Universidad Nacional Autónoma de México

Facultad de Química División de Estudios de Posgrado

Estudio de la polimerización aniónica de butadieno en solventes alifáticos utilizando iniciadores alquil litiados, bajo condiciones noisotérmicas, no-adiabáticas.

TESIS

que para obtener el grado de Maestría en Ingeniería Química

(Procesos)

PRESENTA

Erick Gerardo Torres Gutiérrez

México D.F., Septiembre de 1990

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. INDICE

			INDICE			
					14.000	
Indice					•••••	1
<i>I</i> .	Resun	en				3
	Abstra	ct			•••••	4
П.	Introd	ıcción			••••••	5
III.	Objeti	ivos		•••••	8	
IV.	Antec	d e ntes			******	10
	IV. 1	Compuestos Org	anolitiados		******	11
		IV.1.1 Comporte	amiento de los compuestos c	organolitiados	••••••	11
		IV.1.2 Clasificad	ción de los compuestos orga	nolitiados		11
		TV.1.2.1	Grupo А			12
		IV.1.2.2	G пиро В		•••••	12
		IV.1.3 Agregació	in de especies organolitiadas			13
		IV.1.4 Reaccion	es de compuestos organolitiad	los		14
		IV.1.5 Mecanism	nos			14
		IV. 1.5.1	Grupo A. Iniciadores	Alquil Litiados	******	14
		IV.1.5.2	Grupo B. Pollmeros A	Iquil Litiados		15
	IV.2	Iniciación			••••••	17
		IV.2.1 Mecanisn	nos de la Reacción de Inicia	ción		17
	TV.3	Propagación				20
		IV.3.1 Velocidua	l de Propagación			20
		TV.3.2 Cinética	de las polimerizaciones inici	iadas por		
		alquit liti	iados			22
	IV.4	Distribución de	Pesos Moleculares			
		IV.4.1 Peso Mo	lecular y Distribución de pes	os		
		molecular	res		*****	26
		IV.4.2 1	ndices de Heterogeneidad er	1 polimerización		
		a	miónica		******	29
И.	Model	os de Polimerizació	5n Aniónica			31
	V.I	V.1 Homopolimerización Aniónica de Butadieno				31
	V.2	2 Modelo de la Homopolimerización Aniónica de Butadieno en solución				
		bajo condiciones	no-isotérnias, no-adiabática	5	•••••	32
		V.2.1 Metodo d	del reactor cuasi-adiabático			33
		V.2.1.1 I	Descripción de la Técnica			33

.

2				
		V22 Establecimiento de las ecuaciones del modelo		36
		V.2.2 Establecimiento de insciencións del modelo		37
		V.2.2.2 Mecanismo de Propagación		37
		V.2.2.3 Reacción de Iniciación		41
		V.2.2.4 Concentración del monómero		41
		V.2.2.5 Equilibrio Llauido-Vapor y constantes termofísicas		43
•		V.2.2.6 Obtención de la Distribución de Pesos Moleculares		44
		V.2.2.7 Polidispersidad		47
	V.3	Determinación del comportamiento térmico del reactor		49
	V.4	Obtención de Cinéticas de Propagación Aparentes		50
	V.5	Obtención de Cinéticas de Iniciación Aparentes		53
	V.6	Estrategia de Desarrollo del modelo		59
VI.	Desarr	ollo Experimental	*****	66
	VI.1	Equipo y Procedimiento		66
	VI.2	Reactivos	*** ***	67
	V1.3	Caracterización del Polímero		68
	VI.4	Descripción del Trabajo Experimental	*****	68
VII.	Resulta	ados		75
	VII.1	Resultados Experimentales	*****	75
	V11.2	Determinación del Comportamiento Térmico del Reactor		87
	VII.3	Obtención de Cinéticas de Propagación Aparentes		91
	V11.4	Obtención de Cinéticas de Iniciación Aparentes		102
	V11.5	Comparación del Modelo con Resultados Experimentales		111
		VII.5.1 Perfiles de Temperatura, Presión y Polímero formado		111
		VII.5.2 Distribución de Pesos Moleculares y Polidispersidad		117
V111.	Discus	ión de Resultados		127
IX.	Conclu	isiones	•••••	131
Х.	Bibliog	Tafía		135
Apénd	lice I.	Caraclerización por GPC	*****	139
Apéna	lice II.	Listado del Programa		153

Estudio de la polimerización aniónica de butadieno en solventes alifáticos utilizando iniciadores alquil litiados, bajo condiciones no-isotérmicas, no-adiabáticas.

I. Resumen

En este trabajo se determinaron las constantes aparentes de iniciación y propagación de la cinética de polimerización aniónica de butadieno en condiciones no-isotérmicas, bajo condiciones de reacción por lotes. Asimismo, haciendo uso de éstas constantes, se modeló el sistema de polimerización aniónica de butadieno en solventes alifáticos, iniciada por compuestos alquil litiados bajo condiciones noisotérmicas, no-adiabáticas. El modelo propuesto reproduce los perfiles dinámicos experimentales de Temperatura, Presión, Concentración de Polímero Formado, Concentraciones de Butadieno e Iniciador remanente, Polidispersidad y Distribución de Pesos Moleculares de la polimerización de butadieno para el rango de temperaturas de reacción de 68-105 °C, y relaciones iniciador/monómero de 11.02E-5 a 22.04E-4 mol/mol. El solvente utilizado fúe el ciclohexano y el iniciador fúe n-butil litio.

Las constantes de reacción se determinaron en un reactor no-adiabático en el que previamente se cuantificaron las pérdidas térmicas ocasionadas por transferencia de calor. El conocimiento de dichas pérdidas permite corregir la temperatura de reacción observada y transformaria en la temperatura que se obtendría si el medio de reacción estuviera térmicamente aislado (temperatura cuasi-adiabática). Esta consideración permitió obtener la conversión del monómero dado que el aumento en la temperatura cuasi-adiabática del medio de reacción es ocasionado exclusivamente por la alta exotermicidad de la reacción de polimerización de butadieno. El conocimiento de la conversión de monómero, proporcionó las constantes de propagación e iniciación. Abstract

4

l.

The apparent initiation and propagation constants of the anionic polymerization of butadiene kinetics, initiated by butyl lithium in aliphatic solvent under non-isothermal, batch conditions were obtained. Also, by using this constants the behavior of such polymerization was predicted accurately.

The proposed model predicts the experimental dynamic profiles of temperature, pressure, concentration of formed polymer, polidispersity, and molecular weight distribution for temperatures of reaction ranging from 68 to 105 °C and initiator/monomer ratios ranging from 11.02e-5 to 22.04e-4 mol/mol. The model also gives concentration of remaining butadiene and initiator.

The reactor constants were determined on a non-isothermal basis, by using a quasi-adiabatic temperature approach.

II. INTRODUCCION

La polimerización aniónica de dienos y estireno en solución iniciada por compuestos alquil litiados se caracteriza por las etapas de iniciación, propagación y la ausencia de etapas de desactivación ó terminación. La ausencia de ésta última etapa, así como de reacciones de transferencia, ha hecho que a éstos sistemas se les conozca como sistemas de polimerización "vivos" (living polymerization).

La determinación del comportamiento cinético de la homopolimerización aniónica de butadieno en solución utilizando como iniciador de reacción un compuesto alquil litiado, es una tarea difícil que por años se ha mantenido sin solución. Aunque existen estudios al respecto, todos ellos son bajo condiciones isotérmicas y no existe concenso con respecto al valor de los parámetros cinéticos, ni los órdenes de reacción involucrados. La interpretación de los resultados obtenidos ha sido realizada, a menudo, de manera difícil debido a un conocimiento insuficiente del comportamiento de los compuestos organolitiados, particularmente en soluciones muy diluídas (1°).

La reacción de polimerización aniónica de dienos y estireno implica la iniciación de la especie monomérica por medio de un compuesto organolitiado, esto es

$$R^*Li^+ + M \rightarrow P^*Li^+ \tag{1}$$

en donde :

R^{*}Li⁺ = compuesto organolitiado

6

M = especie monomérica

PLi⁺ = polímero activo

Asimismo, la reacción de polimerización que nos ocupa implica la propagación ó crecimiento de las cadenas activas formadas de acuerdo con la ecuación (1) anterior, lo cual se representa como

$$P_i L I^* + M \rightarrow P_{i+1} L I^* \tag{2}$$

en donde :

PjLI ⁺	 cadena polimérica 	activa que consti	a de j unidades i	monoméricas
М	= especie monomér	ica		
$P_{i+1}Li^+$	= cadena polimérica	activa que consta	a de j+1 unidades	monoméricas

Los mecanismos de iniciación y propagación bosquejados en las ecuaciones (1) y (2) caracterizan a las polimerizaciones aniónicas en solución, así como la ausencia de reacciones de transferencia y terminación (13°,26°). Las ecuaciones (1) y (2) precedentes son representaciones esquemáticas de los dos mecanismos principales en la polimerización aniónica, sin embargo, las reacciones de iniciación y propagación poseen un comportamiento mucho más complejo que el mostrado esquemáticamente en las anteriores ecuaciones.

La polimerización aniónica procede generalmente por un periódo de inducción, en el cual no existe un cambio apreciable en las condiciones del sistema; 'este período comprende simultáneamente a las reacciones de iniciación y de propagación de la polimerización, y se observa tanto bajo condiciones isotérmicas como no-ísotérmicas. Inmediatamente despúes del período inicial, el sistema sufre un período de propagación sin competencia de la reacción de iniciación, en donde se observan efectos autocatalíticos, esto es, la velocidad de aparición del polímero y la de desaparición del monómero aumentan bruscamenta y esto a su vez retroalimenta la cinética de dichos sistemas, provocando incluso que la velocidad de reacción se dispare. El periódo de inducción es complicado además por la presencia de complejos iniciador-iniciador, iniciador-monómero y polímero-iniciador, además de una competencia entre las reacciones de iniciación y propagación. A su vez, el período de propagación se ve afectado por asociaciones polímero-polímero.

La cinética de polimerización de monómeros de dienos conjugados y estireno con iniciadores alquil litiados ha sido extensivamente estudiada (13°,26°), bajo condiciones isotérmicas. Sin embargo no existen antecedentes de su estudio bajo condiciones no-isotérmicas, esto es, bajo condiciones de producción comercial. El propósito de éste trabajo es precisamente desarrollar un modelo del comportamiento de la polimerización aniónica de butadieno en solución bajo condiciones noisotérmicas, esto es, bajo condiciones de producción reales.

III. Objetivos

En este trabajo se pretende modelar la cinética de la polimerización aniónica de butadieno en solventes alifáticos, bajo condiciones de reacción por lotes, y comparar el modelo resultante contra datos experimentales. Estos datos experimentales serán obtenidos como parte de este trabajo, bajo condiciones no-isotérmicas. El modelo resultante debe entonces reproducir el comportamiento dinámico experimental de la reacción que nos ocupa bajo distintas condiciones. Esta condiciones, además de la no-isotermicidad de la reacción, son las siguientes:

a) Variación de la Temperatura de inicio de la reacción.- El modelo resultante de éste trabajo deberá predecir el comportamiento dinámico de la reacción de polimerización de butadieno bajo distintas temperaturas de inicio de la reacción.

b) Variación de la Cantidad de iniciador alquil litiado presente al inicio de la reacción.- El modelo propuesto permitirá conocer el comportamiento del sistema para distintas cantidades iniciales de iniciador.

c) Variación de la Cantidad de iniciador alquil litiado presente durante el curso de reacción.-La polimerización de butadieno en presencia de iniciadores alquil litiados, al igual que otras polimerizaciones antónicas, presenta un decremento en la cantidad de iniciador alquil litiado (n-butil litio) conforme se avanza en el curso de la reacción. La cantidad del iniciador alquil litiado remanente puede modificarse mediante la adición de pequeñas cantidades del mismo durante el curso de la reacción. El modelo deberá ser capaz de reproducir el comportamiento cinético de la reacción que nos ocupa bajo dichas condiciones. En otras palabras, el modelo obtenido reproducirá la presencia múltiple de las reacciones de iniciación y propagación.

La comparación del modelo con los resultados experimentales se realizará para las siguientes variables

dinámicas del sistema: Temperatura y Presión del medio de reacción, Concentración del polímero formado, Distribución de pesos moleculares y Polidispersidad. Adicionalmente, el modelo proporcionará la Concentración del monómero (butadieno) y del iniciador (n-butil litio) remanentes.

IV. ANTECEDENTES

Además de la importancia industrial de la reaccion de polimerización aniónica de butadieno, este sistema es atractivo porque es relativamente sencillo, ya que es homogéneo, sin reacciones de ni reacciones de terminación y bajo ciertas condiciones los pasos de iniciación y transferencia. propagación pueden ser estudiados separadamente. Por otro lado, dichos estudios son complicados por algunas dificultades. La concentración del compuesto alquil liliado en un sistema típico de polimerización es extremadamente bajo, usualmente en el rango 10⁴ a 10² molar (13*). Trazas de impurezas en el sistema hacen difícil asegurar la concentración exacta del iniciador, y los productos de reacción con las impurezas a menudo afectan la cinética de la polimerización (34*,35*,37*). Algunos otros fenómenos de consideración son el aue la velocidad de aparición del polímero-litio, la velocidad de la reacción de polimerización y la temperatura de reacción para un sistema no-isotermo sean funciones sigmoidales con el tiempo, con un período de "inducción" inicial. Aunque diversos investigadores han obtenido éste tipo de datos para los sistemas n-Butil litio-butadieno-ciclohexano (2°) y para n-Butil litio-isopreno-ciclohexano (3°), la causa del período inicial de inducción no es conocida con certeza, actualmente. Después de éste período inicial lento, la velocidad de aparición del anión polimérico muestra una valor temporalmente estacionario, antes de declinar conforme el monómero se ha consumido.

El propósito de ésta sección es enlistar los diversos factores que contribuyen en la cinética de polimerización aniónica en solución de dienos y estireno iniciada por compuestos alquil litiados y que hacen que la detrminación de dicha cinética sea compleja. Estos factores son:

- Fenómenos de asociación-disociación en compuestos organolitiados

- Influencia de la asociación de especies reaccionantes en la reacción de iniciación

- Influencia de la asociación de especies reaccionantes en la reacción de propagación

IV.1 COMPUESTOS ORGANOLITIADOS

IV.1.1 Comportamiento de los compuestos organolitiados.

Para una discusion de la cinética de las polimerizaciones iniciadas por alquil litiados es fundamental que se considere el estado actual del conocimiento concerniente a la naturaleza de los compuestos iniciadores, especialmente en aquellos solventes en los cuales existen datos cinéticos confiables. Basados en estimaciones de electronegatividad, el enlace carbono-litio debería ser 43% iónico, sin embargo es aparente que ésta afirmación es una sobre-simplificación y puede guardar poca relación con la verdadera naturaleza del enlace carbono-litio (13°). Factores tales como el cambio en el radical del compuesto organo litiado, el solvente empleado ó el rango de concentración, pueden afectar drásticamente el enlace y la reactividad de las especies litiadas (13°,26°,66°). Por ésta razón, se examinará algo de la información disponible acerca de éstos factores.

IV.1.2 Clasificación de los compuestos organolitiados

Para propósitos de nuestro estudio, los compuestos organolitiados van a ser clasificados en dos amplios grupos, de acuerdo a la naturaleza del grupo orgánico. 12

Aquellos compuestos con grupos orgánicos que no se espera estabilicen carbaniones incipientes, formados por disociación del enlace carbono-litio. En este grupo incluiremos los alquil litiados simples tales como el metil litio, los isómeros de butil litio, etc.; todos los cuales son compuestos covalentes aparentemente.

Con la excepción de metil litio, estos compuestos son solubles en solventes hidrocarbonados y en éteres; además poseen presiones de vapor muy bajas en el estado puro.

IV.1.2.2 Grupo B.

Aquellos compuestos con grupos orgánicos capaces de proporcionar una estabilización por resonancia significativa de su carbanión correspondiente. Este grupo incluye bencil litios, aril litios, etc.. Tales compuestos son usualmente sólidos infundibles, solubles sólo en solventes básicos. Las excepciones son compuestos de poliestirito y polidienito, resultantes de la polimerización de estireno y dienos. El concenso actual es que tales compuestos son escencialmente iónicos, aunque el grado de asociación de los pares iónicos puede variar de un solvente a otro.

La estructura y enlaces del grupo A es más o menos entendida, al menos en el estado puro y en solventes alifáticos. Es claro que estos alquil litiados forman agregados estables en los cuales el orden del enlace carbono-litio es maximizado por la utilización de todos los orbitales de valencia del litio (1°). La información actual indica que sólo son permitidos los grados pares de asociación y, mas aún, las formas tetraméricas y hexaméricas son preferidas en la mayoría de los casos. La geometría del tetrámero ha sido deducida para el etil litio (1°) por rayos X de datos cristalográficos y se muestra esquematicamente en la Figura 1. Los átomos de litio forman un tetraedro con un grupo alquilo en cada cara (la cara posterior no se muestra).

IV.1.3 Agregación de especies organolitiadas

Es claro que el enlace carbono-litio está maximizado en el tetrámero por la interacción de cada átomo de carbono con tres átomos de litio. Más aún, es significativo que la carga residual sobre el carbono en ésta estructura es sustancialmente menor que la esperada para la forma dimérica ó monomérica. El decremento en la carga neta en el átomo de carbono es probablemente un factor en favor de la agregación y se esperaría que decrementara la nucleofilidad de los grupos alquilos (1°,7°,13°,14°,15°). Así, la reactividad de los agregados, sin incluir los posible efectos estéricos, debería de esperarse que se incrementara en el orden tetrámero < dímero < monómero. Esto es, esperaríamos que los alquil litiados más disociados fueran los más reactivos, lo cual está generalmente de acuerdo con la evidencia disponible (13°).

La Figura 1 también muestra de manera aproximada las posibles repulsiones estéricas experimentadas por grupos alquilo ramificados en un tetrámero alquil litiado. Los modelos moleculares sugieren que las ramificaciones de alquil litiados secundarios en el carbono β deberían poseer un severo impedimento estérico (8°,11°,13°). De ésta forma debería esperarse que el sec-butil litio se disociara más que el n-butil litio, y la alta reactividad del primero bien puede reflejar esta tendencia (13°).

IV.1.4 Reacciones de compuestos alquil litiados

Mediciones cinéticas han mostrado que las olefinas conjugadas se adicionan directamente a agregados de alquil litiados en solventes alifáticos (2°,3°,66°). Las curvas de velocidad de reacción son sigmoidales y sus formas dependen del, grado de asociación, naturaleza de la olefina, y de un comportamiento autocatalítico atribuído al aducto benzyl- ó alil-litio generado. Las velocidades son generalmente mayores con olefinas que proveen máxima resonancia en el aducto y con alquil litiados que existen en estados de agregación menores (8°,11°,13°).

IV.1.5 Mecanismos

IV.1.5.1 Grupo A. Iniciadores alquil litiados

La relación del tamaño del agregado con la reactividad resulta de comparaciones de hexámeros y tetrámeros. Los isómeros ramificados ó secundarios favorecen los agregados pequeños (11°). Estos son inherentemente más reactivos debido a repulsiones estéricas en los agregados y a la menor acidez de los isómeros. Tal actividad altera la forma de las curvas cinéticas al reducir el periódo de inducción. Sin embargo, el caracter sigmoidal de las mismas persiste. Esto ha sido interpretado como evidencia de que el comportamiento de ambos tipos de agregados es fundamentalmente el mismo.

Lo anterior contrasta con el mecanismo de disociación simple propuesto para los solventes aromáticos, los cuales distinguen sus cursos de reacción por un ataque rápido sin periódos de inducción, por lo que se ha propuesto el monómero como la especie activa, y se ha supuesto que existen concentraciones bajas de monómero en equilibrio con los agregados, lo cual constituye un tema de controversia, ya que se han reportado cambios en el número de especies agregadas con la concentración y el solvente empleado, pero tan sólo de 6 a 4 en alquilos ramificados $(1^{\circ}, 7^{\circ}, 13^{\circ}, 14^{\circ}, 15^{\circ}, 26^{\circ}, 60^{\circ}, 61^{\circ})$, por lo que se ha sugerido el dimero como agente que controla el intercambio (1°) . Contrastando con la propuesta del monómero, existe evidencia física (8°) soportando la especie dimérica. Actualmente, el único derivado alquílico descrito es el mentil litio, el cual es dimérico en solventes alifáticos y aromáticos (8°) . Este compuesto, el cual es un ramificado β con un grupo isopropilo, exhibe una reactividad "anormal" en polimerizaciones de dienos en solventes alifáticos y aromáticos, al presentar una ausencia del período de inducción en las reacciones en las que participa como iniciador, y por tanto una alta velocidad de polimerización (11°)

De lo anterior se desprende que las altas velocidades de polimerización deben hallar soporte en la baja agregación del mentil litio (8°). Lo que esto subraya, es la importancia en el curso de reacción del proceso de intercambio ó disociación de las especies mayormente agregadas a las menormente agregadas. Este proceso es rápido aún en solventes alifáticos para la mayoria de los alquil- ó alillitios (12°).

IV.1.5.2 Grupo B. Polímeros alquil litiados.

La polimerización aniónica de monómeros hidrocarbonados, particularmente en solventes hidrocarbonados, involucra asociación de los extremos activos de las cadenas. Aunque existen algunos casos en que no parece haber acuerdo con respecto al grado de asociación. Así, por ejemplo, mientras que el poliestireno parece ser dimérico en solución de ciclohexano (2°) y en benceno (4°), en el caso del poliisoprenil litio se le ha reportado como dimérico (5°) y como tetramérico (3°). El polibutadienil litio se ha reportado como dimérico (5°) y hexamérico (2°), sin embargo existe una controversia considerable con respecto a éste número de asociación (29°). El orden fraccional normalmente considerado en la cinética de las cadenas activas es usualmente relacionado con su grado de asociación. Así el orden 1/4 encontrado para polímero activo en la polimerización de isopreno y butadieno con iniciadores basados en litio, es atribuído a la asociación tetramérica en equilibrio con

pequeñas concentraciones de cadenas libres los cuales son agentes cinéticamente activos. La ruta más probable para la disociación es via la forma dimérica (12*).

Como la constante de disociación cambia con el peso molecular, y ésta aparece en la ecuación cinética, se ha concluído que existe una diferencia en la velocidad de propagación entre polímeros activos de bajo peso molecular y de alto (12°).

La naturaleza del enlace carbono-litio en el butil litio (Gnipo A) es aún dudosa, pero es bastante posible que tenga una naturaleza menos iónica que el polibutadienil ó poliestiril litio (Grupo B), dado que existe una posibilidad menor de deslocalizar la carga. El hecho de que se encuentre altamente asociado en solventes hidrocarbonados indica la presencia de un enlace altamente polar. En las reacciones de polimerización de dienos y estirenos iniciada por alquil litiados sería de esperarse que existiera una resistencia a formar el altamente polar par iónico, carbanión polimérico-litio, mediante reacción bimolecular normal homogénea en un solvente alifático hidrocarbonado. El cambio a benceno como solvente, promueve la velocidad de reacción por un factor de aproximadamente dos órdenes de magnitud en el caso de estireno. De ésta forma se sugiere que la reacción de polimerización es hasta cierto punto autocatalítica dado que, la presencia del recién formado carbanión promueve la misma. La presencia deliberada ó fortuita de sales de litio (carbanión) también tiene un efecto promotor. Bajo éstas circunstancias la cinética de la reacción de polimerización atiento sy estireno con iniciadores alquil litiados en solventes alifáticos no-polares, debería ser compleja y los órdenes de reacción, empiricamente determinados a partir de velocidades máximas, de no sencilla significancia.

En resumen, podemos caracterizar los compuestos organolitiados como compuestos escencialmente covalentes polares con preferencia a la agregación a través de "multicentros" de enlaces carbono-litio, los cuales pueden disociarse parcialmente bajo la influencia de compuestos básicos ó cuando el radical orgánico puede estabilizar convenientemente la gran carga negativa sobre el átomo de carbono en unidades monoméricas.

IV2 INICIACION

IV.2.1 Mecanismos de la Reacción de Iniciación

Las velocidades de iniciación exhibidas por las especies organolitiadas están relacionadas, al menos en parte, a la fuerte asociación (dimérica a hexámerica) de éstos compuestos en solventes hidrocarbonados.

Algunos investigadores (13°,17°,26°) han intentado relacionar los ordenes de reacción observados en estudios de velocidad de iniciación a los recíprocos del estado de asociación de iniciador organolitiado, basados en el concepto de que sólo las especies organolitiadas no-asociadas reaccionan con él monómero. Así, por ejemplo, los órdenes de las reacciones de iniciación para el n-butil litio se encuentran entre 1/6 y primer orden (13°,26°). Sin embargo las evidencias indican que los iniciadores alquil litiados, reaccionan con olefinas en solventes alifáticos sin disociación previa a la forma monomérica (1°,2°,3°,6°,7°,11°,14°,15°). Una desventaja adicional del supuesto de disociación completa es que no toma en cuenta la existencia de entrecruzamiento (complejos químicos) que se sabe existen entre el poli(alil) ó (estiril) litio y el compuesto alquil litiado (16°).

Por lo tanto, no es posible considerar que la forma disociada de las especies organolitiadas represente la única especie reactiva.

Brown (1°,7°,14°,15°) ha propuesto varios mecanismos, según los cuales se puede justificar la existencia de los órdenes fraccionales que se han observado experimentalmente (13°,17°,26°). Sus conclusiones muestran que se pueden obtener órdenes fraccionales de las reacciones de iniciación cuando se considera que las especies asociadas organolitiadas actúan como entidades reactivas.

De ésta manera, el orden y velocidad de éstas reacciones de iniciación pueden ser influenciadas por la cantidad y grado de asociación del iniciador y del complejo iniciador-polímero, así como la concentración (30°,31°), el tipo de solvente y el grupo hidrocarbonado que acompaña al compuesto organo litiado (10°). Dado que no se conoce nada acerca de la reactividad del iniciador en éstos complejos, actualmente es imposible definir el rol de dicho complejo en la cinética de iniciación ó de propagación. Sin embargo, es evidente que las reacciones de las especies alquil litiadas con monómero no polares, en soventes hidrocarbonados, constituyen sistemas cinéticos muy complejos.

Mientras que la medición de la propagación en ausencia de la iniciación es a menudo posible, como se presentará en la sección siguiente, los opuesto, esto es, la medición de las velocidades de iniciación en ausencia de la reacción de propagación, no es fácil de llevarse a cabo. En la práctica, han surgido dos métodos para medir las velocidades de iniciación; el primero consiste en determinar la cantidad de hidrocarburo producido por hidrólisis del compuesto alquil litiado remanente (9°,10°), y el otro consiste en la medición espectrofotométrica del incremento del polímero-litio (20°).

En el caso de que la reacción de iniciación fuera simplemente :

$$RLi + M \to P'Li^+ \tag{1}$$

entonces, cualquiera de éstos dos métodos pennitirá una determinación precisa de la velocidad de ésta reacción. En realidad, el conjunto de reacciones que ocurren al mezclar iniciador y monómero son mucho más complejas. Se sabe que, en sistemas iniciados por compuestos alquil-litiados, el iniciador, así como el aducto, existen como especies agregadas. Mas aún, las velocidades de propagación son a menudo tan ó más rápidas que las velocidades de iniciación. El resultado global es que muy pronto, después de mezclar, uno ésta observando una combinación de las reacciones de iniciación y propagación que involucra una mezcla muy compleja de iniciador y compuestos polimero-litio, en varios grados de asociación. Para ilustrar el problema de interpretar las, así llamadas, velocidades iniciales, se

presentan brevemente algunas de las reacciones que pueden ocurrir en el sistema monómero (M) y alquil litio (RLi), :

Cambio en el grado de asòciación:

 $\frac{K_2}{(n/x)(RLi)_x} = (RLi)_n$

Iniciación vía especie alquil litiada agregada:

$$k_n \\ (RLi)_n + M \rightarrow R_{n-1}PLi_n$$

Propagación vía especie alquil litiada agregada:

$$k_{y}$$

$$R_{n-y}P_{y}Li_{n} + M \rightarrow R_{n-y-1}P_{y+1}Li_{n}$$

Asociación-Disociación de polímero activo:

 K_5 $R_{n-2}P_2Li_n = R_{n-2}Li_{n-2} + P_2Li_2$

 K_{6} $R_{n,2}P_{2}Li_{n} \cong 2RPLi_{2} + R_{n,4}Li_{n,4} \qquad (6)$

Por lo tanto, para obtener la expresión de la velocidad de desaparición de RLi, o de la velocidad de aparición del aducto, PLi, se requiere una combinación de las ecuaciones (3) y (4), y otros posibles pasos de adición que involuctan diversos complejos mezciados en varios niveles de agregación :

(2)

(3)

(4)

(5)

$$x = 1$$

$$-d''(rLi)''/dt = \sum k_n (RLi)_n (M) + \sum k_y (R_{n-y} P_y Li_n) (M) + ...(7)$$

$$n = 1 \qquad y = 1$$

en donde "RLi" y "PLi" representan la concentración total de iniciador y polímero-litio en cualquier nivel de complejación y asociación. Los equilibrios representados en las ecuaciones (2), (5) y (6) son solamente tres de las posibles reacciones de disociación que pueden ocurrir en el sistema. Es claro que la reactividad relativa, hacia la adición de monómero, de cada una de las especies involucradas en tales equilibrios pueden ser diferentes, como de hecho se ha demostrado (12°). Así, las velocidades de las reacciones (2), (5) y (6), cuando se comparan con las reacciones de adición y propagación, deberían influenciar marcadamente el patrón cinético del sistema, siendo tales velocidades una función del solvente, la naturaleza del iniciador y del aducto. El resultado neto será una imagen cinética altamente complicada que puede ser resuelta sólo mediante algunas simplificaciones, como pueden ser, por ejemplo, la consideración de cinéticas promedio ó aparentes.

IV3 PROPAGACION

IV.3.1 Velocidad de Propagación

La reacción de propagación es el paso de crecimiento de las cadenas activas, que trata de la adición de un monómero a la cadena activa de polímero. Mientras que la cadena activa de polímero es, ensimisma, un compuesto organolitiado, no es enteramente el mismo que el iniciador. Además del hecho de que el polímero litiado puede ser de muy alto peso molecular, es en sí un compuesto alil ó bencil litio el cual se cree que puede existir como un complejo de resonancia estable (13°,26°) (Figura 2).

Es razonable esperar que la adición de un monómero a un alquil litiado (iniciación) y a un complejo

de resonancia alílico (propagación), no siga exactamente el mismo curso y velocidad.

Para estudiar la reacción de propagación, uno debe ser capaz de aislar cinéticamente el paso de propagación del de iniciación. En otras palabras la reacción debe ser llevada a cabo en ausencia completa de iniciador remanente y con conocimiento preciso de la cantidad de las cadenas poliméricas activas.

Generalmente se han empleado dos métodos para aislar la reacción de propagación. Un método (4°,15°,16°,20°) es el uso de iniciador en "semilla", el cual puede ser preparado pre-reaccionando el monómero con un iniciador tal como etil litio ó butil litio. La técnica de "sembrado" es algunas veces cuestionable (32°), ya que el consumo completo del iniciador mediante la pre-reacción con el monómero es difícil de completar y a menudo se requiere una cantidad grande de monómero (13°).

El segundo método (9°,10°) esta basado en el uso de sec-butil litio como iniciador, el cual reacciona 30 a 60 veces más rápido que el n-butil litio. De ésta manera, la medición de la velocidad de desaparición del monómero, es realmente la medición de la verdadera velocidad de propagación (13°,26°). Cabe hacer notar que ninguno de los dos métodos anteriormente descritos fueron utilizados en éste trabajo, como se verá mas adelante. IV.3.2 Cinética de las polimerizaciones iniciadas por alquil litiados y efectos de asociación

La medición de la cinética de propagación ha mostrado que la reacción es de primer orden en la concentración de monómero. Esta relación se mantiene para butadieno, isopreno y estireno en solventes tales como heptano, ciclohexano, benceno y tolueno (13°,26°). El orden de la velocidad de propagación para los tres monómeros se ha encontrado como estireno > isopreno > butadieno, y la cinética de la reacción de propagación fué marcadamente afectada por el tipo de solvente presente (19°,24°,25°) siendo el orden de reacción como tolueno > ciclohexano > hexano . Se ha demostrado (19°,22°,23°) que la polimerización iniciada por compuestos alquil litiados de monómeros tales como el estireno, butadieno e isopreno en solventes tales como benceno, hexano y THF muestran una ausencia generalizada de la reacción de terminación.

Para aquéllos monómeros que no ofrecen oportunidad de reacciones colaterales (side-reactions), una vez que la iniciación se ha completado, el sistema consiste de un número finito y constante de cadenas poliméricas y un suministro decreciente de monómero. Así, la velocidad de polimerización debería ser directamente proporcional al número de cadenas poliméricas crecientes, esto es, la carga inicial del iniciador (13°,26°,67°). Para las polimerizaciones de isopreno y butadieno en éteres (18°,19°), se ha encontrado que la reacción de propagación muestra una dependencia de primer orden en la concentración de cadenas crecientes. Esto es una indicación convincente de que la especie final de la cadena activa, posee una sola forma, por ejemplo, pares iónicos (19°,24°,25°,26°). Por otro lado, en solventes hidrocarbonados, este no se ha encontrado que sea el caso para estireno, isopreno ó butadieno, para los cuales la cinética muestra una mucho mavor complejidad.

La velocidad de propagación en la polimerización de estireno en benceno, tolueno ó ciclohexano, ha mostrado un orden 1/2 para poliestireno "activo" por varios grupos (2°,5°,20°), el cual ha sido explicado por un equilibrio de asociación-disociación de dímeros en pares iónicos (4°)

Sobre ésta base, Morton (19*) concluye que la sorprendentemente alta energía de activación encontrada

en la propagación de isopreno y butadieno, incluye, el calor de disociación de los pares iónicos asociados y que, en ausencia de cualquier conocimiento preciso acerca de éste equilibrio, es imposible determinar la constante de propagación absoluta para estos sistemas.

La cinética de orden 1/2 ha sido explicada (13°,26°) considerando que en la dimerización el poli(estiril) litio no asociado se propaga con una velocidad más rápida que la forma dimérica, asi:

$$k_{2}$$

$$PLi^{+} + M \rightarrow PMLi^{+} \qquad (8)$$

$$k_{3}$$

$$PLi^{+} + PLi^{+} \rightleftharpoons (P_{2}Li_{2}) \qquad (9)$$

$$k_{\cdot 3}$$

en donde PLi^+ y $PMLi^+$ son polímero activo-Li ,no asociado, M es el monómero y (P_2Li_2) es polímero asociado. Aquí k_2 es la constante de la velocidad de propagación, k_3 y k_3 son las constantes para la reacción de formación y descomposición de la reacción de asociación para dos especies semejantes. Considerando que la ecuación (9) está en equilibrio, se tiene

$$k_3/k_3 = (P_2 Li_2)/(P^2 Li^+)^2 = K_3$$
 (10)

$$(P_2 Li_2) = K_3 (P' Li^*)^2 \tag{11}$$

De un balance de sitios activos la concentración inicial, n_0 de RLi es,

$$n_0 = (P'Li^+) + 2 (P_2Li_2)$$
(12)

entonces

$$(P^{r}Li^{+}) = n_0 - 2 (P_2Li_2)$$

De las ecuaciones (11) y (13)

$$(P^{r}Li^{+}) = n_{0} - 2 K_{3} (P^{r}Li^{+})^{2}$$
(14)

$$(P'Li^{+}) = 1/4K_3 \quad ((1+8K_3n_0)^{1/2} - 1) \tag{15}$$

La velocidad de propagación R_p es

$$-(dM/dt) = k_2(PLi^+)(M)$$
 (16)

de las ecuaciones (15) y (16)

$$R_{\rm p} = k_2 / 4K_3 \quad (M) \quad ((1 + 8K_3 n_0)^{1/2} - 1) \tag{17}$$

Esta es la expresión general para la velocidad de propagación la cual puede ser reducida a la observada experimentalmente asumiendo que el término $8K_3n_0$ es grande (cuando n_0 es grande)

$$R_{\rm p} = k_2 / (2K_y)^{1/2} \quad (M) \quad (n_{\rm p})^{1/2} \tag{18}$$

a una concentración inicial de alquil litio extremadamente baja, $8K_{3}n_0$ es pequeño. Uno puede expresar la ecuación de velocidad aplicando la aproximación matemática $(1+A)^m = 1 + mA$. Por lo tanto,

 $R_{0} = k_{2}/4K_{3} (M) (4K_{3}n_{0}) = k_{2} (M)(n_{0})$ (19)

El hecho de que la dependencia de orden 1/2 sobre la concentración inicial de RLI, n_o sea aplicable

(13)

a concentraciones tan bajas como 10^{-5} molar, indica que el valor de K_3 es al menos de 10^{-5} . Un valor como éste de la constante de asociación implica que entre el 80 y 90% de las cadenas poliméricas se encuentran asociadas en la forma dimérica aún a concentraciones tan bajas como 10^{-5} molar ($13^{\circ}, 19^{\circ}$).

En contraste con el estireno, las cinéticas de propàgación de dienos son, con mucho, más complejas. Las mediciones para dienos en solventes alifáticos y aromáticos han indicado órdenes de reacción entre 1/4 y 1/6. Por analogía con el estireno, éste orden 1/4-1/6 fué utilizado para indicar la existencia de monómero de asociación 4-6 (4°), como efectivamente se ha encontrado (2°,5°). En general el polibutadienil litio se presenta en agregados mayores que el poliestiril litio (27°,29°).

El paso de propagación de butadieno ha sido estudiado en ciclohexano (2°) , en hexano $(5^{\circ}, 19^{\circ})$ y en ciclohexano y tolueno (21°) . Los resultados proporcionan una ecuación de velocidad que involucra potencias de 1/6 (2°) , 1/4 (5°) y 1/3 $(19^{\circ}, 21^{\circ})$ en la concentración de poli(butadienil) litio. La explicación que se ha dado acerca de las diferencias observadas $(5^{\circ}, 19^{\circ})$ es que el sistema puede ser fácilmente afectado por trazas de impurezas de reacción lenta ó sales de litio.

Aunque no es posible establecer definitivamente el orden cinético para la propagación de butadieno, de acuerdo con algunos autores (13*), es razonablemente seguro que éste es de bajo orden, con algún valor entre 1/3 y 1/6, lo cual no es consistente con el valor de 2, reportado para la asociación (5*). Morton (5*) ha expresado la opinión de que el número de asociación no necesariamente guarda alguna relación con el orden cinético de la reacción y concluye que la reacción de propagación para el isopreno y el butadieno no involucra un simple equilibrio asociación-disociación, aúnque tal mecanismo sea valido para el estireno. Mas aún, es posible considerar, en el caso de la polimerización de los dienos, que el monómero se compleja con el dímero no-reactivo de polidienil litio antes de que ocurran la disociación y la adición. Lo que es aceptado generalmente es que, el mecanismo exacto de éstas reacciones permanece incierto.

La energía de activación para la propagación se encontró de 6-7 kcal en THF y aproximadamente

22 kcal en n-hexano, para isopreno y butadieno, pero el último valor obviamente incluye el calor de disociación de los pares de cadenas asociadas (19*) y se ha encontrado que existe una diferencia en la velocidad de propagación entre polímeros activos de bajo peso molecular y alto (12*). La expresión constante de velocidad de propagación es al menos dos ordenes de magnitud menor que el valor correspondiente para propagación por radicales libres (19*).

IV.4 DISTRIBUCION DE PESOS MOLECULARES

IV.4.1 Peso Molecular y Distribución de pesos Moleculares

Aunque el mecanismo actual de la polimerización aniónica de dienos y estireno iniciado por compuestos alquil litiados puede ser muy compleja a causa de asociaciones entre e intra especies (self and crossasociation), el esquema "no-detallado" es bastante directo y generalmente se cree que se trata de una adición por pasos (step-wise)

No hay reacciones de terminación, ni transferencia (13°,26°). Bajo este proceso de polimerización, todas las cadenas permanecen "vivas", esto es, el número total de sitios activos permanece inalterable, y todos ellos tienen la misma oportunidad de crecimiento, en contraste directo con la polimerización por radicales libres en la cual las etapas de iniciación, terminación y transferencia de cadenas coexisten a lo largo del curso de reacción.

Si la iniciación no es mucho más lenta que la propagación y el crecimiento de todas las moléculas de polímero procede simultáneamente, el polímero deberá tener un grado de polimerización igual a $(M)_0/(RLi)_0$ en donde $(M)_0$ es la concentración inicial de monómero y $(RLi)_0$ es la concentración inicial de iniciador.

La ausencia de una reacción espontánea de terminación es también una característica que permite la síntesis de polímeros que poseen una distribución de pesos moleculares muy estrecha. Bajo estas condiciones la distribución de pesos moleculares resultante se aproximará a una distribución del tipo Poisson, en donde la fracción número de especies P₂, está dada por

$$P_{j} = e^{-x} x^{j-1} / (j-1) /$$

En donde x denota el número de monómeros reaccionados por molécula de iniciador. La fracción peso de los j-meros, W, está dada por

$$W_i = (x/(x+1))je^{x}x^{j-2}/(j-1)!$$

Ast la relación de longitud de cadena promedio peso a su equivalente en número, H, está dada por la relación siguiente

$$H = \frac{x_W}{x_M} = 1 + (\frac{x_N}{x_N} - 1)/x_N^2 \approx 1 + \frac{x_N}{x_N}^{-1}$$

Cuando XN excede 100, resulta una distribución de pesos moleculares virtualmente monodispersa.

En la práctica la adición de monómero a n-butil litio ó etil litio es mucho más lenta que la reacción de crecimiento de las cadenas y en muchos casos, no todo el iniciador origina una cadena creciente de polímero, debido a que algunas impurezas, en particular las sustancias donadoras de protones, actúan como venenos del iniciador alquil litiado ó del polibutadienil litio (13°,26°,37°). Por lo tanto, bajo éstas condiciones de reacción, el grado de polimerización ó el peso molecular son considerablemente más altos que el valor predicho (23°,28°). Sin embargo, cuando se utiliza una "semilla" de iniciador (4°,5°,13°,16°), la cual aisla la iniciación de la propagación o bien cuando la cantidad de venenos es conocida (34°,35°,37°), se obtiene una buena concordancia entre los valores calculados y los valores obtenidos experimentalmente.

La diferencia entre el peso molecular cinético observado M_k y el peso molecular determinado experimentalmente por viscosidad M, depende entonces de las velocidades relativas de iniciación y propagación. Esta última relación depende del tipo de monómero y de la estructura dl iniciador. Hsieh (28*) comparó los valores de My y My para polibutadieno, poliisopreno y poliestireno iniciados con tres isómeros de butil litio. Sus resultados muestran claramente que cuando el sec-butil litio fué el iniciador, los valores de My y M, fueron idénticos para los tres monómeros, dentro del error experimental. Esto es consistente con el hecho de que el sec-butil litio completa la reacción de iniciación mucho antes de que la polimerización ocurra (9ª,10ª). Los estudios cinéticos a concentraciones mayores, muestran que se consume proporcionalmente menos butil litio. Para la misma concentración de n-butil litio activo, la mayor cantidad sin reaccionar fué encontrada con estireno e isopreno, y la menor con butadieno. Para butadieno e isopreno, la iniciación con sec-butil litio y tertbutil litio fué muy rápida y al finalizar la polimerización no se pudo detectar iniciador sin reaccionar. Con el n-butil litio se encontró una cantidad pequeña del mismo sin reaccionar, sólo que a muy alta concentración inicial del iniciador. Este también fué el caso cuando se utilizó una cantidad muy pequeña de isopreno. El sec-butil litio fué el único de los tres iniciadores probados que es completamente reaccionado al final de la polimerización.

Se puede dejar establecido que en la polimerización iniciada por alquil litiados, M_k basado en el (RLi) consumido es aproximadamente igual al peso molecular real. Al menos tres momentos ($\overline{M}_N \ \overline{M}_W, \ \overline{M}_Z$) de la distribución son necesarios para proporcionar una descripción más cuantitativa de la distribución de pesos moleculares (59°).

Para obtener un polímero monodisperso, se deben satisfacer los siguientes requisitos: (a) todas las cadenas poliméricas deberán empetar al mismo tiempo ó una velocidad de iniciación comparable a la velocidad de propagación.; (b) todas las cadenas poliméricas deberán crecer igualmente y (c) no debe existir terminación ó transferencia. La polimerización aniónica de dienos y estireno con iniciadores alquil litiados se aproxima cercanamente a éstos requisitos y los polímeros preparados por esta vía generalmente poseen distribuciones de pesos moleculares muy estrechas.

IV.4.2 Indices de Heterogeneidad en polimerización aniónica

Desde hace algún tiempo se ha sabido que la velocidad de adición de polímero influencia fuertemente la distribución de pesos moleculares de polímeros sintetizados vía polimerización aniónica, sin embargo, no se han publicado estimados cuantitativos de este efecto bajo rangos amplios de las variables involucradas, por ejemplo temperatura.

Entre otros tratamientos de distribuciones de pesos moleculares en polimerizaciones aniónicas puede ser mencionado el estudio de Gold (53°), quien demostró que para variaciones entre 10^2 a 10^{+6} del cociente de las constantes de iniciación y propagación se obtienen polímeros de heterogeneidad máxima de ≈ 1.4 .

En polimerizaciones aniónicas se han logrado distribuciones 'de pesos moleculares del orden de 1.05 (22°,54°). Esto fué logrado mediante una cuidadosa exclusión de las impurezas y generalmente por un rápido mezclado del iniciador y el monómero. Sin embargo, bajo ninguna circunstancia, puede el mezclado ser realmente instantáneo, lo cual implica que se podría lograr una distribución más angosta si fuera posible un mezclado más rápido. Por otro lado, en muchas polimerizaciones aniónicas, heterogeneidades del orden de 1.5 son encontradas aún en la ausencia de impurezas, lo cual implica que la velocidad de adición de iniciador es lo que importa en la determinación de la distribución final. Esto a su vez muestra que mediante una selección adecuada de la velocidad de adición del iniciador, puede lograrse la distribución deseada entre un amplio rango de posibilidades. Esto es altamente deseable, porque entre otras razones, muchas propiedades fisicas de los polímeros dependen no sólo del peso molecular promedio, sino también de la distribución de pesos moleculares. Existen modelos (33°) que describen técnicas para la síntesis aniónica isotérmica de polímeros con índices de heterogeneidad "a la medida", si la constante de velocidad de la reacción de polímerización y la velocidad de adición del iniciador son conocidas. Además a partir del conocimiento de la velocidad de adición del iniciador y del índice de heterogeneidad, se hace posible estimar la constante de velocidad para la reacción de propagación a través de técnicas analíticas (33°) ó gráficas (38°). Sin embargo, es necesario recalcar que dichos modelos carecen de importancia prática en vista de la falta de concordancia de dichos modelos con los datos experimentales existentes y las suposiciones en que incurren, principalmente el carácter isotérmico de las deducciones involucradas.

ŧ.

V. MODELOS DE POLIMERIZACION ANIONICA

V.1 Homopolimerización aniónica de butadieno

Como sabemos, la polimerización aniónica de butadieno en solución es un proceso complejo que involucra reacciónes de iniciación, propagación (13°,21°,9°,10°), asociación de especies: iniciadoriniciador (1°-3°,7°,11°,14°,15°); polímero-polímero (2°,5°,12°,13°,26°,29°) y entrecruzamiento de las mismas: polímero-iniciador (13°,26°).

Además, debido a la diferencia en presiones de vapor, parte del butadieno se encuentra en fase gas, y el restante, -junto con una cantidad considerable de solvente , iniciador y polibutadienil-litio- se encuentra en fase líquida, provocando de ésta manera que la reacción ocurra en ésta fase y que inherente a este equilibrio, exista una dificultad en la medición directa del butadieno remanente por avance de reacción.

Existen en la literatura (33°,36°,45°,46°) algunos intentos por modelar este sistema, aunque el enfoque que se le ha dado al problema ha sido completamente teórico, esto es, sin verificación experimental. Así, el modelo más completo para el problema que nos ocupa, ha sido descrito por Edgar (45°) y es genérico para butadieno, isopreno y estireno. Existen algunos inconvenientes en dicho trabajo ya que plantea equilibrios diméricos entre especies poliméricos, y como sabemos por la sección anterior, el isopreno y el butadieno presentan equilibrios poliméricos que involucran más de dos especies. Además, el modelo de Edgar (45°) es isotérmico. Otros trabajos (33°,36°,46°) hacen énfasis en la obtención de distribuciones de pesos moleculares y la utilidad de modelar éstas con el propósito de obtener polímeros "a la medida", sin embargo son trabajos sin evidencia experimental y que en su planteamiento involucran condiciones isotérmicas de reacción. Existe asimismo un modelo para poliestireno (38*) que, aunque es isotérmico y no reproduce adecuadamente los datos experimentales que el mismo trabajo incluye, es importante, a la luz del trabajo que nos ocupa, ya que utiliza el modelo planteado para obtener las constantes cinéticas de iniciación y propagación, a través de una iteración gráfica. Como veremos mas adelante el modelo descrito en estas páginas involucra una idea similar a ésta última, aunque a través de un planteamiento diferente, y una comparación con datos experimentales no-isotérmicos fuera del rango de las variables en el que fueron obtenidos los parámetros cinéticos involucrados.

Al observar los modelos existentes en literatura se puede concluir que, en resumen, no existen modelos de polimerización aniónica de butadieno, debido, básicamente, a que no se conoce el comportamiento cinético de dicha polimerización tanto bajo condiciones isotérmicas como noisotérmicas.

Dado que el propósito de este trabajo es la obtención de cinéticas aparentes de polimerización de butadieno, propondremos en principio, que dicha cinética queda contemplada por un modelo genérico de iniciación, propagación y no-terminación, y que el modelo resultante contemplará el equilibrio de fases para las especies reaccionantes. Asimismo, nuestro estudio será llevado a cabo en un reactor de producción por lotes, utilizando tecnicas no-isotérmicas de seguimiento de cinéticas de reacción (41°,42°). La idea de la utilización de reactores de laboratorio y comerciales "por lotes" en la obtención de cinéticas de reacción ha sido llevada a cabo con anterioridad (47°,55°) y permite la evaluación directa de cinéticas aparentes.

V.2 Modelo de la homopolimerización aniónica de butadieno en solución bajo condiciones noisotérmicas, no-adiabáticas

۸.

La obtención de la cinética de la homopolimerización aniónica de butadieno en condiciones no-

isotérmicas, no-adiabáticas involucra el seguimiento de las especies involucradas en el medio de reacción. Este seguimiento, del cual no existe precedente en la literatura, se ve obstaculizado por la asociación del iniciador y el entrecruzamiento de las especies poliméricas recién formadas en el transcurso de la reacción.

Sin embargo, dado que el propósito de éste trabajo no es el de obtener un modelo que explique rigurosamente las interacciones de las especies reaccionantes, sino un modelo de comportamiento aparente -y por ende, de cinética aparente-, la aplicación de la técnica del reactor cuasiadiabático (41°,42°) propone una manera simple de obtener dicho modelo a partir de datos de temperatura versus tiempo de reacción.

V.2.1 Metodo dei reactor quasi-adiabático (41°,42°)

La técnica del reactor quasi-adiabático se utiliza en el estudio de reacciones bajo condiciones noisotérmicas.

Este método considera las perdidas térmicas en un reactor no-adiabático, de tal suerte que es posible corregir y calcular la temperatura de reacción como si el reactor estuviera bajo condiciones adiabáticas.

Esta técnica podría permitirnos conocer las constantes de reacción no-isotérmicas, no-adiabáticas, con el propósito de establecer modelos de comportamiento cinético aparente, los cuales - en principio, al menos -, nos permitan predecir el comportamiento de la reacción de estudio bajo diversas condiciones.

V.2.1.1 Descripción de la Técnica

Sea el balance energético para un sistema en reacción homogénea irreversible, sin gradientes de

temperatura espaciales ni efectos difusionales :

$$\rho \operatorname{Cp} dT_{obs}/dt = \Sigma_{|} (-\Delta H_{f}) dz_{|}/dt - \Phi \{T_{obs}, T_{f}\} \dots (1)$$

y para el caso adiabático

$$\rho \operatorname{Cp} dT_{\text{adiab}} < t > /dt = \Sigma_i (-\Delta H_i) dz_i / dt \qquad \dots (2)$$

en donde los subíndices <adiab>,<obs> y <r> significan adiabático, observado y referencia, respectivamente, y

Φ{T,T _r }	= transferencia de calor por conducción, convección y por		
	radiación. Esta función absorbe los gradientes de temperatura		
	no-asociados con la reacción en sí.		
T,	= Temperatura de referencia		
(-ΔH,)	= entalpía de reaccion para el producto i		
ρ	= densidad de la mezcla de reacción		
4	= conversión del componente i		
Ср	= capacidad calorífica de la mezcla de reacción		
т	= temperatura del sistema de reacción		
t	= tiempo de reacción x;		

Para poder corregir la temperatura observada para el sistema en reacción y utilizarla como si se tratara de un reactor adiabático, se integra la diferencia de las ecuaciónes (1) y (2) para los límites:
$$T_0 = T_{adiab} = T_{obs}$$
 en t=0

$$T_{adiab} = T_{adiab} < t > y T_{obs} = T_{obs} < t > en t = 0$$

de donde

$$T_{adiab} < t > = T_{obs} < t > + \int_{0}^{t} \Phi \{T_{obs} < t >, T\} dt ...(3)$$

De esta manera a partir de los valores de Temperatura observadas de reacción la ecuación (3) proporciona los valores de Temperatura que se obtendrían en un sistema adiabático.

Integrando la ecuación (2) con condiciones iniciales

$$z=0$$
 ent=0;

$$T = To_{adiab}$$
 ent = 0;

y considerando $i=1 y \rho Cp = constante$,

$$z = \rho Cp (T_{adiab} - To)/(-\Delta H_{c}) ...(4)$$

cuando la reacción se ha completado $(a t = t_i)$:

• $H_r = (T_{ad} - T_o) \rho C_p$...(5)

con T_{ad} = T_{adiab} <;>

de donde, combinando las ecuaciones (4) y (5) tendremos :

$$z = (T_{adiab} - T_{o})/(T_{ad} - T_{o}) ...(6)$$

en donde T_{adiab} y T_{ad} se obtienen de la ecuación (2) a t y t_{i} , respectivamente, con t en el rango 0 \leq t \leq t_{i} .

Las ecuaciones (3), (5) y (6) permiten el cálculo de la conversión para una especie producto de una reacción exotérmica, a partir de los perfiles de temperatura de reacción observados y del conocimiento del comportamiento térmico del sistema de reacción Φ { T_{obs} <t>,T}.

Es importante hacer notar que la aplicación de ésta tecnica, descansa en la correcta determinación del comportamiento térmico del reactor. En otras palabras, la función Φ {T,T_r} que representa la transferencia de calor por conducción, convección y por radiación deberá ser determinada de manera tal que, como se explicó anteriormente, absorba los gradientes de temperatura no-asociados con la reacción en sí.

V.2.2 Establecimiento de las ecuaciones del modelo

Se propone un modelo matemático para la polimerización batch de butadieno, con iniciador alquil litiado. Este sistema de polimerización fué considerado etapas de iniciación, propagación y no terminación, y considera las asociaciones iniciador-iniciador y polímero-polímero. El procedimiento matemático empleado aquí permite cálculos de la distribución de pesos moleculares, la cual es escencial para la evaluación de cualquier sistema polimérico. La investigación en los homopolímeros de estireno, isopreno y butadieno ha sido dirigida hacia la determinación de el mecanismo de dichas polimerizaciones. Como resultado del gran esfuerzo en investigación en este campo, han surgido dos mecanismos básicos para la polimerización de isopreno, butadieno y estireno. Estos mecanismos difieren sólo en la velocidad de iniciación. Algunos investigadores (3°,5°,19°,22°,25°,51°,52°) indicañ que la asociación de alquil litiados tiene un efecto en la velocidad de iniciación. Otros (9°,10°,21°,28°), reconocen la existencia de la asociación de alquil litiados, pero aseguran que tal asociación no tiene efecto en la velocidad de iniciación. Estos mecanismos son representados como sigue :

V.2.2.1 Mecanismo de iniciación :

$$k_{A}$$

$$A * T, t* = nI * T, t* K_{1} = k_{A} / k_{A}$$

$$k_{A}$$

$$k_{A}$$

$$k_{A}$$

$$I * T, t* + N_{m} * T, t* = C_{1} * T, t*$$
(8)

V.2.2.2 Mecanismo de propagación :

$$k_{j}$$

$$A_{j+1} * T, t * = C_j * T, t * + C_j * T, t * , \quad K_{j1} = k_{j1} / k'_{j1}$$

$$k_{j1}$$

$$k_{j2}$$

$$C_j * T t * + N_j * T t * = C_j * T t *$$
(10)

en donde

 $A = (I_n) = alquil litiado asociado$

C = polímero activo con j unidades monoméricas

A₁₊₁ = polímero asociado con j+i unidades monoméricas

I = iniciador, un alquil litiado

- constantes de velocidad

N_m = monómero, estireno, isopreno ó butadieno

n = número de asociación para el alquil litiado

Kji, K_1 = constantes de equilibrio de asociación

k_,k'_,k_p,k_j,k'_j

= Temperatura

t = tiempo

Т

"T,t" = indica función de temperatura y tiempo

Los investigadores que proponen que el fenómeno de asociación afecta la velocidad de iniciación han encontrado experimentalmente que (3[°],5[°],19[°],22[°],25[°],51[°],52[°])

$$R_{i} = k_{i} (I * T_{i} t *)^{1/n} (N_{m} * T_{i} t *)$$
(11)

Otros investigadores reportan la velocidad de iniciación como de primer orden con respecto al iniciador (9°,10°,21°,28°)

$$Ri = k_1(I \circ T_1 t \circ)(N_m \circ T_1 t \circ)$$
(12)

٧.,

 $Rp = k_2 (P_T * T_i t_*)^{1/2} (N_m * T_i t_*)$ (13)

y en general para dienos (p. ej. butadieno) como (2^{*},5^{*},13^{*},19^{*},21^{*})

$$Rp \propto k_2(P_T *T, t*)(N_m *T, t*)$$

en donde

P_T = concentración total de polímero, activo mas asociado
 k₂ = constante de propagación

Mediante el uso de las ecuaciones (8) y (10) y los balances de materia de un reactor batch, Cubbon y Margerison (51°,52°) integraron numéricamente las ecuaciones para calcular las concentraciónes de monómero y de polímero total como una función del tiempo para la polimerización de estireno con a-butil litio utilizando como solvente benceno, sin embargo no obtuvieron concordancia entre sus resultados y los valores experimentales, además ninguno de estos investigadores presentaron modelos para calcular la distribución de pesos moleculares para estos sistemas.

La principal dificultad en el desarrollo de un modelo para esta polimerización es debida a la imposibilidad de medir experimentalmente la concentración de polímero activo, polímero asociado, iniciador activo e iniciador asociado. Las variables que pueden ser medidas experimentalmente son la concentración total de iniciador, la concentración total de polímero, la concentración de monómero, los promedios de pesos moleculares en número y peso, la distribución de pesos moleculares, la temperatura y la presión. La medición de la distribución de pesos moleculares esta basada en la concentración del total de polímero de longitud j. Por tanto, se hace necesario desarrollar el modelo en términos de cantidades medibles.

En el modelo se hacen las siguientes suposiciones. La constante de equilibrio K_{ji} sera considerada como independiente de la longitud de cadena. La densidad de la mezcla de reacción se supone constante.

(13a)

40

Las concentraciónes del iniciador total y del polímero total se encuentran relacionadas a las concentraciones de iniciador activo y asociado y a las especies de polímero activas y asociadas por los siguientes balances de materia.

$$I = I^* T_{t} + nA = I^* (14)$$

$$\mathbf{P}_{\mathbf{j}} * \mathbf{T}, \mathbf{t} * = \mathbf{C}_{\mathbf{j}} * \mathbf{T}, \mathbf{t} * + \sum_{i} \mathbf{A}_{\mathbf{j}+\mathbf{i}} * \mathbf{T}, \mathbf{t} * + \mathbf{A}_{\mathbf{j}+\mathbf{j}} * \mathbf{T}, \mathbf{t} *$$
(15)

en donde

У

= concentración	total de iniciador medida experimentalmente
= concentración	de polímero total de longitud j
= concentración	de iniciador activo
= número de as	ociación del compuesto alquil litiado

De ésta forma tendremos para el equilibrio dimérico, entre polímero asociado y no-asociado, como en el caso de <u>estireno</u>:

 $P_1 *T_1 * = C_1 *T_1 * + 2A_1 *T_1 *$

(16)

en donde

$$P_{t} * T_{t} * = \sum P_{j} * T_{t} *$$

$$j=1$$

$$C_{T} * T_{t} * = \sum C_{j} * T_{t} *$$

I Pj I n

$$A_{i} = \frac{1}{2} \left(\sum_{j=1}^{\infty} (\sum_{j=1}^{\infty} a_{j+1} + A_{j+j} +$$

Las ecuaciones del balance de materia para un reactor batch de volumen constante son presentadas como sigue

V.2.2.3 Reacción de Iniciación

$$-dl^* T,t*/dt = k_i I^* T,t*N_m T,t* + nk^* A T,t*I^* T,t* - nk_A A T,t*$$
(17)

$$-dA * T_{,t} * / dt = -k'_{A} I^{*n} * T_{,t} * + k_{A} A * T_{,t} *$$
(18)

Multiplicando la ecuación (18) por n y sumandola a la ecuación (17) se obtiene el siguiente resultado

$$-d/dt (1^* *T,t* + nA*T,t*) = k_1 1^* *T,t*N_m *T,t*$$
(19)

6 bien:

$$-d/dt (1^{*} * T, t*) = k_{i} 1^{*} * T, t* N_{m} * T, t* , si 1* T, t* = 1^{*} * T, t*$$
(20)

La ecuación (20) se obtiene de la consideración de que tanto el iniciador asociado como el no-asociado son especies activas $(1^{\circ}-3^{\circ},7^{\circ},11^{\circ},14^{\circ},15^{\circ})$, por tanto k_i en la ecuación (20) representa una constante de iniciación promedio de especies asociadas y no asociadas de iniciador alquil litiado.

V.2.2.4 Concentración del monómero

El balance de materia para la concentración del monómero es como sigue

$$-dN_{m} \ll T, t \gg / dt = kil \ll T, t \gg N_{m} \ll T, t \gg + kpC_{T} \ll T, t \gg N_{m} \ll T, t \gg$$

(21)

Si el polímero asociado (dimérico) se encuentra en equilibrio con el polímero no-asociado, ecuaciones (9) y (16), entonces

$$Kp = (C_{T} * T_{t} *)^{2} / A_{T} * T_{t} *$$
(22)

Sustituyendo la ecuación (22) en la ecuación (16) y resolviendo para C_T, tenemos

$$C_{T} * T_{t} * = -(-1/(4K_{p}^{-1})) + ((1/(4K_{p}^{-1}))^{2} + P_{T}/(2K_{p}^{-1}))^{1/2}$$
(23)

si $P_T/(2K_p^{-1}) > 1/(4K_p^{-1})$ entonces

$$C_{T} \ll T_{1} t^{*} \simeq (P_{T} / (2K_{p}^{-1}))^{1/2}$$
 (24)

Las moles totales de polímero producido son iguales de las moles de iniciador convertido, por tanto

$$P_{T} * T_{t} * = (I_{D} + I * T_{t} *)$$
(25)

Por tanto se puede escribir para el equilibrio dimérico (45°)

$$-dN_{m} \ll T_{t} \gg /dt = kil^{*} \ll T_{t} \gg N_{m} \ll T_{t} \approx + kp/(2K_{p}^{-1})^{1/2} (l_{0} - I \ll T_{t} \approx)^{-1/2} N_{m} \ll T_{t} \approx (26)$$

ó, en su forma equivalente:

$$-dN_{m} *T,t*/dt = kiI^{*} *T,t*N_{m} *T,t* + kp'(I_{0} - I*T,t*)^{1/2}N_{m} *T,t*$$
(27)

en donde kp' es una constante de propagación agrupada.

dado que no existe certeza del orden dimérico, excepto para el caso del poliestiril litio (13*), y dado también que se ha demostrado que tanto el polímero asociado $A_T *T$,t*, como el no-asociado $C_T *T$,t* son especies activas(2*,5*12*,29*), la ecuación (27) puede escribirse <u>en forma generalizada</u>:

$$\frac{d}{dt} (N_{m} *T,t*) = kil^{\circ} *T,t*N_{m} *T,t* + kp^{\circ}(l_{D} - I*T,t*)N_{m}^{\rho} *T,t*$$
$$= kil^{\circ} *T,t*N_{m} *T,t* + kp^{\circ}(P_{T} *T,t*)N_{m}^{\rho} *T,t*$$
$$= kil^{\circ} *T,t*N_{m} *T,t* + kp^{\circ}(\Sigma P_{I} *T,t*)N_{m}^{\rho} *T,t*$$
(28)

en donde kp^e es la constante de propagación aparente válida para polímero asociado y no-asociado, y kp^e = ϕ {b}, lo cual esta de acuerdo con la literatura (33^o), y la potencia β en la cinética de propagación es una forma conveniente de escribir ésta ecuación por motivos que se harán evidentes más adelante.

V.2.2.5 Equilibrio líquido-vapor y constantes termofísicas

Aunque las ecuaciones establecidas hasta el momento consideran el volumen y propiedades termofísicas constantes, es posible, al resolverlas numéricamente emplear valores corregidos, esto es, para el paso l-ésimo de integración, tendremos:

$$Cp_{1} * T_{i}, t_{i} * = \Sigma (x_{i} * T_{i-1}, t_{i-1} * Cp_{i} * T_{i-1}, t_{i-1} *)$$
(29)

$$\rho_1 * T_1, t_1 * = \Sigma \left(x_1 * T_{1,1}, t_{1,1} * \rho_1 * T_{1,1}, t_{1,1} * \right)$$

$$V_{i} * T_{i}, t_{i} * = \Sigma \left(N_{i} * T_{i-1}, t_{i-1} * / \rho_{i} * T_{i-1}, t_{i-1} * \right)$$
(31)

(30)

$$\hat{N}_{j} * T_{1}, t_{1} * = n_{j} * T_{1}, t_{1} * + N_{j} * T_{1}, t_{1} *$$
(32)

$$n_{j} \ll T_{1}, t_{1} \approx = \xi \{N_{j} \ll T_{1}, t_{1} \approx \}$$

= $(N_{j} \ll T_{1}, t_{j} \approx) P_{j}^{\circ} \ll T \approx /P_{TOT} \Sigma n_{s} / \Sigma N_{s}$ (Result) (33)

en donde

Pi

i

= densidad en fase líquida de la mezcla de reacción

$$\rho_i$$
 = densidad en fase líquida del componente i-ésimo de la mezcla de reacción

N = monómero/solvente total presente

n = monómero/solvente presente en fase gas

N = monómero/solvente presente en fase líquida

j,s = monómero, solvente

P_i^o = presión de vapor

PTOT = presión total del sistema

= monómero, solvente, polímero

 $x_i = N_i/(\Sigma N_j)$ = fracción mol en fase líquida del componente i-ésimo de mezcla de reacción

V = volumen de reacción (fase líquida)

V.2.2.6 Obtención de la Distribución de Pesos Moleculares

Aunque existen diversos modelos (36°,39°,43°,48°,49°,50°) para la obtención de pesos moleculares, pocos son tan convenientes como la utilización de una función generadora (45°,50°).

Ν.:

de

1a

Sea la función

$$G \ll s, T, t = \Sigma P_r \ll T, t = s^{T}$$

en donde

= parámetro ∈ (0,1)

y la concentración de especies poliméricas (ecuación (28)):

$$d/dt (P_1) = k_1 I^* (T_1 t N_m (T_1 t N_m$$

١

 $d/dt (P_2) = kp P_1 (T,t*N_m) (T,t* + kp P_2 (T,t*N_m) (T,t*))$

$$d/dt (P_3) = kp P_2 T_1 N_m^{\beta} T_1 + kp P_3 T_1 N_m^{\beta} T_1 + kp P_3 T_1 + N_m^{\beta} T_1 + kp P_3 T_2 + kp P_3 T_2 + kp P_3 T_1 + kp P_3 T_2 + kp P_3 T_2 + kp P_3 T_2 + kp P_3 T_3 + kp P$$

$$d/dt (P_r) = kp^* P_{r,1} * T, t * N_m^{\beta} * T, t * - kp^* P_r * T, t * N_m^{\beta} * T, t *$$

multiplicando las ecuaciones (30) por s' con $r \in [1,\infty)$ y sumando para éste último intervalo,

(34)

46

tendremos:

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

6

$$d/dt$$
 (G«s,T,t») = sk₁ l «T,t»N _m«T,t»+(s-1) kp N⁶_m G«s,T,t» (36)

Integrando la ecuación (36) entre $t \in [0,t]$

$$d[G*s,T,t* exp(-\int_{-1}^{1} kp^{\circ} N_{m}^{\beta} *T,t*(s-1)dt_{2})] = \int_{-1}^{1} kp^{\circ} N_{m}^{\beta} *T,t*(s-1)dt_{2}) k_{1}I^{\circ} *T,t*N_{m} *T,t*s_{1}dt_{1} = \int_{-1}^{1} kp^{\circ} N_{m}^{\beta} *T,t*(s-1)dt_{2}) k_{1}I^{\circ} *T,t*N_{m} *T,t*s_{1}dt_{1} = \int_{-1}^{1} kp^{\circ} N_{m}^{\beta} *T,t*(s-1)dt_{2} = \int_{-1}^{1} kp^{\circ} N$$

tendremos

G«#,T,t» =

$$\int_{0}^{1} \frac{dt_{1}}{dt_{1}} e^{T_{1}t_{1}} N_{m} e^{T_{1}t_{1}} e^{T_{1}t_{1}} e^{T_{1}t_{1}} e^{T_{1}t_{1}} e^{-T_{1}t_{1}} dt_{1}$$

expandiendo el término exponencial

$$s \exp \left(\int_{1}^{1} kp^{*} N_{m}^{\beta} * T, t*(s) dt_{2} \right) = \sum_{1}^{\infty} \left[\int_{1}^{1} (kp^{*} N_{m}^{\beta} * T, t*(s) dt_{2})^{r-1} / (r-1)! s^{r} \right]$$
(39)

١,

(38)

sustituyendo las ecuaciones (34) y (39) en (38)

$$\sum_{1}^{\infty} \left\{ \int_{0}^{1} \left\{ k_{j} I^{*} * T_{i} t * N_{m} * T_{i} t * \exp[-\int_{1}^{1} \left\{ k_{p}^{*} N_{m}^{*} * T_{i} t * dt_{2} \right\} \right\} \right\}$$

$$\left(\int_{1}^{1} \left\{ k_{p}^{*} N_{m}^{*} * T_{i} t * dt_{2} \right\}^{r-1} / (r-1)! \left\} dt_{1} \right\} s^{r} = \sum_{1}^{\infty} P_{r} s^{r}$$

$$\left(\int_{1}^{1} \left\{ k_{p}^{*} N_{m}^{*} * T_{i} t * dt_{2} \right\}^{r-1} / (r-1)! \left\} dt_{1} \right\} s^{r} = \sum_{1}^{\infty} P_{r} s^{r}$$

$$\left(\int_{1}^{1} \left\{ k_{p}^{*} N_{m}^{*} * T_{i} t * dt_{2} \right\}^{r-1} / (r-1)! \left\} dt_{1} \right\} s^{r} = \sum_{1}^{\infty} P_{r} s^{r}$$

$$\left(\int_{1}^{1} \left\{ k_{p}^{*} N_{m}^{*} * T_{i} t * dt_{2} \right\}^{r-1} / (r-1)! \left\{ k_{p}^{*} N_{m}^{*} * T_{i} t * dt_{2} \right\} \right)$$

$$\left(\int_{1}^{1} \left\{ k_{p}^{*} N_{m}^{*} * T_{i} t * dt_{2} \right\}^{r-1} / (r-1)! \left\{ k_{p}^{*} N_{m}^{*} * T_{i} * dt_{2} \right\} \right)$$

$$\left(\int_{1}^{1} \left\{ k_{p}^{*} N_{m}^{*} * T_{i} * dt_{2} \right\}^{r-1} / (r-1)! \left\{ k_{p}^{*} N_{m}^{*} * T_{i} * dt_{2} \right\} \right)$$

$$\left(\int_{1}^{1} \left\{ k_{p}^{*} N_{m}^{*} * T_{i} * dt_{2} \right\}^{r-1} / (r-1)! \left\{ k_{p}^{*} N_{m}^{*} * T_{i} * dt_{2} \right\} \right)$$

$$\left(\int_{1}^{1} \left\{ k_{p}^{*} N_{m}^{*} * T_{i} * dt_{2} \right\}^{r-1} / (r-1)! \left\{ k_{p}^{*} N_{m}^{*} * T_{i} * dt_{2} \right\} \right)$$

Por tanto

$$\begin{cases} \{k_{j}I^{*} * T, t * N_{m} * T, t * exp[-\int_{1}^{1} kp^{*} N_{m}^{\beta} * T, t * dt_{2}] * \\ \begin{cases} kp^{*} N_{m}^{\beta} * T, t * dt_{2} \end{pmatrix}^{r-1} / (r-1)! \} dt_{1} \} = P_{r} \end{cases}$$
(41)

La ecuación (41) permite el cálculo de las concentraciones de las especies poliméricas en cualquier instante de tiempo t, sin que para ello se necesite la concentración de los precursores $P_t *T(i-j), i-j*$, con j comprendido en el rango $[0, i\in]$.

V.2.2.7 Polidispersidad

Sean los 3 primeros momentos de la distribución, definidos como

$$\mu_{0} = \Sigma P_{j}$$

$$\mu_{1} = \Sigma P_{j} j$$

$$\mu_{2} = \Sigma P_{j} j^{2}$$

(42)

(43)

(44)

i

$$d/dt (P_1) = k_1 I^* * T_1 t * N_m * T_1 t * - kp^* P_1 * T_1 t * N_m^{\theta} * T_1 t *$$
$$d/dt (P_2) = kp^* P_1 * T_1 t * N_m^{\theta} * T_1 t * - kp^* P_2 * T_1 t * N_m^{\theta} * T_1 t *$$
$$d/dt (P_2) = kp^* P_2 * T_1 t * N_m^{\theta} * T_1 t * - kp^* P_2 * T_1 t * N_m^{\theta} * T_1 t *$$

 $d/dt (P_r) = kp^* P_{r,1} * T_r t N_m^\beta * T_r t + kp^* P_r * T_r t N_m^\beta * T_r t + kp^* P_r * T_r t + N_m^\beta * T_r t + kp^* P_r t + kp^* P_r * T_r t + kp^* P_r t +$

 $P_{T} * T_{t} * = (I_{0} - I * T_{t} *)$

(25)

(35)

las cuales representan la variación de la concentración de cada una de las especies activas y la concentración total de polímero, respectivamente. Para obtener el momento cero de la distribución observamos que la suma de las ecuaciones (35) proporciona la derivada en el tiempo de dicho momento. La derivada del momento uno se obtiene multiplicando las ecuaciones (35) por j (con $j=1,..,\infty$) y sumando para j. Finalmente obtenemos la derivada del momento dos, multiplicando las ecuaciones (35) por j^2 ($j=1,..,\infty$) y sumando para j. De esta manera, tendremos

ð

$$d/dt (\mu_0) = d/dt (l_0 - I * T, t*) = d/dt (- I * T, t*) = k_1 I * T, t* N_m * T, t* (45)$$

$$d/dt (\mu_{1}) = k_{1}i^{*} * T, t * N_{m} * T, t * + kp^{*} (N_{m} * T, t *)^{*} \mu_{0}$$
(46)

$$d/dt \ (\mu_2) = k_1 l^* (T, t N_m ($$

Las ecuaciones (45), (46) y (47) proporcionan los tres primeros momentos de la distribución en términos de cantidades cinéticas, de tal suerte que una vez modelado el comportamiento cinético de la reacción de polimerización que nos ocupa, podemos calcular las características de dicha distribución.

$$\overline{M}_{p} = \mu_{1}/\mu_{0}$$
 = peso molecular promedio en número (48)

$$M_{\omega} = \mu_2 / \mu_1 = \text{peso molecular promedio en peso}$$
 (49)

$$M_n/M_w = \mu_2 \mu_0/\mu_1^2 = \text{polidispersidad}$$
 (50)

V.3 Determinación del comportamiento térmico del reactor

Dado que el propósito de este trabajo es el de obtener el comportamiento cinético de la polimerización aniónica de butadieno, y para ésto, tal como se planteó anteriomente, es necesario el conocer el comportamiento térmico del reactor, nuestro propósito en esta sección <u>no</u> es modelar dicho comportamiento de manera rigurosa, sino plantear la ó las ecuaciones de comportamiento térmico que nos permitan eliminar éste efecto de los datos de temperatura de reacción obtenidos experimentalmente. El procedimiento consiste en obtener datos de temperatura contra tiempo para el sistema de reacción bajo dos condiciones: (1) mezcla de reacción con todos los componentes de la misma, excepto n-butil litio (mezcla sin reaccionar) y (2) mezcla completamente reaccionada. Ambos sitemas se llevan a una temperatura elevada y se registran datos de temperatura versus tiempo. El resultado de este procedimiento se muestra esquematicamente en la Figura 1.

De esta manera, las dos curvas anteriores representan los límites bajo los cuales se encuentra el comportamiento térmicos del reactor. La curva punteada en la Figura 1 muestra un polinomio de interpolación para un caso de conversión intermedia. La interpolación es lineal como función de la densidad de la mezcla.

۷.

V.4 Obtención de Cinéticas de Propagación Aparentes

Para el modelo establecido que considera iniciación, propagación y no-terminación

$$- d(N_m *T,t*)/dt = k_1 I^* *T,t*N_m *T,t* + kp^* (l_0 - I^* *T,t*)N_m^{\beta} *T,t*$$
(28)

en donde :

 Nm
 = concentración de butadieno

 I*
 = concentración de iniciador activo

 Io
 = concentración inicial de n-BuLi

 k1
 = constante aparente de iniciación

 kp*
 = constante aparente de propagación

 T
 = temperatura

 t
 = tiempo

«T,t» = indica funcionalidad con temperatura y tiempo de reacción

tendremos, para I^{*} = 0 a t = finito :

$$d(N_m *T_t *)/dt = kp'(L_p)N_m^{\beta} *T_t *$$
(28a)

con balance de energía

$$\rho Cp \ d(T)/dt = (-\Delta H_{r}) \ d/dt (N_{m}^{*} * T, t*) - \Phi \{T, T_{r}\}$$
(1)

en donde Φ {T,T_r} representa el polinomio de interpolación descrito con anterioridad para el comportamiento térmico del reactor.

51

(20)

De acuerdo con el método del reactor cuasi-adiabático, es posible obtener, a partir de perfiles de temperatura versus tiempo y de las ecuaciones (3), (5) y (6) la conversión de monómero. Ahora bien, si suponemos que el iniciador desaparece antes que el monómero, lo cual es normalmente el caso (9°,10°,13°,21°), debe existir un punto a partir del cual la ecuación (28a) prevalezca. Si esto es así y suponemos que:

$$kp'' = A \exp(-\theta/T)$$
(51)

combinando las ecuaciones (51) y (28a) tendremos :

$$\ln \{ [-d/dt \ N_m * T_i t *]/l_n / N_m^{\beta} \} = \ln (A) - \theta / T$$
(52)

entonces, al graficar el lado izquierdo de esta la ecuación (52) versus 1/T obtendremos, a partir de 1° = 0 y hasta donde el calor generado por la reacción sea suficiente para compensar las pérdidas generadas por el polinomio Φ {T,T_r}, esto es, al menos en una sección de dicha gráfica, una parte lineal, siempre y cuando las suposiciones implícitas en las ecuaciónes (28a) y (42) sean válidas. Esta sección lineal de la ecuación (52) nos proporciona los parámetros cinéticos de la expresion Arrhenius de la constante de propagación para la polimerización aniónica de butadieno en solución de ciclohexano iniciada por n-butil litio (ecuación (51)).

Es evidente que con el objeto de que la expresión de cinética de propagación propuesta sea representativa del comportamiento del fenómeno de propagación de la polimerización que nos ocupa en un cierto rango de temperaturas, es necesario que los parámetros de la constante de propagación obtenida al graficar la ecuación (51) para distintos conjuntos de datos experimentales, obtenidos al modificar únicamente la temperatura inicial de reacción, sean los mismos en cada caso.

Como se puede observar de la ecuación (51) la constante de propagación aparente obtenida, kp[°], es función de la cantidad de iniciador presente I_n al inicio de la reacción y del exponente β utilizado.

V.5 Obtención de Cinéticas de Iniciación Aparentes

Una vez que se conoce la constante de propagación, solo resta conocer la constante aparente de iniciación. Si suponemos que dicha constante posèc una forma Arrhenius el sistema formado por las ecuaciones,

$$\rho Cp \quad d(T)/dt = (-\Delta H_r) d/dt(N_m *T_r t*) - \Phi \{T_r, T_r\}$$
(1)

$$d(1^* * T,t*)/dt = k_1 I^* * T,t* N_m * T,t*$$
(20)

$$d(N_m \ll T, t*)/dt = k_1 I^* \ll T, t*N_m \ll T, t* + kp^* (I_0 - I^* \ll T, t*)N_m^{\beta} \ll T, t*$$
(28)

posee dos incógnitas: (1) energía de activación y (2) factor de colisión de la constante de iniciación, mismas que deben satisfacer datos de temperatura experimental versus tiempo, en otras palabras el sistema de ecuaciones (1), (20) y (28), que puede escribirse como :

$$T_{i} = T_{i-1} + \int_{1-1}^{1} [1/\rho Cp [(-\Delta H_{r}) d/dt(N*T,t*) - \Phi \{T,T_{r}\}] dt$$
 (1a)

$$\mathbf{I}^* * \mathbf{T}_{, t*} = \mathbf{I}^* * \mathbf{T}_{, t*} + \int_{t_{-1}}^{t_{-1}} [\mathbf{k}_i \mathbf{I}^* * \mathbf{T}_{, t*} \mathbf{N}_m * \mathbf{T}_{, t*}] dt$$
(20a)

$$N_{m} \ll T, t \approx i = N_{m} \ll T, t \approx i - 1 \qquad + \int_{1}^{1} [k_{1}I^{*} \ll T, t \approx N_{m} \ll T, t \approx + kp^{*} (l_{0} - I^{*} \ll T, t \approx) N_{m} = M_{0} \ll T, t \approx] dt \qquad (28a)$$

puede resolverse para cualesquiera dos valores de los parámetros de la constante de iniciación, esto es, cualesquiera dos valores del factor de colisión A_{inic} y energía de activación Ea_{inic} . En particular la solución i-ésima de la ecuación (1), T_i , debe satisfacer para los valores correctos de A_i y Ea_i algún criterio de ajuste a los valores experimentales $T_i \Big|_{experimental}$, como por ejemplo

$$\chi^{2} = \Sigma_{i} \left(T_{i} \right)_{\text{experimental}} - T_{i}^{2} = \text{minimo}$$
(53)

La solución iterativa del sistema formado por las ecuaciones (1), (20),(28) y (53) es (63°),

$$\overline{\mathbf{a}}_{j+1} = \overline{\mathbf{a}}_j + \mathbf{D}^{\cdot 1} \left[-\nabla \chi^2(\overline{\mathbf{a}}_j) \right]$$
(54)

en donde

$$\nabla \chi^2(\bar{\mathbf{a}}_1) = \partial \chi^2 / \partial \mathbf{a}_k$$

$$D = \partial^2 \chi^2 / \partial a_i \partial a_j$$

Sin embargo, dada la simultancidad de las ecuaciones (1a), (20a), (28a) y (53), esto es

$$\mathbf{T}_{i} = \mathbf{T}_{i} \{ \mathbf{T}_{i+1}, .., \mathbf{T}_{0} ; \mathbf{I}_{i+1}, .., \mathbf{n} ; \mathbf{N}_{m,i+1}, .., \mathbf{N}_{m,0} \}$$

de esta manera

$$\nabla \chi^{2}(\bar{a}_{j}) = \partial \chi^{2} / \partial a_{k} = -2 \Sigma_{1} [T_{1}]_{\text{experimental}} - T_{1} \{T_{j-1}, N_{m}\}_{j-1} - T_{1-1}, t_{j-1} - t_{j-1} - T_{j-1}, t_{j-1} - t_{j-1} - t_{j-1}, t_{j-1} - t_{j-1} -$$

$$D = \partial^{2} \chi^{2} / \partial_{\mathbf{a}_{k}} \partial_{\mathbf{a}_{k}} = -2 \sum_{i} [\partial T_{i} \{ T_{i-1}, N_{m-i-1} * T_{i-1}, t_{i-1} * n_{i} + 1 * t_{i-1} * t_{i-1} * n_{i-1} * t_{i-1} * n_{i-1} * n_{i-1$$

$$\partial T_i / \partial a_k = \partial T_i \{ T_{i-1}, T_0; t_{i-1}, ..., 0; N_{m,i-1}, ..., N_{m,0} \} / \partial a_k$$
 (57)

$$\partial I_{i}/\partial a_{k} = \partial I_{i} \{T_{i,1}, T_{0}; I_{i,1}, .., 0; N_{m+1}, .., N_{m0}\}/\partial a_{k}$$
 (58)

$$\partial N_{m i} / \partial a_{k} = \partial N_{m i} \{ T_{i,1}, .., T_{0}; I_{i,1}, .., 0; N_{m i,1}, .., N_{m 0} \} / \partial a_{k}$$
(58)

La forma analítica de las ecuaciones anteriores es complicada debido a que la evaluación de las mismas requiere la evaluación de las derivadas parciales de las variables i-ésimas anteriores. Así por ejemplo para un Euler simple, cuya longitud de paso es:

tendremos para la ecuación (57)

$$\frac{\partial T_{i}}{\partial a_{k}} = \frac{\partial T_{i-1}}{\partial a_{j}} + \frac{h}{\rho} Cp \left\{ -\Delta H \left(\frac{\partial k_{i}}{\partial a_{j}} + \frac{1}{i-1} \frac{M_{i-1}}{k_{i}} + \frac{k_{i}}{i-1} \frac{\partial a_{j}}{\partial a_{i}} + \frac{h}{\rho} Cp \left(\frac{1}{\rho} + \frac{1}{i-1} \frac{\partial a_{j}}{\partial a_{i}} + \frac{h}{\rho} + \frac{h}{\rho} Cp \left(\frac{1}{\rho} + \frac{1}{i-1} \frac{\partial a_{j}}{\partial a_{i}} + \frac{h}{\rho} + \frac{h}{\rho} + \frac{h}{\rho} Cp \left(\frac{1}{\rho} + \frac{1}{i-1} \frac{\partial a_{j}}{\partial a_{i}} + \frac{h}{\rho} +$$

como se puede observar, los términos $\partial T_{l,1}/\partial a_{j}$, $\partial N_{m l,1}/a_{j}$ y $\partial 1_{l,1}^{*}/\partial a_{j}$ de los cuales depende la ecuación (59) dependen a su vez de sus antecesores, por lo que la solución del sistema de ecuaciones (1), (20), (28) y (53) se complica al utilizar la ecuación (53). Sin embargo es posible utilizar una solución alternativa al sistema descrito anteriormente, como a continuación se describe.

Para un juego de datos experimentales podemos esperar un comportamiento similar al de las Figuras 2 y 3 siguientes (9*,10*,21*)

en donde el período de inducción (P.I.) generalmente se asocia con el período en el cual coexisten las etapas de iniciación y propagación (9°) con la ayuda de las figuras 2 y 3, tenemos entonces en la región P.I.

$$d(N_m *T, t*)/dt < <1$$
(61)

$$d(i *T,t*)/dt >> d(N_m *T,t*)/dt$$
(62)

$$N_m * T_t * \approx N_{m0} \tag{63}$$

Por simplicidad escribiremos el balance de monómero como :

-
$$d/dt (N_m \ll T, t \approx) \approx kil^* \ll T, t \approx N_m \ll T, t \approx + kp^* (L_0 - I^* \ll T, t \approx) N_m \ll T, t \approx$$

6 bien

$$d/dt \ln(N_m *T_t) = kil^* *T_t + kp^* (I_n - I^* *T_t)$$

a tiempos pequeños, y con las condiciones descritas por las ecuaciones (60)-(63) tendremos :

$$\frac{d}{dt} \ln(N_m \ll T, t) = 1/N_m \ll T, t \approx \frac{d}{dt} N_m \ll T, t \approx$$

$$= 1/N_m \ll T, t \approx (\partial N_m \ll T, t) = \frac{d}{dt} (T) + \partial N_m \ll T, t \approx /\partial t$$

$$\approx \varepsilon < \varepsilon 1$$

por tanto:

como

$$\lim_{t \to 0} (\mathbf{L} - \mathbf{I}^*) / \mathbf{I}^* \to 0$$

se tiene

$$\lim_{k \to 0} ki/kp^* \to \in$$
 (67)

si suponemos que -al igual que la constante de propagación- la constante de iniciación sigue una forma funcional de tipo Arrhenius

ki = Ai exp (-
$$\theta i/T$$
) (51a)

de las ecuaciónes (51) y (51a), tenemos

$$\log (ki) \simeq \phi \log (kp^{\circ})$$
 (68)

en donde ϕ es una constante, entonces

١,

(65)

(66)

(69)

ó bien

$$ki/kp^* \rightarrow \in \Leftrightarrow \phi <<1$$

en otras palabras, la única forma de que la condición ki/kp[•] $\rightarrow \in$ se cumpla es dado el carácter exponencial de las constantes de iniciación y propagación- que la constante ϕ escogida atenúe lo suficiente el exponencial del término de iniciación, de tal sucrte que ki sea invariante o varíe muy poco con el tiempo (dki/dt <<dkp[•]/dt), para tiempos cortos.

Es evidente que la solución del sistema formado por las ecuaciones (1), (20), (28) y (53) continúa siendo un problema de dos incógnitas, sin embargo la aproximación de ki a través de la ecuación (68), sujeta a la restricción de la ecuación (90) permite la solución del sistema descrito, a través de la iteración de un sólo parámetro.

V.6 Estrategia de desarrollo del modelo

A partir de las ecuaciones precedentes es claro que el sistema formado por las ecuaciones

$$\rho Cp \quad d(T)/dt = (-\Delta H_r) d/dt(N_m *T,t*) - \Phi \{T,T_r\}$$
(1)

$$- d(l^* T,t^*)/dt = k_i l^* T,t^* N_m T,t^*$$
(20)

-
$$d(N_m *T,t*)/dt = k_i l^* *T_i t*N_m *T_i t* + kp^* (l_0 - l^* *T_i t*)N_m^{\beta} *T_i t*$$
 (28)

$$\chi^{2} = \Sigma_{i} \left(T_{i} \right|_{\text{experimental}} - T_{i} \right)^{2} = \text{m/nimo}$$
(53)

$$kp'' = A \exp \left(-\frac{\theta}{T}\right)$$
(51)

(70)

$$ki = Ai \exp \left(-\theta i/T\right)$$
(51a)

$$d/dt (\mu_0) = d/dt (l_0 - I = T,t) = d/dt (- I = T,t) = k_1 I = T,t = N_m = T,t$$
 (45)

$$d/dt (\mu_1) = k_1 I^* (T_t N_m (T_t + kp^* (N_m (T_t + s)^{\theta})) \mu_0$$
(46)

$$d/dt (\mu_2) = k_1 I^* * T_1 * N_m * T_1 * + kp^* (N_m * T_1 *)^{\theta} (\mu_0 + 2\mu_1)$$
(47)

$$\overline{M}_n = \mu_1 / \mu_0$$
 = peso molecular promedio en número (48)

$$\overline{M}_{w} = \mu_{2}/\mu_{1} = \text{peso molecular promedio en peso}$$
 (49)

$$\overline{M}_n/\overline{M}_w = \mu_2 \mu_0/\mu_1^2 = \text{polidispersidad}$$
 (50)

$$\int_{0}^{1} \{ k_{1} I^{\circ} * T, t * N_{m} * T, t * exp[- \int_{1}^{1} k p^{\circ} N_{m}^{\beta} * T, t * dt_{2}] \bullet$$

$$(\int_{1}^{1} k p^{\circ} N_{m}^{\beta} * T, t * dt_{2})^{r-1} / (r-1)! \} dt_{1} \} = P_{r} \qquad (41)$$

$$Cp_{i} * T_{i}, t_{i} * = \Sigma (x_{i} * T_{i,1}, t_{i,1} * Cp_{i} * T_{i,1}, t_{i,1} *)$$
(29)

$$\rho_{1} * T_{1} t_{1} * = \Sigma (x_{1} * T_{1,1}, t_{1,1}) * \rho_{1} * T_{1,1}, t_{1,1} *)$$
(30)

$$V_{|} *T_{|,t_{1}} * = \Sigma (N_{|} *T_{|,1}, t_{|,1} * / \rho_{|} *T_{|,1}, t_{|,1} *)$$
(31)

$$\hat{N}_{j} * T_{1}, t_{1} * = n_{j} * T_{1}, t_{1} * + N_{j} * T_{1}, t_{1} *$$
(32)

$$n_{j} \ll T_{i}, t_{i} \approx = \xi \left\{ N_{j} \ll T_{i}, t_{i} \right\}$$
$$= \left(N_{j} \ll T_{i}, t_{i} \right) P_{j}^{0} \ll T \approx / P_{TOT} \Sigma n_{s} / \Sigma N_{s} \qquad (Raoult) \qquad (33)$$

en donde

PI

ρ	= densidad	en fase	líquida	de	la mezcla	de reacción
---	------------	---------	---------	----	-----------	-------------

- = densidad en fase líquida del componente i-ésimo de la mezcla de reacción
- Cp_i = capacidad calorífica a presión constante en fase líquida de la mezcla reacción
- Cp₁ capacidad calorífica a presión constante en fase líquida del componente iésimo de la mezcla de reacción

N = monómero/solvente total presente

n = monómero/solvente presente en fase gas

N = monómero/solvente presente en fase líquida

j,s = monómero, solvente

P_i^o = presión de vapor

P_{TOT} = presión total del sistema

i = monómero, solvente, polímero

 $x_i = N_i/(\Sigma N_i) = \text{fracción mol en fase líquida del componente i-ésimo de mezcla de reacción}$

V = volumen de reacción (fase líquida)

N_m = concentración de butadieno

1^{*} = concentración de iniciador activo

lo = concentración inicial de n-BuLi

k_i = constante aparente de iniciación

kp = constante aparente de propagación

la

= temperatura

= tiempo

т

t

«T_it» = indica funcionalidad con temperatura y tiempo de reacción

(1),(6),(20),(28) y (29)-(33) se puede resolver de manera simultánea, siendo el único impedimento para ejecutar ésta tarea, el que las constantes de iniciación y propagación no sean conocidas.

El propósito de éste trabajo es precisamente conocer dichas constantes, y de esta forma resolver el sistema de ecuaciones descrito anteriormente.

La obtención de las constantes de iniciación y propagación a partir del modelo no-isotérmico, noadiabático de la polimerizacón de butadieno consta de las etapas que se muestran en la siguiente figura.

Primero es necesario conocer, a través del modelo del reactor cuasi-adiabático, el comportamiento térmico del reactor. Una vez conocido éste, el paso siguiente consiste en realizar algunas corridas en donde se utiliza el balance de energía (Ecuación (1)), y de materia (Ecuación (6)). Una vez conocida la conversión del monómero, utilizamos las ecuaciónes (1) y (20),(28)-(33) en dichas coridas y basados exclusivamente en un ajuste gráfico con los perfiles de temperatura, encontramos la constante de iniciación y propagación del sistema. Una vez conocidas las constantes aparentes de iniciación y propagación para la reacción de polimerización que nos ocupa, el modelo esta listo para ser probado. Las figuras 5 y 6 muestran esquemáticamente el funcionamiento del modelo.

OBTENCION DE LOS PERFILES DE TEMPERATURA, INICIADOR Y MONOMERO REMANENTES, PRESION, MOMENTOS DE DISTRIBUCION Y POLIDISPERSIDAD

La Figura 5 muestra de manera esquemática el funcionamiento del modelo en su primera parte, la cual es básicamente, la integración de las ecuaciones diferenciales (ODE's) involucradas en la obtención de los perfiles de temperatura (ecuación 1), cantidades de iniciador (ecuación 20) y monómero (ecuación 28) remanentes, momentos de la distribución (ecuaciones 45,46,47), pesos moleculares promedio y polidispersidad (ecuaciones 48,49,50). La ecuación de concentración de especies poliméricas (ecuación 41) requiere del conocimiento de los perfiles de temperatura e iniciador y monomero remanentes por lo que esta ecuación se resuelve en dos partes ilustrada en las Figuras 5 y 6 como integración primaria y secundaria de función generadora. En el apéndice de este trabajo se incluye la codificación en PASCAL del modelo utilizado.

OBTENCION DE LA DISTRIBUCION DE PESOS MOLECULARES

Una vez constituído el modelo, es necesarios verificarlo en rangos de variables distintos a los utilizados en la obtención de las constantes de iniciación y propagación de la reacción de polimerización aniónica de butadieno. En este punto es necesario un nuevo juego de corridas experimentales con el fin de probar el modelo bajo diversas condiciones. Las variables en las que se prueba el modelo para ésta etapa son temperatura, presión y cantidad de polímero formado.

Finalmente y dado que es necesario verificar el comportamiento cinético del modelo de polimerización encontrado en, básicamente, dos etapas a saber: 1) iniciación-propagación simultáneas y 2)propagación pura, es necesario un último juego de corridas en donde sea posible verificar dicho comportamiento.

Como sabemos ya, el paso de iniciación es un paso muy rápido relativo a la velocidad global de polimerización. Bajo este supuesto es de esperarse que un modelo que represente bien la velocidad de propagación y, digamos, medianamente bien la velocidad de iniciación, podría reproducir resultados experimentales para una adición inicial de n-BuLi. Sin embargo, es muy probable que dicho modelo fallara al tratar de reproducir resultados experimentales en donde se involucre adiciones múltiples de iniciador en intervalos considerables de tiempo.

Es por esta razón que nuestro último juego de corridas consiste en corridas experimentales con pulsos de iniciador n-BuLi y la evidencia experimental que se contrastó fué la distribución de pesos moleculares.

VI. Desarrollo Experimental

VI.1 Equipo y Procedimiento

Los experimentos se llevaron a cabo en un reactor vidriado 'bench scale', marca "CEMCO", de Pyrex atemperado, no aislado, de espesor 7/16" y capacidad de 1 litro, equipado con: un motor de inducción de C.A. de 1/3 H.P. y controlador acoplado a un agitador ajustado a RPM; un termopar 'K' acoplado a un controlador de temperatura Athena 6000 utilizado en modalidad indicador exclusivamente; manómetro y un sello resistente a presión que permite la adición ó sustracción de reactivos por medio de una jeringa.

El reactor posee además un serpentín por el que es posible hacer circular un aceite de calentamiento acoplado a un baño de recirculación marca 'Lauda', modelo KP-20D. Este aceite se hace circular exclusivamente al inicio de cada corrida hasta alcanzar la temperatura deseada de arranque de la reacción y después se interrumpe el flujo. Se realizaron un total de 23 corridas de polimerización de butadieno, para una relación de 0.2232 mol de Butadieno/mol de Ciclohexano, exceptuando las dos últimas corridas con una relación de 0.1785 mol de Butadieno/mol de Ciclohexano. El iniciador fué n-butil litio 2.3141 M y se titularon venenos presentes 'in-situ' utilizando como indicador 10 mg de fenantrolina, antes de agregar el n-butil activo x La adición del Butadieno y ciclohexano se realizó presionando los recipientes de estos reactivos con nitrógeno y utilizando la diferencia de presión entre éstos y el reactor; la adición de n-butil litio y fenantrolina se realizó por medio de jeringas. La figura siguiente muestra un arreglo esquematico del sistema descrito:

VI.2 Reactivos

19

El ciclohexano fué obtenido de Industrias Negromex y purificado por destilación almacenado bajo atmósfera de nitrógeno. El 1,3-Butadieno fué tambén obtenido de Industrias Negromex y purificado haciéndolo pasar a través de dos columnas de Acero Inoxidable de 3.5 cm de diámetro interno y 74 cm de longitud empacadas con alúmina y malla molecular (13 Å), respectivamente. El n-butil litio (Lithium Corporation, USA) y el 1,10-fenantrolina (Aldrich) fueron utilizados tal como se recibieron.

VI.3 Caracterización del Polímero

El análisis de éstas muestras por GPC se llevó a cabo en una estación HPLC-HP1090 de Hewlett-Packard utilizando un detector de índice de refracción HP1037A de Hewlett Packard y haciendo pasar soluciones diluídas (0.1-0.2 %(peso/volumen) en THF) a través de juegos de columnas de 10 μ m Hewlett Packard Ultra Styragel de 10⁷, 10⁶, y 10⁵Å en el caso (a) y 10⁶, 10⁵ y 10⁴Å en el caso (b), y utilizando estándares de poliestireno según se muestra en las tablas I y II. Las figuras A-1 y A-2 muestran la resolución por GPC para éstas muestras.

TABLA I PESOS MOLECULARES UTILIZADOS PARA ANALISIS POR GPC CASO JUEGO DE COLUMNAS ESTANDAR DE ESTIRENO a)ESTANDAR STD07NOV IE+07, IE+06, IE+05 b)ESTANDAR STD270 IE+06, IE+05, IE+04 b)ESTANDAR STD270 IE+06, IE+05, IE+04 3,250 b)ESTANDAR STD270 IE+06, IE+05, IE+04 3,250 3,250 3,250 5,200 3,250

La Tabla III contiene un resumen de las corridas efectuadas y una breve descripción de las mismas.

Las corridas A9-4, A10-1, A17-1, A17-3, y A17-4 se realizaron con el proposito de utilizarlas exclusivamente en la obtención de los parámetros cinéticos de la reacción y son básicamente, corridas en las que se tomaron datos puntuales de temperatura, presión y cantidad de polímero formado versus tiempo de reacción.

CORRIDA EXPERIMENTAL D24-1 D24-2 D24-3 D24-3 N1-1 N1-2 N1-3 N1-4 N1-5 N1-6 N1-6 N1-9 N1-9	ESTANDAR STD270	CLAVE DE CORRIDA DATA:824-14.D.D DATA:824-2.0 DATA:824-3.D DATA:824-4.D DATA:824-4.D DATA:81-2.0 DATA:81-2.0 DATA:81-5.0 DATA:81-5.0 DATA:81-5.0 DATA:81-5.0 DATA:81-5.0 DATA:81-5.0 DATA:81-5.0 DATA:81-5.0
N 1-9	•	DATA IN 1-9 D

TABLA II ANALISIS DE MUESTRAS POR GPC

La cantidad de polímero formado en gramos/mi se determinó de manera aproximada extrayendo con jeringa, cantidades entre 0.1 y 0.2 ml de la mezcla de reacción, durante el transcurso de la misma, y llevando dichas muestras a desecación completa en recipientes previamente pesados. La información obtenida por diferencias en peso entre el volumen de la muestra, es únicamente para propósitos de comparación con el modelo objeto de éste trabajo, debido a que el error experimental en que se incurre al extraer dichas muestras con jeringa aumenta de manera directamente proporcional con el tiempo dóe reacción y por ende, con el avance y viscosidad de la misma.

TABLA III

RESUMEN DE CORRIDAS EXPERIMENTALES

CORRIDA	MOL nBuli/ BTD	MOL BTD/ CICLOHE>	TIEMPO REACCION MIN	GPC	TEMPERATURA INICIAL	n-Buli PULSOS
A 9-4 A 10-1 A 17-1 A 17-3 A 17-3 A 17-4 A 10-3 A 15-4 A 16-2	11.D2E-4 22.04E-4	0.2232	9.0' 11.0' 7.0' 6.5' 13.0' 8.5' 6.0'	- - - - - 51 -	69 68 72 74 77 69 69 75	1 1 1 1 5 1 1 1
A 16-5 A 20-1	11.026-4	0.1785	12.0'	SI	69	9

En la misma tabla se muestran, asimismo, las corridas A10-3, A15-4, A16-2, A16-5 y A20-1 cuyo propósito es el de probar el modelo resultante de las corridas anteriores. Las corridas A15-4 y A16-2, son experimentos en los cuales se duplica la cantidad de iniciador n-butil litio con respecto a las corridas que generan el modelo.

	TABLA	IV	
DESCRIPCION	DE LA	CORRIDA	A 10-3

HEMPO DE ADICIÓN (MINUIOS) MOLES NE	BULI/MOLES BID INICIA
0.0	0.0002204
1.0	0.0002204
3.0	0.0002204
5.0	0.0002204
7.0	0.0002204

Asimismo, en la corrida A16-5 se disminuye la cantidad de monomero, aunque se mantiene la relación iniciador/monómero y finalmente las corridas A10-3 y A20-1 modifican la política de adición de iniciador.

En las corridas A10-3 y A20-1, la relación iniciador/monómero y solvente/monómero se mantienen iguales a los de las primeras 5 corridas, pero la adición de n-butil litio se realiza de manera gradual a lo largo de la reacción de polimerización. Estos programas de adición se muestran en las tablas IV y V, respectivamente.

Si en las corridas A10-3 y A20-1, se detiene o para la reacción mediante la adición de un alcohol, en intervalos cada vez mayores de tiempo, se obtienen las corridas b24-1,2,3,4 y N-1,2,3,4,5,6,7,8. Estas corridas se realizaron con el fin exprofeso de obtener polidispersidades y distribuciones de pesos

N 5

TABLA V DESCRIPCION DE LA CORRIDA A20-1

TIEMPO DE ADICION (MINUTOS)		MOLES NOULI/MOLES BTD INICIAL
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0	•	0.0002204 0.0001102 0.0001102 0.0001102 0.0001102 0.0001102 0.0001102 0.0001102 0.0001102

moleculares por GPC. De ésta manera, éstas últimas corridas proporcionan datos de GPC a distintos tiempos de reacción para las corridas A10-3 y A20-1.

	OBTEN	CION DE	GPC PARA (CORRIDA	A 10-3	• •
CORRI	DA	TIEMPO	DE PARO (M	IN) P	ULSOS	TOTALES
N1-1 024-3 N24-3 N24-3 N24-4 N2-4-4 N2-4-4 N2-4-4 N2-4-4 N2-4-4 N2-4-4 N2-4-4 N2-4-4 N2-4-5 N2-5				123430 8550 8797 8797 8797 8797 8797 8797 8797 879		

Las Tablas VI y VII muestran el orden y descripción de dichas corridas, así como la clave de muestra por GPC y en el apéndice II de este trabajo se incluyen los reportes GPC para dichas muestras.

Con respecto a las distribuciones de pesos moleculares obtenidas por GPC, utilizando estándares de poliestireno, los datos experimentales que nos interesan en éste estudio son, exclusivamente, su forma y polidispersidad, por ser medidas cualitativa y cuantitativamente relativas, respectivamente, del

OBTE	NCION DE GPC PARA CORR	IDA A20-1 **
CORRIDA	TIEMPO DE PARO (MIN)	PULSOS TOTALES
N 1-8 N 1-7 N 1-8 N 1-9	2.5 4.5 7.5 9.5	3 5 9

comportamiento de la polimerización.

74

Las mediciones de presión, temperatura, cantidad de polímero formado, polidispersidad y forma de la curva de distribución de pesos moleculares, nos proporcionan mediciones indirectas de la cantidad remanente de butadieno en fase gas y líquida, del iniciador y del comportamiento del mismo durante la reacción.

VII. RESULTADOS

VII.1 Resultados Experimentales

En las figuras B-1 a B-5 se muestran los datos de temperatura, presión y cantidad de polímero formado para las primeras 5 corridas(A9-4, A10-1, A17-1, A17-3, y A17-4); una sola adición inicial de n-BuLi (11.02E-04 mol n-BuLi/mol de butadieno) y tiempos de reacción entre 10 y 15 minutos, dependiendo de la temperatura inicial. Estas corridas serán utilizadas para obtener las cinéticas de iniciación y propagación aparentes de la reacción.

Debe notarse que éstos datos presentan un máximo en temperatura y presión que no coinciden necesariamente en la escala de tiempo. Esto es debido a un efecto combinado entre disminución de la

cantidad de butadieno -y consecuentemente de butadieno en fase gas- debido al avance de la reacción y un aumento en la presión de vapor de los componentes involucrados debido al aumento en la temperatura de reacción.

1

Asimismo, estas gráficas muestran que el periódo de inducción -esto es, el periódo ó región en donde la pendiente dT/dt tiende a ser mínima-, tiende a desaparecer conforme se aumenta la temperatura inicial de la reacción.

Este efecto podría explicarse suponiendo que en ésta región existe una combinación de la iniciación y propagación, -esto es, que en ésta región coexisten simultáneamente los pasos de iniciación y propagación- y que, después de ésta etapa, solo existe propagación. En otras palabras, existe iniciador remanente, sólo hasta el límite de la región de inducción, después de ésta región no existe iniciador remanente y solo existe el crecimiento de cadenas a partir del polibutadienil litio recién formado.

De ésta manera, esto también explica el hecho de que el periódo de inducción disminuya en tiempo al aumentarse la temperatura inicial de la reacción y que la temperatura máxima alcanzada por una corrida experimental en particular, sean mas elevadas conforme se aumenta la temperatura inicial, dado que la cinética de iniciación y propagación se favorecen a altas temperaturas, es factible suponer que el iniciador se agota en periódos más cortos de tiempo conforme se aumenta la temperatura inicial, dejando una cantidad mayor de butadieno en etapa de propagación pura ocasionando que el medio de reacción, genere una mayor cantidad de calor.

Este conjunto de oservaciones permite asimismo, suponer que es factible encontrar , en el periódo de propagación pura, una constante de propagación que no dependa de la temperatura inicial de la reacción y que una vez encontrada aquella, sería posible obtener la constante de iniciación en el periódo de inducción.

Por otro lado, dado que el obtener las concentraciones de n-butil litio bajo condiciones no-isotermas, no-adiabáticas no resulta ser un problema trivial, es necesario obtener, indirectamente, medidas del comportamiento cinético del iniciador.

La Figura B-6 representa los perfiles de temperatura, presión y concentración de polímero formado para una relación de 0.2232 moles de butadieno/mol de ciclohexano y un total de 11.02E-04 moles de nBuLi/mol de butadieno, aplicado en 5 pulsos a los 0,1,3,5 y 7 minutos de reacción y una temperatura inicial de 68 °C.

Asimismo, la figura B-7 muestra el efecto en los perfiles de temperatura para una adición programada de 5 y un sólo pulso inicial, para la misma cantidad de nBuLi.

Por otra parte, la Figura B-8 muestra este los persiles de concentración para éstas mismas corridas.

Se puede observar de manera inmediata, para la corrida que utiliza un programa de adición de pulsos, una disminución en la temperatura máxima alcanzada por la reacción, así como un mayor tiempo de reacción. Por otro lado se observa que la formación de polímero ó conversión de monómero, es menor a tiempos iguales.

La Figura B-9 muestra la polidispersidad obtenida para ésta misma corrida.

De mancra similar, la figura B-10 muestra la polidispersidad obtenida para una corrida con 9 adiciones ó pulsos de nBuLi a los 0,1,2,3,4,5,6,7 y 8 minutos.

B-11, B-12, B-13 y B-14.

Finalmente, el efecto de la cantidad de iniciador queda mostrado èn las figuras B-15 y B-16 para los perfiles de temperatura y cantidad de polímero formado, respectivamente y para las corridas A9-4 y A15-4, con una relación iniciador monómero para esta última del doble de la primera.

VII.2 Determinación del comportamiento térmico del reactor

En las figuras C-1 y C-2 se muestra el perfil de temperatura para dos sistemas. El primero es una mezcla de 0.2232 moles de butadieno/mol de ciclohexano polimerizado con una relación de 11.02e-4 moles de nBuLi/mol de butadieno, llevado a una temperatura de 109 °C y al que se le permite enfriarse de manera natural, esto es, no-inducida. La figura C-2 muestra el mismo sistema y método para una mezcla no-reaccionada, esto es, una mezcla sin nBuLi.

Dado que el propósito de este trabajo es el de obtener el comportamiento cinético de la polimerización aniónica de butadieno, y para ésto, tal como se planteó anteriomente, es necesario el conocer el comportamiento térmico del reactor, nuestro propósito en esta sección <u>no</u> es modelar dicho comportamiento de manera rigurosa, sino plantear la ó las ecuaciones de comportamiento térmico que nos permitan eliminar éste efecto de los datos de temperatura de reacción obtenidos experimentalmente.

De esta manera, las dos curvas anteriores representan los límites bajo los cuales se planteó el comportamiento térmico del reactor.

La figura C-3 muestra ajustes polinomiales para el decaimiento de temperatura mostrado en las figuras C-1 y C-2.

Finalmente la Figura C-4 muestra un polinomio de interpolación para un caso de conversión intermedia. La interpolación es lineal como función de la densidad de la mezela y se utilizan los polinomios mostrados anteriormente en la figura C-3.

۱.

VII.3 Obtención de Cinéticas de Propagación Aparentes

Para el modelo establecido que considera iniciación, propagación y no-terminación :

١

$$d/dt (N_m *T,t*) = k_1 I^* *T,t*N_m *T,t* + kp^* (I_0 - I^* *T,t*) N_m^{\beta} *T,t*$$
(28)

$$d/dt (1^* *T,t*) = k_i 1^* *T,t*N_m *T,t*$$
(20)

en donde :

Nm	= concentración de butadieno	,
1.	= concentración de iniciador activo	
ե	= concentración inicial de n-BuLi	
k,	= constante aparente de iniciación	
kp*	= constante aparente de propagación	
т	= temperatura	
t	= liempo	
«T,t»	= indica funcionalidad con temperatura y tiempo de re	acción

$$d/dt (N_m *T,t*) = kp^*(l_0)N_m^{\beta} *T,t*$$
 (28a)

con balance de energía

$$\rho Cp \quad d/dt \ (T) = (-\Delta H_{r}) \ d/dt (N_{m} * T_{r} t *) - \Phi \ \{T_{r} T_{r}\}$$
(1)

en donde Φ {T,T_t} representa el polinomio de interpolación descrito con anterioridad para el comportamiento térmico del reactor, mismo que ya conocemos por la sección anterior.

De acuerdo con el método del reactor cuasi-adiabático, es posible obtener, a partir de las ecuaciones (1) y (4) la conversión de monómero. Los datos de ésta para 5 diferentes corridas se muestran en las figuras D-1 a D-5.

Ahora bien, si suponemos que el iniciador desaparece antes que el monómero, debe existir un punto a partir del cual la ecuación (28a) prevalezea.

Si esto es así y suponemos que:

$$kp^* = A \exp(-\theta/T)$$

(42)

combinando las ecuaciones (42) y (28a) tendremos :

$$\ln \{ [-d/dt \ N_m *T, t*]/I^0 / N_m^{\theta} \} = \ln (A) - \theta / T$$
(43)

entonces, al graficar el lado izquierdo de esta la ecuación anterior vs 1/T obtendremos, a partir de l^{*} = 0 y hasta donde el calor generado por la reacción sea suficiente para compensar las pérdidas generadas por el polinomio Φ {T,T_r}, esto es, al menos en una sección de dicha gráfica, una parte lineal, siempre y cuando las suposiciones implícitas en las ecuaciónes (28a) y (42) sean válidas.

El resultado de realizar este procedimiento se muestran en las figuras D-6 a D-9 para las corridas indicadas y para un valor del parámetro β de la ecuación (28) igual a uno.

-.

Las figuras anteriormente mostradas poseen una parte ó sección de las curvas graficadas que se puede considerar muy cercanamente lineal. De esta forma es posible obtener una constante de propagación en su forma Arrhenius, si obtenemos la mejor recta simultánea para las curvas obtenidas.

Este procedimiento se muestra graficado en la figura D-10 para $\beta = 1$.

En esta figura se observa que el ajuste logrado no es del todo satisfactorio, por lo que se utilizó, finalmente, un valor de β = 1.5, el cual fué encontrado por prueba y error. El resultado de utilizar este valor se muestra en la figura D-11 y es el que se utilizó en este trabajo.

ē

VII.4 Obtención de Cinéticas de Iniciación Aparentes

Una vez que se conoce la constante de propagación, solo resta conocer la constante aparente de iniciación. Si suponemos que -al igual que la constante de propagación- la constante de iniciación sigue una forma funcional de tipo Arrhenius

$$ki = Ai \exp \left(-\frac{\theta i}{T}\right) \tag{51a}$$

el sistema formado por las ecuaciones,

$$\rho Cp = d(T)/dt = (-\Delta H_1) d/dt(N_m * T_1 t_*) - \Phi \{T_1, T_1\}$$
(1)

$$- d(1 (T,t))/dt = k_1 (T,t) (T,t) (T,t)$$
(20)

$$d(N_m (T,t))/dt = k_i f (T,t) (T,t) + kp (l_0 f (T,t)) m^{\beta} (T,t)$$
(28)

posee dos incógnitas: (1) energía de activación y (2) factor de colisión de la constante de iniciación, mismas que deben satisfacer datos de temperatura, experimental versus tiempo. Como observamos en el capítulo de descripción del modelo, la forma analítica de la solución iterativa de las ecuaciones anteriores es complicada. Sin embargo es posible utilizar una solución alternativa al sistema descrito anteriormente, como se describió en el desarrollo del modelo. De las ecuaciónes (51) y (51a), tenemos

$$\log (ki) \simeq \phi \log (kp^*) \tag{68}$$

en donde ϕ es una constante muy pequeña ($\phi <<1$). Es evidente que la solución del sistema formado por las ecuaciones (1), (20), (28), (51a) y (68) continúa siendo un problema de dos incógnitas, sin embargo la aproximación de ki a través de la ecuación (68), sujeta a la restricción $\phi <<1$ permite la solución del sistema descrito, a través de la iteración de un sólo parámetro.

La ecuación (68) además de facilitar la tarca, presupone que el comportamiento de las cadenas iniciadoras, esto es una cadena alquil-litio, es proporcional al comportamiento de las cadenas poliméricas, el cual es también un alquil-litio.

Los resultados de la suposición representada por la ccuación (68) y de la iteración gráfica con los datos experimentales de las corridas A9-4, A10-1, A17-1, A17-3 y A17-4-así como de un último ajuste en la energía de activación- se muestran en las figuras E-1 a E-5 para $\phi = 0.003$. Asimismo las Figuras E-6 y E-7 muestran los perfiles de conversión para el monómero, el iniciador y el polímero formado.

Las figuras señaladas muestran la bondad del ajuste logrado.

ğ

Figura E-2 Comparacion de corrida A10-1 vs modelo

4

TIEMPO

6 (MINUTOS)

8

10

12

PERFIL DE TEMPERATURA VS TIEMPO CORRIDA A10-1 PRESION VS TIEMPO

POLMERO FORMADO VS TIEMPO CORRIDA A10-1

+ experimental

2

- modelo

65

PRESION VS TIEMPO CORRIDA A17-3

A 0 - M 0.2

> 0 ٥

1 2

3 4 5 TIEMPO (MINUTOS)

2

+ experimental

VILS COMPARACION DEL MODELO CON RESULTADOS EXPERIMENTALES

VII.5.1 Perfiles de Temperatura, Presión y Polímero formado

ьù

......

 $_{2}$ (eq.

see.

123

5

1

18 11 14

Una vez obtenido el modelo de la polimerización aniónica de butadieno, se procedió a la comparación de los resultados obtenidos por el mismo, con resultados experimentales distintos a los empleados en la obtención del modelo.

Los resultados de esta comparación se muestran en las figuras F-1 a F-4 para las corridas A15-4, A16-2, A16-5 y A10-3. Las corridas A15-4 y A16-2 son experimentos en los cuales se duplicó la cantidad de iniciador n-butil lítio con respecto a las corridas que generan el modelo (corridas A9-4, A10-1,A17-1,A17-3 y A17-4). Así mismo, en la corrida A16-5 se disminuye la cantidad de monómero, aunque se mantiene la relación iniciador monómero y finalmente la corrida A10-3, modifican la política de adición del iniciador. En la corrida A10-3 la relación iniciador/monómero y solvente/monómero se mantienen iguales a los de las primeras 5 corridas, pero la adición de nbutil lítio se realiza de manera gradual a lo largo de la reacción de polimerización. La descripción de estas corridas, así como el programa de adición para la corrida A10-3, fueron hechas en las tablas I y II de la sección DESARROLLO EXPERIMENTAL mismas que a continuación se reproducen así como las figuras F-1 a F-4.

		TABLA	Ι
RESUMEN	DE	CORRIDAS	EXPERIMENTALES

CORRIDA	MOL	MOL	TIEMPO	GPC	TEMPERATUI	RA
	nBull/	BTD/	REACCION		INICIAL	n-Buli
	BTD	CICLOHE	K MIN			PULSOS
A 9-4	11.02E-4	0.2232	9.0'	-	69	1
A10-1	•	•	11.0'	-	68	1
A17-1	•	,	7.0'	-	72	1
A17-3	•	,	7.0'	-	74	1
A17-4	•	•	6.5'	-	77	1
A10-3	۱	,	13.0'	SI	69	5
A15-4	22.04E-4	•	8.5'	-	69	1
A16-2	•	•	6.0'	-	75	1
A16-5	11.02E-4	0.1785	10.51	-	69	1
A 20-1	•	\$	12.0'	SI	69	9

TABLA II	
DESCRIPCION DE LA CORRIDA A10-3	
TIEMPO DE ADICION (MINUTOS) MOLES nBuli/MOLES 0.0 1.0 3.0 5.0 7.0	BTD INICIAL 0.0002204 0.0002204 0.0002204 0.0002204 0.0002204

5

5

3

(MINUTOS)

TIEMPO

- modelo

78

73 С

> 68 n

PRESION VS TIEMPO CORRIDAS A15-4

VII.5.2 Distribución de Pesos Moleculares y Polidispersidad

Hasta el momento se han comparado únicamente perfiles de temperatura, presión y polímero formado contra el tiempo de reacción entre el modelo y las corridas experimentales. En esta sección comparamos los resultados de el cálculo de la distribución de pesos moleculares (ecuación (42)), así como de la polidispersidad para el modelo que se ha obtenido. La gráfica G-1 muestra el cálculo de la distribución de concentraciones molares de especies poliméricas para las condiciones de la corrida A20-1 a diversos tiempos.

.

117

.

La gráfica G-1 puede ser convertida a una gráfica de frecuencias' de peso moleculares y comparada con los datos experimentales (GPC). Esto se muestra en las Figuras G-2, G-3, G-4 y G-5 para la corrida A20-1 y G-6 para la corrida A10-3. Así mismo, las gráficas G-7 y G-8 muestran las polidispersidades obtenidas con el modelo y comparadas con las corridas anteriores.

Las características de dichas corridas se muestran en las tablas I,II,III y VII de la sección DESARROLLO EXPERIMENTAL que a continuación se reproducen.

TABLA I RESUMEN DE CORRIDAS EXPERIMENTALES

CORRIDA	MOL nBuli/ BTD	MOL BTD/ CICLOHE?	TIEMPO REACCION MIN	GPC	TEMPERATURA INICIAL	n-Buli PULSOS
A 9-4	11.02E-4	0.2232	9.0'	-	69	1
A10-1	•		11.0'		68	1
A17-1	•	•	7.0'	· 🗕	72	ĩ
A17-3	•	•	7.0'	-	74	i
A17-4	•	•	6.5'	-	77	j
A10-3	•	•	13.0'	51	60	5
A15-4	22.04E-4	•	8.5'		60	ž
A16-2		•	6.0'	_	75	j
A16-5	11.02E-4	0.1785	10.5	-	69	i
A 20-1	,		12.0'	SI	69	9

	TABLA	11	
DESCRIPCION	DE LA	CORRIDA	A 10-3

MOLES NBULI/MOLES BTD INICIAL
0.0002204
0.0002204
0.0002204
0.0002204
0.0002204

TA E DESCRIPCION DE	BLA III LA CORRIDA A20-1
TIEMPO DE ADICION (MINUTOS) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0	MOLES NBULI/MOLES BTD INICIAL 0.0002204 0.0001102 0.0001102 0.0001102 0.0001102 0.0001102 0.0001102 0.0001102 0.0001102 0.0001102

TABLA VII						
OBTENCION	DE	GPC	PARA	CORRIDA	A 20-1 **	

CORRIDA	tiempo de paro (MIN)	PULSOS TOTALES
N 1- 6	2.5	3
N1-7	4.5	5
N 1- 8	7.5	8
N1-9	9.5	9

** A20-1 INVOLUCRA 9 ADICIONES A LOS 0,1,2,3,4,5,6,7 Y 8 MIN

.

ន្ទ

ä

ង

VIII. DISCUSION DE RESULTADOS

Los resultados experimentales muestran, como era de esperarse (9°,10°,21°) un carácter sigmoidal en los perfiles de temperatura, caracterizado por un período de inducción en el que no existe un cambio apreciable en la temperatura del sistema. Este período de inducción disminuye en duración conforme se aumenta la temperatura de inicio de la reacción. Este efecto se ha explicado (9°) identificando el período de inducción como un período en el que coexisten las etapas de iniciación y propagación y en el que las temperaturas altas favorecen el consumo inmediato del iniciador, disminuyendo de esta forma la duración de dicho período, para dar paso a la etapa de propagación pura. Así, la etapa de propagación puede estudiarse de manera aislada (10°,13°,21°,26°) y es factible suponer que se comportará de manera similar para un conjunto de experimentos que posean las mismas condiciones de reacción, excepto la temperatura de inicio de la misma. Este supuesto se ve confirmado en la sección de obtención de cinéticas de propagación aparentes.

Aunque podría suponerse que los parámetros encontrados para la constante de propagación son válidos únicamente para las condiciones de reacción a partir de las cuales se obtuvo, la concordancia entre los resultados proporcionados por el modelo y los datos experimentales al modificar dichas condiciones de reacción, en particular la cantidad de n-butil litio activo, indica que la constante aparente de propagación encontrada es válida para un amplio rango de temperaturas de reacción (69-120 °C) y de cantidad de iniciador activo (2x10⁻³ a 1x10⁻⁴ moles de n-butil litio activo/mol de butadieno).

La constante aparente de iniciación encontrada muestra una energía de activación dos órdenes de magnitud menor que la encontrada para la etapa de propagación, lo cual es razonable si comparamos la duración de las etapas de inducción y propagación experimentales. Esta comparación muestra también de manera cualitativa las reactividades del iniciador y el polibutadienilo hacia el monómero.

El valor de energía de activación encontrado para la reacción de iniciación muestra también que la constante de iniciación es prácticamente invariable con respecto a la constante de propagación.

Los experimentos realizados con pulsos de iniciador alquil lititado proporcionan evidencia de que el modelo reproduce adecuadamente las etapas de iniciación y propagación, así como la presencia múltiple de estas etapas, no sólo para los perfiles experimentales de temperatura, presión y concentración del polímero formado versus tiempo, sino también en la distribución de pesos moleculares y polidispersidad del polímero a lo largo del curso de la reacción. La reproducción de estos experimentos a través del modelo muestra que la constante de iniciación es relativamente invariable, aún en rangos amplios de temepratura de reacción.

Los resultados dinámicos obtenidos por el modelo en la predicción de la distribución de pesos moleculares y polidispersidades son alentadores y proporcionan evidencia confirmatoria de la bondad del modelo, y de las constantes obtenidas, en la representación del comportamiento del iniciador activo, al mismo tiempo que suplen la falta de información experimental directa sobre este último, bajo condiciones no-isotérmicas.

Existen en la literatura (33°,53°) algunos intentos de obtención de polidispersidades amplias (>1.5) en polimerización aniónica, sin embargo la falta de conocimiento del comportamiento cinético de dicha polimerización ha hecho que dichos estudios no encuentren confirmación experimental. El modelo que se propone en este trabajo, permite investigar el efecto de las distintas variables sobre la polidispersidad.

Como recordaremos la constante de poropagación fué obtenida al graficar el lado izquierdo del logaritmo de la ecuación (28a)

$$\ln \left[-d \ Nm < T_{,t} > /dt \ /L_{n} / Nm^{8} \right] = \ln \left[Ap \right] - Eap / (RT)$$
(28b)

contra 1/T, obteniendose la energía de activación (Eap) y el factor de colisión (Ap) para la reacción de propagación. Sin embargo cabe hacer notar que los parámetros obtenidos dependen del valor I_0 en el lado izquierdo de la ecuación (28b), esto es, dependen de la cantidad total del iniciador presente, ó cantidad de centros activos, ya sea que éste permanezca libre, asociado ó en el extremo de una cadena de polímero activo, esto es

 $I_{n} = I^{*} * T_{t} * + P_{T} * T_{t} *$

en donde

 $P_T = I_0 - I^* = moles$ de polímero totales (asociadas y no-asociadas) $I^* = Iniciador total activo (asociado y no-asociado)$ $I_0 = moles$ de iniciador inicialmente presente

lo cual se muestra de acuerdo con la literatura en el sentido de que existe una cierta funcionalidad de la constante de propagación con la cantidad de iniciador presente (33*). En este trabajo se demuestra claramente dicha funcionalidad en la ecuación (28b) y dado que se utilizó una aproximación para la constante de iniciación con respecto a la constante de propagación, esto es ki=kp[#], entonces la constante de iniciación depende también de la cantidad total del iniciador alquil litiado presente.

La validez de la dependencia de las constantes de propagación e iniciación con respecto a la cantidad total de centros activos I_0 , representada por la ecuación (28b), fué confirmada al modelar la polimerización que nos ocupa y contrastarla con los resultados experimentales obtenidos para diversas cantidades de n-butil litio presente al inicio de la reacción, así como en experimentos en los cuales se adiciona n-butil litio a lo largo del curso de la reacción (adiciones multiples ó pulsos).

En ambos casos, además de la dependencia establecida con la temepratura, los parámetros de las constantes de propagación e iniciación fueron calculados de acuerdo con la ecuación (28b) para la

cantidad de centros activos totales presentes, I_0 . En el caso particular de la reproducción, vía el modelo obtenido en este trabajo, de los experimentos con adiciones múltiples de iniciador ó pulsos, los parámetros de las constantes de iniciación y propagación se calcularon de acuerdo a la cantidad total de centros activos (n-butil litio total) presentes acumulado, esto es, la energía de activación y el factor de colisión de la expresión Arrhenius de las constantes de iniciación y propagación fueron recalculados despúes de cada adición de iniciador.

IX. CONCLUSIONES

En este trabajo se obtuvo un modelo de la polimerización aniónica de butadieno iniciada por n-butil litio utilizando como solvente ciclohexano bajo condiciones no-isotérmicas, no-adiabáticas. El modelo describe con precisión el comportamiento real de dicha polimerización en términos de las siguientes variables en tiempo real:

-Concentración del monómero en fases líquida y vapor.

-Concentración del iniciador.

-Concentración del polímero formado.

-Volumen de reacción.

-Presión del sistema de reacción.

-Temperatura del sistema de reacción.

-Polidispersidad del polímero formado.

-Distribución de pesos moleculares del polímero formado.

-Distribución de la concentración de las especies poliméricas, entendiendo por éstas a las cadenas poliméricas constituídas de j monómeros, con j en el intervalo $[1,..,\infty)$.

Se demuestra que las constantes de iniciación y propagación para ésta polimerización pueden epresarse convenientemente en la forma Arrhenius y son válidas, al menos, para el rango de temeperaturas de 68-87 °C y 68-105 °C, respectivamente.

El modelo obtenido utiliza dichas constantes y estas fueron obtenidas a su vez de una combinación del modelo y datos experimentales.

La constante de propagación obtenida dependen de la cantidad de iniciador total presente, conclusión que está de acuerdo con la literatura (33*). En este trabajo se obtuvo la forma analítica de dicha dependencia.

Se demuestra que la constante de iniciación puede expresarse como

en donde ki y kp son las constantes de iniciación y propagación y ϕ es un valor pequeño (3/100) que atenúa el carácter exponencial inherente a la constante de propagación. De esta manera

por lo que se concluye que la constante de iniciación permanece casi invariable en la reacción de polimerización aniónica de butadieno en solución, con respecto a la constante de propagación, y dada la relación que existe entre así como la dependencia de esta última con la cantidad de iniciador total presente, la constante de iniciación depende también de la cantida de n-butil litio. presente, la constante de iniciación depende también de la cantida de n-butil litio.

El orden de reacción obtenido el polibutadienil litio en la expresión de la velocidad de propagación no concuerda con los valores reportados en literatura, los cuales fueron obtenidos de manera isotérmica. El modelo propuesto funciona para un amplio rango de concentraciones de iniciador $(1.102 \times 10^{-4} a 22.04 \times 10^{-4} moles de n-butil litio activo/mol de butadieno).$

La constante de propagación obtenida en este trabajo compara favorablemente con los valores obtenidos de manera isotérmica reportados en la literatura. Así, la energía de activación el butadieno en n-hexano es de 22 kcal/mol y la obtenida para el butadieno en ciclohexano (modelo) es 30 kcal/mol. La relación kp/ki a 50 °C es de 2.2 en la literatura y de 1.9 en este trabajo.

El modelo obtenido reproduce adecuadamente los procesos de iniciación, iniciación/propagación, y propagación inherentes a la cinética de polimerización aniónica de butadieno, así como la presencia múltiple a diversas temperaturas y cantidades de iniciador de dichas etapas.

El modelo representa adecuadamente el comportamiento y la distribución de las especies poliméricas formadas durante el curso de reacción.

El modelo obtenido en este trabajo, puede utilizarse de manera inmediata en estudios de control de polidispersidades para la polimerización aniónica de butadieno en solución iniciada por n-butil litio.

El método utilizado en este trabajo puede generalizarse de manera directa para la obtención de

cinéticas de polimerización de otros dienos ó estireno, en presencia ó no de modificadores de estructura.

BIBLIOGRAFIA

. **X.**

1)	T.L. Brown in "Advances in Organometallic Chemistry", F.G.A. Stone and R.West, Ed. Academic Press, New York, N.Y., p.365, 1956
2)	A.F. Johnson and D.J. Worsfold, J. Polymer Sci. A3, 449, 1965
3)	DJ. Worsfold and S. Bywater, Can. J. Chem. 42, 2884, 1964
4)	M. Morton and LJ. Fetters, J. Polymer Sci. A2, 3311, 1964
5)	M. Morton, L.J. Fetters and E.E. Bostick, J. Polymer Science C1, 311, 1963
6)	S. Bywater and D.J. Worsfold, J. Organometal. Chem. 10, 1, 1967
7)	T.L. Brown, J. Organometal. Chem. 5, 191, 1966
8)	W.H. Glaze and C.H. Freeman, J. Amer. Chem. Soc., 91, 7198, 1969
9)	H.L. Hsieh, J. Polymer Sci. A3, 153, 1965
10)	H.L. Hsieh, J. Polymer Sci. A3, 163, 1965
11)	Selman, C.M. and H.L. Hsieh, Polymer Letters, 9, 219-224, 1971
12)	Bywater S. and D.J. Worsfold, Polymer Preprints 27, 1, 140, 1986
13)	Hsieh H.L. and W.H. Glaze, Rubber Chemistry and Technology, 43, 22-73, 1970
14)	T.L. Brown, Pure Appl. Chem. 23, 47, 1970
15)	T.L. Brown, Ann. N.Y. Acad. Sci. 136, 95, 1966
16)	M. Morton, R.A. Pett and L.J. Fetters, Macromolecules 3, 333, 1970
17)	D. Margerison and J.P. Newport, Trans. Faraday Soc. 59, 2058, 1963
18)	S. Bywater and D.J. Worsfold, Can. J. Chem. 45, 1821, 1967
19)	M. Morton, E.E. Bostick, R.A. Livigni, and L.J. Fetters, J. Polymer Sci. A1, 1735, 1963
20)	DJ. Worsfold and S. Bywater, Can. J. Chem. 38, 1891, 1960
21)	H.L. Hsieh, J. Polymer Sci. A3, 173, 1965
22)	M. Morton, A.A. Rembaum and J.L. Hall, J. Polymer Sci. A1, 461, 1963
23)	M. Morton, E.E. Bostick, and R.G. Clarke, J. Polymer Sci. A1, 475, 1963
24)	Morita, h. and A.V. Tobolsky, J. Am. Chem. Soc. 79, 5853, 1957

25) I. Kuntz and A. Gerber, J. Polymer Sci. 42, 299, 1960

- 136
- 25 a) I. Kuntz and A. Gerber, Rubber Chem. & Technology, 33, 3, 628, 1960
- 26) M. Morton and L.J. Fetters, Rubber Chem. & Technology, 48, 395, 1975
- 27) H. L. Hsieh, Rubber Chem. & Technology, 49, 5, 1305, 1976
- 28) H.L. Hsieh, J. Polymer Sci. A3, 191, 1965
- 29) H.L. Hsieh and A.G. Kitchen, ACS Symposium Series, 212, 22, 291-306, 1983
- 30) H.L. Lewis and T.L. Brown, J. Am. Chem. Soc. 92, 4664, 1970
- 31) W.H. Glaze, J.E. Hanicak, M.L. Moore, and J. Chandhuri, J. Organomet. Chem. 44, 39, 1972
- 32) M. Szwarc, M. Van Beylen and D. Van Hoyweghwn, Macromolecules, 20, 445-448, 1987
- 33) Eisenberg A. and D.A. Mc Quarrie, Journal of Polymer Science A1, 4, 737-750, 1966
- 34) Spencer C. Watson and Jerome F. Eastham, Journal of Organometallic Chem. 9, 165-168, 1967
- 35) V.M. Monroy, G. Guevara, I. León, A. Correa and R. Herrera, "In-situ Titration of Poisons in the Preparation of Butadiene and Styrene-Butadiene in non-polar solvents in quasi-adiabatic solution Anionic Polymerization", presented at the Meeting of the Rubber Division, American Chemical Society, Mexico, May 9-12, Paper No 60, 1889
- 36) S.E. Bresler, A.A. Korotov, M.I. Mosevitskii and I. Ya. Poddubnyi, Rubber Chem. & Tech. 33, 3, 669-688, 1960
- 37) U.S. Patent 3,290,116 (Dec. 6, 1966)
- 38) Delmar C. Timm and Larry F. Kubicek, Chem. Eng. Sci. 29, 2145-2154, 1974
- 39) Shean-Lin Liu and N.R. Amundson, Rubber Chem. & Tech. 34, 4, 995-1133, 1961
- A.M Stolin, A.G. Merzhanov and Ya. Malkin, Polymer Engineering and Science, 19, 15, 1065, 1979
- R.E. Camargo, J.M. González, C.W. Macosko and M. Tirrell, Rubber Chem. & Tech., 56, 774, 1983
- 42) Medina, J.A. y V.M. González-Romero, Tiempos de Ciencia, Vol 13, 1988
- 43) P.L. Mills, Computers & Chem. Eng. 10, 4, 399-420, 1986
- 44) Scott Lynn and James E. Huff, AIChE J., 17, 2, 475, 1971
- 45) Thomas D. Edgar, Sayeed Hasan and R.G. Anthony, Chem. Eng. Sci. 25, 1463-1473, 1970
- 46) Coleman, B.D. and Thomas G. Fox, J. Am. Chem. Soc. 85, 1241, 1963
- 47) J.M. Hoover and J.E. Mc Grath, Polymer Preprints, 27, 2,150, 1986
- M. Tirrell, Rafael Galván and Robert L. Lawrence, "Polymerization Reactors" in Chem. Ind. (Dekker, USA), 1987, 26, 735-778

- 49) Aris R. & N.R. Amundson, "Mathematical Methods in Chem. Eng.", vol. 2, "First Order Partial and Differential Equations with Applications", Prentice Hall, p.49, 1973, USA
- 50) Liu S.N. and Amundson N.R., Chem. Eng. Sci. 17, 797, 1962
- 51) Cubbon, R.C. and Margerison D., Polymer, 6, 102, 1965
- 52) East, G.C., Lynch P.F. and Margerison D., Polymer 4, 139, 1963
- 53) Gold, L.J., Chem. Phys. 28, 91, 1958

-

1.00

- 54) Wenger, F.J., J. Am. Chem. Soc. 82, 428, 1960
- 55) K.P. Choo and H.P. Plaumman, Energy Processing/Canada, 32-34, 1985. Presented at the 35th Canadian Chemical Engineering Conference, October 6-9, 1985 at Calgary, Alberta
- 56) K.W. Mc Laughlin, D.D. Latham, C.E. Hoyle and M.A. Trapp, J. Phys. Chem. 93, 3643-3647, 1989
- 57) Hsieh H.L. and Tobolsky A.V., J. Polymer Sci. 25, 245-247, 1957
- 58) Hsieh H.L. et. al., J. Polymer Sci. 26, 240-243, 1957
- 59) Spirin, Yu. L. et. al., Journal of Polymer Sci. 58, 1181-1189, 1962
- 60) Tobolsky, A.V. and C.E. Rogers, Rubber Chyem. & Tech. 33, 3, 655, 1960
- 61) Tobolsky, A.V. and C.E. Rogers, Rubber Chyem. & Tech. 33, 3, 652, 1960
- 62) A.S. Korotov, N.N. Chesnokova and L.B. Truchmanova, Rubber Che. & Tech., 33, 3, 610, 1960
- 63) Press, W.H., B.P. Flanery S.A. Teukolsky and W.T. Vettering, "Numerical Recipes; The Art of Scientific Computing", Cambridge University Press, 1987, USA
- 64) M. Morton, "Anionic Polymerization: Principles and Practice", Academic Press, 1983, USA
- 65) R. Tappe und F. Bandermann; Die Angewandte Makromolekulare Chemie, 160, 117-129, 1988
- 66) Makowski, H.S. and Merrill Lynn, Journal of Macromolecular Chem. 1 (3), 443-469, 1966
- 67) V.V. Shamanin, E.Yu. Melenevskaya and V.N. Sgonnik, Acta Polymerica 33, Heft 3, 175-180, 1982

APENDICE I

المعرفة المحادث المحاد

mana ang bana ang ba

APENDICE II

LISTADO DEL PROGRAMA

(SR-) (Range checking off) (SB+) (Boolean complete evaluation on) (SS+) (Sitek checking on) (SI-) (1/O checking off) (SN-) (no Numeric coprocessor) (SM 65500/16346,655360) (Turbo 3 default stack and heap)

program polimerizacion_iniciacion (input,output);

(* este programa integra los balances de materia y energia, para el caso de homopolimerizacion de butadieno con iniciacion no-instantanea, bajo condiciones no isotermicas, no adiabaticas obteniendo, ademas, las distribuciones de pesos moleculares y momentos relacionados.

Las variables determinadas a traves de este programa son:

-temperatura -presion -volumen -monomero remanente (fase liquida y vapor) -iniciador remanente -solvente (fase liquida y vapor) -distribucion de concentraciones de cada especie molecular (longitud 1 a 3000) -distribucion de pesos moleculares -polidispensidad

La integracion de las distribuciones se realiza por Simpson 3/8, por lo que el limite de integracion debera formar n intervalos con n multiplo de 3

)

Ň

Uses

Crt, Turbo3, Printer;

type

TERIO = attay [1JOU] OF TERI	÷.
------------------------------	----

VAT

vinim,vinis.h,t,nml.nmv	real ;
nsl.nsv.nmo.nso.nbuli	rcal ;
bool	:boolcan ;
teta, reloj	real ;
ptot,pman,vtot	real ;
espuela,nmx,nix,tx,ini	:real ;
vuelta	real;
ü	integer ;
bool2	:boolean
kk	tword :
entero,ii	tinteger ;
cero,uno.dos,tres	:real ;
ncero,nuno,ndos,ntres	:rcai ;
impreso	:boolean ;
acuno.accuatro	real ;
acdos.actres.total.area	real :

```
areax,A0,AN,A2,A4 :arregio ;

i :integer ;

start,fin :real ;

iim1,iim2 :real ;

r :real ;

funo,fdos :boolean ;

totx :real ;

cx,ux,dx :real ;
```

```
(•)
```

```
var

t :real;

begin

t:= 60.0 + 273.15;

nso:= (1.616461e1-5.262110e-2*1+1.484488e-4*1*1-1.731826e-7*1*1*1)*vinis

nmo:= (6.755964+9.139340e-2*1-3.754709e-4*1*1+4.047103e-7*1*1*1)*vinim

end;
```

:real:

procedure base (vinim, vinis: real; var nmo, nso: real);

procedure prequit (t,nml,vinim,vinis,senal

(')

1

ž

```
var ptot,pman,vtot,nmxx,nmv,nsl,nsv
                                                            ;real);
VEP
xm,x8,65x,665x,674
                     :real;
                :boolean:
bool
pmo,pio
                  real:
nmo,nso
                  :real;
                 :real:
rop.m.n
                 :real:
conta
    begin
         pmo :=-1.9874713e2+2.00007298*t-6.96670202e-3*t*t+8.46383430e-6*t*t*t;
         peo := -4.21650423e1 + 4.35856361e-1*1-1.51636488e-3*1*1 + 1.77861681e-6*1*1*1;
         rm := 6.755964+9.139340c-2*1-3.754709e-4*1*1+4.047103c-7*1*1*1;
         rs := 1.616461e1-5.262110e-2*1+1.484488e-4*1*1-1.731826e-7*1*1*1;
         rop := (1.321535e3-1.306452*1)/1000.0;
        base (vinim,vinis,nmo,nso);
        bool := true :
         nev := 0.0 ;
         nmv := 0.0 ;
         nsi := nso ;
       conta := 0.0 :
      while bool do
            begin
                xm := nml/(nml+nsl) ;
                xa := 1.0-xm ;
               ptot := xm*pmo+xs*pso ;
pman := (ptot-(585.0/760.0))*14.7
               vtot := $4.068*(nmo-nml-nmv)/(rop*1000.0)+ns1/rs+nml/rm
               nvt := pman/14.7*(1.0-vtot)/(0.082*t)
                                                         .
                nmv := nvt*xm*pmo/plot ;
                nev := nvt*xs*peo/piot ;
                MAX := NAO-NEV ;
                      if senal = 2.0 then
                            begin
                                nmx := nmo-nmv ;
                                bool := (nsl<>nsx) or (nml<>nmx) ;
                                nml t= nmx ;
                                nsl := nsx
                            end
                         else
                            begin
                                bool: = nsl < > nsx ;
                                nsl:=nsx
                            end ;
               conta := conta +1.0 :
                      if conta >=10.0 then
                           begin
```

:

```
156
```

(*)

{ • }

```
writeln ('no se encuentra convergencia
                                                                         ');
                              writein ('nsi,nsx ',nsi,nsx);
                              boot := false ;
                           end
         end :
                     nmxx := nml
 end :
   procedure visco (t,nhuli.pol.nml.nmv,nsl.vtot
                                                     :real:
                var nuadim :rcal);
   var
    ppol,conpol,wpol,wm.ws
                                     : real :
    m,rs,rop
                                : real :
    densoln.mw
                                  : real ;
   begin
        rm := 6.755964+9.139340e-2*1-3.754709e-4*1*1+4.047103e-7*1*1*1;
         rs := 1.616461e1-5.262110c-2*1+1.484488c-4*1*1-1.731826e-7*1*1*1:
        rop := (1.321535c3-1.30(452*t)/1000.0;
                ppol := (pol)*54.088 ;
                             if ppol < 0 then
              ppol := ppol/viot/1000.0 ;
wpol := neet//
                wpoi := ppol/(ppol+nml*$4.088+nsl*84.016) ;
wm := (nml*$4.088)/(ppol+nml*$4.088+nsl*84.016)
                                                                            :
                  ws := 1.0-wpoi-wm ;
              densoin := wpol*rop+wm*rm*54.088/1000.0+ws*rs*84.016/1000.0;
                  mw := ppol/nbuli ;
if conpol < >0 then
             begin
              nuadim := exp(0.46*in(conpol/densoin))*(1.219+0.0000342*exp(0.76*in(mw))-0.0013*t);
               nuadim := exp(0.76*ln(mw))*0.00856*conpol/exp(nuadim)
              nusdim := exp(nusdim)
             end
      else
               nuadim := 1.0
   end ;
    procedure heat (t.nbuli.nmo.nso.nml.nmv.nsl.vtot:real:
                var cpt,nt.kterm:real) ;
   VB
      nuadim.numax.cpm.cps
                                   :real;
      ap.hp.cp.dp.ep.fp.prop
                                :real:
                           ireni:
     top
   begin
       top := 1-273.15 ;
        cpm := 4.320140c1-1.052950c-1*1-3.921416c-5*1*1+7.994044e-7*1*1*1;
       cps := -3.865911e2 + 3.867066*t-1.166374e-2*t*t + 1.19610Re-5*t*t*t;
               visco (t.nbuli,nmo-nmi-nmv,nml,nmv,nsl.vtot,nuadim);
               visco (t.nhuli.nmo.0.0.nso.vtot.numax);
               prop: = (nuadim-1.0)/(numax-1.0);
                                         ap: = 44592141.571-2366948.8302325:
                                         bp: = -58544.241897 + 451.67748175;
                                         cp: = -42082377.325 + 2284638.5533795;
                                         dp:=673.57166389+13.9714904;
                                         ep:=-3.8294985727-2.0080441e-1;
                                         fp:=0.0086254797+7.4452066e-4;
                                         ap: = ap*prop + 2366948.8302325;
bp: = bp*prop-451.67748175;
                                         cp: = cp *prop-2284638.5533795;
                                         dp:=dp*prop-13.9714904;
                                         ep:=ep*prop+2.0080441e-1;
                                         fp: = fp prop-7.4452066c-4;
      kterm := ap+bp*top+cp*exp(1.0/top)+dp*top*top+
```

ep*top*top*top+fp*top*top*top*top; nt := nml+nsl;

cpt := nml/nt*cpm+nsl/nt*cps end; (•) procedure kinicia (t,nbuli treal; var krrtreal) ; const EaR = 15370.3703704 ; In A = 43.335185185 ; var :real: x :real; У begin y := 2.3141*5.0e-4/0.640 $y := exp(1.0/6.0^{\circ}ln(y))/exp(1.0/1.0^{\circ}ln(nbuli/0.640))$: x := 0.03°(ln(y) + in_A - EaR/1°0.75); krr := exp(x) end ; {*} procedure inicia (t.nml,nbuli,ini,vinim,vinis :real; var didt :real) ; VAI krr,ptot,pman :real ; nmv,nev,vtot :real ; s,b :real ; begin pvequil (t.nml,vinim,vinis,1,ptot,pman,vtot. ami,nmv,nsi,nsv) ; kinicia (t,nbuli,krr): if nml <= 0.0 then a:=0.0 else a:=exp(1.0/1.0*ln(nml/vtot)) ; if ini < = 0.0 then b:=0.0 else b: = exp(1.0/1.0*ln(ini/vtot))1 didt := -krr*a*b*viol end; { • } procedure kreaction (i,nbuli :real; var krnreal) ; const EaR = 15370.3703704 1 43.335185185 ; In_A . Var x :real; y :real; begin y := 2.3141*5.0e-4/0.640 y := $exp(1.0/6.0^{\circ}ln(y))/exp(1.0/1.0^{\circ}ln(nbuli/0.640))$ x := ln(y) + ln_A - EaR/1; krr := exp(x) end ; (•) procedure momcero (t,nml,nbuli,ini,vinim,vinis :reai; var dmmomcero :real) ; var krr,ptot,pman :real ; nmv,nev,vtot :real ; a.b :real ; begin pvequil (t,nml,vinim,vinis,1,ptot,pman,vtot, nml,nmv,nsl,nsv) ; kinicia (t,nbuli,krr); if nml < = 0.0 then a:=0.0 else a:=exp(1.0/1.0*ln(nml/vtot))if (ini) $\leq = 0.0$ then b: = 0.0 else

157

ઈસો દી

```
dmmomcero := krr*a*b*vtot*100.0
end;
```

```
procedure momuno (Lnml,nhuli,ini,vinim,vinis
( • )
                                                            :real;
                      var dmmomuno treal) ;
         var
           krr,ptot,pman :real ;
           nmv,nev,vtot :real ;
            a,b
                        :real ;
         begin
               pvequil (t,nml,vinim,vinis,1,ptot,pman,vtot,
                      nml,nmv,nsl,nsv) ;
               kreaction (t,nbuli,krr);
                          if nml < = 0.0 then
                                    a:=0.0
                                eise
```

```
eise
a:≈exp(1.5°in(nmil∕vtot)) ;
if (nbuli-ini) <= 0.0 then
b;=0.0
eise
```

```
b:=exp(1.0/1.0*ln((nbuli-ini)/vtot))
```

:

;

÷

```
dmmomuno := krr*a*h*vtot ;
```

```
kinicia (t.nbuli.krr);
if nml < 0.0 then
a:=0.0
else
a:=nml/vtot ;
```

```
if ini <= 0.0 then
b:=0.0
clse
b:=exp(1.0/1.0*ln(ini/vtot))
```

```
dmmomuno := (dmmomuno+krr*a*b*viot)*100.0
end;
```

```
procedure momdos (cero,uno,t,nmł,nbuli,ini,vinim,vinis :real;
var dmmomdos :real) ;
var
```

```
krr,ptot,pman :real ;
nmv.nsv.vtot :real ;
a,b :real ;
begin
pvequil (t.nml.vinim.vinis,1.ptot.pman.vtot.
```

```
nmi,nmv,nsf,nsv) ;
```

```
dmmomdos := krr*a*b ;
```

```
kinicia (t,nbull,krr);

if nml <= 0.0 then

a:=0.0

eise

a:=exp(1.0/1.0*ln(nml/∨tot))

if ini <= 0.0 then

b:=0.0
```

```
else
```

b:=exp(1.0/1.0*ln(ini/vtot)) ;

(*)

```
dmmomdos := (dmmomdos+krr*a*b*vtot*100.0)
```

(•)

(*)

end:

```
procedure momtres (cero,uno,dos,t,nml,nbuli,ini,vinim,vinis
                                                                :real;
             var dmmomdos :real) ;
var
  krr,ptot,pman :real ;
  nmv,nev vtot :real ;
  a,b
              real ;
begin
     pvequil (t,nmi,vinim,vinis,1 ptot,pman,vtot,
            nmi,nmv,nsi,nsv) ;
     kreaction (t,nbuli,krr);
                if nml < = 0.0 then
                          a:=0.0
                      eise
                          a:= exp(1.5*ln(nml/vtoi))
                                                      :
                          b:= (3.0*dos+3.0*uno+cero) ;
     dmmomdos := krr*a*b ;
     kinicia (t,nbuli,krr);
                if nm1 < = 0.0 then
                          a:=0.0
                      eise
                          a:=exp(1.0/1.0*in(nml/vtot))
                                                          ;
                 if ini < = 0.0 then
                          b:=0.0
                      else
                          b:=exp(1.0/1.0*ln(ini/vtot))
                                                         1
     dmmomdos := (dmmomdos+krr*a*b*vtot*100.0)
end:
 procedure mass (t,nml,nbuli,ini,vinim,vinis
                                               treal:
             var dmdt :real) ;
VEP
  krr,ptot,pman :real ;
  nmv,nøv,vtot :real ;
  a.b
              :real :
begin
     pvequil (t,nml,vinim,vinis,1,ptot,pman,vtot,
             nmi,nmv,nsi,nsv) ;
     kreaction (t,nbuli,krr);
                 if nmi < = 0.0 then
                          a:=0.0
```

```
a:=0.0
else
a:=esp(1.5*ln(nml/vtot)) ;
if (nbuli-ini) <= 0.0 then
b:=0.0
else
b:=esp(1.0/1.0*ln((nbuli-ini)/vtot))
```

ï

```
dmdt := krr*a*b*vtot ;
```

```
kinicia (1, nbuli, krr);

if nmi <= 0.0 then

a:=0.0

else

a:=exp(1.0/1.0*ln(nm1/vtot)) ;

if ini <= 0.0 then

b:=0.0

else

b:=exp(1.0/1.0*ln(ini/vtot)) ;
```

dmdt := -(dmdt+krr*a*b*vtot) end:

(*)

```
procedure energy (I.nml.nbuli.ini.vinim.vinis
var dTdi :real) ;
ver
nmo,nso,plot,pman
                         :real;
deltah.nmv.nsv
                       :real;
vtol,krr
                    :real;
cpt,nt,kterm
                     :real;
a,b
                   :real;
dmdt
                    :real;
begin
          pvequil (t,nml,vinim,vinis,1,ptot,pman,vtot,
                  nmi,nmv,nsi,nsv) ;
          base (vinim, vinis, nmo, nso) ;
          heat (t,nbuli,nmo,nso,nml,nmv,nsl,vtot,
               cpt,nt,kterm );
          deltah := -(72000.0-88.0*1)*0.2389
                                                   ;
          kreaction (I,nhuli,krr) ;
          if nml <= 0.0 then
                             a:=0.0
```

```
eise
          a := exp(1.5^{\circ}ln(nml/vtot))
                                         ;
if (nbuli-ini) <= 0.0 then
          b:=0.0
      eise
          b: = cxp(1.0/1.0*ln((nbuli-ini)/vtot))
```

1

:real;

dmdt := krr*a*b*vtot ;

```
kinicia (t,nbuli,krr);
       if nml <= 0.0 then
                a;=0.0
            else
                a:=exp(1.0/1.0*ln(nml/vtol))
                                                 :
       if ini < = 0.0 then
                b:=0.0
            else
                b:=exp(1.0/1.0*ln(ini/vtot))
                                                :
dmdt := -(dmdt+krr*a*b*vtot) ;
```

dTdt := (-kterm + deltah*dmdt)/nt/cpt

end;

(*)

```
procedure kuttamol (t.h.nml.nhuli.ini.cero.uno.dos.vinim.vinis
                                                                        :real;
                 var nmx,ix,tx.cx.ux,dx:real)
                                                 :
var
k
     :array [1..6,1..4] of real ;
begin
       if aml > 0.0 then
             begin
                  mass (I.nml.nbuli.ini.vinim.vinis.k[1.1])
                   inicia (t.nml.nbuli.ini,vinim,vinis.k[2,1])
                    energy (t.nmt.nbuli,ini,vinim,vinis,k[3,1])
                                                                   :
                      momeero (I.nml.nbuli,ini.vinim.vinis,
                              k[4.1] );
                      momuno (Lamiabuli, ini, vinim, vinis,
                              k[5.1]) ;
                      momdos (cero,uno.t.nml.nbuli.ini.vinim,vinis,
                              k[6.1]) ;
```

mass (1+0.5*h*k[3,1].nml+0.5*h*k[1,1].nbuli.ini+0.5*h*k[2,1],vinim.vinis,k[1,2]) inicia (t+0.5°h°k[3,1].nml+0.5°h°k[1,1].nbuli.ini+0.5°h°k[2,1].vinim.vinis,k[2,2]) energy (t+0.5°h°k[3,1].nml+0.5°h°k[1.1].nbuli.ini+0.5°h°k[2,1].vinim.vinis,k[3,2]) momcero (1+0.5*h*k[3,1],nml+0.5*h*k[1,1],nbuli,ini+0.5*h*k[2,1],vinim,vinis, k[4,2]) ; momuno (1+0.5*h*k[3,1],nml+0.5*h*k[1,1],nbuli,ini+0.5*h*k[2,1],vinim,vinis, k[5.2]) ; momdos (cero+0.5*h*k[4,1].uno+0.5*h*k[5,1],1+0.5*h*k[3,1],nml+0.5*h*k[1,1],nbuli, ini+0.5°h°k[2,1],vinim,vinis, k[6.2]); mass (1+0.5*h*k[3,2],nml+0.5*h*k[1,2],nhuli.ini+0.5*h*k[2,2],vinim,vinis,k[1,3]) 1 inicia (1+0.5*h*k[3,2],nml+0.5*h*k[1,2],nbuli,ini+0.5*h*k[2,2],vinim,vinis,k[2,3]) energy (1+0.5*h*k[3,2],nmi+0.5*h*k[1,2],nbuli,ini+0.5*h*k[2,2],vinim,vinis,k[3,3]) momcero (1+0.5*h*k[3,2].nml+0.5*h*k[1,2].nbuli,ini+0.5*h*k[2,2].vinim,vinis, k[4,3]); momuno (1+0.5*h*k[3,2],nml+0.5*h*k[1,2],nbuli,ini+0.5*h*k[2,2],vinim,vinis, k[5.3]); momdos (cero+0.5*h*k[4.2],uno+0.5*h*k[5.2],t+0.5*h*k[3.2],nml+0.5*h*k[1,2],nbuli, ini+0.5*h*k[2.2],vinim,vinis, k[6.3]); mass (i + h*k[3,3],nmi + h*k[1,3],nbuli,ini + h*k[2,3],vinim,vinis,k[1,4])
inicia (i + h*k[3,3],nmi + h*k[1,3],nbuli,ini + h*k[2,3],vinim,vinis,k[2,4])
energy (i + h*k[3,3],nmi + h*k[1,3],nbuli,ini + h*k[2,3],vinim,vinis,k[3,4]) momcero (1+h*k[3,3].nml+h*k[1,3].nbuli.ini+h*k[2,3].vinim.vinis, k[4.4]) ; momuno (1+h*k[3,3],nml+h*k[1,3],nbuli.ini+h*k[2,3],vinim,vinis, k(5,4)); momdos (cero + h*k[4,3],uno + h*k[5,3],t + h*k[3,3],nml + h*k[1,3],nbuli, ini + h*k[2,3],vinim,vinis, k[6,4]); nmx := nml + h/6.0*(k[1,1]+2.0*k[1,2]+2.0*k[1,3]+k[1,4]) ÷ $ix := ini + h/6.0^{\circ}(k[2,1]+2.0^{\circ}k[2,2]+2.0^{\circ}k[2,3]+k[2,4])$ tx := t + h/6.0*(k[3,1]+2.0*k[3,2]+2.0*k[3,3]+k[3,4]) cx := cero + $h/6.0^{\circ}(k[4,1]+2.0^{\circ}k[4,2]+2.0^{\circ}k[4,3]+k[4,4])$ ux := uno + h/6.0*(k[5,1]+2.0*k[5,2]+2.0*k[5,3]+k[5,4]) : $dx := dos + h/6.0^{\circ}(k[6,1] + 2.0^{\circ}k[6,2] + 2.0^{\circ}k[6,3] + k[6,4])$ if nmx < 0.0 then nmx := 0.0 ; if ix < 0.0 then ix := 0.0 : if tx < 0.0 then tx := 0.0 : if cx < 0.0 then cx := 0.0 : if ux < 0.0 then ux := 0.0 ; if dx < 0.0 then dx := 0.0 ; end begin nmx := 0.0 : ix := 0.0 ; :=0.0 f x

end;

else

end

nmv,nsi,nsv : real ; krr.sumando : real ;

begin

```
pvequil (t,nml,vinim,vinis,1.0,
ptot,pmsn,vtot,nml,nmv,nsl,nsv)
```

kreaction (t,nbuli,krr);

```
if nml < =0.0 then

sumando := 0.0

eixe

sumando := krr*exp(1.5*ln(nml/vtot))

if reloj=start then

acuno := sumando

eixe

if (reloj+h*h)>=fin then

accuatro := sumando

eixe

if funo then

actor := dosx + sumando

eixe
```

:

:

÷

actres := tresx + sumando

end;

{*}

procedure outside (1,nmt,inim,vinis,nbuil.leta,reloj.h, espuela.total.lim).lim2: real ; fdos: hoolean ; AbxAbxAbxAbx : sarregio } ; const pi = 3.1416 ; var ptot.pman,vtot : real ; nmv,nsi,nav : real ; i : integer ;

```
sumando : srray (1..300) of real ;
hool ; boolcan ;
ii : real ;
```

hegin

pvequil (I,nml,vinim,vinis, 1.0, ptot,pman,vtot,nml,nmv,nsl,nsv)

kinicia (t,nbuli,krr);

```
for i:=1 to 300 do
   begin
        bool := true ;
         if nml<=0.0 then
                    sumando {i} := 0.0
              else
                 begin
                      r := 10.0+(i-1)*8.0 ;
         if total <= 0.0 then
                  factor := r-1.0
               eise
                  factor := -total + (r-1.0)^{*}(ln(total) + 1.0)
factor := factor + (1.0-r)^{*}(ln(r-1.0) :
                   if abs(factor)> = 80.0 then
                       sumando (i] := 0.0
                    else
                       sumando [i]:=krr*nml/vtot*
                                  ini/vtot
                                   *exp(factor)/
                                  sqr1(2.0*pi*(r-1.0)) ;
                 end ;
        if espuela = 9.0 then
                begin
                 A0 [i] := sumando [i] ;
                 A4 [i] := A4x [i] + sumando [i]
                end
```

```
163
```

```
eise
   if (reloj + h*h) > = lim2 then
          AN [i] := sumando [i]
     else
         if fdos then
                 A2 [i] := A2x [i] + sumando [i]
            eise
                       A4 [i] := A4x [i] +
                             sumando [i]
```

۰.

end

end ;

ki

u

{ • }

procedure impresion (reloj.t.nml.ini.vinim.vinis.cero, uno,dos,tres: real; impreso:boolean) ;

const mo = 54.068 ; ver ptot,pman,vtot :real ; nmv,nsi nsv ireal ; polimero :real : nmo,nso :real ; :real ; mn,mw,mz,# WZ, NZ :real ; bool :boolean ; word : kk integer ; begin kk := 550 ; for ii:= 1 to 3000 do sound (kk) ; nosound :

> if cero < >0.0 then mn := uno/cero

> > eise

```
mn ;= 0.0 :
  uno<>0.0 then
if
   mw := dos/uno
 else mw := 0.0 :
if mn <> 0.0 then
       wn := mw/mn
 else wn := 0.0 ;
if dos <> 0.0 then
   mz := tres/dos
 else mz := 0.0 ;
```

```
mn := mn*mo ;
mw := mw*mo ;
mz := mz*mo ;
```

writeln ('nmo.nso writeln ('cero 'cero);

```
base (vinim, vinis, nmo, nso)
                                   1
     preguil (1,nmi,vinim,vinis,1.0,
ptot.pman.vtot.nml.nmv.nsl.nsv)
if reloj <> 0.0 then
                                                  1
     polimero := (nmo-nml-nmv)*54.0888/vtot/1000.0
 cise
     polimero := 0.0 ;
     writein ('reloj
                            ',reloj);
                              ',1-273.15,pman)
     writeln ('t.pman
                                                 4
     writeln ('nmi, nmv
                               ',nml,nmv) ;
     writeIn
              ('nsi, nsv
                             ',nsl,nsv) ;
                              ,polimero) ;
     writeln ('polimero
                              ',ini) ;
     writeln ('iniciador
                             vioi) ;
     writein ('vtot
```

',nmo,nso) ;

writeln ('uno ',uno); 'dos) ; writeln ('dos ',tres) ; 'w mz ',mn,mw,mz) ; writeln ('tres writeln ('mn.mw.mz writeln ('mw/mn ',wn) ; writeln (' '); if impreso then writeln (lst,'reloj ',reloj) ; writeln (lst,'t,pman ',t-273.15,pman) writeln (Ist,'nml, nmv '.nml.nmv) ; writeln (lst, nst, nsv writeln (lst, polimero ',nsl,nev) ; '.polimero) ; '.ini) ; writeln (lst, iniciador writeln (Ist,'vtot vtot) ; writeln (lst,'cero writeln (lst,'uno ',cero) ; ',uno) ; writeln (lst,'dos 'dos) ; writein (ist.'tres 'tres) ; writeln (lst,'mn,mw ',mn,mw) ; writeln (lst.'mz ',mz); writein (lst,'mw/mn ',wn) ; writein (lst,' ') end:

:

main program

begin

end

for jj:= 2 to 3 do begin

{* data input)

> nbuli := 2.3141e-4*5.0/10.0*3.0; ini := nbuli ; vinim := 0.1; vinis := 0.54: bool := true; h := 2.5e-3 : reloj := 0.0 ; start := reloj ; fin := start + 9.0*h ; lim1 := 0.0 : lim2 := 4.68 ; teta := 4.68 ; espuela := 0.0 ; vuelta := 50.0 ; bool2 := true ; entero := 0 : cero := 0.0 ; uno := 0.0 ; dos := 0.0 ; tres := 0.0 ; acuno := 0.0 : acdos ;= 0.0 ; actres := 0.0 ; accuatro := 0.0 : total := 0.0 ; funo := true ; fdos := true ; impreso := false ; for it= 1 to 300 do begin

begin

Brcax	(i) := 0.0 ;
A0	[i] := 0.0 ;
AN	[í]:= 0.0 ;
A2	[i] := 0.0 ;
A4	[i] := 0.0

end ;

```
if jj = 2 then
    begin
    t: = (8,7+273,15;
    vuelta := 100.0
    end;
    if jj = 3 then
    begin
        kk := 350;
    repeat
        for ii:= 1 to 3000 do
            sound (kk);
            notsund;
        for ii := 1 to 10000 do;
        kk := 700;
    }
```

```
for ii:= 1 to 3000 do
sound (kk);
nosound ;
for ii := 1 to 10000 do;
until keypressed ;
```

end ; initial condition }

base (vinim,vinis,nmo,nso) ;

pvequil (t,nmo,vinim,vinis,2.0, ptot.pman,vtot.nml.nmv.nsl.nsv)

{ • dynamic condition << looping >> }

{ •

while bool do

begin

if int(cspuela/vuelta) = (cspuela/vuelta) then impresion (reloj.l.nml.int.vinim, vinis.cero, uno.dos.tres.impreso) ; kuttamoj (l.h.nml.nbuli.ini.cero.uno.dos, vinim.vinis.nmx.nix.tx.cx, ux.dx) ;

ł

inside (t,nml,vinim,vinis,nbuli,teta. reloj.h,espuela,start.fin, acdos,actres.funo, acuno,acdos,actres,accuatro);

cero := cx ; uno := ux ; dos := dx ;

if ((int(cspucia/9.0)=(cspucia/9.0)) and (cspucia < >0.0)) then

```
begin
              start := reloj ;
               fin := start + 9.0*h ;
              total := 3.0/8.0*h*(acuno+
                    2.0*acdos+3.0*actrcs+
                    accuairo)+iotal;
               totx := 550.13551456-total
                                            :
     ł
         outside (t,nml,ini,vinim,vinis,nbuli,
                  teta, reloj, h, espuela,
                  totx,lim1,lim2,fdos,A0,
                  ANA2A4A0ANA2A4) ; }
              acuno ;= accuatro ;
acdos := 0.0 ;
             actres := 0.0 ;
            accuatro := 0.0
         end :
        reloj := reloj + h;
      espuela := espuela +1.0;
       entero := entero +1;
if int(espueta/3.0) = espuela/3.0 then
                         funo := true
                     else
                         funo := faise ;
if int(espuela/9.0) = espuela/9.0 then
                         fdos := true
                     elsc
                         fdos := false ;
         nml:= nmx :
         ini := nix ;
           1 1= 1x 1
           if (entero = (100*4)) and (jj = 2) then
                     hegin
                       nbuli := nbuli + 2.3141c-4*5.0/10.0
                       ini := ini+2.3141c-4*5.0/10.0 ;
                     end :
           if (entero = (200^{\circ}4)) and (ij = 2) then
                     begin
                       nbuli := nbuli + 2.3141e-4*5.0/10.0
                       ini := ini+2.3141e-4*5.0/10.0 ;
                     end :
           if (entero = (300*4)) and (jj = 2) then
                     hegin
                       nbuli := nbuli + 2.3141e-4*5.0/10.0
                       ini := ini+2.3141e-4*5.0/10.0 ;
                     end :
           if (cntero=(400*4)) and (jj=2) then
                     begin
                       nbuli := nbuli + 2.3141e-4*5.0/10.0
                       ini := ini+2.3141c-4*5.0/10.0 ;
                     end;
           if (entero=(500*4)) and (jj=2) then
                     hegin
                       nbuli := nbuli + 2.3141e-4*5.0/10.0
                       ini := ini+2.3141e-4*5.0/10.0 ;
                     end ;
           if (entero = (600*4)) and (ij = 2), then
                     begin
                       nbuli := nbuli + 2.3141e-4*5.0/10.0
                       ini := ini+2.3141c-4*5.0/10.0 ;
                     end :
           if (cniero = (700*4)) and (jj = 2) then
                     begin
                       nbuli := nbuli + 2.3141e-4*5.0/10.0
                       ini := ini+2.3141c-4*5.0/10.0 ;
                     end :
           if (entero=(800*4)) and (jj=2) then
                     begin
                       nbuli := nbuli + 2.3141e-4*5.0/10.0
```

;

;

ï

:

;

;

;

;

arcax	[í] :≖ 0.0 ;
A0	1i] := 0.0 ;
AN	i := 0.0 ;
A2	(i) := 0.0 ·
A4	[i] := 0.0

end ;

if jj = 2 then begin t := 68.7 + 273.15 ; vuelta := 100.0 end ; ij = 3 then begin kk := 350 ; repeat for ii:= 1 to 3000 do ; for ii := 1 to 19000 do ;

end ; initial condition } base (vinim,vinis,nmo,nso) ;

> pvequil (t,nmo,vinim,vinis,2.0, plot,pman,vtot,nml,nmv.nsl,nsv)

{ * dynamic condition << looping >> }

ł

while bool do

begin

if int(espuela/vuelta) = (espuela/vuelta) then impresion (reloj,t,nml,ini,vinim, vinis.cero, uno,dos,tres,impreso) ; kuttamol (t,h,nml,nbuli,ini,cero,uno,dos, vinim,vinis,nmx,nix.tx,cx, ux,dx) ;

;

inside (t,nml,vinim,vinis,nbuli,teta, reloj,h,espuela,start,fin, acdos,actres,funo, acuno,acdos,actres,accuatro);

cero := cx ; uno := ux ; dos := dx ;

if ((int(espuela/9.0) = (espuela/9.0)) and (espuela < >0.0)) then

```
begin
             start := reloj ;
               fin := start + 9.0*h ;
              total := 3.0/8.0°h°(acuno+
                   2.0*acdos+3.0*actres+
                   accuatro)+total;
              totx := 550.13551456-total
                                           1
         outside (t,nml,ini,vinim,vinis,nbuli,
     ł
                  teta,reloj,h,espuela,
                  totx.lim1.lim2.fdos.A0,
                  AN,A2,A4,A0,AN,A2,A4) ; }
             acuno := accuatro ;
             acdos := 0.0 ;
             actres := 0.0 ;
           accuatro := 0.0
         end ;
       reloj := reloj + h ;
      cspuela := espuela +1.0;
       entero := entero +1;
if int(espuela/3.0) = espuela/3.0 then
                        funo := true
                     cise
                         funo := false ;
if int(espuela/9.0) = espuela/9.0 then
                         fdos := true
                     cise
                         fdos := false ;
         nml := nmx ;
         ini := nix ;
          t := tx;
          if (entero=(100"4)) and (jj=2) then
                     begin
                      nbuli := nbuli + 2.3141c-4*5.0/10.0
                      ini := ini+2.3141c-4*5.0/10.0 ;
                     end :
          if (entero=(200*4)) and (jj=2) then
                     begin
                      nbuli := nbuli + 2.3141e-4*5.0/10.0
                      ini := ini+2.3141e-4*5.0/10.0
                                                      .
                     end ;
          if (entero=(300*4)) and (jj=2) then
                     begin
                      nbuli := nbuli + 2.3141e-4*5.0/10.0
                      ini := ini+2.3141e-4*5.0/10.0
                                                      :
                     end :
          if (entero=(400*4)) and (jj=2) then
                     begin
                      nbuli := nbuli + 2.3141e-4*5.0/10.0
                      ini := ini+2.3141c-4*5.0/10.0
                                                      :
                     end ;
          if (entero=(500°4)) and (jj=2) then
                     begin
                      nbuli := nbuli + 2.3141e-4*5.0/10.0
                      ini := ini+2.3141e-4*5.0/10.0 ;
                     end :
           if (entero=(600*4)) and (jj=2), then
                     begin
                      nbuli := nbuli + 2.3141e-4*5.0/10.0
                      ini := ini+2.3141c-4*5.0/10.0 ;
                     end ;
          if (entero = (700*4)) and (jj = 2) then
                     begin
                      nbuli := nbuli + 2.3141e-4*5.0/10.0
                       ini := ini+2.3141e-4*5.0/10.0
                                                      ;
                     end :
           if (entero = (800^{\circ}4)) and (jj=2) then
                     begin
                      nbuli := nbuli + 2.3141e-4*5.0/10.0
```

:

:

1

;

;

:

```
ini := ini+2.3141c-4*5.0/10.0
                          end ;
         bool := (rcloj <= teta) and (not(keypressed))
  end;
      if (not(keypressed)) then
       begin
writeln (Ist.'reloj, total
for i:= 1 to 300 do
                                              '.reloj.total) ;
                               begin
           funo := true ;
                                r := 10.0 + (i-1)*8.0 ;
                               r == 10.0 + (-1)*.0
arcax [i]:=((A0[i]+
AN[i]+
A2[i]*2.0+
A4[i]*3.0
)*9.0*h*
3.0/8.0*r) ;
                                ii := i ;
if int(ii/4.0) = ii/4.0 then
                     funo := not(funo) ;
if funo then
       write (ist,'P[',r:3:0,']=',areax
                                              {i]:8)
    cise
       writcin (ist, 'P['.r:3:0,']='.areax
                                               - (i]:8) ;
```

i

24,67

'n

54 Sel

ja e

1

511 F

114 1 1.10

end

end

end

end. ~Z