UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUIMICA

"POSIBLE MECANISMO ELECTROQUIMICO DE ACTIVACION EN ANODOS GALVANICOS DE ALEACIONES DE ALUMINIO"

67

EXAMENTE PROFESIONALES FAC. DE QUIMICA

Т	\mathbf{E}		S		Ι	S
QUE	PARA	OBTE	NER	EL	TITULO	D DE:
ING	ENIE	RC		٥	UIM	100
P A	E	8	E	N	T	A I
JUAN	CRIST	ова	LM	ATA	SAND	OVAL

Asesor: Dr. Joan Genescá Llonguera

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

PAGINA

1

CAPITULO I

INTRODUCCION

CAPITULO II

GENERALIDADES

2.1) CO	ROSIGN Y SUS CARACTERISTICAS 6
2.2) TE	RMODINAMICA DE LAS REACCIONES DE CORROSION
i)	Celda de corrosión
ii)	Ecuación de Nernst
iii)	Electrodos de referencia 11
ív)	Serie Electromotriz de los Metales 12
V)	Diagramas de Pourbaix
2.3) FU	NDAMENTOS DE CINETICA ELECTROQUIMICA
i)	Velocidad de Reacción 20
. ii)	Polarización 22
iii)	Sobretensión 23
iv)	Transferencia de carga en el electrodo
v)	Factor de simetria 28
vi)	Ecuación Fundamental de la Cinética Electroquímica 29
vii)	Ecuación de Tafel
viii)	Modelo de la capa de difusión de Nernst 42

PAGINA

2.4) CO	ALKOL DE LUKKUSIUN	
i)	Corrosión como función de la temperatura	46
ii)	Influencia del tipo y concentración	
	de sales disueltas	47
iii)	Influencia del pH	47
iv)	Métodos para el control de la corrosión	51
v)	Protección Catódica	52
vi)	Protección por pasivación	53
vii)	Cinc, Aluminio, Magnesio y sus aleaciones como	
	ánodos galvánicos. Campos de aplicación .	
	a) Cinc	55
	8) Aluminio	56
	c) Magnesio	57
	d) Aleariones para Anodos	
	1- Aleaciones de Cinc	59
		41
	3- MIGACIONES DE HIUMINIO	0.4

CAPITULO III

TECNICA EXPERIMENTAL

- -- ------

3.1) JUSTIFICACION DEL DISERO	DEL EXPERIMENTO 69
3.2) DESCRIPCION DEL MATERIAL	
i) Anodos y su construcci	ća
ii) Electrolitos utilizado	
iii) Galvanostato-Potencios	stato 72

n da ser da j				an an the second		
						PAGINA
	107		eterencia	•••••	••••••••••	••••• 72
4	. v)	Coulombimetro	• • • • • • • • • • • • • • • •	••••••	••••	73
	Vi)	Estructura uti	lizada durant	e la prueba	natural	75
	vii)	Multimtero			• • • • • • • • • • • •	75
3	5.3) M	ONTAJE DEL EQUI	PO Y DESCRIPO	ION DE LOS	EXPERIMENTO	S
	i)	Pruebas 1 y 2				75
		Prumba 7				
	11/		•••••••••••			
	iii)	Prueba 4	••••••••••	•••••	••••••	••••• 76
	iv)	Prueba 5	• • • • • • • • • • • • • • • •	•••••	••••	76
	v)	Pruebas 6 y 7			•••••	77
	V1)	Prueba natural		· · · · · · · · · · · · · · · · · · ·		80
	vii)	Mapéo de la su	perficie de .	anodos por m	edio de un	
		microscopió el	ectronico de	0arr100		81

CAPITULO IV

RESULTADOS EXPERIMENTALES	84

CAPITULO V

DISC	USION DE RESULTADOS Y CONCLUSIONES
5.1)	INTRODUCCION115
5.2)	DISCUSION DE RESULTADOS EXPERIMENTALES
	i) Pruebas 1 y 2 (Figs 4.1, 4.2 y Tablas IV-I y IV-II)117

ii) Prueba 3 (Figs 4.3, 4.3a, 4.3b, 4.3c y Tablas IV-III

PAGINA

está.

. 1	ii)	Prueba 4 (Fig 4.4 y Tabla IV-IV)118
	iv)	Prueba 5 (Fig 4.5 y Tabla IV-V)120
	v)	Pruebas 6 y 7 (Figs 4.6, 4.7, 4.7a y Tablas IV-VI,
		IV-VII, IV-VIIa)121
	vi)	Prueba de Campo (Figs 4.8, 4.8a, 4.8b y Tablas
		IV-VIIIa y IV-VIIIb)123
5.)	MEC	ANISHO PROPUESTO Y CONCLUSIONES

RESUMEN.

Se realizó un estudio electroquímico introduciendo cationes $Sn^{4*}(0.005M)$ y $2n^{2*}(0.1M)$ en forma de cloruros, en una solución de NaCl al 3% a pH's distintos, durante la disolución anódica de Al puro y aplicando densidades de corriente variables entre 0.65mA/cm² y 2mA/cm². Después de las experiencias so pudo comprobar que el potencial de trabajo del Al puro se desplaza en la dirección más activa y no sufre pasivación como normalmente ocurriría si no estuvieran presentes los cationes $2n^{2*}y$ Sn^{4*} . Asimismo se obtuvo evidencia experimental de la presencia de depósitos de Zn (metal), distribuidos irregularmente sobre la superfície de los ánodos de aluminio utilizados.

Para un ánodo de aleación de aluminio, la activación debida a sus elementos aleantes puede ocurrir a través del siguiente mecanismo en tres etapas:

(etapa 1) Al(H) -----> xAl^{3•} + M^{n•} + ye⁻ ("x" e "y" dependen de la composición de la solución sólida en la aleación). El par galvánico ESTRUCTURA/ANODO disuelve al ánodo, con la consiguiente oxidación del Al y los elementos aleantes en la solución sólida con el Al, formándose los cationes en el electrolito.

(etapa 2) Al + M^{n_*} ----- Al^{n_*} + M (M= Zn y/o Sn) Los cationes producidos en la primera etapa, catódicos respecto al Al, se depositan sobre la superficie de éste, de acuerdo con una reacción de intercambio electroquímico. (etapa 3) La película de óxido de Al se separa localmente debido a pequeños campos eléctricos que se forman durante la segunda etapa entre los cationes y el Al que se encuentra por debajo. Así pues el potencial anódico se desplaza hacía el valor correspondiente al del Al desnudo. Este mecanismo tiene propiedades autocatalíticas.

INTRODUCCION

El fenómeno de corrosión salta a la vista en todos los Ambitos del quehacer humano. Desde tiemeo inmemorial el hombre ha intentado frenar el proceso corrosivo de los metales 600 resultados más o monos satisfactorios. Entre los primeros intentos se hallan las pinturas, que aún se siguen usando, pero cada vez sus fórmulas son más compleias y los desempeños mejores. Los inhibidores de corrosión requirieron de una investigación más profunda, desde el punto de vista guímico, de las reacciones de corresión para que pudieran surgir como otra opción de protección. La protección catódica es un método que si bien ya tiene varios años utilizándose en varias actividades humanas como la industria petroquímica y la industria naviera, entre otras, y la experiencia ha probado que el método funciona, poca es la información escrita acerca de los fenómenos electroquímicos que ocurren a nivel mecanismo de reacción en la interfase ánodo de sacrificio/ electrolito.

Actualmente, los anodos galvánicos que presentan mayores ventajas, desde el punto de vista práctico, en la protección catódica en agua de mar son los de aleaciones de aluminio; especificamente los de aluminio/cinc/estaño, aluminio/cinc/indio y aluminio/cinc/mercurio. Cabe mencionar que, aunque la termodinámica aparentemente indica que el aluminio puro seria ideal como ánodo galvánico, la práctica demuestra que éste sufre pasivación. Sin embargo, al añadirle otros elementos como el mercurio, cinc, indio y/(o) estaño el fenómeno de pasivación

es contrarrestado. El buen funcionamiento de las aleaciones ha sido comprobado en la práctica de campo, sin embargo, como ya se mencionó anteriormente, el porqué estos elementos de aleación le confieren al ánodo las propiedades óptimas para su funcionamiento es algo de lo que muy poco se sabe.

Es muy probable que las grandes compañias fabricantes de ánodos galvánicos tengan gran información al respecto, pero ésta es confidencial y lo seguira siendo por muchos años.

Actualmente se ha presentado un inconveniente que ha puesto en juego el uso a futuro de los ánodos galvánicos de aleaciones de aluminio. Este es el hecho de que tanto el mercurio como el indio, y sus compuestos son altamente tóxicos. Este problema ha creado la necesidad de nuevas opciones por parte de la industria en cuanto a producción de ánodos de sacrificio.

El propósito de este trabajo es intentar encontrar un posible mecanismo de reacción electroquímica que explique la razón por la cual ciertos elementos como el indio, cinc, estaño y mercurio al alearse con el aluminio impiden que éste se pasive durante su desempeño como ánodo galvánico. Específicamente se trabajó con cinc y estaño (debido a la alta toxicidad del mercurio y el problema que presentaba conseguír compuestos de indio), pero las conclusiones a las que se llegaron pueden hacerse extensivas a los otros elementos usados. La necesidad de encontrar un posible mecanismo es clara ya que,teniendo este modelo explicativo, se pueden buscar opciones de nuevas aleaciones con funcionamiento

similar pero con elementos no tóxicos y también, porqué no, producir algaciones con elementos de precios mas bajos, pues el indio es un elemento muy costoso.

CAPITULO II

GENERALIDADES

2.1) CORROSION Y SUS CARACTERISTICAS

La mayoría de los metales en la naturaleza se encuentran en estado oxidado y formando parte de los minerales existentes. Los metales se extraen de estos minerales mediante procesos de reducción por los que pasan al estado metálico. Sin embargo , los metales obtenidos tienden a regresar a su forma original mas estable cumpliéndose así las leyes de la Termodinámica. Estos son transformados, gradualmente, por la acción del agua, aire u otros agentes agresivos hasta regresar a su estado primitivo más estable. Este fenómeno espontáneo es comunmente conocido como CORROSION y ocurre por medio de reacciones químicas o electroquímicas.

Se pueden clasificar a los fenómenos corrosivos en dos principales grupos de acuerdo al tipo de reacción (1):

1) CORROSION QUIMICA O CORROSION SECA

proceso en el cual el metal actúa directamente con la sustancia reaccionante.

2) CORROSION HUMEDA O CORROSION ELECTROQUIMICA

proceso que se presenta cuando el metal está en contacto con medios electrolíticos como agua, soluciones salinas o la humedad del ambiente.

En el primer caso los productos de reacción se forman directamente

sobre la superficie del metal originando una capa protectora siempre y cuando no sean productos volátiles o solubles en el medio. En el segundo caso existe un medio acuoso y, tanto la reacción de oxidación como la de reducción, se llevan a cabo separadamente formando productos que no siempre protegen al metal. El mecanismo del segundo tipo de proceso es electroquímico y está controlado por la cinética de ambos reaccionantes: oxidante y reductor. 1.45 reacciones de ambos no necesariamente se llevan a cabo en un mismo punto de la superficie del metal, lo cual supone por fuerza el desplazamiento de los electrones antes de combinarse con el oxidante de modo que los puntos donde se llevan a cabo la reacción de oxidación y de reducción pueden variar de posición. Es posible que estos cambios de lugar controlen la cinética del proceso.

Dtro criterio para clasificar la corrosión es de acuerdo a la manera en que esta se manifiesta, que puede ser de dos principales maneras según las características metalográficas, geométricas o mecánicas del metal (i):

 ATAQUE GENERALIZADO que ocurre en el caso de la corrosión atmosférica del hierro y que puede ser uniforme o no uniforme.

 ATAQUE LOCALIZADO que a veces tiende a profundizar auy rapidamente y se manifiesta en forma de picaduras, corrosión por grietas, etc..

Podemos concluir diciendo que el fenómeno de la corrosión se debe estudiar tanto desde el punto de vista termodinámico como desde el cinético. La termodinámica proporciona el estudio de los cambios energéticos producidos en las reacciones de interés, para que posteriormente la cinética proporcione la información de la rapidez a la cual se llevan a cabo dichos cambios.

2.2) TERMODINAMICA DE LAS REACCIONES DE CORROSION

i) Celda de Corrosión (2).

Una celda de corrosión debe contener estas cuatro características fundamentales:

1) Debe existir un ánodo y un cátodo.

2) Debe existir una diferencia de potencial entre ánodo y cátodo.

3) Debe existir una unión eléctrica entre ánodo y cátodo.

 El Anodo y el cátodo deben estar inmersos en el mismo electrolito.

ii) Ecuación de Nernst (2).

Las condiciones de equilibrio en un fenómeno de corrosión así como en cualquier reacción de óxido-reducción están regidas por la "Ley de acción de masas", así pues la constante de equilibrio "K" se obtiene a partir de las actividades de reactivos y productos.

nA[●] + mBⁿ⁺ < _ _ _ _ ∧ nA^{m+} + mB[●]

Β

$$\begin{array}{c} K_{eq} = \frac{(aA^{m*})^{n}}{(aA^{0})^{n}} = \frac{(aA^{m*})^{n}}{(aA^{0})^{n}} = (2.2.1) \\ (aA^{0})^{n} = (aB^{n*})^{m} = (aB^{n*})^{m} = q \end{array}$$

Si la reacción anterior pudiera ser analizada muy poco tiempo después de iniciada, se obtendrían actividades que darían como resultado un valor "K'" menor al de la Keg es decir:

Desde un punto de vista termodinámico se puede decir que existe una energia aprovechable comunmente llamada "Energia libre",(2) es decir que

$$\Delta G = RT \ln K^* - RT \ln K_{eq} \qquad (2.2.3)$$

como Keg es constante a una temperatura determinada para cada reacción, entonces el segundo término de la ecuación anterior también lo es y se denomina "Energía libre standard"

9

$$\Delta G^{O} = -RTinKeq \qquad (2.2.4)$$

finalmente

$$\Delta G = \Delta G^{\circ} + RT \ln \frac{(aA^{m^*})^n}{(aB^{m^*})^m}$$
 (2.2.5)

(2)Para poder medir cuantitativamente esta energía útil (ΔG), se relaciona esta con la "Fuerza Electromotriz" (Ec) de la celda correspondiente a la reacción de óxido-reducción,

 $-\Delta G = nFE_c$ (2.2.6)

donde

n = número de equivalentes/mol

F = 96.467 coulombs/ equivalente

Ec = Fuerza Electromotriz (volts)

al sustituir la ecuación (2.2.5) en (2.2.6) y despejar Ec obtenemos

$$E_{c} = 2.3 \frac{RT}{nF} \log \frac{(aA)}{(aB)^{n}} \frac{eq}{eq} - 2.3 \frac{RT}{nF} \log \frac{(aA)}{(aB)^{n}} \quad (2.2.7)$$

$$-2.3 \frac{RT}{nF} \log (aA^{m+})^{n} eq = E^{0} a^{m+} / a^{0}$$
 (2.2.8)

- 2.3 $\frac{RT}{nE} \log (aB^{n+})^m_{eq} = E^0 e^{n+}/e^0$ (2.2.9)

tanto la ecuación (2.2.8) como (2.2.9) corresponden a los potenciales standard de reducción y son constantes para una temperatura determinada. Finalmente

$$E_{c} = E_{B}^{n*}/B^{O} - E_{A}^{m*}/A^{O}$$
 (2.2.10)

$$EA^{m+}/A^{0} = E^{0}A^{m+}/A^{0} + 2.3 \frac{RT}{nF} \log (aA^{m+})^{n}$$
 (2.2.11)

$$E_{B}^{m*}/B^{O} = E^{O}B^{n*}/B^{O} + 2.3 \frac{RI}{n}elog (aB^{n*})^{m}$$
 (2.2.12)

tanto la ecuación (2.2.11) como la (2.2.12) corresponden a la conocida "Ecuación de Nernst" para cada media reacción.

iii) Electrodos de Referencia (5).

El instrumento que se utiliza para medir la Fuerza Electromotriz (Ec) o diferencia de potencial entre el Anodo y el cátodo en una celda de corrosión es el voltimetro. Sin embargo de esta manera no se pueden medir potenciales de electrodo y es precisamente por eso que es necesario utilizar electrodos de referencia ya que el potencial de estos no cambia a determinados intervalos de temperatura.

Convencionalmente el potencial de la reacción electroquímica

Hz------ 2H* + 2+

tiene un valor de cero volts cuando la fugacidad del hidrógeno y la actividad de los erotones son iguales a la unidad. F1 electrodo standard de hidrógeno (EEH) es aquel sistema que cumple con estas características, aunque prácticamente no se usa. Los electrodos de referencia mas usados en la práctica son los que se mencionan a continuación:

TABLA H-I

SISTEMA	ELECTROLITO	POTENCIAL VSEEH (MV)		
H9/H9 ₂ C1 ₂ /C1 ⁻ (Calomel)	KCI SAT	242		
Ag/AgC1/C1 -	KC1 9M	207		

Ag/AgC1/C1 (PLATA-CLORURO DE PLATA)

Cu/CuS0 /Cu²¹ CuSO SAT 298 (CORRE-SULFATO DE CORRE)

iv) Serie Electromotriz de los Metales.

A continuación se presenta una lista de los equilibrios de los metales mas comunes así como sus potenciales standard de

reducción, esto es a 25⁰C y 1 atm de presión medidos respecto al EEH. A esta lista se le llama comunmente Serie Electromotriz de los metales.

TAI	21 A	11-1	T
104		11-1	

	REAC	CION	EN	EQU	ILIBA	10			EH (mV)
	Au ²⁺	+	2•	=	Au				1700
1/2	02	+	2н⁺	+	2•	=	HaD		1230
	Pt ²⁺	+	2•	=	Pt				1200
	Ag ⁺	+	1.	=	Ag				800
	Cu ²⁺	+	2•	=	Cu				340
	2н*	+	2•	÷	H2				o
	Sri ^{2†}	+	2• ⁻	=	Sn				-136
	Sn ⁴⁺	+	2•	=	Sn ²⁺				-150
	C° 2 +	+	2.	=	C.				-280
	F.,2+	+	2•	=	Fe				-440
	Z n ²⁺	+	2.	=	Zn				-760
	A1 31	+	3•	=	AI				-1660
	Mg ²⁺	+	2•	=	Mg				-2380

Los metales cuyos potenciales son más negativos se les denomina metales activos porque tienden a corroerse con facilidad. Los metales con potenciales más positivos se les

13

المكافقة فالمنتج بمنتقاط بالمتحاد التواجها بورا

والمستعم والمستعلق والمستعم والمنافع والمنافع المنافع والمعتر والمستعم والمستعم والمستعم والمستعم والمستعم والمستعم

÷

denomina aetales nobles pues son elementos que requieren de potenciales muy oxidantes para sufrir reacciones de corrosión. Así pues, los ánodos de sacrificio están hechos en la mayoría de los casos por metales activos como Zn. Al. Mg. o Sn. ya sean puros o como aleaciones. Esto es explicable si tomamos en cuenta que los ánodos de sacrificio tienen como función mantener protegidas aquellas estructuras metálicas expuestas a la para logrario deben mantener un corrosión Y potencial suficientemente reductor y, por lotanto, un flujo constantede electrones que conserve reducida la estructura due net 5 protegiendo. Por el contrario, los metales nobles se utilizan comunmente para producir ánodos inertes que son muy utilizados en la actualidad para procesos electrolíticos industriales 20 cuales la reacción anódica 105 acurre а potenciales extremadamente oxidantes. Este es el caso de los ánodos de aleaciones de platino, paladio o rutenio, que intervienen la electrólisis industrial de salmuera para 1a en producción de cloro (ánodo) y sosa (cátodo).

v) Diagramas de Pourbaix

(1)La reacción de oxidación ánodica de un metal se caracteriza por un potencial que depende desde el punto de vista termodinámico, del potencial standard de la reacción y de la concentración de los iones en solución. Estos iones del metal

pueden reaccionar con especies presentes en la solución para formar compuestos insolubles, como hidróxidos, óxidos, sulfuros, etc., u otros tipos de compuestos, como iones complejos, por lo cual el potencial de la reacción ánodica depende también del producto de solubilidad y otros parámetros característicos de los compuestos formados. Debido a que en las reacciones de oxidación de un ánodo de sacrificio, por lo general hay presencia de aqua. el potencial es, además, función del pH de la disolución en la cual está sumergido. Como el potencial del proceso está relacionado con la variación de la entalpía libre de la reacción. es posible hallar las condiciones termodinámicas de equilibrio del sistema en función del potencial y expresarlas en términos del pH. Las ecuaciones que específican estas condiciones de equilibrio - se representan graficamente en un diagrama E 🗤 PH o "Diagrama de Pourbaix". En este tipo de diagramas se pueden localizar las zonas de estabilidad de los metales, sus iones, y sus compuestos oxigenados a pH's y potenciales determinados,así como saber teoricamente si son posibles ciertas reacciones en el medio acupso. Sin embargo, estos diagramas tienen limitaciones, pues en ellos no se puede encontrar información acerca de las condiciones cinéticas de las reacciones electroquímicas.

En las figuras 2.1,2.2, 2.3y2.4 se presentan ejemplos de diagramas de Prourbaix para Fierro(8), Aluminio(1), Zinc(8) y Estaño(8). Estos diagramas están contruidos en condiciones normales de temperatura y presión, es decir 25°C y

l atm de presión. En la figura 2.5 se presenta el diagrama de Pourbaix para el agua (5) , marcando las zonas de estabilidad tanto del oxigeno como del hidrógeno.

FIG 2.4

17

الرائع حجاجة الالفاح ولاستفساط سروار والساب

En las figuras 2.6 (1), 2.7(10)y 2.8(10) se presentan de nuevo los diagramas de Pourbaix para diversos pero marcando tres zonas MUY importantes que sont INMUNIDAD donde el metal es termodinámicamente estable. PASIVACION donde se forma una película de productos insolubles sobre el metal, y DISOLUCION O CORROSION donde el metal se oxida a especies solubles.

• •

FIG 2.6

Para que una estructura metálica esté protegida por un ánodo de sacrificio, ésta debe hallarse en la zona de inmunidad. El valor de potencial en esta zona para el Fierro es de -617 mV o menor, respecto al EEH. Por el contrario, para que un ánodo de sacrificio funcione adecuadamente, debe encontrarse en la zona de disolución o corrosión. En cuanto a la región de pasivación, esta se cumple solamente cuando la capa formada sea adherente, coherente y no porosa y que en caso de no cumplirse estas condiciones de la capa, el metal continúa consumiéndose.

2.3 FUNDAMENTOS DE CINETICA ELECTRODUIMICA

i) Velocidad de Reacción.

(1)La extensión de una reacción de electrodo se puede establecer a partir de la carga que se ha transferido. De acuerdo con las leyes de Faraday existe una equivalencia cuantitativa entre la carga que ha pasado a través de la interfase y la cantidad de materia transformada. Si en el curso de una reación electródica circula una corriente "I" durante un tiempo "t", la carga será "It" y entonces

It = M

(2.3.1)

donde

N = masa transformada

- t = tiempo
- I = corriente
- F = cte de Faraday = 96,467 coulombs/equivalente
- n = equivalentes/ mol

(1)Ahora bien, la velocidad de una reacción de electrodo se puede definir en términos del número de moles de especie electroactiva transformados por unidad de tiempo. Como la cantidad de sustancia transformada en el electrodo es proporcional a la carga transferida, resulta que la velocidad de la reacción es proporcional a la corriente. Entonces

velocidad =
$$\frac{1}{\text{pF}}$$
 (2.3.2)

Debido a que las reacciones de electrodo ocurren justamente en la interfase metal-disolución, el área de esta interfase es directamente proporcional a la velocidad de la reacción. Para tomar en cuenta este último parámetro, hablamos de DENSIDAD DE CORRIENTE (j), es decir corriente por unidad de área aparente de la superficie del electrodo.

(2.3.3)

ii) Polarización.

Se ha observado que el valor de velocidad que puede adquirir una reacción de electrodo depende básicamente de el potencial aplicado a este último. Esto se puede entender teniendo en cuenta que el paso real de corriente a través de un electrodo, desplaza a este de su potencial de equilibrio. Podemos concluir entonces que tanto el potencial del electrodo como la corriente que fluye a través de él están intimamente relacionados. La POLARIZACION recoge el conjunto de efectos que se originan por el paso de corriente que provocan que el potencial del electrodo no sea el de su valor en el equilibrio.

Si en un electrodo no hay cambio apreciable de potencial cuando fluye corriente a través de él, se dice que es un electrodo NO-POLARIZABLE. En cambio, el electrodo polarizable es aquel en el que un aumento en el potencial aplicado no prigina un paso de corriente apreciable.

FIG 2.9 ELECTRODO POLARIZABLE FIG 2.10 ELECTRODO NO POLARIZABLE

iii) Sobretensión.

.

El parámetro utilizado para medir el grado de polarización de un electrodo 84 1a SOBRETENSION α el SOBREPOTENCIAL (ഹ.

$$n = E - E_{eq}$$
 (2.3.4)

La ecuación anterior corresponde a la desviación del potencial del electrodo de su valor de equilibrio para permitir el paso de una corriente determinada. Esta 508RETENSION es grande cuando baja la

velocidad de alguna de las etapas de la reacción del electrodo y por lo tanto hay un retraso en la reacción global y el potencial se aparta del equilibrio.

(1)Cuando la etapa lenta es la transferencia de carga se tiene una SOBRETENSION POR TRANSFERENCIA DE CARGA. Si existe dificultad para que la especie electroactiva se transporte desde el seno del electrolito a la superficie del electrodo se dice que hay SOBRETENSION POR DIFUSION. Cuando hay una reacción química acoplada a la reacción electródica y que constituye la etapa lenta se dice que hay SOBRETENSION DE REACCION. Si en un proceso hay una etapa de formación de una nueva fase se dice que hay SOBRETENSION DE CRISTALIZACION. Finalmente se debe considerar que la resistencia de la disolución origina, durante el paso de corriente una caida ohmica que puede dar lugar a una SOBRETENSION DE RESISTENCIA.

iv) Transferencia de carga en el electrodo.

La energía potencial de un sistema en el cual existe una reacción de transferencia de carga es función de la naturaleza de cuatro parámetros presentes: la doble capa, el soluto, el disolvente y el electrodo. La representación gráfica de la energía potencial en función de estos parámetros a lo largo de la reacción, constituyen una curva con valles en los cuales están situadas las configuraciones mas estables tanto de reactivos como de productos, y separados por un monte que representa la zona de alta energía.

La curva cambia su forma cuando varía la diferencia de potencial 💎 entre el electrodo y la disolución.

FIG 2.11 (1)

Supongamos un proceso de reducción:

.

en el cual la reacción de transferencia de carga ocurre al trasladarse el sistema de un valle al otro, esto es la forma oxidada "O" y n electrones situados en el metal, producen la forma reducida "R". La reacción de reducción antes mencionada se puede detallar en la forma

0 + ne⁻(M) = 0----Ne⁻(M) -----M = R + M I II III IV

en donde los estados II y III tienen configuraciones inmediatas antes y después de la transferencia de carga, mientras que I y IV corresponden a diferencias energéticas originadas por efectos de la doble capa electroquímica y el disolvente (fenómenos de adsorción, desorción y difusión principalmente).

Entre el paso II y III, justo en el momento de la transferencia de carga, se origina el complejo activado cuya energía es la mas alta en todo el trayecto de la reacción. Alcanzándose el estado de complejo activado, la reacción puede inclinarse igualmente al estado II que al III.

En párrafos anteriores se mencionó que el potencial del electrodo influye sobre la reacción de transferencia de carga. A continuación se presenta una gráfica tridimensional que lo esemplifica.

FIG 2.12 (1)

La curva de 1 a 2 representa la variación de Ep con la coordenada de reacción cuando la diferencia de potencial entre el electrodo y la disolución es igual a cero. Al cambiar la diferencia de potencial, se altera la superficie de energía potencial (Ep) del sistema obteniéndose curvas como 3,4 y 5,6. Estas variaciones de Ep dependen de la carga de la especie sobre la que actúa el potencial. Si la carga de la forma oxidada "O" es Zo y la de la reducida "R" es Z#, entonces la diferencia Zo - Z# = n corresponde al número de electrones intercambiados. Al aplicar un potencial ΔE entre electrodo y disolución , le energía potencial de la zona reaccionante se desplaza nFAE.

FIG 2.13(1)

v) Factor de simetría.

.

(1)Al analizar la gráfica anterior podemos darnos cuenta que al aumentar la diferencia de potencial entre electrodo y disolución hay un incremento tanto en la entalpía de activación como en la entalpía de la especie reaccionante, pero es mayor el cambio en los reactivos que en el complejo activado por lo que se considera a esta última como una fracción de la primera que llamaremos FACTOR DE SIMETRIA (2).

Así pues, la entalpía de activación se puede descomponer en una contribución química y otra eléctrica.
$$[\Delta G^{O^{n}}]\Delta z = [\Delta G^{O^{n}}]_{n} - (1 - \beta)_{n}F\Delta E$$
 (2.3.6)
(Para Braccion be oxidacion)

La contribución eléctrica a la entalpía de activación acelerará o retardará la reacción de transferencia de carga. Así cuanto más positiva es la diferencia de potencial, se favorece más la reacción de oxidación y viceversa, cuanto mas negativa es la diferencia de potencial la reacción de reducción ocurrirá con mayor facilidad.

Desde un punto de vista matemático

$$\beta = \frac{\tan \lambda}{\tan \lambda + |\tan \delta|}$$
(2.3.7)

(1)El nombre de factor de simetria se debe a la relación que se establece entre las tangentes de la curva de productos y de la curva de reactivos. Si ambas curvas tienen el mismo valor de pendiente, es decir que sean simétricas, entonces $\beta = 1/2$. En general " β " toma sigmpre valores muy próximos a este último.

vi)Ecuación fundamental de la Cinética Electroquímica (Butler-Volmer).

(3) Consideremos una reacción de electrodo en la cual una especie

oxidada se reduce en la interfase electrodo-disolución. Consideremos que la velocidad de la reacción está gobernada única y exclusivamente por la transferencia de carga. También supondremos que la reacción apenas comienza, es decir que hay ausencia de campo electrico. La entalpía de activación que debe alcanzar el ión para que ocurra la transferencia de carga no tiene aún la contribución eléctrica (*JFAE*). Así pues, la frecuencia con que un ión consigue salvar esta barrera de energía y saltar de la solución al metal y realizar la transferencia de carga está dada por la siguiente ecuación:

o-

$$\frac{\overline{KT}}{Kr} = \frac{kT}{h} e^{-\frac{AG^{o^2}}{RT}}$$
(2.3.8)

donde

k = cte de boltzman = 1.38054 + 10^{-28} J K⁻⁴ T = temperatura h = cte de planck = 6.6252 + 10^{-84} J s R = cte de los gases = 8.3143 + J K ⁻¹mol⁻¹ $\Delta 6^{off}$ = Energía libre standard de áctivación

Al multiplicar esta cte de velocidad por la concentración de oxidante en el electrodo obtenemos una expresión de velocidad para esta reacción de electrodo:

donde

 $V_{\Gamma} \approx$ velocidad de reducción en ausencia de campo eléctrico $\xrightarrow{--5}$

Cox = concentración de la especie oxidada en la interfase

(3)Esta transferencia de carga en la interfase trae consigo las consecuancias inmediatas siguientes:

1) El metal se carga positivamente.

 La interfase formada por la disolución se carga negativamente

 A consecuancia de lo anterior se ha creado una diferencia de potencial y, por lo tanto, un campo eléctrico.

 El campo eléctrico afecta la velocidad con la que las cargas se mueven a través de la interfase.

De esta manera, lo que antes había sido un proceso puramente químico, se ha transformado en eléctroquímico tan solo en unos microsegundos.

El campo eléctrico así formado frena al ión en su movimiento hacia el electrodo pues, aunque la dirección de acción del campo es la misma que la del ión, el sentido es inverso. Es precisamente la contribución eléctrica a la energía de activación (n/FAE) la que corresponde al trabajo electrostático que debe realizar el ión para vencer el campo eléctrico de la doble capa.

Podemos definir ahora la velocidad de reacción de reducción

en presencia de campo eléctrico:

$$V_{re} = \frac{kI}{h} C_{ox} e - \frac{\Delta G}{RT} e - \frac{\partial F}{RT} AE \qquad (2.3.10)$$

sustituyendo (2.3.9) en (2.3.10)

$$V_r = V_r = \frac{-7}{RT} = K_r C_{ox} e^{-7} \frac{E}{RT}$$
 (2.3.11)

Si despejamos de la ecuación (2.3.3) el término correspondiente a la densidad de corriente

y sustituimos (2.3.11), obtenemos

.

$$j_{0} = \pi F K_{T} C_{0x} e^{-\beta \Pi F \Delta E} RT$$
(2.3.12)

$$Ja = \pi FK_{o}C_{red} \in \frac{(1-\beta)nF\Delta E}{RT}$$

(2.3.13)

Estas últimas dos ecuaciones representan la densidad de corriente tanto para una reacción catódica como para una reacción

Construction of the construction of the second structure of a second state of the second state of the second s

anódica.

(3) Cuando la interfase metal-disolución alcanza su estado de equilibrio, es decir que no hay un flujo neto de electrones a través de ella, la densidad de corriente adquiere un valor específico que será igual tanto para la densidad de corriente anódica (ja) como para la densidad de corriente catódica (ja). Es decir:

 $j_{a} = j_{c} = j_{0}$ (2.3.14)

donde "jo" es la densidad de corriente de intercambio y que es igual tanto a la densidad de corriente anódica (ja) como catódica (ja) cuando la reacción está en el potencial de equilibrio ($\Delta E \cdot q$). La densidad de corriente de intercambio (jo) es una constante típica de cada reacción electroquímica en particular y no es medible experimentalmente, solo puede deducirse matemáticamente.

Consideremos una reacción electroquímica fuera del equilibrio en donde hay un flujo neto de electrones. Despejando de la ecuación (2.3.4) el término de potencial (AE) tenemos

 $\Delta E = \Delta E_{eq} + n$ como estamos fuera del equilibrio

(2.3.15)

finalmente, tomando en cuenta que "jo" es factor común obtenemos la siguiente ecuación:

$$j = jo \left[e^{\frac{(1-\beta)nFn}{RT}} - e^{-\frac{\beta nFn}{RT}} \right]$$
 (2.3.16)

La ecuación anterior es precisamente la ECUACION DE BUTLER-VOLMER.

De acuerdo con la ecuación anterior, resulta que el paso de corriente a través de la interfase y, por lo tanto la velocidad de la reacción es función de la SOBRETENSION (n).

La siguiente gráfica muestra la relación entre ambos parámetros.

FIG 2.14(1)

Cuando la SOBRETENSION de la reacción electroquímica es pequeña, (|∧| ≤ 0.01 volts) estamos en la zona en que es posible emplear como buena aproximación la ley de relación lineal entre į y ∧.

$$j = \frac{n_i c F \alpha}{BT}$$
(2.3.16)

Cuando las sobretensiones son muy grandes ($|\alpha| \ge 0.12$ volt) es posible despreciar una de las corrientes parciales frente a la

otra.

Si la sobretensión es anódica

$$j = j_0 \frac{(1-\beta)nF\alpha}{RT}$$

y si la sobretensión es catódica

$$j = j_0 \stackrel{-(3)Fn}{RT} (2.3.19)$$

(2.3.17)

y la dependencia entre n y j se convierte en una función exponencial.

vii) Ecuación de Táfel.

(5)Si tomamos las ecuaciones (2.3.17) y (2.3.18) y les sacamos logaritmo obtenemos las siguientes expresiones

$$n = \frac{2.303 \text{ RT}}{(1-\beta) nF} \log j_0 + \frac{2.303 \text{ RT}}{(1-\beta) nF} \log j \quad (2.3.19)$$

$$n = \frac{2.303 \text{ RT}}{\text{ApF}} \log j_0 - \frac{2.303 \text{ RT}}{\text{ApF}} \log j$$
 (2.3.20)

que corresponden a la ECUACION DE TAFEL para la reacción anódica y catódica respectivamente. Esta ecuación puede abreviarse de la siguiente maneral

donde

0

$$a = \frac{2.303 \text{RI}}{(\text{h}F)} \log \text{ jo } y = -\frac{2.303 \text{RI}}{(\text{h}F)} PARA REACCION CATODICA$$

 $a = \frac{2.303 \text{RT}}{(1-\beta) \text{ nF}} \log \text{ jo } \text{ y } \text{ b} = \frac{2.303 \text{RT}}{(1-\beta) \text{ nF}} \text{ PARA REACCION ANODICA}$

Como se puede observar, la ECUACION DE TAFEL constituye una recta con la variable "n" como ordenada, y "*log* j" como abcisa. Esto indica que a sobretensiones altas existe una relación líneal entre éstas y el "*log* j".

A continuación se presentan gráficas de la ECUACION DE TAFEL, comunmente llamadas DIGRAMAS DE EVANS, donde se distinguen tanto el proceso anódico como el catódico, y el potencial de corrosión que corresponde al punto de intersección de ambas rectas.

FIG 2.15 (1)

En la figura 2.15 se ve como la variación de los potenciales de equilibrio afecta tanto al potencial como a la corrientede corrosión. En la figura 2.16 la densidad de corriente de intercambio anódica (joa) sufre una disminución que trae como resultado un desplazamiento del potencial de corrosión a valores más cercanos al potencial de equilibrio del cátodo (se incrementa en la gráfica el valor del potencial de corrosión) y una disminución en la densidad de corriente de corrosión.

Cuando la densidad de corriente de intercambio catódica (joc) disminuye, el potencial sufre un desplazamiento hacia valores más cercanos al potencial de equilibrio del ánodo (en la gráfica desclende el valor de potencial de corrosión) y la densidad de corriente de corrosión decrece. Esto se muestra en la figura 2.17.

En las figuras 2.18 y 2.19 podemos observar cómo el cambio en la pendiente de Tafel puede alterar al potencial y a la corriente de corrosión. La figura 2.19 ilustra cómo un incremento en el valor de la pendiente de Tafel para la curva anódica trae como resultado un desplazamiento del potencial de corrosión hacia valores más cercanos al potencial de equilibrio del cátodo y una disminución en la corriente de corrosión. Cuando la pendiente de Tafel aumenta en valor absoluto para la curva catódica, como se muestra en la figura 2.18, el valor del potencial se desplaza hacia valores más cercanos al potencial de equilibrio del ánodo y la corriente de corrosión sufre una disminución.

El fenómeno que se ilustra en las figuras 2.16 y 2.19 recibe el nombre de POLARIZACION ANODICA y el de las figuras 2.17 y 2.18 POLARIZACION CATODICA . La DESPOLARIZACION ANODICA Y CATODICA son los procesos inversos a los ilustrados en las figuras anteriores respectivas.

viii) Modelo de la capa de difusión de Nernst.(11)

En los sistemas de protección catódica al igual que en muchos fenómenos de corrosión, la reacción catódica que se lleva a cabo, . en la mayoría de los casos, es la reducción de oxígeno.

02 + 2H20 + 4.- ----- 40H

Para que esta reacción se lleve a cabo, las moléculas de oxigeno deben de transportarse desde el seno de la solución, hasta la interfase electrodo-electrolito. La convección que es responsable de este transporte, se genera gracias a factores tales como: diferencias de densidad, de temperatura y sobretodo de la agitación mecánica de la solución. Debido a estos movimientos convectivos, podemos decir que la concentración será homogénea en la solución. Sin embargo, la reacción electroquímica producirá una variación de la concentración tanto de O2 como de OH- en la proximidad del electrodo y se formará, por consiguiente, una zona que llamaremos CAPA DIFUSION. Su nombre se debe a que el

transporte de Oz a trevés de ella se lleva a cabo bajo influencia de la difusión, alcanzándose un régimen permanente. Tanto la magnitud como el tipo de perfil de concentraciones en la capa será constante. El modelo anterior fue propuesto por Nernst, de ahí que reciba su nombre.

La velocidad de reacción catódica descrita anteriormente, se expresa con la ecuación siguiente:

$$c Dz = -nFD oz \frac{Ce-CE^{\circ}}{6}$$
 (2.3.22)

donde

Fo oz = coeficiente de difusión para el Oz

 $Cs^{\circ} = concentración de Oz en el seno de la solución$

Ceº = concentración de Oz en electrodo

6 ≈ Espesor de la capa de difusión que oscila entre 10⁻⁵m (convección forzada) y 5 x 10⁻⁴ (convección natural).

n = número de electrones intercambiados = 4

A continuación se presenta una gráfica del perfil de difusión de acuerdo al modelo de Nernst.

4.3

FIG 2.20 (5)

En la cinética de corrosión, las reacciones catódicas controladas por difusión juegan un papel importante. Para un valor pequeño de sobrepotencial negativo, 1a reacción es. controlada por transferencia de carga, pero a un sobrepotencial más negativo, el proceso de transporte no se da abasto en el consumo de oxígeno en el electrodo y la concentración de Oz en la superficie se vuelve igual a cero.

Se dice entonces que la velocidad de reacción ha sido completamente limitada por la difusión, pues este fenómeno constituye el paso determinante de la misma.

Por lo tanto, tomando las consideraciones anteriores, la ecuación (2.3.22) puede simplificarse a

$$\mu_{L} = -4F_{D} \cos \frac{C^{0}}{\delta}$$
 (2.3.23)

المعادلا وترجع والمحادث والمراجع والمراجع

A continuación se presenta una gráfica en la que se compara tanto el control por transferencia de carga, como el control por difusión en una reacción catódica.

CONTROL DE CORROSION

i) Corrosión como función de la temperatura.(4)

2.41

Al elevar la temperatura en un celda de corrosión, aumenta tanto la difusión como la actividad iónica y disminuye la polarización y el sobrevoltaje. Con esto se esperaria que la velocidad de corrosión aumentara continuamente al aumentar la temperatura. Sin embargo se debe tomar en cuenta que la solubilidad del oxígeno disminuye paralelamente. Estos fenómenos que se contraponen, dan como resultado que la velocidad de corrosión, en función de la temperatura pase por un máximo que corresponde a los 80°C aproximadamente. Cabe señalar que cuando el sistema es cerrado, la velocidad de corrosión sigue aumentando con la temperatura y se duplica aproximadamenteo por cada 30°C (ver figura 2.22).

ii) Influencia del tipo y concentración de sales disueltas.(4) Los factores que son consecuencia de esta influencia se ennumeran a continuación: 1) la solubilidad decreciente del oxígeno al aumentar la concentración de la sal: 2) el aumento en 1a conductividad: 3)la adsorción de iones sobre el metal 1a precipitación de productos de corrosión coloidales; 4) el carácter oxidante o reductor de la sal.

Cuando la corrosión está controlada por despolarización por oxigeno (hierro en soluciones neutras), los dos factores opuestos de la concentración decreciente del Oz y la actividad creciente del soluto indican una rapidez máxima para cierta concentración de sal. La figura 2.23 muestra la forma general de la curva.

FIG 2.23

Los metales, como el aluminio, que deben su resistencia inicial a una película de óxido, son sensibles a la concentración de ciertos aniones, en especial los cloruros (por su pequeño tamaño), que penetran en la película, y la rapidez alcanza un valor límite en cierta concentración elevada. Ciertos iones disminuyen la rapidez de corrosión y se les califica de inhibidores.

La carga del anión es una variable importante. Los sulfatos, por ejemplo, son bastante menos corrosivos que los cloruros. Los cromatos son los aniones divalentes que funcionan más eficientemente como inhibidores.

Este efecto de los aniones divalentes tiene dos posibles explicaciones: 1) productos coloidales de óxidos hidratados son precipitados en contacto con el metal en el sitio de ataque e impiden que continúe el proceso corrosivo: 2) los iones divalentes son adsorbidos fuertemente y de manera preferencial en la superficie. La velocidad de corrosión también se ve disminuída por iones que precip; itan películas coherentes de productos de corrosión insolubles en el sitio del ataque. limitando la difusión de los reactantes hacia la superficie del metal y el alejamiento de los productos de corrosión. El plomo en los sulfatos, el magnesio en los floruros, y la plata en los cloruros, son ejemplos de estos pasivadores. Cuando la reacción de corrosión se encuentra controlada por el cátodo, la presencia de

sales oxidantes y de oxigeno aumenta la velocidad despolarizando el cátodo. Esto ocurre cuando el cátodo se encuentra polarizado por iones H^{*}, los cuales son eliminados por reacciones como:

> $2H^{+} + D_{2} + 2_{0} - ---- H_{2}D_{2}$ $4H^{+} + D_{2} + 4_{0} - ---- H_{2}D_{2}$ $8H^{+} + MnD_{2} + 5_{0} - ---- Mn^{2} + 4H_{2}D_{2}$

en donde no hay producción de Hz(gaseoso). El caso anterior es, entre otros, el de los metales mas nobles que el hidrógeno (como el cobre). El equilibrio en lugar de alcanzarse entre los iones metálicos y el hidrógeno, se lleva a cabo por medio de la disolución del metal a medida que van siendo eliminados continuamente los iones H^{*}.

iii) Influencia del pH. (4)

En el caso del aluminio, que es un metal anfótero, la película de óxido posee una estabilidad máxima en el intervalode pH 4-8.5; en soluciones con una concentración mayor o menor del ión de hídrógeno el ataque es rápido, aumenta con la concentración del ión hidrógeno o del ión hidroxilo y es más o menos independiente de la concentración de oxígeno.

La velocidad de corrosión del hierro en función del pH puede

dividirse en tres zonas: 1) pH<4, predomina el desprendimiento de hidrógeno; la velocidad aumenta logaritmicamente con la concentración del ión hidrógeno; 2) 4<pH<10, la velocidad es controlada por la despolarización por el oxígeno y es independiente del pH; 3) pH>10, la velocidad disminuye en proporción a la concentración de ión hidroxilo.

CORROSION DEL HIERRO EN FUNCION DEL PH

Cabe señalar que la información sobre la serie electromotriz de los metales proporcionada por la termodinámica no es suficiente

para predecir la resistencia de estos a los ácidos. Por ejemplo, a pesar de su potencial activo, el aluminio se pasiva en presencia de ácidos oxidantes, y en ausencia de cloruros puede usarse incluso en recipientes para ácido nítrico. Lo mismo ocurre cuando el aluminio se pone en contacto con el ácido sulfúrico.

iv) Métodos para el control de la corrosión.

(3)Los diversos sistemas utilizados para combatir los fenómenos de corrosión se basan, fundamentalmente, en modificar la naturaleza activa del metal o evitar las características agresivas del medio ambiente. La primera opción conduce a la protección "activa" que consiste en modificar las condiciones termodinámicas y (6) cinéticas responsables de la corrosión electroquímica. La protección catódica y anódica son los ejemplos típicos de esta clase de métodos. Dentro de la primera opción existe también la protección "pasiva" que consiste en recubrir al metal con una capa de material resistente a la corrosión como, por ejemplo, el chapeado, esmaltado, plastificado o el pintado que la aisla del medio agresivo. También se puede recurrir a una protección mixta, intermedia entre las dos anteriores y que puede efectuarse por medio de recubrimientos que actúan anódicamente frente al metal por proteger, ej: el galvanizado, o bien el uso de protección catódica por medio de ánodos de sacrificio en conjunto con sistemas de pintura adecuados.

La segunda opción, es decir, la modificación de las

características agresivas del ambiente, puede lograrse mediante; 1) la separación o eliminación del agente oxidante, 2) la variación de las características de la disolución o 3) la adición de una sustancia que inhiba el proceso de corrosión.

v) Protección Catódica.(1)

La corrosión puede evitarse rebajando el potencial del metal por debajo de su potencial de equilibrio y colocarlo en la zona de inmunidad (ver figura 2.7). Para lograr esta disminución de potencial se conecta a esta superficie, otro metal, mas activo y con un área suficiente, que se consuma actuando como ánodo de sacrificio. De este modo, el metal a proteger tiene un potencial más negativo que le convierte en zona catódica, evitando su corrosión. A este procedimiento se lo conoce como PROTECCION CATODICA. Otra manera de conseguir una disminución del potencial del metal a proteger y colocarlo en la zona de inmunidad es por medio de la aplicación de CORRIENTE IMPRESA. Este método consiste en aplicar una corriente catódica a la estructura por proteger, y que trae como consecuencia una disminución en el valor de su potencial hasta la zona de inmunidad y también un decremento correspondiente de la corriente de corrosión valores а despreciables. En este caso se emplea un sistema de control de corriente, más o menos sofisticado, y ánodos inertes.

Ambos procedimientos de PROTECCION CATODICA se ilustran a

continuación en las figuras 2.25 y 2.26.

FIG 2.25 (1)

FIG 2.26 (1)

vi) Protección por pasivación. (1)

La protección de los metales se puede conseguir, como ya se mencionó anteriormente, mediante su PASIVACION por efecto de un oxidante adecuado. Acontinuación se presenta la curva de Polarización anódica para el sistema del fierro, en la cual se combinan varias opciones de curvas catódicas.

-53

FIG 2.27 (1)

El oxidante que corresponde a la curva 1, conduce a un potencial de corrosión en la zona activa o de disolución del fierro, de tal manera que no es posible su pasivación. La curva 2 corresponde a un oxidante mas eficiente. Esta curva corta a la del fierro en tres puntos de los cuales el intermedio no es importante ya que el sistema se desplaza espontáneamente hacia cualquiera de los dos puntos extremos. Si en un inicio el fierro se encuentra pasivado, el sistema queda definido en el punto "a", pero si llega a deteriorarse la capa pasivante formada sobre el metal, y el fierro queda al descubierto, el sistema se desplazará inmediatamente al punto "c" en la zona de corrosión. Si se utiliza un oxidante cuya

reducción ocurra a potenciales comprendidos en la zona de pasivación del fierro como ocurre en la curva 3, la pasivación es espontánea. Con un oxidante más enórgico podemos conseguir una transpasivación del fierro, ésto se representa en la curva 4. Se puede resumir comentando nuevamente que la cinética del proceso electroquímico influye sobre la corrosión, ya que un oxidante con potencial de equilíbrio comprendido en la zona de pasivación del metal puede protegerlo, pero otros pueden mantenerlo en actividad. La polarización anódica del metal que lo mantiene en la zona pasiva recibe el nombre de PROTECCION ANODICA. El método consiste en conectar el metal a un electrodo auxiliar, a través de un circuito externo, provisto de un dispositivo que mantiene el potencial en la zona pasiva.

vii) Cinc, Aluminio, Magnesio y sus aleaciones como ánodos galvánicos. Campos de aplicación. (6)

a) Cinc.

Este metal fue el primero en utilizarse para la producción de ánodos de sacrificio. Su alto rendimiento de corriente se debe al potencial de disolución elevado que posee. La resistividad del medio agresivo en el cual funcione un ánodo de cinc es un factor que puede llegar a ser, en un momento dado, decisivo. Por esta razón se debe evitar su empleo a resistividades mayores a los 5,000 ohms-cm. Si se utiliza el cinc en aguas dulces a

temperaturas mayores de 65°C se corre el peligro de una inversión de la polaridad de éste respecto al acero que está protegiendo. Su empleo como anodo galvánico o de sacrificio incluye la protección catódica de buques, andenes maritimos, refuerzos metálicos, diques flotantes, boyas, plataformas de perforación de petroleo, etc.

b) Aluminio.

El aluminio, por su situación en la serie electromotriz, es el metal ideal para proteger catódicamente una estructura de acero. Se encuentra intermedio entre el cinc y el magnesio y tiene una elevada capacidad de drenaje de corriente. Debido a ésto, un solo Anodo de aluminio puede ejercer la acción de tres de ciúc con las mismas características y tener el mismo tiempo de vida. Por esta razón los ánodos de aluminio están utilizándose cada vez con más frecuencia en construcción naval, para la protección de tanques de lastre y carga-lastre, de barcos petroleros, A pesar de que el precio del aluminio es más elevado que el del cinc, este gasto se compensa ya que la cantidad de ánodos de aluminio requeridos para proteger una estructura de acero es menor que la que se necesita de ánodos de cinc. Además, si se considera el ahorro de mano de obra de colocación de menos ánodos de aluminio, puede llegar a ser, incluso, más económico.

El campo de aplicación es semejante al del cinc, y su comportamiento satisfactorio en aguas dulces protegiendo

catódicamente estructuras de acero.

c) Magnesio.

Para la utilización del magnesio y sus aleaciones se debe tomar en cuenta el bajo potencial de disolución de este metal, el cual implica un bajo rendimiento de corriente y una disminución, a veces muy grande, del potencial de la estructura que se va a proteger. El magnesio puede utilizarse para la protección catódica de estructuras provistas de un recubrimiento de mala calidad y situadas en un medio de resistividad elevada (10,000 ohms-cm.) ejemplo: suelo arenoso.

No son recomendables los ánodos de magnesio para su uso en aguas marinas, ya que su elevada autocorrosión hace que sus rendimientos sean muy bajos. El mejor medio para campo de aplicación de estos ánodos debe tener una resistividad elevada (entre 5000 y 20.000 ohms-cm).

A continuación se presenta una tabla que muestra los límites de resistividad de ánodos de sacrificio en diferentes medios.

TABLA II-III (6)

Material	Medio	Resistividad
		(ohms-cm)
· .	A	
	Hgua	
Aluminio		hasta 150
Cinc		hasta 500
Magnesio (-1	.57)	mayor a 500
	Suelo	
Zn con backfi	11	hasta 1,500
Mg (-1.5V)	con backfill	hasta 4, 000
Mg (−1.7V)	con backfill	4,000-6,000

d) Aleaciones para ánodos.

La composición de los ánodos de sacrificio es decisiva sobre las cuatro propiedades fundamentales que deben tener éstos para ser apreciados como tales. Estas propiedades son: El potencial de disolución, el rendimiento de corriente, la polarizabilidad y la homogeneidad en la corrosión del ánodo. También es importante señalar que la composición de la aleación influye en las propiedades que los productos de corrosión formados sobre éste durante su funcionamiento le confieren: porosidad, adherencia, dureza, conductividad eléctrica, etc.

1-Aleaciones de Cinc.

Los metales más utilizados como elementos de aleación del Cinc y que han dado los mejores resultados son: litio, cromo, magnesio, aluminio y cadmio.

Las Tablas II-IV y II-V contienen las aleaciones más utilizadas actualmente que son las U.S Mil, americanas.

TABLA II-IV (6)

Composiciones exigidas en ánodos de Cinc,

según especificaciones militares americanas.

Composición (%)	MIL-A-18001	MIL-A-18001 G
Plana	0.006 máx	0.005 máx
Hierro	0.0014 máx	0.005 máx
Cadmio	0.004 máx	0.025-0.15
Cobre	0.005 máx	0.005 máx
Alumínio	0.1 máx	0.10-0.5
Silicio		0.125 máx
Cinc	Resto	Resto

TABLA II-V (6)

Composición comercial típica de ánodos de Zn

(aleación Zn-Al-Cd)

	MIL-A-18001 H		
Cu	0.005 máx	0.005 máx	0.005 máx
Al	0.10-0.50	0.30-0.50	0.7-0.6
Si	0.125 máx	0.003 máx	0.125 máx
Fe	0.005 máx	0.002 máx	0.0015 máx
Ръ	0.005 máx	0.005 máx	0.3 máx
Cd	0.0025-0.15	0.0025-0.100	0.075-0.125
Rendimiento	95%	95%	95%
Potencial (V)	-1.05 vs Ag/AgCl	-1.05 vs Ag/AgCl	-1.05 vs Ag/AgC1
Capacidad (A-h/Kg)	780	780	780

En cuanto a impurezas contenidas en ánodos de aleaciones de Zn, las más perjudiciales son las de Plomo y Fierro. Este último ocasiona pérdida importante de actividad del ánodo cuando se encuentra en concentraciones superiores al 0.01% y trabajos posteriores han demostrado que es recomendable no sobrepasar el 0.002% (6).

Al añadir pequeñas cantidades de Al, Al y Cd y Si al Zn se puede contrarrestar la acción negativa que tienen las impurezas de Fe sobre el funcionamiento del ánodo. Por esta razón la

especificación US-MIL-A-18001 G (vease tabla II-IV) permite un 0.005% de Fe, pero exige contenidos de un 0.025-0.15% de Cd y 0.10-0.50% de Al.

A continuación se presenta la Tabla II-VI, en la cual aparecen las calidades de Cinc según la especificación B6-46 de la A.S.T.M.

TABLA II-VI (6)

Calidades del Cinc según la especificación

A.S.T.M. 86-46

	Contenido	máximo de	impurezas	
РЪ	Fe	Cd	Total	Zn
0.006	0.005	0.004	0.01	99.99
0.07	0.02	0.07	0.10	99.9
0,20	0.03	0.50	0.50	99.5
0.60	0.05	0.50	1.00	99
0.80	0.04	0.75	1.25	98.75
1.60	0.08			98.32
	Pb 0.004 0.07 0.20 0.40 0.80 1.60	Contenido Pb Fe 0.006 0.005 0.07 0.02 0.20 0.03 0.60 0.05 0.80 0.04 1.60 0.08	Contented MXX imo del Pb Fe Cd 0.004 0.005 0.004 0.07 0.02 0.07 0.20 0.03 0.50 0.40 0.05 0.50 0.60 0.05 0.50 0.60 0.04 0.50 0.60 0.05 0.50 1.60 0.08	Contentio אצ ino de impurezas Pb Fe Cd Total 0.006 0.004 0.01 0.01 0.07 0.02 0.07 0.10 0.20 0.03 0.50 0.50 0.40 0.50 0.50 0.50 0.60 0.05 0.50 1.00 0.80 0.75 1.25 1.60

2-Aleaciones de Magnesio.

Se han estudiado una gama muy amplia de aleaciones de magnesio para el diseño de ánodos de sacrificio. A continuación se presentan dos tablas que contienen datos acerca de ánodos de aleaciones de Mg de tipo comercial.

TABLA II-VII (6)

Composiciones de magnesio y sus aleaciones utilizadas

	<u></u>	C0#0	ánodos de	Sacrificio) 		-
Denominac	:ión	A1	Cu	Fe	Ni	Mn	Zn
Galvomag		0.10 máx	0.002	0.03	0.001	0.5-1.3	
Magnesio	cell	0.01	0.01	0.027	0.001	0.10	0.01
Dowmetal	Fs-1	2.6	0.003	0.005	0.001	0.4	1.1
Dowmetal	н	6.0	0.01	0.009	0.001	0.26	2.5
Dowmetal	H-1	6.5	0.01	0.001	0.001	0.24	3.4
Dowmetal	J-1	6.4	0.005	0.001	0.001 0.	. 23	0.78

TABLA II-VIII (6)

Composición comercial típica de ánodos de

Magnesio

	MIL-A-21412		
Cu	0.1 máx	0.02 máx	0.002 máx
Al	5~7	5.3-6.7	0.01 máx
Si	0.3 máx	0.10 máx	
Fe	0.003 máx	0.003 máx	0.003 máx
Mn	0.15 min	0.15 min	0.5-1.3
Otros	0.3 máx (c/uno)	0.3 máx (c/uno)	Pb,Sn 0.01 máx
Rendimiento	50%	50%	50%
Potencial (V)	-1.5 vs Ag/AgCl -	1.5 vs Ag/AgCl	-1.7 vs Ag/AgCl
Capacidad (A-h/Kg)	1100	1230	1230

De todas las aleaciones comerciales presentadas en las tablas anteriores, la llamada Dowmetal H-1 es la que se comporta mejor en agua de mar y, de hecho, la que se utiliza con frecuencia en este medio. Su disolución anódica es homogénea y es poco susceptible a la polarización con el tiempo. Su rendimiento de corriente es de los más elevados que se pueden obtener con ánodos de magnesio (55-67%).

Debido a que la mayoría de los metales comunes son catódicos en relación con el magnesio, sus impurezas afectan negativamente el buen funcionamiento de estos Anodos. El fierro, en cantidades que no excedan el 0.014% no presenta gran influencia, pero si el porcentaje es mayor de 0.03% la corresión espontánea del ánodo se multiplica por un factor de hasta 500. Debido a lo anterior, la aleación comercial llamada "Cell" tiene un bajo rendimiento (su contenido en fierro es de 0.03%). Otro metal que ocasiona efectos perjudiciales en los ánodos de magnesio es el Níquel. ۵ concentraciones superiores a 0.001% los ánodos de magnesio sufren corrosión espontanea aún a potenciales de disolución sensiblemente nobles (positivos). El cobre puede se perjudicial en cantidades superiores al 0.5%, y cuando sobrpasa el 4%, el potencial de disolución se vuelve tan positivo que se invierte la polaridad del ánodo de magnesio.

El aluminio es un elemento benéfico para las aleaciones de magnesio. De hecho, se utiliza para eliminar parte del fierro durante la preparación de la aleación. Las aleaciones

magnesio-alueinio tienen una buena resistencia a la corrosión espontánea.

El Cinc es otro metal que produce efectos favorables sobre las aleaciones de magnesio. En cantidades entre 2.5 y 3.5%, favorece el consumo homogéneo del ánodo y atenúa la acción nociva de impurezas, pudiéndose admitir hasta un 0.10% de Fe sin afectar el rendimiento.

El manganeso también ejerce un efecto favorable ya que tiende a compensar la acción negativa del cobre y del fierro.

3-Aleaciones de aluminio.

La utilización de este metal como ánodo de sacrificio es reciente. A pesar de ser un material ideal para la protección catódica, presenta un inconveniente; la formación de una película de óxido de aluminio (pasivación anódica) que proporciona una alta resistencia a la corrosión.

Se han hecho numerosos experimentos para encontrar elementos de aleación que eviten la pasivación anódica del aluminio. A continuación se presentan dos tablas que reunen las características de las aleaciones de aluminio desarrolladas.
Composición típica de ánodos de aluminio				
Si	0.11-0.21	0.10 máx	0.10 máx	
Fe	0.10 máx	0.13 máx	0.13 máx	
Zn	0.3-0.50	3.5-5.0	4.00-5.00	
Sn			0.08-0.16	
Mg		0.3-0.8		
Hg	0.020-0.050			
In		0.02-0.05		
Cu	0.006 máx	0.006 máx	0.01 máx	
Otros (c/uno)	0.02 máx	0.02 máx	0.02 máx	
Rendimiento	95%	90% máx	50-80%	
Potencial (V)	-1.5 Ag/AgCl	-1.1 Ag∕AgCl	-1.1 Ag/AgCl	
Capacidad (A-h/Kg)	2830	2700 máx	variable	

TABLA II-IX (6)

TABLA II-X (6)

Características electroquímicas de algunas aleaciones de Cinc, Aluminio y Magnesio

utilizadas actualmente.

Aleación	Potencial vs Ag/AgCl	Potencial respecto al acero protegido	Capacidad de drenaje de corriente (A-h/Kg)	
Zn (U.S.Mil)	-1.05	-0.25	780	
Al-Zn-Sn	-1.07	-0.27	2,420	
Al-In	-1.15	-0.35	2,740	
A1-Hg	-1.05	-0.25	2,830	
Mg	-1.5 a -1.7	-0.7 a -0.9	i,050 a i,200	

Para obtener la información vaciada en estas tablas, se determinaron los efectos que cada uno de los elementos de aleación mencionada, tenía de manera aislada sobre el potencial del aluminio. Se encontró lo siguiente; el Cu y Mn hacen más catódico el potencial del Al mientras que el Zn, Cd, Mg y Ba hacen de -0.1 a -0.3 V más anódico dicho potencial y el Ga, Hg, Sn e In de -0.3 hasta -0.9 V más anódico.

Las aleaciones que se fabricaron en un principio fueron las de Al-Hg-Sn y Al-Hg-Bi. Su comportamiento es similar y tienen potenciales del mismo orden que las aleaciones de Al-Hg.

Los ánodos de Al-Zn-Hg, Al-Zn-Sn y Al-Zn-In tienen

potenciales de alrededor de -1.05 V y rendimientos muy elevados. La aleación Al-Zn-Hg ha sido estudiada de manera especial, teniendo en cuenta la variación de la composición, densidad de corriente y pureza del aluminio empleado. En este tipo de aleación se ha alcanzado un rendimiento de hasta el 95%. Esta aleación, junto con la de Al-Zn-In son las más utilizadas en la actualidad. Sin embargo cabe señalar dos inconvenientes que tienen estas dos aleaciones; 1) La acción tóxica que tiene el Hg y 2) el precio tan elevado que tiene el In en el mercado actuálmente.

CAPITULO III

TECNICA EXPERIMENTAL

JUSTIFICACION DEL DISERO DEL EXPERIMENTO

3.1)

Ya se mencionó en la introducción y también en la parte final del capítulo II, que cuando utilizamos ciertos elementos de aleación con el aluminio, los ánodos galvánicos se mantienen activos y el aluminio no se pasiva. Para llegar a visualizar cual es la influencia de estos elementos se construyeron ánodos de aluminio puro, los cuales fueron posteriormente sometidos al paso de una densidad de corriente que trata de imitar las condiciones de trabajo de un ánodo galvánico de aleación de aluminio. Para esto se utilizó un potenciostato-galvanostato (VIMAR PG-2EV). E1 electrolito utilizado durante las experiencias fue cloruro d٤ 21121 Sn⁴en sodio al 3% al cual fueron añadidos iones concentraciones específicas. El PH de la solución se varió a lo largo de las pruebas para ir observando su influencia. Se utilizó solución de NaCl al 3% para tratar de imitar las propiedades del agua de mar. El Zn²'y Sn⁴⁺se introdujeron a la solución en 1.80 concentraciones específicadas con el objeto de imitar las concentraciones que supuestamente debe tener el agua de mar en la interfase ánodo/electrolito cuando un ánodo galvánico de aleación Al-Zn-Sn está en funcionamiento y también para ver si influyen estos en un proceso de activación del ánodo de aluminio puro o si a pesar de ellos el alumínio se pasiva.

La última prueba que se realizó fue de campo, es decir que se prescindió del potenciostato-galvanostato. En su lugar, se conectó

el ánodo de aluminio puro directamente a una estructura de acero imitando así el fenómeno de protección catódica. Las propiedades del electrolito fueron las mismas.

Hay que agregar que el factor tiempo fue determinado propositivamente en cada una de las pruebas, al igual que la agitación (debido a que se hicíeron las experiencias a diferentes pH's hubo precipitación de Zn(OH) 2 y Sn(OH) 4).

3.2) DESCRIPCION DEL MATERIAL

i) Anodos y su construcción.

Se utilizó una barra de aluminio con un grado de pureza del 99.9%. Esta se cortó en 4 partes. Cada una de estas fue acoplada a una probeta de baquelita de tal manera que las piezas de aluminio se encontraban aisladas excepto por una cara de dimensiones regulares (rectangulares). A continuación se presentan las dimensiones de cada uno de los ánodos y posteriormente un esquema de los mismos.

> Anodo #1 --- 1.19cm x 1.03cm = $1.226cm^2$ Anodo #2 --- 1.16cm x 0.775cm = $0.899cm^2$ Anodo #3 --- 0.965cm x 0.675cm = $0.65 cm^2$ Anodo #4 --- 0.820cm x 0.70 cm = $0.57 cm^2$

A cada una de las probetas se le hizo un orificio para que a través de él se pudiera introducir una varilla de acero roscada que estuviera en contacto con el aluminio, pero manteniendo la unión aislada del electrolito para evitar un par galvánico. Por medio de esta varilla se hace contacto con el ánodo para la realización del experimento y la lectura de potencial anódico.

ii) Electrolitos utilizados.

Se preparó una solución de NaCl al 3% (30g de NaCl r.a. en 1000g de solución). Con esta solución se prepararon dos electrolitos diferentes:

- a) NaCl (3%) + Zn²⁺ (10⁻⁴M)
- b) NaCl (3%) + Zn^{2+} (10⁻¹M) + $Sn^{4+}(5+10^{-1})$

El pH de estas soluciones se varió desde i hasta 7 ya que este era un factor muy importante dentro de el desarrollo experimental (la precipitación de hidróxidos de $Zn^{Z*}y$ Sn⁴⁺ocurre a pH's muy bajos).

iii) Galvanostato-Potenciostato.

Fara todas las pruebas efectuadas con corriente impresa, es decir, en donde el ánodo se le aplica una intensidad de corriente constante y se observa la variación de su potencial anódico respecto al tiempo, se empleó un potenciostato en su modalidad de galvanostato.

iv) Electrodo de referencia.

Para efectuar las mediciones de la variación del potencial anódico durante las pruebas de corriente impresa y la prueba natural, se utilizó como referencia un electrodo de calomel saturado.

- 72

v) Coulombimetro.

En las pruebas de corriente impresa se fijó siempre una intensidad de corriente constante con la ayuda del galvanostato, pero en la prueba natural, es decir aquella en la que el ánodo de prueba se conectó a una estructura de acero a proteger catódicamente, se tuvo que diseñar un coulombimetro que midiera los A-h involucrados en el circuito durante el experimento. Este dispositivo consta de dos placas de cobre colocadas de manera paralela. Las placas actúan como ánodo. El cátodo es un alambre de cobre o bien una tercera placa. El circuito implica la conducción de corriente mediante un electrolito que se prepara conforme a la siguiente taba:

CuSO4 '5HzO	. 2359
HzSD4conc	50g
Etanol	.50c.c.
Agua destilada	900ml.

El etanol permite la adherencia del cobre en el cátodo (puede emplearse urea alternativamente), lo cual es importante dado que por diferencia de peso en el cátodo del coulombimetro y ayudados por las leyes de Faraday podemos calcular la cantidad de A-h que fluyen por el circuito durante la prueba natural.

Esquema del coulombímetro de cobre utilizado en la prueba natural

vi) Estructura utilizade durante la prueba natural.

Se empleó como cátodo una placa de acero que tenia una superficie sumergida en el electrolito de 200 cm².

vii) Multimetro.

Para las mediciones de potencial en el cátodo y ánodo durante la prueba natural se utilizó un multimetro digital.

3.3) DESCRIPCION DE LOS EXPERIMENTOS Y MONTAJE DEL EQUIPO

i) Pruebas 1 y 2.

En estos dos experimentos se sometió el ánodo de aluminio a corriente impresa. Las condiciones de operación en ambas pruebas fueron las mismas con excepción del electrolito utilizado. En la prueba 1 hay presencia de iones Zn²⁺ y Sn⁴⁺, en la prueba 2 solo hay iones Zn²⁺. Los demás parámetros comunes a ambas pruebas se reportan en las hojas de resultados correspondientes en el capitulo IV.

ii) Prueba 3.

En ésta, se mantienen los mismos parámetros que en las pruebas anteriores. La única diferencia radica en que antes de imprimir corriente al ánodo de aluminio, se dejó unos minutos sumergido en la solución en ausencia de corriente y se obtuvo una lectura de potencial a circuíto abierto. Los demás parámetros se detallan en la hoja de resultados del capitulo IV.

iii) Prueba 4.

Se realizó de manera similar a la Prueba 3, pero variando al pH del electrolito utilizado. Un experimento se realizó a pH=1 y otro a pH=7. Esto se hizo con el objeto de observar la influencia de la solubilidad de los iones Zn²⁺y Sn⁴⁺en el desempeño del ánodo de aluminio. Las condiciones de operación se mencionan en la hoja de resultados del capítulo IV.

iv) Prueba 5.

En esta prueba se prescindió de la corriente impresa, es decir que solo se tomaron potenciales a circuito abierto en ausencia de corriente. Se dejó el electrodo sumergido durante 46 hrs dentro del electrolito conteniendo tanto iones Zn²⁺como Sn⁴⁺ a un pH=4. Evidentemente, a este grado de acidez hay precipitación de Zn(OH) z t Sn(OH) 4. Precisamente el experimento consistió en ver la influencia de la agitación de la solución sobre el comportamiento del ánodo. Para ésto , al cabo de 46 hrs, se tomó lectura del potencial anódico de reposo respecto a E.C.S. Posteriormente se agitó la solución y se volvió a tomar lectura del potencial. A continuación se dejó reposar la solución unos minutos. Se repitió la operación varias, veces y en todas se tomaba lectura del potencial en ausencia de corriente tanto antes como después de agitar. Los parámetros utilizados durante el experimento se reportan en la hoja de resultados del capítulo IV.

V) Pruebas 6 y 7.

En ambas pruebas se trató de ver la influencia de la densidad de corriente sobre el comportamiento del ánodo de aluminio. Así pues, durante la prueba 6 se reportan potenciales a una densidad de corriente impresa de 0.65 mA/cm²luego se duplica la densidad de corriente y finalmente se llega a triplicar. En la prueba 7 se reduce la densidad de corriente a la mitad es decir a 0.32mA/cm². En ambas pruebas, el electrolito se encuentra a un pH=4. Para mantenerlo homogéneo se utilizó un agitador magnético.

Las demás variantes de ambas pruebas se detallan en las hojas de resultados del capitulo IV.

A continuación se presentan los diagramas del equipo montado tanto para las experiencias con corriente impresa como la prueba en ausencia de corriente.

FIG 3.4

Esquema de la disposición del equipo utilizado en las pruebas de potencial en circuito cerrado con corriente impresa. (a) Potenciostato; (b) terminal a electrodo de trabajo; (c) punta electromótrica; (d) recipiente de vidrio; (e) ánodo de sacrificio (f) electrodo de calomel. La punta electrométrica del potenciostato ileva conectado el electrodo de calomel saturado. La terminal negra del potenciostato va al electrodo de trabajo, en este caso, el ánodo de aluminio puro.

FIG 3.5

Esquema de la disposición de material utilizado para la prueba de potencial a circuito abierto.

vi) Prueba natural.

Como su nombre lo indica, esta experiencia tiene como objeto el someter el electrodo de aluminio a las condiciones a las que está sometido un ánodo de sacrificio cuando protege una estructura de acero sumergida en agua de mar. La prueba duró 460 hrs.. Durante este tiempo se tomaron lecturas del potencial anódico y catódico tanto en condiciones de agitación como sin ella (el pH del electrolito era 4 y por lo tanto había precipitado de hidróxidos de Zn y Sn). Para poder obtener el flujo de A-h en el sistema, se conectó el coulombimetro en serie.

El resto de los parámetros y resultados del experimento se detallan en el capítulo IV.

A continuación se presenta un esquema del equipo montado para la prueba natural.

Esquema de la disposición del material utilizado para efectuar la prueba de campo. (a) Estructura por proteger; (b) ánodo de aluminio; (c) Coulombimetro.

vii) Mapéo de la superficie de los ánodos por medio de un microscopio electrónico de barrido.

Como parte final del trabajo experimental, se sometieron algunos de los ánodos a un análisis de su superficie después de haberse efectuado todas las experiencias electroquímicas. Para este análisis se utilizó un microscopio electrónico de barrido con

una unidad de análisis por energia dispersiva (EDAX) marca EG&G ORTEC 5000. Con este aparato se pudo registrar la presencia de impurezas en la superficie de los ánodos como resultado de las reacciones electródicas efectuadas durantes las pruebas. La interpretación de estos resultados es crucial para la elaboración del posible mecanismo de reacción electródica, que es el objeto de este trabajo.

CAPITULO IV

RESULTADOS EXPERIMENTALES

TABLA IV-I PRUEBA #1

PARAMETROS MEDIDOS:

Area del electrodo = 0.574 cm^2

Intensisdad de corriente (I) = 0.574 cm² + <u>0.45mA</u>z = 0.3731 mA Cm

Solución utilizada: NaCl (3%), Sn⁴⁺(5 × 10⁻³M), Zn²⁺(10⁻¹M) PH = 1 .

RESULTADOS EXPERIMENTALES OBTENIDOS

TIEMPO (min) POTENCIAL (V)

TIEMPO (min) POTENCIAL (V)

0	-0.849	24	-0.825
1	-0.844	26	-0,824
2	-0.844	28	-0.822
3	-0.844	30	-0.821
4	-0.843	32	-0,821
5	-0.842	33	-0.820
6	-0.841	36	-0.819
9	-0.837	38	-0.818
10	-0.836	40	-0.817
11	-0.835	43	-0.816
12	-0.834	46	-0.815
13	-0.833	49	-0.814
14	-0.832	53	-0.813
15	-0.831	56	-0.812
16	-0.830	65	-0.812
17	-0.829	69	-0.811
18	-0.828	75	-0.811
19	-0.829	80	-0.811
20	-0.827		
21	-0.827		

FIG 4.1 Gráfica potencial (V) vs Tiempo (min) correspondiente a Cap III apartado 3.3 inciso i. prueba #1. Ver

TABLA IV-II PRUEBA #2

PARAMETROS MEDIDOS:

Area del electrodo = 1.2257 cm^2

Intensidad de

corriente (I) = $1.2257 \text{ cm}^2 = \frac{0.65 \text{mA}}{\text{cm}^2} = 0.797 \text{ mA}$

Solución utilizada: NaCl (3%), $Zn^{2+}(10^{-1}M)$, pH = 1

RESULTADOS EXPERIMENTALES OBTENIDOS

TIEMPO (min) POTENCIAL (V) TIEMPO (min) POTENCIAL (V) ٥ -0.814 32 -0.792 -0.810 34 -0.791 1 2 -0.808 36 -0.790 -0.807 38 -0.789 3 4 -0.806 40 -0.788 -0.805 42 -0.788 5 -0.804 44 -0.787 6 -0.786 7 -0.804 46 в -0.804 48 -0.786 -0.785 9 -0.803 50 -0.784 10 -0.803 54 11 -0,807 58 -0.783 12 -0.782 -0.802 62 14 -0.801 66 -0.781 -0.781 16 -0.800 70 18 -0.900 20 -0.798 22 -0.797 24 -0.796 -0.795 26 28 -0.794 30 -0.793

FIG 4.2 Gráfica potencial (V) vs Tiempo (min) correspondiente a prueba #2. Ver Cap III apartado 3.3 inciso i.

TABLA IV-III PRUEBA #3

PARAMETROS MEDIDOS:

Area del electrodo = 0.899 ca^2

Intensistad de corriente (I) = 0.879 cm² + $\frac{0.65mA}{CB^2}$ = 0.5844mA Solución utilizada: NaCl (3%), Sn⁴⁺(5 x 10⁻²M), Zn²⁺(10⁻¹M) pH = 1

RESULTADOS EXPERIMENTALES OBTENIDOS

TIEMPO (min) POTENCIAL (V)

0	-0.869	Avoltaje de reposo (ausencia de ^{Oe}
		Corrience,
		Mse aplica corriente
1	-0.822	
2	-0.821	
3	-0.820	
4	-0.817	
6	-0.818	
8	-0.817	
10	-0.817	
13	-0,817	
16	-0.615	
20	-0.815	
25	-0,815	
30	-0.815	

FIG 4.3 Gráfica potencial (V) vs Tiempo (min) correspondiente a prueba 03. Ver Cap III apartado 3.3 inciso ii.

ESTA TESIS NO DEBE Salir de la bibliotec**a**

TABLA IV-IIIA

EG%G Ortec System 5000 Standardless ZAF Analysis AUTOZAF vers. 3.08

Sample ID: Prueba con Corriente Impresa 3.

Acquisition Date: 03-Aug-88 19:36:58 Analysis Date : 03-Aug-88 19:38:44

----- Analytical Results -----

		Weight	Normalized		Compound	tlet
Element	Line	z	Atomic %	Corpound	Weight %	Intensit;
Na	к	0.00	0.00			0.00
Al	ĸ	62.11	76.19			2497,73
5	ĸ	4.74	4.87			92,50
C1	ĸ	5.04	4.70			115,09
Zn	к	28,12	14.23			73,10
Sn	L	0.00	0.00			0.00

EG&G Drtec System 5000 Spectrum Flotting Program Printplot V02.05

FIG 4.3a Espectro correspondiente a análisis local de superficie. del electrodo usado en la prueba 3. Método SEM-EDAX.

TABLA IV-IIID

EG&G Ortec System 5000 Standardless ZAF Analysis AUTOZAP vers, 7.06

Sample ID: Prueba con Corriente Impresa 3.

Acquisition Date: 03-Aug-88 19:18:27 Analysis Date : 03-Aug-88 19:23:21

----- Analytical Regults ------

E	lement	Líne	Weight %	Normalized Atomic %	Compound	Compound Weight %	Net Intensity
	Na	к	12.74	17.54			461.28
	A1	ĸ	22.64	25.59			1254.77
	C1	R i	55.74	49.79			1824.03
	К	ĸ	5.44	4.41			157.11
	2n	ĸ	3.44	1.67			10.53

EBNG Offer System 5000 Spectrum Plotting Program Printplot VC2.05

FIG 4.30 Espectro correspondiente a análisis local de superficie del electrodo usado en la prueba 3. Método SEM-EDAX.

TABLA IV-III⊂

EG&G Drter System 5000 Standardless ZAF Analysis AUTOZAP vers, 3.08

Sample 10: Prueba con Corriente Impresa 3.

Acquisition Date: 03-Aug-88 19:32:11 Analysis Date : 03-Aug-88 19:33:24

----- Analytical Results -----

Element	Line	Weight %	Normalized Atomic %	Compound	Compound Weight %	Net Intensity
Na	Е	0.00	0.00			0.00
AL	к	3.60	7.27			142.28
C1	к	17.71	27.19			747.41
Zn	к	78.69	65.53			372.03
Sn	L	0.00	0.00			0.00

EG&G Drtec System 5000 Spectrum Plotting Program Printplot V02.05

FIG 4.3C Espectro correspondiente a análisis local de superficie: del electrodo usado en la prueba 3. Método SEM-EDAX.

TABLA IV-IV PRUEBA #4

PARAMETROS MEDIDOS: Area del electrodo = 0.574 cm² Intensisdad de corriente (I) = 0.574 cm² • <u>0.65mA</u> = 0.3731mA

Solución utilizada: NaCl (3%), Sn^{4*}(5 x 10⁻⁹M), Zn^{2*}(10⁻⁴M)

RESULTADOS EXPERIMENTALES OBTENIDOS:

pH = 1

pH = 7

TIEMPO (min) POTENCIAL(V) TIEMPD (min) POTENCIAL(V) ♦voltaje en ≯voltaje en reposo (au~ reposo (ausencia de sencia de corriente) corriente) -0.845 -0.865 ٥ ø -0.821 -0.878 1 1 2 -0.821 2 -0.884 3 ~0.822 з -0.890 -0.892 -0.822 - - ->se aplica -0.893 • -0.893 corriente ٨ - - - -Þse aplica anódica. 5 -0.820 corriente -0.819 anódica. 6 7 -0.819 6.5 -0.811 12 -0.814 7 -0.822 17 -0.810 -0.824 в -0.806 22 9 -0.825 27 -0.802 10 -0.827 12 -0.827 14 -0.829 19 -0.B20

TABLA IV-V PRUEBA #5

PARAMETROS MEDIDOS

Area del electrodo = 0.65 cm²

Solución utilizada: NaCl (3%), Sn⁴⁺ (5 × 10⁻⁹M), Zn²⁺(10⁻¹M) pH = 4

Se sumergió el elcrtodo en la solución, en ausencia de corriente, durante 46 horas.

RESULTADOS EXPERIMENTALES OBTENIDOS

TIEMPO (min) POTENCIAL (V)

Þ

0	-0.841> lectura inicial
0	-0.865€ lectura después de 46 hrs
	> se inicia la agitación de la solución
0.25	-0.851
5.0	~0.859
	•el potencial se mantuvo practicamen~
	te constante. Se elimina agitación
	y el potencial comienza a descender
10.0	-0.871
	>Se agita de nuevo la solución y el
	potencial sube bruscamente.
10.25	-0.853⊅Se elimina agitación, el potencial
	comienza a bajar.
13.0	-0.873
18.0	-0.875
20.0	-0.878
	••Se agita de nuevo
20.25	-0.853

desciende.

continúa

TIEMPO (mi	In) POTENCIAL	(\underline{v})	•
30.0	-0.882		
35.0	-0.886		
155.0	-0.870		
		▶Se agita d	e Duevo
155.25	-0.863		
		♦Se elimina	agitación
170.0	-0.893		
180.0	-0.896		

. •

FIG 4.5 Bráfica potencial (V) vs Tiempo (min) correspondiente a prueba 65. Ver Cap III apartado 3.3 inciso iv.
TABLA IV-VI PRUEBA #6

PARAMETROS MEDIDOS:

Area del elctrodo = 0.899cm²

Intensidad de

corriente (I) = $0.897 \text{cm}^2 \times \frac{0.65 \text{mA}}{\text{cm}^2} = 0.0.58 \text{mA}$

Solución utilizada: NaCl (3%), Sn⁴⁺(5 × 10⁻³M), Zn²⁺(10⁻¹M) pH = 4

RESULTADOS EXPERIMENTALES OBTENIDOS

TIEMPO (min) POTENCIAL (V)

0	-0.862					
2	-0.842					
3	-0.842					
4	~0.842					
		Se aplic	a cor	riente anódi	ca	
4.1	-0.798					
5.0	-0.814					
6.0	-0.815					
7,0	-0.B17					
8.0	-0.820					
9.0	-0.820					
14.0	-0.818					
17.0	-0.815					sa 11 e
24.0	-0.815					
29.0	-0.812					
34.0	-0.814					
	>\$se	sube	la	corriente	al	doble
	(1.16	mA)			
37.0	-0.812					
38.0	-0.810					
39.0	-0.813					
44.0	-0.809					

TIEM	20 (min)	POTENCIA	L (V)			
	54.0	-0.810	•=====	la corri	ente a	1 77
	57.0	-0.791	196 3006			
1	58.0	-0.808				
1111	59.0	-0.810				
	64.0	-0.B10				

FIG 4.6 Gráfica potencial (V) vs Tiempo (min) correspondiente a prueba 06. Ver Cap III apartado 3.3 inciso v.

TABLA IV-VII

PRUEBA #7

PARAMETROS MEDIDOS:

Area del electrodo = 0.574 cm²

Intensidad de

= 0.574 $cm^2 * \frac{0.65mA}{m} = 0.37mA/2 = 0.187mA$ corriente (I) (se redujo la corriente a la mitad)

solución utilizad Solución utilizada: NaCl (3%), Sn^{4*}(5 x 10⁻³M), 2n^{2*}(10⁻¹), pH = 4

TIEMPO (min) POTENCIAL (V)

0.00	-0.884			
1.00	-0.851			
2.00	-0.853			
3.00	-0.845			
4.00	-0.845			
	•	se aplica	corriente	anódica
5.00	-0.807			
6.00	-0.813			
7.00	-0,820			
10.00	-0.820			
15.00	-0.816			
20.00	-0.815			
25.00	-0.814			
30.00	-0.813			
35.00	-0.B14			

FIG 4.7

Bráfica potencial (V) vs Tiempo (min) correspondiente a prueba 67. Ver Cap III apartado 3.3 inciso v.

TABLA IV-VIIa

EGLG Ortec System 5000 Standardless ZAF Analysis AUTOZAP vers. 3.08

Sample ID: Prueba con Corriente Impresa 7 .

Acquisition Date: 03-Aug-88 19:02:02 Analysis Date : 03-Aug-88 19:03:39

----- Analytical Results ------

Element	Line	Weight %	Normalized Atomic %	Compound	Compound Weight %	Net Intensity
AI	к	87.09	91.35			5015.46
C1	к	8,41	6.71			199,43
Zn	к	4.50	1.95			11,75

EB&G Ortec System 5000 Spectrum Plotting Program Printplot V02.05

Sample ID: Prueba con Corriente Impresa 7. Energy Range: 0 - 40 keV 10 eV/Ch Preset: Real Time 50 Seconds Real Time: 50.00 Sec. Live Time: 25.75 Sec. 49% Deadtime 8781 Counts/Second Acquisition date: 03-Aug-88 Acquisition time: 19:02:02

PARAMETROS MEDIDOS:

Area del anodo de aluminio = 0.651 cm^2 Area del catodo de fierro = 200cm^2

Resultados de la prueba de coulombimetría: (ver descripción de experimento pags 80-82)

Peso final de alambre de cobre = 1.1711g Peso inicial de alambre de cobre = 0.6426g

Cantidad de cobre reducido = 0.5285g

Duración de la prueba = 480 hrs

Intensidad de corriente (I) promedio durante la prueba =

 $\frac{0.52859}{480 hrs} \times \frac{2}{63.54 g/mol} \times \frac{96500 coulombs}{equiv} \times \frac{1}{3600 seg} \times \frac{1}{coulomb/seg}$

1000mA 1 amp = 0.93 mA

Solución utilizada = NaCl (3%), Sn⁴⁺(5 x 10⁻³M), Zn²⁺(10⁻¹M), pH = 4

sin agitar agitando TIEMPO (hrs) POTENCIALES (V) POTENCIALES (V) anódico catódico anódico catódico -0.00----> se miden potenciales a circuito

abierto -0.860

-0.425

TIEMPO (hrs)		. sin	agilar	agitando POTENCIALES (V)		
		POTENC	IALES (V)			
		anódico	catódico	anódico	catódico	
	> se cie	erna				
	el circuito					
	0.00	-0.650	-0.589			
	0.08	-0.730	-0.650			
	0.16	-0.730	-0.660	·		
	0.33	-0.740	-0.677			
	0.50	-0.743	-0.689		·	
	21.00	-0.770	-0.740	-0.740	-0.709	
	46.00	-0.780	-0.758	-0.771	-0.746	
	69.00	-0.780	-0.763	-0.775	-0.74B	
		pH subic	5 de 4 a 5			
	92.00	-0.780	~0.761	-0.773	-0.752	
	114.00	-0.781	-0.762	-0.771	-0.749	
	136.00	-0.782	-0.763	-0.769	-0.745	
	158.00	-0.777	-0.756	-0.750	-0.747	
	208.00	-0.780	-0.760	-0.753	-0.737	
	256.00	-0.771	-0.755	-0.750	-0.725	
	304.00	-0.767	-0.740	-0.750	-0.710	
	376.00	-0.768	-0.742	-0.746	-0.700	
	398.00	-0.772	-0,743	-0.742	-0.700	
	421.00	-0.776	-0.743	-0.748	-0.712	
	442.00	-0.776	-0.753	-0.752	-0.724	
	460.00	-0.774	-0.754	-0.751	-0.731	

•

FIG 4.8 Gráfica potencial (V) vs Tiempo (hrs) correspondiente a prueba natural o de campo. Ver Cap III apartado 3.3 inciso vi.

TABLA IV-VIII-

EG&G Ortec System 5000 Standardless ZAF Analysis AUTOZAP vers, 0.08

Sample ID: Anodo de Al Prueba Natural.

Acquisition Date: 25-Jul-98 18:40:41 Analysis Date : 25-Jul-89 18:44:18

----- Analytical Results ------

		Weight	Normalized	Compound	Net
Element	Line	×.	Atomic % Compound	Weight %	Intensity
AL	r.	72.22	86.09		2250.59
C1	к	0.00	0.00		0.00
Fe	ĸ	2.99	1.71		47.62
Zn	к	24.81	12.20		190.02
Sn	L	0.00	0.00		0.00

EG55 Ortec System 5000 Spectrum Platting Program Printplot 902.05

FIG 4.8a Espectro correspondiente a análisis local de superficie del electrodo usado en la prueba natural. Método SEM-EDAX.

TABLA IV-VIIIa

EG&G Ortec System 5000 Standardless ZAF Analysis AUTOZAF vers. 3.08

Sample ID: Anodo de Al Prueba Natural.

Acquisition Date: 26-Jul-88 18:40:41 Analysis Date : 26-Jul-88 18:44:18

----- Analytical Results ------

Elecent	Line	Weight Z	Normalized Atomic %	Compound	Compound Weight %	Net Intensity
		-				,
A1	κ	72.22	B6.09			3250.59
C 1	ĸ	0.00	0.00			0.00
Fe	ĸ	2,98	1.71			47.63
Zn	<u>к</u>	24.81	12.20			190.02
Sn	L	0.00	0.00			0.00

EG&G Ortec System 5000 Spectrum Plotting Program Printplot V02.05

```
Sample ID: Anodo de Al Prueba Natural.
 Energy Range: 0 - 40 keV 10 eV/Ch
 Preset: Off
 Real Time: 378.17 Sec.
                                                        Sec.
                                   Live Time: 184.84
  56% Deadtime
                  11349 Counts/Second
 Acquisition date: 26-Jul-88
                                   Acquisition time: 18:70:11
 Cfs 32K
.
             1
2
             K.17-01
               Ξ
          æ
                                                         Ż
         Ľ
         LBID
                                                         4
                                                                             ŝ
                                                                              2
          ¢
```

 $\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}{c}
\end{array}, \\
\begin{array}{c}
\end{array}, \\
\begin{array}{c}
\end{array}, \\
\end{array}, \\
\begin{array}{c}
\end{array}, \\
\begin{array}{c}
\end{array}, \\
\end{array}, \\
\begin{array}{c}
\end{array}, \\
\end{array}, \\
\begin{array}{c}
\end{array}, \\
\begin{array}{c}
\end{array}, \\
\end{array}, \\
\end{array}, \\
\begin{array}{c}
\end{array}, \\
\end{array}, \\
\begin{array}{c}
\end{array}, \\
\end{array}, \\
\end{array}, \\
\begin{array}{c}
\end{array}, \\
\end{array}, \\
\end{array}, \\
\begin{array}{c}
\end{array}, \\
\end{array}, \\
\end{array}, \\
\end{array}, \\$

ł

ż

4

FIG 4.8b Espectro correspondiente a análisis local de superficie dol electrodo usado en la prueba natural. Método SEM-EDAX.

CAPITULO V

DISCUSION DE RESULTADOS Y CONCLUSIONES

5.1) INTRODUCCION

Para poder llevar a cabo de una manera conveniente la discusión de resultados experimentales y, finalmente,la elaboración de las conclusiones, es preciso recordar lo siguiente:

1) La protección catódica de estructuras de acero se considera completa cuando el potencial de éste se encuentra dentro de la zona de inmunidad. En un diagrama de Pourbaix es claro que ésta zona se encuentra a un potencial por debajo de -0.8 V (ecs). En esta zona , la corrosión es teoricamente imposible.

2) El potencial teórico del Al (vs enh) es E = -1.55 - 0.06pH. En agua de mar (pH=8.2) el potencial teórico del Al es -2.3 (vs ecs). Sin embargo, sabemos que el potencial de trabajo del Al (0.1 < 1 < 1 m A/cm²) en agua de mar es tan solo de -0.73 V. Este ánodo por si solo no protegeria el acero en agua de mar, ya que el potencial debe ser mayor a -0.8 V.

3) El aluminio debe ser aleado con otros metales tales como el Hg, Zn, Sn o In para que su potencial de trabajo sea menor a -0.8 V (ecs).

A continuación se presenta la figura 5.1 en la cual hay dos series galvánicas. La de la derecha presenta los potenciales termodinámicos vs ecs de varios elementos calculados a ph=8, mientras la de la izquierda presenta los potenciales de trabajo del Al y algunas de sus aleaciones determinados en agua de mar artificial (ASTM D-1142-52), con una corriente impresa de 0.65mA\cm²(12). De acuerdo con la fig 5.1 está claro que no existe

una correlación entre los potenciales de trabajo de las aleaciones de Al y sus potenciales termodinámicos

En las aleaciones de Al señaladas, los elementos aleantes están parcialmente en solución sólida y parcialmente precipitados. En las aleaciones tipo Hydral, se ha podido comprobar que el Zn está completamente en solución sólida (el diagrama binario del sistema Al-Zn indica que el Zn es muy soluble a alta temperatura e íncluso muy soluble a temperatura ambiente) y el In y Hg parcialmente fuera, en forma de precipitados (13). Reboul et al (14) demostraron que solo la fracción en la solución sólida puede activar el Al. En el caso específico de la aleación Al-Zn-Sn, objeto de este trabajo, debido a que el Sn es mucho mas catódico que el Zn respecto al Al, los precipitados estarían protegidos por la matriz de Al y no se disolverian en la actuación anódica. En cambio, el Zn y Sn en solución sólida, se displyerian al mismo tiempo que el Al, formando Zn²⁺ y Sn⁴⁺ en el electrolito. Ambos cationes son, desde el punto de vista termodinámico, catódicos respecto al Al, aunque el Sn⁴⁺ tiene un potencial de reducción mas positivo que el Zn²⁺ respecto al Al.Estos cationes pueden, por consiguiente, reducirse sobre la superficie del Al, de acuerdo a una reacción de intercambio electroquímico:

 $A1 + M^{n*} ---- + A1^{n*} + M$ (5.1.1.)

FIG 5.1

5.2) DISCUSION DE LOS RESULTADOS EXPERIMENTALES

i) Pruebas 1 v 2 (Figs 4.1. 4.2 v Tabla IV-I v IV-II) Al comparar las pruebas 1 y 2 reportadas en el capítulo IV se pudo comprobar que la presencia única de iones Zn²⁺ (prueba 2) tiene un efecto menor en el potencial de trabajo del Anodo de Al (fue de -0.78 V ecs). En cambio cuando se añaden conjuntamente los iones Zn²*y Sn^{4*} (prueba 1) la activación del Anodo fue mas pronunciada (el potencial de trabajo fue de -0.81 V ecs). Esto puede explicarse por el hecho de que el Sn⁴⁺es mucho mas catódico que el Zn²⁺respecto al Al, y por lo tanto, el Sn⁴⁺serviria 6000 activador de la superficie del ánodo un para que. posteriormente, el Zn²⁺realice la reacción de intercambio electroquímico con el Al.

ii) Prueba 3 (Figs 4.3, 4.3a, 4.3b, 4.3c y Tablas IV-III, IV-IIIa, IV-IIIb, IV-IIIc)

En la figura 4.3 se puede comprobar el efecto polarizante que sufre el ánodo de aluminio en presencia de iones Zn^{2*} y Sn^{4*} . En circuito abierto, el potencial se estabiliza al cabo de unos minutos en valores cercanos a -0.87 V ecs. Al aplicar una corriente anódica, se pudo observar que el potencial se incrementó hasta valores cercanos a -0.815 V en un lapso de tiempo muy corto, y posteriormente se mantuvo prácticamente constante con el tiempo.

Podemos concluir que, en presencia de una corriente anódica y de iones $2n^{2*}y$ Sn^{4*}en solución, el aluminio no se polariza a potenciales mas positivos sino que se mantiene a un potencial dentro de los limites que exige la protección catódica de una estructura de acero. Esta activación del ánodo puede atribuirse a la presencia de los iones $2n^{2*}y$ Sn^{4*}en la solución. En efecto, un ánodo de Al puro polarizado de esta misma manera y en ausencia de los cationes mencionados, podría llegar a alcanzar un potencial correspondiente a la reacción de desprendimiento de Clz (ver figura 5.2).

El análisis de superficie del electrodo de Al (una vez finalizada la prueba 3) por el método SEM-EDAX, comprobó la presencia de depósitos de Zn (metálico) distribuidos irregularmente. En las figs 4.3a, 4.3b, 4.3c y Tablas IV-IIIa, IV-IIIb y IV-IIIc se detallan los resultados del análisis en tres zonas distintas de la superficie del ánodo.

iii) Prueba 4 (Fig 4.4 y Tabla IV-IV)

La posible influencia del pH sobre los iones $2n^{2}y$ Sn⁴⁺, affadidos en forma de cloruros a pH = 1 y presentes en forma de hidróxidos a pH = 7, se presenta en la figura 4.4 . Puede observarse que, en ausencia de corriente, hay una mayor activación del ánodo de aluminio a pH = 7 (se alcanza un potencial de -0.865 V ecs). Esto puede atribuirse a una posible disolución de la película de AlzOs a este valor de pH. Esto provoca una activación de la superficie del

EXPERIMENT TYPE:	LIN POLAPIZATION
INITIAL E (MV)	-174
FINAL E (MY)	260
SCAN PATE (MU/S)	10
ECOPP (11/1)	-740
APEA (CM12)	0
ECUIN HEIGHT (G)	0
DENEIT((G/CM12)	¢.
CTC (1/1/DECADE)	0
ATC (VIDECADE)	·*•

FIG 5.2

Anodo. Sin embargo, al aplicar corriente Anodica a través del Anodo, el comportamiento es similar a ambos valores de PH y el potencial de trabajo se estabiliza en -0.82 V (pH=7) y -0.802 V (pH=1).

iv) Prueba 5 (Fig 4.5 y Tabla IV-V)

Debido a que la capa de AlsOs a pH= 7 podía presentar disolución se fijó un pH=4 al cual ya no hay hidrólisis del AlaOs. A este pH, sin embargo, los iones $Zn^{2+}y$ Sn⁴⁺siguen encontrándose, en su mayoria, en forma de hidróxidos precipitados. Así pues, en esta prueba se trató de ver la influencia de la agitación de la solución en la activación del ánodo de aluminio en ausencia de corriente. Como puede observarse en la figura 4.5. los picos anódicos de la gráfica corresponden a los periodos de agitación de la solución. Sin embargo durante los periodos de reposo, el potencial del ánodo se va abatiendo a valores cada vez mas negativos, es decir que el ánodo se esta activando (alcanza un valor final de -0.896 V ecs). Este comportamiento avalaría la suposición de que la activación del ánodo en ausencia de corriente puede ser debida a la posible rotura localizada de la película de AlaOs (pero va no debida al pH sino a formación de campos eléctricos locales creados por diferencias de potencial importantes entre el Sn⁴⁺y/o Zn²⁺y el Al que se encuentra por debajo de la delgada capa de óxido), así como al contacto superfical de los hidróxidos de Zn y Sn con el Al después de la

ruptura de la capa de óxido. Al agitar la solución, el efecto de remoción de los hidróxidos de Zn y Sn cercanos al electrodo se manifiesta en un aumento del potencial de éste en la dirección anódica (el electrodo se polariza).

v) Pruebas 6 y 7(Figs 4.6, 4.7,4.7a y Tabias IV-VI, IV-VII, IV-VIIa)

A lo largo de estas dos pruebas se mantuvieron constantes los parámetros de pH y concentración de iones Zn²⁺y Sn⁴⁺ en solución.

Sin embargo, lo que si se modifico fue la densidad de corriente impresa al ànodo. En la gràfica de la figura 4.6 se distinguen tres zonas en la curva. La zona i corresponde a una I= 0.59mA $(0.65mA/cm^2)$, en la zona 2 se duplicó la corriente a I=1.16 mA $(1.3mA/cm^2)$, en la zona 3 se triplicó a I = 1.72 mA (1.95mA/cm²). En la prueba 7 la densidad de corriente se redujo a la mitad del valor inicial de la prueba 6, esto es $0.65mA/cm^2/2 =$ $0.325mA/cm^2$. Al multiplicar por el área del electrodo $(0.574cm^2)$ obtenemos una I = 0.187mA. En la fig 4.6 podemos observar un voltaje inicial de reposo que so estabiliza en -0.842 V. Al aplicar corriente al sistema, el electrodo se polariza y su potencial se eleva hasta -0.798 V, pero al pasar el tiempo éste se vuelve a activar y su potencial se estabiliza en -0.814 V. Al duplicar la densidad de corriente, se esperaría que el potencial del electrodo

la dirección anódica. Esto no ocurre ya que su potencial prácticamente se mantiene igual (-0.810 V). Al aumentar la corriente hasta un valor de 1.72 mA, el ánodo de aluminio se polariza anódicamente y su potencial crece hasta -0.791 V; pero de nuevo, al cabo de unos cuantos minutos, éste se vuelve a activar y su potencial se vuelve a estabilizar en un valor de -0.810 V. En la figura 4.7, correspondiente a la prueba 7, se observa un potencial de reposo de -0.845 V. Al aplicar corriente al ánodo, éste eleva su potencial(se polariza anódicamente) hasta un valor de -0.809 V; pero al cabo de pocos minutos el ánodo se activa y su potencial disminuye y se estabiliza a un valor de -0.814 V.

Es evidente que la presencia de los iones Zn^{2*}y Sn^{4*}no solo impiden que el potencial del ánodo de aluminio se dispare anódicamente, sino que lo mantienen activado a valores de potencial adecuados para una protección catódica de estruturas de acero. Hay que tomar en cuenta que la densidad de corriente aplicada al final de la prueba 6, es decir 1.72mA/cm², rebasa el límite al cual operan normalmente los ánodos de aleaciones de aluminio (1 mA/cm²); y, aún así, el electrodo se mantuvo activo. Esto no hubiera ocurrido si los iones Zn^{2*}y Sn^{4*}no hubieran estado presentes.

La table IV-VIIa y figura 4.7a corresponden a los resultados de la prueba de análisis superficial que se le hizo al ánodo utilizado en la prueba 7. Este análisis, hecho por método SEM-EDAX, demuestra la presencia de Zn reducido en la superficie

del Anodo de aluminio. Con estos resultados se demuestra una vez más que, tanto el Zn^{2°}como el Sn^{4°}, activan la superficie del electrodo al reducirse sobre ella impidiendo que se forme la película pasivante de AlaDa.

vi) Prueba de campo (figs 4.8, 4.8a, 4.8b y Tablas IV-VIII, IV-VIIIa y IV-VIIIb)

Al concluir la prueba natural (descrita cap III apartado 3.3 inciso vi) se encontró que la corriente promedio que había circulado por el sistema fue de 0.93 mA. Si el área del electrodo de alusinio utilizado fue de 0.651 cm² entonces obtenemos una densidad de corriente de 1.43 mA/cm². Hav que recordar que los inodos de aleaciones de aluminio funcionan normalmente a densidades de corriente no mayores a 1 mA/cm². Aún así, los resultados arrojados durante la prueba deeuestran. de alguna manera, que el electrodo de alumínio se mantuvo activo gracias a la presencia de los iones Zn²'y Sn⁴⁺ en la solución. Podemos observar como el electrodo de aluminio sufre un incremento en su potencial al momento de cerrar el circuito (de -0.86 V a -0.65 V), sin embargo, al cabo de una hora aproximadamente. el potencial ha vuelto a descender hasta -0.780 V v se mantendrà prácticamente sin alteración durante el resto de la crueba. Normalmente, este comportamiento no se espararía en un electrodo de aluminio puro bajo estas condiciones en ausencia de los iones Zn²⁺ y Sn⁴⁺.

Lo que se esperaria sería un incremento continuo del potencial del electrodo hacia potenciales mas anódicos (polarización del ánodo de alumínio). Esto traería como consecuencia que el cátodo (estructura de acero) pasara rápidamente a la zona de disolución o corrosión. Podemos observar que el potencial del cátodo se estabiliza en valores entre -0.750 y -0.760 V ecs. Estos valores están en el límite de la zona de inmunidad del diagrama ε ve eH del fierro. Hay que tomar en cuenta que las condiciones que establecimos durante el experimento, es decir la presencia de Zn²*v Sn^{4*}, estimulan la activación del electrodo en la dirección SOLUCION ---->SUPERFICIE DE ELECTRODD: pero no podemos registrar la activación que tiene un ánodo de aleación Al-Zn-Sn cuando este se disuelve, es decir el efecto que tiene tanto el In (metal) como el Sn (metal) en la dirección ELECTRODO

En la figura 4.8 y tabla IV-VIII podemos observar como , de nuevo, se comprueba que la agitación de la solución afecta la activación del ánodo de aluminio. En las figs 4.8a , 4.8b y tablas IV-VIIIa y IV-VIIIb se pueden observar los resultados del análisis, por SEM-EDAX, de dos zonas distintas de la superficie del ánodo utilizado durante la prueba de campo. En ambas se observa la presencia de Zn, pero en cantidades muy diferentes.

5.3 MECANISHO PROPUESTO Y CONCLUSIONES

El estudio electroquímico realizado introduciendo cationes Sn⁴⁺(0.005M) y Zn²⁺(0.1M) en forma de cloruros, en una solución de NaCl al 3% a pH,s distintos, durante la disolución anódica de Al puro y aplicando densidades de corriente varibles entre 0.65mA/cm² y 2 mA/cm², ha permitido comprobar que el potencial de trabajo del Al se desplaza en la dirección aás activa. Asimismo, se ha obtenido evidencia experimental de la presencia de depósitos de Zn, distribuídos de una manera irregular sobre la superficie del ánodo de Al.

A continuación se presenta una propuesta de un posible mecanismo de activación para ánodos galvánicos de aleaciones de aluminic.

Para los ánodos de Al, la activación debida a los elementos aleantes puede transcurrir a través del siguiente mecanismo en tres etapas:

(etapa 1) A1(M) ----> x A1^{3*} + M^{**} + y e⁻ (5.3.1)

("x" e "y" dependen de la composición de la solución sólida)

El par galvánico ESTRUCTURA/ANDDO disuelve al ánodo, con la consiguiente oxidación del Al y los elementos aleantes en la

125

(a) A set of a set

solución sólida con el Al, formándose los cationes en el electrolito.

(etapa 2) A1 + M^{n*} -----> A1^{3*} + M (5.3.2) (M = Zn y/o Sn).

Los cationes producidos en la primera etapa, catódicos respecto al Al, se depositan sobre la superficie de éste, de acuerdo con una reacción de intercambio electroquímico.

La tercera etapa consistiria en una "separación" local de la película de óxido de Al, la cual tendría lugar simultáneamente con la segunda etapa, desplazándose el potencial hacia el valor correspondiente al del Al desnudo. Este mecanismo tendría propiedades autocatlíticas. Respecto al desprendimiento local de la capa de óxido, este puede deberse a 2 posibilidades: 1) la formación de campos eléctricos locales entre los iones Zn^{2*} y/o $Sn^{4*}y$ el Al que se encuentra debajo de la delgada capa de óxido. Estos campos eléctricos pueden llegar a generar tensiones que nompan localmente la capa de AlaO₃₁ 2) La capa de óxido formada es muy porosa y los iones Cl^{*}son lo suficiéntemente pequeños como para dañarla.

Aún cuando muchos elementos son catódicos con respecto al Al y puedan dar lugar a reacciones como la propuesta en la etapa 2 del mecanismo, una característica común al Hg, In y Sn (14) es que pueden separar localmente la película de óxido de la superficie

del ánodo de Al durante la reacción de intercambio electroquímico, activando por tanto al electrodo. Hagyard y Williams (15) han demostrado que puede obtenerse un potencial más activo en un electrodo de Al puro, "dañando"(scratching) la superficie del mismo durante la medición del potencial.

CAPITULO VI

BIBLIOGRAFIA

1.- Costa, J.M.

<u>Fundamentos de Electródica. Cinética electroquímica y. sus</u> <u>aplicaciones.</u> Editorial Alhambra S.A. Primera Edición España 1981. Páginas 5-7, 54~69, 319-343.

- 2.- Villarreal Dominguez Enrique, Bello de Villarreal Silvia. <u>Electroquímica Parte 1.</u> Asociación Nacional de Universidades e Institutos de Enseñanza Superior. Editorial Edicol, S.A. Primera Wdición México 1975. Páginas 13-22.
- 3.- Bockris J. O'M. y Reddy A.K.N. <u>Electroquimica Moderna.</u> Editorial Reventé, S.A. Edición en Español 1980. Páginas 891-986.
- 4.- Raymond E. Kirk. Donald F. Othmer.
 <u>Enciclopedia de Tecnologia Química.</u> Unión Tipográfica
 Editorial Hispano-Americana.Primera Editión en Español
 México 1962. Tomo V. Páginas 851-911.
- 5.- Visquez Medrano, Rubén Cesar.

<u>Métodos de ensayo para determinar la eficiencia</u> <u>Electroquíaica de ánodos de sacrificio.</u> Tesis U.N.A.M. Facultad de Química. Néxico 1988.

6.- Avila Mendoza, Javier y Genescá Llongueras, Joan. <u>Métodos Electroquímicos para la medición de velocidad de</u> <u>corrosión</u>. Curso Internacional de Corrosión, J.M.P. 1983.

7.- Rodriguez Gómez, Francisco Javier.

<u>Garacterización electroquímica de ánodos galvánicos</u> <u>de aluminio.</u> Tesis U.N.A.M. Facultad de Química. México 1988.

8.- Charlot, Gaston.

<u>Les Réactions Chimiques en solution.</u> Masson Et C^{IE}, Editeurs. Paris 1969. Páginas 288, 327.

9.- Sanchez Batanero, P.

<u>Química Electroanalitica.</u> Editorial Alhambra Primera Edición, España 1981. Páginas 1-70.

10.- Pourbaix, Marcel.

Atlas of Electrochemical Equilibria in aquepus Solutions. Pergamon Press. Great Britain 1966.

11.- Charlot, Gaston.

Las Reacciones Electroquimicas. Toray-Masson, S.A.

Barcelona, Primera Edición española 1969. Páginas 2-25.

12.- J.T. Reding, y J.J. Newport.

Material Protection 5. (12) 15. (1966).

13.-M.C. Reboul y M.C. Delatte.

Materials Protection 19 (5), 35 (1980).

14.- M.C. Reboul, Ph. Gimenez y J.J. Rameau,

Corrosion (NACE) 40 (7) 366 (1984).

15.- T. Hagyard y J.R. Williams, Trans. Faraday Soc. 468. 2288 (1961).