UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

Facultad de Quimica

DETERMINACION EXPERIMENTAL DE COEFICIENTES DE DIFUSION DE GASES

TESISQue para obtener el título de:INGENIEROQUIMICOpresenta:JESUSARMANDOTAPIAPEREZMéxico, D. F.1974

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO :

PRESIDENTE : ING. RUDI P. STIVALET CORRAL VOCAL : ING. ROBERTO ANDRADE CRUZ SECRETARIO : M. C. ANTONIO VALIENTE BARDERAS 10r. SUPLENTE : DR. ENRICO MARTINEZ SAINZ 20. SUPLENTE : ING. ANDONI GARRITZ RUIZ

SITIO DONDE SE DESARROLLO EL TEMA :

LABORATORIO DE INGENIERIA QUIMICA

SUSTENTANTE :

JESUS ARMANDO TAPIA PEREZ

ASESOR :

M. C. ANTONIO VALIENTE BARDERAS

A MIS PADRES CON CARIÑO Y AGRADECIMIENTO:

FRANCISCO J. TAPIA C.

MANUELA PEREZ DE T.

A MIS HERMANOS EXTRAORDINARIOS:

.

FRANCISCO R. TAPIA P.

ALEJANDRO X. TAPIA P.

A MIS INCOMPARABLES AMIGOS

JESUS ARVIZU ELTATA
MARISELA ZAMORA
ISIDRO CANO
RODOLFO ZAMORA
GUILLERMO ZARAZÚA
GABRIEL CASTELLANOS
CARLOS R. MARTINEZ
RAMÓN CERVANTES
ERNESTO ZUÑIGA
ALFONSO DUIROZ
ADRIÁN VILLEGAS
GUILLERMO TELLEZ

CON SINCERO AGRADECIMIENTO A

-

FAM. RAMOS

FAM. TACHIKA

CON ESTIMACIÓN A

ANGELIKA KOSSACK

.

CON ESTIMACIÓN Y AGRADECIMIENTO A

M.C ANTONIO VALIENTE B

DR. MARTIN HDEZ. L.

CON MUCHO CARIÑO A

KATHY A. RUIZ W.

CONTENIDO

		Pag
Introducción		5
Capítulo I	Generalidades	
	Ecuación de Transferencia	7
Cap í tulo II	Correlaciones	
	E.R. Gilliland	15
	Fuller.Schettler.Giddings	17
	Spalding.Klibanour.Pomerantsev.	
	Frank.Kamenetsky	18
	Chapman.Enskog	18
	Wilke.Lee	22
	Othmer.Chen	22
	Slattery.Bird	24
Capítulo III	Fundamentos y Descripción del	
	Experimento.	
	Definiciones	28
	Ecuación sin Variación de Nivel	33
	Ecuación de Trabajo	38
	Equipo. Material Utilizado	40
	Técnica de Operación	41

	Dimensiones y Esquema de la	
	Celda	44
	Diagrama del Equipo Utilizado	45
Capitulo IV	Cálculos. Gráficas.	
	Sistema Alcohol Etílico - Aire .	46
	Sistema Acido Acético - Aire	51
	Sistema Acetona - Aire	55
Conclusiones		58
Bibliografía		96

Pag.

INTRODUCCION

Reviste un gran interés el conocimiento de los coeficientes de difusión tanto a nivel laboratorio como ta<u>m</u> bién en la Industria.

Su importancia radica principalmente en los cálcu los que a partir de ellos y otros factores se llevan a cabo para el diseño de equipo de Operaciones Unitarias.

Algunas aplicaciones en las cuales ha tenido basta<u>n</u> te campo de acción son en la determinación de coeficientes de transferencia de masa y como consecuencia del anterior la determinación de flujos másicos.

El objeto al cual está enfocada ésta tesis es por una parte la determinación experimental de éstos y por otra la confirmación del término al cual llegan las diversas correlaciones desarrolladas por los investigadores.

Las investigaciones realizadas acerca del cálculo de coeficientes de difusión en gases han dado lugar a varias correlaciones que han procurado dar una mejor estimación de éstos.

Aunque las correlaciones a las cuales se ha llegado han tenido un sello empírico son aplicables para numerosos casos en los cuales el fin no es la precisión rigur<u>o</u> sa.

Las bases para el desarrollo de las correlaciones estuvieron fincadas en un modelo que se planteó a partir de la Teoría Cinética Simplificada de los Gases.

Después de llevar a cabo ésto vinieron las modific<u>a</u> ciones, éstas salieron a raíz de los diversos estudios realizados.

La experimentación realizada fué llevada a cabo en el Laboratorio de Ingeniería Química, sería recomendable - realizar prácticas de éste tipo como un complemento a la teoría.

Pudiéndose utilizar una gran diversidad de sistemas diferentes ó similares al efectuado en ésta tesis.

CAPITULO I

GENERALIDADES

Ecuación de Transferencia

Cuando un sistema contiene dos ó más componentes c<u>u</u> yas concentraciones están variando de un punto a otro punto se sucederá una tendencia natural de transferencia de masa.

La transferencia que se lleva a cabo es debida al mecanismo de transporte molecular, en éste mecanismo la transferencia ha ocurrido debido al movimiento indivi-dual de las moléculas.

Para poder obtener una ecuación que explicara el transporte molecular se tuvo que recurrir a un modelo.

El modelo planteado fué el de un gas y debido a que tuvo base en la Teoría Cinética Simplificada de los Gases debió reunir las siguientes condiciones:

- a) Las moléculas del gas son perfectamente esféricas.
- b) El volúmen real de las moléculas es despreciable comparado con el volúmen existente entre ellas.

- c) No ocurrirán atracciones ni repulsiones.
- d) Los choques entre moléculas son totalmente elásticos.
- e) Cada molécula tiene un movimiento al azar
 a una velocidad media (v).
- f) Cada molécula se moverá una distancia (d)
 entre choques con otras moléculas.
- g) El tiempo necesario para que una molécula recorra la distancia entre choques a una v<u>e</u> locidad media será el tiempo entre choques (t).
- h) El número de moléculas es lo suficientemente grande para que se puedan usar valores promedio.

El modelo es bastante ideal, sin embargo sirve bas-tante bien para los propósitos deseados.

Se consideró después de lo postulado anteriormente que el gas está contenido dentro de un cubo.

En éste volumen las moléculas tendrán un movimiento al azar ó sea dentro del cubo seguirán diversas direcciones. Simplificando éste movimiento se asumirá que las mo léculas se moverán a lo largo de los ejes x ; y ; z , así

se tendrá que un sexto de las moléculas se moverá a lo largo de: <u>*</u> x ; <u>*</u> y ; <u>*</u> z , en cualquier instante.

El cubo estará dividido en 2 partes, una tendrá el gas A y la otra el gas B.

En el desarrollo de la ecuación se tomará solo la transferencia a lo largo del eje x.

La mitad de cada parte representará el promedio de la concentración de la propiedad (masa) que se va a tran<u>s</u> ferir; la distancia entre las concentraciones promedio s<u>e</u> rá (d), cada concentración estará contenida en un plano de área Δz Δy.

P_i = Plano 1 P₂ = Plano 2

La concentración de la propiedad que se va a transf<u>e</u> rir estará en función de la cantidad de propiedad por un<u>i</u> dad de volumen de gas ($c_A = gmol/cm^3$)

La concentración varía con la distancia de modo que se tendrá que la concentración en la parte A será igual a:

$$c_{A1} = c_{A2} + \frac{dc_A}{dx} \quad (-d)$$

En donde dc_A es el incremento de la concentración $\frac{1}{dx}$

con la distancia (d).

En el tiempo t habrá movimiento de las moléculas de A hacia B y viceversa, asociado a ellas llevarán masa y la cantidad de ésta propiedad que se va a transferir será igual a:

$$c_A \Delta y \Delta z d = \frac{gmol}{cm^3}$$
 cm cm cm

El flujo de masa se define como la cantidad de masa transportada por unidad de tiempo por unidad de área:

$$N_{AB} = \frac{1}{6} \qquad \frac{\Delta y \ \Delta z \ (d) \ c_{A1}}{\overline{t} \ \Delta y \ \Delta z} = \frac{c_A \ d}{6 \ \overline{t}} = \frac{gmol}{seg \ cm^2}$$

El término 1/6 en la ecuación anterior es lo que se transporta en el tiempo \overline{t} de la posición A a la B.

Ahora el flujo de la parte 8 hacia la A será:

$$N_{BA} = - \frac{c_{A2}}{6 \overline{t}}$$

Por lo tanto el flujo neto de A hacia B :

$$N_{AB} \ neto = N_{AB} + N_{BA} = \frac{c_{A1} \ d}{6 \ t} - \frac{c_{A2} \ d}{6 \ t}$$

$$N_{AB} neto = \frac{d}{6 t} (c_{A1} - c_{A2})$$

Si se sustituye en la ecuación anterior a cA1 por:

$$c_{A1} = c_{A2} + \frac{dc_A}{dx} (-d)$$

Quedaría:

$$N_{AB} neto = \frac{d}{6 t} \left[c_{A2} + \frac{dc_A}{dx} (-d) - c_{A2} \right]$$

Eliminando términos:

NAB note =
$$-\frac{d^2}{6 t} = \frac{dc_A}{dx}$$

Debido a que el flujo permanece invariante a régimen permanente, ésta ecuación representará el flujo a cual-quier valor de x. Sabiendo que:

$$d = v t$$

$$N = \frac{-1}{6} \frac{(d) \overline{t} \overline{v}}{\overline{t}} \frac{dc_A}{dx}$$

Haciendo simplificaciones:

$$N = \frac{1}{6} (d) \overline{v} \frac{dc_A}{dx}$$

Haciendo el mismo tratamiento para el gas 8, se obtendrá una ecuación análoga a la anterior.

Lo importante de la ecuación anterior de transferencia es el término 1/6 (d) \overline{v} , su significado en el transporte de masa es:

$$1/6$$
 (d) $\bar{v} = D$

Generalizando la ecuación de transferencia de masa quedará:

$$N = -D \frac{dc}{dx}$$

En donde D es el coeficiente de difusión y como se

observa, depende de la trayectoria libre media y de la v<u>e</u> locidad promedio.

El valor de éstos términos se puede obtener a partir de la Teoría Cinética de los Gases.

Los valores que se obtuvieron fueron:

$$V = \begin{bmatrix} \frac{B R T}{M} \end{bmatrix}^{T}$$

$$d = \frac{R' T}{(1/3 + 2/3 \sqrt{2}) N P \Pi \Theta^{2}}$$

-1/2

 $R = \text{cte. edo. gaseoso} = 8.314 \times 10^{7} \text{ erg/gmol}^{\text{K}}$ $R' = \text{cte. edo. gaseoso} = 82.06 \frac{\text{atm cm}^{3}}{\text{gmol}^{\text{K}}}$ $\Theta = \text{diametro molecular (cm)}$ T = temperatura absoluta (*K) M = peso molecular N = número de Avogadro

Haciendo uso de (d) , \overline{v} , y de la ecuación D = 1/6 (d) \overline{v} , combinándolas utilizando las conversiones necesarias para tener unidades consitentes obtenemos:

$$D = \frac{8.2 \times 10^{-20} \text{ T}^{3/2}}{P \theta^2 \text{ m}^{1/2}}$$

De éste análisis teórico se desprende que el coeficiente de difusión varía con la temperatura a la 3/2 e i<u>n</u> versamente proporcional a la presión.

El desarrollo anterior difiere con respecto al de los gases reales, en éstos habrá una cierta atracción y repulsión ya de cierta importancia, las moléculas no son perfectamente esféricas, además de que su volúmen puede ser significativo.

La interacción molecular que se presenta y la energía potencial son expresadas por Lennard Jones como un p<u>o</u> .tencial, éste es de gran utilidad para la predicción de las propiedades de transporte en gases no polares.

CAPITULO II

CORRELACIONES

A partir del estudio teórico y del empírico surgieron diversas correlaciones para la predicción de coefi-cientes de difusión de gases a bajas presiones.

Parte de esas correlaciones coinciden en un término que es la temperatura y su variación, ésta variación es el objeto de ésta tesis.

Para el cálculo de los coeficientes de difusión ta<u>n</u> to los estudios teóricos como los empíricos llegaron a algunas ecuaciones.

Dentro de ellas se presentan algunas de las mas ut<u>i</u> lizadas.

E.R. GILLILAND

A través de las innumerables experiencias realizadas por éste investigador con diferentes sistemas se llegó a una correlación que aunque empírica resultó tener resultados altamente satisfactorios en comparación con otras correlaciones.

La correlación a la que llegó E.R. Gilliland fué la siguiente:

$$D_{AB} = \frac{0.0043 \text{ T}^{3/2} (1/M_{A} + 1/M_{B})^{1/2}}{P (V_{A}^{1/3} + V_{B}^{1/3})^{2}}$$

$$D_{AB} = \text{cm}^{2}/\text{seg}$$

$$T = \text{temperatura (}^{O}\text{K}\text{)}$$

$$P = \text{presion (atm.)}$$

$$V = \text{volumen molal. (cm}^{3}/\text{gmol})$$

Los valores de los volúmenes molales fueron obtenidos por el método de contribución de grupos ó regla aditiva de Kopp's.

Los valores utilizados para el cálculo de los volúmenes molales fueron:

С	=	14.8	Aire = 29.9
Η	=	3.7	
0	=	7.4	

Cuando no se tienen a la mano resultados experimentales buenos se puede utilizar ésta correlación con ace<u>p</u> tables resultados.

FULLER . SCHETTLER . GIDDINGS

Gran semejanza presenta ésta correlación propuesta por éstos investigadores con la de E.R. Gilliland, una de las diferencias que se aprecian es el exponente al cual está elevada la temperatura y que de ésto dependerá la variación del coeficiente de difusión.

La validez de ésta ecuación está basada en la gran cantidad de experiencias realizadas recientemente.

La ecuación propuesta por los investigadores antes mencionados es:

$$D_{AB} = \frac{0.00100 \text{ T}^{1.75} (1/M_{A} + 1/M_{B})^{1/2}}{P (V_{A}^{1/3} + V_{B}^{1/3})^{2}}$$

Cabe aclarar que el valor de los volúmenes molales en ésta ecuación difieren un poco con respecto a los de la ecuación de Gilliland.

Los valores de los volúmenes atómicos utilizados p<u>a</u> ra los sistemas empl**eados** son:

> C = 16.5 Aire = 20.1 H = 1.98 O = 5.48

Como se observa éstos valores presentan una difere<u>n</u> cia a los dados en la correlación anterior.

SPALDING . KLIBANOUR . POMERANTSEV .

FRANK - KAMENETSKY

Los estudios e investigaciones realizadas por Spalding aunados a los datos proporcionados por Klibanour, Pomerantsev, y Frank - Kamenetsky dieron por resultado una ecuación aplicable para el sistema vpor de agua-aire en donde se obtuvieron resultados aceptables hasta la temperatura de 2000⁰F. La ecuación propuesta es:

$$D_{AB} = \frac{1.46 \times 10^{-4}}{P} \frac{T^{5/2}}{T + 441}$$

CHAPMAN . ENSKOG

Esta correlación propuesta por Chapman y Enskog es fundamentalmente teórica pues en su desarrollo y forma-ción no intervinieron datos obtenidos de experimentación sino que se llegó a ésta correlación por análisis matem<u>á</u> tico.

Los resultados que se han obtenido a partir de ella han sido altamente satisfactorios principalmente para c<u>a</u> sos en que las moléculas no son polares, no sucede así cuando las moléculas son polares, grandes ó largas y

cuando hay radicales libres quedando así su aplicación solo a los casos en que no se presentan las situaciones antes mencionadas.

La ecuación es:

$$D_{AB} = \frac{0.001858 \text{ T}^{3/2} (m_A + m_B)/m_A m_B}{P_{\Omega_2} \theta^2}^{1/2}$$

Como se observa a diferencia de **las co**rrelaciones anteriores sobresalen dos términos, uno es el diámetro de colisión (Θ) y el otro la integral de colisión (Ω_2). El cálculo de ésta integral de colisión tiene su base en el potencial propuesto por Lennard Jones.

Se ha visto que la integral de colisión depende de la relación kT/E_{AB} , en donde k es la constante de Boltzman, T la temperatura, E_{AB} es la energía máxima de atra<u>c</u> ción entre dos moléculas, ésta relación se puede encon-trar tabulada y ver directamente el valor de la integral de colisión. O bien se puede tener la gráfica l y poder así realizar los cálculos, en ésta misma gráfica se en-cuentra la curva para poder obtener también la integral de colisión para el cálculo de viscosidades.

En caso de no poder contar con tablas que tengan

INTEGRALES DE COLISION

GRAFICA 1

E/k y datos de Θ , se pueden estimar tomando en cuenta las siguientes reglas:

E/k = 0.75 Tc E/k = 1.21 Tb $\Theta = 5/6 \text{ Vc}^{1/3}$ $\Theta = 1.18 \text{ Vb}^{1/3}$

Las unidades en las que viene expresado el coeficie<u>n</u> te de difusión utilizando la correlación anterior son cm²/seg, en donde la presión P está en atmósferas y la temperatura en grados Kelvin.

Se presentan correlaciones de casos especiales como la determinación del coeficiente de autodifusión. En é<u>s</u> ta ecuación se hace una relación de la integral de colisión para difusividad con la de viscosidad dado que las ecuaciones en las que tienen incluído la integral de colisión tienen su base en la teoría propuesta por Chapman Enskog.

La correlación es:

$$D = 1.20 (R T/MP) (\Omega_1/\Omega_2)_{\mu}A$$

La viscosidad debe de ser expresada en poises. Esta ecuación ha dado buenos resultados en el caso de gases simples, así como para casos en los que se utiliza : CO, CO₂, HCL, HBr, BF₃ y UF₆.

WILKE . LEE

Básicamente éstos investigadores emplearon la ecuación de Chapman - Enskog, haciéndole algunos cambios como el de la sustitución de la constante 0.001858

La correlación a la que llegaron Wilke y Lee tuvo resultados un poco mejores que la de Ch. ý E.

La ecuación presentada por ellos es: $D_{AB}=0.00217-0.00050 \left[(M_{A}+M_{B})/M_{A}M_{B} \right]^{1/2} \left[T^{3/2} \left[(M_{A}+M_{B})/M_{A}M_{B} \right]^{1/2} / P \Theta_{AB \Omega 2}^{2} \right]$

OTHMER . CHEN

La correlación obtenida por éstos investigadores t<u>u</u> vo como principales innovaciones la estimación de la integral de colisión empíricamente, la introducción de pr<u>o</u> piedades críticas, observándose también una variación en el exponente al cual está elevada la temperatura. Los valores obtenidos de los coeficientes con ésta correlación resultaron ser más grandes que los calcula-dos con la ecuación de Chapman - Enskog.

La correlación propuesta es:

$$D_{AB} = \frac{0.0150 \text{ T}^{1.81} \left[(m_A + m_B)/m_A m_B \right]^{1/2}}{P (T_{CA} T_{CB})^{0.1405} (v_{CA}^{0.4} + v_{CB}^{0.4})^2}$$

La presión P estará en atmósferas, la temperatura T está en grados Kelvin y el volúmen crítico en cm³/gmol.

En las investigaciones realizadas por Othmer y Chen observaron a partir de diversas experiencias que para ciertos sistemas el coeficiente de difusión variaba con la viscosidad del aire a una cierta potencia cuyo valor es de 2.74 , la ecuación que quedó como resultado de dichas investigaciones es:

$$D_{AB} = 2.52 \times 10^{7} \mu \text{ aire} \left[\frac{(M_{A} + M_{B})/M_{A}M_{B}}{(Vc_{A}^{0.4} + Vc_{B}^{0.4})^{2}} \right]^{1.23}$$

En la ecuación la viscosidad deberá estar expresada en centipoises a la temperatura del aire.

Resultados parecidos se obtuvieron con ésta correla

ción con respecto a la anterior.

SLATTERY . BIRD

Los numerosos datos experimentales comparados con los obtenidos por la ecuación desarrollada por Slattery y Bird dieron por resultado que había una cierta desviación que resultó ser un poco mayor que el de correlaciones anteriores.

En las experiencias realizadas por ellos no ensayaron con sistemas que contenían aire como parte del sis-tema.

La correlación resultante es:

$$D_{AB} = \frac{2.74 \times 10^{-4}}{P} \left[(M_{A} + M_{B}) / M_{A} M_{B} \right]^{1/2} (Pc_{A} Pc_{B})^{1/3} (Tc_{A} Tc_{B})^{-0.495} T^{1.823}$$

Como se observará una de las inclusiones hechas es la de las temperaturas críticas de cada una de las sus-tancias del sistema. Tanto la presión como las presio-nes críticas deberán expresarse en atmósferas, la temperatura y temperaturas críticas estarán en grados Kelvin.

En las correlaciones anteriores se aprecia que el coeficiente de difusión varía con respecto a la tempera-

tura elevada a un exponente e inversamente proporcional a la presión.

En vista que la base de todos éstos estudios está fincada en la teoría de los gases densos la presión no influye en la difusión, el intervalo de presión considerado va desde algunos milímetros de mercurio hasta algunas decenas de atmósferas.

Al haber presiones ya altas, las correlaciones ya no funcionarán bien. Para el cálculo de coeficientes de difusión a altas presiones no se han encontrado correlaciones que hagan una predicción aceptable.

Se ha propuesto a falta de información utilizar una carta generalizada que se emplea para la determinación de coeficientes de autodifusión, empleando en lugar de las propiedades críticas las pseudocríticas.

Esto se ha mantenido como provisional ya que aún no hay datos suficientes para hacer más firme y cimentado el uso de la carta generalizada para éste caso.

En la carta ó gráfica se presenta en las ordenadas la relación $\frac{P D_{AB}}{(p D_{AB})^{\circ}}$, en las abscisas la presión pseud<u>o</u>

reducida y como parámetro la temperatura pseudoreducida, el término (p D_{AB})[•] se calcula con el dato de la presión y con las correlaciones anteriores, despejando de la ecuación a D_{AB} quedará:

$$D_{AB} = \frac{(p \ D_{AB})^{\bullet}}{p} \frac{(p \ D_{AB})^{\bullet}}{(p \ D_{AB})^{\bullet}}$$

En la gráfica 2 se presenta la carta generalizada.

CARTA GENERALIZADA DE SLATTERY . BIRD

GRAFICA 2

CAPITULO III

FUNDAMENTOS Y DESCRIPCION DEL EXPERIMENTO

Para poder obtener una ecuación que pudiera describir lo ocurrido en el experimento realizado se tuvo inicialmente que partir de la primera Ley de A. Fick.

En el análisis que se seguirá se han manejado diferentes términos que se mencionarán a continuación antes del desarrollo de la ecuación.

Cada especie de una mezcla posee una cierta velocidad, así que para evaluar la velocidad de la mezcla se deben de tomar en cuenta las velocidades de todas las e<u>s</u> pecies presentes.

La velocidad promedio de la mezcla dada en función de concentraciones en masa es expresada de la siguiente forma:

 ρ = la masa por unidad de volumen v_i = velocidad de los componentes

En términos de concentración molar la velocidad promedio estaría dada:

$$v = \frac{\sum_{i=1}^{n} c_i \quad v_i}{c} \qquad (2)$$

c = moles por unidad de volumen

El flujo estará expresado como la cantidad de masa ó moles de los componentes que intervengan y que atraviesan una determinada área en un cierto tiempo.

El flujo puede estar en función de coordenadas fijas ó coordenadas las cuales se están moviendo de acuerdo a una velocidad promedio (en función de concentración en m<u>a</u> sa ó en concentración molar.)

Una relación empírica para describir el flujo molar en la difusión molecular de un cierto componente A en otro B, en condiciones de temperatura y presión constantes fué propuesta por A. Fick y está expresada de la siguiente forma:

En donde J_{Az} es el flujo molar en la dirección del
eje z relativo a la velocidad promedio (molar). Cabe aclarar que se ha considerado un solo eje para simplificar las ecuadiones. D_{AB} es el coeficiente de difusión ó factor de proporcionalidad. $\frac{dc_A}{dz}$ es el gradiente de concen-tración en la dirección del eje z.

Una relación mas general fué propuesta por S.R. Groot que no tiene las restricciones anteriormente mencionadas en la propuesta por A. Fick, ésta relación es la siguiente:

 y_A = fracción molar del componente A.

Para un sistema binario con una velocidad promedio (molar) constante en la dirección del eje de las z, el flujo molar en ésta dirección relativo a la velocidad pr<u>o</u> medio (molar) se representa de la siguiente forma:

$$J_{AZ} = c_A (v_{AZ} - VZ) \dots (5)$$

Igualando las ecuaciones (5) y (4) quedará:

En un sistema binario V_z estaría expresado de la siguiente forma de acuerdo con la ecuación (2):

Dado que : $\frac{c_A}{c} = y_A$

 $c_A Vz = y_A (c_A v_{Az} + c_B v_{Bz}) \dots (9)$

Sustituyendo (9) en (7) :

$$c v_{Az} = -c D_{AB} \frac{dy_A}{dz} + y_A (c_A v_{Az} + c_B v_{Bz})..(10)$$

Es de notarse que tanto v_{Az} como v_{Bz} son velocidades relativas a el fijo de las z, así como c_A v_{Az} y c_B v_{Bz} son flujos relativos al eje fijo de las z. Pudiéndose e<u>x</u> presar en una forma más general los flujos con respecto a ejes fijos: $N_A = c_A v_A$ $N_B = c_B v_B$

De ésta forma la ecuación (10) quedaría:

En ésta ecuación se tiene que:

 N_{AZ} = flujo molar con respecto a ejes fijos. - c $D_{AB} \frac{dy_A}{dz}$ = flujo resultante de la difusión. y_A (N_{AZ} + N_{BZ}) = flujo debido al arrastre.

Las experiencias llevadas a cabo para la determinación de los coeficientes de difusión tuvieron su fundame<u>n</u> to en la Celda de Arnold, que principalmente está constituída por un tubo de vidrio lleno de líquido, por la parte superior del tubo pasará un determinado gas. Esquemáticamente la celda sería de la siguiente forma:

Un balance de material en una porción de volúmen daría:

$$S N_{A_7}/z - S N_{A_7}/z + \Delta z = 0$$

Dividiendo entre S Δz :

$$\frac{S N_{AZ}}{S \Delta z} = \frac{\Delta N_{AZ}}{\Delta z}$$

Tomando el límite cuando $\triangle z$ tiende a cero:

$$\frac{N_{Az}}{\Delta z} = 0$$

D en forma diferencial:

$$\frac{d N_{AZ}}{d z} = 0$$

La ecuación anterior está indicando que el flujo molar a lo largo del tubo es constante ó sea desde el nivel z_1 hasta z_2 .

El gas que pasa por la parte superior de la celda s<u>e</u> rá insoluble en el líquido y el flujo hacia éste será nulo, por lo tanto el gas será considerado como estaciona-rio, así con esto y utilizando la ecuación (ll) quedará:

$$N_{AZ} = - c D_{AB} \frac{dy_A}{dz} + y_A (N_{AZ} + 0) \dots (12)$$

Si: $y_A = 1 - y_B$

Sustituyendo en la ecuación (12):

$$N_{Az} = - C D_{AB} \frac{dy_A}{dz} + (1 - y_B) N_{Az}$$

$$N_{Az} = - C D_{AB} \frac{dy_A}{dz} + N_{Az} - y_B N_{Az}$$

Eliminando términos:

$$N_{Az} y_B = - c D_{AB} \frac{dy_A}{dz}$$

$$N_{Az} = - \frac{c D_{AB}}{y_B} \frac{dy_A}{dz}$$

De la misma manera si:

$$y_{B} = 1 - y_{A}$$

$$N_{AZ} = -\frac{c}{1-y_{A}} \frac{dy_{A}}{dz} \qquad (13)$$

Integrando la ecuación (13) entre los límites:

$$z_1$$
 z_2
a
 y_{A1} y_{A2}

Y asumiendo que el coeficiente de difusión no depende de la concentración; el flujo N_A es constante a lo la<u>r</u> go de la trayectoria de difusión.

$$N_{Az}\int_{z_1}^{z_2} dz = c D_{AB}\int_{y_{A1}}^{y_{A2}} \frac{(-dy_A)}{1 - y_A}$$

Quedando:

Si: $(1 - y_A) = y_B$

Entonces:
$$(1 - y_{A2}) = y_{B2}$$

 $(1 - y_{A1}) = y_{B1}$

Definiendo la media logarítmica del componente B ó gas como:

$$y_{B} \ln = \frac{y_{B2} - y_{B1}}{\ln \frac{y_{B2}}{y_{B1}}}$$

$$\ln \frac{y_{B2}}{y_{B1}} = \frac{y_{B2} - y_{B1}}{y_{B} \ln n}$$

Sustituyendo:

$$N_{A} = \frac{c D_{AB}}{z_{2} - z_{1}} \frac{y_{B2} - y_{B1}}{y_{B} \ln z_{2}}$$

ó

$$N_{A} = \frac{c \quad D_{AB}}{z_{2} - z_{1}} \qquad \frac{(1 - y_{A2}) - (1 - y_{A1})}{y_{B} \ln}$$
(15)

Expresando en función de presiones:

$$c = n/V = P/RT$$
 $y_A = P_A/P_T$

$$N_{A} = \frac{D_{AB} P}{RT (z_{2} - z_{1})} \frac{(P_{A1} - P_{A2})}{P_{B} ln}$$

Para los experimentos realizados tendremos que el n<u>í</u> vel del líquido que se encuentra en el tubo va a variar conforme transcurre el tiempo por lo tanto la ecuación a<u>n</u> terior se ve modificada, el esquema de la celda de trabajo será el siguiente:

En algún momento, en la fase gaseosa el flujo molar estará dado por:

$$N_{A} = \frac{c D_{AB} (y_{A1} - y_{A2})}{z y_{B} \ln}$$

Este flujo lo podemos relacionar con la cantidad de componente que abandona la fase líquida que vendría dado por:

$$N_A = C_{AL} - \frac{dz}{dt}$$

Pudiendo así igualar las dos ecuaciones:

$$c_{AL} = \frac{dz}{dt} = \frac{c D_{AB} (y_{A1} - y_{A2})}{z y_{B} \ln}$$
(17)

Separando variables:

$$\int_{t_{0}}^{t} dt = \frac{c_{AL} y_{B} \ln}{c D_{AB} (y_{A1} - y_{A2})} \int_{z_{0}}^{z} z dz$$
$$t = \frac{c_{AL} y_{B} \ln}{c D_{AB} (y_{A1} - y_{A2})} \frac{z_{t}^{2} - z_{0}^{2}}{2}$$

Despejando:

c_{AL} = densidad molar (gmol/cm³)
c = densidad molar total en la fase gaseosa
 (gmol/cm³)

La ecuación (18) fué la que se utilizó para el cálculo de los coeficientes de difusión a diferentes temperaturas.

Los datos que se obtienen de la experimentación son:

- zt = Es la distancia del tope donde empieza la gra-duación hasta el nivel del líquido que quedó después de la difusión.
- z_o = Es la distancia del tope al nivel original de líquido.
- t = Es el tiempo en el que se llevó a cabo la experimentación.

Para poder llevar a cabo la parte experimental fué necesario contar con varias partes fundamentales así como de material auxiliar. Como partes esenciales en las exp<u>e</u> riencias:

 a) Una celda de vidrio en forma de U; provista en la parte superior de una graduación hecha en el mismo tubo para poder hacer las lecturas un poco mejor, el rango de ésta graduación está de acuerdo a la medida del capilar que se encuentra también en ésta parte superior.

En la parte inferior de la celda se encuentra una llave de paso que facilita la reposición de líquido a la parte de la celda en que se encuentra el capilar.

- b) La corriente de aire necesaria es proporcionada por una compresora (ô bien por una bomba de vacío); regulan do la corriente por medio de una válvula instalada en la línea utilizada.
- c) En la realización de las experiencias a diferentes tem peraturas se utilizó un Baño Colora el cual está dotado de un regulador para poder trabajar a la temperatu-

ra deseada.

d) Para poder observar la disminución del nivel del líqui do en el capilar fué necesario utilizar una lente de aumento amplificándose así la escala y poder realizar una lectura no muy errónea.

TECNICA DE OPERACION

- Primeramente hacer un perfecto lavado de la celda a fin de eliminar impurezas que se encuentren dentro del tubo que puedan causar contaminación de la sustancia a utilizar, ya que ésta debe estar pura.
- LLenar la celda hasta que el nivel en el capilar esté a 1.5 ó 2.0 cm. del tope ó extremo superior donde termina el capilar.

Se introduce la celda en el baño (previamente ajustada la temperatura a la cual se va a trabajar).

Cuando se está trabajando a temperaturas altas se tiene que hacer una variación en cuanto a la distancia que debe estar el nivel del líquido de la parte supe-rior, ya que éste tendrá una dilatación mayor que a u-

na temperatura baja por lo tanto se deberá dejar más alejado el nivel del tope a fin de que el líquido no alcance a subir y pasarse de la graduación con lo cual las lecturas no se podrían tomar correctamente.

- 3) Como se dijo anteriormente el líquido que se encuen-tra en el capilar se dilatará, para ésto se deja un determinado tiempo y se irá checando la variación del nivel, se procederá a anotar el nivel del líquido cuando se observe que ya no hay ninguna variación.
- 4) Después de haber anotado el nivel del líquido se procede a suministrar aire pasando una corriente ligera, en éste momento se empieza a tomar el tiempo.
- 5) Cuando haya pasado un cierto tiempo seleccionado de acuerdo a la sustancia utilizada, ya que se puede tener alguna que en un corto tiempo pase a la fase ga-seosa y se difunda y si el tiempo que se deja es largo, baja tanto el nivel que ya no sería posible leer en la graduación que se encuentra a lo largo del capilar.

Habiendo seleccionado ese tiempo y después de terminado éste se lee el nivel final, ya con estos datos

se procederá a los cálculos respectivos.

•

Tanto las dimensiones, esquema de la celda y diagr<u>a</u> ma del experimento se presentan en las figuras l y 2 respectivamente.

FIGURA 1

CAPITULO IV

CALCULOS · GRAFICAS

Los cálculos efectuados para cada uno de los sistemas utilizados fueron obtenidos de la siguiente manera:

SISTEMA : ETANOL - AIRE

Temperatura : $T = 25^{\circ}C$; 298°C : 77°F Presión : P = 586 mm Hg P_{A1} = Presión de vapor a la temperatura de operación. $P_{A1} = 64.6435 \text{ mm Hg}$ $y_{A1} = P_{A1}/P = 64.6435/586 = 0.1103131$ $y_{B1} = 1 - y_{A1} = 1 - 0.1103131 = 0.8896869$ $y_{B2} = 1$ $y_{A2} = 0$ $y_{Bln} = \frac{1 - 0.8896869}{2.3 \log 1/0.8896869} = 0.9497468$ ρ = densidad de la sustancia a la temperatura de operación. $\rho = 0.794 \text{ g/cm}^3$ cAi = densidad molar del líquido. $c_{AL} = \rho/PM = 0.794/46 = 0.01716 \text{ gmol/cm}^3$ $R = 82.06 \quad \frac{\text{atm cm}^3}{\text{gmol }^{\circ}\text{K}}$

c = densidad molar del gas.

c = $P/RT = \frac{0.7710526}{82.06 (298)} = 0.0000315 \text{ gmol/cm}^3$

$$D_{AB} = \frac{c_{AL} y_{Bln}}{c (y_{A1} - y_{A2})} \frac{z_1^2 - z_0^2}{2 t}$$

 $z_1 = 2.30$ cm $z_0 = 1.98$ cm t = 15600 seg $D_{AB} = 4793.4117$ (0.0000412) = 0.1974885 cm²/seg

TABLA 1

SISTEMA ALCOHOL ETILICO · AIRE

Т∙К	P _A mmHg	y _{Bln}	CAL	С	F.
293	42.4333	1.049446	0.01720	0.0000319	0.796
298	64.6435	0.949746	0.01716	0.0000315	0.794
303	77.622	0.9364489	0.01679	0.000031	0.777
308	98.3212	0.917602	0.01677	0.0000304	0.776
313	129.37	0.887116	0.01674	0,00003	0.775
318	175.9432	0.852095	0.01664	0.0000295	0.770
323	206.992	0.811715	0.01653	0.000029	0.755
328	227.54512	0.791500	0.01642	0.0000286	0.750
333	310.488	0.703409	0.01538	0.0000282	0.758
338	419.1588	0.570013	0.01627	0.0000277	0.753

TABLA 2

•

SISTEMA ALCOHOL ETILICO · AIRE

D_{AB} 0.176 0.197 0.205 0.216 0.221 0.228 0.243 0.251 0.261 0.273 cm²/seg

T°K	293	298	303	308	313	318	323	328	333	330
				000		310	525	JZU	111	.1.10

El rango utilizado para éste sistema alcohol etflico aire fué de 20°C; a 70°C se observa que empieza a haber pequeñas burbujas que impiden hacer lecturas; a 75°C, ya hay una ebullición completa y resulta imposible realizar mediciones.

VARIACION DEL COEFICIENTE DE DIFUSION

CON LA TEMPERATURA DEL SISTEMA ETOH-

AIRE A LA PRESION DE 586 mm Hg

SISTEMA : ACIDO ACETICO - AIRE

Temperatura : T = 60°C ; 333°K ; 140°F Presión : P = 586 mm Hq Pal = presión de vapor a la temperatura de operación. $P_{A1} = 60 \text{ mm Hg}$ $y_{A1} = 60/586 = 0.102389$ $y_{B1} = 1 - y_{A1} = 1 - 0.102389 = 0.897611$ $y_{B2} = 1$ $y_{A2} = 0$ $y_{Bln} = \frac{1 - 0.897611}{2.3 \log 1/0.897611} = 0.9827142$ ρ = densidad de la sustancia a la temperatura de opera ción. $e = 1.01 \, \text{g/cm}^3$ cAl = densidad molar del líquido. $c_{AL} = \frac{\ell}{PM} = 1.01/60 = 0.0168333 \text{ gmol/cm}^3$ $R = 82.06 \frac{\text{atm cm}^3}{\text{omol}^{\circ} \text{K}}$ c = densidad molar del gas. $= P/RT = \frac{0.7710526}{82.06 (333)} = 0.0000281 \text{ gmol/cm}^3$ С $= \frac{c_{AL} y_{Bln}}{c (y_{A1} - y_{A2})} \frac{z_1^2 - z_0^2}{2t}$ DAR $z_1 = 2.31$ cm $z_0 = 2.05$ cm t = 20940 seg $D_{AB} = 5907.9723 (0.0000271999) = 0.1606968 cm²/seq$

TABLA 3

SISTEMA ACIDO ACETICO · AIRE

Т⁰К	₽ _A mmHg	^y Bln	CAL	С	
333	60.00	0.98271	0.016833	0.0000282	1.01
338	80.00	0.9794	0.016666	0.0000277	1.00
343	120.00	0.91882	0.016566	0.0000273	0.994
348	160.00	0.87288	0.01650	0.0000269	0.990
353	200.00	0.83365	0.01640	0.0000266	0.984
358	240.00	0.78444	0.016266	0.0000262	0.976
363	280.00	0.73930	0.016216	0.0000258	0.973

TABLA 4

SISTEMA ACIDO ACETICO · AIRE

D _{AB} cm ² /seg	0.160	0.162	0.169	0.172	0.175	0.176	0.184
Т∙к	333	338	343	348	353	358	363

En éste caso del sistema ácido acético-aire el rango utilizado fué de 60°C a 90°C; se empezó desde la temp<u>e</u> ratura de 60°C debido que abajo de ésta temperatura las presiones de vapor son muy bajas, por lo tanto la frac--

ción mol en la fase gaseosa es pequeña y se necesitarían tiempos grandes para que hubiera una disminución del nivel del líquido apreciable y siendo el tiempo de dura-ción grande no sería práctico.

VARIACION DEL COEFICIENTE DE DIFUSION CON LA

TEMPERATURA DEL SISTEMA CH3COOH-AIRE A LA

PRESION DE 586 mmHg 275 20 DAB cm²/seg²10⁻¹ 1.5 1.1 3 4 5 5.9 TEMPERATURA °K×10² PENDIENTE OBTENIDA 1.40 PENDIENTE TEORICA 1.50

GRAFICA 4

Temperatura : T = 25°C ; 298°K ; 77°F Presión : P = 586 mmHg PA1 = presión de vapor a la temperatura de operación $P_{A1} = 217.3416 \text{ mm Hg}$ $y_{A1} = P_{A1} / P = 217.3416 / 586 = 0.3708901$ $y_{B1} = 1 - y_{A1} = 0.6291099$ $y_{A2} = 0$ $y_{B2} = 1$ $y_{Bln} = \frac{1 - 0.6291099}{2.3 \ 10g} = 0.8103$ ρ = densidad de la sustancia a la temperatura de operación. $\rho = 0.78 \text{ g/cm}^3$ c_{Al} = densidad molar del líquido $c_{AI} = \frac{e}{PM} = 0.78/58 = 0.0135689$ $R = 82.06 \frac{\text{atm cm}^3}{\text{gmol }^{\circ}\text{K}}$ c = densidad molar del gas c = $P/RT = \frac{0.7710526}{82.06 (298)} = 0.0000315 \text{ gmol/cm}^3$ $D_{AB} = \frac{c_{AL} y_{B1n}}{c(y_{A1} - y_{A2})} \qquad \frac{z_1^2 - z_0^2}{2 t}$ $z_1 = 2.10 \text{ cm}$ $z_0 = 2.69 \text{ cm}$ t = 9000 seg $D_{AB} = 947.87523 (0.000157) = 0.1488164 \text{ cm}^2/\text{seq}$

TABLA 5

SISTEMA ACETONA · AIRE

Т⁰К	P _A mmHg	y _{Bln}	CAL	с	
293	186.1732	0.83715	0.01368	0.0000319	0.794
298	217.3416	0.81033	0.013568	0.0000315	0.787
303	279.4392	0.73782	0.013534	0.000031	0.785
308	320.8376	0.6919	0.013448	0.000030	0.780
313	388.110	0.61267	0.013275	0.00003	0.770

TABLA 6

SISTEMA ACETONA · AIRE

DAB cm ² /seg	0.142	0.148	0.155	0.167	0.173
T ⁰ K	293	298	303	308	313

En éste sistema acetona-aire el rango en que se trab<u>a</u> jó fué de 20°C a 40°C ; a 45°C existe ya plena ebullición lo cual impide hacer más lecturas; es de notarse que el 1<u>í</u> mite de éste método es el punto en el cual la sustancia a trabajar tiene su temperatura de ebullición.

VARIACION DEL COEFICIENTE DE DIFUSION CON

LA TEMPERATURA DEL SISTEMA CHO-AIRE

A LA PRESION DE 586 mmHg

CAPITULO V

CONCLUSIONES

Para el análisis de los datos experimentales obtenidos se trató de llegar a un método que reflejara si no en forma óptima por lo menos aceptable la validez de la forma en que se llevaron a cabo los experimentos y la evalu<u>a</u> ción de los cálculos.

Una de las formas a la cual se podían adaptar la m<u>a</u> yor parte de las correlaciones resultó ser la gráfica, d<u>a</u> do que los datos involucrados en gran parte de las correlaciones resultan invariantes y se pueden condensar en una constante, dejando solamente al término variable que es la temperatura.

De tal manera que la forma generalizada de las corr<u>e</u> laciones quedaría:

Si procedemos a expresarla en forma de logaritmos:

log D_{AB} = log K + log T^{exponente}
log D_{AB} = log K + exponente (log T)

Observándose que la ecuación tiene la forma de una línea recta.

Si se grafica en papel log - log las ordenadas corresponderán al coeficiente de difusión y en las abscisas estará la temperatura, la pendiente de la recta que resulta será el exponente al cual se encuentra elevada la temperatura, como se ilustra en la gráfica 6.

Al haber realizado ésto y obtener los resultados, se procedió a hacer un análisis comparativo con los resultados obtenidos experimentalmente y los que resultan con las diferentes correlaciones antes vistas.

Los resultados obtenidos experimentalmente fueron comparados con los que resultan a partir de las correlaciones citadas en el Capítulo II.

Los resultados de éste análisis tanto como de resultados como gráficos para los tres sistemas empleados se presentan a continuación.

TEMPERATURA

GRAFICA 6

DAB

TABLA 7

SISTEMA · ALCOHOL ETILICO - AIRE

D _{AB} experimental	D _{AB} Gilliland	Temperatura °C
0.176524	0.1675127	20
0.19488	0.1718188	25
0.2051972	0.1761612	30
0.2167069	0.1805396	35
0.2214339	0.1849536	40
0.2280582	0.1894031	45
0.2439254	0.1938876	50
0.2519574	0.1984071	55
0.2610746	0.2029611	60
0.2733129	0.207544	65

TABLA 8

×

SISTEMA · ACETONA - AIRE

D _{AB} experimental	D _{AB} Gilliland	Temperatura °C
0.142212	0.1223745	20
0.1488164	0.1259359	25
0.155815	0.1291126	30
0.167330	0.1318912	35
0.173007	0.1355631	40

COMPARACION DE LOS RESULTADOS EXPERIMENTALES

CON LOS OBTENIDOS A PARTIR DE LA ECUACION DE GILLILAND

GRAFICA 7

DAB GILLILAND 2

GRAFICA 8

GRAFICA 9

TARLA 9

SISTEMA · ACIDO ACETICO - AIRE

D _{AB} experimental	D _{AB} Gilliland	Temperatura °C
0.1606968	0.1561706	60
0.1627953	0.1597011	65
0.169100	0.1632579	70
0.172436	0.1668406	75
0.1753039	0.1704492	80
0.1767343	0.1740835	85
0.180421	0.1777432	90

TABLA 10

SISTEMA ALCOHOL ETILICO - AIRE

D _{AB} experimental	D _{AB} FullerSG.	Temperatura °C
0.176524	0.153550	20
0.19488	0.158138	25
0.2051972	0.162800	30
0.2167069	0.167610	35
0.2214339	0.172346	40
0.2280582	0.177156	45
0.243925	0.182114	50
0.2519574	0.187072	55
0.2610746	0.192030	60
0.2733129	0.197136	65
SISTEMA · ACETONA - AIRE

D _{AB} experimental	D _{AB} FullerSG.	Temperatura °C
0.142212	0.132800	20
0.1488164	0.136768	25
0.155815	0.140800	30
0.167330	0.144960	35
0.173007	0.149056	40

TABLA 12

SISTEMA · ACIDO ACETICO - AIRE

. D _{AB} experimental	D _{AB} FullerSG.	Temperatura	•C
0.1606968	0.184245	60	
0.1627953	0.189144	65	
0.169100	0.194043	70	
0.172436	0.199084	75	
0.1753039	0.204125	80	
0.1767343	0.209166	85	
0.180421	0.2142728	90	

•

COMPARACION DE LOS RESULTADOS EXPERIMENTALES

CON LOS OBTENIDOS A PARTIR DE LA ECUACION DE FULLER'SCHETTLER'GIDDINGS

COMPARACION DE LOS RESULTADOS EXPERIMENTALES

CON LOS OBTENIDOS A PARTIR DE LA ECUACION DE FULLER-SCHETTLER-GIDDINGS

DAB FULLER-SCHETTLER 2

GRAFICA 12

.

٩

SISTEMA · ALCOHOL ETILICO - AIRE

DAB	experimental	DAB	Chapman.Enskog	T	emperatura	• C
	0.176524	C	1.1449436		20	
	0.19488	C	.1511416		25	
	0.2051972	C	1569053		30	
	0.2167069	C	.1616743		35	
	0.2214339	C	1663766		40	
	0.2280582	C	.1711536		45	
	0.243925	C	.1761669		50	
	0.2519574	C	.1819363		55	
	0.2610746	C	.1868016		60	
	0.2733129	C	.1919131		65	

TABLA 14

SISTEMA ACETONA - AIRE

D _{AB} experimental	D _{AB} Chapman.Enskog	Temperatura °C
0.142212	0.1293497	20
0.1488164	0.1340885	25
0.155815	0.1380431	30
0.167330	0.1426481	35
0.173007	0.1469896	40

SISTEMA ACIDO ACETICO - AIRE

D _{AB} experimental	D _{AB} <u>Chapman.Enskog</u>	Temperatura °C
0.1606968	0.1691557	60
0.1627953	0.1748398	65
0.169100	0.180513	70
0.172436	0.1849766	75
0.1753039	0.189321	80
0.1767343	0,1944181	85
0.180421	0.2003365	90

TABLA 16

SISTEMA · ALCOHOL ETILICO - AIRE

D _{AB} experimental	D _{AB} Wilke • Lee	Temperatura °C
0.176524	0.1629604	20
0.19488	0.1701078	25
0.2051972	0.176595	30
0.2167069	0.1819623	35
0.2214339	0.1872548	40
0.2280582	0.1922631	45
0.243925	0.1982735	50
0.2519574	0.2047669	55
0.2610746	0.2102427	60
0.2733129	0.2159958	65

COMPARACION DE LOS RESULTADOS EXPERIMENTALES CON LOS OBTENIDOS A PARTIR DE LA ECUACION DE CHAPMAN-ENSKOG

SISTEMA ET OH-AIRE P=586 mmHg 0.351 F 0.25. DAB 2 cm²/seg 0.15 0.05 75 25 50 TEMPERATURA °C EXPERIMENTAL DAR 1 CHAPMAN-ENSKOG 2 DAB

COMPARACION DE LOS RESULTADOS EXPERIMENTALES CON LOS OBTENIDOS A PARTIR DE LA ECUACION DE CHAPMAN-ENSKOG

DAB CHAPMAN-ENSKOG 2

SISTEMA · ACETONA - AIRE

D _{AB} experiment	al D _{AB}	Wilke • Lee	Temperatura	۰С
0.142212		0.1435694	20	
0.1488164		0.1488292	25	
0.155815		0.1532185	30	
0.167330		0.1583299	35	
0.173007		0.1631484	40	

TABLA 18

SISTEMA · ACIDO ACETICO - AIRE

D _{AB} experimental	D _{AB} Wilke • Lee	Temperatura °C
0.1606968	0.1879823	60
0.1627953	0.194299	65
0.169100	0.2006036	70
0.172436	0.205564	75
0.1753039	0.210392	80
0.1767343	0.2160563	85
0.180421	0.2226335	90

COMPARACION DE LOS RESULTADOS EXPERIMENTALES CON LOS OBTENIDOS A PARTIR DE LA ECUACION DE WILKE - LEE

GRAFICA 16

COMPARACION DE LOS RESULTADOS EXPERIMENTALES CON LOS OBTENIDOS A PARTIR DE LA ECUACION DE WILKE - LEE

GRAFICA 17

DAR WILKE-LEE 2

SISTEMA · ALCOHOL ETILICO - AIRE

DAB	experimental	DAB	Othmer.Chen	Temperatura	•C
	0.176524		0.148767	20	
	0.19488		0.153408	25	
	0.2051972		0.158049	30	
	0.2167069		0.162945	35	
	0.2214339		0.167586	40	
	0.2280582		0.172533	45	
	0.243925		0.17748	50	
	0.2519574		0.182529	55	
	0.2610746		0.187527	60	
	0.2733129		0.192729	65	

TABLA 20

SISTEMA · ACETONA - AIRE

DAB	experimental	D _{AB}	Othmer.Chen	Temperatura	•C
	0.142212		0.125431	20	
	0.1488164		0.129344	25	
	0.155815		0.133257	30	
	0.167330		0.137385	35	
	0.173007		0.141298	40	

SISTEMA · ACIDO ACETICO - AIRE

DAB	experimental		DAB	Othmer.Chen	Temperatura	•C
	0.1606968	٠		0.176496	60	
	0.1627953			0.181392	65	
	0.169100			0.186240	70	
	0.172436			0.191184	75	
	0.1753039			0.196224	80	
	0.1767343			0.201264	85	
	0.180421			0.206352	90	

TABLA 22

SISTEMA · ALCOHOL ETILICO - AIRE

DAB	experimental	D _{AB}	Othmer.Chen	Ter	mperatura	•C
	0.176524		0.1054872		20	
	0.19488		0.108108		25	
	0.2051972		0.1133496		30	
	0.2167069		0.1166256		35	
	0.2214339		0.1199016		40	
	0.2280582		0.1218672		45	
	0.243925		0.12396384		50	
	0.2519574		0.1297296		55	
	0.2610746		0.13104		60	
	0.2733129		0.1349712		65	

COMPARACION DE LOS RESULTADOS EXPERIMENTALES

CON LOS OBTENIDOS A PARTIR DE LA ECUACION DE

OTHMER · CHEN

SISTEMA ETOH-AIRE

P=586 mmHg

COMPARACION DE LOS RESULTADOS EXPERIMENTALES CON LOS OBTENIDOS A PARTIR DE LA ECUACION DE OTHMER-CHEN

COMPARACION DE LOS RESULTADOS EXPERIMENTALES CON LOS OBTENIDOS A PARTIR DE LA ECUACION DE OTHMER-CHEN

SISTEMA CH₃COOH-AIRE P= 586 mm Hg

SISTEMA · ACETONA - AIRE

DAB	experimental	D _{AB} Othmer.Chen	Temperatura	•C
	0.142212	0.08964648	20	
	0.1488164	0.091476	25	
	0.155815	0.0959112	30	
	0.167330	0.09890496	35	
	0.173007	0.1014552	40	

TABLA 24

SISTEMA · ACIDO ACETICO - AIRE

DAB	experimental	D _{AB} Othmer.Chen	Temperatura °C
	0.1606968	0.12096	60
	0.1627953	0.1245888	65
	0.169100	0.1294272	70
	0.172436	0.1354752	75
	0.1753039	0.1384992	80
	0.1767343	0.1427328	85
	0.180421	0.1469664	90

COMPARACION DE LOS RESULTADOS EXPERIMENTALES

CON LOS OBTENIDOS A PARTIR DE LA ECUACION DE OTHMER-CHEN

COMPARACION DE LOS RESULTADOS EXPERIMENTALES CON LOS OBTENIDOS A PARTIR DE LA ECUACION DE OTHMER - CHEN

GRAFICA 23

CON LOS OBTENIDOS A PARTIR DE LA ECUACION DE OTHMER·CHEN SISTEMA CH₃COOH-AIRE P=586 mmHg

COMPARACION DE LOS RESULTADOS EXPERIMENTALES

- D EXPERIMENTAL I
- DAB OTHMER CHEN 2

SISTEMA · ALCOHOL ETILICO - AIRE

DAB	experimental	DAB	Slattery.Bird	Temperatura	•C
	0.176524	t	0.14276499	20	
	0.19488	t	14726618	25	
	0.2051972	(.15181284	30	
	0.2167069	t	0.15640496	35	
	0.2214339	(0.15931482	40	
	0.2280582	C	16581654	45	
	0.243925	C	.17059052	50	
	0.2519574	(17545545	55	
	0.2610746	C	.18036583	60	
	0.2733129	C	.18532169	65	

TABLA 26

.

SISTEMA · ACETONA - AIRE

DAB	experimental	DAB	Slattery.Bird	Temperatura	•C
	0.142212	0	.12499121	20	
	0.1488164	0	.12893201	25	
	0.155815	0	.13291263	30	
	0.167330	0	.13693304	35	
	0.173007	0	.1398064	40	

SISTEMA · ACIDO ACETICO - AIRE

DAB	experimental	D _{AB} Slattery.Bird	Temperatura °C
	0.1606968	0.15513647	60
	0.1627953	0.1593991	65
	0.169100	0.16370085	70
	0.172436	0.1680808	75
	0.1753039	0.17249986	80
	D.1767343	0.17699714	85
	0.180421	0.18145531	90

•

DAB SLATTERY BIRD 2

COMPARACION DE LOS RESULTADOS EXPERIMENTALES CON LOS OBTENIDOS A PARTIR DE LA ECUACION DE SLATTERY-BIRD

GRAFICA 26

COMPARACION DE LOS RESULTADOS EXPERIMENTALES CON LOS OBTENIDOS A PARTIR DE LA ECUACION DE SLATTERY BIRD

l

De éste análisis se observa primeramente que el sis tema que presentó más desviación con respecto a los re-sultados que se obtienen a partir de las correlaciones que se presentaron anteriormente fué el de alcohol etí-lico - aire, con una poca menor de desviación estuvieron los sistemas acetona - aire y ácido acético - aire.

Las correlaciones que tuvieron mayor acercamiento hacia los datos experimentales para el sistema alcohol etflico - aire fueron:

- 1) Wilke . Lee
- 2) Gilliland
- Fuller.Schettler.Giddings
- 4) Othmer.Chen (sin el término de viscosidad)

En el caso del sistema ácido acético - aire la me-nor desviación se presentó en las correlaciones:

- 1) Gilliland
- 2) Slattery.Bird
- 3) Chapman, Enskog

En el sistema acetona - aire resultaron ser las de menor desviación las siguientes:

- 1) Wilke . Lee
- Fuller.Schettler.Giddings
- 3) Chapman.Enskog

Las desviaciones ocurridas en cada uno de sol sistemas utilizados se pueden considerar en su mayor parte debido a errores experimentales que son siempre inherentes en toda experimentación.

Se logró reducir en gran parte éste tipo de problemas no sin antes llevar a cabo numerosas experiencias que fueron las que dieron los posibles caminos a seguir para obtener mejores resultados.

Se puede decir que los factores que influyeron en la experimentación fueron:

- La toma de lecturas, que aunque con la lente de aumento se disminuye un poco ése error, siempre se necesita más precisión.
- La posible contaminación del aire empleado de la compresora.
- 3) El acoplamiento del orificio del capilar y el de la llave de paso no fué muy eficiente dado que uno de ellos era un poco más grande permitiendo

así la posible fuga del líquido utilizado, aunque ésto se solucionó en gran parte al hacer un sellado de la llave con grasa de silicón. Este tipo de grasa tiene la característica de poderse trabajar a temperaturas altas, lo que significó una gran ayuda cuando se tuvo que operar a 90°C.

En general los resultados obtenidos pueden considerarse buenos, no tanto como se hubiera deseado, pero esperando que éstas experiencias despierten un poco de interés y se pueda refinar éste método ya sea con modific<u>a</u> ciones al aparato y a la técnica, ó bien utilizando o-tros sistemas lo que sería de incalculable valor.

BIBLIDGRAFIA

- 1.- R. Byron Bird Transport Phenomena Warren E. Stewart Ed. Joh. Wiley & Sons, Inc. Edwin N. Lighttfoot
- 2.- Thomas K. Sherwood Absorption and Extraction Robert 1. Pigford 2a. Ed.

Ed. Mc Graw Hill

.

- 3.- Robert E. Treybal Mass Operation Transfer 2a. Ed. Ed. Mc Graw Hill-Kögakusha
- 4.- A. S. Foust Principles of Unit Operations
 L. A. Wenzel Ed. John Wiley & Sons, Inc.
 C. W. Clump
 L. Maus
 L. B. Anderson
- 5.- J. R. Welty Fundamentals of Momentum,
 R. E. Wilson Heat and Mass Transfer.
 C. E. Wicks Ed. John Wiley & Sons, Inc.

6.- Robert H. Perry Chemical Engineers' Handbook 4a. Ed. Ed. Mc Graw Hill-Kögakusha 7.- John C. Slattery A I CH E Journal 4:137 (1958) R. Byron Bird 8.- E. R. Gilliland Industrial and Engineering Chemistry. 6:681 (1934) 9.- D. F. Othmer Ind. Eng. Chem. Proc. Design H. T. Chen and Develop. 1:249 (1962) 10.- C. R. Wilke Industrial and Engineering C. Y. Lee Chemistry. 47:1253 (1955) J. Chem. Ing. Data 11.- D. F. Othmer 7:37 (1962) N. H. Chen Ind. Chem. Ing. Fundamentals 12.- E. N. Fuller (1965)P. D. Schettler J. C. Giddings