UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUIMICA

QUIMICA ANALITICA DEL CROMO

310

RINA MARIA MONDRAGON RICE
INGENIERO QUIMICO METALURGICO

1976

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Jurado asignado originalmente según el tema.

	PRESIDENTE MANUEL BUENROSTRO GARCIA
	V O C A L ALICIA BENITEZ ALCANIRANO
	SECRETARIO ALBERTO OBREGON PEREZ
	ler. SUPLENTE MARTHA RODRIGUEZ PEREZ
	2do. SUPLENTE CARLOS ROMO HEDRAMO
itio donde	se desarrolló el tema: Bibliotecas de la U.N.A.M.
ustentante	Rina María Mondragón Rice
sesor del	tema: Alberto Obregón Perez

DEDICATORIA

A LA MEMORIA DE MI MADRE THELMA RICE DE MONDRAGON Por su ejemplo de vida

A MI PADRE

FRANCISCO A. MONDRAGON

Y HERMAJOS

FRANCISCO, DORIS, y THELMA

Con cariño y gratitud

A MI ESPOSO HAROLDO NERY GAMES Con amoi

A LA FANILIA NERY GENES
Con afecto

INDICE

CAPITUI	LO LO	PAG.
I	INTRO DUCCION	4
II	GENERALIDADES	6
	_ Datos Históricos	6
	_ Minralogía	8
	_ Producción	11
	_ Propiedades Físicas	13
	_ Aleaciones	14
	_ Propiedades Químicas	24
III	TETODOS DE ANALYSIS PARA CROMO	23
IV	CONCLUSIONES	73
V	BIBLIOGRAFIA	74

El cromo, es uno de los elementos químicos de alcación más importante de la metalurgia moderna. Su interés industrial radíca principalmente, en los usos que se le dan en la fabricación de aceros inoxidables, materiales refractarios y en salvanos tergia. También es empleado en la elaboración de un gran variedad de compuestos químicos tales como pignentos, curtientes, mordien tes para tintorería, etc.

La presencia y contenido de cromo, en los Civersos materia les de los cuales es constituyente, se ha determinado por nuchos métodos de análisis químicos como son, entre otros, los colorimántes, volumétricos, espectrográficos, etc.

La presente monografía, se planteó como objetivo, la recopilación de los trabajos sobre análisis químicos del cromo que _
se han realizado y aparecen publicados en el Chemical Abstract,_
en los años comprendidos entre 1975 y 1975; con el propósito de_
facilitar las revisiones bibliográficas a las futuras investigaciones que se desarrollen sobre este clemento.

Para tratar de que se cumpla con e' propósito planteado, — hemos estructurado esta monografía de la siguiente forma: la primera parte del trabajo, proporciona información sobre espectos — generales del cromo, y la segunda está constituída por cuadros — que indicar la ubicación en el Chemical Abstract, de los diferentes trabajos realizados sobre el cromo entre los años 1965-1975; seguidos por una descripción resumida de los métodos de análisis químicos del cromo más utilizados.

O: ganizados de la misma manera y con los mismos objetivos_
y propósitos del presente trabajo, se están realizando en la Fa-

cultad de Química de la U.N.A.M monografias similares de todos y cada uno de los elementos de la tabla periódica.

II DATOS HISTORICOS

En el año de 1762, fue descubierto un nuevo mineral (cromato de plomo, PbCrO4), en Ekaterimburg, Siberia por J.G. Leh-man. Su co posición permaneció ignorada hasta el año 1797 en el que el químico francés L.N. Vauquelin, encontró que el nuevo mi neral, más tarde llamado crocoíta, contenía un elemento hasta ese momento desconocido, al que le dió el nombre de cromo, de la palabra griega chroma, color, por formar compuestos coloreados. De ese tiempo para acá, la química del nuevo elemento progresó rapidamente: en 1798, fue establecido que era el principal cons tituyente de la cromita, FeCr204, único mineral hasta ahola explotado del cromo y sus compuestos. En el año 1816, Andreas Kur tz, alumno de Vauquelin, comenzó la fabricación comercial de di cromato de potasio y de verde cromo, comenzando con esto el uso del cromo como pigmento; en 1818, Zuber, en Francia, aprovechoel amarillo cromo y el verde cromo para impresiones en papel y. en 1820, el químico alemán Kochlin, introdujo el uso del dicromato de potasio para mordientes de tintorería.

En el campo de los refractarios, el uso de la cromita, co incidió con el desarrollo del proceso básico de producción de a cero de Thomas y Gilcherst. En lnglaterra y Estados Unidos, empezó a usarse ladrillos de cromita como refractorio a partir de 1886, pero en realidad, el uso del mineral, en este campo, no pobtuvo gran incremento hasta el año 1936, en que empezaron a ha cerse mezclas de cromita y magnesita, resultando con esto los siguientes nuevos productos refractarios:

_ Ledrillos de cromo, constituidos escencialmente de cromita,

_ Ladrillos de cromo-magnesita, en los cuales predominala la cro

mita y

_ Ladrillos de magnesita-cromo, en los cuales predominaba la _____ magnesita.

Estos logros, hicieron que el uso de la cromita se incrementára, expandiendose con esto la industria del acero.

En el campo metalúrgico, Vauquelin y Klaproth, fueron los primeros en producir el metal, antes que se hubiera hecho cualouier uso de él.

P. Berthier en 1821, publicó un trabajo sobre "cromo en a reros"; en 1827, salió a luz un trabajo de R. Fremy sobre cristalización de Cr y sus aleaciones, y F. Wohler publicó otro tra bajo "Un método fácil de producción de cromo metálico". Estas_investigaciones no presentaron mucho interés. Sin embargo, entre los años 1905 y 1908, d.Goldschmidt, patento un proceso de producción de Cr metálico, por el método alumino-térmico (reducción de óxido crómico con aluminio), que resultó muy efectivo. Nació entonces, un interés por el Cr metálico y, debido a que el costo de obtención, fue bajo, la utilización de este metal, fue incrementada, incluso para producción de aleaciones.

Alrededor de 1908, en Estados Unidos, las investigaciones de F.M. Becket y E.F. Price, fueron considerados como sucesos — en lo relativo al bajo costo de producción de ferrocromo, por — reducción con carbón y sílice en horno eléctrico, y por 1915 la producción de acero al cromo, empezó a tomar importancia. En In glaterra, durante el mismo período, los estudiosos en la rama, — se hicieron cargo de la investigación del acero inoxidable. A.L. Mach durarte el período 1905-1913, estudió las aleaciones de Ni-Cr, en su trabajo "Níquel y cromo". Desde entonces hasta estos —

dias, el uso del cromo en aceros, y atras aleaciones de Cr, ferrosas y no-ferrosas se ha incrementado mucho, debido a que ha_
resultado ser muy aplicable en metalurgia. Otro uso que se le _
encontró al Cr (a partir de 1920, y actualmente muy utilizado),
fue como recubrimiento de otros metales, para protegerlos de la
corrosión, o simplemente para hacerlos más atractivos en el cam
po de la decoración.

MINERALOGIA

En la naturaleza nunca se halla el Cr en estado libre, per ro sus compuestos estan muy diseminados, ocurriendo en grupos de espinelas, silicatos, alumino-silicatos y sales complejas. De la tabla 1, se presenta una lista de los principales minerales de cromo.

TABLA 1. Principales minerales del cromo

Mineral	Composición	C-203 (%)	
Cromita	(Mg, Fe) (Cr, Al, Fe) 04	15- 65	
Copiacíta	Sulfato de Pe hidratado	7.4	
Crocofta	PbO GrO3	21.9	
Daubrelita	FeS Cr ₂ S ₃	53.0	
Dietzeſta	CaCro, CaI, O,	13.9	
Fornacita	Cromocrseniato básico de Cu,Pb	No analizado	
Halotriquita	(Fe, Mg, Ni)(Al, Cr)2 (SO)4 22 H2O	7.,	
Kemmererita	H4Hg2(Cr, al)2 SiO3	Aprox. 12	
		continúa	

Lopezita	K 20r2 07	35.4
Muscovita	(OH) ₂ KAl ₂ (AlSi ₃ O ₁₀)	Aprox. 5
Fenicocroíta	3Pb0 2Cr ₂ O ₃	31.2
Barbetonfta	2MgCO ₃ 5Mg(OH) ₂ 2Cr(OH) ₃	22.3
Uvarovita	Ca; (Cr, Al); (SiO4);	27.0
Vauqueliníta	5(Pb,Cu)0 · 2Cr203 P205	25.2
Beidelfta	(Al, Cr) ₂ 0 ₃ ·3Si0 ₂ ·4H ₂ 0	Aprox. 5

Mena de cromo. La única fuente comercial importante del cromo _ es la cromita, mineral perteneciente al grupo de las espinelas. Por lo general, parte del óxido ferroso es reemplazado por óxido de magnesio, y parte del crómico por óxido de aluminio. Composición química. La composición de la mena de cromo tal como se extrae varía más o menos de la siguiente manera:

Componente . . . Cr_2O_3 AI_2O_5 FeO MgO CaO SiO_2 Porcentaje . . . 42-55 7 - 16 11-20 4 -15 1-5 3 - 8

Espinelas de cromo. Las espinelas de cromo, tienen por fórmula_común (Mg,Fe)(Cr,Al,Fe)₂0₄. Todas las especies minerales pertenecientes a este grupo, se encuentran en la naturaleza en condiciones físicas semejantes, por lo que son, a simple vista, muy_parecidas unas a otras, en sus caracteres exteriores, siendo ne cerario el análisis químico para distinguir su diferento composición. Las especies más importantes de este grupo son: la cromita, FeCr₂0₄ ó FeO·Cr₂0₃ (se encuentra en los meteorítos, siendo muy rara en la corteza terrestre), magnocromita (Mg,Fe)Cr₂0₄, alumocromita Fe(Cr,Al)₂0₄ y cromopicotita (Mg,Fe)(Cr,Al)₂0₄.

<u>Cristalización</u>. Cristaliza en el sistema cúbico. Se encuentra _ en forma de pequeños cristales octaédricos. Lo más común es encontrarlas en granos redondeados o de forma irregular y en masas granulares continuas.

Caracteristicas físicas. Fractura irregular. Quebradizas. dureza 5.5 - 7.5. No tienen clivaje. Peso específico 4.0 - 4.8. Lus tre submetálico o metálico, color negro. En las secciones delga das son semitransparentes o traslucen en color rojo denso o rojo marrón. Unicamente las especies ricas en FeO y Fe O, son to talmente opacas. La raya es parda.

Características distintivas. Los rasgos distintivos comunes delas espinelas de cromo son el color negro, la raya parda, la elevada dureza y la reacción al cromo. Estos minerales se encuen tran con tanta constancia en las rocas ultrabásicas (dunitas, _ peridotitas y serpentinitas) que se identifican, casí infalible mente por sus características físicas.

Origen y vacimientos. Las espinelas de cromo se encuentran casí exclusivamente en rocas ultrabásicas magmáticas tanto en impreg naciones como en grandes concentraciones en nidos, lentes o columnas. Suelen ir asociadas a la serventina (hidrosilicato de _ Mg y Fe); al olivino (Mg, Fe), SiO₄ y a los cloritos.

Debido a la resistencia al desgaste por la acción atmosfé rica y su alta densidad, la cromita puede estar concentrada endepósitos por procesos de erosión y sedimentación. Los derísitos han sido trabajados comercialmente en Estados Unidos y Ja-pón.

Ocurre en grandes depósitos en Asia menor cerca de Brusa, Esmirna y Antioquía. Un gran depósito está en Selukwe, Rodesia del sur. También se ha minado extensamente en Nueva Caledonia, Pilipinas, Rusia, Turquía, Grecia, India y Cuba. Se ha extraí-do alguna cromita de California, Oregón y Montana, pero en tiem pos normales estas minas no pueden competir económicamente conlas extranjeras.

Usos. Las cromitas es la única materia prima empleada para la _
obtención de ferrocromo, usado como adición en la fundición de_
aceros especiales de alta calidad al cromo y al cromo-níquel. Q
tro uso importante en la industria metalúrgica, es el cromado._
Cierta parte de las cromitas tiene aplicación en la industria _
química, en la fabricación de pinturas estables, en la industria
de curtidos y en la fabricación de preparados químicos (haluros,
dicromatos, etc). Las menas de baja calidad, pobres en Cr O _y_
ricas en FeO y Fe O , se emplean también en la fabricación de _
ladrillos refractarios.

PRODUCCION

Actualme te hay tres métodos para producir cromo: el silicotérmico, el aluminotérmico y el electrolítico. Aunque hay dife
rencia considerable entre el costo de estos métodos, cada uno es
preferido en determinado mercado.

Proceso silicotérmico. Este es el método más económico para fabricar cromo metálico y absorve el mayor número de toneladas. Se funda en la siguiente reacción:

$$2Cr_2O_3 + 3Si \longrightarrow 4Cr + 3SiO$$

Se usa una carga de óxido crómico, silicio finamente tritu

rado y cal. La reacción no es suficiente exotérmica para que se sostenga por sí sola, y es necesario calentar la carga en un — horno eléctrico. La cal reacciona con la sílice formada y evita que ésta corroa el revestimiento del horno; además, produce una escoria más líquida. Esta escoria se saca de tiempo en tiempo y se agrega más carga hasta que el horno está lleno de metal, elque se vacía entonces en lingoteras y de los lingotes se obtienen trozos de diversos tamaños para el mercado. El producto con tiene aproximadamente 99% de Cr, 0.8% de Si y pequeña cantidad de Fe y C.

Proceso aluminotérmico. Este es el método más antiguo para producir cromo en gran escala, y se empleó casí esclusivamente has ta que se pudo disponer de silicio barato. Todavía se ejecúta en escala bastante grande para satisfacer la demanda de metal que se desea no contenga silicio. Se introduce una mezcla de óxido crómico pulverizado, aluminio granulado y un poco de trióx ido de cromo u otro agente oxidante en una caja de revestimiento refractario, calentada previamente, y se funde con un arco eléctrico. Una caja de tres pies de diámetro y tres de altura produce aproximadamente una tonelada de metal por carga. La reacción es la siguiente:

Aunque la reacción se sustenta por sí misma, la adición — del oxidante produce más calor para mantener el óxido de alumienio en estado de fusión el tiempo necesario para que se efectúe totalmente la separación del metal. El producto contiene 99% de Cr y 0.8% de Al con pequeña cantidad de Si y Fe.

Proceso electrolítico. Este es relativamente costoso y sirve so bre todo para formar por electrólisis capas delgadas del metal_sobre otros metales (galvanostegia) y producir cromo pulverizado o en escamas para operaciones metalúrgicas con polvos. Se pa sa una corriente eléctrica de 5 - 6 voltios por una solución de 250 g de CrO₃ y 2.5 g por litro de iones SO₄² con densidad de corriente en el cátodo de 50 a 150 amperios por pie² (5.4 - 16.2 amp./dm²). Se usan ánodos de plomo. La eficiencia de corriente es de 10 a 15%. El metal que se deposíta contiene bastante hidrógeno, que se desprende con el calentamiento. El metal se deposita en cristales hexagonales que se convierten en una de las variedades cúbicas al ser calentados a 130°C.

PROPIEDADES FISICAS

Las propiedades físicas del cromo, se encuentran enumeradas en la tabla 2.

TABLA 2. Propiedades físicas del cromo

Peso atómico	51.999
Isótopos	50(4.31%); 52(83.76%); 53(9.55%);
	54(2.38%)
Número atómico	24
Estructura cristalina a 20°C	Cúbico centrado en el cuerpo
Densidad a 20°C, g/cm3	7.19
Punto da fusión, °C	1875
Punto de ebullición, °C	2199

Calor de fusión, Kcal/mol	3.2 - 3.5
Calor latente de vaporización,	
Kcal/mol	76.635
Calor específico a 25°C, cal/mol	5.55(0.11 cal/g C)
Coeficiente lineal de expansión	
térmica a 20 C	6.2 × 10 ⁻⁶
Conductividad térmica a 20°C,cgs	0.16
Resistividad eléctrica a	
20°C, -cm	12.9
Susceptivilidad magnética a	
20°C, emu	3.6 10
Emisividad total a 100 °C en	
atm no-oxidante	30.0
Reflectividad	
λ Å	3,000 5,000 10,000 40,000
R %	67 70 63 88
Indice de refraccción	
×	1.64 - 3.28
λ	2,570 - 6,080
Potencial estandar de electródo,	
valencia de O a 3, ▼	0.71

ALEACIONES

El cromo, es uno de los elmentos de aleación más importan tes de la metalúrgia moderna. Es miscible con muchos metales, _ pero son particularmente notables sus aleaciones con hierro, ní quel, volframio y molibdeno. Se da una explicación general, de _ las aleaciones de cromo, ilustradas con algunos de los más impor tantes diagramas de fase.

al cinc fundido, disuelve muy poco cromo, obteniéndose u-na aleación dura y quebradiza en forma de laminillas hexagonales.

Las aleaciones con antimonio, son quebradizas; conociendose compuertos, que responden a las fórmulas SbCr y Sb2Cr. El Cr se_ liga difícilmente con el Cu, se obtiene no obstante, una aleación agitando óxido de cotre en aleación fundida de aluminio y cromo_ (Moissan).

El cobalto y el cromo se mezclan en cualesquiera proporcio nes y las aleaciones son muy resistentes contra los ácidos. Las_ aleaciones binarias puras pueden ser vaciadas en diversas formas y casi tienen dureza de lima, son poco maleables en frío y bas-t: ntes maleables en caliente. Se pueden endurecer aun más calentándolas y templándolas en agua. Con la adición de volframio se_ acrecienta la dureza. Una aleación de 70% de Co, 25% de Cr y 5%_ de W puede ser forjada al rojo y se usa para fabricar instrumentos cortantes, como formones y cinceles; una aleución de 60% de_ Co. 15% de Cr y 25% le W no puede ser forjada, pero si variada y esmerilala para darle forma. Se usa para herramientas cortantes_ de metales. El molibdedo tambien aumenta la dureza en la aleación: la de 25% de Co, 15% de Cr y 40% de Mo er tan dura que ray: el _ cuarzo. Il molibdeno se disuelve en cromo en proporción hasta de 25% y forma una eutéctica de 22.7% de Mo a 1460°C. La aleación _ binaria no se usa por sí sola, pero tiene muchas aplicaciones co mo modificador de otras aleaciores.

El níquel y el cromo son miscibles en todas proporciones -

en estado líquido, y forman una serie de cristales mixtos en el estado sólido (vease fig. 2). El nicromo es una aleación que contiene hasta 65% de Ni, 15 a 20% de Cr y el resto de Fe; es resistente contra el calor y la electricidad y se usa mucho para articulos domésticos e industriales de calefacción. Resistetemperaturas hasta 1100°C. Una aleación de 80% de Ni y 20% de Cr sirve para temperaturas algo mayores.

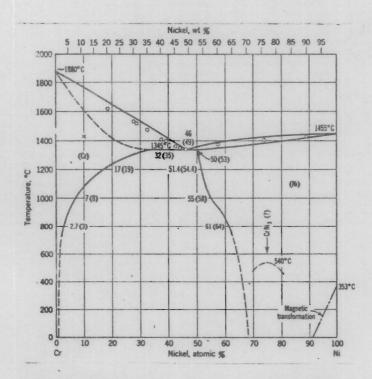


Fig. 1. Diagrama de fase para cromo-níquel.

También se obtienen siliciuros y boruros de cromo en el _ horno eléctrico; de los primeros han sido definidos los compues tos: SiCr2, SiCr3, Si2Cr3 y Si3Cr. Todos estos compuestos son _

muy duros y no son atacados por los ácidos ordinarios; el ácido fluorhídrico y el agua regia los atacan con rapidéz. Los boru-ros Cr₃B₂ y CrB, no son atacables ni por la mezcla de agua regia con ácido fluorhídrico. El compuesto CrB es debilmente magnético.

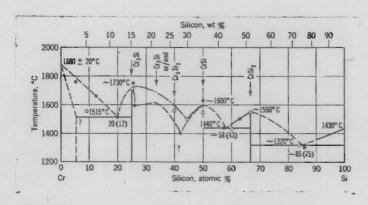


Fig. 2. Diagrama de fase para cromo-silicio.

Las aleaciones de cromo y hierro, tienen gran interés. El material más importante con el cual se fabrican, es el ferrocromo mo. Se divide en dos clases: ferrocromo con alto porcentaje y _ ferrocromo con bajo porcentaje de carbono. El primero se produce reduciendo la cromita con coque en un horno de arco sumergido y abierto por arriba. La operación es continua y se saca el metal de tiempo en tiempo. contiene 60 a 66% de Cr y 5 a 8% de C. La_ aleación de bajo carbono se fabrica reduciendo la mena con silicio en el horno eléctrico inclinable con el arco entre electrodos y escoria. Se agrega cal para que combine con la sílice que_ se forma en la reacción. Suele contener 65-70% de Cr y 0.1-1.0% de C. Se produce una calidad que contiene 0.06% de C y hay uno_ especial de 0.03% de C que tiene un sobreprecio.

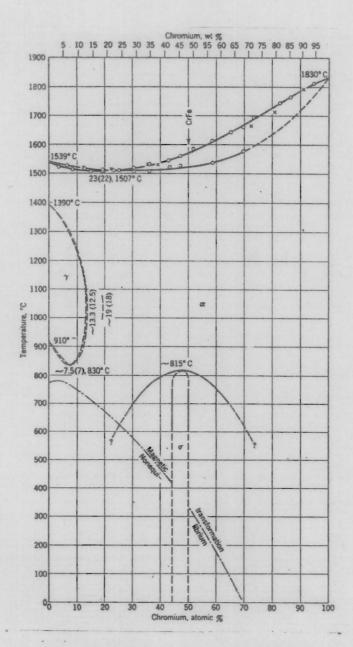


Fig. 3. Diagrama de fase para cromo-hierro

La composición porcentual de diferentes ferrocromos, es _ mostrada en la tabla 3. La diferencia para 100% total, es Fe en cada uno de los casos.

TABLA 3. Composición porcentual de ferrocromos

Tipo	Cr,%	C, 5	Si,%	S,%	Mn.%
Cromo blocking	55-63	4-6	8-12	0.03max	
Cromo de carga	58-63	5-8	3-6	0.03m ix	
Cromo de carga	50-56	6-8	4-7	0.03max	
Cromo refinado	53-63	3-5	2.5max	0.03max	
Fe-Cr exotérmico	41-51	3.6-6.4	9-14	0.03max	
Fe-Cr de fundición	55-63	4-6	8-12		
Fe-Cr "SM"	60-65	4-6			4-6
Fe-Cr de alto carbo	in 65-70	4-7	1-3		
Fe-Cr de bajo carbo	in 65-73	0.025-2	0.02-1		
Fe-Cr "Simplex"	63-71	0.0125	2-7		

Las ocho primeras aleaciones de la tabla 3, son considera das ferrocromo de alto carbón (3-8% C). El precio de los ferrocromos, varía de acuerdo a su fabricación y al contenido de carbón.

Cuando estas aleaciones primarias se agregan al acero fun dido producen gran variedad de aceros al cromo, que se dividenen tres grupos. Los aceros con poco porcentaje de cromo contienen entre 0.5 y 4.0% de Cr. En la tabla 4, se da el sistema básico de numeración, para aceros de este tipo, dado por la S.A.E. (Society of Automotive Engineers).

TABLA 4. Tipos de aceros al cromo (S.A.E.)

Tipo de acero de baja aleación y contenido químico promedio, %	Designación
Aceros al Ni-Cr	
Ni 1.25; Or 0.65	31XX
Ni 3.50; Or 1.57	33XX
Aceros al Cr-Mo	
Or 0.50 y 0.95; Mo 0.25, 0.20 y 0.12	41XX
Aceros al Ni-Cr-Mo	
Ni 1.32; Cr 0.50 y 0.80; No 0.25	43XX
Ni 1.05; Or 0.45; No 0.20	47XX
Ni 0.55; Or 0.50 y 0.65; No 0.20	86XX
Ni.0.55; Cr 0.50; Mo 0.25	87XX
Ni 3.25; Cr 1.20; Mo 0.12	93XX
Hi 1.00; Cr 0.80; Mo 0.25	98XX
Aceros al Cr	
Gr 0.27, 0.40 y 0.50	50XX
Cr 0.80, 0.87, 0.92, 0.95, 1.00 y 1.05	51XX
Cr 0.50	501XX
Cr 1.02	511XX
Cr 1.45	521XX
aceros al Cr-V	
Or 0.80 y 0.95; V 0.10 y 0.15(min)	61XX
Aceros tratados al B-Cr	:_XBXX

Las XX colocadas a la derecha, señalan el contenido de carbón _ en el acero; así un acero 3110 es un acero al Ni-Cr con un contenido de carbón de 0.10%, en este caso XX 0.10. Las XX colocadas a la izquierda, señalan el tipo de acero, en los aceros ___XXBXX.

Estos aceros se usan para engranjes, herramientas cortantes, piezas para transmisión de fuerza en automóviles, cojinetes de bolas, etc.

Los aceros con porcentaje mediano de cromo contienen entre 4.0 y 12% de Cr solo o con Ni, V, W, Mo ó Mn, y se usan enlos casos en que se producen temperaturas altas y gran esfuerzo como en válvulas de vapor a alta presión, equipos de refinerías de petróleo, turbinas de gas, etc. Los aceros, con más de 10% de cromo, son designados como aceros inoxidables, porque el con tenido mayor de cromo aumenta la resistencia a la corrosión y o ximación, así como la resistencia térmica. Estos aceros constituyen el vercer grupo (aceros con alto porcentaje de Cr), y al ser sometidos a tratamientos térmicos, pueden ser o no endureci dos, dependiendo del grado a que pertenezcan (martensíticos, fe rriticos o austeníticos).

Los aceros martensíticos, pueden ser endurecidos por tra tamiento térmico. En la tabla 5 se da una lista de ellos.

TABLA. 5. Aceros inoxidables martensíticos (AISI).

Tipo	C,%	Max Mn, %	Max Si,%	Cr,%	Ni,%	Otros,%
403	0.15(max)	1.00	0.50	11.5-13.0		
410	0.15(max)	1.00	1.00	11.5-13.5		
414	0.15(max)	1.00	1.00	11.5-13.5	1.25-2.5	
416	0.15(max)	1.25	1.00	12,0-14.0		0.15min S
420	0.15(min)	1.00	1.00	12.0-14.0		
431	0.20(max)	1.00	1.00	15.0-17.0	1.25-2.50	0118

440A	0.60-0.75	1.00	1.00	16.0-18.0	0.75max No
440B	0.75-0.95	1.00	1.00	16.0-18.0	0.75max Mo
440C	0.95-1.25	1.00	1.00	16.0-18.0	0.75max Mo

Los aceros tipo 410 y 416, son probablemente las aleaciones de esta clase más comunmente usadas. Los tipos martensíticos de aceros inoxidables, son magnéticos, pueden ser trabajados en frio sin ninguna dificultad, especialmente los de bajo contenido de carbon, bueden ser maquinados satifactoriamente, presentan buena tenacidad, buena resistencia a la corrosión a condiciones atmosféricas, alcanzando una mejor resistencia a la corrosión al ser endurecidos.

Los aceros ferríticos (tabla 6), no son endurecibles portratamiento térmico, son magnéticos y pueden ser trabajados en-Zrio y en caliente, su resistencia a la corrosión es mejor quelos aceros martensíticos.

TABLA. 6. Aceros inoxidables ferríticos (AISI)

Tipo	Hax C,	Hax lin, 3	Max Si,5	Cr.	Otros,%
405	0.08	1.00	1.00	11.5-14.5	0.10-0.30 Al
430	0.12	1.00	1.00	14.0-18.0	
430F	0.12	1.25	1.00	14.0-18.0	0.15min S
434	0.12	1.00	1.00	14.0-18.0	1 Mo
446	0.20	1.50	1.00	23.0-27.0	0.25max N ₂

El más usado de los aceros ferríticos, es el tipo 430, para fabricación de equipo en la industria de ácido nítrico, aditivos decorativos de edificios, automóviles, etc. El tipo 446, es usado para alta resistencia a la oxidación.

El grupo de los aceros austeníticos, es producido por adición de níquel y manganeso. Estos aceros tienen buenas propieda des de resistencia a la corrosión y oxidación, pero no pueden _ ser endurecidos por tratamientos térmicos. En la tabla 7, se en cuentran los tipos principales de ellos.

TABLA. 7. Aceros inoxidables austeníticos (AISI)

Tipo	Max C, /	Max Mn,%	lax Si,5	Cr,%	Ni,%	Otros, 5
201	0.15	7.50	1.00	16.0-18.0	3.5-5.5	0.25max N ₂
202	0.15	10.00	1.00	17.0-19.0	4.0-6.0	0.25man N2
301	0.15	2.00	1.00	16.0-18.0	6.0-8.0	
302	0.15	2.00	1.00	17.0-19.0	8.0-10.0	
302B	0.45	2.00	3.00	17.0-19.0	8.0-10.0	
303	0.15	2.00	1.00	17.0-19.0	8.0-10.0	0.15min S
304	0.08	2.00	1.00	18.0-20.0	8.0-12.0	
304L	0.03	2.00	1.00	18-20	€-12	
305	0.12	2.00	1.00	17-19	10-13	
308	0.08	2.00	1.00	19-21	10-12	
309	0.20	2.00	1.00	22-24	12-15	
310	0.25	2.00	1.50	24-26	19-22	
310x	0.08	2.00	1.50	24-26	19-22	
314	0.25	2.00	3.00	23-26	19-22	

316	0.08	2.00	1.00	16-18	10-14	2.0-3.0 No
316L	0.03	2,00	1.00	16-18	10-14	2.0-3.0 No
317	0.08	2.00	1.00	18-20	11-15	3.0-4.0 Mo
321	0.08	2.00	1.00	17-19	9-12	5XCmin Ti
347	0.08	2.00	1.00	17-19	9-13	10XCmin Nb+Ta
348	0.08	2,00	1.00	17-19	9-13	10XCmin Nb Ta; 0.10max Ta

A algunos aceros austeníticos se les agrega selenio para_
incrementar su maquinabilidad. El molibdeno, aumenta su resistcia al ácido sulfúrico, mientras que el titanio o niobio, se com
binan con el carbón, el cual en estado libre, puede presipitarse en el límite de grano por sobrecalentamiento entre 400 y 750
°C. Si este carbón no es estabilizado, el acero puede ser susceptible a corrosión intergranular.

PROPIEDADAS QUIMICAS

El cromo, con número atómico 24, peso atómico 52.01, pertenece al grupo VI del sistema periódico y al subgrupo que contiene el molibdeno y el wolframio; los isótopos estables que se han hallado son 50, 52, 53, y 54. Su configuración electrónica: ls² 2s² 2p² 3s² 3p² 3d⁵ 4s¹, hace que en sus compuestos, el Cr pueda_utilizar cualquier número de sus seis 3d y 4s electroner, y por consiguiente pueda presentar cualquier estado de oxidación de 0 a +6. Aunque en la realidad los estados más conocidos son +2, _ +3, y +6.

En el estado +2, el Cr interviene en los compuestos cromo

mosos que son fuertes reductores, oxidandose al convertirse en _ crómicos o de Cr3+, como ocurre en la primera etapa del ataque _ del metal por un ácido. El ion Cr2+ tiene caracter básico, es li geramente hidrolizable y posee escasa tendencia a formar complejos.

El estado +3, es la forma más estable del Cr (en solución_acuosa), con este estado actúa en las sales crómicas (ion crómico Cr); violetas o verdes, en forma de cationes complejos o al menos hidratados.

En el estado de oxidación +6, el Cr tiene gran aplicación_ industrial, como consecuencia de sus propiedades oxidantes y su_ habilidad rara formar sales solubles fuertemente coloreadas.

Con este estado, entra en el óxido ${\rm CrO_3}$; en el anión croma to ${\rm CrO_4^2}$ y ${\rm HCrO_4^2}$, en el anión dicromato ${\rm CrO_1^2}$ o en otros más complicados como ${\rm Cr_3O_{10}^{2-}}$, ${\rm Cr_4O_{13}^{2-}}$ y ${\rm Cr_2O_{12}^{2-}}$ (policromatos), en los halogenuros de cromilo (como por ejemplo ${\rm CrO_2Cl_2}$; siendo aquellos aniones estables solo en solución ácida como comprueba la reacción:

Cuyo potencial de oxidación es +1.36 V

Comportamiento químico. El cromo no es oxidado por el aire humedo y aún calentandolo se oxida muy poco. En atmósfera de dióxido de carbono se oxida y se covierte en óxido crómico y en atmósfera de cloruro de hidrógeno forma cloruro cromoso. El cromo se combina directamente con nitrógeno, cartono, silicio y boro. Reacciona fácilmente con los ácidos diluidos, genera hidrógeno y for ma soluciones azules de sales cromosas, que al absorver oxígeno.

del aire se convierten en soluciones verdes de sales crómicas.

Se produce una forma pasiva del cromo sometiendolo a la acción del ácido nítrico concentrado o del ácido crómico concentrado.

Connuestos. El cromo forma compuestos en que tiene valencias de +2 (cromosos), +3 (crómicos) y +6 (cromatos), que son respectivamente, básicos, anfóteros y ácidos. Las relaciones de potencial entre los diferentes estados de valencia se pueden ver en las siguientes medias reacciones:

$$\operatorname{Cr} \overset{2+}{\Longrightarrow} \operatorname{Cr}^{2+} + 2e \qquad \qquad 0.6 \text{ voltios}$$

$$\operatorname{Cr}^{2+} \overset{2+}{\Longrightarrow} \operatorname{Cr}^{3+} + e \qquad \qquad 0.4 \text{ voltios}$$

$$\operatorname{2Cr}^{2+} + 7\operatorname{H}_2\mathrm{O} \overset{2+}{\Longrightarrow} \operatorname{Cr}_2\mathrm{O}_7^{2-} + 14\mathrm{H}^+ + 6e \qquad \qquad -1.3 \text{ voltios}$$

$$\operatorname{H}_2\mathrm{Cr}_3^{-} + 40\mathrm{H}^- \overset{2+}{\Longrightarrow} \operatorname{Cr}_4\mathrm{O}_4^{2-} + 3\mathrm{H}_2\mathrm{O} + 3e \qquad \qquad -0.2 \text{ voltios}$$

Isto indica que el ion cromato en solución ácida es un potente oxidante. In el equilibrio $Cr + 2Cr^{3t} \longrightarrow 3Cr^{2t}$, la formación del ion cromoso es facilitada por razón de que este ion es tan potente reductor que rápidamente se oxida y se convierte en el estado crómico hasta por agentes oxidantes muy débiles.

Los compuestos cromosos se asemejan bastante a los compues tos ferrosos. El hidróxido cromoso, $\mathrm{Cr(OH)}_2$, es una sustancia de color pardo, poco soluble, que se oxida rápidamente en el aire. Los iones cromosos pueden desprender hidrógeno del agua como — cuando se calienta hidróxido cromoso:

Las soluciones cromosas son azules. Se pueden preparar me diante la reducción de soluciones crómicas con cinc:

Los compuestos crómicos son muy parecidos a los correspondientes compuestos de aluminio. El hidróxido crómico, $Cr(OH)_3$, o mejor aún el óxido crómico hidratado, Cr_2O_3 . xH_2O , es anfótero; es precipitado por hidróxido de amonio y se disuelve en exceso de hidróxido alcalino con formación de cromito, pero el hidróxido o el óxido hidratado se precipitan por ebullición. Los cromitos se forman fácilmente fundiendo óxido crómico con óxido de otro metal. Los iones crómicos forman muchos complejos por coordinación en que el cromo tiene número de coordinación de 6, particularmente con amoniaco, como el $[Cr(NH_3)_6]$ Cl_3 , con agua, haluros cianuros y tiocianatos.

De icual manera que los demás miembros del grupo VI del ___ sistema periódico, el cromo forma isopoliácidos y sus sales (policromatos). Son bien conocidas las sales K2CrO4, K2Cr2O7, K2Cr3O10, y K2Cr4O13, derivadas del trióxido de cromo, CrO3. Los monocromatos y dicromatos son de suma importancia técnica, pues seusan como pigmentos, inhibidores de corrosión, oxidantes, en texa nería, tintorería, etc. El ion monocromato existe en solución _ alcalina y el dicromato en solución ácida. El equilibrio entre_ los dos iones se expresa con la siguiente ecuación:

$$2CrO_4^{2-} + 2T^+ \longrightarrow Cr_2O_7^{2-} + H_2O$$
 $K = 1.2 \times 10^{14}$

Los compuestos cromílicos contienen el grupo CrO_2 , como — el cloruro de cro ilo CrO_2Cl_2 , que es considerado como CrO_3 , en que el cloro ha sustituido parcialmente al oxígeno, También se_ conocen clorocromatos, como el $KCrO_3Cl$. Se forman peroxicromatos (percromatos) mediante la reacción de peróxido de hidrógeno con_ cromatos. Los ácidos correspondientes son muy inestables, pero_

forman sales con los metales alcalinos, con el amonio y con ba-ses orgánicas como la piridina.

en su manejo por los obreros. Los de cromo hexavalente, como — los cromatos y dicromatos, ocacionan erupciones cutáneas; cuando contaminan el aire en forma de polvo o aspersión, con el — tienpo pueden llegar a perforar el tabique nasal. En este aspecto los cromatos parecen ser más activos que los dicromatos. Hay grandes diferencias en la susceptibilidad de las personas.

METODOS DE ANALISIS PARA CROMO

La lista que se presenta, contiene los métodos analíticos, usados para la determinación cualitatíva y cuantitatíva del Cr, en los trabajos reportados por el Chemical Abstract, en sus volúmenes 62 a 82, correspondientes a los años comprendidos entre 1965 y 1975.

1._ Absorción atómica

- a) Espectroscopía de absorción atómica
- b) Absorción atómica a la flama
- 2._ Activación por neutrones
 - a) Fluorescencia atómica excitada por laser
- 3._ Amperometría
- 4._ Colorimetría
 - a) Espectrofotocolorimetría
 - b) Espectrofotometría
 - c) Fotocolorimetría
 - d) Fotometría
- 5._ Cromatografía
- 6. Espectrografía
 - a) Espectrografía de masas y de intercambio iónico
- 7._ Fluorometría
- 8._ Gravimetría
- 9._ Nefelometría
- 10 ._ Polarografía
- 11._ Potenciometría

12._ Radioactivación

15._ Volumetría

14._ Otros métodos:

- a) Análisis térmico por activación
- b) Voltametría anódica y catódica
- c) Dilución isotópica
- d) Análisis metalográfico
- e) Espectrometría de masas
- f) Intercambio isotópico
- g) Luminiscencia
- h) Conductometría
- i) Culombimetría
- j) prueba microscópica del electrón
- k) Técnica del anillo

Los datos bibliográficos, obtenídos en cada volúmen, estan resumidos en tablas (que se dan a continuación de ésta explicación), las cuales estan estructuradas de la siguiente forma:

Como encabezado central, se da el dato de volúmen en que _ está reportado el trabajo y año en que fue realizado. En la parte superior y horizontalmente, estan colocados los métodos de análisis representados por un número, que le corresponde en la _ numeración de la lista que se dió anteriormente; y en la columna de la izquierda, los materiales en los que se verificaron dichos métodos de análisis. En la parte inferior derecha de las tablas, se localizan los números que identifican a los trabajos reportados por el Chemical Abstract.

Vol 62, año 1965

Material	2	4	5	6	13
Aleaciones Fe colado Menas de Cr		2234a		13d	3394d
Magnesita Suelos y verstales Aceros	2230c			2240d 3380e	
Inclusiones de acero Aceros Aluminio	5878g	2237a	4605 c		
Menas y rocas Perrocromo Compuestos de Si	20108	5873f		7092g	8 3 79 c
Refractarios Hetales Heteoritos Presencia de V	9761f 11572b			9767ъ	9 7 76 c
Grafito Ferrosilicio Aleaciones de Ti		13831b		12427b 13827c	31100
Cadnio Compuestos de U Aleaciones de Al	10033c		15401h 3384e	1,02,10	12422g
Aluminio Berilio Ferrocromo	15425a 15405h 15407b		23040		0761h
Pierro Cemento Aleaciones de Ni Agua de mar	15901d			10204h 9782a	8364h

Vol 6) año 1965

Material	2	4	6	13	14
Tejidos cancerosos Aleaciones de Fe-Ti Aceros Lateorítos	914e 1204c 3305c		1212d		
Cobre Lingenisc Baño de Pd		d3612e			i2368c k6298a
Berilio Compuestos de Cu Galena	5000		4932đ	1206a	f6311b
Pierro Solución Heras y escurias Prol. farmaceúticos	63^0e 6792h		4928g	4928d	
Aceros Oxido de Ga Refrastarios	4930h		7639c 9046d		
Escorias y aceros Aluminio Antimonio	7638e	90421	7640Ъ		
Austenita y ferrita Organismos marinos Oxido de U Aleaciones de Cu-Ni		b10672g b15548a			jl1082f c13694e
Oxido de Pb Aleaciones de Pt Fe blanco		b10529e	14034g		e17557e
Aceros Oxido de Ti Compuestos de U	15554e	11116	15529a 15545c		
Agua natural Carburo de Si Wolframio y U Aceros	76j9b 1712la	b11167c		17144c	
Oro	212620	d17132c			

Vol 64 año 1966

Material	2	4	6	13	14
Silicatos Fluoruros Rocas sedimentarias		d2731b	C461y	1343c	
Aleaciones Aluminio		b8917h	10383h		
Aleaciones de Al-V Cromita y acero	1039°g		10399a		
Compustos de Be Presencia de 7n	177601		10388d	10398f	
Aleaciones de Cr-Ni Acero laminado Menas de Cr	13368d 8717f		13370e `		
Aceros aleados Aceites	01212		73 ₄ 8a		e8917d
Alexciones Soluci'n	7348h	b7353g d8618b			
Material biológico Cobre Aceite crudo		gotsp	5738d		c7345e
Mateoritos Niquel		d11866b	6348f		
Aleaciones de Fe Sedimentos y suelos Vanadio		dl1857e	11843a 11843d		
Solución Alumbre de Cr		b14947c 14946g			
Olivinos Solución			15590ъ	16621g 1724 d	
Agua de mar Aleaciones de Al Aleaciones de Ni Aleaciones de Al-Cr Fe y acero Vidrio		d18394b	18401c 19111e 18392c 19147d	17243d	
Menar y minerale: Vanadio	18399a		18390d		

Vol 65 año 1966

Material	2	4	6	13	14
Aleaciones de Ni Rocas			2980a		b2999a
Agua de mar Aceros Tr zas Aceros y aleaciones	6282h 6285c	b3556d			j7988e
Al y Pb Cromita y acero Fierro	7937f		62943	6290ъ	
Aceites lubricantes 3 elos Alecciones do Cr-Fe Minerales	66967h	47 60-	6284đ	1371f	
Grafito Sangre, orina y leche Aleaciones	4634b	d1,62c	4638d 4626h		,
Metales Aluminio Sodio	d4637g d4641g		40201	4632c	
Compuestos de Si Fe y acero Mena y minerales			4693e		17675h
Solución Pefractarios Solución Comusestos de Cu	180 9 8f	17679f	11329a	13381g	
Bauxita Cromomagnesita Escolias		ъ17680ъ		17677ъ	17676g
Menas y acero Menas de Cr-Fe Rocas y minerales		14428c	144070		15(50)
Escorias Inclusiones de acero				19297a	a17678b

Vol 66 año 1967

hetodos

Material	ī	2	4	6	13
Antimonio Trazas Aluminio Aleaciones de Al		25793ш		15267 r 25749b	16223t
Carbonatos y silicato Fe colado y acero Arseniato de Ce Menas de Cr Aleaciones de Ni	25800m			25743▼	16370u 25-29c
Rubies Solución Aceros		16273w	16300w	25744w	
Aluminio Rubies Sales		43422u		43378j	43406s
Aceros inoxidables		4.4224		519 7 5s	1217050
Fe-Ni Silicio Agua natural			d31894m	15788z 34575u	
St, Ga y Ta Vanadio Solución			61557.q b111240k	61485₩	
Aceite lubricante Ferrosilicio Presencia de Fe	67572u 72120z			72120z	
Sales de Cr Cobre Inclusiones de acero Sb y Cd			c91299f	82026m 82146b	82085g
Minerales Presencia de Al Aleaciones de Tí	880 j8g	91299f			91320 f
Trazas Uranio Rocas		101352j		10 ₁ 323а 97532у	
Aleaciones de Mo-U				111228n	

Vol 67 año 1967

Material	1	2	6	13	14
Aceite lubricante Fe colado Rocas Monas de Cr Solución Minerales y rocas Sangre y tejidos Silicátos Oxido de Ti Plantas Aleaciones de Ni-Fe-	4560p	17539p 28106w 29008c	7691t 28935r 35877b 398 52 n 40999a 46207j	8584x	
Folución Uranio Diarante natural Acero Acero Tetra luordro de Ti Refractarios Sangre Sangre Sangro y orina Galio	61491r 29767z	60574h 70260s	50091j 60605u 60586p	46751g	b70293e
Tetracl ruro de de Metroritos Aceros Oxido de Ta Alesciones de Al Acero inoxidable Compuestos de U Minerales Aluminio	78678e 78678e 87451c	70265y 96564u	70336w 70295g 78051r	7 0322p	6)30213
Ilmenita Se y Te Refractarios y escor Agua natural	ias -	96542k	9652 7 j		b39881w

Vol 68 año 1968

Material	1	2	4	6
		-		
Aluminio Arcilla Solución Meteorítos Aceros inoxidables	9047g	9056n	c3037d	9034a
Aleaciones de Ti Rubies Trazas Aleaciones Acido ascórbico	18433g		9061g b18292k	9036s
Fe y acero Fe y acero Silicatos Agua de cañería Roces			d 18340g b15882s	18280e 18281f 26542g
Aceros Agua industrial Productos de Al Aleaciones de Zr	26614g	26491q 35595d	d26466k	207128
Acidos Aceros aleados Petroleo Material biológico	46049e 46905f	45938g 41815s		
Oxido de Ge Aleaciones de Fe Tetracloruro de Si Aleaciones de Al	56164c	562 15v 56354q		
Agua natural Refractarios Tantalio Agua de mar Suelos	772562		b35425r b62532n	10 7 797s 119042j
Aceros Oxido de U Aceites Agua natural		101614n		92645u 92653v 97257d
Rubies Al y Fe Oxido de Mg Agua de cañería Grafíto	107725₩	111094g	1015;8 v	101520d
Presencia de Va				11901,€

				-		
H	0	-	0	0	0	- 63

Material	5	12	13	14
Con otros metales Cuero Aceros Zn y Fe	92631m		3921r 9110x 26620f	
S.luci'n Arseniuro de Ga Compuestos orgánicos Solución	84047k	56248s		g65390a
Minerales y rocas Acero inoxidable Organometálicos Arseniatos	92549 r 111006e	35089s	6538 8f	
Heces y orina Colorantes agua n tural	1110006	84762q	92636s	a107797w
Rocas Trazas Escorias		101518j 56248h		e101474s

Vol 69 año 1968

Metodis

Material	1	2	4	6	13	14
Grafito Fe gris Acero inoxidable Solución	8367e	3099j		32558m		e8145w
Menas y refractarios Menas y aleaciones Aleaciones de Al			15751u 15603b		8016e	
Solución Alecciones de Bí Pe y acero Meteorítos	15536c	17826x		15722k	130191	
Rocas y minerales Aceros Organometálicos		1,0201	15742s	15923t	15658u	
Elementos radioactívos Meteorítos Oxido de Mo	3	15806r 24188t		24181k		
Polímeros Jugo gástrico y orina Solución Acero inoxidable		19555f 32785a	25006u		15960a	
Aleaciones de Cu Material biológico Escorias)2109a	103709	3	24174k	c40955w
Acompañado de Pu Acompañado de Sb Aleaciones	56747r			48988e 56689#		
Trazas Alúmina Agua de mar Aleaciones	56792 b 61436 t				49015x	e45775x
Acompañado de Fe Ferroaleaciones Fertilizantes	64325c	6430711		75943t	7)02)2	
Refractarios Agua natura: Aleaciones de Mo		1027331	79849q 5800541			
Rocas Acompa~ado de Va Cuero Oxido de Zr	83125t			92666x	8107.5j 8 7 9983	
Fundición de Fe	0,11,70				1132761	

Vol 70 año 1969

Material	1	4	5	6	8 12	
Aleaciones de Fe Trazas A ero Silicatos Morcurio	73854a 63916u 74009b	b1027 59	s 167767	63988u 74025d 63819q		
Magnesita Caucho Solución Rocas, menas Agua	90592s	b 536 53s		73901z 69139q 73830a	111342c	
Genizas Agra natural Ferrocromo Escorias Ferros llicio Metalas	79673y 84015q 92328e	92945e d70969s		80739f		
Sodio Silicatos Ga de alta pureza Acompañado de Bi Diamanta	102755	ъ120781		73821y	43687s	
Acompañado de Cu Solución Bauxita Uranio Cuero Madera	8618y 16822a	92854c bl2682g bl0565z		860ln		
Monóxido de carbono Material biológico Cuero Agua de mar Compuestos orgánicos	43848 v 34933 s	38516m b50364n				
Soluciones alcohólic Enlatados Suelos Trazas Acompañado de Ta	as 56326 y		63765u		43825k	
Acompañado de Al y B In de alta pureza Plata Polvo atmos érico Roc s sedimentarias	e		63766 ▼ 923953	83962j 83921v		

Material	2 3	6	11 13	14
Acero Al de alta pureza	73933m 84J29x	117355f		
Acero Oxido de Po y U	070232	65819a 111334b		
Plásticos Ferrocromo	97205Ъ			b8616w
Mo y tungsteno Aleaciones	111383s 112270q			
Fe de alta pureza Radioactivos	120388z		7 07	c16805x
Solución Aleaciones de Ni Fluoruro de U	8593m	3604 r	703u	
Bióxido de Ti Solución	3603q 8617x			
Conductores Trazas	16792r 25368j			
Aleaciones Aleaciones de Zr	34035a	43777₩		
Minerales Aleaciones de Fe Perrocromo	46763p		100705-	e5373411
Acero inoxidable Refractarios	43760k	43644a	120785c	
Acompañado de Zn Fosfatos de Ca y Ni	421301	43844c 53736w		
Películas de Ni-Cr Fluoruro de Ba y Sr		63018w		b73749f
Aluminio Antimonio Metales y aleaciones	6)864a	63813h 53690b		
, allower of the		270900		

ol 71 año 1969

Material	1	2	6	8	10	13
No ferrosos Madera Meteoritos Materiales de Al	35649m	9281r 4328m		11^245	a	40422m
Sangre Accros aleados Suelos y rocas Catalizadores	55687x	27172k	56343x			
Dia unte Arseniuro de Ga Grafito Tiazas	35679w	25340q 45 3 70e 35338j	35737p			
Silicatos Refractarios Trazas Aceros Pocas	45391k 45470k 45396r	84174m	45521a			
Menas y ferrosos Roca. Pirita Cromita	1088311 66997c		66999e			6 7 147n
Solución Material biológico Solución Aceros Agua	843-8c	18568s 78061f 97999j 131254a	87328a			
Aceros Selenio Aleaciones de Ti Fe de alta pureza	047000	98038g 35%52g 18556m	87283n			
Aleaciones de Ti Aleaciones de Fe Rubies Hidróxido de Na	131306	t	97966w 9282s 87390q		56276c	
Tierras laras Granito Oxido de Zr y Ti Disolventes orgánicos Antimoniuro de Ga Sulfuro de Cd			9331g 18601x 18501k 18636n 27134z 45349c			
Fe gris			45418z			

2.5				-		
0.0	0	-	0	155	1	O

Material	. 4 5	6	11	13	14
Silicatos Ferroal minio Cuero Películas de Ni Silicatos Trazas Trazas Orina	d45410r d18467h b40243d b77000y 7699	4 5443 j 99 u			e45366f
Aceros Menas y ferrosos In le alta pureza Antimoniuro de Al Solución Solución Aleaciones Solución Aleaciones de Co Solución Aleaciones Gelatinas Leteorítos Aleaciones de Mo-b	d56303j 2710 5627 4533 b74772r b100397u 108804v 1192	108732v 35b 36w 9 3 49u			297927j e106746c 266916a e18506v
Solución Aleaciones de Fe Aleaciones de Fe Solución Agua Aleaciones de Fe Rocas y minerales Cuero	7693 4544 bll9303g bl28534k cl98747d	50:7	570801.	71933h	b76945 y

Vol 72 año 1970

Metodos

Material	1	4	6	10	11	13
Cromo-magnesita Aleaciones de Ni Metales Aleaciones Plantas Aceros Aleaciones de Al Oxido de Al Antimoniúro de In Agua	18120k 23017w	d8941q b8940p b18116p	0729p	85329y		
Nadera Antimonio Aceite lubricante Residuos orgánicos	51668t	b451766 d62418r				
Aceite Metalos Trazas Mecálicos		b35862s	68924w 85929u 96288k			
Aleaciones Catalizadores Escorias Presencia de Va	91848h					8915j 8880i 8916k
Aleaciones Solución Vidrio		b128427		35168:		09101
Tintes Caolín Carburo de U		b131168	3v	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	35265d	38522w
Aleaciones Cr-Cu-Ni Metales		b13)287	ra			50564
Iones metálicos Solución Vinos y jugos	139300¢ 99190k	2			74425a	
Refractarios a presencia de 71 Hierro						62468d 95902e 85863t
Aceros Al y Fe					1243791	
Cenizas Acero de baja alención	1		1135491 1173791			
Cadmio Trazas			1173441	;		106729w

continta

		Met	odos	
Material	. 2	5	6	14
Aceros Oxido de Al Concentrados	28075r		895(y 8988k	
Halogenuros Solución Silicáto de Na	385 25z	743453	13163b 74403s	
Aceros Aceros Polímeros Agua natural	74406v 56142b 82811y		7440)8	
Catalizadores Circonio y berilio		8)13j		b17322p
Material biológico Ilmenita	96365h	75431m		

Vol 73 año 1970

Aire 18249e Compuestos orgánicos Aleaciones de Fe 31219q	41493p
	60000-
	022 01
	51909t 519134 62,25a
Compuestos de To d72770f Metales 63530d	72772h
Sn de alta pureza Agua natural Vinos Polvo aumosférico Rocas d83529k d75604r 9016In 94318s	80354p
Suelos Glóbulos de sangre Menas de Ni al	86947r 9533lu
Solución Solución 136985q Ferrosos Aleaciones Al-Zn-Mn Celulosa 121677s	116009. 116051d 126593w
Orido de Al 137045w Solución 51835g Aceites 89430t	

7.5	-	1	120	3		
M	е	C	0	a	0	S

Haterial	11 ′	12	13	14
Aceros inoxidables Gromita Aleros Aluminio Proses Aleaciones Grafito Stato Aleaciones Al-Gr-Si Acompalado de Mo Colución Presencia de Ta Solución Guero Liuestras radioactivas	94074j 105176x 126652q	61777r	45716y 60356m 72739c 132003v 132004w	bl0385a t51971g e71163y al333398q bl05120z e106172e

Vol 74 año 1971

Material	1	2	4	6
Antimonio Bario Aluminio Rocas Compuestos de Va			b9249 y b9230k	9301j 9238u 9237z
Coloides Grafito	18981h		072701	15544g
Rocas rocas Aleaciones de Fe		18974h		19022h 19018m
Muestras metálicas Aleaciones de Ní		19029 r		19092f
Aceros Solución Suero sanguineo		277127		1897 8 n 20240j
Fe colado Meteorítos Suero y orina	28658x	2 7 718e		277156
Ferroaleaciones Rocas	38066s	38053k		
Aleaciones de Ti Oxido de Al Productos metálicos		38002t	b49294r	49296t
Aleaciones de Ni Compuestos orgánicos Compuestos orgánicos		49420d	b43763w	49295s
Aceros Material biológico Acompañado de Al	71263b	49290m		50399k
Carga metálica Polvo atmosférico	12-07	130052g	1344 74u	
Leche y orina Meteoritos Aceros Celulosa		150755s 150672n 143469y	121217:	
To y Zr Oxido de La		150 7 06 b		119634c

Material	10	11	13	. 14
Solución				e9281c
Aceros y aleaciones		19097m	7000	
Cromitas Solución			18984m	g19021g
Ferrosos	*			e17158h
Solución	18807f			0212702
Solución			60566ъ	
gua de mar		60400-	34450q	
Vanadio Aleaciones de Fe		60490x	60592g	
Silicátos			007728	e60523k
Ferrosos				e71178c
Solución				c71264c
Aceros Aleaciones de Ti			71234t	e71235u
Material biológico			112)46	e72640j
Suelos			106835u	0,20403
Aceros y aleaciones d			134490w	
Películas de Ni-Cr	134469₩		750606-	
Solución			150686v	

Vol 75 año 1971

Material	1	2	5	6	10
Aleaciones de Pe Trigo Titanio Rocas Aceros	14576 c 14657e	104678s 4078c	70064	14645z	
Solución Aleaciones de Al-Si Asbestos Aceros Fertilizantes Aceros Solución	29666f	29591c 29623q 58494p	70964k	15928 f	71010n
Acompañado de Li Cromo-magnesita Lingote de Fe To y Zr Pu y U Cloruro de B	29635 v 58325 z	5831Jw 70962n		58293n 7097up	1101011
Cementos Inclusiones de Acero Aceites lubricantes Minerales Refractarios Suelos	71060d 70987z	70931b 71067m		71.087t	
Uranio Agua natural Material geológico Solución Moliudeno	70974t 83867k 83840w	83817u	52645g	710446	
Suelos y minerales Bronce Suelos Aceros aleados Solución		94287x 104681n 136709u		104799g	703316
Escorias Refractarios Solución Fe y Cu Aceites lubricantes	146103m			1.36739 d 136746 d	147440a
Agua natural Tejidos humanos Al y Fe		154856u	15866j 58253æ		

Material	4	. 6	12	13	14
Compuestos orgánicos Ascorias Sedimentos Pe y acero	d83893r	157936f	29681g		e58311 s
rocas vidrio Solución Polvo atmosférico Arseniúro de Ga	90866n	83812p	79960t 8382 \$ u	83890n	
Material biológico Aleaciones Grafito Acero	71057h b14107p	1474045			b115438q
Grafito Solución Antimonio Aceros inoxidables Pentóxido de Va	b71033x	126067u		157893q 94284u	e123959a

Vol 76, año 1972

Material	1	2	4	5	. 6
Aceros	80762g		1.600.1		678141
Aceros aleados Inclusiones en acero Aleaciones de Cr-Fe-Ni		80494w	b67844r		80648z
Antimonio Selenio		94175e			94173c
Suelo lunar Carburo de Si Polvo atmosférico		94195m 94228z 103429v			
Compuestos orgánicos Agua natural				131292p	10~405j
Aceros especiales Solución			161849t		107634f
Disolventes Ferritas Acompañado de Be				6977q 41515j 96512m	
Aluminio Suero Fe y acero	135322W		b12 37 99t	2	135 3 26a
Meteoritos Compustos orgánicos	133322W	130181q		148408d	
Material biológico Material bilógico	1546p 1551a				20070-
Granito Rocas igneas Silicatos	20934e	20929g			209 30a
Diamantes sintéticos Fibras sintéticas	15629e				20904▼
Agua natural Alaciones Sangre	17609x				41638b 32011q
Trazas Solución			b41686r	94120h	,
Aceros Aceros	41593s 53986b				
Aleaciones de Ti Orina Solución	54050d		d43604m	41641x	
Compuestos de B Trazas	1484469			710414	148436m
Vidrio Selenio			144317a		161924p

continuación Vol 76 año 1972

Material	2	3	10	13	14
Agua de rio Material lunar Agua natural Solución Aceros inoxidables	6476a		54114 c	67828p	el21199z gl58128b
Agua de rio Agua de mar Uranio	6582g				b37278s e41703u
Compuestos orgánicos Material lunar Aleaciones Bario		107690w		67836q 67778k	e148450m
Concentrados Papel	41098a 47544q				
Menas de Cr Rocas Solución	161060-			80612h	e80593c e67710u
Ferroaleaciones	161862s				

Vol 77 año 1972

Material	1	2	3	4	5
Solución Material geológico Solución Hierro Productos de Zn		5609ln 5609ln	83207m	d69739e	55964n
Agua Sangre y alimentos Rocas Metales	13532q	72249a		d39004u	83164v
Sedimentos de lagos Solución Trazas	28421Ъ	79394c			83153r
Vinos, coñac y jugos Polvo atmosférico Diamantes	9285u	13592j		d86603y	
Colorantes Solución Madera Aceites lubricantes	22500e			b3880n 7220t	13634z
Trazas Sangre Rubies Aceros Aluminio	22)006	123553e 42767a 42716h	109048n		16032n
Metales Suelos Celulosa Solución		108969Ъ	42836x 121770z		109029g
Germanio Muestras lunares Matrices ferrosas	121816u	121728s 121814s	121/102		
Mo y tunsteno Solución Pigmentos Papel Escorias Alimentos	121838e	128170n 128368h	69693k	138407j	134625f

Material	6	II	12	13	14
*					
Grafito Metales	56143f 55905u				
Menas y refractarios Solución Solución		69656a		56030s	c56126b
Escorias de Mn-Si		030304		60696p	
Agua natural		79321Ъ			
Aceros inoxidables Escorias	55906v 60691h				
Solución	0009111		53965p		
Compuestos de U					e69700k
Cuarzo Fe colado				174757-	e83188f
Suelos y rocas	86922Ъ			134757a	
Alúmina	13456t				
Menas de Fe	134749g			42688a	
Acompañado de Mn Aceros y ferroaleacion	nes			121865j	
Leche en polvo					al12581m
Rocas Aleaciones	134705g 42806n				
Silice	134767d				
Polimeros					el15006p
Sedimentos geológicos	4007.2	147166g			
Compuestos orgánicos Compustos de U	42912u 109044h				
Presencia de Mg	121653p				
Minerales y menas Películas de Ni-Cr	134707j			15980 ;ъ	
Made: a				27700 +0	c166373p
Agua de lluvia	134714j				
Solución					g172325r

Vol 78 año 1973

Material	1	2	4	6	11
Celulosa Suero sanguineo Alúmina Aleaciones de Al Aluminio	16819 6c	107858y 79312v 131727a		73803j	
Arsénico Alimentos Vegetales	144894c	11150k	b122729a		
Bismuto Aceros inoxidables	168225m			52010h	
Cristales de Ca Meteritos Aceros	143376y	66587p		105646h	
Rocas ultrabásicas Acidos inorgánicos Arseniúro de Ga	14))(O)	11218p	b37394t	66553z	
Vidrio Aleaciones de Au Solución		Trans	b143475e	154500k	11194c
Grafíto Solución Ilmenita y Rutilo		37579g		168089v 131718y	111946
Compuestos de Li Muestras lunares Rocas y minerales		66595q	d52188x	235276	
Agua de desague Aleaciones de Ni Niobio y Tantalo Menas y rocas Rocas Presencia de Fe	50076	11230m 52027u		168235q 92131e	88 38 5y
Rocas Suelos Solución	52236т	118870x		109683m	
Aceros Meteorítos		79374z	d66535▼	143385a	
Torio Acidos Tunsteno Agua natural		163653q	bl18829r d23541b	143426q	
Madera Material geológico		17839p	b1545 69q		

Material	.5	10	13	14
Fe colado Solución		118855w		e154546e
Aceros Acompañado de Ti	131648a	1100));;	118 7 99 f	
Arseniúro de Ga	1)10402	52221c		elll22c
Fe y acero Acidos Sulfatos		118966h 168324t		
Aceros	154487m	2-0/2+0		

Vol 79 año 1973

Material	1	2	4	5	6
Arseniuro de Ga Indio Minerales y rocas Rocas Aceros inoxidables	132606t	38181d 13215e			26774m 26 761e
Acero Trazas	1214874	38191g			
Agua de rio Metales Pluoruro de Li Oro nativo Agua-acetona	121459w 38141r		b38264h		38248f 38208t
Solución L'lucruro de amonio Fierro Trazas)6141f	48877z		38165Ъ	48928s
Solución Aleaciones de Cr-Ni Aceros aleados Agua natural	57401s	48861q	d132660:	121491a f	5915 9 t
Aleaciones de Al Oxido de Ga Acero Acero	73244y 87113s			73264e 73196j	
Aleaciones de Ti Ilmenita Al y Fe Petroleo	87124w 111413n	94265w		87067e	
Compuestos metálicos Suero sanguineo Madera Agua	93601r 96554p			89014j	100169m
Material geológico Agua de mar Boruro de Ti	108001#	111425t			100165y
Cristales de Li Metales Acero	1325 2 6s		b121548 b121567		
Alsaciones Tabaco Ta de alta pureza Aceros aleados		113336p 121543u 121521k			142572t

Material	2	6	11	13	14
Solución Renio Aceite combustible Petroleo	106570g	87119y 94340s			g51217d
Solución Solución			121510f	87097q	-72254-
Minerales y rocas Arseniuro de Ga		111388h			e382 5 4e
Cinc y aleaciones Aleaciones de Cu y F	e 121551⊽	111)0011			c49914j
Bismuto		121474x			
Acoro inoxidable				61203w	
Presencia de V Silicio		121569g	73207p		
Au de alta pureza		2227038			e87128a
Ferrocromo					1000764
Pigmentos Cenizas					e93500g e106653m
Solución			121489f		eroco))II
Solución			202700	117341m	
Orina Fierro			101190y 100160b		
Sangre			1001000		e123256b
Solución			132590h		

Material	2	5	6	10	14
Sedimentos marinos Boro Perrosos Solución	103507 b 103388p		103498z	5 554 5p	
Aceros Selenio Solución	103419z	90696k	103489x		
Sangre Aleaciones de Ni Henas de P Objetos arqueológicos	107343+		106387y 115705c		el15719k
Silicio Aleaciones y aceros Sedimentos marinos	1.27847p 1.27835h			127759m	
Ferrosilicio Aluminio Vidrio	140855j		127768p	140015	el36742c
Baño electrolítico Alúmina Alúmina Galio			152470t 152435k	140815w	e152409e
Material biológico Muestras lunares Aceros	152446q		152388x	55530e	•
Suelo lunar Iones inorgánicos Materiales conductóres Rocas Carbonato de Ca	152494d s152447r 152495e 152496f	90699p			

Vol 81 and 1974

Material	1	2	3	4	6
Oro		3287ly			855943
Comp. metálicos Aleaciones Aluminio Solución		163004r 44956t	72226у	1700748	0))943
Asbestos Rubies artificiales Material biológico	60199d	180830z		b72274f	
Berilio Material biológico		130475s 470 7 3p			
Suero sanguineo Pe colado Pe y lubricantes	47034b	53003			98965p 130476t
Cuerzo Aceros al Cr Fluoruro de Pb		578 83 s			130481r 130525h
Mariscos Solución Material geológico	85586 r	118639r 20469k			
Material geológico Tantalo Compuestos de Ta	145164p	72190g			32828q
Fe-Ni de alto C Material geológico Zn de alta pureza		32812e 20496s 32799f			
Aceros Cabellos humanos Ag de alta pureza		58846u 44926h			9893 9 h
Lantano Mine ales y rocas Aceros				b 57821v d162940f	32898n
Prod. del petroleo Solución	172576f		20520v		
Azucar y melaza Fe de alta pureza Fe y acero	154916n	32813f 145379n			
Oxido de Ni Aceros aleados		44899Ъ			145246s
Muestras lunares Bióxido de Mn Compuestos de Si Oxido de V		162938m			145222f 32912n 44958v

continuación Vol 81 año 1974

Naterial	2	10	11	. 12	14
Bi y Pb Ou y li Oromita y menas de Mn		32822h		130468s	b130498
Material biológico Trazes Aceros aleados	47069s		44931f	270400	h145221e
Haterial biológico Hocas Fe-Li-Cr	85680s	60337			g35188s j114154f
Electrodepósitos Hariscos Aceros Hinorales	165795y 180895z	68117w			j130536n
Aceros Arseniúro de Ga Rubies sintéticos	162960n 145127d			145263 v	JIJOJJOH
Solución	147121U				c167500x

Vol 82 año 1975

Material	1	2	4	6	11
Compuestos orgánicos Compuestos orgánicos Componetos Acero y aleaciones Pe colado y acero Revestimientos	8 7735h	132538j 25473z	b38239r	79970r 38200w	
Corundum Azucar granulada Ferroaleaciones Oro Cromita y Cr-magnesi Material geológico	ta	38207d 50999w 179907u	b80002h	1489 7 7n	148990m
Dióxido de M. Aceites Madera Plomo Aceros aleados	45437g	10804x 92594r 25445e		148989t	
Aceros aleados Polímeros Sedimentos marinos Sedimentos Silicatos	73724s 128974f	92659r	b 92589 t		
Plata Sodio Suelos Solución Solución		30087u	b)2629f	164466a 179955h 67712h	
Agua natural Aluminio Plantas Aceros		179953f	b11592t	51014h 51068d 38229n	
Trazas Aceros Cinc Trióxido de B Dióxido de Ti		145042t 67728e		167447r 67820d 38170m	

148990m Analisis de cromita y cromo-magnesíta, por titulación _ potenciométrica, usando EDTA.

La muestra fue disuelta con HClO4 al 70%, y fundida con una mezcla de HF - H₂SO₄ y vuelta a fundir __con KHSO₄. El fundido, en solución fue analizado paradeterminación de Al, Cr, Fe, Ca y Mg. A la suma de los iones trivalentes, se le agrecó EDTA, se calentó la solución y se tituló con Bi III, a un PH =6.5; usando un electrodo de plata. La suma de Fe y Cr fue determinada de la misma forma, en una alicuota, despres de adición de NH₄F al 10% para emmascarar al aluminio.

La suma de Fe y Al, fue determinada despues de _ volatilización de Cr VI como CrO₂P₂ con HF. El calcio _ y/o magnesio, fueron determinados de spues de separación de Cr y Fe + Al, por volatilización y precipita-ción con NH₃ respectivamente usan'o EJTA como indica-dor a un PH=11 y valoración con hg II. El Ca fue titu lado directamente con EDTA a un PH=12 usando calcaína como indicador, y despues de volatilización de Cr y en mascaramiento de Fe con trietanclamina.

44931f Determinación de Mn, Cr y V en aceros aleados, por titulación potenciométrica.

La muestra de acero, se atacó con una mezcla de á cilos H2SO4 H3PO4, agregandole despues (NH4)2 S2O8, como oxidante y AgNO, como catalizador; seguido de calenamiento para eliminar el exceso de (NH4)2 S208 . En una alicuota, se titula potenciométricamente la suma de Mn VII Cr III V I, con una solución de Fe II, usando un electrodo indicador de Pt vs electrodo de referencia _de Hg/Tg,SO4; y una corriente de carga de 0.5 Amp. ._ otra alicuota se agrega NaCl y se calienta para separar Cl., titulando de la misma forma, la suma de Cr III + V (V). Después del punto final, se añade a la solución_ KMnO4 on exceso, unas cuantas gotas de NaNO2 al 3% y 0.3 a 0.5 g de uréa; y se titula el vanadio con Fe II. E. punto de equivalencia fue a aprox. 0.8 voltios en au-> sencia y a 0.6 voltios en presencia de cloruros. Las desviaciones estandar fueron 0.01 - 0.09, 0.02 - 0.05 y 0.0008 - 7.06 % para las determinaciones de 1 - 12__ Cr, 0.6 - 1.0 Mn y 0.01 - 1.3 % de V, respectivamente

162940f Determinación por fotom tría, de Mn (VII), Cr (VI) y V (V), en aceros especiales.

El método fue aplicado a una muestra de acero es_
pecial (B.C.S # 220,1). L. muestra fue sometida loxidación con óxido de Ag II (para lograr los estados má:i+

mos de oxidación de los metales analizados.

El Mn se tituló primero con NaNO₂ en exceso, en _ medio ácido (H₂SO₄ O.5M), en la región visible del espectro a una longitud de onda de 620 milimicras. Para _ titulación sucesiva de Cr y V, se usó sulfato de amonio ferroso como reactivo valorante y se cambió la ácidez _ inicial por adición de H₃PO₄ 4M - H₂SO₄lM, y la longitud de onda a 760 milimicras (todavía en la región visible del espectro). Los tres puntos finales se obtuvie = ron graficamente. Para calcular el contenido de Cr, hubo necesidad de hacer una corrección, por el exceso de nitríto agregado despues del punto final de la valoración de Nn.

Vol 80

b33477r Determinación de altos contenidos de Mn, Cr y Ti en aceros de alta aleación; por espectroscopía de absorción tómica.

La muestra de acero, que disuelta en H₃PO₄ - H₂SO₆
1:1, la solución fue oxidada con FNO₃ concentrado, y diluido con H₂O, el analisis se realizó directamente obte
niendose las siguientes lineas le absorción atórica:
232.0 milimieras para níquel, 279.5 milimieras para Mn
y 359.4 milimieras para Cr. Se uso una flama de aire-CaH₂

78J98j Aplicación de la espectrofotometría de absorción atómi_ ca, en el analisis de Pe y acero.

Fueron analizados los siguientes elementos: Co \leq 0.05, Cu \leq 0.80, Pb \leq 0.25, Mn \leq 2.00, Ni \leq 0.075, Sn \leq 0.050, Cr \leq 1.20, Mo \leq 1.25, V \leq 2.50 y Al \leq 0.01 %, __ por absorción atómica, on errores de presición de: 0.02, 0.01, 0.0015, 0.004, 0.001, 0.002, 0.015, 0.017, 0.07 y 0.002 β respectivamente.

La muestra se disolvió en HCl con una pequeña can lidad de HNC3. Se usó una flama de C2H2 - N2O, para determinación de Cr, Mo, V y al, una flama de aire - H para Sn y una flama de aire - C2H2 para los otros elementos. Para determinar Al total, la muestra fue disuelta en ácido, la solución se filtró y el residuo se fundiócon lg de NaHSO4. Se extrajo el fundido con agua, se combinó con la solución muestra y se filtró para el anz lisis.

77943u Determinación de Li, Na, Ca, Mg, An, Sr, Cu, Ni, Zn, Cr y Fe, en rocas y minerales por absorción atómica.

Las rocas fueron analizadas por absorción atómica, usando una flama de aire - C₂H₂. La ruestra fue disuelta en HF - HClO₄ y calentada con HC₁ para eliminar vapores de HF. La interferencia de otros elementos fue cancelada agregandole tanto a la solución estandar como a la solución muestra SrCl₂, para determinación de Ca y _ Mg; Na₂SO₄ al 1 %, para determinar Cr; y CaCl₂ al 2 %,

para determinar Sr. Los errores relativos fueron: 0.3 - 6.5 %.

Vol 79

61203w Analisis de electrolítos de Cr - Fe - Ni y electrodepósitos de aleaciones binarias.

El método fue descrito para determinación de los_
más importantes componentes de electrolitos de Cr III y
Cr VI, los cuales son usados para electrodepositación _
de revestimientos y aleaciones de baja ley de Cr - Ni,_
Cr - Fe y Cr - Fe - Ni. El cromo es determinado por yodometría, el Fe es determinado (despues de extracción _
con una mezola de metilisobutilectona y acetato de amilo), por volumetría de formación de compleios; y el Ni_
se determinó gravimetricomente con dimetilglioxima. Tam
bién es descrita la determinación de SO₄²⁻, como BaSO₄ y
de HBF₄ libre por titulación con NaOH.

61189w Determinación de Cr en sceros de baja alesción, por em método colorimétrico.

El Cr, contenido en aceros de baja aleación en É forma de varios compuestos, fue determinado por disolución selectiva de cada uno de los compuestos, seguida por analisis colorimétrico con difenilcarbacida. El Cr presente como solución sólida, fue disuelto por perma-

nencia durante una hora en 120 ml de una mezcla de NaClal 15 y EDTA al 5% (PH 6 - 7), a una corriente directade 50 mA/cm. La cementita fue disuelta del residuo por tratamiento durante una hora con 50 ml de EDTA al 2% a un PH de 5 - 6. El Cr.C., por calentamiento durante 10 min con 50 ml de HCl 1:1. los óxidos de Cr., permanecieron en el residuo, que fue tratado con 10 - 30 ml de HNO., 5 ml de solución de Fe (0.01 g Fe/ml) y 10 ml de H2SO.4 H3PO.4. H0 4:3:8, la mezcla fue evaporada Lasta humos blancos, y el Cr fue detrminado colorimetricamente.

87097g Titulación de Al con EDTA, en presencia de Cr III.

El Al³⁺, fue determinado (en solución conteniendo Cr) usando EDTA en exceso, una solución buffer (aceta to) a un PH de 4 - 5, y titulando el exceso de EDTA con FeCl₃ en presencia de ácido sulfosalisílico, hasta cambio de cotor de amarillo-verdoso a raranja-rojiso. El _ Cr³tfue determinado en la misma solución por nueva adi-ción de EDTA en exceso, calentando la solución y nueva_titulación de exceso de EDTA, hasta cambio de color de violeta a rojo. La mejor determinación de Cr³+, se lleva a cabo en muestras de 1 - 5 mg.

Vol 78

168225m Atlicación de la espectrofotometría de absorción atórica para determinación de Cr en acero inoxidable.

Vol 77

56030s Determinación de Fe, Al y Cr en menas de Cr y refractarios a base de Cr.

La muestra en solvaión, a un PH de 2, fue calen tada a 60°C y titulada con EDTA 0.0, M, en presencia — de ácido sulfosalisílico, para determinar Fe. Después_ se enfrió la solución y se le agregó 5 ml de HCl 1:1 y 1 g de KI. y se dejo en lugar oscuro dura te 5 min, pa salo este tiempo se tituló con Na₂S₂O₃, usando sol de almidón como indicador, para determinación de or. Para determinar Al, se agregó EDTA on exceso a la solución muestra, se neutralizó con NH₄OH (10 ml), agregandole solución buffer (HOAc) y calentamiento a 50°C durante 5 min, se enfrió y se tituló con sol de CuJO₄.

42688a Separación de Cr y Mn, usando cloruro de cobre

Se estudiaron las reacciones, a diferentes Pq, del CuCl con soluciones de Mn VII y Cr VI. El Mn VII y el Cr VI fueron reducidos a Mn II y Cr III, respectivamente en medio fuertemente ácido y permanecieron en solución. En_ la precipitación de Cr(OH), o sal básica de Cr III, hubo un incremento en el PH de 1 a 12 v a un PH mayor de 12,_ el Cr VI no fue reducido, mientras que el Mn VII fue reducido a Mn IV y cuantificado por precipitación. Para la separación de Mn y Cr. la solución se ajustó a un PH de_ 3 a 7 (si la concentración total de Cr Mn, es mayor de_ 0.05 N, entonces, se puede usar un PH de II a 12', se ca lentó y se trató con exceso de CuCl. 10 - 15 min despues de la decoloración de la solución, el precipitado conteniendo CuCl y la sel básica de Cr III, fue suparado. Para separar Im y Cr, la solución fue alternativamente a-justada a una concentración aprox. O.IN en YOH, calentada a 50 C y tratada con exceso de JuCl. Dispues de que desaparece el color rosa del MnO4, el PH debe ser mayor_ de 7. El precipitado MnO, fue lavado con alcali 0.005N._ La separación completa de lin y Cr fue llevada a cabo por ambos métodos.

159804b Determinación de contenido de Cr en películas de Ni-Cr.
por el método de difenilcarbacide.

La muestra fue travada con 2 ml de H₂SO₄ 18N y calentada hasta que la película de Ni-Cr. estuvo completamente disuelta, y la solución se diluyó a 25 ml con H₂O. Para oxidar el Cr metálico a Cr⁺⁶ antes de desarrollo de color, a una alicuota de 2-5 ml de la solución muestra _ se le agregan O.8ml de NaOH 1N, por cada 5 ml de muestra; para neutralizar la solución, se le adicionan 5 ml de _ H₂SO₄ 1N (y agua si es necesario para un volúmen total _ de 10-11 ml) y 0.5 ml de KMnO₄ O.1N. La solución es en-tonces calentada a 70-20°C con permanencia de 20 min a esta temperatura, se le agregan en caliente, una solu-ción de NaN₃ al 5% para decolorar el exceso de NnO₄ y 1 ml de solución de difenil carbacide (0.125 g/100 ml He₂CO) y se diluye a 25 ml con H₂O. Despues de 40 min se mide _ la absorvancia a una longitud de onda de 546 milimicras. La desviación estandar relativa es de 1.7%.

- simuentes conclusiones:
- La cromita representa la única fuente económicamente explotable del cromo.
- 2. Los principales usos del crumo, son como elemento de aleación en la fabricación de aceros especiales, refractarios y en gal vanostegia.
- Las propiedades más importantes para su uso industrial, son:

 la resistencia a la corrosión, dureza y resistencia al desgas

 te que le comunica al acero y su alto pun'o de fusión que lo

 hace útil en la fabricación de refractarios.
- 4. Los métodos de análisi: químicos, más usados para cromo y reportados en el Jhemical Abstract en los años comprendidos entie 1965-1975 fueron:

Cono mayor constituyente. gravimetría, volumetría y potenciometría; practicados más usualmente en sus menas, aceros espociales, aleaciones de Un y Co y en refractarios.

Como menor constituyente o impureza: espectrofotometría, espectroscopía de absorción atómica, fotometría a la flama, espectrometría de emisión, polarografía y activación de neutrones; realizados en diversos materiales, tales como, rocas, mi nerales, suelos, pigmentos, vegetales, material biológico, etc.

BIBLIOGRAPIA

- 1._ Avner S. H. Introduction of Physical Metallurgy, Mc. Graw _ Hill, Tokio, (1964).
- 2. Bavor J. A. y J. Ibarz, Química General Moderna, cuarta edición espeñola, Ed. Macional, México, D.F., (1972).
- 3._ Bargalló M., Fratado de Química Inorgánica, segunda edición, Ed. Porrúa, México, D.F., (1972).
- 4. Betejtin A. Curso de Mineralogía, segunda edición. Ed. Mir, Moscú, (1970).
- 5._ Chaussin C. y G. Hilly, Metalurgia, tomo I, Alraciones Metálicas, Ed. Urmo, España, (1971).
- 6._ Dana B. S. y W. E. Ford, Tratado de Mineralogía, cuarta edición, Ed. C.E.C.S.A., México, D.F., (1971).
- 7. Encyclopedia of Industrial Chemical 'nalysis, vol 3, Interscience Publisher a division of John Tiley & Sons Inc., New_York, (1970).
- 9._ Encyclopedia of Science and Technology, vol 3, No. Graw Hill, (1966).
- 9. Fischer R, B. y D. G. Peters, Jompedio de Análisis Quím.co_
 Cuantitativo, primera edición, Nueva Edicorial Interamerica
 na, S.A. de C.V., México, P.F. (1971).
- 10. Ingenitría Quínica, lublicación mensual, Num. 129, Ed. Cormos, México, D.F., (abril, 1967).
- 11. Johnson C. G. y J. R. Weeks, Metalurgia, cuarta edición, Pi. Reverté S.A., Barcelona, (1961).
- 12. Airk R. E. y D. F. Ochmer, Encyclope is of Chemical Techno-.
 logy, segunda edición, "ol 5, Interscience Pullishers a division of John Wiley & Sons Inc., New York (1964)

- 13. Pearl R. M., Rocks and Minerals, Barnes & Noble Books, U.S.A., (1956).
- 14. Reed-Hill R. E., Principlos de Metalurgia Física. Segunda edición, Ed. C.E.C.S.A., México, D.F., (1971).
- 15. Thorpe E. S., Enciclopedia de Química Industrial, tomo II, __ Ed. Labor S.A., Provenza, Barcelona, (1966).
- 16. Scully J. C., Fundamentos de la Corrosión, primera edición, Ed. Alhambra S.A., Madrid, (1968).
- 17. Uly M. J., Chromium, Ed. Reinhold, New York, (1956).