2010

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE INGENIERIA

ESTUDIO DEL COMPORTAMIENTO INELASTICO DE UN EDIFICIO

FALLA DE CRIGEN

T E S I S
QUE PARA OBTENER EL TITULO DE
I N G e N i e r o C i v i !
P R E S E N T A
GARLOS ARTURO ALVAREZ PELAEZ
MEXICO, D. F. 1989

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

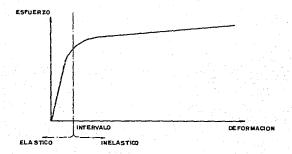
El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

- 1) INTRODUCCION
- 2) CONFIGURACION DEL EDIFICIO
- 3) ANALISIS SISMICO
 - A) CARGAS
 - B) RIGIDECES
 - ANALISIS SISMICO ESTATICO Y DINAMICO
 - D) TORSION
- 4) COMPORTAMIENTO DEL EDIFICIO ANTE SOLICITACIONES SISMICAS, INTERVALO INELASTICO

 - A) SENTIDO "X" (PARALELO A REFORMA) B) SENTIDO "Y" (PERPENDICULAR A REFORMA) C) CONCLUSIONES Y PROPUESTA DE ANALISIS EN EL INTERVALO INELASTICO
- 5) COMPORTAMIENTO DEL EDIFICIO ANTE SOLICITACIONES SISMICAS, :
 INELASTICO, SENTIDO "X" (PARALELO A REFORMA) MAPCOS 1 Y 4 INTERVALO
 - A) CARGA VERTICAL
 - B) C)

 - PRIMERAS ARTICULACIONES SEGUNDAS ARTICULACIONES TERCERAS ARTICULACIONES CONCLUSIONES
 - E)
- 6) PROPUESTA DE SOLUCION


1) INTRODUCCION

A raiz de los macrosismos ocurridos en la Ciudad de México los dias 19 y 20 de Septiembre de 1985, se convirtió en un trabajo común, para un ingeniero civil dedicado al calculo estructural, efectuar revisiones de estructuras existentes. Ese es le tema que abordaremos en este trabajo.

El comportamiento de una estructura sujeta a solicitaciones sismicas de gran intensidad ha sido ampliamente estudiado por los investigadores; estas investigaciones se traducen, en la práctica, en criterios y normas de diseño a los que se debe sujetar el calculista de un edificio. Por ejemplo, los coeficientes sismicos o el diseño "columna-fuerte" - "trabe-debil". recomendado а'n Todos los requerimientos estan claramente señalados en el Reglamento Construcciones para el Distrito Federal, cuyas mas modificaciones publicadas en Julio de 1987, tratan de lograr un mejor diseño "sismoresistente" para las estructuras de nuestra ciudad.

El propósito fundamental de este trabajo es el de analizar cual sería el posible comportamiento de una estructura, un edificio de mas de 20 níveles en este caso, sujeta a solicitaciones sísmicas de gran intensidad. Una intensidad tal que provoque, si no el colapso total de la estructura, sí la formación de articulaciones plásticas en diferentes puntos de la misma y, la forma en la que se modifican las características criginales del diseño estructural a raiz de este comportamiento en un intervalo inelástico.

Se entiende por comportamiento en el "intervalo inclástico" de la estructura el momento en el cual los materiales que conforman la estructura, concreto reforzado en nuestro caso, dejan de comportarse elásticamente, es decir, que las deformaciones ya no se incrementan proporcionalmente a los esfuerzos, sino que a incrementos pequeños en el esfuerzo corresponden grandes deformaciones. Por ejemplo, el hecho de que el acero en una trabe de un marco empiece a fluir ya en el intervalo inelástico (ver figura 1), trae como consecuencia un redistribución en los elementos mecánicos del marco y la consecuente pérdida de rigidez del mismo, a la vez que una nueva redistribución de las solicitaciones sismicas entre todos los marcos de la estructura. Así pues, la redistribución antes mencionada no sólo modifica el comportamiento del propio marco, sino también provoca redistribución de las solicitaciones y esfuerzos en el resto de la estructura.

Cabe hacer notar que existen programas de computadora que son capaces de propocionar datos acerca del comportamiento de una estructura en función del tiempo y de su comportamiento inelástico (por ejemplo: DRAIN2D; sin embargo, el uso y adquisición de un programa de estas características esta prácticamente limitado a la investigación o a una empresa de ingenieria de gran tamaño. Para un profesionista independiente que no cuenta con el tiempo, equipo y posibilidad de adquirirlo resulta prácticamente imposible su uso.

En este trabajo se trata de obtener los resultados del comportamiento de la estructura ya en el intervalo inelástico utilizando programa de análisis estructural de Marcos Planos. Como parte integrante de este trabajo se anexan listados de los programas elaborados por el suscrito. El equipo empleado se limito a una microcomputadora PC e impresora.

2) CONFIGURACION

El edificio analizado está ubicado en el Paseo de la Reforma £175. En este capitulo se definirá la forma de conjunto del edificio y el tamaño, naturaleza y localización de los elementos resistentes. El edificio se utiliza como oficinas y consta de sotano, planta baja, cuatro niveles de estacionamiento, quince plantas tipo y azotea.

La estructura es de concreto reforzado con acero de alta resistencia (fy= 6000 kg/cm2). Tiene 6 ejes de columnas en dirección norte-sur (paralelo a la calle de Rio Tamesis "YY") y 6 en la dirección este-oeste (paralelo a la avenida Reforma "XX"), 2 de los cuales (Ejes 5 y 6) terminan en el quinto nivel por el remetimiento de la colindancia norte. (Ver figura 2).

La estructuración tiende a ser del tipo conocido como "tubo", estructuración comun en edificios de gran altura, debido a que las columnas de 3 de los marcos perimetrales (Ejes A y F en el sentido "YY" y 1 en el sentido "XX", ver figura 3) tienen una separación mucho menor que las columnas interiores, y estan unidas por trabes de gran peralte (2.10 m en los niveles de estacionamiento y 1.60 m en los niveles de planta tipo) para constituir marcos de gran rigidez ante fuerzas laterales. El tubo se completa con un marco que tiene un muro de concreto (Eje 4 en el sentido "XX") acoplado con trabes y columnas. (Ver figura 3).

En este edificio de mas de 20 pisos ubicado en la zona de terreno compresible de la Ciudad de Mexico (Zona III), la principal solicitación es la debida a efectos sísmicos (carga horizontal), ya que los esfuerzos que ocasiona son varias veces mas grandes a los causados por las solicitaciones debidas a la carga vertical. Esto hace que la estructuración deba apegarse a una serie de recomendaciones para que su comportamiento durante un sismo sea del todo satisfactorio, obligando en ocasiones a que el proyecto arquitectonico se modifique.

Como se comento anteriormente, la estructuración del edificio lo hace comportarse como un "tubo" que resulta ser eficiente para edificios altos; sin embargo, el hecho de tener un solo muro de rigidez colocado asimetricamente para formar el tubo puede ser causa de problemas durante sismos intensos que hagan trabajar a la estructura más alla del intervalo de comportamiento elástico, ya que la distribución de fuerzas sismicas entre los marcos que tienen solo columnas y trabes y el marco que tiene el muro se modificará al comportarse estos inelásticamente, pues la rigidez de estos dos tipos distintos de marcos se afectará en forma distinta.

Las aseveraciones citadas en el parrafo anterior son las que se trataran de demostrar en este trabajo, sin embargo, considero también importante hacer notar otro aspecto que puede resultar negativo en la configuración del edificio. Las trabes de los marcos interiores en el sentido "YY" (Ejes B,C y E) terminan en forma inadecuada, pues no llegan a formar nudo con el eje horizontal 1. (ver figura 2).

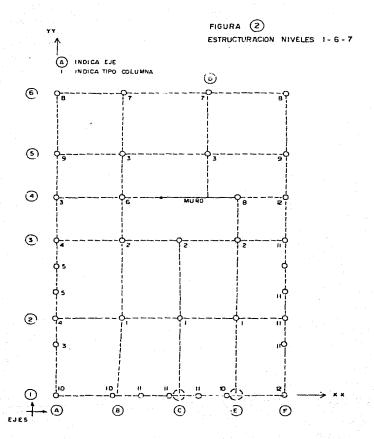
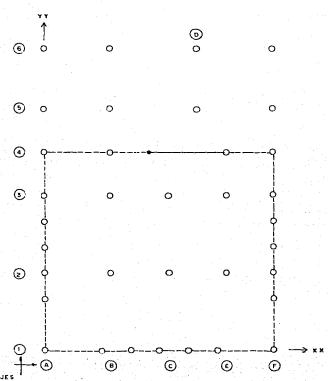



FIGURA (3) (ESTRUCTURACION DE TUBO) (NIVELES 7 a 22)

3) ANALISIS SISMICO

A) CARGAS

A continuación se presenta un breve análisis de las cargas consideradas para el análisis por cargas verticales y cargas horizontales:

a) TANQUE ELEVADO

b) AZOTEA

```
Losa h=12 cm = 290 kg/m2
Yeso
                 40
120
Relleno
                         *1
Entortado
                 100
Ladrillo
                   40
20
Adicional
Carga muerta = 610 kg/m2
                                        (CV -CH)
Carga viva
               = 100 - 70 \text{ kg/m2}
Diseño
               = 710 - 680 \text{ kg/m}^2
                                        (CV -CH)
```

c) ENTREPISO OFICINAS

d) ENTREPISO ESTACIONAMIENTO

e) TRABES

En este punto, se presentan los resultados de cargas totales en cada sentido ("XX" y "YY") por niveles y finalmente se presentan los resultados por niveles en kg/m2.

Nivel		"XX"	Sentido 'XX" (ton) "YY" (ton)			Total/nivel (ton)	Carga (kg/m2)	
19		22	68	1	65	5	133	270
15	a	18	85	,	85	5	170	345
7	a	14	97	,	105	5	202	415
3	a	6	139)	150)	289	390
1	a	2	262	!	324	1	586	780

f) COLUMNAS

Nivel

	(ton)	(kg/m2)
18 a 22	120	250
14 a 17 7 a 13	150 184	310 380
1 a 6	255	340

Carga Resultante

Peso total/ nivel

g) MUROS

Se considero en todos los níveles un promedio de 200 kg/m2 como carga por muros divisorios y en colindancias.

RESUMEN DE CARGAS TOTALES:

NIVEL	CARGA HORIZONTAL (KG/M2)	CARGA VERTICAL (KG/M2)		
22	1200	1420		
19 A 21	1210	1390		
15 A 18	1285	1525		
7 A 14	1355	1665		
3 A 6	1310	1500		
1 / 2	1650	1890		

LOS PESOS TOTALES PARA EL ANALISIS SISMICO POR NIVELES SERAN:

NIVEL	PESO TOTAL (TON)		
22	690		
19 A 21	676		
15 A 18	741		
7 A 14	e08		
3 A 6	1125		
1 A 2	1418		
PESO TOTAL	19490		

B) RIGIDECES

En este caso se recurrió al uso de un muro de concreto para dar rigidez al edificio. El muro antes mencionado esta acoplado con trabes y columnas y conforman el marco eje 4 (sentido "xx") .

El comportamiento de un marco a base de trabes y columnas ante cargas laterales difiere sustancialmente del comportamiento de un marco con un muro acoplado con trabes y columnas, por ello se obtuvieron las rigideces de los marcos con dos metodos diferentes para los sentidos vertical (sentido "yy") y horizontal (sentido "xx") del edificio.

b.1) SENTIDO "YY"

Para la determinación de las rigideces de los marcos se aplicó el siguiente criterio:

A cada uno de los marcos se le aplicó una fuerza cortante horizontal proporcional a los resultados del análisis sísmico estático del edificio, esto es, a todos los marcos se les aplicó la misma fuerza, con el propósito de obtener las rigideces reales de todos los marcos.

Además, para lograr mayor precisión, la fuerza antes mencionada so aplicó repartida a cada uno de los nudos de cada marco, y se obtuvo el promedio de los desplazamientos de los nudos de cada entrepiso, para finalmente obtener la rigidez de entrepiso dividiendo la fuerza

cortante aplicada entre el promedio de los desplazamientos relativos de entrepiso.

RIGIDEZ = FUERZA CORTANTE / DESPLAZAMIENTO RELATIVO $K = V \ / \ D$

b.2) SENTIDO "XX"

La presencia de un muro de rigidez en uno de los marcos, y que estos se encuentren unidos por un elemento que podemos considerar infinitamente rigido como lo es la losa, nos permite asegurar que todos los marcos se moveran de igual forma.

Ahora bien, la incógnita es cuál será el movimiento predominante de los marcos, si como muro o como marco. Para encontrar el movimiento real (y por lo tanto las rigideces) se puede utilizar varios métodos.

El primero consiste en "unir" todos los marcos del sentido "xx" (formando un macromarco), del edificio mediante un elemento de área infinita e inercia cero, el cual obligará a que los desplazamientos laterales de los marcos sean iguales, y no asi los giros. Precisamente lo que se necesita.

Una vez igualados los desplazamientos del "conjunto" de marcos se obtienen los cortantes que actuan en cada una de los columnas y con la suma de todos ellos se conoce la fuerza cortante que actua en cada marco en particular.

Para conocer la rigideces de piso de cada marco se divide la fuerza cortante entre el desplazamiento relativo de entrepiso.

El inconveniente que presenta el metodo en este caso es que el macromarco que se forma tiene mas de 20 crujias y 22 niveles, por lo cual se sobrepasan las capacidades de memoria en el programa de marcos planos y en una microcomputadora.

Sin embargo considerando que este método es preciso se aplico con la colaboración del Ing. Julio Damy Rios, quien cuenta con un programa y computadora capaces de resolver el problema. De esta manera se obtuvieron las rigideces, principalmente con el propósito de comprobar los resultados del método aplicado que se explica a continuación.

El segundo método propuesto es el de Khan y Sbarounis que consiste en sustituir una estructura como la de la figura JA, por otra equivalente reducida que se esquematiza en la figura JB, en la cual el sistema W representa al muro o muros de rigidez. El momento de inercia de este sistema, en cualquier piso, es la suma de los momentos de inercia de todos los muros de rigidez representados. El sistema F (marcos) incluye a las columnas, vigas y losas que contribuyen a la rigidez lateral. Las rigideces relativas (inercia/longitud) de las columnas (SC) y de las vigas (SV) son la suma de las rigideces relativas de todos los elementos correspondientes a la estructura.

FIGURA 3-A PLANTA DEL EDIFICIO CON MURD

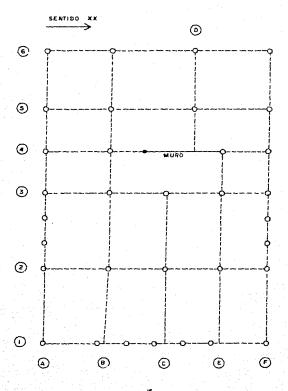
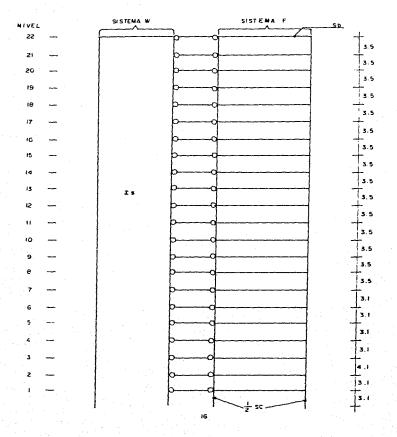



FIGURA 3 - 8 SISTEMA EQUIVALENTE

Los sistemas W y F se consideran ligados por barras horizontales de rigidez axial infinita (area infinita) y de rigidez a flexión nula, de forma tal que los desplazamientos laterales de ambos sistemas son iguales, pero no los giros.

Khan y Sbarounis proponen que las cargas laterales (en nuestro caso estas cargas son resultado del análisis sísmico estático del edificio) se apliquen inicialmente en su totalidad al sistema M como si estuviese aislado, y se calculen los desplazamientos laterales asi provocados, luego se suponen estos mismos desplazamientos para el sistema F. Por medio de distribucion de momentos se pueden conocer los elementos mecanicos generados por los desplazamientos supuestos y las reacciones sobre el sistema M. Se calculan enseguida las modificaciones que producen estas reacciones, aplicandolas al sistema M, nuevamente aislado. Se comparan los desplazamientos de ambos sistemas y se repite el procedimiento hasta que dichos desplazamientos sean iguales dentro de cierta tolerancia.

Como se puede apreciar el método de Khan y Sbarounis requiere de tanteos para llegar a la solución final, sin embargo en este caso se analizó el marco de los sistemas M y F mediante computadora. De esta manera los desplazamientos para ambos sistemas se igualan. De igual forma se conocen los cortantes que le corresponden al muro y a los marcos, y en la misma proporción en que cada uno de los marcos contribuyó al sistema F se reparte el cortante total entre los marcos.

Ya habiendo obtenido los cortantes de cada uno de los marcos, se les aplicaron y los desplazamientos fueron los mismos, por lo cual se considera que el método dio resultados satisfactorios. La rididez de piso se obtiene dividiendo la fuerza cortante entre el desplazamiento relativo de entrepiso.

Además, los resultados aplicando el método de Khan y Sbarounis no difieren en mas de 5% de los resultados obtenidos por el Ing. Julio Damy Rios.

En la siguiente hoja se presentan los resultados del Análisis Estático del edificio para los valores de coeficientes simico (c.s. = 0.40) y factor de comportamiento sismico (q = 4) correspondientes al Reglamento de Construcciones del Departamento del Distrito Federal de 1987 (Reglamento utilizado para el analisis actual del edificio) para poder conocer las fuerzas aplicadas a los marcos en el proceso de obtencion de las rigideces:

Esto es debido a que la rigidez de entrepiso de un marco no depende unicamente de sus características geometricas elásticas sino tambien de la forma de distribución de la fuerza cortante , y como primera aproximación se ha utilizado la configuración del análisis sísmico estático, ya que resulta muy parecido a la distribución del análisis dinámico en su primer modo de vibrar.

ANALISIS ESTATICO:

NIVEL	PESO (ton)	ALTURA (m)	FUERZA (ton)	CORTANTE (ton)
22	690	3.5	150.8	150.8
21	676	3.5	140.9	291.7
20	676	3.5	134.1	425.8
19	676	3.5	127.1	552.9
18	741	3.5	131.8	684.7
17	741	3.5	124.3	809.0
16	741	3.5	116.8	925.8
15	741	3.5	109.2	1035.0
14	809	3.5	111.0	1146.0
13	809	3.5	102.7	1248.7
12	809	3.5	94.6	1343.3
11	809	3.5	86.3	1429.6
10	809	3.5	78.0	1507.6
9	809	3.5	69.9	1577.5
8	809	3.5	61.6	1639.1
7	809	3.5	53.4	1692.5
6	1125	3.5	57.6	1750.1
5	1125	3.1	50.0	1800.1
4	1125	3.1	39.9	1840.0
9 7 6 5 4 3 2	1125	3.1	30.7	1870.7
2	1418	3.1	25.5	1896.2
1	1418	4.1	12.8	1909.0

Una vez obtenidas las fuerzas que se aplicaron para la obtención de las rigideces, el siguiente paso consiste en el conocer las características geometricas de cada uno de los marcos del edificio, para ello se presentan figuras numeradas de la 4 a la 13 que corresponden a la geometría y rigideces obtenidas de los marcos ejes 1, 2, 3, 4, 5 y 6, A, B, C, E, y F respectivamente. Se excluye el marco eje "D" por considerarlo con una rigidez no significativa para cuestiones de cálculo.

En la tabla 1 se presentan las secciones de las columnas de los marcos del edificio y corresponden a los diferentes tipos de columna señalados en las figuras anteriores (4 a 13). Cabe hacer notar que las columnas tipo 10, 11 y 12 tienen una sección pentagonal y que por lo tanto no es aceptada por el programa de marcos planos utilizado en este trabajo. Por ello, mediante un programa de computadora se obtuvieron las secciones rectangulares "equivalentes" que fueron utilizadas para cuestiones de cálculo.

TABLA 1 (SECCIONES DE COLUMNAS CMXCM)

	TRAMO									
TIPO	1	2	3	4	5					
				~~~~~						
1	90X200	90X180	80X160	70X140	60X120					
2	90X200	90X180	80X160	70X140	60X120					
3	70X100	70X90	65X90	60X85	60XB0					
4	90X130	90X120	80X100	70X90	60X80					
5	70X100	70X90	60X90	60X80	60X80					
6	100X120	90X110	80X100	70X90	60X80					
7	50X100									
8	60X100									
9	60X100									
10	91X104	90X101	85X90	76X88	66X87					
11	91X104	90X101	85X90	76X88	66X88					
12	100X100	100X100	100X100	100X100	100X100					
A	50X50	50X50	50X50	40X50	30X50					
В	100X120	90X110	80X100	70X90	60X80					
				~						

Finalmente en las tablas 1A y 1B se presenta un resumen de las rigideces de piso de todos los marcos analizados en sus niveles correpondientes, así como la suma de rigideces ( en ton/cm ) en cada sentido, ya que este es un dato necesario para el análisis dinámico de la estructura.

FIG. 4 ) MARCO EJE ()

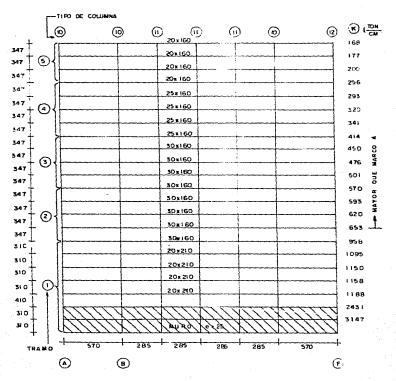



FIGURA 5 MAR CO EJE 2

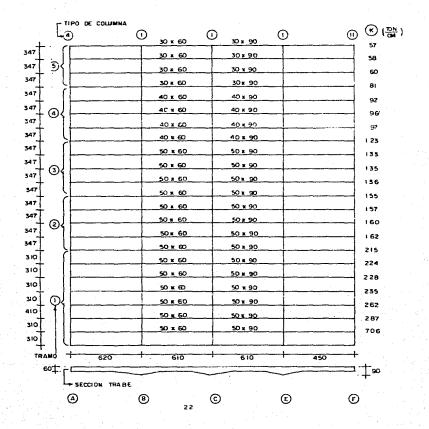



FIGURA 6 Marco eje 3

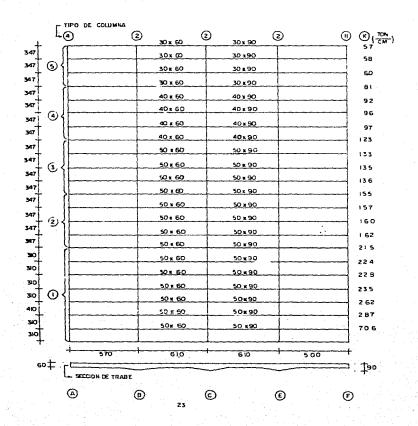



FIGURA 7

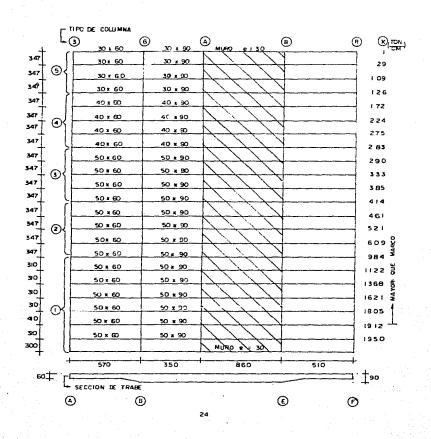



FIGURA B MARCO EJE 5 y 6

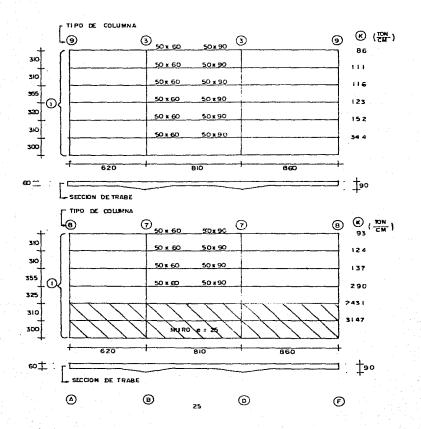



FIGURA 9 MARCO EJE A

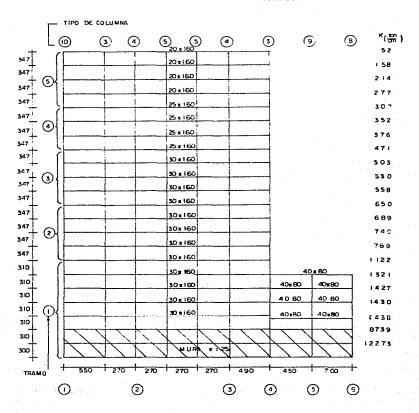



FIGURA 10 MARCO EJE B

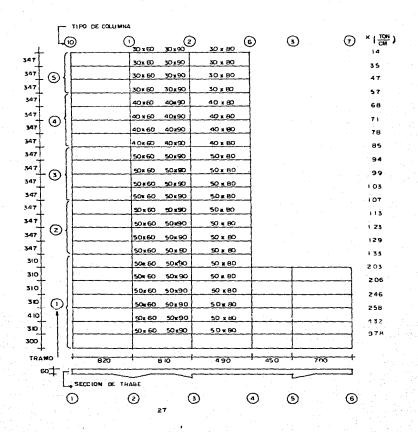



FIGURA II MARCO EJE C

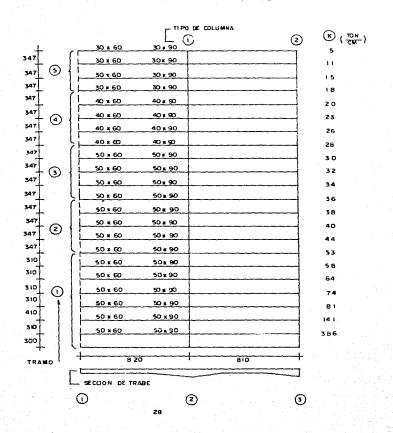



FIGURA 12 MARCO EJE E

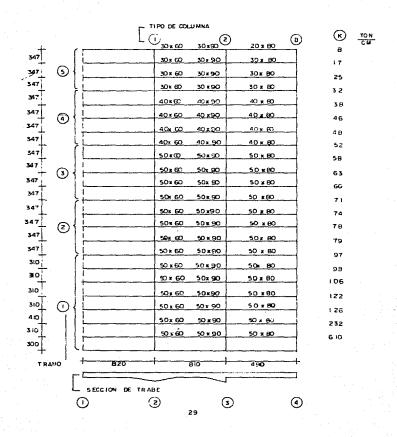
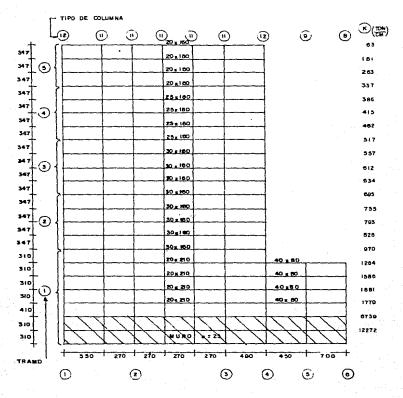




FIGURA 13



#### RIGIDECES SENTIDO "XX"

En esta tabla se muestran las rigideces piso de los marcos del sentido horizontal del edificio.

( TABLA 1-A )

NIVEL	MARCO	1	2	3	4	5	6	TOTAL
22		168	57	57	1	0		283
21		177	57	57	29	ő	ŏ	320
20		200	60	60	109	ŏ	ŏ	429
19		256	81	81	126	ő	ŏ	544
18		293	92	92	172	ŏ	ő	649
17		320	96	96	224	ŏ	ŏ	736
16		341	97	97	275	ő	ő	810
15		412	123	123	283	ŏ	ő	941
14		450	133	133	290	Ö	ő	1006
		476	135	135	333	ŏ	ŏ	1079
- 13						6	ő	1158
12		501	136	136	385			
11		570	155	155	414	o o	o	1294
10		593	157	157	461	0	0	1368
9 8 7		620	160	160	521	0	. 0	1461
. 8		652	162	162	609	0	0	1585
		958	215	215	984	0	0	2372
6		1095	224	224	1122	86	93	2844
5		1150	228	228	1368	111	124	3209
4		1158	235	235	1368	116	137	3249
3		1188	262	262	1805	123	290	3930
2		2431	287	287	1912	152	2431	7500
1		3147	706	706	1950	344	3147	10000

#### RIGIDECES SENTIDO "YY"

En esta tabla se muestran las rigideces de piso de los marcos del sentido vertical del edificio.

( TABLA 1-B )

NIVEL	MARCO	A	В	c	E	F	TOTAL	
22		52	14	5	8	63	142	
21		158	35	11	17	181	402	
20	•	214	47	15	25	263	564	
19		277	57	18	32	337	721	
18		307	68	20	38	386	819	
17		352	71	23	46	415	907	
16		376	78	26	48	482	1010	
15		471	85	28	52	517	1153	
14		503	94	30	58	557	1242	
13		530	99	32	63	€12	1336	
12		558	103	34	66	634	1395	
11		650	107	36	71	695	1559	
10		689	113	38	74	755	1669	
9		740	123	40	78	793	1774	
8		789	129	44	79	826	1867	
. 7		1122	133	53	97	970	2375	
6		1321	203	58	98	1264	2944	
. 5		1427	206	64	106	1586	3389	
4		1430	246	74	122	1681	3553	
3		1438	258	81	126	1779	3682	
2		3348	432	141	232	3347	7500	
1		6513	978	386	610	6513	15000	11.74

#### C) ANALISIS DINAMICO

El RDF-87 señala como posibles métodos de análisis dinámico el análisis modal espectral y el cálculo paso a paso de respuesta ante temblores específicos.

Se utilizó el análisis modal espectral, que implica el uso de los conceptos de modos de vibrar y espectros de diseño.

Los espectros de temblores reales tienen forma irregular y presentan variaciones bruscas en la respuesta máxima en función del periodo natural. Por tanto, es posible que dos estructuras que tengan casi las mismas características dinamicas, respondan de manera distinta a un sismo. En la práctica este hecho tiene menos importancia de la que se podría dar a primera vista, gracias a la influencia del amortiguamiento que hace menos bruscas las variaciones de los espectros, ya que no se conoce con certeza el periodo natural por las incertidumbres que existen en el cálculo de masas y rigideces, y a que las incursiones de la estructura en el intervalo inelástico, así como la interacción suelo-estructura, modifican el periodo natural de vibracion.

Por lo expuesto anteriormente, para fines de diseño se empleo el espectro en forma suavizada definido en la seccion 3 de las Normas Tecnicas Complementarias para Diseno por Sismo que ya toman en cuenta las incertidumbres en la valuación de los periodos, los efectos de temblores de distintos origenes, la influencia del amortiguamiento y de los distintos tipos de suelo.

En la seccion 4 de dichas Normas se señala la manera de tomar en cuenta el comportamiento inelástico, mediante espectros reducidos por ductilidad.

Para este caso el factor de comportamiento sísmico utilizado fue de Q = 4, ya que la resistencia en todos los entrepisos es suministrada exclusivamente por marcos de concreto reforzado y éstos son capaces de resistir cuando menos 50% de la fuerza sísmica actuante, tal como se señala en la sección 5.1 de la Normas Técnicas para Diseño por Sismo.

Se omitió la norma que indica que en el caso de que la estructura no satisfaga las condiciones de regularidad, se multiplicara por 0.8 el valor de Q' (sección 6 de las Normas de Sismo) y la norma que señala los requisitos que deben cumplir las estructuras calculadas con factores de comportamiento sismico de 3 o 4 (Marcos dúctiles . Sección 5 de las Normas Complementarias para Diseño y Construcción de Estructuras de Concreto); esto debido a que carece de importancia para los fines de este trabajo.

El análisis dinámico se llevo a cabo mediante un programa de computadora elaborado por el suscrito y que cumple con los requerimientos antes señalados. A continuación se hacen algunos comentarios a este respecto.

El programa considera unicamente los tres primeros modos vibrar de la estructura, e incluye la revision por cortante basal señalada por la seccion 9,3 de las Normas Tecnicas Complementarias para Diseno por Sismo que señala:

Si con el método de análisis dinámico que se haya aplicado se encuentra que, en la dirección que se considera, la fuerza cortante basal Vo es menor que 0.8aWo/Q¹, se incrementaran todas las fuerzas de diseño y desplazamientos laterales correspondientes en una proporción tal que Vo iguale a este valor.

Es por esto que el programa da resultados del analisis dinámico, análisis estático considerando el cortante en la base como 0.8aWo/Q' y los que se consideran definitivos que resultan al hacer la comparación entre los análisis antes mencionados y, en su caso, incrementar los valores del análisis dinámico según lo señalado por la seccion 9.3.

Además, el programa revisa los desplazamientos ( valores multiplicados por el Q correspondiente ) de la estructura dando los valores de Psi ( desplazamiento de entrepiso / altura de entrepiso ) que para el RDF-87 no deben de ser mayores a 0.012 ( Articulo 209 del RDF-87 ). Esta revisión de desplazamientos no incluye el aumento en los mismos debido a los efectos de torsión del edificio, ni los que resultarían considerando los efectos de segundo orden en caso de ser necesaria esta revisión.

Sin embargo, este análisis dinámico toma como dato las rigideces, que en este caso fueron calculadas con fuerzas muy parecidas al primer modo de vibrar, por ende se deberia estudiar las variaciones de estas rigideces para por lo menos en el segundo y tercer modo de vibrar. Punto que por sencillez se omite en este trabajo

En las siguientes cinco hojas se presentan los resultados de el análisis dinámico.

FECHA: 25/JULIO/8

#### ANALISIS DE FUERZAS SISMICAS (DINAMICO Y ESTATICO)

#### DATOS DEL EDIFICIO:

*****				
NIVEL	ALTURA (M)	PESO (TON)	RIGIDEZ X-X	RIGIDEZ Y-Y
<b>斯克拉莱斯</b>	SENSIBLE A	###F##################################		==========
1	3.1	1418	10000	15000
1 2 3	3.1	1418	5000	7500
	4.1	1025	3217	3682
4	3.1	1025	3249	3553
5	3.1	1025	2974	3389
- 6	3,1	1025	2665	2944
7	3.1	809	2372	2375
8	3.5	809	1585	1857
9	3.5	809	1461	1774
10 .	3.5	809	1368	1669
11	3.5	809	1274	1559
12	3.5	809	1158	1395
13	3.5	809	1079	1336
14	3.5	809	1006	1242
15	3.5	741	941	1153
16	3.5	741	810	1010
17	3.5	741	736	907
18	3.5	741	649	819
19	3.5	676	544	721
20	3.5	676	429	564
21	3.5	676	320	402
22	3.5	690	282	142

# * * * CARACTERISTICAS DE LA ESTRUCTURA *

GRUPO B

ZONA III

TS = 2

C.S. = .4 C.R. = .4

QX = 4

QY = 4

ב מיד פיר ביי

P = 1

- 36 -

#### * * * F R E C U E N C I A S * * *

	s	ENTIDO XX		
	WX2	wx	тx	FZX
MODO 1 MODO 2 MODO 3	11.5 66.7 165.0	3.4 8.2 12.8	1.9 0.8 0.5	0.5 1.3 2.0
	s	entido yy		
	WX2	wx	тx	FZX
MODO 1 MODO 2	13.7 78.0	3.7 8.8	1.7	0.6

#### **** FORMAS DE VIBRAR ****

	SENTIDO	xx		SENTIDO YY					
MODO 1	MODO 2	MODO 3	NIVEL	MODO 1	MODO 2	MODO 3			
1.0	1.0	1.0	1 2	1.0 3.0	1.0	1.0			
6.1 9.1	6.0 8.8	5.8 8.3	3 4	7.1	6.9 10.9	6.8			
12.4	11.7 14.6	10.5	4 5 6 7	15.6 20.5	14.7	13.5 16.3			
20.0 25.8 31.9	17.5 21.1 24.3	13.4 14.0 13.3	7 8 9	26.4 33.9 41.4	23.1 27.9 31.9	18.5 19.8 19.6			
38.3	26.7 28.1	11.2	10	49.2 57.2	34.9 36.7	17.6 13.8			
51.6 58.5	28.4	3.1 -2.3	12 13	65.7 73.9	37.0 35.5	8.0 1.2			
65.3 71.9	24.4	-7.8 -12.5	14 15	82.1 90.2	32.1 26.6	-6.3 -13.6			
78.8 85.5	13.7 5.8	-16.1 -17.4	16 17	98.4 106.5	18.8	-20.1 -24.4			
91.9 98.2 104.2	-3.6 -14.5 -26.8	-15.4 -9.6 0.4	18 19 20	114.1 121.0 127.9	-2.7 -15.7 -30.8	-25.0 -21.1 -11.5			
109.8	-39.4 -47.3	13.6 23.1	21 22	134.6	-47.9 -78.1	5.6			

#### **** CORTANTES Y DESPLAZAMIENTOS ****

#### ANALISIS DINAMICO

	SENTIDO :	XX ==	SENTIDO YY			
CORT.	DES.TOT.	DES.REL.	NIVEL	CORT.	DES. TOT.	DES. REL.
1174.7	0.5	0.5	1	1171.5	0.3	0.3
1171.8	1.4	0.9	1 2	1169.4	0.9	0.6
1163.4	2.9	1.5	3	1163.3	2.2	1.3
1151.3	4.3	1.4	4	1153.1	3.5	1.3
1133.7	5.8	1.5	ś	1137.2	4.8	1.3
1110.9	7.5	1.7	6	1115.7	6.4	1.5
1083.1	9.3	1.8	ž	1088.6	8.2	1.8
1057.3	12.0	2.7	ė	1062.2	10.5	2.3
1025.9	14.8	2.8	9	1029.6	12.8	2.3
989.0	17.7	2.9	10	991.5	15.2	2.4
946.7	20.6	3.0	11	947.8	17.6	2.4
898.8	23.7	3.1	12	898.7	20.2	2.6
845.0	26.9	3.1	13	943.6	22.7	2.5
784.7	30.0	3.1	14	782.7	25.2	2.5
718.2	33.0	3.1	15	715.5	27.7	2.5
651.6	36.3	3.2	16	648.3	30.3	2.6
579.2	39.4	3.2	17	574.9	32.8	2.5
501.2	42.5	3.1	18	495.4	35.2	2.4
417.2	45.6	3.1	19	410.2	37.5	2.3
333.0	48.7	3.1	20	327.1	39.8	2.3
237.3	51.6	3.0.		236.7	42.2	2.4
125.8	53.4	1.8	22	135.6	46.0	3.8

TESIS PROFESIONAL CARLOS ALVAREZ PELAEZ FECHA: 25/JULIO/89 OBRA: REFORMA # 175

# **** CORTANTES PARA DIFERENTES **** FORMAS DE VIBRAR

	SENTIDO	XX		SENTIDO YY		
MODO 1	MODO 2	моро з	NIVEL	MODO 1	MODO 2	моро з
1134.5	263.3	153.0	1	1140.8	235.3	124.6
1132.6	260.8	149.4	2	1139.3	233.5	122.4
1127.0	253.2	138.6	1 2 3	1134.8	228.3	116.1
1118.7	242.3	123.4	4	1127.1	219.4	105.6
1106.3	226.1	101.6	5	1114.9	205.5	89.5
1089.4	204.6	74.0	6	1097.9	186.6	68.5
1067.6	177.8	41.5	5 6 7	1075.6	162.6	43.2
1046.2	152.5	13.6	8	1052.8	139.2	20.5
1018.5	122.0	-15.6	9	1023.6	111.0	~3.8
984.2	86.B	-43.3	10	987.9	78.8	-27.8
943.1	48.1	-66.7	11	945.5	43.6	-49.4
895.0	7.3	-82.9	12	896.2	6.5	-66.2
839.5	-33.8	-89.5	13	839.6	-30.9	-76.1
776.7	-73.1	-84.7	14	776.0	-66.7	-77.5
706.6	-108.5	-68.5	15	705.2	-99.1	-69.8
635.9	-135.1	-44.6	16	634.0	-123.8	-54.5
558.3	-153.3	-13.8	17	556.3	-141.2	-31.9
474.2	-161.0	19.3	18	472.3	-149.4	-4.6
383.8	-156.2	48.7	19	382.3	-146.9	23.5
295.7	-138.6	65.4	20	295.1	-133.6	45.1
202.1	-106.1	64.7	21	203.0	-107.6	56.9
103.6	-58.4	41.0	22	106.1	-67.2	51.2

TESIS PROFESIONAL CARLOS ALVAREZ PELAEZ FECHA: 25/JULIO/89
OBRA: REFORMA # 175

#### **** CORTANTES Y DESPLAZAMIENTOS ****

#### ANALISIS ESTATICO

	SENTIDO	XX ===		SENTIDO Y	Y			
	COEFICIEN .4	TE X			COEFICIENT	E Y		
CORT.	DES.TOT.	DES.REL.	NIVEL	CORT.	DES. TOT.	DES.	REL.	
1909.0	0.8	0.8	1	1909.0	0.5		0.5	
1896.2	2.3	1.5	2	1896.2	1.5		1.0	
1870.7	4.6	2.3	3	1870.7	3.6		2.0	
1840.0	6.9	2.3	4	1840.0	5.6		2.1	
1800.1	9.3	2.4	5	1800.1	7.8		2.1	
1750.9	11.9	2.6	6	1750.9	10.1		2.4	
1692.5	14.8	2.9	7	1692.5	13.0		2.9	
1639.1	18.9	4 - 1	8	1639.1	16.5		3.5	
1577.5	23.2	4.3	9	1577.5	20.1		3.6	
1507.6	27.6	4.4	10	1507.6	23.7		3.6	
1429.6	32.1	4.5	11	1429.6	27.4		3.7	
1343.3	36.8	4.6	12	1343.3	31.2		3.9	
1248.7	41.4	4.6	13	1248.7	34.9		3.7	
1146.0	46.0	4.6	14	1146.0	38.6		3.7	
1035.0	50.4	4.4	15	1035.0	42.2		3.6	
925.8	54.9	4.6	16	925.8	45.9		3.7	
809.0	59.3	4.4	17	809.0	49.5		3.6	
684.7	63.5	4.2	18	684.7	52.8		3.3	
552.9	67.6	4.1	19	552.9	55.9		3.1	
425.8	71.6	4.0	20	425.8	58.9		3.0	
291.7	75.2	3.7	21	291.7	61.8		2.9	
150.8	77.4	2.1	22	150.8	66.0		4.3	

TESIS PROFESIONAL OBRA: REFORMA # 175 CARLOS ALVAREZ PELAEZ FECHA: 25/JULIO/89

#### **** C O R T A N T E S

#### RESULTADOS DEFINITIVOS

	SENTIDO	XX		SENTIDO YY				
CORT.	DES.TOT.	DES.REL.	NIVEL	CORT.	DES. TOT. DES.	REL.	PSIY	
1527.2 1517.0 1496.5 1472.0 1440.0 1400.7 1354.0 1311.3 1262.0 1206.1 1143.7 1074.6 999.0	0.6 1.87 5.5 7.5 11.8 15.6 22.1 25.1 29.4 33.8	0.6 1.9 1.8 2.1 2.3 3.5 3.5 3.7 3.7	1 2 3 4 5 6 7 8 9 10 112 112 114	1527.2 1517.0 1496.5 1472.0 1440.0 1400.7 1311.3 1262.0 1206.1 1143.7 1074.6 999.0	0.4 1.2 2.8 4.5 6.2 8.1 10.4 13.2 16.1 21.9 25.0 28.0 30.9	0.4 0.8 1.6 1.7 1.9 2.8 2.9 2.9 2.9 3.0	0.001 0.003 0.004 0.005 0.005 0.006 0.008 0.008 0.008 0.008 0.009 0.009	
828.0 740.6 647.2 547.0 442.3 340.6 237.3 125.8	40.3 43.9 47.5 50.8 54.1 57.3 60.2 61.9	3.7 3.7 3.5 3.3 3.2 3.0 1.8	15 16 17 12 19 20 21 22	828.0 740.6 647.2 547.8 442.3 340.6 236.7 135.6	33.8 36.7 39.6 42.2 44.7 47.1 49.4 52.8	2.9 2.9 2.9 2.7 2.5 2.4 2.4 3.8	0.008 0.008 0.008 0.008 0.007 0.007	

#### D) TORSION DEL EDIFICIO

El procedimiento de distribución de fuerzas sísmicas entre los elementos resistentes consiste en los siguientes pasos:

- La fuerza horizontal Pi aplicada en el centro de gravedad de cada nivel i se calculó en la seccion C de este capítulo.
- Se obtiene por equilibrio estático la linea de acción de la cortante sísmica en cada entrepiso para las dos direcciones ortogonales paralelas a los sistemas resistentes.
- Se determina la posición del centro de torsión de cada entrepiso mediante la siguiente expresion:

$$Xt = \frac{\Sigma (Rjy Xj)}{\Sigma Rjy} \qquad Yt = \frac{\Sigma (Rjx Yj)}{\Sigma Rjy}$$

donde Rjx, Rjy son las rigideces de piso de cada elemento resistente, en este caso marcos

Xj , Yj son las coordenadas de los elementos resistentes

4) La fuerza cortante que debe ser resistida por un elemento resistente cualquiera es igual a la suma de dos efectos: el debido a la fuerza cortante del piso, supuesta actuando en el centro de torsión, y el debido al momento torsionante del piso. Si la dirección analizada del sismo es paralela al eje "x", se obtienen los cortantes siguientes:

En los elementos resistentes "x" o "y" por efecto de la fuerza cortante aplicada en el centro de torsion:

Vx Rjx Vy Rjy

En los elementos resistentes "x" o "y" por efecto de torsión:

Mt Rjx Yjt Mt Rjy Xjt

(E Rjx Y'jt + E Rjy X'jt) (E Rjx Y'jt + E Rjy X'jt)

En las expresiones anteriores:

Vx, Vy fuerza cortante sísmica en el entrepiso considerado en las direcciones "x" y "y", respectivamente.

Xjt. Yjt distancias de los elementos resistentes con respecto al centro de torsión del entrepiso en cuestión.

Mt momento torsionanate en el entrepiso considerado, que es igual al producto de la fuerza cortante en el entrepiso por la más desfavorable de las siguientes excentricidades:

e = 1.5es + 0.1b e = es - 0.1b

Las disposiciones a este respecto se encuentran señaladas en las secciones 8.6 y 8.8 de las Normas Tecnicas Complementarias para diseño por sismo en donde se estipula:

La excentricidad torsional de rigideces calculada en cada entrepiso, "es", se tomará como la distancia entre el centro de torsión del nivel correspondiente y la fuerza cortante en dicho nivel. Además, la excentricidad de diseño en cada sentido no se tomará menor que la mitad del máximo valor de es calculado para los entrepisos que se hallan abajo del que se considera, ni se tomará el momento torsionante de ese entrepiso menor que la mitad del máximo calculado para los entrepisos que estan arriba del considerado.

El anáisis de la torsión se realizó mediante un programa de computadora que cumple con los requisitos antes señalados.

Como datos de entrada al programa se consideró que los cortantes por distribuir varian de 100.0 ton para el nivel 22 hasta 100.21 ton para el nivel 1, es decir un incremento de 0.01 ton/piso. Esto se hizo con el proposito de obtener los resultados como porcentajes del valor de las fuerzas cortantes que se aplicarán para la revisión de los elementos de la estructura. La gran ventaja que proporciona el obtener resultados en porcentajes es que se puede apreciar cual es el comportamiento del edificio ante solicitaciones sismicas, que es de gran utilidad en puntos posteriores de este trabajo.

En las siguientes hojas se muestran los datos y resultados del estudio por torsión del edificio; acerca de los datos es conveniente aclarar que se consideró al centro geométrico como centro de cargas en cada uno de los niveles, ya que generalmente la distribución de las cargas en cada nivel es lo suficientemente uniforme, como para permitirnos esta aproximación, en términos de ingeniería de Cálculo Estructural.

#### TESIS PROFESIONAL

### ESTUDIO DE TORSION

# DATOS PARA EL ANALISIS

```
NUMERO DE PISOS DEL EDIFICIO = 22
```

NUMERO DE MARCOS VERTICALES EN EL PISO 22 = 5 EN EL PISO 22 = 5 EN EL PISO 20 = 5 EN EL PISO 19 = 5 EN EL PISO 18 = 5 EN EL PISO 18 = 5 19 18 17 55555555555 EL PISO EL PISO = EN EN 16 EL PISO EL PISO EL PISO EL PISO EL PISO EL PISO EN 15 = 13 12 10 9 8 EN 11 6 3 11 EN EN EN EL PISO
EL PISO EN -ĒΝ EN æ

54321 5555

EN

EN

EN EN

=

-

NUMERO DE MARCOS HORIZONTALES EN EL PISO 22 = 4 EN EL PISO 21 = 4 EL PISO EL PISO EL PISO EN EN 20 19 18 17 16 EN EL EL PISO EN = PISO EN EL PISO EN EL PISO 14 EL ΕN PISO PISO 12 11 EN EL = 9 EN EL PISO EL PISO EH EL PISO
EL PISO
EL PISO
EL PISO
EL PISO
EL PISO
EL PISO EN EN EN 87 65432 EN = 444 EN = EN EN = 4

```
CENTRO DE CARGAS EN X (EN MTS)
EN EL PISO 22 = 11.4
EN EL PISO 21 = 11.4
EN EL
EN EL
                20
19
        PISO
                    æ
         PISO
         PISO
                18
17
                    =
         PISO
EN
    EL
                16 =
   EL
EL
EN
         PISO
EN EL
EN EL
EN EL
         PISO
                15
                14
13
         PISO
         PISO
         PISO
                12
EN EL
                11
        PISO
        PISO
         PISO
EN
    EL
EN EL
         PISO
         PISO
    EL
EN
         PISO
                5
         PISO
EN
   EL
EN EL
EN EL
EN EL
         PISO
                    20.0
...s.
         PISO
                2
                    æ
        PISO
EN EL PISO
CENTRO DE CARGAS EN Y (EN MTS)
EN EL PISO 22 = 10.6
EN EL PISO 21 = 10.6
                22 = 10.6
21 = 10.6
20 = 10.6
19 = 10.6
EN EL
         P150
EN EL
EN EL
         PISO
         PISO
                18 =
                       10.6
                       10.6
EN EL
         PISO
                17
                16
EN
    EL
         PISO
                       10-
EN EL PISO
EN EL PISO
EN EL PISO
                    -22
                14
                12 =
EN EL
        PISO
                       10.6
EN
EN
    EL PISO
                11
                10
         PISO
EN
   EL
    EL
         PISO
EN
EN
EN
    EL
         PISO
        PISO
                    #
#
                       16.4
EN
    EL
         PISO
                4
         PISO
                       16
EH
    EL
        PISO
PISO
PISO
ĒN
EN
    EL
EL
                    =
                3
                        16.
                2
                        16.4
```

```
LONGITUD HORIZONTAL DEL EDIFICIO (EN MTS) =
EN
  EL PISO
           22
21
                 22.8
EN
   EL
      PISO
                 22.8
            20
                 22.8
EN
   EL
      PISO
  EL PISO
            19 =
EN
                 22.8
22.8
EN
   EL PISO
            18
EN
   EL PISO
            17 =
EN
   EL PISO
            16
                 22.8
   EL PISO
            15
                 22.8
EN
            14
EN
   EL
      PISO
                 22.8
   EL PISO
            13
EN
                 22.8
EN EL PISO
            12
                 22.8
   EL PISO
           11
                 22.8
EN
   EL PISO
            10
                 22.8
EN
EN
   EL PISO
                 22.8
EN
   EL PISO
            8
                 22.8
EN
   EL
      PISO
            7
               =
                 22.8
   EL PISO
                 22.8
ΕN
   EL PISO
            5
ΕN
               =
                 22.8
                 22.8
EN
   EL
      PISO
           3
EN EL PISO
EN EL PISO
           2
               =
                 22.8
EN EL PISO 1
                 22.8
LONGITUD VERTICAL DEL EDIFICIO (EN MTS)
EN EL PISO 22 = 21.2
EN
   EL PISO
            21 = 21.2
EN
   EL PISO
           20 = 21.2
           19 = 21.2
EN EL PISO
EN
   EL PISO
            18 = 21.2
            17 = 21.2
EN
  EL PISO
EN EL PISO
           16 = 21.2
EN
   EL PISO
            15 =
                 21.2
EN EL PISO
            14 = 21.2
EN EL PISO
            13 = 21.2
EN
   EL PISO
            12 =
                 21.2
EN
   EL PISO
            11
                 21.2
           10 =
EN
   EL PISO
EN
   EL PISO
           9
                 21.2
EN
   EL PISO
            8
                 21.2
EN
   EL
      PISO
            7
                 21.2
EN
   EL PISO
                 32.7
EN
   EL PISO
                 32.7
EN
   EL PISO
            4
3
                 32.7
   ĒĹ
      PISO
EN
               --
EN
   EL PISO
            2
                 32.7
      PISO
                 32.7
```

### FUERZA CORTANTE POR DISTRIBUIR (EN TON) =

•	SENTIDO X-X	SENTIDO Y-Y
EN EL PISO 22 =	100.00	100.00
EN EL PISO 21 =	100.01	100.01
EN EL PISO 20 =	100.02	100.02
EN EL PISO 19 =	100.03	100.03
EN EL PISO 18 =	100.04	100.04
EN EL PISO 17 -	100.05	100.05
EN EL PISO 16 =	100.06	100.06
EN EL PISO 15 =	100.07	100.07
EN EL PISO 14 =	100.08	100.08
EN EL PISO 13 =	100.09	100.09
EN EL PISO 12 =	100.10	100.10
EN EL PISO 11 =	100.11	100.11
EN EL PISO 10 =	100.12	100.12
EN EL PISO 9 =	100.13	100.13
EN EL PISO 8 =	100.14	100.14
EN EL PISO 7 =	100.15	100.15
EN EL PISO 6 =	100.16	100.16
EN EL PISO 5 =	100.17	100.17
EN EL PISO 4 =	100.18	100.18
EN EL PISO 3 =	100.19	100.19
EN EL PISO 2 =	100.20	100.20
EN EL PISO 1 =	100.21	100.21

# RESULTADOS POR MARÇOS:

#### MARCOS VERTICALES

```
MARCO VERTICAL 1 (EJE A)
```

RESULTADOS EN EL PISO 22 : 44.3 (TON) RESULTADOS EN EL PISO 21 : (TON) 48.0 47.3 (TON) RESULTADOS EN EL PISO 20 : 47.9 RESULTADOS EN EL PISO 19 (TON) RESULTADOS EN EL PISO 18 47.2 (TON) RESULTADOS EN EL PISO 17 47.4 (TON) 47.2 RESULTADOS EN EL PISO RESULTADOS EN EL PISO 15 48.2 (TON) RESULTADOS EN EL PISO 14 : 48.0 (TON) RESULTADOS EN EL PISO 13 48.0 (TON) RESULTADOS EN EL PISO 12 47.9 (TON) 48.6 48.7 (TON) RESULTADOS EN EL PISO 11 : RESULTADOS EN EL PISO 10 (TON) (TON) 48.6 RESULTADOS EN EL PISO 9 (TON) RESULTADOS EN EL PISO 8 48.6 RESULTADOS EN EL PISO 7 50.9 (TON) RESULTADOS EN EL PISO 6 49.2 48.7 (TON) (TON) RESULTADOS EN EL PISO 5 (TON) RESULTADOS EN EL PISO 47.6 RESULTADOS EN EL PISO 47.1 • RESULTADOS EN EL PISO 2 52.2 (TON) : RESULTADOS EN EL PISO 49.9

#### MARCO VERTICAL 2 (EJE B)

RESULTADOS EN EL PISO 22 : 10.9 (TON) (TON) (TON) RESULTADOS EN EL PISO 21 : 9.7 RESULTADOS EN EL PISO 20 : 9.4 8.9 RESULTADOS EN EL PISO 19 (TON) RESULTADOS EN EL PISO 9.4 RESULTADOS EN EL PISO 17 8.7 (TON) RESULTADOS EN EL PISO 16 : 8.8 RESULTADOS EN EL PISO 15: (TON) RESULTADOS EN EL PISO 14 : 8.3 (TON) PISO EN EL 13 : RESULTADOS 8.2 RESULTADOS EN EL PISO 12 : 8.1 (TON) RESULTADOS EN EL PISO 11: 7.4 7.1 RESULTADOS EN EL PISO 3.0 : (TON) RESULTADOS EN EL PISO 7.6 (TON EN EL PISO RESULTADOS 7.4 RESULTADOS EN EL PISO 5.8 (TON) 7.2 (TON RESULTADOS EN EL PISO (TON RESULTADOS EN EL PISO 6.6 RESULTADOS EN EL PISO 7.6 (TON) 7.8 (TON) RESULTADOS EN EL PISO RESULTADOS EN EL PISO 2 2.5 TON) RESULTADOS EN EL PISO 3.8 (TON)

#### RESULTADOS POR MARCOS:

#### MARCOS VERTICALES

```
MARCO VERTICAL 3 (EJE C)
```

EN	EL	PI50	22	:	3.5	(TON)
EN	EL	PISO	21	:	2.7	(TON)
EN	EL	PISO	20	:	2.7	(TON)
EN	EL	PISO	19	:		(TON)
EN	EI.	PISO	18			(TON)
	EL	PISO	17			(TON)
	E.L.	PTSO				(TON)
EN	EI.		15			(TON)
EN	EI.	PISO	14			(TON)
	EL					(TON)
EN	EL	PISO				(TON)
EN	EL	PISO	11	:	2.3	(TON)
EN	EL	PISO	10	:	2.3	(TON)
EN	EL	PISO	9	•	2.2	(TON)
EN	EL	PISO	8	:	2.4	(TON)
EN	EL	PISO	7		2.3	(TON)
EN	EL	PISO	6	:	2.0	(TON)
EN	EL	PISO	5	:	1.9	(TON)
EN	EL	PISO	4	:	2.1	(TON)
EN	ΕL	PISO	3	:	2.2	(TON)
EN	EL	PISO	2	:	0.8	(TON)
EN	EL	PISO	1	:	1.5	(TON)
	EN E		EN EL PISO	EN EL PISO 20 EN EL PISO 20 EN EL PISO 19 EN EL PISO 17 EN EL PISO 17 EN EL PISO 15 EN EL PISO 15 EN EL PISO 15 EN EL PISO 10 EN EL PISO 10 EN EL PISO 10 EN EL PISO 10 EN EL PISO 11 EN EL PISO 11 EN EL PISO 10 EN EL PISO 10 EN EL PISO 7 EN EL PISO 6 EN EL PISO 5 EN EL PISO 5 EN EL PISO 5 EN EL PISO 5 EN EL PISO 3 EN EL PISO 3	EN EL PISO 20 : EN EL PISO 20 : EN EL PISO 10 : EN EL PISO 18 : EN EL PISO 18 : EN EL PISO 16 : EN EL PISO 16 : EN EL PISO 16 : EN EL PISO 10 : EN EL PISO 10 : EN EL PISO 11 : EN EL PISO 11 : EN EL PISO 10 : EN EL PISO 5 : EN EL PISO 5 : EN EL PISO 5 : EN EL PISO 6 : EN EL PISO 6 : EN EL PISO 6 : EN EL PISO 7 : EN EL PISO 7 : EN EL PISO 9 : EN EL PISO 9 : EN EL PISO 0 :	EN EL PISO 21 : 2.7 EN EL PISO 20 : 2.7 EN EL PISO 19 : 2.5 EN EL PISO 19 : 2.5 EN EL PISO 17 : 2.5 EN EL PISO 17 : 2.5 EN EL PISO 18 : 2.5 EN EL PISO 16 : 2.6 EN EL PISO 15 : 2.4 EN EL PISO 15 : 2.4 EN EL PISO 13 : 2.4 EN EL PISO 13 : 2.4 EN EL PISO 10 : 2.3 EN EL PISO 10 : 2.3 EN EL PISO 10 : 2.3 EN EL PISO 9 : 2.3 EN EL PISO 9 : 2.2 EN EL PISO 8 : 2.4 EN EL PISO 6 : 2.0 EN EL PISO 7 : 2.3 EN EL PISO 6 : 2.0 EN EL PISO 5 : 1.9 EN EL PISO 5 : 1.9 EN EL PISO 1 : 2.1 EN EL PISO 2 : 2.2 EN EL PISO 3 : 2.2

#### MARCO VERTICAL 4 (EJE E)

RESULTADOS	EN	EL	PISO	22	:	5.9 (TON)
RESULTADOS	EN	EL	PISO	21	:	4.5 (TON)
RESULTADOS	EN	EL	PISO	20	:	4-6 (TON)
RESULTADOS	EN	EL	PISO	19	:	4.7 (TON)
RESULTADOS	EN	EL	PISO	18	:	4.8 (TON)
RESULTADOS	EN	EL	PISO	3.7	:	5.3 (TON)
RESULTADOS	EH	EL	PISO	16	:	4.9 (TON)
RESULTADOS	EN	EL	PISO	15	:	4.8 (TON)
RESULTADOS	EN	EL	PISO	14	:	5.0 (TON)
RESULTADOS	EN	EL	PISO	13	:	5.0 (TON)
RESULTADOS	EN	EL	PISO	12	:	5.0 (TON)
RESULTADOS	EN	EL	PISO	11	:	4.9 (TON)
RESULTADOS	EN	EL	PISO	10	:	4.7 (TON)
RESULTADOS	EN	EL	PISO	9	:	4.6 (TON)
RESULTADOS	EN	EL	PISO	В	:	4.5 (TON)
RESULTADOS	EN	EL	PISO	7	:	4 6 (TON)
RESULTADOS	EN	EL	PISO	6	:	3.6 (TON)
RESULTADOS	EN	EL	PISO	5	:	3.3 (TON)
RESULTADOS	EN	EL	PISO	4	:	3.6 (TON)
RESULTADOS	EN	EL	PISO	3	:	3.6 (TON)
RESULTADOS	EN	EL	PISO	2	:	1.3 (TON)
RESULTADOS	EN	EL	PISO	1	•	2.4 (TON)

TORSION 1

RESULTADOS POR MARCOS:

MARCOS VERTICALES

#### MARCO VERTICAL 5 (EJE F)

```
48.1
RESULTADOS EN EL PISO 22
                                      (TON)
RESULTADOS EN
               EL PISO 21
                                50.5
                                     (TON)
RESULTADOS EN EL PISO 20
                                50.6
RESULTADOS EN EL PISO 19
                                50.9
                                      (TON)
RESULTADOS
            EN
               EL PISO
                        18
                                50.7
                                      (TON)
RESULTADOS EN EL PISO 17
                                49.9
                                      (TON)
                                50.9
                                      (TON)
RESULTADOS EN EL PISO 16
                                     (TON)
RESULTADOS EN
               EL PISO 15
                                50.0
RESULTADOS EN EL PISO 14
                                49.9
RESULTADOS EN EL PISO 13
                                50.2
                                      (TON)
RESULTADOS EN EL PISO
RESULTADOS EN EL PISO
               EL PISO 12
                                      (TON)
                                50.0
                        11
                                49.9
RESULTADOS EN EL PISO 10
                                      (TON)
                                50.2
RESULTADOS EN EL PISO 9
RESULTADOS EN EL PISO 8
                                49.5
                                     (TON)
                                49.8
RESULTADOS EN EL PISO 7
                                48.9
                                      (TON)
RESULTADOS EN EL PISO 6
                                49.4
                                      (TON)
RESULTADOS
                                      (TON)
            EN
               EL PISO
                                51.1
RESULTADOS EN
               EL PISO
                                51.1
RESULTADOS EN EL PISO
                        3
                                51.5
                                      (TON)
                                     (TON)
RESULTADOS EN
               EL PISO
                         2
                                52.5
RESULTADOS EN
               EL PISO
                                50.1
```

### RESULTADOS POR MARCOS:

#### MARCOS HORIZONTALES

```
MARCO HORIZONTAL
                     1
                        (EJE 1)
RESULTADOS EN EL PISO
                               59.4
                                    (TON)
                               55.3
RESULTADOS EN EL PISO
                        21
                                    (TON)
                           :
RESULTADOS
           EN
               EL
                  PISO
                        20
                               47.2
                                    (TON)
                           :
RESULTADOS EN EL PISO
                        19
                               47.2
                                     (TON)
                           :
RESULTADOS EN EL
                  PISO
                        18
                               46.3
                           :
                                     (TON)
RESULTADOS
            EN
               EL
                  PISO
                        17
                           :
                               45.7
                                     (TON
RESULTADOS EN EL
                               45.2
                  PISO
                        16
                                     TON
                           :
RESULTADOS EN EL
                  PISO
                        15
                               45.8
                                    (TON)
RESULTADOS
           EN
               EL
                  PISO
                        14
                               46.4
                                     (TON)
                        13
                               46.2
RESULTADOS EN
               EL PISO
                                     (TON)
RESULTADOS EN
               EL
                   PISO
                                     (TON)
                        11
                               46.4
46.2
RESULTADOS EN
               EL
                  PISO
                                     TON
RESULTADOS EN
               EL
                  PISO
                        10
                                     (TON)
RESULTADOS EN EL
                  PISO
                                    (TON)
RESULTADOS EN EL
                               45.4
                                    (TON)
                  PISO
RESULTADOS EN
               EL
                  PISO
                               46.2
                                     (TON)
RESULTADOS EN EL PISO
                        6
                               49.8
                                     (TON)
RESULTADOS EN EL
                               49.1
                  PISO 5
                                     (TON)
RESULTADOS
           EN
               EL
                  PISO
                               48.9
                                     NOT)
RESULTADOS EN EL
                               43.6
                                     (TON)
                  PISO
                        3
                            :
RESULTADOS EN EL PISO
                        2
                               52.7
                                    (TON)
RESULTADOS EN
               EL
                  PISO
                                    (TON
MARCO HORIZONTAL
                     2
                        (EJE 2)
RESULTADOS EN EL PISO
                        22
                               27.0 (TON)
                               19.3
                                    (TON)
RESULTADOS EN EL PISO
                        21
                           :
RESULTADOS
           EN EL PISO
                               14.0
                                    (TON)
                        20
                           :
RESULTADOS
           EN
               EL
                  PISO
                        19
                               14.9
                                     (TON
                           :
RESULTADOS
           EN EL PISO
                        18
                               14.2
                                    (TON)
                           •
RESULTADOS
           EN EL
                  PISO
                        17
                           :
                               13.2
                                    (TON
RESULTADOS
            EN
               EL
                  PISO
                        16
                               12.2
                                    (TON)
                           ٠
           EN EL PISO
RESULTADOS
                        15
                               13.2
                           :
                                     (TON)
RESULTADOS EN EL
                  PISO
                        14
                               13.3
                                     ITON
RESULTADOS EN
               EL PISO
                        13
                                     (TON)
                               12.5
RESULTADOS EN EL
                  PISO
                               11.9
                                     (TON
                        11
RESULTADOS EN EL PISO
                               12.1 (TON)
                           :
RESULTADOS EN EL PISO
                        10
                               11.6
                                    (TON)
RESULTADOS EN
               EL
                  PISO
                        9
                                    (TON)
                               11.1
RESULTADOS EN EL PISO 8
                               10.5
                                     (TON)
RESULTADOS EN EL
                  PISO
                                9.4
                                    (TON)
RESULTADOS
            EN
               EL PISO
                                    (TON
                                8.6
RESULTADOS EN EL PISO
                                8.1
                                    (TON
RESULTADOS EN EL PISO
                                    (TON)
                                8.2
RESULTADOS EN EL PISO
                        3
                                9.9
                                    (TON)
                            ٠
RESULTADOS
            EN EL
                   PISO
                        2
                               10.9
                                     i TON
RESULTADOS EN EL PISO
                                8.6
```

```
RESULTADOS POR MARCOS:
```

MARCOS HORIZONTALES

```
MARCO HORIZONTAL
                       (EJE 3)
                   3
```

```
RESULTADOS EN EL PISO
                        22
                               44.3
                                    (TON)
RESULTADOS EN EL PISO
                              25.4
                        21
                        20 :
RESULTADOS EN EL
                   PI50
                               16.2
                                     (TON)
RESULTADOS
           EN EL
                  PISO
                        19
                               17.5
                                     (TON
                               16.2
RESULTADOS
           EN
               EL
                   PISO
                        18
                                    (TON
RESULTADOS
           EN
               EL
                  PISO
                        17
                              14.4
                                    (TON)
                                    (TON
RESULTADOS
           EH
                   PISO
                        16
               EL
RESULTADOS
           EN
               EL
                  PISO
                        15
                               14.5
                                     (TON)
RESULTADOS EN EL
                                    (TON)
                  PISO
                        14
                              14.8
RESULTADOS
           EN EL
                  PISO
                        13 :
                               13.8
                                    (TON)
                                    (HOT)
RESULTADOS
           EN
               EL
                  PISO
                               12.8
RESULTADOS
           EN
               EL
                  PISO
                        11
                               13.2
                                     (TON)
RESULTADOS EN EL
                  PISO
                        10
                               12.5
                                    (TON)
                  PISO
                               11.7
                                    (TON)
RESULTADOS EN EL
                        9
RESULTADOS
           EN
               EL
                  PISO
                               10.8
                                    (HOT)
RESULTADOS
           EN EL
                  PISO
                               9.5
                                    (TON)
RESULTADOS
           EN EL
                  PISO
                               8.1
                                    (TON)
RESULTADOS
           EN
               EL
                  PISO
                                7.2
                                    (TON)
RESULTADOS EN EL
                  PISO
                                7.3
                           :
                                    (TON)
(TON)
RESULTADOS EN EL PISO
                               7.2
                       3
RESULTADOS EN EL PISO
                        2
                               8.5
                           •
RESULTADOS EN EL PISO
                               6.5
```

#### MARCO HORIZONTAL (EJE 4)

RESULTADOS EN EL PISO 22 1.0 (TON) 4.8 (TON) RESULTADOS EN EL PISO 21 : 14.8 RESULTADOS EN EL PISO 20 31.9 (TON 19 (TON RESULTADOS EN EL PISO 29.7 . RESULTADOS EN EL PISO 18 32.7 (TON) RESULTADOS (TON) EN EL PISO 17 35.9 RESULTADOS EN EL PISO 16 38.6 RESULTADOS EN EL PISO 15 35.7 (TON) (TON RESULTADOS EN EL PISO 14 : 34.8 RESULTADOS EN EL PISO 13 36.5 (TON) RESULTADOS EN EL PISO 12 : 38.4 (TON) RESULTADOS EN EL PISO 37.6 (TON) RESULTADOS EN EL PISO 38.8 (TON RESULTADOS EN ĒL PISO 40.2 (TON) (TON RESULTADOS EN EL PISO 42.1 (TON RESULTADOS EN EL PISO 44.9 • RESULTADOS EN EL PISO 42.2 (TON) RESULTADOS EN EL PISO 44.1 TON ٠ EN EL (TON RESULTADOS PISO : 43.4 (TON) RESULTADOS EN EL PISO 3 : 49.B EN EL (TON) RESULTADOS PISO 16.5 2 : RESULTADOS EN EL PISO 10.6 (TON) ---------

#### RESULTADOS POR MARCOS:

## MARCOS HORIZONTALES

```
MARCO HORIZONTAL
                    5
                       (EJE 5)
RESULTADOS EN EL PISO 22 :
                              0.0 (TON)
RESULTADOS EN EL PISO
                       21
                              0.0
                                   (TON)
RESULTADOS EN EL PISO
                          •
                              0.0
                                   (TON)
RESULTADOS EN EL PISO
                       19
                              0.0 (TON)
RESULTADOS EN
               EL
                 PISO
                       18
                              0.0 (TON)
                          •
RESULTADOS EN
              EL PISO
                       17
                          .
                              0.0 (TON)
RESULTADOS EN
                       16
                              0.0 (TON)
              EL PISO
RESULTADOS
           EN
              EL
                 PISO 15 :
RESULTADOS EN
              EL PISO
                       14
                              0.0
                                   (TON)
RESULTADOS EN EL PISO
                       13
                              0.0 (TON)
RESULTADOS EN EL PISO 12 :
                              0.0 (TON)
0.0 (TON)
RESULTADOS EN
              EL PISO
                       11:
RESULTADOS EN
                              0.0 (TON)
              EL PISO 10 :
RESULTADOS EN EL PISO
                              0.0 (TON)
RESULTADOS EN
              EL PISO
                       8
                              0.0 (TON)
RESULTADOS EN
              EL PISO
                              0.0
                                  (TON)
RESULTADOS EN EL PISO 6
                               3.3
                                   (TON)
RESULTADOS
           EN
                                   (NOT)
               EL
                 PISO
                              3.6
              EL PISO
RESULTADOS EN
                                   (TON)
RESULTADOS EN EL PISO 3
                              3.4
                                   (NOT)
                         :
RESULTADOS EN
              EL PISO
                       2
                              1.0
                                   (TON)
RESULTADOS EN EL PISO
                              6.4
MARCO HORIZONTAL
                    6
                       (EJE 6)
RESULTADOS EN EL PISO
                       22 :
                              0.0 (TON)
RESULTADOS EN EL PISO
                       21:
                              0.0 (TON)
                                   (TON)
RESULTADOS EN
              EL PISO
                       20
                              0.0
RESULTADOS EN EL PISO
                       19
                              0.0
RESULTADOS EN EL PISO
                       18:
                              0.0 (TON)
RESULTADOS EN EL PISO
                                   (TON)
                       17 :
                              0.0
RESULTADOS EN
              EL PISO
                       16
                              0.0
                                  (TON)
RESULTADOS EN EL PISO 15
                              0.0
RESULTADOS EN EL
                  PISO
                              0.0 (TON)
                       14 :
RESULTADOS
           EN
              EL
                  PISO
                       13
                              0.0
                                   (TON)
RESULTADOS
           EN
              EL PISO
                              0.0 (TON)
RESULTADOS EN EL
                 PISO
                       11:
                              0.0 (TON)
RESULTADOS EN
              EL PISO
                       10 :
                              0.0 (TON)
RESULTADOS EN EL PISO 9
                              0.0 (TON)
RESULTADOS EN
              EL PISO
                              0.0 (TON)
                                   (TON)
RESULTADOS
           EN
              EL
                  PISO
                              0.0
RESULTADOS EN
              EL
                  PISO
                                   (TON)
                              3.8
RESULTADOS EN
              EL PISO
                               4.2
                                   (TON)
RESUL/TADOS
           EN
              EL PISO
                              4.5
                                   (TON)
RESULTADOS
                       3
                                   (TON)
           EN
              EL
                  PISO
                              8.0
RESULTADOS EN EL PISO
                          ٠
                              33.0
RESULTADOS EN
              EL.
                  PISO
                              35.3
                                   (TON)
```

## COMPORTAMIENTO DEL EDIFICIO ANTE SOLICITACIONES SISMICAS, INTERVALO

La forma en la que se puede determinar el comportamiento del edificio ante un sismo la podemos obtener directamente de los resultados del estudio por torsión, ya que estos corresponden a los porcentajes del cortante total que se generara ante la excitación de la estructura debida a un sismo, y que tomará cada uno de los marcos.

El comportamiento de un edificio estruturado como "tubo", ante solicitaciones sísmicas, en teoria seria que 2 de sus marcos tomaran el 50% de la fuerza generada por el sismo en cada sentido. Por lo tanto, para darnos idea de lo que pasa en este caso es necesario observar los resultados del estudio por torsion que en resumen se presentan en las tablas 2 ( para el sentido "XX", paralelo a Reforma ) y 3 ( para el sentido "YY", paralelo a Rio Tamesis ).

Analizando estos resultados estableceremos con mayor seguridad cuál podría ser el comportamiento del edificio durante un sismo en el intervalo elástico, y a partir de esta conclusión poder establecer el por que del estudio que se realizará del comportamiento en el intervalo inelástico.

#### SENTIDO "XX"

En esta tabla se muestran los porcentajes de la fuerza cortante generada por un sismo que tomarian los marcos del sentido horizontal del edificio.

( TABLA 2 )

NIVEL	MARCO	1	2	3	4	5	6	TOTAL
22		59.4	27.0	44.3	1.0	0.0	0.0	131.7
21		55.3	19.2	25.4	14.8	0.0	0.0	114.7
20		47.2	14.0	16.2	31.9	0.0	0.0	109.3
19		47.2	14.9	17.5	29.7	0.0	0.0	109.3
18		46.3	14.2	16.2	32.7	0.0	0.0	109.4
17		45.7	13.2	14.4	35.9	0.0	0.0	109.2
16		45.2	12.2	12.9	38.6	0.0	0.0	108.9
15		45.8	13.2	14.5	35.7	0.0	0.0	109.2
14		46.4	13.3	14.8	34.8	0.0	0.0	109.3
13		46.2	12.6	13.8	36.5	0.0	0.0	109.1
12		46.0	11.9	12.8	38.4	0.0	0.0	109.1
11		46.4	12.1	13.2	37.6	0.0	0.0	109.3
10		46.2	11.6	12.5	38.8	0.0	0.0	109.1
9		45.B	11.1	11.7	40.2	0.0	0.0	108.8
. 8		45.4	10.5	10.8	42.1	0.0	0.0	108.8
7 .		46.2	9.4	9.5	44.9	0.0	0.0	110.0
6		49.8	8.6	8.1	42.2	3.3	3.8	115.8
5		49.1	8.1	7-2	44.1	3.6	4.2	116.3
4		48.9	8.2	7.3	43.4	3.7	4.5	116.0
3		43.6	9.9	7.2	49.8	3.4	8.0	121.2
2		52.7	10.9	8.5	16.5	1.0	33.0	122.6
1		59.6	8.6	6.5	10.6	6.4	35.3	127.0

#### SENTIDO "YY"

En esta tabla se muestran los porcentajes de la fuerza cortante generada por un sismo que tomarian los marcos del sentido vertical del edificio.

( TABLA 3 )

NIVEL	MARCO	A	В	c	E	F	TOTAL	
22		45.5	11.1	3.5	5.9	48.6	114.6	
21		47.5	9.6	2.7	4.5	50.2	114.5	
20		47.7	9.4	2.7	4.7	50.8	115.3	
19		47.8	8.9	2.5	4.7	50.9	114.8	
18		47.5	9.5	2.5	4.9	51.0	115.4	
17		47.8	8.8	2.6	5.4	50.2	114.8	
16		47.6	8.9	2.6	4.7	51.4	115,2	
1.5		48.8	8.1	2.5	4.8	50.4	114.6	
14		48.4	8.3	2.4	5.0	50.3	114.4	
13		48.4	8.3	2.4	5.0	50.7	114.8	
12		48.5	B. 2	2.5	5.1	50.6	114.9	
11		49.3	7.5	2.3	4.9	50.5	114.5	
10		49.4	7.5	2.3	4.8	50.9	114.9	
9		49.3	7.6	2.3	4.8	50.7	114.7	
8		49.4	7.5	2.4	4.6	50.6	114.5	
7		52.1	5.9	2.3	4.7	50.4	115.4	
6		49.8	6.9	1.7	3.0	54.6	116.0	
5		50.0	6.7	1.9	3.4	52.3	114.3	
4		48.6	7.8	2.1	3.7	52.3	114.5	
3		48.5	9.0	2.4	4.3	48.9	113.1	
3 2		53.5	2.5	õ. s	1.4	53.8	112.0	
ĩ		51.4	3.9	1.5	2.5	51.6	110.9	

Observando los resultados mostrados en las tablas 2 y 3 llegamos a la conclusión de que lo supuesto con anterioridad, el comportamiento de "tubo" de la estructura, ha quedado comprobado mediante un análisis matemático.

Para el caso de sentido "XX", los marcos que toman en conjunto el 80% de las fuerzas generadas por el sismo son los marcos ejes 1 y 4 (excepto en los niveles 21 y 22 del edificio), como se habia supuesto en el capitulo 2. Cabe hacer notar que este comportamiento cambia para los niveles 1 y 2 ya que en estos niveles el marco extremo 6 es un muro de concreto lo que aumenta la rigidez del marco considerablemente. Exceptuando estos 2 niveles el comportamiento es el antes mencionado.

Para el caso del sentido "ΥΥ" es mas clara nuestra aseveración ya que los marcos λ v F toman el 100% de las fuerzas generadas.

Es importante señalar que en cada sentido la suma de las fuerzas no es de 100% ya que estas se incrementan por el efecto de torsión y por ello el total varia. Sin embargo este total se muestra en la última columna de las tablas 2 y 3.

Después de las anteriores aseveraciones se puede concluir con certeza que ante selicitaciones sismicas el edificio en estudio se comportara con las características de una estructura de "tubo".

#### C) CONCLUSIONES Y PROPUESTA DE ANALISIS EN EL INTERVALO INELASTICO

Despues de comprobar, mediante el análisis de la torsión del edificio, el comportamiento de tubo de la estructura podemos afirmar que solo 2 marcos, en cada sentido del edificio, toman la mayor parte de las solicitaciones sismicas:

La geometria de los marcos A y F en el sentido vertical "yy", es muy similar, ya que ambos tienen el mismo numero de columnas, con claros iguales y trabes de igual sección, en lo único que se diferencian el uno del otro es por la sección de sus columnas, sin embargo, si comparamos su rigidez nos podemos dar cuenta de que son prácticamente iguales, por lo cual se puede esperar que su comportamiento en el intervalo inelástico sea muy similar.

Los marcos 1 y 4 en el sentido horizontal, de cuya geometría se puede pensar que su comportamiento en el intervalo inelástico sera distinto el uno del otro, pues la rigidez de un marco trabajando inelásticamente se reduce de manera diferente a la de un muro. Por ello se procederá a la revisión de este comportamiento, en el sentido "xx".

Para ello se trataran de calcular las articulaciones plásticas que se forman en cada marco, para obtener el cambio de rigidez que se produce, el cambio en el comportamiento general de la estructura y finalmente volver a calcular las nuevas articulaciones plásticas. Como se puede observar se trata de un procedimiento a base de iteraciones y el cual se enlista a continuación:

- 1) Se determinan los elementos mecánicos que se generan en los marcos con una fuerza equivalente al análisis sísmico del RDF-87 y de los resultados del estudio por torsión, se obtienen momentos flexionantes, cortantes y cargas axiales. A estos elementos mecánicos se les suman los elementos mecánicos que genera un análisis de los marcos ante cargas verticales.
- 2) Se determinan los elementos mecánicos resistentes, principalmete momentos flexionantes, ya que se conocen las secciones y armados de trabes y columnas, mediante dos programas de computadora. Cabe hacer notar que el momento máximo resistente de las columnas no depende unicamente de su geometría y armado, sino también de su carga axial ( carga vertical mas el incremento de carga debido a sismo).
- 3) Se procede a obtener el cociente "momento resistente / momento actuante". En este caso se puede decir que si en la división se obtiene como resultado la unidad, esto significa que el elemento en cuestión trabajara a su máxima capacidad en un sismo de las proporciones marcado por el RDF-87.
- 4) Finalmente se eligen los máximos valores obtenidos en el punto 3, cada uno de los cuales se puede considerar como una articulación plástica, hasta que se considera que se tiene el numero suficiente de articulaciones como para comenzar con el siguiente tanteo. Es conveniente aclarar que este procedimiento es simultaneo para los marcos 1 y 4, lo cual implica que se puede conocer la formación simultanea de articulaciones en los marcos.

- 5) Se calculan nuevas rigideces de los marcos ya considerando las articulaciones formadas ( resultado del punto 4 ).
- 6) Se lleva a cabo nuevamente el estudio por torsion del edificio ya con las nuevas rigideces obtenidas en el punto 5. Con los resultados se regresa nuevamente al punto 1 para comenzar otra iteración.

El procedimiento antes descrito no constituye el resultado de una investigación teórica, sino una posibilidad práctica para conocer el comportamiento del edificio ( sentido "xx" ) en el intervalo inelástico. Tampoco esta basado en alguna investigación o articulo, es el resultado de la idea propuesta por el director de este trabajo y el suscrito.

En el capitulo 5 se presentan las resultados del estudio realizado mediante el procedimiento anteriormente descrito.

# 5) COMPORTAMIENTO DEL EDIFICIO ANTE SOLICITACIONES SISMICAS, INTERVALO INELASTICO, SENTIDO "XX" (PARALELO A REFORMA) MARCOS 1 Y 4

#### A) CARGAS VERTICALES

Este análisis se realizo utilizando el programa de marcos planos ( metodo de las rigideces ) y se aplicaron al marco las cargas que se obtuvieron en el capitulo 3 inciso A).

Para simplificar la labor de mostrar los resultados, estos se presentan por modio de tablas, en las que se muestran los momentos flexionantes máximos, en trabes de los marcos 1 y 4 en la tabla 4 y en columnas en la tabla 5. Es preciso hacer notar que los momentos mostrados en estas tablas y en las tablas subsecuentes ya han sido seleccionados con el proposito de obtener la suma de los efectos por carga vertical y horizontal más desfavorable.

Además, de este análisis se obtuvieron las cargas que tiene cada una de las columnas (analisis de carga vertical). Este dato es indispensable para la determinación posterior de los momentos resistentes en columnas. Es un hecho el que los momentos resistentes en una columna estan en función de la carga que soporta ( es importante hacer notar que la carga ultima que actua en las columnas es la suma de la carga vertical mas el incremento de carga debido a las solicitaciones sísmicas).

#### (TABLA 4)

MARCO

# MOMENTOS POR CARGA VERTICAL EN TRABES (TON*M)

R C O

NIVEL	 I		N 2	ט	D 0	<b></b> -	6	 7	 I	 1	N U	D (	4	<u>-</u>
		3	<del>-</del>	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>				<del>-</del>		<del>-</del>	4 I
21 20	I	3	4 5		3 3		4	4	I	6 5	3 3 3	1		5 I 5 I
19 18	I	3	5	5	3	5	4 5	4	Ī	5	4	1 2 2	2 2 2 2 3 3	5 I 5 I 5 I
16	Ĭ	3	5	5	3	5	5 5	4	Ĭ	6 6 6	5	2 3	2	5 I 5 I
14 13		3 3 3 3 3 3	4555555656666	ឆភភភភភភភភភភភភភភភ	3 3 3 3 3 3 3	ន555555555555 <b>4</b>	5 5 5 5 6	4 3 3 3 3 3 4 4 3 4	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	6	4 5 5 6	3	3	111111111111 55555555555554
12 11	Ī	3	6	5	3	5	6 6	3	Ī	6	7		4	5 I 5 I
10	I	3	6	5	3	5	6 6	3	I	6	8 8 8 8	455555	4	4 I
7	I I	4 4 4	655555	4	3 3 3 2 2 2 2	4	6 6 5 5 5 5 5	4	I I I	6 6 13	8 19	5 5 4	4 4 16	4 I 4 I
5	İ	4	5	5 4 3	2 2	5 4 4	5	4	Ĭ	13	19 20	3 2	16	10 I 10 I 10 I
21 20 19 18 17 16 14 13 11 10 9 8 7 6 5 4 3 2 1	I I I I I I	*	, *	3 2 *	,ī	, 2 *	, 5 +	, 4	I I I	13	20 23	ž 1	16 20	10 I
. į	I	*	*	*	*	*	*	*	Ĩ	14	23	ō	20	12 I 12 I

#### (TABLA 5 )

# MOMENTOS POR CARGA VERTICAL EN COLUMNAS (TON*M)

# M A R C O 1

	COLUMNA	COLUMNA
INIVEL I 1AX	1B 1BC 1C 1D 1E	1FX I 4AX 4B M 4E 4FX
1 22	4 2 0 2 4 4 3 0 3 4 4 2 0 2 4 4 3 0 3 4 4 2 0 2 4 4 4 2 0 2 4 4 4 2 0 2 4 4 4 2 0 2 4 4 2 0 2 4 4 2 0 2 4 4 3 0 3 4 4 2 0 2 4 4 4 2 0 2 4 4 4 2 0 2 2 3 3 3 2 2 0 2 3 3 3 2 2 0 2 3 3 3 2 2 0 2 3 3 3 2 2 0 2 3 3 3 2 2 0 2 3 3 3 2 2 0 2 3 3 3 2 2 0 2 3 3 3 2 2 0 2 3 3 3 2 2 0 2 3 3 3 2 2 0 2 3 3 3 2 2 0 2 3 3 3 2 2 0 2 3 3 3 2 2 0 2 3 3 3 2 2 0 2 3 3 3 2 2 0 2 3 3 3 2 2 0 2 3 3 3 2 2 0 2 3 3 3 2 2 0 2 3 3 3 2 2 0 2 3 3 3 3	4 I 5 1 2 0 4 2 I 3 1 4 0 3 2 I 3 1 10 0 3 2 I 3 1 12 0 3 2 I 3 1 12 0 3 2 I 3 1 12 0 3 2 I 3 1 14 0 3 2 I 3 1 14 0 3 2 I 3 1 14 0 3 2 I 3 1 23 0 3 2 I 3 1 23 0 3 2 I 3 1 22 6 6 3 67 1 5 6 2 I 7 6 76 2 6 2 I 7 6 90 2 6 4 I 8 9 100 2 6

#### B) PRIMERAS ARTICULACIONES

Como el procedimiento para obtener las articulaciones ya se ha explicado con anterioridad, en este punto simplemente se muestran tablas de resultados que a continuación se enumeran:

- 1) Momentos resistentes en trabes (tabla 6).
- 2) Momentos actuantes en trabes. Suma de los momentos por carga horizontal y vertical. ( tabla 7 )
- 3) Carga en columnas . (tabla 8)
- 4) Cargas en columnas. Suma de cargas verticales mas incremento de carga debido a sismo. ( tabla 9 )
- 5) Cargas en columnas . Suma de cargas verticales menos el incremento de carga debido a sismo. ( tabla 10 )
- 6) Momentos actuantes en columnas. Suma de los momentos por carga vertical y carga horizontal . ( tabla 11 )
- 7) Momentos resistentes en columnas. (tabla 12 )
- 8) Comparación de momentos actuantes / momentos resistentes en trabes
- ( tabla 13 ) . En esta tabla se subrayan los nudos en donde se considera que se forma una articulación plástica. El subindice que aparece al lado del valor subrayado representa el orden en el que aparecen las articulaciones en los marcos 1 y 4 simultaneamente. El valor de uno corresponde a la primera articulación que se presenta entre ambos marcos y así sucesivamente.
- 9) Comparación de momentos actuantes / momentos resistentes en columnas ( tabla 14 ). Las indicaciones correspondientes a la tabla 13 son igualmente válidas para esta tabla.

#### (TABLA 6)

### MOMENTOS RESISTENTES EN TRABES (TON*M)

MARCOI

				ท บ	D O						N U	D	0		
NIVEL	I	1	2	3	4	5	6	7	I	1	2	3	4	5	1
22	ī	72	72	72	72	72	72	72	T.	35	87	87	87	61	ī
21	I	99	99	99	99	99	99	99	I	35	87	87	87	61	I
20	T	99	99	99	99	99	99	99	I	35	87	87	87		I
19	1	99	99	. 99	99	99	99	99	I	35	87	87	87	61	I
18	I	107	107	107	107	107	107	140	I	47	132	132	132	79	I
17	Ι	107	107	107	107	107	107	140	I	47	132	132	132	79	I
16	I	107	107	107	107	107	107	140	I	47	132	132	132	79	I
15	1	107	107	107	107	107	107	140	I	47	132	132	132	79	I
14		142	142	142	142	142	142	142	1	47	132	132	132	79	I
13		142	142	142	142	142	142	142	I	47	132	132	332	79	I
12	I	142	142	142	142	142	142	142	I	47	132	132	132	79	I
11	1	142	142	142	142	142	142	142	I	47	132	132	132	79	I
10	Ι		142	142	142	142	142	142	I	47	132	132	132		I
9	1		142	142	142	142	142	142	I	47	132	132	132		Ι
8	I		142	142	142	142	142	142	I	47	132	132	132		I
7	I	142	142	142	142	142	142	142	I	47	132	132	132		1
6	I	184	184	184	184	184	184	184	1	47	119	119	105		I
5	I	184	184	184	184	184	184	184	I	47	119	119	105	56	I
4	Ι	184	184	184	184	184	184	184	I	47	119	119	105		I
3	I	184	184	184	184	184	184	184	I	77	123	123	105		I
2 .	1	*	*	*	*	*	*	*	I	77	123	123	105		1
1	I	*	*	*	*	*	*	*	I_	77	123	123	105	58	I

#### (TABLA 7)

# MOMENTOS ACTUANTES EN TRABES (TON*M)

#### MARCO 1

				ט א	D O						N	U D	0	
INIVE	LI	1	2	3	4	5	6	7	r	1	2	3	4	5 I
I 22 I 21 I 20 I 19 I 18 I 17 I 16 I 15 I 14	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	19 40 57 69 89 103 117 128 147	20 36 50 61 79 91 102 112	10 26 43 57 73 87 101 113 128	10 27 43 57 73 86 98 110	10 27 43 58 74 87 101 113 128	24 41 57 68 86 98 109 118 135	27 49 68 82 105 120 135 143 162	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	20 26 26 28 36 38 39 42 44	26 32 33 35 47 52 61 78 93	18 26 29 37 56 66 76 91	36 37 40 41 56 60 63 66 68	26 I 29 I 30 I 31 I 43 I 46 I 49 I 51 I 53 I
I 13 I 12 I 11 I 10 I 9 I 8 I 7 I 6 I 5 I 3 I 2 I 1		170 179 185 192 197 183 203 201 202 232	140 149 154 164 170 173 163 174 172 195	130 150 163 175 184 190 189 190 192 207	135 146 158 169 178 184 178 180 181 186 201 *	130 151 163 1754 1840 1890 1937 *	144 151 157 163 170 163 178 174 175 192	174 185 188 199 2095 191 209 211 251 *		44 44 44 43 41 38 35 31 32 25 20	101 109 123 133 137 139 143 138 130 141 116	112 121 139 145 147 145 129 123 114 85	70 71 70 69 66 64 65 56 54 40	54 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

#### (TABLA 8)

### CARGA EN COLUMNAS (TON)

#### MARCO 1

					CD	LUM	H A					COL	U M	N A	
I	NIVEL	I	1AX	1B	1BC	10	1D	1E	1FX	I	4AX	4B	м	4 E	4FX
	22	I	9	26	17	17	17	26	17	ī	10	16	22	24	9
I	21	I	18	50	33	33	33	50	39	I	20	32	43	48	18
I	20	I	27	75	50	50	50	75	50	I	30	48	64	71	26
. 1	19	I	36	99	66	66	66	99	66	1	39	64	84	94	35
I	18	I	46	126	87	87	87	126	87	I	50	81	107	120	44
I	17	I	56	153	101	101	101	153	101	I	61	98	130	146	54
I	16	I	65	180	119	119	119	180	119	Ι	71	115	153	171	63
I	15	I	75	206	137	137	137	206	137	I	82	132	176	197	73
I	14	I	86	236	157	157	157	236	157	I	94	151	201	225	85
I	13	1	96	265	176	176	176	265	176	I	105	170	226	253	93
I	12	I	107	294	196	196	196	294	196	I	117	189	251	281	104
I	11	I	118	324	215	215	215	324	215	I	129	208	276	309	114
Ι	10	1	128	353	235	235	235	353	235	I		227	301	337	124
I	9	I	134	382	254	254	254	382	254	I		245	326	365	135
I	8	I	150	411	274	274	274	411	274	I	164	264	351	393	145
I	7	I	160	441	293	293	293	441	293	I		283	376	421	155
I	6	Ŧ	170	468	311	311	311	302	311	Ι	196	316	422	471	179
I	- 5		180	495	329	329	329	495	329	I	217	350	469	521	192
I	4		190	523	347	347	347	523	347	I	238	383	515	570	211
I	3	I	200	550	366	366	366	550	366	Ι		417	562	620	230
1	2	I		584	388	388	388	584	388	I		459	620	683	315
I	1	I	225	618	411	411	411	618	411	I	310	501	678	7.45	334

#### (TABLA 9)

# CARGAS EN COLUMNAS SUMANDO INCREMENTO DE CARGA (TON)

M A R C C 1

					COL	UM	N A					COL	UM	N A	
INIV	EL	1	1AX	18	2BC	1C	1D	1E	1FX	I	4AX	4B	M	4E	4FX
I 22 I 22 I 1 1 I 1 1 1 1	2109876543210987	ITITITITITITITITITITITITITITITITITITITIT	12 45 659 1143 1749 2245 3263 3600 4488	28 517 107 140 1713 251 294 336 476 573 573	1865537588295315386 1188295315315386	17 331 567 8831 1329 1579 1579 23568 25787	1731783129998831179989888	282657175568198F94	22 502 1037 1035 1709 2595 1399 4389 484 5592		16 33 50 67 889 130 151 175 220 243 265 230 330	17 377 81 110 1426 215 259 3076 409 464 5207 634	25 52 77 132 160 188 216 247 313 313 315 417	33 690 115 140 167 315 316 316 491 563 492 563	18 36 54 73 96 1200 2217 272 272 296 3248 371
I	6 5 4 3 2 1	IIIIII	533 576 620 668 657 711	679 728 782 840 1029 1104	416 445 472 495 499 533	215 334 352 371 398 411		670 719 772 828 1028 1104	695 748 801 860 834 896	I I I I	475	705 774 840 909 977 1037	623	822 214 1013 1125 1240 1486	407 :31 460 490 581 605

#### (TABLA 10)

## CARGAS EN COLUMNAS RESTANDO EL INCREMENTO DE CARGA (TON)

MARCO 1

					COL	U M	N A					COL	UM	A N	
I	NIVEL	I	1AX	18	180	1C	1D	1E	1FX	1	4AX	4B	м	4 E	4FX
I	22	1	- 6	24	16	17	17	24	13	I	4	15	19	15	0
I	21	1	9	49	30	33	33	48	28	1	7	28	34	32	0
I	20	1	9	73	46	49	49	74	28	I	10	39	51	52	-2
I	19	1	7	91	59	65	65	93	32	I	11	47	66	73	-3
I	18	I	3	112	77	8€	86	115	37	1	12	52	82	100	-8
I	17	1	-4	130	87	99	99	135	32	1	13	54	100	132	-12
1	16	1	-13	147	100	117	117	153	29	1	13	54	118	169	-18
1	15	I	-24	161	1.12	135	135	167	25	1	13	49	136	183	-24
I	14	I	-37	178	125	155	155	186	19	1	13	43	155	191	-24
I	23	1	-53	194	137	173	173	202	11	1	13	33	174	196	-34
I	12	I	-69	208	145	153	193	217	2	1	14	22	192	197	-35
I	11	Ι	-87	221	159	212	212	229	-9	I	15	7	220	168	-44
I	10		-107	230	170	231	231	238	-19	I	15	-10	239	183	-50
Ι	9		-132	235	179	250	250	246	-32	1	17	-30	261	170	-54
1	8		-1:8	244	196	270	270	253	-45	1	19	~49	287	152	-58
1	7		-168	250	200	289	289	258	-56	I	20	-68	336	113	-61
1	6	1.	-193	257	206	307	307	266	-73	I	32	-73	381	120	-49
1	5	1.	-216	262	213	325	325	271	-90	I	45	-74	429	128	-47
1	4	1.	-240	264	222	343	343	274	-107	1	59	-74	484	127	-38
Ţ	3	Ţ.	-258	260	237	362	362	272	-128	1	72	-75	545	115	~30
٠1	5	Ι-	-233	139	277	388	388	140	-58	I	93	-59	617	126	49
1	1	Ι.	-261	132	290	411	411	132	-76	I	116	-35	573	4	63

#### (TABLA 11)

# MOMENTOS ACTUANTES EN COLUMNAS (TON*M)

MARCO

 2 1	ī	1AX 20	1B	1BC	1C	10									
1		20				_=	1E	1FX	1	4AX	4B	M	4E	4FX	I
	•		22	17	16	19	26	27	I	17	29	171	1	27	I
0	Ι	27	38	35	36	36	41	39	I	12	24	231	1	17	1
	Ι	34	51	49	50	50	54	45	I	12	26	399	1	18	1
9	I	39	63	61	65	63	68	46	I	1.5	41	436	3		1
8		50	76	75	79	77	81			20	47		5		1
7		57	88	87	92	89	93			13	53	625	7	27	I
6		62	99	99	104	100	103			14		629	10		I
5			113	112											1
4		76	122	122	129	124	126	85	I	20	77	467	20	28	I
3		83	133	133	141	135	136	91	Ι	20	82	517	23	28	I
.2	I	90	142	144	152	145	143	100	I	21	82	744	26	29	1
1	I	92	153	156	166	158	155	95	Ι	23	97	909	42	30	1
0	Ι	96	161	166	175	167	161	100	ī	23	98	1150	47	30	I
	I	100	168	174	185	175	169	105	Ī	22	99	1423	50	30	I
8	I	107	175	183	191	183	174	116	1	22	94	1731	55	32	1
7	I	107	170	174	185	175	171	113	1	22	104	1775	88	32	I
6	I	104	167	173	183	174	168	109	Ī	22	102	2035	94	30	I
5	1	104	172	180	189	181	173	108	Ī	23	98	2334	101	30	1
4	I	99	179	185	192	187	183				106	2668	106	33	Ī
3	1	202	236	241	242	240	234	242	I	18	94	3401	99	30	. I
2	I	*	*	*	*	* *	*	. *	1	10	69	3657	121	13	I
1	I	. * .	*	* '	*	*	* .	*	Ī	43	136	1886	209	102	1
	87654321098765	987654321098765432	9 I 39 87 I 557 65 I 76 81 I 92 96 1 I 107 76 I 107 76 I 107 76 I 107 76 I 104 81 I 104	9 I 1 39 63 7 I 57 88 5 I 50 76 6 I 62 99 5 I 70 113 3 I 83 133 3 I 83 133 3 I 9 142 1 I 92 153 0 I 96 161 9 I 100 168 8 I 107 175 7 I 107 175 5 I 104 167 5 I 104 167 5 I 104 167 5 I 104 167 5 I 104 22 3 I 202 236 6 I 202 236 5 I 202 236	9 I 39 63 61 8 I 50 76 75 76 I 57 88 87 6 I 62 99 99 5 I 70 113 112 3 I 83 133 133 2 I 90 142 144 1 76 121 122 3 I 83 133 133 1 90 142 144 1 I 92 153 156 9 I 100 168 174 6 I 104 167 173 7 I 107 175 183 7 I 104 167 173 5 I 104 167 173 5 I 104 172 183 5 I 104 172 183 6 I 104 172 183 7 I 104 172 183 7 I 104 172 183 8 I 107 175 183 7 I 104 172 183 8 I 107 175 183 7 I 104 172 183 8 I 107 175 183 9 I 104 172 183 8 I 107 175 183 9 I 104 172 183 8 I 107 175 183 9 I 104 175 183 8 I 107 175 183 9 I 104 175 183 8 I 107 175 183	9 I 39 63 61 65 8 I 50 76 75 79 76 I 57 88 87 92 6 I 62 99 99 104 1 I 76 123 122 129 3 I 83 133 133 141 2 I 90 142 144 152 1 I 92 153 156 166 0 I 96 161 166 175 9 I 100 168 174 185 9 I 107 170 174 185 5 I 104 172 180 189 5 I 104 172 180 189 5 I 104 172 180 189 6 I 192 236 241 242	9 I 39 63 61 65 63 8 I 50 76 75 79 77 76 I 57 88 87 92 89 5 I 70 113 112 119 115 4 I 76 122 122 129 124 3 I 83 133 133 141 135 2 I 90 142 144 152 145 1 I 92 153 156 166 158 0 I 96 161 166 175 167 9 I 100 168 174 185 175 9 I 107 170 174 185 175 5 I 104 172 180 189 181 5 I 104 172 180 189 181 1 I 92 153 65 189 181 1 I 107 170 174 185 175 5 I 104 172 180 189 181 4 I 9 179 185 122 187 3 I 202 236 241 242 240 2 I * * * * * *	9 1 39 63 61 65 63 68 8 1 50 76 75 79 77 88 8 1 50 76 75 79 77 87 8 1 50 10 10 10 10 10 10 10 10 10 10 10 10 10	9 I 39 63 61 65 63 68 46 67 68 1 68 1 60 75 79 79 81 60 76 75 79 77 81 60 76 75 79 77 81 60 76 75 79 77 81 60 76 75 79 77 81 60 76 75 79 77 81 60 76 75 79 77 81 60 76 76 76 76 76 76 76 76 76 76 76 76 76	9 I 39 63 61 65 63 68 46 I 8 I 50 76 75 79 77 81 60 1 6 I 62 99 99 104 100 103 74 I 5 I 70 113 112 119 115 117 78 I 4 I 76 123 122 129 124 126 85 I 3 I 83 133 133 141 135 136 91 I 2 I 90 142 144 152 145 143 100 I 1 I 92 153 156 166 158 155 95 I 0 I 96 161 166 175 167 161 100 I 1 I 92 153 156 166 158 155 95 I 0 I 96 161 166 175 167 161 100 I 8 I 107 175 183 191 183 174 166 I 7 I 107 170 174 185 175 171 113 I 5 I 104 172 180 189 181 173 108 I 5 I 104 172 180 189 181 173 108 I 6 I 9 170 175 185 192 187 183 106 I 6 I 104 172 180 189 181 173 108 I 7 I 107 170 174 185 192 187 188 108 I 6 I 104 172 180 189 181 173 108 I 7 I 107 175 185 192 187 183 106 I 8 I 107 185 125 122 127 183 106 I 8 I 107 185 125 122 127 183 108 I	9 I 39 63 61 65 63 68 66 I 15 8 I 50 76 75 79 77 81 60 I 20 8 I 50 76 75 79 77 81 10 6 I 62 99 99 104 100 103 74 I 13 5 I 70 113 112 119 115 117 78 I 16 4 I 76 122 122 129 124 126 85 I 20 3 I 83 133 133 141 135 136 91 I 20 2 I 90 142 144 152 145 145 140 100 I 23 1 I 92 153 156 166 158 155 95 I 23 1 I 92 153 156 166 158 155 95 I 23 9 I 100 168 174 185 175 169 105 I 22 9 I 100 168 174 185 175 169 105 I 22 8 I 107 175 183 191 183 174 116 I 22 7 I 107 170 174 185 175 171 113 I 22 6 I 104 167 173 183 174 168 109 I 22 5 I 104 167 173 183 174 168 109 I 22 5 I 104 172 180 189 181 173 108 I 23 4 I 99 179 185 192 197 183 106 I 23 4 I 99 179 185 192 197 183 106 I 23 5 I 104 172 180 189 181 173 108 I 23 5 I 202 236 241 242 240 234 242 I 18	9 I 39 63 61 65 63 68 66 I 15 41 8 1 50 76 77 79 77 81 60 1 20 47 8 1 50 76 77 79 77 81 60 1 20 47 8 1 50 1 20 47 8 1 50 1 20 47 8 1 50 1 20 47 8 1 50 1 20 1 20 47 8 1 50 1 20 1 20 1 20 1 20 1 20 1 20 1 20	9 I 39 63 61 65 63 68 46 I 15 41 436 6 I 8 15 60 76 75 79 77 81 60 1 20 47 555 67 67 75 79 77 81 60 1 20 47 555 67 6 I 62 99 99 104 100 103 74 I 14 57 629 65 I 70 113 112 119 115 117 78 I 16 78 540 4 I 76 122 122 129 124 126 85 I 20 77 467 467 4 I 76 1 13 13 13 131 141 135 136 91 I 20 82 517 1 2 I 90 142 144 152 145 143 100 I 21 82 744 1 76 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 1 39 63 61 65 63 68 46 1 55 41 436 5 8 1 50 76 75 79 77 81 60 1 20 47 555 5 6 1 62 99 99 104 100 103 74 1 14 57 629 10 5 1 70 113 112 119 115 117 78 1 16 78 540 18 4 1 76 122 122 129 124 126 85 1 20 77 467 23 3 1 83 133 133 141 135 136 91 1 20 82 517 23 3 1 83 133 133 141 135 136 91 1 20 82 517 23 2 1 90 142 144 152 145 143 100 1 21 82 744 26 1 1 92 153 156 166 158 155 95 1 23 97 909 42 0 1 96 161 166 175 167 161 100 1 23 98 1150 47 9 1 100 168 174 185 175 169 105 1 22 99 1423 50 8 1 107 175 183 191 183 174 116 1 22 94 1731 55 7 1 107 170 174 185 175 171 113 1 22 104 1775 88 6 1 104 167 173 183 174 168 109 1 22 102 2035 98 5 1 104 167 173 183 174 168 109 1 22 102 2035 98 5 1 104 167 173 183 174 168 109 1 22 102 2035 98 6 1 104 167 173 183 174 168 109 1 22 102 2035 98 6 1 104 167 173 183 174 168 109 1 22 102 2035 98 6 1 104 167 173 183 174 168 109 1 22 102 2035 98 6 1 104 167 173 183 194 183 106 1 23 98 2334 101 4 1 99 173 185 152 123 187 183 106 1 22 106 2668 106 3 1 202 236 241 242 242 242 242 1 18 94 3401 192 2 1 * * * * * * * * * * * * * * * * * *	9 I 39 63 61 65 63 68 46 I 15 41 436 3 19 8 I 50 76 75 79 77 81 68 I 60 120 47 555 5 26 6 I 62 99 99 104 100 103 74 I 14 57 629 10 28 5 I 70 113 112 119 115 117 78 I 16 78 540 18 28 4 I 76 122 122 129 124 126 85 I 20 77 467 20 28 3 I 83 133 133 141 135 136 91 I 20 82 517 23 28 3 I 83 133 133 141 135 136 91 I 20 82 517 23 28 2 I 90 142 144 152 145 143 100 I 21 82 744 26 29 1 I 92 153 156 166 158 155 95 I 23 97 909 42 30 0 I 96 161 166 175 167 161 100 I 23 98 1150 47 30 9 I 100 168 174 185 175 169 105 I 22 99 1423 50 30 9 I 100 168 174 185 175 169 105 I 22 99 1423 50 30 8 I 107 175 183 191 183 174 116 I 22 94 1731 55 32 7 I 107 170 174 185 175 171 113 I 22 104 1775 88 32 5 I 104 167 173 183 174 168 109 I 22 102 2035 94 30 5 I 104 167 173 183 174 168 109 I 22 102 2035 94 30 5 I 104 167 173 183 174 168 109 I 22 102 2035 94 30 5 I 104 167 173 183 174 168 109 I 22 102 2035 94 30 5 I 104 167 173 183 174 168 109 I 22 102 2035 94 30 4 I 99 179 185 292 187 183 106 I 22 106 2668 106 33 3 I 202 236 241 242 240 234 242 I 18 94 3401 99 35 I

#### (TABLA. 12)

## MOMENTOS RESISTENTES EN COLUMNAS (TON*M)

### MARCO 1

				С	0	L	U	M	N	A					$\mathtt{c}  \mathtt{o}  \mathtt{r}$	UMN	A	
IN	IVEL	I	1AX	18	18	c	10		10	1E	1FX	I	4AX	4 B	м	4E	4FX	I
I	22	1	88	88	10		9		98	88	310		59	88	4180	84	310	Ī
I	21 20	Į	94	97 105	9		9.		94 96	97 105	313 313	I	59 69	90 93	4250 4294	91 100	310 310	Į
İ	19		153	152	14		14		146	152	308		71	113	4530	123	310	î
Ī.	18	Ī		157	15		15		152	157	320		71	110	4568	99	311	ī
I	17		150	139	15		15		152	139	320		71	108	4632	110	311	I
I	16		146	144	15		15		159	144	276		71	111	4813	117	311	I
I	15		140	161	18		18		180	161	286			159	5250	200	303	1
I	1.4		136	174	15		19		192	174	289			168	5350	155	303	I
I	13	Ι		186	16		15		153	186	298		96	168	5465	163	300	1
I	12		120	164	16		15		159	164	303	I		151	5515	170	286	I
1	11		128	273	20		19		192	273	306	I		136	9700	293	288	I
1	10		134	236	21		20		200	236	306		103	124	9715	300	288	I
I	9		126	234	21		20		204	234	287		103	126	9720	306	272	I
I	8		118	232	22		20		208	232	282			130	9779	302	280	1
I	7	Ι		244	23		22		223	244	268		111		16427	559	268	I
I	6		105	234	23		22		225	234	257				16490	573	272	I
ľ	5	I		224	20		23		235	224	252		127	227		473	276	I
I	4	I	95	210	20		23		235	210	247		126			442	288	I.
·I	. 3	ĭ	90	196	21		23		230	196	231		127	227	17202	413	307	. <u>I</u>
Ī	2	Ī	*	*	*		*		*	*	*		126		21970	360	305	Ī
I	1	1	*	. *	*		*		*	*	*	I	123	261	18098	267	305	Ţ

#### (TABLA 13)

## MOMENTOS ACTUANTES/RESISTENTES EN TRABES

í	A	R	С	0	1	A M	RCO	

	N U	D	0			N	υ	D 0		
INIVELI 1 2	3 4	5	6	7	1 1	2	3	4	5 I	:
1 22 1 0.26 0.28 1 21 1 0.40 0.36 1 20 1 0.58 0.51 1 19 1 0.70 0.62 1 18 1 0.83 0.74 1 7 1 0.96 0.85 1 16 1 1.09 0.95 1 15 1 1.20 1.05 1 14 1 1.04 0.92 1 13 1 1.13 0.99 1 12 1 1.20 1.05 1 14 1 1.26 1.08 1 10 1 1.30 1.15 1 9 1 1.35, 1.20 1 8 1 1.32, 1.22 1 7 1 1.29 1.15 1 6 1 1.10 0.97 1 5 1 1.09 0.95 1 4 1 1.10 0.93 1 3 1 1.26 1.08 1 3 1 1.26 1.08	0.26 0.27 0.43 0.43 0.58 0.58 0.81 0.80 0.94 0.92 1.06 1.03 0.90 0.87 1.05 1.11 1.23 1.12 1.34, 1.36 1.25 1.03 0.98 1.04 1.03 1.03 1.98	0.27 0.433 0.693 0.694 0.945 1.090 1.123 1.123 1.303 1.303 1.303 1.303 1.303	0.41 0.58 0.69 0.80 0.92 1.10 1.10 1.11 1.15 1.20 1.15 0.95 0.95	0.49   0.69   0.75   0.86   0.96   1.02   1.14   1.30   1.32   1.40   1.35   1.35   1.14   1.16   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.36   1.	I 0.74 I 0.87 I 0.86 I 0.87 I 0.81 I 0.89 I 0.94 I 0.94 I 0.91 I 0.91 I 0.87 I 0.87 I 0.81 I 0.66 I 0.66 I 0.66	0.37 0.38 0.36 0.39 0.46 0.59 0.77 0.83 1.01 1.05 1.16 1.20 1.16	0.30 0.43 0.42 0.50 0.58 0.78 0.92 1.05 1.05 1.10 1.22 1.17 1.18	0.44 0.44 0.44 0.44 0.52 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53	0.48 I 0.49 I 0.51 I 0.54 I 0.62 I 0.65 I 0.65 I 0.67 I 0.70 I 0.68 I 0.70 I 0.68 I 0.70 I 0.68 I 0.70 I 0.68 I	
î 1î * *	* *	*	*						0.43 1	

#### (TABLA 14)

## MOMENTOS ACTUANTES ENTRE RESISTENTES EN COLUMNAS

MARCO 1

				c c	L	U M	N A				co.	៤បអ	N A			
INIVEL	1	1AX	18	180	1C	1D	1E	1 F X	I	4 AX	4 B	М	4 E	4FX	I	
1 22 1 22 1 20 1 19 1 18 1 17 1 16 1 15 1 14 1 13 1 12 1 10 1 10 1 10 1 10 1 10 1 10 1 10		0.23 0.29 0.33 0.25 0.38 0.42 0.56 0.56 0.75 0.72 0.79	0.25 0.39 0.41 0.48 0.63 0.70 0.72 0.568 0.75 0.75	0.17 0.38 0.51 0.42 0.57 0.65 0.79 0.86 0.79 0.79	0.16 0.38 0.52 0.52 0.65 0.65 0.66 0.67 0.92 0.86 0.88 0.91 0.92	0.38 0.53 0.543 0.551 0.63 0.64 0.65 0.98 0.98 0.84 0.88 0.98 0.88 0.88	0.30 0.42 0.51 0.52 0.72 0.73 0.72 0.73 0.87 0.68 0.75 0.75	0.09 0.12 0.14 0.19 0.21 0.27 0.27 0.31 0.33 0.33 0.34 0.42		0.29 0.20 0.17 0.28 0.18 0.20 0.17 0.21 0.22 0.22 0.22	0.33 0.27 0.28 0.49 0.49 0.51 0.49 0.54 0.71 0.79 0.79	0.04 0.09 0.10 0.12 0.13 0.10 0.09 0.09 0.13 0.10	0.01 0.01 0.02 0.05 0.06 0.09 0.14 0.15 0.16 0.16	0.09 0.05 0.06 0.08 0.09 0.09 0.09 0.10 0.10		
I 5	1 :	1.03	0.77	0.89	0.80	0.77	0.77	0.43	I	0.18	0.43	0.14	0.21	0.11	1	
I 3 I 2	I Z		1.20	1.15	1.05	1.04	1.19	1.05	I	0.14	0.41	0.20	0.24	0.11 0.10 0.04 0.33	I	

Después de haber obtenido los resultados anteriores, es posible conocer las primeras articulaciones plásticas que se presentaran en los marcos 1 y 4 simultaneamente, ante la acción de un sismo.

Para ilustrar estos resultados se presentan a continuación la figura 14 para las articulaciones del marco 1 y figura 15 para el marco 4.

Las articulaciones se marcan mediante un pequeño circulo ( ya sea en trabe o en columna ) y el subindice indicado corresponde al orden en el que se van presentando.

Como se puede apreciar en el marco 1 se forman diez articulaciones, mientras que en el marco 4 ninguna. Del total de 10 articulaciones solo 1 se presenta en columnas, por lo cual se asume que el comportamiento del edificio se presenta con columnas fuertes y trabes debiles, lo cual constituye un riesgo menor en caso de un temblor de grandes magnitudes.

Continuando con nuestro análisis se podrá apreciar que la gran cantidad de datos que fueron presentados en las tablas anteriores sirven también para conocer mas a fondo el probable comportamiento del edificio ante solicitaciones sismicas.

FIGURA 14

MARCO EJE I

PRIMERAS ARTICULACIONES

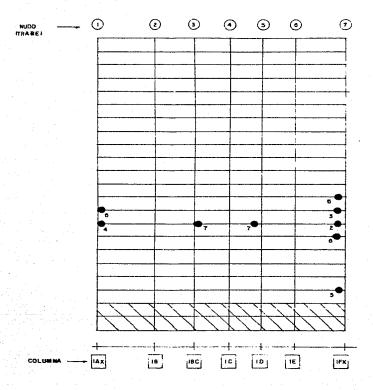
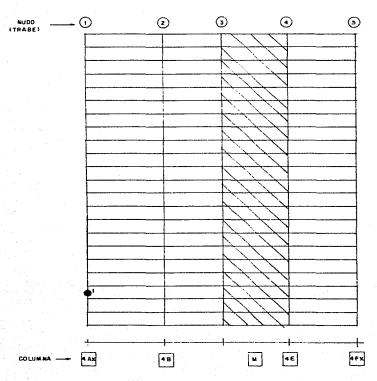




FIGURA 15
MARCO EJE 4
PRIMERAS ARTICULACIONE



El siguiente paso consiste, según el procedimiento descrito con anterioridad, en obtener las nuevas rigideces de los marcos 1 y 4 en donde ya se ha presentado la formación de articulaciones plásticas. Procedimiento identico al utilizado para obtener las rigideces originales de los marcos, mediante el método de Khan y Sbarounis, sólo que se han articulado los nudos en los cuales se obtuvo la formación de articulaciones plásticas.

Es de esperarse que en el marco 1 se presente una reducción de rigidez por los nudos que se han articulado, en cambio en el marco 4 la variación de rigidez sera determinada unicamente por la variación de fuerza cortante aplicada ya que sus características geométricas no han cambiado.

En la tabla 15 se presentan las rigideces originales y modificadas con las articulaciones de los marcos 1 y 4. Se incluye también una columna en donde se indica el porcentaje que representa las rigideces con articulaciones con respecto a las rigideces originales. Como se puede apreciar, la variación de rigidez llega a ser de 21¢ para el nivel 8 del marco 1. Además, se presentan las figuras 16 y 17 que corresponden a gráficas de la variación de rigidez de los marcos 1 y 4 respectivamente.

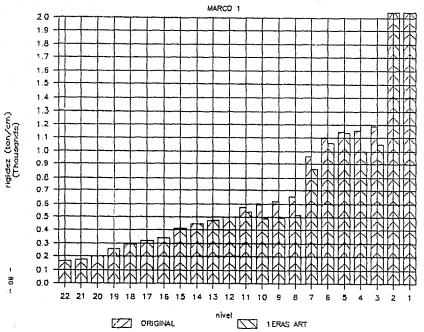
Se podría pensar que en este punto se puede volver a hacer el análisis dinámico, con las rigidoces modificadas, sin embargo se considera que se obtendrían resultados muy similares a los originales, ya que solo se obtuvieron nuevas rigidoces de 2 de los marcos del sentido "xx".

#### (TABLA 15

## RIGIDECES MODIFICADAS MARCOS 1 Y 4

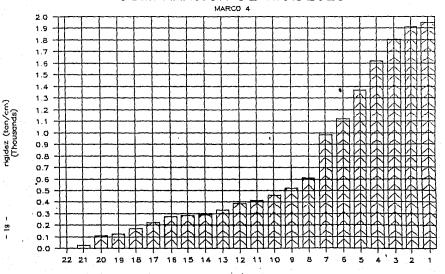
MARCO 1

MARCO 4


1	NIVEL	I	ORIGINAL	ARTICULADO	*	I	ORIGINAL	ARTICULADO	*	ī
ī	22	ī	168	168	100.0		1	1	100.0	
I	21	I	177	177	100.0	1	29	29	100.0	1
I.	20	I	200	200	100.0	I	109	109	100.0	1
I	19	Ī	256	256	100.0	Í	126	126	100.0	Ī
. I	18	ĵ	293	293	100.0	I	172	172	100.0	Ī
I	17	1	320	320	100.0	1	224	224	100.0	Ī
I	16	I	341	341	100.0	1	275	275	100.0	I
I	15	I	412	412	100.0	I	283	283	100.0	Ī
1	14	Ι	450	450	100.0	Ī	290	290	100.0	Ī
1	13	I	476	476	100.0	I	333	333	100.0	I
1	12	Ï	501	501	100.0	Ĩ	385	385	100.0	Ī
I	11	ī	570	534	93.7	Ī	414	414	100.0	Ī
Ī	10	ī	593	492	83.0	ī	461	461	100.0	
1	9	٠Ī	620	495	79.8	Ī	521	521	100.0	
Ī	8	ī	652	515	79.0	ī	609		100.0	
Ť	7	Ī	958	864	90.2	ī	984	984	100.0	Ī
Ī	- 6	I	1095	1062	97.0	··I	1122		100.D	Ī
I	5	Ī	1150	1137	98.9	I	1368	1368	100.0	Ī
I	4	Ī	1158	997	86.1	Ī	1621	1621		
Ī	- 3	ī	1188	1048	88.2	ī	1805	1805	100.0	
ī	2	Ī	2431		100.0	Ī	1912	1912	100.0	Ĩ
Ī	1	Ī		3147	100.0	I	1950	1950	100.0	Ĩ

100.0

100.0


- 79 -

# COMPARACION DE RIGIDECES



F1GURA 1

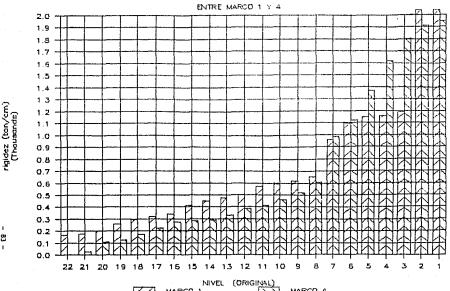
# COMPARACION DE RIGIDECES



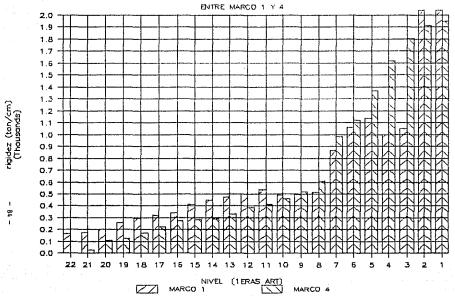
77 ORIGINAL

, S 1ERAS ART

FIGURA 17


El análisis dinámico se efectuo ya con las rigideces modificadas con el propósito de comparar el período natural de vibracion de la estructura en el sentido "xx" ( en el sentido "yy" no varía ) . Este período aumento de 1.85 s prara las rigideces originales a 1.88 s ya con las primeras articulaciones.

Resulta interesante el hacer notar que de las diez articulaciones que se presentan en el marco 1 cuatro estan en el nivel 8 lo cual podría traer como consecuencia la formación de un sistema de falla para este nivel del marco.


La pérdida de rigidez en el marco 1 es de casi 5% en promedio, sin embargo en los niveles 8, 9 y 10 la pérdida de rigidez ha sido de aproximadamente 20% ( Ver tabla 15). En cambio el marco 4 no ha sufrido disminución alguna de su rigidez original. La fuerza cortante aplicada a este marco es prácticamente la misma que para la obtención de la rigidez original.

Además, para complementar estos resultados se presenta la figura 18, donde mediante una gráfica se aprecia la comparación de rigideces originales entre los marcos 1 y 4, y la tabla 19 donde se comparan las rigideces con las primeras articulaciones de los marcos 1 y 1. En ambas gráficas se aprecia la mayor rigidez del marco 1 comparada con el 4 en casi todos los niveles. (en los niveles 3, 4 y 5 es mayor la rigidez del marco 4 en el estado original, y con la formación de articulaciones en el marco 1, la rigidez del marco 4 es mayor en los niveles 3 a 8.

# COMPARACION DE RIGIDECES



# COMPARACION DE RIGIDECES



IGURA 19

Para continuar con la determinación de las articulaciones plásticas es necesario el volver a realizar el análisis de la torsión del edificio tomando en cuenta las nuevas rigideces calculadas para los marcos 1 y 4.

Para simplificar este análisis se omitirá el presentar los datos, solo se muestran los resultados del sentido "xx" y al final a manera de resumen, la tabla (15-A) con los resultados.

# RESULTADOS DEL ESTUDIO DE TORSION

### MARCOS HORIZONTALES

```
MARCO HORIZONTAL
                    1
                        (EJE 1)
RESULTADOS EN EL PISO 22 :
                              59.4 (TON)
                              55.3
RESULTADOS EN EL PISO
                       21 :
                                    (TON)
RESULTADOS
           EN
               EL PISO
                        20
                              47.2
                                    (TON)
RESULTADOS EN
               EL PISO
                       19
                              47.2
                                    (TON)
RESULTADOS EN
               EL PISO
                       18 :
                              46.3
                                    (TON)
RESULTADOS
           EN
               EL PISO
                        17
                              45.7
                                    (TON
RESULTADOS EN
               EL PISO
                              45.2
                                    (TON
                        16
                           .
RESULTADOS EN
               EL PISO
                       15 :
                              45.8
                                    (TON
RESULTADOS
               EL PISO
                                    (TON
           EN
                       14:
                              46.4
RESULTADOS
           EN
               EL PISO
                        13
                              46.2
                                    (TON)
RESULTADOS EN
               EL PISO
                       12
                              46.0
                                    (TON)
                              45.3
                                    (TON
RESULTADOS EN
               EL PISO
                       11:
RESULTADOS
           EN
               EL PISO
                       10
                              42.9
                                    (TON
RESULTADOS EN
               EL PISO
                              42.3
                                    (TON)
RESULTADOS EN
               EL PISO B
                          :
                              42.0
                                    (TON)
RESULTADOS EN
               EL PISO 7
                              44.9
                                    (TON)
                              49.4
RESULTADOS EN
              EL PISO 6
                                    (TON)
                          :
RESULTADOS EN EL PISO 5
                              49.0
                                    (TON
RESULTADOS EN
               EL PISO 4
                              46.6
                                    TON
                           •
RESULTADOS EN EL PISO 3
                           :
                              46.5
                                    (TON
                                    (TON)
RESULTADOS EN EL PISO
                       2
                              52.3
                           :
RESULTADOS EN EL PISO
                              65.9
                                    (TON)
MARCO HORIZONTAL
                        (EJE 2)
RESULTADOS EN EL PISO
                              27.0
                                   (TON)
                       22 :
RESULTADOS EN EL PISO 21 :
                              19.3
RESULTADOS EN EL PISO
                       20 :
                              14.0
                                    (TON)
               EL PISO
RESULTADOS
                                    (TON)
            EN
                       19
                              14.9
RESULTADOS
            EN
               EL PISO
                        18
                              14.2
                                    (TON)
RESULTADOS EN
               EL PISO
                              13.2
                       17 :
                                    (TON)
RESULTADOS EN
               EL PISO
                       16:
                              12.2
                                    (TON)
RESULTADOS
            EN
               EL PISO
                        15
                              13.2
                                    (TON)
RESULTADOS EN
               EL PISO
                       14 :
                              13.3
                                    (TON)
RESULTADOS EN
               EL PISO
                       13 :
                              12.6
                                    (TON)
RESULTADOS EN
               EL PISO
                       12 :
                              11.9
                                    (TON)
RESULTADOS
           EN
               EL PISO
                       11
                              12.5
RESULTADOS EN EL PISO
                              12.7
                                    (TON)
                       10:
RESULTADOS EN EL PISO 9
                              12.4
                                    (TON)
RESULTADOS
            EN
               EL PISO 8
                              11.8
                                    (TON)
RESULTADOS EN EL PISO
                       7
                               9.9
                                    TON
RESULTADOS EN EL PISO 6
                               8.8
                                    (TON)
RESULTADOS
               EL PISO 5
EL PISO 4
                                    (TON
            EN
                                8.1
                          :
RESULTADOS
            EN
                          :
                                9.0
                                    (TON)
RESULTADOS EN EL PISO
                       3
                          :
                               9.1
                                    (TON)
RESULTADOS EN
                       ž
                               4.2
               EL PISO
                                    (TON)
                          :
RESULTADOS EN
              EL PISO
                                3.8
                                    (TON)
```

#### ~~~~ RESULTADOS DEL ESTUDIO DE TORSION

### MARCOS HORIZONTALES

MARCO HORI	ZONTAL	3	(EJE	3)	
RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS	EN ELL EN ELL EN ELL EN ELL EN ELL EN ELL EN ELL EN ELL EN ELL EN ELL EN ELL EN ELL EN ELL EN ELL EN ELL EN ELL EN ELL EN ELL EN ELL EN ELL EN ELL EN ELL EN ELL EN ELL	PISO PISO PISO PISO PISO PISO PISO PISO	22 : : : : : : : : : : : : : : : : : :	25.4 16.5 17.5 16.2 12.9 14.8 13.8 13.4 13.4 13.4 13.4 13.9 14.7 8.2 7.6 9.9	(TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON)
MARCO HORI	EN EL	PISO	1 :		(TON)
RESULTADOS	ZONTAL EN EL	4 PISO	(EJE 22 :		(TON)
RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS RESULTADOS	EN EL EN EL EN EL EN EL	PISO PISO PISO PISO PISO PISO	21 : 20 : 19 : 18 : 17 :	31.9 29.7 32.7	(TON) (TON) (TON) (TON) (TON)

RESULTADOS DEL ESTUDIO DE TORSION 

#### MARCOS HORIZONTALES ______

```
MARCO HORIZONTAL
                        (EJE 5)
                                0.0 (TON)
0.0 (TON)
RESULTADOS EN EL PISO 22
RESULTADOS EN EL PISO
                        21
                                    (TON)
RESULTADOS EN EL PISO
                        20 :
                                0.0
RESULTADOS EN EL PISO
RESULTADOS EN EL PISO
                       19 :
                                0.0
                                    (TON
RESULTADOS EN
                       18 :
                                    (TON
                               0.0
RESULTADOS EN EL PISO
                        17 :
                                0.0
                                    (NOT)
                                0.0
                                    (TON
RESULTADOS EN
              EL PISO
                        16:
                                     (TON
RESULTADOS EN
              EL PISO
                        15
                                0.0
RESULTADOS EN EL PISO
                                0.0
                                    (TON
                                    (TON
RESULTADOS EN
               EL PISO 13 :
                                0.0
RESULTADOS EN
               EL PISO
                       12
                                0.0
                                     TON
                                    (TON)
RESULTADOS EN EL PISO
                       11
                                0.0
RESULTADOS EN
               EL PISO
                       10
                           :
                                0.0
                                    (TON
               EL PISO 9
                                    (TON)
RESULTADOS EN
                           :
                                0.0
RESULTADOS EN
               EL PISO B
                                0.0
                                    (TON)
RESULTADOS EN
                                    (TON
               EL PISO
                        7
                                0.0
RESULTADOS EN
               EL PISO 6
                                3.3
                                    (TON
                           :
                  PISO 5
                                    (TON)
RESULTADOS EN
               EL
                                3.6
RESULTADOS EN
               EL PISO
                                3.8
                                    (TON)
                                    (TON)
RESULTADOS EN EL PISO 3
                                3.3
                           :
                               14.8 (TON)
1.5 (TON)
RESULTADOS EN EL PISO 2
                           :
RESULTADOS EN
              EL PISO
MARCO HORIZONTAL
                     6
                        (EJE 6)
RESULTADOS EN EL PISO 22 :
                                0.0 (TON)
                                0.0 (TON)
RESULTADOS EN EL PISO 21 :
RESULTADOS EN EL PISO
                        20 :
                                0.0
                                    (TON)
               EL PISO
                                    (TON)
                        15
                                0.0
RESULTADOS EN
RESULTADOS EN
               EL PISO
                        18 :
                                0.0
                                    (TON)
RESULTADOS EN
               EL PISO
                        17
                                0.0
                                    (TON)
                                0.0
RESULTADOS EN EL PISO
                       16
                                    (TON)
                                    (TON)
RESULTADOS EN EL PISO 15 :
                                0.0
RESULTADOS EN
               EL PISO
                        14
                                0.0
                                    (TON)
              EL PISO 13
RESULTADOS EN
                                0.0
                                    (TON)
                       12 :
                                    (TON
RESULTADOS EN EL PISC
                                0.0
RESULTADOS EN
               EL PISO
                        11
                                0.0
                                    (TON)
RESULTADOS
           EM
                        10
                           :
                                0.0
                                    (TON)
RESULTADOS EN EL PISO 9
                                    (TON)
                                0.0
                                    (TON
RESULTADOS EN EL PISO
                        8
                           :
                                0.0
RESULTADOS EN
               EL PISO
                        7
                                0.0
                                    (TON)
                           :
RESULTADOS EN
               EL PISO 6
                                3.8
                                    (TON)
RESULTADOS EN
              EL PISO
                       5
                           •
                                4.2
                                     (TON)
                                4.5
                                     (TON
RESULTADOS
           EN
               EL PISO
                           :
                                7.7
                                    (TON)
RESULTADOS EN EL PISO 3
RESULTADOS EN EL PISO
                               34.8
                                    (TON)
RESULTADOS EN
                               42.3
```

## (TABLA 15~A)

### RESULTADOS ANALISIS DE TORSION CON PRIMERAS ARTICULACIONES

### SENTIDO "XX"

NIVEL	MARCO	1	2	3	4	5	6	TOTAL
22		59.4	27.0	44.3	1.0	0.0	0.0	131.7
21 20		55.3 47.2	19.3 14.0	25.4	14.8 31.9	0.0	0.0	114.8 109.3
19		47.2	14.9	17.5	29.7	0.0	0.0	109.3
18		46.3	14.2	16.2	32.7	0.0	0.0	109.4
17		45.7	13.2	14.4	35.9	0.0	0.0	109.2
16		45.2	12.2	12.9	38.6	0.0	0.0	108.9
15		45.8	13.2	14.5	35.7	0.0	0.0	109.2
14		46.4	13.3	14.8	34.8	0.0	0.0	109.3
13		46.2	12.6	13.8	36.5	0.0	0.0	109.1
12		46.0	11.9	12.8	38.4	0.0	0.0	109.1
11		45.3	12.5	13.4	37.7	0.0	0.0	108.9
10		42.9	12.7	13.0	39.5	0.0	0.0	108.1
9 8 7 6 5		42.3	12.5 11.8	12.4 11.4	41.5 43.9	0.0	0.0	108.7 109.1
9		44.9	9.9	9.7	45.7	0.0	0.0	110.2
6		49.4	8.8	8.2	42.4	3.3	3.8	115.9
š		49.0	8.1	7.2	44.2	3.6	4.2	116.3
4		46.6	2.0	7.6	44.7	3.8	4.5	116.2
4 3 2 1		46.5	9.1	6.9	47.7	3.3	7.7	121.2
2		52.3	4 - 2	3.4	22.2	1.8	34.8	118.7
1		65.9	3.8	3.0	8.2	1,5	42.3	124.7

48.1 12.2 13.6 34.0 2.9 16.2 127.0

Y las tablas más importantes de comparación de momentos actuantes entre resistentes, en donde vienen subrayados los nudos en los que se presentan las articulaciones.

El subindice al lado de estos valores indica el orden en el que se van presentando las segundas articulaciones. Es preciso señalar que este subindice inicia con el numero 8, ya que los numeros del 1 al 7 corresponden a las primeras articulaciones. Dentro de estas comparaciones aparecen valores de cero, para los nudos en donde se tienen articulaciones y que ya no tienen un elemento que pueda absorber el momento que se presenta en el nudo.

- 6) Comparación de momentos actuantes / momentos resistentes en trabes ( tabla 21 ).
- Comparación de momentos actuantes / momentos resistentes en columnas ( tabla 22 ).

#### C) SEGUNDAS ARTICULACIONES

Habiendo obtenido los resultados anteriores se continua con el procedimiento señalado para el cálculo, descrito en las conclusiones del capítulo 4. Se le aplican a los marcos 1 y 4 las fuerzas que le corresponden según el nuevo análisis de torsión y el análisis dinámico del RDF-87.

De igual forma que para la obtención de las primeras articulaciones se presentan los resultados en tablas de las cuales se omiten dos: la de momentos resistentes en trabes y cargas (verticales) en columnas ya que serían repetitivas. Si se desea consultarlas se presentaron en las tablas 6 y 8 en la obtención de las primeras articulaciones.

Como resultados en este análisis se presentan las siguientes tablas:

- 1) Momentos actuantes en trabes . ( tabla 16 )
- Carga en columnas. Suma de cargas verticales mas incremento de carga debido a sismo. ( tabla 17 ) .
- Carga en columnas. Suma de cargas verticales menos el incremento de carga debido a sismo. (tabla 18).
- 4) Momentos actuantes en columnas. Suma de los momentos por carga vertical mas carga horizontal. ( tabla 19 ).
- 5) Momentos resistentes en columnas. (tabla 20).

#### TABLA 16 V

## MOMENTOS ACTUANTES EN TRABES (TON*M)

MARCO 1

					N I	ם נ	٥						N	ט	D	0		
INIV	EL	I	1	2	:	3	4	5	6	7	I	1	2		3	4	5	ī
I 2 I 1 I 1 I 1 I 1 I 1 I 1	2 10 9 .8 .7 .6 .5 4	IIIIIIIIIII	115	21 37 50 62 81 93 106 117 138	2 39 76 8: 9: 10: 12:	1 2 4 5 7 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.7 1	11 28 42 55 70 82 95 .06	27 46 62 74 95 108 121 132 156	31 55 75 89 114 131 147 158 183	IIIIII	20 26 26 28 36 38 39 42 44	26 32 33 35 47 52 61 78 93	2 3 5	6 9 7 6 6 6 1 3	36 37 40 41 56 60 52 66 68 70	26 29 30 31 46 49 51 53	ITITITITITITITITITITITITITITITITITITITIT
I 1 1 I I I I I I I I I I I I I I I I I	2 1 0 9 8 7 6 5 4 3 2 1	TITITITITITITI	185 202 209 0 218 232 221 211	166 184 220 276 213 214 197 186 226	14: 17: 21: 25: 33: 21: 19: 20: 20: *	3 14 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	10 1 13 1 13 2 12 2 11 2 18 2 10 2 13 1 10 2	46 77 18 58 12 129 14 91	184 200 172 197 218 188 233 209 206 267	214 215 0 0 0 245 230 227 0	IIIII	44 44 44 43 41 39 38 35 31 32 25 20	101 109 123 133 137 139 143 138 130 141 116	12 13 14 14 14 14 13 12 14	1 2 9 3 5 7 5 9 9 3	7110966406550408	55554307440325 55555555555555555555555555555555555	

#### (TABLA 17)

## CARGAS EN COLUMNAS SUMANDO INCREMENTO DE CARGA (TON)

### MARCO 1

					COL	UM	N A					COL	UM	N A	
IN	IVEL	1	1AX	18	1BC	10	1D	1E	1FX	I	4AX	4 B	м	4 E	4FX
	221 20 19 16 17 16 15 14 13		12 27 44 62 85 110 136 164 197 231 267	28 51 77 105 137 171 206 241 241 319	18 35 53 71 95 112 134 156 182 206 233	184 51 67 89 103 121 139 160 179	18 34 52 68 91 108 129 150 174 198 224	28 52 76 102 133 166 199 237 271 308 345	21 51 795 167 243 288 333 382		23 34 52 69 90 112 133 156 180 203	17 38 59 84 114 147 183 224 271 321	25 53 76 103 134 163 192 221 255 289 323	32 64 88 113 139 159 172 213 259 363	19 38 56 76 99 125 149 175 228
1111111111	11 10 9 8 7 6 5 4 3 2	HIHITITITI	305 344 381 429 449 471 514 590 629	442 484 530 614 690 728 786 850 963 1021	259 287 317 351 375 403 442 471 494 483 512	218 237 256 275 295 312 330 347 367 388 411	251 281 314 371 406 437 475 493 483 512	383 420 458 532 608 676 744 785 873 963	482 532 552 592 652 705 734 766 815		250 273 296 318 339 371 400 429 458 489 518	492 554 619 686 709 788 862 901 975	349 384 417 448 454 443 495 539 593 665 839	429 490 558 632 729 848 942 1043 1178 1297 1562	282 388 335 361 385 423 448 479 409 602

#### (TABLA 18

## CARGAS EN COLUMNAS RESTANDO EL INCREMENTO DE CARGA (TON)

MARCO 1

					COL	UM	N A					COL	. U M	N A	
I	NIVEL	r	1AX	18	1BC	10	1D	1E	1FX	r	4AX	4B	м	4 E	4FX
I	22 21	I	6 9	24 49	16 31	16 32	16 32	24 48	13 27	ľ	-3 6	15 26	19 33	16 32	-1 -2
I	20 19	Ī	10	73 93	47 61	49 65	48 64	74 96	29 33	I	8 9	37 44	52 65	54 75	-4 -6
Ĩ	18 17	I	7	115 135	79 90	85 99	83 94	119 140	39 35	ĭ	10 10	48 49	80 97	101	~11 -17
Ĭ	16 15 14	Ī	-6 -14 -25	154 171 191	104 118 132	117 135 154	109 124 140	161 179 201	34 31 26	I	9 8 8	47 40 31	114 131 147	170 181 191	-23 -29 -31
Î	13	Î	-39 -53	211	146	173	154	222	19 10	İ	7	19	163 179	197	-42 -48
Ī	11	Ī	-69 -88	247 264	171 183	212	179 189	265 286	-12	Ī	8 3 7	-15 -38	203 218	189 184	-54 -60
I	9 8	1	-113 -129	280 292	191 197	252 272	194 207	306 290	-25 -15	I	8 10	-64 -91	235 254	172 154	-65 -71
ĭ	6	I-	-129 -131	268 246	211	291 310	215 216	274 260	-6 -1	I	21	-120 -77	298 401	94	-75 -65
Ī	5 4	1-	-154 -169 -190	262 260 250	216 223 238	328 345 365	221 219 239	246 261 227	-11 -2	I	34 47 58	-88 -96 -67	443 491 531	100 97 62	~64 ~57 51
Ī	2	I-	-167 -179	205 215	293 310	388 411	293 310	205 215	10 7	Ī	79 102	-57 -37	575 517	69 -72	28 42

#### (TABLA 19)

# MOMENTOS ACTUANTES EN COLUMNAS (TON*M)

MARCO 1

					COL	U M	н а		· 			C 0 1	UM	N A		
_1	NIVEL	1	1AX	1B	1BC	1C	1D	1E	1FX	I	4AX	4B	н	.4E	4FX	I
I		I	20	22	15	16	18	28		I	17	29	171	1	27	I
I		I	27	38	32	34	36	44	42	I	12	24	231	1	17	1
1		I	34	49	47	48	49	57		I	1.2	26	399	1	18	1
I		Ι	4 D	62	59	61	62	71		I	15	41	436	. 3	19	I
I	18	1	50	76	72	75	75	84		I	20	47	555	5	26	1
I	17	I	57	88	83	88	87	97		I	13	53	625	7	27	I
I	16	I	64	98	95	99	98	107		I	14	57	629	10	28	I
1	15	I	73	112	107	112	110	122	87	1	16	78	540	18	28	Ι
I	14	I	80	121	115	122	117	131	96	I	20	77	467	20	28	1
I	13	1	88	132	125	134	125	140		I	20	82	517	23	28	I
I		I		143	136	147	130	141		1	21	82	744	26	29	1
Ι		I	112	157	157	180	162	161	94	I	23	97	909	42	30	1
I		1	96	182	202	227	204	166	8	I	23	98	1150	47	30	1
I		I	8	221	223	256	210	206	7	I	22	99	1423	50	30	I
I	.8	I		225	214	209	214	206	25	I	22	94	1731	55	32	I
Ι	7	I	123	174	180	206	182	178	128	I	22	104	1775	88	32	I
1	- 6	I	116	169	167	183	155	160	121	I	22	102	2035	94	30	I
I	. 5	I	114	174	175	187	160	164	117	I	23	98	2334	101	30	I
1		I	109	172	191	205	204	191	110	I	22	106	2668	106	33	1
1	3	I	96	285	286	284	280	261	209	I	18	94	3401	99	30	I
1	. 2	I	*	*	*	*	*	*	*	I	10	69	3657	121	13	·I
. 1	. 1	I	. *	*	*	*	*	*	*	I	43	136	1886	209	102	1

#### (TABLA 20)

# MOMENTOS RESISTENTES EN COLUMNAS (TON*M)

MARCO 1

			С	o r	UM	N	A					COL	UMN	A	
INIVEL	1	1AX	18	1BC	10	10	1E	1FX	I	4AX	4B	М	4E	4FX	I
11 12 22 1 20 9 18 7 65 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		88 94 102 153 150 136 146 126 126 120 148 124 138	94 105 140 146 152 161 174 236 234 234 234 224 212	91 992 1452 1552 1552 1664 1650 1650 1650 1650 1650 1650 1650 1650	92 92 946 152 1559 186 1559 1200 200 202 2235 235	912 946 152 152 152 164 164 205 211 202 208	948 105 1400 1486 1526 1568 1701 2316 2210 2228 2228 2224 2222 2222 2222	309 312 309 309 2766 289 2056 2982 3056 2887 2887 2257		60 60 69 70 70 70 96 93 96 102 102 112 112 112 112	88 90 93 113 101 168 150 136 130 126 210 220	÷210 4245 4294 4620 4800 4850 2350 5515 9650 9700 9700 9700 9720 17267 17506	84 904 120 116 118 120 156 164 170 294 300 302 340 340 340 340	308 310 310 310 311 311 312 296 277 286 272 272 272 273 300 306 307	
I 3 I 2 I 1	I	90 *	196 *	212	235 *	212 * *	196 *	231	I		227 236 261	17506 17506 17202	307 286 267	303 305 307	I I

#### (TABLA 21)

MARCO

# MOMENTOS ACTUANTES/RESISTENTES EN TRABES

	N	U	D	ο.				N	U	D (		
											, 	
INIVELI 1	2 3	4	5	6	7	I	1	2	3	4	5	I
I 22 I 0.28	0.29 0.11	0.13	0.15	0.38	0.43	I	0.57	0.30	0.21	0.41	0.43	I
I 21 I 0.40							0.74			0.43	0.48	Ī
I 20 I 0.57	0.51 0.39	0.41	0.42	0.63	0.76	I	0.74	0.38	0.33	0.46	0.49	Ī
		0.56			0.90		0.80	0.40	0.43	0.47	0.51	1
I 18 I 0.34	0.76 0.65							0.36		0.42	0.54	I
I 17 I 0.98		0.77						0.39		0.45	0.58	1
		0.88			1.05		0.83	0.46	0.58	0.39	0.62	I
I 15 I 1.22		0.98			1.13		0.89		0.69	0.50	0.65	I
	0.97 0.85				1.29		0.94	0.70	0.78	0.52	0.67	1
	1.06 0.93							0.77	0.85	0.53	C.68	I
				1.30	1.51	1	0.94	0.83	0.92	0.54	0.70	1
	1.30 1.23						0.94	0.93	1.00	0.54	0.70	<u> </u>
I 10 I 1.47	1.43 1.54	1.43	1.54	1.21	0.00	1	0.94	1.01	1.05	0.53	0.70	1
I 9 I 0.00 I 8 I 0.00 I 7 I 1.54	1.55,, 1.81,	<u>, 1.70</u> ,	$\frac{1.82}{1.82}$	1.39	0.00	Ξ	0.91	1.04	1.08	0.52	0.68	Ī
1 8 1 0.00	1.94,2.35	<u> 1-56</u> ,	1.54	2.24,	0.00	I	0.87	1.05	1.10	0.50	0.67	1
1 / 1 1.54	1.50 1.63	41.54	1.61	1.32	0.00	-	0.83	1.08	1.11	0.48	0.63	1 .
I 6 I 1.26		1.03			1.33			1.20	1.22	0.57	0.84	±
	1.07 1.06	0.99	1.04	1.14	1.25	Ī	0.74	1.15	1.17	0.53	0.79	Ť
	1.01 1.09		1.12		0.00	I	0.66	1.15	1.16	0.48	0.71	±
I 2 I *	1.57 1.50	1.23	1.26	T.45	0.00	İ		0.94		0.31		÷
÷	2 2				- 1	÷			0.69	0.27	0.43	± '
							0.26	u./6	0.09	0.47	0.43	

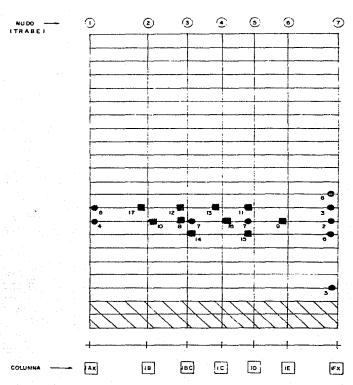
#### (TABLA 22)

## MOMENTOS ACTUANTES ENTRE RESISTENTES EN COLUMNAS

MARCO 1

	c o	L U M	и а			c o i	LUM	N A		
INIVELI 1AX	1B 18C	1C 1D	1E	1FX I	4AX	4 B	м	4E	4FX	I
I 21 I 0 29 I 20 I 0 33 I 19 I 0 26 I 18 I 0 26 I 18 I 0 26 I 18 I 0 26 I 18 I 0 26 I 18 I 0 26 I 18 I 0 26 I 18 I 0 26 I 18 I 0 26 I 18 I 0 27 I 18 I 18 I 18 I 18 I 18 I 18 I 18 I 1	0.23 0.16 0.39 0.35 0.47 0.48 0.41 0.40 0.51 0.47 0.60 0.55 0.64 0.63 0.70 0.75 0.71 0.78 0.82 0.83 0.77 0.96 0.71 0.96 0.92 1.01 0.71 0.83 0.71 0.83 0.71 0.83 0.71 0.83 0.71 0.83 0.71 0.83 0.71 0.83 0.71 0.83 0.71 0.83 0.71 0.83 0.72 0.83 0.73 0.83 0.74 0.83	0.17 0.20 0.37 0.39 0.49 0.42 0.49 0.49 0.58 0.57 0.62 0.64 0.60 0.60 0.64 0.76 0.92 0.79 1.14 0.97 1.25 0.94 0.93 0.77 0.80 0.77 0.80 0.77	0.35 0.54 0.55 0.56 0.70 0.80 0.70 0.83 0.70 0.72 0.73 0.73	0.10 I 0.15 I 0.16 I 0.21 I 0.24 I 0.24 I 0.30 I 0.30 I 0.30 I 0.30 I 0.40 I 0.02 I 0.04 I 0.04 I 0.04 I 0.04 I	0.28 0.20 0.17 0.21 0.29 0.19 0.20 0.17 0.22 0.21 0.22 0.23 0.23 0.22 0.20 0.20 0.20	0.33 0.28 0.36 0.49 0.55 0.75 0.75 0.75 0.75 0.49 0.49	0.04 0.05 0.09 0.09 0.12 0.13 0.11 0.20 0.13 0.09 0.12 0.15 0.11 0.12	0.01 0.01 0.03 0.04 0.06 0.13 0.14 0.15 0.14 0.16 0.16 0.18 0.26 0.28	0.05 10 0.06 10 0.08 10 0.09 10 0.09 10 10 10 10 10 10 10 10 10 10 10 10 10	
I 2 I *			*		0.08	0.29	0.21	0.42		Í

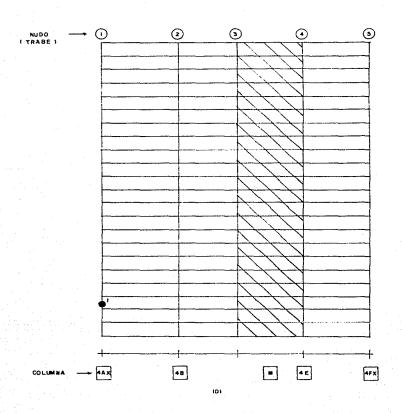
Después de haber obtenido los resultados anteriores , se conocen las segundas articulaciones plásticas que se formaran simultaneamente en los marcos 1 y 4.


Para ilustrar estos resultados se presentan a continuación las figuras 20 y 21 en donde se marcan las primeras articulaciones ( mediante un rectangulo ) y las segundas articulaciones ( mediante un circulo ) para los marcos 1 y 4 respectivamente.

El subindice indicado corresponde al orden en el que se presentan las articulaciones, primeras y segundas, simultaneamente, para los marcos 1 y 4.

FIGURA 20 MARCO EJE

(10) PRIMERAS ARTICULACIONES Y


(10) E SEGUNDAS ARTICULACIONES



FIGUR A 21

MARCO EJE 4

PRIMERAS Y SEGUNDASARTICULACIONES



Como se puede apreciar en las figuras anteriores, las segundas articulaciones son 10 para cada uno de los marcos y todas ellas se presentan en trabes, el edificio se sigue comportando con el criterio de trabe-débil columna-fuerte.

Lo que es importante observar es el hecho de que las diez "segundas" articulaciones que se forman en el marco 1 estan concentradas en tros de sus niveles, esta localización indica que se podría llegar a formar un mecanismo de falla en estos tres niveles.

Asi mismo, cabe señalar que después de la formación de estas segundas articulaciones en el marco 1 se han presentado un total de 20. Sin embargo no es tan importante el numero, sino la localización de las mismas y los efectos que estas produzcan en el cambio de rigidez de los marcos. Por ejemplo en el nivel 8 se tienen 8 articulaciones en trabes de un total de 12 posibles, se puede decir que este nivel ya esta cerca de un mecanismo de falla.

Para continuar con el estudio, y como ya se ha mostrado que es un procedimiento a base de iteraciones, se vuelven a obtener las rigideces de los marcos 1 y 4. La variación de rigidez en el marco 1 esta en función de sus articulaciones y de la fuerza cortante que se le aplica. El marco 4, como no tiene articulaciones, su rigidez variará en función de la nueva fuerza cortante que se le aplica.

Se presenta, como parte de los resultados de rigideces obtenidos, la tabla 23, en donde se pueden observar las rigideces originales, con primeras articulaciones y con segundas articulaciones de los marcos 1 y 4. Se ha reducido la rigidez promedio del marco 1 al 91.7 % de la original y a 95.8 % la del marco 4. Se procedio a repetir el análisis dinámico con el objeto de obtener el periodo natural de vibración del edificio en el sentido "xx" que fue de Tx = 1.92 s vs. el periodo original de 1.85 s.

También se presentan las figuras 22 y 23 en donde se ha graficado la variación de las rigideces de los marcos 1 y 4 respectivamente para la estructura original, con primeras y cen segundas articulaciones. Podemos observar que se siguen concentrando las mayores perdidas de rigidez en los niveles 7, 8 y 9 para el marco 1.

Finalmente se presenta la figura 24 en donde se compara la rigidez ya con segundas articulaciones del marco 1 vs. marco 4.

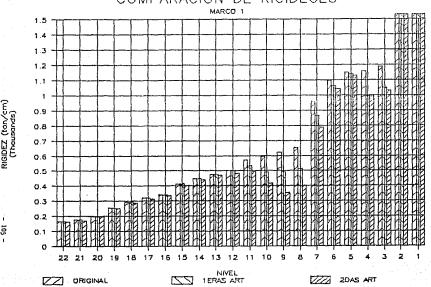
(TABLA 23)

### COMPARACION DE RIGIDECES ORIGINALES CON RIGIDECES CON PRIMERAS Y SEGUNDAS ARTICULACIONES

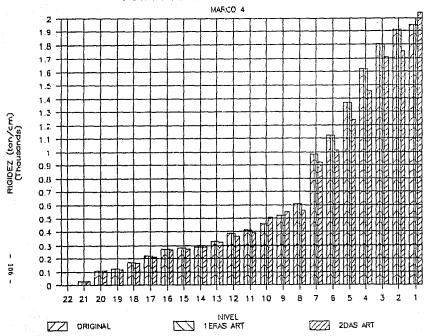
MARCO 1

MARCO 4

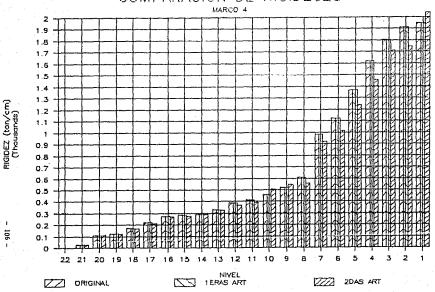
IHIV	ΈL	ı	OR	1	2	ŧ	*	I	OR	1	2	*	*	I
I 22	2	1	168	168	162	100.0	96.4	I	1	1	1	100.0	100.0	I
I 21		I	277	177	173	100.0	97.7	I	29	29	29	100.0	100.0	I
I 20		I	200	200	196	100.0	98.0	I.	109	109	108	100.0	99.1	1
I 19		I	256	256	251	100.0	98.0	I	126	126	119	100.0	94.4	1
I 18		1	293	293	287	200.0	98.0	I	172	172	169	100.0	98.3	τ
I 17		I	320	320	314	100.0	98.1	1	224	224	215	100.0	96.0	1
1 16		1	341	341	336	100.0	98.5	1	275	275	268	100.0	97.5	1
I 15		1	412	412	402	100.0	97.6	1	283	283	274	100.0	96.8	1
I 14	4	I	450	450	442	100.0	98.2	Ι	290	290	290	100.0	100.0	I
1 13		I	476	476	470	100.0	98.7	I	333	333	324	100.0	97.3	I
I 12		I	501	501	482	100.0	96.2	I	385	385	369	100.0	95.8	1
1 17	l.	Ι	570	534	493	93.7	86.5	1	414	414	390	100.0	94.2	7
1 10		I	593	492	418	83.0	70.5	I	461	461	504	100.0	109.3	J
I	9 8 7	I	620	495	357	79.8	57.6	Ί	521	521	547	100.0	105.0	1
I 8	8	I	652	515	404	79.0	62.0	7	609	609	557	100.0	91.5	3
		1	958	864	785	90.2	81.9	I	984	984	922	100.0	93.7	1
1	6	I	1095	1062	1042	97.0	95.2	I	1122	1122	1016	100.0	90.6	1
I :	5	1	1150	1137	1129	98.9	98.2	I	1368	1368	1239	100.0	90.6	. 7
	4	1	1158	997	990	86.1	85.5	1	1621	1621	1456	100.0	89.8	:
1	3	I	1188	1048	102B	88.2	86.5	I	1805	1805	1712	100.0	94.8	- 3
1	2	Ţ	2431	2431	2431	100.0	100.0	I	1912	1912	1750	100.0	91.5	
I .	1	Σ	3147	3147	3147	100.0	100.0	Ĩ	1950	1950	2098	100.0	107.6	


\$ 100.0

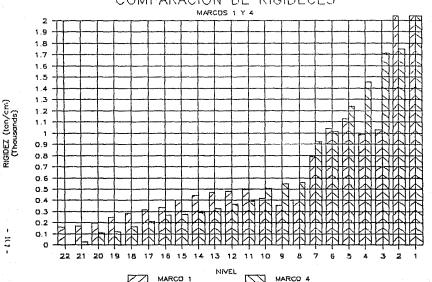
95.1


91.7 100.0

100.0 95.8


# COMPARACION DE RIGIDECES




# COMPARACION DE RIGIDECES



# COMPARACION DE RIGIDECES



# COMPARACION DE RIGIDECES



Para continuar con el estudio del edificio, ya habiendo obtenido las rigideces de los marcos 1 y 4 se procede a repetir el estudio de la torsión del edificio, tomando como datos las nuevas rigideces de los marcos 1 y 4.

Para simplificar la presentacion, solo se muestran los resultados del estudio en el sentido "xx" y al final, a manera de resumen, la tabla 23-A con estos resultados.

RESULTADOS DEL ESTUDIO DE TORSION 

#### MARCOS HORIZONTALES

```
MARCO HORIZONTAL
                           (EJE 1)
RESULTADOS EN EL PISO 22
                                   58.5 (TON)
                                  54.8
RESULTADOS EN EL PISO 21 :
                                         (TON)
RESULTADOS EN EL PISO 20 : 46.9
                                         (TON)
RESULTADOS EN EL PISO 19
                                  47.2
                                         (TON)
RESULTADOS EN EL PISO 18 : 46.0
                                         (TON)
RESULTADOS EN EL PISO 17 : 45.6
                                         (TON)
                                         (TON)
RESULTADOS EN EL PISO 16 : 45.1
RESULTADOS EN EL PISO 15 : 45.6
                                         (TON)
RESULTADOS EN EL PISO 14
                                  46.1
                                         (TON)
RESULTADOS EN EL PISO 13 :
                                         (NOT)
                                  46.2
RESULTADOS EN EL PISO 12
                                   45.6
RESULTADOS EN EL PISO 11
                                  44.2
                                         (TON)
RESULTADOS EN EL PISO 10 :
                                  40.1
                                         (TOH)
                                         (TON)
RESULTADOS EN EL PISO 9
RESULTADOS EN EL PISO 8
                               :
                                   36.9
                                   38.5
RESULTADOS EN EL PISO 7
                                   43.8
                                         (TON)
                                         (TON)
RESULTADOS EN EL PISO 6
RESULTADOS EN EL PISO 5
                                  45.4
                                   49.2
                                         (TON)
RESULTADOS EN EL PISO 4
                                         (TON)
                                   46.3
                                         (TON
RESULTADOS EN EL PISO 3
                                   46.3
                                   58.4 (TON)
50.8 (TON)
RESULTADOS EN EL PISO 2
RESULTADOS EN EL PISO
MARCO HORIZONTAL
                           (EJE 2)
RESULTADOS EN EL PISO 22 :
                                   27.1 (TON)
RESULTADOS EN EL PISO 21 :
RESULTADOS EN EL PISO 20 :
                                  19.4
                                         (TON)
                                   14.2
                                         (TON)
RESULTADOS EN EL PISO 19
                                   15.2
                                         (TON)
RESULTADOS EN EL PISO 16 :
                                   14.4
                                         (TON)
RESULTADOS EN EL PISO 17 :
RESULTADOS EN EL PISO 16 :
                                   13.4
                                   12.3
                                         (TON)
                                         (TON)
RESULTADOS EN EL PISO 15 :
                                   13.4
                                         (TON
RESULTADOS EN EL PISO 14 :
RESULTADOS EN EL PISO 13 :
                                   13.4
                                   12.8
                                         (TON)
RESULTADOS EN EL PISO 12
                                   12.3
                                         (TON)
RESULTADOS EN EL PISO 11 :
                                   13.2
                                         (TON)
RESULTADOS EN EL PISO 10
RESULTADOS EN EL PISO 9
                                   13.4
                                         (TON)
                                         (TON)
                              :
                                   14.3
RESULTADOS EN EL PISO 8
                                   13.6
                                         (TON)
                                   9.1 (TON)
8.3 (TON)
RESULTADOS EN EL PISO 7
RESULTADOS EN EL PISO 6
                                   10.6
RESULTADOS EN EL PISO 5
RESULTADOS EN EL PISO 4
                                    8.9
                                         (TON)
RESULTADOS EN EL PISO 3
RESULTADOS EN EL PISO 2
                              :
                                         (TON)
                                    9.3
                              :
                                    5.5
                                         (TON)
RESULTADOS EN EL PISO 1
                                         (TON)
```

RESULTADOS DEL ESTUDIO DE TORSION

## MARCOS HORIZONTALES

```
MARCO HORIZONTAL
                         (EJE 3)
RESULTADOS EN EL PISO
                               44.3 (TON)
RESULTADOS EN EL PISO
                        21
                               25.4
                                     (TON)
                            •
                                      TON
RESULTADOS
           EN
               EL
                   PISO
                            :
                               16.3
                        19
RESULTADOS EN EL PISO
                               17.9
                                     (TON)
RESULTADOS EN EL PISO
                        18
                               16.3
                                     (TON)
                        17
RESULTADOS
           EN
               EL PISO
                            :
                               14.7
                                      ואסדי
RESULTADOS EN EL PISO
                               13.1
                                     (TON)
RESULTADOS EN EL PISO
                        15
                               14.8
                                     (TON)
               EL PISO
                        14
                                      (TON)
RESULTADOS
           EN
                            :
                               14.9
RESULTADOS EN EL PISO
                        13
                                     (TON)
                               14.1
RESULTADOS EN EL PISO
RESULTADOS EN EL PISO
                               13.2
                        12
                                     (TON
                        11
                               14.0
                                      TON
RESULTADOS EN
               EL PISO
                        10
                               13.0
                                     (TON
RESULTADOS EN EL PISO
                                      TON
                               13.1
RESULTADOS
           EN
               EL PISO
                        я
                               12.7
                                      MOT
RESULTADOS EN
               EL PISO
                               10.3
                                     (TON)
RESULTADOS EN
               EL PISO
                                8.6
                                     (TON)
           EN
               EL
                   PISO
                                7.6
                                     (TON)
RESULTADOS
                            :
RESULTADOS EN EL PISO
                                7.4
                                     (TON)
RESULTADOS EN EL PISO
                                     TON
                                7.1
RESULTADOS EN EL PISO
                                     (TON)
                            ٠
                                4.1
RESULTADOS EN EL PISO
                                     (TON)
MARCO HORIZONTAL
                     4
                         (EJE 4)
RESULTADOS EN EL PISO
                        22
                                1.0
                                     (TON)
RESULTADOS EN EL PISO
                               14.8
                        21
                            :
                                      (TON)
                                     (NOT)
RESULTADOS EN EL PISO
                        20
                               31.8
                                     (TON)
RESULTADOS EN EL
                  PISO
                        19
                               28.8
                                      TON)
                   PISO
                        18
                               32.5
RESULTADOS EN
               EL
                           z
RESULTADOS EN
               ЕL
                   PISO
                               35.3
                                      TON
RESULTADOS EN EL
                   PISO
                         16
                               38.2
                                     (TON)
RESULTADOS EN
                   PISO
                        15
                               35.2
                                      TON
               EL
                           •
RESULTADOS EN
               EL PISO
                        14
                               34.9
                                     (TON)
RESULTADOS EN
               EL
                  PISO
                        13
                               36.1
                                     (TON)
RESULTADOS EN
               EL
                   PISO
                               37.9
                                     (TON)
RESULTADOS EN
               EL
                   PISC
                               37.0
                                     (TON)
                                      TON
RESULTADOS EN
               EL.
                   PISO
                        10
                               42.4
RESULTADOS EN
                   PISO
                               44.8
                                      TON
               EL
                               44.1
                                     (TON)
RESULTADOS EN EL PISO
RESULTADOS EN
                   PISO
                               45.3
                                      TON
               EL
RESULTADOS EN
               EL
                   PISO
                               40.6
                                     (TON)
                                     (TON
RESULTADOS EN EL
                   PISO
                               42.3
                                     (TON)
RESULTADOS EN
               EL
                   PISO
                            :
                               46.0
                                     (TON)
RESULTADOS EN
               EL
                   PISC
                        3
                               46.7
                                     (TON)
RESULTADOS EN
               EL
                   PISO
                               23.9
                               20.7
                                     (TON)
RESULTADOS EN
```

RESULTADOS DEL ESTUDIO DE TORSION

#### MARCOS HORIZONTALES

MARCO	HORI	TNOS	'AL	5	(EJ	ΙE	5)	
RESUL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RESULL RES	TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS	e man na marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana marchana mar	ELLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL	PISO PISO PISO PISO PISO PISO PISO PISO	22109117651110987654321		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON)
MARCO	HORI	ZONT	AL	6	(EJ	Œ	6)	
RESUL RESUL RESUL RESUL RESUL RESUL RESUL	TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS TADOS	EN EN EN EN EN EN EN EN EN EN EN EN EN E	ELLL EELL EELL EELL EELL EELL EELL EEL	PISO PISO PISO PISO PISO PISO PISO PISO	221091871654321 10987654321		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON) (TON)

(TABLA 23-A)

## RESULTADOS ANALISIS DE TORSION CON SEGUNDAS ARTICULACIONES

#### SENTIDO "XX"

MA NIVEL 22 21	RCO 1	2	3	4	5	6	TOTAL
	58.5						
20 19 18 17 16	54.8 46.9 47.2 46.0 45.1 45.1	27.1 19.4 14.2 15.2 14.4 13.4 12.3	44.3 25.4 16.3 17.9 16.3 14.7 13.1	1.0 14.8 31.8 28.9 32.5 35.3 38.2 35.2	0.0 0.0 0.0 0.0 0.0	0.0	130.9 114.4 109.2 109.2 109.2 109.0
14 13 12 11 10 9 8 7 6 5	46.1 46.2 45.2 40.1 36.5 43.8 49.2 46.3	13.4 12.8 12.3 13.2 13.4 13.6 10.6 9.1 8.3 8.9	14.9 14.1 13.2 14.0 13.0 13.1 12.7 10.3 8.6 7.6 7.4	34.9 36.1 37.9 37.0 42.4 44.8 44.1 45.3 40.6 42.3 46.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6	0.0000000000000000000000000000000000000	109.3 109.2 109.0 108.4 108.9 108.9 110.0 115.3 115.8
1	46.3 58.4 50.8	5.5 9.3	7.1 4.1 7.2	46.7 23.9 20.7	3.4 2.1 3.4	33.2 31.1	120.7 127.2 122.5

46.9 12.9 14.1 34.6 3.4 14.2 125.9

#### D) TERCERAS ARTICULACIONES

Habiendo obtenido los resultados anteriores se continúa con el procedimiento señalado para el cálculo, descrito en las conclusiones del capitulo 4. Se le aplican a los marcos 1 y 4 las fuerzas que les corresponden según el análisis de la torsión y análisis dinámico de la estructura.

De igual forma a como se ha venido presentando este trabajo se muestran las tablas de resultados, omitiendo las tablas de momentos resistentes en trabes y cargas verticales en columnas, estas corresponden a las tablas 6 y 8 ya presentadas anteriormente.

Como resultado de este anáisis se presentan las siguientes tablas:

- 1) Momentos actuantes en trabes. ( tabla 24 )
- Carga en columnas. Suma de cargas verticales mas incremento de carga debido a sismo. ( tabla 25 )
- Carga en columnas. Suma de cargas verticales menos incremento de carga debido a sismo. (tabla 26)
- Momentos actuantes en columnas. Suma de los momentos por carga vertical mas carga horizontal. ( tabla 27 )
- 5) Momentos resistentes en columnas. (tabla 28)

Y las tablas más importantes de comparación de momentos actuantes entre resistentes, en donde se subraya los nudos en los que se presentan articulaciones. El subindice al lado de estos valores indica el orden en el que se van presentando las terceras articulaciones. Cabe el señalar que este subindice inicia con el numero 18, ya que los numeros l al 17 corresponden a las primeras y segundas articulaciones. Dentro de estas comparaciones aparecen valores de cero, para los nudos que estan articulados y en donde ya no existe un elemento que pueda absorber el momento que se presenta en el nudo.

- 6) Comparación de momentos actuantes / momentos resistentes en trabes ( tabla 29 ).
- 7) Comparacion de momentos actuantes / momentos resistentes en columnas ( tabla 30 ).

#### (TABLA 24)

# HOMENTOS ACTUANTES EN TRABES (TON*M)

MARCO 1

					и	U	D	0						N	a v	0		
11	IVE	LI	1	2		3		4	5	6	7	I	1	2	3	4	5	ī
	22 21 20 19 18 17 16 15 11 10 10 8	IIIIIIIIIII	19 38 51 61 81	2 19555 455235555 102568044 116044 11742	111111	3 9 247946791703436770		95893568357733	5 10 26 34 46 66 80 113 113 123 123 123 123 123 123 123 123	411444 544 544 1139 1185 1185 1181 12468	7 249 465 769 1149 129 164 192 193 00	IIIIII	2368 34014558 55556000660 660660	2 45 47 55 75 109 127 137 148 166 182 193	289 444 552 1087 1422 1544 179 1900	5555885824678763	3802515812456677766552	
111111111	7	IIIIIIII	220	216 201 190 183 241	22	62 02 06 15	200	2	265 253 223 228 248 *	219 237 205 204 277	242 226 225 0	IIIIIIII	54 51 46 42 46 31	198 195 184 175 192 144 98	202 197 186 174 191 142	88 82 76 68 73 50	68 64 59 54 59 41 26	I

#### (TABLA 25)

## CARGAS EN COLUMNAS SUMANDO INCREMENTO DE CARGA (TON)

#### MARCO 1

1					COL	UM	N A					COI	U M	N A	
INI	VEL	1	1AX	18	1BC	10	1D	1 E	1FX	I	4AX	4B	М	4E	4FX
	VE- 2210987651121109876		127 42264 899 1151 1210 2247 2334 3397 451	28 526 104 136 169 240 279 3156 398 4450 5755 6316	18C 18 35 50 94 112 133 1551 207 236 336 336 336 3401	10 18 134 155 1689 10229 17799 1224688229 1229 1329	10 134 516 804 1245 1799 2364 2382 3483 3497	1E 30555 1008 1589 1280 1251 2251 2369 4351 5700 6745	223 766 1046 1824 2323 4603 4603 4603 5561 5561		16 33 50 67 810 152 175 197 2242 287 3310 3362	19 42 65 126 126 1264 206 2512 375 444 5253 590 592	75633 1147 2147 2147 2154 2154 2154 2154 2154 2154 2154 2154	32 64 89 1140 162 178 2022 284 3770 530 624 7436	18 36 54 73 96 120 144 169 199 224 274 3029 356 382 420
III	5 4 3	I	639	757 819 888 1015	450 484 510 496	340 355 371 388	447 494 514 496	809 844 938 1016	564 725 756 818	I	391 419 448 478	648 692 736 821	579 657 741 790	961 1066 1182 1279	447 477 509 601
I	1.	I	699	1091	529	411	529	1091	885	I	505	889	950	1526	625

## (TABLA 26)

## CARGAS EN COLUMNAS RESTANDO EL INCREMENTO DE CARGA (TON)

M A R C 0 1

					COL	UM	N A					COL	UM	N A	
I	NIVEL	I	1AX	18	1BC	1C	10	1E	1FX	1	4AX	4B	м	4 E	4FX
I	22	I	6	24	16	16	16	22	12	ī	4	13	17	16	c
I.	21 20	I	9 12	48 74	31 47	32 49	32 49	45 71	25 24	I	7 10	22 31	30 45	32 53	0 -2
Ì.	19	Ť	8	94	62	64	66	98	26	i	11	36	56	74	-3
Ĩ	īá	Ī	3	116	80	85	86	124	28	Î	12	36	67	100	-ē
1	17	I	-3	137	90	98	98	148	21	1	12	32	78	130	-12
1	16	I	-13	156	105	116	114	171	14	1	12	24	89	164	-18
I	15	I	-24	172	119	135	129	192	6	1	12	10	98	192	-23
1	14	I	-38	193	133	156	143	221	-6	1	13	-10	102	208	-23
I	13	I	-55	213	145	175	153	252	-21	I	13	-35	102	222	-34
I	12	I	-75	232	156	193	157	285	-37	I	15	-66	98	234	-40
I	11	1	-9B	250	162	210	166	279	-30	1	16	-108	93	241	-46
1	10		-124	261	164	226	169	271	-23	I	16	-99	142	224	-53
1	9		-129	234	172	240	166	263	-18	I	17	-92	196	200	-59
1	8		-151	247	162	250	165	252	-13	Ī	19	-62	277	162	-66
<u> 1</u>	7		-161	248	229	264	224	204	~8	·I	19	-32	368	99	-72
Ĭ.	6		-165	220	221	293	215	194	-9	Ī	30	10	360	86	-62
I	5 4		-194	233	208	318	211	181	-6	I	43	52	359	61	-63
·Ì	3		-214 -239	227 212	210 222	339 361	200 218	202 162	-31 -24	Ī	57 68	74 98	373 383	74 58	-55 -49
Ī	2		-220	153	280	388	280	152	-42	Ì	90	97	450	87	29
÷	í		-249	145	293	411	293	145	-63	İ		113	406	-36	43
<u> </u>		_==.													

## (TABLA 27)

## MOMENTOS ACTUANTES EN COLUMNAS (TON*M)

### MARCO 1

				_	COL	UM	A M					COI	UM	N A		
IN	IVEL	I	1AX	18	1BC	10	1D	1E	1FX	I	4AX	4B	М	4E	4FX	I
I	22	I	19	22	16	17	19	26	28	I	30	42	250	2	38	I
I	21	Ι	26	36	32	33	34	40	38	Ι	18	35	380	1	25	I
I	20	1	29	44	41	43	43	48	40	Ι	22	39	585	3	29	1
I	19	I	36	57	54	56	56	62	43	1	23	59	574	5	25	I
1	18	Ι	45	68	66	69	67	74	56	Ι	29	69	721	8	37	I
I	17	1	52	80	78	81	79	85	64	I	28	76	800	12	38	1
I	16	Ι	58	90	89	92	89	95	71	I	30	81	780	15	40	1
I	15	1	66	105	102	107	101	109	77	I	30	107	613	24	35	1
I	14	Ι	74	116	113	119	110	118	87	1	31	105	516	26	38	I
I	13	I	81	127	125	131	118	126	97	I	30	111	729	30	38	1
1	12	Ι	90	137	135	145	3.22	125	109	1	32		1015	34	43	1
1	11	1	92	148	151	176	150	138	84		29		1190	54	36	1
I	10	Ι	96	181	190	207	187	175	32	I	32		1584	66	41	I
I	9	1	22	180	136	205	179	219	32	1	32		2037	75	44	1
1	8		143	247	146	246	181	215	46		30		2487	80	43	Ι
III	. 7	1	115	186	172	210	164	182	127	I	32		2567	128	48	1
I	6 5		115	176	19¢	197	163	154	120	1	26		2855	125	40	I
. 1	5.		112	179	186	200	173	161	113	I	25		3265	135	37	- 1
I	4	I	110	179	203	218	214	195	112	Ι	24	141		152	30	I
I	3 2 1	Ι		297	299	297	291	270					4834	138	65	1
I	2	Ι	*	*	*	*	*	*	*	Ι	8		4663	172	24	I
Ι.	1	I	*	*	<b>*</b>	*	*	*	*	1	37	126	2262	198	89	I

## (TABLA 28)

## MOMENTOS RESISTENTES EN COLUMNAS (TON*M)

MARCO 1

	. <u>.                                   </u>			С	0 1	א ט ב	N	A					cor	a m u	A	
-	INIVEL	Ţ	lax	18	1BC	10	10	1E	1FX	1	4AX	4 B	м	4E	4 PX	I
	22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7	TITITITITITITITITITITI	88 102 153 150 146 136 126 122 148 121 118 105 101	94 98 105 140 146 152 152 166 170 211 236 222 222 222	91 92 946 152 152 152 154 160 164 2019 211 210 204	92 92 98 146 152 159 186 192 159 2004 2022 2228 235	91 92 98 1452 1522 1522 164 1604 2019 2111 2202 204	94 105 140 148 152 152 166 170 211 236 222 222 222	309 313 308 309 2786 289 205 205 205 205 205 205 205 205 205 205	THITHIHHHHHHHHHHH	60 60 70 70 70 96 93 96 102 102 112 114	8903 1120 1120 1154 1150 1154 1150 1150 1150 1150 115	4210 4245 4294 4620 4800 4810 4850 5350 5350 9700 9720 16426 17106	84 90 104 120 118 120 156 156 170 294 306 302 340 376	308 310 310 310 311 311 310 312 297 286 272 272 273 278 306 306	
] ]	6 5 4 3 2	I	95 90 *	212 196 *	208 212 *	235 235 *	208 212 *	212 196 *		I		254 260	17506 17506 17506 17202	340 307 286 267	307 303 305 307	I

## (TABLA 29)

MARCO

## MOMENTOS ACTUANTES/RESISTENTES EN TRABES

ARCO

	<u> </u>		N	U	D	o				N	U	D (	0	
INIVELI	1	2	3	4	5	6	7	I	1	2	3	4	5	1
I 21 I I 20 I I 19 I I 18 I I 17 I I 16 I I 15 I I 12 I I 12 I I 10 I	0.87 1.00 1.11 1.05 1.08 1.17 1.25	0.35 0.45 0.55 0.67 0.77 0.88 0.98 0.95 1.04	0.24 0.37 0.49 0.59 0.71 0.83 0.94 0.82 0.91	0.25 0.38 0.49 0.58 0.70 0.80 0.91 0.96 1.15	0.26 0.38 0.49 0.59 0.71 0.82 0.93 0.92 1.04	0.41 0.54 0.64 0.76 0.87 0.99 1.08 0.97 1.16	0.49 0.65 0.76 0.70 0.81 0.92 0.99 1.15 1.26 1.35	ILILILILITI	1.02 1.08 1.14 1.08 1.14 1.17 1.23 1.27 1.27	0.51 0.54 0.57 0.49 0.56 0.65 0.82 0.96 1.03 1.125	0.44 0.50 0.63 0.62 0.71 0.96 1.07 1.15 1.35 1.43	0.60 0.64 0.66 0.69 0.71 0.72 0.73 0.73 0.73	0.65 0.68 0.73 0.77 0.86 0.91 0.93 0.94 0.94 0.94	I I I
T 9 T	1.18	1.03	1.11	1.08	1.21	1.11	1.22	I	1.14 1.08 0.97 0.89 0.59 0.40 0.24	1.54 1.47 1.56 1.17	1.65 1.56 1.46	0.72 0.64 0.69 0.47	1.14 1.05 0.96 1.01 0.70	

#### (TABLA 30)

# MOMENTOS ACTUANTES ENTRE RESISTENTES EN COLUMNAS

MARCO 1

·	COLUM	N A COLUMNA
INIVELI 1AX 1B	18C 1C 1D	1E 1FX I 4AX 4B M 4E 4FX I
I 20 I 0.27 0.36 0.41   I 20 I 0.28 0.41   I 19 I 0.23 0.40   I 18 I 0.30 0.45   I 17 I 0.35 0.59   I 16 I 0.18 0.59   I 15 I 0.45 0.69   I 14 I 0.54 0.69   I 12 I 0.64 0.75   I 12 I 0.63 0.70   I 12 I 0.63 0.70   I 10 I 0.69 0.76   I 11 I 0.60 0.76   I 12 I 0.17 0.85   I 8 I 1.21 1.11   I 7 I 1.06 0.81   I 7 I 1.06 0.81   I 6 I 1.09 0.79   I 5 I 1.10 0.80   I 4 I 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.85   I 1 1.10 0.80   I 1 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1.15 0.84   I 1 1 1 1.15 0.84   I 1 1 1 1 1.50 0.84   I 1 1 1 1 1.50 0.84   I 1 1 1 1 1.50 0.84   I 1 1 1 1 1.50 0.84   I 1 1 1 1 1 1.50 0.84   I 1 1 1 1 1 1.50 0.84   I 1 1 1 1 1 1.50 0.84   I 1 1 1 1 1 1.50 0.84   I 1 1 1 1 1 1 1.50 0.84   I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.34 0.35 0.36 0.41 0.43 0.43 0.36 0.38 0.38 0.43 0.45 0.45 0.58 0.57 0.58 0.56 0.57 0.58 0.73 0.61 0.71 0.78 0.85 0.73 0.82 0.91 0.74 0.73 0.10 0.89 0.62 1.00 0.81 0.69 1.18 0.85 0.81 0.94 0.78 0.89 0.86 0.80 0.91 0.85 0.80	0.27 0.09 I 0.50 0.47 0.05 0.02 0.12 I 0.40 0.12 I 0.30 0.38 0.08 0.01 0.08 I 0.45 0.12 I 0.30 0.38 0.08 0.01 0.08 I 0.45 0.12 I 0.31 0.41 0.13 0.02 0.09 I 0.44 0.13 I 0.32 0.52 0.12 0.04 0.08 I 0.50 0.18 I 0.41 0.61 0.15 0.06 0.11 I 0.50 0.68 0.12 I 0.40 0.69 0.16 0.10 0.12 I 0.62 0.25 I 0.42 0.73 0.16 0.12 0.12 I 0.71 0.26 I 0.31 0.69 0.12 0.15 0.11 I 0.71 0.30 I 0.33 0.64 0.21 0.15 0.11 I 0.71 0.30 I 0.33 0.64 0.21 0.16 0.12 0.12 I 0.71 0.32 I 0.31 0.74 0.13 0.18 0.13 I 0.74 0.13 0.76 0.18 0.20 0.15 0.11 I 0.74 0.10 I 0.31 0.76 0.18 0.20 0.15 0.15 0.10 0.75 0.32 I 0.31 0.76 0.18 0.20 0.15 0.15 0.73 0.36 I 0.33 0.76 0.18 0.20 0.15 0.15 0.73 0.36 I 0.33 0.76 0.18 0.20 0.15 0.15 0.74 0.10 I 0.31 0.97 0.16 0.22 0.15 1 0.74 0.10 I 0.31 0.97 0.16 0.22 0.15 1 0.74 0.10 I 0.31 0.97 0.16 0.22 0.15 1 0.96 0.16 I 0.29 0.83 0.25 0.26 0.15 I 0.82 0.47 I 0.28 0.71 0.15 0.31 0.55 0.26 0.15 I 0.82 0.47 I 0.28 0.71 0.15 0.37 0.16 0.35 0.13 I 0.69 0.46 I 0.23 0.58 0.16 0.36 0.13 I 0.79 0.46 0.36 0.13 I 0.79 0.16 0.36 0.13 I 0.79 0.44 I 0.21 0.52 0.18 0.35 0.12 0.13 0.91 0.79 0.44 I 0.21 0.50 0.18 0.35 0.12 0.13 0.91 0.79 0.44 I 0.29 0.70 0.80 0.27 0.44 0.21 I
I 2 I * * *	* * *	*

Después de haber obtenido los resultados anteriores , se conocen las terceras articulaciones plasticas que se formaran en forma simultanea en los marcos 1 y 4.

Para ilustrar estos resultados se presentan a continuación las figuras 25 y 26 en donde se marcan las primeras y segundas ( mediante un rectángulo ) y terceras ( mediante un círculo ) articulaciones para el marco 1 y 4 respectivamente.

El subindice indicado al lado de cada figura ( círculo o rectángulo ) indica el orden en el que se van presentando las articulaciones.

FIGURA 25 MARCO EJE I --PRIMERAS; SEGUNDAS Y TERCERAS

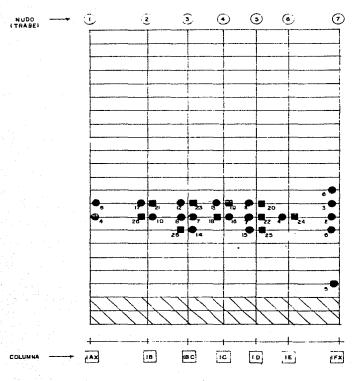
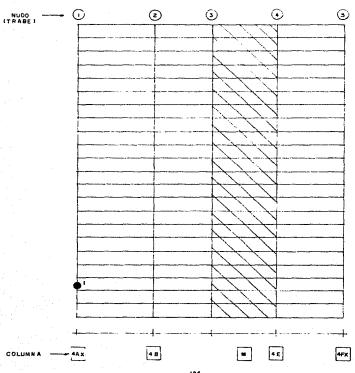




FIGURA 26
MARCO EJE 4
PRIMERAS. SEGUNDAS Y
TERCERAS ARTICULACIONES



Observando las 2 figuras anteriores se puede apreciar que las terceras articulaciones son 10 para el marco 1 y cero en el marco 4. Todas ellas se presentan en trabes.

El marco 1 presenta nuevamente la concentración de las articulaciones principalmente en los niveles 7, 8 y 9 con lo cual podemos afirmar que se presentaría un mecanismo de falla total en estos niveles.

Tambien observando la formación de articulaciones en este marco se puede deducir que en su comportamiento continuarán presentandose articulaciones concentradas por niveles lo que podría provocar el colapso total del marco.

En cambio en el marco 4 no se ha presentado articulacion alguna. Los efectos de la formación de articulaciones en el marco 1 se han traducido en una disminución de rigidez en el marco 4, por la variación en la fuerza cortante que toma el marco 4, que es una de las variables que interviene en el cálculo de la rigidez de piso.

De los comentarios anteriores se puede concluir que en el marco 1 se presentan todas las articulaciones. En terminos practicos esto significa que un sismo de gran magnitud se podría esperar que se presenten serios daños en el marco 1 antes de que el marco 4 sufra daño alguno.

Habiendo obtenido ya las terceras articulaciones, se ha llegado al final del estudio propuesto. Se considera que las articulaciones obtenidas son ya suficientes para dar una idea del comportamiento de la estructura en el intervalo inelástico.

Sin embargo, para complementar aun más el estudio se obtuvieron las rigideces de los marcos 1 y 4 ya con las terceras articulaciones. Ya se ha explicado como se obtienen estas rigideces. Los resultados se muestran en las tablas 32 y 33 para los marcos 1 y 4 respectivamente. Con estos datos se realizo nuevamente el análisis dinámico para obtener el periodo de vibración que fue de Tx = 2.02 s vs. el periodo original de 1.85 s.

Dentro de estas tablas se presentan las rigideces originales, con primeras, segundas y terceras articulaciones y los porcentajes que representan con respecto a las rigideces originales de los marcos 1 y 4. Estos valores se pueden apreciar graficados en las figuras 27 y 28 respectivamente.

Para complementar los resultados anteriores se presenta la figura 29 en donde se ha graficado una comparación entre las rigideces de los marcos 1 y 4 ya con terceras articulaciones. En esta figura se puede apreciar que de los hiveles 3 al 10 el marco 4 es más rígido que el marco 1. Por lo cual es de esperarse que, por efecto de torsión, el marco 4 absorba mayor cortante sísmico.

(TABLA 32)

# RIGIDECES MARCO 1

#### A P T T C U T. A C T O M F S

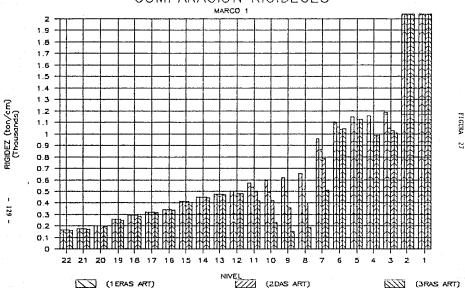
INI	VEL	I.	OR	_I	1		1	2	¥.	I	3	<b></b> \$	I
	2	T	168	I	168	100.0	I	168	100.0	1	162	96.4	1
	1	1	177	1	177	100.0	I	177	100.0	I	173	97.7	I
I 2	0	I	200	I	200	100.0	I	200	100.0	I	196	98.0	I
I 1	.9	I	256	I	256	100.0	I	256	100.0	r	251	98.0	I
I 1	.в	1	293	1	293	100.0	Ι	293	100.0	I	287	98.0	I
I 1	.7	I	320	I	320	100.0	1	320	100.0	I	314	98.1	Ι
I 1	6	1	341	I	341	100.0	I	341	100.0	I	336	98.5	I
r 1	.5	I	412	I	412	100.0	I	412	100.0	1	402	97.6	I
I 1	.4	I	450	I	450	100.0	1	450	100.0	I	442	98.2	Ī
I 1	3	I	476	I	476	100.0	Ī	476	100.0	I	470	98.7	I
Īī	2	I	501	I	501	100.0	I	482	96.2	Ī	482	96.2	I
Īī	1	Ī	570	Ī	534	93.7	I	493	86.5	Ī	420	73.7	I
1 1	0	Ī	593	I	492	83.0	Ī	418	70.5	I	229	38.6	I
	9	Ī	620	I	495	79.8	Ī	357	57.6	1	152	24.5	I
T	8	Ī	652	I	515	79.0	Ī	404	62.0	Ī	187	28.7	Ĩ
Ī	7	I	958	I	864	90.2	Ī	785	81.9	Ī	508	53.0	Ī
Ĭ	6	ī	1095	I	1062	97.D	Ī	1042	95.2	I	1044	95.3	Ī
Ī	5	Ī	1150	Ī	1137	98.9	Ī	1129	98.2	Ī	1129	98.2	Ī
Ī	4	Ī	1158	Ī	997	86.1	Ť	990	85.5	1	990	85.5	Ī
I	3	Ŧ	1188	Ī	1048	88.2	Ŧ	1028	86.5	Ŧ	1010	85.0	Ĩ
Ī	2	Ŧ	2431	Ī	2431	100.0	Ī	2431	100.0	Ī	2431	100.0	Ĩ
	1	ī	3147	Ī	3147	100.0	Ī		100.0	Ï	3147	100.0	ī

**%** 100.0 95.1 92.1

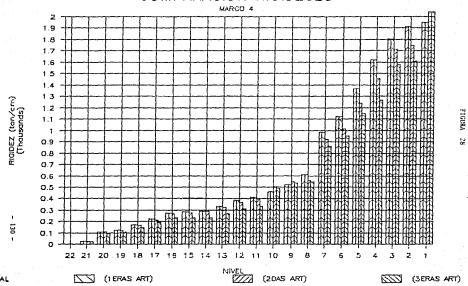
86.0

#### 33 ) (TABLA

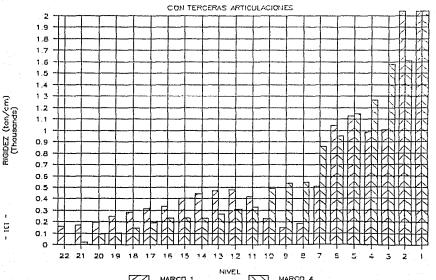
## RIGIDECES MARCO 4


984

I	1	Ł	1	2	ŧ.	1	3	ŧ	1
I	1	100.0	ī	1	100.0	ī	1	100.0	ī
1	29	100.0	I	29	100.0	1	24	82.B	I
1	109	100.0	1	108	99.1	1	95	87.2	1
1	126	100.0	I	119	94.4	1	107	84.9	1
I	172	100.0	I	169	98.3	I	146	84.9	I
1	224	100.0	I	215	96.0	1	191	85.3	1
I	275	100.0	I	268	97.5	1	232	84.4	1
I	283	100.0	I	274	96.8	I	233	82.3	I
I	290	100.0	I	290	100.0	ľ	235	81.0	I
1	333	100.0	1	324	97.3	1	268	80.5	I
I	385	100.0	1	369	95.8	1	311	80.8	I
1	414	100.0	1	390	94.2	1	331	80.0	, I.
1	461	100.0	I	504	109.3	I	490	106.3	1
1	521	100.0	1	547	105.0	1	534	102.5	I
ĭ	609	100.0	1	557	91.5	I	547	89.8	1
	984	100.0	1	922	93.7	1	861	87.5	1
I	1122	100.0	1	1016	90.6	I	953	84.9	I
1	1368	100.0	1	1239	90.6	1	1148	83.9	I
I	1621	100.0	1	1456	89.8	1	1266	78.1	I
I	1805	100.0	1	1712	94.8	1	1578	87.4	I,
I	1912	100.0	1	1750	91.5	1	1609	84.2	I
Ţ	1950	100.0	I	2098	107.6	1	2058	105.5	I


RTICULACIONES

1122 1368 1621 1805 1912 I 1239 I 1456 I 1712 I 1750 I 2098 90.6 89.8 94.8 91.5 1148 1266 1578 1609 2058 IIII 100.0 100.0 100.0 100.0 88.2


# COMPARACION RIGIDECES



# COMPARACION RIGIDECES



# COMPARACION DE RIGIDECES



HGUSA

#### E) CONCLUSIONES

Se han presentado dentro de este capítulo una gran cantidad de datos y resultados del análisis del edificio en sentido horizontal "xx", en el intervalo inelástico, de los cuales se pueden concluir los siquientes puntos:

- Los esfuerzos que se presentan en el edificio debido a solicitaciones sismicas son absorbidos principalmente por los marcos 1 y 4 (sentido "xx").
- Los elementos mecanicos de mayor consideración son los debidos a las solicitaciones sismicas.
- 3) Se presentan en el marco 1 un total de 30 articulaciones, al tiempo que en el marco 4 no se presentan. De el total de 30 articulaciones solo 1 se presenta en columnas, por lo cual el comportamiento de la estructura sigue el lineamiento de "trabe-débil" "columna-fuerte", que es recomendable.
- 4) El marco 1 llega a quedar, en promedio, con un 86% de su rigidez original al formarse las articulaciones, mientras que el marco 4 queda con un 88% a pesar de no tener articulaciones. La degradación en la rigidez de los marcos es muy similar, sin embargo los daños son graves en el marco 1 mientras que el marco 4 no ha sufrido daño alguno.
- 5) La localización de las articulaciones en el marco 1 se concentran de manera muy significativa en los niveles 7,8 y 9 en donde se han articulado la mayoria, sino es que todas las trabes.

- 6) El marco 4 se comporta satisfactoriamente en el intervalo inelástico, pierde rigidez sin sufrir danos.
- 7) Es muy probable que el comportamiento de los marcos 1 y 4, descrito en los puntos 5 y 6 repectivamente, siga los lineamientos antes indicados.

Esto quiere decir que en el marco 1 se irian concentrando las articulaciones por niveles, al grado de presentarse una falla total y que el marco 4 no empiece a sufrir daños sino hasta el momento en que el marco 1 haya fallado.

B) Finalmente se puede afirmar que el comportamiento de los marcos 1 y 4 en el intervalo inelástico, propósito original de este trabajo, es muy distinto. El haber complementado el "tubo" para soportar las solicitaciones sísmicas mediante un muro de rigidez introdujo en la estructura un elemento que hace que esta se comporte de manera muy diferente, mientras que el marco 1 sufre severos daños, con poca pérdida de rigidez globla, el marco 4 ( en donde se tiene el muro ) no sufre daños pero pierde aproximadamente igual porcentaje de rigidez. Este mecanismo provocaría que a pesar de sufrir grandes danos el marco 1 va a continuar tomando la mayor parte de las solicitaciones sísmicas, con el consecuente colapso de este marco, con lo cual se perdería el comportamiento de "tubo" de la estructura.

9) Se concluye que el comportamiento en el intervalo inelástico de un marco a base de columnas y trabes y de un marco a base de columnas, trabes y un muro, es muy distinto.

El comportamiento ideal en este caso sería que no sólo ambos marcos pierdan la misma proporción de rigidez en su intervalo inelástico, sino que también presenten la misma proporción en cuanto a los daños que sufran.

Evidentemente es mejor que los dos marcos sufran "daños menores" a que uno de ellos sufra "daños mayores" y el otro ninguno.

Por otra parte el periodo natural de vibración del edificio en el sentido "xx" se modifico de un Tx=1.85 s original a Tx=2.02 s con terceras articulaciones, es decir el edificio es más flexible conforme se van presentando las articulaciones.

En cuanto a la torsión del edificio, si se comparan con detenimiento las tablas 2 (resultados de la torsión original sentido "xx") y 23-A (resultados de la torsión con segundas articulaciones) se observa que las únicas variaciones que se pueden considerar de importancia se presentan en los niveles 8 a 10 para el marco 1, ya que el porcentaje del cortante que toma dicho marco se redujo en promedio alrededor de 15%, y a su vez el marco 4 presenta un aumento de alrededor de 10% en estos mismo niveles.

Como complemento final de este capítulo y para tener un punto de referencia con los lineamientos marcados por el Reglamento de construcciones del Distrito Federal de 1987, se elaboraron dos tipos de gráficas: unas con las fuerzas cortantes máximas que resisten los marcos y otras con el porcentaje que representan estas fuerzas resistentes comparadas con las fuerzas marcadas por el Reglamento de 1987.

Se habla de gráficas en plural ya que éstas se obtuvieron para el comportamiento original, con primeras y con segundas articulaciones de los marcos 1 y 4.

El procedimiento para obtener estas gráficas fue el siguiente:

- 1) En una tabla se indica el cortante y fuerza correspondiente que toma el marco en cada nivel, según el análisis dinámico y de torsión de la estructura también indicados, según el Reglamento de 1987. (5 primeras columnas)
- 2) Se indica el maximo valor de momento actuante / momento resistente obtenido para cada nivel, ya sea en columnas o trabes. ( columna 5 )
- 3) Para obtener la fuerza máxima resistente se divide el cortante marcado por el RDF-87 entre el valor "más crítico" de momento actuante / momento resistente. ( columnas 7 y 8 ) .

En este punto ya se puede obtener la gráfica de maximos contantes resistentes.

4) Finalmente se divide el valor de cortante resistente obtenido en el punto 3) entre el cortante actuante mostrado en la segunda columna. Este valor se presenta en la última columna y representa que porcentaje del cortante que tomaría según el RDF-87 resiste el marco.

Las tablas y gráficas que a continuación se presentan son:

- Las tablas 34, 35 y 36 con los datos marcados en el procedimiento anterior para el marco 1 para el comportamiento original, con primeras y con segundas articulaciones respectivamente.
- 2) Las tablas 37, 38 y 39 con los datos del marco 4, para comportamiento original, con primeras y con segundas articulaciones respectivamente.
- 3) La figura 30 presenta la gráfica de cortantes resistentes del marco
- 1 en su comportamiento original, con primeras y con segundas articulaciones. La figura 31 presenta la gráfica equivalente para el marco 4.
- 4) La figura 32 es la gráfica de porcentajes de cortantes resistentes para el RDF-87 del marco 1 para su comportamiento original, con primeras y con segundas articulaciones. La figura 33 es la gráfica equivalente para el marco 4.

#### (TABLA 34)

# GRAFICAS DE CORTANTE RESISTENTE Y COMPARACION CON REGLAMENTO 1987

# MARCO 1 (COMPORTAMIENTO ORIGINAL)

IN	IVE	LI	VDINA	1ICO	CALCUI	ADO	MAX	RESIS	TENTE	(RDF-87	') I
1		1 (	RDF87)	(%TOR)	v	F	ACT/RES	ν	F	(₹)	I
I	22	ī	126	59.4	74.8	74.8	0.38	197.0	197.0	2.63	I
I	21	I	237	55.3	131.1	56.2	0.49	267.5	70.5	2.04	1
I	20	I	341	47.2	161.0	29.9	0.69	233.3	-34.2	1.45	I
I	19	I	442	47.2	208.6	47.7	0.83	251.4	18.1	1.20	I
1	18	1	548	46.3	253.7	45.1	0.83	305.7	54.3	1.20	1
I	17	I	647	45.7	295.7	42.0	0.96	308.0	2.3	1.04	1
	16	I	741	45.2	334.9	39.3	1.09	307.3	-0.7	0.92	I
I	15	1	828	45.B	379.2	44.3	1.2	316.0	8.7	0.83	1
1	14	I	917	46.4	425.5	46.3	1.14	373.2	57.2	0.88	I
I	13	1	999	46.2	461.5	36.1	1.23	375.2	2.0	0.81	I
I	12	I	1075	46.0	494.5	33.0	1.3	380.4	5.2	0.77	I
1	11	I	1144	46.4	530.8	36.3	1.32	402.1	21.7	0.76	Ī
1	10	1	1206	46.2	557.2	26.4	1.35	412.7	10.6	0.74	1
I	9	I	1262	45.8	578.0	20.8	1.4	412.9	0.1	0.71	I
1	8	I	1311	45.4	595.2	17.2	1.44	413.3	0.5	0.69	Ι
I	7	1	1354	46.2	625.5	30.4	1.35	463.4	50.0	0.74	1
I	6 5	I	1401	49.8	697.7	72.1	1.15	606.7	143.3	0.87	I
I	5	I	1440	49.1	707.0	9.3	1.14	620.2	13.5	0.88	1
1	4	Ī	1472	48.9	719.8	12.8	1.16	620.5	0.3	0.86	1
Ĩ	3	Ī	1497	43.6	652.7	-67.1	2.24	291.4	-329.1	0.45	I
I	2	Ī	1517	52.7	799.5	146.8	•		*	*	I
Ī	1	I	1527	59.6	910.1	110.6	*	*	*	* -	I

#### (TABLA 35)

GRAFICAS DE CORTANTE RESISTENTE Y COMPARACION CON REGLAMENTO 1987

## MARCO 1 (PRIMERAS ARTICULACIONES)

11	INIVELI VDINAMICO			CALCULADO		MAX	RESISTENTE		(RDF-87) I		
. 1	I I(RDF87)(%TC		(%TOR)	v	F	ACT/RES	V	F	(%)	·I	
I	22	1	126	59.4	74.8	74.8	0.43	174.1	174.1	2.33	ĩ
1	21	1	237	55.3	131-1	56.2	0.56	234.0	60.0	1.79	Ī
I,	20	1	341	47.2	161.0	29.9	0.76	211.8	-22.3		1
I	19	1	442	47.2	208.6	47.7	0.9	231.8	20.0		Ī
Ī	18	I	548	46.3	253.7	45.1	0.89	285.1	53.3	1.12	I
I	17	1	647	45.7	295.7	42.0	1.01	292.8	7.7	0.99	I
I	16	1	741	45.2	334.9	39.3	1.13	296.4	3.6	0.88	I
I	15	1	828	45.8	379.2	44.3	1.23	308.3	11.9	C.81	I
I	14	I	917	46.4	425.5	46.3	1.29	329.8	21.5		1
I	13	T	999	46.2	461.5	36.1	1.41	327.3	-2.5	0.71	I
I	12	1	1075	46.0	494.5	33.0	1.51	327.5	0.2	0.65	I
I	11	I	1144	45.3	518.2	23.7	1.42	365.0	37.5		1
I	10	I	1206	42.9	517.4	-0.9	1.54	336.0	~29.0		1
I	9	I	1262	42.3	533.8	16.5	1.82	293.3	-42.6		I
1	8	Ĩ	1311	42.0	550.6	16.8	2.35	234.3	~59.0	0.43	I
I	7	I	1354	44.9	607.9	57.3	1.63	373.0	138.7	0.61	I
I	6	·I	1401	49.4	692.1	84.1	1.33	520.4	147.4		I
I	5	1	1440	49.0	705.6	13.5	1.25	564.5	44.1	0.80	I
I	4	1	1472	46.6	686.0	-19.6	1.15	596.5	32.0		I
I	3	Ι	1497	46.5	696.1	10.2	1.45	480.1	-116.4	0.69	Ι
I	2	1	1517	52.3	793.4	97.3	*	*	*	*	I
I	1.	1	1527	65.9	1006.3	212.9	±	+	+	*	7

#### (TABLA 36)

GRAFICAS DE CORTANTE RESISTENTE Y COMPARACION CON REGLAMENTO 1987

# MARCO 1 (SEGUNDAS ARTICULACIONES)

INIVELI VDINAMICO				CALCULADO				CENTE	(RDF-87)I	
1	I (	RDF87)	(%TOR)	v	F	ACT/RES	V	F	(8)	I
I 22	Ī	126	58.5	73.7	73.7	0.38	194.0	194.0	2.63	Ī
I 21	I	237	54.8	129.9	56.2	0.49	265.1	71.1	2.04	I
I 20	I	341	46.9	159.9	30.1	0.65	246.0	-19.0	1.54	I
I 19	Ι	442	47.2	208.6	48.7	0.76	274.5	28.5	1.32	I
I 18	I	548	46.0	252.1	43.5	0.76	331.7	57.2	1.32	I
I 17	I	647	45.6	295.D	43.0	0.87	339.1	7.4	1.15	1
I 16	1	741	45.1	334.2	39.2	1.00	334.2	-4.9	1.00	1
I 15	I	828	45.6	377.6	43.4	1.11	340.2	6.0	0.90	I
I 14	I	917	46.1	422.7	45.2	1.15	367.6	27.4	0.87	I
I 13	I	999	46.2	461.5	38.8	1.26	366.3	-1.3	0.79	I
I 12	T,	1075	45-6	490.2	28.7	1.35	363.1	~3.2	0.74	1
I 11	τ	1144	44.2	505.6	15.4	1.35	374.6	11.4	0.74	I
I 10	Ι	1206	40.1	483.6	-22.0	1.66	291.3	-83.2	0.60	I
1 9	I	1262	36.9	465.7	-17.9	2.41	193.2	-98.1	0.41	1
I 3	1	1311	38.5	504.7	39.1	2.52	200.3	7.1	0.40	I
I 7	1	1354	43.8	593.1	88.3	1.86	31B.B	118.6	0.54	r
I 6	1	1401	49.4	692.1	99.0	1.37	505.2	186.3	0.73	Ĩ
I 5	1	1440	49.2	708.5	16.4	1.22	580.7	75.5		ĩ
I 4	I	1472	46.3	681.5	-26.9	1.22	558.6	-22.1		ĩ
I 3	Ĩ	1497	46.3	693.1	11.6	1.51	459.0	~99.6		ĩ
T 2	Ī	1517	58.4	885.9	192.8	****	*	*	*	Ť
T i	Ī	1527	50.9	777.2	~108.7	*	*	*	*	Ī

(TABLA 37)

GRAFICAS DE CORTANTE RESISTENTE Y COMPARACION CON REGLAMENTO 1987

## MARCO 4 (COMPORTAMIENTO ORIGINAL)

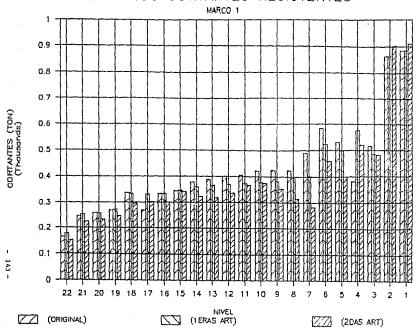
	INIVELI VDINAMICO I I(RDF87)(%TOR)			CALCULADO		MAX	RESISTENTE		(RDF-87)1		
I		- T (	RDF87)	( TOR)	v	r	ACT/RES	V	F	( % )	I
1	22	I	126	1.0	1.3	1.3	0.57	2.2	2.2	1.75	ī
Ī	21	I	237	14.B	35.1	33.8	0.74	47.4	45.2	1.35	Ī
1	20	I	341	31.9	108.8	73.7	0.74	147.0	99.6	1.35	1
I	19	I	442	29.7	131.3	22.5	0.80	164.1	17.1		1
1	18	1	548	32.7	179.2	47.9	0.77	232.7	68.6	1.30	I
I	17	I	647	35.9	232.3	53.1	0.81	286.8	54.0	1.23	I
Ι	16	I	741	38.6	286.0	53.8	0.83	344.6	57.9	1.20	·I
1	15	I	828	35.7	295.6	9.6	0.89	332.1	-12.5	1.12	1
1	14	I	917	34.8	319.1	23.5	0.94	339.5	7.4	1.06	1
Ι	13	I	999	36.5	364.6	45.5	0.94	387.9	48.4	1.06	1
I	12	I.	1075	38.4	412.8	48.2	0.94	439.1	51.2	1.06	I
1	11	I	1144	37.6	430.1	17.3	1.00	430.1	-9.0	1.00	1
1	10	I	1206	38.8	467.9	37.8	1.05	445.6	15.5	0.95	I
1	9	I	1262	40.2	507.3	39.4	1.08	469.7	24.1	0.93	1
1	8	I	1311	42.1	551.9	44.6	1.10	501.8	32.0	0.91	I
I	7	I	1354	44.9	607.9	56.0	1.11	547.7	45.9	0.90	Ι
I	. 6 5	Ι	1401	42.2	591.2	-16.7	1.22	484.6	-63.1	0.82	1
1	5	I	1440	44.1	635.0	43.8	1.17	542.8	58.2	0.85	I
I	4	I	1472	43.4	638.8	3.8	1.09	586.1	43.3	0.92	1
I	. 3	1	1497	49.8	745.5	106.7	1.16	642.7	56.6	0.86	I
I	2	I	1517	16.5	250.3	-495.2	0.94	266.3	-376.4	1.06	·I
I	1	I	1527	10.6	161.9	-88.4	0.78	207.5	-58.8	1.28	Ţ

#### (TABLA 3B)

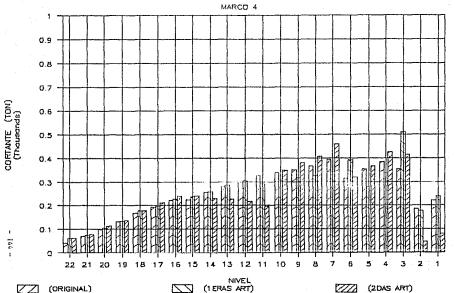
GRAFICAS DE CORTANTE RESISTENTE Y COMPARACION CON REGLAMENTO 1987

# MARCO 4 (PRIMERAS ARTICULACIONES)

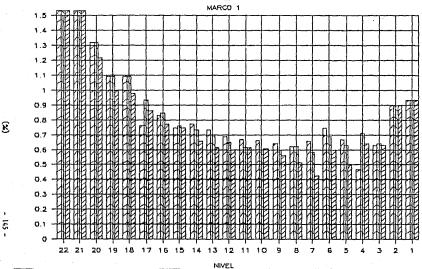
INIVELI VDINAMICO CALCULADO MAX RESISTENTE (RDF-87)										\
1		RDF87)		V	F	ACT/RES	V	F	(%)	'n
I 22		126	1.0	1.3	1.3	0.57	2.2	2.2	1.75	1
I 21	İ	237	14.8	35.1	33.B	0.74	47.4	45.2	1.35	I
1 20	I	341	31.9	108.8	73.7	0.74	147.0	99.6	1.35	I
I 19	1	442	29.7	131.3	22.5	0.80	164.1	17.1	1.25	1
I 18	1	548	32.7	179.2	47.9	0.77	232.7	68.6	1.30	1
1 17	1	647	35.9	232.3	53.1	0.81	286.8	54.0	1.23	I
I 16	1	741	38.6	286.0	53.8	0.83	344.6	57.9	1.20	1
I 15	1	828	35.7	295.6	9.6	0.89	332.1	-12.5	1.12	I
I 14	I	917	34.B	319.1	23.5	0.94	339.5	7.4	1.06	1
I 13	I	999	36.5	364.6	45.5	0.94	387.9	48.4	1.06	1
1 12	I	1075	38.4	412.8	48.2	0.94	439.1	51.2	1.06	1
I 11	I	1144	37.7	431.3	18.5	1.00	431.3	-7.9	1.00	1
I 10.	I	1206	39.5	476.4	45.1	1.05	453.7	22.4	0.95	I
I 9	I	1262	41.5	523.7	47.4	1.08	484.9	31.2	0.93	1
I 8	I	1311	43.9	575.5	51.8	1.10	523.2	38.3	0.91	1
I 7	I	1354	45.7	618.8	43.2	1.11	557.5	34.2	0.90	I
I 6	I	1401	42.4	594.0	-24.8	1.22	486.9	-70.6	0.82	1
I 5	I	1440	44.2	636.5	42.5	1.17	544.0	57.1	0.85	1
I. 4	I	1472	44.7	658.0	21.5	1.09	603.7	59.7	0.92	I
I 3	I	1497	47.7	714.1	56.1	1.16	615.6	11.9	0.86	1
I 2	I	1517	22.2	336.8	-377.3	0.94	358.3	-257.3	1.06	I
1 1	I	1527	8.2	125.2	-211.6	0.7B	160.5	-197.7	1.28	I


#### (TABLA 39)

GRAFICAS DE CORTANTE RESISTENTE Y COMPARACION CON REGLAMENTO 1987


### MARCO 4 (SEGUNDAS ARTICULACIONES)

INIVELI VDINAMICO			CALCU	LADO	MAX	RESISTENTE		(RDF-87)I		
I		(RDF87)		V	F	ACT/RES	v	F	(\$)	Ī
I 22 I 21 I 20 I 19 I 18 I 17 I 16 I 15 I 14 I 13 I 12	пинининини	126 237 341 442 548 647 741 828 917 999 1075	1.0 14.8 31.8 28.8 32.5 35.3 38.2 35.2 35.2 35.2	1.3 35.1 108.4 127.3 178.1 2283.1 291.5 320.0 360.6 407.4	1.3 33.4 18.9 50.8 50.3 54.7 8.4 28.6 40.6	0.8 1.02 1.08 1.14 1.08 1.17 1.23 1.27 1.27	1.6 34.4 100.4 111.7 164.9 200.3 241.9 237.0 252.0 284.0 320.8	1.6 32.8 66.0 11.3 53.2 35.4 41.6 -5.0 15.0 36.8	1.25 0.98 0.93 0.88 0.93 0.88 0.85 0.81 0.79	
I 11 I 10 I 9 I 8 I 7 I 6 I 4 I 3 I 1	THEFFICE	1144 1206 1262 1311 1354 1460 1472 1497 1517	37.0 42.4 44.8 44.1 45.3 40.6 42.3 46.7 23.9	423.3 511.3 565.4 578.2 613.4 568.8 609.1 677.1 699.1 362.6 316.1	15.9 88.1 54.8 35.2 -44.6 40.3 68.0 22.0 -336.5 -46.5	1.35 1.43 1.50 1.51 1.55 1.65 1.47 1.56 1.17	313.5 357.6 3762.9 400.9 344.7 390.6 448.1 309.9 400.1	-7.3 44.0 19.3 6.0 18.0 -56.2 45.7 70.2 -138.3 90.2	0.74 0.70 0.67 0.66 0.65 0.61 0.64 0.68 0.85	THEFFICE

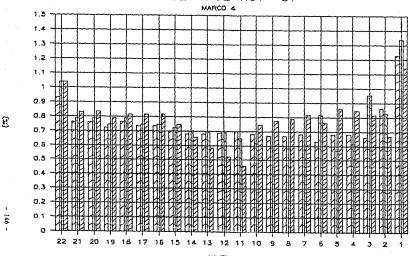

## MAXIMOS CORTANTES RESISTENTES



### MAXIMOS CORTANTES RESISTENTES








ORIGINAL

S (1 ERAS ART

ZZZ (2DAS ART)

## PORCENTAJE RDF-87



ZZ (GRIGINAL)

(1 ERAS ART)

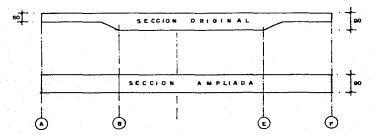
(ZDAS ART)

FIGURA 3

#### 6) PROPUESTA DE SOLUCION

Existe una gran variedad de posibilidades para realizar los cambios estructurales que mejoren el comportamiento del edificio.

Se ha analizado la alternativa de "rigidizar" el marco 4 para lograr una distribución más uniforme de los esfuerzos debidos a sismo entre los marcos 1 y 4 ( la distribución ideal sería de 50% a cada uno de los marcos ).


A pesar de que con esta solución no se logra un comportamiento igual en el intervalo inelástico de los marcos 1 y 4, se pretende que la pérdida de rigidez y resistencia debido a la posible formación de articulaciones plásticas en los marcos sea muy similar.

La opción analizada es factible de realizarse en obra, se trata de aumentar la sección de las trabes del marco 4 entre los ejes A y B y E y F, (trabe originalmente con sección acartelada) y aumentar la sección de una de las columnas colocadas al extremo del muro (marcada como columna tipo  $\lambda$ ).

Los cambios antes propuestos se pueden apreciar en las figuras 34 y 35.

FIGURA - 34
LRIGIDIZACION MARCO 41

#### AMPLIACION TRABE



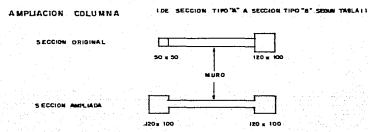
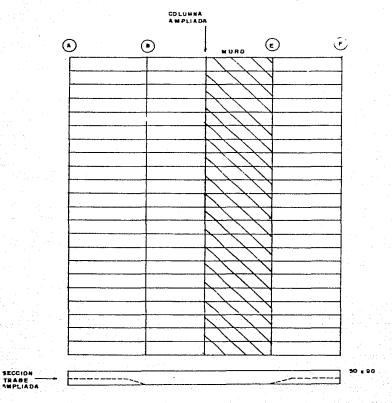




FIGURA - 35 MAR CO EJF 4 IRIGIDIZADOI



utilizando nuevamente el método de Khan y Sabarounis se cálculo la nueva rigidez para el marco 4 ya con las secciones ampliadas, estos resultados se pueden ver en la tabla 40. La rigidez aumento desde un 13% en el nivel 1 hasta un 55% en el nivel 11. (Datos de la última columna).

También variaron las rigideces de los demás marcos al aplicar el método de Khan y Sbarounis, sin embargo la variación fue mínima por lo cual para los calculos subsecuentes se seguiran tomando como válidas las rigideces calculdus originalmete para todos los marcos excepto el 4.

Es importante señalar que esta propuesta de solución se limita a proponer nuevas secciones para uno de los marcos y analizar el comportamiento general de la estructura ante este cambio de rigidez.

De igual forma se estudiaría el refuerzo necesario tanto en las trabes y columnas del marco como en la cimentación del edificio. Pero se puede concluir que no existiría problema alguno para llevar a cabo la rigidización que aqui se propone.

### (TABLA 40)

### RIGIDECES MARCO 4

11	IVEL	Ī	OR	ī	1	ī	2	ī	3	ī	MOD	(%)	ī
1	22	I	1	Ţ	1	I	1	I	1	1	1	1.00	I
Ι	21	I	29	1	29	1	29.	1	24	Ι	44	1.52	1
1	20	I	109	I	109	I	108	1	95	1	168	1.54	I
·I	19	I	126	1	126	I	119	1	107	I	193	1.53	Ι
I	18	I	172	I	172	I	169	1	146	1	265	1.54	1
1	17	I	224	1	224	I	215	I	191	1	346	1.54	I
Ι	16	Ι	275	1	275	1	268	I	232	I	424	1.54	I
1	15	I	283	1	283	I	274	I	233	Ι	436	1.54	I
1	14	I	290	Ι	290	I	290	1	235	I	446	1.54	1
I	13	Ι	333	1	333	I	324	I	268	Ι	514	1.54	I
I	12	I	385	Ι	385	I	369	I	311	1	593	1.54	I
Ι	11	I	4.14	1	414	I	390	Į	331	I	643	1.55	I
I	10	I	461	I	461	I	504	I	490	I	694	1.51	I
I	9	I	521	Ι	521	Ι	547	1	534	1	802	1.54	I
I	8 7	I	609	I	609	I	557	1	547	I	936	1.54	I
I		I	984	I	984	I	922	I	861	I	1357	1.38	I
Ι	6	Ι	1122	I	1122	1	1016	I	953	Ι	1430	1.27	I
Ţ	5	I	1368	Ι	1368	I	1239	I	1148	I	1570	1.15	I.
I	4	I	1621	1	1621	I	1456	Ι	1266	I	1817	1.12	I
Ι	3	1	1805	I	1805	I	1712	·I	1578	ľ	2022	1.12	1
I	2	I	1912	I	1912	1	1750	I	1609	I	2142	1.12	I
Ι	1	I	1950	_I	1950	I	2098	I	2058	I	2196	1,13	·I

Para complementar este propuesta de solución se analizo la torsión del edificio tomando en cuenta la rigidización del marco 4.

Las hojas de resultados se presentan a continuación y en la tabla 41 un resumen de estos, donde se puede apreciar que se ha logrado practicamente igualar los porcentajes de la fuerza sismica que tomarían los marcos 1 y 4, excepto en los dos niveles superiores e inferiores.

El siguiente paso sería volver a analizar los marcos 1 y 4 y calcular las articulaciones plásticas que se formarian para poder asegurar que la solución propuesta es satisfactoria. Este análisis se deja como una posibilidad para ampliar este trabajo mediante el método que aqui se ha propuesto.

RESULTADOS DEL ESTUDIO DE TORSION

#### MARCOS HORIZONTALES

```
MARCO HORIZONTAL
                        (EJE 1)
                    1
RESULTADOS EN EL PISO 22
                              59.2 (TON)
RESULTADOS EN EL PISO
                       21
                          •
                              52.8
                                    (TON)
RESULTADOS EN EL PISO
                       20 :
                              44.5
                                   (TOF)
RESULTADOS
           EN
               EL PISO
                       19
                              44.7
                                    (TON)
RESULTADOS EN EL PISO 18 :
                              43.7
                                    (TON)
RESULTADOS EN
              EL PISO
                       17:
                                   (TON)
                              43.6
RESULTADOS
           EN
               EL PISO
                              43.6
                                    (TON)
RESULTADOS EN
                       15
                              43.7
              EL PISO
                                    (NOT)
RESULTADOS EN EL PISO 14 :
                              14.0
                                   (TON)
                                    (TON)
RESULTADOS EN
               EL PISO
                       13
                              44.1
RESULTADOS EN
               EL PISO 12
                                    (TON)
                              44.2
RESULTADOS EN
               EL PISO
                                    (TON)
                       11:
                              44.3
RESULTADOS EN
               EL PISO
                       10
                              44.3
                                    (TON)
RESULTADOS EN
               EL PISO
                              44.2
                                    (TON)
RESULTADOS EN
              EL PISO 8
                              44.2
                                    (TON)
                                    (TON)
RESULTADOS EN
               EL PISO
                       7
                              45.7
RESULTADOS EN
              EL PISO 6
                          •
                              49.2
                                    (TON)
RESULTADOS EN
               EL PISO 5
                              48.7
                                    (TON)
                                    (TON)
RESULTADOS EN
               EL PISO
                              48.1
RESULTADOS EN
               EL PISO
                       3
                              48.2
                                    (TON)
RESULTADOS EN EL PISO
                       2
                              57.5
                                    (TON)
                           :
RESULTADOS EN
              EL PISO
                              50.7
                                    (TON)
MARCO HORIZONTAL
                    2
                        (EJE 2)
RESULTADOS EN EL PISO
                       22
                              26.7 (TON)
RESULTADOS EN EL PISO
                       21
                              17.8
                                    (TON)
RESULTADOS EN EL PISO 20 :
                                    (TON)
                              12.5
RESULTADOS EN
               EL PISO
                       19
                              13.4
                                    (TON)
RESULTADOS EN
               EL PISO
                                    (TON)
                       18
                              12.7
RESULTADOS EN
               EL PISO 17 :
                                    (TON)
                              11.7
RESULTADOS EN
               EL PISO
                       16
                              10.B
                                    (TON)
               EL PISO 15
RESULTADOS EN
                              11.7
                                    (TON)
RESULTADOS EN
              EL PISO 14 :
                              11.8
                                    (TON)
                                    (TON)
RESULTADOS EN
               EL PISO
                       13
                              11.2
RESULTADOS EN
               EL PISO
                                    (TON)
                              10.6
RESULTADOS EN
              EL PISO 11 :
                              10.7
                                    (TON)
                                    (TON)
RESULTADOS EN
               EL PISO 10 :
                              10.4
RESULTADOS EN
               EL PISO 9
                               9.5
                                    (TON)
               EL PISO 8
EL PISO 7
                                    (TON
RESULTADOS EN
                               9.3
RESULTADOS EN
                               8.8
                                    (TON)
RESULTADOS EN
                               8.2
               EL PISO 6
                                    (TON)
RESULTADOS EN
               EL PISO 5
                               7.8
                                    (TON)
RESULTADOS EN
                                    (TON)
               EL PISO 4
                               7.8
RESULTADOS EN
               EL PISO
                       3
                               8.3
                                    (TON
RESULTADOS EN EL PISO 2
                               5.4
                                    (TON)
RESULTADOS EN EL PISO 1
                                    (TON)
```

7

(EJE D)

43.7 (TON)

## RESULTADOS DEL ESTUDIO DE TORSION

#### MARCOS HORIZONTALES

RESULTADOS EN EL PISO 22

MARCO HORIZONTAL

```
RESULTADOS EN EL PISO 21 :
                                      22.9
                                              (TON)
RESULTADOS EN EL PISO 20 :
RESULTADOS EN EL PISO 19 :
                                      13.2
                                             (TON)
                                      14.4
                                            (TON)
RESULTADOS EN EL PISO 18 :
                                      13.1
                                             (TON)
RESULTADOS EN EL PISO
RESULTADOS EN EL PISO
                              17 :
                                      11.6
                                            (TON)
                              16:
                                      10.3
                                              (TON)
RESULTADOS EN EL PISO
RESULTADOS EN EL PISO
RESULTADOS EN EL PISO
                                      11.7
                                             (TON)
                              14 :
                                      12.0 (TON)
                                      11.1
                              13 :
                                             (HOT)
RESULTADOS EN EL PISO 12 :
                                      10.2
                                            (TON)
RESULTADOS EN EL PISO 11 :
RESULTADOS EN EL PISO 10 :
                                      10.5
                                            (TON)
                                      10.1 (TON)
RESULTADOS EN EL PISO 9 :
RESULTADOS EN EL PISO 6 :
RESULTADOS EN EL PISO 7 :
                                       9.3
                                             (TON)
                                       B.5
                                            (TON)
                                       8.3 (TON)
7.2 (TON)
RESULTADOS EN EL PISO 6
                                             (TON)
RESULTADOS EN EL PISO 5
                                       6.7
                                  •
RESULTADOS EN EL PISO 4
                                       6.4
                                             (TON)
RESULTADOS EN EL PISO 3
RESULTADOS EN EL PISO 2
                                       5.3 (TON)
                                       3.9 (TON)
7.1 (TON)
                                  :
RESULTADOS EN EL PISO
MARCO HORIZONTAL
                              (EJE 4)
RESULTADOS EN EL PISO 22 :
                                       1.9 (TON)
RESULTADOS EN EL PISO 21 :
                                      20.1 (TON)
38.8 (TON)
RESULTADOS EN EL PISO 20 :
RESULTADOS EN EL PISO 19 :
RESULTADOS EN EL PISO 18 :
                                      36.6 (TON)
                                      39.5 (TON)
43.1 (TON)
RESULTADOS EN EL PISO
                              17:
                                      43.1
RESULTADOS EN EL PISO
RESULTADOS EN EL PISO
                                      45.9 (TON)
                              16:
                              15 :
                                     42.7 (TON)
RESULTADOS EN EL PISO
                                      41.7 (TON)
RESULTADOS EN EL PISO 13 :
RESULTADOS EN EL PISO 12 :
                                      43.6 (TON)
                                      45.6 (TON)
44.8 (TON)
RESULTADOS EN EL PISO 11 :
RESULTADOS EN EL PISO 10
RESULTADOS EN EL PISO 9
                                      45.6 (TON)
                              10 :
                                      47.5 (TON)
49.6 (TON)
PESULTADOS EN EL PISO 8
RESULTADOS EN EL PISO 7
RESULTADOS EN EL PISO 6
                                      49_0 (TON)
                                             (HOT)
                                      46.9
RESULTADOS EN
                   EL PISO
                              5
                                      45.9
RESULTADOS EN
                   EL PISO 4
                                  -
                                      49.2
                                             (TON)
RESULTADOS EN
                                  :
                  EL PISO 3
                                             (TON)
                                      48.9
RESULTADOS EN EL PISO 2
                                      27.8
                                 -
RESULTADOS EN
                   EL PISO 1
                                      21.5
                                            (TON)
```

# RESULTADOS DEL ESTUDIO DE TORSION

#### MARCOS HORIZONTALES

```
MARCO HORIZONTAL
                     5
                         (EJE 5)
RESULTADOS EN EL PISO 22 :
                                0.0 (TON)
RESULTADOS EN EL PISO
                        21
                                0.0
                                   (TON)
RESULTADOS EN EL PISO
                        20
                                0.0
RESULTADOS EN EL PISO
                                0.0 (TON)
                        19:
RESULTADOS
            EN EL PISO
                        18
                                0.0 (TON)
                               0.0 (TON)
0.0 (TON)
0.0 (TON)
RESULTADOS
            EN EL PISO
RESULTADOS EN EL PISO 16 :
RESULTADOS EN EL PISO
                        15
RESULTADOS EN EL PISO
                                D.O (TON)
RESULTADOS EN EL PISO 13 :
                                0.0 (TON)
RESULTADOS EN EL PISO
                        12
                                O.O (TON)
                                    (TON)
RESULTADOS EN EL PISO
                        11
                                0.0
RESULTADOS EN EL PISO 10
                                0.0 (TON)
RESULTADOS EN
               EL PISO
                        9
                                0.0 (TON)
RESULTADOS EN EL PISO
                                0.0 (TON)
RESULTADOS EN EL
                   PISO
                                0.0 (TON)
2.9 (TON)
RESULTADOS EN EL
                   PISO
RESULTADOS EN EL PISO
                                3.3 (TON)
RESULTADOS EN EL PISO
                                3.1 (TON)
3.0 (TON)
RESULTADOS
            EN EL PISO
                        3
RESULTADOS EN EL PISO
                                2.0 (TON)
                        2
RESULTADOS EN EL PISO
                                3.4 (TON)
                         (EJE 6)
MARCO HORIZONTAL
RESULTADOS EN EL PISO 22
                                D.O (TON)
RESULTADOS EN EL PISO 21 :
                                0.0
                                     TON
                                     (TON
RESULTADOS EN EL PISO 20 :
                                0.0
                                     (TON)
RESULTADOS EN EL PISO
                        19
                                0.0
RESULTADOS EN EL PISO
                        18
                                0.0
                                     (TON)
RESULTADOS EN EL PISO
                        17 :
                                0-0
                                     (TON)
RESULTADOS EN EL PISO
                        16
                                0.0
                                     (NOT)
RESULTADOS EN EL PISO
                        15
                                0.0
 RESULTADOS EN EL PISO
                        14 :
                                0.0
                                    (TON)
 RESULTADOS EN EL PISO
                                     (TON)
                        13
                                0.0
 RESULTADOS EN
               EL PISO
                        12
                                0.0
                                    (TON)
 RESULTADOS EN EL PISO
                                0.0
                                    (TON)
                                    (TOIT)
 RESULTADOS EN EL PISO
                        .10 :
                                0.0
 RESULTADOS EN
               EL PISO
                                0.0
                                     (TON)
 RESULTADOS EN
               EL PISO
                                0.0
                                    (TON)
 RESULTADOS EN EL PISO
                                0.0
                                    (TON)
 RESULTADOS
            EN
                EL PISO
                                3.2
                                     (TON)
 RESULTADOS EN
               EL PISO
                                3.8
                                     (TON)
 RESULTADOS
                                     (TON)
            EH
               EL
                   PISO
                                3.7
                                     (TON
 RESULTADOS
            EN
                EL PISO
                         3
                                7.0
 RESULTADOS EN EL PISO 2
                               31.5
                                     (TON)
                            :
 RESULTADOS
            EN EL PISO
                               30.8 (TON)
```

#### (TABLA 41)

# RESULTADOS ANALISIS DE TORSION CON MARCO 4 MODIFICADO

#### SENTIDO "XX"

NIVEL	MARCO	1	2	3	4	5	6	TOTAL
22 22 19 19 17 16 15 11 11 11 11 11 11 11 11 11 11 11 11		285776670123322727125744433444444444445570.	26.785477878267493828834310.99.38288343	73.92.416.37.012.513.53.28.43.91.10.35.32.8.43.91.10.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.8.43.91.35.32.91.35.32.8.43.91.35.32.91.35.32.91.35.32.8.43.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.32.91.35.35.35.35.35.35.35.35.35.35.35.35.35.	208.6.5.1.97.7.6.6.8.6.5.6.0.9.9.2.9.6.5.4.4.4.5.7.6.6.8.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.6.0.9.9.2.9.6.5.0.0.9.2.9.6.5.0.0.9.2.9.6.5.0.0.9.2.9.6.5.0.0.9.2.9.6.5.0.0.9.2.9.6.5.0.0.9.2.9.6.5.0.0.9.2.9.6.5.0.0.9.2.9.6.5.0.0.9.2.9.6.5.0.0.9.2.9.6.5.0.0.9.2.9.6.5.0.0.9.2.9.6.5.0.0.9.2.9.6.5.0.0.0.9.2.9.6.5.0.0.0.9.2.9.6.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	0.0000000000000000000000000000000000000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	131.5 113.6 109.0 109.0 110.0 110.6 109.8 110.0 110.6 110.3 110.4 110.3 111.8 117.6 117.3 118.3 121.7 128.1

47.0 11.2 11.8 39.9 3.0 13.3 126.

#### BIBLIOGRAFIA

REGIAMENTO DE CONSTRUCCIONES PARA EL DISTRITO FEDERAL GACETA OFICIAL DEL DEPARTAMENTO DEL DISTRITO FEDERAL México, D.F. Julio de 1987

7 NORMAS TECNICAS COMPLEMENTARIAS DEL REGLAMENTO DE CONSTRUCCION PARA EL DISTRITO FEDERAL Centro de Actualización Profesional (CICM) México, D.F. 1988

Enrique Bazan Zurita y Roberto Meli Piralla MANUAL DE DISEÑO SISMICO DE EDIFICIOS México, D.F. Enero de 1987

Roberto Meli Piralla DISEÑO ESTRUCTURAL México, D.F. Febrero de 1987

R. Park y T. Paulay ESTRUCTURAS DE CONCRETO REFORZADO México, D.F. Febrero de 1986

C. Arnold y R. Reitherman MANUAL DE DISEÑO SISMICO DE EDIFICIOS México, D.F. 1989

O. GONZALEZ CUEVAS Y F. RObles ASPECTOS FUNDAMENTALES DEL CONCRETO REFORZADO MEXICO, D.F. AGOSTO de 1985 MANUAL PARA LA ESTRUCTURACION DE EDIFICIOS DEPARTAMENTO DEL DISTRITO FEDERAL México, D.F. 1988

Columbia Data Products Inc BASICA 2.0 Columbia, MD. 1984

DISEÑO Y CONSTRUCCION DE ESTRUCTURAS DE CONCRETO Series del Instituto de Ingenieria No. 401 Mexico, D.F. Julio de 1977

BASES EN LAS QUE SE APOYAN LAS NORMAS TECNICAS COMPLEMENTARIAS SOCIEDAD MEXICANA DE INGENIERIA SISMICA MÉXICO, D.F. Mayo de 1988