

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUIMICA

ORDEN ORIENTACIONAL EN POLIETERES LINEALES

E		E		9		•		
	P/ GE	ARA N 1	OBT ER(ener D	EL Q		LO N 1 C	DÉ CO
P	R	E.	S	E	N	T		:
JUJ	N		LE	0 N		M	UÑ	o z

MEXICO, D. F.

1991

.2ej

FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

Р	ź	ø	i	n	а	
	-		٠	••	-	

INTRODUCCION

CAPITULO I. ANTECEDENTES	1
CAPITULO II. PARTE EXPERIMENTAL	15
II.A. Plan de trabajo	15
II.B. Reactivos empleados	16
II.C. Preparación de las soluciones	17
II.D. Medición de las densidades	18
II.E. Medición de las capacidades caloríficas	19
CAPITULO III. RESULTADOS Y DISCUSION	24
CAPITULO IV. CONCLUSIONES	39
 APENDICE I. TEORIA DE PRIGOGINE - FLORY	40
APENDICE II. TABLAS DE DATOS	44

BIBLIOGRAFIA

INTRODUCCION

El orden orientacional de corto alcance consiste en alineamientos paralelos, muy débiles y sensibles a la temperatura, entre segmentos de moléculas vecinas. Este orden se presenta en el estado puro de substancias formadas de moléculas lineales de cadena larga que poseen enlaces flexibles y se hace evidente al mezclar ésta con una substancia formada de moléculas muy ramificadas o globulares, que destruyen la estructura. Este esquema se ha obtenido a partir de resultados espectroscópicos y de propiedades de exceso de mezclas conteniendo n-alcanos.

A la fecha, existen escasos experimentos que comprueben la existencia del orden orientacional en otras moléculas lineales de cadena larga; de aqui el interés de explorar esta posibilidad en los poliéteres lineales. Estas moléculas, con una estructura $CH_3-O-(CH_2-CH_2-O)_x-CH_3$ donde x puede estar entre i y 4, presentan resultados espectroscópicos de concentración diluida en CCIs que parecen indicar un orden orientacional de pequeña magnitud.

El objetivo de este trabajo es explorar la existencia de orden orientacional en los poliéteres lineales de cadena larga determinando la capacidad calorífica molar de exceso a presión constante (G_p^E) de sus mezclas con diferentes moléculas globulares. Se escogió esta propiedad debido a su sensibilidad a los cambios de estructura que ocurren durante el proceso de mezclado y porque ha resultado éxitosa en exponer el orden orientacional en el caso de los n-alcanos. Se espera que la C_{ν}^{ϕ} haga evidente la existencia del orden orientacional en los poliéteres lineales puros mediante su destrucción al mezclado con moléculas esféricas y que, de acuerdo a resultados espectroscópicos, este orden sea de menor magnitud que el orden de los alcanos correspondientes en tamaño.

El informe de este trabajo se ha dividido en varios capitulos y apéndices. En el capitulo I se incluyen los antecedentes de este tema en forma cronológica. El capitulo II describe la técnica experimental utilizada para obtener la C_{p}^{E} de las mezclas en estudio y el capitulo III presenta los resultados experimentales, su discusión en términos de la teoría de Prigogine – Flory y su comparación con los n-alcanos. El capitulo IV contiene las conclusiones de este trabajo y algunas recomendaciones de proyectos futuros. El apéndice I contiene una descripción general de la teoría de Prigogine – Flory y el apéndice II incluye los resultados de la C_{p}^{E} para cada sistema medido.

Es importante señalar que la interacción en estudio es muy débil, ya que su magnitud es muy pequeña (alrededor de 2000 J/mol para el n-hexadecano y posiblemente menor a este valor para los polléteres) comparada con la magnitud de un enlace puente de Hidrógeno (20000 J/mol). Por lo tanto, este trabajo generará información básica sobre las interacciones de los polléteres en estado puro y en solución, que son útiles en la operación o diseño de reactores químicos, columnas de destilación y otros tipos de instrumentos de separación.

CAPITULO I

ANTECEDENTES

La existencia de orden orientacional en líquidos formados por moléculas de cadena larga que poseen enlaces flexibles, fué propuesta por primera vez en los alcanos líneales en 1967 [1] para explicar los resultados de dispersión luminosa en mezclas de un líquido compuesto de moléculas cuasiesféricas [CCl_4] + n-alcanos. La figura 1 muestra la variación de la anisotropia óptica τ^2 a $25^{\circ}C$ como función de la concentración del alcano [g/cm³] para estas mezclas [2]. Por anisotropia óptica se entiende que la dispersión de la radiación incidida sobre una substancia posee diferentes valores dependiendo del eje de medición. En el caso de líquidos esta se llega a presentar cuando sus moléculas o segmentos de ellas se ordenan con respecto a un eje.

Figura 1.

Aquí se observa que r^2 aumenta al incrementarse la concentración del alcano y que esta dependencia es más acentuada incrementarse la longitud de cadena del mismo. Ambos **a**1 incrementos se atribuven la existencia de correlaciones moleculares débiles y de corto alcance entre segmentos de moléculas vecinas del alcano lineal (Correlaciones de orientación molecular o COM) que, al aumentar la concentración del n-alcano, hacen que segmentos de sus moléculas tiendan a colocarse paralelamente unas otros. favoreciendo un ordenamiento . molecular. Para los alcanos lineales, este efecto es evidente a partir del n-octano.

Este orden orientacional aparece como una cohesión a corta distancia entre los segmentos más cercanos de varias moléculas, que disminuye rápidamente con el aumento de la temperatura. Termodinámicamente, este orden hace que disminuyan la energía interna U, la entalpía H, la entropia S y el volumen molar V en el compuesto lineal puro a bajas temperaturas, en comparación con un liquido que no presenta COM como se observa en la figura 2a.

La dependencia de este orden con temperatura hace que los valores de Cp = $[dH/dT]_p$ y de dV/dT sean más positivos que los de un líquido sin COM, como lo muestra la figura 2b.

En los compuestos puros estos efectos son difíciles de detectar debido a que son muy pequeños comparados con las magnitudes de las propledades termodinámicas de los líquidos en estudio [3], sin embargo, la estructura del líquido se altera al mezclario con otro y esto se refleja claramente en las propledades de exceso A^E definidas como:

$$A^{E} = A_{(sol)} - x_{1}A^{o}_{1} - x_{2}A^{o}_{2}$$
(1)

donde x_1 son las fracciones molares y A_1° y $A_{(no1)}$ son, respectivamente, las propiedades termodinámicas de cada componente en el estado puro y en la solución.

Por ejemplo, en la entalpía de exceso H^E y en el volumen de exceso V^E , al mezclar el líquido que tiene orden orientacional (componente 1) con un líquido destructor de orden, formado por moléculas globulares o ramificadas, el valor A_1° se reduce por la presencia de COM (véase figura 2a) y por lo tanto la magnitud de A^E (véase ecuación 1) tendrá una contribución positiva. Esta contribución no existe en mezclas de moléculas ramificadas, sin orden orientacional, con moléculas globulares, como lo muestra la fig. 3a donde se presentan los resultados de H^E para las series de alcanos lineales : n-octano (nC_g), n-decano (nC_{10}), n-dodecano (nC_{12}) y n-hexadecano (nC_{16}), y ramificados : 2,2,4-trimetilpentano (rC_g), 2,2,4,6,6-pentametilheptano (rC_{12}) y 2,2,4,4,6,8,8 - heptametilnonano (rC_{16}) mezclados con ciclohexano en función de la temperatura y a concentración

equimolar [3]. La curva para rC_{10} se obtuvo interpolando entre las de rC_8 y rC_{12} . En esta figura, se observa que H^E se incrementa notablemente a mayor longitud del n-alcano para una temperatura dada y que, para un alcano dado, disminuye rapidamente al aumentar la temperatura. Esto se contrasta con los resultados de la serie de los alcanos ramificados, donde al aumentar el grado de ramificación, se reduce la habilidad del alcano para ordenarse en el estado puro.

La figura 3b muestra la variación del V^E equimolar en función de la temperatura para los sistemas nC_{16} y rC_{16} + ciclohexano [3]. Aqui, la existencia del orden en el alcano lineal hace que V^E disminuya rápidamente al elevar la temperatura, lo que no ocurre con el alcano ramificado.

La rápida destrucción del orden orientacional con la temperatura hace que la Cp y dV/dT del líquido puro con orden se

incrementen (vease figura 2b) y que en el mezclado con moléculas globulares se produzca una gran contribución negativa a la $C_{\rm F}^{\rm F}$ [3] y a dV^E/dT [4]. Debido a esto, segundas derivadas de funciones de exceso, como la $C_{\rm F}^{\rm F}$ y la dV^E/dT, son las que detectan más fácilmente la destrucción del orden orientacional. Esto se muestra en las figuras 4a y 4b que presentan a 25 °C los valores equimolares, respectivamente, de la $C_{\rm F}^{\rm F}$ [5] y la dV^E/dT [4] para mezclas de ciclohexano con las series de alcanos lineales (nC_n) y ramificados (rC_n) en función del número de átomos de carbono de la molécula (n).

En la figura 4a, para la serie de los n-alcanos se presenta una gran contribución negativa a la G al aumentar n mientras que para los r-alcanos esta contribución es pequeña y varia muy poco. Al comparar estas dos series, es evidente la destrucción del orden en los alcanos lineales.

Además, en esta figura se representa la predicción de la teoria de Prigogine – Flory [6] (véase apéndice I) para la $C_{\rm F}^2$ de las mezclas con los alcanos lineales (lineas rayadas). Esta teoria ha resultado ser muy exitosa en predecir las funciones de exceso en sistemas donde no existe destrucción alguna de orden [3,4,5] y entonces, se usa como "linea base" contra la cual se comparan y se "observan" efectos especiales. Así al comparar estas predicciones con los resultados experimentales para los n-alcanos, se corrobora la existencia del orden orientacional en este tipo de liquidos.

La figura 4b indica que existe una gran contribución negativa para dV^E/dT en la serie de los n-alcanos con el aumento de n y para los r-alcanos, esta contribución no existe. Se muestran también, las predicciones de la teoría de Prigogine - Flory (P-F) para ambos casos : lineas rayadas para los nC y lineas punteadas para los rC. De nuevo, la comparación entre los resultados experimentales de alcanos lineales y ramificados o entre la predicción teórica y los datos experimentales de n-alcanos, muestra la presencia de COM en el nC_ puro que son destruidos en el mezclado. Por lo tanto, las figuras 4a y 4b muestran que tanto C_{p}^{E} como dV^E/dT son las propiedades óptimas para estudiar la destrucción del orden orientacional pues de un solo experimento en función de la concentración a una temperatura dada puede ponerse en evidencia la existencia del orden, ya sea al comparar los resultados de las moléculas lineales + globulares con los de moléculas ramificadas + las globulares (nC_ vs rC_) o con ias prediciones de la teoria de Prigogine - Flory (nC_ vs P-F). Esto se demuestra en la figura 5 donde tambien se aprecia la

variación del orden con la temperatura. En esta figura se presentan los resultados de la C_p^F para mezclas de ciclohexano + $nC_{16}^{}$ y + $rC_{16}^{}$ en función de la fracción mol de ciclohexano a 25 y 55 °C (3). Las predicciones de la teoría P-F se representan como lineas rayadas para $nC_{16}^{}$ + $cC_6^{}$ a 25 °C (curva superior) y 55 °C (curva inferior), y como lineas punteadas para $rC_{16}^{}$ + $cC_6^{}$ a 25 °C (curva superior) y a 55 °C (curva inferior).

Figura 5.

como una gran contribución negativa a la C_p^E . Los resultados del sistema con nC₁₆ a 55 ^oC muestran la destrucción del orden en el nC_n puro con el incremento de la temperatura haciendo que la C_p^E sea más positiva, en contraste con los resultados para el sistema con rC₁ y con los de la teoría P-F.

La sensibilidad de la C_p^E para detectar la destrucción del orden orientacional ha permitido estudiar la relación entre la linealidad de la cadena del alcano y la presencia de COM estudiando mezclas de ciclohexano con los diferentes metil pentadecanos (isómeros ramificados del nC₁₆), que se forman al introducir un grupo metilo en diversas posiciones de la cadena. La figura 6 muestra la C_p^E como función de la concentración del ciclohexano (Xi) para los sistemas con diferentes metilpentadecanos, (MP) y para n-Cie y r-Cie a 25 °C (7).

Figura 6.

Se observa que a medida que el grupo metilo se acerca hacia el centro de la cadena, reduce la linealidad del pentadecano y por consecuencia, la habilidad de éste para ordenarse, lo que se refleja en una $C_{\rm F}^{\rm F}$ cada vez menos negativa.

Para estudiar el efecto de la destrucción del orden orientacional por moléculas arómaticas giobulares, se midio la C_p^E en mezclas binarias de n-alcanos con benceno y sus derivados substituidos. La figura 7 muestra los valores equimolares de la Cp^E a 25⁰ C para benceno (B), tolueno (T), p-xileno (pX) ciclohexano (C) y clorobenceno (CIB) en función del número de átomos de carbono (n) [8].

Figura 7.

En esta figura se observa que, para un alcano dado, la capacidad de la molécula aromática para destruir el orden orientacional sigue la secuencia : $B > C > T \cong CIB > pX$. Estos resultados se corroboran con los valores equimolares de H^E [8] para las moléculas aromáticas y que se encuentran dentro del intervalo (300 - 1300 J/mol) siguiendo la secuencia : $B > CIB \cong T > pX$. Es importante señalar que la similitud de resultados entre el tolueno y el clorobenceno muestra que la destrucción del orden en n-alcanos depende sólo de la geometría de la molécula globular y no de su polaridad.

El orden orientacional ha sido verificado con gran detalle en los alcanos lineales de cadena larga pues sus enlaces son tan flexibles que facilitan que segmentos de sus moléculas se orientan paralelamente formando las COM. De aquí el interés en buscar otro tipo de moléculas lineales, de cadena larga y enlaces flexibles, donde se pueda presentar este comportamiento. Los poliéteres lineales o glimas presentan estas características : i) tienen la estructura CH_-O-(CH_-CH_-O)_-CH_ donde x puede estar entre 1 y 4 según se incremente la longuitud de la cadena y il) poseen cierta flexibilidad por la presencia de entaces CH_-CH_. Además, la figura 8 muestra resultados de anisotropia óptica [9] en concentración diluida para las mezclas de 2,5,8,11,14-penta oxapentadecano (G4 con x = 4), 2,5,8,11-tetra oxadodecano (G3, x = 3), 2,5,8-trioxanonano (G2, x = 2) y 2,5-dioxahexano (G1, x = 1) en CCI4 que parecen indicar la existencia de COM en el estado puro de los poliéteres de cadena larga.

En esta figura y 2 aumenta ligeramente al incrementar la concentración del poliéter y al incrementar la longitud de cadena

del mismo, lo que puede explicarse por la existencia de un número pequeño de correlaciones de orientación molecular y así un cierto orden orientacional en estos liquidos. Comparando las figuras 1 y 8, se observa que la magnitud del orden orientacional para el poliéter de mayor longitud (G4) es similar al n-nonano y en este mismo contexto, la magnitud de COM es similar entre G3 y n-heptano, G2 y n-hexano. La anisotropia de Gi es independiente de la concentración y posiblemente su orden es nulo.

Este argumento se corroboró parcialmente en 1975 [10], donde al medir el calor de mezclado de éter dioctilico con alcanos lineales y ramificados, se obtuvieron valores mayores para las mezclas con los alcanos ramificados. Entonces se concluyó que al modificar la secuencia CH2-CH2 del alcano por un grupo CH2-O-CH2, parte del orden orientacional permanece; es decir, la rigidez que presenta el grupo funcional éter debida al oxigeno permite aún que el resto de la molécula se ordene paralelamente. Los resultados de calor de mezclado entre 5-deceno + alcanos lineales o ramificados, indican que el doble enlace destruye el orden. Los únicos resultados experimentales de C_p^E para mezclas de poliéteres lineales con moléculas que no presentan orden orientacional se muestran en la figura 9 para las mezclas entre n-hexano + G4, G3 y G2, y n-heptano con G1 y con el poliéter ciclico p-dioxano (pDx) a 25 °C y en función de la fracción mol del poliéter [11].

Figura 9.

Sin embargo, para todas las mezclas se observa una forma W Que se acentúa al aumentar el tamaño del poliéter lineal. Esta conducta se ha explicado [11] en términos de una contribución positiva en el centro del intervalo de concentración. Sin embargo, es posible argumentar la destrucción del orden en polléteres al comparar la variación de C_P^E en la región de alta concentración de Xi (Xi > 0.9, vease gráfica). Para el caso de Gi y G2, su variación es similar a la que presenta el sistema pDx + n-heptano, donde no existe destruccion alguna de orden, mientras que G3 y G4 muestran pendientes de dC_P^2/dX_1 más grandes, lo que parece indicar orden orientacional en el estado puro de estos dos líquidos.

Otra evidencia experimental que puede apoyar esta hipótesis se presenta en la figura 10 al graficar la H^E equimolar a 25 °C en función del número de átomos que forman la cadena lineai del poliéter n para mezclas entre Gi, G2, G3 y G4 con dodecano (12), decaño (10), hexano (6), ciclohexano (c6) [12] y benceno (8) [13].

Figura 10.

En esta figura los resultados negativos para benceno indican una interacción "atractiva" entre esta molécula y los poliéteres, por lo tanto es poco probable que el benceno haga evidente el orden orientacional en los poliéteres. En el caso del decano y dodecano, a pesar de sus valores positivos de H^E , no pueden seleccionarse pues se sabe que tienen un orden orientacional en el estado puro y además, sus mezclas con poliéteres generan formas W en la C_F^E [11] más acentuadas que las de la figura 9.

Para el ciclohexano y el hexano, los valores de H^E aumentan al incrementarse la longitud del poliéter y ésto parece indicar la destrucción de un orden orientacional en los poliéteres. Desafortunadamente los datos de la figura 9 para las mezclas con hexano no corroboran esta hipótesis y, por lo tanto, el candidato viable de los presentados en esta figura es el ciclohexano.

Toda esta información parece indicar la existencia de cierto orden orientacional en los poliéteres lineales pero hasta el momento no existe un estudio detaliado sobre el mismo.

En este trabajo se pretende explorar la existencia de correlaciones de orientación molecular en el estado puro de los polléteres de cadena larga por medio de su destrucción al mezclado con líquidos formados de moléculas globulares. Esto se determinará experimentalmente a partir de los resultados de C_{p}^{5} .

Para una mejor distribución de este informe, el siguiente capítulo contiene el plan de trabajo a desarrollar, la información básica de los reactivos empleados y las técnicas experimentales utilizadas para preparar las soluciones, así como para determinar la densidad y capacidad calorífica de las soluciones que se requieren en el cálculo de la C_{5}^{5} .

CAPITULO II

PARTE EXPERIMENTAL

II.A Plan de trabajo

El plan de trabajo consiste en determinar la C_p^F a 25 °C del poliéter lineal de cadena más larga con diferentes líquidos formados por moléculas globulares. De éatos se selecciona el mejor líquido destructor de orden, i. e. el que genere la C_p^F más negativa. Entonces se verifica la existencia del orden orientacional en este poliéter al determinar la C_p^F a diferentes temperaturas y comparando los resultados con las predicciones de la teoria de Prigogine - Flory. Finalmente se mide la C_p^F a 25 °C de las mezclas entre los poliéteres lineales restantes y el líquido seleccionado. De la comparación entre los resultados experimentales y las predicciones de la teoria Prigogine - Flory se verificará la existencia de orden orientacional en este tipo de moléculas, y de la comparación entre los resultados de los poliéteres y los n-alcanos, se conocerá la magnitud del mismo.

Para el cálculo de la C_{μ}^{μ} de los sistemas a estudiar se requieren las densidades y capacidades caloríficas de las soluciones y los componentes puros. A continuación se describen las técnicas experimentales utilizadas para preparar las soluciones y determinar estas propiedades, así como la información básica de cada reactivo.

II.B Reactivos empleados

Los poliéteres lineales son compuestos con estructura CH_-O-(CH_-CH_-O) -CH_ donde x está comprendida entre 1 y 4. Se conocen comúnmente como glimas y son totalmente solubles en agua, alcoholes e hidrocarburos de bajo peso molecular. A excepción de que forman peróxidos, son relativamente inertes, por lo que se utilizan como solventes de reacciones químicas. Estas substancias tienen baja toxicidad [14]. Los poliéteres seleccionados para este trabajo son : a) 2.5-dioxahexano (monoglima o Gi) con peso molecular M = 90.12 g/mol, punto de fusión p.f. = - 58 °C, punto de ebullición p.eb. = 83 °C, densidad $\rho^{20} = 0.8692 \text{ g/cm}^3$, e indice de refracción n^{20} = 1.3813, b) 2.5.8-trioxanonano (diglima o G₂) con M = 134.17 g/mol. p.f. = -68 °C. p.eb. = 162 °C. ρ^{20} = 0.9451 e/cm^3 , $m^{20} = 1.4097$, c) 2.5.8.11- tetraoxadodecano (triglima o G3) con M = 178.22 g/mol. p.f. = - 45 °C. p.eb. = 216 °C. ρ^{20} = .996 g/cm³ e 7²⁰ = 1.4233, y d) 2,5,8,11,14-pentaoxapentadecano (tetraglima o Ge) M = 222.282 g/mol, p.f. = -27 °C, p.eb. = 275 $^{\circ}C$, $\rho^{20} = 1.0087 \text{ g/cm}^3 \text{ e} \eta^{20} = 1.4325$ [14]. Estas substancias se obtuvieron de Aldrich Chem. Co. con una pureza establecida de 99 % mol v se utilizaron sin purificación adicional. Sólo almacenaron con tamiz molecular tipo 3A para evitar su hidratación.

Las moléculas globulares seleccionadas fueron tetracloruro de carbono (CCls) J. T. Baker con pureza establecida de 99.9 % mol, 1,4-dioxano (pDx) J. T.Baker 99.8 %, ciclohexano (cCs) E. Merck 99.5 %, 2,2-dimetilbutano (rCs) Aldrich Chem.Co. 98 %, y 2,2,4-dimetilpentano (rCs) Aldrich Chem. Co. 98 %, y benceno (CoHe) J. T. Baker 99 %. Se utilizaron sin purificación extra.

11.C Preparación de las soluciones

La preparación de todas las soluciones se realizó por pesada en una balanza analitica Mettler modelo AT250 de precisión \pm 0.0000) g. Los líquidos 1 y 2 se filtran a traves de vidrio poroso para desorber parcialmente gases disueitos. Conocidos los pesos moleculares (Mi y M2) y densidades (ρ_1 y ρ_2) de los componentes puros, y fijando el volumen total de la solución necesaria para el experimento (VT # 10 cm³), se obtienen los volúmenes Vi y V2 de los componentes 1 y 2 necesarios para la preparación de una solución con fracción moi (Xi) seleccionada. Estos volúmenes se obtienen de :

$$V_{1} = \frac{V_{T}}{\left[1 + \frac{X_{2}\rho_{1}M_{2}}{X_{1}\rho_{2}M_{1}}\right]}; V_{2} = V_{T} - V_{1}$$
(2)

La composición real se obtiene de la ecuación 3 al conocer por diferencia , los pesos gi y g2 correspondientes a los volúmenes Vi v V2 vertidos en el recipiente :

$$X_{1} = \frac{\frac{g_{1}}{M_{1}}}{\left[\frac{g_{1}}{M_{1}} + \frac{g_{2}}{M_{2}}\right]} ; X_{2} = 1 - X_{1}$$
(3)

Todas las mezclas se prepararon con extrema precaución para evitar cualquier evaporación de los componentes. Con esta técnica y empleando las incertidumbres para el peso molecular 8Mi = 0.001, para los sistemas aquí estudiados la incertidumbre relativa promedio de la fracción mol calculada es menor a 0.0001.

II.D Medición de las densidades

La densidad se midió con un densimetro de celda vibratoria SODEV modelo O3D { Sherbrooke, P.Q., Canadà } ei cual requiere de 1 cm³ de líquido. El funcionamiento de este densimetro [15] está basado en las propiedades de un osciliador mecánico. La frecuencia de vibración de una celda formada por un tubo de acero inoxidable sujeto en un extremo, está relacionada con su masa por unidad de longitud y con la constante de restitución de la fuerza. La frecuencia de resonancia τ de este tubo osciliador depende de la densidad del fluido ρ que contiene, a través de $\rho = A + B \tau^2$ donde A y B son constantes del instrumento y se calculan midiendo el periodo de resonancia de dos fluidos de densidad conocida.

En este trabajo, los líquidos de referencia empleados para obtener la densidad de los sistemas medidos a 25 °C fueron la molécula giobular correspondiente y el CCI4. Para los sistemas con CCI4 y los medidos a 10 y 40 °C las referencias fueron el n-decano y el CCI4. La densidad de cada solución o líquido puro se obtiene con el promedio de las lecturas de τ y aplicando la ecuación $\rho = A$ + B τ^2 . Para generar densidades de alta precisión y reproducibilidad, se requiere de sumo cuidado en la preparación de las soluciones, en el lienado de la celda y cuidar que las fluctuaciones de temperatura en el sistema no sean mayores de ± 0.001 °C. Esto último se logró utilizando un control de temperatura modelo CT-L de la marca SODEV calibrado con un termómetro de resistencia de Pt para obtener lecturas en términos de volts. Con estas precauciones, la precisión en la medida de densidad es $\delta \rho = \pm 0.00001 \text{ g/cm}^3$ 1151.

II.E Medición de las capacidades calorificas

Las capacidades calorificas volumétricas C_y^y se midieron con un microcalorimetro de flujo Picker marca SODEV descrito con detalle en la literatura [16] y esquematizado en la figura 11.

ALLIQUIDO DE REFERENCIA BILIQUIDO A MEDIR O DESECHOS ZHRI DIGOGA Tenzi TERMIGTURES V. VALVULA

Figura 11.

Los liquidos A y B fluyen de manera continua a través de las celdas de trabajo y de referencia del equipo. Este flujo debe ser constante y ello se logró utilizando una bomba peristáltica de alta precisión marca SODEV. Además, las dos celdas del microcalorimetro se mantienen a temperatura constante mediante el mismo control de temperatura utilizado para las densidades. El principio de operación de este microcalorimetro es el siguiente : supongamos inicialmente que A fluye por ambas celdas; al girar la válvula se permite el paso de B a la celda de trabajo y A

permanece aún en la ceida de referencia. Al entrar a las ceidas, ambos líquidos tienen la misma temperatura y son calentados con la misma potencia Wo disipada por los diodos Zi y Zz. Los termistores Tei y Tez miden el aumento diferencial de temperaturas ΔT que resulta de la diferencia entre las capacidades calorificas volumétricas de los líquidos A y B (ΔC_{ϕ}^{ϕ}). El equipo anula esta diferencia de temperaturas mediante un control proporcional de temperaturas al aplicar una cantidad de energia ΔW . Esta energia está relacionada con las capacidades calorificas del líquido en la celda de referencia ($C_{\phi,A}^{\phi}$) y del líquido en la celda de trabajo ($C_{\phi,B}^{\phi}$) mediante las relaciones :

$$\frac{\Delta C_{P}^{V}}{C_{P,A}^{V}} = \frac{C_{P,B}^{V}}{C_{P,A}^{V}} = \frac{\Delta W}{W_{0}} = \frac{C_{P,B}^{V}}{C_{P,A}^{V}} = 1 \pm \frac{\Delta W}{W_{0}}$$
(4)

En la figura 11, la linea de retraso tiene por objeto permitir que el sistema alcance el equilibrio con el líquido A en una celda y el líquido B en la otra. El aumento de temperatura constante ΔT producido por la potencia Wo resultó ser de 1.5 °C a la temperatura de 17.5 °C, de 1.0 °C a 25 °C y de 0°C a 40 °C. Por lo tanto, para obtener las capacidades caloríficas a 17.5, 25 y 40 °C fue necesario fijar el control de temperatura en $\Delta T/2$ grados, es decir 16.75, 24.5 y 40 °C respectivamente. La señal de salida ΔW fue registrada en un graficador LINSEIS 1-6512.

La figura 12 muestra esquemáticamente el registro que se obtiene en el graficador en una corrida experimental típica para obtener la capacidad calorífica volumétrica en todo el intervalo de concentración de un sistema.

Inicio del experimento

Figura 12.

El uso de un graficador para registrar AW, requiere de la realización de una calibración, que se puede llevar a cabo en cualquier momento en el que un mismo líquido o solución ocupe ambas celdas. La calibración consiste en simular una diferencia de capacidades caloríficas ($\Delta C_{\rm p}^{\rm V}$) aplicando una cantidad de energía AWcas perfectamente conocida, que provoca una desviación heas en el graficador con respecto a la linea base. Esto se ilustra en la figura 12 donde la calibración se realiza al inicio dei experimento. Al comparar los líquidos A y B (líquido A y solución # 1 en la figura 12) en el microcalorímetro, se produce en el graficador una desviación hx y el ΔW correspondiente será $\Delta W =$ ΔW_{cel} hx / hcal. Con ello la ecuación (4) se transforma en :

$$\begin{array}{cccc} C_{P,B}^{V} & \Delta West hx \\ \hline C_{P,A}^{V} & \pm 1 \pm \underbrace{\Delta West hx}_{Wo hest} \end{array}$$
(5)

donde el signo del segundo término depende de si ha es positiva o negativa. En la ecuación (5), $C_{p,B}^{v}$ y $C_{p,A}^{v}$ son las capacidades caloríficas volumétricas de los liquidos en las celdas de trabajo y de referencia respectivamente. El procedimiento de comparación se sigue desarrollando entre soluciones, generando diferentes ha para cada confrontación tipo liquido en celda de trabajo / liquido en celda de referencia, tal y como se observa en la figura 12. hasta terminar con el liquido puro B en ambas celdas. Es posible substituir en la ecuación (5), las potencias de calentamiento por las igualdades Wo = Volo y ΔW_{cel} = Vcalical, donde Vo, Io, Vcal e Ical son, respectivamente, el voltaje y la intensidad de corriente medidos en el equipo durante el experimento y en el momento de la calibración. Con ello, la ecuación (5) se convierte en :

$$\begin{array}{cccc}
\mathbf{C}^{\mathbf{V}}_{\mathbf{P},\mathbf{B}} & & \mathbf{V}_{\mathbf{C}\mathbf{a}\mathbf{i}} & \mathbf{i}_{\mathbf{c}\mathbf{a}\mathbf{i}} & \mathbf{h}_{\mathbf{x}} \\
\hline
\mathbf{C}^{\mathbf{V}}_{\mathbf{P},\mathbf{A}} & = 1 \pm \frac{\mathbf{V}_{\mathbf{C}\mathbf{a}\mathbf{i}} & \mathbf{i}_{\mathbf{c}\mathbf{a}\mathbf{i}} \\
\hline
\mathbf{V}_{\mathbf{O}} & \mathbf{I}_{\mathbf{O}} & \mathbf{h}_{\mathbf{c}\mathbf{a}\mathbf{i}}
\end{array}$$
(6)

Las ecuaciones (5) y (6) indican que, para la determinación de la capacidad calorífica volumétrica de un liquido o solución, se requiere conocer la C_p^{v} del liquido contra el cual se está comparando. En la práctica se utiliza como referencia el liquido cuya C_p^{v} se conozca con mayor exactitud (liquido A en la figura 12

). Contra este líquido se compara la solución más concentrada en A y, como indica la figura 12, para las soluciones de menor concentración en A, el líquido de referencia utilizado es la solución inmediata anterior en concentración. En este trabajo, para los sistemas con tetraglima esta fué la referencia a 25 $^{\circ}$ C y a otras temperaturas, lo fué el ciclohexano. En el caso de los sistemas con poliéteres de menor longuitud, el líquido de referencia también fue el ciclohexano.

La obtención de valores de C_p^{φ} de buena precisión y reproducibilidad depende criticamente de que las fluctuaciones del flujo y de temperatura sean muy pequeñas y de que se cuente con un vacio adecuado. En este trabajo, se utilizó un vacio de 5 • 10^{-2} y se lograron reproducir con éxito valores de la literatura (vease siguiente capitulo) y, por lo tanto, los valores obtenidos son confiables. En las condiciones óptimas de trabajo, la precisión en la determinación de las C_p^{φ} que proporciona este equipo es $\delta C_p^{\varphi} = \pm$ 0.0001 1/K cm³ [16].

Con esta información experimental se obtienen las densidades y capacidades caloríficas que se utilizan para calcular las C_P^E de los sistemas a estudiar. Los resultados de estas propiedades se presentan y discuten en el siguiente capitulo con base en el plan de trabajo planteado.

CAPITULO III

RESULTADOS Y DISCUSION

En esta sección se reportan y discuten los resultados experimentales de la capacidad calorífica molar de exeso C_p^E para las mezclas de políteres lineales + líquidos formados de moléculas globulares. La tabla 1 contiene el volumen molar V⁰ y la capacidad calorífica molar C_p^0 obtenidas en este trabajo y las reportadas en la literatura para los líquidos puros. Además se incluyen los pesos moleculares M calculados a partir de los pesos atómicos IUPAC 1985 [17].

Liquido	M (g/mol)	V ⁰ (cm. ³ /mol)		C₽ (J/Kmol)	
GI	90.122	104.565	104.540	190.14	191.14 [®]
G2	134.175	142.704	142.896 ⁸	274.17	277.76
G3	178.229	181.926	181.867 ⁸	357.40	367.78 ⁸
G4	222.282	221.141	220.809 ⁸		457.10 ⁸
pDx	88.106		85.709 ⁶	154.44	150.57 ⁸
cC6	82.161		106.166 ⁶		155.68 ^e
rCe	86.177		133.719	197.14	189.40
rCa	114.231		166.079 ⁹	238 .27	238.51 ⁹
Celle	78.114		89.406 ⁶	141.94	147.77 ⁶
CCI+	153.822		97.086 ⁶	132.11	132.96 ⁶

Tabla I

(11)⁶, (18)⁶, (19)^c

De la comparación entre los datos experimentales y los de la literatura, se observa que el error es minimo en el V^0 .El error en la C_p^0 no sobrepasa el 3 %, no obstante que para su obtención se trabajó con una sensibilidad intermedia.

La capacidad calorifica molar de exceso C_p^{Σ} se calculó a partir de la fracción mol x obtenida por pesada, de las capacidades calorificas volumétricas $C_p^{(sou)}$ y densidades pisou de las soluciones, y de los datos de la tabla 1 mediante :

$$C_{p}^{E} = C_{p(m1)} - (x_{1}C_{p1}^{0} + x_{1}C_{p2}^{0})$$
 (7)

$$C_{p}^{\Sigma} = x_{1} \left\{ M_{1} \frac{C_{p}^{V}(sol)}{\rho_{sol}} - C_{p1}^{s} \right\} + x_{2} \left\{ M_{2} \frac{C_{p}^{V}(sol)}{\rho_{sol}} - C_{p2}^{s} \right\}$$
(8)

La medición de las densidades permite la evaluación del volumen molar de exceso a partir de :

$$V^{E} = V_{sol} - (x_{1}V_{1}^{2} + x_{2}V_{2}^{2})$$
(9)
$${}^{E} = x_{1} \left(\frac{M_{1}}{\rho + s_{1}} - V_{1}^{2} \right) + x_{2} \left(\frac{M_{2}}{\rho + s_{1}} - V_{2}^{2} \right)$$
(10)

El apéndice II contiene los valores de V^E y C_F^E para cada composición de todos los sistemas en estudio. Para estimar la confiabilidad de las técnicas y del equipo, se determinó el V^E y la C_F^E del sistema cCs + n-hexadecano (nCis) a 25 °C reportado en la literatura [20]. Las figuras 13a y 13b muestran que los valores experimentales de V^E y C_F^E obtenidos en este trabajo (\square) concuerdan con los reportados en la literatura (\bigcirc) y asi, tento el equipo como las técnicas empleadas son las adecuadas.

Figura 13.

Para verificar la existencia del orden orientacional en poliéteres lineales, se requiere seleccionar la mejor molécula destructora del mismo. Para realizar este punto, se analizan los resultados de diversas propiedades para mezclas del poliéter lineal de cadena más larga con diferentes moléculas globulares. La figura 14 muestra las variaciones experimentales de la densidad obtenida a 25 $^{\circ}$ C para los sistemas binarios tetraglima + CCle, pDx, Celle, Celliz, rCe y rCe vs la fracción mol del poliéter (Xi).

Para obtener los V^E correspondientes a los sistemas ya mencionados, se aplicó la ecuación 10 a los datos de la figura 14. La figura 15 presenta los datos calculados y trazos de curvas (no ajustadas) que representan el comportamiento en función de X1.

Los valores negativos de V^E para las mezclas con CCI+ y Céliindican una interacción atractiva en la solución de estas moléculas con el poliéter. Para el éter etilico, esta atracción se caracterizó [21] como un complejo débil. Los valores positivos de V^E para los sistemas con cCe y rCe muestran "repulsion" entre estas moléculas y el poliéter y, en principio, pueden ser capaces de destruir el orden y hacerlo evidente. En las mezclas con rCe y pDx, no se puede establecer que tipo de interacción es dominante.

Los resultados experimentales de la capacidad calorífica volumétrica C_{p}^{V} para los mismos sistemas se representan, en función de la fracción mol del poliéter (X1) a 25 °C, en la figura 16.

Figura 16.

Al aplicar la ecuación 8 a los datos experimentales de la figura 16, se obtiene la C_p^E correspondiente. La figura 17 muestra los valores de C_p^E calculados en función de X1 unidos por curvas no ajustadas para representar cada uno de los comportamientos.

Figura 17.

En el caso del Benceno (Bz) y del Tetracloruro de carbono (CCl4), los valores positivos indican creación de estructura. Esta estructura, para el caso del éter etilico, se sabe que es un complejo donador-aceptor débil [21]. Esta explicación concuerda con los resultados de V^E para Bz y CCl4 (fig. 15) y de H^E para el caso del benceno (fig.10) por lo cual son descartados para utilizarse como liquidos destructores del orden en politeres. Los alcanos ramificados rCs y rCs generan formas W en la C_p^{\pm} similares a las de la figura 9 y entonces, no son útiles para este trabajo. En el caso del p-Dioxano y del Ciciohexano ambas curvas son negativas en todo el intervalo de concentración por lo que pueden ser seleccionados. Considerando que el orden orientacional es sensible al variar la temperatura y al disminuir la longitud de la cadena en el componente puro, los efectos en la C_p^{\pm} de la destrucción del orden (si existe) de poliéteres; deben ser mas evidentes al mezclado con el cCs por tener una magnitud mayor y entonces, éste es el liquido seleccionado.

Para verificar la existencia de orden orientacional en los poliéteres, se determinó experimentalmente el V^E y la C^E del sistema tetraglima + cCs a diferentes temperaturas. La figura 18 muestra los resultados de V^E en función de Xi a 10, 25 y 40 °C. En esta figura las curvas trazadas no son ajustadas y sólo se dibujan para lograr una mejor comparación. De los resultados se observa que el volumen de exceso genera valores positivos que se incrementan con el aumento de la temperatura. Además, esta figura contiene los valores predichos por la ecuación 1.9 de la teoría de Prigogine - Flory del Apéndice 1. Para obtener estos valores teóricos se utilizaron las siguientes constantes de los componentes puros a 25 °C : a) M v ρ obtenidas de la tabla 1: b) presión característica (ver Apéndice 1) P = 600 1/cm³ para Ga (estimado) y 530 para cCs (22); c) coeficiente de expansión térmica $\alpha = 0.0007 \text{ grado}^1$ para Ge (23) y 0.0012 grado¹ para cCe [22], y d) el cociente superficie / volumen s = 1 A^{-1} para Ge (estimado) y 0.93 A⁻¹ para cCe [22].

Figura 18.

Los valores teóricos y experimentales de V^E presentan un comportamiento similar ya que se incrementan al aumentar la temperatura. La diferencia entre estos valores a 40 $^{\circ}$ C se debe, tal vez, a la estimación de parámetros para G4. En la figura 19, al comparar los valores equimolares teóricos y experimentales de V^E en función de la temperatura se observa un ligero aumento de V^E con la temperatura, similar al del sistema rC16 + cC6 de la figura 3b y en contraste con la disminución que presenta la mezcla nC16 + cC6, donde el nC16 puro posee orden orientacional. Por lo tanto, el comportamiento de los poliéteres en la fig. 19 no demuestran la existencia de orden para estas moléculas.

La comprobación del argumento anterior se muestra en la figura 20 que contiene los resultados experimentales (\bigcirc) y teóricos (\Box) de la C^E en función de Xi a diferentes temperaturas para el sistema G4 + cC4.

Figura 20.

Para este sistema la C_p^c teórica se hace más positiva al aumentar temperatura. La forma de la predicción a 40 °C puede ser ocasionada por los valores estimados para G4. Los valores experimentales se hacen más negativos al aumentar la temperatura y la forma W, presente a 17.5 °C, desaparece a 40 °C. Este comportamiento experimental indica la presencia de un efecto más fuerte que el orden en el centro del intervalo de concentración : las fluctuaciones de largo alcance en la concentración [11]. Estas se traducen en una contribución positiva que hace que las curvas, usualmente negativas, adquieran una forma W (ver fig. 21).

Se cree que las curvas experimentales de $C_{\rm F}^{\rm E}$ serian más negativas cada una si este efecto no estuviera presente pues sólo contarian con la contribución aleatoria negativa, que seria la destrucción del orden orientacional. Tomando en cuenta sólo esta contribución, la curva a 25 °C tendría valores más negativos que la curva de 40 °C. Desafortunadamente, la contribución positiva debida a las fluctuaciones, es más importante a bajas temperaturas y entonces, tanto las curvas a 17.5 como a 25 0 C presentan formas W y magnitudes menos negativas. Es decir, la presencia del efecto W no permite verificar la existencia de orden (si es que existe), por lo que se decidió comprobar las COM con los poliéteres de menor longitud no obstante su menor magnitud de COM. La figura 22 muestra los resultados de la C^F para estos compuestos + cCs.

En esta figura se muestra la G_P^E en función de la fracción mol del poliéter (X) a 25 °C para los sistemas entre ciclohexano +

tetraglima (4), triglima (3), diglima (2) y monoglima (1) así como los valores teóricos P - F. Para calcular estos valores teóricos se utilizaron los pesos moleculares y densidades (a partir de V°) de los componentes reportados en la tabla 1; P° = 590 J/cm³ para G3 [24], 580 para G2 [24] y 570 para G1 (estimado); α = 0.0008 grado¹ para G3 [24], 0.001 para G2 [24] y 0.001 para G1 (estimado) y s = 1.0 A⁻¹ estimada para G3, G2 y G1.

En la figura 22 se observa que la C_{0}^{E} es más negativa para el poliéter de mayor tamaño (tetraglima) y se hace ligeramente más positiva conforme se disminuye la longitud de la cadena del poliéter. En el caso de los valores teóricos esto se corrobora ya que la posición de 1 se debe a la estimación. Comparando los valores teóricos y experimentales se encuentra que siguen un comportamiento similar en forma cualitativa pero que la magnitud de los datos experimentales es más negativa y esto, tal vez, indica la destrucción de un pequeño orden orientacional en los poliéteres al mezclarlos con el ciclohexano.

Con objeto de verificar con más detalle esta hipótesis, se grafican en la figura 23 las C_P^F equimolares a 25 °C en función del número de átomos que constituyen la molécula lineal (n) de los sistemas entre ciclohexano + polléter lineal (P) y alcanos lineales (A). En esta figura se incluyen también las predicciones de la teoria de Prigogine - Flory (P - F) para los sistemas con polléteres.

En esta figura, al comparar los valores experimentales de poliéteres y alcanos, es evidente la destrucción del orden orientacional para el caso de los alcanos ya que en éstos la C_p^E equimolar disminuye drásticamente al aumentar la longitud de la

cadena. En el caso de los poliéteres los resultados tienen aproximadamente el mismo valor que nCe pero son prácticamente independientes de n. De esta comparación se concluye que los poliéteres no presentan un orden orientacional apreciable.

La misma conclusión se genera de la comparación entre los valores teóricos y experimentales para los poliéteres, ya que estos grupos de datos no son significativamente diferentes.

De esta manera, los resultados experimentales de C_{a}^{E} v dV^E/dT obtenidos en esta sección no confirman la existencia de un orden orientacional presente en el estado puro de los poliéteres lineales de cadena larga. La variación con la temperatura de las propiedades de exceso arriba mencionadas, la comparación de estos resultados con la teoría de Prigogine - Flory y el comportamiento de la Co en función del tamaño del poliéter no generan argumentos que corroboren la presencia del orden orientacional en estas moléculas. La explicación a este comportamiento se debe a la rigidez de los enlaces tipo éter, CH2-O-CH2, presentes continuamente en los poliéteres y a que los segmentos alquilicos son demasiados pequeños (sólo existen segmentos CH2-CH2). Ambos factores evitan la flexibilidad del poliéter lineal y la posibilidad de un ordenamiento paralelo entre los segmentos alquilicos que podrian formar COM.

CAPITULO IV.

CONCLUSIONES

Con base en datos espectroscópicos a 25 °C, este trabajo exploró la posible existencia de un pequeño orden orientacional en los políéteres lineales mediante la determinación experimental de la capacidad calorifica de exceso C_{p}^{2} . De los resultados de esta propiedad y de su comparación con los valores calculados con la teoría de Prigogine - Flory no se puede establecer la presencia de tai orden en estas moléculas lineales. Esto se debe, tai vez, a la presencia de los enlaces rigidos oxigeno - carbono que no permiten que los poliéteres tengan la flexibilidad requerida para que los cortos segmentos CH2-CH2 de estas moléculas se orienten paralelamente en el estado puro.

Adicionalmente, los resultados experimentales de C_p^p muestran dos conductas generales para mezcias que contienen poliéteres lineales. En el caso de mezcias con alcanos lineales, ramificados y ciclicos, el efecto dominante es el fenômeno W. En las mezcias con benceno y tetracioruro de carbono se observa que sus interaciones con el poliéter son atractivas y se han explicado en la literatura en términos de un complejo donador-aceptor.

Con el fin de verificar la no existencia de un pequeño orden orientacional en los poliéteres lineales, se recomienda la medición de la capacidad calorífica para la triglima, diglima y monoglima + ciclohexano a diferentes temperaturas para evitar la presencia del efecto W y así, poder verificar las pequeñas COM.

APENDICE 1

TEORIA DE PRIGOGINE - FLORY

Prigogine y Fiory (6) desarrollaron una teoria, aplicada a liquidos formados por moléculas de cadena larga, para describir las propiedades termodinámicas de los componentes puros y sus mezclas. En el caso de los componentes puros, sus moléculas se suponen formados por r segmentos. El volumen de cada segmento es v = V/rN, donde V es el volumen del sistema y N es el número de moléculas. La función de partición para este sistema es :

$$Q = \mathbf{K} \left[v_r^{1/3} - 1 \right]^{3Ncr} \exp(-U_o / RT)$$
(1.1)

donde K es una constante y v es el volumen reducido igual a v/v^* . El volumen neto v es el valor característico de un segmento; este se relaciona al volumen libre de una molécula V_{\perp} que contiene r segmentos por $V_{\perp} = \tau r v^* (v_{\perp}^{1/3} - 1)^3$. Aquí, τ es un factor geométrico. El parámetro c se define tal que 3rc es el número de grados libres intermoleculares por molécula. La energía intermolecular esta dada por $U = -r N s \eta / 2 v$ donde s es la superficie por segmento y η es la interacción media entre un par de segmentos. Introduciendo las variables reducidas $t_{\perp} = T/T^* = 2$ $v c k T / s \eta, v_{\perp} = v/v^* y p_{\perp} = P/P^* = P v^2 / c k T, la ecuación de$ estado que genera la función de partición arriba descrita es :

 $p = v \neq t = [v^{1/3} \neq (v^{1/3} - 1)] - [1 \neq v = t] \quad (1.2)$

Los tres parámetros v^{*} , c y el producto s η sirven para caracterizar cada líquido y se evaluan, a partir de datos experimentales como el coeficiente de expansión térmica (α) y del coeficiente de presión térmica (γ), por medio de las siguientes relaciones $v^{*} = v/v_{x}$, s $\eta = 2 P^{*} v^{*(2)} = 2 \gamma T v^{2} y c =$ $P^{*} V^{*} / k T^{*} = (\gamma v / k) (\alpha T) / (3 + 4 \alpha T).$

Para aplicar esta ecuación de estado al caso de mezclas binarias, Flory propuso (6b) las siguientes reglas de mezclado :

$$v^{*} = \left[\frac{N_{1}v_{1}^{*} + N_{2}v_{2}^{*}}{N_{1} + N_{2}}\right]$$
(1.3)
$$T^{*} = \left[\frac{\phi_{1}P_{1}^{*} + \phi_{2}P_{2}^{*} - \phi_{1}\theta_{2}\chi_{12}}{\phi_{1}P_{1}^{*} / T_{1}^{*} + \phi_{2}P_{2}^{*} / T_{2}^{*}}\right]$$
(1.4)
$$P^{*} = \phi_{1}P_{1}^{*} + \phi_{2}P_{2}^{*} - \phi_{1}\theta_{2}\chi_{12}$$
(1.5)

donde χ_{12} es el parámetro que representa la interacción entre ambos tipos de molécula. La fracción de segmentos ϕ y la fracción de superficie θ están dados por :

$$\phi_1 = \frac{x_1v_1}{x_1v_1 + x_2v_2}$$
(1.6)

$$\Theta_2 = \frac{x_2v_2^2 \sigma_2}{x_1v_1^2 \sigma_1 + x_2v_2^2 \sigma_2}$$
(1.7)

Tomando en cuenta lo anterior, esta teoría explica las propiedades de exceso en términos de tres contribuciones :

 a) Interacción entre moléculas, que considera el contacto molécula 1 - molécula 2 mas débil que los contactos 1 - 1 y 2 - 2.
 Esto se atribuye a que las moléculas poseen diferente comportamiento según el campo de fuerza que las rodea.

b) Entropia de mezclado, que depende únicamente de los tamaños relativos de las moléculas.

c) Cambio de volumen al mezclado, que aparece cuando los componentes tienen diferente volumen libre. Este es el total del espacio libre entre las moléculas y se incrementa al elevar la temperatura o con el movimiento molecular.

Para facilitar el manejo de esta teoría, Patterson y Delmas (25) la reformularon en una representación de estados correspondientes. En ésta, para calcular las propiedades de exceso se requiere de los siguientes valores experimentales de los componentes puros : densidad ρ , peso molecular M, coeficiente de expansión térmica a, coeficiente de compresibilidad isotérmica B, la superficie por segmento s, también llamado cociente superficie-volumen, normalmente estimada aue ec рог consideraciones geométricas, y el parámetro de interacción $\chi_{i,j}$. Este parámetro se ajusta a valores experimentales de H^E utilizando la siguiente ecuación :

$$H^{E} = (x_{1}U_{1}^{0} + x_{2}U_{2}^{0}) \left\{ \psi_{1} \Theta_{2} \frac{\chi_{12}}{P_{1}^{0}} \left[-U_{p,01} + T_{p,01} C_{p,001} \right] + C_{p,001} \left[\psi_{1}T_{1} + \psi_{2}T_{2}^{0} - T_{p,01} \right] \right\}$$
(1.8)

Las demás propiedades de exceso se calculan de :

$$\frac{V^{E}}{x_{1}v_{1}^{*} + x_{2}v_{2}^{*}} \approx \frac{(v_{10}^{1/3} - 1)v_{001}^{2/3}}{(4/3 v_{001}^{*/3} - 1)} \psi_{1}^{2/3} \frac{\chi_{12}}{P_{1}^{*}} + (v_{1} - v_{2})(\psi_{1} - \psi_{1})$$

$$\frac{(14/9 v_{10}^{-1}(^3 - 1))}{v_{10}(1 + (12) v_{10}^{-1})^2 - (1.9)} [\psi_1\psi_2 + (\psi_1 - \phi_1)^2]$$
(1.9)

C = Sioi Cp(soi) - xi Si Cpi - x2 S2 Cp2 (1.10)

donde se requiere del cälculo de :

. ...

$$v_{\frac{1}{p}} = \left[\frac{\alpha_{1}T}{3(1+\alpha_{1}T)} + 1\right]^{3} \qquad v_{1}^{0} = \frac{M_{1}}{\rho_{1}v_{\frac{1}{p}}} \qquad (1.11)$$

$$T_{\frac{1}{2}} = \frac{v_{\frac{1}{2}}^{1/2} - 1}{v_{\frac{1}{2}}^{4/3}} \qquad T_{1}^{0} = \frac{T}{T_{\frac{1}{2}}} \qquad (1.12)$$

$$P_{1}^{*} = \frac{\alpha_{1}}{\beta_{1}} T v_{1}^{2} \qquad U_{1}^{*} = P_{1}^{*} v_{1}^{*} \qquad (1.13)$$

$$S_{1} = \frac{P_{1} v_{1}}{T_{1}} \qquad C_{p_{1}} = \frac{1}{(4/3 v_{1}^{-1/3} - 1)} \quad (1.20)$$

La fracción de contactos ψ y las variables reducidas son :

$$\psi_1 = \frac{x_1U_1}{x_1U_1 + x_2U_2}$$
(1.21)

$$v_{sol} = \phi_1 v_1 + \phi_2 v_2$$
 (1.22)

$$U_{sol} = 1 / v_{sol} \qquad T_{sol} = \frac{v_{sol}^{1/2} - 1}{v_{sol}^{1/2}} \qquad (1.23)$$

$$C_{P_{p} \circ i} = \frac{1}{(4/3 v_{r \circ i}^{-1/3} - 1)}$$
(1.24)

De esta manera se calcularon los valores teóricos de V^E y C_P^E para los sistemas utilizados en este trabajo.

APENDICE II

TABLAS DE DATOS

A continuación se reportan los datos experimentales de V^E y C_F^E para los sistemas tipo poliéter lineal + molécula globular en función de la fracción mol del poliéter a la temperatura indicada. Se incluyen las incertidumbres relativas promedio para estas propiedades δV^E y δC_F^E calculadas en base al procedimiento descrito en la literatura [26]. En todos los casos $\delta x_1 < 0.0001$. Es importante señalar que en algunos datos se reporta C_F^E pero no V^E porque éstos presentan valores erroneos que, sin embargo, no afectan de manera importante a la C_F^E .

Tetraglima (G4) + 1,4 Dioxano (pDx) a 25 °C

Xı	V ^E (cm ³ /mol)	⊂ ¢ (J∕Kmol)
0.0977	0.06	-0.34
0.2723	0.07	-0.46
0.3986	0.07	-0.54
0.7487	0.03	
0.9040	0.01	-0.14

 $\delta V^E = 0.05$

ð⊈ = 0.10

Tetraglima (G4) + Ciclohexano (cC6) a 25 °C

Xı	V ^E (cm ³ /mol)	C₽ (J∕Kmol)
0.0485	0.58	-0.83
0.0997	0.74	
0.0998	0.81	-1.00
0.2056	1.17	
0.2485		-1.20
0.2530	1.24	-1.13
0.2955	1.25	
0.4093	1.30	-1.89
0.4649	1.29	
0.4935		-1.91
0.5070	1.30	-1.99
0.6030	1.14	
0.7446	0.94	-1.80
0.8145	0.61	
0.8980	0.40	-1.21
0.9018		-1.01
0.9077	0.28	

 $\delta V^E = 0.01$

 $\delta C_p^E = 0.03$

Tetraglima (G4) + 2,2,4 Trimetilpentano (rCs) a 25 °C

Xı	V ^E (cm ³ ∕mol)	C₽ (J∕Kmol)
0.0995	0.24	-0.61
0.2520		1.61
0.3995	0.60	2.23
0.5043	0.53	1.64
0.7526		-0.53
0.9030	0.15	-0.86
	$\delta V^{E} = 0.01$	$\delta C_{p}^{E} = 0.03$

Tetraglima (G4) + Benceno (C6H6) a 25 °C

Xı	V ^E (cm ³ /mol)	CF (J/Kmol)
0.0966	-0.07	
0.2497	-0.13	1.60
0.4014	-0.14	1.37
0.5036	-0.15	1.2 9
0.7678	-0.05	
0.9037		0.68

 $\delta V^E = 0.03$ $\delta C_P^E = 0.04$

Tetraglima (G4) + 2.2 Dimetilbutano (rC6) a 25 °C

Xı	V ^E (cm ³ /mol)	C₽ (J∕Kmol)
0.0985	-0.66	-0.80
0.2505	-0.26	0.66
0.4049		1.17
0.5065	-0.17	0.20
0.7595	-0.11	-0.95
0.9057	-0.11	-0.56

 $\delta V^{E} = 0.05$

 $\delta C_{p}^{E} = 0.06$

Tetraglima (G4) + Tetracloruro (CCl4) a 25 °C

Xı	V ^E (cm ³ /mol)	C ^E (J/Kmol)
0.1000	-0.36	1.22
0.2735	-0.62	2.24
0.7486	-0.71	1.55

 $\delta C_p^E = 0.02$ av^E = 0.01

Tetraglima (G4) + Ciclohexano (cCs) a 40 °C

Xı	V ^E (cm ³ /mol)	C ^E (J/Kmol)
0.1000	0.81	-0.97
0.2662	1.22	-1.72
0.4168	1.42	-2.20
0.7565	0.84	-2.24
0.9091	0.33	-0.84

 $\delta V^E = 0.01$

 $\delta C_{p}^{E} = 0.03$

Tetraglima (G4) + Ciclohexano (cC6) a 17.5 °C

Xı	V ^E (cm ³ /mol)	C∰ (J∕Kmol)
0.0998	0,69	-0.33
0.2530	1.06	-0.26
0.4067	1.13	-1.17
0.4947		-1.83
0.7609	0.56	-0.90
0.9045	0.25	-0.49

 $\delta V^E = 0.01$ $\delta C_P^E = 0.13$

ESTA TESIS NO DEBE Salir de la biblioteca

Monoglima (Gi) + Ciclohexano (cCs) a 25 °C

Xı	V ^E (cm ³ /mol)	Cf (J/Kmol)
0.0906	0.40	-1.04
0.2480	1.00	-1.67
0.4070	1.21	-1.89
0.5061	1.24	-1.90
0.7552	0.89	-1.49
0.9009	0.42	-0.87

 $\delta V^{E} = 0.01$ $\delta C_{E}^{E} = 0.02$

Diglima (G2) + Ciclohexano (cCs) a 25 °C

Xı	V ^E (cm ³ /mol)	ري (J/Kmol)
0.1029	0.61	-1.24
0.2572	1.17	-1.66
0.4063	i.36	-1.77
0.5104	1.34	-1.78
0.7582	0.87	-1.51
0.9105	0.38	~0.84

δV^E = 0.01

8C = 0.03

Triglima (G3) + Ciclohexano (cC4) a 25 °C

Xı	V ^E (cm ³ /mol)	¢ (J∕Kmol)
0.1041	0.78	-0.98
0.2535	1.41	-1.03
0.4045	1.13	-1.74
0.5023	1.29	-1.87
0.7695	0.93	-0.98
0.8984	0.37	-0.61
	δV ^ε = 0.01 δ	ca = 0.04

Bothorei, P.; Clemént, C. & Mareval, P. C.R.Acad.Sci.
 264 658 (1967).

[2] Patterson, G.D. & Fiory, P.J. J.Chem.Soc., Faraday Trans II 68 1098 (1972).

[3] Bhattacharyya, S. N. & Patterson, D. J.Phys.Chem. 83
 2979 (1983).

[4] Battacharyya, S.N.; Costas,M.; Patterson, D. & Tra, H.V. Fluid Phase Equil. 20 27-45 (1985).

[5] Costas, M.; Bhattacharyya, S. N. & Patterson, D. J.Chem.Soc., Faraday Trans 181 387 (1985).

[6] Prigogine, I. "The Molecular theory of solutions" North-Holland Pub.Co. Amsterdam (1957).

[7] Battacharyya, S.N. & Patterson, D. J.Solution Chem. 9 247 (1980).

[8] Tardajos, G.; Aicart, E.; Costas ; M. y Patterson, D. J.Chem.Soc., Faraday Trans I 82 2977 (1986).

[9] Patterson, G. D. & P. J. Flory J.Chem.Soc., Faraday Trans 11 68 1111 (1972).

[10] Deimas G. y N. T. Thanh J.Chem.Soc., Faraday Trans 11 <u>71</u> 1171 (1975).

[11] Trejo,L.M. Tesis de Maestría. Facultad de Química, UNAM (1990).

[12] Kehiaian, H.V. et al Fluid Phase Equil. <u>46</u> 131 (1989).
[13] Kehiaian, H.V. et al J.Chim.Phys. 68 922 (1971).

[14] a) Grayson, M. & Eckroth, D. "Kirk Othmer Encyclopedia of Chemical Theonology" 3rd ed. Vols. 9,11,18. John Wiley & Sons New York, U.S.A. (1980).

b) Budauri, S. "The Merck Index" 10th ed. Merck & Co., Inc. Rahway, N.J. U.S.A. (1989).

[15] Picker, P.; Tremblay, E. & Jolicoeur, C. J.Solution Chem. 2 377-384 (1974).

[16]

 Picker, P.; Leduc, P.A.; Philip, P.R. & Desnoyers,
 J.E. J.Chem.Thermodyn. 3 631-642 (1971).

b) Picker, P. Canadian Research & Development 11 11-16 (1974).

[17] IUPAC Commission on Atomic Weights and Isotopic Abundances 1985 Pure Appl. Chem. 58 1677 (1986).

[18] Riddick, J.A. & Bunger, W.G. "Organic Solvents" en "Techniques of Chemistry" Vol. II Weissberger, A. (ed) Wiley-Interscience, Mew York U.S.A 1970.

[19] Mraw, S.C. & Naas-O'Rourke, D.F. J.Chem.Thermodyn. 8 411 (1976).

[20] Battacharyya, S.N.; Trejo Rodriguez, A.; Andreolli, L. & Patterson, D. Int.Data Ser.Selec.Data Mixtures, Ser.A <u>1</u> 44-50 (1982).

[21] Rastogi, and Raghunath, P.; Indian J. Chem. 8 (6) 541-543 (1970).

[22] Costas, M. and Patterson, D. Journal of Solution Chemistry Vol. 11 808-821 (1982).

[23] Walsh, D. J.; Rostami, S. Makromol Chem. <u>186</u> 159-171 (1985).

[24] Jawad, K. H. and Colin, B. J.Chem.Soc.Faraday Trans I <u>79</u> 2695-2704 (1983).

[25] Patterson, D. & Delmas, G. Discuss. Faraday Soc. 49 98 (1970).

[26] Oda, Berta "Introducción al Anàlisis Gráfico de Datos Experimentalea" Facultad de Ciencias UNAM (1987).