

Universidad Nacional Autónoma de México

FACULTAD DE QUIMICA

MODELOS MATEMATICOS PARA LA RESOLUCION DE TORRES DE ABSORCION DE PLATOS

181

TESIS PROFESIONAL QUE PARA OBTENER EL TITULO DE INGENIERO QUIMICO PRESENTAN José Rodolfo García Rosas Jesús Alberto Hores Delfín MEXICO, D. F.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. **TESIS CON FALLA DE ORIGEN**

TESIS 1976 4

QUIM.Q.

PRESIDENTE,	PROF.	PABLO BARROETA GOMZALEZ
VOCAĻ	11	ANTONIO FRIAS MENDOZA
SECRETARIO	11	RAFAEL MORONES ESCOBAR
ler.SUPLEMTS	. 11	ALEJANDRO LOZADA CAÑIBE
20. SUPLEMPE	11	ANDONI GARRITZ RUIZ

Sitio donde se desarrolló el tema:

Facultad de Química y C.I.M.A.S.

Sustentantes:

José Rodolfo H. C. García Rosas Jesús Alberto Flores Delfín

Asesor del tema:

Ing. Antonio Frias Mendoza

INDICE

I Introducción		
II Generalidades		
IIa. Métodos de Cálculo de Etapa por Etapa	6	
IIb. Métodos de Grupo	7	
IIC. Métodos de Aproximaciones Sucesivas	8	
III Planteamiento de los Modelos	10	
IIIa. Modelo de Horton-Franklin	10	
IIIb. Modelos que emplean Matriz Tridiagonal		
IIIb.l. Método del Punto de Burbuja	32	
IIIb.2. Método de la Suma de Gastos	36	
IV Resultados y Análisis		
V Conclusiones y Recomendaciones		
VI Bibliografía		

P**á**g.

I. INTRODUCTION

La absorción es la operación unitaria en la que uno o más componentes solubles de una mezcla gaseosa se disuelven en un líquido. Los componentes gaseosos al ser puestos en contacto con el híquido se disuelven en diferente proporción de acuerdo a su afinidad química. La absorción puede ser un fenómeno puramente físico o puede involucrar solución seguida de reacción química con uno o más constituyentes de la fase líquida. La o peración inversa o desorción se emplea para transferir uno o más componentes volátiles de una mezcla líquida a un gas.

Por lo general, estas operaciones se usan para la recuperación de solutos. La separación de solutos entre si requiere de las técnicas de fraccionamiento de destilación.

Los equipos utilizados en estas operaciones son fundamentalmente torres empacadas con un material sólido, torres de pl<u>e</u> tos y torres de espreado. De estos los dos primeros son los más comunes. Al escoger entre ellos es importante tener en cuenta sus diferencias cualitativas; entre las más importantes están;

l.- Las eficiencias en torres empacedas se basan en prue bas experimentales con cada tipo y tamaño de empaque. La efi-

1

ciencia varía no sólo con el tipo y tamaño de empaque sino también con los gastos, las propiedades del fluido, el diámetro de la columna, la presión de operación y en general con el grado de dispersión del líquido sobre la superficie disponible de emp<u>a</u> que.

2.- Debido a la dificultad que se tiene en la dispersión del líquido en las torres empacadas el diseño de las torres de platos es más confiable y requiere un factor de seguridad menor cuando la relación de la masa velocidad del líquido a la masa velocidad del gas es baja.

3.- Las torres de platos pueden ser diseñadas para manejar un amplio rango de gastos de líquido sin inundamiento.

4.- Si la operación involucra líquidos que contengan sólidos dispersos se prefiere el uso de una torre de platos debido a que estos son más fáciles de limpiar.

5.- Las torres de platos se prefieren si se requiere enfriamiento entre las etapas para quitar el calor producido por reacción o solución debido a que se pueden instalar serpentines de enfriamiento en los platos, o bien, la línea de abastecimien to de líquido de plato a plato puede pasarse a través de un enfriador externo.

6.- El peso total de una torre de platos seca es generalmente menor que el de una torre empacada diseñada para el mismo propósito. Sin embargo, el peso de las torres incluyendo el l<u>í</u> quido que manejan durante la operación es similar.

7.- Cuando se presentan grandes cambios de temperatura, como en operaciones de destilación, se prefieren las torres de

-2-

platos porque la expansión-contracción térmica de los componentes del equipo pueden dañar el empaque.

8.- Por lo general, la información para el diseño de torres de platos es más accesible y confiable que para torres empacadas.

9.- Las torres empacades rare vez se diseñan con diámetros mayores de 4 pies y los diámetros de las torres de platos comerciales rare vez son menores de 2 pies.

10.- Se ha encontrado que las torres empacadas resultan más baratas y fáciles de construir que las de platos si se man<u>e</u> jan fluidos altamente corrosivos.

ll.- Se prefieren torres empacadas si los líquidos tienen una gran tendencia a formar espuma.

12.- La cantidad de líquido que contiene la columna en \underline{o} peración es menor en torres empacadas.

13.- La caída de presión a través de torres empacadas pue de ser menor que la caída de presión a través de torres de platos diseñadas para el mismo propósito. Esta ventaja, junto con el hecho de que el empaque sirve para disminuir la posibilidad de que la pared de la torre se colapse hace a las torres empac<u>a</u> das particularmente desembles en operaciones a presiones menores que la atmosférica.

Aplicación de les torres de platos en la industria.- Un buen ejemplo es la recuperación de hidrocarburos valiosos de una mez cla gaseosa multicomponente por absorción seguida por desorción con vapor de agua del solvente enriquecido en la industria pe-

-3-

trolera. Un diagrama de flujo simplificado de este proceso se muestra n continuación. El sistema consiste de una torre de a<u>b</u> sorción, una de desorción y equipo auxiliar.

Diagrama de flujo de un sistema de absorción-desorción

-4-

Hay 3 partes principales a considerar en el diseño de una torre de absorción o desorción;

1.- Obtención de la información sobre las relaciones de equilibrio líquido-vapor del sistema para determinar la cantidad requerida de los componentes solubles del gas o la cantidad de gas necesaria para desorber la cantidad desenda de los componentes volátiles del líquido.

2.- Información sobre la capacidad de manejo de gastos de líquido y vapor del equipo que se considere para determinar el área transversal (o diámetro) y tamaño de la torre.

3.- Los datos de equilibrio y los balances de materia y energía se emplean en combinación con relaciones fundamentales características del proceso de absorción o desorción para calcu lar el número de etapas de equilibrio (platos teóricos).

4.- Información sobre las eficiencies de etapa que transforman el número de platos teóricos en número de platos reales.

En el presente trabajo se considerará fundamentalmente la parte 3.

-5-

II. GENERALIDADES

Los métodos más útiles para el cálculo de etapas teóricas de un proceso de separación multicomponente pueden dividirse en tres grandes grupos:

1.- Métodos de cálculo de etapa por etapa

2.- Métodos de grupo

3.- Métodos de aproximaciones sucesivas

Cada uno de estos métodos tiene cierto grado de aplicación siendo más útiles para cierto tipo de problemas que para otros.

IIa. Métodos de cálculo de etapa por etapa

Los métodos de cálculo de etapa por etapa, como su nombre lo indica, se basan en fijar condiciones en una cierta etapa del proceso y después calcular secuencialmente las demás etapas por procedimientos repetitivos adecuados. Como es de esperarse, es la etapa final del proceso la que se fija ya que se conocen sus condiciones o pueden ser predecibles con suficiente certeza. El procedimiento de cálculo continua a partir de este extremo a través de las demás etapas hasta la etapa inicial. Puede decir se que la utilidad del método se limita a aquellos problemas en que la composición y la cantidad de alguno de los productos pue

-6-

den ser predecibles con suficiente certeza. Debido a que es n<u>e</u> cesario determinar una composición del producto, los métodos de etapa por etapa son más útiles para problemas en los cuales las variables de separación han sido fijadas y para los cuales se desea conocer el número requerido de etapas bajo condiciones de flujo dedas. Este tipo de problemas se presenta en el diseño de procesos de múltiples etapas. El diagrama de Mc Cabe-Thiele es una aplicación gráfica a un cálculo de etapa por etapa.

Los procedimientos de etapa por etapa han sido estudiados ampliamente y se reportan en dotalle en la literatura⁴. Han sido desarrollados métodos gráficos y numéricos, pero ambos métodos consistem en usar alternativamente las relaciones de equilibrio y los balances de materia de una etapa a la otra.

IIb. Métodos de grupo

Los métodos de grupo evitan el procedimiento tedioso de cálculo de etapa por etapa por medio de un cálculo del múmero de etapas en una sección de la columna directamente a partir de información de las composiciones en los extremos de la sección o viceversa. Los métodos de grupo son útiles para el mismo tipo de problemas que los de etapa por etapa, pero sólo son exactos para un grupo reducido de problemas ya que el desarrollo de las ecuaciones solamente es posible bajo suposiciones limitantes concernientes a la idealidad del sistema y a la invariabilidad de los flujos. Encuentran su mayor utilidad en cálculos rápidos aproximados o en sistemas que requieren un número grande de etapas en donde los cálculos de etapa por etapa serían extrema-

-7-

damente tediosos.

IIc. Métodos de aproximaciones sucesivas

Métodos de aproximaciones sucesivas han side desarrollados para la mayor parte de los problemas en los cuales el número de etapas en el proceso se ha fijado y el problema consiste en calcular la separación que se logrará. Estos métodos pueden dividirse convenientemente en 2 grupos: métodos de iteración y métodos de relajamiento. El procedimiento de cálculo de un método típico de iteración puede ser como sigue: se suponen las condiciones en cada etapa sobrespecificando al sistema y después se calculan las composiciones en cada etapa por medio de un con junto de ecuaciones. Como las condiciones supuestas originalmente eran probablemente erróneas las composiciones calculadas serán erróneas por lo que un procedimiento de corrección se emplea para obtener a partir de las composiciones encontradas un conjunto de condiciones más exactas en cada etapa. La rapidez de convergencia hacia la respuesta correcta depende completamen te de los métodos de corrección.

Los métodos de iteración se emplean también frecuentemente para problemas de diseño en donde el número de etapas puede determinarse por interpolación entre soluciones para distinto número de etapas. A menudo este enfoque es preferido a los métodos de etapa por etapa en un problema en donde la composición del producto no puede especificarse completamente.

Los métodos de relajamiento son en concepto aún más simples que los de iteración. Nuevamente, se suponen todas las

-8-

condiciones, temperaturas, composiciones y gastos de todas las <u>e</u> tapas del proceso y después cada etapa se considera por separado. Se calculan los errores en los balances de masa y energía para cada etapa y nuevas estimaciones de los gastos y condiciones para cada etapa se hacen de tal manera de reducir o "relajar" los errores a cero. Cuando esto ha sido hecho para una etapa, el cálculo se hace en otra etapa hasta que todas las etapas han sido calculadas un número suficiente de veces de tal ma nera que los errores restantes sean aceptablemente pequeños y que pueda decirse que el cálculo ha convergido a una solución de estado estacionario.

Debido a la simplicidad de los métodos de iteración así como de los de relajamiento, estos son apropiados para la solución de problemas que involucran sistemas y procesos complicados. Requieren por lo general del uso de una computadore de alta velocidad debido al gran número de cálculos necesarios, pero a tra vés de ellos cualquier problema puede sor resuelto.

Los métodos de aproximaciones sucesivas son tembién útiles para problemas complejos de separación de una sola etapa.

-9-

III. PLANBANTENO DE LOS MODILOS

IIIa. Modelo de Horton-Franklin

Los métodos de cálculo de etapa por etapa más favorecidos son aquellos que emplean el concepto de factores de absorción y desorción desarrollado por Kremser⁵ y posteriormente por Brown. La suposición de gastos molares de líquido y vapor y factores de absorción constantes a través de la torre que se hace en la derivación de la ecuación de Kremser-Brown (1), conduce a serios errores en el cálculo de absorbedores comerciales en los cualos hay variación en los gastos de vapor y líquido de plato a plato o diferencias apreciables de temperatura;

$$N = \frac{\log \left[\frac{\gamma_{h'+1} - \kappa \chi_{o}'}{\gamma_{i}' - \kappa \chi_{i}'} \left(1 - \frac{1}{A}\right) + \frac{1}{A}\right]}{\log A} \qquad A \neq L$$

---(1)

$$N = \frac{Y'_{N+1} - Y'_{1}}{Y'_{1} - K X'_{0}}$$
 A=1

-10-

Donde N -número de platos totales

y para algún componente:

Y' -relación mol en el gas de alimentación

- Y' -relación mol en el gas de salida
- X' -relación mol en el líquido de alimentación
- K -relación de equilibrio
- A -factor de absorción = $\frac{L}{KV}$

Les limitaciones de esta ecuación, que son las propias de los métodos de grupo, pueden ser compensadas hasta cierto punto si se escoge un factor de absorción efectivo derivado de experiencias anteriores que conduzca a resultados satisfactorios. Otro punto de vista, es el tratamiento gráfico descrito por Sherwood¹¹.

Una ecuación totalmente general es la presentada por Horton y Franklin que involucra únicamente la suposición de equilibrio entre el gas y el líquido que salen de cada plato teórico.

Considérese la figura mostrada en la siguiente página, en donde:

Vé -gasto de vapor que sale del plato k (moles/tiempo)
Lé gasto de líquido que sale del plato k "
xié -fracción mol del componente i en L
yié -fracción mol del componente i en V
Hé -entalpía molar del Vapor que sale del plato k
hé -entalpía molar del líquido que sale del plato k
hé -carga térmica removida del plato k

-12-

事言

La ventaja de definir estas dos últimas variables proviene del hecho de que es posible que haya transferencia entre el gas y el líquido de todos los componentes por lo que puede no haber alguna substancia que pase a través de la columna a gasto constante en el gas o en el líquido, mientras que las alimentaciones representan un valor de referencia que no varía. Balance de Nateria alrededor del plato k:

$$L_{k-1} x_{i,k-1} + V_{k+1} y_{i,k+1} = L_{k} x_{ik} + V_{k} y_{ik} \qquad ---(2)$$

como

$$X_{i,k+1} = \frac{L_0 X_{i,k-1}}{L_{k-1}}; \quad X_{ik} = \frac{L_0 X_{ik}}{L_k}$$

$$Y_{iR} = \frac{Y_{iR} V_{n+1}}{V_{R}} ; \quad Y_{i,R+1} = \frac{Y_{i,R+1} V_{n+1}}{V_{R+1}}$$

Sustituyendo en (2):

$$L_{R-1} \frac{L_0 X_{i,R-1}}{L_{R-1}} + \frac{V_{R+1} Y_{i,R+1} V_{n+1}}{V_{R+1}} = L_R \frac{L_0 X_{i,R}}{L_R} + \frac{V_R Y_{i,R} V_{n+1}}{V_R}$$

y agrupando:

$$L_{o}(X_{ik} - X_{i,k-1}) = V_{N+1}(Y_{i,k+1} - Y_{ik}) \qquad ---(3)$$

Si K_{ie} es la relación de equilibrio del componente i en

el plato k:

$$k_{ik} = \frac{y_{ik}}{x_{ik}}$$

o bien

$$\frac{Y_{ik}V_{nu_{i}}}{V_{k}} = K_{ik}\frac{Y_{ik}L_{o}}{L_{k}} \qquad ---(4)$$

De forma similar para el plato k-l:

$$\frac{Y_{i,k-1}V_{N+1}}{V_{k-1}} = K_{i,k-1} \frac{X_{i,k-1}L_{0}}{L_{k-1}} ---(5)$$

Resolviendo las ecuaciones (4) y (5) para las X's:

$$X_{ik} = \frac{L_k}{L_o} \frac{V_{u+1}}{V_k} \frac{Y_{ik}}{K_{ik}}; \quad X_{i,k-1} = \frac{L_{k-1}}{L_o} \frac{V_{u+1}}{V_{k-1}} \frac{Y_{i,k-1}}{K_{i,k-1}}$$

y sustituyendo en (3) se tiene

$$\left(\frac{L_{R}}{V_{R}}\frac{Y_{ik}}{K_{ik}} - \frac{L_{R-1}}{V_{R-1}}\frac{Y_{i,R-1}}{K_{i,R-1}}\right) = \left(Y_{i,R+1} - Y_{i,R}\right)$$

$$Y_{ik}\left(\frac{L_{R}}{V_{R}K_{ik}} + 1\right) = \frac{L_{R-1}}{V_{R-1}K_{i,R-1}}Y_{i,R-1} + Y_{i,R+1}$$

Despejando Yik :

$$Y_{ik} = \frac{Y_{i,k+1} + A_{i,k-1} Y_{i,k-1}}{1 + A_{ik}} ---(6)$$

dondo $A_{ik} = \frac{L_k}{V_k K_{ik}}$ $\forall A_{i,k-1} = \frac{L_{k-1}}{V_{k-1} K_{i,k-1}}$ son

los factores de absorción del componente i en el plato k y k-l respectivamente.

Para k = 1:

$$Y_{i1} = \frac{Y_{i2} + A_{i0}Y_{i0}}{1 + A_{i1}} ---(7)$$

$$Y_{io} = \frac{K_{io} X_{io} V_o}{V_{N+1}} \qquad ---(8)$$

$$A_{io}Y_{io} = \frac{L_{o}X_{io}}{V_{N+1}} \qquad ---(9)$$

sustituyendo (9) en la ecuación (6)

$$Y_{i1} = \frac{Y_{i2} + \frac{L_0 X_{i0}}{N_{N+1}}}{1 + A_{i1}} --(10)$$

Para k = 2 la ecuación (o) queda:

$$Y_{i2} = \frac{Y_{i3} + A_{i1}Y_{i1}}{1 + A_{i2}} --(11)$$

sustituyendo Y de la ecuación (10) en (11) y rearreglando

$$Y_{iz} = \frac{(A_{i1}+1)Y_{i3} + A_{i1} L_0 X_{i0} / V_{W+1}}{A_{i1} A_{i0} + A_{i2} + 1} --(12)$$

De forma similar para k = 3:

$$Y_{i3} = \frac{(A_{i1}, A_{i2} + A_{i1} + 1)Y_{i4} + A_{i1}, A_{i2} L_0 X_{i0} / V_{W+1}}{A_{i1}, A_{i2}, A_{i3} + A_{i2}, A_{i3} + A_{i3} + 1} --(13)$$

y para N platos

$$Y_{iN} = \frac{(A_{i1}A_{i2}A_{i3}\cdots A_{i,N-1} + A_{i2}A_{i3}\cdots A_{i,N-1} + A_{i,N-1} + 1)Y_{i,N+1} + A_{i1}A_{i2}\cdots A_{i,N-1}}{A_{i1}A_{i2}A_{i3}\cdots A_{iN} + A_{i2}A_{i3}\cdots A_{iN} + A_{iN} + 1}$$

Sin embargo, es más deseable tener la expresión para alguna de las corrientes de salida que para una corriente interna como lo es la corriente de vapor que sale del plato N, para ello hacemos un balance de materia del componente i alrededor de to-

do el absorbedor:

$$L_{0}(X_{iN} - X_{i0}) = V_{N+1}(Y_{i,N+1} - Y_{i1}) --(15)$$

y la ecuación (4) para k = N:

$$Y_{iN} = K_{iN} X_{iN} \frac{L_0}{L_N} \frac{V_N}{V_{N+1}} = \frac{L_0}{A_{iN}} \frac{X_{iN}}{V_{N+1}} --(16)$$

Resolviendo:

$$d\theta (15), \qquad X_{in} = \frac{V_{n+1}(Y_{i,n+1} - Y_{i_1}) + L_o X_{i_0}}{L_o}$$

sustituyendo en (16),

$$Y_{in} = \frac{V_{n+1}(Y_{i, N+1} - Y_{i1}) + L_o X_{io}}{A_{in} V_{N+1}}$$

o bien

$$Y_{iN} = \frac{Y_{i,N+1} - Y_{i1}}{A_{iN}} + \frac{L_0 X_{i0}}{A_{iN} V_{N+1}} --(17)$$

Igualando la ecuación (17) con la (14) y despejando obtenemos:

$$\frac{Y_{i,N+1} - Y_{i_1}}{Y_{i,N+1}} = \frac{A_{i_1}A_{i_2}A_{i_3}\cdots A_{i_N-1}A_{i_N} + A_{i_2}A_{i_3}\cdots A_{i_N+1}\cdots A_{i_N-1}A_{i_N} + A_{i_N}}{A_{i_1}A_{i_2}A_{i_3}\cdots A_{i_N} + A_{i_2}A_{i_3}\cdots A_{i_N+1}\cdots A_{i_N-1}A_{i_N} + A_{i_N} + \frac{1}{-(18)}}{-(18)}$$
$$= \frac{L_0 X_{i_0}}{V_{N+1}Y_{i,N+1}} \left[\frac{A_{i_2}A_{i_3}A_{i_1}\cdots A_{i_N} + A_{i_3}A_{i_1}\cdots A_{i_N} + A_{i_N} + A_{i_N+1}}{A_{i_1}A_{i_2}A_{i_3}\cdots A_{i_N} + A_{i_2}A_{i_3}\cdots A_{i_N} + A_{i_N+1}} \right]$$

La ecuación (18) es una expresión para la absorción fraccional de cualquier componente, exacta ya que se basa sólo en los balances de materia y la condición de equilibrio que define un plato teórico.

La expresión correspondiente para desorción se obtiene de

manera análoga;

$$\frac{X_{io} - X_{iN}}{X_{io}} = \frac{S_{i1}S_{i2}\cdots S_{iN} + S_{i1}S_{i2}\cdots S_{i,N-1} + \dots + S_{i,1}}{S_{i1}S_{i2}\cdots S_{iN} + S_{i1}S_{i2}\cdots S_{i,N-1} + \dots + S_{i,1} + 1} --(19)$$

$$-\frac{V_{N+1}Y_{i,N+1}}{I_{o}} \left[\frac{S_{i1}S_{i2}\cdots S_{i,N-1} + S_{i1}S_{i2}\cdots S_{i,N-2} + \dots + S_{i,1} + 1}{S_{i1}S_{i2}\cdots S_{i,N-1} + \dots + S_{i,N-1} + \dots + S_{i,N-1} + 1} \right]$$

donde $S_{ik} = \frac{1}{A_{ik}}$ es el factor de desorción del componente i en el plato k.

Para aplicar las ecuaciones (18) y (19) se requiere conocer la relación $L_{\mathbf{A}}/V_{\mathbf{A}}$ para cada plato y la temperatura $T_{\mathbf{A}}$ de los platos (que en primera instancia determina la relación de <u>e</u> quilibrio K_{ik}) para calcular las A_{ik} o las S_{ik}. Como se ve, el método está planteado para resolver problemas típicos de simulación, esto es, dadas las condiciones de las corrientes de alimentación y el número de platos, determinar las características de las corrientes de salida.

Simulación

El problema de diseño, que consistiria en determinar el número de platos necesarios para llevar a cabo la separación de seada a partir de la corriente de proceso alimentada, también se puede resolver si mediante algún método preliminar rápido de terminamos el número de platos aproximado y aplicando las ecuaciones del método calculamos las condiciones de salida y vemos si cumplen con las especificaciones de los productos deseados. En caso de que no, podemos disminuir o aumentar, dependiendo del ca so, el número de platos y repetir el procedimiento hasta satisfacer los requerimientos de las corrientes de proceso de salida. Esto es, transformamos continuamente un problema de diseño en uno de simulación y viceversa.

Diseño

Procedimiento Computacional

6

1.- Dar un perfil de temperaturas T_{k} y de gastos de vapor V_{k} en cada plato. Una buena aproximación es suponer que la absorción fraccional es la misma en cada plato:

$$\frac{\nabla_{\mathbf{k}}}{\nabla_{\mathbf{k}+1}} \simeq \left(\frac{\nabla_{\mathbf{i}}}{\nabla_{\mathbf{k}+1}}\right)^{1/N}$$
$$\nabla_{\mathbf{k}} = \nabla_{\mathbf{k}+1} \left(\frac{\nabla_{\mathbf{i}}}{\nabla_{\mathbf{k}+1}}\right)^{\frac{N+1-k}{N}} \qquad --(20)$$

Los gastos de líquido se determinan mediande un balance de materia de envolvente superior o inferior y balance alrededor de toda la torre:

Balance total de materia
$$L_0 + V_{N+1} = L_N + V_1$$
 --(21)

Del balance de envolvente inferior alrededor del plato k+1

$$L_{R} = L_{N} + V_{R+1} - V_{N+1} --(22)$$

El perfil inicial de temperaturas se pue le calcular aproximadamente haciendo la suposición de que los calores latentes y capacidades caloríficas molares son similares para todos los componentes y de que no hay calores de solución, entonces:

$$\frac{V_{N+1} - V_{R+1}}{V_{N+1} - V_1} \simeq \frac{T_N - T_R}{T_N - T_0}$$

De donde

$$T_{k} \simeq T_{N} - (T_{N} - T_{o}) \left(\frac{V_{N+1} - V_{k+1}}{V_{N+1} - V_{1}} \right) --(23)$$

Similarmente, si se trata de desorción:

$$L_{\mathbf{k}} \simeq L_{\mathbf{o}} \left(\frac{L_{N}}{L_{\mathbf{o}}} \right)^{\mathbf{k}/N} --(24)$$

y

$$T_{\mathbf{A}} \simeq \overline{T}_{\mathbf{0}} - (\overline{T}_{\mathbf{0}} - \overline{T}_{\mathbf{N}}) \left(\frac{L_{\mathbf{0}} - L_{\mathbf{A}}}{L_{\mathbf{0}} - L_{\mathbf{N}}} \right) \qquad --(25)$$

2.- Calcular las constantes de equilibrio K_{ik} y los factores de absorción A_{ik} (o desorción S_{ik}) para cada componente en cada plato.

3.- Obtener de la ecuación (18) ó (19) la composición del producto, Y_{i_1} ó X_{i_2} , para todos los componentes.

4.- Recalcular V, y mediante la ecuación (21) obtener L.
5.- Sabiendo que

se puede despejar el gasto molar de cada componente en la fase

vapor en cada plato:

$$V_{k} Y_{ik} = (L k X_{ik}) / A_{ik} --(26)$$

Si hay V_s moles/unidad de tiempo de gas no absorbido (inerte), entonces

$$V_{\mathbf{k}} = V_{\mathbf{s}} + \sum_{i=1}^{2} \frac{L_{\mathbf{k}} \chi_{i\mathbf{k}}}{A_{i\mathbf{k}}} --(27)$$

en donde M es el número de componentes que se transfieren. De un balance individual de materia de envolvente inferior alr<u>e</u> dedor del plato k se obtiene:

$$L_{R-1}X_{i,R-1} = L_N X_{iN} + \sqrt{R} Y_{iR} - \sqrt{N+1} Y_{i,N+1} --(28)$$

Combinando las ecuaciones (27) y (28) y notando que

$$L_{k-1} = L_{s} + \sum_{i=1}^{\infty} \left[(L_{k-1}) (X_{i}, k_{-1}) \right]$$

donde L_s es el gasto del líquido inerte, se pueden calcular nu<u>e</u> vos perfiles de vapor y líquido, y por tanto, una nueva relación L_k /V_k para cada plato.

6.- Balance de energia total:

$$L_{0}h_{0} + V_{N+1}H_{N+1} = L_{N}h_{N} + V_{1}H_{1} + Q --(29)$$

en dorde $Q = \sum_{k=1}^{N} Q_k$ es el calor total suministrado (como en absorbedores con rehervidor) o removido de la columna(por ejemplo torres con enfriadores intermedios). De un balance de energía de envolvente inferior alrededor del plato k+l se obtiene:

$$L_{k}h_{k} = L_{N}k_{N} + V_{k+1}H_{k+1} - V_{N+1}H_{N+1} + \sum_{k+1}^{N}Q_{k} - -(30)$$

La entalpía de cada una de las corrientes, líquida o vapor, es una función de la temperatura, de la presión y de la composición por tanto, dada la presión de operación de la columna(desprecia<u>n</u> do la caída de presión a través de ella), habiendo determinado la composición de todas las corrientes y partiendo del perfil su puesto de temperaturas se pueden obtener las entalpías de vapor H_R en cada plato. Ahora bien, si las temperaturas supuestas son las correctas, debe cumplirse (de la ecuación (30)):

$$h_{R} = \frac{L_{N}h_{N} + V_{R+1} + H_{R+1} - V_{N+1} + J_{N+1} + J_{N+1} - V_{R}}{L_{R}}$$

que puede resolverse dadas las cargas térmicas Q_{\pm} de cada plato y utilizando los nuevos valeres calculados de L_é y V_{A+1} . Las entalpías y gastos de alimentación son conocidas y de la ecuación (29) se puede conocer L_N h_N . Con base en lo dicho anteriormente:

$$h_{k} = h_{k}(T_{k}, I_{ik}, P)$$

para P y x_{ik} determinados: $h_k = h_k (T_k)$

Si h_k es una función biyectiva de $T_k \ge 0$, la función tiene inversa y podemos expresar: $T_k = T_k(f_k)$

A lo que se ha llegado, es a una función, explicita o implícita, que permite calcular un nuevo perfil de temperaturas a partir de la información obtenida hasta este punto. La condición de que h_é (\mathbb{T}_k) sea biyectiva, realmente se puede reducir a un intervalo $\mathbb{T}_k \leq \mathbb{T} \leq \mathbb{T}_a$, en donde \mathbb{T}_A y \mathbb{T}_B son límites practicos de operación.

7.- Aplicar un método de convergencia que aproveche la información de los valores calculados de L_{ik} / V_{ik} y T_k para su poner los nuevos valores que serán utilizados en la secuencia de cálculo. Así, si j es la iteración; método de sustitución directa: $\left(\frac{L_{ik}}{V_{ik}}\right)^{i+1} = \left(\frac{L_{ik}}{V_{ik}}\right)^{j}$ y $(T_k)^{i+1} = (T_k)^{i}$

(el valor supuesto de la iteración j+l es el calculado en la iteración j). Este método es uno de los más simples, que puede ser empleado si la función de que se trate puede escribirse de la forma $\phi(x) = x$

donde $\phi(\mathbf{x})$ es una función de x.

Con objeto de que el método de sustitución directa sea convergente es necesario que

$$\left| \frac{d \phi(x)}{dx} \right| < 1$$
 --(31)

en la solución. El método convergirá más rápido en la vecindad de la solución en la medida en que la derivada de la expresión (31) sea más pequeña. Cuando la derivada es cercana a la unidad, se pueden usar procedimientos de aceleración de convergencia para sustitución directa; tal es el caso del procedimie<u>n</u> to propuesto por Wegstein⁶. IIIb. Modelos que emplean Matriz Tridiagonal

Pertenecientes a los métodos de aproximaciones sucesivas se tienen los modelos que emplean matriz tridiagonal.

Para el deservollo de estos métodos considérense las siguientes figuras:

er donde

- N -número de etapas de equilibrio
- F6 -alimentación externa al k-ésimo plato, moles/tiempo
- L_k -gasto de líquido que llega al plato k l proveniente del plato k, moles/tiempo
- SL_k -salida lateral de líquido que proviene del k-ésimo plato, moles/tiempo
- V_k -gasto de vapor que llega al plato k l proveniente del k-ésimo plato, moles/tiempo
- SV. -salida lateral de vapor proveniente del k-ésimo plato, moles/tiempo
- Q_k -carga térmica removida del k-ésimo plato, BTU/tiempo H -número de componentes presentes en la etapa
- x_{if} -fracción mol en la fase líquida del componente i en el plato k
- y -fracción mol en la fase vapor del componente i en el plato k
- z_{ik} -fracción mol en la alimentación al k-ésimo plato del componente i
- H₆ -entalpía molar del vapor que sale del plato k
- hg -entalpia molar del líquido que sale del plato k
- h_{th} -entalpía molar de la alimentación al plato k

-24-

k-ésima etapa de equilibrio

Existen cuatro conjuntos de ecuaciones que deben ser satisfechas en el cálculo riguroso de etapas teóricas de equilibrio. Estos son: Conjunto M -ecuaciones de balance de materia Conjunto K -ecuaciones de equilibrio Conjunto S -ecuaciones de sumatorias de fracciones mol Conjunto H -ecuaciones de balance de energía Se tienen distintas maneras de expresar las ecuaciones

-25-

dependiendo de qué variables se escojan como independientes y de la manera de formular los balances de materia y energía. Formulando los balances de materia y energía alrededor de cada etapa y escogiendo como variables independientes las fracciones mol de los componentes en la fase líquida en cada etapa, x_{ik} , los gastos de vapor correspondientes a cada etapa, V_{k} , y las temperaturas en cada etapa, T_{k} , las ecuaciones quedan planteadas de la siguiente manera:

Conjunto M

$$M_{ik}(X_{ik}, V_{k}, T_{k}) = V_{kn} Y_{i,k+1} + L_{k-1} X_{i,k-1} + F_{k} Z_{ik} - (V_{k} + SV_{k}) Y_{i,k} - (L_{k} + SL_{k}) X_{ik} = 0$$

$$--(33)$$

Conjunto E

$$E_{R}(x_{ik}, V_{R}, T_{R}) = y_{ik} - K_{ik} x_{ik} = 0 \qquad --(34)$$

Conjunto S

$$S_{R}(x_{iR}, V_{R}, T_{R}) = \sum_{i=1}^{2} y_{iR} - 1.0 = 0$$
 --(35)

o' bien

$$S_{k}(x_{1k}, V_{k}, T_{k}) = \sum_{i=1}^{2} x_{ik} - 1.0 = 0.$$
 --(36)

Conjunto H

se trate:

$$\begin{aligned} H_{\mathcal{R}}(x_{ik}, V_{\mathcal{R}}, T_{\mathcal{R}}) &= V_{\mathcal{R}+1} H_{\mathcal{R}+1} + T_{\mathcal{R}} h_{\mathcal{F}_{\mathcal{R}}} + L_{\mathcal{R}-1} h_{\mathcal{R}-1} - (V_{\mathcal{R}} + SV_{\mathcal{R}}) H_{\mathcal{R}} \\ &- (L_{\mathcal{R}} + SL_{\mathcal{R}}) h_{\mathcal{R}} - Q_{\mathcal{R}} = 0 \quad --(37) \end{aligned}$$

Los gastos de líquido, L_{k} , pueden ser expresados en términos de los gastos de vapor, V_{k} , por medio de un balance de envolvente desde la primera etapa hasta la k-ésima etapa de que

Combinando a la ecuación (33) con (34) y (38) se tiene a la ecuación representativa del conjunto M expresada en términos de las fracciones mol en la fase líquida, x_{ik} , y los gastos de vapor, V_k , :

$$M_{ik}(X_{ik}, V_{k}, T_{k}) = V_{k+1}K_{i,k+1}X_{i,k+1} + \left[\sum_{j=1}^{k-1} F_{j} + V_{k} - \sum_{j=2}^{n} SV_{j} - \sum_{j=1}^{n} SL_{j} - V_{i}\right]X_{i,k-1} + F_{k}Z_{ik}$$

-(V_{k} + SV_{k})K_{ik}X_{ik} - \left[\sum_{j=1}^{k} F_{j} + V_{k+1} - \sum_{j=2}^{k} SV_{j} - \sum_{j=1}^{n} SL_{j} - V_{i}\right]X_{ik} = 0

en forma abreviada

$$M_{ik}(X_{ik}, V_{k}, T_{k}) = A_{k}X_{i,k-1} + B_{k}X_{i,k+1} + C_{k}X_{i,k+1} + T_{k}Z_{i,k} = 0 \qquad --(39)$$

Si este desarrollo hecho para una de las ecuaciones del conjunto M se lleva a cabo para las demás ecuaciones, las ecuaciones de balance de materia para una etapa quedan expresadas en forma matricial como:

$$\begin{bmatrix} B_{1} & C_{1} \\ A_{2} & B_{2} & C_{2} \\ & A_{R} & B_{A} & C_{R} \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ &$$

$$[M] \{ X_{ik} \} = \{ D_k \}$$

o simplemente

en donde

$$A_{2} = (F_{1} + V_{2} - SL_{1} - V_{1}) --(40.1)$$

$$A_{k} = \begin{bmatrix} \int_{j=1}^{k-1} F_{j} + V_{k} - \int_{j=2}^{k} SL_{j} \end{bmatrix} 2 < k \le N --(40.2)$$

$$B_{k} = \begin{bmatrix} -V_{1} + V_{2} - V_{1} \end{bmatrix} = -(40.3)$$

$$B_{k} = \left[-(V_{k} + SV_{k}) K_{ik} - \left(\sum_{j=1}^{k} F_{j} + V_{k+1} - \sum_{j=2}^{k} SV_{j} - \sum_{j=1}^{k} SL_{j} - V_{i} \right) \right] \qquad 2 < k \le N \qquad --(40.4)$$

$$D_{k} = -F_{k} Z_{ik} \qquad 1 \le k \le N \qquad --(40.6)$$

La matriz tione forma tridiagonal.

Combinando la ecuación (37) con la (38), obtenemos

$$H_{k} (\mathcal{I}_{ik}, V_{k}, T_{k}) = V_{k+1} H_{k+1} + T_{k} h_{F_{k}} + \left(\sum_{j=1}^{k-1} F_{j} + V_{k} - \sum_{j=2}^{k-1} SV_{j} - \sum_{j=1}^{k-1} SL_{j} - V_{i}\right) h_{k-1}$$

$$- (V_{k} + SV_{k}) H_{k} - \left(\sum_{j=1}^{k} F_{j} + V_{k+1} - \sum_{j=2}^{k} SV_{j} - \sum_{j=1}^{k-1} SL_{j} - V_{i}\right) h_{k} - Q_{k} = 0 \qquad ----(41)$$

Resumiendo, si se tienen M etapas de equilibrio y M componentes, entonces por cada componente se tiene una matriz tridiagonal formada a partir de N ecuaciones y una contribución de NXM ecuaciones de balance de materia. Además se tienen M ecuaciones de sumatorias de fracciones mol de la forma de la ecuación (35) y M ecuaciones de balance de energía de la forma de la ecuación (41). En total hay $N \times M + N + N = N(M+2)$ ecuaciones.

Las variables independientes seleccionadas al principio del desarrollo de las ecuaciones fueron:

NxM fracciones mol de los componentes en la fase líquida en ca da etapa, x_{ib} .

and output y the

N gastos de vapor en cada etapa, Va

M temperaturas en cada etapa, TA

Sumándolas, se ve que se tienen N(N+2)variables independientes

en las N(M+2) ecuaciones obtenidas anteriormente y por lo tanto el sistema de ecuaciones es consistente y tiene solución única.

El análisis de la torre de absorción por medio del modelo que se ha planteado, consiste en encontrar un conjunto de composiciones x_{ik} , gestos de vapor V_k , y temperaturas T_k , que satisfagan todas las ecuaciones del modelo. Debido a la natural<u>e</u> za no lineal de las ecuaciones se hacen necesarios procedimientos iterativos para poder resolverlas.

Se requiere contar con la información necesaria para que el problema de resolución de la torre esté completamente determinado y sea posible la aplicación del modelo para la obtención del conjunto de valores x_{ik} , V_k , $y T_k$. Esta información está constituida por un número fijo de variables independientes que deben especificarse con anticipación. La determinación de este número de variables o grados de libertad que determinan completamente el problema de diseño puede hacerse por medio de la regla de descripción que explica King⁴.

Para torres de absorción, normalmente se especifican las composiciones, las condiciones y los gastos de todas las alimen taciones; el múmero de etapas o platos; la presión de la columna; los gastos y localización de las salidas laterales y las cargas térmicas de los enfriadores intermedios. En el caso de absorbedores con rehervidores la información especificada inclui ría la carga térmica del rehervidor y de los calentadores laterales. Pueden realizarse sustituciones de las especificaciones mencionadas. Por ejemplo, para absorbedores con rehervidor

-29-

la cantidad de producto del domo puede especificarse en lugar de la carga térmica del rehervidor.

Para poder resolver la matriz [M] de balances de materia, se necesita que todos los coeficientes A, B, C y D sean constan tes, lo cual significa dofinir una transformación lineal tal que asocie a cada vector $\{x_{ik}\}$ un único vector $\{D_k\}$. Esto se logra especificando las variables agrupadas en estos coeficientes. Las relaciones de equilibrio de los diversos componentes en cada etapa, K_{ik} , están incluídas dentro de los coeficientes B y C por lo que se hace necesario suponer las temperaturas en cada etapa, T_{ik} , y que las relaciones sean sólo función de ellas. Debe hacerse tamoién una suposición de los gastos de vapor en cada plato, V_k , y las siguientes variables deben ser dato o es pecificarse:

Gastos de alimentación \mathbb{F}_{k} y sus respectivas composiciones z_{ik} Salidas laterales de vapor SV_{k} Salidas laterales de líquido SL_{k}

Hecho lo anterior, se procede a agrupar al vector $\{ D_{A} \}$ dentro de la matriz [M] dando por resultado,

3, C, A₂ B₂ C₂ A_k B_k C_k A_{n-1} 7 15isM DR AN-1 BN-1 CN-1 DN AN BN DN -(42)

-30-
La solución de la matriz aumentada (42) para la obtención del vector de composiciones $\{x_{ik}\}$ puede realizarse fácilmente por medio de un algoritmo derivado del método de eliminación de Gauss. En este algoritmo, dos cantidades auxiliares p y q , se calculan primeramente como sigue;

$$P_1 = C_1/B_1$$
, $q_1 = D_1/B_1$
 $P_R = C_R/(B_R - A_RP_{R-1})$ $2 \le R \le N-1$
 $q_R = (D_R - A_Rq_{R-1})/(B_R - A_RP_{R-1})$ $2 \le R \le N$

A continuación, los valores del vector de composiciones $\{x_{ik}\}$ se calculan evaluando primero el último término x_{in} y después disminuyendo el índice k hasta alcanzar el término x_{ii} :

$X_{iN} = q_N$ $X_{iR} = q_R - P_R X_{i,R+1} \qquad 1 \le R \le N-1$

Se hace notar que en el desarrollo realizado se han fijado el número de etepas, los gastos y composiciones de las alimentaciones y las salidas laterales de vapor y líquido, pero no se han especificado variables de composición de cualquiera de los productos. Por lo tarto, se trata de un análisis de la op<u>e</u> ración de la columna más que de un análisis de diseño. Para pro blemas de diseño con un número desconocido de etapas y variables de separación fijas será necesario interpolar entre los diferen tes casos para obtener soluciones.

En el análisis de operación de la columna propuesto, se han establecido como primeros pasos la suposición de los perfiles de gastos de vapor y temperaturas de las etapas y la resolu ción de las matrices tridiagonales de los diversos componentes. Los conjuntos de composiciones x_{ik} , gastos de vapor V_A y temperaturas T_k de que se dispone en este nivel del cálculo, han tratado de cumplir las ecuaciones del conjunto M de la forma (33) y del conjunto E de la forma (34). Falta aún verificar que los valores supuestos y los calculados son los que cumplen las ecuaciones del conjunto S de la forma (35) ó (36) y del conjunto H de la forma (37). De no ser así, hará falta volver a suponer otros perfiles de gastos de vapor y temperaturas hasta que los valores supuestos sean lo suficientemente cercanos a los calculados.

A continuación se propondrán dos procedimientos para la solución completa del conjunto de ecuaciones. Ambos utilizan la técnica de la matriz tridiagonal y son el Método del Punto de Burbuja y el Método de la Suma de Gastos.

IIIb.1 Método del Punto de Burbuja

Una vez que se han calculado las fracciones mol de los componentes en la fase líquida en cada etapa, x_{ik} , por medio de la resolución de M matrices tridiagonales, las ecuaciones de sumatorias de fracciones mol del conjunto S pueden expresarse como

$$S_{k}(X_{ik}, T_{k}) = \sum_{i=1}^{M} K_{ik} X_{ik} - 1 = 0$$
, $1 \le k \le N$ ----(43)

Si las relaciones de equilibrio de los componentes en las diversas etapas pueden expresarse como función sólo de la temperatura de la forma

$$K_{ik} = a_{ii} + a_{2i} T_{k} + a_{3i} T_{k}^{*} + a_{4i} T_{k}^{*}$$
, $1 \le i \le M$ ---(44)

entonces la ecuación de sumatoria de fracciones mol es función

-32-

de la temperatura unicamente, esto es

$$S_{R}(T_{R}) = \sum_{i=1}^{m} \left(\sum_{j=1}^{i} a_{ji} T_{R}^{i-1} \right) X_{iR} - 1.0 = 0$$
, $i \le R \le N$ ---(45)

Para la solución de esta ecuación varios investigadores han utilizado el método iterativo de Newton-Raphson y el método de la falsa posicioń. En el presente trabajo se utiliza el método de Muller.

El método de Muller es en cierto modo una generalización del método de la falsa posición. Se basa en encontrar como pri mer paso dos valores de la temperatura que produzcan valores po sitivos de la función y un valor que produzca un valor negativo de la función. Como se muestra en la siguiente figura, una cur va cuadrática g_i (T_k) = 0 se ajusta e través de los puntos (T_{ki}, S_{ki}), (T_{k2}, S_{k2}) y (T_{k3}, S_{k3}). La raíz, T_{k4}, de esta ecuación cuadrática se toma como primera aproximación de la raíz de la ecuación $S_k(T_k) = 0$. Para obtener una raíz más exacta se evalúa el punto $S_{ki} = S_k(T_{ki})$. El punto (T_{k3}, S_{k3}) es sustituído por (T_{k4}, S_{k4}) y se repite el proceso hasta que $S_{ij} = S_k(T_{ij}) \leq \varepsilon$ en donde ε es una tolerancia predeterminada.

-33-

La fórmula iterativa de Muller puede derivarse de varias formas. Para una ecuación general $S_{\mathbf{A}}(\mathbf{T}_{\mathbf{A}}) = f(z) = 0$, la fórmula que es fácilmente adaptable a computadoras digitales viene dada como sigue. Empezando con los valores iniciales de z,, z_{2} , z_{3} , una sucesión de valores iterativos, z_{4} , z_{5} , ..., z_{i} , se obtiene a partir de

$$\begin{aligned} z_{j} &= z_{j-1} + (z_{j-1} - z_{j-2})d_{j} & j \ge 4 & ---(46) \\ d_{j} &= \frac{-2f(z_{j-1})(1+d_{j-1})}{b \pm \sqrt{b^{2} - Hf(z_{j-1})d_{j-1}(1+d_{j-1})c}} & ---(47) \\ d_{3} &= (z_{b} - z_{2})/(z_{2} - z_{1}) \\ b &= f(z_{j-3})d_{j-1}^{2} - f(z_{j-2})(1+d_{j-1})^{2} + f(z_{j-1})(1+2d_{j-1}) ---(48) \\ c &= f(z_{j-3})d_{j-1} - f(z_{j-2})(1+d_{j-1}) + f(z_{j-1}) & ---(49) \end{aligned}$$

Las temperaturas en cada plato, T_{A} , encontradas por el método de Muller son las que cumplen con las ecuaciones de suma toria de fracciones mol del conjunto S y debe ocurrir que sean lo suficientemente cercanas a las supuestas inicialmente. El nuevo conjunto de temperaturas es empleado para calcular las en talpías de los gastos de líquido y vapor en las etapas y permiten la obtención de valores de gastos de vapor V_A que satisfagan las ecuaciones de balance de energía del conjunto H de la forma (41). Las entalpías de las corrientes internas de líquido y vapor pueden ser calculadas ya sea usando el enfoque de so lución ideal o por medio de ecuaciones generalizadas como las de Yen. Las entalpías de las corrientes de alimentación y las cargas térmicas de los enfriadores o calentadores intermedios están especificadas. Si se emplea el enfoque de solución ideal las entalpías de las corrientes internas de vapor y líquido vie nen dadas respectivamente por:

$$H_{R} = \sum_{i=1}^{N} Y_{ik} (b_{4L} + b_{2i} T_{R} + b_{3i} T_{R}^{2} + b_{4i} T_{R}^{3}) , I \le R \le N - -(50)$$

$$f_{R} = \sum_{i=1}^{N} X_{ik} (C_{1i} + C_{2i} T_{R} + C_{3i} T_{R}^{2} + C_{4i} T_{R}^{3}) , I \le R \le N - -(51)$$

Procedimiento Computacional

Paso 1. Asumir un perfil inicial de gastos de vapor, (V_k) , , y un perfil de temperaturas, (T_A) , , de las diversas etapas (el segundo subíndice se refiere al múmero de la iteración).

Paso 2. Calcular las relaciones de equilibrio de los com pomentes en las diversas etapas, K_{ik} , y evaluar los elementos A, B, C y D de las M matrices tridiagonales por medio de las ecuaciones (40.1) a (40.6).

Paso 3. Obtener las fracciones mol en la fase líquida de los componentes en cada etapa, x_{ik} , resolviende una matriz tr<u>i</u> diagonal por cada componente. Normalizar las fracciones mol en la fase líquida.

Paso 4. Sustituir los valores calculados de relaciones de equilibrio, K_{ik} , y fracciones mol, x_{ik} , en la ecuación (45) de sumatoria de fracciones mol. Resolver las N sumatorias de fracciones mol por el método de Muller para obsener nuevos valores de temperaturas, $(T_k)_i$, en las etapas.

Paso 5. Emploando las nuevas temperaturas, calcular las

entelpías de las corriences internas de líquido y vapor por medio de las ecuaciones (50) y (51) o con las ecuaciones generalizadas

Paso 6. Resolver la ecuación (41) de balance de energía en cada etapa para tener un nuevo perfil de gastos de vapor(V_A).

Paso 7. Repetir los pasos 2 a 6 hasta que

$$\sum_{j=1}^{N} \left[(T_R)_j - (T_R)_{j-1} \right]^2 \leq \epsilon_{\gamma}$$

donde Eres una cierta tolerancia.

IIIb.2 Método de la Suma de Gastos

En este método, la determinación de las fracciones mol xia de la fase líquida en cada etapa se realiza también por medio de la resolución do las matrices tridiagonales de los componentes. Las fracciones mol y, de la fase de vapor se obtienen directamente a partir de las fracciones mol x, sin haberlas normaliza do previamente. Si para una etapa el gasto molar de vapor (V. supuesto inicialmente se multiplica por la fracción mol y, del componente i, entonces se obtiene como resultado el gasto parcial molar del componente en cuestión. Los gastos parciales mo lares así obtenidos se suman en cada plato para determinar un perfil nuevo de gastos de vapor V. . Este perfil de gastos de vapor constituye una mejor aproximación a los valores verdaderos que el perfil supuesto inicialmente. La suma de los gastos parciales molares es equivalente a multipicar el gasto de vapor Ve por la sumatoria de las fracciones mol Zyik para obtener un nuevo gasto de vapor con el cual proseguir los cálculos.

Se recordará que la ecuación de balance de energía del

conjunto H habia quedado expresada como

$$\begin{aligned} &H_{R}(X_{i}k, V_{R}, T_{R}) = V_{R+1}H_{R+1} + F_{R}H_{FR} + (\sum_{j=1}^{k-1} F_{j} + V_{R} - \sum_{j=2}^{R-1} SV_{j} - V_{1})h_{R-1} \\ &-(V_{R} + SV_{R})H_{R} - (\sum_{j=1}^{R} F_{j} + V_{R+1} - \sum_{j=2}^{R} SV_{j} - \sum_{j=1}^{R-1} SL_{j} - V_{1})h_{R} - Q_{R} = 0 \quad ---(41) \end{aligned}$$

A este nivel del cálculo se tratan de encontrar nuevos v<u>a</u> lores de las temperaturas T_k en cada plato a partir de las varia bles calculadas x_{ik} y V_k que al ser dato se convierten en constantes. La ecuación (41) quedará entonces como una función sólo de T_k , k l, 2, ..., N

$$\Phi_{R} = H(T_{R}) = V_{R+1}H_{R+1} + F_{R}h_{FR} + E_{R}h_{R-1} - (V_{R} + SV_{R})H_{R} - R_{R}h_{R} - Q_{R}$$
---(52)

donde E_{k} y R_{k} representan a las correspondientes expresiones sustituídas. La ecuación (52) será diferente de cero, a no ser que las temperaturas supuestas inicialmente sean correctas.

Sea ϕ_k una función continua, derivable respecto a cada una de las temperaturas T_k (k l, 2, ..., N), entonces la $d\phi_k$ puede expresarse como:

$$d\phi_{k} = \left(\frac{\partial\phi_{k}}{\partial T_{i}}\right) dT_{i} + \left(\frac{\partial\phi_{k}}{\partial T_{2}}\right) dT_{2} + \dots + \left(\frac{\partial\phi_{k}}{\partial T_{k-1}}\right) dT_{k-1}$$
$$+ \left(\frac{\partial\phi_{k}}{\partial T_{k}}\right) dT_{k} + \left(\frac{\partial\phi_{k}}{\partial T_{k+1}}\right) dT_{k+1} + \dots + \left(\frac{\partial\phi_{k}}{\partial T_{N}}\right) dT_{N}$$

Para el primer plato, todas las derivadas son cero excepto $\left(\frac{\partial \phi_1}{\partial T_1}\right)$ y $\left(\frac{\partial \phi_1}{\partial T_2}\right)$. Para el último plato sólo $\left(\frac{\partial \phi_N}{\partial T_{N-1}}\right)$ y $\left(\frac{\partial \phi_N}{\partial T_N}\right)$ son diferentes de cero. Para cual-

-37-

quier plato intermedio k,
$$\left(\frac{\partial \Phi k}{\partial T_{k+1}}\right)$$
, $\left(\frac{\partial \Phi k}{\partial T_k}\right)$ y $\left(\frac{\partial \Phi k}{\partial T_{k+1}}\right)$

son las únicas derivadas que no se hacen cero dado que todas las demás temperaturas no intervienen en la ecuación de balance de energía del plato.

Se trata de encontrar una dos tal que

$$\phi_{\mathbf{R}} + d\phi_{\mathbf{R}} = 0$$

Si se toman incrementos finitos, se tiene

$$\Phi_{\mathbf{k}} + \left(\frac{\partial \Phi_{\mathbf{k}}}{\partial T_{\mathbf{k}-1}}\right) \Delta T_{\mathbf{k}-1} + \left(\frac{\partial \Phi_{\mathbf{k}}}{\partial T_{\mathbf{k}}}\right) \Delta T_{\mathbf{k}} + \left(\frac{\partial \Phi_{\mathbf{k}}}{\partial \overline{T_{\mathbf{k}+1}}}\right) \Delta T_{\mathbf{k}+1} = 0 \quad --- (53)$$

Ahora el problema se reduce a encontrar los incrementos Δ^{cr} de temperatura que satisfagan la ecuación (53). Si la ecuación (53) se aplica a cada uno de los platos se obtiene una matriz que es, nuevamente, tridiagonal:

$$\begin{bmatrix} \frac{\partial \phi_{1}}{\partial T_{1}} & \frac{\partial \phi_{1}}{\partial T_{2}} \\ \frac{\partial \phi_{2}}{\partial T_{1}} & \frac{\partial \phi_{3}}{\partial T_{2}} & \frac{\partial \phi_{2}}{\partial T_{3}} \\ \frac{\partial \phi_{2}}{\partial T_{1}} & \frac{\partial \phi_{3}}{\partial T_{2}} & \frac{\partial \phi_{4}}{\partial T_{3}} \\ \frac{\partial \phi_{k}}{\partial T_{k-1}} & \frac{\partial \phi_{k}}{\partial T_{k+1}} \\ \frac{\partial \phi_{k-1}}{\partial T_{k-2}} & \frac{\partial \phi_{k-1}}{\partial T_{k-1}} & \frac{\partial \phi_{k-1}}{\partial T_{k}} \\ \frac{\partial \phi_{k-1}}{\partial T_{k-1}} & \frac{\partial \phi_{k}}{\partial T_{k}} \\ \frac{\partial \phi_{k-1}}{\partial T_{k-1}} & \frac{\partial \phi_{k}}{\partial T_{k}} \\ \frac{\partial \phi_{k-1}}{\partial T_{k-1}} & \frac{\partial \phi_{k}}{\partial T_{k}} \\ \frac{\partial \phi_{k-1}}{\partial T_{k-1}} & \frac{\partial \phi_{k-1}}{\partial T_{k}} \\ \frac{\partial \phi_{k-1}}{\partial T_{k-1}} & \frac{\partial \phi_{k-1}}{\partial T_{k-1}} \\ \frac{\partial \phi_{k-1}}{\partial T_{k-1}} & \frac{\partial \phi_{k-1}}{\partial$$

En forma abroviada

 $[D\phi](\Delta T_R) = \{-\phi_R\}$

---(54)

$$\frac{\partial \Phi_{i}}{\partial T_{i}} = -V_{i}\left(\frac{\partial H_{i}}{\partial T_{i}}\right) - \left(F_{i} + V_{2} - V_{i}\right)\left(\frac{\partial R_{i}}{\partial T_{i}}\right) - \left(54.1\right)$$

$$\frac{\partial \Phi_1}{\partial T_2} = V_2 \left(\frac{\partial H_2}{\partial T_2} \right) --(54.2)$$

$$\frac{\partial \Phi_{\mathbf{k}}}{\partial T_{\mathbf{k}}} = \left(\sum_{j=1}^{\mathbf{k}-1} F_{j} + V_{\mathbf{k}} - \sum_{j=2}^{\mathbf{k}-1} SV_{j} - \sum_{j=1}^{\mathbf{k}-1} SL_{j} - V_{i}\right) \left(\frac{\partial h_{\mathbf{k}-1}}{\partial T_{\mathbf{k}-1}}\right) - (54.3)$$

$$\frac{\partial \Phi_{R}}{\partial T_{R}} = -\left(V_{R} + SV_{R}\right) \left(\frac{\partial H_{R}}{\partial T_{R}}\right) - \left(\sum_{j=1}^{k} F_{j} + V_{R+1} - \sum_{j=2}^{k} SV_{j} - \sum_{j=1}^{k-1} SL_{j} - V_{i}\right) \left(\frac{\partial h_{R}}{\partial T_{R}}\right) - (54.4)$$

$$\frac{\partial \nabla R}{\partial T_{R+1}} = V_{R+1} \left(\frac{\partial \Pi_{R+1}}{\partial T_{R+1}} \right) - -(54.5)$$

$$\frac{\partial \Phi_{N}}{\partial T_{N-1}} = \left(\sum_{j=1}^{N-1} F_{j} + V_{N} - \sum_{j=2}^{N-1} SV_{j} - \sum_{j=1}^{N-1} SL_{j} - V_{1}\right) \left(\frac{\partial K_{N-1}}{\partial T_{N-1}}\right) - -(54.6)$$

$$\frac{\partial \Phi_{N}}{\partial T_{N}} = -(V_{N} + SV_{N}) \left(\frac{\partial H_{N}}{\partial T_{N}} \right) - \left(\sum_{j=1}^{N} F_{j} + V_{N+1} - \sum_{j=2}^{N} SV_{j} - \sum_{j=1}^{N-1} L_{j} - V_{i} \right) \left(\frac{\partial h_{N}}{\partial T_{N}} \right) - \left(\frac{\partial H_{N}}{\partial$$

Los términos $(\partial H/\partial T)$ y $(\partial h/\partial T)$ son, de hecho, las capacidades caloríficas molares de las corrientes de vapor y líquido a la temperatura T.

 $\begin{bmatrix} D \phi \end{bmatrix} \{ T_k \} = \{ -\phi_k \}$ constituye un conjunto de ecuaciones lineales que pueden resolverse simultaneamente para obtener los valores de ΔT_k aprovechando la ventaja de que la matriz $\begin{bmatrix} D \phi \end{bmatrix}$ es tridiagonal. Cada incremento de temperatura

-39-

 ΔT calculado de esta manera, se suma a la temperatura del plato supuesta anteriormente para obtener un nuevo perfil de temperaturas $T_{i\!\!\!\!R}$.

Procedimiento Computacional

Paso 1. Asumir un perfil inicial de gastos de vapor, ($V_{\mathbf{k}}$), , y un perfil de temperaturas, ($T_{\mathbf{k}}$), , de las diversas etapas (El segundo subíndice se refiere al número de la iteración).

Paso 2. Calcular las relaciones de equilibrio K_{ik} , de los componentes en las diversas etapas y evaluar los elementos A, B, C y D de las matrices tridiagonales, una por cada componente, por medio de las ecuaciones (40.1) a (40.6).

Paso 3. Obtener las fracciones mol x_{ib} , de los componentes en la fase líquida por medio de la resolución de las M matrices tridiagonales.

Paso 4. Utilizar los valores calculados de relaciones de equilibrio, K_{ik} , y las fracciones mol x_{ik} , sin normalizar, pa ra evaluar las fracciones mol en la fase vapor, y_{ik} , de los distintos componentes. Emplear las fracciones mol y_{ik} para obtener un nuevo perfil de gastos de vapor, multiplicando la suma toria de fracciones mol en cada plato por el gasto de vapor supuesto en la iteración anterior.

Paso 5. Evaluar cada una de las ecuaciones de balance de energía de plato, ecuación (52), y sus derivadas parciales con respecto a la temperatura por medio de las ecuaciones (54.1) a (54.7).

Paso 6. Resolver el sistema $[D\phi]{\Delta T_k} = {-\phi_k}$

-40-

usando el algoritmo derivado del método de eliminación de Gauss, para obtener el vector de incrementos de temperatura $\{\Delta T_R\}$. Sumar el respectivo incremento de temperatura ΔT_R a la tempera tura del plato supuesta en la iteración anterior para obtener un nuevo perfil de temperaturas T_R .

Paso 7. Repetir los pasos 2 a 6 hasta que

$\sum_{k=1}^{N} (\Delta T_k)^2 \leq \varepsilon_T$

en donde E es una cierta tolerancia.

IV. ANALISIS Y RESULTADOS

En la aplicación de los modelos presentados haciendo uso de la computadora digital es conveniente tener correlaciones <u>gé</u> nerales para el cálculo de las relaciones de equilibrio líquido vapor y para el cálculo de las entalpias del líquido y del vapor.

Para mezclas de hidrocarburos una correlación general del equilibrio líquido-vapor es la propuesta por Chao y Seader². En ella la relación de equilibrio K_i del componente i se calcula por una combinación de tres cantidades termodinámicas rigurosamente definidas:

$$K_{i} \equiv \frac{y_{i}}{x_{i}} \equiv V_{i}^{*} \frac{y_{i}}{b_{i}} \qquad ---(55)$$

 y^{*} -coeficiente de fugacidad en la fase líquida del componente i puro a las condiciones del sistema

Esta cantidad es una propiedad termodinámica bien definida bajo condiciones en las que el componente existe realmente como líquido. De esta forma, puede calcularse de correlaciones generalizadas en términos de temperatura y presión reducida. En condiciones donde el componente no existe como líquido puro, la cantidad V° se vuelve hipotética. Tales condiciones pueden ocurrir en mezclas y se presenten cuando la presión del sistema

-42-

es menor que la presión de vapor del componente o cuando la tem peratura se encuentra por encima de la temperatura crítica del componente. La correlación del coeficiente de fugacidad en la fese líquida se ha extendido a tales condiciones, así como a con diciones de temperaturas reducidas bajas:

El primer término del lado derecho da el coeficiente de fugacidad de fluidos simples caracterizados por un valor de cero del factor acéntrico w. El segundo término tiene una función de corrección que toma en cuenta la desviación de las propiedades de los fluidos reales de aquellas de los fluidos simples.

Las dos cantidades $\mathcal{V}^{(0)}$ y $\mathcal{V}^{(1)}$ dependen sólo de la temperatura reducida Tr y de la presión reducida Pr y se han aproximado por las funciones

$$\log \mathcal{V}^{(0)} = A_0 + A_1 / T_r + A_2 T_r + A_8 T_r^2 + A_9 T_r^3 ---(57) + (A_8 + A_6 T_r + A_3 T_r^2) P_r + (A_8 + A_9 T_r) P_r^2 - \log P_r$$

$$\log \mathcal{V}^{(1)} = -4.23893 + 8.6580 T_r - 1.22060 / T_r ---(58) -3.15224 T_r^3 - 0.025 (P_r - 0.6)$$

 Y_i -coeficiente de actividad del componente i en la solución líquida

Las soluciones líquidas de hidrocarburos de consideran so luciones regulares en esta correlación. Las soluciones regulares se caracterizan porque su entropía en exceso es cero. La expresión propuesta es

$$\ln V_{i} = \frac{V_{i}(\dot{\partial}_{i} - \dot{\partial})^{2}}{RT} \qquad ---(59)$$

donde δ_i es el parámetro de solubilidad; V_i , el volumen molar del líquido y la cantidad $\bar{\delta}$ presenta un velor promedio del pará

metro de solubilidad para la solución

$$\overline{\delta} = \frac{\sum_{i} \pi_{i} v_{i} \delta_{i}}{\sum_{i} \pi_{i} v_{i}} \qquad ---(60)$$

🏟 -coeficiente de fugacidad del componente i en la mezcla en

- la fase vapor
 - A partir do la ecuación de estado de Redlich-Kwong

$$Z = \frac{1}{1-h} - \frac{A^2}{B} \frac{h}{1+h} \qquad ; h = \frac{BP}{Z} \qquad ---(61)$$

se deriva la expresión para el coeficiente de fugacidad en términos del factor de compresibilidad z:

$$\ln \phi_{i} = (2-1) \frac{\beta_{i}}{\beta} - \ln (2-\beta_{P}) - \frac{A^{2}}{\beta} \left[2 \frac{A_{i}}{A} - \frac{\beta_{i}}{\beta} \right] \ln (1 + \frac{\beta_{P}}{2})$$

$$A = \overline{\Sigma}_{i} y_{i} A_{i}$$

$$A_{i} = (0.4278 \frac{T_{r_{i}}^{2.5}}{T_{r_{i}}})^{0.5}$$

$$B = \overline{\Sigma}_{i} y_{i} B_{i}$$

$$B_{i} = 0.0867 \frac{T_{r_{i}}}{T_{c_{i}}}$$

Al aplicar la correlación, es útil entender el significado relativo de los tres factores γ° , γ y ϕ bajo condiciones diversas.

El coeficiente de fugacidad del líquido puro \mathcal{V}^{o} , es el que en primera instancia refleja los efectos de la identidad del com ponente, de la temperatura y de la presión. Su valor es idént<u>i</u> co al valor de K real cuando la mezcla en fase vapor se comporta como gas ideal y la solución líquida se comporta también como ideal.

El coeficiente de fugacidad de la mezcla en fase vapor, ϕ , es siempre cercano a la unidad a presiones suficientemente bajas. A medida que la presión aumenta, ϕ disminuye marcadamente para componentes pesados; sin embargo para gases ligeros generalmente sólo cambia ligeramente.

El coeficiente de actividad en la solución líquida se acer ca a la unidad para el componente presente en altas concentracio nes en la fase líquida.

El cálculo de entalpías se puede hacer a través de ecuacio nes generalizadas como las de Yen-Alexander. Pare hidrocarburos se pueden emplear los datos presentados por Maxwell, para lo cual es conveniente ajustar ecuaciones a las curvas que permita tener expresiones analíticas de la entalpía en función de la tem peratura y de la presión en un rango dado de operación. Estos datos pueden aplicarse a mezclas de hidrocarburos ligeros bajo las siguientes suposiciones:

1. Las entalpías de los componentes individuales de una mezcla son aditivas en la fase líquida, esto es, el contenido calorífi co molar de la mezcla es igual a la suma de los productos del contenido calorífico molar de los componentes por su fracción mol

 Las entalpías de los componentes individuales son aditivas en la fase vapor a bajas presiones (0-1 atm)

3. El cambio de entalpía del vapor con la presión a temperatura constante es el mismo para una mezcla que para un componente puro que tenga el mismo peso molecular de la mezcla.

Para entalpías de gases en solución por arriba de la temperatura crítica se hace la suposición de que el gas en solución a cualquier temperatura tendría la misma densidad y entalpía par cial que el componente puro a una presión correspondiente a una extrapolación de su curve de presión de vapor por arriba del pun to crítico. Obviamente, esto es sólo una aproximación dado que tanto una curva de presión de vapor como una solución líquida ideal carece de sentido en esta región.

Ejemplo 1. Un ges de composición 70% mol CH₄, 15% C₂ H₆, 10% n-C₃ H₈ y 5% n-C₄ H₁₀ a 75°F, 2 atm, va a ser lavado en un absorbedor de platos adiabático con un líquido que contiene 1% mol n-C H , 99% aceite hidrocarburo no volátil, a 75°F, usando R moles de líquido/mol de gas que entra. La presión en la columna se fija en 2 atm y se desea recuperar un mínimo del 70% del C, H₆ del gas alimentado.

Mediante un método de grupo se cricula que el número apro ximado de etapas teóricas necosarias para este propósito es de tres. Aplicando los modelos propuestos, ce requiere conocer las características de las correientes do salida. Para esto, se propone usar la correlación de Chao-Seader en el cálculo de las relaciones de equilibrio con la suposición de que tanto el coeficiente de actividad en la solución líquida como el coeficiente de fugacidad en la mezcia en fase vapor de los componentes es muy cerceno a le unidad ye que se trata de mezcias de hidrocarburos de series homólogas a presión y temperatura moderadas. Para el cálculo de entalpías se disponen de datos de capacidades caloríficas medias y calores latentes a la temperatura base.

Método de Horton-Franklin

Base: 1 1b mol de gas alimentado/unidad de tiempo

R = 3.5 lb mol de liquido alimentado/lb mol de gas alimen tado

-46-

Suposiciones iniciales:

Gasto de vapor a la salida 0.845 lb mol/U.T. Temperatura de salida del líquido 78.5°F

Mediante las ecuaciones (20) y (23) se determina el perfil inicial de gastos de vapor y el de temperaturas respectivamente:

plato gasto de vapor (lb mol/U.T.) temperatura (* F)

1	0.845	76.1
2	0.894	77.3
3	0.945	78.5

Resultados finales:

corrientes de salida

Componente	gas (1b mol/U.T.)	líquido (lb mol/U.T.)
CH4	0.6598	0.0402
C. H.	0.1062	0.0438
п-С 3 Н 8	0.0227	0.0773
n-C ₄ H ₁₀	0.0095	0.0762
aceite	-	3.465
gasto total	0.7983	3.7024

Recuperación de n-C, Hg : 77.3%

plato	gasto de vapor (1b mol/U.T.)	gasto de líquido (lb mol/U.T.)	temperatura	(• F)
l	0.7983	3.6132	76.67	
2	0.9109	3.6531	77.68	
3	0.9507	3.7024	78.75	

Múmero de iteraciones: 2 $\sum_{k=1}^{3} (T_j - T_{j-1})_k^2 = 0.12$ Tiempo de computadora: 5.6 seg

Método de Punto de Burbuja (Matriz Tridiagonal)

El Método del Punto de Burbuja aplicado a la resolución de problemes de absorción, presenta en la práctica dos limitaciones. Se ha visto que para que el método converja, es necesario especificar la cantidad de producto del domo, quedando como variable a determinar el gasto del líquido de alimentación. Debido a la gran sensicilidad del método a los cambios de temperatura(a veces una variación de centésimas de grado en la temperatura supuesta ocasiona un cambio del orden de unidades en la temperatura calculada), se hace necesario utilizar técnicas de control de cambio de temperatura. Así, un factor de peso WT, se emplea para la gran mayoría de los problemas de cálculo de absorbedores. Este factor de peso se usa de la siguiente manera: Si j es la iteración, $\overline{T}_{j+1} = \overline{T}_j + NT (T_{eF} - \overline{T}_j)$ en donde T_{eF} es la temperatura de burbuja calculada mediante el método de Muller.

Base: 1 1b mol de gas alimentado/U.T.

Suposiciones iniciales:

plato gasto de vapor(lb mol/U.T.) tem	moeratura	(•F)
---------------------------------------	-----------	------

1	0.800	(especificación)	77.0
2	0.840		77,5
3	0.860		78.5

-48-

Resultados finales:

R 3.435 lb mol líquido alimentado/lb mol de gas alimentado corrientes de salida Componente gas (lb mol/U.T.) líquido (lb mol/U.T.)

Jourbourguoa	gas (ID mor)	0.1.)	TIGUIGO	(10 mor/0.0
CH ₄	0.660			0.0390
C ₂ H ₆	0.107			0.0430
n-C, H,	0.024			0.0760
n-C, H,o	0.009			0.0748
aceite	-			3.4007
gasto total	0.800			3.635 0
Recuperación d	le n-C. H.	76.0%		

plato	gasto de vapor (1b mol/U.T.)	gasto de líquido (15 mol/U.T.)	temperatura	(●F)
l	0.800	3.542	76.981	
2	0.907	3.586	77.480	
3	0.951	3.635	78.484	

Factor de peso WT: 0.001 Múmero de iteraciones: 7 $\sum_{k=1}^{3} (T_j - T_{j-1})_{k}^{2} = 1.54$

Tiempo de computadora: 8.6 seg

El factor de peso de control de temperaturas, WT, de 0.001, es el que hace posible la convergencia del método, aunque esta sea relativamente lenta en comparación con la del método de Horton-Franklin. Ejemplo 2. Se desse conocer en qué porcentaje se mejora la recuperación de n-propano además de las características de las corrientes de salida, para las condiciones del ejemplo 1, al elevar a 6 y 8 el número de platos teóricos de la columna.

Torre de absorción con 6 platos

Método de Horton-Franklin

Base: 1 1b mol do gas alimentado/U.T.

R 3.5 lb mol de líquido alimentado/lb mol de gas alimentado

Suposiciones iniciales:

Gasto de vapor a la salida: 0.845 lb mol/U.T.

Temperatura de salida del líquido: 78.5 · F

Perfil inicial calculado en forma aproximada (ecs. (20) y (23))

44

plato gasto de vapor (1b mol/U.T.) temperatura (°F)

1	0.845	75.5
2	0.809	76.1
3	0.894	76.7
4	0.919	77.3
5	0.945	77.9
6	0.972	78.5

Resultados finales:

Corrientes de salida

Componente	Gas (1b mol/U.T.)	Liquido (16 mol/U.T.)
CHy	0.6610	0.0390
C2H	0.1071	0.0429
n-Calls	0.0129	0.0871
n-CyH,o	0.0087	0.0763
aceite	-	3.4050
gasto total	0.7897	3.7103

a.,

Recuperación de n-7, Hg: 87.1%

(•F)	temperatura	gasto de líquido (lb mol/U.T.)	gasto de vapor (16 mol/U.T.)	plato
	76.37	3.5995	0.7897	1
	76.95	3.6214	0.8891	2
	77.36	3.6384	0.9111	3
	77.74	3.6547	0.9281	4
	78.23	3.6747	0.9444	5
	78.99	3.7103	0.9643	6

Número de iteraciones: 2 $\sum_{k=1}^{6} (T_j - T_{j-1})_k^2 = 0.24$

Tiempo de computadora: 6.0 seg

Método del Punto de Burbuja (Matriz Tridiagonal) Base: 1 lb mol de gas elimentado/U.T. Suposiciones iniciales:

plato	gasto de vapor (1b mol/U.T.)	temperatura (°F)
1	0.800 (especificación)	77.0
2	0.850	77.5
3	0.870	78.0
4	0.890	78.5
5	0.910	79.0
6	0.920	79.5

Resultados finales:

R = 3.455 lb mol líquido alimentado/lb mol de gas alimentado

corrientes de salida

Componente	gas (1b mol/U	.T.) líquido (1b mol/U.T.)
CH.,	0.6620	0.0380
C _z H ₆	0.1090	0.0410
n-C ₅ H ₅	0.0149	0.0850
n-C, H,	0.0095	0.0750
aceite	-	3.4200
gasto total	0.8000	3.6550
Recuperación d	e n-C.H. : 8	5.%

plato	gasto de vapor (1b mol/U.T.)	gasto de líquido (lb mol/U.T.)	temperatura (•F)
1	0.800	3.548	76.924
2	0.893	3.569	77.430
3	0.914	3.583	77.939
4	0.928	3.596	78.434
5	0.941	3.615	78.925
6	0.960	3.655	79.396

Factor de peso WT: 0.01 Número de iteraciones: 6 $\sum_{k=1}^{6} (\tau_j - \tau_{j-1})_k = 0.64$ Tiempo de computadora: 8.5 seg

-52-

4

.

1.00 *

ì

Torre de absorción con 8 platos

Método de Horton-Franklin

Base: 1 1b mol de gas alimentado/U.T.

R = 3.5 lb mol líquido alimontado/lb mol de gas alimontado Suposiciones iniciales:

p la to	gasto de vapor (16 mol/U.T.)	temperatura (°F)
l	0.845	75.4
2	0.863	75.8
3	0.881	76.2
4	0.900	76.7
5	0.919	77.1
6	0.939	77.6
7	0.959	78.3
8	0.979	78.5

Resultados finales:

	corrientes de	salida	
Componente	gas(lb mol/U.T.)	liquido	(10 mol/U.T.)
CH	0.6576		0.0397
C ₂ H ₆	0.1067		0.0434
n-C.Hg	0.0097		0.0903
n-C ₄ H ₁₀	0.0086		0.0764
aceite	-		3.4650
gasto tota	0.7826		3.7148

Recuperación de n-CaHg : 90.3%

i

.

ŧ

.....

plato	gasto de vapor (15 mol/U.T.)	gasto de líquido (lo mol/U.T.)	temperatura (•F)
1	0.7826	3.5949	76.47
2	0.8801	3.6134	76.76
3	0.8986	3.6268	77.09
4	0.9121	3.6385	77.37
5	0.9237	3.6497	77.64
6	0.9349	3.6614	77.92
7	0.9467	3.6771	78.33
8	0.9623	3.7148	79.02

Múmero de iteraciones: 3 $\sum_{k=1}^{\infty} (T_j - T_{j-1})_{k}^{2} = 0.32$ Tiempo de computadora: 7.6 seg

Ejemplo 3. Para las condiciones del ejemplo 1, a la torre de 8 platos se le pondrá un enfriador en el 8º plato, capaz de remover una carga térmica del orden de 1000 btu/U.T. . Para ver en qué medida se mejora la recuperación, se aplica el modelo de Horton-Franklin.

Base: 1 1b mol de gas alimentado/U.T.

R = 3.5 lb mol de líquido alimentado/lb mol de gas alimentado Suposiciones iniciales:

lato gasto de vapor	(lb mol/U.T.)	temperatura (°F)
---------------------	---------------	------------------

1.	0.800	75.1
2	0.823	75.0
3	0.846	74.9
4	0.870	74.85
5	0.894	74.8
6	0.920	74.75
7	0.946	74.7
8	0.972	74.6

número de plato

:

Resultados rinales:

(corrientes de sali	id a	
· Componente gas	(1b mol/U.T.)	líquido	(lb mol/U.T.)
CH.	0.6582		0.0404
Ca IIc	0.1053		0.0446
n-C ₃ Hg	0.0090		0.0910
n-Cy Hio	0.0086		0.0765
aceite	-		3.4650
gasto total	0.7811		3.7175
Recuperación de n	-C3H8: 91.% (14	a recuper	ación de n-C, H ₈ sólo
aumentó ligeramen	te a cambio de con	nteninar	al líquido de salida
con más CHy y C,	Η,)		

plato	gasto de vapor (lb mol/U.T.)	gasto de líquido (lb mol/U.T.)	temperatura (•F)
1	0.7811	3.5945	76.24
2	0.8770	3.6116	76.70
3	0.8941	3.6241	76.99
4	0.9066	3.6350	77.24
5	0.9175	3.6454	77.5
6	0.9279	3.6561	77.78
7	0.9385	3.6753	78.20
8	0.9578	3.7175	75.99

Número de iteraciones: 2 $\sum_{k=1}^{\infty} (T_j - T_{j-1})_k^2 = 0.32$ Tiempo de computadora: 7.2 seg

> Ejemplo 4. Método de la Suma de gastos (Matriz Tridiagonal)

Número de platos de la columna de absorción: 8

Presión de operación: 2 atm

Datos de relaciones de equilibrio: Correlaciones de Chao-Seader, considerando $\phi_i \approx 1$ y Vi \approx 1.

Datos de entalpía: Ecuaciones ajustadas a las curvas de Maxwell para cada componente. Se consideran mezclas ideales por tratarse de hidrocarburos de una serie homóloga.

Datos de Alimentación Temperatura de entrada del gas a la columna: 40°F Temperatura de entrada del líquido a la columna: 40°F

Componente	gas de alimentación (lb mol/U.T.)	líquido de alimentación (lb mol/U.T.)
CH.	60.0	0.0
C ₂ H ₆	10.0	0.0
n-CaHg	10.0	0.0
n-C _M H ₁₀	9.0	2.0
n-C ₆ H ₁₂	6.0	0.0
n-C, H,4	5.0	0.0
aceite	-	198.0
gasto total	100.0	200.0

Suposiciones iniciales:

plato	gasto de vapor	(1b mol/U.T.)	temperatura	(°F)
1	80.0		41.0	
2	85.0		42.0	
3	87.0		43.0	
4	89.0		44.0	
5	91.0		45.0	
6	92.0		46.0	
7	93.0		47.0	
8	94.0		48.0	

Resultados finales:

	corrientes de s	salida ·
Componente	gas (1b mol/U.T.)	líquido (1b mol/U.T.)
CH4	57.360	2.640
C ₂ H ₆	7.390	2.610
n-C ₃ H ₈	0.762	9.238
n-C, H,o	0.403	10.597
n-C, H,	0.001	5.998
n-C, H,,	0.001	4.999
aceite	40	198.000
gasto tota	1 65.92	234.082

p lato	gasto de vapor (1b mol/U.T.)	g a sto de líquido (lb mol/U.T.)	tomporatura (•F)
l	65.986	206.447	41.321
2	72.433	208.031	41.931
3	74.016	209.308	42.473
4	75.294	210.592	43.031
5	76.577	212.000	43.662
6	77.986	213.820	44.565
7	79.806	217.362	46.815
8	83.348	234.014	56.112

(El sumento brusco de temperatura en el último plato se puede explicar en base a que es en ese plato donde se realiza la mayor parte de la absorción de los hidrocarburos de mayor peso molecular, que tienen un calor latente mayor que los demás, el cual ceden a las corrientes que salen en equilibrio del plato. Así, aproximadamente el 98% del n-C₆ H₁₄ y el 75% del n-C₆ H₁₄ son absorbidos en el último plato)

Número de iteraciones: 3 $\sum_{k=1}^{8} (T_{j} - T_{j-1})^{2} = 0.014$

-57-

Factor de peso WP: 1.0 Tiempo de computadora: 8.1 seg

Ejemplo 5. Para las condiciones del ejemplo 4, supórgase que se desea obtener una corriente de gas bastante más pura en metaro, para lo cual se propone adicionar un enfriador capaz de remover una carga térmica hasta de 1000 000. Btu/U.T..

Aplicando el modelo de la Suma de Gastos (Matriz Tridiago nal) y partiendo de las mismas suposiciones, se obtiene:

Resultados finales:

Carga térmica del enfriador del plato 8 : 1,000 000. Btu/U.T.

corrientes de salida

Componente	gas (1b mol/U.T.)	líquido (lb mol/U.T.)
CH4	56.13	3.870
CaH	5.69	4.310
n-C3 Hg	0.256	9.744
n-CyH,	0.410	10.590
n-C Hiz	0.002	5.998
n-C. H.4	0.001	4.999
aceite	-	198.00
gasto tota	1 .63.	237.00

El gas sale con un 89% en metano.

-58-

pleto	gasto de vapor (lb mol/U.T.)	gasto de líquido (lb mol/U.T.)	temperatura	(• F1)
1	63.45	205.40	40.965	
2	68.85	206.26	41.288	
3	69.71	206.83	41.539	
4	70.28	207.37	41.783	
5	70.82	207.94	42.041	
6	71.39	208.60	42.307	
7	72.05	209.88	41.501	
8	73.33	236.55	4.226	

Número de iteraciones: 3 $\sum_{k=1}^{\infty} (T_j - \overline{T}_{j-1})^2_k = 0.242$

Tiempo de computadora: 8.32 seg

En les siguientes páginas se presentan los diagramas de flujo, las codificaciones y los listados de resultados de los ejemplos previamente descritos.

×

MATRIZ TRIDIAGONAL (PUNTO-DEBURBLIJA)

66700/197700 FCOTTAN COMPILATION MARK 2.7-380

HORTON-FRANKLIN

PEAD(5.20)MP.ICCMP.P

```
20 FORMAT(215, F5.2)
   HEAL LOLOOLXOLDEROKOLS
   LIMENSTON G(20), L(20), T'20), AFL(20), E(20), YUP1(20), XC(20), FP(20),
  1A(2(+20)+Y(20, 20), 9Y(20.20), LY(20,2 ), B(2(), YF(20,20), XE(20,20)
   DIMENSTON A0(2 ). A1(27). 42(20). 13(2(), 4(20). 45(20), A6(20), A7(20).
  148(20), A9(20), TCP(20), POR(20), 4(20)
   CIMENSION CP(20), CPL(20), QV(20), YS(20), XS(20), 0(20)
   COMMON /GUAR/K+AC+A1+42+A3+64+A5+A6+A7+A8+A9+TCR+PCR+W
   LOMMON JOFR/YEXXEXYSXS
   COMMON /GCT/CGS, CLS, CP, CTL+OV, TB+Q+QT
   READ(5,4)(B(1),1=1,TC747),BT+BLT
   EFAD(5,2)G(1),G(NP+1),GS+LU,LS
   READ(5,2)T(1),T(NP),TNP1,TU,TB - 600
   READ(5,3)(XO(I),Y#P1(I),I=1,ICJ4P)
2 FORMAT(BF10.2)
 3 FORMAT(16F5.3)
 4 FORMAT(8A1C)
   WRITE(6,21)BI, BLI
                                              "",A10,/,30X,"LIQUIDO :",A
21 FORMATCIOX, "COMPONENTE INENTE
                                     GAS
  *10,/)
   WRITE(6,22)(I,B(I),I=1,TCOMP)
22 FORMAT(10Y,"CO"PONENTE", 7X, 13, 8x, #1", A10)
   WRITE(6,23)P
23 FORMAT( //, 10X, "PRESTON DE OPERACION :", F5-2,2%, "ATM", //)
   WRITE(6,24)
24 FORMAT(42***GAS">22***LTQUID0**/)
   WRITE(6,25)G(NP+1),19
25 FORMATCION, "GASTO A LA CHTRADA "> 8X, F10, 3, X, "LB MOL/UT", 7X, F10, 3, X
  * "LB MAL/117" > /)
   WRITE(6,26)TNP1,TO
26 FORMAT(10x,"TEMP A LA E ITRANA ",9x,F10.3,X,"'F",14x,F10.3,X,"'F"/ )
  1)
   YSE=GS/G(NP+1)
   XSE=LS/10
   WRITE(6,27)YSE,XSE
27 FORMAT(10x, "CO"POSICION", 10x, "INERTE", F10.3, 17X, F10.3)
   HRITE(6,24)(I,YNP1(T),X^(I),I=1,ICOMP)
28 FORMAT( 34x + 13, F10.3, 17X, F10.3)
   M=1
   00 5 N=1, NP
   G(N)=G(NP+1)*(G(1)/g(NP+1))**((HP+1 -H)/NP)
 5 CONTINUE
   L(NF)=10+g(HP+1)-G(1)
   LO 6 N=1+NP
   L(N)=1 (NP)+C(1+1)-G(NP++)
   REL (4)=1 (4)/0(N)
 6 T(N)=T(NP)=(T(NF)=T^)*((G(HP+4)=G(H+1))/(G(NP+1)=G(1)))
 7 61=65
   LNPELS
   LO 10 Te1.IC DUP
   00 8 N=1, IP
   CALL CHS(T,N,NP, I, IMMP,P,M)
 B A(I,四)=REL(目)/K(T)
   CALL FRAB(NP, I, A, LO. XO, G, YNP1, FR)
                                                                            1
```

```
Y(J+1)=++==1(I)+(1 -==P(I))
   GY(I+1)=G(NP+1)+Y(I,1)
   LX(I,NP)=+0(I)+10+(+NP1(I)-+(I+1))+G(NP+1)
   G1=G1+GY(1+1)
10 LNP=LNP+LX(I+UP)
15 CALL CLG(YIP1, GY, I. TCAMP, N. P. LY, A.G. L. GS, LS, REL)
                                                                      460
15 CALL CTEMP(T.GS, TNP1+LS.TO.J.ICOMP.H.NP.GY.YNP1,LC.XO.LX, C.M. 840)
   NC=1-2
   WRITE(6,30)MC
30 FGR"ATC//.40X. "ITERACION". 14.//)
31 WRITE(6.32)
32 FORMAT(//,23X, "TEMPERATURA", 5X, "GASTO VAPOR", 5X, "GASTO LIQUIDO", 5X
  1,"FRACCION MOL FASE VAP12",5X,"FRACCION MOL FASE LIQUIDA", 27X,"
  *F",12x, "LA MOL/UT", 9X, "LB MAL/UT", /)
   LC 33 M=1,11P
   KRITE(6, 34)N.T(1)).G(N).L(N)
   WRITE(5,35)YS(N),XS(N)
33 WRITE(6,34)(I,YE(I,N),XC(I,N),I=1,ICOMP)
   IF(K)17,18,17
34 FORMAT(//.5X, "FLATO", I3, 10X, FR. 2, 8X, F9. 4, 7X, F11, 4, 7X, /)
35 FORMAT(9X, "COMPONENTE IMERIE", 56X, F7.5, 23X, F7.5)
36 FORMAT(20%, 13, 58%, F7.5, 3%, F7.5)
17 IF(M-21)7,7+18
40 1i=0
   WRITE(6,41)
41 FORMATC///. 40% "RESHLTANDS FINALES", //)
   60 TO 31
```

```
18 STOP
END
```

```
SUBPOUTTIE CHS(T+N-NP+I+ICOMP+P+M)
  LEAL K
  IC=ICOMP
 LIMENSTON AC(20), A1(20), A2(20), A3(20), A4(20), A5(20), A6(20), A7(20),
1A8(20), 49(20), TCR(20), TR(20), PCR(20), PR(20), DPNL(20), UNL(20),
 1011 (20) FCL (20) K (20) W (20) . T(2)
  COMMON / GUAR/K, 10, A1, A2. A3. 44, A5, A6, A7, A3, A9, TCR, PCR, W
  IF (NONE. 1)GO TO 4
  \begin{array}{l} \mathsf{REAP}(5,2)(AO(J),A1(J),A2(J),A3(J),A4(J),A5(J),A6(J),A7(J),J=1,IC)\\ \mathsf{REAP}(5,3)(AS(J),A9(J),FOR(J),POr(J),J=1,IC)\\ \end{array}
2 FORMAT(8F10.5)
3 FORMAT(2F10.5,2F20.3,F20.4)
  H=2
4 TH=T(N)+460.
  TR(I)=TH/TCR(I)
  PR(I)=P/PCR(I)
  SA=A0(T)+A1(I)/TR(I)+A2'I)*TR(I)+A3(I)*TR(I)**2.+A4(I)*TR(I)**3.
  SSA=(A5(1)+A6(1)*TR(1)+A7(1)*TR(1)**2.)*PR(1)
  SAA=(AB(I)*A9(I)*TR(I))*PR(1)**2.=ALDG10(PR(I))
  OPNL(I)=SA+SSA+SAA
  S1=-4.93893+8.65808+TR(T)-1.22040/TR(I)
  $2==3.15224* R(I)**3.=0.925*(PR(I)=0.6)
  UNL(I)=$1+52
  DNL(I)=nPNL(I)+U(I)+UNL(I)
  FCL(I)=10.**(ONL(I))
  K(I)=FCL(T)
  I.ETURN
```

```
END
```

```
SUBROUTTHE FRABENP, IA, LO, XORGAYNP1, FR)
  REAL LO
  DIMENSION FR(2"), A(20,21), G(20), X0(20), YNP1(2")
  HENP
  AM=A(I.M)
  AS=A(I,M)
1 AU=A(I+M=1)
  HI=A'1+AI
  AS=AS+AM
  IF(M.LF.2)G0 T0 3
IF(M.NF.3)G0 T0 2
  AA=AS
2 11=M=1
  GO TO 1
3 AB=AS
  X0=X0(I)
  YNPI=YNp1(I)
  FR(I)=AR/(AB+1.)=(L0*X0)/(G(NP+1)*YNPI)*(AA/(AB+1))
  KETURN
  END
```

```
SUBPOUTINE CLG(YNP1,GY, I, ICOMP,N,NP,LX,A,G,L,GS,LS,REL)
   REAL LILSILX
   LIMENSION GY(20, 20).LY(1),20),4(20,20),G(20),L(20),RELC(20), HEL(20)
  1), YHP1(20), YE(20, 20), XE(20, 20), YS(20), XS(20)
   COMMON /GFR/YE .XE . YS . XS
   I.=NP
22 G(N)=GS
   L(N)=LS
   00 1 1=1,1COMP
   GY(I+N)=LY(I+N)/A(I.N)
   G(N)=G(N)+GY(I);)
   IF(N.EQ.1)GO TO 1
12 LX(I+N=1)=LX'I+HP)+GY(I+N)=G(NP+1)*YNP1(I)
1 L(N)=L(N)+LX(I+N)-
   RELC(N)=L(N)/G(N)
   RAB=ABS(RELC(N)-REL("))
   IFCRAB.LE.O.1)GC TO 2
   REL(N)=RELC(N)
2 CONTINUE
   ti=N=1
   IF(N.GE.1)GO TO 22
   DO 7 N=1+1P
   YS(H)=GS/G(N)
   XS(H)=LS/L(N)
   00 6 1=1 . ICOMP
   YE(I+N)=GY(I+N)/G(N)
 6 XE(I+N)=LX(I+N)/L(N)
7 CONTINUE
   RETURN
                                                           .
   END
```

```
SJAROUTINE CTEMP(T, SSTMP1/LS, TO, I) ICOMP/U/NP/GY/YNP1/LO, XO/LX, G/H
  1,*)
   REAL LS.LY.LO
   DIMENSION HGS(20),HLS(20), 1(20), 0A1(20),HG(20),HL(20),HGY(20,20),
  1HGYNP1(20)+CP(20)+QV(20)+HLx0(20)+CPL(20)+DA2(20+20)+TC(20)+GY(20+
  120), YND1 (20), G(20), YN(20), LY(20, 20), G(20)
   COMMON /GCT/CGS, CLS, CP, CPL, OV, TR, Q, OT
   IF(M.NE.2160 TL 22
   READ(5,21)CGS+CLS
21 FORMAT(2F10.3)
   READ(5,)(CP(I),CPL(I), T=1, TCn 1p)
 2 FORMAT(10F8.3)
   READ(5,3)(QV(1),1=1,100 19)-
   READ(5,3)(Q(N)) = 1, NP)
 3 FORMAT(10F8.1)
   QT=C.0
   00 25 N=1,NP
25 GT=QT+Q(N)
22 HGNP1S=CGS*(TNP1-TB)*GS
   HLOS=CLS+(TC=TB)+LS
   HGNP1=HAND15
   HLO=HLOS
   00 6 N=1 . NP
   HGS(N)=CGS*(T(!)=TB)+GS
   HLS(N)=CLS*(T(1)=TB)+LS
   JA1(N)=CLS*LS
   HG(N)=HGS(11)
   HL(N)=HLS(11)
   00 5 1=1,100"P
   HGY(I,N)=(CP(I)*(T(N)=T3)+QV(I))*GY(I,N)
   HG(N)=HG(N)+HGY(I,N)
IF(N.NE.1)GO TO 4
   HGYNP1(1)=(Cp(I)*(TNP1=TB)+QV(I))*YNP1(I)+G(NP+1)-
   HGNP1=HGNP1+HG"NP1(T)
   HLX0(I)=CPL(I)*(TC-TB)*(U(1)*[0
   HLO#HLOS+HLXO(I)
 4 DA2(I,N)=CPL(I)*LX(I,N)
15 DA1(N)=nA1(N)+DA2(I,N)
 5 CONTINUE
 6 CONTINUE
   HL(NP)=HLO+HANP1-HG(1)-1T
   T1=T(1)
   I. SNP
   QS=0.0
 7 TC(N)=4L(N)/MA1(N)+TB
   TAB=ABS(TC(N)=T(N))
   IF (TAB.LE.C.2)GU TO 9
   T(N)=TC(N)
 8 IF(N.LF.1)GD TO 9
   1=1=1
   QS=05+0(N+1)
   RL(1)=HL(NP)+HG(N+1)=HGYP1+QS
   GO TO 7
 9 T1AB=ABS(T(1)=T1)
   IF(T1AB.LF.0.2)60 To 10
   M=M+1
   I.ETURN
19 LETURN 1
   STOP
   LIIN
```

COMPONENTE LEERTE TAS	AC HID	. Ejemplo 3 (Horto	n-Franklin)		
Самваненте 1 самваненте 2 самваненте 3 самваненте 3 самваненте 4	HETAND ETAND PRUP N BUT				
PRESION DE OPERACION # 2.00	ATM			Que 8 1	c .
	GÁS	LIQUIDO			
GASTO A LA LUTRADA	1.000 LB MBL/UT	3.500 L	B HOL/UT		· · · · · · · · · · · · · · · · · · ·
TEMP A LA LNIRADA COVPOSICION INERT	0-000 F	0.990			
	0.150	0.000			
- DECARDA TERUICA DE ENFRIADOR	1 0.050 PLATD &(BTU/UT)1 100(ITERACION 1	0.0			
TEMPERATURA	GASTO VAPOR GÁS	STO LIQUIDO FRA	CCION NOL FASE VAPOR	FRAUCIDE HOL FASE LIQUIDA	
*F. PLATO 1 76-24	LB HOL/UT	L8 HOLZUT 3.5855			
COMPANENTE INERTE			0.00000	0.96638 0.01152	
3			0.01076 0.01145	0.00269 0.00981	
PLATE 2 26.73		3.6088			
COMPONENTE INERTE			0.00000	0.96014 0.01197 0.01245	
3			0.02078	0.00563 5.00981	
PLATO 3 76.90	0.8923	3.6227			
COMPONENTE INEFTE			0.00000 0.78842 0.16387	0.95647 0.01177 0.01312	
3			0.03223 0.01049	0.00983	
PLATO A 27.21	0.0060	3.6346		0.07-04	
COMPONENTE INFRITE			0.000C 0.77576 0.1691P	0.95333 0.01125 0.01311	
3		1	0.01059	0.00990	
PLATO 5 77.51	este	3+6465	0.00000	0.95023	
			0.76495 0.1671	C.01132 0.01288 0.01547	
6			0.01085	0.01010	
PLATO 6 77+73 COMPONENTE INCRIE	0.9304	3.6597	0.00000	0 • 94681	
1 2 3			0.75547 0.16423 0.06970	0.01110 0.01258 0.01878	
4			0.01159	0.01073	
COMPONENTE INERIE	019430	3.0701	0.00000	0.94205	
* CI 13			0.16098 0.08177 0.01404	0.01226 0.02190 0.01292	
96.71 A 75.90	0.9621	3.7161	9124755		
CONFOMENTE INCEIE			0.00000	0.93244 0.01058	*
3			0.1565° 0.09257 0.02235	0.01108 11.02464 6.02046	
	RESULTADOS FINALES	5			
TENPERATURA	GASTO VAPOR GAS LB NOL/UT	STO LIQUIDO FRI LB MOL/UT	ACCION MOL FASE VAMOR	FRACCION HOL FASE LIQUIDA	
PLATO 1 76.21	0.7811	3.5945			
COMPONENTE INEFTE		····	0.00000	0.96398 9.01252 0.01035	and the second sec
3			0.01150	0.00310	
			0.01096	E+01036	
PLÁTO 2 76.73	0.8770	3.0116			
COMPONENTE INENTE			0.00000	C.95941 D.01192	
2 3 4			0.02362	7.00615 0.01009	
PLATO 3 75+99,	0.8941	3,5241			
COMPONENTE INERTE			0.0000000000000000000000000000000000000	0.95609 0.01165 0.01241	
3			0.03495 0.01117	C.00931 C.01014	
PLATO & 77.25	0.9060	3.6350			
COMPONENTE INERTE			0.00000 0.77406 0.16741	0.95322 0.01141 0.01268	
3			0.04716 0.01137	0.01023	
PLATO 5 77.50	0.9175	3.4484		1 AF-51	
			0.76405 0.16503	1.01118 0.01239 0.01549	
ě			0.01171	0.01043	
PLATO A 77.71 COMPONENTE INERIE	0.9279	3.6561	0.00000	0 ×94774	
23			0.75475 0.16219 0.07059	0.01095 0.01205 0.01827	
4	A	1 (0.01244	6-01098	
COMPONENTE INEPTE	0.9385	3.0753	0.00000	5+94278	
2 3			0.15920 0.08078	0.01201 0.02120	
PLATO A 75.93	0-9575	3.7175	A-01442		
COMPONENTE INERTE	1. 1.1.1	and a first of the	0.00000	0.03207	
2			0.73080 0.15607 0.09077	0.01058 0.01201 0.02447	

86700/87700 FORTRAG COMPILATION MARK 2.7.480 MATRIZ TRIDIAGONAL (PUNTO DE BURBUJA) DIMENSION COMLE(20), COMGE(20), CPG(20), CPL(20), CLATEN(20) DIMENSIUN TCRITI(20), PCRITI(20), CDEF(20,20), FACENT(20), G(20) DIMENSION GNUEVA(20), TEMPS(20), TNUEVA(20,20), CTES(20,00) DIMERSION XCOMP(20,20), DIF(20,20), SUMXIJ(20), SUMYIJ(20), TOLIO(*20), YEU(20,20), SUMAT(20), CUNST(20,20) DIMENSION A(20,20), B(20,20), C(20,20), D(20,20), PJ(20,20), QJ(20 *,20), XCOMTO(20), YEAUT(20,20), TYEQUI(20) I GGICAL W COMMON LA NA MA PREA FLEA FGEA COMLEA COMGEA TEGA TELA TBASEA CPGA *CPL, CLATEN, TCRITI, PCRITI, CDEF, FACENT, G, GNUEVA, TNUEVA, CTES XCOMP, SUMXIJ, SUMYIJ COMMON/GUARD/TOLIO READ(5,90) M, M, PRE, FLE, FGE, TEG, TEL, THASE 90 FURMAT(212,6F8.2) READ(5,91)(COMLE(I), I= 1,M) FORMAT(10F8.5) 91 READ(5,92)(CGMGE(I), I= 1,1) 92 FORMAT(1018.5? READ(5,93)(CPG(I), I= 1,M) 93 FORMAT(10F8.2) READ(5,94)(CPL(I), I= 1,M) FORMAT(10F8.2) 94 REAU(5,95)(CLATEN(I), I= 1,M) 95 FORMAT(10F8.2) READ(5,96)(TCRITI(I), I = 1,M)96 FORMAT(10F8.2) READ(5,97)(PCRITI(I), I= 1,M) FORMAT(10F8.2) 97 DO 98 I = 1.M 98 READ (5,99)(COEF(I,J), J = 1,10) 99 FORMAT(10F8.5) READ(5,88)(FACENT(I), I = 1,M) 88 FORMAT(10F8.5) READ(5,101)(G(K), K= 1,1) 101 FORMAT(10F8.4) READ(5,102)(TFMPS(K), K= 1,N) 102 FORMAT (10F8.2) CALL ENTALI(HLE, HGE) WT=.09 LIT GNUEVA(N+1) = FGEDO 103 K = 1.N GNUEVA(K) = G(K)TNUEVA(K,L) = TEMPS(K) 103 CONTINUE $DO 1 \ell K = 1 N$ TOLIGCK) = FLE + GNUEVA(K+1)-GNUEVA(1) 16 CONTINUE 106 DO 21 K = 1.N DC 21 I = 1, M=1CALL CHADS(TNUEVA(K,L), I, CONST(I,K)) CTES(I,K) = CONST(I,K) 21 CONTINUE GNUEVA(N+1) = FGEDU 20 1 = 1,K DO 22 K = 2.N

```
A(I,K) = GNUEVA(K) + FLE=GNUEVA(1)
     22 CONTINUE
            DO 23 K = 1.N
            B(I,K) = -GNUEVA(K+1)-FLE + GNUEVA(1)-GNUEVA(K)+CTES(I,K)
     23 CONTINUE
            DC 24 K = 1.N-1
            C(I,K) = GNUEVA(K+1) * CTES(I,K+1)
     24 CONTINUE
            D(I,1) = -FLE + COMIE(I)
            D(I,N) = -FGE + COMGE(I)
     20 CONTINUE
            DO 26 I = 1,M
            PJ(I,1) = C(I,1)/B(I,1)
            QJ(I,1) = D(I,1)/B(I,1)
            DO 27 J = 2,N-1
            PJ(I,J) = C(I,J)/(B(I,J)-A(I,J)+PJ(I,J-1))
     27 CONTINUE
            DD 28 J = 2.N
            (J(I_{J}) = (D(I_{J}))^{A}(I_{J}) + (J(I_{J})) + (J(I_{J})) + (J(I_{J}))^{A}(I_{J}) + (J(I_{J}))^{A}
     28 CONTINUE
            XCOMP(I,N) = QJ(I,N)
            K = M
     35 K = K-1
            XCOMP(I > K) = QJ(I > K) = PJ(I > K) + XCOMP(I > K+1)
            IF(K .GT. 1)GO TO 35
     26 CONTINUE
            DO 30 K = 1.N
            DO 31 I = 1,H
            XCONTO(K) = XCONTO(K) + XCOMP(I,K)
     31 CONTINUE
            SUNXIJ(K) . XCONTO(K)
            XCOMTO(K) = 0.0
     30 CONTINUE
            DO 303 K = 1.N
            DO 304 I # 1.H
            YEQUICI,K) = CTES(I,K)*XCOMP(I,K)
            TYEQUICK) # TYEQUICK) + YEQUICI,K)
   304 CONTINUE
            SUMYIJ(K) = TYEQUI(K)
            TYEQUI(K) = 0.0
   303 CONTINUE
            WRITE(6,15)
     15 FORMAT(1H0, 2X, "PLATO", 3X, "TEMP.", 4X, "DIF.TEMP.", 4X, "VAPOR"
          *, 3X, "LIQUIDO", 18X, "COMPOSICION X(I,K)", 20X, "Y(I,K)", 3X, "S
*UMA", 2(/), 55X, "C1", 8X, "C2", 8X, "C3", 8X, "C4", 6X, "ACEITE",
          *7X, "C3", 5X, "x(I,K)", 5X, "Y(I,K)", 4(/))
            WRITE(6,111)L
  111 FORMAT(1HO, 56X, "ITERACION NUMERO", 12, 2(/))
            00 112 K = 1.N
            WRITE(6,113)K, TNUEVA(K,L), DIF(K,L), GNUEVA(K), TOLIQ(K), XCOMP(1
          *,K), XCOMP(2,K), XCOMP(3,K), XCOMP(4,K), XCOMP(5,K), YEQUI(3,K), 5
          *UMXIJ(K),SUMYIJ(K)
   113 FORMAT(1H0, 5%, 12, 3%, F7.3, 2%, F9.4, 3%, F7.3, 3%, F7.3, 4%, F7
           *.5, 5(3X, F7.5), 4X, F7.5, 2X, F7.5, /)
112 CONTINUE
            IF(L .LE. 1)GO TO 13
            WRITE(6,114)SUMAT(L)
   114 FORHAT(1HO, 2X, "TOT DIF.TEMP. = ", F11.5, 2(/))
     13 WRITE(6,14)FLE
```

```
14 FORMAT(1HG, 5X, "ALIMENTACION DE LIQUIDO", 2X, F8.3,2X, "MOLES/U.T
   *.", 5(/))
    IF(W) GD TO 105
    SUMAT(L) = 0.0
    DO 40 K = 1,1
    DO 40 I = 1,14
    XCOMP(I,K) = XCOMP(I,K)/SUMXIJ(K)
 40 CONTINUE
    CALL CTNUEV
    DO 104 K = 1 \neq N
DIF(Y,L) = (TNUEVA(K,L)-TNUEVA(K,L-1))**2
    SUMAT(L) = SUMAT(L) + DIF(K,L)
104 CONTINUE
    IF (SUMAT(L).LE.13. SHT=.001)
    IF(SPMAT(L) .LE. 5. UTH-= TRUE.
    DC 41 K = 1,N
    TNUEVA(K,L)=TNUEVA(K,L-1)+WT*(TNUEVA(K,L)-TNUEVA(K,L-1))
 41 CONTINUE
    CALL CGNUEY
    GO TO 106
105 CALL EXIT
    END
```

SUBROUTINE ENTALI(HLE, HGE) DIMENSION COMLE(20), CONGE(20), CPG(20), CPL(20), CLATEN(20) DIMERSION TORITI(20), PORITI(20), CHEF(20,20), FACENT(20), G(20) DIMENSION GNUEVA(20), TEMPS(20), TNUEVA(20,20), CTES(20,20) DIMERSION XCOMP(20,20), TULIQ(20) COMMON L. N. M. PRE, FLE, FGE, COMLE, COMGE, TEG, TEL, TBASE, CPG, *CPL, CLATEN, TCRITI, PCRITI, COEF, FACENT, G, GNUEVA, TNUEVA, CTES ** XCPMP* SUMXIJ, SUMYIJ COMMON/GUARD/TOLIO DC 10 T = 1.M ENTAL = COMLE(I) + CPL(I) + (TEL=TBASE) ENTUL = ENTOL + ENTAL 10 CONTINUE HLC = ENTOL DO 11 I= 1.M ENTAG = COMGE(I)*(CPG(I)*(TEG=TBASE) + CLATEN(I)) ENTOG = ENTOG + ENTAG 11 CONTINUE HGE = ENTOGRETURN END and it is a subscription of the contract and the second second second second second second second second second

			51	11:	E				1	F	(-	A	11	5	(1	F			1		C	C	Ŋ	5	r)												•																
		-	11	1.		• • •	. 1		+	Ĩ.,	ć,	11	1	F	č .	-	,)			2	11	G	F	(т	cr	21	T	1 ((")		ρ	C	P	• •	1	()	6	۱.		C 1	15	5 (10	0	• 2	n)		
				ι.	-		c 1			1	= 1	1	F	1	1	6	0		_	-		-	n	ì					51	11		2.	1.	1	~			T	-		c	1		;		U.	16			0.		., ,		
			 		-					. 1			F			10		,				2	n	-		6		-				C. ·	.,					_	C	1	-		17		-									
		-		1	Ł		21		. 14	١.,	11	10	F				0	?	41	υ.	,,			- 1	-		2	0	, ,	20)	۰.	.'	C	UI	11		2	0.	2	0),		DI	ł.	(20	, ,	10)				
			1 1		L	C	51		1.			Jr.		1	J '	10	0	,	۰.	-	51	M	1	1.	1	2	. 0	1	•	.!	01		10	(51),	4	0	, ,		YI	20	(20	,	20))							
				1.11	F1			L	•				M	2		- 1	۲Ľ.	,		1	-E		-	t i		,		C	Un	41	ż.	,	C	6	M	at	.,		TE	G	•	1	F	L		T	R	I	I I	•	٢	CR	P	
		•	11	I	,	1	. (L	F	,		- A	U	Ł		1			,		51	U	t	v	AI	•	T	M	UE	V	۸	,	ſ	.1	E	s,		X	C	1H	P	,	S	UM	X	I.	• ا	5	511	14.	ΥI	J		
		1	r	P	A			C	U	t. I	(. 1	,	1	· ·	- 4	•	2	3	3	3	*	t	A	Ct	12	1	:	13)	+	(('	٤I	. (1	,	6	*	21	RE)	14	C	R	IΤ	1 ((I)				
		*-	t	(C	r I	E F	(I	,	r .) *	P	+	۴ı	*F	R	L)	1	P	e	6	1.	T	[(I)	* *	2)																					-		
1.24	•	-+	A	P	C		=	4	t.	U	C 1	((F	kł	-/	14	C	F	I	T	(I))		1.1	-	-		-						* **			1						1.00			-93	* :-	e i can	10.00		
		f	A	R	0	S	=		C	•	2	25	*	((}	PF	E	1	P	CF	RI	T	I	(1))	-	0	. (5)																								
		f	P	R	T	A	=	•	Ρ	AI	RA	1-	P	A	14	0-	• 1	A	PI	0 5	S								• •																									
	-	-f	D.A	f.	7	E	1		€	C	T'E	F	(1	, :	2)	-	1		2:	20	6	*	F	A (E	11	T	()	())	* 1	rc	R	I'	TI	(I) /	T	E													
		f	A	P	T	T	5		(CI	CF	F	(I	,	3)		+	1	8	. 6	5	8	01	H 1	F	A	CI	FA	T	(1)+	(CI	٦r	F	(τ,	7),	+ P	R	F)	1	P	R	TT	ГТ	(т)	+		
	-	*	(-0	11	t	F 1	(1		1	()) •	F	R	Ē	+ 1	+ 2	•)	1	(Pr	R	1	Ŧ	H	(t	()		*	2))		TF	- /	Ť	ci	N T	T	T	(,									•				- 50	
			2-0	-	-	P			r	C	-	F	+	Ŧ			í.	1	-	•	2.0	F	F	, -			-		PE		1	11	r		T .		-1	Ť	11	-	r •	TF		17	-	71		r.		-	Tr	**		
		1		2	i	•	2	۰.	•	•		•	•	•				•	- 8			-	1	•	• •		.,	-		1.			ι.						•••	-			1	~ 2	,	· ·		C r	(1		1.	1,1		
		1		0	ŕ	<u>.</u>	_	(0	r.		. 1	T		-	۱.							-					,	* 1		4.4		• •						+ /				,	• •										
1			-	T	1			`	5	-			1	1			5	:	1:		2		5			N		٠.	1.		*		L	*	*	3 1			11	. R	1	11	•	1)	*	•	5)							
				1	1	-	1	•		-		A		- -			7. 1	1	Ł			Г	A	r:	1.1		+		۲,	1 10	1	U	+	0.0		AN	1	U																
					5				1	0	• (*	×		U	1.	A																																					
		t	Tt.	T	U	1																																																
		- t	1	rf)																	- 0						-	• • •		-	-		-		-																			

.

:

• •

.

.

```
SUBRPUTINE CINUEV
   DIMENSION COMLE(20), COMGE(20), CPG(20), CPL(20), CLATEN(20)
   DIMENSION TORITI(20), PORITI(20), CHEF(20,20), FACENT(20), G(20)
   DIMENSION GNUEVA(20), TEMPS(20), TNUEVA(20,20), CTES(20,20)
   DIMENSION XCGMP(20,20), CONST(20,20), Y(20), RAIZ(20,20)
   DIMENSION FUNC(20,20), D(20), TOLIG(20)
   COMMON LA MA MA PREA FLEA FGEA COMLEA COMGEA TEGA TELA TBASEA CPGA
  *CPL, CLATEN, TCRITI, PCRITI, COEF, FACENT, G, GNHEVA, THUEVA, CTFS
  * XCOMP, SUMXIJ, SHMYIJ
   COMMON/GUARD/TOLIO
   L = L + 1
   DO 30 K= 1.N
   TNUEVA(K,L) = TNUEVA(K,L-1)
37 DO 31 I = 1,M-1
   CALL CHADS(TNUEVA(K,L), I, CONST(I,K))
   Y(I) = CONST(I,K) * XCOMP(I,K)
   YTOT = YTOT + Y(I)
31 CONTINUE
   SUMK = YTOT -1.0
   YTOT = 0.0
   IF(SUMK)32,33,34
32 GO TO 35
33 GO TO 30
34 TNUEVA(K,L) = TNUEVA(K,L) = 10.0
   GO TO 37
35 J = 1
   RAIZ(J,K) = TNUEVA(K,L)
   FUNC(J,K) = SUMK
42 TNUEVA(K,L) = TNUEVA(K,L) + 10.0
   DO 38 1 = 1,M-1
   CALL CHAOS(TNUEVA(K,L), I, CONST(I,K))
   Y(I) = CONST(I,K) * XCOMP(I,K)
   YTOT = YTOT + Y(I)
38 CONTINUE
   SUMK = YTOT =1.0
   YTOT = 0.0
  IF (SUMK) 39, 40, 41
39 GO TC 42
40 Gũ TC 30
41 J = J + 1
   MUN = 1
   RAIZ(J.K) = TNUEVA(K.L)
   FUNC(J,K) = SUMK
   IF(J.LT.3)GD TO 42
  1 = 4
59 D(3) = (RAIZ(3,K)=RAIZ(2,K))/(RAIZ(2,K)=RAIZ(1,K))
   B = FUNC(J=3,K)*(D(J=1)**2)=FUNC(J=2,K)*((1.0+D(J=1))**2) +
  *FUNC(J=1,K)*(1.0 +2.0*D(J=1))
   C =FUNC(J-3,K)+D(J-1)+FUNC(J-2,K)+(1,0 +D(J-1)) + FUNC(J-1;K)
   DNUK = -2.0 * FUNC(J-1.K) * (1.0 + U(J-1))
   DRAIZ = SOPT(B**2=4.0*FUNC(J=1,K)*D(J=1)*(1.+D(J=1))*C)
   DENUNC = B + DRAIZ
   DENDOS = B - DRAIZ
   DUNU = DNUM/DENUND
   DOOS = DNUM/DENDOS
   RAIUNO = RAIZ(J-1,K)+ (RAIZ(J-1,K)-RAIZ(J-2,K))*DUNU
   RAIDDS = RKIZ(J-1,K)+(RAIZ(J-1,K)-RAIZ(J-2,K))+UUUS
   IF(RAIUND)50,50,51
50 IF(RAIDUS)52,52,54
```

```
51 RAIZ(J,K) = HAILNO
       D(J) = DULD
       GO Tr 56
    52 WRITE(6,53)
52 WHILL(6)53)
53 FORMAT(1H0,5X, "AMBAS TEMPERATURAS SON ILOGICAS")
    54 RAIZ(J,K) = RAIDOS
       D(J) = UDUS
    56 TNUEVA(K,L) = RAIZ(J,K)
       DC 57 T = 1, V-1
       CALL CHAOS(TNUEVA(K,L), I, CONST(I,K))
       Y(I) = CONST(I,K)*XCOMP(I,K)
       YTOT = YTOT + Y(I)
57 CONTINUE
                                        *
      SUMK = YTOT -1.0
       YTOT = 0.0
       FUNC(J,K) = SUMK
IF(APS(SUMR) .LT. 1.E-2 .OR. HUN .GT. 30)GO TO 30
       J = J + 1
      MUN = MUN + 1
GO TO 59
   30 CONTINUE
 12 RETUPH
      END
```

```
SUBROUTINE CONVEY
         DIMENSIUN CUMLE(20), CUMGE(20), CPG(20), CPL(20), CLATEN(20)
          DIMEMSIUN TCRITI(20), PCRITI(20), COEF(20,20), FACENT(20), G(20)
          DIMENSION GNUEVA(20), TEMPS(20), TNUEVA(20,20), CTES(20,20)
         DIMENSIUN XCCMP(20,20), YEQ(20,20), HL(20), HG(20), YETOT(20)
          DIMENSION SUMYIJ(20), TULIQ(20), CONST(20,20)
          COMMON L. N. M. PRE, FLE, FGE, COMLE, CUMGE, TEG, TEL, THASE, CPG,
        *CPL, CLATEN, TCRITI, PCRITI, COEF, FACENT, G, GNUEVA, TNUEVA, CTES
        *, XCOMP, SUMXIJ, SUMYIJ
          COMMON/GUARD/TOLIO
         DO 60 K = 1.N
         00 60 I = 1.M
         CALL CHADS(TNUEVA(K,L), I, CONST(I,K))
          YEQ(I,K) = CONST(I,K) * XCOMP(I,K)
   60 CONTINUE
         CALL ENTALICHLE, HGE)
         HG(N+1) = HGE
         00 61 K = 1.N
         DO 62 I = 1,M
         ENTAL = XCOMP(I,K)*CPL(I)*(TNUEVA(K,L)-THASE)
         ENTOL = ENTOL + ENTAL
  62 CONTINUE
         HL(K) = ENTOL
         ENTDI = 0.0
D0 63 I = 1.M
         ENTAG = YEQ(I,K)*(CPG(I)*(TNUEVA(K,L)-TBASE) + CLATEN(I))
         ENTUG = ENTUG + ENTAG
  63 CONTINUE
         HG(K) = ENTOG
         ENTOG = 0.0
61 CONTINUE
         FNU = GNUEVA(1)*(HG(1)=HL(N)) +GNUEVA(N+1)*(HL(N)=HG(N+1))
         CALL ENTALT(HLE, HGE)
FDE = HLE-AL(N)
         FLE = FNU/FDE
         DO 64 K = 2.N
 CALL ENTALI(HLE, HGE)
          GNUK = (FLE-GNUEVA(1))*HL(K-1) + GNUEVA(1)*HG(1)-FLE*HLE
         GDFK = HG(K) - HL(K-1)
GNUEVA(K) = GNUK/GDEK
 64 CONTINUE
         DO 67 K = 1.N
     CALL ENTALICHLE, HGE)
          TOLA = FLE + GNUEVA(K+1) + HG(K+1) - GNUEVA(1) + HG(1)
          TOLE = HL(K)
         TOLIO(K) = TOLA/TOLE
  67 CONTINUE
         RETURN
                                                        and an and a strength a strength and a strength and
         END
```

r

Ejemplo 2 (Punto de Burbuja)

Ρ́1.	ATO	TEMP.	UTF.TEHP.	VAPOR	LIQUIDE		COMPO	ICION XC	1.63		Y(1+K)	SUMA	
	No.	and a stade				C1	62	C3	C.4	ACEITE	C3.	XCT+K)	YCTAKS
	in in the second		na na sana na Na sana na sana Na sana na sana										
oreal.						ITER	ACION NUM	TRD 1					
			and a second			and the second					$\underbrace{\frac{(L_{1},T_{1})}{T_{1}}}_{T_{1}\in\mathbb{Z}_{2}}$	· · · ·	
10. S. M. S.	1	537.000	0.0000	0.8800	1,850	0.01223	0.01176	0.01495	0.01058	0.96324	0.05741	1.01277	1:07509
	- 2 	537.500	n+0000	0.850	1.870	0.01155	0.01291	• 0.02241	0.01151	0.95294	0.08658	1.01165	1.09847
FERS ALC: NO	3	538+000	0.0000	0.870	1.890	0.01157	0.01276	0.02597	0.01313	0.94286	0.10096	1.00629	1.09410
	<u>4</u>	538.500	0.0000	0+890	1.910	0.01129	0.01242	0.02729	0.01594	0.93298	0.10675	0.99992	1108086
	5	£39.060	0.0000	0.910	1.920	0.01101	0.01205	0.02738	0.02080	0.92813	0.10775	0.99937	1.06584
	6	539.500	0.0000	0.920	2.000	0.01087	0.01182	0.02703	0.02924	0.89100	0.10706	0.96997	1.06390
	ALI	HENTACIUN	DE LIQUIDE	1.800	MOLES/U.T.					K.			

PLATE TEMP. DIF.TEMP. VAPOR LIQUIDO COMPOSICION X(1,K) Y(1,K) SUMA C1 C2 C3 C4 ACEITE C3 X(1,K) Y(1,K) ITERACION NUMERO 2 1 *36.086 126.2760 0.600 3.348 0.01203 0.01053 0.00653 0.01013 0.94807 0.02505 0.98729 1201067 2 537.354 214.3911 0.942 3.382 0.01081 0.01168 0.01154 0.01028 0.93847 0.04451 0.98279 0.96389

3 517+054 212+4263 0+976 3+393 0+01036 0+01154 0+01560 0+01062 0+93540 0+06052 0+98352 0+94912

A 538.366 180.2066 0.987 3.395 0.01020 0.01134 0.01893 0.01153 0.93493 0.07391 0.98692 0.95190 5 538.800 121.7534 0.989 3.422 0.01016 0.01121 0.02169 0.01413 0.92755 0.08525 0.98473 0.96374 6 539.345 241.1850 1.016 3.406 0.00937 0.01086 0.02347 0.02142 0.93187 0.09279 0.99749 0.95697 TOT 01F.TEMP. = 1096.29044

ALTREDIARIDE DE LINIPO - 34206 MOLES/U.T.

				with the									
PLA	Te	TENP.	DIF.TEMP.	VAPOR	LIQUIOD		COMPO	SICION XC	1.63		Y(1+K)	SUNA	
		in and a second second second second second				C1	C2	C3	C4	ACEITE	C3	X(1'K)	YCLAKY
						İTER	ACION NUM	ERO 3					
2013 Marchine Michael Marchine Berlingtheet (2011)	1	836.641	22+1737	0.4800	3.992	0.01185	0+00957	0.00320	0+01007	0+96554	0.01227	1.00024	0.97296
	2	637.391	13-9043	0+899	4.005	0.01129	0.01164	0.00652	0.01014	0.96257	0+02514	1.00215	0.97700
	3	\$ 37.921	44.7450	0.911	4.015	0.01108	0.01210	0.01015	0.01031	0.96018	0.03942	1.00382	0.98572
	4.	538.43?	44.0002	0.921	4.031	0+01093	0.01207	0.01405	0.01085	0.95630	0.05490	1.00420	0.99317
	5	538+928	15.0731	0.937	4.042	0.01071	0.01181	0.01802	0.01275	0+95362	0+07088	1.00692	0.99497
	6	539.418	53.4463	0.949	4.094	0.01055	0.01155	0.02203	0,01952	0.94163	0.08716	1.00528	1100666
TOT	DIN	•.TEMP. +	193.40253	-									

ALIMENTACION DE LIQUIDE 3.894 MOLESZU.T.

C3.+ C4 61 62

YCTAR) SUNA С3 . X(1.K) ACEITE

YCIAKS

99303

01181

01577

01733

01940

01285

		the net let at a		easing the second				and the second second		
		let de genre	LIEB 11	ACION NUM	C D D					
34+3003	0.4800	3.476	0.01195	0.01010	0.00482	0.01009	0.96764	0.01847	1.00459	0.
25.9648	0+879	3.494	0.01154	0.01212	0.00329	0.01019	0+96251	0.03587	1.00565	1.
12+5138	0.897	3+509	0.01126	0+01241	0.01355	0.01045	9.95843	0.05266	1.00609	1.
4.3788	0.912	3+523	0.01104	0.01224	0.01748	0.01120	0.95471	0.06835	1.00568	1.
4.8667	0+926	3.549	0.01085	0.01198	0.02097	0.01354	0.94768	0.08250	1.00502	1.
0+6596	0.952	3+597	0+01053	0+01155	0.02369	0.02083	0.93495	0.09373	1.00155	1.
	The second se	the second se	and the second se							

101 011.TEMP. = 62.00386

1 536.890 3

T 12 TE 17, 957 18 11:

4 538.653

5 536+951

6 \$39.415

2" 1.57 + 44.2

ALIMENTACION DE LIPUIDE 3.397 NOLES/U.T.

PLATE TERP, DIF, TERP, VAPOR LIQUIDO.		COMPOSICI	ON XCT.	K)		Y(1+K)	SIIMA	
	C1	C2.	C 3	C 4	ACEITE	C 3	X(1,K)	YLIAKS
								•
	TTCRACIO							

1 636.923 5.7436 0.000 3.432 0.01197 0.01022 0.00525 0.01009 0.96357 0.02016 1.00111 0.99766 2 537.430 1.4193 0.692 3.455 0.01138 0.01204 0.00992 0.01021 0.95696 0.03831 1.00052 1.00216 3 537.938 3.2772 0.915 3.470 0.01104 0.01220 0.01418 0.01049 0.95291 0.05508 1.00042 0.09991

1.00083 1.00104 0+5908 5 538.975 0.01062 0.01173 0.02119 0.01369 0.94352 0.08332 1.00075 1.00109 0 + 945 3.505 6 0.10+39A 3+8849 0.965 3.540 0.01039 0.01139 0.02369 0.02100 0.93407 0.09371 1.00053 1.00074 TOT DIF. TERP. # 24 + 69950

The MULTERVACION OF FIGURED ST. 3.340 MOLESZU.T.

'LATO	TEMP.	DIF.TERP.	VAPOR	LIDUIDG		сомро	SICION XC	I,K)		YCLIKS	SUMA	
	an ang ang ang Tanàng ang ang	an a	ra erze a diama Anna dia		C1	C2	63	C4	ACFITE	63	X(1.K)	Y(1,K)
				enter alto	ALL STREET	ACTON MUM	e um					
1	536+928	0+5027	0+890	3.548	0.01194	0.01008	0.00474	0.01009	0.96406	0.01819	1.00091	0.99713
2	537+030	0.1016	¢+893	3.569	0.01136	0.01196	0.00910	0.01019	0.95832	0.03514	1.00093	0199655
3	537.939	9+0292	0.914	3,583	0.01105	0.01218	0.01324	0.01044	0.95460	0.05145	1.00151	0,99676
<u>a</u>	538.434	0.0014	0.928	3.596	0.01085	0.01202	0.01709	0.01117	0.95109	0.06680	1.00222	0.99905
.5	\$38.925	0.0039	0+941	3,615	0.01087	0.01177	0.02054	0.01345	0.94613	0.08075	1.00256	1.00181
6	539.394	. 0.0020	0.950	3.655	0.01043	0.01143	0,02338	0.02065	0.93582	0.09247	1.00172	1.0030A

ALIMENTACION DE LIGUIDO 3.455 MOLES/U.T.

JOT CLATTICE FEATER CEPPILATION MARK 2.7.38/

MATRIZ TRIDIAGONAL(SUMA DE GASTOS)

DIMEMSIUM CHL1(20), CHL2(20), CHS1(20), CHG2(20)--CIMENSION COMLE(20), CONGE(20), TCRITI(20), PCRITI(20), COEF(20,20) DIMENSION FACENT(20), G(20), GHUEVA(20,40), TEMPS(20) DIHENSI 11 THUEVA(20,40), CTES(20,20), COUMP(20,20); DIF(20,40) DIMENSI) SUMXIJ(20), SUMYIJ(20), Totio(20,40), YERt20,20) DIMEMSION SUPAT(40), CUNST(20,20) DIMENSIUN 4(20,20), 8(20,20), 0(20,20), 0(20,20), PJ(20,20), 0J(20 *,20), XCONTO(20), YEWUI(20,20), IYECUI(20) CONMON L. M. M. PRE, FLE, FGE, COMLE, CUMGE, TEG, TEL, TCRITI, PCP *ITT, COLF, FACENT, G, GUUETA, TYUEYA, CIFS, YCCHP; SUNYIJ, SUMYIJ COMMPT/SUAPD/CHL1, CHL2, CHG1; CHG5, DIF, SUMAT.YEOUT COMMPT/GUA/HLEFEGE 80 FORMAT(10F8.2) ----- PEAC(5,81)(CHL2(1), I = 1,+)-81 FORMAT(511-,2) fEAD(5,02)(CH61(I), I = 1,H) 02 FURMAT(10FP-2) READ(5, 63)(CHG2(I), I = 1, M)83 FORMAT(OF10.2) HEAD(5, 90)", M, PRE, FLE, FGE; TEG, TEL, THASE 96 FORMAT(212,6F8.2) -REAU(5,91)(CEMLE(T), 1= 1,4)-91-FORMAT(10F8.5) ----READ(5,92)(CCMGE(I), I= 1,M), 92 FORMATCICE8.5) 96 FORMAT(10F8.2) 97 FORMAT(10F012) -----D0 98 T = 1.M 98 READ (5,99)(COEF(I,J), J = 1,10) -99 FORMAT(10FA.5) HEAU(5,88)(FACENT(I), I = 1,M)88 FORMAT(10F8.5) - REAU(5,101)(6(K), K= 1,N) ---101 FORMAT(1CF8.4) READ(5,102)(TEMPS(K), K= 1,N) L = 1 00 103 K = 1. in GNUEVA(K,L) = G(K) TNUEVACK, L) = TEMPS(K) 103 CONTINUE GNHEVA(H+1,L) = FGE00 16 K = 1,1 TULIN(K+L) = ILL+ GHUEVA(K+1+L)-GNHEVA(1+L) 16 CUNTINUE 106 DC 21 K = 1,N DC < 1 I = 1, N-1CALL CHARS(TNUEVA(K,L), I, CUNST(I,K)) CTES(I,K) = CENST(I,K)21 CONTINUE GNUE #4 (4+1, L) = + 4E 00 20 T = 1 P

1. 25 × = 1, 1. 2" A(I+F) = GPDEVA(K+L) + FLE=_hDEVA(1+L) 22 CJ 00 23 K = 1,5 -B(I,K) = -CHLEVA(K+1,L)-FLE+ GRUEVA(1,L)-GRUEVA(K,L)+CTES(T,K) 23 CONTINHE DE 24 K-= 1,1-1 $C(I_{*}F) = GMUEVA(F+1_{*}L)*CTES(I_{*}F+1)$ 24 CUNTINE DEI,1) = -FLE+CUMIE(I) D(I+1) = -FGE*ConGE(I) 20 CONTINUE 10 26 1 = 1,1 $F_{J}(I_{j+1}) = C(I_{j+1})/H(I_{j+1})$ QJ(1+1) = P(1+1)/P(1+1)UU 27 J = ?, M-1- $FJ(I_{J}J) = ((I_{J}J)/(B(I_{J}J)-A(I_{J}J)+PJ(I_{J}J-1)))$ 27 CONTINUE 00 28 J = ?,N -28 CUNTINHE $- X \in (I \neq I) = - U \cup (I \neq N)$ K = N 35 K = K-1 $XCOMP(T \to K) = QU(T \to K) - PU(T \to K) + XCOMP(T \to K+1)$ IF(K .GT. 1)GD TO 35 26 CENTINUE 00-30 K = 1.N DO 31 I = 1,M XCONTO(K) = XCONTO(K) + XCOMP(I,K) - --- 31-CONTINUE $50^{H}XIJ(K) = XCOMTH(K)$ $x \in 0 + T \in (K) = 0 \cdot C$ ----- JO CONTINUE -TYFQUICE) = TYEOUT(:) + YEQUICI,K) JOA CONTEMUE TYEQUICK) = 0.0 303 CONTINUE ---- DO--5C K=1,F 1 GHUEVA(K,L+1) = GHUEVA(K,L)+SUMYIJ(M) Recomment to 50 CONTINUE ----- GiuHEYA(N+1,L+1)=FRE DU 51 K=1,1 $TOLIO(K_{1}L+1) = \Gamma LF + GNUEVA(K+1_{1}L+1) - GNUEVA(1_{1}L+1)$ 51 CENTINUE CALL CTHUEV $L_{0} = 1 - 1$ 55 FURNAT(INC. 6CX, "ITERACION NUMERO ", 12, 2(/)) WHITE(4,56) 56 F344AT(140, 198, "PLATU 1 FLATU 2 PLATU 3 PLATO 3 PLATO 5 * PLATH 6 PLATE 7 PLATE 0", (/)) --- #RITE(6:57)(THUEVA(h,L=1), K = 1,H) 57 FORMATCING, 4X, "TEMP.", 7X, d(34, F7.3), /)

091TF(6,50)(DIF(+,L-1)+ K = 1,1) 58 FIR ATCINC, 44, "' IF.TE P.", 34, 8(3X, F7.3), 2(/)) hite(0:59)(2:)[) (((,L=:), -=1, 1)) 59 FUR MTCIPUS ACH " ANUR", 78, 8(38, F7.-1),/, 100, 4x, "MOLES/U.T.") 60 FORMATCING, 4%, "LIGUICC", 5%, 3(3%, F7.3),/, 1HD, 4%, "HOLES/U.T. *", 2(/)) ---- HRITF(6+61) 61 FORMATCIHU, 4x, "CONPOSICION", 73 180,7x; "X(I,K)"77) 00 62 I=1,4-1 WRITE(6,63)I, (XCCMP(I,K), K=1,N) 63 FORMAT(1H0, 7%, "C", 11, 7%, 8(3%,F7.5),/) 62 CONTINUE ---- HRITE(6,64)(XCOMP(7,K), K=1,K) - ---04 FOPMAT(100; 7X, "ACCITE", 3X; 3(3X,F7.5), 2(/)) -- 00 65 1=3,5 66 FORMAT(1H0, 4X, "Y(1,K) C", I1, 2X, 8(3X,F7.5), 2(/)) 65 CONTINUE 67 FORMAT(1HO, 4X, "SUNA X(1,K)", x, 8(3X)F7.5),/) WRITE(6,68)(SUPYIJ(K), K=1,V) 68 FURMATCING, 4X, "SUNA YCL, KJ", XF 8C3X; F7.5), 2(/)) WRITE(6,69)SUMAT(1-1) 69 FORMATCINC, 4X, "TOT. DIF. TEMP.", 3X, F9.3) - -- IF(SUMATEL=1).L1.0.100 TO 105 --- GO TP 196 105 CALL EXIT

END

.....

```
SUBLETINE ("TAULU!, TI, TC, MLE, HLE)

SUBLETINE ("EL1(22), OHLE(21), OHLE(1), OHEP(2))

COMMENZATION/OPEL: CHE2, CHE1, CHE2, OHF, SUMAT, YEAU

COMPENZATION/PEL: HOF

HET = CHL1(T)*TE + UHL2(T)

HET = CHC1(T)*TE + UHL2(T)

HET = CHC1(T)*TE + UHC2(T)

HET = CHC1(T)*TE + UHC2(T) + UHC2(T)

HET = CHC1(T)*TE + UHC2(T) + UHC2(T) + UHC2(T) +
```

;

6

```
SUPPORT OF AT LA
    (I LM(I 1 1 1 1 1 1), 4(2 ), 4(3) (2), 4(), 11 35(20)
    PIPEPSIN' THE -(2",4"), Clis(20,20), YCOMP(20,20), DIF(20,40)
    CIME CI " MLT(> ), HOT(20), MLT(>0), HIGT(20), MI(20), HG(20)
    PIPEPST - THELLE "> PHOL(20) + FI(PP), M(20), L(20), C(20), D(20)
    LIFENEL 1 PJ(2 1, PJ(2), *F P((2*,?*)
    UIMERST: CHL1(20), CHL2(20), CHG1(20), CHG2(20)
    CONTRO 1. 1. 1. FREE FLEE FSEE CUMIE, COMGES TERS TELS TORITIS POR
   *ITI, COVE, FACE TA :, GIUEVA, THLEVA, CIES, XCH.P. SUMVIJ, SUMVIJ
    COMMENTATION TO CHELP, CH 1, CHOP, DIF, SUMAT, YEAUT
    CUMPUT/COV/ALL+HOF
    00 10 K = 1,
  -- HLT(F) = 0.0
    HGT(F) = 0.0
    DHLT(K) = 0.9
   fHGT(r) = 0.0
   TL = TN : EVA(E+L)

TG = TNULVA(E+L)
   -1:0 9 1 = 1.H
    CALL CHIALICIA TLA TRA. HLIA HGI)
   HL(I) = HLI*Yc0"P(I*K)
   HG(I) = HGI \star YFOUI(I,K)
   E(L1(1) = (UL1(1) + X \cup OMP(1,K))
   0HC1(1) = (PG1(1) + Y_{FGUI(1,K)})
  -HLT(F) = HLT(F) + HL(T)
   HGT(K) = HGT(K) + HG(I)
    DHLI(K) = DHLI(K) + DHLI(I)
 --\Theta H \in T(F) = O H \in T(F) + O H \in I(I)
  9 CUNTINUS 9
 10 CONTTAUE
-----IFCL +61+ 1)60 TO 15
    TL = TEL
    TG = TEG
    D0 11 I = 1,2
    CALL ENTALICIA TLA TGA HLIA HGI)
  HL(I) = CHHLE(I)+HL
    HG(--)-= CGHAL(I)*HGI-
    HLE = HLE + HL(7)
    HGE = HGE + HG(1)
 11 CENTINUE
    GUUEVA(U+1,1) = 16E
 15 HGT(1+1) = HGE
415-FIA =-FLE*HIE+ GHUEVA(2)L)*HGT(2)=GNUEVA(1)L)*HGT(1)---
    FIE = (FLE + GNUEVA(2,L) - CNUEVA(1,L)) + HLT(1) + Q(L)
    FI(1) = FI_{t} + 1E
   .00 1r + = 201.
    FIG = GLUEVA(L+1)+1)+HGT(L+1) + (FLE+GRUEVA(K))-GNUEVA(1)L))+HLT(K
   *-1)
    FIU = -GAUFVACT-L)+GGT(K)-(FLE+GNUEVA(R+1)L)-GNUEVA(1)L))+HLT(K)-QK) --
    FI(K) = FIC + FIL
 16 CONTTRUE
    DU 10 K = 2+1
    A(1) = (FLF+0) 0LVA((),1)=ON((VA(1,L))+OHL1(K=1)
 18 6.011000
    Lu 10 + = 1 + 1
    8(P) = -(0)FEEVAEN,L)+0PGT(P)) +(-FEE-CNUEVA(N+1)L)+0NUEVA(1)())+DH
```

```
*1 * (1, )
       1(+) = -+1(+)
    14 001 1711
       10 20 10 10.001
       C(K) = \cup \cup (V_N(n+1) \cup (+1) \cup V(F+1))
    20 CONTINUE
PU(1) = CCOVE(1)
       v_{0}(1) = v(1)/r(1)
       11, 21 8 = 0,1
       H_J(R) = L(F)/(U(R) = A(R) * FJ(F=1))
       UJ(K) = (F(F) - A(F) + UJ(E - 1))/(E(K) - A(K) + FJ(K - 1))
    21 CONTILUE
       EIF(F_{i}|_{i}) = OJ(F_{i})
    + = "
22 + = +=1
       fbIF(F_{JL}) = GJ(K) = FJ(K) * DIF(K+1_{JL})
       IF(6 .GT. 1)60 TE 22
       66 23 K = 1.N
       SU^{*}ST(L) = SU(A)(L) + CIF(E,L) + *2.
    23 CCHITINUE
l = l + i
       DU 24 K= 1,N
       TLUEV/(K,L) = TPUEVA(K,L=1) + UIF(K,L=1)
    24 CENTILUE
       RETURY
       END
```

.

```
SUBROUTINE CHAUS(TE, I, CONST)
DIMERSION COMLE(20), CONGE(20), CPG(20), CPL(20), CLATEN(20)
DIMENSION TORITI(20), PORITI(20), COEF(20,20), FACENT(20), G(20)
DIMENSION GNUEVA(20), TEMPS(20), TNUEVA(20,20), CTFS(20,20)
DIMENSION TOLIG(20)
COMMON LA MA MA PRES FLES FGES COMLES COMGES TEGS TELS TBASES CPGS
*CPL, CLATER, TCRITI, PCRITI, COEF, FACENT, G, GNUEVA, TNUEVA, CTES
*, XCOMP, SUMXIJ, SUNYIJ
COMMPN/GUAPD/TOLIQ
PARA = CDEF(I,1)-4.23893*FACENT(I) + (CUEF(I,6)*PRE)/PCRITI(I)
*+ (CCEF(I,9)*PRE*PRE)/(PCRITI(I)**2)
PARO = ALOGIO(PRE/PCRITI(I))
PARUS = 0.025*((PRE/PCRITI(1))-0.6)
PARTA = PARA-PARO-PARUS
PARTF = (CMEF(I,2)-1.2206*FACENT(I))*TCRITI(I)/TE
PARTI = (COEF(I,3) + 8.65808*FACENT(I)+(COEF(I,7)*PRE)/PCRITI(I) +
*(COEF(1,10)*PRE**2)/(PCRITI(I)**2))*TE/TCRITI(I)
PARTO = (COEF(I_{1,4}) + (COEF(I_{1,8}) * PRE)/PCRITI(I)) * (TE * *2)/(TCRITI(I))
1**2)
PARTU= (COEF(1,5)=3.1522*FACENT(1))*(TF**3)/(TCRITI(1)**3)
TOTPA = PARTA + PARTE + PARTI + PARTO + PARTU
CONST = 10.0**TUTPA
RETURN
END
```

Ejemplo 4 (Suma de Gastos)

.

	PLATO 1	PLATO 2	PLATO 3	PLATO 4	PLATO 5	PLATO 6	PLATO 7	PLATO 8	
TEMP,	501,000	502,000	503,000	504,000	505,000	506,000	507.000	508.000	
DIF, TEMP.	0.434	0,184	-0,203	-0,672	-1.194	=1.527	=0,602	7.749	
VAPOR	80,000	85,000	87.000	89,000	91.000	92,000	93.000	94,000	
MOLES/U.T. LIGUIDO MOLES/U.T.	205,000	207,000	209,000	211.000	212,000	213.000	214.000	220,000	
COMPOSICION									
x(1.K)									
C1	0.01213	0.01186	0,01152	0,01120	0.01090	0,01072	0,01055	0,01039	
C5	0,01024	0,01215	0,01224	0.01189	0,01145	0.01111	0,01082	0,01053	
C3	0.00784	0.01516	0,02182	0,02749	0.03194	0,03530	0,03754	0.03871	
C4	0,00996	0.00999	0,01007	0,01030	0,01105	0,01350	0,02158	0.04780	
C5	0,00000	0.00000	0,00000	. 0,00000	0.00002	0.00020	0,00234	0.02727	
C6	0.00000	0.00000	0.00000	0.00000	0.00000	0.00001	0,00055	0,02273	
ACEITE	0,96585	0,95652	0,94737	0,93839	0.93396	0,92958	0,92523	0.90000	
¥(1,K) C3	0.01855	0,03638	0,05312	0.06791	0.08004	0.08973	0,09680	0.10124	
Y(I,K) C4	0.00605	0.00618	0.00635	0.00661	0.00723	0.00899	0,01463	0.03299	
Y(I,K) C5	0.00000	0,00000	0.00010	0.00000	0.00000	0.00004	0,00045	0,00533	
SUMA X(I,K)	1.00603	1.00567	1,00301	0.99927	0,99931	1.00042	1,00860	1.05743	
SUMA Y(I,K)	0,84207	0,86591	0,86827	0,86512	0,85946	0,86109	0,86510	0,88517	
TOT. DIF. TEM	P. 64	.876							
					ITERACI	ON NUMERO	\$		
	PLATO 1	PLATO 2	PLATO 3	PLATO 4	PLATO 5	PLATO 6	PLATO 7	PLATO 8	
TEMP,	501,434	502,184	502,797	503,328	503.806	504,473	506,398	515,749	
DIF, TEMP.	-0,113	-0,254	-0,324	-0,296	-0.144	0,092	0.417	0,363	
VAPOR MOLES/H.T.	67.365	73.602	75.539	76.995	78.211	79.220	80.455	83.206	
FIGNIDO	206.237	208,174	209,630	210,846	211.855	213,089	215,841	232,635	
COMPOSICION X(I,K)									
C1	0.01429	0,01370	0,01329	0.01300	0.01276	0,01255	0.01224	0.01134	
C5	0.01166	0.01403	0.01430	0,01405	0.01371	0,01337	0,01283	0.01118	
C3	0.00509	0.01054	0.01642	0,02261	0.02898	0,03530	0.04054	0.03948	
C4	0,00991	0,00991	0.00993	0,01007	0.01062	0,01285	0.02126	0.04553	
C5	0,00000	0.00000	0,00000	0,00000	0.00001	0,00016	0,00229	0,02579	
C6	0.00000	0.00000	0,00000	0.00000	0.00000	0:00001	0,00055	0.02149	
ACEITE	0,96006	0,95113	0.94452	0,93908	0,93460	0.92919	0.91734	0.85112	

and the second second second	- DESCRIPTION - APPROVE A	La crea in the state of the state	and the second	Postation of Manager in an and the second	The second s	and the second s	Contractory of the Contract of Contract of Contract of Contract, State		AND TRADE AND ADDRESS OF ADDRESS
Y(1,K) 163	0.01212	0,02537	0.03986	0.05531	0.07139	0,08781	0,10365	0.11498	
Y (14K) (CA	0.00607	0.00615	c.00624	0,00638	0.00679	0,00832	0.01426	0,03602	
Y(1,K) 65	0.00000	0.00000	0.00000	0.00000	0.00000	0,00003	0,00043	0,00593	
ISUMA (XECOKO)	1.00102	0.99931	0,99845	0,99880	1.00068	1.00343	1,00705	1.00593	
SUMA Y(I,K)	0,97952	0,98411	0.97984	0,97790	0,97912	0.98442	0,99194	1,00170	
TOT, DIF, TEM	°•0,	.605			ITEDACI	NUMERO			
					TICHNOL	Sin HOMERO			
े	PLATO 1	PLATO 2	PLATO 3	PLATO 4	PLATO 5	PLATO 6	PLATO 7	PLATO 8	
TEMP.	501,321	501,931	502,473	503,031	503,662	504,565	506,815	516,112	
DIF.TEMP.	-0,003	-0,017	-0.012	0,009	0.041	0,069	0,077	0.028	
VAPOR MOLES/U.T.	65.986	72.433	74.016	75.294	76.577	77.986	79.806	83.348	
LIQUIDO MOLES/U.T.	206,447	208,031	209,308	210,592	212,000	213,820	217,362	234,014	
COMPOSICION X(1+K)		1 (n) 		and a second general second					
C1 ⁻¹²⁻¹²⁻¹²	0.01460	0,01396	0.01360	0,01332	0.01305	0,01275	0,01232	0,01131	
	0,01190	0,01436	0.01472	0,01451	0.01414	0,01368	0.01296	0,01116	
C3	0.00484	0,01012	0,01601	0.02240	0.02909	0.03565	0,04084	0.03949	
c4	0.00990	0,00990	0.00993	0,01006	0,01061	0.01283	0.02150	0.04530	2 U 3
c5 (1) /	0.00000	0.00000	0.00000	0.00000	0.00001	0.00016	0,00228	0.02564	
C6	0.00000	0.00000	0.00000	0.00000	0.00000	0.00001	0.00055	0.02137	
ACEITE	0,95908	0,95178	0,94597	0,94021	0,93396	0,92601	0,91092	0,84610	
A(1'K) C3	0.01149	0.02426	0.03868	0.05457	0,07151	0.08880	0.10503	0.11560	
Y(1,K) C4	0.00505	6.00012	0.00050	0.00635	0.00677	0.00832	0,01432	0,03607	
Y(1,K) C5	0.00000	0.00000	0.00000	0,00000	0.00000	0.00003	0.00043	0.00594	
						1 00110	1 00106	1.00037	
SUMA X(I.K)	1.00032	1.00011	1,00023	1,00051	1.00006	1.00110	1.00100		

N.

der

V. CONCLUSIONES Y RECOMENDACIONES

El método del Punto de Burbuja comparado con el de la Suma de Gastos, es desventajoso debido a su limitación de tener que fijar la cantidad de producto de domo y a la necesidad de usar un factor de peso de control de cambios de temperatura, WT, para obligar al programa de la computadora a converger. En cam bio, el método de la Suma de Gastos permite utilizar la especificación más útil de la alimentación.

La estructura del método del Punto de Burbuja es similar a la del método de la Suma de Gastos. En el primero, las temperaturas de las etapas se calculan siguiendo el criterio de composición de que $\sum 4.-1=0$ y $\sum 1.-1=0$. Por lo tanto, este método debe aplicarse a situaciones en donde las temperaturas de las etapas están determinadas fisicamente en mayor gra do por las composiciones que por balances de entalpía y en donde los gastos totales están determinados más por balances de entalpía que por composición. Este será el caso, cuando los efectos de calores latentes predominen sobre los efectos de calores sensibles en las ecuaciones de balance de entalpía, ya que la transferencia neta de materia de una fase a otra, involu cra efectos de calores latentes. Estas condiciones son las que

-90-

caracterizan a separaciones como las que se llevan a cabo en una destilación de componentes con puntos de ebullición cercanos. En una destilación de este tipo las diferencias en caleres late<u>n</u> tes fijan los gastos totales de líquido y vapor a través del b<u>a</u> lance de entalpía y las temperaturas de las etapas son más sensibles a la composicion. Investigadores como Wang y Henke han reportado haber obtenido muy buenos resultados utilizando el m<u>é</u> todo del Punto de Burbuja en problemas de destilación.

En el método de la Suma de Gastos, las temperaturas de las etapas se calculan siguiendo el criterio de satisfacer los balan ces de energía de plato. Por lo tanto, este método debe aplicar se a situaciones en donde las temperaturas de plato están deter minadas fisicamente en mayor grado por balances de entalpía que por composición, en donde los gastos totales están determinados más por composición que por belances de entalpia y en doude los efectos de calores sensibles son significantes en los balances de entalpía. Estas son las condiciones que precisamente caracterizan a los absorbedores de gases y es por esto que el método de la Suma de Gastos resulta mejor para problemas de absorción que el método del Punto de Burbuja. El gasto de líquido en una torre de absorción de platos está determinado por la cantidad de soluto que ha sido absorbida, mientras que la temperatura se fija por un balance de entalpía que relaciona al calor do absor ción con el aumento en calor sensible de los fluidos a contraco rriente.

Una destilación de una mezcla de componentes con puntos de ebullición alejados entre si, tiende a favorecer el método de la

-91-

Suma de Gastos. Existe necesariamente un amplio rango de las temperaturas de los platos de la columna que a su vez implica que los efectos de calores sensibles sean significativos.

El método de Horton-Franklin está diseñado para resolver problemas de absorción más sencillos en los cuales la torre de platos no presente alimentaciones laterales a algún plato inter medio y salidas laterales de líquido y vapor. Para este tipo de problemas es altamente eficiente y de rápida convergencia. Como puede verse en los ejemplos propuestos, este método llega a la solución en un número bastante menor de iteraciones que el método del Punto de Burbuja.

VI. BIBLIOGRAFIA

- BURMINGHAM, D.W. y F.D. Otto, Hydrocarbon Processing, <u>46</u>, 163 (1967).
- 2. CHAO, K.C. y J.D. Seader, A.I.Ch.E. Journal, 7, 598 (1961).
 - 3. HORTON, G. y W.B. Franklin, Ind. Eng. Chem., 32, 1384 (1940).
 - 4. KING, C.J., "Separation Processes", Mc Graw-Hill Co., N.Y., 1971.
 - 5. KREMSER, A., Natl. Petrochem. News, 22, No. 21 (1930).
 - 6. LAPIDUS, L., "Digital Computation for Chemical Engineers", Mc Graw-Hill Co., N.Y., 1962.
 - 7. MAXWELL, J.B., "Data Book on Hydrocarbons", D. Van Nostrand Co., Princeton, N.J., 1950.
 - 8. MULLER, D.E., Math. Table Aids Comp., 10, 208 (1956).
 - 9. PERRY, R.H. y C.H. Chilton, "Chemical Engineers' Handbook", 5a. ed., Mc Graw-Hill Co., N.Y., 1973.
 - 10. PETERS, M.S. y K.D. Timmerhaus, "Plant Design and Economics for Chemical Engineers", 2a. ed., NC Graw-Hill Co., N.Y., 1968.
 - 11. SHERWOOD, T.K. "Absorption and Extraction", Mc Graw-Hill Co., N.Y., 1937.
 - 12. SOUDERS, M. y G. Brown, Ind. Eng. Chem., 24, 519 (1932).
 - MANG, J.C. y G.E. Henke, Hydrocarbon Processing, <u>45</u>, 155 (1966)

🔸 14. YEN, L.C. y R.E. Alexander, A.I.Ch.E. Journal, <u>11</u>, 334 (1965)

-93-

15. YOUNG, D.M. y D.M. Bailey, "Note on Muller's Method", The University of Texas, Computation Center Report TNM 2 (1960).