Źej'

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE INGENIERIA

AJUSTE RIGUROSO DE REDES GEODESICAS EN LA PROYECCION UTM.

T E S I S

QUE PARA OBTENER EL TITULO DE;
INGENIERO TOPOGRAFO Y GEODESTA

P R E S E N T A :

MILTON SAMUEL BROWNE LOPEZ

TESIS CON FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

CONTENIDO

		Pag.
INDICE		6
INDICE	DE TABLAS	9
INDICE	DE FIGURAS	11
I.	INTRODUCCION	13
II.	GENERALIDADES	16
ш.	PROYECCIONES CONFORMES	34
IV.	AJUSTES	55
V.	CALCULOS Y APLICACIONES EN LA PROYECCION UTM.	67
VI.	CONCLUSIONES	135
BIBLIO	GRAFIA	141

INDICE

				Pag
CAPITULO	I.	INTRODUCCION	•	13
CAPITULO	II. II.1 II.2	GENERALIDADES	•	16 18
	II.3 II.4	-Conexión entre Cadenas de Triangulateracón. Poligonación	•	25 29
CAPITULO	III.1 III.2	PROVECCIONES CONFORMES	•	
CAPITULO	IV.1 IV.2 IV.3	AJUSTES	•	6C 65
CAPITULO	V. V.1 V.2	CALCULOS Y APLICACIONES EN LA PROYECCION UTM. Introducción. Cálculos y Ajuste en el Plano de una Poligonal Geodésica		

Pag.

-Reducción de las Observaciones al Elipsoide. -Corrección por Factores Meteorológicos. -Corrección Geométrica de las Distancias. -Reducción de las Observaciones al Plano. -Reducción de las Coordenadas fijas al Plano. ---Ejemplo de Cálculo de las Coordenadas UTM para el Vértice 391. ---Cálculo de las Coordenadas UTM usando un Programa de Computadora. -Ejemplo de Cálculo de las Coordenadas Planas Aproximadas del Vértice 998. -Cálculo de las Coordenadas Planas Aproximadas entre los Vértices 52 v 997. -Ajuste de la Poligonal en el Plano por Métodos Topográficos. -Elaboración de las Planillas UTM y Geodésica a partir de los Datos Ajustados. ⇒Elaboración de la Planilla UTM. -Elaboración de la Planilla Geodésica. Cálculos y Ajuste en el Plano de una Triangulateración Geodésica........ -Descripción del Levantamiento. -Datos del Levantamiento. Distancias Reducidas al Elipsoide. Angulos Horizontales Observados. -Reducción de las Observaciones al Plano. -Reducción de las Coordenadas Fijas al Plano. -Propagación de las Coordenadas Fijas para el Cálculo de las Aproximadas. --- Ejemplo de Cálculo de las Coordenadas Aproxi madas del Vértice Magdalena. ---Cálculo de las Coordenadas Aproximadas de To do el Levantamiento. -Ajuste de la Triangulateración en el Plano por el Método de los Mínimos Cuadrados. -Cálculo de las Ecuaciones de Observación de Direcciones. ---Determinación de las Direcciones Calculadas. ---Ecuaciones de Observación de Direcciones Linealizadas. -Câlculo de las Ecuaciones de Observación de Dis--Elaboración de las Planillas UTM y Geodésica de

V.3

la Trianqulateración.

					Pag.
CONCLUSIONES	•	,	•	•	135
					135 135
	1 Conclusiones para la Poligonal				

INDICE DE TABLAS

TABLA	NOMBRE .	Pag.
11.1	Especificaciones para medida de distancias en Triangulateración y Poligonales	21
11.2	Especificaciones Angulares para Triangulateración y Poligonales	23
11.3	Especificaciones de error de cierre angular de Figuras de Triangulateración	24
II.4	Especificaciones para el Control Azimutal en Triangulateración Geodésica	24
II.5	Especificaciones de Control Azimutal en Poligonales	27
II.6	Tolerancias de Cierre Angular en Poligo nales	28
II.7	Cierre en Posición despues del Ajuste A-zimutal	29
V-1	Datos del Levantamiento (Polig)	69
V.2	Medidas Angulares (Polig)	69
V.3	Distancias Crudas, Distancias Zenitales, Temperaturas y Presiones(P)	71
V.4	Distancias Corregidas Meteorológicamente.(P)	73
V.5 ·	Elevaciones Parciales.(P)	75
V.6	Elevaciones Finales.(P)	7 6
V.7	Distancias Reducidas al Elipsoide.(P)	77
V.8	Distancias, Direcciones, y Coordenadas Planas Aproximadas.(P)	94
V.9	Planilla de Cálculo para el Ajuste de la Poligonal	95
V. 10	Planilla UTM Poligonal	98
V. 11	Planilla Geodésica Poligonal	99
V. 12	Coordenadas Fijas Triangulateración	100
V. 13	Distancias Corregidas Geométricamente(T)	102
V.14	Angulos Horizontales (T)	103
V.15	Direcciones obtenidas a partir de los Angulos Observados (1)	105
V. 16	Coordenadas Planas UTM (T)	106

TABLA	NOMBRE	Pag.
V. 17	Coordenadas Aproximadas (T)	. 119
V. 18	Direcciones a partir del Norte (T)	. 121
V. 19	Distancias Planas Calculadas (T)	. 122
V.20	Valores de CX, AY, AX/O y AY/O. (T)	. 122
V.21	Ecuaciones de Observación de Direc- ciones.(T)	. 124
V•22	Ecuaciones de Observación de Oistan- cias (T)	. 126
V.23	Coordenadas UTM Ajustadas(T)	. 132
V.24	Planilla UTM Triangulateración	. 133
V.25	Planilla Geodésica Triangulateración	
VI.1	Valores x", x2 y Y. (T)	. 136
VI.2	Frecuencias de las Distancias. (T)	
VI.3	Frecuencias de las Direcciones (T)	. 138

INDICE DE FIGURAS

FIGURA	NOMBRE	Pag.
II.1	Orden de las Poligonales	28
11.2	Refracción de la Luz	30
II.3	Cuerda Espacial, al Nivel del Mar y al Elipsoide	32
II.4	Cuerda Reducida al Elipsoide	33
III.1	Proyección Estereográfica.	35
111.2	Proyección Cónica · · · · · · · · · · · · · · · · · · ·	36
III.3	Proyección de Mercator	37
III.4	Proyección Transversa de Mercator	39
III.5	Distorsiones para la Proyección Gauss-Kruger y la Proyección UTM	41
III.6	Elementos de la Proyección UTM	42
III.7	Convergencia Plana	46
III.8	Direcciones Planas y Direcciones Geodésicas Proyectadas	4B
111.9	Relación que existe entre los Valores Planos y los del Elipsoide	52
III.10	Diagrama de Flujo para el Cálculo de Coordenadas Propagadas, partiendo de una Coordenada Fija y un Azimut	53
III.11	Diagrama de Flujo para el Cálculo de Coordenadas Propagadas, partiendo de dos Coordenadas Fijas	54
IV.1	Curva de Probabilidad de Gauss	56
IV.2	Modelo de Distancias	61
IV.3	Modelo de Azimutes, Angulos y Direc-	
	cianes	61
V-1	Poligonal Geodésica	70
V.2	Cuerda Espacial, al nivel del Mar y al Elipsoide	72
V.3 .	Cálculo de las Coordenadas Aproximadas de 998	83
V-4	Diagrama de Flujo para Cálcular las Coordenadas Aproximadas de 998	84

FIGURA	NOMBRE	Pag.
V.5	Croquis de la Triangulateración	101
V.6	Direcciones Utilizadas en el Cálculo	104
V.7	Cálculo de las Coordenadas Aproximadas del Vértice Magdalena	107
V.B	Diagrama de Flujo para el Cálculo de las Coordenadas Aproximadas de Magdalena	108
V•9	Trayecto seguido para el Cálculo de las Coordenadas Aproximadas de la Triangu- lateración y origen y sentido de las Direcciones usadas en el Cálculo	114
VI.1	Curva de Probabilidad Y = 0.56e ^{-x} 2	136
VI.Z	Histograma de Barras, Polígono de Fre- cuencias, y Curva de Probabilidad	
	Y = 0.56e ^{-x²} (Distancias)	137
VI.3	Histograma de Barras, Polígono de Fre- cuencias y Curva de Probabilidad	
	Y = 0.56e ^{-x²} (Directiones)	138

CAPITULO I

INTRODUCCION

En nuestros dias, la geodesia ha tomado un papel muy relevante en el desarrollo de los países. La información proporcionada por estaciencia, sirve de apoyo a los trabajos cartográficos, además de ser-Gtil para la toma de decisiones en los distintos niveles de gobierno.

El conjunto de levantamientos geodésicos, forma una red o armazón, la cual se debe uniformizar, tomando en cuento que existen diversos - tipos de instrumentos y métodos de levantamiento.

Una forma de uniformizar los valores de las coordenadas de los levantamientos, es aplicando métodos de ajuste adecuados a cada levantamiento en particular y que satisfagan los requerimientos de precisión buscada, y aceptada por organismos oficiales.

Un ajuste riguroso (como los que se aplican en esta Tesis), es aquel en el que se involucran todos los lados y direcciones del levantamie<u>n</u> to, para formar las ecuaciones de observación utilizados en el ajuste.

En esta Tesis se presentan dos ejemplos de ajuste riguroso en el plano.

Un ajuste en el plano, consiste en reducir todos los valores geodésicos conocidos (coordenadas fijas, distancias y direcciones ó ángulos), al plano (una proyección cartográfica), y trobajar con estos valores en forma topográfica, formando las ecuaciones de observación con las que se realiza el ajuste, posteriormente, los valores ajustados se transforman al elipsoide.

Uno de los objetivos para realizar el ajuste en el plano, es el de simplificar los cálculos, ya que los cálculos realizados en el elipsoide, involucran formulas mas complicadas, que las utilizadas en elplano.

Otro objetivo, es presentar un método de ajuste prácticamente nuevo en México, pero que se ha utilizado con muy buenos resultados en otros países, especialmente en Canadá en redes de 2^0 y $3^{\rm er}$ orden.

A este método tambien se le conoce como de "Variación de Coordenadas", (Home F. Rainsford, 1957), ya que se determinan coordenadas aproximadas a partir de las coordenadas fijas, realizandose posterior mente el ajubte paramétrico usando las coordenadas aproximadas y las fijas a la vez.

La Tesis está organizada en tres partes.

1.- Teoria; Caps. II, III y IV.

2.- Cálculos; Cap. V.

3.- Conclusiones Cap. VI.

En el Cap. II (Generalidades), se comenton algunos aspectos relacio nados con el levantamiento de poligonales y triangulotaraciones, coor denados geográficas, errores y correciones a las distancias, todo en forma general y enfocandolo al levantamiento de una poligonal y una triangulateración geodésicos, además se presentan las Nórmas Técnicas para Levantamientos Geodésicos editadas por la SPP (Diario Oficial, - 1985).

En el Cap. III (Proyecciones Conformes), se hace un estudio general de las proyecciones conformes, y posteriormente se hace un estudio - mas detallado de la Proyección UTM, que es la utilizada para el ajuste en el plano, también se presentan las fórmulas y la secuencia a seguir para la propagación de coordenadas en el plano, que nos sirvepara el cálculo de las coordenadas aproximadas.

En el Cap. IV (Ajustes), se estudia el método de los mínimos cuadra dos y su aplicación en levantamientos geodésicos, para que las coorde nadas de los levantamientos puedan utilizarse en forma práctica y confiable, para otros levantamientos, trabajos de desarrollo urbano, compunicaciones etc.

En el Cap. V (Cálculos y Aplicaciones en la Proyección UTM), se hace una aplicación práctica de lo visto en los temas anteriores, desde el tratamiento a los valores crudos de la poligonal, hasta el ajuste-en el plano de la poligonal y una triangulateración geodesica y la obtención final de una planilla geodésica para cada levantamiento.

Los datos utilizados para el cálculo de la poligonal geodésica, me fueron facilitados por el Ing. Raymundo Arvizu Diaz, y los datos para el cálculo de la triangulateroción geodésica, me fueron facilitados - por el Ing. Victor Magaña, otros comentarios al respecto se hacen en el Capítulo V.

CAPITULD II

GENERALIDADES

II.1 INTRODUCCION

En este tema se hacen comentarios acerca de las redes que se van acalcular en el plano y algunos conceptos relativos a la geodesia en
general. Estos comentarios resultan interesantes ya que sin el levantamiento geodésico, no existe un motivo para realizar el ajuste, el
demás, un buen levantamiento, permite la realización de un buen ajuste.

La palabra geodesia, significa división de la Tierra y es la ciencia que aporta las bases teóricas y matemáticas para poder fijar puntos en la superficie de la Tierra, ademés considera la curvatura de la Tierra permitiendo conocer en forma mas execta las magnitudes medidas.

Por medio de la geodesia, se forman redes muy grandes que forman un armazón o estructura geométrica en la superficie de la Tierra, que sir ven de apoyo a los levantamientos topográficos.

Los puntos que se fijan en la superficie de la Tierra, se les conoce como puntos de control geodésico, y pueden ser de primero, segundo o tercer orden. Estos puntos se fijan por determinaciones de la latitud y longitud y a su vez, se propagan por medio de triangulaciones trilateraciones, triangulateraciones o poligonales geodésicas tambien de primero, segundo o tercer orden.

Todos los trabajos topográficos o geodésicos en los que se hacen me diciones para fijar puntos en la superficie de la Tierra, siempre es tarán sujetos a algún tipo de error, esto implica la necesidad de ajustar, compensando adecuadamente los errores.

La medida de cualquier cantidad sólo se podrá hacer con un cierto grado de precisión la cual dependerá de:

- -Los instrumentos utilizados.
- -Las condiciones ambientales.
- -El observador.

No importa que tan buenos sean los instrumentos, las condiciones ambientales y que tan cuidadoso sea el observador, siempre habrá pequeñas discrepancias en las cantidades medidas.

Un método que nos permita manejar estas discrepancias, obtener el valor mas probable(el mas cercano al verdadero) y un indicador de la confiabilidad, nos permitirá hacer el ajuste adecuado.

En el latín la palabra error implica el realizar una acción desacer tada, en topografía o geodesia, errar implica no acertar a lo que es el valor verdadero al hacer mediciones.

El alejamiento del valor verdadero puede ser grande o pequeño, por lo cual los errores se pueden clasificar de la siquiente manera.

- a)Equivocaciones.
- b)Errores constantes
- c)Errores sistemáticos
- d)Errores accidentales

a)Equivocaciones

Surgen por descuido al medir, son valores muy alejados del verdadero, y se pueden detectar haciendo mediciones repetitivas.

Los valores provenientes de una equivocación deben ser desechados.

b)Errores constantes

Son siempre de una misma magnitud y de un mismo signo en un trabajo particular.

c)Errores sistemáticos

Siguen una ley fija pero desconocida, que depende de circunstancias locales, por ejemplo, no hacer correcciones por temperatura, no re-

ducir distancias inclinadas, etc.

d)Errores accidentales

Son errores pequeños y aleatorios que quedan despues de haber eliminado.los errores constantes y los sistemáticos. Son aleatorios por que surgen de la imperfección de los instrumentos, la falibilidad del observador y los cambios ambientales, afectando las medidas y observaciones angulares en un grado mayor o menor.

En este Cap. se comentan aspectos generales relacionados con el levantamiento de poligonales y triangulateraciones.

II-2-TRIANGULATERACION

Se le dá el numbre de triangulateración, al método de levantamiento horizontal que combina los métodos de triangulación y trilateración al mismo tiempo.

La triangulación es el método clásico y universalmente conocido para el desarrollo de levantamientos horizontales, en este método se de terminan las longitudes de los lados de un sistema de triangulos interconectados, con base a la medida de algunos lados y todos los ánquios.

La trilateración en cambio, consiste en determinar un conjunto de figuras conformadas por triángulos interconectados, con base a la medida de todas las distancias y algunos ángulos.

Este sistema se ha desarrollado últimamente debido al gran avance que ha habido en el desarrollo de los sistemas electrónicos de medición.

En ambos métodos el propósito es determinar las coordenadas de los triángulos.

En la triangulateración, se miden en forma directa todos los ángulos y todas las distancias, esto permite mayor elasticidad en el diseño, mejorandose la rigidez, obteniendose resultados satisfactorios con ma yor exactitud al mismo costo 6, una mayor velocidad de avance con la

precisión dentro de las normas.

Básicamente el trabajo de campo consiste en lo siguiente tanto para la triangulateración como para la policonación.

- 1.-Reconocimiento
- 2.-Señalamiento
- 3.-Medición de distancias
- 4.-Medida de ângulos verticales
- 5.-Medida de ángulos horizontales
- 6.-Medida de azimutes de uno o varios lados.

1.-Reconocimiento

Para fijar la distancia entre vértices se deberá tomar en cuenta la finalidad del trabajo.

Antes de realizar el reconocimiento, se dibuja un diseño del proyecto en un mapa o carta de la región indicandose los vértices, ángulos y distancias aproximadas. En los casos en que se pueda sobrevolar la zona, será mas fácil localizar los vértices.

En el campo es necesario verificar la visibilidad entre vértices, de preferencia, utilizando un teodolito.

En los vértices se construye un monumento, el cual debe colocarse de tal forma que se pueda colocar el instrumento.

Los ángulos dibujados a escala en la carta, airven para calcularla rigidez, por medio de la cual se puede ver si es necesario aceptar o modificar la red.

También es necesario tomar en cuenta la intervicibilidad, ya que por el efecto de curvatura puede ser necesario calcular la altura de las señales.

2.-Señalamiento

El señalamiento se realiza por medio de banderas, heliotropos 6 lâmparas eléctricas.

El heliotropo sirve para reflejar la luz solar a la estación de observación.

Las lâmparas eléctricas se usan en la noche y tienen ciertas ventajas sobre los heliotropos.

3.-Medida de distancias

Las distancias se determinan por medio de distanciómetros electrónicos que utilicen radisción electromagnética, microandas, del tipo electro-óptico o rayos infrarojos. La utilización de cintas o alambres invar no se recomienda por razones de costo y tiempo, restringiendose su uso a medidas de calibración o medidas menores a 250m.

El instrumento seleccionado debe ser acorde a las precisiones requeridas según el orden del levantamiento.

En el caso de los levantamientos contemplados en esta Tesis, ambos fueron levantados con Electrotrotape DM-20 que trabaja con una fuente emisora de microondas y cada unidad puede realizar las funciones de receptor o interrogador.

La precisión de los distanciómetros debe estar comprendida dentro de un rango de 0.5cm a 2.0cm en la parte constante de error y de 2 a 5 partes por millón de la distancia medida.

Los instrumentos se deben de calibrar por lo menos cada seis meses o cuando se sospeche de algún cambio en el instrumento. La calibración se realiza, en una distancia conocida con la mayor exactitud.

Cualquier medida que se realize deade un punto, deberá necesariamente ser vinculada a una medida en sentido contrario; esto se facilita en instrumentos de función intercambiable.

Si se usan instrumentos electrópticos o infrarrojos, las distancias deberán de ser medidas el número de veces que sea necesario hasta obtener la precisión requerida.

A la par que se realiza la medida de distancias, se deben de hacer determinaciones de las condiciones ambientales, en cada extremo,al principio y al final de la medida, a la sombra y al mismo nivel del del instrumento para lo cual es necesario medir la temperatura se,ca, la humedad relativa y la presión atmosférica, con termómetros,
psicrómetros y barómetros, precisos y calibrados, con el propósito
de aplicar las correcciones requeridas por factores meteorológicos.

En la determinación de distancias tambien se debe tomar en cuenta el orden del trabajo; para el primer orden, se hacen dos grupos de medidas con una diferencia mínima de cuatro horas entre grupo y grupo, es lo mismo para el segundo orden; para el tercer orden se hará un sólo grupo. Un grupo consiste en dos medidas independientes observadas en sentidos contrarios.

Tabla II.1 Especificaciones para medida de distancias en Triangulateración y Poligonales

Orden	Error Medio Cuadrá- tico del Promedio		
Primero	1:600000		
Segundo Clase I	1:30000		
Segundo Clase II	1:120000		
Tercero Clase I	1:60000		
Tercero Clase II	1:30000		

4.-Medida de ángulos verticales.

La finalidad de medir los ángulos verticales, es poder calcular las elevaciones de los vértices partiendo de una elevación conocida y posteriormente reducir las distancias al Nivel Medio del Mar. El método con el que se calculan las elevaciones se le conoce como"Ni velación Trigonométrica". Los ángulos verticales o las distancias zenitales, se pueden medir desde una estación o desde dos estaciones en forma recíproca. La medida de distancias zenitales en forma recíproca tiene ciertas ventajas sobre el primer método y esto se de be a que la refración es la misma en cada estación y esto será mas probable si las medidas se hacen al mismo tiempo en un dia tranqui

lo, además se han visto mejores resultados con este método que con el de una sola estación.

En cada estación se colocan las señales adecuadas midiendose la altura de la señal y del aparato. En base a esto, la corrección a las elevaciones será:

$$c = (\frac{(i-s)inicial - (i-s)final}{2})$$

i∍ instrumento

s= señal

Se divide entre dos debido a que se hace un promedio de las distancias zenitales al calcular las elevaciones.

5.-Medida de ángulos horizontales.

Para la medida de ángulos horizontales se pueden seguir los siguientes métodos:

- a)Direcciones (Bessel).
- b)Angulos Independientes.
- c)Screiber.
- d)Horizonte.
- a) El método de direcciones de Bessel consiste en medir valores an gulares de todos los lados que concurren al vértice en el que se hacen observaciones, tomando uno de ellos como origen.

 La medida se debe de hacer por medio de series en posición directa e inversa cambiando el origen al iniciar una nueva serie.

 El número de series depende del orden del trabajo.
- b) El método de ángulos independientes consiste en medir todos los ángulos que puedan formarse con las n estaciones visibles, mi diendo separadamente cada ángulo en las dos posiciones del instrumento.
- c) El método de Screiber consiste en medir todos los ángulos que puedan formarse con las n estaciones visibles,por ejemplo: Para 5 estaciones visibles, se forman 10 ángulos.

d) El método de vuelta de Horizonte, consiste en hacer un giro de 360° a partir de un lado base mientras se van determinando los valores angulares que concurren a un sólo vértice. Luego se dá vuelta de campana y se realiza la misma operación en posición inversa hasta llegar al origen.

En la medida de ângulos y direcciones es necesario tomar en cuenta los errores de torsión, fase y refracción.

Tabla II.2 Especificaciones angulares para Triangulateración y Poligonales

Orden	Tipo de Instrumento	N ^O de Posiciones	Limite de Rechazo
Primero	0.2	16	± 4"
Segundo	0.2	8	± 4"
Clase I	1.0"	12	± 5"
Segundo	0.2	6	± 4"
Clase II	1.0"	8	± 4"
Tercero Clase I	1.0"	4	± 5"
Tercero Clase II	1.0"	2	. 5 "

⁻Error de cierre angular.

Los errores de cierre angular se pueden calcular aplicando el exce so **esférico** mas 180º menos la suma de los ángulos observados.

A = area del triángulo plano.

R = radio terrestre del sitio considerado.

Tabla II.3 Especificaciones de error de cierre angular de figuras de Triangulateración

Orden	11	2유 C I	2 1 C 11	3 ∏ C I	3#C11
Error de cierre de un Triángulo:	± 1.5"	± 1.5"	± 3.0"	* 5	±10"
Error de cierte pro- medio de los Triángulos	± 1.0"	± 1.0"	± 1,5"	± 3*	± 5"
Error de cierre de un Cuadrilátero	± 1.5"	± 1.5"	± 3.0"	± 5"	±10"
Error de cierre pro- medio de los Cuadrilá- teros.	± 1.0"	± 1.0"	± 1.5"	± 3"	. 5"

6.-Medida de azimutes.

La determinación del azimut se logra por medio de la aplicación de métodos astronómicos, haciendo observaciones a las estrellas. Uno de los métodos mas comunes es observando la estrella polor. La determinación del azimut para trabajos geodésicos debe hacerse exclusivamente con las estrellas y no con el sol.

Tabla II •4 Especificaciones para el control azimutal en Triangulateración Geodésica •

Orden	18	2 9 C I	2#C 11	3 [#] C I	3 11 C 11
Espaciamiento entre figuras.	12	6 a 8	6 a 10	10 a 12	12 a 15
Número de posi- ciones por serie.	16	16	16	8	4
Número de noches de observación.	2	2	1	1	1
Error medio cua- drático del pro- medio.	0.45	0.45	0.45	0.75	3.0
,		ì	t	1	l

II 2.1 Comexión entre Cadenas de Triangulateración.

El espaciamiento entre cadenas de Triangulateración de primer orden, no debe de exceder de 100Km y la distancia entre vértices principales vecinos, no deberá ser menor que 10Km ó 3Km en levantamientos urbanos.

El espaciamiento entre cadenas de orden menor, queda gobernado por el de los levantamientos en los cuales se apoyan.

La conexión de la Triangulateración a levantamientos previos, será satisfactoria, cuando la verificación de distancias tenga una discrepancia cuya magnitud esté dentro del mismo orden de exactitud, que corresponde a la nueva triangulateración y cuando las discrepancias an gulares no sean mayores que 3" en triangulateraciones de primero y se gundo orden clase I; 5" para segundo orden clase II y tercer orden clase I y 10" para triangulateraciones de tercer orden clase II.

II.3.POLIGONACION

La poligonación es el método de levantamiento horizontal, que consigite en una serie de lineas conectadas en sus extremos en forma sucesiva, formandose una linea quebrada donde se miden todas las distancias y se observan todos los ángulos, con el propósito de determinar las coordenadas de los vértices.

Este método ofrece como ventajas, mayor flexibilidad, cubrimiento relativamente rápido y economía, pero su rigidez relativa es menor que la de levantamientos formados por figuras.

Este método se ha popularizado debido al progreso en la construcción de instrumentos electrónicos para la medición de distancias, cuya precisión ha hecho posible reemplazar las triangulaciones de orden menor, por poligonales, conservandose la precisión y reduciendose los costos.

La poligonación tiene mucho que hablar en su favor, pero igualmente existen argumentos que le son contrarios, lo correcto será aplicar sus propiedades positivas.

El sistema poligonal sin apoyo en la triangulación, trilateración o triangulateración, no es muy útil aunque su precisión sea muy grande, siendo mas adecuado para levantamientos de una extensión limitada en estas condiciones. (Horvat. 1973).

Entre sus ventajas se puede mencionar, que la poligonación se adapta mejor que los sistemas de figura, a toda la variedad que caracteriza un terreno, esto es válido especialmente en terrenos llanos y cultivados donde la utilización de sistemas de figura es de dificil realización y muy costosa.

Las poligonales son mas adecuadas para ubicar puntos en donde se les necesita mientras que los sistemas de figura están sometidos a muchas condiciones contrarias a tal ubicación.

La triangulación de orden menor, resulta un proceso demasiado complicado y costoso si es que existe la posibilidad de remplazarla por poligonales de precisión adecuada.

De la previamente comentado se puede resumir la siguiente:

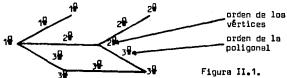
- 1.-Sin los levantamientos de figura(triangulateración, triangulación y trilateración), será imposible formar un sistema de apoyo en si suficientemente homogeneo.
- 2.-La poligonación como densificación del sistema fundamental de apovo. es una parte integral del levantamiento general de un país.
- 3.-La estructura del sistema poligonal, necesita que se intercale con un sistema conocido de suficiente precisión.

Existen casos en los que la poligonación es la única solución posible, por ejemplo, cuando no hay un sistema de figura, o existen escasos puntos de las cadenas fundamentales y no convenientemente ubicados para un fin determinado. En estos casos conviene levantar las poligonales con una precisión conveniente para que su vinculación al sistema fundamental se haga sin grandes y costosos trabajos suplementarios.

Las poligonales pueden estar formadas por polígonos relativamente

regulares(polígonos cerrados), o lineas poligonales sensiblemente rectas con lados de longitud uniforme(poligonales abiertas). Si las poligonales abiertas son muy extensas(mas de 400km) entre puntos de coordenadas conocidas, los ángulos de deflexión en los vértices deberán ser menores o iguales a 20°. Si las poligonales no son muy extensas, las deflexiones podrán ser mayores.

Si es necesario dar cambios bruscos en la dirección de poligonales abiertas, se harán observaciones de azimut donde ocurran dichos cambios.


Las especificaciones para la observación de ángulos horizontales, es tan dadas por la tabla II.2 de la página 23, y las especificaciones para la medida de distancias, están dadas por la tabla II.1.

Orden	먭	2 0 € I	2 0 € 11	3 C I	30 C II
Número de lados entre secciones Azimutales.	5 a 6	10 a 12	15 a 20	20 a 25	30 a 40
Número de posi- ciones por serie.	16	16	12	В	4
Número de noches de observación.	2	2	1	1	1
Error medio cua- dr ó tico del pro- medio.	45.0	0.45	1,5	3.0	8.0

El espaciamiento entre poligonales de primer orden no debe ser mayor a los 100km con lados entre 10km y 15km, en zonas urbanas, la di<u>s</u> tancia mínima de los lados no debe ser menor a los 3km.

En poligonales de 2º orden Clase I los lados no deben ser menores que 4km y en zonas urbanas no deben ser menores a 300m. Para poligo nales de 2º orden Clase II, los lados no deben de ser menores a 2km y en zonas urbanas no deben ser menores a 200m. Para el tercer orden, los lados se definirán de acuerdo al proyecto, no debiendo ser menores a 100m en zonas urbanas.

El orden del trabajo tambien quedará afectado por el orden de los puntos de conexión. Esto se muestra gráficamente en la siguiente fiqura.

Para las conexiones, se debe verificár, que las discrepancias en la magnitud medida. correspondan al orden de la distancia fija.

Las discrepancias angulares en las conexiones, no deben ser mayores a 4 en poligonales de primero y segundo orden Clase I; 5° para el se gundo orden Clase II y el tercer orden Clase I y 10° para el tercer orden clase II

Tabla II.6 Tolerancias de Cierre Angular

Orden	Normal	Areas Urbanas	
1₽	1.0 por est. 6	1.0 por est.6 2" (N	
20 C I	1,5 " 3 " ₹N	2.0 " 3. N	
2 9 C II	2.0 " 6" ¶N	4."0 " 8" (N	
3# C I	3.0 " 10 "√N	6.0 " · 15 "N	
3₩ C II	e."o " 30"√N	8.0 " 30 "(N	

Tabla II.7

Cierre	eп	Posición	esugasb	del	ajuste
Azimutal					

Orden	Tolerancia de cierre en metros			
18	0.04 VK			
2ff C I	0.08 VK			
2 C II	0.20 √₭			
3 ∏ C I	0.40 √₭``			
3 11 C II	0.80 √₭			

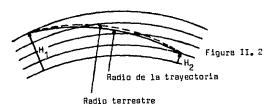
Los valores invariables para realizar el ajuste son:

- a) Un Azimut
- b) Coordenadas del punto inicial
- c) Coordenadas del punto final

II.4.REDUCCION GEOMETRICA DE LAS OBSERVACIONES

En geodesia o topografía, no es posible utilizar los datos observados crudos, directamente en los cálculos, sino que hay que hacer las siquientes correcciones:

- a) Por factores Meteorológicos
- b) Geométricas
- II.4.1 Corrección por Factores Meteorológicos.


El principio de la medición de distancias con aparatos electrónicos, está basado en la medición del tiempo de propagación de la luz, ondas electromagnéticas o microondas, en forma casi exacta. En el caso del Electrotape, se mide la velocidad de propagación de ondas electromagnéticas que parten de un instrumento interrogador, son reflejadas en el instrumento remoto, y vuelven a regresar al interrogador.

La velocidad de propagación de las ondas luminosas en la atmosfera, depende del Índice de refracción del aire, pero éste no es constante sino que depende del estado de la atmósfera y de la longitud de la onda portadora emitida.

Cada aparato (DME) medición electrónica de distancias, utiliza su propio índice de refracción (n) el cual se basa en la longitud de on da portadora así como en una atmósfera de referencia, por lo tanto la distancia indicada será sólo correcta, cuando durante la medición el estado momentaneo de la atmósfera corresponda al de la atmósfera de referencia.

Las desviaciones de la atmôsfera de referencia producen errores en la distancia y su corrección se le llama primera correción de velocidad.

El Índice de refracción varía linealmente con la altura en las capas inferiores de la atmósfera.

El Índice de refracción promedio proporciona un valor correcto para un radio terrestre R, pero no para el radio r que sigue la trayectoria real de los rayos. La substitución del Índice medio para una corrección independiente, se llama, segunda correción de velocidad. Una fórmula para calcular esta correción es la sig: (Apuntea Univ.).

Na = 1 +
$$(\frac{103.46}{T}P + \frac{490814.24}{T^2}E)10^{-6}$$

Distancia corregida = $\frac{NP}{Na}$
NP = 1.00032
E = E'+ de

E" = 4.58 x 108

$$a = \frac{7.5 \, t'}{237.3 + t'}$$

de = -0.00066(1 + 0.0015t') P(t-t')

t' = temperatura humeda

t = temperatura seca

II.4.2 Correcciones Geométricas

II.4.2.1 Nivelación Trigonométrica

Para poder reducir geométricamente las distancias, es necesario conocer la elevación de los vértices, las elevaciones se pueden determinar partiendo de un punto de elevación conocida y realizando un nivelación trigonométrica.

La formula general utilizada es la siguiente (Ingram, 1911).

$$\Delta h_1 = h_1 - h_2 = K \tan \frac{1}{2} \left(\frac{Z_2 - Z_1}{1 + \frac{h_1 + h_2}{2R}} + \frac{K^2}{12R^2} \right)$$

Δh₁ = Desnivel entre h₁ y h₂.

h, = Punto de elevación conocida.

h, = Punto cuya elevación se va a calcular.

K - Distancia reducida al Nivel Medio del Mar.

D = Distancia inclinada.

Z, = Distancia zenital en 1.

2, = Distancia zenital en 2.

R 😑 Radio terrestre.

Como no se conoce h_2 se puede calcular $\Delta h_0 \triangleq h_2 - h_1$; el término $h_1 + h_2$ se deja en función de Δh_0 y de $h_1 + h_2$

$$\frac{h_1 + h_2}{2R} = \frac{h_1 + h_1 + h_2 - h_1}{2R} = \frac{2h_1 + h_2 - h_1}{2R} = \frac{h_1}{R} + \frac{\Delta h_0}{2R}$$

Haciendo a K=D y sustituyendo en la fórmula original queda:

$$\Delta h_1 = D \tan \frac{1}{2} (z_2 - z_1)(1 + \frac{h_1}{R} + \frac{\Delta h_0}{2R} + \frac{D^2}{12R^2})$$

Desarrollando la fórmula en forma iterativa, queda de la siguiente manera:

$$(A) = D \tan(\frac{z_2 - z_1}{2})$$

(B) = 1 +
$$\frac{h_1}{R}$$
 + $(\frac{D}{R})^2 \cdot 1/12$

(C) =
$$\Delta h_0 = (A) \times (B)$$

$$(0) = \frac{\Delta h_0}{2\Delta} + (8)$$

(E) =
$$Qh_1 = (D) \times (A)$$

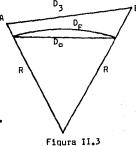
$$h_2 = (E) + h_1$$

II.4.2.2. Reducción de las observaciones al Nivel Medio del Mar

Formula para la reducción directa al nivel medio del mara (Scherrer, 1982).

$$D_{o} = \sqrt{\frac{D_{3}^{2} - (\Delta H)^{2}}{(1 + \frac{H_{A}}{R})(1 + \frac{H_{B}}{R})}}$$

Do = Cuerda el nivel del mar.


D, = Cuerda espacial.

 $H_{\Delta} = Altura del punto A.$

Hn = Altura del punto 8.

H = Diferencia de alturas H_A = H_B

R = Radio terrestre.

II.4.2.3. Reducción a la Superficie Curva

La fórmula utilizada es la siguiente: (Scherrer, 1982).

$$D_E = D_o (1 + \frac{D_o^2}{24R^2})$$

D_E = Distancia reducida a la superficie de la tierra.

Do = Cuerda al nivel del mar.

R * Radio terrestre.

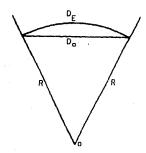


Figura II.4

CAPITULD III

PROYECCIONES CONFORMES

III.1 INTRODUCCION

En cartografía las proyecciones se utilizan para representar puntos de la superficie terrestre, en mapas y planos, y entre las muchas proyecciones que existen, las proyecciones conformas destacan por sus características particulares.

Una proyección conforme, se caracteriza principalmente porque conserva su forma verdadera por lo menos en pequeñas extensiones. A esta característica se le conoce como ortomorfismo(orto-correcto, mórfico-forma).

El que la forma se conserve es bueno, ya que se facilita la identificación de los elementos representados.

Para que haya ortomorfismo, es necesario que la escala sea la misma en todas direcciones alrededor de un punto cualquiera y los moridianos y paralelos se corten en ángulo recto.

Existe un grupo de proyecciones conformes con diversas características y cualidades, las mas importantes son las siguientes:

- 1.- Proyección Estereográfica.
- 2.- Proyección Cónica Conforme de Lambert, con 1 y 2 paralelos tipo.
- 3.- Proyección de Mercator.
- 4.- Proyección Transversa de Mercator.
- 1.- Proyección Estereográfica.

Pertenece al grupo de las proyecciones perspectivas. En esta proyección, el punto de vista está colocado en la superficie de la -Tierra, y se emplea como plano de proyección, el plano diametralperpendicular al diámetro que pasa por el punto de vista.

Proyección Estereográfica

Figura III.1

Sus propiedades mas importantes son las siguientes:

- 1) Se conservan los ángulos.
- La proyección de un círculo cualquiera de la esfera, es un círculo.

De la primera propiedad, se puede comentar, que una figura pequeña cualquiera trazada en la superficie de la esfera, tiene por proyección estereográfica, una figura semejante, ya que siendo los la tos muy per eños, pueden ser remplazados por arcos de círculo máx imo y si la figura se descompone en triángulos, estos quedarán proyectados segun triángulos semejantes.

En la proyección, los meridianos quedan representados por rectas (radios), que parten del centro y los paralelos quedan representados por círculos concéntricos.

Si el plano de proyección es el ecuador, la proyección estereográfica se llamará "Proyección Estereográfica Polar", si este plano es el meridiano, se llamará, "Proyección Estereográfica Meridiana o Transversal" y para cualquier otra posición del plano de proyección, se tendrá la "Proyección Estereográfica Oblicua".

En las proyecciones estereográficas, se altera notablemente la $r_{\underline{\underline{u}}}$ lación entre las superficies de las regiones centrales respecto a las mas alejadas del centro.

2.- Proyección Cónica conforme de Lambert, con un paralelo tipo.

Esta proyección se obtiene al colocar un cono tangente a la Tierra y la línea de tangencia con la Tierra se le conoce como paralelotipo, ya que la escala no varía a lo largo de este paralelo.

Todas las cónicas satisfacen la condición de ortomorfismo ya queen esta condición se establece que exista igualdad entre pequeñas extensiones de la Tierra y sus representaciones en el mapa.

Esta semejanza se logra haciendo que los meridianos y paralelos se corten en ángulos rectos y que los factores de escala en dos direcciones cualesquiera trazadas desde un punto sean iguales.

Esta condición la satisfacen ya que los paralelos están representados por arcos de círculo concéntricos y los meridianos por líneas rectas concurrentes en el centro común.

La condición de ortomorfismo además se logra, haciendo que el factor de escala en el meridiano sea el mismo que en el paralelo.

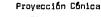


Figura III.2

En esta proyección las areas sufren mas alteración que en las otras cónicas, ya que el factor de escala en los meridianos actúa en el mismo sentido que en los paralelos. Esta proyección no es adecuada para grandes extensiones en latitud ni para las cercanas al polo.

-Proyección Cónica Ortomórfica con dos Paralelos Tipo.

Con el fin de aumentar los límites de la representación con una deformación aceptable, se ideó la proyección con dos paralelos - tipo a una distancia de 1/6 o'1/5 de la distancia entre los extremos norte y sur de la carta que se está representando.

£1 ortomorfismo se obtiene de la misma manera que para la proyeca.

ción cónica ortomórfica de un paralelo tipo.

3.- Proyección de Mercator.

Esta es una proyección cilíndrica que lleva el seudónimo latino - de su inventor Gerard Kramer, que nació en Flandes en 1512 y publ<u>i</u> có su sistema en una carta mundial en 1569.

Los principios verdaderos de este sistema y el método de constru<u>c</u> ción y cálculo fueron dados por Edward Wright de Cambrige 30 años despues.

La finalidad de esta proyección es que toda línea de rumbo consta<u>n</u> te(línea loxodrómica), en la esfera o esferoide, esté representada por una recta en la carta.

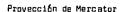


Figura III.3

En esta proyección, el cilindro es tangente en el ecuador y la equidistancia de los meridianos, será proporcional a los arcos de ecuador comprendidos entre ellos. Los arcos de meridiano y como consecuencia los espaciamientos entre los paralelos, crecen del gouador hacia los polos.

La Proyección de Mercator es ampliamente utilizada para la construcción de certas marinas, es una proyección ortomórfica, debido a que desde un punto cualquiera, los factores de escala, son igua les en el meridiano y en el paralela, además, los meridianos y paralelos se cortan en ángulo recto.

Su uso en cartas mundiales es inconveniente debido a que la amplificación en latitudes alejadas del ecuador, es considerable.

Esta proyección tiene buenas cualidades para extensiones no muy \underline{a} lejadas del ecuador.

-Cualidades de la Proyección de Mercator.

Cualquier dirección desde un punto en la carta es una línea recta, los meridianos quedan dibujados paralelamente a los bordes este y beste de la carta y las líneas cardinales N,5,5 y W, siempre señalan la misma dirección y se conservan paralelas hosta los bordes de la carta, propiedad importante para la meteorología.

La latitud y longitud, se encuentran făcilimente a partir de su posicion en el maps.

4.- Proyección Transversa de Mercator.

Es una proyección cilíndrica cuyo eje no coincide con el de la e<u>s</u> fera modelo, habiéndose desarrollado con el fin de poder represe<u>n</u> tar regiones ubicadas a lo largo de un meridiano.

El cilíndro auxillar es tangente a la esfera modelo segun un mer<u>i</u> diano.

En la Figura III.4., se muestra un canevá de la proyección Trang versa de Mercator pare un hemisferio.

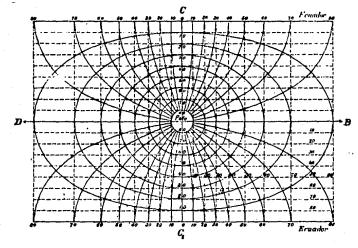


Figura III.4

La recta 08 que pasa por el polo, es el meridiano perpendicular al central, representado por la línea CC₁, que es la línea de tangencia con el cilindro en que se hace la proyección. Los demás meridianos, son las líneas curvas que parten del polo y van a las líneas horizontales superior e inferior que corresponden al ecuador, los paralelos son las curvas cerradas que tienen por centro el polo.

Si las dimensiones que se desean representar, van de norte a sur, esta proyección, será la que de mejores resultados, siempre que el area por representar no se aleje demasiado del meridiano de tangencia.

III.2 LAS PROYECCIONES CONFORMES Y SU APLICACION EN LOS TRABAJOS GEODESICOS.

Las proyecciones que se consideran como las mas adecuadas para ser utilizadas en los trabajos geodésicos, son las proyecciones conformes, esto se debe a que cumplen con ciertos requisitos mínimos para su utilización.

Estos requisitos minimos estan expresados en,(81achut,1979). y son los siquientes:

- 1.-Que exista una correspondencia biunívoca entre las superficies del plano y el elipsoide, que pueda expresarse en términos de fórmulas matemáticas que permitan cálculos numéricos con una precisión predeterminada.
- 2.-La distorción de ángulos y distancias causada por la proyección, debe ser razonablemente pequeña y facil de calcular.
- 3.-Debe de tomarse como superficie de referencia la de un elipsoide de revolución.

Las proyecciones conformes cumplen con estos requisitos, pero existe un argumento que hace que la Proyección TM predomine sobre todas las demás. Este argumento, es que debe existir una universalidad de los valores de sus coordenadas, ya que un sistema universal de coordenadas planas, se puede transformar facilmente a otros sistemas similares, que puedan cubrir la misma area, esto se convierte en una ventaja decisiva para elegir la proyección TM ya que las coordenadas de puntos de control locales, son requeridos frecuentemente en algun sistema regional para objetivos de cartografía, vías de comunicación, etc.

III.2.1 La Proyección UTM.

La Proyección UTM(Proyección Universal Transversa de Mercator), es una variante de la Proyección Transversa de Mercator, donde el fector de escala se ha hecho inferior a la unidad en el meridiano central, para disminuir los valores máximos que alcanza el factor de escala en

los extremos de la carta.

En la siguiente gráfica se muestran las distorciones para la proyección Gauss-Kruger(TM) y la UTM. (Scherrer, 1982).

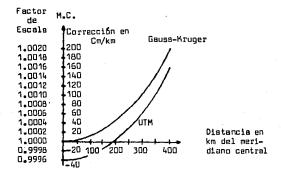


Figura III.5

Por ser una variante de la Proyección Transversa de Mercator, tambien será una proyección conforme en donde los valores angulares de la cuadritula se acercan mucho a los verdaderos, y en cualquier punto, las correcciones de las distancias son las mismas en todas direcciones.

-Especificaciones de la Proyección UTM.

En la proyección UTM, la tierra está dividida en 60 Musos donde ca da huso es una zona numerada, empezando la cuenta desde el meridiano 180 Este. Cada Huso tiene una amplitud de 6° .

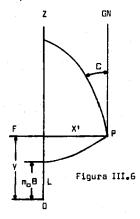
Los meridianos son curvas con concavidad hacia el meridiano central y los paralelos son divergentes hacia el ecuador. El meridiano central y el ecuador son líneas rectas, fig. III.4.Pag. 39.

La proyección se elabora preferentemente para el elipsoide de Clarke de 1866 en América del Norte, cuyas características son las siguientes:

Semieje Ecuatorial(m)	a = 6378206.4
Semieje Polar	b = 6356583.8
Achatamiento(f); f=(a-b)/a;	f = 1/294.978698

Radio de Curvatura Polar(c); $c=a^2/b$; c=6399902.55159Cuadrado de la Exentricidad(e^2); $e^2=\frac{a^2-b^2}{a^2}$; $e^2=0.006768658$

Cuadrado de la 2^a Exentricidad(e^{t^2}) = $(a^2-b^2)/b^2$; e^{t^2} = 0.006814784946 La longitud de origen es el meridiano central y la latitud de origen el ecuador.


Para el hemisferio Norte el origen empieza en Om, y para el hemisferio Sur se utiliza una falsa ordenada de 10000000.

Para evitar las coordenadas negativas, se utiliza la falsa abcisa de 500000 en el meridiano central.

. El límite de latitud al Norte y al Sur es de 80º, ya que la proye<u>c</u> ción sufre mucha distorción fuera de este límite.

El factor de escala en el meridiano central es $m_o = 0.9996$.

-Elementos de la Proyección.

P = Punto considerado

F = Pié de la perpendicular de "P" al meridiano central.

D = Origen (equador)

OZ= Meridiano central

LP= Paralelo que pasa por "P"

ZP= Meridiano que pasa por "P"

OL= moB = Arco de meridiano a partir del ecuador.

LF= Ordenada de curvatura

OF= Ordenada de la cuadrícula = Y

FP= X' = Distancia sobre la cuadrícula desde el meridiano central hasta el punto "P"

GN= Norte de la cuadrícula

·C = Convergencia de los meridianos en P.

"P" representa a un punto situado al E del meridiano central, invirtiendo la figura, podrá representar a un punto al Deste del meridiano central.

III.2.2 Transformación de Coordenadas Geodésicas a Planas

El avance de las computadoras y calculadoras electrónicas, permite que los cálculos para realizar la transformación de coordenadas, pueda hacerse aplicando las fórmulas directamente.

Las fórmulas que a continuación se presentan, son las del $\,$ (Manual Técnico $\,$ N 0 19 del Army Map Service de los Estados Unidos).

$$Y = I + IIp^2 + IIIp^4 + A6$$

X = X' + 500000 cuando el punto está al este del meridiano central.

500000-X cuando el punto está al ceste del meridiano central.

-Cálculo de I

 $I = Bm_0$

 m_{o} = 0.9996 = factor de escala en el meridiano central.

B = Arco de meridiano medido a partir del ecuador hasta el punto de latitud \P .

La fórmula utilizada para calcular 8 está referida a (Blachut, 1979).

La fórmula parte de la integral elíptica $B = \int_{0}^{\infty} Md\Psi$, la cual se desarrolló en serie.

B = 6367399.689179-32365.18693 sen9cos9(1+0.0042314080sen²9+

+ 0.0000222782sen + 0.0000001272sen + 0.0000000008sen 7),

para el elipsoide de Clarke, donde 8,se deduce de la fórmula para la integral elíptica.

-Câlculo de II

II = $r sen \% cos \% sen^2 1 \times m_o \times 10^6 / 2$

r = radio de curvatura del primer vertical, conocido como la normal al esferoide en el extremo del eje menor.

$$r = a/(1-e^2 sen^2 \phi)^{1/2} = p(1+e^{\frac{2}{3}} cos^2 \phi)$$

p = radio de curvatura de un meridiano

$$= a(1-e^2)/(1-e^2 sen^2 \varphi)^{3/2}$$

Fórmulas para el cálculo de III, IV y V.

III= sen41"r.sen9cos3 (5-tan2+9e,2cos2+4e,4cos4).ma.1016/24

En las fórmulas III,IV, V, etc. aparece el sen1", el cual se utiliza para transformar las unidades de arco en radianes.

$$V = sen^3 1 \cdot r \cdot cos^3 \phi (1 - tan^2 \phi + e^{2 \cdot 2} cos^2 \phi) \cdot m_0 \cdot 10^{12}$$

A6 =
$$p^6 sen^6 1$$
". r.sen $\sqrt[9]{cos} \sqrt[9]{(61-58tan^2+tan^4+270e^{\frac{1}{2}}cos^2-330e^{\frac{1}{2}}sen^2)}$. $m_0.10^{24}/720$

$$85 = p^{\frac{5}{5}} \frac{1 \cdot r \cdot \cos^{\frac{5}{4}} (5 - 18 \tan^{\frac{5}{4}} + \tan^{\frac{5}{4}} + 14e^{\frac{5}{2}} \cos^{\frac{5}{4}} - 58e^{\frac{5}{2}} \sin^{\frac{5}{4}} + 10e^{\frac{5}{2}} \cos^{\frac{5}{4}} + 10e^{\frac{5}{4}} \cos^{\frac{5}{4}} \cos^{\frac{5}{4}}$$

p=0.0001 AA; AA está expresado en segundos.

III.2.3 Transformación de Coordenadas Planas a Geodésicas.

La fórmula utilizada es la siguiente:

$$\Delta \lambda = IXq - Xq^3 + E5$$

♥es la latitud al pié de la perpendicular trazada del punto considerado al meridiano central como se mostró en la fig. III.6. Pag. 42.

The puede calcular por medio del siguiente proceso iterativo(Blachut, 1979).

- 1) 9(1) = Y/6367399.689
- 2) Se calcula B(1) con 9'(1) con la fórmula, pag. 44

3)
$$\phi'_{(2)} = \phi'_{(1)} + (Y-B_{(1)})/6367399.689$$

4) Se calcula B(2) con 9'(2)

5)
$$\varphi'_{(n+1)} = \varphi'_{(n)} + (Y-B_{(n)})/6367399.689$$

 $\varphi' = \varphi'_{(n)}$, cuando $B_{(n)} = Y$

Fórmulas para el cálculo de VII, VIII, IX, X, D6 y E5.

IX = sec 910 /mo r sen 1

$$X = \sec \P(1+2\tan^2 \theta + e^{\frac{2}{3}\cos^2 \theta}) \cdot 10^{18} / m_a^3 \cdot 6 \cdot r^3 sen 1^{-18}$$

D6 =
$$q^6 \tan \P (61 + 90 \tan^2 \P + 45 \tan^4 \P + 107 e^{\frac{2}{3}} \cos^2 \P - 162 e^{\frac{2}{3}} \sin^2 \P =$$

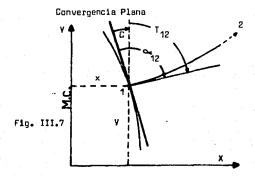
-45 e¹² tan² \Psen² \Psi \cdot 1036 \mathre{\psi}_6 \cdot 720 \cdot r^6 \text{sen}^1

E5 =
$$q^5 \sec \phi (5 + \frac{28 \tan^2 \phi + 24 \tan^4 \phi + 6e^{\frac{2}{3}} \cos^2 \phi + 8e^{\frac{2}{3}} \sin^2 \phi}{m_0^5 + 120 \cdot r^5 \sec^2 \phi}) \cdot 10^{30}$$

q = 0.000001 X*; X = distancia sobre la cuadrícula desde el meridiano central hasta el punto considerado.

III.2.4. Transformación de Azimutes y Distancias Geodésicas a Planas y Cálculo de los Factores T.c.t.(t-T) y m.

-El Azimut Geodésico Proyectado (T).


El azimut geodésico proyectado, es el equivalente del azimut geodésico, el cual se mide a partir del norte o el sur sobre el elipsoide de referencia.

En el elipsoide, el azimut directo difiere del inverso por una cantidad igual a 180 + 180; of ext 180 + 180 + 180 and extremo de la linea considerada.

En el plano, el azimut geodésico proyectado (T), se mide a partir - del norte de la cuadrícula UTM.

Fuera del meridiano central y del ecuador, la dirección norte de la cuadrícula (dirección positiva del eje Y), diferirá del norte geográfico (dirección de la transformada del meridiano), por un valor angular conocido como convergencia plana.

La convergencia plana se mide generalmente a partir del norte.

(T) es la transformada del azimut geodésico donde:

T₁₂ =
$$\infty_{12}$$
 - C

C es la convergencia plana que se puede calcular con la siguiente fórmula y a partir de las coordenadas geográficas (﴿,从).(8lachut,1979).

$$C = a_7 1 + a_9 1^3 + a_{11} 1^5 + \dots$$

1 = λ - λ_0 = diferencia de longitud desde el meridiano central. 1 está medida en radianes.

$$a_g = 1/3 \text{ sen}^{9} \cos^{2} (1+3e^{12} \cdot \cos^{2} +2e^{14} \cdot \cos^{4} \phi)$$

 $a_{14} = 1/15 \text{ sen}^{9} \cos^{2} (-1+3\cos^{2} + \dots)$

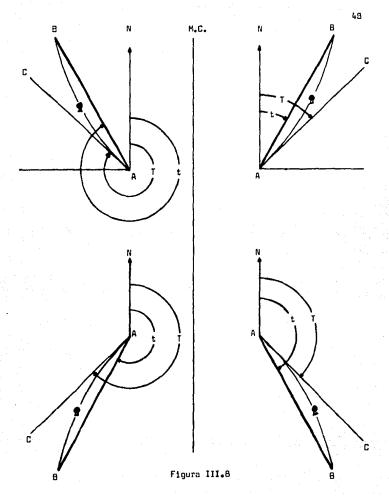
Si ∝ estå referido al sur, la fórmula para obtener la transformada

5i ∞ està referido al sur, la fòrmula para obtener la transformada I queda:

T=∞+ C + 180; si X<500000 6 está al W del Meridiano Central

T=∞- C + 180; si X> 500000 o'está al E del Meridiano Central

51 l se obtiene algebraicamente, T ≔≪+ C


-El Azimut Plano (t).

Como la proyección UTM es conforme, los azimutes de las visuales rea lizadas en campo, serán iguales a las proyectadas, siendo esto válido sólo para líneas pequeñas; cuando la visual sea mas grande que una milla, será necesario distinguir dos tipos de azimut, el azimut geodésico proyectado T y el azimut plano t.

En la figura III.8 de la siguiente pag.se muestra el comportamiento de las direcciones planas y las geodésicas proyectadas.

En la figura se muestran los puntos A y B, al este y al oeste del me ridiano central.

Si un observador coloca un teodolito en A y observa 8, su visual al proyectarse en la carta, no apuntará en la dirección de la linea recta AB sino que describirá una linea curva AB de tal manera que el observador verá el arbol alineado con el punto 8.

Todas las visuales proyectadas en el plano, siguen líneas curvas.

En la proyección UTM, la curvatura stempre será cóncava hacia el meridiano central, teniendo su mayor valor para las líneas norte-sur y el menor valor para las líneas este-oeste.

Si por el punto A de la linea curva ÂB, se pasa una tangente AC, el ángulo en A contado a partir del norte de la cuadricula hacia AC, en el sentido de las manecillas del reloj, será entonces el ángulo que el teodolito formará con el norte de la cuadricula cuando esté apuntan do hacia B.

Este ángulo es el azimut geodésico proyectado, y su valor, es una cantidad físicamente real que puede obtenerse del azimut geodésico, a plicandole a éste, la corrección por convergencia.

La diferencia entre dos azimutes geodésicos proyectados, medidos sobre un mismo vértice, será igual al ángulo leído directamente en el <u>a</u> parato, al dirigir las visuales a los puntos observados en el terreno.

A t se le conoce como el azimut plano, y es el fingulo medido a partir del norte de la cuadrícula hasta la cuerda.

$$t = ang tan \frac{x_2 - x_1}{y_2 - y_1}$$

Una fórmula aproximada para calcular la correción (t-T) es:

$$(t_{AB} - T_{AB}) = \frac{K}{3m_B^2} (Y_A - Y_B)(2X_A + X_B - 3Y');$$
 (Blachut, 1979)

$$K = (\frac{321.14}{c}(1 + e^{12}\cos^2 \Psi m))^2$$

 $m_0 = 0.9996$

c = 6399902.55159

Y' = 500000

Finalmente se puede mostrar que T = t-(t-T)

-El Factor Local de Escala (m).

El factor local de escala, es aquel valor que multiplicado por la distancia elipsoidal, dará la distancia plana buscada.

- s = mS
- s = Distancia plana
- 5 = Distancia elipsoidal
- m = Factor local de escala

Conforme los puntos se vayan alejando del meridiano central, el factor de escala irá aumentando como se mostró en la fig. III.5. Por esta razón, es necesario aplicar un factor de escala promedio entre los dos puntos considerados, el cual se produce cerca del punto medio y mas precisamente, en el punto sobre la cuerda donde:

$$x_{m}^{2} = 1/3 (x_{1}^{2} + x_{1}^{2} x_{2}^{2} + x_{2}^{2})$$

$$Y_{m} = Y_{1} + \frac{(Y_{2} - Y_{1})(x_{m} - x_{1}^{2})}{x_{2}^{2} - x_{2}^{2}};$$
(Blachut, 1979)

donde X_1^i , X_2^i , Y_1 y Y_2 , son coordenadas extremas, y X_1^i , X_2^i , están med<u>i</u> das a partir del meridiano central. $X^i = X - 500000$.

Una fórmula para calcular el factor de escala dentro de un rango de $\stackrel{+}{=} 2^{\circ}$ de latitud media, y $\stackrel{+}{=} 3^{\circ} 30^{\circ}$ de longitud, es la siguiente,(Blachut, 1979) :

$$\bar{m} = m_0(1 + y^2(1-D1x^4 + D2x^4 + D3y^2))$$

En esta fórmula y' y x' son valores en los que se toma en cuenta la orientación de los ejes de la Cuadrícula Transversa de Mercator y para aplicarla a la proyección UTM, se calcularán x' y y' como se muestra:

$$x' = \frac{Vm - 8m}{m_0 \cdot c}$$
; $y' = \frac{Xm}{m_0 \cdot c \cdot V_m^{-2} V 2}$
 $V_m^2 = 1 + e^{i^2 \cos^2 \phi m}$
D1 = $4e^{i^2 \sin \phi m} \cos \phi m V_m^{-5}$

$$D2 = 2e^{2}(1-2\cos^{2} \Phi_{m})v_{m}^{-2}$$

$$D3 = 1/6(1+4e^{2}\cos^{2} \Phi_{m})$$

Tambien se puede aplicar, $\overline{m} = m_0 (1 + y^{1/2})$, que dá una aproximación de 0.6 partes por millón dentro de los límites de latitud y longitud mencionados.

III.2.5. Propagación de Coordenadas en el Plano.

La propagación de coordenadas en el plano es un proceso que se vue<u>l</u> ve relativamente sencillo, al aplicar la fórmula para la corrección (t-T) y la fórmula para calcular el factor de escala m.

Los cálculos se pueden realizar a partir de:

a.-Una coordenada fija (X,Y) en la Proyección UTM y el azimut ≪ de la linea inicial.

b.-Dos coordenadas fijas (X,Y) en la Proyección UTM.

Además de esto, es necesario conocer las distancias elipsoidales, y los ánoulos o direcciones geodésicas.

Para entender mejor la secuencia seguida en el cálculo, en la siguiente página se muestra la fig.III.9 donde se ve la relación que existe entre los valores planos y los del elipsoide. A continuación se muestran los distintos elementos de la figura.

P₄, P₄ = Puntos cuyas coordenadas UTM son conocidas.

P_k = Punto cuyas coordenadas se van a calcular.

🗪 = Azimut Geodésico.

C = Convergencia Plana

d^E = Dirección elipsoidal

w^E = Angulo elipsoidal

T - Azimut Geodésico Proyectado.

d = Direction Plana

w = Angulo Plano

s = Distancia Plana

S = Distancia elipsoidal

Relación que existe entre los valores planos, y los del elipsoide. (Peter V. y Krakiwaky, 1973).

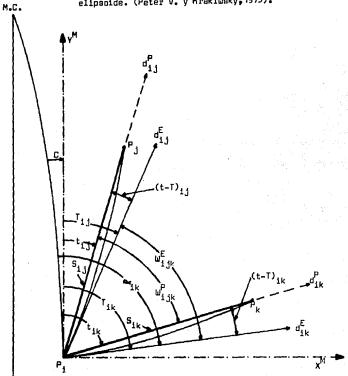


Figura III.9

-Diagrama de Flujo para el Cálculo de las Coordenadas Propagadas del Funto $P_{\bf k}$, Partiendo de una Coordenada Fija y un Azimut.

Datos para el cálculo.

Latitud media 9m.

Distancia (5).

Una coordenada fija (P;).

El Azimutode la linea PiPk.

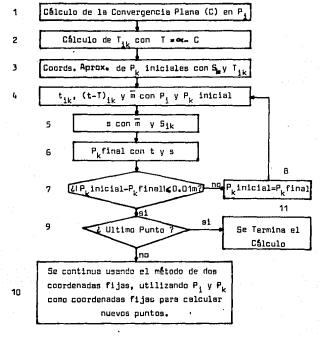
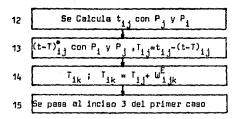



Figura III.10.

-Diagrama de Flujo para el Cálculo de las Coordenadas Propagadas del Punto P., Partiendo de dos Coordenadas Fijas. Datos para el cálculo. Latitud media 🖣 m.

La distancia (S).

Las coordenadas fijas P_j y P_i . El ángulo W_{ijk}^E .

• usendo la fórmula pag.49.

Figura III.11

CAPITULO IV

AJUSTES

IV.1 INTRODUCCION

Ajustar algo consiste en acoplar o compensar varias partes de un -

En topografía y geodesia un ajuste consiste en compensar los valores observados de un levantamiento y referirlos a un sistema de coordenadas conocido y aceptado por organismos oficiales.

Existen diversos métodos de ajuste y en todos ellos se busca que los valores ajustados, se acerquen lo mas posible a los vardaderos.

Por bueno que sea un ajuste, núnca será posible obtener los valores verdaderos, pero los valores obtenidos se les denomina como los més - probables(los aceptados por organismos oficiales) y son los valores - mas cercanos a los verdaderos.

En el presente trabajo, se muestra el ajuste riguroso de dos levantamientos geodésicos, usando dos métodos diferentes de ajuste, uno de ellos, el método topográfico de la brujula, para el ajuste de una poligonal geodésica en el plano, y el método de los mínimos cuadrados, para el ajuste de una triangulateración geodésico en el plano.

Como los métodos topográficos de ajuste son muy comunes y se encuen tran generalmente en cualquier publicación de topografía, no se hacen comentarios de ellos.

En el método de los mínimos cuadrados, se busca obtener los valores mas probables, por medio de la solución de un sistema de ecuaciones — de observación linealizado.

En el sistema de ecuaciones de observación linealizado, se relacionan todos los valores observados entre si, y con las coordenadas de partida y llegada del levantamiento. El principio de los mínimos cuadrados se apoya en la teoría de les probabilidades y la teoría de los errores, de donde proviene la siguiente ecuación, que relaciona los errores y la probabilidad.

V = frecuencia o facilidad de presentación de un error (x) en las -condiciones caracterizadas por el factor de precisión (h).

La ecuación representa a una curva llamada, curva de Probabilidad.

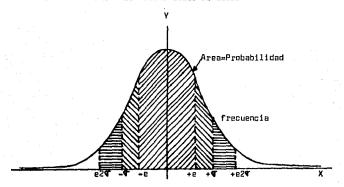


Figura IV.1

Esta curva está apoyada o fundamentada en los Postulados de Gauss,los cuales se definieron en base a la experiencia y la estadístico ma temática de la observación de los errores accidentales, y se vió quetenían un comportamiento definido.

El comportamiento de los errores es el siguiente:

1) Los errores pequeños son mas frecuentes que los errores grandes.

- Los errores positivos y negativos de igual magnitud, son igualmente probables.
- 3) Los errores accidentales muy grandes no se presentan.
- 4) Los errores son modificados por las circunstancias de observación, entre mejores sean los aparatos y el observador, los re-sultados serán más precisos.
- 5) El valor mas probable de una cantidad, la cual ha sido obtenidapor observación directa y repetida, es la media aritmética de to das las medidas.

A partir de la curva de probabilidad se han definido los siguientes errores que son los mas importentes.

- a.- Error Medio Cuadrático E.M.C. 6 (4).
- b.- Error Probable de una Observación (e).
- c .- Error Probable del Promedio (e_).
- d.- Error 95% (24), error 99% (2.54), etc.
- a.- Error Medio Cuadrático (9).

Se le designa como la desviación o error estandar y se le conoce también como 1 \P ya que el area bajo la curva entre $\overset{\star}{-}\P$ es un 68% del area total y representa una probabilidad del 68% de que todos los errores estén comprendidos entre $\overset{\star}{-}\P$.

$$q = EMC = \sqrt{\frac{\sum v_i^2}{n-1}}$$

b.- Error Probable de una Observación (e).

Este error se define como aquel que tiene una probabilidad del 50% de que se presente y su posición es media entre todos los errores, se calcula mediante la relación.

en donde 0.6745 es un factor obtenido de tablas estadísticas para la curva normal considerando una probabilidad del 50%. c.- Error Probable del Promedio (e_).

Es una medida de dispersión del valor mas probable, para la media de uno o varios conjuntos de observaciónes.

d.- Error 95%,99%.

Es el error estandar calculado a diferentes probabilidodes; al 95% es 2 \P y al 99% es 2 \P ; en donde los factores 2 y 2.5 se obti<u>e</u> nen de las tablas estadísticas de la curva normal de Gauss.

IV.2.1.La Confiabilidad v el Peso.

Cuando se le tiene mas confianza a una medida u observación, se le dá más peso, que es lo mismo que darle más importancia en el momento dehacer el cálculo.

El peso aplicado a las formulas de error probable queda como se mue<u>s</u> tra.

$$e = 0.6745 \sqrt{\frac{\Sigma PV^2}{n-1}};$$
 $e_n = \frac{e}{\sqrt{\Sigma P}}$

La confiabilidad depende de varios aspectos, los mas importantes son:

- a) Las condiciones ambientales.
- b) El número de medidas realizadas.
- c) La experiencia del operador, etc.

Todos estos aspectos se manifiestan en la desviación estandar, haciendo que exista una mayor o menor dispersión. Por ejemplu: Si se realiza una buena cantidad de mediciones en condiciones favorables, con un operador experimentado, todas las medidas resultarán muy similares unas de otras por lo que la desviación estandar será pequeña.

Por esta razón, una serie de medidas con una ¶grande, se le asignará un peso pequeño, y la serie con menos error, se le asignará mayor peso. Como la desviación estandar del promedio es,

$$\mathbf{d}^{\mathrm{D}} = \frac{\mathbf{d} \mathbf{U}}{\mathbf{d}_{\mathrm{L}}}$$

el número de observaciones variará inversamente con el cuadrado de **r** y como los pesos se asignan en forma proporcional, el número de mediciones quedará.

 $P = n = \frac{q^2}{q_n^2}$

donde los pesos variarán de acuerdo a los cuadrados de los errores me dios cuadráticos del promedio de las series.

$$P = \frac{1}{\P^2}$$

Regresando a la curva de probabilidad, la probabilidad de presentación del error x, es el area de la curva de probabilidad P = Ydx, don de dx es la aproximación del instrumento con el que se trabaja.

La ecuación de la curva de probabilidad puede desarrollarse para obtener otra ecuación que exprese la probabilidad de presentación de lœ errores (x).

$$P = \left(\frac{h}{\sqrt{\pi}}\right)^n \frac{(dx)^n}{h^2 \mathbf{x}^2}$$

A partir de esta ecuación se establece el principio de los mínimos cuadrados.

La probabilidad de que se presenten todos los errores será máxima - cuando, $\frac{1}{e^{n^2 \mathbf{x} x^2}}$ sea máximo y esto ocurrirá cuando $\mathbf{\Sigma}$ \mathbf{x}^2 sea un mínimo.

Como esto se cumple para los errores, también se cumplirá para los residuos V_1, V_2, \ldots, V_n , quedando la ecuación de la siguiente manera.

$$P = (\frac{h}{h})^n e^{-h^2 \xi v^2} (dy)^n$$

El valor mas probable de la cantidad observada corresponde a la serie de errores que tienen la mayor probabilidad de presentación y el valor mas probable de una magnitud Z será aquel para el cual P sea máximo o sea cuando la suma de las V^2 , es un mínimo.

IV.3 METODO DE LOS MINIMOS CUADRADOS.

Se utiliza la notación matricial para expresar la solución para — un sistema de ecuaciones con muchas incógnitas, el sistema se expresa de la siguiente manera:

$$B(\Delta X) + \omega = V$$

8 - Matriz de Coeficientes.

(AX) = Vector de Incognitas.

W = Vector de Términos Independientes.

V = Vector de Residuos.

Este sistema se forma a partir de un sistema de ecuaciones linealizadas como las que se muestran a continuación.

$$a_1 dx + b_1 dy + c_1 dz + \dots -M_1 = V_1$$
 $a_2 dx + b_2 dy + c_2 dz + \dots -M_2 = V_2$
 \vdots
 $a_n dx + b_n dy + c_n dz + \dots -M_n = V_n$

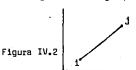
dande:

dx, dy, dz, ... = incognitas

a,b,c,.... = coeficientes

M₁,M₂,...,M_n = términos independientes

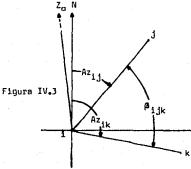
V₁, V₂, ·····V_n = residuos


Las ecuaciones linealizadas sólo tienen exponentes a la primera potencia.

Estas ecuaciones se forman a partir de modelos matemáticos que pueden ser de distancias, azimutes, direcciones, ángulos, o algún otromodelo.

IV.3.1 Modelos Matemáticos.

-Modelo de Distancias.


De la figura, IV.2 $P_{i,j} = ((x_j - x_i)^2 + (y_j - y_i)^2)^{1/2}$

-Modelo de Azimutes.

IV.3

$$Az_{1j} = ang tan \left(\frac{x_j - x_1}{y_j - y_1} \right)$$

-Modelo de Angulos.

De la figura IV.3

-Modelo de Direcciones referido a partir del Norte.

$$\operatorname{Dir}_{ik} = \operatorname{ang tan} \left(\frac{x_k - x_i}{y_k - y_i} \right) - Z_0$$

La formación de un sistema de ecuaciones de observación, utilizando modelos matemáticos sin linealizar, implicaría la realización de cálculos muy complicados por ser ecuaciones de un grado mayor que la unidad.

En cambio, al linealizar los modelos, se obtienen ecuaciones de pr<u>i</u> mer grado que facilitan la solución del sistema.

La linealización se realiza aplicando la serie de Taylor y despreciando los terminos de 2^9 grado o mayor.

A continuación se presenta la linealización del modelo de distancias y el modelo de direcciones, ya que son los modelos utilizados para realizar el ajuste en el plano.

-Linealización del Modelo de Distancias.

Una distancia D mas un incremento de ella (V_o) , será igual a una función $f(X_1,Y_1,X_1,Y_1)$; D + $V_o = f(X_1,Y_1,X_1,Y_1)$.

Una ecuación para realizar la linealización del modelo de distancias es la siguiente:

$$F(X_{1}, Y_{1}, X_{1}, Y_{1}) = F(X_{10}, Y_{10}, X_{10}, Y_{10}) + (\frac{dF}{dX_{1}}) dx_{1} + (\frac{dF}{Y_{1}}) dy_{1} + (\frac{dF}{dX_{1}}) dy_{1} + (\frac{dF$$

$$(\frac{JF}{JV_{j}}) = 1/2 \frac{2(V_{j} - V_{j})}{D} - \frac{V_{j} - V_{j}}{D} = \frac{\Delta V_{j,j}}{D}$$

$$V_{D_{i,j}} \frac{\Delta X_{j,i}}{D} dx_{i,j} + \frac{\Delta V_{j,i}}{D} dy_{i,j} + \frac{\Delta X_{i,j}}{D} dx_{j,j} + \frac{\Delta V_{i,j}}{D} dy_{j,j} - (D.Obs. - D.Calc.)$$

-Linealización del modelo de Direcciones.

$$Dir_{*i,j} + Z_{o} + V_{Dir_{*i,j}} = F(X_{j}, Y_{j}, X_{i}, Y_{i}, Z_{o}) = F(X_{jo}, Y_{jo}, X_{io}, Y_{io}, Z_{o}) + \frac{1}{(\frac{dF}{dX_{j}})dX_{j}} + \frac{1}{(\frac{dF}{dX_{j}})dX_{j}} + \frac{1}{(\frac{dF}{dX_{i}})dX_{i}} + \frac{1}{(\frac{dF}{dX_{i}})dX_{i}} + \frac{1}{(\frac{dF}{dX_{i}})dX_{i}} + \frac{1}{(\frac{dF}{dX_{i}})dX_{i}} + \frac{1}{(\frac{dF}{dX_{i}})dX_{i}} + \frac{1}{(\frac{dF}{dX_{i}})dX_{i}} + \frac{1}{(\frac{dF}{dX_{i}})^{2}} dX_{i} + \frac{1}{(\frac{dF}{dX_{i})^{2}} dX_{i} + \frac{1}{(\frac{dF}{dX_{i}})^{2}} dX_{i} + \frac{1}{$$

$$\frac{JF}{JV_1} = \frac{DX_{11}}{D_2^2}$$

$$\frac{\mathbf{J}_{Y_{1}}^{F}}{\mathbf{J}_{Y_{1}}^{F}} = \frac{1}{1 + (\frac{X_{1}^{-1} - X_{1}^{-1}}{Y_{1}^{-1} - Y_{1}^{-1}})^{2}} \cdot \frac{X_{1}^{-1} X_{1}^{-1}}{(Y_{1}^{-1} - Y_{1}^{-1})^{2}} = \frac{X_{1}^{-1} - X_{1}^{-1}}{(Y_{1}^{-1} - Y_{1}^{-1})^{2} + (X_{1}^{-1} - X_{1}^{-1})^{2}} \cdot (Y_{1}^{-1} - Y_{1}^{-1})^{2}$$

$$\frac{dF}{dV_1} = \frac{dX_{1,1}}{D_0^2}$$

$$\begin{aligned} \frac{dF}{dz_{o}} &= -dz \\ V_{\text{Dir.}_{i,j}} &= (\frac{\Delta V_{i,j}}{D_{o}^{2}}) dx_{j} + (\frac{\Delta X_{ji}}{D_{o}^{2}}) dy_{j} + (\frac{\Delta V_{i,j}}{D_{o}^{2}}) dx_{i} + (\frac{\Delta X_{i,j}}{D_{o}^{2}}) dy_{i} - dz - \\ &- (Dir._{i,j}Obs. - Dir._{i,j}Calc. + Z_{o}) \end{aligned}$$

IV.3.3. El Principio de los Minimos Cuadrados y el Vector Solución X.

Del principio de los mínimos cuadrados, se establece que,

P = Matriz de pesos.

Sustituyendo $V = B(\Delta X) + W$,

 $v^{T}PV = (\theta \Delta X + \omega)^{T} P(\theta \Delta X + \omega)$. $(\theta \Delta X + \omega)^{T} P(\theta \Delta X + \omega) = minimo$ Desarrollando y despejando ΔX se obtiene,

$$\Delta x = - (\theta^T P \theta)^{-1} (\theta^T P \theta),$$

siendo 🎗 el vector solución del sistema de ecuaciones linealizado.

En el proceso de linealización, la fórmula de Taylor requiere de un punto de expansión, en este caso ese punto de expansión es X^0 , estimación inicial de las incognitas X, que son las coordenadas cartesianas de las estaciones de la poligonal o triangulación que se ajustó, por lo tanto, las coordenadas ya ajustadas \hat{X} se calculan con,

$$\hat{X} = x^{\alpha} + \Delta \hat{X}$$

siendo entonces ΔX pequeñas correcciones a las coordenadas iniciales $\overset{0}{\chi_{\bullet}}$

IV.4. CALIDAD DE LAS DESERVACIONES

La calidad de las observaciones se determina por \P la cual se obtiene a partir de los valores de la diagonal principal de la matriz de covarianzas Σ_{χ} y la obtención del error o desviación estandar unitaria \P^2_0 .

La matriz de covarianzas, tiene desviaciones estandar elevadas al cuadrado en la diagonal principal y se expresa de la siguientes mane ra, $\Sigma_{\chi} = \sigma_{o}^{2} \; (B^{T}PB)^{-1}$ donde σ_{o}^{2} es la desviación estandar unitaria para todos los valores.

 $\mathbf{q}_{o}^{2} = \frac{\mathbf{v}^{\mathsf{T}} \mathbf{P} \mathbf{v}}{\mathbf{v}^{\mathsf{T}} \mathbf{v}^{\mathsf{T}}}$

n = número de observaciones u = número de inconnitas

IV.5 EVALUACION Y AJUSTE DE UNA CADENA TERRESTRE

En el contexto de estos cálculos, la evaluación de la cadena tiene dos objetivos.

El primero es la búsqueda de equivocaciones.

El segundo es que los pesos de la cadena geodésica, esten dados correcta y uniformemente.

Las equivocaciones se pueden encontrar por la inspección del error de cierre en el vector de cierre antes que el ajuste paramétrico sea realizado.

Un error de cierre grande indicará que hay un error en la observación o un juego equivocado de coordenadas aproximadas.

Para que la cadena sea pesada uniformemente , es necesario que el factor de varianza a posteriori (\P^2_c), esté muy cerca del factor de varianza a priori. La prueba de hipótesis estadística ji² nos ayuda a determinar si hay una diferencia significativa.

-Asignación de Pesos.

El peso de una observación (i) se define por la relación:

$$\frac{P_0}{P_1} = \frac{q^2}{q_0^2}$$

donde P_o es el peso de una observación típica; es conveniente hacer a P_o = 1; en el caso de que P_o = 1 y τ_i^2 sea la varianza de una observación típica, τ_o^2 se convierte en la varianza de peso unitario.

 σ_i^2 es la varianza de una observación independiente.

Si^{*}se eligió el peso unitario para una observación típica, el peso para otra observación es,

$$P_1 = \sigma_0^2 - \frac{1}{\sigma_1^2}$$

Generalmente $\mathbf{v}_0^2 = 1$ a menos que por experiencia se conozca otro va lor diferente a 1.

CAPITULO V

CALCULOS Y APLICACIONES EN LA PROYECCION UTM

V.1 INTRODUCCION

En este capítulo se le dá un enfoque práctico a lo visto en capítulos anteriores, haciendose el ajuste en el plano de una poligonal geo désica y una trianquiateración.

Los câlculos en el caso de la poligonal, abarcan desde los datos crudos hasta realizarse el ajuste. Estos datos me fueron facilitados por el ING. Raymundo Arvizu Diaz, los cuales provienen de PEMEX de un levantamiento realizado en Mazatlán. En el caso de la triangulate ración, se utilizaron datos corregidos geométricamente, los cuales se pueden consultar en la Tesis del ING. Victor Magaña (Ajuste en el Elipsoide de Redes Geodésicas ; 1989).

Aunque el tema de la tesis se enfoca al ajuste riguroso da levanta mientos geodésicos en el plano, es necesario considerar los cálculos previos para poder realizar el ajuste.

Cuando se hace un levantamiento geodésico, lo mas común es realizar su ajuste en el elipsoide. En este trabajo se le dá un enfoque diferente al ajuste de levantamientos geodésicos, mostrando que el método es práctico y confiable.

En Canada se ha visto que este tipo de ajuste es muy práctico para grandes redes de 2^{0} y $3^{\rm er}_{\rm T}$ orden. En México podría utilizarse este tipo de ajuste obteniendose ventajas en su utilización.

El procedimiento que se sigue para realizar el ajuste a partir de datos geomésicos es el siguiente:

- 1.- Reducción de las observaciones al elipsoide.
- 2.- Reducción de todos los valores conocidos al plano.
- Cálculo de las coordenadas planas aproximadas, para los vértices donde no se conocen.
- 4.- Ajuste en el plano.
- 5.- Transformación de las coordenadas planas ajustadas al elipsoide.

Uno de los objetivos buscados al utilizar este método, es el ahorro de tiempo y esfuerzo, ya que las fórmulas utilizadas para realizar los cálculos en el elipsoide, son mas complicadas que las utilizadas en el plano.

Se puede decir que un ajuste realizado en el plano, es equivalente a uno realizado en el elipsoide sin una pérdida significativa de la precisión.

V.2 CALCULOS Y AJUSTE EN EL PLANO DE UNA POLIGONAL GEODESICA.

V.2.1. Descripción del Levantamiento.

La poligonal está ubicada entre los 23° y 24° de latitud norte, y los 106° y 107° de longitud este, en Mazatlan.

Para su levantamiento se partió de un lado geodésico conocido, cuyos vértices son el 391 y el 52, y se cerró en el punto conocido 997.

El cálculo de coordenadas aproximadas en el plano se realizó a lo largo de una distancia de 163Km.

La mayor distancia observada fué de 28 km y la mas corta fué de 6.8 Km aproximadamente habiendo un total de 9 lados.

Las distancias se midieron con distanciómetro electrónico Electrotage DM-20.

Las medidas angulares se hicieron con un teodolito Wild T-3.

- El orden de los puntos de partida y de llegada es el primer orden.
- El orden de la poligonal queda sujeta a:
- a.- La precisión de los instrumentos.
- b.- El orden de los puntos de comexión.
- c.-. El espaciamiento de la poligonal.
- d.- La existencia de quiebres importantes, etc.

Table V. 1. DATOS DEL LEVANTAMIENTO

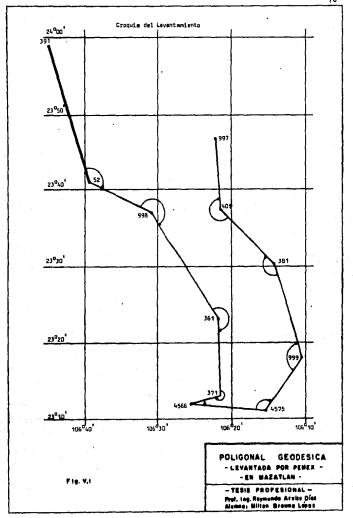

		 	T
VERTICE	ELEVACION	LATITUD	LONGITUD
391	467.1774m	23 ⁰ 59 03 1033	106 44 50 3427
Partida			
52		23 41 22.5457	106 39 34.095
Llegada			
997	836.2396m	23 46 51.29	106 22 15.613

Tabla V.2. MEDIDAS ANGULARES

	LO Vece IILD	TONG ANGOLANCO	
P.O. Atras	EST.	P.O. Adelante	ANG. HOR.
391	52	998	132 06 32.9
52	998	361	218 24 37.3
998	361	371	193 01 41.8
361	371	4566	263 54 34.7
371	4566	4575	21 35 10.7
4566	4575	999	120 30 16.9
4575	999	381	129 17 29.7
. 999	381	401	153 00 28.0
381	401	997	220 05 30,2

Del levantamiento se obtuvieron:

- . 1.- Las distancias inclinadas.
 - 2.- Las distancias zenitales (Z₁ y Z₂) que sirvieron para calcular las elevaciones de las estaciones (Nivelación Trigonométrica) y poder así reducir las distancias al Nivel Medio del Mar.

- 3.- Temperaturas seca y humeda, para correçir las distancias por factores meteorológicos.
- 4.- La presión atmosférica para las correcciones por factores meteorológicos.

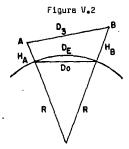
Tabla V.3 Distancias crudas, distancias zenitales temperaturas y presiones

	Lado	D.C.	z ₁	12	t	t'	Р
1)	391 – 52	33836.06	90 ⁰ 12 58."9	89 ⁰ 57 35.2	28.75	24.28	722.6
2)	52 - 998	16152.946	89 09 31.9	90 58 14.1	24.61	21.88	713.7
3)	998 - 361	28746.246	90 53 34.4	89 19 56.9	27.80	24.53	721.4
4)	361 - 371	19018.702	90 21 30.8	89 47 33.4	29.22	23.69	741.4
5)	371 -4566	6885.367	90 40 43.1	89 22 43.4	28.61	25.58	748.0
6)	4566 -4575	17354.369	90 07 26.5	90 00 35.3	31.0	26.72	751.6
7)	4575 - 999	15190.751	87 35 37.9	92 31 20.1	28.78	24.28	755.7
8)	999 - 381	23638.609	90 54 41.4	89 16 10.6	26.69	22.25	712.0
9)	381 - 401	18233.822	89 57 55.9	90 10 34.3	26.25	24.0	724.9
10)	401 - 997	16963.092	88 38 21.5	91 29 41.7	22.69	22.36	704.6

D.C. Distancia cruda

Z, = Distancia zenital en 1

Z, = Distancia zenital en 2


t = Temperatura seca °C :

P = presión mm/Hg

t" = Temperatura humeda ^OC

V.2.2. Reducción de las Observaciones al Elipsoide.

En todos los trabajos geodésicos es necesario reducir las observaciones al elipsoide para tener un mismo criterio respecto a cada dig toncia observada. En la siguiente figura se muestra una distancia \mathbf{D}_3 que debe ser reducida el elipsoide.

A.B = Vertices del leventamiento.

 H_A , H_B = Elevaciones de los puntos A y B.

R = Radio terrestre.

D; = Distancia cruda inclinada.

D = Cuerda al nivel medio del mar.

$$D_0 = \sqrt{\frac{D_3^2 - (\Delta H)^2}{\frac{H_A}{B}(1 + \frac{H_B}{B})}}$$
; (Scherrer, 1982)

D_r = Distancia reducida al elipsoide.

$$D_E = D_0 (1 + \frac{D_0^2}{24 R^2})$$
; (Scherrer, 1982)

Antes de reducir las distancias al nivel medio del mar, y al elipsoide, es necesario corregirlas por factores meteorológicos. V.2.2.1 Correción por Factores Meteorológicos.

Esta corrección se realiza, debido a que la temperatura y la presión atmosféricas afectan la velocidad de la luz, y en consecuencia, la distancia.

Les fórmulas utilizadas para esta corrección son las siguientes:

Distancia corregida =
$$\frac{NP}{NB}$$
 • D
 $NP = 1.00032$

Na = 1 + (
$$\frac{-103.49}{T}$$
 (P-E) + $\frac{-86.2}{T}$ (1 + $\frac{574.8}{T}$) E) 10^{-6}

$$Na = 1 + (\frac{103.46}{T}P + \frac{490.814.24}{T^2}E) 10^{-6}$$
; (Apuntes Univ.)

$$E = E' + de$$

 $E' = 4.58 \times 10^8$

$$a = \frac{7.5 \text{ t}^4}{237.3 + \text{t}^4}$$

$$de=-0.00066$$
 (1 + 0.0015t') $P(t-t')$

Como ejemplo, para la distancia 1, se tiener los siguientes valores parciales.

Tabla V.4 Distancias Corregidas Metereológicamente.

	<u>Na</u>	Distancias Corregidas
1)	1.0003584	33 834.761
2)	1.0003496	16 152,468
3)	1.0003645	28' 744.967
4)	1.0003566	19 018.006
5)	1.0003807	6 884.949
6)	1.0003836	17 353-266

	<u>Na</u>	Distancias Corregidas
,7)	1.0003690	15 190.007
8)	1.0003439	23 638.044
9)	1.0003669	18 232.967
10)	1.0003592	16 962.427

V.2.2.2. Corrección Geométrica a las Distancias.

-Nivelación Trigonométrica.

$$\Delta h_A = h_A - h_B = K \tan \frac{1}{2} (z_2 - z_1) (1 + \frac{h_A + h_B}{2R} + \frac{\kappa^2}{12R^2})$$

 Δh_n = Desnivel entre A y B.

h_Δ = Punto de elevación conocida.

ho = Punto cuya elevación se va a calcular.

K,D = Distancia inclinada y distancia reducida al NMM.

 Z_A, Z_B = Distancias zenitales en A y B.

R = Radio terrestre.

De la fórmula general se deduce la siguiente fórmula iterativa:

(A) = D tan
$$\frac{z_B - z_A}{2}$$

(B) = 1 +
$$\frac{h_A}{R}$$
 + $(\frac{D}{R})^2$ 1/12

(C) =
$$\Delta h_0 = AxB$$

(D) =
$$\frac{\Delta ho}{2R} + B$$

$$(h_B) = E + h_A$$

Es conveniente que el radio utilizado, sea el radio medio (P). $P = \sqrt{N Rm}$

$$N = \frac{a}{(1 - e^2 sen^2 \phi m)^{1/2}}; \qquad Rm = \frac{a(1 - e^2)}{(1 - e^2 sen^2 \phi m)^{3/2}}$$

 ϕ m = valor medio de la región donde se hizo el levantamiento. a = 6 378 206.4

- Cálculo de 🕈 🖦

N = 6381641.4; Rm = 6 345 275.1;
$$P = 6 363 432.4$$

Valores calculados de A,B,C,D y E para el lado 1 como ejemplo.

Tabla V.5 Elevaciones Parciales

414.489

837.320

$$A = -75.75995$$
; $B = 1.0000758$; $C = -75.765693$;

D = 1.0000818; E = -75.766

Estación Elevaciones Parciales 391 467.1774(fija) 52 -75.766 391.411 255.417 998 646.828 255.325 361 -391.503 161.394 371 -93.931 4566 -78-108 83,286 4575 -17.298 65,988 719.728 999 653,740 381 -338.761 380.967

El error que se obtuvo sin tomar en cuenta las correcciones de (instrumento - señal) es:

33.522

422.831

Elevación de 997 = 836.2396

Elevación propagada=837.37

Error = 1.0804

401

997

- Cálculo de las correcciones por instrumento menos señal (i-s).

$$C = \left(\frac{(i - s)inicial - (i - s)final}{2} \right)$$

i = altura del instrumento.

s = altura de la señal.

De A a B = (i-s)inicial; de B a A =(i-s)final.

Tabla V.6 Elevaciones Finales

		(i-s)	Correct	ción C	Desnivel		c'	Eleva- ciones
Ldo	A	. B		Ī	corr.	C'	Acumu- lada	
L	I(e-i)	(i-s)F	D=A-B	C=D/2	por C			Finales
1	-0.10	0.19	-0.29	-0.145	-75.911	-0.09	-0.09	391,18
2	-0.06	0.44	-0.50	-0.250	255.167	-0.06	-0.15	646.28
3	-0.12	0.01	0.11	0.055	-391.448	-0.09	-0.24	254.75
4	-0.05	0.27	-0.32	-0.160	-94.091	-0.02	-0.30	160.59
5	-0.22	-0.10	0.32	0.160	-77.948	-0.06	-0.32	82.63
6	-0.03	0.00	0.03	0.015	-17.283	-0.06	-0.38	65•28
7	-0.02	-0.28	0.30	0.150	653.890	-0.06	-0.44	719.11
8	-0.34	0.06	-0.40	-0.200	-338.961	-0.06	-0.50	380.09
9	-0.04	0.07	-0.03	-0.015	33.307	-0.06	-0.56	413.54
10	-D.11	0.25	-0.14	-0.070	422.761	-0.06	-0.62	836.24

Error final =1.08 - 0.46 =0.62

 $C'=\frac{-Di}{L}$ x 0.6% ; L =.longitud total de la poligonal.

Aplicando las formulas para calcular D $_{0}$ y D $_{E}$ de la pag. 72 se obtiene la siguiente tabla.

Tabla V.7

Lado	D _o	· D _E
1	33 832.39	33 832.434
2	16 149.133	16 149.137
3	28 740.266	28 740.290
4.	19 017.152	19 017.159
5.	6 884.376	6 884.376
. 6	17 353.056	17 353.061
7	15 174.994	15 174.998
8	23 633.572	23 633.586
9	18 231,799	18 231.805
10	16 955.494	16 955.499

V.2.3. Reducción de las Observaciones al Plano.

Para realizar el ajuste en el plano, es necesario que todos los valores conocidos (coordenadas fijas, distancias y direcciones) estén reducidos al plano. Al mismo tiempo que se van calculando los valores planos se pueden calcular las coordenadas aproximadas de los vértices donde no se conocen.

El procedimiento que se sigue para la poligonal, es similar para la triangulateración, y consiste en dos puntos importantes.

- Transformación de las coordenadas geodésicas fijas, a la proyección UTM.
- Obtención de las direcciones y distancias planas al mismo tiempo que se calculan las coordenadas aproximadas.

V.2.3.1. Transformación de las Coordenadas Geodésicas Fijas, al Plano.

Las fórmulas utilizadas, están referidas al Manual Técnico Nº19 del Army Map Service de los E.U., y a la pag. de esta Tesis.

V.2.3.1.1. Ejemplo de Cálculo de las Coordenadas UTM para el Vértice 391.

-Cálculo de Y.

V = I + IIp² + IIIp⁴ + A6

Datos para el cálculo.

9₃₉₁ = 23⁰59 03.1033 **A**₃₉₁ = 106⁰44 50.3427

= 0.006768658 2

= 0.006814784946

= 0.9996

1/sen1 = 206 264.80625

-Cálculo de I.

I = 8391 mo

8 = 6 367 399.68917x +391-32 365.18693 sen 391 cos 391 x $x(1 + 0.0042314080 \text{ sen}^2)_{391} + 0.0000222782 \text{ sen}^4)_{391} +$ + 0.0000001272 sen⁶ 7₃₉₁ + 0.0000000008 sen⁸ 9₃₉₁)

9 = 2.653 385.296

I = 2652323.942

-Cálculo de II

II = $\frac{\mathbf{r} \sec \mathbf{v}_{391} \cos \mathbf{v}_{391}}{2 \times 206 \ 264.80625}$

 $r = \frac{6 378 206.4}{(1 - 0.006768658 \text{ se.}^2_{\P_{391}})^{1/2}}$

r = 6 381 776.0355

6 381 776.0355 sen ♥₃₉₁ cos ♥₃₉₁ x D.9996 2 x 206 264.80625²

II = 2.784294409 X 10-5

-Cálculo de III r sen 9391 cos 9 391 . (5-tan 9391+9E' 2cos 9391+4E' 4cos 493 24 x 206 264,806254

III = 2.2095109417 x 10-16

-Cálculo de p.

 $\sigma = \Delta A''$ segundos de arca.

AL - A391 - A0

۸₀≈ 105⁰

 $\Delta A = 106^{\circ} 44^{\circ} 50.3427 - 105^{\circ}$ $\Delta A = 1^{\circ} 44^{\circ} 50.3427$

 $\Delta A = p = 6 290.3427$

-Cálculo de A6.

A6 = p^6 sen φ_{391} cos φ_{391} (61 = 58tan φ_{391} + ten φ_{391} + 270 e 200 φ_{391}

 $\cos^2_{\phi_{391}} - 330e^{-2} \operatorname{sen}^2_{\phi_{391}} \cdot m_o / (720 \times 206 264.80625^6)$

A6 = 0.00093562106

 $Y = 2.652.323.942 + 2.784294409 \times 10^{-5} \times 6290.3427^{2} +$

+ 2.2095109417× 10⁻¹⁶×6290.3427⁴ +

+ 0.00009356216

Y = 2 653 425.989

-Cálculo de X

$$X' = IVp + Vp^3 + B5$$

Datos para el cálculo

 $m_n = 0.9996$

p = 6 290.3427

e'²= 0.006814784946

1/sen1"=206 264.80625

-Cálculo de IV.

$$IV = \frac{r \cos 9391 \times m_0}{206 264.80625}$$

IV = 28.257006593

-Cálculo de V.

$$r cos^3 \varphi_{391} (1-tan^2 \varphi_{391} + e^{t^2 cos^2 \varphi_{391}}) \cdot m_o / (5 \times 206 \ 264.80625^3)$$

 $V = 74.639876378 \times 10^{-12}$

-Cálculo de 85.

$$B5 = p^{5} \cdot r \cdot cos^{5} \varphi_{391}(5-18tan^{2}\varphi_{391} + tan^{4}\varphi_{391} + 14e^{12}cos^{2}\varphi_{391} - 58e^{12}sen^{2}\varphi_{391}) \cdot m_{o} / 120 \times 206 \cdot 264.80625^{5}$$

85 =0.00133088

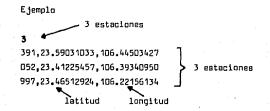
$$X' = 28.257006593 \times 6290.3427 + 74.63987637 \times 10^{-12} \times 6290.342^{3} + 0.00133088$$

X' = 177 764.837;

X = 322235.163

CALCULA	IFE COURDS MADAS	UT	PARTE	EMDI
ne.	COURSETADAS GEO)C+4	FICAS	

EST.		LAT.				I'U	gg.		w.c.		PEG.			¥	
391 997 LAM DUS RAY GUM	2220000	41 46 46 46 46 46 46 46 46 46 46 46 46 46	3.1013 27.5457 27.5457 30.5510 6.6180 15.6386 17.1500	*****	100	14028 444	16.3421 14.0951 15.0134 17.5766 47.5766	:	105 105 105 105 105	:	1300	322235.1657 330792.0775 360307.2606 427477.9183 39337.5004 408767.0012 476500.7203	:	205 1425 - 949 1 202 00 94 - 571 1 203 00 94 - 571 1 314 13 09 - 76 9 314 13 09 - 76 9 310 29 99 - 20 04	



V.2.3.1.2. Cálculo de les Coordenadas UTM usando un Programa de Computadora, en la VAX/VMS del CECAFI de la Facultad.

Por medio de este programa se obtiene el meridiano central(M.C.) la región (R.E.) en que se encuentra el levantamiento y los valores (Y,X) en la proyección UTM.

Los datos se pueden introducir por medio de un archivo de datos de la siguiente manera:

- 1) Número de estaciones por calcular.
- 2) Estación, Latitud, Longitud.

Coordenadas UTM de 391,052 y 997.

EST.	M.C.	REG.	X	γ
391	105	13	322235.1657	2653425.9891
52	105	13	330792.0775	2620694.5911
997	105	13	360307.2606	2630493.3298

V.2.3.2. Ejemplo de Câlculo de las Coordenadas Aproximadas del Vér tice 998.

En la figura V.3 de la siguiente página se muestra un croquis que nos permite ver la solución del problema, y además nos sirve de apoyo para el diagráma de flujo de la pag.84 el cual también está basado en los diagramas de flujo de las pags. 53 y 54.

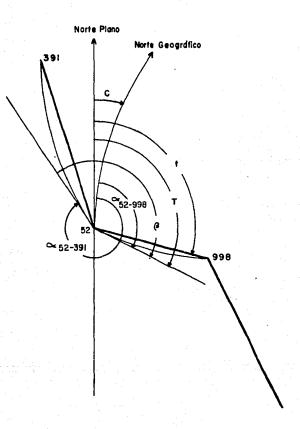
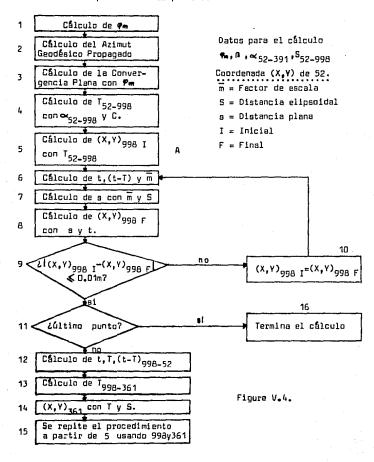



Figura V.3

Diagrama de flujo para el cálculo de las coordenadas aproximadas del punto 998

-Datos para el cálculo.

*
Estos valores difieren ligeramente de los calculados
porque se calcularon en una
Texos 59, la diferencia se
debe a errores de truncamien

2.- Cálculo del Azimut Geodésico propagado 52-998 .

3.- Cálculo de la convergencia.

Datos para el cálculo; ${m \phi}_{52}$, ${m \lambda}_{52}$ y e'².

La fórmula utilizada está referida a la pag.47de esta Tesis, y es la siquiente:

to.

$$C = a7 1 + a9 1^3 + a11 1^5$$

C = valor de la convergencia.

1 = Diferencia de longitud entre el meridiano central y el punto considerado.

$$1 = A - A_0$$

 $1 = 106^0 39^1 34.1 - 105$

$$1 = 1^0 39' 34.1'$$

```
l debe estar expresado en radianes.
     1 = 0.0289633; 1^3 = 0.0000243; 1^5 = 2.038153 \times 10^{-8}
     a7 = sen # 52 =sen 23 41 22.5
     a7 = 0.4017812979
     89 * 1/3 sen $52 cos $\Phi_{52}(1 + 3e^1\frac{2}{\cos}^2 \Phi_{52} + 2e^1\frac{4}{\cos}^4 \Phi)$
     a9 = 0.1142402288
     a11= 1/15 sen 🕶 5,00s<sup>2</sup> 7 5,0(=1 + 3cos<sup>2</sup> 7 5,0 + ......)
     m11= D_0340452368
     C = 0.4017812979 \times 0.0289633 + 0.1142402288 \times 0.0000243 +
                                           + 0.0340452368 x 2.038153 x 10<sup>-8</sup>
     C<sub>52</sub>= 40 00.85
4.- Cálculo del Azimut Geodésico Proyectado (T<sub>52-998</sub>)
     T<sub>52-998</sub> = \infty_{52-998} + C<sub>52</sub>
               # 116 47 14 7 + 40 00 85
     T<sub>52</sub>-998 = 117° 27' 15"55
5.- Cálculo de X<sub>998 I</sub> y Y<sub>998 I</sub>.
     X<sub>998</sub> x<sub>52</sub> + 5<sub>52-998</sub> sen T<sub>52-998</sub>
          = 330 792.106 + 16 147.919 sen 1170 27 15.55
     X<sub>998 T</sub> = 345,122.506
     Y99A I = Y52 + 552-99A COS T52-99A
            = 2620694.577 + 16147.9189 cos 117º 27 15.55
            = 2613249.158
     Y 998
6.- Cálculo de (t-T), t \sqrt{m}.
    -Câlculo de (t-T).
     (t-T)_{52-998} = \frac{\kappa}{3\pi^2} (Y_{52}-Y_{998})(2\cdot X_{52} + X_{998}-1500000)
```

Ym = 2.616.999.298 -Cálculo de x' y y'.

```
-Cálculo de vº
      Vm^2 = 1 + e^{32}cos^2 \%m = 1 + 0.006814784946 \times cos^2 23^0 30^4
      Vm^2 = 1.0028615201
               162095,4906 x 1,0028615201
0,9996 x 6399902,552 V 2
        v" = 0.0180193144
      -Cálculo de los valores D1, D2 y D3.
       D1 = 4et 2sen m cos m Vm-5
           = 4x0.006814784946 x sen 23<sup>d</sup> 30<sup>t</sup> cos 23<sup>d</sup> 30<sup>t</sup> x 1.00286152<sup>-5</sup>
        D1 = 0.0098266339
       D2 = 2e^{\frac{1}{2}}(1-2 \cos^2 \Phi_m)Vm^{-2}
           = 2 x 0.006814784946 x (1-2 cos<sup>2</sup>23° 30')1.0028615201<sup>-2</sup>
       02 = -0.0092423741
       D3 = 1/6 (1 + 4e^{2} \cos^{2} \Phi_{m})
           = 1/6 (1 + 4 \times 0.0068147849 \times cos 23^{\circ} 30^{\circ})
        D3 = 0.1704874857
      -Cálculo del factor de escala.
       \overline{m} = 0.9996(1 + 0.0180193144(1-0.0098266339 \times 0.0028571658-
                                             -0.0092423741 \times 0.0028571658^{2} +
                                             +D. 1704874857 x D. 0180193144)
       m = 0.9999245746
7.- Cálculo de s.
       s = m x S
       s = 0.9999245746 x 16149.137
        s = 16147.9189
8.- Cálculo de las coordenadas X<sub>998</sub> y Y<sub>998</sub> Finales.
       Xqqq = Xq2+ s.sen t
              = 330792.106 + 16147.9189 sen 117° 27 12.434
       X_{qqA} = 345121.539
```

-169207.894)

$$Y_{998} = Y_{52} + s \cdot cos t$$

= 2620694.577 + 16147.9189 cos 117⁰ 27 12.434
 $Y_{998} = 2613249.939$

9.- Comparación entre los valores iniciales y los finales.

Coordenadas de 998

In	iciales	Fina	les	Difer	encia
X	Υ	×	γ	Х	Υ
345122.505	2613249.158	345121.537	2613249.939	0.032	0.78

Segunda Iteración

- 10.- El velor inicial se desecha v se utiliza el valor final como inicial, se pasa al punto 6.
- Cálculo de (t-T)_{52-99A}, t_{52-99A} y m.

$$(t-T) = \frac{25.468 \times 10^{-10}}{3 \times 0.9996^2}$$
 (2620694.577 - 2613249.939)(2 × 330792.106 + 345121.537 - 1500000)

$$(t-T) = -3.120$$

-Cálculo de t.

$$t = 117^{\circ} 27^{\circ} 12.430$$

-Cálculo de m.

-Cálculo de Xm.Ym.x* v v*.

$$Xm = 1/3 (169207.894^2 + 169207.894 \times 154878.46 + 154878.46^2)$$

Xm = 162095.967

x' =0.0028572259

$$y' = \frac{162095.967 \times 1.0028615201}{0.9996 \times 6399902.552 \text{ V}^2}$$

 $y'' = 0.0180193674$

-Câlcula de m.

7-- Cálculo de a.

s = 16147.919

8.- Cálculo de las coordenadas finales del punto 998.

$$X_{qqq} = 330792.106 + 16149.137 \text{ sen } 117^0 27^1 12.43$$

 $X_{000} = 345121.537$

 $Y_{000} = 2613249.936$

Comparación de los valores iniciales y finales del vertice 998.
 Coordenadas del cunto 998.

Ini	ciales	Fina	Diferencia		
х	γ	Х	Y	Х	γ
345121.537	2613249.939	345121.537	2613249.936	0.00	0.003

V.2.3.3. Cálculo de las Coordenadas Aproximadas entre los vértices 52 y 997.

El cálculo se realizó por medio de un programa de computadora en Basic, algunas características de este programa son las siguientes:

Para proporcionarle datos al programa, se puede hacer un archivo de datos, o se puede correr el programa y proporcionar los datos conforme se vayan solicitando.

Ejemplo para cuando se van solicitando los datos.

1.- Aparece

Teclear 1 PARA UNA EST. FIJA//2 PARA DOS//M.C.//LAT.M.

En el caso de que se parta de una estación fija y un azimut conocido, se pondrá 1.

Si se parte de dos estaciones fijas, se pondrá 2.

M.C. = Meridiano Central.

LAT.M. = Latitud Media.

Los valores angulares se deben teclear con un punto decimal. 23° 40° 15° .6 = 23.40156

Para el caso de la poligonal se teclea lo siguiente. 1.105.23.3000

2.- Aparece

TECLEAR: EST//(X,Y) EST.//LAT.EST.//LONG.EST. Se Teclea. 52,330792.106.2620694.577.23.41225.106.39341

3.- Aparece

PUNTO AD. //DIST.//AZ. Se teclea. 998.16149.137.116.47147

4.- Aparece

TECLEAR: 1 SI EL AZ. SE MIDIO DEL SUR//O SI SE MIDIO DEL NORTE Se teclea.

0

5.- Aparece

TECLEAR: 1 PARA TERMINAR//2 PARA CAMBIAR EST.//3 CONTINUAR EN EST. Se teclea

2 .

```
6.- Aparece
```

PUNTO AD.//DIST//DIR. Se teclea.

0361,28740.29,218.24373

De aqui en adelante aparecen 5 y 6 en forma alternada hasta terminar.

Ejemplo para cuando se forma un archivo de datos.

Basandonos en la secuencia anterior del 1 al 6, se teclean los siguientes datos.

```
1,105,23.3000
0052,330792.106,2620694.577,23.41225,106.39341
0998,16149.137,116.47147
0
2
0361,28740.29,218.24373
2
0371,19017.159,193.01418
2
4566,6884.376,263.54347
2
4575,17353.061,21.35107
2
0999,15174.998,120.30169
2
0391,23633.586,129.17297
2
0401,18231.805,153.0028
2
0997,16955.499,220.05302
```

			CALCULA	NE DIATABLE	AR. AZIMUTER	CONSTANA	R DIAMAR					
					KOYFECTON UTA							
												93
		FRITALES. 105	2,400 0 LONG.	PFOIAR 0		AT 1 TIPO 0	116 47 14,	700 0				
						27,1-51-		,,00				
FST.	ν	h.nas.	nie.		*	**		•		(46-4)	DP	
0057		16149.1470	42	: 145797:10	99 : 3679524:	1379 • 117 2	7 12,434 •	117 27	15,514	-3,170	10147.919	
0498				0 345121.53	77 * 261 1749.	116.1						
	9042	**********	9 00 80		77 : 261 1749:						*********	
	. 1450	7#74N.79N B	718 74 37, 100	154871.41	19 • 2587024.1	757 • 155 5	16,614 *	155 51	46,785	-10,040 *	78714,680	
8161	999		8 80 48	1 120777-11	19 : 3293934:	222		***	94 705	9,419		
	9971 4	19017.159 0	193 1 41.90		75 · 256+368,					-6,748	19014.702	
6371	1410		0 00 00	: 152275:23	74 : 3387298:	7757 o 140 4	1,837 0	340 52	45.147	6,648	*********	
	4504 0	ARRE, 374 0	769 94 94,700	151946.51	68 · 7546737.	237 • 252 4	7 20,111 *	257 47	29,847	-0,715	4801,356	
4566				2 353754-53	: : 33£0147;	1227						
	0979 4878 a	17959 OA1 0	21 35 10 70		70 0 7565048.					-0,473	17350,171	
	••••	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									*********	
4575	4466	*********		171744:01	70 . 2565708.	iii - 274 2	30,591 0	274 27	36,137	0,494		
	1999 6	15174,998 0	170 30 14,90	0 0 179940.91	05 + 757745),(1914 + 14 5	7 59,079 •	34 57	55,017	3,992	15171,830	
0004				9 379940.91	45 : 2577451;	1114		-				
	4979 		0 00 00							-3,900	23626.579	
		/ to 11.740 ·	129 17 29,74		- * * ***********	146 1	37,/11	300 17	33,610	7,081		
0.181		**********	0 00 00	: 1/149A:47	13 : 2579147:	1712 . 164 .	30.711 0	164 18	46.917	-7.104 9		
	8401 6	14721.805 0	151 0 29,000		IR + 761 3559,	1041 + 317 1	19,349 .	317 11	14.917	4,493 (10228,412	
0401												
,,400	0381	********	0 00 00	· 171444:47	#R . 261 3550;	1672 • 177 1	11,360 .	117 11	73,943	-4,59)	*********	

Tabla V.8 Distancias, Direcciones y Coordenadas Planas Aproximadas.

	Est.	P-0.	Az.Plano	Dist.Plana	X	Y
Π	52	998	117 27 12 434	16147.919	330792.106	2620694.577
Н	998	361	155 51 36.614	28736.680	345121.538	2613249.936
	361	371	168 53 01.837	19014.242	356873.832	2587026.276
	371	4566	252 47 29.111	6883.356	360539.753	2568368.772
	4566	4575	94 22 38.591	17350.171	353964.537	2566332.324
	4575	999	34 52 59.029	15171.830	371264.097	2565008.063
Ш	999	381	344 10 39.711	23628.571	379940.919	2577453.833
	381	401	317 11 19.369	18228.481	373498.476	2600187.163
П	401	997	357 17.00.169	16952.780	361110.659	2613559.504
	997				360307.162	2630493.233

W V.24. Aguste de la Poligonal en el Plano por Métodos Topográficos.

El ajuste en el plano se puede realizár por cualquiér método topograpráfico. El método mas común, es el de la brújula, donde los errores ummangulares, tienen un efecto semejante a los de cadenamiento.

La correcciones a las proyecciones se establecen por la siguiente rescelación:

$$Corr_{x_{y}} = (\frac{E_{x_{y}}}{L})1$$

E_X ∗Error en x å en y

L *længitud total del levantamiento.

1 -Longitud del lado que se trate.

	1		_	Proyecciones min corregir		Correcciones		Proyec Corre		Coordenadas UTM corregidas	
Est.	P.O.	Dist.Flans	Az Plano	X	Y	X	٧.	X	٧	x	٧
52	998	16147,919	117 27 12.434	14329,433	-7444.63B	0.010	D.010	14329.443	- 7444.628	330792.106	2620294.577
998	361	28736.680	155 59 36,614	11752,297	-26223 •66	0.018	0.017	11752.315	-26223.642	345121.549	2613249.950
361	371	19014,242	168 53 01.837	3665.924	-18657,500	0.012	0.011	3665.936	-16657.489	356873.864	2587026+310
371	4566	6883,356	252 47 29.111	-6575.216	-2036,449	0.004	0.004	-6575.212	- 2036.445	360539.600	2568368.820
4566	4575	17350,171	94 22 38,591	17299,560	-1324.260	0.011	0.010	17299.571	- 1324.249	353964.588	2566332,374
4575	999	15171.830	34 52 59,029	8676,820	12445.771	0.009	0.009	8676,829	12445,780	371264.159	25650 08 ,125
999	381	23628,571	344 10 39,711	-6442.443	22733.330	0.015	0.014	-6442.420	22733.345	377740.788	2577453.905
381	401	18228.481	317 11 19,369	12387.822	13372.331	0.011	0.011	-12387.811	13372.342	373498.561	2600187,250
401	997	16952,780	357 17 00.169	- 803,501	16933,728	0.010	0.010	- 803,491	16933,738	361110.750	2613559.592

Ex = 360307,162-360307,260

Ey = 0.096n; Ey = $2630493_0233 - 2630493_0329$ ET = 0.138n; ET = $(0_098^2 + 0.096^2)^{1/2}$

L - 162 114; Precision -1/1174739

V.2.5. Elaboración de las Planillas UTM y Geodésica, a partir de los Datos Ajustados.

V.2.5.1 Elaboración de la Pianilla UTM.

Los datos para el cálculo son las coordenadas fijas y las coordenadas ajustadas.

Los datos de esta planilla son los siguientes:

Estación, punto observado, azimut plano (t), distancia plana, ángulo (t-T), azimut geodésico proyectado (T), convergencia de meridianos y el factor de escala m.

Las formulas utilizadas para el cálculo son las mismas utilizadas en cálculos anteriores.

Formulas.

-Cálculo de las distancia plana.

Dist. AB =
$$((x_A - x_B)^2 + (y_A - y_B)^2)^{1/2}$$

-Cálculo del Azimut Plano.

$$Az_{AB} = ang tan (X_A - X_B) / (Y_A - Y_B)$$

-Cálculo de (t-T)

$$(t-T) = \frac{\kappa}{3 m_0^2} (Y_A - Y_B) (2 X_A + X_B - 1500000)$$

-Cálculo del azimut geodésico proyectado (T).

$$T = t - (t-T)$$

-Cálculo de la convergencia.

$$C = a7 1 + a9 1^3 + a11 1^5 + \dots$$

l y los coeficientes se muestran en la página 47.

Para poder cálcular la convergencia con la fórmula mostrada, es necesario transformar las coordenadas UTM de cada punto a Goodésicas y así tener la latitud ajustada de cada punto. Las coordenadas geodésicas se muestran en la planilla de coordenadas geodésicas.

-Cálculo de los factores de escala.

Para facilitar el cálculo se puede aplicar la fórmula $\overline{m} = m_0 (1+y)^2$ que es una parte de la fórmula general y que nos dá una aproximación

de 0.6 partes por millón dentro de los límites de $\stackrel{+}{=}$ 2 $^{\circ}$ de latitud media y $\stackrel{+}{=}$ 3 $^{\circ}$ 30 $^{'}$ de longitud.

Fórmula

$$y' = X \cdot Vm^2 / m_a \cdot C \cdot \sqrt{2}$$

 $Vm^2 = 1 + e'cos^2 Tm$
 $X^2 = 1/3 (X_1^2 + X_1^2 X_2^2 + X_2^2)$
 $X^1 = X^2 - 500,000$

e¹² = 0-0068147849

 $m_{cr} = 0.9996$

C = 6399902.55159

♥m = 23⁰ 30

V.2.5.2. Elaboración de la Planilla Geodésica.

La Planilla Geodésica se puede calcular fácilmente usando los valores de la Planilla UTM.

-Cálculo de las Coordenadas Geodésicas.

El cálculo se realizó por medio de un programa de computadora que me fué facilitado por el Ing. Arvizu.

En el Tema III.2.3. de la pag.45, se muestran las fórmulas y la secuencia seguida para el cálculo.

-Cálculo de las Distancias Geodésicas-

-Cálculo de los Azimutes Directo e Inverso.

Al Este del Meridiano Central.

$$Az_{-}D_{1-2} = T_{1-2} + c_1$$
 $c = Convergencia$
 $Az_{-}I_{1-2} = T_{2-1} + c_2$ $de Meridianos$

Al Deste del Meridiano Central.

$$Az_{-1-2} = T_{1-2} - c_1$$

 $Az_{-1-2} = T_{2-1} - c_2$

1 12 1	Tab	la V.10 P	lonilla UTM	-Poligon	e1				
Est. P.O.	Coordenada	s Ajustadas	Distancia	Azimut	Plano			Convergen-	Factor
	х	Y	Plana	(t		(t-T)	T	cia seys.	de Escala a
52 -998	330792,106	2620694.577	16147.921	117027	12.264	-3,120	117 ⁰ 27 15.384	2400.853	0.99992457
998 -52		ł		297 27	12.264	3.030	297 27 09.234	2190.637	
995 -361	345121.549	2613249.950	28736,668	155 51	36.450	- 10.090	155 51 46.540	2190.637	0.9998744
351 -998		Į		335 51	36.45C	9.830	335 51 26.620	2001.749	
361 -371	356873.864	2587026.310	19014.233	168 53	01,602	-6.748	168 53 08.350	2001.749	0.99984663
371 -361		l		348 53	01.602	6.690	348 52 54.912	1934,788	
371-4566	360539,800	2568368.820	6883.351	252 47	29.012	-0.735	252 47 29.747	1934,788	0.99985177
4566-371		ĺ		72 47	29,012	0.747	252 47 28.265	2024,178	
4566-4575	353964.588	2566332.374	17350.180	94 22	38.340	-0.473	94 22 38.813	2024,178	0.99983348
4575-4566				274 22	38.340	0.454	274 22 37.886	1783,445	
4575-999	371264.159	2565008, 125	15171.851	34 52	58.971	3.992	34 52 54.979	1783.445	0.99979124
999-4575				214 52	58.971	-3.900	214 53 02.871	1672.290	
999- 381	379940.988	2577453.905	23628.577	344 10	39.841	7.081	344 10 32.760	1672,290	0.99978778
381 -999			1	164 10	39.841	-7.206	164 10 47.047	1779,300	
381 -401	373498.561	2600187.250	18228.475	317 11	19.422	4.453	317 11 14.969	1779,388	0.99981767
401 - 381				137 11	19.422	-4.593	137 11 24.015	1964.832	
401 -997	361110.750	2613559.592	16952.792	357 17	00,143	6.006	357 16 54.137	1964.832	0.99983967
997 -401				177 17	00.143	-6.018	177 17 06.161	1990.563	

99 Planilla Gendésica - Policonal

		INDIR A.II	LIBULLIA GENGER	ica - Pollyo	181	
4	Est. P.O.	Latitud	Longitud	Distancia	Az.D	.Az.I
	52 - 998	23 ⁰ 41 22.5457	106 ⁰ 39 34.0941	16149.139	116 ⁰ 47 14.531	296 ⁰ 50 38.597
	998 - 361	23 37 25.7301	106 31 05.5253	28740.278	155 15 15.903	335 18 04.871
.	361 - 371	23 23 17.1024	106 24 01.8748	19017.150	168 19 46.601	348 20 40.124
1	371 -4566	23 13 11.6630	106 21 46.5793	6884.372	252 25 41.553	252 13 44.087
1	4566 -4575	23 12 03.4038	106 25 37,1552	17353.070	93 48 54.635	273 52 54.441
	4575 - 999	23 11 25.5411	106 15 28.3185	15175.019	. 34 23 11.534	214 25 10.581
	999 - 381	23 18 12.5609	106 10 26.7007	23633.593	343 42 40.47	163 41 07.659
	381 - 401	23 30 29,9374	106 14 20.3424	18231.799	316 41 35.581	136 64 42.175
	401 - 997	23 37 41.0323	106 21 41.5152	16955.510	356 44 09.305	176 43 55 598
-	997	23 46 51.2924	106 22 15.6134		l	

V.3 CALCULOS Y AJUSTE EN EL PLANO DE UNA TRIANGULATERACION GEODESICA

V.3.1. Descripción del Levantamiento.

Las caracteristicas generales de este levantamiento son las siguien tes:

Fué levantado en Chihuahua a una latitud media de 30° 15 $^{\circ}$ Norte y una longitud media de 105° 46 $^{\circ}$ Este.

La extensión del levantamiento en sentido E- ω es aproximadamente de 1° y en el sentido N-S, de aproximadamente 50° .

La triangulateración está formada por tres cuadriláteros con diagonales, en donde hay cuatro vértices fijos y cuatro vértices por calcular; los vértices fijos son: Lamentos.2, Rayo y Gomeños.

Todas las distancias se midieron con Electrotape DM-20 y todos los ángulos con un Teodolito Wild T-2. Los datos de las distancias corregidas geométricamente, los valores angulares y los pesos, me fueron facilitados por el Ing. Victor Magaña, los cuales se pueden consultar en su Tesis "Ajuste en el Elipsoide de Redes Geodésicas". Los datos originales provienen de un levantamiento realizado por PEMEX.

Datos de los puntos de partida y llegada.

Tabla V.12 Coordenadas Fijas

Estación	Latitud	Longitud	Elevación
2	30 ⁰ 39 06.818	106 ⁰ 06 47.526	2154.21
Lamentos	30 34 39.553	105 48 32.284	1976.06
Rayo	29 53 15.678	105 56 43.601	1952.82
Gomeños	29 51 32.150	105 14 35.870	2216.90

En el levantamiento existen 25 ángulos medidos y 16 distancias medidos, dos de las cuales deben de haber servido para efectos de comprobación.

En la siguiente página se muestra un croquis del levantamiento.

Croquis del Levantamiento

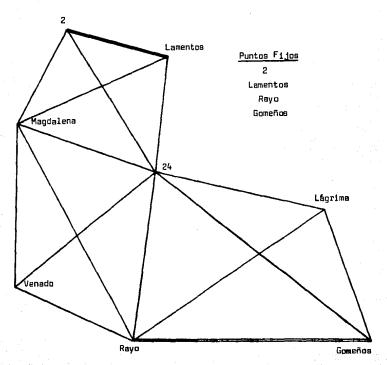


Figura V.5

V.3.2. Datos del Levantamiento.

V.3.2.1. Distancias Reducidas el Elipsoide.

Un ejemplo de la reducción al elipsoide se puede ver en el caso de la poligonal en la página 71.

Tabla V.13 Distancias Corregidas Geométricamente.

Table 19 01 Planticida Dollegrana deametrica		
Lado	Distancia	Peso
2 -Magdalena	28752.001	18.58
2 -Lamentos	30309.045	16.75
2 - 24	46744.102	7.10
Lamentos -Magdalena	47484.761	6.88
Lamentos - 24	32074.470	14.98
Magdalena- 24	42855.719	8.44
Magdalena-Rayo	68311.945	3.33
Magdalena-Venado	44499.315	7.83
24 -Venado	50326.119	6.14
Venado - Rayo	36804.360	11.41
24 – Rayo	45536.403	7.48
24 – Lágrima	49043.905	6.45
24 - Gomenos	76401.061	2.67
Rayo – Lágrima	64144.290	3.78
Rayo - Gomeños	67908.964	3.37
Gomeños - Lágrima	37150.363	11.21

V.3.2.2 Angulos Horizontales Observados.

Los ángulos fueron medidos con Teodolito Wild T-2, 16veces cada ángulo en posición directa e inversa, obteniendose el valor probable y el peso de cada ángulo.

Los ángulos de la tabla que se muestra a continuación se convirtieron en direcciones debido a que el método de ajuste fué por direcciones y ademas son necesarias para poder cálcular las coordenadas aproxi madas por medio de un programa de computadora.

Tabla V.14 Angulos Horizontales

Angulo	Peso			
49 ⁰ 36 20.406	1.896484			
32 30 49.993	1.298542			
23 41 47.855	0.211630			
36 11 09.459	0.993306			
32 02 31.352	1.061605			
61 41 51.294	0.079329			
44 48 27.100	0.120446			
56 22 00.480	0.182402			
53 18 24.481	1.239268			
60 40 59.808	0.708148			
40 50 27,000	0.536489			
29 29 15.107	0.309848			
42 55 20.000	0.380442			
64 04 25.011	0.205644			
37 37 07.878	0.473964			
41 11 33.922	0.61 9351			
45 00 06.397	0.127584			
79 15 33.239	0.113462			
36 31 22.363	1.308044			
37 59 10.696	1.923763			
37 06 56.706	0.313207			
40 03 20.080	0.067367			
52 29 20.134	0.176363			
61 38 14.152	0.247081			
35 23 06.684	0.307694			
	49°36 20.406 32 30 49.993 23 41 47.855 36 11 09.459 32 02 31.352 61 41 51.294 44 48 27.100 56 22 00.480 53 18 24.481 60 40 59.808 40 50 27.000 29 29 15.107 42 55 20.000 64 04 25.011 37 37 07.878 41 11 33.922 45 00 06.397 79 15 33.239 36 31 22.363 37 59 10.696 37 06 56.706 40 03 20.080 52 29 20.134 61 38 14.152			

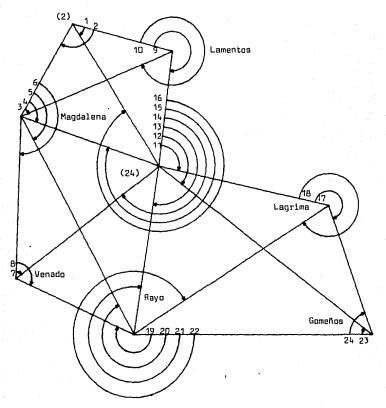


Figura V.6

Tabla V.15

<u>Direcciones obtenidas a partir de los ángulos</u>

<u>observados</u>

	Direcciones	Observadas
(1)		42 ⁰ 55 20 000
(2)		106 59 45.000
(3)		37 37 07.878
(4)		78 48 41.798
(5)		119 39 08.798
(6)		149 08 23.920
(7)		53 18 24.481
(8)		113 59 24.289
(9)		262 58 39.164
(10)		324 36 53.316
(11)		96 15 36.484
(12)		119 57 24.340
(13)		181 39 15.634
(14)		226 27 42.714
(15)		282 49 43.210
(16)		319 56 39.920
(17)		235 44 20.364
(18)		314 59 53,603
(19)		203 22 16.542
(20)		239 53 38,905
(21)		277 52 49.601
(22)		327 29 10,00
(23)		36 11 09.459
(24)		68 13 40.811

V.3.3. Reducción de las Observaciones al Plano.

V.3.3.1. Reducción de las Coordenadas Fijas al Plano.

La reducción de coordenadas fijas al plano, se realizó por medio de un programa de computadora . Referencia en pag. 81.

Un ejemplo de cálculo se muestra en la transformación de coordenadas geodésicas a UTM para la poligonal, en la pag. 78.

	.16 Coordenadas Pla	nas ul M
Est.	X	γ
2	393337.500	3391369.789
Lamentos	422429.918	3382893.159
Rayo	408707.603	3306536.188
Gomeños	476500.920	3302999.260

Tabla V.16 Coordenadas Planas UTM

V.3.3.2. Propagación de las Coordenadas Fijas , para el Cálculo de las Aproximadas.

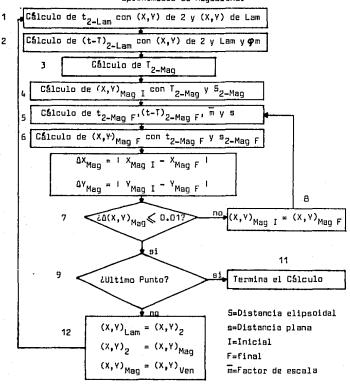
V.3.3.2.1. Ejemplo de Cálculo de las Coordens das Aproximadas del -Vértice Magdalena.

En la siguiente página se muestra la figure $V_0.7$ que nos permite visualizar la secuencia que se debe seguir en el cálculo, además en la pago 108 se muestra un diagrama de flujo que nos va indicando la secuencia para realizar el cálculo.


-Datos para el cálculo 9m = 30°15'19" X₂ = 393337.500 Y₂ =3391369.789 X_{Lam} =422429.918 Y_{Lam} =3382893.159 S_{2-Mag} = 28752.001 **2-Lam-Mag**106°59'45.00

e12=0. COG814784946

m_o =0.9996


C =6399902**.**552

Cálculo de las Coordenadas Aproximadas del Vértice Magdalena

Finura V.7

Diagrama de flujo para el cálculo de las coordenadas aproximadas de Magdalena.

Los datos de partida son:

Las fórmulas utilizadas en el cálculo estan referidas a las páginas 47,49,50 y 51.

2.-Cálculo del valor (t-T)_{2-Lam}

$$(t-T)_{2-Lam} = \frac{\kappa}{3 \times 0.9996^2} (Y_2-Y_{Lam}) (2 \cdot X_2 + X_{Lam} - 1500000)$$

$$K = \left(\frac{321.14}{6399902.5516} \left(1 + 0.006814784946 \cos^2 30^015^{'}19^{''}\right)\right)^2$$

$$K = 25.4359 \times 10^{-10}$$

$$(t-T) = \frac{25.4359 \times 10^{-10}}{3 \times 0.9996} \frac{(3391369.789-3382893.159)}{(2 \times 393337.5+422429.918 - 1500000)}$$

3.-Cálculo de T_{2-Mao}

$$T_{2-Mag} = T_{2-Lam} + Dir_{2-Lam-Mag}$$
; $T_{2-Lam} = t_{2-Lam} - (t-1)_{2-Lam} = 106^{D}14^{'}40.16 + 2.092$
 $T_{2-Mag} = 106 14 42.252 + 106 59 45.00$
 $T_{2-Mag} = 213^{D}14^{'}27.252$

4.-Cálculo de las coordenadas aproximadas iniciales del vértice Magdalena.

Xm= 114633.179

= -122423.21

$$Y_{\text{Mag I}}^{-Y_2} \cdot (X_{\text{Mag I}}^{\bullet} - X_2^{\bullet}) / (X_{\text{Mag I}}^{\bullet} - X_2^{\bullet})$$

Ym = 3379208.2743

```
-Cálculo de x' v de v'.
 x' = (Ym - Bm)/(m_m \times C)
-Cálculo de 8m para 9m = 30°15 19"
 Bm = 6367399.6892 x ♥m = -32365.18693 x sen ♥m x cos ♥ m x
       \times (1 + 0.0042314080 \times sen<sup>2</sup>\Psim + 0.0000222782 sen<sup>4</sup>\Psi m +
       + 0.0000001272 sen<sup>6</sup> 9m + 0.0000000008 sen<sup>8</sup> 9m)
 Bm = 3346891.7094
 x' = (3379208.2743-3346891.7094)/(0.9996 \times 6399902.5516)
 x' = 0.0050515608
 v' = Xm \cdot Vm^2 / 0.9996 \times 6399902.5516 \sqrt{2}
-Cálculo de V2
 V_{-}^{2} = 1 + 0.006814784946 \cos^{2} 30^{0}15^{1}19^{''}
 V = 1.00253914
 v' = 0.0127349839
-Cálculo de los factores D1,02 y D3.
 D1=4 x 0.006814784946 x sen 30 15 19 cos 30 15 19 / 1.002539145
 D1 = 0.0117143313
 D_2 = 2 \times 0.006814784946 \times (1-2cos^2 30^0 15^1 19^0)/1.00253914^2
 D2 = -0.0066753932
 D3 = 1/6 (1 + 4 \times 0.0068147849 \cos^2 30^{\circ}15^{\circ}19^{\circ})
 03 = 0.1700564843
 \overline{m} = 1 + 0.012734984^2 \times (1 - 0.0117143313 \times 0.00505156 -
                                 - 0.0066753932 x 0.0050515<sup>2</sup> +
                                 + 0.17005648 \times 0.012734984^{2}
 m = 0.9997621098
-Cálculo de s<sub>2-Mao</sub>
 s = \overline{m} \times S_{2-Man} = 0.9997621098 \times 28752.001
  s = 28745.1612
```

6.-Cálculo de las coordenadas finales del vértice Magdalena.

$$X_{Map} = 393337.5 + 28745.1612 \times sen 213^{0}14^{1}20.401$$

X_{Mag} = 377581.339

Y_{Meg} = 3391369.789 + 28745.1612 x cos 213⁰14 20.401

Y_{Maq} = 3367327.5841

7.-Comparación entre las coordenadas iniciales y las finales.

Coordenadas de Magdalena

Ini	ciales	Fina	les	Dife	rencia
X	γ	х	γ	Х	Y
377576.7906	3367322.3868	377581.3385	3367327.5841	4.55	5.194

- 8.-El valor inicial se deseche y se utiliza el valor final como inicial, se pasa al punto 5
- 5.-Câlculo de $(t-T)_{2-Man\ F}$ Ref. pag.110 inciso (5).

$$(t-T)_{2-Mag} F = \frac{25.435 \times 10^{10}}{3 \times 0.9996^2}$$
 (3391369.789-3367327.58) • (2 x 393337.5+ + 377581.34 - 1500000)

$$(t-T) = -6.849$$

-Cálculo de Xm y Ym para el cálculo de x' y y'. Ref. pag. 110 inciso 5.

$$x^2 = 1/3 (106662.5^2 + 106662.5 \times 122418.66 + 122418.66^2)$$

X = 114630.854

Y = 3367327.5841

$$x' = \frac{3367327.5841 - 3346891.7094}{0.9996 \times 6399902.5516}$$

 $x^{\dagger} = 0.0050519774$

$$y' = \frac{114630.854 \times 1.00253914^2}{0.9996 \times 6399902.5516 \sqrt{2}}$$

y' = 0.0127347257

m = 0.9996(1+0.0127347257²(1-0.0117143313 x 0.0050519774 -0.0066753932 x 0.0050519774 + 0.1700564843 x 0.0127347257²)

m = 0.9997621032

-Cálculo de s_{2-Mag}

 $a_{2-Mag} = 0.9997621032 \times 28752.001$

s_{2-Mag} = 28745.16099

6.-Cálculo de las coordenadas finales del vértice Magdalena.

$$X_{\text{Man F}} = 393337.5 + 28745.16099 \times \text{sen } 213^{\circ}14^{\circ}20.401$$

 $X_{Mag F} = 377581.3384$

Y_{Man F} = 3391369.789 + 28745.16099 x cos 213014 20.401

Y_{Man F} = 3367327.584

7.-Comparación entre las coordenadas iniciales y finales.

Coordenadas de Magdalena

Inic	iales	Fina	les	Dife	rencia
X	Y	х	Υ	Х	Υ
377581.3385	3367327.5841	377581.3384	3367327.584	0.0001	0.0002

Como esta dentro de la tolerancia establecida, se pasa al punto 9.

9.-Para este ejemplo, Magdalena es el último punto, por lo que se termina con los cálculos. En el caso de que se quisiera continuar con otros puntos por ejemplo Venado; Magdalena y 2 se convierten en puntos de coordenadas fijas y venado el punto por calcular y se repite el procedimiento desde (1) pero ahora Magdalena es la estación, 2 el punto atrás y Venado el punto adelante.

V.3.3.2.2. Cálculo de las Coordenadas Aproximadas de todo el Levantamiento.

El cálculo de las coordenadas aproximadas se realizó por medio de un programa de computadora, calculandose todas las direcciones y las distancias planas. En la pag. 90 se hacen algunos comentarios de este programa.

El câlculo se realizó en forma de poligonal, partiendo de 2 para calcular Magdalena y Venado y cerrar en Rayo, y partiendo de Lamen — tos para calcular 24 y Lágrima y cerrar en Gomeños.

Croquis mostrando el trayecto que se siguió para el cálculo de coordenadas aproximadas y el origen y sentido de las direcciones usadas en el cálculo.

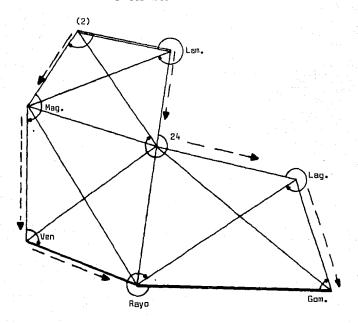


Figura V.9

							FCC10# 47	•									
HFPI	nuat q	Crasellai I	95	_LATITUD	HPU148	• <u>30 15</u>	19.000 .								115		
F87.	PR.	n, rieg,	nı	•.			*		TP			•	(1	P-7)	-		
LAW				66 60	1 42242	2-2121	1347401	1222 .									
		47484,741												.645 0	47471		
		17074,470															
																••••	
074	1.64	*******	- 1	08 80	: 23,747	7:45n4 :	1151741:	1595		11.009		3 4,563		.526 •		****	
	007 .	46744,107	• 11• 5	6 14.43B	. 17111	•.•144 •	179136#.	2701 •	329 1	51.747	• 329	9 44,483		. 266 •	46730	.602	
	B#4: 0	47854,714	. 287 4	4 43.210	. 17748	1.4665 .	. 1367 175.	1961 .	797 7	81.701	. 565	2 47,773	. ,	.928 •	47044	.200	
		101303150												.971 •			
		44410, 401												.738 •			
		78401.081														•	
	, ai.	49041,484		·		1.1074 *	1310100.	9414 4	105 21	10.013	• 105		• •7	.730 •	44636	.517	
LEC	074		- ^	98 An	1 41174	1.1474	1151743.	1110 .	785 21	30.013	. 285			.146 4			
		64144,790									•			. 149 0	64122	.016	
	604	17190.144	. 714 4	4 20,4na	. 47644	9.45A4 +	1101002.	917 .	161 12	84.641	. 101	2 \$7,408	7	.817 0	37135	.906	

											CCEOM														116		
PEPI	DIA	90.	CENTRAL tu	۰.		41170		PDIAM !	•	15	19.808	-	-	_			_						_		116		
PAT.	Pf	:	n.nea.		nte.									*	•				•		"	P-71		NP			
607					٠.		:	1911;	7.5004	:	112112	1:722		46		48.148	٠.					.007	٠.			_	
			44744,107 4	47	44	20,000	٠.		0.4475		115124			44		52.177		** ;	•	,,,,,,,	-10	.079	•		.602		
	*		79797,801 0	100	44	44,48	• •	17258	1,3394	•	316737	7,5844	• 7	17	14	20,447	. ,	11 1	• 2	7.252 •		. #49	•	20749	.161		
*46		_					•	12725	1-2384		110717	2-2844	_			20.407						. .	_				
		, 	47494.761	11		7.87	. :		7,7896 8.8174		110715	-				24 , 467 25 , 368				1,737 • 1,114 •	- 2	. 271		47471			
	07	٠.	47495,714 6	74	44	41,79		41779	7.9110		135124	4.0197	٠,	17	,	30.568			2 11	5.020 0	. •4	.470	•	47844	. 200		
	**		*****	***	19	A, KR			8.7645		110451					4.494			3 2		-11	. 310		68394	••••		
	¥,	• •	44409, 111	144	•	31,47	•	17471	•. 1500	•	112747	737	• •	.,	72	21.238	• 1	., ,	3 3.	1,152 •	-11	.927	•	44481	. 847		
44.0		e ·					:	1777.1	1:1500	:	132313	1:2727		,	,,	,,,j, ,		, ,	, ,	.710 •		. 492					
	02	٠.	40116.119 0	91	18	74,48		41724	1.6418	•	115124	4.1770	•	58		11.697	٠	55 4		1,719 +	1	.973	٠	80312	.727		
	**	٠.	16184.160 8	***	40	74,79	• •	48870	4, 8 047	•	110457	•,7431	٠,	16	"	20.017	• •	14 7	1 3	.578 +	-4	.710	٠	36794	.950		
0.771		ш	encon.	332	ш	112111	12		11111	117		****	110	ш	11		ш	6311	•	115311			ш	7713	ш	ыл	II.

FAT.	PO:	n.nes.	0	10.					**			•	•		(17-1)	100			
*47	GRE TPS (SAG (24 c LAG (14884, 16	701		* 3747	19,7809	• 3127	174.6411 41.9540	• 296 1 • 337 9 • 10 57	1 33.6	20 • 1	194 71 137 92 10 57	20,14	•	+0,619 4,254 15,733 10,064 0	• 367 • 682 4552	74, 7 74 74, 7 74 74, 81 1 7, 444 73, 610	•	
													- 1			<u> </u>			
31171	10 11 12	11711111111	*****	muzui	1000	13.11144	114561	1000	111111		11711	11111	117111	11111	1711111	1111/1	111111		1111

			-					१,८गा.स					(41)7 63 Eno 61		Unite	WATE.	r PERI	188					-					
		PIPI	AND	CYSTRAI	oi 10	٠	LAT	1 2U D	ngd La		10.1		.000.												!	18		
	78	٠. ا	n.	n,ul	a'.	•	ır.						•			TP				•		(17	-71	**				
	GR	;	AY 4 • AC U	76401.6 17190.	61 . 363 I	16 () 60 (9 40	00 439 0	4172	1907. 1707. 191.7	134 • 5634	7371	1747. ⁴	1017 .0934	• 149	1 17	11.50 25.890 34.31		777 (00 (361 (10 11. 10 10.	.170 • 187 • .939 •	0. 5.3	415 • 10 •	7637	3.114			
1		•				****		,,,,,,,			,,,,,,	. ,,,	W319.	. 1 743		, ,,	11.3		•		.120	•	.,, .		44,00	•		
20																												
E																												
E																												
5																												133
																												E
THE HERETHEN STATE																	Ņ.											
Ħ																												
																											- 15	F1

Haciendo estación en cada vértice, se calcularon todas las distancias planas (s), las direcciones geodésicas proyectadas (T), las direcciones planas (t), y el valor (t-T).

Al llegar a los vértices fijos Rayo y Gomeños, se determinó el error de cierre entre coordenadas propagadas en el plano y coordenadas fijas.

	UTM Pro	pagadas	МТП	Fijas	Difer	encia
Eat.	Х	Υ	Х	Y	Х	Υ
Ray	408708.806	3306539.703	408707.6032	3306536.188	1.20	3.52
Gom	476499.450	3303002.191	476500.9200	3302999.260	1.47	2.93

Considerando que cada uno de los valores va a tener que ser ajustado, las diferencias son tolerables, ya que en el ajuste, cada valor se acercará considerablemente al valor verdadero.

Los valores propagados que se muestran a continuación, son los obtenidos por el cálculo directo en forma de poligonal.

Tabla V.17 Coordenades Aproximades

Est.	X	Y
Mag	377581.338	3367327.584
Ven	375739.151	3322875.873
24	417292.550	3351243.211
Lag	464541.143	3338160.042

V. 3.4. Ajuste de la Triangulateración en el Plano por el Método de los Múnimos Guadrados.

Pera poderse realizar este ajuste es necesario formar el sistema matricial linealizado ΘΔX + W = V donde:

B = Matriz de Diseño.

AX = Vector de Incognitas

W = Vector de Términos Independientes.

V = Vector de Residuos.

Las incognitas AX ,se obtienen resolviendo el siguiente sistema.

$$\Delta X = -(B^T P B)^{-1}(B^T P W)$$

P = Matriz de los Pesos

Los residuos (V) nos pueden servir para cuestiones estadísticas.

El sistema $\Theta \Delta X + W = V$ proviene de un sistema de ecuaciones de observación linealizado como se comentó en el tema de ajustes.

En el sistema BAX + W = V

8 = Coeficientes del sistema de ecuaciones de observación linealiza do.

W = Diferencia entre los valores observados menos los calculados .

V.3.4.1. Cálculo de las Ecuaciones de Observación de Direcciones.
Fórmula Linealizada de Direcciones. Ref. Pag. 64.

$$V = \left(\frac{\Delta Y_{\underline{i},\underline{i}}}{D_{0}^{2}}\right) dx_{\underline{j}} + \left(\frac{\Delta X_{\underline{i}\underline{i}}}{D_{0}^{2}}\right) dy_{\underline{j}} + \left(\frac{\Delta Y_{\underline{i}\underline{i}}}{D_{0}^{2}}\right) dx_{\underline{i}} + \left(\frac{\Delta X_{\underline{i}\underline{i}}}{D_{0}^{2}}\right) dy_{\underline{i}} - dz + \left(\text{Dir. Plana Calculada - Dir.Plana - }Z_{0}\right)$$

V.3.4.1.1. Determinación de las Direcciones Calculadas.

Todas las direcciones están medidas a partir de una dirección des -conocida $Z_{\rm o}$, esta dirección es el origen de cada observación, pero por la forma en que se realizó el cálculo, esta dirección se trasladó al Norte sin afectar los resultados. Por esta razón se trabajó con Azimutes que són direcciones medidas a partir del Norte.

(Pir. Calc. - Dir. Obs. -
$$Z_0$$
) = (Az. Calc. - Az. Obs. - Z_0) = 0
-Calculo de las direcciones a partir del Norte

$$Dir_{1-2} = ang tan(X_2 - X_1)/(Y_2 - Y_1)$$

Tabla V.18 Direcciones a partir del Norte

	180.	la V.18 Direcciones		
Est	P.D.	Dirección Plana	Dirección Plana	Diferencia
		Observada	Calculada	
2	24	149 ⁰ 09 ¹ 52.173	149 ⁰ 09 48.000	-4. 173
2	Mag	213 14 20.402	213 14 20.402	0
Mag	2	33 14 20,402	33 14 20,402	0
Mag	Lam	70 51 25.368	70 51 34.815	9.447
Mag	24	112 02 50.560	112 05 58.555	7.995
Mag	Ray	152 53 04.694	152 53 12.316	7.622
Mag	Ven	182 22 23.230	182 22 23.230	٥
Ray	Ven	296 21 33.020	296 21 49,468	16.448
Ray	Mag	332 53 06.862	332 53 12.316	5.454
Ray	24	10 52 11.889	10 52 12.025	0.136
Ray	Lag	60 28 28.072	60 28 22.759	-5.313
Ven	Mag	2 22 23.230	2 22 23.230	a
- Ven	24	55 40 41.692	55 40 47.081	5.389
Ven	Ray	116 21 28.817	116 21 49.468	20.651
Lam	24	189 13 11.089	189 13 11.089	0
Lam	Mag	250 51 27.926	250 51 34.815	6.889
24	Lam	9 13 11.089	9 13 11.089	0
24	Lag	105 28 38.813	105 28 38.813	0
24	Gom	129 10 21.170	129 10 25.365	4.195
24	Ray	190 52 10.455	190 52 12.025	1,570
24	Ven	235 40 40.300	235 40 47.081	6,781
24	Mag	292 02 51,701	292 02 58,555	6.854
24	2	329 09 53.747	329 09 48.000	-5.747
Lag	24	285 28 38,813	285 28 38.813	. 0
Lag	Gom	161 12 54.691	161 12 52,205	-2.486
Lag	Ray	240 28 26.359	240 28 22,759	-3.600
Gom	Lag	341 12 54.398	341 12 52,205	-2,193
Gom	24	309 10 25.896	309 10 25,365	-0.531

-Distancias Planas Calculadas.

Formula utilizada.
$$D = \sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2}$$

Tabla V.19

Lado	Dist.Plana Obs.	Dist.Plana Calc.	Diferencia
2 — Mag	28745.161	28745.161	0
2 - 24	46730.602	46733.143	-2.541
Lam — Mag	47471.723	47472.963	-1.240
Lam - 24	32064.182	32064,182	٥
Mag — Ven	44489.867	44489.867	
Mag — Ray	68294.311	68296.692	-2.381
Mag - 24	42844.208	42844.923	-0.715
24 Ven	50312.727	50312.929	-0,202
24 Ray	45522.444	45523 _• 831	-1.387
24 Gom	76373.434	76374.799	-1.365
24 — Lag	49026.512	49026.512	0
Lag Ray	64122.014	64167.377	-45.363
Lag — Gom	37135.906	37139.155	-3.249
Ven — Ray	36794.954	36795.436	0.482

-Valores de AX, AY, AX/D, y AY/D

$$\Delta X_{ji} = X_{i} - X_{j};$$

$$\Delta Y = Y - Y$$

i	j	ΔX	ΔΥ	ΔX/D	ΔY/D
2	Mag	-15756.162	-24042,205	-0.54813268	83639138
2	24	23955.052	-40126.578	0.51262019	-0.85867882
Lam	Mag	-44848.580	-15565.575	-0.94474304	-0.32789151
Lam	24	- 5137.368	-31649.948	-0.16022140	-0.98708109
Mag	Ven	- 1842.187	-44451.711	-0.04140689	-0.99914237
Mag	Ray	31126.265	-60791.396	00,45576659	-0.89013851
Mag	24	39711.212	-16084.373	0.92687469	-0.37541534
24	Ven	-41553.399	-28367.338	-0.82590234	-0.56382032

i	j	ДХ	ΔΥ	ΔX/D	ΔY/D
24	Ray	- 8584.947	-44707.023	-0.18858713	-0.98208749
24	Gom	59208.370	-48243.951	0.77524824	-D.63168498
24	Lag	47248.593	-13083.169	0.96373556	-0.26685906
Lag	Ray	-55833.540	-31623.854	-0.87073903	-0.49318248
Lag	Gom	11959.777	-35160.782	0.32205427	-0.94681363
Ven	Ray	32968.452	-16339.685	0.89600471	-0.44407407

V.3.4.1.2. Ecuaciones de Observación de Direcciones, Linealizadas. Los datos para formar estas ecuaciones son:

1)Las distancias planas calculadas.

2)La dirección plana observada menos la dirección plana calculada. 3)ΔΧ y ΔΥ.

Ejemplo para el lado 2-24. Se hace referencia a la fórmula,pag.64.

$$\begin{aligned} v_{2-24} &= (\frac{v_{24} - v_{2}}{D_{o}^{2} \sin 1}) dx_{24} + (\frac{x_{2} - x_{24}}{D_{o}^{2} \sin 1}) dy_{24} + (\frac{v_{2} - v_{24}}{D_{o}^{2} \sin 1}) dx_{2} + (\frac{x_{24} - x_{24}}{D_{o}^{2} \sin 1}) dy_{2} - \\ &- dz_{2} + (D_{o}P_{o}C_{o}_{2-24} - D_{o}P_{o}C_{o}_{2-24} - Z_{o}) \end{aligned}$$

$$V_{2-24} = \frac{(-40126.587)}{46730.602^2 \text{sen1}} dx_{24} + \frac{(-23955.05)}{46730.602^2 \text{sen1}} dy_{24} + \frac{(-2395$$

 dx_2 y dy_2 son iguales a O ya que 2 es coordenada fija y no exisninguna diferencial en coordenadas fijas.

$$V_{2-24} = -3.7901344dx_{24} - 2.262661dy_{24} + 0 + 0 - dz_2 - 4.173$$

124

Odygom -dz Gom +2.193

Odx_{Gpm} +

V_{Gom-Lag}= 5.2590422d×_{Lag} +1.7887932dy_{Lag} +

V-3.4.2. Cálculo de las Ecuaciones de Observación Linealizadas de Distancias.

$$V_{D} = \frac{\Delta X_{11}}{D} dxi + \frac{\Delta Y_{11}}{D} dyi + \frac{\Delta X_{11}}{D} dxj + \frac{\Delta Y_{11}}{D} dyj - (Dist. Plana Cbs. - Dist. Plana Calculada)$$

Ejemplo para el lado 2-24

$$\mathtt{V}_{2-24} = \frac{\mathtt{x}_2 - \mathtt{x}_{24}}{\mathtt{D}_{2-24}} \mathtt{d} \mathtt{x}_2 + \frac{\mathtt{y}_2 - \mathtt{y}_{24}}{\mathtt{D}_{2-24}} \mathtt{d} \mathtt{y}_2 + \frac{\mathtt{x}_{24} - \mathtt{x}_2}{\mathtt{D}_{2-24}} \mathtt{d} \mathtt{x}_{24} + \frac{\mathtt{y}_{24} - \mathtt{y}_2}{\mathtt{D}_{2-24}} \mathtt{d} \mathtt{y}_{24} - \mathbf{y}_{24} - \mathbf{y}$$

-(Dist. Plana Obs. - Dist. Plana Calc.)

$$V_{2-24} = \frac{-23955.05}{46730.602}(0) + \frac{40126.578}{46730.602}(0) + \frac{23955.05}{46730.60} dx_{24} - \frac{40126.578}{46730.602} dy_{24} - \frac{46730.602}{46730.602} - \frac{46730.602}{46730.602} - \frac{46733.143}{46730.602} - \frac{46733.143}{46730.602} - \frac{46733.143}{46730.602} - \frac{46733.143}{46730.602} - \frac{46730.602}{46730.602} - \frac{46733.143}{46730.602} - \frac{46730.602}{46730.602} - \frac{46730.602$$

$$V_{2-24} = 0 + 0 + 0.512620188 dx_{24} - 0.85867882 dy_{24} + 2.541$$

Tabla V.22

Ecuaciones de observación de distancias, linealizadas

2-24	=0.5126202dx ₂₄	-0.8586788dy ₂₄	+	Odx 2	+	Ody ₂	+	2.541	
V _{2-Mag}	=-0.5481327dx _{Mag}	-0.8363914dy _{Mag}	+	Odx ₂	•	Ody ₂	+	0	
V Lam-Ma	g=-0.9447430d× _{Mag}	-0.3278915dy _{Mag}	+	Od× _{Lam}	+	OdyLam	+	1.240	
V _{Lam-24}	■- 0.1602214dx ₂₄	-0.9870811dy ₂₄	• .	Od× _{Lam}	•	Ody _{Lam}	+	0	
V _{Mag=24}	=-0.9268747d× _{Mag}	+0.3754153dy _{Mag}	+0.92687	^{46d×} 24	-0.375415	34dy ₂₄	+	0.715	
V _{Mag-Ra}	y=-0.4557665dx _{Mag}	+0.8901385dy _{Mag}	+	Odx _{Ray}	+	Ody _{Ray}	+	2.381	
V _{Mag-Ve}	n* 0.0414068d× _{Mag}	+0.9991424dy _{Mag}	-0.04140	68dx _{Ven}	- 0.99914	^{23dy} Ven	+	0	
V _{24-Ven}	= 0.8259023dx ₂₄	+0.5638203dy ₂₄	-0.82590	23dx _{Ven}	-05638203	23dy _{Ven}	+	0.202	
v _{24-Ray}	= 0.1885871dx ₂₄	+0.9820874dy ₂₄	+	odx _{Ray}	•	Ody Ray	+	1.387	
V _{24-Lag}	=-0.9637356d×24	+0.2668591dy ₂₄	+0.96373	55dx _{Lag}	-0.2668590	O6dy Lag	+,	0	
V _{24=Gom}	=-0.7752482d× ₂₄	+0.6316849dy ₂₄	+	Od× _{G om}	•	Ody _{Gom}	+	1.365	
V _{Ven-Ray}	/=-0.8960047dx _{Ven}	+D.4440741dy _{Ven}	+	Od× _{Ray}	+	Ody _{Ray}	•	0.482	
V Lao-Gor	==0.3220543dx	+D.9468136dy	+	Odx	+	odycom	+	3.249	

De las Ecuaciones de Observación Linealizadas, se formó el siquiente Sistema Matricial.

8		ΩX	+	W	=	: V
Coeficientes de Distancias Coeficientes de Direcciones	0 0 0 r e 1 s e c 1 n o 1 i i d d n a	I N C C C C C C C C C C C C C C C C C C	+	041001400111	OBSERVADO:	RESIDUOS
41 x 16		16 x 1		41 X	7	41 x 1

Donde: $\Delta X = -(B^T PB)^{-1}(B^T PW)$.

La Matriz de Pesos P, es una matriz en donde los pesos están en la diagonal principal, y lo demás son ceros como se muestra.

En las siguientes paginas se muestra : 8, ω , θ^T , $(\theta^T P B)^{-1}$, $- \Delta X$ y V, los pesos se muestran en la pag. 102 y 103.

PETODO DE DIPECCIONES MATRIZ DE DISEAD

:	344 344 345 345 345 345	0 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7	37	100	767 707 707 707 707 707 707 707 707 707	00 100	90	10000000000000000000000000000000000000	6091	100000000000000000000000000000000000000	000000000000000000000000000000000000000	37 13	30050000	00000	2 3600	100000 00000	000000 300000	900000 500000	۰	20000 200000	,°,	, °	ທີ່ເ	U (D 0	
:		60071477			777	1000	10044477	20	20000000	000	100 000 THE	70	-;		2423232222222222222222		ŏ	900000000000000000000000000000000000000	0000-000-000	000000 00 326344030033033035030		600	000	0 fi	0		
•		0	9000			7 49R 6 47 7770 6 47 7770 6 47 7770 6 47 7770	100000000000000000000000000000000000000		10000	C97.00844911	40000-007	000000000000000000000000000000000000000		92	00000000000		2000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000		v	-1 -1		0		
	0000	073	20000		:;	6.1 0.27 0.00 0.00	1				0	70	27	0000000	90000	9999999	400	000000	00000	ĝ		U	o	-1	q		

MATERIZ OF LAS DIFERENCIAS (VALORES CALDLAUDS MENOS LOS UNJERVADOS)

3.541

CENTRO DE CALCULO FACULTAD DE INGENIERIA

- 32

					•	71	• 4 H.S	PUL	5TA	n.	. HE			T# 1:	2 (1)	r, p	124																									
								•		260	76	- 4	457.	.,		144	6us	-00	o							-1	-40	164	-6	-00	104	-1	.42	169	1.	4.11	34	4.0	H M 4 1	٠.	1.17	. •
	¥.	213	;;'	**	-0	776	٠,	e 8 H	41.	,,,,		'n.	-1.	¥241	. 1	٠,٠	Ű.	ë.	U	0	١.	407	34.	ດີ	0	n	- (1	1	.0				٠.									
	0.			٧ì	•.	1771	٠•i	0	٠,١	754	115	. *	901	19.	٠, ٩	441	42	6	ij	0	ų.	0	_"	?	з.	433	2	424	332	4		441	•	. 467	77	٠.	,,,,	٠, -	.141	***		
•	٠,١	9 j 9.	"	ū	a	ū	١,	376	32	٠2.	· ·	<u>n</u>		14.	۹۱,	٠	0		٠ <u>**</u> *		٠,	467	20,	۰	ů,	۳.,			274	-4		224	-7	. 311	47		184	11	7.4.	4 34	li.	0
	ŏ	0	9																																							
	χ.	Ä	×	ä	- 11	Ä	- 0	uoi	15.	214	4	2	n i		'n.	. 44	107		0	o	n		t)	17	n	. 19	197	1	.14	147	1	1.3	4,44	ı۶	.97	301	٠,	,	~ 1		112	13
	ő	ă	ŏ	ñ	ő	ä.	11.	91	ō.	0	'n.	'n	0	tı	0	• • •		•													_									. .		
	٠,5	179	?. '	۰_	٠.	• • • •	.037	٠.	. 97	481	2.	٠. ١	P.,	* " 2	590	i.	ĸ۱۳	*:*	1.3	: "	1/1	٠.:	::'	25.4	۳,	g.,	ж.	٠,,	4111	٠.	122	"ı	" '	7010	12 "	n "	•	• • • •	47 : 91			
	٠.	***	::	2	-6		24.	- "	:":	117	***	٠,٠	161	· '	. 16	;""	٠.,	201	;''	.3.	424	3"'	11.	164	٠,٠	6	ė ·	2.2	454	٠.,	ń'	o ·	ο΄.			- 0	- 3	. JF5	۰ 1	0 (
		400		ö	ĭ	0.10	24	٠,	-i:	0.30	i i	4.	054	٠1 "	2.	ūΨJ	11	H	544	19	٠,	145	91	ŧ.	-7.	700	hb	٠.	9	4.	854	04	.7.	14.17	٠.	?						
	ō	ŏ.	á	ñ.	- ō		ō	ñ	.0	.,4	16 17	16	. 6	6	•.,	270°	5.	n	U	"	w	U.	*	0	t)	r	11	п		•	١.	244	45	n			1,.1	,,,,		"		••
	٠.	359	04	1.	386						5.																															
	Ŷ.	·6-	•6	-5	-2.	2	-0		. "	**	mpr.	324	76	٠.	•	100		**	٠	,,,		"		"	"		.,		.,	٠							•••	-	24.0	ъ.		
	٠.	'ä•	12	٠,٠	-0	~~~	-:-		- 11	ö	÷.	'n.	· .	-1	٠١	n	0	t.	u	•	u	0		0	tı	•	**	n	45	•	0	•	b -	9	0	•	,	7	·		,	
	o ·	·ä	u.	0	ü	n	10	0	51		*	0	0	0	ο.	-!	-1	-1	-1	-1	U.	o	1)	ņ	ų	•	.,	9	9	0	0	9	*	- 11	2	2				1.2	3	
	0		a	ū	ō		**	0	9	6	- 41	2	0				ů	ς.	0		٠,	-1	-1	-"	٠.	-7	-"	,	"	n		ö		fi	ö						-	
	ä		9	7	- 9			ä	- 11		- 22			ä	ä	ä	8		ŭ	ö		ö	ä	-6	- 6	-4	-6	-1	-1	9	ő	ö	6	q	ñ	44	ñ (m			•	
	ň	ä	ĕ	ñ	ö	ň	ő	ö		Ö	ő	ř	ü	ü	Çi.	ñ	ä	ò	ü	r	ñ	ñ	ü	- 0	ш	0	19	Ò	ű.	-1	-1	-1	-1 .	-! •	., .	1 1	,		6.0	77		

	MATERY LIVERSA						
-186759F-01	184514E-03 .8n7541F-07	-2015130:03	.P70250F-02 182791F-92	.549041425121391-	" CENTRO DE CHU	enter diversary	diffusion at the
. , , , , , , , , , , , , , , , , , , ,	. 370-412-01 7731371	.4131331122	. 7007141-01 . 10414-77-11				
184534E-03	.2649146-01717485E-02	. h44906E-07	7.277673F-02,113341F-01	118750-91 258911-0	2 .4/7/#46-4	1 5 31 1111	• -1

184534F-03 .2649146-01717485E-02 .644906E-02277023F-02113741F-01138756-01258411-02 .477744F-01531117-01	
- #19001 ir-ni - 19147 #K-ui - 1822 #011 - 11 - 170 #07 K-ui - 1371-21 - ui	
-1915127-02 #4440MAC-07 -119485C-01 -1118 1387531-02 -277698-02 -507891-02 -100410-02 -1100410-01 -151410-01	
[4471] [465744] [6371[Fen7] [7314036] [7246069] [475069] [47505] [4750	
- 10-481-01 - 10-48-01 - 10-48-01 - 10-48-01 - 10-48-01 - 10-48-01 - 10-48-01 - 10-48-01 - 10-48-01 - 10-48-01	
-104.45	
[144] - 4 [45] [45] [45] [45] [45] [45] [45] [4	
176987-07 - 17147 - 171478-01 - 179787-01 - 17978-01	
41175 February 1756 11 12-11 - 1704 9 February	

110,000	
Xma 0.07H * 0.470	1
V 0.884 4 0.505	
X [.01] • 0,565	
	1
7 4 0.574 9.451	
11.467 . 1.06	:
119-4-4:47	i
1 -1;47H - 7;561	i
5 0 04.050 0 7.69	
244 -2.716 4 1.414	
44 -1 u92 + 4.70	1
	,
40 12910 0 12515	•

DESTINCTON ESTABLISH UNITARIAM 1.0709

RESIDUOS (4)

- 685455 -1, 10240 -1,1416 -2064191-02 014478 0,2068 -1,27263 -1,14720 -1,27001 1,25064 2,47984 113144 THE STATE OF THE S

Tabla V.23 Coordenadas UTM Ajustadas

Est.	Coords. Aprox.	Correcciones.	Coords. Ajust.
X _{Mag}	377581.338	ΔX _{Mag} =-0.028	37758 1. 310
Y _{Mag}	3367327.584	ΔY _{Mag} = -0.889	3367326.695
x _{Ven}	375739.151	ΔX _{Ven} = -1.013	375738. 138
Yven	3322875.873	ΔY _{Ven} = -1.991	3322873.882
X ₂₄	417292.550	ΔX ₂₄ = 0.087	417292.637
Y ₂₄	3351243.211	ΔΥ ₂₄ = -0.528	3351242.683
X _{Lag}	464541•143	ΔX _{Lag} = 0.062	464542.005
Y _{Lag}	3338160.042	ΔY _{Lag} = -2.380	3338 157. 662

V.3.4.3. Elaboración.de las Planillas UTM y G⊜odésica de la Trianquiatereción.

Los comentarios para la elaboración de estas 🗀 lamillas, se encuentran en el ejemplo de cálculo para la poligonal en las pags. 96 y 97.

Por medio de un programa de computadora que mæ fue facilitado por el Ing. Arvizu Díaz, se hizo el cálculo de las ⇔oordenadas geodésicas las cuales se muestran en una planilla de valoræs geodésicos, y airven también para el cálculo de la planilla UTM.

Planilla UTM
Tabla V.24 Triangulateración

		Coordenada	s Ajustadas .	Distancia	Azimut Plano				
Est.	P.O.	X	Υ	Plana	_(t)	(t-T)	Ţ	Conv.	F.E.
2	Mag	393337.500	3391369,789		213014 17,23	- 6,849	213014 24.079	34 03.313	
Mag	2		l	28745.905	33 14 17.23	7,171	33 14 10.059	38 44.885	0,99976211
Mag	24	377581.310	3367326,695		112 02 56.856	- 4,470	112 03 01.326	38 44.886	
24	Mag			42844.894	292 02 56.856	3.928	292 02 52.928	26 01,773	0.99973139
Lam	24	422429.918	3382893,159		189 13 10.000	- 6,388	189 13 16.388	24 41.569	
24	Lam	į į		32064.693	9 13 10.000	6.526	9 13 13.474	26 01.773	0.99967926
24	Ray	417292.537	3351242,683		190 52 12.849	- 9,738	190 52 22.587	26 01.773	
йaу	24			45523.329	10 52 12.849	10,064	10 52 02.785	28 16.137	0.99969345
Ray	Ven	408707.603	3306536.188		296 21 36,913	4,254	296 21 32,659	28 16.137	
ven	Нау			36795.63	116 21 36.913	- 4,710	116 21 41.623	38 42.256	0.99974442
Ven	Mag	375738.138	3322873.882		2 22 27.563	13,992	2 22 13.571	38 42.256	
Mag	Van .			44491,035	182 22 27.563	-13,922	182 22 41.465	38 44.886	0.99978768
Gom	Lag	476500.920	3302999.260		341 12 52.451	2,460	341 12 49.991	7 16.068	
Lag	Gom			37136.624	161 12 52.451	- 2.817	161 12 55.268	11 06,438	0.9996107
Lag	24	464942,005	3338157,662		105 28 45.445	1.705	285 28 43.740	11 06.438	0.00001530
24	Lag			49027.753	285 28 45.455	-2.230	105 28 47.675	26 01,773	0.99964536

Tabla V.25. Planilla Geodésica Triangulateración

Est.	P.O.	Latitud	Longitud	Distancia	Az. D.	Az. I.
2	Mag	30 ⁰ 39 06.818	106 06 47.526	28752.745	212 ⁰ 40 20.766	32 ⁰ 35 25.17
Mag	Ven	30 26 00.479	106 16 29.198	44500.484	181 43 56.60	1 43 31.315
Ven	Ray	30 01 55.957	106 17 19.398	36805.037	115 42 59.367	295 53 16.492
Lam	- 24	30 34 39.553	105 48 32.284	32074.976	188 48 34.819	8 47 11.701
24	Lag	3D 17 30.184	105 51 36.105	49045.144	105 02 45,902	285 17 37.302
Lag	Gam	30 10 33,361	105 22 05.816	37151.087	161 01 48.830	341 05 33.923
Ray	24	29 53 15.678	105 56 43.601	45537.286	10 23 46.648	190 26 20.814
Mag	⁻ 24	30 26 00.479	106 16 29.190	42856.406	111 24 16.414	291 36 51.155

CAPITULO VI

CONCLUSIONES

VI.1 CONCLUSIONES PARA LA POLIGONAL.

La precisión de 1/1,174000.(1^{er}orden), de la poligonal geodésica, _manifiesta algunos aspectos relacionados con los trabajos de campo, y los cálculos para el ajuste en el plano.

- 1.-Los quiebres en el levantamiento, no afectan significativamente la precisión, si las observaciones están cuidadosamente bien he chas.
- La magnitud de las distancias, tampoco afecta la precisión del levantamiento, si estas estan correctamente medidas.
- 3.-Los cálculos en el plano, no afectan la precisión del levantamiento, si hay una aplicación correcta de las fórmulas, se evitan errores de truncamiento en la transformación de coordenadas, etc.

VI.2 CONCLUSIONES PARA LA TRIANGULATERACION.

Es necesario hacer un análisis estadístico de los resultados y hacer la prueba Ji 2 , antes de dar conclusiones.

VI.2.1 Análisis Estadístico del Levantamiento.

Por medio de esta análisia, se puede ver si la dispersión de errores concuerda con la curva de Gausa.

De la fórmula de probabilidad para la curva de Gauss.

$$V = Ke^{-h^2x^2}$$
 donde $K = \frac{h}{\sqrt{h}}$; $h = 1$.

Tab	la VI.1 Valores x [°] ,	κ ^ε γ Υ•
x"	× ²	Y
± 0.00	0.0	0.56
± 0.2	0.04	0.54
± 0.4	D.16	0.48
± 0.6	0.36	0.39
± 0.8	0.64	0.29
± 1.0	1.0	0.21
± 1.2	1.44	0.13
± 1.4	1.96	0.08
± 1.6	2,56	0.04
± 1.8	3.24	0.02
± 2.0	4.00	0.01
± 2.2	4.84	0.00

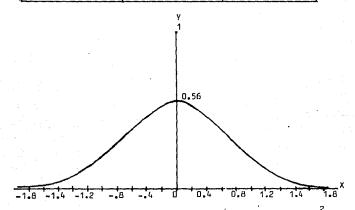


Figura VI.1 Curva de Probabilidad Y=0.56e^{-x²}

En el ajuste se obtuvieron los residuos (V), tanto para las distancias como para las direcciones obteniendose una muestra estadística.

En esta muestra se determinaron los intervalos de clase para poder así obtener las frecuencias de cada intervalo.

-Residuos de las distancias.

Tabla VI.2 Frequencias de Distancias

Intervalo	Frecuencia
01	7
-12	5
-23	0
-34	1

Frecuencias

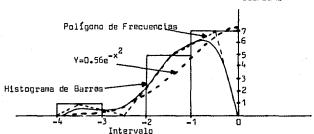


Figura VI.2

El comportamiento sesgado, posiblemente se debe a la existencia de errores sistemáticos.

-Residuos de las direcciones.

Tabla VI.3. Frecuencias de Direcciones

· Intervalo	Frecuencia
-54	C
-43	2
-32	· 5
-21	3
1 - 0	4
0 - 1	5
1 - 2	4
2 - 3	2
3 - 4	٥
4 - 5	o
5 - 6	2
6 - 7	1

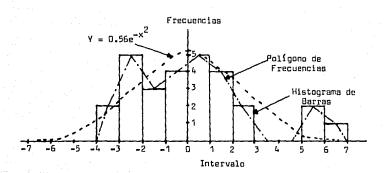


Figura VI.3

VI.2.2. La Prueba de Hipótesis JI.

Esta prueba se hace para determinar si el factor de varianza a priori es correcto.

Se establece por la siguiente desigualdad.

$$\frac{v^{\mathsf{T}}_{\mathsf{PV}}}{x^{\mathsf{2}}_{\mathsf{P}_{2}}} \quad \blacktriangleleft \quad \P_{\mathsf{o}}^{2} \quad \blacktriangleleft \quad \frac{v^{\mathsf{T}}_{\mathsf{PV}}}{x^{\mathsf{2}}_{\mathsf{P}_{1}}}$$

Los límites del intervalo se evalúan de:

- a) El número de grados de libertad v.
- b) Valor calculado del factor de varianza estimado \mathbf{q}_{0}^{2} (posteriori).
- c) Valores tabulados de x^2P_1 y x^2P_2 correspondiendo a los grados de libertad v, y las probabilidades $(\frac{1-\alpha}{2})\%$ y $(\frac{1-\alpha}{2})\%$.

La estimación de \P^2_0 a priori es 1.

Otras características del ajuste son:

N^O de Incognitas = u = 16

 N^{O} de Observaciones = n = 41

Grados de Libertad = n-u = v = 25. v

4 puntos fijos

Del ajuste se obtuvo $q_u^2 = 3.07$

Este resultado tiene la característica de estar dentro de una probabilidad del 38% ya que se trata de un problema en dos dimensiones y para poderlo pasar al 95%, que es la probabilidad que se trabaja - comunmente en una dimensión, se usa la siguiente fórmula,(Arvizu Diaz)

que es el factor que me permite hacer el cambio al 95%.

$$\mathbf{q}_0^2$$
 al 95% = 3.07 x 2.45 = 7.5

$$\mathbf{q}_o^2 = \frac{\mathbf{v}^\mathsf{T} \mathbf{p} \mathbf{v}}{\mathbf{v}} = 7.5$$
; despejando, $\mathbf{v}^\mathsf{T} \mathbf{p} \mathbf{v} = 187.43$

Los valores tabulados para x^2 , al ser usados en el intervalo de co<u>n</u> flanza son:

$$x^{2}P_{1} = x^{2}(25), 0.025 = 13.1$$

 $x^{2}P_{2} = x^{2}(25), 0.975 = 40.6$

y los límites del intervalo de confianza para \P^2_o son:

La prueba falla para $\P_0^2 = 1$.

En el caso de que la prueba falle se puede hacer otra iteración, \underline{u} sando el valor de \P^2_a a posteriori.

El motivo por el cual la prueba falló, puede ser alguno de los siquientes:

- a)Presencia de errores sistemáticos en las observaciones.
- b)Separación de la normalidad en las observaciones.
- c)Valor impropio de las varianzas de las observaciones.
- d)Modelo matemático inadecuado.

El juego de coordenadas aproximadas posiblemente se pudo haber mejorado haciendo un promedio de los valores calculados a partir de las coordenadas fijas, pudiendose evitar la necesidad de otra iteración.

Otra iteración en el ajuste debe dar la solución definitiva, aunque el objetivo de la Tesis,es unicamente mostrar la secuencia seguida para realizar los cálculos y ajuste de redes geodésicas,en el plano.

BIBLIOGRAFIA

- -Cuadrícula Universal Transversa de Mercator; (Manual Técnico del Army Map Service de los Estados Unidos), 1951.
- -Cartografía y Levantamientos Urbanos. Blachut, 1979; Canadá.
- -Apuntes Sobre Cartografia. Sanchez Pedro C., 1926 I.P.G.
- -Reducción de Diatancias en los Distanciómetros Electrónicos. Ing. René Scherrer, -Wild- 1982.
- -Sistemas Poligonales Tomo I Horvat Esteban, 1973;Buenos Aires Argentina. I.P.G.
- -Normas Técnicas para Levantamientos Geodésicos, SPP.
 Diario Oficial, 1985.
- -Publicaciones Editadas en el Canadá sobre Triangulaciones, Trilateraciones, e Información Estadística. Propiedad: M.I. Raymundo Arvizu Diaz.
- -Introducción a la Geodesia. Ing. Manuel Medina Peralta. 1978.
- ⊸Apuntes Universitarios sobre: Ajustes, Teoría de los Errores, Geodesia y Cartografía.