	0.3600	29.51	75,0050	75.6105	1.22	0.6055	49.63	
4	72.0565	72.5615	1.22	0.5050	41.39	72.1520	72.6315	1.22	0.4795	39.30	
5	75.1590	75.5410	1.22	0.3820	31.31	75.2195	75.7390	1.22	0.5195	42.58	
 1	71.2215	71.7395	1.22	0.5180	42.46	71.5105	72.0515	1.22	0.5410	44.34	
2	75.5095	75.9985	1.22	0.4890	40.08	75.6030	76.1725	1.22	0.5695	46.68	
3	75.3280	75.9035	1.22	0.5755	47.17	75.5785	75.9960	1.22	0.4175	34.22	
4	72.3005	72.7230	1.22	0.4225	34.63	72.2115	72.8315	1.22	0.6200	50.82	
5	75.3665	75.8105	1.22	0.4440	36,39	75.6000	76.1070	1.22	0.5070	41.56	

A partir de esta prueba, se utilizaron placas de Zinc y de PbO₂; se hicieron otras dos pruebas exactamente en las mismas condiciones de ésta, para comprobar que son reproducibles los resultados.

PRUEBA III - a

Sistema: $Zn/Electrolito 2/PbO_2$; 5 celdas, 10 ciclos.

Descarga: t = 1 hora

I = 0.25 Amp.

V = 0.5 volts

Carga: t = 1 hora

I = 1 Amp.

V = 3.2 Volts/ celda

Peso Original:

<u>Placa</u>	Peso (g)
1	75.1045
. 2	74.1425
3	74.9200
4	75.4600
5	74.8670

	- 1		4							
PLACA	D	С	DT	DR	Е	D	С	DI	DR	Е
1	74.5455	75.0800	1,22	0.5345	43.81	74.3185	74.7315	1.22	0.403	33.03
2	73.8975	74.3380	1.22	0.4405	36.11	74.2215	74.6920	1,22	0.4705	38.56
3	74.1550	74.3235	1.22	0.1685	13.81	74.1020	74.5310	1.22	0.429	35.16
4	75.0225	75,5015	1.22	0.479	39.26	75.2790	75.5815	1.22	0.3025	24.79
5	74,4735	74.9320	1.22	0.4585	37.58	74.7320	75.0590	1.22-	0.327	26.80
1	74,1015	74.4370	1.22	0.3355	27.5	74.1525	74.5090	1.22	0.3565	29,22
2	74.2195	74.6810	1.22	0.4615	37.82.	74.2710	74.4910	1.22	0.2200	18.03
3	74.1570	74.7915	1.22	0.3745	30.69	74.3310	74.7095	1.22	0.3785	31.02
. 4	75.2510	75.5105	1.22	0.2595	21.27	75.2190	75.4815	1.22	0.2625	21.51
5	74.8325	75.1010	1.22	0.2685	22.01	74.8995	75.1510	1.22	0.2515	20.61
1	74.1990	74.5315	1.22	0.3325	27.25	74.2375	74.6015	1.22	0.3640	29.83
2	74.2095	74.5010	1.22	0.2915	23.89	74.3095	74.5925	1.22	0.2830	23.19
3	74.5210	74.8715	1.22	0.3505	28.73	74.6210	74.8730	1.22	0.2520	20.65
4	75.2025	75.4810	1.22	0.2785	22.83	75.3990	75.6225	1.22	0.2235	18.31
5	74.9285	75.1925	1.22	0.2640	21.64	75.0005	75.4030	1.22	0.4025	33.00
					9)					
1	74,2290	74.5315	1.22	0.2130	17.46	74.2315	74,4810	1.22	0.2495	20.45
2	74,3185	74.6190	1.22	0.3005	24.63	74.3290	74.5915	1.22	0.2625	21.51
3	74.5060	74.8125	1.22	0.3065	25.12	74.5090	74.8310	1.22	0.3220	26.40
4	75.3275	75.6415	1.22	0.3140	25.73	75.3015	75,6105	1.22	0.3090	25.32
5	75.2110	75.5000	1.22	0.2890	23.69	75.2910	75.6090	1.22	0.3180	26.06
1	74.2995	74,6215	1.22	0.3220	26.39	74.3215	74.6710	1.22	0.3495	28.64
2	74.3390	74.7090	1.22	0.3700	30.32	74.5125	74.8980	1.22	0.3855	31.60
3	74.5025	74.8310	1.22	0.3285	26.92	74.6630	74.8815	1.22	0.2185	17.91
4	75.3210	75.6415	1.22	0.3205	26.27	75.4450	75.7290	1.22	0.2840	23.28
5	75.3095	75.6280	1.22	0.3185	26.10	75.3310	75.6810	1.22	0.3500	28.69

PRUEBA III - b

Sistema: Zn/Electrôlito 2/PbO2; 5 celdas, 10 ciclos

Descarga:	t = 1 hora
	I = 0,32 Amp,
	V = 0.9 Volts
Carga:	t = 1 hora
	I = 1 Amp

Peso original:

V = 3.2 Volts/celda

Placa	Peso (g)
1	69,1910
2	69,1260
3	68.5720
4	69,0820
5	69,0550

OBSERVACIONES:

En la descarga, la reacción se lleva a cabo con gran desprendimiento de gases en los primeros ciclos; el amperizaje y el voltaje son bajos.

En la carga, el depósito es fino, pero hay formación de arborescencias (muy pequeñas) en los últimos ciclos. El depósito es muy obscuro.

PLACA	D	C-	DT	DR	Е	D	С	DT	DR	E
1	68,8290	69.8490	1,22	1.0200	83,60	65,7135	66.3625	1,22	0,6490	53.19
2.	64.3940	65.3395	1.22	0.9455	77,50	61.5805	62.1575	1.22	0.5770	47.29
3	64,2635	65.2190	1.22	0.9555	78,32	61.7140	62,2765	1,22	0,5625	46.11
4	68.6890	69,6410	1.22	0.9520	78.03	68,4810	69,0750	1,22	0,5940	48.69
5	68.6680	69,6205	1,22	0,9525	78.07	69.3415	69,8990	1,22	0,5575	45,70
				•	%'					%
,	(F 9(F)	66.2780	1.22	0.4130	33.85	64.7865	65,2510	1.22	0.4645	38.07
1	65.8650 62.0805	62.4095	1.22	0.3290	26.97	60,6690	61.2880	1.22	0,6190	50.74
2	61.0520	61.5530	1,22	0.5010	41.06	59.6345	60.0315	1.22	0.3970	32.54
3	66.9395	67.3720	1.22	0.4325	35.45	67.3080	67.7065	1,22	0.3985	32.66
4 5	67,2590	67.8040	1.22	0.5450	44.67	67.7305	68,0715	1.22	0.3410	27,95
	07.2390	07.0040	1,22	0,3430	%	0777303				%
1	63,1405	63,5010	1,22	0,3605	29.55	61.8290	62,2390	1.22	0,4100	33.60
2	61,2295	61,4725	1,22	0.2430	19.92	61,3525	61,4850	1.22	0.1325	10,86
3	59.9675	60.3770	1,22	0.4095	33.56	59.0805	59,4900	1,22	0,4095	33.56
4	67,5920	67.8990	1,22	0.3070	25,16	67,7685	67,9210	1.22	0,1525	12,50
5	67,5870	67,7995	1,22	0,2075	17,01	66,1215	66,4105	1,22	0.2890	23.69
					%					%
,	62.1160	62,3645	1.22	0.2485	20.37	61,2185	61,5315	1,22	0.3130	25.65
1	59.9070	60.3855	1.22	0.4785	39.22	60,2075	60.4500	1.22	0.2425	19.88
2	59.3145	59.5525	1.22	0.4783	19.51	59.3995	59,6040	1.22	0.2045	16.76
4	66.5140	66,8385	1.22	0.3245	26,60	65.2700	65.5840	1.22	0,3140	25:74
5	65.0425	65,3845	1,22	0.3420	28,03	64,4020	64,6155	1,22	0.2135	17.55
	33,0423	33,3073			%					%
1	60.2825	60.5870	1,22	0.3045	24.96	60,0825	60,4425	1,22	0,3600	29.51
2	59,4265	59,7415	1,22	0.3150	25,82	58,8190	59,1470	1.22	0.3280	26,88
3	58,5225	58,7990	1.22	0.2765	22,66	58,4715	58.8050	1,22	0,3335	27.34
4	65,2000	65,4465	1,22	0.2466	20,20	64.5320	64,8070	1,22	0.2750	22:54
5	64.3075	64.5775	1.22	0.2700	22.13	63.7085	63,9755	1,22	0,2670	21,88

PRUEBA IV

Sistema: Zn/Electrôlito 3/PbO2; 5 celdas, 10 ciclos.

ELECTROLITO 3

150	g		•	•		•			,				٠	ZnSO ₄
-50	g	•	•				•		•	•		•		Na ₂ SO ₄
75	g					ŧ				•	,		•	A1 ₂ (SO ₄)
20	g	•	•	•			•		•	•				MgSO ₄
30	g	•	•	•		•	,	•	•	•	•			Glucosa
300	m1		•			•	,			•		•		H ₂ SO ₄
1000	m1				•				,	,	•	•		н ₂ о
10	m1	1	1	t.			S	0	1			•		Bu ₂ NH

Descarga: t = 1 hora

I = 1.3 Amp. (antes de 5min. baja)

V = 1.1 Volts.

Carga: t = 1 hora

I = 1 Amp

V = 2.5 Volts/celda

PESO ORIGINAL

PLACA	PESO
1	68,9230
2	68.1745
3	68,6335
4	68,8035
5	69.0550

OBSERVACIONES:

Como se ve en los resultados, la dibutil amína, aunque a circuito abierto, protege al zînc ; al someter a la placa a ciclos de carga y descer ga, no es suficiente su inhibición, ya que la placa de Zinc se sigue disolviendo, aún en el proceso de carga,

PLACA	D	C	DT	DR	Е	D	С	DT	DR	Е
1	68.8920	68.8840	1,22	-0,008	- FRE	65,4185	65,3065	1.22	-0,1120	
2.	65.3875	65,2650	1,22	-0.1225		61.8300	61.5220	1.22	-0,3080	
3	63,9575	63.8625	1,22	-0.1250		60,6695	60,5310	1.22	-0.1385	
4	68.8710	68.8620	1,22	-0.0090		64.8100	64.6875	1.22	-0.1225	
5	68,9710	68.9580	1.22	-0.0130		63,9525	63,5140	1.22	-0,4385	-4.
	00,3710	00,3300	1,22	+0,0130		03,7323	03,3140		-0,1303	%
					% ·					. 10
1	62,0095	61.8755	1.22	-0.1340		58,6670	58,4100	1.22	-0.2570	
2	60.8845	60.0320	1.22	-0.8525		56.7670	56,3145	1.22	-0.4525	- W
3	58.0630	57,6665	1.22	-0.3965		56,4745	55.7325	1.22	-0.7420	
4	61.8420	61.5670	1.22	-0.2750		58,2955	58,1985	1.22	-0.0970	
5	62,1605	61.0265	1,22	-1,1340		57.3745	56.5490	1,22	-0.8255	
					%					%
		`			4		54 4700	1 00	0. 2220	
1	56.0045	55,8385	1.22	-0.1660		54,8050	54,4730	1.22	-0,3320	
2	53.7835	53,4545	1.22	-0.3290		50.7705	50,4765	1,22	-0,2940	
3	53.1390	52,7350	1.22	-1,0485		50,7500	50,6750	1.22	-0.0750	
4	57.1440	57,0840	1.22	-0.4040		55,1880	55.0473	1,22	-0.1345	
5	54,8885	54,2800	1.22	-0,6085		51,9400	51,7750	1,22	-0,1650	
	****				%					%
1	53.1220	52.1145	1,22	-1.0075		51.3270	51.2260	1,22	-0.1010	
2	49.6835	49.2065	1.22	-0.4770		48.9440	48.7650	1.22	0.1790	. <u> </u>
3	49.4880	49.3600	1.22	-0.1280		49,1395	49,1340	1.22	-0.0055	
4	53.5450	53.2695	1.22	-0.2735		52.0890	51,8710	1.22	-0.2180	
5	50.2535	49,9835	1.22	-0.2700		49.8390	49,8170	1.22	-0,0220	1
					%				1-1 2-1	%
				0		50 1515	50 0010	1 22	0 1205	
1	50.7730	50.6020	1.22	-0.1710		50.1515	50.0210	1.22	-0.1305	
2	48,2245	48.0510	1.22	-0.1735		47.8105	47,6615	1.22	-0.1490	
3	48,9225	48,7715	1,22	-0.1510		48,0510	47.8725	1.22	-0.1785 -0.1155	
4	51.3005	51.1690	1.22	-0.1315		50.8065	50,6910			
5	49.2630	49.0525	1.22	-0.2105		48.7110	48,5350	1.22	-0.1760	

PRUEBA V

Sistema: Zn/Electrolito 4/PbO2; 5 celdas, 10 ciclos.

ELECTROLITO No. 4

150	g	•	•	•	•	•	•	•	٠	•	•	•		•	•	•	ZnSO ₄
50	g	•	,		•	•	•		,	•		•			•	•	Na ₂ SO ₄
75	g	•	•	•	•		•	•	•	•	•	•			•		A12(804)3
20	g	•	•	,	•	•	•		•	•			,		•	·	MgSO ₄
30	g	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Glucosa
300	m1		•	•	•	•	•	•	•		•	•		•	•	•	H ₂ SO ₄
1000	m1			•	•		•	•	•	•	•		•	•	•	•	н ₂ 0
5	g	•	,		•	•		•	•	•	•	•	•	•	•	•	HgSO4
5	m1	1	1	t		s	0	1	u	c			•		•		Bu ₂ NH

Descarga: t = 1 hora

I = 0.45 Amp

V = 1,15 Volts

Carga: t = 1 hora

I = 1 Amp

V = 3.2 Volts/celda

Peso original:

Placa	Peso (g)
1	69,5120
2	69,3715
3	69,3410
4	68,9215
5	69,6890

PLACA	D	C.	DT	DR	E	D	С	DT	DR	E	_
1	69.2030	69,5215	1.22	0.3185	26.11	69,2215	69.4995	1,22	0.2780	22.79	
2.	69,0985	69.3720	1.22	0.2735	22.42	69.3280	69,5780	1,22	0.2500	20.50	
3	69.1015	69,4005	1.22	0.2990	24.51	69.3715	69.6010	1,22	0.2295	18.81	
4	68,5440	68,8110	1.22	0.2670	21.88	68,4920	68,7215	1.22	0.2295	18.81	
5	69,2970	69,5510	1,22	0,2540	20.82	69,2695	69,6180	1,22	0,3485	28,56	
					%'					%	j.
	60 1505	60 4070		0.0115	20.00	(0.1050	60 4005	1 00	0 2075	06.04	
1	69.1525	69,4970	1.22	0.3445	28,23	69,1050	69,4325 69,4995	1,22	0,3275	26.84	
2	69.2070	69,5790		0,3720	30.49	69,1325			0.3670	30.08	
3	69.2275	69.5685	1.22	0.3410	27,95	69,1790	69 5075	1,22	0,3285	26,92	
4	68,4890	68,7035	1,22	0.2145	17,58	68,4005	68,6635	1,22	0,2630	21,56	
5	69,3915	69,7290	1,22	0,3375	27,66	69,3775	69,7080	1,22	0,3305	27,10	لمسيح
					%					%	
1	69,0570	69,3995	1.22	0.3425	28.07	68,9635	69,2975	1,22	0,3340	27,38	
2	69.1015	69.3415	1.22	0.2400	19.67	68,9905	69.3235	1.22	0.3330	27.29	
3	69,1125	69.3125	1,22	0,2000	16,39	68,8830	69,1715	1,22	0.2885	23,65	
4	68,3640	68,6740	1.22	0.3100	25.41	68.1075	68,4205	1.22	0.3130	25.65	
5	69,2790	69,6815	1,22	0,4025	32,99	69,0105	69,3495	1,22	0,3390	27,79	
					%					%	
	60.0600	69.2275	1.22	0.3575	29.30	68.8075	69.1710	1,22	0.3635	29,79	
1	68,8690			0.3373		68.8790	69,1710	1.22	0.3185	26.11	
2	68,9230 68,8375	69.3010	1,22	0.3780	30.98 27.46	68,7615	68,9905	1,22	0,3183	18.77	
3		69.1725		0.3350		67.7925	68.0515	1.22	0.2590	21,23	
4 5	67.9925 68.9875	68.2930 69.2945	1.22	0.3070	24.63 25.16	68,8345	69.1730	1.22	0.3385	27.74	
	00,9073	03,2343	1,22	0,3070		00,0343	09.1750	1.22	0,3303	%	-
					%					/6	
1	68.7425	69,1135	1.22	0,3710	30,41	68,6215	68,9320	1,22	0,3105	25.45	
2	68,7075	69.0510	1.22	0.3435	28,15	68,5725	68,8475	1,22	0,2750	22.54	
3	68,6330	68,9295	1.22	0.2965	24,30	68,3225	68,6415	1,22	0.3190	26.15	
4	67.6045	67.8930	1,22	0.2885	23,65	67,2935	67,6210	1,22	0.3275	26.84	
5	68.5395	68.8090	1.22	0.2695	22:10	68,1995	68,4790	1.22	0,2795	22,91	

OBSERVACIONES:

En la descarga hay desprendimiento de gases, pero moderado. La dieo lución del Zinc es uniforme.

En la carga, se deposita el Zinc de una manera uniforme y fina; suadherencia es buena, y se reduce en los dos ditimos ciclos.

La eficiencia del depósito permanece uniforme durante los diez ciclos, pero baja.

PRUEBA VI

Sistema: Zn/Electrolito 5/PbO2; 5 celdas, 10 ciclos.

ELECTROLITO. 5

150	g	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	,	•	•	ZnS0 ₄
50	g	•	•	•	•	•	•	•	•	,	•	•	•	*			•				Na ₂ SO ₄
75	g	•	•	•	•	•	•		•	•	•		•	•	•	•				•	A1 ₂ (S0 ₄)
20	g	,	•	•			•	•		,		•	•	•	,	•			•	•	Mg SO ₄
30	g	•	•	•	•	•		•	•		*	•	•	•	•	•	•				Glucosa
300	m1		•	,		•	•	ŗ	•		•	•		•	•		•		•	•	H ₂ SO ₄
1000	m1			•	•	•	•	•	•	•	•	,		•			•		•	•	н ₂ о
5	g		•	ŧ	•		•		•	•	•		•	•	•	•	•		•	•	HgSO ₄
10	m1	1	1	t		S	o	1													Bu ₂ NH

Descarga: t = 1 horaI = 0.4 Amp

y = 0.9 Volts.

Carga: T = 1 hora

I = 1 Amp,

y = 3.1 Volts/celda,

Peso original;

Placa	Peso
1	68,7215
2	68,1020
3	69,0085
4	68,3225
5	68,4115

PLACA	D	С	DT	DR	Е	D	С	DT	DR	Е
1	68,4310	68,6515	1.22	0,2415	19.795	68,3025	68,6610	1,22	0;3585	29.38
2	67,8340	68.0090	1.22	0,1750	14.34	67.8090	68:1090	1.22	0,3000	24.59
3	68,7965	68,9350	1.22	0.1385	11,35	68,5415	68,8720	1,22	0,3305	22.21
4	68,0210	68.3920	1.22	0,3710	30.41	68.1005	68,3715	1.22	0,2710	23,89
5	68,1145	68,3210	1,22	0.2065	16,92	68,1220	68.4135	1,22	0.2915	23,89
							(0. (005	1.00	0.0070	07.60
1	68,2810	68.5920	1.22	0.3110	25,49	68.2635	68,6005	1,22	0,3370	27.62
2	67.8315	68.1512	1.22	0,3197	26,20	67.8410	68,1710	1.22	0.3300	27,05
3	68,5290	68.8810	1.22	0.3520	28.85	68.2325	68,5320	1.22	0,2995	24.55
4	68.1075	68.4315	1.22	0.3240	26,55	68,1895	68.3915	1.22	0,2020	16.56
5	68,1730	68,5000	1.22	0,3270	26,80	68,1935	68:4210	1,22	0.2275	18,65
1	68,2995	68,6150	1.22	0,3155	25.86	68,3005	68,6715	1.22	0,3710	30.41
2	67.9010	68,2315	1,22	0.3305	27.09	68,1075	68,3920	1.22	0.2845	23.32
3	68,2075	68,5725	1.22	0.3650	29.92	68.2135	68,5390	1.22	0,3255	26.68
4	68,1260	68.4310	1.22	0.3050	25,00	68,2170	68,4985	1.22	0,2815	23.07
5	68.2015	68.5315	1.22	0.3300	27,04	68.1920	68,4210	1,22	0.2290	18.77
1	68,2390	68,6610	1.22	0,422	34.59	68,2375	68.5610	1,22	0,3235	26,52
2	68.1185	68.4715	1,22	0.3530	28.93	68.1780	68.4715	1,22	0.2935	24.06
3	68,2075	68.3925	1,22	0.1850	15,16	68,1125	68,5620	1.22	0.4495	36.84
4	68,2115	68,5370	1,22	0,3255	26,68	68,2035	68,4910	1.22	0.2875	23,56
5	68,2235	68.5210	1,22	0,2975	24.38	68,1995	68,4470	1.22	0,2475	20.29
	*									
1	68,2535	68,5315	1,22	0,2780	22,78	68.3010	68,5710	1.22	0,2700	22.13
2	68,1795	68.3980	1.22	0,2185	17.91.	68,1790	68,3915	1.22	0,2125	17.41
3	68,2180	68.4790	1,22	0.2610	21:39	68,2135	68,4370	1.22	2235	18.36
4	68,2230	68,4835	1,22	0,2605	21,35	68.1875	68,4105	1.22	. 230	18.28
5	68,1990	68.3985	1.22	0.1995	16.35	68,1230	68,3495	1,2/	9,2265	18.56

OBSERVACIONES:

En la descarga, se reduce notablemente el desprendimiento de gases; la temperatura aumenta muy poco.

En la carga, el depósito es fino y homogéneo, y es muy obscuro.

Como se ve en los resultados, la eficiencia del depósito es más o - menos constante, pero es baja.

Asímismo, la mezcla de ${\rm HgSO}_4$ y ${\rm Bu}_2{\rm NH}$, en esas proporciones, protege bastante la placa de Zinc, pues la disolución es baja y uniforme durante losdiez ciclos.

PRUEBA VII

Sistema: Zn/Electrolito 6/PbO2; 5 celdas, 10 ciclos.

ELECTROLITO 6

150	g	• •	• •	• •		٠.	•	•	• •	•	ZnSO ₄
50	g	٠.	٠,	٠.	٠,		•		٠,		Na ₂ SO ₄
75	g		٠,	, ,	, ,	, ,	•		٠.	t	A1 ₂ (S0 ₄) ₃
20	g	٠,	٠,	٠,			•			ŧ	Mg SO ₄
30	g				٠.		,			•	Glucosa
300	m1			, .	, ,	٠,		• }	• •		H ₂ SO ₄
1000	m1		٠,	٠,			•		٠.		H ₂ 0
2,5	g		• •		, .		•		• •	•	HgSO ₄
10	m1	/1	t	sc	11	ıc.		• •	, ,	•	Bu ₂ NH
Desca	arg	a					t	=	1	. 1	nora
							I	=	C),(6 Amp.
Y							V	-	1		2 Volts.
Carga	a į						t	=	1	. 1	hora
							I	=	1	L 4	Amp.
							y	=	3	3,:	l Volts/celda
22											

Peso original;

Placa	Peso (g)
1	74 6155
2	74,0880
3	74,2580
4	75,1580
5	74,6705

PLACA	D	С	DT	DR	E	D	С	DT	DR	E	
1	70,7030	70,9280	1,22	0,225	18.4	67,1455	67,5350	1,22	0,3895	31,92	
2 .	70.0200	74,2720	1,22	0.252	20,65	70,3970	70:6445	1.22	0.2475	20,28	
3	74.1040	74,3575	1.22	0.2535	20.77	73,7330	73,8955	1,22	0,1625	13,32	
4	71.8900	72.0990	1.22	0,209	17,13	70,6030	70.7110	1,22	0,108	8,85	
5	74.4550	74,7290	1.22	0,274	22,45	73.9150	74:1280	1,22	0,213	17,4	
1	66,2555	66,3712	1,22	0,1157	9,48	64,8045	64,9250	1,22	0,1205	9,88	
2	67,3085	67.4335	1.22	0,125	10,24	65,0650	65,1520	1.22	0,087	7.13	
3	70,8095	70,9100	1.22	0,1005	8,23	68,9870	69,0295	1,22	0,0425	3,48	
4	68,4860	68,5910	1.22	0.06	8,61	66,1340	66.2135	1,22	0,0795	6,51	
5	70.4715	70.5315	1,22	0,06	4,92	65,1770	65,2890	1.22	0,112	9.18	
1	62,8110	62,9810	1,22	0.170	13.93	60,6730	60.7525	1,22	0,0795	6,51	
2	63,0555	63,1510	1.22	0.0955	7.82	60.8310	60.9235	1.22	0.0925	7.58	
3	67.0015	67.1325	1.22	0.131	10.73	64.5715	64,6795	1,22	0.108	8,85	
4	64,0570	64.1910	1.22	0.134	10,98	61,7310	61,8950	1,22	0,164	13.44	
5	63.1190	63,2115	1.22	0.0925	7,58	61,0510	61,1710	1,22	0,164	13.44	
1	58.2535	58,1510	1.22	-0.1025		55.8740	55,7490	1,22	. 0.125		
2	58.5340	58.6135	1.22	0.0795	6.51	56.3310	56.4085	1,22	0,0775	6.35	
3	62,2710	62.3915	1,22	0.1205	9.87	60,2535	60.1325	1,22	-0.121	7.01	
4	59.3515	59.4310	1.22	0,0795	6;51	57.2715	57.3595	1.22	0,088	7.21	
5	58.8945	58,9510	1.22	0.0565	4,63	56,5960	56,5900	1,22	-0,006		
1	53,1005	53,0015	1,22	-0.099		50,2710	50.1185	1,22	-0.1525	1.76	
2	54.1570	54, 2310	1,22	0.074	6.06	52.1190	52,1405	1.22	0.0215	1.76	
3	57,6735	57.5810	1,22	-0,0925		55,1080	55.0070	1.22	-0.101 0.033	2.70	
4	55.0085	55,1190	1,22	0.1105	9.05	53,8175	63,8505	1,22	-0.109	2.70	
. 5	54.0530	53,9285	1.22	-0.1245		51,2795	51,1705	1.22	-0,109		-

OBSERVACIONES:

En la descarga, el desprendimiento de gases es moderado; sin embargo, la disolución del Zinc es grande,

En el proceso de carga, como se observa en los resultados, la eficiencia del depósito es muy baja; lo que hace suponer que la mezcla de sulfato de mercurio y dibutilamina en esa proporción, no protege suficientemente la placa de Zinc.

El depósito es fino, pero carece de homogeneidad y no se adhiere.

PRUEBA VIII

Sistema; Zn/Electrolito 7/PbO2;

Electrolito 7

150	g	ZnSO ₄
50	g	NaSO ₄
75	g	A12(SO4)3
20	g ,	MgSO ₄
30	g	Glucosa
300	m1	H ₂ SO ₄
1000	ml \\	н ₂ о
5	ml/lt Sol	Bu ₂ NH
1	ml/lt Sol	2DAE
Descarga:	t = 1 hora	
	I = 0.35 Amp,	
	y = 1.0 yolts.	
Carga:	t = 1 hora	
	I = 1 Amp.	
	V = 3.1 Volts/c	elda
. Pe	so Original	

Placa	Peso
1	68,3275
2	68,6495
3	68,1280
4	68,5735
5	68,2330

OBSERVACIONES:

En la descarga hay gran desprendimiento de gases, y la disolución - del Zinc, como podemos observar en la tabla, es grande.

La eficiencia de carga es pequeña, el depósito es fino, obscuro y po co adherente.

PRUEBA VIII

PLACA	D	С	DT	DR	Е	D	С	DT	DR	Е
1	67,3910	67.5125	1.22	0,1215	9.95	66,1590	66.3270	1.22	0.1680	13,77
2	67,5035	67.6610	1.22	0.1575	12:90	66,2235	66;5115	1,22	0.2880	23.60
3	67,0575	67,1985	1.22	0,1415	11,60	66.1095	66,2275	1.22	0.1180	9.67
4	67,2210	67.3735	1.22	0,1525	12.5	66.0570	66,1980	1.22	0.1410	11.55
5	67.1115	67,2215	1,22	0.1100	9,01	66,0980	66,1875	1.22	0.0895	7,33
1	65.1970	65.3715	1,22	0.1745	14.30	-64,0290	64.1970	1,22	0,1680	13,77
2	65.3165	65.4950	1.22	0.1785	14,63	64,2030	64,3675	1.22	0,1645	13,48
3	65,0270	65,1875	1.22	0.1605	13.15	64,1175	64,2310	1,22	0.1135	9.30
4	64,9275	65.0990	1.22	0.1715	14.06	63.8710	63.9845	1.22	0.1135	9,30
5	64.0570	64.1725	1,22	0,1155	9.46	-63.0190	63,1655	1,22	0,1465	12,00
1	63.1175	63,2210	1,22	0.1035	8,48	62.3710	62,4910	1,22	0,1200	9,83
2	63,2080	63.3805	1.22	0.1725	14.14	62.1170	62,2175	1,22	0.1005	8.24
3	63.0970	63,2015	1.22	0.1045	8,56	62.0590	62,1780	1.22	0,1190	9.75
4	62.8540	62,9370	1,22	0,0830	6,80	61,8380	61,9310	1,22	0.0930	7.62
5	62,1095	62, 1975	1.22	0.0880	7,21	61,1175	61,1705	1,22	0.0530	4.34
1	61,2315	61,3710	1,22	0.1395	11,43	60,2415	60,3930	1,22	0.1515	12.42
2	61,0590	61.1575	1,22	0.0985	8,07	60,0050	60,1125	1.22	0,1075	8.81
3	61,1085	61,1790	1.22	0,0705	5.78	60.1075	60,2270	1,22	0.1195	9.79
4	60,8475	60.9340	1.22	0.0865	7.09	59,6730	59.8215	1.22	0.1485	12.17
. 5	60,0910	60.1310	1,22	0,0400	3,28	58.9715	59,1005	1,22	0.1290	10.57

1	59.1000	59,1710	1.22	0.0710	5,82	57,7220	57,8335	1.22	0,1115	9.14
2	58,8720	58,9870	1,22	0,1150	9.43	57,3510	57,4420	1,22	0,0910	7.46
3	58,9215	59.0595	1,22	0,1380	11.31	57,8875	57.9915	1.22	0.1040	8.52
4	58.5730	58.7125	1.22	0,1395	11.43	57.2135	57,3630	1,22	0,1495	12.25
, 5	57.6675	57,8030	1.22	0,1355	11,10	56.0535	56,1720	1,22	0,1185	9.71

PRUEBA IX

Sistema Zn/Electrolito 8/PbO2

Electrolito 8

	150	8	ZnSO ₄
	50	g	NaSO ₄
	75	g	A12(804)3
	20	8	MgSO ₄
	30	g	Glucosa
	300	ml .,.,.,.,	H ₂ SO ₄
	1000	ml ,	н ₂ 0
	5	m1/lt. Sol	2 DAE
	1	m1/lt, Sol ,	Bu ₂ NH
Descarga		t = 1 hora	
		1 = 0,4 Amp,	
		y = 1.1 Volts.	
Cargat		t = 1 hora	
		I = 1 Amp	
		y = 3,2 Volt/ce	lda.

Proceso Original:

Placa	Peso (g)
1	68,5060
2	68,6680
3	68,5195
4	68,7535
5	68,3710

PRUEBA IX

Placa	· D	С	DT	DR	· E	D	С	DT	DR	Е
1	67.2775	67,0850	1,22	-0.1925		65,3170	65.1380	1.22	-0.1790	
2	67.2800	66.9665	1.22	-0.3135		65,5970	65.5715	1.22	-0.1790	
3	67,0630	66.9265	1.22	-0.3133		66.0090	66.0015	1.22	-0.0233	
4	67.3865	67.2425	1.22	-0.1440		66.2660	66.2465	1,22	-0.0195	
5	67,0720	66.9720	1.22	-0,1000		66.0605	66.0585	1.22	-0.0020	
		1			%					%
1	63.7285	63,5905	1,22	-0.1380	,	61.7845	61.8080	1,22	0.0235	1.93
2	64,2620	63.9435	1.22	-0,3185		62,3385	62,2775	1.22	-0.0610	
3	64.9025	64.8650	1.22	-0.0375		63.5740	63,4510	1 22	-0.1230	
4	65,1515	64.9320	1.22	-0.2195		63.5895	63.5580	1.22	-0.0315	
5	65.0715	64.8700	1.22	-0.1015		63,6820	63.7045	1.22	0.0325	2.66
					%				- 3,13323	%
1	62,3385	61,7255	1 22	0.6120		FO 5555	50 6060			
2	62.7455	62,6720	1.22	-0.6130 -0.0735		58,5555	58,6360	1.22	0,0805	6,60
3	64.0195	63.8035	1.22	-0.0733		58,7155 60,6860	58.6670	1,22	-0.0485	
4	64,1510	63.3645	1.22	-0.7865		60,2280	60,6080 60,0535	1.22	-0.0780	
5	64.2470	63,4575	1.22	-0.7895		60.7665	60,6815	1,22	-0:1745 -0:0850	
					%					%
1	57.8200	57,7525	1.22	-0.0675		56,6735	56,1460	1,22	-0.5275	
2	57.8820	57.8485	1,22	-0.0335		56.6685	56,1615	1,22	-0.5070	
3	59.9395	60.0080	1.22	0.0685	5.60	59.1080	58,6300	1.22	-0.4780	
4	59.3505	59.4160	1.22	0.0655	5.36	58.4320	57,9920	1.22	-0.4400	
5	59.8220	59.9140	1,22	0,0920	7,54	58,9000	58,4645	1.22	-0.4355	
					%					%
1	54,8660	54,5030	1.22	-0,3630		53,2935	53,0530	1,22	-0.2405	
2	54.6950	54,4590	1.22	-0.2400		53.3480	53,0330	1,22	-0.2155	
3	57.1930	57.1160	1.22	-0.2400		55.9875	55,5270	1.22	-0.2155 -0.4605	
4 .	56.7495	56.5410	1.22	-0.2085	=	55.3025	55,3270	1.22	-0.4603	
5	57.2825	57.0830	1.22	-0.1995		55.8965	55,6290	1.22	-0.2675	

OBSERVACIONES:

El proceso de descarga es muy violento; hay gran desprendimiento de gases, y la temperatura aumenta bastante.

Como se observa en los resultados, no hay depósito de Zinc, sino al contrario, se sigue disolviendo la placa de Zinc, lo cual quiere decir que la mezcla de 2DAE y Bu₂NH en esa proporción, no funciona como inhibidor.

Como se ha visto hasta ahora, la mayor eficiencia del depósito, escuando se usa Sulfato de Mercurio como inhibidor; sin embargo, la amalgama de la placa de Zinc, evita que este se deposite con mayor eficiencia; aunque protege la placa de Zinc de la disolución por el medio acido al que se somete. - Se hicieron dos pruebas en las que se usaron concentraciones diferentes de sulfato de Mercurio (lg/HgSO₄, y 5g/lt HgSO₄), para saber que concentración es - la mejor para evitar la disolución del Zinc, pero que a la vez permita una -- buena eficiencia de depósito.

PRUEBA X

Sistema: Zn/Electrolito 9/PbO2; 5 celdas, 10 ciclos.

Electrolito 9

150	g	•	•	ę	•	•	•	•	•	•	•	•	•	•	•	•	ZnSO ₄
50	g	•		•	•	•	•	•		•	•	•	•	•	,	•	NaSO ₄
75	g		•	•			•	•				•	•	•	•		A1 ₂ (S0 ₄) ₃
20	g	•	•	•	•	•		•	•	•	•	•	•	•		•	MgSO ₄
30	g	•	•	•		•	•	•	•	•	,	•	•		•	٠	Glucosa
300	m1		•	•	•	•	•	•		•	•	•	•		•	•	H ₂ SO ₄
1000	m1		•	•	•	•			•	•	•	•		•	•		н ₂ о
1	g																HgSO ₄

Descarga:

Los datos de intensidad de corriente y voltaje en la descarga,se tomaron cada 15 minutos, y se anexa en la Tabla I.

Carga: t = 1 hora

I = 1 amp.

V = 3 Volts/celda

Los resultados de la eficacia de depósito se anexan en la Tabla

II.

Peso Original:

Placa	Peso (g)	
riaca	1630 (8)	THE PARTY
1	68:6735	20000
2	68,1150	S SWELL
3	68,7940	1 . C.
4	68.5740	STORY WASHINGTON
5	68.6340	QUIMIQA

PRIMER CICLO

TERCER CICLO

PLACA		1	2	3	4	5	PROMEDIO ·	PLACA		1	2	3	4	5	PROMEDIO	
	v _o	2.2	2.3.	2.3	2,3	2,3	2,28		V	2,4	2.4	2.4	2.4	2.4	2.4	
	I +	3,0	4.4	5.0	- 3,0 +	- 3.0			I _o	+ 5.0 +	- 5.0 -	+ 4.0	+ 3;0	+ 3.0		
	v ₁₅	1.3	1.2	1.6	1.7	1.3	1,42		V ₁₅	0.42	0.41	0.42	0.42	0.41	0.416	
	I ₁₅	2.1	2.05	1.95	2.0	2.3	2,08		I ₁₅	1,2	1.25	1.30	1.25	1.40	1.28	
	v ₃₀	0,6	0.4	0.5	1.1	0,5	0.62		V ₃₀	0.41	0.41	.0.41	0.42	0.41	0.412	
	1 ₃₀	2.1	2,16	2.2	1.7	2,0	2.032		I ₃₀	1.15	1.1	1.5	1.2	1.2	1.23	
	V ₄₅	0,5	0.5	0,5	0.5	0.5	0;5		V ₄₅	0.41	0.40	0.41	0.41	0.41	0.408	
	1 ₄₅	2,05	2,05	2, 2	1.4	2,1	1,96		I ₄₅	1.1	1,05	1,49	1.10	1.20	1,188	
	V ₆₀	0,5	0.5	0.5	0.5	0.5	0.5		V ₆₀	0.41	0.41	0.41	0.42	0.41	0.412	C
	1 ₆₀	1.975	2.3	2.3	1,45	2.3	2.055		I ₆₀	0,80	1,00	1.35	1,10	1,15	1.08	
SEGUNDO CICLO	vo	2,3	2,3	2,35	2.4	2.4	2,35	CUARTO CICLO	V ₀	2,2	2,1	2,1	2.3	2.3	2.2	
	I +	3.0 +	5,0 +	- 3,0 +	3.0 +	- 3,0			Io	3,0 +	- 3.0 -	+ 5.0	+ 3.0	+ 3.0		
	v ₁₅	0.41	0.41	9.46	0.43	0.43	0,428		v ₁₅	0.41	0,40	0.40	0.41	0.41	0.406	
	I ₁₅	1.55	1,6	1.81	1.5	1.90	1,672		I ₁₅	1.25	1,10	1,20	1,15	1.25	1.190	
	v ₃₀	0,42	0,41	0.42	0,43	0.42	0,42		v ₃₀	0.41	0.40	0,40	0.41	0.41	0.406	
	130	1.6	1.6	1.65	1.16	1.90	1.582		1 ₃₀	1.20	1.05	1.40	1.20	1.10	1.190	
	V ₄₅	0.41	0.41	0.41	0.42	0.42	0.414		V ₄₅	0.41	0.41	0.40	0.40	0.40	0.404	
	I ₄₅	1.4	1.3	1,65	1.38	1.68	1.482		I ₄₅	1.15	1.00	1,35	1,15	1.00	1.130	
	V ₆₀	0.41	0.41	0.41	0.42	0.42	0.414		V ₆₀	0.40,	0.40	0.40	0;41	0.40	0.402	
	I ₆₀	1.5	1. 4	1.1	1.3	1.65	1.390		160	1,05	1.00	1.25	1.00	0.95	1.050	

PRUEBA X
TABLA I (Cont.)

QUINTO CICLO		1	2	3	4	5	PROMEDIOS	SEPTIMO CICLO	,	1	2	3	4	5	PROMEDIOS
	y _o	1.8	1.5	1.8	2.2	1.8	1.82		v _o	0.90	0,82	0,98	1.8	1.0	1.10
	I ₀ +	3.0	2.0	3,0 +	3.0	2.05			Io	1.70	1,75	1.81	1.32	1.5	1,616
	v ₁₅	0.39	0.39	0,39	0,40	0.39	0,392		v ₁₅	0.39	0:39	0,39	0.39	0.39	0.39
	I ₁₅	1.1	1.0	1,0	1.1	1.1	1.06		I ₁₅	0,85	0.75	0.72	0,85	0.83	0,80
	v ₃₀	0.39	0.39	0.39	0.40	0.39	0,392		y ₃₀	0.40	0.39	0.39	0.39	0.39	0.392
	130	0.70	0.70	0.80	0,73	0.67	0.720		130	0.90	0.95	1.10	1.10	1.00	1.01
	v ₄₅	0.39	0.39	0.39	0.40	0.39	0,392		V ₄₅	0,40	0,39	0,39	0,39	0.39	0.392
	145	0.85	0.90	1.06	1.10	0.95	0.972		1 ₄₅	0.65	0,62	0.80	0,60	0.63	0.66
	v ₆₀	0.39	0.39	0.39	0.40	0,40	0.394		V ₆₀	0,40	0.40	0.34	0,40	0,39	0.396 ∞
	1 ₆₀	0.85	0.90	1.00	1.07	1.00	0,964		¹ 60	0.60	0,60	0.60	0.66	0.60	0:612
SEXTO CICLO		1	2	3	4	5	PROMEDIOS	OCTAVO CICLO		1	2	3	4	5	PROMEDIOS
	V _o	1.1	0.9	1.4	1.9	1.3	1.32		V _o	1,5	1,50	0.8	0.70	1.30	1.16
	Io	1.85	1.850	1.85	2.1	1.85	1.90		I _o	1.6	1.70	1.6	1.10	1.75	1.55
	v ₁₅	0.40	0.39	0.40	0.41	0.40	0,40		v ₁₅	0.39	0.39	0.39	0.39	0.39	0.39
	1 ₁₅	0.85	0.75	0.72	0.85	0.83	0.80		I ₁₅	0.75	0.65	0.65	0.63	0.65	0.666
	v ₃₀	0.40	0.39	0.39	0.39	0.39	0.392		v ₃₀	0.39	0.39	0.39	0.39	0.39	0.39
	130	0.70	0.70	0.80	0.73	0.67	0.720		I ₃₀	0.66	0,70	0.30	0.50	0.50	0.618
	V ₄₅	0.40	0.39	0.39	0.39	0.39	0.392		V ₄₅	0.39	0,39	0,39	0.39	0.39	0.39
	145	0.65	0.62	0.80	0.60	0.63	0.66		145	0.58	0.70	0.51	0.50	0.40	0.538
	v ₆₀	0.40	0.40	0.40	0.40	0.40	0.40		v ₆₀	0;39	0.39	0.39	0.39	0.40	0.392
	160	0.625	0.62	0.90	0.81	0.70	0.731		160	0.53	0.70	0.50	0.45	0.42	0.520

PRUEBA X
TABLA I (Cont,)

1.38
1.46
0.40
0.626
0.398
0.586
0.40
0.484
0.40
0.418

PRUEBA X
(TABLA II)

PLACA	D	C	DT	DR	Е	D	С	DT	DR	E
1	66,1435	66.4830	1,22	0,2395	19.63	64,4315	64,8580	1,22	0,4265	34.36
1 2	65,3005	65,6540	1.22	0.3535	28,97	63,7630	64,1800	1.22	0.4170	34.18
3	65.9465	66.3325	1.22	0.3860	31.64	64.3220	64,7790	1,22	0,4570	37.46
4	66,6655	67, 1020	1,22	0.4365	35.77	65,1350	65.5730	1,22	0.3480	35.90
5	65,8655	66.2095	1,22	0,3440	28.19	64,3120	64,7060	1,22	0,3940	32.29
1	63.4980	63.7900	1.22	0.2920	23.93	62.4240	62'6970	1,22	0.2730	22.37
2	62.7165	63. 0145	1.22	0,2980	24,42	61.6375	61,9220	1,22	0,2845	23.31
3	63,0620	63.4645	1.22	0.4025	32.99	61,7850	62.1295	1,22	0,3445	28.23
4	64,0345	64. 3215	1,22	0.2870	23:52	62.8050	63.0705	1,22	0.2655	21.76
5	63.1045	63.4335	1,22	0,3290	26,96	62,0390	62.3280	1,22	0,2910	23,85
1	61.5040	61.7630	1.22	0.2590	21.23	60,7320	61,0120	1.22	0.2880	23.60
2	60.6170	60.8825	1.22	0.2655	21,76	59.8955	60,1845	1,22	0,2890	23,68
3	60.6770	61,0025	1.22	0,2355	22.68	59.9375	60.2690	1.22	0,3315	27.17
4	61,5665	61.8050	1.22	0.2385	19,55	60,6610	60.9300	1,22	0,2690	22.05
5	61.0375	61,2930	1,22	0,2555	20.94	60,3090	60.5900	1,22	0.2810	23.03
.										
1	60,1015	60.3975	1.22	0.2960	24.26	59,5330	59,8080	1,22	0.2750	22.54
2	59.2555	59.5670	1.22	0.2605	21.35	58,6880	58.9615	1.22	0.2735	22.42
3	59.3065	59.6575	1,22	0,3510	28.77	58,8070	59,0980	1,22	0.2910	23.85
4	59.9395	60.2250	1,22	0,2855	23,40	59,4720	59,7255	1.22	0.2535	20.78
5	59,6795	59.9815	1.22	0.3020	24.75	59,2010	59.5095	1,22	0,3085	25,28
1	58,9830	59.2440	1.22	0.2610	21:39	58,3900	58,6425	1,22	0.2525	20.69
2	58,1090	58,3735	1.22	0.2645	21.68	57,5320	57,8005	1,22	0.2625	21,51
3	58.2965	58.6115	1.22	0.3150	25,82	57,8670	58,1625	1.22	0.2955	24,22
4	58.9840	59.2350	1.22	0;2510	20.57	58,5575	58.7980	1.22	0.2405	19.71
5	58.7980	59,0700	1,22	0.2720	22,29	58.3305	58,5745	1,22	0,2440	20.00

8

PRUEBA XI

Sistema: Zn/Electrolito 2/PbO2; 5 celdas, 10 ciclos.

Descarga:

Los datos de intensidad de corriente y voltaje, se tomaron cada-15 minutos y se anexaron en la tabla III.

Carga t = 1 hora I = 1 Amp. V = 3 Volts/celda

Los resultados se encuentran anexos a la Tabla IV,

Peso original:

Placa	Peso (g)
1	68.8450
2	68,5840
3	68,7685
4	68,8705
5	68,4200

PRUEBA XI

(TABLA III)

PRIMER CICI	LO							TERCER CICLO							
PLACA		1	2	3	4	5	PROMEDIOS	PLACA	1	2	3	4	5	PROMEDIOS	
	v _o	2,2	2.20	2.20	2.2	2.2	2.20	Vo	0,44	0.44	0.45	0,43	0.44	0.44	
	I _o -	+ 3.0	3.20	3.80	2.5	+ 3.0		Io	1,55	1,40	1,40	1.15	1.15	1.33	
	v ₁₅	1.9	1.80	1,90	1.7	1,8	1,8	v ₁ :	0.41	0.41	0.45	0.41	0,41	0.418	
	I ₁₅	1.8	1.90	1.90	1,65	2,2	1.89	I ₁ :		0.86	0.95	0.80	0.90	0.862	
	v ₃₀	1.3	0,60	1.10	1,30	1.0	1,06	I ₃₀		0.41	0.41	0.41	0.42	0.412	
	1 ₃₀	2.05	1,60	1.70	1,15	2,15	1,73	130	1.00	0,95	1.10	0.95	0.95	0.990	
	V ₄₅	0.5	1.10	0.,6	1.1	0.5	0.76	V ₄ 5	0.45	0,41	0,40	0.41	0.41	0,416	
	145	1,93	2,00	2.05	1.25	1.86	1,818	I ₄ 5	1,05	1,00	1;10	1.00	1.00	1.03	
	v ₆₀	0.42	1,00	0.50	1.30	0,5	0,744	V ₆₀		0.40	0.41	0.41	0.41	0.416	
	1 ₆₀	1,575	1,85	1,91	1,30	1,85	1.697	I ₆₀	1,00	1.10	1.20	1.00	1,20	1.10	85
SEGUNDO CIO								CUARTO CICLO							
	Vo	2.4	2,4	2,4	2.4	2.4	2,4	Vo	2.2	2.20	2.00	2.4	2.4	2.24	
	I _o -	+ 3.0 +	- 5.0	+ 5,0	+ 3	+ 3,0		Io	+ 3.0	3.10	3,10	+ 3,0	+ 3.0		
	v ₁₅	0.43	0.44	0.40	0.44	0.40	0,422	v ₁₅	0.42	0.42	0.42	0.40	0.42	0.416	
	I ₁₅	1.95	1.63	1.85	1.32	1.75	1,70	I ₁₅	1"25	1.20	1,25	1.25	1.30	1.25	
	v ₃₀	0.42	0,43	1.6	1.00	0.41	0.772	v ₃₀	0,40	0.42	0.42	0.42	0.42	0.416	
	130	1.71	1.30	1.70	1,45	1.70	1,572	130	1,00	1,10	1,10	1.20	1.35	1.150	
	V ₄₅	0,70	0.42	0.50	0.90	0.90	0.684	v ₄₅	0.41	0,40	0.40	0.40	0.40	0.402	
	145	1,56	1.25	1.60	1,30	1,70	1.486	145	1,05	1,10	1,05	1.10	1.45	1.17	
	v ₆₀	0.41	1.1	0.41	0.50	0.41	0.566	V ₆₀	0.40	0.40	0.40	0.40	0.40	0.40	
	160	1.60	0.9	1.50	1,00	1.55	1,31	¹ 60	1.20	1.10	1.10	1.10	1.35	1.17	

PRUEBA XII
(TABLA III) Cont,

QUINTO CICLO	1		2	3	4	5	PROMEDIOS	SEPTIMO CICL	0	1	2	3	4	5	PROMEDIOS
V	1.	90	0.40	0.70	1,10	2,30	1,28		v _o	2,0	1,2	0.80	2.1	2.4	1.70
I	2.	.25	1,20	1,80	1,65	+ 3.0			I ₀ +	3.0	1,7	2.00	1,50 +	3.0	
V.	15 0.	.40	0.39	0.38	0.38	1.50	0.61		v ₁₅	0,41	0,40	0,40	0,40	0.42	0,406
I	15 1,	25	1,10	1,25	1,05	2,00	1;33		1 ₁₅	0,80	0,90	0.90	0.80	1.20	0.92
V.	30 0.	.40	0,39	0.39	0,38	0.46	0,404		v ₃₀	0.40	0.40	0.40	0.39	0.41	0.40
1	30 1.	.25	1.00	1.00	1.00	1.70	1.19		1 ₃₀	1,00	0,75	0,80	0.75	1.00	1,16
V,	45 0.	40	0.40	0.39	0,39	0,43	0,402		V ₄₅	0.39	0,40	0.40	0.39	0,41	0.398
I	45 1.	. 25	0.80	0, 90	0,95	1,60	1,10		1 ₄₅	0.95	0,70	0,70	0,70	0.7	0.75
V	60 0.	.40	0.39	0.39	0,39	0.42	0,398		v ₆₀	0.40	0.40	0.40	0.39	0.41	0.40
I	50 1.	, 20	0.85	0,86	0.86	0,80	0.914		I ₆₀	0,75	0,70	0.70	0.70	0.90	0.75
SEXTO CICLO							*	OCTAVO CICLO							
V.	, 1.	,00	0,40	0.40	0.80	2.40	1.0	OCIAVO CICLO	vo	1.6	1.0	1.00	1.10	2.4	1.420
I	1.	.70	1.00	1,20	1,50	+ 3,0			Io	2.2	1.9	2.00	1.50 +	3.0	
V.	15 0.	,40	0,40	0.41	0.41	0,41	0,406		v ₁₅	0,40	0,41	0.40	0.39	0.41	0.322
I	15 0.	.70	0.70	0.70	0.90	0,70	0,74		1 ₁₅	0.85	1.00	1.20	1.10	1.2	1.070
V.	30 0.	.40	0.40	0,41	0,41	0,41	0.406		v ₃₀	0.40	0,40	0;40	0.39	0.41	0.40
I	30 0.	65	0.60	0.80	0.70	0.70	0.69		1 ₃₀	0.85	0.70	0.80	0.75	0.80	1.78
v	45 0.	.40	0.40	0.40	0.41	0.41	0,404		V ₄₅	0.39	0.40	0.40	0.40	0.41	0.40
I	45 0.	.65	0.60	0.70	0,65	0.70	0.66		145	0.80	0,60	0.70	0.75	0.95	0.76
v	₅₀ 0.	.40	0.40	0.40	0.41	0.41	0.404		v ₆₀	0,40	0,40	0.40	0.39	0.41	0.40
I	60 °.	. 55	0.55	0.70	0, 70	0.75	0,650		I ₆₀	0.75	0.60	0,60	0.70	0.80	0.69

PRUEBA XI
(TABLA III) Cont;

NOVENO CICLO		1	2	3	4	5	PROMEDIOS	DECIMO CI	CLO	1	2	3	4	5	PROMEDIOS	
,	0	2.3	2,1	1.3	2.3	2.3	2,06		yo	1,40	1.10	0.90	1,60	2.30	1,46	
1	. +	3.0	+ 5.0	1,3	+ 3,0	+ 3,0			Io	1,10	1.15	1.50	1.30	+ 3.0		
V	15	0,4	0.40	0.40	0.41	0.43	0.408		V ₁₅	0,40	0.39	0.39	0.39	1.30	0.574	
1	15	0.65	0.60	0.60	0.60	0.60	0.61		I ₁₅	0,65	0,65	0.90	0.60	0.70	0.70	
	30	0.40	0,40	0.40	0.40	0,41	0.402		v ₃₀	0,40	0.39	0,39	0.40	1.20	0.556	
1	30	0.60	0.60	0.60	0.65	0;52	0,594		1 ₃₀	0.60	0.55	0.60	0.50	1.00	0.650	
- 1	45	0.40	0.40	0.40	0.40	0,41	0.402		V ₄₅	0.40	0.40	0.39	0.40	0.41	0.40	
	45	0.50	0.55	0.50	0,50	0,62	0, 534		1 ₄₅	0.45	0,45	0.50	0,43	0.55	0.476	~
,	60	0,40	0.40	0.40	0,40	0,41	0.402		v ₆₀	0,40	0,40	0,40	0.40	0,41	0.402	37
1	60	0.55	0.50	0.49	0.50	0.60	0.528		I ₆₀	0.53	0,40	0.41	0.40	0,60	0.468	

PLACA	D	С	ĎТ	DR	E	Ð	С	DT.	DR	Е	
1	66,5295	67,3390	1,22	0,8095	66,35	65,0910	65,7555	1,22	0,6645	64.46	
2	66,3595	67,2260	1,22	0.8665	81,96	65,5380	66,2375	1.22	0.6995	57.33	
3	66.2495	67,1000	1.22	0,8505	69.71	65,5300	66,2290	1,22	0,6990	57,29	
4	67.2825	68,0660	1,22	0,7835	64,22	66.5025	67 1375	1,22	0,6350	52,05	
5	65,7550	66,5025	1,22	0,7475	61,27	64,4135	65,0365	1.22	0,6230	51 06	
1	64,6075	65,1125	1,22	0,5050	41,39	63,7300	64,1380	1,22	0,4080	33.44	
2	65,1365	65,6320	1,22	0.4955	40,61	64.0975	64,4810	1,22	0.3835	31,43	
3	64,9730	65,4750	1,22	0,5020	41,14	63,9475	64,3535	1,22	0,4060	33.27	
4	66.1695	66,6310	1,22	0,4615	37.82 .	65,0465	65,4035	1,22	0.3570	29,26	
5	63.7430	64,2660	1.22	0,5230	42,86	62,5170	62,9505	1,22	0,4335	35,53	
						3					
114	62,7180	63,0400	1,22	0,3720	30,49	62 " 1540	62,5125	1,22	0.3585	29:38	
2	63,2990	63,6395	1.22	0,3405	27,90	62,7815	63,1065	1,22	0,3250	26.64	
3	63.1115	63,4715	1,22	0,3600	29.50	62,5085	62,8820	1,22	0,3735	30,61	
4	64,0630	64.3995	1.22	0.3365	27.58	63,4890	63 8095	1,22	0,3205	26,27	
5	60.8810	61,3060	1,22	0,4250	34.83	60.3415	60,7145	1,22	0,3730	30,57	
0											
1	61,3130	61,7405	1,22	0,4275	35.04	60,6400	61,0180	1,22	0,3780	30.98	
2	62,0395	62,4280	1,22	0.3885	31,84	61,4010	61,7240	1,22	0,3230	26,47	
3	61,7595	62.1665	1,22	0.4070	33,36	61,0185	61,4505	1,22	0,5720	30.49	
4	62,7000	63,0530	1,22	0,3530	28,93	62,0970	62,4390	1.22	0,3420	28,03	
5	59, 3955	59,8205	1,22	0,4250	34,83	58,6745	59.0295	1,22	0,3550	29,09	
1	60,2280	60,6040	1,22	0,3760	30,82,	59,8050	60,1625	1,22	0,3575	29.30	
2	60,9195	61,2920	1,22	0,3725	30.73	. 60.5235	60.8755	1,22	0,3520	28,85	
3	60,6410	61,0260	1.22	0.3850	31,55	60,2095	60.5855	1,22	0,3760	30.81	
4	61,6175	61,9730	1,22	0,3555	29,13	61,2410	61.5745	1.22	0.3335	27,33	
5	58,2545	58,6145	1.22	0,3600	29:50	57,8470	58,1850	1,22	0,3380	27,70	

OBSERVACIONES GENERALES PARA LAS PRUEBAS

X y XI

Descarga;

En el primer ciclo durante la descarga, las intensidades de corriente son muy altas para ambas pruebas; en general mayores a 5 amperes; pero este valor baja rapidamente hasta alcanzar cierta estabilidad (sigue disminuyendo, pero más lentamente).

Los valores de voltaje son altos durante el primer ciclo, pero dismi nuye hasta alcanzar un valor constante (0,4V), después del tercer ciclo.

Carga:

En los tres primeros ciclos, el depósito del Zinc es débil; se desprende con facilidad (la presión del agua de la llave es suficiente para desprenderlo); el depósito es abundante en estos ciclos.

Después del cuarto ciclo, el depósito se hace cada vez más sólido y aun cuando la cantidad de Zinc depositado es más baja con respecto a los primeros ciclos, la eficiencia del depósito es más o menos constante.

En los tres primeros ciclos hay más desprendimiento de gases que en los siguientes,

En el proceso de carga, es necesario controlar la intensidad de corriente en 1 Amp. porque tiende a disminuir; el voltaje aplicado para lograr-Esto, se encuentra dentro de un rango que va de 5 hasta 18 V. Las eficiencias del depósito para la Prueba XI, fueron comparativamente mayores que las de la Prueba X.

El rango de eficiencia (promedio) para la Prueba X, como puede observarse en la Tabla II, va del 40% hasta el 21,22%; en cambio para la Prueba XI (Tabla IV), va de un 68,70% hasta un 28,79%.

Supongo que ello se debe a las diferentes concentraciones de ---- ${\rm HgSO}_4$

En la Prueba X (1 g de ${\rm HgSO}_4$) se ve que la disolución del Zinc fue mayor que en la Prueba XI (5 g ${\rm HgSO}_4$).

RESULTADOS

- 1).- Como se sabe y se puede observar en los resultados de la Prueba I, la -disolución del Zinc en un medio que es tan ácido es muy grande, la placa de Zinc se sigue disolviendo aun durante el proceso de carga, de --aquí se ve la necesidad de proteger el electrodo ya amalgamándolo, o --bien adicionando al electrólito algún inhibidor orgánico como es la Di-butilamina;
- 2), El uso del Sulfato de Mercurio, a cierta concentración, para amalgamarlas placas de Zinc, da los mejores resultados en cuanto a la eficiencia del depósito como se puede ver en los resultados de las pruebas II (a,b,c), III (a,b) y XI,

En estas pruebas se utilizó una concentración de 5 g/1 de $HgSO_4$.

En un estudio anterior se sabe que una concentración mayor a ésta, impide el depósito en cierto grado, además hace quebradizas después dealgunos ciclos a las placas de Zinc, Con una concentración menor (Prueba X), la eficiencia del depósito baja notablemente, la placa de Zinc se disuelve en mayor grado y el depósito se desprende con facilidad.

Con la concentración de 5 g/l, la eficiencia de corriente en promedio es de un 30%.

3), - Los primeros ciclos, el mercurio no permite que el depósito sea adherente, quizá esto se deba a la alta tensión superficial de este elemento, pero después del tercer ciclo, el depósito presenta mayor firmeza, es -- bastante fino y no se forman arborescencias, no es brillante.

4),- En el electrólito que se usó en la prueba IV, se usó como inhibidor Dibutilamina, en yez del Sulfato de Mercurio,

Esta substancia se utilizó, porque en un estudio que se realizó -sobre inhibidores a circuito abierto, fue la que presentaba un mayor -grado de inhibición en esas condiciones, usando concentraciones bajas.

Sin embargo como se ve en los resultados, no protege al Zinc en el grado que se desea, en las condiciones de carga y descarga en que se -- realizaron las pruebas, ya que la placa se sigue disolviendo afin en el-proceso de carga.

5), - Se pensó que quizá la mezcla de dos inhibidores orgánicos podría servir para substituir al sulfato de Mercurio, se usaron para este fin Dibotilamina y 2 dimetil amina etanol,

En la prueba IX la mezcla se hizo con la siguiente concentración:

5 ml/lt solución 2 DAE

1 ml/lt solución 2 DAE

En esta prueba como se puede ver en los resultados, la disolucióndel Zinc es continua, lo que quiere decir que en esas proporciones la mezcla no funciona como inhibidor, sino al contrario acelera en ciertogrado la disolución del Zinc.

En la prueba VIII, se invirtieron las concentraciones de la mezcla:

5 ml/lt solución ---- Bu₂NH 1 ml/lt solución ---- DAE Como se ye en los resultados la eficiencia del depósito es muy baja, en los primeros ciclos esta mezcla mejora el depósito, después se empieza a hacer arborescente y poco adherente;

Esto se debe a que estas substancias orgânicas quizâ se descompo-nen a través de los cíclos por la alta acidez del medio, y porque la temperatura de la celda aumenta hasta unos 70 C, en el proceso de car-ga.

También suponemos que quizá estas substancias envenenan a la placa de PbO, y esto hace que la eficiencia se reduzca.

6),- Por 10 anterior, vemos que el ${\rm HgSO}_4$, no se puede eliminar de la solu--ción, sin embargo se hicieron algunas pruebas en las que este se mezcló
con la Dibutilamina para tratar de bajar la concentración del ${\rm HgSO}_4$.

En la prueba V, la mezcla se hizo en la siguiente proporción:

5 g/1t de HgSO₄

5 ml/lt solución de Bu₂NH

Esta mezcla protege bastante al Zinc, la descarga no es tan violenta, el depósito es bastante homogéneo y fino, su adherencia es buena — aunque en los últimos ciclos se reduce,

La eficiencia del depósito permanece uniforme aunque es baja,

En la prueba VI las concentraciones fueron:

5 g/lt de HgSO₄
10 ml/lt de Bu₂NH

Con esta mezcla, en la descarga se reduce bastante el desprendi--miento de los gases.

El depósito es fino y homogéneo aunque es muy oscuro.

· La eficiencia del depósito es más o menos constante, pero es baja,

En la prueba VII, la concentración del Sulfato de Mercurio (D) se reduce a 2,5 g/l y la de la dibutilamina es de 10 ml/l solución.

Como se ve en los resultados la eficiencia del depósito baja bastante, el depósito es fino, pero no es homogéneo y se desprende con -facilidad.

Por lo anterior deducimos que la eficiencia depende de la concentración del Sulfato de Mercurio, y no de la Dibutilamina.

Aunque la Dibutilamina influye en que el proceso de descarga no sea tan violento y se reduzca el desprendimiento de gases, en el proce
so de carga no ayuda a que el depósito sea bueno.

7).- Las pruebas X y XI se hicieron con la finalidad de comparar los resultados cuando se usan; 1 g/l HgSO₄ (prueba X) y 5 g/l HgSO₄ (prueba -XI).

En los dos casos el depósito es fino, adherente y no se presentan arborescencias, sin embargo es muy oscuro.

En cuanto a la eficiencia del depósito es mayor cuando se usan -- 5 g/lt HgSO_4 que con 1 g/l de HgSO_4 , lo que nos indica, que aumenta -- bastante la disolución del Zinc en la prueba X.

CONCLUSIONES

Después de observar los resultados de todas las pruebas, se llega a la conclusión de que las soluciones que se estudiaron, la mejor funcionacomo medio electrolítico en la descarga y como baño gálvánico en el proceso de carga es la que tiene:

5 g/lt de HgSO₄ (Electrólito 2)

En este trabajo, se estudió la influencia del Sulfato de Mercurio y de la dibutilamina en función de sus concentraciones sobre el proceso decarga del acumulador de $\rm Zn-PbO_2$.

Sin embargo, se podrían hacer estudios posteriores que tomaran en cuenta factores que aquí no se consideraron, tales como realizar las pruebas a diferentes densidades de corriente, cargar el acumulador hasta que el electrodo de zinc alcance su peso original, realizar la descarga no a corto circuito, sino con una resistencia a una determinada intensidad, estudiar - la influencia de ciertos coloides que mejoran la calidad del depósito y probar otro tipo de sustancias que sirvan como inhibidores, etc.

BIBLIOGRAFIA

LIBROS:

- Ing. Enrique Villarreal D, FUENTES ELECTROQUIMICAS DE CORRIENTE, Limusa Wiley, México, 1971,
- 2) Vinal, G.W. STORAGE BATTERIES, John Wiley & Sons, N.Y., 1963,
- Lowenheim F.A.
 MODERN ELECTROPLATING.
 John Wiley & Sons Inc. N.Y. 1974.
- 4) Blum W, y Hogaboom G,B,

 PRINCIPIOS DE GALVANOTECNICA Y GALVANOFORMADOS

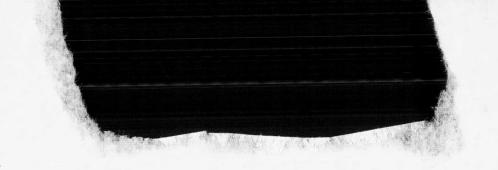
 C1a, Editorial Continental, S.A., México, 1964)
- 5) Kirk-Othmer
 ENCICLOPEDIA DE TECNOLOGIA QUIMICA,
 U.T.E.H.A. México, 1962.
- 6) Hampel C,

 THE ENCYCLOPEDIA OF ELECTROCHEMESTRY

 Reinhold Publishing N.Y., 1964,

- 7) Thorper's DICTIONARY OF ELECTROCHEMESTRY,
- 8) DICCIONARIO ENCICLOPEDICO HISPANOAMERICANO
 TOMO I-PAG. 386
 W.H. Jackson Inc, N.Y., 1928
- 9) Holtz Alfred

 LA ESCUELA DEL TECNICO ELECTRICISTA TOMO VIII,


 Labor, S.A., Barcelona, 1943.

REVISTAS:

- Ing. Villarreal E,
 EL ACUMULADOR DE Zn-H₂SO₄-PbO₂
 Revista de la Soc iedad Química de México,
 Vol. 19, Nov-Dic, 1975
- 2) Lyons, Ernest H. TRANS ELECTROCHEMICAL SOC. Vol. 80 Pag. 387, 1941

TESIS:

- Farrera Gamboa L,F,
 INHIBIDORES DE CORROSION PARA ZINC EN UN MEDIO ACIDO
 U. N. A. M. 1976.
- 2) Galicia García R, PRUEBAS DE CARGA Y DESCARGA EN EL ACUMULADOR DE Zn-PbO₂ U. N. A. M. 1976.

ESTE TRABAJO SE IMPRIMIO EN LOS TALLERES DE GUADARRAMA IMPRESORES, S. A. AVENIDA CUAUHTEMOC 1201, COL. VERTIZ NARVARTE, MEXICO 13, D.F. TEL. 559 22 77 CON TRES LINEAS