

UNIVERSIDAD NACIONAL AUTONOMA

> DE MEXICO

FACULTAD DE INGENIERIA

DESCARGA DE RECIPIENTES A MICROGRAVEDAD MICROPRESION EN EL ESPACIO EXTERIOR

TESIS

presenta:

Director de Tesis :

Dr. Alejandro F. Romero López

ALARCON MALDONADO JUAN CARLOS

TESIS CON FALLA DE ORIGEN

que para obtener el Título de: INGENIERO EN COMPUTACION

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

RESUMEN	• • • • • •	• • • • • • •	•••••	• • •	2
INTRODUCCION				• • •	3
NOMENCLATURA	•••••	••••		• • • • •	6
ANALISIS	858 - 1 - 1 - 1 1 • • • • • • •	• • • • •			8
RESULTADOS			•	1041. • • •	18
CONCLUSIONES				•	21
REFERENCIAS	, 1997 1997 - 1997 1997 - 1997	••••			23
APENDICE A		• • • • • •	• • • • • •		25
APENDICE B			•••••		27
APENDICE C		•••••	•••••		33
APENDICE D	•••••	· • • • • • •	•••••	••••	35
APENDICE E			A.		36

1

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE INGENIERIA

DESCARGA DE RECIPIENTES A MICROGRAVEDAD Y MICROPRESION EN EL ESPACIO EXTERIOR

TESIS

que para obtener el Título de:

INGENIERO EN COMPUTACION

presenta: ALARCON MALDONADO JUAN CARLOS

Director de Tesis :

Dr. Alejandro F. Romero López

INDICE							
	Ľ	N	D	Ι	C	E	

RESUMEN 2 INTRODUCCION 3 NOMENCLATURA 6 ANALISIS 8 RESULTADOS 1 CONCLUSIONES 2 REFERENCIAS 2 APENDICE A 2 APENDICE B 2 APENDICE C 3 APENDICE D 3 APENDICE E 3						이번 이 그는 것.	المهدأ وتقا	1.1
INTRODUCCION 3 NOMENCLATURA 6 ANALISIS 8 RESULTADOS 1 CONCLUSIONES 2 REFERENCIAS 2 APENDICE A 2 APENDICE B 2 APENDICE C 3 APENDICE D 3 APENDICE E 3		RESUMEN	• • • • •	••••	••••		• • •	2
NOMENCLATURA 6 ANALISIS 8 RESULTADOS 1 CONCLUSIONES 2 REFERENCIAS 2 APENDICE A 2 APENDICE B 2 APENDICE C 3 APENDICE D 3 APENDICE E 3		INTRODUCCION			2 2 4	••••		3
ANALISIS 8 RESULTADOS 1 CONCLUSIONES 2 REFERENCIAS 2 APENDICE A 2 APENDICE B 2 APENDICE C 3 APENDICE D 3 APENDICE E 3		NOMENCLATURA	••••					6
RESULTADOS 1 CONCLUSIONES 2 REFERENCIAS 2 APENDICE A 2 APENDICE B 2 APENDICE C 3 APENDICE D 3 APENDICE E 3		ANALISIS					•••	8
CONCLUSIONES 2 REFERENCIAS 2 APENDICE A 2 APENDICE B 2 APENDICE C 3 APENDICE D 3 APENDICE E 3		RESULTADOS		••••				18
REFERENCIAS 2 APENDICE A 2 APENDICE B 2 APENDICE C 3 APENDICE D 3 APENDICE E 3		CONCLUSIONES	••••	•••••	•••			21
APENDICE A 2 APENDICE B 2 APENDICE C 3 APENDICE D 3 APENDICE E 3		REFERENCIAS	•••	• • • • • •	•			23
APENDICE B 2 APENDICE C 3 APENDICE D 3 APENDICE E 3	2	APENDICE A	••••	•••••				25
APENDICE C 3 APENDICE D 3 APENDICE E 3	2 .	APENDICE B	• • • •	••••		•••••	•	27
APENDICE D 3 APENDICE E 3		APENDICE C	· • • • • •					33
APENDICE E 3		APENDICE D	• • • •					35
· · · · · · · · · · · · · · · · · · ·		APENDICE E	• • • •			•		36

RESUMEN

Con base en un trabajo ordenado por NASA Lewis Research Center llevó a cabo para investigar experimentalmente la descarga de recipientes cilíndricos parcialmente llenos con líquidos saturados, a condiciones de microgravedad Y micropresión, y su comparación con un modelo analítico, que determina el efecto de transferencia de masa en la interfaz, debido a la respuesta de presión en el orificio de descarga durante la misma, en este trabajo se propone un nuevo modelo para mejorar la estimación de la transferencia de masa en la interfaz. La integral de superposición de Duhammel se utiliza este análisis para aproximar la respuesta en de la temperatura transitoria en la interfaz, tratando el líguido como un sólido semi-infinito con transferencia de calor.

Los resultados obtenidos se aprovechan en la estimación de la tranferencia de masa, dando una mejor respuesta cuando se compara con modelos previos. Sin embargo los resultados de este modelo aún obtienen una caída de presión mayor que la reportada experimentalme.

INTRODUCCION

El uso de líquidos propulsores de alta energía en los programas del espacio conduce a la necesidad de información concerniente al comportamiento termodinámico de fluidos criogénicos en recipientes, que se descargan o depresionan en el espacio.

Mediante pequeñas descargas de vapor se controla la presión en el recipiente. La descarga a baja gravedad se llevó a cabo eficazmente durante misiones pasadas con sistemas dependientes de impulsos auxiliares de propulsores líquidos, logrando mantener el líquido lejos del orificio de descarga. Este método de control es adecuado para misiones extravehiculares de corta duración y considerándolo económico en comparación con la penalización del aislamiento adicional (Ref. 7). El objetivo del presente estudio es predecir la respuesta de presión de un sistema saturado líquido-vapor cuando experimenta una descarga o descompresión en gravedad cero a bajas tasas de descarga.

La figura 1 muestra un esquema típico de un recipiente de prueba, con la interfaz líquido-vapor suponiendo un perfil hemisférico a gravedad cero. La figura 2 es un esquema con el modelo de expulsión propuesto. La interfaz líquido-vapor se supone plana excepto en la parte externa del área con las

condiciones de saturación correspondientes a Pv, en t<0, en el principio de la descarga, t>0, todas las propiedades se consideran uniformes menos las dependientes del tiempo, excepto por el líquido, cuya temperatura varia en una dimensión como fluido.

La temperatura de la interfaz es la temperatura de saturación correspondiente al sistema de presión Pv. El análisis consiste en la aplicación de las ecuaciones apropiadas que gobiernan los tres volúmenes de control, el vapor, la interfaz líquido-vapor y el líquido. Las figuras 3, 4 y 5 son los esquemas de estos tres volúmenes de control. El vapor se trata como un volumen de control o sistema abierto de propiedades uniformes y se aplica el principio de la conservación de masa y energía.

La transferencia de masa en la interfaz se determina aplicando la conservación de la energía en la interfaz líquido-vapor. El líquido se trata como un sólido plano semiinfinito para el cálculo del gradiente de temperatura en la interfaz del líquido.

Para propósitos de comparación, se desarrolló un modelo adiabático, que no incluye la transferencia de masa en la interfaz. Por otra parte el análisis presentado en el

apéndice D, es idéntico al que se desarrolla a continuación. Este modelo se compara con el modelo de transferencia de masa en la interfaz para evaluar el impacto de la transferencia de masa en la respuesta de presión del sistema.

La respuesta de presión determinada con los modelos de transferencia de masa en la interfaz y adiabático se comparan con los resultados de modelos previos y con los datos experimentales obtenidos en pruebas de corta duración a gravedad cero conducidos en las instalaciones de NASA Lewis, en Cleveland, OH, U.S.A. [1].

NOMENCLATURA

SIMBOLO	DESCRIPCION	UNIDADES	3
a	Difusión térmica	m²/sec	J
A	Area	m²	
Cđ	Coeficiente de descarga		
Cv	Calor específico a volumen constante	J/kg-K	
8	Profundidad de penetración	m	
h	Entropía específica	J/kg	
hfg	Entalpía de vaporización	J/kg	
k	Conductividad térmica	W/m-K	
m	Masa	Kg	
n	Vector unitario normal		
P	Presión	N/m^2	
đ	Flujo de calor	W/m²	
R	Constante del gas	J/kg-H	ς
T	Temperatura	к	
t	Tiempo	seg	
U	Energía interna	J	
u	Energía interna específica	J/kg	
V	Velocidad	m/seg	

 A second determine the second sec second sec

NOMENCLATURA

SIMBOLO	DESCRIPCION	UNIDADES
a	Difusión térmica	m²/seg
	Area	m²
Cđ	Coeficiente de descarga	
Cv	Calor específico a volumen constante	J/kg-K
δ	Profundidad de penetración	m
\mathbf{h}_{i}	Entropía específica	J/kg
hfg	Entalpía de vaporización	J/kg
k	Conductividad térmica	W/m-K
in n	Masa	Kg
n	Vector unitario normal	
P	Presión	N/m²
đ	Flujo de calor	W/m²
R	Constante del gas	J/kg-K
T	Temperatura	к
t	Tiempo	seg
U	Energía interna	J
u	Energía interna específica	J/kg
v	Velocidad	m/seg

Subindices

e Descarga de vapor i Interfaz líquido-vapor l Líquido o Inicial sat Condiciones de saturación v Vapor en el hueco

ANALISIS

Para el control de volumen se utiliza la integral de forma continua y las ecuaciones de energía.

La ecuación de continuidad es :

$$\int_{\mathbf{v}} (\mathbf{P} / \mathbf{T}) d\mathbf{v} + \int_{\mathbf{A}} \mathbf{Pr} \mathbf{n} d\mathbf{A} = 0 \qquad (1)$$

El volumen V pude suponerse constante a partir del volumen real, debido a los pequeños cambios de evaporación, entonces la ecuación se transforma :

$$d dv = - v n dA$$

Para la región de vapor se vuelve :

$$dmv / dt = mi - me$$
 (3)

(2)

donde mi es la tasa de generación de vapor en la interfaz líquido-vapor, y me es el flujo de masa en la descarga de vapor.

Para la región líquida :

$$dml / dt = -mi$$
 (4)

La ecuación de energía :

 $d_{dt} \int_{v} u dv + \int_{A} h v n dA + \int_{A} q n dA = 0 \quad (5)$

Para propósitos del presente análisis, se supone que :

- La transferencia de calor de las paredes es despreciable
- No hay transferencia de calor entre el vapor y la interfaz líquido-vapor.

3. La energía interna en el vapor es espacialmente uniforme, variando solo con el tiempo.

 El volumen del vapor es constante (el volumen se incrementa con la vaporización, pero está es despreciable).

 El area superficial de la interfaz permanece constante.

 La masa del líquido es muy grande comparada con la cantidad de evaporación.

7. Las propiedades del vapor son uniformes en el estado definido por Tv y Pv.

8. La interfaz de temperatura T_i = T_{sat} @ Pv.

9. La mezcla líquido-vapor se satura inicialmente en $T_v = T_1 = T_{sat} q P_v$.

Por lo relativamente corto de la prueba los tiempos son modelados, suponiendo pequeñas tasas de descarga, que suposiciones son razonables. Sin embargo si se utilizarán intervalos de tiempo mayores, la conducción de la pared se debe tomar en consideración. Para el vapor entonces, la ecua. (5) se reduce a:

$$d (mv uv) + me h v - mi hi = 0$$
(6)
dt

desarrollando la ecua. (6) :

 $\begin{array}{cccc} uv \ dmv \ + \ mv \ duv \ + \ mehv \ - \ mihi \ = \ 0 & (7) \\ dt & dt & \end{array}$

ahora, se supone Cv constante durante todo el rango de temperatura, y substituyendo la ecua. (3) en la ecua. (7):

las expresiones para mi y me se desarrollarán nuevamente.

La tasa de flujo de masa terminada la expulsión, me, se determina por el análisis clásico de estrangulamiento de fluidos (Ref. 9). Donde el gas se expulsa directamente a un espacio vacío, la suposición de estrangulamiento del fluido

es válida y la salida del flujo de masa es función sólo de las propiedades del vapor mencionadas anteriormente, dada por :

$$me = Pv Cd At Kd (9)$$

$$(R Tv)^{2}$$

donde Cd se determina experimentalmente por el coeficiente de descarga y :

$$Kd = (Cp/Cv)^{\frac{1}{2}} [2/((Cp/Cv) + 1)^{Cp/Cv} + 1] (10) 2((Cp/Cv) + 1)$$

La tasa de generación de vapor, mi, se determinará por el principio de conservación de la energía ecua. (5) aplicada a la interfaz líquido-vapor. Suponiendo que no hay transferencia de calor del vapor, toda la energía transferida en la interfaz se conduce por la vaporización resultante del líquido en la interfaz, entonces la ecua. (5) se reduce a:

$$qe = (mi)(hfg)$$
(11)

Para periodos cortos, donde la capa límite de temperatura es pequeña comparada con cualquier radio de curvatura de la interfaz, el líquido se considera como un sólido plano semiinfinito. El area superficial térmica, Ai, representa el area superficial del hemisferio con el perfil de la interfaz tomada a gravedad cero (Ref. 5), la ecuación de conducción en una dimensión es :

qe = -kiAi(dT/dx) $|_{x=0}$

combinando las ecuaciones (11) y (12) :

$$mi = -keAi(dT/dx) \begin{vmatrix} x=0 \\ hfq \end{vmatrix}$$
(13)

(12)

Así, el problema de determinar la transferencia de masa en interfaz reduce determinar el la se a gradiente de temperatura del líquido en la interfaz, a la vez se determinan los requerimientos transitorios de la distribución de temperatura en el líquido cercano a la interfaz líquidovapor. Si el líquido cercano a la interfaz se considera y aproxima a un sólido semi-infinito de una dimensión en el procedimiento térmico, la solución analítica para el incremento de temperatura en la superficie, se obtiene usando la forma finita de la integral de superposición de Duhammel, para determinar la distribución transitoria de la temperatura en el líquido. Variando el tiempo, la interfaz de temperatura se toma como la temperatura de saturación correspondiente al sistema instantáneo de presión, que debe determinarse mediante el sistema de ecuaciones que describe el proceso.

Por consiguiente, la forma diferencial de las ecuaciones que gobiernan y las condiciones iniciales y límite para el sólido unidimensional semi-infinito, con temperatura inicialmente uniforme T_0 y con incrementos de temperatura en la superficie T_i , son :

$$T = a {}^{2}T (14)$$

$$T(y,0) = T_{0} (15)$$

$$T(0,t) = T_{1} (16)$$

$$T(-,t) = T_{0} (17)$$

La solución es (Ref. 2) :

$$T(x,t) - T_i = erf(x / 2(at)^{\frac{1}{2}})$$
 (18)

La temperatura de la interfaz, es la temperatura de saturación correspondiente a la presión en el hueco, será la variación del tiempo en este caso el que cambia la presión del tanque cuando se descarga. Variando este tiempo, la condición límite T(t) se incorpora en la solución usando la integral de superposición de Duhammel (Ref. 2) en la forma :

$$\Theta(x,t) = \Theta_{i}(0)\mu(x,t) + \begin{cases} t \\ \mu(x,t-s) & d\Theta_{i}(s) & ds \end{cases} (19) \\ ds \end{cases}$$

aquí :

$$\Theta(x,t) = T(x,t) - To$$
 (20)
 $\Theta(t) = Ti(t) - To$

y entonces :

$$\phi(\mathbf{x},\mathbf{t}) = \Theta(\mathbf{x},\mathbf{t}) \qquad (21)$$

$$\Theta(\mathbf{t})$$

 $\mu(x,t)$ es la temperatura inestable resultante de un incremento en la temperatura superficial, relativa a la

temperatura inicial uniforme, si el incremento se mantuvo en cero hasta un cierto tiempo t=s y en ese instante, se incrementa hasta la unidad y se mantiene constante, la nueva temperatura $\phi(x,t)$ se expresa en términos de $\phi(x,t)$ como :

$$\phi(x,t) = \begin{pmatrix} 0, & t < s \\ \mu(x,t-s) & t > s \end{pmatrix}$$
(22)

la solución de $\mu(x,t)$ está dada por la ecua. (18), transformándola hasta la forma de la ecua. (21) como :

$$\mu(x,t) = \Theta(x,t) = \operatorname{erfc} (x / 2 (at)^{\frac{1}{2}}) \quad (23)$$

La solución del sistema de ecuaciones del problema de descarga puede ser resuelto en forma discreta en incrementos de tiempo y la forma discreta de la ecua. (19) esta dada por :

$$\Theta(\mathbf{x},t) = \Theta_{\mathbf{i}}(0) \ \mu(\mathbf{x},t) + \sum_{m=1}^{n} \Delta \Theta i \mu(\mathbf{x},\mathbf{Y}-\mathbf{S}_{m}) \quad (24)$$

donde :

$$\Delta \Theta_i = \Theta_i(sm) - \Theta(s_m - 1)$$
 (25)

Aquí, n es el número total de incrementos de tiempo en el proceso que va a ser dividido, m es el índice de corridas de

tiempo, 1 < m < n, y $A\Theta i_m$ es el incremento en la temperatura superficial, relativa al sistema de presión del vapor.

Por la dificultad de obtener el gradiente de temperatura de el líquido en la interfaz hasta el grado de precisión deseado por la solución de la ecua. (24), el procedimiento utilizado en este método para el cálculo de la temperatura instantánea en un número finito de puntos en el líquido cerca de la interfaz consiste en ajustar esos puntos a un polinomio de tercer orden usando regresión de mínimos cuadrados. El polinomio usado es de la forma :

$$T = A + Bx + Cx^2 + Dx$$
 (26)

El gradiente de temperatura del líquido en la interfaz líquido-vapor, x=0, esta dado por :

Debe especificarse el número y espaciamiento de los nodos mediante el cual se calcula la temperatura del líquido, y con el cual se determinan los coeficientes A, B, C y D en la ecua. (26). Se consideran arbitrariamente seis nodos como suficientes para la obtener los cuatro coeficientes de la ecua. (26). Intuitivamente, los nodos más próximos a la interfaz líquido-vapor aproximarán con mayor exactitud al gradiente de temperatura del líquido en la interfaz líquidovapor. Este método estima la temperatura de profundidad de penetración adimensional, considerando esta, cuando la

diferencia de temperatura dada por la ecua. (18) alcanza el 95% de la diferencia inicial de temperatura. Es decir :

10. = erf
$$(\delta/(2(at)^{\frac{1}{2}}))$$
 (28)

o

$$\delta = 1.39 * 2(at)^{\frac{1}{2}}$$
 (29)

La profundidad real de penetración puede ser algo más pequeña que este valor, en el sistema real no se experimenta un incremento simple en la temperatura superficial, sino un cambio transitorio en la misma. Los seis nodos se distribuyen igualmente espaciados dentro del 10% de esta profundidad de penetración cerca de la interfaz líquido-vapor, mostrada en la figura (6).

Ahora, puesto que se conoce la temperatura del líquido en cualquiera de los seis nodos cerca de la interfaz líquidovapor, pueden determinarse las constantes A, B, C y D de la ecua. (26). Se utiliza el algoritmo de los mínimos cuadrados (ref. 4) y se determinan los coeficientes del polinomio que minimiza el error entre los puntos datos y el polinomio.

El apéndice A describe una prueba del programa hecho para la evaluación de los efectos de la fracción de la profundidad de penetración usada cuando se ajusta el polinomio para el cálculo exacto del polinomio en la predicción del gradiente de temperatura en la interfaz líquido-vapor. El gradiente de

temperatura obtenido con el procedimiento anterior, se compara con valores analíticos para un incremento simple en la temperatura superficial, siendo la prueba más severa posible. Esto es a partir de las diferentes fracciones de la profundidad de penetración. La figura A1 y A2 muestran que los nodos están espaciados en una región del 10% de la profundidad de penetración de la superficie y utilizando un polinomio de tercer orden el error se reduce a u 0.5% en el gradiente de temperatura superficial obtenido.

Para el modelo adiabático, la transferencia de masa es iqual a cero, y el análisis anterior de la transferencia de masa no se usa. Cuando se combina con condiciones iniciales propias, las ecua. (3), (8), (9) y (13) a lo largo de la distribución del líquido proveen una descripción completa del del vapor. Estas ecuaciones resuelven espacio se numéricamente por computadora. El listado del programa y descripción se incluye en el apéndice B. Las comparaciones de estos resultados con datos experimentales previos se presentan posteriormente.

RESULTADOS

El modelo propuesto difiere con respecto a 2 modelos utilizados anteriormente en la predicción de respuesta de presión de una mezcla de líquido-vapor inicialmente saturada descargada en el vacío a gravedad cero.

La diferencia más significativa es el procedimiento usado para la aproximación de la transferencia de masa. El presente modelo supone que el líquido se comporta como un sólido semiinfinito con una superficie plana y una temperatura superficial transitoria por la unión entre el proceso de conducción de líquido y el comportamiento del vapor.

La integral de superposición de Duhammel se usa al tomar en cuenta el efecto transitorio de la temperatura superficial en el cálculo de la misma en el contorno. La interfaz de flujo de masa se determina posteriormente por el gradiente de temperatura en la interfaz líquido-vapor.

La segunda diferencia con modelos anteriores es que la temperatura del vapor no corresponde a la temperatura de saturación correspondiente a la presión del vapor. La interacción y acoplamiento de las ecuaciones de la energía y de continuidad del sistema de vapor, hacen más complicada la solución numérica. El efecto de este cambio en la suposición

18

energia da la la companya

se aprecia en la figura (7) y (8), donde se considera la temperatura del vapor y la temperatura instantánea de saturación. La diferencia entre la temperatura del vapor y la temperatura de saturación puede ser cuando mucho 30K. La temperatura es más alta que la temperatura de saturación por lo tanto corresponde a un estado de sobrecalentamiento, puesto que me es inversamente proporcional a la temperatura del vapor, a mayor temperatura menor flujo de descarga y por lo tanto menor caída de presión en el recipiente.

La comparación entre la predicción de la respuesta de presión por este modelo, el adiabático y los anteriores (Ref. 1) se aprecia en la tabla (1). Los datos en la tabla (1) muestran que el modelo propuesto da la respuesta de presión más cercana a los datos experimentales que cualquier modelo previo. La tabla (1) también muestra que la incorporación de la transferencia de masa en los modelos produce mejores resultados que modelo adiabático, que elimina el la transferencia de masa en la interfaz. Es evidente que la transferencia de masa en la interfaz debe considerarse cuando se usan rangos de descarga pequeños, semejantes a los usados en este estudio. De aquí, se puede concluir que el modelo propuesto mejora la aproximación de transferencia de masa en la interfaz en comparación con los modelos previos, sin embargo el error apreciable cuando se compara con información experimental indica que muy probablemente deben revisarse

ciertos elementos en la descripción del proceso. Es posible que los experimentos mismos deban reexaminarse.

Detalles adicionales del comportamiento transitorio de las corridas (2) y (4) en la tabla (1) se muestran en las figuras (9) - (14), con la presión el sistema en las figuras 11. y (12), y rangos de evaporación en las figuras (13) y (14). La corrida (4) tuvo un area de descarga de 2.2 veces la correspondiente a la corrida (2), aproximadamente el mismo volumen inicial y una presión inicial aproximada del 10% mayor. Esto concuerda con la mayor caída de presión, descarga más alta y rango de evaporación mayor ocurrido durante la corrida (4).

La evaluación de este modelo supone que la información experimental describe con exactitud el sistema modelado. La pequeñez de los recipientes usados podría hacer importante el aspecto de la geometría del sistema. Los coeficientes de flujo, Cd, se determinan experimentalmente y no hay forma de verificar su exactitud. Se sugiere llevar a cabo experimentos futuros antes de hacer la evaluación final del presente modelo.

CONCLUSIONES

Se presenta el desarrollo de un modelo analítico para la predicción de presión de un recipiente cilíndrico inicialmente lleno, con una mezcla saturada de líquido-vapor que se descarga al vacío bajo condiciones de gravedad cero. La respuesta que predice el modelo, se compara con modelos previos y con datos experimentales obtenidos por NASA Lewis Research Center, Cleveland, OHIO, U.S.A. [1].

Los modelos previos predicen una caída de presión muy grande. El propuesto aquí da una respuesta de presión más cercana a los datos experimentales, pero aún mayor. Esto los resultados de significa que este modelo todavía subestiman la transferencia de masa en la interfaz. Rangos de evaporación elevados producirían caídas de presión menores en el sistema. Una fuente adicional de formación de vapor que no se considera en este modelo es la capa delgada existente de la linea triple interfacial líquido-vapor-sólido formada por la interfaz hemisférica líquido-vapor. Podría suponerse que se lleva acabo evaporación rápida en esta región, debido a efectos de conducción en la pared del recipiente (no se considera en el presente análisis), lo que reduciría la caída de presión en este modelo, y se lograría tal vez una mejor concordancia con la información experimental disponible hasta la fecha.

21

- - -- --

Se podría pensar en experimentos futuros para comparar con este modelo minimizando la presencia de la interlinea triple usando recipientes mucho más grandes llevando a cabo la experimentación a gravedad normal terrestre.

m3 m Cd kPa k kPa kPa	с	orrida No.	volumen inicial de vapor	diâmetro de tobera	coeficiente de descar- ga.	presión inicial vapoi	temperatura inicial de vapor	presión experi- mental final	presión analítica final	presión analítica final anterior	presión adiabá- líca línal	calda ca analíti- ar ca adi- de mencio- nal de vapor	ida experimental dimencional de e presión
1 1.93E-4 0.406E-3 0.64 89.6 294.3 86.2 85.2 81.6 83.2 0.07 0.06 2 2.01 0.889 0.69 87.9 294.7 70.3 64.4 56.3 56.1 0.31 0.25 3 1.90 1.07 0.85 91.0 293.7 60.7 46.8 40.7 33.6 0.48 0.33 4 1.93 1.32 0.875 97.2 296.5 53.8 37.9 29.4 21.8 0.62 0.46 5 1.93 1.93 0.77 101.0 295.4 41.4 21.4 13.1 5.3 0.78 0.57			m 3	m	69	kPe	K	kPe	k Pa	t Pe	k Pa		
2 2.01 0.889 0.69 87.9 294.7 70.3 64.4 56.3 56.1 0.31 0.25 3 1.90 1.07 0.86 91.0 293.7 60.7 46.8 40.7 33.6 0.48 0.33 4 1.93 1.32 0.875 97.2 296.5 53.8 37.9 29.4 21.8 0.62 0.46 5 1.93 1.93 0.77 101.0 295.4 41.4 21.4 13.1 5.3 0.78 0.57		1	1.93E-4	0.406E-3	0.64	89.6	294.3	86 Z	85.2	81.6	83.2	0.07	0.06
3 1.90 1.07 0.85 91.0 293.7 60.7 46.8 40.7 33.6 0.48 0.33 4 1.93 1.32 0.875 97.2 296.5 53.8 37.9 29.4 21.8 0.62 0.46 5 1.93 1.93 0.77 101.0 295.4 41.4 21.4 13.1 5.3 0.78 0.57		2	2.01	0.889	0.69	87.9	294.7	70.3	64.4	56.3	56.1	0.31	0.25
4 1.93 1.32 0.875 97.2 296.5 53.8 37.9 29.4 21.8 0.62 0.46 5 1.93 1.93 0.77 101.0 295.4 41.4 21.4 13.1 5.3 0.78 0.57		з	1,90	1.07	0.86	91.0	293.7	60.7	46.8	40.7	33.6	0.48	0.33
5 1.93 1.93 0.77 101.0 295.4 41.4 21.4 13.1 5.3 0.78 0.57		4	1.93	1.32	0.875	97.2	296.5	53.8	37.9	29.4	21.8	0.62	0.46
		5	1.93	1.93	0.77	101.0	295.4	41.4	21.4	13.1	5.3	0.78	0.57

Tabla 1. Parámetros y Resultados.

Mi@Pv,Tsa @Pv

Figura 5. Volumen de control del líquido.

Figura 6. Distribución de nodos en el líquido.

Figura 8. Temperatura transitoria de vapor y saturación

Figura 13. Tasa de evaporación transitoria en la interfaz.

Corrida No. 4

Corrida No. 2

REFERENCIAS

 Labus, Thomas L.; Aydelott, Jhon C.; and Amling, Geraldine E.: Zero Gravity Venting of Three Refrigerants. NASA TN D-7480, 1974.

2. Arpaci, Vedat S. : Conduction Heat Transfer. 1966, Addison Wesley Publishing Co.

Anón. : Thermodynamic Properties of FR-11. 1965, E.I.
 Du Pont De Nemours & Co.

Burden, Richard L.; Faires, Douglas J.; and Reynolds,
 Albert C.: Numerical Analysis. 1981 Pridle, Weber, &
 Schmit. pp 205-208, 319-326.

5. International Matemathical Static Lineal (IMSL). Centro de Computo, División de Postgrado de la Facultad de Ingeniería, Cd. Universitaria D.F. 1990

6. Van Wylen, Gordon J.; and Sonntag, Richard E.: Fundamentals of Classical Thermodynamics. 1978, Jhon Wiley and Sons, New York, New York. pp. 386-389.

 Lacovic, Raymond F.; Yeh, Frederick C.; Szabo, Steven V., Jr.; Brun, T.J.; Stofan, Andrew J.; and Berns, James A. : Management of Criogenic Propellants in a Full-Scala Orbiting Space Vehicle. NASA TN D-4571, 1968.

 Thomas, P.D.; and Morse, F.H.: Analytical Solution for the Phase Change in a Suddenly Pressurized Liquid-Vapor System. Advances in Criogenic Engineering. Vol. 8. K.D. Timmerhaus, ed. Plenum Press, 1962, pp. 550-562.

9. White, Frank M. : Fkuid Mechanics. 1979, McGraw-Hill, Inc. New York. pp. 530-531.

APENDICE A

ANALISIS DE PRECISION DE LA CURVA DE AJUSTE DE 3^{er} orden

Se corrio una prueba para determinar la precisión en la regresión de 3^{er} orden de mínimos cuadrados para el cálculo de la transferencia de masa en la interfaz. La prueba determina a la vez el espacio de los nodos en el líquido que produciría la mejor curva de ajuste. La distribución de temperatura en un sólido semi-infinito con temperatura superficial constante se calculó en el análisis mediante la ecua. (18) :

$$T(x,t) - Ti = erf(x/2(at)^{\frac{1}{2}})$$
 (A1)
 $T_0 - T_1$

El gradiente de temperatura en x=0 es :

La ecuación (A2) representa la solución exacta del gradiente. La solución aproximada se obtiene por el método descrito en el ANALISIS. Se calcula la profundidad de penetración y se divide un porcentaje de esta profundidad cerca de la superficie en seis nodos igualmente espaciados calculando en cada uno su temperatura. Se ajustan curvas de $1^{\rm er}$, $2^{\rm do}$ y $3^{\rm er}$ grado a la información obtenida usando

porcentajes diferentes de la profundidad de penetración. Como era de esperarse el gradiente calculado es más exacto a medida que el espaciamiento entre los nodos es más cercano a la interfaz, es decir un porcentaje pequeño de profundidad de penetración. Las figuras A1 y A2 muestran que usando un polinomio de tercer orden con nodos muy cercanos a la interfaz dan el mejor gradiente e intersección de resultados.

Nótese que la ecua. (A2) el gradiente exacto para un sólido semi-infinito con un incremento escalón de temperatura en la superficie. Esto no puede usarse para determinar la transferencia de masa interfacial del modelo propuesto en este reporte, puesto que la temperatura superficial es en realidad una función del tiempo.

Figura Al. Error en el gradiente de temperatura superficial ys fracción de profundidad de penetración.

Figura A2. Error en el gradiente de temperatura vs fracción de profundidad de penetración.

APENDICE B

ALGORITMO

El algoritmo de cálculo usado para la solución numérica de las ecuaciones que gobiernan el sistema consiste de un programa principal y ocho subrutinas. El perfil básico de la solución numérica es : En el tiempo = t , se conoce la temperatura del vapor y masa (Y(1),Y(2)), en un principio con el volumen del vapor, que es constante. Así el estado del vapor y la interfaz se definen y todas las propiedades termodinámicas se determinan. Con el estado completamente definido en el tiempo = t, se calculan los valores Y(1) y Y(2) en t= t + 0.05 mediante la solución de las ecuaciones diferenciales que rigen el sistema por el método de 4^{to} orden de Runge-Kutta. Con los valores determinados de Y(1) y Y(2) ahora en t = t + 0.05 este estado queda completamente definido, y el algoritmo puede incrementarse sucesivamente.

Este algoritmo esta escrito en FORTRAN y su implementación y pruebas están hechas en la computadora VAX-11 de la División de Estudios de Posgrado de la Facultad de Ingeniería, el procedimiento utiliza las subrutinas LUDATF y LEQIF del paquete IMSL.

A continuación se describen las subrutinas utilizadas :

27

RUNGE .- Algoritmo para resolver ecuaciones diferenciales de 1^{er} orden con coeficientes no constantes por el método de 4^{to} orden RUNGE-KUTTA. Esta rutina usa incrementos de tiempo fijos, siendo los incrementos la variable independiente.

DERI .- Calcula las derivadas de Y(1) y Y(2) con respecto al tiempo para ser usadas en la subrutina RUNGE.

PROPS.- Determina las propiedades termodinámicas necesarias del fluido de trabajo, dada la temperatura del vapor, masa y volumen. Las cuatro ecuaciones básicas que se usan para determinar las propiedaes son: ecuación de presión de vapor, ecuación de estado, densidad del líquido saturado y la capacidad calorífica del vapor (Ref. 3). Todas las propiedaes se pueden determinar de estas ecuaciones (APENDICE C).

- NEWTTS -- La ecuación de presión de vapor es de la forma P=f(T_{sat}). Esta rutina usa el método de Newton- Rapson (Ref.4) para resolver esta ecuación para T_{sat}, dado P.
- NEWTV .- La ecuación de estado es de la forma $P=f(v,T_v)$. Esta rutina usa el método de Newton-Rapson para resolver la ecuación de estado para el volumen específico v,

ESTA TESIS NO DEBE Salir de la Biblioteca

dando P y T_v. Estos valores de v se necesitan en PROPS para calcular la energía y entropía.

MASA .- Determina el rango de transferencia de masa a través de la interfaz líquido-vapor. Como sediscutió en el ANALISIS, el gradiente de temperatura del líquido en la interfaz se necesita para el cálculo de la transferencia de masa en la interfaz. La integral de superposición de Duhammel y la ecuación unidimensional conducción sólido semi-infinito de para un con incrementos de temperatura en la superficie se usan para el cálculo de la temperatura del líquido a varias de profundidades cerca la interfaz. Los mínimos cuadrados de 3^{er} orden se utilizan para el ajustede la curva entre esos puntos y los del gradiente de temperatura superficial.

- LUDATF .- Junto con LEQIF, resuelve el sistema de ecuacio nes descritas para el ajuste de la curva por mínimos cuadrados de 3^{er} orden. Esta subrutina calcula la descomposición LU de los coeficientes de la matriz.
- LEQIF .- Calcula la solución lineal de ecuaciones AX = B usando un refinamiento iterativo.

Rutinas similares a LUDATF y LEQIF están disponibles para ser utilizadas en otras aplicaciones en el paquete IMSL.

Símbolo FORTRAN	Símbolo INGENIERIA	Descripción N	Unidades
AS	Аз	Area superficial en la interfaz.	m ²
AT	At	Area de la boquilla	m ²
CD	Cd	Coeficiente de descarga	
CVTVP	CV	Calor específico del vapor @TV,P.	kJ/kgK
HFGTS	hfg	Entalpia de evaporación @TS.	kJ/kg
HVTSP	hg	Entalpia del vapor @TS,P	kJ/kg
KLTS	k	Conductividad térmica del líquido @TS.	w/mK
ME	me	Rango del flujo de masa del vapor en la descarga	lcg/s
MI	mi	Flujo de masa a través de la interfaz l-v.	kg/s
P	P	Presión del hueco	kPa
PR	Pref	Presión de referencia	kPa
R	R	Constante de gas ideal	kJ /kgK
т	t	Tiempo	seg
TC	Тс	Temperatura crítica	К
TR	Tref	Temperatura de referencia	a K
TS	T _{sat}	Temperatura de saturación @P.	ı K
UVTRPR	^u ref	Energía interna de refe- rencia @TR, PR.	kJ/kg
UVTSP	ug	Energía interna del vapo @TV, P.	kJ/kg
UVTVP	u	Energía interna del @TV,H	kJ/kg

VU	Vu	Volumen del vapor	m ³
VLTSP	vf	Volumen específico del líquido @TS, P.	m ³ /kg
VVTSP	vg	Volumen específico del vapor @TS,P.	m ³ /kg
VVTVP	V	Volumen específico del vapor @TV,P.	m ³ /kg
VVTVPR	V	Volumen específico del vapor @TV, PR.	m ³ /kg
Y(1)	Tv	Temperatura del vapor	К
¥(2)	mv	Masa del vapor	kg
¥P(1)	dTv/dt	Rango de tiempo de cambio de temperatura de el vapor.	K/s
YP(2)	dmv/dt	Rango de tiempo de masa del vapor.	kg/s

Figura B1. Diagrama de flujo del algoritmo.

algoritmo.

LECTURA EN LA CURVA DE PRESION DE VAPOR PARA FREON-11, ECUACION DE ESTADO, CAPACIDAD DE CALOR DEL VAPOR, Y DEN-SIDAD DE SATURACION DEL LIQUIDO.

BLOCK DATA

REAL A(6),B(6),C(6),D(6),E(6),F(6),R,CK SB,P,MS,TCRIT,TR,PR,CD,CC,AT,UV,AS,KLTS

COMMON/ALPHA/A,B,C,D,E,F,CC,SB,CD,AT,UV,TCRIT,TR,PR, 1 UVTRPR,AS

DATA A/0.0,-3.126759,-0.025341,0.001687277,-2.35893E-5, 1 1.057504E8/

DATA B/0.0,0.001318523,4.875121E-5,-1.805062E-6,2.448303E-8, 1 -9.472103E4/

DATA C/0.0,-35.76999,1.220367,0.0,-1.478379E-4,0.0

DATA D/42.14702865,-4344.343807,-12.84596753, 0.004008372507,0.0313605356,862.07/

DATA E/34.57,57.63811,43.63220,-42.82356,36.70663,0.0/

DATA F/0.023815,-336.80703,2.798823E-4,-2.123734E-7, 1 5.999018E-11,0.0/

DATA R,TCRIT,SB,CC/0.078117,848.07,0.0019,-4.5/ DATA TR,PR,UVTRPR/419.67,0.74137,2032163.0/

END

PROGRAMA PRINCIPAL

REAL Y(2),YP(2),A(6),B(6),C(6),D(6),E(6),F(6),R,CK, SB,P,MS,ERF(150,2),TCRIT,TR,PR,CD,CC,AT,UV,AS,KLTS REAL Z(4) REAL MI,ME,WME,WMI,WTS,TS,WMASS

COMMON/ALPHA/A,B,C,D,E,F,CC,SB,CD,AT,UV,TCRIT,TR,PR, 1 UVTRPR,AS

LECTURA DE VALORES EN LA FUNCION DE ERROR QUE SON UTILI-ZADOS EN LA SUBRUTINA MASA. LOS DATOS SE LOCALIZAN EN EL ARCHIVO 'ERF'

DO 35 K=1,102 READ(7,30) ERF(K,1),ERF(K,2) 30 FORMAT(2F20,9) CONTINUE

TR, PR, UVTRPR SE INICIALIZAN EN LA SUBRUTINA PROPS INICIALIZACION DE T, Y(1), Y(2) EN T=0.0 SEG.

C C C

C C

C

C

0000

C C

C

SE FIJA AT Y CD, COMO VARIABLES DE CONTROL DE RANGO DE FLUJO DE DESCARGA. SE FIJA UV, VOLUMEN DEL HUECO UNIDADES: T EN SEG, Y(1) EN RANKINE, Y(2) EN LEM, AT EN FT2 UV EN FT3 INICIALIZACION DE VARIABLES EN T=0.0 SEG T=0.0 Y(1)=531.74 Y(2)=0.00237026 AT=0.0000314902 UV=0.006815371 CD=0.77 IMPRESION DE VALORES DE ENTRADA WRITE(6,40),Y(1),Y(2),AT,UV,CD 40 FORMAT(1X, 'TEMPERATURA INICIAL DEL VAPOR: ',2X,F8.3,6X, 'RANKINE'/ 1 9X, 'MASA INICIAL DE VAPOR:', 3X, E11.5, 2X, 'LBM'/ 1 11X, 'AREA DE LA BOQUILLA:', 3X, E11.5, 2X, 'FT2'/ 1 13X, 'VOLUMEN DEL HUECO:', 3X, E11.5, 2X, 'FT3'/ 1 7X, 'COEFICIENTE DE DESCARGA:', 1X, F6.2) IMPRESION DE ENCABEZADOS WRITE(6,70) WRITE(6,75) WRITE(6,65) 60 FORMAT(' 70 FORMAT(2X,'TIEMPO',2X,'T VAPOR',4X,'TSAT',4X,'P VAPOR',3X, 'MASA VAPOR', 2X, 'RDESCAR', 5X, 'REVAPO') 1 75 FORMAT(3X,'SEGS',3X,'KELVIN',4X,'KELVIN',3X,'PASCALS',8X,'KG', 1 6X, 'KG/SEG', 6X, 'KG/SEG') PARA LA EVALUACION DE LAS INTEGRALES SE USA EL METODO DE CUARTO ORDEN DE RUNGE-KUTTA, EL LOOP SIGUIENTE SERA DE 60 TIEMPOS, EL CUAL SE INCREMENTARA EN 0.05 SEGS. HASTA COMPLETAR 3.0 SEGS. DO 25 KL=1,60 CALL RUNGE(Y,T,YP,P,MI,ME,ERF,TS) CONVERSION DE UNIDADES, DEL SISTEMA INGLES AL MKS PARA IMPRESION DE RESULTADOS. $WTEMP = (Y(1) - 459.67) \times 5/9 - 17.77778 + 273.14$ WMASS = Y(2)/2.205 $WTS = (TS-459.67) \times 5/9 - 17.77778 + 273.14$ WMI = MI * 14.59 WME = ME * 14.59WP = P * 6895.0INCREMENTO DE TIEMPO T = T + 0.05WRITE(6,20) T, WTEMP, WTS, WP, WMASS, WME, WMI 20 FORMAT(3X,F4.2,2X,F8.4,2X,F8.4,2X,F8.2,2X,F10.8,1X,

C

C

C

C C

C

C C

Ċ

C C

C

C C

С

C C

C C

С

C

С

С

C C

С

27 juni	in ang ang	25	1 E10.4,1X,E11.4)	
	· · · · · · · ·		STOP END	an pranom morana na Arto Casara (na makasas) (1999) a
			SUBRUTINA RUNGE, METODO NUMERICO RUNGE- ORDEN PARA SOLUCION DE ECUACIONES DIFERE LIZA PARA LA SOLUCION DE ECUACIONES QUE	KUTTA DE CUARTO NCIALES, SE UTI- GOBIERNAN AL SISTEMA.
	c	1	SUBRUTINA RUNGE(Y,T,YP,P,MI,ME,ERF,TS) REAL A(6),B(6),C(6),D(6),E(6),F(6),R,CH 1 SB,P,MS,ERF(150,2),TCRIT,TR,PR,CD	K, D, CC, AT, UV, AS, KLTS
			REAL Z(4)	
		1	COMMON/ALPHA/A,B,C,D,E,F,CC,SB,CD,AT,UV, 1 UVTRPR,AS	TCRIT, TR, PR,
	6		REAL ENDRKS,MI,ME REAL KO(2),K1(2),K2(2),K3(2),Y(2),YP(2),	NEWY(2)
	C C		H=0.05	
	C	IN	NCREMENTO DE TIEMPO,H,FIJO EN T=0.05 SEG.	가지 않는 것이 있는 것이 있다. 이번 것은 가운데 이번 것이 있는 것이 있다. 이번 것이 있는 것이 있는 것이 있는 것이 있다.
	C	CA	ALCULO DE LA PRIMERA APROXIMACION DE DESC	ENSO
	С	00	ENDRKS=1.0 CALL DERI(Y,T,YP,P,MI,ME,ENDRKS,ERF,TS) DO 90 J=1,2 KO(J)=H*YP(J) CONMINUE	
	С	90	CONTINUE	
	c		SEGUNDA APROXIMACION DE DESCENSO	
			ENDRKS=0.0 Z(2)=Y(2)+K0(2)/2. Z(1)=Y(1)+K0(1)/2.0 V=T+H/2.0	
	C		CALL DERI(Z,V,YP,P,MI,ME,ENDRKS,ERF,TS) K1(1)=H*YP(1) K1(2)=H*YP(2)	
	c		TERCERA APROXIMACION	
			Z(1)=Y(1)+K1(1)/2.0 Z(2)=Y(2)+K1(2)/2.0 CALL DERI(Z,V,YP,P,MI,ME,ENDRKS,ERF,TS) K2(1)=YP(1)*H K2(2)=YP(2)*H	
	C C		CUARTA APROXIMACION	
	C		Z(1)=Y(1)+K2(1) Z(2)=Y(2)+K2(2) V=T+H	
			CALL DERI(Z,V,YP,P,MI,ME,ENDRKS,ERF,TS) K3(1)=H*YP(1) K3(2)=H*YP(2)	
	C C		PREDICCION DE V EN DAGE AL DEOMEDIO DE L	FSCENSO

```
DO 95 M=1,2
     Y(M) = Y(M) + (KO(M) + 2 \times K2(M) + K3(M)) / 6.0
     NEWY(M) = Y(M)
95 CONTINUE
   RETURN
   END
   SUBRUTINA QUE EVALUA dY(1)/dT y dY(2)/dT PARA CADA
  LLAMADA DE LA SUBRUTINA RUNGE.
  SUBRUTINA DERI(Y,T,YP,P,MI,ME,ENDERKS,ERF,TS)
    REAL ENDRKS
    REAL A(6), B(6), C(6), D(6), E(6), F(6), R, CK,
  1
         SB, P, MS, ERF(150,2), TCRIT, TR, PR, CD, CC, AT, UV, AS, KLTS
  COMMON/ALPHA/A, B, C, D, E, F, CC, SB, CD, AT, UV, TCRIT, TR, PR,
  1
                 UVTRPR, AS
   REAL Y(3), T, YP(3), MI, ME
   SE LLAMA A LA SUBRUTINA PROPS PARA FIJAR LAS PROPIEDADES
   TERMODINAMICAS DE EL LIQUIDO Y EL VAPOR, DANDO EN Y(1) Y Y(2)
   LA TEMPERATURA Y MASA DEL VAPOR.
   CALL PROPS(Y,T,YP,P,ME,HVTVP,UVTVP,HVTSP,HFGTS,
  1
               TS, CVTVP, KLTS, VLTSP)
   SE LLAMA A LA SUBRUTINA MASA PARA EL CALCULO DEL RANGO DE
   FLUJO DE MASA A TRAVES DE LA INTERFACE LIQUIDO-VAPOR
   CALL MASA(Y,T,TS, HFGTS, KLTS, VLTSP, MI, ENDRKS, ERF)
   CALCULO DE dY(1)/dT y dY(2)/dT, LAS DERIVADAS DE LA TEMPERATURA
   Y MASA DEL VAPOR CON RESPECTO AL TIEMPO.
  YP(1) = (HVTSP-UVTVP) *MI/Y(2) *CVTVP) + (UVTVP-HVTVP) *ME/Y(2) *CVTVP)
   YP(2) = (MI - ME) * 32.174
   RETURN
   END
   SUBRUTINA PROPS, CALCULA LAS PROPIEDADES TERMODINAMICAS DE
   EL FLUIDO TRABAJADO, DANDO LA TEMPERATURA DEL VAPOR Y MASA
   SUBRUTINE PROPS(Y,T,YP,P,ME,HVTVP,UVTVP,HVTSP,HFGTS,
  1
                      TS, CVTVP, KLTS, VLTSP)
   COMMON/ALPHA/A, B, C, D, E, F, CC, SB, CD, AT, UV, TCRIT, TR, PR,
  1
                 UVTRPR, AS
   REAL Y(2), YP(2), A(6), B(6), C(6), D(6), E(6), F(6), ERF(150, 2)
   REAL XV(4), XT(4), WV(4), WT(4)
   REAL KLTS, ME, XCV(4)
```

C

C C

C C

С

С

C

С

C C

С

C

С

C C

С

С

C

C

С

C C

Ĉ

С

TEMPERATURA CRITICA, TEMPERATURA RELATIVA Y PRESION DEL FREON-11 TC=848.07 TR=427.0 PR=0.74317 CALCULO DEL VOLUMEN ESPECIFICO DEL VAPOR EN EL HUECO, FT3/LBM VVTVP=UV/Y(2)CALCULO DE LA PRESION EN EL HUECO DADA LA ECUA. DE ESTADO CONOCIENDO LA TEMPERATURA DEL HUECO Y EL VOLUMEN ESPECIFICO DEL VAPOR EN EL HUECO P=R*Y(1)/(VVTVP-SB)+(A(2)+B(2)*Y(1)+C(2)*EXP(CC*Y(1)/TCRIT))1 /((VVTVP-SB)**2)+(A(3)+B(3)*Y(1)+C(3)*EXP(CC*Y(1)/TCRIT)) 1 /((VVTVP-SB)**3)+(A(4)+B(4)*Y(1))/((VVTVP-SB)**4) +(A(5)+B(5)*Y(1)+C(5)*EXP(CC*Y(1)/TCRIT))/((VVTVP-SB)**5)1 SE LLAMA A LA SUBRUTINA DEL METODO DE NEWTON, PARA CALCULAR TS, VVTSP, VVTVPR Y VVTSPR. ESTOS VALORES ESPECIFICOS SON RE-OUERIDOS PARA EL CALCULO DE LA ENTROPIA Y ENERGIA INTERNA. NEWTTS USA EL METODO DE NEWTON PARA RESOLVER LA ECUACION DE PRESION DE VAPOR PSRS TSAT, DANDO PSAT. NEWTV RESUELVE LA ECUACION DE ESTADO PARA EL VOLUMEN ESPECIFICO, DANDO LA TEMPERATURA Y PRESION DEL VAPOR. LAS UNIDADES SON: TS EN GRADOS RANKINE, VOL. ESPECIFICO EN FT3/LEM VTOL=0.005 TSTOL=0.5 CALL NEWTTS(TSTOL, P, TS) CALL NEWTV(VTOL, P, TS, VVTSP) CALL NEWTV(VTOL, PR, Y(1), VVTVPR) CALL NEWTV(VTOL, PR, TS, VVTSPR) SE ASIGNAN LOS VALORES TEMPORALES DE VOLUMEN ESPECIFICO Y TEM-PERATURA PARA EL CALCULO DE LA ENERGIA INTERNA Y ENTROPIA. XT(1)=TRXT(2) = TSXT(3) = Y(1)XT(4) = TSXV(1)=VVTSPR XV(2)=VVTVP XV(3)=VVTSP XV(4)=VVTVPR SE EVALUA LA INTEGRAL DE ENERGIA INTERNA, EN ESTE LOOP LAS UNIDADES DE WV Y WX SON FT-LBF/SLUG O FT2/SEG2 DO 5 I=1,4 IF (I.LE.2) TEMP=TS IF (I.GT.2) TEMP=Y(1)BETA=TEMP*CC/TCRIT WV(I) = ((A(2) - C(2) * (BETA - 1.) * EXP(BETA)) / (XV(I) - SB))1 +(A(3)-C(3)*(BETA-1.)*EXP(BETA))/(2.*(XV(I)-SB)**2.) 1 +A(4)/(3.*(XV(I)-SB)**3.)+(A(5)-C(5)*(BETA-1.)*EXP(BETA))1 /(4.*(XV(I)-SB)**4.))144.0*32.174

C

C

C C

C

C

С

С

C

C C

С

С

C

С

С

С

C

С

C C

C

С

C C

С

С

WT(I)=(F(1)*XT(I)-F(2)/XT(I)+(F(3)*XT(I)**2.)/2. +(F(4)*XT(I)**3.)/3.+(F(5)*XT(I)**4.)/4.)*778.17*32.174

5 CONTINUE

1

C

С

Ċ

С

C C

С

С

C C

С

C C

C

C

C

С

C

C

C

C C

С

С

CALCULO DE LA ENERGIA INTERNA Y ENTROPIA USANDO LOS VALORES DE WV Y WT. LAS UNIDADES SON FT2/SEG2 O FT-LBF/SLUG

UVTVP=WV(2)-WV(4)+WT(3)-WT(1)+UVTRPR UVTSP=WV(3)-WV(1)+WT(2)-WT(1)+UVTRPR HVTVP=UVTVP+P*144.0*32.174*VVTVP HVTSP=UVTSP+P*144.0*32.174*VVTSP

CALCULO DEL VOLUMEN ESPECIFICO DEL LIQUIDO UNIDADES EN FT3/SLUG

CON = 1-(TS/TCRIT)RHOL = E(1)+E(2)*CON**(1./3.)+E(3)*CON**(2./3.)+ E(4)*CON+E(5)*CON**(4./3.) VLTSP = 32.174 / RHOL

CALCULO DE dP/dT

DPDT = (-D(2)*ALOG(10.0)/(TS**2.)+D(4)*ALOG(10.)+D(3)/TS-D(5)*D(6)*ALOG(D(6)-TS)/(TS**2.)+D(5)/TS)*EXP(ALOG(10.)*(D(1)+D(2)/TS+D(4)*TS)+D(3)*ALOG(TS)+D(5)*(D(6)-TS)*ALOG(D(6)-TS)/TS)

CALCULO DE LA FORMACION DE ENTROPIA UNIDADES EN FT2/SEG2

HFGTS=TS*(VVTSP-(VLTSP/32.174))*DPDT*144.0*32.174

CALCULO DE K, CONDUCTIVIDAD TERMICA DE EL LIQUIDO UNIDADES EN LBF/SEG-R

KLTS=(0.111562-TS*0.000115)*0.216158

CALCULO DE CV, EL CALOR ESPECIFICO, COMO TEMPERATURA DEL VAPOR

CV0 = F(1)+F(2)/(Y(1)**2.)+F(3)*Y(1)+F(4)*Y(1)**2.1 +F(5)*(Y(1)**3)

ESTE LOOP EVALUA LA INTEGRAL PARA ENCONTRAR EL CALOR ESPECIFICO AT, TV RELATIVA DEL CALOR ESPECIFICO COMO T-RELATIVA

```
DO 10 L = 2,4,2

XCV = Y(1)*(-CC/TC)**2.*EXP(CC*Y(1)/TC)*(-C(2)/(XV(L)-SB)

1 -C(3)/(2.*(XV(L)-SB)**2.)-C(5)/(4*(XV(L)-SB)**4.))

1 *144.*32.174

10 CONTINUE
```

XCV EN UNIDADES DE FT2/SEG2-R, CONVERSION DE CVO CV0 = CV0*778.16*32.174R = R*144.*32.174CALCULO DE CV, CALOR ESPECIFICO CONSTANTE CV = CV0 + XCV(2) - XCV(4)CVTV = CVCALCULO DEL RANGO DE FLUJO DE MASA A TRAVES DE LA BOQUILLA SOBRE LA MASA DE PROPIEDADES DEL VAPOR, UNIDADES EN SLUGS/SEG CP = R + CVALPHA = (CP/CV) **0.5*(2/((CP/CV)+1.)) **(((CP/CV)+1.))/1 (2.*((CP/CV)-1.)))ME = CD*ALPHA*P*AT*144./((R*Y(1))**0.5)R = R/(144.*32.174)RETURN END SUBROUTINE NEWTV(ERROR, PRESS, TEMP, X) REAL A(6), B(6), C(6), D(6), E(6), F(6), R, CK, SB, P, MS, ERF(150,2), TCRIT, TR, PR, CD, CC, AT, VU, AS, KLTS 1 COMMON/ALPHA/A, B, C, D, E, F, R, CC, SB, CD, AT, VU, TC, TR, PR, 1 UVTRPR, AS ESTA SUBRUTINA UTILIZA EL METODO DE NEWTON PARA ENCONTRAR LAS RAICES DE LA ECUACION DE ESTADO DEL VOLUMEN ESPECIFICO. SE ASUME UN VOLUMEN ESPECIFICO INICIAL X=R*TEMP/PRESS EL METODO DE NEWTON SE EJECUTA HASTA QUE EL ERROR SEA MENOR QUE VTOL DO 40 J = 1.7Z = R*TEMP/(X-SB)+(A(2)+B(2)*TEMP+C(2)*EXP(CC*TEMP/TC))/((X-SB)**2)+(A(3)+B(3)*TEMP+C(3)*XP(CC*TEMP/TC))1 1 /((X-SB)**3)+(A(4)+B(4)*TEMP)/((X-SB)**4)+(A(5)+B(5)*TEMP+C(5)*EXP(TEMP*CC/TC))/((X-SB)**5)-PRESS1 CON=CC*TEMP/TC DZDV = -(R*TEMP)/(X-SB)*2.-2.*(A(2)+B(2)*TEMP+C(2)*EXP(CON))1 /(X-SB)**3.-3.*(A(3)+B(3)*TEMP+C(3)*EXP(CON))/(X-SB)**4.1 -4.0*(A(4)+B(4)*TEMP)/(X-SB)**5.-5.*(A(5)+B(5)*TEMP)1 +C95)*EXP(CON))/(X-SB)**6. CALCULO DEL NUEVO VOLUMEN ESPECIFICO

X=X-Z/DZDV

00 000000 000

С

C C

C

C C

С

C C

С

C C

С

C

CCCC

IF(Z/DZDV.LT.ERROR) GOTO 40 40 CONTINUE RETURN END

SUBROUTINE NEWTTS(ERROR, PRESS, X)

REAL A(6), B(6), C(6), D(6), E(6), F(6), R, CK,

SB, P, MS, ERF(150,2), TCRIT, TR, PR, CD, CC, AT, VU, AS, KLTS

COMMON/ALPHA/A, B, C, D, E, F, R, CC, SB, CD, AT, VU, TCRIT, TR, PR, UVTRPR, AS

ESTA RUTINA UTILIZA EL METODO DE NEWTON PARA ENCONTRAR LAS RAICES DE LA ECUACION DE VAPOR-PRESION; LA TEMPERATURA DE SATURACION CORRESPONDE AL VALOR DE P DADO.

SE ASUME UNA X INICIAL

X=560.0

EL METODO DE NEWTON SE UTILIZA HASTA QUE ERROR SEA MENOR A TSTOL

DO 75 K= 1,7

DZDT = (-D(2)*ALOG(10.)/(X**2.)+D(4)*ALOG(10.)+D(3)/X-D(5)*D(6)*ALOG(D(6)-X)/(X**2.)+D(5)/X)*EXP(ALOG(10.)*(D(1)+D(2)/X+D(4)*X)+D(3)*ALOG(X)+D(5)*D(6)-X)*ALOG(D(6)-X)/X)

Z = EXP((D(1)+D(2)/X+D(4)*X)*ALOG(10.)+D(3)*ALOG(X) +D(5)*D(6)-X)*ALOG(D(6)-X)/X)-PRESS

CALCULO DEL NUEVO VALOR DE TEMPERATURA DE SATURACION

X=X-Z/DZDT IF (Z/DZDT .LT. ERROR) GO TO 75 CONTINUE RETURN

ESTA RUTINA CALCULA EL FLUJO DE MASA A TRAVES DE LA INTERFACE LIQUIDO-VAPOR, RANGO DE EVAPORACION. LA INTEGRAL DE SUPERPOSI-CION DE DUHAMMEL'S SE UTILIZA EN LA PALICACION DE UN SOLIDO SEMI-INFINITO CON TEMPERATURA SUPERFICIAL TRANSITORIA.

PARA MEHORAR LA MASA SE UTILIZAN NUEVOS INDICES PARA DAR PHI(1)=TS

SUBROUTINE MASA(Y,T,TS,HFGTS,KLTS,VLTSP,MI,ENDRKS,ERF) COMMON/ALPHA/A, B, C, D, E, F, R, CC, SB, CD, AT, UV, TCRIT, TR, PR, 1 UVTRPR, AS REAL ENDRKS REAL PHI(6), KLTS, MI, ERF(150,2), THETA(100), D(6) REAL MB(4),WK(12),D1,D2,EQUIL(4),WA REAL U(4,4),LU(4,4) INTEGER N, NN, IA, MA, IB, IDGT, IJOB, IPVT(4), M, IER

C С ē C c С С C

C

С C

C

С Ĉ

С

С

C

C Ĉ

С

С

1

1

1 1

1

75

END

NN= (T+0.01)/0.05 +1 IF(NN.LT.2) SAVED=0.0

NN ES EL NUMERO DE INCREMENTOS DE TIEMPO

CALCULO DEL RANGO DE FLUJO DE MASA POR CADA PASO DE EL METODO DE RUNGE-KUTA

IF(ENDRKS.EQ.0.0) GO TO 125

THETA(NN)=TS IF(NN.LT.20 GO TO 125

AS ES EL AREA SUPERFICIAL DEL LIQUIDO SUS UNIDADES SON FT2

AS=0.0599332

CALCULO DEL CALOR ESPECIFICO DEL LIQUIDO POR LA CURVA LINEAL APROPIADA, LAS UNIDADES SON FT-LBF/SLUG-R

CLTS=9TS*0.000031666+0.190144)*778.16*32.174

CALCULO DE AALPHA, DIFUSION TERMICA

AALPHA=KLTS*VLTSP/CLTS

CALCULO ED LA PROFUNDIDAD AT, PARA LAS TEMPERATURAS EN EL FLUIDO QUE SE APROXIMARA. LA PROFUNDIDAD DE PENETRACION SE ESTABLECE, Y EL 10% DE ESTE VALOR SE UTILIZA COMO LA REGION EN LA CUAL LAS TEMPERATURAS VAN A SER DETERMINADAS, ESTA PROFUNDIDAD ESTA DIVIDIDA EN 6 PUNTOS.

DEPTH=0.10*1.39*2.*((AALPHA*T)**0.5)/6.

CALCULO DE TEMP PARA LOS 6 PUNTOS, COMENZANDO EN LA INTERFACE LIQUIDO-VAPOR UTILIZANDO LA INTEGRAL DE SUPERPOSICION DE DUHAMMEL'S APLICADA A UN SOLIDO SEMI-INFINITO CON TEMPERATURA SUPERFICIAL TRANSITORIA

DO 90 I=1,6 DELX=(I-1)*DEPTH

SI EL TIEMPO=0.0, EL LIQUIDO ES UNIFORME

IF(T.EQ.0.0) PHI(I)=TS IF(T.EQ.0.0) GO TO 90

```
PHI(I)=THETA(1)
DO 80 K=2,NN
DELT=T-(K-2)*0.05
VAL=DELX/(2.*(DELT*AALPHA)**0.5)
```

SE BUSCAN LOS VALORES ERF(VAL)

```
DO 75 J=1,102
IF(VAL.LT.ERF(J,1) GO TO 70
75 CONTINUE
WRITE(6,5) J
```

C C

C C

С

С

C C C

5 70 1	FORMAT(1H0, ERFVAL= ERF	I3) (J-1,2)+(ERF(J, ERF(J,1)-ERF(J	2)-ERF(J [-1,1))	-1,2)*(VAL-E	RF(J-1,1))/	
80 90	ERFC=I-ERFV PHI(I)=(THE IF(K.GT.70) CONTINUE CONTINUE	AL IA(K)-THETA(K-: GO TO 80	L))*ERFC+	PHI(I)		
	SE AJUSTAN LO METODO DE MII LA CURVA	OS COEFICIENTES NIMOS CUADRADOS	DE LA M DE TERC	ATRIZ PARA A ER ORDEN PAR	PLICAR EL A AJUSTA	
		.*DEPTH .*DEPTH .*DEPTH**2. .*DEPTH**2. .*DEPTH**3. 5.*DEPTH**3. 5.*DEPTH**3. 5.*DEPTH**3. 9.*DEPTH**4. 9.*DEPTH**4. 9.*DEPTH**5. 25.*DEPTH**5. 515.*DEPTH**6.				
	PARA UNA MEJO VALORES DE PI	OR PRESICION EN HI(I) SERAN REN	N LOS VAL DUCIDOS E	ORES DE LA M N LA MISMA E	ATRIZ, LOS SCALA QUE D	ELTA X
50	DO 50 II=1, PHI(I CONTINUE	6 I) = PHI(II)-TH	HETA(1)			,
1 1	MB(1)=PHI(1 MB(2)=DEPTH +5*PH MB(3)=DEPTH +25*PI MB(4)=DEPTH +125*)+PHI(2)+PHI(3 *(PHI(2)+2*PHI I(6)) **2*(PHI(2)+4*] HI(6)) **3*(PHI(2)+8*] PHI(6)))+PHI(4)+ (3)+3*PHI PHI(3)+9* PHI(3)+27	PHI(5)+PHI(6 (4)+4*PHI(5) PHI(4)+16*PH *PHI(4)+64*P) I(5) HI(5)	
SH DH EI	E LLAMAN A LA SCOMPOSICION SISTEMA LIN	S SUBRUTINAS L -LU DE LA MATR EAL DE ECUACIO	JDATF Y L IZ A. LEQ NES A*X=B	EQIF. LUDATF IF CALCULA L •	CALCULA LA	DE
	N=4 IDGT=3 IA=4					
	CALL LUDATF	(U,LU,N,IA,IDG	r,D1,D2,I	PVT,EQUIL,WA	,IER)	
	MA=1					

C C C C C C C

> C C C C C

> > 00000

c c

		IB=4 IJOB=0
		M=1
C		CALL LEOTE/IL TA N MA ME TE M TTOR WK TER)
C		
C		2008년 1월 1일 19월 - 1일 - 1
		D'I'DXO=MB(2)
1. A.		GO TO 130
•	125	DTDXO=SAVED
C C		CALCULO DEL RANGO DE FLUTO DE MASA CON BASE EN LA DISMINUSTON
Ċ		EN LA INTERFACE, REPRESENTADA POR B(2)
С	130	MT-785*VI me*nmnyo/up/me
	120	RETURN
		END
C		SUBRUTTINAS TOMADAS DEL PACUETE INSI.
č		POPUOLINIP IOUTRUP PUP INCOLID INCO
		SUBROUTINE USPKD (PACKED, NCHARS, UNPAKD, NCHMTB)
		INTEGER NC, NCHARS, NCHMTB INTEGER UNPACK(1), IBLANK, ZBLANK
		INTEGER PACKED(1), I, J, K, SHIFT(4), MASK
		DATA IBLANK/1H/,ZBLANK/538976256/
	1	/1, 256, 65536, 16777216,255/
		NCHMTB = 0
		IF(NCHARS.LE.U) RETURN NC = MINO (129 NCHARS)
		DO 1 I=1,NC
		J = (I-1)/4 + 1
		$K = 1 - 4^{(1-1)/4}$ UNPAKD(1) = ZBLANK + JIAND(PACKED(J)/SHIFT(K), MASK)
		IF $(UNPAKD(1) .EQ. ZBLANK) UNPAKD(1) = 1BLANK CONTINUE$
		DO 200 N = 1, NC
		NN = NC - N + 1 $TE(UNDAVD(NN)) NE TDIANY) CO TO 210$
	200	CONTINUE
	210	NCHMTB = NN
		RETURN
		SUBROUTINE UERTST (IER, NAME)
		INTEGER IER
		INTEGER I, IEO, IEODF, IOUNIT, LEVEL, LEVOLD, NAMEO(6).
	*	NAMŠET(6), NAMUPK(6), NIN, NMTB
		DATA NAMSET/1HU,1HE,1HR,1HS,1HE,1HT/
		DATA LEVEL/4/, IEQDF/0/, IEQ/1H=/
		CALL USPKD (NAME, 6, NAMUPK, NMTB)
		CALL UGETIO(1,NIN,IOUNIT) IF (IFR CT 999) CO TO 25
		IF (IER.LT32) GO TO 55
		IF (IER.LE.128) GO TO 5
		IF (LEVEL.LT.1) GO TO 30 IF (IEODF.EO.1) WRITE(IOUNIT.35) TER.NAMEO.IEO.NAMUPK
		IF (IEQDF.EQ.O) WRITE(IOUNIT, 35) IER, NAMUPK

```
GO TO 30
      IF (IER.LE.64) GO TO 10
   5
      IF (LEVEL.LT.2) GO TO 30
      IF (IEQDF.EQ.1) WRITE(IOUNIT,40) IER,NAMEQ,IEQ,NAMUPK
      IF (IEODF.EQ.0) WRITE(IOUNIT,40) IER,NAMUPK
      GO TO 30
 10
      IF (IER.LE.32) GO TO 15
      IF (LEVEL.LT.3) GO TO 30
      IF (IEQDF.EQ.1) WRITE(IOUNIT,45) IER,NAMEQ,IEQ,NAMUPK
      IF (IEQDF.EQ.0) WRITE(IOUNIT,45) IER,NAMUPK
      GO TO 30
 15
      CONTINUE
      DO 20 I=1,6
         IF (NAMUPK(I).NE.NAMSET(I)) GO TO 25
 20
      CONTINUE
      LEVOLD = LEVEL
      LEVEL = IER
      IER = LEVOLD
      IF (LEVEL.LT.O) LEVEL = 4
      IF (LEVEL.GT.4) LEVEL = 4
      GO TO 30
 25
      CONTINUE
      IF (LEVEL.LT.4) GO TO 30
      IF (IEQDF.EQ.1) WRITE(IOUNIT, 50) IER, NAMEQ, IEQ, NAMUPK
      IF (IEQDF.EQ.0) WRITE(IOUNIT, 50) IER, NAMUPK
 30
      IEQDF = 0
      RETURN
  35
      FORMAT(19H *** TERMINAL ERROR, 10X, 7H(IER = , I3,
             20H) FROM IMSL ROUTINE, 6A1, A1, 6A1)
    1
      FORMAT(27H *** WARNING WITH FIX ERROR, 2X, 7H(IER = , I3,
  40
             20H) FROM IMSL ROUTINE, 6A1, A1, 6A1)
    1
  45
      FORMAT(18H *** WARNING ERROR, 11X, 7H(IER = , I3,
             20H) FROM IMSL ROUTINE, 6A1, A1, 6A1)
    1
  50
      FORMAT(20H *** UNDEFINED ERROR,9X,7H(IER = ,15,
    1
             20H) FROM IMSL ROUTINE, 6A1, A1, 6A1)
  55
      IEODF = 1
      DO 60 I = 1,6
      NAMEQ(I) = NAMUPK(I)
 60
 65
      RETURN
      END
      SUBROUTINE UGETIO(IOPT, NIN, NIOUT)
      INTEGER
                          IOPT, NIN, NOUT
      INTEGER
                          NIND, NOUTD
      DATA
                          NIND/1/,NOUTD/2/
      IF (IOPT.EQ.3) GO TO 10
      IF (IOPT.EQ.2) GO TO 5
      IF (IOPT.NE.1) GO TO 9005
      NIN = NIND
      NOUT = NOUTD
      GO TO 9005
   5
      NIND = NIN
      GO TO 9005
  10
      NOUTD = NOUT
9005
      RETURN
      END
      SUBROUTINE LEQIF (A, IA, N, MA, B, IB, M, IJOB, WK, IER)
      INTEGER
                         IA, IB, N, MA, M, IJOB, IER
      REAL
                         Z(4,4),B(IB,M),WK(N,3)
      INTEGER
                         I, IBIG, IIK, IP1, IZ, J, JJ, JJJ, JZ, KB, KBP1,
                         KKB, LB, LIMK, LIMKO, LIMK1, LIMK2, LIML, LIMLO
```

```
*
                       LIML1, LIML2, NBLOCK
   REAL
                       AM, REPS, TEMP
    REAL
                       ABIG, A(IA, N)
    DIMENSION
                       D(6)
                       REPS/1.1921E-25/
    DATA
    IER = 0
    DO 9 I=1,4
     DO 7 J =1,4
      Z(I,J)=A(I,J)
 7
      CONTINUE
 9
      CONTINUE
    DO 5 I = 1, N
 5
    WK(I,1) = I
    NBLOCK = (N-1)/MA+1
    DO 80 KB=1,NBLOCK
       LIMKO = (KB-1)*MA
       LIMK1 = LIMK0+1
       LIMK2 = MINO(LIMKO+MA, N)
       IF (KB.GT.1 .OR. IJOB.EQ.1) GO TO 20
       DO 15 J=LIMK1,LIMK2
          TEMP = 0.0
          DO 10 I=1,N
             TEMP = AMAX1(TEMP, ABS(Z(I,J)))
10
          CONTINUE
          WK(J,2) = TEMP
15
       CONTINUE
20
       CONTINUE
       DO 40 I=LIMK1,LIMK2
          ABIG = 0.0
          DO 25 J=I,N
             JZ = WK(J,1)
             IF (ABS(A(JZ,I)).LE.ABIG) GO TO 25
             ABIG = ABS(A(JZ,I))
             IBIG = J
25
          CONTINUE
          IF (ABIG.EQ.0.0) GO TO 9000
          IF (IJOB.EO.1) GO TO 30
          IF (ABIG.LE.10.0*REPS*WK(I,2)) GO TO 9000
30
          CONTINUE
          TEMP = WK(IBIG, 1)
          WK(IBIG,1) = WK(I,1)
          WK(I,1) = TEMP
          IF (I.GE.N) GO TO 40
          IZ = WK(I,1)
          IP1 = I+1
          DO 35 J=IP1,N
             JZ = WK(J,1)
             AM = A(JZ,I)/A(IZ,I)
             IF (AM.EQ.0.0) GO TO 35
             CALL SAXPY(M, -AM, B(IZ, 1), IA, B(JZ, 1), IA)
             IF (IJOB.EQ.1) GO TO 35
              IF (I.GE.LIMK2) GO TO 35
              CALL SAXPY(LIMK2-I, -AM, A(IZ, I+1), IA, A(JZ, I+1), IA)
35
          CONTINUE
40
       CONTINUE
       IF (IJOB.EO.1) GO TO 80
       IF (KB.GE.NBLOCK) GO TO 75
       KBP1= KB+1
       DO 70 LB=KBP1,NBLOCK
          LIMLO = (LB-1) * MA
```

```
LIML1 = MINO(LIMLO+MA,N)
            LIML = LIML2 - LIML0
            IF (KB.GT.1) GO TO 55
            DO 50 J=LIML1,LIML2
               TEMP = 0.0
               DO 45 I=1,N
                   TEMP = AMAX1(TEMP, ABS(Z(I,J)))
 45
               CONTINUE
               WK(J,2) = TEMP
 50
            CONTINUE
 55
            CONTINUE
            DO 65 I=LIMK1,LIMK2
               IF (I.GE.N) GO TO 65
               IZ = WK(I,1)
               IP1 = I+1
               DO 60 J=IP1,N
                  JZ = WK(J,1)
                   AM = A(JZ,I)/A(IZ,I)
                   IF (AM.EQ.0.0) GO TO 60
                   CALL SAXPY(LIML, -AM, A(IZ, LIML1), IA, A(JZ, LIML1), IA)
 60
               CONTINUE
 65
            CONTINUE
  70
         CONTINUE
 75
         CONTINUE
  80
      CONTINUE
      DO 105 KKB=1,NBLOCK
         KB = NBLOCK+1-KKB
         LIMKO = (KB-1)*MA
         LIMK2 = MINO(LIMKO+MA, N)
         LIMK = LIMK2-LIMK0
         DO 100 IIK=1,LIMK
            I = LIMK2+1-IIK
            IZ = WK(I,1)
            TEMP = A(IZ, I)
            DO 85 JJJ=1,M
               B(IZ,JJJ) = B(IZ,JJJ)/TEMP
  85
            CONTINUE
            IF 9I.EQ.1) GO TO 100
            DO 95 JJ=2,I
            J = I+1-JJ
            JZ = WK(J,1)
            TEMP = A(JZ, I)
            DO 90 JJJ=1,M
               B(JZ,JJJ) = B(JZ,JJJ) - TEMP * B(IZ,JJJ)
  90
            CONTINUE
  95
         CONTINUE
 100
      CONTINUE
      CONTINUE
 105
      DO 120 JJJ=1.M
         DO 110 I=1,N
            IZ = WK(I,1)
            WK(I,3) = B(IZ,JJJ)
 110
         CONTINUE
         DO 115 I=1,N
            B(I,JJJ) = WK(I,3)
 115
         CONTINUE
 120
      CONTINUE
      GO TO 9005
9000
      IER = 129
```

```
CALL UERTST(IER, 6HLEQIF)
9005
      RETURN
      END
      SUBROUTINE LUDATF (A,LU,IA,IDGT,D1,D2,IPVT,EQUIL,WA,IER)
                          A(IA,1),LU(IA,1),IPVT(1),EQUIL(1)
      DIMENSION
      REAL
                          A, LU, BIG, BIGA, P
      DATA
                          ZERO, ONE, FOUR, SIXTN, SIXTH/0.0, 1., 4., 16., .0625/
      IER = 0
      RN = N
      WREL = ZERO
      D1 = ONE
      D2 = ZERO
      BIGA = ZERO
      DO 10 I=1,N
         BIG = ZERO
         DO 5 J=1,N
            P = A(I,J)
            LU(I,J) = P
            P = ABS(P)
            IF (P .GT. BIG) BIG = P
   5
         CONTINUE
         IF (BIG .GT. BIGA) BIGA = BIG
         IF (BIG .EQ.ZERO) GO TO 110
         EQUIL(I) = ONE/BIG
  10
      CONTINUE
      DO 105 J=1,N
         JM1 = J-1
         IF (JM1 .LT. 1) GO TO 40
         DO 35 I=1,JM1
            SUM = LU(I,J)
            IM1 = I-1
            IF (IDGT .EQ. 0) GO TO 25
            AI = ABS(SUM)
            WI = ZERO
            IF (IM1 .LT. 1 ) GO TO 20
            DO 15 K=1,IM1
               T = LU(I,K) * LU(K,J)
               SUM = SUM - T
               WI = WI + ABS(T)
  15
            CONTINUE
            LU(I,J) = SUM
  20
            WI = WI + ABS(SUM)
            IF (AI.EQ.ZERO) AI = BIGA
            TEST = WI/AI
            IF (TEST .GT. WREL) WREL = TEST
            GO TO 35
  25
            IF (IM1.LT. 1) GO TO 35
            DO 30 K=1,IM1
               SUM = SUM-LU(I,K)*LU(K,J)
  30
            CONTINUE
            LU(I,J) = SUM
  35
         CONTINUE
  40
         P = ZERO
         DO 70 I=J,N
            SUM = LU(I,J)
            IF (IDGT .EQ.0) GO TO 55
            AI = ABS(SUM)
            WI = ZERO
            IF (JM1 .LT. 1) GO TO 50
            DO 45 K=1,JM1
```

	$\Psi = III(T K) * III(K J)$
	SUM = SUM - T
	WI = WI + ABS(T)
45	CONTINUE
	LU(I,J) = SUM
50	WI = WI + ABS(SUM)
	IF (AI .EQ. ZERO) AI = BIGA
	TEST = WI/AI
	IF (TEST .GT. WREL) WREL = TEST CO TO SE
55	
55	DO 60 K=1 TM1
	SUM = SUM - LU(I,K) * LU(K,J)
60	CONTINUE
	LU(I,J) = SUM
65	Q = EQUIL(I) * ABS(SUM)
	IF (P.GE. Q) GO TO 70
	$\mathbf{P} = \mathbf{Q}$
	IMAX = I
	CONTINUE
	IF $(RN+P \cdot EQ \cdot RN)$ GO TO IIU
	IF (J .EQ. IMAX) GU IU 80
	DIDI DO 75 K=1 N
	P = LII(TMAX,K)
	LU(TMAX.K) = LU(J.K)
	LU(J,K) = P
75	CONTINUE
	EQUIL(IMAX) = EQUIL(J)
80	IPVT(J) = IMAX
	$D1 = D1 \star LU(J,J)$
85	IF (ABS(D1) .LE. ONE) GO TO 90
	D1 = D1 * SIXTH
	D2 = D2 + FOUR
00	
	D1 = D1 * SIXTN
	D2 = D2 - FOUR
	GO TO 90
95	CONTINUE
	JP1 = J+1
	IF (JP1 .GT. N) GO TO 105
	P = LU(J,J)
	DO 100 I=JP1,N
100	LU(I,J) = LU(I,J)/P
100	CONTINUE
105	
	$r = 3 \times 0^{-1}$
	$WA = P \star WRET.$
	IF (WA+10.0**(-IDGT) .NE, WA) GO TO 9005
	IER = 34
	GO TO 9000
110	IER = 129
	D1 = ZERO
	D2 = ZERO
9000	CONTINUE
0005	CALL UERTST(IER, 6HLUDATF)
9005	RETURN FND

```
(N,SA,SX,INCX,SY,INCY)
    SUBROUTINE SAXPY
    INTEGER
                         N, INCX, INCY
    REAL
                         SX(1),SY91),SA
    INTEGER
                         I,IX,IY,M,MP1,NS
    IF (N.LE.O.OR.SA.EO.EO) RETURN
    IF (INCX.EQ.INCY) IF (INCX-1) 5,15,35
 5
    CONTINUE
    IX = 1
    IY = 1
    IF (INCX.LT.O) IX = (-N+1)*INCX+1
    IF (INCY.LT.O) IY = (-N+1)*INCY+1
    DO 10 I=1,N
       SY(IY) = SY(IY) + SA + SX(IX)
       IX = IX + INCX
       IY = IY + INCY
10
    CONTINUE
    RETURN
15
    M = N - (N/4) * 4
    IF (M.EQ.0) GO TO 25
    DO 20 I=1,M
       SY(I) = SY9I) + SA \times SX(I)
20
    CONTINUE
    IF (N.LT.4) RETURN
25
    MP1 = M+1
    DO 30 I=MP1,N,4
       SY(I) = SY(I) + SA \times SX(I)
       SY(I+1) = SY(I+1) + SA \times SX(I+1)
       SY(I+2) = SY(I+2)+SA*SX(I+2)
       SY(I+3) = SY(I+3)+SA*SX(I+3)
80
    CONTINUE
    RETURN
85
    CONTINUE
    NS = N*INCX
    DO 40 I=1,NS,INCX
       SY(I) = SA*SX(I)+SY(I)
40
    CONTINUE
    RETURN
    END
```

 TEMPERATURA INICIAL DE VAPOR: 531.740 RABA DE LA BOQUILLA: 0.31703E-02 LBM NARA DE LA BOQUILLA: 0.31490E-04 F72 COPFICIENTE DE DESCARGA: 0.77 TIEMPO T VAPOR TSAT P VAPOR NARA VAPOR RDESLAR COPFICIENTE DE DESCARGA: 0.77 TIEMPO T VAPOR TSAT P VAPOR MARA VAPOR RDESLAR REVANO SEGS KELVIN KELVIN PASCALS KG KG/SEG 0.05 295.3514 294.1221 91584.88 0.0003213.08895E-03 0.1052E-32 0.0000E+00 0.10 295.3018 284.8442 87459.88 0.00093213.08895E-03 0.1052E-32 0.20 295.2014 284.8442 7743.16 0.0008475 0.8895E-03 0.1052E-32 0.20 295.1509 284.8442 77647.47 0.0008715 0.8104E-03 0.5628E-33 0.30 295.1003 284.8442 26142.71 0.0007675 0.7740E-03 0.3978E-33 0.40 294.9945 284.8442 66149.21 0.0006753 0.7740E-03 0.3978E-33 0.50 294.9475 284.8442 54770.17 0.0006510 0.5121E-03 0.24538E-33 0.60 294.7934 284.8442 54770.17 0.0005510 0.5528E-33 0.60 294.7934 284.8442 54770.17 0.00045145 0.5528E-33 0.62 294.7934 284.8442 29745.60 0.20148E-33 0.62 294.7934 284.8442 284.8442 284.8442 284.8442 284.8442 284.8442 284.8442 284.8442 284.8442	s it s s			کیئیدر داند. په										
MASA INTCILL DE VAPOR: 0.23703E-02 LBM VOLUMEN DEL HUECO: 0.68154E-02 FT3 COEFICIENTE DE DESCARGAS: 0.77 TIEMPO T VAPOR TSAT P VAPOR MASA VAPOR RDESCAR REVAPO SEGS KEUVIN KEUVIN FSACALS KG/SEG 0.00008+00 0.10 295.3018 284.8442 87455.868 0.00097765 0.9314E-03 0.1052E-32 0.20 295.2014 284.8442 7843.16 0.00084710 0.8896E-03 0.1052E-32 0.20 295.1003 284.8442 7647.47 0.00084715 0.8458E-33 0.35 295.1003 284.8442 6326.48 0.00076972 0.7347E-03 0.3578E-33 0.40 294.9866 284.8442 6326.48 0.0006753 0.7404E-03 0.2728E-33 0.45 294.9475 284.8442 6310.21 0.00067540 0.6121E-03 0.24538-33 0.45 294.49475 244.8442 5476.17 0.00054510 0.5398D-03 0.2218E-33 <t< th=""><th>TEMPER</th><th>ATURA INIC</th><th>IAL DEL VA</th><th>POR: 531</th><th>.740 R</th><th>ANKINE</th><th></th></t<>	TEMPER	ATURA INIC	IAL DEL VA	POR: 531	.740 R	ANKINE								
AREA DE LA BOQUILLA: 0.31490E-04 FT2 COEFICIENTE DE DESCARGA: 0.77 TIEMPO T VAPOR TSAT P VAPOR MASA VAPOR RDESCAR KG KG/SEG KG/SEG 0.00 295.3514 294.1221 91584.88 0.00102505 0.9752E-03 0.00087405 0.10 295.2014 284.8442 7455.86 0.00097455 0.9314E-03 0.1405E-33 0.20 295.2014 284.8442 7617.76 0.00084055 0.4946E-03 0.5628E-33 0.30 295.1003 284.8442 6326.46 0.000753 0.7740E-03 0.5628E-33 0.42 294.9966 264.8442 66149.21 0.0006753 0.7367E-03 0.3058E-33 0.44 294.8475 284.8442 66149.21 0.000753 0.7367E-03 0.3658E-33 0.55 294.8493 244.8442 6770.17 0.0006510 0.6121E-03 0.22458E-33 0.50 294.8493 244.8442 54770.17 0.0006510 0.5569E-03 0.218E-33 0		MASA INI	CIAL DE VA	POR: 0.2	3703E-02 LI	ЗM	a ng tang ang ang ang ang ang ang ang ang ang							
VOLUMEN DEL FUECO: 0.68154E-02 FT3 COEFTCIENCE DE DESCARGE: 0.77 TIEMO T VAPOR TSAT P VAPOR NASA VAPOR RDESCAR RFVAPO SEGS KEIVIN KELVIN PASCALS KG KG/SEG KG/SEG 0.05 295.3514 294.1221 91584.88 0.00097765 0.9114E-03 0.1405E-33 0.15 295.2014 284.8442 87459.88 0.0008615 0.8494E-03 0.1405E-33 0.20 295.1014 284.8442 76117.78 0.00086715 0.8104E-03 0.1455E-33 0.30 295.1003 284.8442 69126.44 0.00073135 0.7740E-03 0.3465E-33 0.40 294.9986 284.8442 6310.21 0.00063510 0.6121E-03 0.2729E-33 0.55 294.8449 284.8442 57425.82 0.00063500 0.6512E-03 0.1218E-33 0.55 294.9475 284.8442 4770.17 0.00054390 0.5311E-03 0.1218E-33 0.55 294.8449 284.8442		AREA D	E LA BOQUI	LLA: 0.3	1490E-04 F1	C2	· · · · · · · · · · · · · · · · · · ·							
COEFICTENTE DE DESCARGA: 0.77 TIEMPO SEGS TOAPOR KELVIN TSAT KELVIN P VAPOR PASCALS RDESCAR KG RDESCAR KG/SEG REVAPO KG/SEG 0.05 295.3514 294.1221 91584.864 0.00032505 0.9752E-03 0.0008F40 0.15 295.2517 284.8442 87459.86 0.00093213 0.8696E-03 0.1405E-33 0.22 295.2014 284.8442 7743.16 0.00084705 0.8108E-03 0.5528E-33 0.30 295.1003 284.8442 7647.47 0.0008715 0.7387E-03 0.3978E-33 0.42 294.9966 284.8442 66149.21 0.0007637 0.7740E-03 0.2728E-33 0.44 294.9752 244.8442 66149.21 0.0006510 0.6121E-03 0.2458E-33 0.50 294.8492 284.8442 5470.17 0.0066510 0.5121E-03 0.2218E-33 0.50 294.6900 284.8442 49607.50 0.0004519 0.511E-03 0.1345E-33 0.50 294.7934 284.8442 49278.71		VOLU	MEN DEL HU	ECO: 0.6	8154E-02 FT	23								
TIEMPO T VAPOR TSAT P VAPOR RDSSCAR REVAPO SEGS KELVIN KELVIN PASCALS KG KG/SEG KG/SEG 0.05 295.3514 294.1221 91584.88 0.0012505 0.9314E-03 0.1405E-33 0.15 295.2517 284.8442 79743.16 0.000684715 0.8494E-03 0.7191E-33 0.20 295.1003 284.8442 75117.78 0.00064715 0.8108E-03 0.7191E-33 0.30 295.1003 284.8442 66149.21 0.00075972 0.7387E-03 0.365EE-33 0.40 294.9455 284.8442 66149.21 0.00063500 0.6121E-03 0.2455E-33 0.55 294.8449 284.8442 62024.15 0.00065300 0.6121E-03 0.2455E-33 0.55 294.7944 284.8442 54763.7 0.00052345 0.565E-03 0.1245E-33 0.56 294.7941 284.8442 447491.11 0.00045124 0.4604E-03 0.1164E-33 0.77 <t< td=""><td colspan="14">COEFICIENTE DE DESCARGA: 0.77</td></t<>	COEFICIENTE DE DESCARGA: 0.77													
SEGS KELVIN KELVIN PASCALS KG KG/SEG KG/SEG 0.05 295.3514 294.1221 91584.88 0.00102505 0.9752E-03 0.0000F+00 0.15 295.2517 284.8442 83529.46 0.0008865 0.8494E-03 0.1405E-33 0.25 295.2014 284.8442 77417.76 0.00080753 0.7740E-03 0.4552E-33 0.30 295.1003 284.8442 69326.48 0.000753 0.7740E-03 0.4558E-33 0.40 294.9945 284.8442 69326.48 0.0007692 0.7378E-03 0.3665E-33 0.45 294.9475 284.8442 6210.15 0.0006500 0.6218E-03 0.3665E-33 0.55 294.8492 284.8442 54725.82 0.0005100 0.5839E-03 0.218E-33 0.66 294.7418 284.8442 5270.71 0.00064972 0.4809E-03 0.1682E-33 0.75 294.6900 284.8442 4111 0.0005245 0.505E-03 0.1692E-33 0.75 294.690	TIEMPO	T VAPOR	TSAT	P VAPOR	MASA VAPOR	RDESCAR	REVAPO							
0.05 295.3514 294.1221 91584.88 0.0012505 0.9752E-03 0.0000F+00 0.10 295.3018 284.8442 87459.88 0.00093213 0.8896E-03 0.11405E-33 0.12 295.2014 284.8442 9743.16 0.00084715 0.8896E-03 0.1191E-33 0.20 295.2014 284.8442 76117.78 0.00084715 0.8108E-03 0.7191E-33 0.30 295.1003 284.8442 69326.48 0.00076972 0.7387E-03 0.3655E-33 0.40 294.9945 284.8442 66149.21 0.00063500 0.6121E-03 0.2453E-33 0.55 294.8962 284.8442 5470.17 0.0006510 0.5339E-03 0.2245B-33 0.50 294.945 284.8442 5470.17 0.0006510 0.5339E-03 0.2245B-33 0.55 294.4942 284.8442 5470.17 0.0006510 0.5339E-03 0.2245B-33 0.50 294.7418 284.8442 5470.17 0.00063510 0.5311E-03 0.2452B-33 0.50 294.8429 284.8442 49807.50 0.00063510 0.5311E-03	SEGS	KELVIN	KELVIN	PASCALS	KG	KG/SEG	KG/SEG							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
0.10 295.3018 284.8442 87459.88 0.00097765 0.9314E-03 0.1405E-33 0.15 295.2517 284.8442 79743.16 0.0008865 0.8494E-03 0.162E-33 0.20 295.1003 284.8442 72647.47 0.00080753 0.7740E-03 0.4656E-33 0.30 295.1003 284.8442 6110.21 0.0007673 0.7740E-03 0.3765E-33 0.40 294.9986 284.8442 60204.15 0.0006920 0.6726E-03 0.3058E-33 0.55 294.8492 284.8442 54770.17 0.0006501 0.5839E-03 0.22451E-33 0.60 294.7418 284.8442 54770.17 0.0006510 0.5839E-03 0.214E-33 0.65 294.7418 284.8442 54770.17 0.0005439 0.5018E-03 0.1838E-33 0.75 294.6802 284.8442 47451.11 0.0005439 0.531E-03 0.1838E-33 0.75 294.64298 284.8442 3155.9 0.00043672 0.4829E-03 0.11622E-33 0.8	0.05	295.3514	294.1221	91584.88	0.00102505	0.9752E-03	0.0000E+00							
0.15 295.2517 284.8442 33529.45 0.00093213 0.886E-03 0.7191E-33 0.20 295.2014 284.8442 79743.16 0.00084715 0.8108E-03 0.7191E-33 0.30 295.1003 284.8442 76147.74 0.00084715 0.8108E-03 0.4658E-33 0.40 294.9986 284.8442 66149.21 0.00073363 0.7049E-03 0.37978E-33 0.45 294.99475 284.8442 63110.21 0.00066340 0.64778E-03 0.3658E-33 0.55 294.8492 284.8442 57425.82 0.0006510 0.6121E-03 0.2218E-33 0.65 294.7934 284.8442 57475.12 0.00054939 0.5311E-03 0.1838E-33 0.70 294.6902 284.8442 49807.55 0.00054939 0.5311E-03 0.1838E-33 0.77 294.6902 284.8442 41181.70 0.00054939 0.5311E-03 0.11422E-33 0.70 294.4947 284.8442 43165.96 0.00047514 4.46042E-03 0.12142E-33	0.10	295.3018	284.8442	87459.88	0.00097765	0.9314E-03	0.1405E-33							
0.20 295.2014 284.8442 79743.16 0.00068665 0.8444E-03 0.7191E-33 0.25 295.1003 284.8442 76117.78 0.0008753 0.7740E-03 0.4565E-33 0.30 295.1003 284.8442 69326.44 0.00076972 0.7370E-03 0.3978E-33 0.40 294.9986 284.8442 6310.21 0.0006920 0.6726E-03 0.3978E-33 0.45 294.9475 284.8442 60204.15 0.0006500 0.6121E-03 0.2453E-33 0.55 294.449 284.8442 54725.82 0.0006510 0.5839E-03 0.2218E-33 0.56 294.7934 284.8442 52232.32 0.00054939 0.5311E-03 0.1218E-33 0.75 294.6382 284.8442 47491.11 0.0002345 0.5055E-03 0.1622E-33 0.80 294.5862 284.8442 4116.70 0.0004516 0.4802E-03 0.1218E-33 0.75 294.6382 284.8442 3165.96 0.0004516 0.4390E-03 0.1218E-33 0.90	0.15	295.2517	284.8442	83529.46	0.00093213	0.8896E-03	0.1052E-32							
0.25 295.1509 224.8442 7117.78 0.00084715 0.108E-03 0.5628E-33 0.30 295.1003 284.8442 72647.47 0.00080753 0.7740E-03 0.3978E-33 0.40 294.9946 284.8442 69326.48 0.00076972 0.7377E-03 0.3978E-33 0.45 294.9475 284.8442 66149.21 0.0006510 0.6112E-03 0.2729E-33 0.55 294.8462 284.8442 57425.62 0.0005510 0.5112E-03 0.2218E-33 0.66 294.7934 284.8442 57425.62 0.00057658 0.5658E-03 0.2218E-33 0.65 294.6900 284.8442 49807.50 0.00057658 0.5658E-03 0.1622E-33 0.70 294.6900 284.8442 47491.11 0.00057658 0.5658E-03 0.1622E-33 0.75 294.6382 284.8442 43165.96 0.00047514 0.4604E-03 0.1422E-33 0.80 294.4298 284.8442 3786.69 0.00047515 0.4302E-03 0.112E-33 0.80 294.4298 284.8442 3786.69 0.00037275 0.4054E-03 <td>0.20</td> <td>295,2014</td> <td>284.8442</td> <td>79743.16</td> <td>0.00088865</td> <td>0.8494E-03</td> <td>0.7191E-33</td>	0.20	295,2014	284.8442	79743.16	0.00088865	0.8494E-03	0.7191E-33							
0.30 295.1003 284.8442 72647.47 0.00000753 0.7740E-03 0.4665E=33 0.40 294.9996 284.8442 69326.48 0.00076972 0.7347E-03 0.3978E-33 0.45 294.9475 284.8442 63110.21 0.0006920 0.6726E-03 0.3058E=33 0.45 294.9475 284.8442 63110.21 0.0006500 0.633E=03 0.2212E=33 0.55 294.9496 284.8442 57425.82 0.000510 0.583E=03 0.2218E=33 0.65 294.7418 284.8442 54770.17 0.0005610 0.583E=03 0.2218E=33 0.75 294.6382 284.8442 47491.11 0.00054345 0.5565E=03 0.124E=33 0.80 294.5342 284.8442 4148.70 0.00045151 0.4604E=03 0.1122E=33 0.90 294.4298 284.8442 3165.96 0.0004122 0.4185E=03 0.121E=33 0.95 294.4298 284.8442 37364.69 0.00034122 0.4185E=03 0.1241E=33 0.941.	0.25	295,1509	284 8442	76117 78	0 00084715	0 81085-03	0 5628E-33							
0.35 255.0495 244.8442 69326.48 0.00076972 0.7387E-03 0.3978E-33 0.40 294.9945 284.8442 66149.21 0.00073363 0.7049E-03 0.3058E-33 0.55 294.9475 284.8442 60204.15 0.000663500 0.6121E-03 0.22458E-33 0.55 294.849 284.8442 54725.22 0.00057658 0.5569E-03 0.2218E-33 0.65 294.7934 284.8442 54705.17 0.00060510 0.5839E-03 0.2218E-33 0.65 294.718 284.8442 49807.50 0.00054939 0.511E-03 0.1248E-33 0.70 294.5862 284.8442 41148.70 0.00045165 0.4629E-03 0.1545E-33 0.80 294.5962 284.8442 41148.70 0.00045365 0.4629E-03 0.1211E-33 0.90 294.4298 284.8442 3925.21 0.00045165 0.4429E-03 0.1211E-33 1.00 294.3251 284.8442 39356.21 0.003755 0.3624E-03 0.965E-34 1.52 294.1147 284.8442 29356.21 0.0032512 0.3131E-03 <td>0.30</td> <td>295,1003</td> <td>284 8442</td> <td>72647 47</td> <td>0 00080753</td> <td>0 77408-03</td> <td>0 46588-33</td>	0.30	295,1003	284 8442	72647 47	0 00080753	0 77408-03	0 46588-33							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 35	295 0/95	284 8442	60326 49	0.00076972	0 73978-03	0 30798-33							
0.45 24.9475 28.842 05.0007920 0.77265-03 0.30585-33 0.50 294.8962 284.8442 60204.15 0.00066530 0.6417E-03 0.2729E-33 0.60 294.7934 284.8442 54770.17 0.00060510 0.5839E-03 0.2218E-33 0.60 294.7934 284.8442 54770.17 0.00060510 0.5839E-03 0.2218E-33 0.65 294.6900 284.8442 49807.50 0.00057658 0.5569E-03 0.1682E-33 0.70 294.6900 284.8442 45278.71 0.00049872 0.4829E-03 0.1545E-33 0.80 294.5362 284.8442 45278.71 0.00049872 0.4829E-03 0.121E-33 0.80 294.5362 284.8442 45165.96 0.00047514 0.46042E-03 0.121E-33 0.90 294.4298 284.8442 39222.90 0.00043122 0.4185E-03 0.121E-33 1.05 294.3251 284.8442 39356.21 0.0003755 0.3454E-03 0.121E-33 1.15 294.147 284.8442 39381.25 0.00032212 0.3454E-03 0.7245E-34 <td>0 40</td> <td>294 0096</td> <td>284 8442</td> <td>66140 21</td> <td>0.00073363</td> <td>0.70498-03</td> <td>0.34658-33</td>	0 40	294 0096	284 8442	66140 21	0.00073363	0.70498-03	0.34658-33							
0.50 294.8962 284.8442 60204.15 0.00066534 0.6417E-03 0.2729E-33 0.55 294.8449 284.8442 57425.82 0.00065100 0.6121E-03 0.2218E-33 0.60 294.7934 284.8442 54770.17 0.0005758 0.5569E-03 0.2214E-33 0.70 294.6900 284.8442 47491.11 0.00057439 0.5311E-03 0.1838E-33 0.75 294.6382 284.8442 4578.71 0.00047514 0.4604E-03 0.142EE-33 0.80 294.5342 284.8442 43165.96 0.00047514 0.4604E-03 0.142EE-33 0.85 294.5342 284.8442 43165.96 0.00043122 0.4185E-03 0.1211E-33 0.95 294.4298 284.8442 37384.69 0.00043122 0.4185E-03 0.1211E-33 1.00 294.375 284.8442 3358.61 0.0003131 0.389E-03 0.1211E-33 1.05 294.2200 284.8442 2358.62 0.00033619 0.3291E-03 0.8344E-34 1.25 294.1674 284.8442 2938.61 0.00033619 0.3291E-03	0.45	204 0475	204.0442	63110 21	0.00073303	0.70495-03	0.34036-33							
0.55 294.849 284.8442 57425.82 0.0006350 0.6121E-03 0.2453E-33 0.60 294.7934 284.8442 57425.82 0.0006350 0.6121E-03 0.2218E-33 0.65 294.7934 284.8442 5223.22 0.00057658 0.5569E-03 0.2148E-33 0.70 294.6900 284.8442 49807.50 0.00057439 0.5311E-03 0.1838E-33 0.75 294.6302 284.8442 45278.71 0.0004972 0.4829E-03 0.1422E-33 0.80 294.532 284.8442 43165.96 0.00045365 0.4390E-03 0.1211E-33 0.90 294.4298 284.8442 37384.69 0.00045365 0.4390E-03 0.1211E-33 1.00 294.3251 284.8442 3563.03 0.00039131 0.3802E-03 0.1211E-33 1.05 294.3251 284.8442 3956.21 0.0003505 0.3454E-03 0.8965E-34 1.20 294.1674 284.8442 29381.25 0.0003505 0.3454E-03 0.8748E-34 1.22 294.1674 284.8442 29672.28 0.00026270 0.2848E-03	0.40	294.9473	204.0442	60204 15	0.00009920	0.6/178 03	0.30305-33							
0.50 294.7944 284.8442 5475.02 0.000605100 0.0101100 0.22182-33 0.65 294.7914 284.8442 52232.32 0.00057658 0.55692-03 0.2118E-33 0.70 294.6302 284.8442 49807.50 0.00054939 0.5311E-03 0.1838E-33 0.75 294.6302 284.8442 47491.11 0.00052345 0.5652E-03 0.1642E-33 0.80 294.5322 284.8442 43165.96 0.00047514 0.4604E-03 0.1422E-33 0.90 294.4298 284.8442 33222.90 0.00041079 0.399E-03 0.1121E-33 1.00 294.3775 284.8442 33256.21 0.00031212 0.4180E-03 0.9651E-34 1.10 294.2726 284.8442 32358.86 0.0003550 0.3454E-03 0.8965E-34 1.25 294.1147 284.8442 29381.25 0.0003212 0.317E-03 0.6312E-34 1.20 294.1147 284.8442 2934.127 0.0003212 0.3137E-03 0.6312E-34 1.25 294.1147 284.8442 24067.12 0.00022245 0.2428E-03 <td>0.50</td> <td>294.0902</td> <td>204.0442</td> <td>60204.13</td> <td>0.00000034</td> <td>0.041/E-03</td> <td>0.2/296-33</td>	0.50	294.0902	204.0442	60204.13	0.00000034	0.041/E-03	0.2/296-33							
0.65 294.7418 284.8442 5273.22 0.00057658 0.5569E-03 0.2014E-33 0.75 294.6900 284.8442 49807.50 0.00057658 0.5565E-03 0.1682E-33 0.75 294.6382 284.8442 47491.11 0.00052345 0.565E-03 0.1642E-33 0.80 294.5862 284.8442 4424 41418.70 0.00045365 0.4829E-03 0.11242E-33 0.80 294.4298 284.8442 41148.70 0.00045365 0.4829E-03 0.1121E-33 0.90 294.3251 284.8442 37384.69 0.00041079 0.3982E-03 0.1121E-33 1.00 294.3251 284.8442 3356.21 0.0003505 0.3454E-03 0.9651E-34 1.15 294.1674 284.8442 3986.21 0.0003510 0.3454E-03 0.8344E-34 1.20 294.1674 284.8442 29381.25 0.0003212 0.3121E-03 0.7745E-34 1.30 294.0620 284.8442 29381.25 0.00026232 0.2848E-03 0.6758E-34 1.35 294.0622 284.8442 29671.28 0.00022645	0.55	294.0449	204.0442	5/423.82	0.00063500	0.01218-03	0.24535-35							
0.50 294.4416 284.8442 49807.50 0.00054939 0.5311E-03 0.1214E-33 0.70 294.6302 284.8442 47491.11 0.00054939 0.5311E-03 0.1682E-33 0.80 294.5862 284.8442 45278.71 0.00049872 0.4829E-03 0.142E-33 0.85 294.4298 284.8442 43165.96 0.00047514 0.4604E-03 0.1121E-33 0.95 294.4298 284.8442 3184.69 0.00043122 0.4185E-03 0.1121E-33 1.05 294.3775 284.8442 35630.33 0.00037275 0.3624E-03 0.965E-34 1.15 294.2200 284.8442 2358.66 0.00035505 0.3454E-03 0.8965E-34 1.25 294.1674 284.8442 29381.25 0.0003212 0.3137E-03 0.77473E-34 1.35 294.0620 284.8442 2994.68 0.0002782 0.2848E-03 0.6512E-34 1.40 293.9563 284.8442 2994.68 0.000228210 0.3137E-03 0.77473E-34 1.45 293.9034 284.8442 2994.68 0.000228210 0.2146E-03 </td <td>0.60</td> <td>294.7934</td> <td>284.8442</td> <td>54//0.1/</td> <td>0.00060510</td> <td>0.5839E-03</td> <td>0.2218E-33</td>	0.60	294.7934	284.8442	54//0.1/	0.00060510	0.5839E-03	0.2218E-33							
0.70 294.6900 284.8442 4749111 0.00052345 0.5065E-03 0.1636E-33 0.80 294.5862 284.8442 45278.71 0.00049872 0.4829E-03 0.1545E-33 0.85 294.5342 284.8442 41165.96 0.00047514 0.462E-03 0.1422E-33 0.90 294.4298 284.8442 41165.96 0.00043122 0.4139E-03 0.1121E-33 1.00 294.3775 284.8442 3956.21 0.00043122 0.4185E-03 0.1211E-33 1.05 294.3251 284.8442 3956.21 0.00037175 0.362E-03 0.1040E-33 1.15 294.202 284.8442 30834.94 0.00035105 0.345E-03 0.8965E-34 1.20 294.1674 284.8442 29381.25 0.00032212 0.317E-03 0.7773E-34 1.30 294.0620 284.8442 29672.28 0.0002222 0.2848E-03 0.6758E-34 1.40 293.9563 284.8442 29672.28 0.00022820 0.274E-34 0.559E-34 1.45 293.6901 284.8442 290271 0.00022870 0.2236E-03	0.65	294.7418	284.8442	52232.32	0.0005/658	0.5569E-03	0.2014E-33							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.70	294.6900	284.8442	49807.50	0.00054939	0.5311E-03	0.1838E-33							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.75	294.0382	284.8442	4/491.11	0.00052345	0.5065E-03	0.1682E-33							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.80	294.5862	284.8442	45278.71	0.00049872	0.4829E-03	0.1545E-33							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.85	294.5342	284.8442	43165.96	0.00047514	0.4604E-03	0.1422E-33							
0.95 294.4298 284.8442 39222.90 0.00043122 0.4165E-03 0.1211E-33 1.00 294.3251 284.8442 37384.69 0.00039131 0.3802E-03 0.1121E-33 1.10 294.2726 284.8442 33955.21 0.00037275 0.3624E-03 0.9651E-34 1.15 294.200 284.8442 33955.21 0.00033819 0.3291E-03 0.8344E-34 1.20 294.1674 284.8442 29381.25 0.00032212 0.3137E-03 0.7773E-34 1.30 294.0620 284.8442 26672.28 0.00027832 0.2714E-03 0.6312E-34 1.45 293.9563 284.8442 26672.28 0.00027832 0.2714E-03 0.6312E-34 1.45 293.9034 284.8442 2062.19 0.0002545 0.2463E-03 0.5513E-34 1.50 293.6504 284.8442 2062.19 0.0002545 0.2463E-03 0.5159E-34 1.61 293.6913 284.8442 20927.10 0.00022897 0.223EE-03 0.4239E-34 1.52 293.6913 284.8442 1993.81 0.00021866 0.213E-34 <td>0.90</td> <td>294 4298</td> <td>284.8442</td> <td>41148.70</td> <td>0.00045365</td> <td>0.4390E-03</td> <td>0.1310E-33</td>	0.90	294 4298	284.8442	41148.70	0.00045365	0.4390E-03	0.1310E-33							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.95	294.4298	284.8442	39222.90	0.00043122	0.4185E-03	0.1211E-33							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.00	294.3775	284.8442	37384.69	0.00041079	0.3989E-03	0.1121E-33							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.05	294.3251	284.8442	35630.33	0.00039131	0.3802E-03	0.1040E-33							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.10	294.2726	284.8442	33956.21	0.00037275	0.3624E-03	0.9651E-34							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.15	294.2200	284.8442	32358.86	0.00035505	0.3454E-03	0.8965E-34							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.20	294.1674	284.8442	30834.94	0.00033819	0.3291E-03	0.8344E-34							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.25	294.1147	284.8442	29381.25	0.00032212	0.3137E-03	0.7773E-34							
1.35294.0092284.844226672.28 0.00029222 $0.2848E-03$ $0.6758E-34$ 1.40293.9563284.844225411.20 0.00027832 $0.2714E-03$ $0.6312E-34$ 1.45293.9034284.844224208.71 0.00025245 $0.2463E-03$ $0.5900E-34$ 1.50293.8504284.844223062.19 0.00025245 $0.2463E-03$ $0.5513E-34$ 1.55293.7975284.844221969.13 0.00024043 $0.2347E-03$ $0.5159E-34$ 1.60293.7444284.844220927.10 0.00022897 $0.2236E-03$ $0.4828E-34$ 1.65293.6913284.844219933.81 0.00021806 $0.2130E-03$ $0.4239E-34$ 1.70293.6382284.844218087.04 0.00019776 $0.1933E-03$ $0.3973E-34$ 1.80293.5318284.844217224.70 0.00018833 $0.1841E-03$ $0.3729E-34$ 1.85293.4785284.844215624.21 0.00017975 $0.1531E-03$ $0.3984E-34$ 1.90293.4253284.84421480.05 0.00017975 $0.1515E-03$ $0.2897E-34$ 2.00293.3186284.844214471.01 0.00014748 $0.1443E-03$ $0.2723E-34$ 2.10293.2119284.844212851.84 0.00014748 $0.1443E-03$ $0.2723E-34$ 2.10293.2155284.844212851.84 0.00014748 $0.1443E-03$ $0.2723E-34$ 2.10293.2155284.844212851.84 0.00014748 $0.1443E-03$ $0.27265E-34$ </td <td>1.30</td> <td>294.0620</td> <td>284.8442</td> <td>27994.68</td> <td>0.00030681</td> <td>0.2989E-03</td> <td>0.7245E-34</td>	1.30	294.0620	284.8442	27994.68	0.00030681	0.2989E-03	0.7245E-34							
1.40293.9563284.844225411.20 0.00027832 $0.2714E-03$ $0.6312E-34$ 1.45293.9034284.844224208.71 0.0002507 $0.2585E-03$ $0.5900E-34$ 1.50293.8504284.844223062.19 0.00025245 $0.2463E-03$ $0.5513E-34$ 1.55293.7975284.844221969.13 0.00022897 $0.2236E-03$ $0.4828E-34$ 1.60293.7444284.844219933.81 0.00021806 $0.2130E-03$ $0.4522E-34$ 1.65293.6913284.844218987.04 0.0002767 $0.2029E-03$ $0.4239E-34$ 1.70293.6382284.844218084.68 0.00019776 $0.1933E-03$ $0.3729E-34$ 1.80293.5318284.84421684.68 0.0001779 $0.1670E-03$ $0.3284E-34$ 1.85293.4785284.844215624.21 0.00017079 $0.1670E-03$ $0.3284E-34$ 1.90293.3186284.844214880.05 0.00012624 $0.1591E-03$ $0.3284E-34$ 1.95293.3719284.844214880.05 0.0001264 $0.1591E-03$ $0.2897E-34$ 2.05293.2653284.844212851.84 0.00014043 $0.1374E-03$ $0.2265E-34$ 2.10293.2119284.844212851.84 0.0001373 $0.1247E-03$ $0.2265E-34$ 2.20293.1050284.844211654.55 0.00012734 $0.1247E-03$ $0.2265E-34$ 2.30292.9981284.844210568.07 0.00010469 $0.1077E-03$ $0.188E-34$	1.35	294.0092	284.8442	26672.28	0.00029222	0.2848E-03	0.6758E-34							
1.45293.9034284.844224208.71 0.00026507 $0.2585E-03$ $0.5900E-34$ 1.50293.8504284.844223062.19 0.00025245 $0.2463E-03$ $0.5513E-34$ 1.55293.7975284.844221969.13 0.00022043 $0.2347E-03$ $0.5159E-34$ 1.60293.7444284.844220927.10 0.00022897 $0.2236E-03$ $0.4828E-34$ 1.65293.6913284.844219933.81 0.00021806 $0.2130E-03$ $0.4522E-34$ 1.70293.6382284.844218987.04 0.0002767 $0.2029E-03$ $0.4239E-34$ 1.85293.5318284.844217224.70 0.00018833 $0.1841E-03$ $0.3729E-34$ 1.85293.4785284.844215624.21 0.0001779 $0.1670E-03$ $0.3284E-34$ 1.90293.4253284.844214880.05 0.00016264 $0.1591E-03$ $0.3086E-34$ 2.00293.3186284.844213495.46 0.00014748 $0.1443E-03$ $0.2723E-34$ 2.10293.2653284.844212451.84 0.00014043 $0.1374E-03$ $0.2265E-34$ 2.15293.1585284.844212238.68 0.0001373 $0.1247E-03$ $0.2265E-34$ 2.20293.1050284.844210564.55 0.00012734 $0.1247E-03$ $0.2265E-34$ 2.25293.0516284.844210564.57 0.00012125 $0.1187E-03$ $0.2265E-34$ 2.35292.9811284.844210564.57 0.00012125 $0.1187E-03$ $0.2265E-34$	1.40	293.9563	284.8442	25411.20	0.00027832	0.2714E-03	0.6312E-34							
1.50293.8504284.844223062.19 0.00025245 $0.2463E-03$ $0.5513E-34$ 1.55293.7975284.844221969.13 0.00024043 $0.2347E-03$ $0.5159E-34$ 1.60293.7444284.844220927.10 0.00022897 $0.2236E-03$ $0.4828E-34$ 1.65293.6913284.844219933.81 0.00021806 $0.2130E-03$ $0.4522E-34$ 1.70293.6382284.844218987.04 0.0002767 $0.2029E-03$ $0.4229E-34$ 1.75293.5850284.844218084.68 0.00019776 $0.1933E-03$ $0.3973E-34$ 1.80293.5318284.844216405.16 0.00017935 $0.1753E-03$ $0.3498E-34$ 1.90293.4253284.844216405.16 0.00017079 $0.1670E-03$ $0.3284E-34$ 1.95293.3719284.844214880.05 0.00012747 $0.1515E-03$ $0.2897E-34$ 2.00293.3186284.844214471.01 0.00015264 $0.1591E-03$ $0.2897E-34$ 2.05293.2653284.844212851.84 0.00014748 $0.1443E-03$ $0.2723E-34$ 2.10293.2119284.844212238.68 0.0001373 $0.1309E-03$ $0.2407E-34$ 2.15293.1650284.844211098.11 0.00012125 $0.1187E-03$ $0.2265E-34$ 2.25293.0516284.844210568.07 0.00012746 $0.1374E-03$ $0.2131E-34$ 2.35292.9446284.84421063.18 0.0001294 $0.1077E-03$ $0.1888E-34$ <	1.45	293.9034	284.8442	24208.71	0.00026507	0.2585E-03	0.5900E-34							
1.55293.7975284.844221969.13 0.00024043 $0.2347E-03$ $0.5159E-34$ 1.60293.7444284.844220927.10 0.00022897 $0.2236E-03$ $0.4828E-34$ 1.65293.6913284.844219933.81 0.00021806 $0.2130E-03$ $0.4522E-34$ 1.70293.6382284.844218987.04 0.0002767 $0.2029E-03$ $0.4239E-34$ 1.75293.5850284.844218084.68 0.00019776 $0.1933E-03$ $0.3973E-34$ 1.80293.5318284.844216405.16 0.00017975 $0.1753E-03$ $0.3498E-34$ 1.90293.4253284.844215624.21 0.00017079 $0.1670E-03$ $0.3284E-34$ 1.95293.3719284.844214800.05 0.00012767 $0.1515E-03$ $0.2897E-34$ 2.00293.3186284.844213495.46 0.00014748 $0.1443E-03$ $0.2723E-34$ 2.10293.2119284.844212851.84 0.00014043 $0.1374E-03$ $0.2265E-34$ 2.15293.1585284.844212238.68 0.00013373 $0.1309E-03$ $0.2407E-34$ 2.20293.1050284.844211058.17 0.00012740 $0.187E-03$ $0.225E-34$ 2.30292.9941284.844210568.07 0.00012734 $0.1247E-03$ $0.225E-34$ 2.35292.9446284.844210663.18 0.00010994 $0.1077E-03$ $0.188E-34$ 2.45292.8911284.84429582.27 0.00010469 $0.1077E-03$ $0.1674E-34$ <tr< td=""><td>1.50</td><td>293.8504</td><td>284.8442</td><td>23062.19</td><td>0.00025245</td><td>0.2463E-03</td><td>0.5513E-34</td></tr<>	1.50	293.8504	284.8442	23062.19	0.00025245	0.2463E-03	0.5513E-34							
1.60293.7444284.844220927.10 0.00022897 $0.2236E-03$ $0.4828E-34$ 1.65293.6913284.844219933.81 0.00021806 $0.2130E-03$ $0.4522E-34$ 1.70293.6382284.844218987.04 0.0002767 $0.2029E-03$ $0.4239E-34$ 1.75293.5850284.844218084.68 0.00019776 $0.1933E-03$ $0.3973E-34$ 1.80293.5318284.844217224.70 0.00018833 $0.1841E-03$ $0.3729E-34$ 1.85293.4785284.844215624.21 0.00017079 $0.1670E-03$ $0.3284E-34$ 1.90293.3719284.844214880.05 0.00012644 $0.1591E-03$ $0.3284E-34$ 2.00293.3186284.844214495.46 0.00014748 $0.1443E-03$ $0.2723E-34$ 2.05293.2653284.844212851.84 0.00014043 $0.1374E-03$ $0.2265E-34$ 2.10293.2119284.844212238.68 0.00013373 $0.1207E-03$ $0.2265E-34$ 2.20293.1050284.844211654.55 0.00012734 $0.1247E-03$ $0.2265E-34$ 2.30292.9981284.844210568.07 0.00012125 $0.1187E-03$ $0.213E-34$ 2.40292.8911284.84421063.18 0.0001994 $0.1077E-03$ $0.1888E-34$ 2.45292.8376284.84429582.27 0.0001994 $0.1077E-03$ $0.188E-34$ 2.45292.8911284.84429582.27 0.0001999 $0.1077E-03$ $0.188E-34$ <td< td=""><td>1.55</td><td>293.7975</td><td>284.8442</td><td>21969.13</td><td>0.00024043</td><td>0.2347E-03</td><td>0.5159E-34</td></td<>	1.55	293.7975	284.8442	21969.13	0.00024043	0.2347E-03	0.5159E-34							
1.65293.6913284.844219933.81 0.00021806 $0.2130E-03$ $0.4522E-34$ 1.70293.6382284.844218987.04 0.00020767 $0.2029E-03$ $0.4239E-34$ 1.75293.5850284.844218084.68 0.00019776 $0.1933E-03$ $0.3973E-34$ 1.80293.5318284.844217224.70 0.0001833 $0.1841E-03$ $0.3729E-34$ 1.85293.4785284.844215624.21 0.0001779 $0.1670E-03$ $0.3284E-34$ 1.90293.4253284.844214880.05 0.00017079 $0.1670E-03$ $0.3284E-34$ 1.95293.3719284.844214880.05 0.000126264 $0.1591E-03$ $0.2897E-34$ 2.05293.2653284.844213495.46 0.00014748 $0.1443E-03$ $0.2723E-34$ 2.10293.2119284.844212851.84 0.00014043 $0.1374E-03$ $0.2265E-34$ 2.15293.1585284.844211654.55 0.00012734 $0.1247E-03$ $0.2265E-34$ 2.20293.1050284.844211098.11 0.00012125 $0.1137E-03$ $0.2265E-34$ 2.30292.9981284.844210568.07 0.00011546 $0.1137E-03$ $0.2131E-34$ 2.40292.8911284.84429582.27 0.00010469 $0.1077E-03$ $0.1888E-34$ 2.40292.8911284.84429582.27 0.0001994 $0.1077E-03$ $0.1674E-34$ 2.55292.7841284.84428687.96 0.00009938 $0.8854E-04$ $0.1486E-34$ <t< td=""><td>1.60</td><td>293.7444</td><td>284.8442</td><td>20927.10</td><td>0.00022897</td><td>0.2236E-03</td><td>0.4828E-34</td></t<>	1.60	293.7444	284.8442	20927.10	0.00022897	0.2236E-03	0.4828E-34							
1.70293.6382284.844218987.04 0.00020767 $0.2029E-03$ $0.4239E-34$ 1.75293.5850284.844218084.68 0.00019776 $0.1933E-03$ $0.3973E-34$ 1.80293.5318284.844217224.70 0.00018833 $0.1841E-03$ $0.3729E-34$ 1.85293.4785284.844216405.16 0.00017935 $0.1753E-03$ $0.3498E-34$ 1.90293.4253284.844215624.21 0.00017079 $0.1670E-03$ $0.3284E-34$ 1.95293.3719284.844214880.05 0.00016264 $0.1591E-03$ $0.3086E-34$ 2.00293.3186284.844214171.01 0.00014748 $0.1443E-03$ $0.2263F=34$ 2.05293.2653284.844212851.84 0.00014748 $0.1437E-03$ $0.2265E-34$ 2.10293.1585284.844212238.68 0.00013373 $0.1309E-03$ $0.2265E-34$ 2.20293.1050284.844211654.55 0.00012734 $0.1247E-03$ $0.2265E-34$ 2.25293.0516284.844211098.11 0.00012125 $0.1187E-03$ $0.2131E-34$ 2.30292.9981284.844210568.07 0.00011546 $0.1131E-03$ $0.2005E-34$ 2.45292.8376284.84429582.27 0.00010994 $0.1077E-03$ $0.1888E-34$ 2.45292.8376284.84429582.27 0.00019996 $0.9764E-04$ $0.1674E-34$ 2.55292.7306284.84428687.96 0.00009492 $0.9298E-04$ $0.1577E-34$	1.65	293.6913	284.8442	19933.81	0.00021806	0.2130E-03	0.4522E-34							
1.75293.5850284.844218084.68 0.00019776 $0.1933E-03$ $0.3973E-34$ 1.80293.5318284.844217224.70 0.00018833 $0.1841E-03$ $0.3729E-34$ 1.85293.4785284.844216405.16 0.00017935 $0.1753E-03$ $0.3498E-34$ 1.90293.4253284.844215624.21 0.00017079 $0.1670E-03$ $0.3284E-34$ 1.95293.3719284.844214880.05 0.00016264 $0.1591E-03$ $0.3086E-34$ 2.00293.3186284.844214171.01 0.00015487 $0.1515E-03$ $0.2897E-34$ 2.05293.2653284.844212851.84 0.00014748 $0.1443E-03$ $0.2723E-34$ 2.10293.119284.844212238.68 0.0001373 $0.1309E-03$ $0.2407E-34$ 2.15293.1050284.844211654.55 0.00012734 $0.1247E-03$ $0.2265E-34$ 2.25293.0516284.844211098.11 0.00012125 $0.1131E-03$ $0.2005E-34$ 2.35292.9446284.84421063.18 0.00010994 $0.1077E-03$ $0.1888E-34$ 2.40292.8911284.84429582.27 0.00010469 $0.1025E-03$ $0.1777E-34$ 2.45292.8376284.84428687.96 0.00009949 $0.9298E-04$ $0.1574E-34$ 2.55292.7306284.84428672.46 0.00009938 $0.8854E-04$ $0.1486E-34$ 2.56292.706284.84427876.74 0.0000966 $0.8431E-04$ $0.1460E-34$ <td>1.70</td> <td>293.6382</td> <td>284.8442</td> <td>18987.04</td> <td>0.00020767</td> <td>0.2029E-03</td> <td>0.4239E-34</td>	1.70	293.6382	284.8442	18987.04	0.00020767	0.2029E-03	0.4239E-34							
1.80293.5318284.844217224.700.000188330.1841E-030.3729E-341.85293.4785284.844216405.160.000179350.1753E-030.3498E-341.90293.4253284.844215624.210.000170790.1670E-030.3284E-341.95293.3719284.844214880.050.000162640.1591E-030.2897E-342.00293.3186284.844214480.050.000147480.1443E-030.2723E-342.05293.2653284.844212851.840.000140430.1374E-030.2561E-342.10293.1585284.844212238.680.000133730.1309E-030.2407E-342.15293.1650284.844211654.550.000127340.1247E-030.2265E-342.25293.0516284.844210568.070.00015460.1131E-030.205E-342.30292.9981284.84421063.180.00010940.1077E-030.1888E-342.40292.8911284.84429582.270.000104690.1025E-030.1777E-342.45292.8376284.84429124.220.00009690.9764E-040.1674E-342.50292.7841284.84428687.960.000094920.9298E-040.1577E-342.55292.7306284.8442867.460.00009380.8854E-040.1486E-342.60292.6770284.84427876.740.000086060.8431E-040.1400E-34	1.75	293.5850	284.8442	18084.68	0.00019776	0.1933E-03	0.3973E-34							
1.85293.4785284.844216405.16 0.00017935 $0.1753E-03$ $0.3498E-34$ 1.90293.4253284.844215624.21 0.00017079 $0.1670E-03$ $0.3284E-34$ 1.95293.3719284.844214880.05 0.000126264 $0.1591E-03$ $0.3086E-34$ 2.00293.3186284.8442144171.01 0.00015487 $0.1515E-03$ $0.2897E-34$ 2.05293.2653284.844212851.84 0.00014748 $0.1443E-03$ $0.2723E-34$ 2.10293.2119284.844212238.68 0.00013373 $0.1309E-03$ $0.2407E-34$ 2.15293.1585284.844211654.55 0.00012734 $0.1247E-03$ $0.2255E-34$ 2.20293.1050284.844211098.11 0.00012125 $0.1187E-03$ $0.2205E-34$ 2.30292.9981284.844210568.07 0.0001546 $0.1131E-03$ $0.205E-34$ 2.40292.8911284.84421063.18 0.0001994 $0.1077E-03$ $0.1888E-34$ 2.40292.8911284.84429582.27 0.00010469 $0.1025E-03$ $0.1777E-34$ 2.45292.8376284.84429124.22 0.00009969 $0.9764E-04$ $0.1674E-34$ 2.55292.7306284.84428687.96 0.00009928 $0.8854E-04$ $0.1486E-34$ 2.60292.6770284.84427876.74 0.00008606 $0.8431E-04$ $0.1400E-34$	1.80	293.5318	284.8442	17224.70	0.00018833	0.1841E-03	0.3729E-34							
1.90293.4253284.844215624.21 0.00017079 $0.1670E-03$ $0.3284E-34$ 1.95293.3719284.844214880.05 0.00016264 $0.1591E-03$ $0.3086E-34$ 2.00293.3186284.844214471.01 0.00015487 $0.1515E-03$ $0.2897E-34$ 2.05293.2653284.844213495.46 0.00014748 $0.1443E-03$ $0.2723E-34$ 2.10293.2119284.844212238.68 0.00013373 $0.1309E-03$ $0.2407E-34$ 2.20293.1050284.844211654.55 0.00012734 $0.1247E-03$ $0.2265E-34$ 2.25293.0516284.844211098.11 0.00012125 $0.1137E-03$ $0.2205E-34$ 2.30292.9981284.844210568.07 0.00011546 $0.1131E-03$ $0.2005E-34$ 2.40292.99446284.84421063.18 0.0001094 $0.1077E-03$ $0.188EE-34$ 2.40292.8911284.84429582.27 0.00010469 $0.1025E-03$ $0.1777E-34$ 2.45292.8376284.84429124.22 0.00009969 $0.9764E-04$ $0.1674E-34$ 2.50292.7841284.84428687.96 0.00009492 $0.9298E-04$ $0.1577E-34$ 2.55292.7306284.84427876.74 0.00009638 $0.8854E-04$ $0.1486E-34$ 2.60292.6770284.84427876.74 0.00008606 $0.8431E-04$ $0.1400E-34$	1.85	293.4785	284.8442	16405.16	0.00017935	0.1753E-03	0.3498E-34							
1.95293.3719284.844214880.050.000162640.1591E-030.3086E-342.00293.3186284.844214171.010.000154870.1515E-030.2897E-342.05293.2653284.844213495.460.000147480.1443E-030.2723E-342.10293.2119284.844212851.840.000140430.1374E-030.2661E-342.15293.1585284.844212238.680.00013730.1309E-030.2407E-342.20293.1050284.844211654.550.000127340.1247E-030.2265E-342.25293.0516284.844211098.110.000121250.1187E-030.2131E-342.30292.9981284.844210568.070.000115460.1131E-030.2005E-342.35292.9446284.84421063.180.000109940.1077E-030.1888E-342.40292.8911284.84429582.270.000104690.1025E-030.1777E-342.45292.8376284.84429124.220.000099690.9764E-040.1674E-342.50292.7841284.84428687.960.000099380.8854E-040.1486E-342.55292.7306284.84427876.740.000086060.8431E-040.1460E-34	1.90	293.4253	284.8442	15624.21	0.00017079	0.1670E-03	0.3284E-34							
2.00293.3186284.844214171.010.000154870.1515E-030.2897E-342.05293.2653284.844213495.460.000147480.1443E-030.2723E-342.10293.2119284.844212851.840.000140430.1374E-030.2561E-342.15293.1585284.844212238.680.000133730.1309E-030.2407E-342.20293.1050284.844211654.550.000127340.1247E-030.2265E-342.25293.0516284.844211098.110.000121250.1187E-030.2131E-342.30292.9981284.844210063.180.000109940.1077E-030.1888E-342.40292.8911284.84429582.270.00014690.1025E-030.1777E-342.45292.8376284.84429124.220.000099690.9764E-040.1674E-342.50292.7841284.84428687.960.000099380.8854E-040.1486E-342.55292.7306284.84427876.740.000086660.8431E-040.1400E-34	1.95	293.3719	284.8442	14880.05	0.00016264	0.1591E-03	0.3086E-34							
2.05293.2653284.844213495.460.000147480.1443E-030.2723E-342.10293.2119284.844212851.840.000140430.1374E-030.2561E-342.15293.1585284.844212238.680.00013730.1309E-030.2407E-342.20293.1050284.844211654.550.000127340.1247E-030.2265E-342.25293.0516284.844211098.110.000121250.1187E-030.2131E-342.30292.9981284.844210063.180.000109940.1077E-030.1888E-342.40292.8911284.84429582.270.000104690.1025E-030.1777E-342.45292.8376284.84429124.220.000099690.9764E-040.1674E-342.50292.7841284.84428687.960.000099380.8854E-040.1486E-342.55292.7306284.84427876.740.000086060.8431E-040.1400E-34	2.00	293.3186	284.8442	14171.01	0.00015487	0.1515E-03	0.2897E-34							
2.10 293.2119 284.8442 12851.84 0.00014043 0.1374E-03 0.2561E-34 2.15 293.1585 284.8442 12238.68 0.00013373 0.1309E-03 0.2407E-34 2.20 293.1050 284.8442 11654.55 0.00012734 0.1247E-03 0.2265E-34 2.25 293.0516 284.8442 11098.11 0.00012125 0.1187E-03 0.2205E-34 2.30 292.9981 284.8442 10568.07 0.0001546 0.1131E-03 0.205E-34 2.35 292.9946 284.8442 1063.18 0.00010994 0.1077E-03 0.188E-34 2.40 292.8911 284.8442 9582.27 0.00010469 0.1025E-03 0.1777E-34 2.45 292.8376 284.8442 9124.22 0.00009969 0.9764E-04 0.1674E-34 2.50 292.7841 284.8442 8687.96 0.00009492 0.9298E-04 0.1577E-34 2.55 292.7306 284.8442 872.46 0.00009038 0.8854E-04 0.1486E-34 2.60 292.6770 284.8442 7876.74 0.00008606 0.8431E-04	2.05	293.2653	284.8442	13495.46	0.00014748	0.1443E-03	0.2723E-34							
2.15 293.1585 284.8442 12238.68 0.00013373 0.1309E-03 0.2407E-34 2.20 293.1050 284.8442 11654.55 0.00012734 0.1247E-03 0.2265E-34 2.25 293.0516 284.8442 11098.11 0.00012125 0.1187E-03 0.2265E-34 2.30 292.9981 284.8442 10568.07 0.00011546 0.1131E-03 0.2005E-34 2.35 292.99446 284.8442 10563.18 0.00010994 0.1077E-03 0.1888E-34 2.40 292.8911 284.8442 9582.27 0.00010469 0.1025E-03 0.1777E-34 2.45 292.8376 284.8442 9124.22 0.00009969 0.9764E-04 0.1674E-34 2.50 292.7841 284.8442 8687.96 0.00009492 0.9298E-04 0.1577E-34 2.55 292.7306 284.8442 8272.46 0.00009038 0.8854E-04 0.1486E-34 2.60 292.6770 284.8442 7876.74 0.00008606 0.8431E-04 0.1400E-34	2.10	293.2119	284.8442	12851.84	0.00014043	0.1374E-03	0.2561E-34							
2.20 293.1050 284.8442 11654.55 0.00012734 0.1247E-03 0.2265E-34 2.25 293.0516 284.8442 11098.11 0.00012125 0.1187E-03 0.2131E-34 2.30 292.9981 284.8442 10568.07 0.00011546 0.1131E-03 0.2005E-34 2.35 292.9946 284.8442 10063.18 0.00010994 0.1077E-03 0.1888E-34 2.40 292.8911 284.8442 9582.27 0.00010469 0.1025E-03 0.1777E-34 2.45 292.8376 284.8442 9124.22 0.00009969 0.9764E-04 0.1674E-34 2.50 292.7841 284.8442 8687.96 0.00009938 0.8854E-04 0.1486E-34 2.55 292.7306 284.8442 7876.74 0.0000938 0.8431E-04 0.1400E-34	2.15	293.1585	284.8442	12238.68	0.00013373	0.1309E-03	0.2407E-34							
2.25 293.0516 284.8442 11098.11 0.00012125 0.1187E-03 0.2131E-34 2.30 292.9981 284.8442 10568.07 0.00011546 0.1131E-03 0.2005E-34 2.35 292.9446 284.8442 10063.18 0.00010994 0.1077E-03 0.1888E-34 2.40 292.8911 284.8442 9582.27 0.00010469 0.1025E-03 0.1777E-34 2.45 292.8376 284.8442 9124.22 0.00009969 0.9764E-04 0.1674E-34 2.50 292.7841 284.8442 8687.96 0.00009492 0.9298E-04 0.1577E-34 2.55 292.7306 284.8442 8272.46 0.00009038 0.8854E-04 0.1486E-34 2.60 292.6770 284.8442 7876.74 0.00008606 0.8431E-04 0.1400E-34	2.20	293,1050	284.8442	11654.55	0.00012734	0.1247E-03	0.2265E-34							
2.30 292.9981 284.8442 10568.07 0.00011546 0.1131E-03 0.2005E-34 2.35 292.9446 284.8442 10063.18 0.00010994 0.1077E-03 0.1888E-34 2.40 292.8911 284.8442 9582.27 0.00010469 0.1025E-03 0.1777E-34 2.45 292.8376 284.8442 9124.22 0.00009969 0.9764E-04 0.1674E-34 2.50 292.7841 284.8442 8687.96 0.00009938 0.8854E-04 0.1577E-34 2.55 292.7306 284.8442 8272.46 0.00009038 0.8854E-04 0.1486E-34 2.60 292.6770 284.8442 7876.74 0.00008606 0.8431E-04 0.1400E-34	2.25	293.0516	284.8442	11098.11	0.00012125	0.1187E-03	0.2131E-34							
2.35 292.9446 284.8442 10063.18 0.00010994 0.1077E-03 0.1888E-34 2.40 292.8911 284.8442 9582.27 0.00010469 0.1025E-03 0.1777E-34 2.45 292.8376 284.8442 9124.22 0.00009969 0.9764E-04 0.1674E-34 2.50 292.7841 284.8442 8687.96 0.00009492 0.9298E-04 0.1577E-34 2.55 292.7306 284.8442 8272.46 0.00009038 0.8854E-04 0.1486E-34 2.60 292.6770 284.8442 7876.74 0.00008606 0.8431E-04 0.1400E-34	2.30	292.9981	284.8442	10568.07	0.00011546	0.1131E-03	0.2005E-34							
2.40 292.8911 284.8442 9582.27 0.00010459 0.1025E-03 0.1777E-34 2.45 292.8376 284.8442 9124.22 0.00009969 0.9764E-04 0.1674E-34 2.50 292.7841 284.8442 8687.96 0.00009492 0.9298E-04 0.1577E-34 2.55 292.7306 284.8442 8272.46 0.00009038 0.8854E-04 0.1486E-34 2.60 292.6770 284.8442 7876.74 0.00008606 0.8431E-04 0.1400E-34	2.35	292.9446	284.8442	10063.18	0.00010994	0.1077E-03	0.1888E - 34							
2.45 292.8376 284.8442 9124.22 0.00009969 0.9764E-04 0.1674E-34 2.50 292.7841 284.8442 8687.96 0.00009492 0.9298E-04 0.1577E-34 2.55 292.7306 284.8442 8272.46 0.00009493 0.8854E-04 0.1486E-34 2.60 292.6770 284.8442 7876.74 0.00008606 0.8431E-04 0.1400E-34	2.40	292,8911	284 8442	9582.27	0.00010469	0.10258-03	0.17778-34							
2.50 292.7841 284.8442 8687.96 0.00009492 0.9298E-04 0.1577E-34 2.55 292.7306 284.8442 8272.46 0.0000938 0.8854E-04 0.1486E-34 2.60 292.6770 284.8442 7876.74 0.00008606 0.8431E-04 0.1400E-34	2.45	292,8376	284 8442	9124.22	0.00009969	0.9764 -04	0.1674 E - 34							
2.55 292.7306 284.8442 8272.46 0.00009038 0.8854E-04 0.1486E-34 2.60 292.6770 284.8442 7876.74 0.00008606 0.8431E-04 0.1400E-34	2.50	292.7841	284.9142	8687.96	0.00009492	0.92988-04	0.1577 = 34							
2.60 292.6770 284.8442 7876.74 0.00008606 0.8431E-04 0.1400E-34	2.55	292.7306	284.8442	8272.46	0.00009038	0.8854E-04	0.1486E-34							
	2.60	292.6770	284.8442	7876.74	0.00008606	0.8431E-04	0.1400E-34							

	2.65	292.6235	284.8442	7499.87	0.00008195	0.8029E-04	0.1320E-34
	2.70	292.5699	284.8442	7140.96	0.00007803	0.7645E-04	0.1244E-34
	2.75	292.5164	284.8442	6799.17	0.00007430	0.7280E-04	0.1173E-34
	2.80	292.4628	284.8442	6473.68	0.00007075	0.6932E-04	0.1107E-34
	2.85	292.4092	284.8442	6163.72	0.00006736	0.6601E-04	0.1044E-34
	2.90	292.3556	284.8442	5868.57	0.00006414	0.6285E-04	0.9855E-35
	2.95	292.3020	284.8442	5587.51	0.00006107	0.5985E-04	0.9292E-35
	3.00	292.2484	284.8442	5319.87	0.00005815	0.5699E-04	0.8772E-35
FC	א מ סידיסר	STOD					

APENDICE C

ALGORITMO DE DERIVACION DE PROPIEDADES TERMODINAMICAS

Las cuatro ecuaciones que rigen el sistema se consultarón de DuPont (Ref. 3), de R-11, la ecuación de estado, la curva de presión de vapor, la densidad del líquido saturado y la capacidad calorífica del vapor.

P = P(v,t); ecuación de estado.

 $P_{sat} = P_{sat}(T_{sat})$; curva de presión de vapor $1 = 1(T_{sat})$; densidad de líquido saturado $Cv_o = Cv_o(T)$; capacidad calorífica del vapor

De estas cuatro ecuaciones y dando Tv y mv, se pueden calcular las propiedades termodinámicas del líquido y vapor, de la siguiente forma. Referidas a la figura C1, en el diagrama T_S, es para identificar los estados inicialmente determinados.

1. v_v (Tv,P) = Vv / m

- P = P(v,Tv) ; determina la presión del sistema de la ecuación de estado.
- 3. T_{sat} = T_{sat}(P) ; determina la T_{sat} para la curva de presión de vapor.

4. Encontrar $v_v(Tr,Pr)$, $v_v(T_{sat},P)$, (T_{sat},Pr) , (Tv,Pr), de la ecuación de estado.

5. Cv = Cv(Tv) ; encontrar la capacidad calorífica del vapor.

6.
$$u(Tv,P) = \begin{cases} v_v(Tv,P) & Tv \\ [T P/T - P] dv + \int Cv_o dTp + u(Tr,Pr) \\ v_v(T_v,P_v) & Tv \end{cases}$$

7.
$$u(T_{sat},P) = \begin{cases} v_v(T_{sat},P) & T_{sat} \\ [T P/T - P] dv + \\ v_v(T_{sat},P) & Tv \end{cases}$$

8. v₁ = v₁(T_{sat}) encontrar la densidad del líquido saturado

9. hfg = $(dP/dT)_{sat} * T * (v_v(T_{sat},P) - v_1(T_{sat},P))$

Figura C1. Diagrama T-s para cálculo de propiedades termodinámicas.

APENDICE D

MODELO DE DESCOMPRESION ADIABATICA

Para evaluar los efectos de la transferencia de masa interfacial en la respuesta de presión del vapor, se desarrolló un modelo adiabático. La derivación es idéntica a la de transferencia de masa interfacial del modelo discutido anteriormente en una sección del ANALISIS de este reporte, excepto que la evaporación, mi, se supone igual a cero, la ecuación de continuidad, ecuación (3), se transforma en :

> dm = -me (D1) dt

la ecuación de energía, ecuación (8) queda :

$$m_{v}c_{v} dT + me(h_{v} - u_{v}) = 0$$
 (D2)

estas dos ecuaciones, combinadas con la ecuación (9), define ahora el comportamiento del espacio de vapor. El cálculo del algoritmo en el APENDICE B es fácil de modificar para resolver las ecuaciones de gobierno. Se elimina la subrutina MASA, que calcula mi, y en su lugar se supone mi = 0.0. El resto del programa no se altera.

-34

APENDICE E

ANALISIS DE MODELOS PASADOS DE DESCARGA

Como se discutió anteriormente, el elemento crítico en el modelado de la respuesta de presión de un cilindro inicialmente lleno con una mezcla saturada y la descarga lenta es el método utilizado para evaluar la transferencia de masa en la interfaz. Labus, en la (Ref. 1), usa la ecuación:

$$\begin{array}{ll} \text{mi} \equiv \text{Ai} \quad \text{Cv} \left(\mathbf{T}_{0} - \mathbf{T}_{i} \right) & (\text{E1}) \\ & (nat)^{\frac{n}{2}} \text{hfg} \end{array}$$

Esta ecuación se obtuvo al simplificar una expresión analítica para la transferencia de masa en la interfaz durante la descompresión de una superficie plana infinita obtenida por Thomas y Morse (Ref. 8). Ahora, suponiendo que no hay transferencia de calor a través de la interfaz, las ecuaciones (11) y (12) nuevamente rigen :

$$\begin{array}{c|c} q = \min hfg = k \text{ Ai } dT \\ dx \\ x=0 \end{array}$$
 (E2)

con la definición a=k/pc, la ecua. (E1) se convierte :

$$mi = Ai k (To - Ti)$$
(E3)
hfg (nat)²

Ahora, la solución de dT | para la ecuación (E2): dx |y=0

 $T_0 - T_i$) (nat)² dx x=0

la ecuación (E4) es el gradiente de temperatura del líquido en la interfaz y es precisamente el gradiente de temperatura de la superficie de un sólido plano semi-infinito experimentando un incremento de temperatura en la superficie (Ref. 2). Pero, el sistema modelado experimenta un cambio transitorio en la temperatura superficial. De aquí que algún método para incorporar el efecto transitorio, semejante a la integral de superposición de Duhammel debe usarse para la aplicación adecuada de la ecuación (E4).

(E4

En la derivación de la ecuación (E1), Labus, hizo un número de suposiciones con las que reduce en gran medida la complejidad de las ecuación derivada por Thomas y Morse. El supone que Tv = T_{sat} @Pv.

El efecto de esta suposición fue discutida antes. También se elimino un término de la expresión de Thomas y Morse, considerando que el efecto del mismo es insignificante. La validez de esta suposición no fue evaluada. La ecuación derivada por Thomas y Morse no fue usada en el presente trabajo. Futuros modelos podrían incluir una evaluación del funcionamiento de esta ecuación en su forma completa.