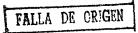


UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLAN

ESTUDIO DE VIABILIDAD PARA LA PRODUCCION DE CLORHIDRATO DE 4-METIL, 5-HIDROXIMETIL IMIDAZOL EN MEXICO



QUE PARA OBTENER EL TITULO DE INGENIERO QUI MICO

PRESENTA:
HUMBERTO DELFINO TORRES

1989

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

		P á gina
r	INTRODUCCION	1
ır	MERCADO	.4
11.1	Nacional	4
11.2	Internacional	10
III	TECNOLOGIA	11
ıv	DESCRIPCION DEL PROCESO	14
rv.1	Principios químicos	14
rv. 2	Principios mecánicos	15
J	DIAGRAMAS	17
V.1	Diagrama de bloques	17
V.2	Diagrama de proceso	18
V.3	Dîagrama de flujo	19
VI	ESPECIFICACIONES	20
VI.1	Especificaciones de materia prima	20
VI.2	Especificaciones de servicios	25
VI.3	Especificaciones de producto terminado	29
vii	CONSUMOS E INSUMOS	30
vii.1	Consumos	30
UTT 2 -	Theumos	33

		Pagina
viii	CAPACIDAD DE LA PLANTA	38
IX	ESPACIO REQUERIDO	39
IX.1	Materia prima	39
IX.2	Planta de proceso	44
IX.3	Producto terminado	49
x	UBICACION DE LA PLANTA	51
x.1	Infraestructura del sistema	52
x.2	Leyes de fomento	63
x.3	Mercado	64
X.4	Materias primas	65
xr	PERSONAL	66
XI.1	Mano de obra directa	66
XI.2.~	Mano de obra indírecta	66
xI.3	Personal administrativo	68
xII	ESTUDIO ECONOMICO	69
xrr.1	Plan global de inversión	70
XII.2	Costo de producción para el primer año	79
x.r	Punto de equilibrio	97
XII.4	Flujo de efectivo	102
XII.5	Proyección	110
KII.6	Balance proforma para el primer año de	
	operación	112

		Pāgina
XIII CONCLUSION	NES	 116
BIBLIOGRAFIA		 118

CAPITULOI

INTRODUCCION

I.- INTRODUCCION

La situación que actualmente vive el país requiere de la creación de fuentes de trabajo para aumentar nues tro producto interno bruto y por consiguiente hacer que nuestro país mejore económicamente.

El objetivo del presente trabajo es mostrar la via bilidad de producir clorhidrato de 4-metil, 5-hidroxime til Imidazol en México, el cual actualmente se importa, ya que sólo existe un productor en el país el cual no - cubre la demanda nacional.

El procedimiento original para la producción de -Clorhidrato de 4-metil, 5-hidroximetil Imidazol pertene
ce a Badische Anilin-und Soda Fabrik A.G., United Sta-tes Patent 4'239,895. Consta de dos reacciones la pri
mera es de 4-metil Imidazol con paraformaldehido para formar el 4-metil, 1-hidroximetil Imidazol base; la se-gunda es de 4-metil, 1-hidroximetil Imidazol base con aci
do clorhidrico para formar el producto deseado.

El clorhidrato de 4-metil, 5-hidroximetil Imidazol (también llamado Alcohol Clorhidrato) es un intermediarío para la producción de Cimetidina. La cimetidina es un fármaco que está indicado para tratar eficazmente ca

sos de úlcera gástrica, úlcera duodenal, esofagitis, gastritis y otros padecimientos en los que pueda resultar - benéfica la reducción de la secreción del jugo gástrico.

Se inicia el presente trabajo realizando un estudio de mercado en el capítulo II, con lo cual se determina - la cantidad de alcohol clorhidrato a producir por año.

En los capítulos III, IV y V se presenta la tecnolo gía necesaria para lograr la producción requerida así -- como también se presenta la descripción del proceso, y - se indica el equipo requerido; se incluyen diagramas de bloques, de proceso y de flujo.

En el capítulo VI se indican las especificaciones — que deben cubrir la materia prima, el producto terminado y los servicios a utilizar.

En el capítulo VII se hacen balances de materia y - energía para estimar la cantidad de materia prima y de - servicios a requerir para una determinada cantidad de - producto terminado, valores que serán utilizados en el capítulo IX para obtener el espacio requerido de instalación, incluyendo la planta de procesos y oficinas.

En el capítulo X se analizan diversas zonas industriales, tomando en cuenta la infraestructura del sistema, leyes de fomento, mercado y materias primas, parafinalmente decidirse por alguna para la instalación de la planta.

En el capítulo XI se hace un análisis del personal requerido, considerando mano de obra directa, mano de obra indirecta y personal administrativo.

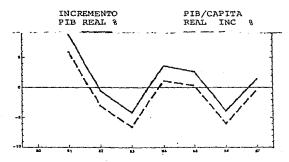
El capítulo XII muestra el estudio económico.

Considerando el plan global de inversión y el costo de producción, se obtiene el punto de equilibrio, - con estos resultados se programa el flujo de efectivo. Posteriormente se hace una proyección a 5 años para la producción de la planta.

Por último en el capítulo XIII se exponen las con clusiones a las que se llegaron al finalizar el estudio.

CAPITULO II

MERCADO


II - MERCADO

II.1 .- Nacional

El comportamiento del producto interno bruto a precios corrientes en los últimos años es el mostrado en la gráfica 2.1. Estos datos fueron obtenidos del Banco Nacional de México. También se presenta a continuación -una tabla de tal información.

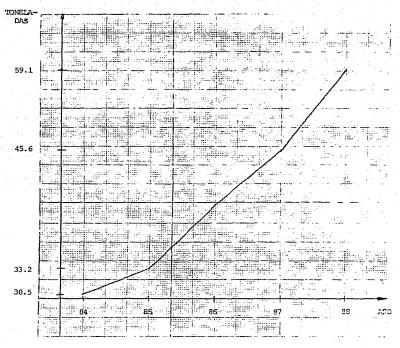
1981	8.8
1982	(0.6)
1983	(4.2)
1984	3.6
1985	2.6
1986	(3.9
1987	1.4

GRAFICA 2.1.- ANALISIS DEL PRODUCTO INTERNO BRUTO

Debido a que el valor del peso respecto al dólar ha variado bastante en años anteriores, y este estudio debe efectuarse a valores constantes, se puede hacer una muy buena aproximación convirtiendo los pesos a dólares, para tal efecto se presenta a continuación una tabla de paridad promedio del peso con respecto al dólar para los díltimos años.

TABLA 2.1

ANO	PESOS POR DOLAR
1982	57,44
1983	120.17
1984	167.17
1985	256.77
1986	611.29
1987	1366.72
1988	2250.28


FUENTE: Banco de México.

El consumo nacional de alcohol clorhidrato en los 5 años antecedentes es el que se muestra a continuación:

TABLA 2.2

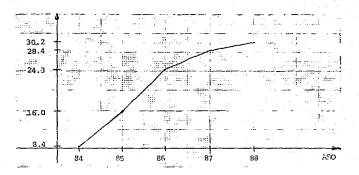
OÑA	CANTIDAD (TON)	VALOR	COMERCIAL	DOLARES
1984	30.5		744,200	
1985	33.2		816,720	
1986	39.8		995,000	
1987	45.6	. 1	,126,320	
1988	54.1	1.	,336,270	

FUENTE: Cifras estadísticas del I.M.C.E.

GRAFICA 2.2.- CONSUMO NACIONAL DE ALCOHOL CLORHIDRATO
DE 1984 A 1989.

FUENTE: Cifras estadísticas del I.M.C.E.

Actualmente se están consumiendo un promedio de -4.8 toneladas por mes (enero de 1989).


FUENTE: QUIMSI S.A. DE C.V.

A continuación se muestra la cantidad de alcohol clorhidrato producido en México en los 5 años anteriores.

TABLA 2.3

AÑO	CANTIDAD	(10T)
1984	8.4	
1985	16.0	
1986	24.3	
1987	28.4	
1988	30.2	

GRAFICA 2.3.- PRODUCCION NACIONAL DE ALCOHOL CLORHI-DRATO DE 1984 A 1988. FUENTE: OUIMSI S.A. DE C.7.

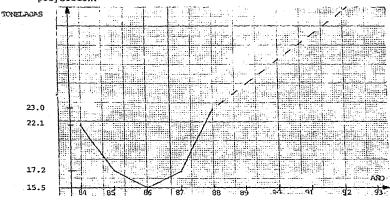

Por consiguiente la necesidad de importar el alcohol clorhidrato ha sido la siguiente:

TABLA 2.4

AÑO	CANTIDAD (TON	PIB
1984	22.1	3.6
1985	17.2	2.6
1986	15.5	(3.9)
1987	17.2	1.4
1988	23.9	0.6

FUENTE: Cifras estadísticas del I.M.C.E.

En base a los datos anteriores se hace la siguiente proyección:

GRAFICA 2.4.- PROYECCION SOBRE LA CANTIDAD DE ALCOHOL
CLORHIDRATO A IMPORTAR EN LOS PROXIMOS
AJOS.

Si analizamos los datos expuestos anteriormente se podrá observar que hay una considerable cantidad de mercado por cubrir, evitando así la importación del alcohol clorhidrato, se ve también que hay una tendencia a aumentar el consumo de alcohol clorhidrato en los siguientes años; por tal motivo se programará la construcción de una planta la cual producirá 26.4 toneladas en el presente año y posteriormente incrementará su producción. Se estima que el alcohol clorhidrato tendrá un valor de venta de 24.70 dólares por kilogramo a valores constantes de enero de 1989.

II.2.- INTERNACIONAL

La planta está programada inicialmente para cubrir solamente la demanda nacional, por tal motivo no se analizará el mercado internacional.

CAPITULOIII
TECNOLOGIA

III .- TECNOLOGIA

La tecnología necesaria para la producción de alcohol clorhidrato se presenta en este trabajo; se incluye la técnica de obtención y la ingeniería básica, lo que representa un ahorro de aproximadamente el 9% del valor total del equipo. Aunado a esto se tienen -los siguientes beneficios:

- a) No se pagará ningún porcentaje sobre las ven-tas realizadas,
- b) No estará condicionada la planta a una capacidad que la determine una tecnología específica.
- c) La materia prima se podră comprar a cualquier proveedor.
- d) Se tendrá una tecnología propia para la producción de alcohol clorhidrato.

A continuación se da la técnica para producir el alcohol clorhidrato.

Técnica de producción de Clorhidrato de 4-metil, 5-hidroximetil Imidazol, a partir de 4-metil Imidazol.

Materiales

A)	4-metil Imidazol al 100%	82.11 pts.
B)	Paraformaldehido al 100%	30.16 pts.
C)	Acido Clorhídrico acuoso al	
	30%	121.66 pts.
D)	Metanol	246.33 pts.

Cargar en un recipiente vidriado 82.11 partes de 4-metil Imidazol. Calentar hasta que se funda por completo el 4-metil Imidazol. Posteriormente adicionar -30.16 partes de paraformaldehído y agitar. Llevar hasta una temperatura de 70°C. En esta temperatura deberá
permanecer durante 1 hora. Después de esta hora agregar
ácido clorhídrico acuoso hasta llegar a un pH de 4.0. -Destilar hasta tener la masa reaccionante un porciento de agua igual a 10.0 Enfriar y adicionar 246.33 pts. de
metanol y 1.64 partes de carbón activado, calentar y -llevar a reflujo durante media hora. Filtrar la solu-ción en caliente. La solución filtrada enfriarla a 0°C
y mantenerla en esta temperatura durante 1 hora. Fil-trar el producto a una temperatura menor de 3°C se obtrenen 111.45 partes de alcohol clorhidrato.

Puntos críticos del proceso.

- 1.- Posteriormente a la adición del acido clorhidrico el pH de la suspensión debe ser de 4.0. Si se deja en un pH mayor queda 4-metil, 1-hidroximetil Imidazol en forma básica y es muy inestable, no siendo así el clorhidrato de 4-metil, 5-hidroximetil Imidazol.
- 2.- El porciento de agua al final de la destilación debe rá ser de 10.0; si es menor el producto puede degradarse y sí es mayor bajará el rendimiento de la reacción, debido a que el producto es soluble en agua.
- 3.~ Es muy importante la adición del carbón activado para tener una buena pureza en el producto.

IV.- DESCRIPCION DEL PROCESO

TV.1 .- PRINCIPIOS QUIMICOS

El proceso consiste en efectuar dos reacciones que - son las siguientes:

PRIMERA REACCION

SEGUNDA REACCION

CAPITULO IV

DESCRIPCION

DEL

PROCESO

IV. 2.- PRINCIPIOS MECANICOS.

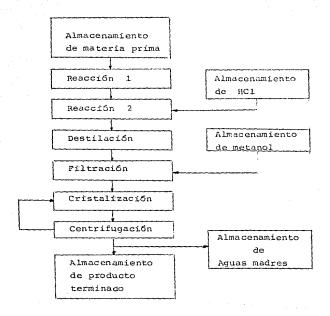
Dadas las características del proceso se tienen las siguientes secciones:
Almacén de materia prima
Reacción
Destilación
Filtración
Cristalización
Centrifugación
Almacén de producto terminado.

El 4-metil Imidazol y paraformaldehído una vez que se pesaron, se transportarán de el almacén de materia - prîma a la zona de reactores para que se efectúe la primera reacción. El ácido clorhídrico para que se efectúe la segunda reacción, también se transportará del almacén de materia prima a la zona de reactores.

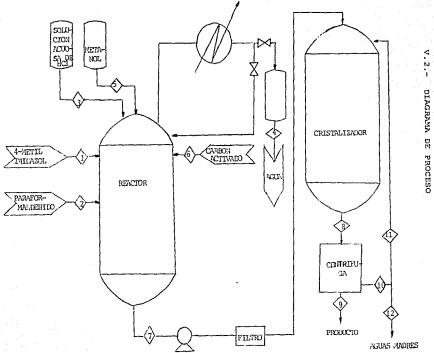
Para efectuar las reacciones es necesario tener un reactor vidriado provisto con: una entrada de hombre; - mirilla; lámpara; agitador de aspas y eje vidriado; de--flector; termopozo integrado a un termoregistrador; sistema de reflujo y destilación; chaqueta para suministrar servicios como salmuera, aqua de enfriamiento y vapor; -

válvula de descarga por el fondo; venteo y válvula de seguridad.

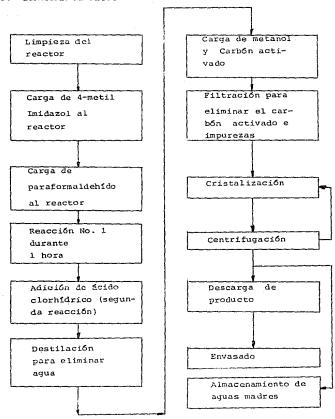
Ya que el clorhidrato de 4-metil, 5-hidroximetil -- Imidazol es bastante soluble en agua y tenemos agua en el medio reaccionante, se tiene que destilar ésta. Para esta operación se utiliza el mismo reactor antes mencionado haciéndole la adaptación de un tanque de retención.


Después se carga metanol y carbón activado a la mezcla reaccionante y se calienta con el propósito de disol-ver el clorhidrato de 4-metil, 5-hidroximetil imidazol y
tener el carbón activado e impurezas en suspensión. Posteriormente esa suspensión se hace pasar por un filtro de
acero inoxidable, por medio de una bomba hacia un cristali
zador de acero inoxidable, provisto de: tapa; agitador con aspas de acero inoxidable; chaqueta para suministrar
salmuera y válvula de descarga por el fondo.

Una vez que el producto haya cristalizado se procede a centrifugar, utilizando para ello una centrifuga de ace ro inoxidable. Por último se descarga de la centrifuga - y se envía al almacén de producto terminado.


C A P I T U L O V

V .- DIAGRAMAS


V.1 .- DIAGRAMA DE BLOQUES.

V. 3.- DIAGRAMA DE FLUJO

C A P I T U L O VI

ESPECIFICACIONES

VI.- ESPECIFICACIONES

VI.1.- Especificaciones de materia prima.

Acido Clorhidrico

Fórmula: HC1

Peso Molecular: 36.46 Gramos/Mol

Descripción: Líquido incoloro o de color ama

rillento el de grado industrial, fumante de olor característico e irritante. Cuando se diluye con dos volúmenes de agua deja de -- emitir humos. Sin partículas ex-

trañas.

Pureza: Mayor de 30%

Densidad: 1.20 gr/ml.

Fierro: No mayor de 25 ppm

Bromuros y Yoduros: Pasa prueba.

Bromo o Cloro libre:

Pasa prueba.

Sulfitos:

Pasa prueba

Manejo:

Manéjese con cuidado pues es un líquido bastante corrosivo. Almacênece en recipientes de vidrio, fibra de vidrio o un mate rial adecuado.

METANOL

Pórmula desarrollada:

CH, OH

Fórmula condensada:

CH40

Peso Molecular:

32.04

Descripción:

Líquido incoloro, con olor característico, inflamable, venenoso. Sin partículas

extrañas.

Solubilidad:

Miscible con agua, etanol, benceno y otros disolven-

tes orgánicos.

Humedad:

Máximo 1% determinada por

Karl Fischer.

Densidad:

0.7866 gramo/mililitro

a 25° C.

Punto de ebullición:

64.7°C a 760 milimetros

de mercurio.

Manejo:

Manéjese con cuidado pues es un material intoxicante que ataca las células del

cerebro.

4- METILIMIDAZOL

Fórmula desarrollada:

Fórmula condensada:

C4H6N2

Peso molecular:

82.11 gramos/mol

Descripción:

Masa cristalina dura, opaca de color blanco amarillenta, con olor -

característico.

Solubilidad:

Soluble en agua. No deben observarse particu-

las extrañas.

Punto de fusión:

51 - 55°C

Humedad:

No mayor de 0.5%

Identificación:

Corresponde al estandard

Pureza:

96.5 - 100%

PARAFORMALDEHIDO

Formula:

(CH₂O)_n

Descripción:

Polvo fino blanco o en forma de escamas. Olor caracte
rístico. No debe presentar
materiales extraños.

Solubîlîdad:

1 gramo en 10 mililitros

de agua a 40° C.

Pureza:

88 - 92%

Humedad:

No mayor de 5%

VI.2.- ESPECIFICACIONES DE SERVICIOS

Agua de enfriamiento

Descripción: Líquido incoloro e inodo-

ro sin partículas en sus-

pensión.

Agentes corrosivos: Ausentes.

рн 7.0

NOTA: El agua es tratada con agentes químicos anticorrosivos y productos para evitar la formación de hongos.

SALMUERA

Descripción:

Solución formada de agua - con cloruro de sodio, inco-lora o ligeramente turbia, ~ inodora.

Composición:

Máxima 21.0% de cloruro de sodio.
Mínima 13.0% de cloruro de

sodia.

Temperatura:

Māxima 10°C Mīnima ~8°C

VAPOR

Calidad: Saturado

Presión: 9 Kg/cm² (135 Lb/In²)

Calor latente: 482.8 Kcal/Kg (870 Btu/Lb)

Temperatura: 177°C (350°F)

ENERGIA ELECTRICA

Voltaje: 220 Volts.

Amperaje: 50 amperes

Ciclaje: 60 ciclos por segundo

Fases: 3

Factor de potencia 0.85

VI.3.- ESPECIFICACIONES DE PRODUCTO TERMINADO

CLORHIDRATO DE 4-METIL, 5-HIDROXIMETIL IMIDAZOL

Descripción: Polvo de color blanco,

beige o crema

Solubilidad: Soluble en agua metanol y

etanol. Insoluble en éter,

benceno y cloroformo.

Cromatografía en capa

fina: Corresponde al estandard.

Ensayo: 96.5 - 100%

Pérdida por secado: No mayor de 3.5%

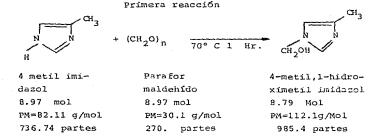
Residuos de ignición: No mayor de 0.3%

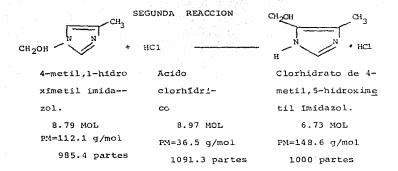
Humedad: No mayor de 0.5%

C A P I T U L O VII

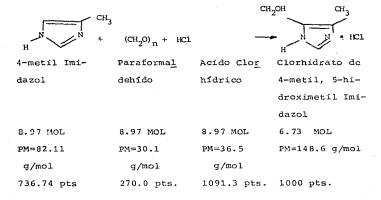
CONSUMOS

E


INSUMOS


VII.- CONSUMOS E INSUMOS

VII.1.- CONSUMOS


En la determinación de los requerimientos de materrías primas y disolventes, necesarios para la prepara-ción de clorhidrato de 4-metil, 5-hidroximetil imidazol, no se consideró la proporción estequiométrica de cada -- una de las reacciones por lo que las cantidades citadas a continuación no corresponden a los requerimientos teóricos de ellas, esto es debido al rendimiento de reac-- ción observado en las condiciones experimentales fijadas.

Tomando como base de cálculo 1000 pts. de alcohol - clorhidrato, y recordando las reacciones efectuadas se - tiene:

REACCION GLOBAL

Por consiguiente para preparar 26.40 toneladas de alcohol clorhidrato (que es lo que se va a producir por año) se requiere la siguiente cantidad de 4-metil Imidazol:

26,400 Kg alcohol clorhidrato 0.73674 Kg 4-metil Imidazol = 1 Kg alcohol clorhidrato

19,450 Kg de 4-metil Imidazol

De igual forma éfectuando cálculos para las demás - materias primas y solventes se tiene:

Paraformaldehido = 7,128 kg.

Acido clorhidrico = 28,810 Kg.

Metanol = 58,350 Lts.

VII.2. Insumos

En este capítulo únicamente se determinarán los -insumos del vapor, los de la energía eléctrica se efectuarán en el capítulo XII.2.c.4.

Para la preparación del alcohol clorhidrato es necesario suministrar energía calorífica para la primera reacción, la destilación y la primera etapa de la filtración. Así pues se estima à continuación el consumo de energía calorífica, requerida para obtener 1 Kg. — de alcohol clorhidrato, que en forma general se calcumló de acuerdo a lo siguiente:

Calor total=Calor sensible + calor latente de vaporización.

 $Q = M(pm \Delta + + M \lambda i)$

donde:

M = masa de reacción por calentar (Kg).

Cpm = Cpi Xi

Cpi - Valor promedio de la capacidad calorífica del componente i de la mezcla (Kcal/Kg °K)

Xî = Fracción masa del componente i en la mezcla.

 Δ + = Diferencia de temperaturas, final menos inicial (°K)

λi = Calor latente de vaporización del componente i

Las propiedades termódinámicas aquí utilizadas son las consultadas de datos informados en la literatura.

Primera reacción:

En esta etapa se debe mantener la masa reaccionante a 70°C durante 1.0 Hr., dado que la temperatura de alimentación es de 20°C por consiguiente la temperatura promedio para determinar los valores de Cp es 45°C; expresando los valores en la siguiente tabla:

Componente	Cantidad	(Kg) Xi	Cp/45.0 °C
4-Metil Imidazol	0.7367	0.7318	0.6723
Paraformaldehído	0.270	0.2682	0.4884
	1.0067		

Cpm = (0.7318)(0.6723)+(0.72682)(0.4884)=0.623 Kcal/Kg°K para 1 Kg. de alimentación y suponiendo 15% de pérdidas de calor en el sistema de calentamiento, el calor sensible es:

 $Qs_1 = (1\text{Kg mezcla}) (0.623 \text{ Kcal/Kg°K}) (343-293°K) (1.15)$ $Qs_1 = 35.8 \text{ Kcal que viene siendo el calor total para la primera reacción debido a que no se evapora nada durante ésta.$

Destilación.

Para efectuar la destilación primero hay que aplicar energía calorífica para llegar a ebullición esto es, aquí tenemos que calcular el calor sensible y el calor latente.

Calor sensible.- Hay que calentar la masa reaccionan te de 70°C a 100°C, para empezar la destilación del agua, esto da una temperatura promedio de 85°C. También se presenta una tabla con los valores de Cp y de Xi.

Componente	Cantidad	Xi.	Ср
4-Metîl Imidazol	0.7367	0.3512	0.68
Paraformaldehido	0.2700	0.1287	0.50
Acido clorhídrico			
al 30%	1.0913	0.5201	0.662
	2.0980		

Cpm = (0.3512) (0.68) + (0.1287) (0.50) + (0.5201 (0.662) = 0.6474 Kg °K

Para 2.1 Kg de mezcla reaccionante y considerando un 15% de pérdidas de calor se tiene:

 $Qs_2 = (2.1 \text{ Kg}) (0.6474 \text{ Kcal/Kg°K}) (373-343°K)=40.8 \text{ Kcal}$

Calor latente. - Se destilarán 0.616 Kg. de agua y sabiendo que el calor latente de vaporización del agua -

es de 820 Kcal/Kg y suponiendo un 15% de pérdida de calor a los alrededores se llega a:

 $Q_1 = (0.616 \text{ Kg}) (820.0 \text{ Kcal/Kg}) (1.15) = 580.9 \text{ Kcal}$

Primera etapa de la filtración.

Para simplificar este cálculo sólo se calculará el -calor latente debido al reflujo del metanol, conociendo que el calor latente de vaporización del metanol es de -262.8 Kcal/Kg, y que se reflujarán 10 mililitros por -minuto durante 30 minutos, esto es:

Q1₂ = (10 ml/min) (30 min) (0.78 gr/ml) ($\frac{1 \text{ Kg}}{1000 \text{ gr}}$) (262.8 Kcal)=61.5 Kcal

Cálculo de la carga térmica total.

Utilizando cada uno de los valores de carga térmica, calculados antes, para un kilogramo de producto y multiplicândolos por 26,400 que son los kilogramos de alcohol clorhidrato a producir por año se llega a:

Si el consumo de energía calorífica es cubierto por el uso de vapor saturado de baja presión, generado por -

una caldera de vapor cuya presión de descarga es de $9.0 \, {\rm Kg/cm}^2$, el consumo anual de vapor es el siguiente:

Vapor saturado
Presión = 9 Kg/cm²
Calor latente = 482.8 Kcal/Kg (870 BTU/lb)

C A P I T U L O VIII

CAPACIDAD DE LA

VIII - CAPACIDAD DE LA PLANTA

La planta será operada por lotes, a causa de que para terminar un lote se requiere de 14.0 horas y no se puede dejar suspendido el proceso en cualquier punto, existe la necesidad de trabajar dos turnos laborales dú rante 6 días a la semana, o sea 24 días al mos, durante 11 meses al año, esto con el fin de darle 1 mes de --mantenimiento a la planta cada año. Ahora bien, como se pretende cubrir todo el mercado nacional, la planta producirá 26,400 Kg al año 6 2,400 Kg al mes, 6 - 100 Kg al día; esto implica que se cargarán lotes para producir 100 Kg de alcohol clorhidrato.

C A P I T U L O IX

E S P A C I O

R E Q U E R I D O

IX.- ESPACIO REQUERIDO

Fara la determinación del espacio requerido, analizaremos el espacio necesario para:

- 1) La materia prima.
- 2) La planta de proceso.
- 3) El producto terminado.

TX.1.- MATERIA PRIMA

4-metil Imidazol. - Este compuesto es de importación por consiguiente se almacenará una reserva para 4
meses. Este compuesto viene envasado en tambores con capacidad de 100 kilogramos. Por lo tanto se deberá tener un espacio para 4 meses de reserva, o sea:

$$\frac{1 \text{ tambor}}{100 \text{ Kg}} = 70.72 \cong 72 \text{ Tambores de 4-metil Imidazol}$$

Los tambores tienen 50 centímetros de diámetro por 80 centímetros de alto y no los estibaremos uno sobre \sim otro y por tanto ocuparemos un espacio de: 72 tambores (0.5 x 0.5) $\text{m}^2 = 18 \text{ m}^2$ (suponiendo \sim base cuadrada). Será un espacio de 4.0 m X 4.5 m.

Paraformaldehído.- Existen compañías que producen paraformaldehído en México, por lo tanto no se importará
y la reserva de éste en almacén será de lo equivalente a
1 mes de consumo o sea:

Como el paraformaldehído se vende envasado en sacos de 25 kilos de capacidad que tienen las siguientes dimen siones: (60 X 50 X 10) cm³. Por consiguiente tendre---mos la siguiente cantidad de sacos:

Una norma de seguridad nos indica que no se deben - de estibar más de 10 sacos encimados, por consiguiente estibaremos 10 sacos encimados y ocuparemos el espacio ~ correspondiente a 3 sacos o sea:

$$\frac{(.60 \times .50) \text{ m}^2}{1 \text{ saco}} = 0.9 \text{ m}^2$$

será un espacio de 1.0 m × 0.9 m

Acido clorhídrico. El ácido clorhídrico es un com puesto muy comercializado, y puede conseguirse en el --mismo día que se necesita, sin embargo se tendrá una reserva para una semana de producción, esto es:

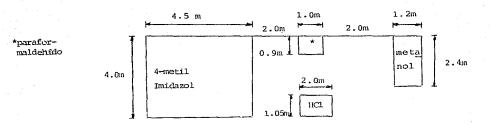
Por facilidad de manejo este ácido se almacenará en porrones de 20 Kg. de capacidad los cuales tienen las siguientes dimensiones $(0.2 \times 0.35 \times 0.35)$ cm³, estos — porrones se pueden estibar uno sobre otro, en otras palabras, para almacenar 654.78 Kg de ácido clorhídrico se requiere la siguiente área:

$$\frac{654.78 \text{ Kg}}{20 \text{ Kg.HCl}}$$
 $\frac{1 \text{ porron}}{20 \text{ kg.HCl}}$ $\frac{(0.35 \times 0.20) \text{m}^2}{2 \text{ porrones}} = 1.146 \text{ m}^2$ $\frac{1.3 \text{ m}^2}{2 \text{ porrones}}$

por cuestión geométrica el espacio ocupado será de 1.24 m \times 1.05 m.

Metanol. - El metanol es una substancia, al igual - que el ácido clorhídrico, bastante comercial y también - se tendrá en almacén reserva para una semana de produc-- ción siendo esto:

Este metanol será almacenado en tambores de 200 litros de capacidad, por consiguiente necesitaremos 7 tambores. Las dimensiones de los tambores son: 0.60 m de diámetro por 1.10 m de alto; esto quiere decir que ocuparemos un espacio de:


$$(0.6 \times 0.6)$$
 m² 7 tambores = 2.5 m² 2.9 m² (supportence base quadrada)

será un espacio de 1.2 m X 2.4 m.

Se dejará un espacio para pasillos como mínimo de ~ 2.0 m de ancho entre materias primas. Previendo una posible ampliación se dejará un espacio de el doble del requerido. También os necesario dejar por lo menos un espario de 7 metros de el almacén de materia prima a la planta de proceso por seguridad.

A continuación se muestra un diagrama de distribución del almacén de materias primas.

HACIA LA PLANTA DE PROCESO

DISTRIBUCION DEL ALMACEN DE MATERIAS PRIMAS

IX.2.- PLANTA DE PROCESO

REACTOR:

En este equipo se efectuarán las dos reacciones, — la destilación y la primera etapa de la filtración (disolución del alcohol clorhidrato en metanol), y sabien do que la cantidad de alcohol clorhidrato a producir — por día es de 100 Kg. en un solo lote, entonces la — cantidad máxima de componentes que tendrá el reactor es en la primera etapa de la filtración, siendo una masa — de:

148.2 Kg. al final de la destilación 172.5 Kg. de metanol 320.7 Kg.

Estos valores fueron obtenidos conforme al siguiente razonamiento: al inicio se carga (0.7367 Kg) (100) de 4-metil Imidazol; más (0.270 Kg.) (100) de parafor-maldehído; esto para la primera reacción, ahora para efectuar la segunda reacción adicionaremos (1.09 1 Kg) - (100) de ácido clorhídrico al 30%. Esto indica que al final de esta segunda reacción tendremos la cantidad de:

(0.7367) (100) = 73.67 (0.2700) (100) = 27.00 (1.0916) (100) = 1.091 TOTAL = 209.7 Kg. Posteriormente se efectGa la destilación, al final de la cual se debe tener un % de agua igual a 10.0; por lo tanto se tendrá la siguiente masa:

$$(73.67 + 27.00 + 32.74 + 14.8) = 148.2 \text{ Kg}.$$

Comprobando si es correcta la cantidad de agua se tiene: (148.2) (0.10) = 14.8 Kg. lo cual indica que está bien.

Para la determinación de la cantidad de metanol se tiene: (73.7)(3) = (221.1 Lts.)(0.78 $\frac{Kg}{Lt}$)= 172.5 Kg.-de metanol.

Ahora bien suponiendo que esta suspensión tenga una densidad de 0.9, entonces se tendrá un volumen máximo - de 357 litros. Pero es necesario tener un excedente de - volumen de 20% en el equipo, lo cual indica que se requiere un reactor con 500 litros de capacidad.

De acuerdo a este volumen se puede considerar que - el reactor tendrá las siguientes dimensiones: diámetro = 0.8 m, alto= 1.0 m; suponiendo que ocupa un espacio - cuadrado, éste será de (0.8 X 0.8)m².

Filtro:

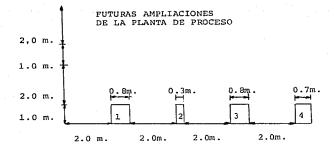
Una vez disuelto el alcohol clorhidrato se hace -pasar por un filtro prensa para eliminar el carbón act<u>i</u>
vado (que fue previamente cargado) y las impurezas pre
sentes. Para tal efecto con un filtro de (30 X 30 X
50) cm³ se puede efectuar la operación sin dificultad.

Cristalizador:

El volumen necesario para el cristalizador es el - mismo que el del reactor puesto que en el filtro únicamente se retiene el carbón activado y las impurezas que víene siendo una cantidad despreciable comparada con el total. Por consiguiente el cristalizador ocupará un -- área de (0.8 X 0.8)m² (suponiendo base cuadrada) por -1.0 m. de altura.

Centrifuga:

Ya que haya cristalizado el producto se procede a - centrifugar para separarlo de las aguas madres para lo - cual es necesaria una centrifuga con las siguientes di-mensiones: alto=0.50m., diámetro=0.70m; considerando que se utiliza una base cuadrada se ocupará un espacio - de (0.7 x 0.7) m².


Aquí también se tendrá espacio para dos tambores de 200 litros para almacenar las aguas madres, para posteriormente enviarlas a la recuperación del solvente.

Espacios para circular:

Es necesario dejar un espacio de 2 metros entre -- equipos para circular.

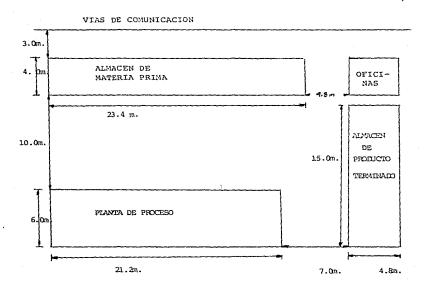
La distribución de la planta de proceso será como ~ se muestra en la gráfica 9.2.

- 1).- Reactor
- 2).- Filtro
- 3) .- Cristalizador
- 4).- Centrifuga

GRAFICA 9.2.- DISTRIBUCION DE LA PLANTA DE PROCESO

IX.3.- PRODUCTO TERMINADO

Para el almacenamiento del alcohol clorhidrato se hará en cuñetes de 50 kilos de capacidad y se tendrá un
almacén de alcohol clorhidrato con capacidad de 3 meses.


= 144 cuñetes.

Esto nos ocupa un espacio de:

$$\frac{144 \text{ cuñetes}}{1 \text{ cuñete}} = 36.0 \text{ m}^2 \text{ más otra área}$$

igual para posibles ampliaciones.

Con toda esta información se realiza el plano de -distribución general de la planta, el cual se presenta en la gráfica 9.3.

GRAFICA 9.3.- DISTRIBUCION GENERAL DE LA PLANTA.

I T

UBICACION
DE LA

X. UBICACION DE LA PLANTA

La planta se ubicará en el Estado de Guanajuato, — esta ubicación se basa esencialmente en obtener un costo mínimo unitario de operación; considerando como factores fundamentales la localización de los mercados de consumo; la localización de las fuentes de materia prima; disponibilidad y características de la mano de obra, trans—porte; suministro y costo de servicios; condiciones — climatológicas, disposiciones legales y actitudes de la comunidad.

X.1.- INFRAESTRUCTURA DEL SISTEMA

Antes de ver la infraestructura del Estado de Guanajuato se tratará sobre cuestiones importantes del Estado como su localización geográfica, división política, clima, hidrografía, orografía y recursos.

Localización geográfica:

El Estado de Guanajuato se encuentra situado en la parte Noreste de la porción occidental de la mesa de Aná
huac. Tiene una área de 30,575 kilómetros cuadrados. Está situado a 2,050 metros sobre el nivel del mar, y a
los 21° 01' 01" de latitud Norte y 101° 15' 20" de
longitud Oeste del meridiano de Greenwich; en la vertien
te Sur de la Sierra de la Media Luna.

El Estado de Guanajuato está limitado al Norte por el Estado de San Luis Potosí, al Este por el Estado de -Querétaro; al Sur por el Estado de Michoacán y al Oeste
por el Estado de Jalisco. (Ver figura 10.1).

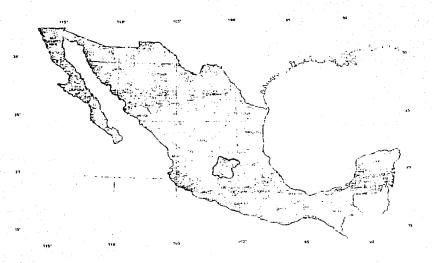


FIGURA 10.1 Localización Geográfica del Estado de Guanajuato.

Dîvision polîtica:

El Estado de Guanajuato está dividido en 46 municîpios; los más importantes por orden de población son: -León, Irapuato, Pénjamo, Celaya, Guanajuato, Acámbaro, Valle de Santiago y Salvatierra (ver figura 10.2).

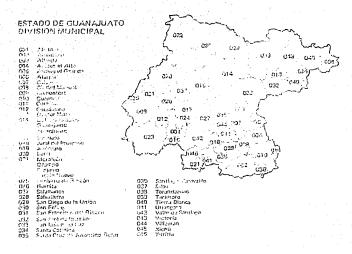


FIGURA 10.2 División Política del Estado de Guanajuato.

Clima:

En el bajío el clima es templado y lluvioso con precipitaciones en verano.

Hidrografia:

La porción centro y Sur del Estado forma parte de la cuenca del río Lerma, el cual le sirve de límite con Mi-choacán. El río Coroneo se inserta en la corriente del -Río Lerma arriba de Acámbaro, abajo de esta confluencia se ha construido la presa de Solís (900 millones de metros cúbicos); más adelante cruza la vieja ciudad de --Salvatierra y entra en el Valle del Jaral, abriéndose - en dos ramas que se unen nuevamente en Salamanca.

Entre Acámbaro y Salamanca recibe los Ríos del Ja-ral y de la Laja que drena gran parte del Estado. Cuenta también con el Río de Irapuato que nace en la Sierra de Guanajuato al Norte de Silao y el Río turbio que recibe a su vez los Ríos León y Gómez que alimentan en gran parte a la ciudad de León.

Orografía:

El suelo de Guanajuato está cruzado al Norte por -

la alta Sierra Gorda, las del Cubo, San Pedro y Pájaro que forman parte del sistema central o divisoria de las vertientes. Está cruzado el Estado por las estribaciones de la cordillera neovolcánica sobresaliendo en el centro las Sierras de Codornices, de Santa Rosa, de la Media Luna y las de Comanjilla y San Felipe al Noroeste. Al sur de estos grupos montañosos se dilata la Alta Planície del Bajío limitada al Sur por las Sierras de Pénjamo y Agustinos; se prolonga al Bajío hasta Michoacán con las campiñas de Yuriria, Salvatierra y Acámbaro. — El punto más elevado del Estado es el Cerro de los Llanitos (3,360 metros sobre el nivel del mar).

El Cerro del Cubilete entre Guanajuato y Silao es - el centro geográfico de la República.

La Planicie del Bajío dispone de terrenos llanos -con altitud media de 1500 metros sobre el nivel del mar;
Las elevaciones del Norte no exceden los 2000 metros so-bre el nivel del mar.

Recursos:

El Estado de Guanajuato cuenta con un enorme potencial agrícola, se cultiva maíz, trigo, frijol, cacahuate, camote, papa, hortalizas, chile, fresa y frutales. La región Norte del Estado es la principal zona ganadera, se emplea el sistema de pastoreo; la producción de leche de cabra y de vaca es muy importante, le siguen en importancia el porcino; ovino y el caballar.

La minería que en el virreinato y en el siglo pasado fue de gran importancia, ha decaído en los últimos -años, por el agotamiento de las vetas. Los minerales ex
traídos han sido principalmente: oro, plata, plomo, cobre y zinc. Los centros mineros más importantes son: -Guanajuato, La Luz, Monte de San Nicolás, Santa Rosa, -San José de Iturbide, San Luis de la Paz y Xichú.

Infraestructura:

Comunicaciones y Transportes.— En el Estado de Gua najuato atraviesan las troncales ferrocarrileras de: México a Nuevo Laredo que pasa por San Miguel de Allende,—Dolores Hidalgo y San Felipe; la de México a Ciudad — Juárez, que pasa por Celaya, Salamanca, Irapuato, Silao y León; la de México a Guadalajara; la de México a Morelia y Uruapan; el ramal de Silao a Guanajuato y el de Pénjamo a Ajuno. Celaya, Acambaro e Irapuato son—importantes centros ferrocarrileros. (Ver figura 10.3).

CARRETERASPRINCIPALES

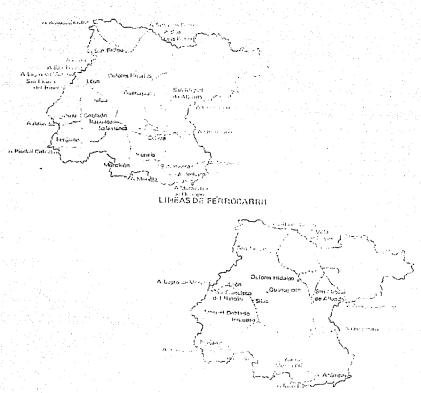


FIGURA 10.3 Infraestructura del Estado de Guanajuato.

El Estado está atravesado por una importante red de carreteras: la de México a Ciudad Juárez, que atraviesa el Estado pasando por las principales ciudades; la carretera de Silao a Guanajuato; la de Irapuato a Zamora, la de Salamanca a Morelia, de Celaya parten carreteras para San Miguel de Allende, Querétaro y para Acúmbaro.

En el Estado de Guanajuato se dispone de servicios telefónicos públicos y particulares, correos, telégrafos, radio y televisión. Se publican periódicos y revistas - locales y se reciben los principales periódicos del Distrito Federal.

Servicios.- Existen en el Estado 43 plantas generadoras de energía eléctrica, lo que favorece el desarrollo
de industrias como: tejidos de lana y algodón, molinos de trigo, fabricación de calzado, de pastas alimenticias,
conservas y dulces, de papel y celulosa y productos quími
cos básicos. En Salamanca existe una refinería de petróleo que abastece amplia zona del país.

No existe ningún problema en cuanto al abastecimiento de aqua en el Estado.

Demografía.- La población total del Estado es de --

3,006,110 habitantes; con una densidad de 70 habitantes por kilômetro cuadrado. Los habitantes están distribui—dos en 4,545 poblados, siendo aproximadamente el 50% hombres y el 50% mujeres.

La población se encuentra principalmente en el Bajío, siendo los núcleos más importantes: León (220,000 habítantes); Irapuato (246,308 habitantes); Celaya (220,000 - habitantes); Salamanca (160,040 habitantes) y Silao - (77,036 habitantes).

La población económicamente activa se encuentra distribuída de la siguiente manera:

	HABITANTES
Agricultura y ganadería	187,495
Explotación de minas y canteras	68,866
Industrias manufactureras	80,307
Electricidad, gas y agua	2,953
Construcción	62,693
Comercio	49,464
Transporte	28,200
Servicios comunales	51,065
Otros	446,970
TOTAL	978,013

Educación. Los programas educativos del Estado de Guanajuato son impartidos a través de planteles que abarcan desde la instrucción preescolar hasta la formación profesional.

La educación superior está compuesta por varias escuelas de Capacitación Tecnológica, Agropecuaria e Industrial, Escuela Normal Superior, Tecnológicas Regionales y la Universidad Autónoma de Guanajuato.

Servicios Médicos. Se cuenta en total con 192 hos pitales, completamente equipados, de diversas dependencias como IMSS, ISSSTE, SSA y particulares. Existen en el Estado de Guanajuato médicos en todas las especiulidades.

X.2. LEYES DE FOMENTO

Con el plan actual del gobierno de la descentralización de la industria, se dan los siguientes fomentos por
ley: 30% de salarios mínimos durante 5 años, 30% de los energéticos necesitados por un período de 10 años y
20% de las materias petroquímicas por un período de 5 -años. Todos estos fomentos los paga el gobierno en el Estado de Guanajuato.

X.3.- MERCADO

Nuestro mercado se encuentra en el Estado de México y en el Distrito Federal, por este aspecto convendría ubicar la planta en estos Estados, pero para aprovechar las leyes de fomento será en el Estado de Guanajuato.

X.4.- MATERIAS PRIMAS

El 4-metil Imidazol se puede importar de Japón, Austria, Alemania o Francia dejando el producto en los
puertos mexicanos de donde se puede enviar por vía terrestre el 4-Metil Imidazol hasta el Estado de Guanajua
to.

Existen en el Estado de Guanajuato plantas productoras de Paraformaldenido.

El agua no tiene ningún problema para su abastecimiento, como se había mencionado anteriormente.

El metanol se puede conseguir de la refinería de -Salamanca Guanajuato. C A P I T U L O XI

XI. PERSONAL

El personal requerido para satisfacer la demanda - de la planta, involucra tres áreas que son: mano de obra directa, mano de obra indirecta y Personal Administrativo.

XI .1.- Mano de Obra Directa.

Se entiende por mano de obra directa a aquel personal que se encuentra en contacto directo con la producción. En este caso la mano de obra directa consta de 2 operadores y 2 ayudantes para los dos turnos.

XI.2.- Mano de Obra Indirecta.

La mano de obra indirecta es aquella que es parte de la producción sin estar en contacto directo con ella. Se necesita para la planta el siquiente personal:

- 1 Analista.
- 2 Técnicos mecánico-eléctrico.
- 2 Jefes de turno.
- 1 Técnico almacenista.

- 1 Chofer,
- 1 Mozo

XI.3. PERSONAL ADMINISTRATIVO

Está considerado como Personal Administrativo:

- 1 Gerente.
- 1 Vendedor.
- 1 Contador.
- 1 Secretaria.

C A P I T U L O XII

E S T U D I O
E C O N O M I C O

XII. ESTUDIO ECONOMICO

En este capítulo se estiman los costos requeridos para la preparación del alcohol clorhidrato en el volumen anual ya fijado, para ello se inicia el estudio con el plan global de inversión que incluye básicamente: el terreno para la instalación del centro de trabajo, la maquinaria y los equipos requeridos para la producción. Posteriormente se estiman los costos de producción para continuar con la determinación del punto de equilibrio y la programación del flujo de efectivo, finalizando el capítulo con una proyección a 5 años.

XII.1.- PLAN GLOBAL DE INVERSION

XII.1.A .- Inversiones Pijas.

Con el plan global de inversión se obtiene la suma total de los recursos monetarios, los cuales son designados a bienes y servicios indispensables para la total realización del proyecto; para este proyecto son los siguientes:

1.- Terreno.

Para una superficie requerida de terreno de 825 -metros cuadrados, el valor estimado del mismo fue de -\$ 8'250,000.00, esto de acuerdo a la información pro-porcionada por diversas fuentes de consulta.

Caminos.

Se requiere de 80 metros de caminos en la planta. Si el costo estimado por metro de camino es de --- \$ 12,000.00 se necesita un total de \$ 960,000.00.

3.- Bardas.

Para bardear todo el terreno se necesitan 116 me-

tros de barda, suponiendo un costo de \$ 6,000.00 por - metro de barda se tiene un total de \$ 696,000.00.

4 .- Edificios.

Las oficinas ocupan un firea de 19.2 metros cuadrados y el costo estimado por metro cuadrado de edificio es de \$ 250,000.00, lo cual indica que en este -concepto hay que invertir \$ 4,800,000.00.

5.- Naves de Producción y Almacén.

En un principio solamente se construirán las dimensiones mínimas necesarias (dejando sin construir espacios para ampliaciones futuras) para la planta de proceso, así como para los almacenes de materia prima y producto terminado; siendo éstos de 116.4 metros cuadractos, con un costo por metro cuadrado (supuesto) de --\$ 100,000.00 lo que da un total de \$ 11'640,000.00.

6.- Bases de Subestaciones.

Para este concepto se asignan \$ 16 000,000.00.

7.- Maquinaria y Equipo.

Se enlistan los equipos necesarios para la planta de proceso y en otra columna se les pone su valor fundamenta do én cotizaciones realizadas.

	Equipo		Costo
	Reactor	\$	88'000,000.00
	Filtro	**	6'000,000.00
	Cristalizador	17	17'600,000.00
	Centrifuga	16	50'000,000.00
2	Bombas	11	5'000,000.00
	Subtotal	\$	166'600,000.00
Instala	ción de instrumentac	ión	33'320,000.00
Instala	ción de maquinaria		16'660,000.00
	Total	\$	216'580,000.00

8.- Equipo rodante.

Camioneta de reparto	Ş	30'000,000.00
Automóvil para ventas	*	21'500,000.00
Automóvil para el Gerente	. 17	30'000,000.00
	\$	81'500,000.00

9.- Mobiliario y equipo de oficina y laboratorio.

\$	2'500,000.00
**	550,000.00
"	1'500,000.00
11	350,000.00
11	1'000,000.00
11	250,000.00
"	1'000,000.00
u	300,000.00
44	1,000,000.00
n	1'750,000.00
0	250,000.00
n	1'800,000.00
11	28'000,000.00
"	800,000.00
п	20'000,000.00
11	5'000,000.00
**	3,000,000.00

Material de vidrio	\$	3'000,000.00
Estufa de secado		7'000,000.00
Mufla	10	9'000,000.00
TOTAL	s.	88'350,000,00

10.- Ingeniería de detalle.

En una planta química se cobra del 3 al 6% de la maquinaria y equipo por concepto de ingeniería de detalle. Suponiendo que se nos cobra el 5%; esto es --\$ 8'330,000.00.

La tabla 12.1 muestra un resumen de las inversiones fijas.

TABLA 12.1

RESUMEN DE INVERSIONES FIJAS

	CONCEPTO		соѕто
	Terreno	\$	8'250,000.00
-	Caminos	ч	960,000.00
	Bardas	"	696,000.00
_	Edificios	11	4'800,000.00
_	Naves de producción y almacén	**	11'640,000.00
-	Bases de subestaciones	**	16'000,000.00
-	Maquinaria y equipo	"	216'580,000.00
-	Equipo rodante	u	81'500,000.00
-	Mobiliario y equipo de Oficina y laboratorio	"	88'350,000.00
-	Ingeniería de detalle	u	81330,000.00
	T O T A L	\$	437'106,000.00

XII.1.B. COSTOS DE ORGANIZACION

Aquí se incluyen todos los gastos necesarios para - la organización de la empresa. Se contemplan los siguientes conceptos:

Constitución de la empresa ante notario Investigación directa

\$ 1'000,000.00

" 500,000.00

\$ 1'500,000.00

XII.1.C. CAPITAL DE TRABAJO

TOTAL.

El capital de trabajo de una planta industrial está determinado por la suma del valor de los inventarios en materias primas, productos en proceso, productos termina dos, efectivo en caja y cuentas por cobrar; restando a esta suma el monto de las cuentas por pagar; como sepresenta a continuación.

^{*} Considerado para un mes de operación de la planta.

Materia Prima	Cantidad	Costo
4-Metil Imidazol	1,768 Kg	\$ 63'117,600.00
Paraformaldehido	648 Kg	972,000.00
Acido clorhidrico		
al 30%	2,619 Kg	785,700.00
Metanol	5,304 Lts	" 4'243,200.00
Total materia prima		\$ 69'118,500.00
Producto en proceso	- 0 -	\$ - 0 -
Producto terminado	- 0, -	· - 0 -
Efectivo en caja		40,000,000.00
Cuentas por cobrar		" - 0
Cuentas por pagar		
	April 1985	\$ 109'118,500.00

XII.1.D.- Imprevistos.

Los imprevistos serán cubiertos con el 10% de la suna de XII.l.A y XII.l.B; esto es \$ 43'860,600.00

Por consiguiente la inversión total viene siendo de \$ 591'585,100.00, en base al siguiente balance.

Inversiones fijas \$ 437'106,000.00

Costos de Organización " 1'500,000.00

Capital de Trabajo " 109'118,500.00

Imprevistos " 43'860,600.00

TOTAL \$ 591'585,100.00

XII.2.- Costo de producción para el primer año.

Para encontrar el costo de producción lo haremos - utilizando la siguiente fórmula:

A =B+C+D+E+F+G+H

Donde:

- A = Ventas
- B = Consumo de materias primas
- C = Gastos de producción
- D = Costo de administración
- E = Costo de ventas
- F = Gastos financieros
- G = Utilidad
- H = Impuestos

ESTA TESIS NO DEBE SALIR DE LA BIBLIOTECA

XII.2.A.- Ventas

Con el fin de obtener la cantidad de pesos que se tendrán por ventas del producto terminado se hacen las siguientes operaciones:

26,400 Kg Alcohol clorhidrato	i.	24	.7	dőlares
		1.	Kg.	alcohol clorhidrato

XII.2.B.- CONSUMO DE MATERIAS PRIMAS

B.1.- Compra de materias primas para un año.

Considerando que para tener la producción de 26.4 - toneladas de alcohol clorhidrato, se requieren comprar - las cantidades de materia prima que se mencionaron en el capítulo VII.1., esto da el siguiente costo:

Materia prima	Cant	idad	Costo
4-Metil-Imidazol	19,450	Kg	\$ 694'365,000.00
Paraformaldehido	7,128	"	" 10'692,000.00
Acido Clorhidrico	28,810	*1	" 8'643,000.00
Metanol	58,350	14	" 46'680,000.00
			\$ 760'380,000.00

B.2.- Inventario materias primas.

Estos valores se obtienen procediendo tal como se hizo el B.1. considerando que se tiene en inventario -materia prima para un mes;

Materia Prima	Cantidad	Costo
4-Metil Imidazol	1,768 Kg	\$ 63'117,600.00
Paraformaldehido	648 "	972,000.00
Acido Clorhidrico	2,619 "	" 785,700.00
Metanol	5,304 Lts	" 4'243,200.00
		\$ 69'118,500.00

B.3.- Producto en proceso.

Para efectos prácticos no hay producto en proceso.

B.4.- Inventario producto terminado.

Dando por hecho que se tiene en inventario producto terminado de un mes de producción, esto viene siendo

2400 Kg alcohol clorhidrato	24.7 dőlares	\$ 2380	\$ 141'086,400.00
	alcohol clorhidra to	\$ 1	\$ 141 080,400:00

B.5 .- Suma de inventario final.

Es la suma de lo que hay en inventario de materias primas y producto terminado y es un total de:

Inventario materia prima	\$ 69'118,500.00
Inventario producto terminado	" 141'086,400.00
	\$ 210'204,900.00

B.6.- Suma de bienes disponibles.

Se obtiene la suma de bienes disponibles al sumar el costo de materia prima por el año de producción más =
la suma de inventario final como se muestra:

Materia prima para un año	\$ 760'380,000.00
Suma del inventario final	" 210,204,900.00
TOTAL	\$ 970,584,900.00

B.7 .- Consumos.

Los consumos vienen siendo la diferencia de la suma de bienes disponibles y la suma de inventarios finales como está expresado a continuación:

		TOTAL	\$	760,380,000.00
Suma	de	inventario final	n	210,204,900.00
Suma	de	bienes disponibles	ş	970'584,900.00

XII.2.C.- Gastos de Producción.

C.1.- Mano de obra directa y mano de obra indirecta.

El gasto por este concepto es obtenido en base - al personal que se necesitará según se consideró en el capítulo XI.1 y XI.2, se muestra en la tabla 12.1.

TABLA 12.1.- COSTO DE MANO DE OBRA

Concepto	Cantidad	Salario	(miles de	pesos)	Prestaci	ones 30%	Total (mil	es de pesos)
		diario	mensual	anual	mensual	anua1	mensual	anual
Mano de obra di- recta								
Operadores	2	23.056	691.690	8,300.160	207.504	2,490.048	859.360	10,790,208
Ayudantes	2	14.410	432.300	5,167.600	129.690	1,556,280	561.990	6,743,880
Total	4	37.466	1,123,980	13,467.760	337.194	4,046.328	1,461.350	17,534.088
Mano de obra ind <u>i</u> recta								
Jefes de turno	2	33.143	994.290	11,931.480	298.287	3,579.444	1, 292.577	15,510.924
Analistas	1	13,689	410.686	4,928.220	123.205	1,478,466	533.890	6,406.686
Técnicos		1			į			
Mecánico					1			
Eléctricos	2	28.820	864.600	10,375.200	259.380	3,112.560	1,123.980	13,487.760
Técnico al macenista	1	10.807	324.225	3,890.700	97.267	1,167.210	421.492	5,057.910
Chofer	1	12.248	367.455	4,409.460	110.236	1,322.838	477.691	5,732,298
Policias	2	20.274	605.220	7,262.640	181.566	2,178.792	786.786	9,441.432
Mozo	1	7.205	216.150	2,593.800	64.845	778.140	280.995	3,371.940
Total	10	126.086	3,782.626	45,391.500	1,134.786	13,617.450	4, 917.411	59,008.950
Global To-	14	163.552	4,906.606	58,859.250	1,471.980	17,663.778	G, 378.761	76,543.038

C.2.- Depreciaciones y amortizaciones.

La depreciación en el equipo e instalaciones es del 10% de su valor; en el equipo rodante es del 20%; en el mobiliario y equipo de oficina y laboratorio el 10% y el terreno no se deprecia. (Aclarando que la nueva ley calcula las depreciaciones de las cuales la empresa puede seleccionar).

TABLA 12.2

DEPRECIACIONES

Concepto		Costo		
Equipo e Instalaciones	\$	21'658,000.00		
Construcciones	**	1'704,800.00		
Equipo rodante	11	1'630,000.00		
Mobiliario y equipo de				
oficina y laboratorio	17	8'835,000.00		
TOTAL	ş	33'827,800.00		

La îngenieria de detalle tiene una amortización del 10% lo cual da un costo de \$ 833,000.00 si a esto le su mamos el total de las depreciaciones nos da \$ 34'560,800.00

C.3 .- Reparación y mantenimiento de equipo.

Se destinará el 5% del valor del equipo para reparación y mantenimiento de este, lo cual representa --\$ 16'822,500.00.

C.4.- Energía eléctrica.

Se obtendrá el consumo de energía de los motores y debido a que éstos no trabajan continuamente, en ella - irá incluida la energía por alumbrado.

TOTAL	21 HP = 15.68	KW/Hr.
Bombas	6 нр	
Centrifuga	5 HP	
Cristalizador	5 HP	
Reactor	5 HP	
Motores	Potencia	

El año consta de 4224 horas (16 hr. día; 24 -- días/mes; 11 meses/año). Por lo que el gasto de ener-gía efectivo anual es de:

15.68 KW	422	4 Hr	1 ar	ño _	66,232.3	KW
Hr	1	año			00,232.3	

El precio del KW/hr es de \$ 240.0, por lo que el costo de energía eléctrica es de:

- + cargo por demanda máxima <u>\$ 15,430.06 | 12 meses ...</u>
 mes | 1 año
- = \$ 185,161.00; total = \$ 16'080,913

C.5.- Seguro de planta.

Concepto

Este costo representa un egreso anual del orden del 1% de la inversión fija; lo cual asciende a ----\$ 4'371,060.00

Tabla 12.3 suma de gastos de operación.

Costo

Mano de obra directa e indirecta	\$	76'543,038.00
Depreciaciones y amortizaciones	11	34'660,800.00
Reparación y mantenimiento de		
equipo	11	16'822,500.00
Energía eléctrica	"	16'080,913.00
Total	ş	144'107,251.00

Con estos valores se puede obtener la utilidad bruta que es la diferencia de las ventas menos la suma de costo de producción; que para este caso toma los siguien
tes valores.

Utilidad bruta = \$ 1'551,950,400 - (\$760'380,000 + \$ 144'107,251.00) = \$ 647'463,149.00

XII.2.D.- Gastos de administración

En este rengión se incluyeron los egresos por concepto de sueldo del personal de administración y gastos de oficina, como se desglosan en seguida:

Concepto	С	antidad mensual		Cantidad anual
Sueldo gerente	\$	1'123,980.00	\$	13'487,760.00
Sueldo contador	n	786,786.00	n	9'441,432.00
Sueldo secretaria	n	533,890.00	**	6'406,686.00
Gastos papelería	*1	800,000.00	18	9'600,000.00
			 \$	38'935,878.00

En los sueldos ya va incluido el 30% de prestaciones.

XII.2.E.- Gastos de ventas.

Comprenden los gastos derivados del conjunto de actividades que tienen como propósito hacer llegar el producto hasta el consumidor. Estos gastos se detallan en la tabla siguiente.

Concepto	Ca	antidad mensual	L (Cantidad amual
Sueldo vendedor	\$	533,890.00	\$	6'406,686.00
Comidas	"	100,000.00	**	1'200,000.00
Regalos	11	50,000.00	**	600,000.00
Anuncios	**	500,000.00	ŧı	61000,000.00
Gastos de automóvil	11	150,000.00	17	1'800,000.00
Comisiones			" 1	15'519,504.00
Total			ş	31'526,190.00

XII.2.F .- Gastos financieros

El capital necesario para la implementación del proyecto asciende a \$ 591'585,100.00 (si se quiere ver detalle acudir a XII.1.D).

Las inversiones están estructuradas en créditos a -través de una sociedad nacional de crédito (NAFINSA) y
los socios. El crédito de NAFINSA será de 3 tipos: ha
bilitación o avío; Refaccionario y para construcción de
instalaciones físicas.

El financiamiento está integrado de la siguiente manera:

Estructuración del capital.

Participaciones:

Construcción de insta-			
laciones físicas	5.0%	\$	29'579,255.00
Refaccionario	15.0%	**	88'737,767.00
Habilitación o avío	15.0%	15	88'737,767.00
Socios	65.0%	19	384'530,310.00
Total	100.0%	\$	591'585,100.00

Las condiciones del crédito son las que se presentan en la tabla 12.3.

TABLA 12.3

CONDICIONES DE CREDITO

TIPO DE CREDITO	Plazo en a Amortí- zación	años Período de gracia	Tasa de Inter é s
Construcción de instalaciones físicas	12.0	3.0	62.0%
Refaccionario	10.0	1.5	62.0%
Habîlîtación o av î o	3.0	0.5	62.0%

АЙО	SALDO	INTERES	PAGO A PRINCIPAL	PACO TOTAL ANUAL
1	207'054,780	128'373,960	9'859,752	138'233,712
2	197'195,030	122'260,910	19'733,529	140'994,439
3	178'461,501	110'646,130	18'733,529	129'379,659
4	159'727,973	99'031,347	16'268,591	115'299,938
5 .	143'459,382	88'944,815	16'268,591	105'213,406
. 6	127'190,791	781858,289	16'268,591	95'126,890
. 7	110'922,200	681771,764	16'268,591	85'040,355
8	94'653,609	58'685,238	16'268,591	74'953,829
9	76'385,018	48'598,711	16'268,591	64'867,302
10	62'116,427	38'512,184	16'268,591	54'780,775
11	45'847,836	28'425,658	16'268,591	44'694,249
12	29'579,245	18'339,131	7'394,814	25'733,945
13	22'184,431	13'754,347	7'394,814	21'149,161
14	14'789,617	9'169,562	7'394,814	16'564,376
15	7'394,803	4'584,778	7'394,803	11'979,580

Consdierando un interés del 62% anual, que es el vigente actualmente (enero de 1989). XII.2.G.- Utilidad de la operación.

La utilidad de la operación es obtenida al aplicar la siguiente fórmula:

Utilidad de la operación = A-(B+C+D+E+F)

donde: A = Ventas

B = Consumo de materias primas

C = Gasto de producción

D = Costo de administración

E = Costo de ventas

F = Gastos financieros

Para lo cual primero se efectuará la suma y posteriormente la resta, quedando así:

Consumo de materias primas	\$	760'380,000.00
Gasto de producción	**	144'107,251.00
Costo de administración	п	38'935,878.00
Costo de ventas	11	31'526,190.00
Gastos financieros	15	138'233,712.00
Subtotal	\$	1;113'182,931.00

Ventas \$ 1;551'950,400.00

Subtotal XII.2.G" 1;113'182,931.00

Utilidad de peración \$ 438'767,469.00

XII.2.H.- Impuestos.

Se pagará el 37.5% de la utilidad de operación por concepto de impuestos sobre la renta y el 10% por concepto de utilidad a los trabajadores.

Implies to sobre la renta = (0.375)(438'767,469)=164'537,790.00

Utilidad a los trabajadores

= (0.10)(438'767,469)= 43'876,748.00

Total

\$ 208'414,538.00

XII.2.I.- Utilidad neta.

Este valor es el resultado de la diferencia de la utilidad de la operación menos impuestos. Por consiguiente y en base a los datos anteriores viene siendo de:

Utilidad de la operación	ş	438'767,469.00
Impuestos		208'414,538.00
Utilidad neta	5	2301352.931.00

XII.3.- Punto de equilibrio.

Se conoce como punto de equilibrio el punto en el -que coinciden las ventas y los gastos totales, indicando
el volumen mínimo de ventas necesarias en que los ingresos se igualan a los egresos de tal forma que en este -punto no existen utilidades ni pérdidas.

Para determinar el punto de equilibrio se utilizan dos métodos: el gráfico y el análítico; en ambos casos se toma en cuenta los costos fijos, costos variables y los costos por ventas totales.

Método gráfico.- Se procede a agrupar los costosen variables y fijos y a calcular éstos para una capacidad de operación igual al 100% de la capacidad instalada.

Costos fijos (gastos que se tienen que hacer aun-que no se produzcan bienes).

Mano de obra directa	\$	17'534,088.00
Mano de obra indirecta	11	59'008,950.00
Depreciación		33'827,800.00
Seguro de planta	11	4'371,060.00
Sueldos administrativos	**	29'335,878.00
Gastos de oficina	**	9'600,000.00
Sueldo de vendedor	**	6'406,686.00
	-	
TOTAL	\$	160'084,462.00

Costos variables (es el costo de operación. Varía con el volumen de producción).

Consumo de materia prima	\$	760'380,000.00
Reparación y mantenimiento	11	16'822,500.00
Energía eléctrica	11	16'080,913.00
Impuestos	"	164'537,790.00
Comisiones	11	15'519,504.00
Utilidad de los trabajadores	"	43'876,748.00
TOTAL	\$1	;017'217,455.00

Graficando en un plano de coordenadas cartesianas, los ingresos y costos en la ordenada y en la abscisa - las toneladas por año. Los costos fijos se representan por medio de una línea paralela al eje de las abscisas, los costos variables se grafican a partir de la intersección de la línea de los costos fijos y el eje de las ordenadas. Posteriormente se grafican los ingresos trazando una línea recta que una el punto determinado por los ingresos obtenibles a capacidad cero, hasta el punto donde se alcanza el objetivo que prevee el presupues to correspondiente.

En el punto donde se intersectan la línea de egresos y la línea de ingresos, se encuentra localizado el punto de equilibrio económico. Las pérdidas se miden a la izquierda del punto de equilibrio y las ganancias a la derecha.

La abscisa correspondiente a este punto de equilibrio es la capacidad mínima económica de operación.

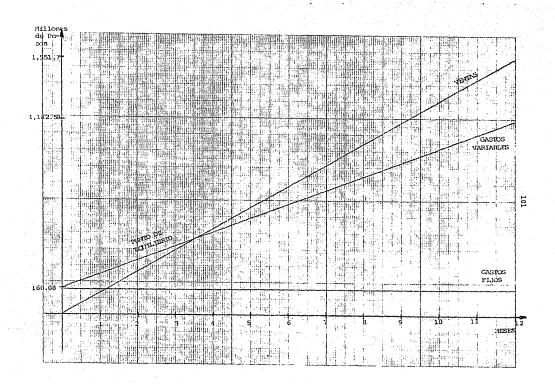
Método analítico. - Consiste en determinar matemáticamente el punto de equilibrio en términos de valor de ventas, utilizando la siguiente fórmula:

donde:

P.E. = Punto de equilibrio

C.F. ≈ Costos fijos

C.V. = Costos variables


V.T. = Ventas totales

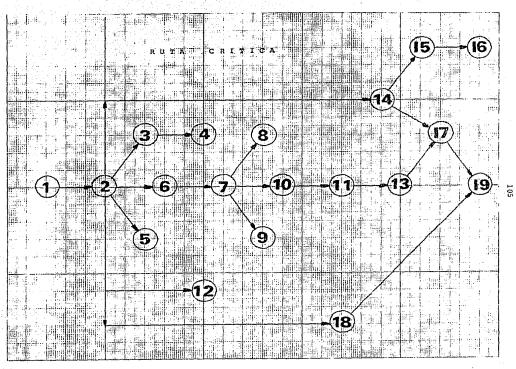
Sustituyendo estos valores se tiene:

$$P.E. = \frac{160'084,462.00}{1-1'017'217,455.00} = 464'611,629.00$$

$$1;551'950,400.00$$

Si dividimos este valor entre las ventas anuales — se tiene la fracción de año necesaria para alcanzar — nuestro punto de equilibrio, que en este caso es de — 464'611,629.00 = 0.2994 multiplicado por 12 nos da los meses necesarios, o sea (0.2994) (12)=3.5925 lo cual nos indica que en un tiempo de 3 meses 2 semanas y media de producción alcanzaríamos el punto de equilibrio.

XII.4 .- Flujo de efectivo.


Para realizar el flujo de efectivo primero se elaborará una gráfica de Gantt y una ruta crítica, para lo cual se enlistan las operaciones a realizar.

No. Operación a realizar

- 1 Formar la sociedad
- 2 Contratación del Gerente
- 3 Renta de oficina con servicios
- 4 Contratación de secretaria
- 5 Compra automóvil gerente
- 6 Compra del terreno
- 7 Ingenieria y tecnología
- 8 Adaptación de terreno (construcción de oficinas, almacenes, nave industrial, caminos, etc.).
- 9 Contratación de servicios (energía eléctrica, gas, teléfono, etc.).
- 10 Cotización de equipo
- 11 Compra de equipo
- 12 Contratación de vigilantes
- 13 Instalación de equipos
- 14 Contratación de personal administrativo y operativo
- 15 Cotización de equipo y mobiliario de oficina
- 16 Compra de equipo y mobiliario de oficina

- 17 Prueba de equipos
- 18 Compra de materia prima
- 19 Arranque

	Jane - Paulin Linds (1995) - Harris - Green Bergeral	I g
		BRACTON
5		<u> </u>
o,		
.00		104
9 1		
16.1		
N. 19 1		
15,		
5 + 1		
	!	#7. J

OPERA	CION					FLUJO	DE EF	ECTIVO	CONST	RUCCION					TOTAL
	1 1.50	0			_					_		_	-		1.500
	2 1.12	4 1.124	1.124	1.124	1.124	1.124	1.124	1.124	1.124	1,124	1.124	1,124	1,124	1,124	15.736
	3 —	0.400	0.400	0.400	0.400	0.400	0.400	0.400	0.400						3.200
	4	0.534	0.534	0.534	0.534	0.534	0.534	0.534	0.534	0.534	0.534	0.534	0.534	0.534	6.942
	5 —	30.000		_									· —		30,000
	6 —	3.300						2.475						2.475	8.250
	7 —		2.777	2.777	2.776	_	_						-		8,330
	8 —			11.365	11.365	11.365							·		34,095
	9					2,500	2.500					. ——		****	5.000
1	.0				_										
1	u —		***			55,533	55,533	55.533							166,599
1	.2 —		•			0.787	0,787	0.787	0,787	0.787	0.787	0,787	0.787	0.787	7.083
1	.3		_				.—	12.495	12.495	12,495	12,495	_	_		49.980
1	.4							6.912	6,912	6.912	6.912	6,912	6.912	6.912	48.384
1	.5 —														
1	.6							69+925	69.925		~				139.850
1	.7														
1	.8		<u></u>	_							84.591	84.591	84.591	72,889	326,662
. 1	.9 —										-				
MES	1	2	3	4	5	6	7	8	9	10	11	12	13	14	5
Tota	1 2.52	35.358	4.835	16.200	16.199	72.243	60.878	150.185	92.177	21.852	106.443	93.948	93.948	84.721	851,611
Acum lado	2.62	37.982	42.817	59.017.	75.216	147.459	208.337	358.522	450.699	472.551	578.994	672.942	766,890	851,611	851.611
Ingr sos	e- 2.624	35,358	4.835	16.200	16.199	72.243	60.878	150.185	92.177	21.852	106.443	93.948	93.948	84.721	851.611
CLEGIT	· —	_	_				-		66.169	88.021	194.464	288,412	382.360	467.081	467,081

1	07	

12'008,937

3'244,656

2'627,182

42'330,125

20'106,809

22' 223.316

44'446,632

12'008,937

3'224,656

2'627,182

42'330,125

20'106,809

22' 223,316

22'223,316

cimas

costo de

roducción

uministra-

astos de

lastos de

asto**s** In**aficiero**s

til idad

nouestos

retorno

tilidad neta

amulado de capital socios

iruta

ión.

ventas

		FLUJO DE	EFECTIVO	PRIMER A	NO DE PROD	UICION
tes Concepto	1	2	3	4	5 ,	. 6
Ventas	129'329,400	129'329,400	129'329,400	129'329,400	129'329,400	129'329
consumo de	69*118.500	69'118,500	69'118,500	69'118,500	69'118,500	69'118

.29.329,400	129 329,400	129 329,400	125 31
69'118,500	69'118,500	69'118,500	69'11

3'204.656

2'627,182

42'330,125

20'106,809

22'223,316

66'669.948

12'008,937

3'244.656

2'6.27,182

42'330,125

20'106,809

22'223,316

88'893,264

8,500 12'008,937 12'008,937 12'008.937 3'244,656

2'627,182

42'330,125

201106,809

22'223,316

111'116,580

3'244,656

2'627,182

42'330,125

20'106,809

22'223,316

33'339,890

69'118,500 12'008,937

7

129'329,400

31244,656

2'627,182

42'330,125

20'106,809

22'223,316

155'563,200.

69'118,500 12'008,937 3'244,656

21627,182

41,1024,587

1'305,538

620,130

685,408

156' 248, 600

1291329,400

69'118,500 12'008,937

3'244,656

2'627,132

13'548.240

28'781,885

13'671,395

15'110,490

171'359,090

1291329,400

12'008,937

69'118,500

3'244,656

2'627.182

65,994,660

-23'664,538

-23'664,538

147'694,560

129'329,400

11

129'329,400

31244,656

2'627,182

58'247,760

-15'917,635

-15'917,635

69'118,500

12'008,937

12

129'329,400

12'008,937 3'244.656

2'627,182 58'247,760 53'200,800

25'270,417 27'930,463 159'707,390

131'776,930

		108		FLU	JO DE EPECTI	vo seg	UNDO ANO DE	PRODUCCION				
Mes Concepto	13	14	15	16	17	19	19	20.	21.	22	23	24
Ventas	142,262,340	142'262,340	142'262,340	142'262,340	142'262,340	142'262,340	142'262,340	142'262,340.	1421262,340	142'262,340	142'262,340	142'262,340
Consumo de materias primas	76'030,350	76'030,350	76,030,350	76,030,350	76,030,350	76,033,350	76'030,350	76'030,350	76'03 0, 35 0	76'030,350	76*030,350	
Costo de producción	13'209,830	13'209,830	13'209,830	13'209,830	13'209,830	13'203,830	13'209,830	13'209,830	13'209,830	13'209,830	13'209,830	13,506,930
Gastos de akuinis- tración	3'569,122	3'569,122	3'569,122	31569,122	3'569,122	3'569,122	3'569,122	3/569,122	31569,122	3,569,122	31569,122	3'569,122
Častos de ventas	2'889,900	2'889,900	2'889,900	2'889,900	2'889,900	2'883,900	2'889,900	2' 889,900	21889,900	2'839,900	21889,900	2'839,900
Gastos financieros	52,527,020						291579,255	41 1 024 , 587	13'548,240	65'994,660	58'247,760	58'247,760
Utilidad Bruta	-5'963,882	46'563,138	46'563,138	46'563,138	46'563,138	46'563,138	16'983,883	5' 538, 551	33'014,898	-19'431,522	-11'684,625	64'345,730
Impuestos		22'117,490	221117,490	22'117,490	22'117,490	22'117,490	8'067,344	2'630,812	15'682,076			301564,221

21907,739 171332,822

285'697,270 274'012,650

275'971,710 284'888,240 287'795,970 305'128,790

Utilidad neta Retorno acumulado de capital a

soctos

26'890,213

424'296,560

26'890,213

3971406,350

des					29	30	31.	32	33	34	35	.76	
Concepto	25	26	27 156'488,570	28 . 56 ' 488 , 570	156'488,570	156'488,570	156'488,570	156'488,570	156'488,570	156 488,570	156 484,570	156'488,570	
Ventas	156'488,570	156'488,570	156.488,570	130 100,570				93 ' 633 ,395	93'633,385	83 633,385	83,673,149		
Consumo de materias	83'633,385	83'633,385	83'633,385	83'633,385	83'633,385	83'633,385	83,633,385	93 9337.11					
primas					14'530,813	14'530,813	14'530,813	14'530,813	14'530,813	14'530,813	14'530,813	14,530,813	
Costo de producción	14'530,813	14'530,813	14'530,813	14'530,813	14.530,613			31926,034	3'926,034	31926,034	3'926,034	31926,034	
Gastos de administra	3,926,034	3'926,034	3'926,034	3'926,034	3'926,034	3'926,034	3'926,034	2.320,034	3 720,054				
ción					3'178,890	1 173,890	3'178,890	3'178,890	3'178,690	3,179,890	3'178,890	31178,890	
Gastos do ventas	3'178,890	178,890ء د	3'178,890	3'178,890	3.178,834			41'024,587	13'548,240	651994,660	sa'247,760	581247,760	
Gastos Pinancieros	34'187,881					8'873,777	291579,255	41 00 17 11				***** 707	
Utilidad			51'219,453	51'219,453	51'219,453	42'345,676	21'640,198	10'194,866	37'671,213	-14'775,207	-7.028,307	-7'028,307	
Bruta	17'031,572			24'329,240	24'329,240	20'114,196	10'279,094	4'842,561	17'893,826				
7	01000 007	241329.240	24'329,240	24.329,240	24 329,240						-71029 307	-7'028.307	

22'231,480

446'528,040

11'361,104

457'889,140

5'352,305 19'777,387 -14'775,207 -7'029,307

463'241,440 483'018,820 468'243,620 461'214,700

-7'028,307

4541186,400

A valores constantes de enero de 1989.

24'329,240

26'890,213

343'625,930

8'089,997

8'941.575

316'735,720

Impuestos

a socios

utilidad neta

Retorno acumulado de capital

26'890,213

370'516,140

XII.5.- PROYECCION

A continuación se muestra una proyección de la producción de la Planta en los próximos 5 años, esta proyección está hecha en base al estudio de mercado realizado en el capítulo II. Con ésta se pretende seguir cubriendo solamente el mercado nacional. Estimando un incremento del 10% anual.

Año Concepto	1	2	3	4	5
Ventas	1;551'950,400	1;707'145,400	1;877'859,000	2;065'645,800	2;272'210,300
Consumo de materias primas	760'380,000	836'418,000	920'059,800	1;012'065,700	1;113'272,200
Costo de pro- ducción	144'107,251	158'517,970	174'369,760	191'806,730	210'987,400
Gastos de Adminis- tración	38'935,878	42'829,465	47'112,411	51'823,652	57'006,017
Gastos de Ventas	31'526,190	34'678,809	38'146,689	41'961,357	46'157,492
Gastos financie- ros	138'233,712	140'994,439	129'379,659	115'299,938	105'213,406
Utilidad	438'767,469	482'644,210	530'908,630	583'999,500	642'399,430
Impuestos	208'414,538	229'255,990	252'181,580	277'399,750	305,139,900
Remanente	230'352,931	255'388,220	278'727,050	306'599,750	337'259,530
Acumulado	230'352,931	485'741,150	764'468,200	1;071,667,900	1;408'327,400

A valores constantes de Enero de 1989.

XII.6.- Balance proforma para el primer año de operación.

Para la elaboración de la evaluación económica del presente estudio se utilizó la información hasta aquí dis
ponible, considerando además los siguientes criterios.

XII.6.1.- Efectivo en caja.

Es necesario para cubrir 30 días de sueldos y gas-tos generales menores de la empresa.

XII.6.2.- Efectivo en bancos.

El necesario para cubrir los gastos mayores de la empresa tal como la adquisición de materias primas en for
ma mensual y contingencias no previsibles.

XII.6.3 .- Cuentas por cobrar.

De acuerdo a la política de ventas en la empresa se fijó vender el producto a crédito por 15 días.

XII.6.4 .- Inventarios.

La estimación económica de los inventarios incluye tres conceptos, cada uno de ellos con un valor específico:

- a) Materias primas. Las existencias se establecieron para un mes sobre el consumo anual esperado de las mismas.
- b) Productos en proceso.- Para efectos prácticos no hay producto en proceso.
- c) Producto terminado.- El valor económico para este concepto se consideró equivalente a un mes sobre la producción anual fijada y tomando en cuenta el costo unitario del producto.

Activo circulante

•	
Inventarios	" 210'204,900.00
Cuentas y documentos por cobrar	" 64'664,600.00
Caja y bancos	\$ 80.000,000.00

\$ 354'869.500.00

Activo Fijo

Terreno	\$ 8'250,000.00
Construcciones	" 34'096,000.00
Equipo e instalaciones	" 216'580,000.00
Equipo rodante	" 81'500,000.00
Mobiliario y equipo de oficina y laboratorio	" 88'350,000.00
Subtotal	\$ 428'776,000.00
Depreciación y amortización	" 34'660,800.00
TOTAL	\$ 394'115,200.00

Activo diferido

Primas de seguros	\$	4'371,060.00
Ingenieria y tecnologia	н	8'330,000.00
Gastos preoperativos	'n	1'500.000.00
TOTAL	\$	14'201,060.00
TOTAL DEL ACTIVO	11	763'185,760.00

Pasivo circulante

Cuentas y documentos por pagar	\$ 34'559,250.00
Impuestos retenidos	" 0.00
T O T A L	\$ 34'559,250.00
Capital social fijo y variable	\$ 728'626,510.00
TOTAL PASIVO Y CAPITAL	\$ 763'185,760.00

C A P I T U L O XIII

CONCLUSIONES

XIII.- CONCLUSIONES

Como se puede observar, la obtención del alcohol - clorhidrato es en forma relativamente sencilla, de ahí que las operaciones unitarias requeridas no presenten - una aplicación tecnológica especial; también se ve que se cuenta con la infraestructura necesaria para efectuarse el proyecto,

La evaluación económica del estudio técnico del alcohol clorhidrato, desarrollada en el capítulo XII,
mostró factibilidad para llevar a cabo el proyecto; ya
que se alcanza el punto de equilibrio en menos de 4 meses de producción.

Se cubre el consumo nacional con sólo trabajar dos turnos al día; lo que nos da la opción de trabajar un tercer turno para incrementar la producción y exportar.

La mayor parte de los factores económicos aquí -considerados pueden ser modificados con el fin de ha-cer más convenientes la probable inversión, así por -ejemplo el costo unitario del alcohol clorhidrato podría
reducirse si se recupera el metanol de las aquas madres.

La puesta en operación del proyecto crearía fuentes de trabajo para los habitantes del Estado de Guanajuato.

BIBLIOGRAFIA

- 1.- American Society for Testing and Materials, Manual de aguas, 3a. Ed., Limusa, México, 1982.
- 2.- Asociación Nacional de Ingenieros Químicos, Anuario de la Industria Química Mexicana, México, 1987.
- 3.- Balzhiser, R.E., M.R. Samuels and J.D. Eliassen, Chemical Engineering Thermodynamics, Prentice Hall, New Jersey, 1972.
- 4.- Bristol, James A. and James J. Kaminski; Annual Reports in Medicinal Chemistry Vol. 17, Hans-Jürgen Hess, Academic Press, Barcelona, 1987.
- Brown, G.G., Operaciones Básicas de la Ingeniería -Química, Ed. Marín, S.A., España, 1965.
- 6.- Brown, T.H. and R.C. Young, Drugs of Future, Vol. 7, No. 10, Federación Internacional de la Prensa Periódica, Barcelona, España, 1982.
- 7.- Catalitic Construction Company. Método del Camino Crítico, Ed. Diana, México, 1967.
- 8.- Clarke, R.C. and R.C. Davidson, Manual for Process Engineering Calculations, Mc. Graw Hill, U.S.A. -1975.

- 9.- Clausen, C.A. y G. Mattson, Fundamentos de Química Industrial, Ed. Limusa, México, 1982.
- 16.- Corso, M.A., Introducción a la Ingeniería de Proyectos, Ed. Limusa, México, 1982.
- 11.- Crenshaw R.R. and G.M. Luke, R.L., Cavanagh, J.J. Usakewics and J.P. Buyniski, Drugs of Future, Vol. 10 No. 1, Federación Internacional de la Prensa Periódica, Barcelona, 1985.
- 12.- De la Madrid Hurtado, Miguel, Plan Nacional de Desarrollo 1983-1988, Secretaría de Programación y Presupuesto, México, 1983.
- 13.- Docker, Toni Meckenheim, Anton Frank Ludwigshafen, Uwe Kempe and Mattias Wetzeler, United States Patent, No. 4'239,895, U.S.A., 1980.
- 14.- Felder, R.M. y R.W. Rousseau, Principios Básicos de los Procesos Químicos, Ed. El Manual Moderno, -México, 1981.
- 15.- Foust, A.S., LA Wenzel, C.U. Clump, L. Maus and L.B. Andersen, Principles of Unit Operations, John Wiley and Sons Inc., U.S.A., 1960.

- 16.- Furniss, B.S., A.J. Hannaford, V. Rogers, P.W.G.
 Smith and A.R. Tatchel, Textbook of Practical Organic Chemistry, 4th. Ed., Longman Scientific and
 Technical, U.S.A., 1987.
 - 17.- Hajek, V.G., Ingeniería de Proyectos, Urmo, S.A. de Ediciones, Bilbao, 1978.
 - 18.- Hardenberg, W.A. y E.B. Rodie, Ingenieria Sanitaria, Compañía Editorial Continental, S.A., México, 1977.
 - 19.- Henglein, A., Tecnología Química 2a. Parte, -- Urmo, S.A. de Ediciones Bilbao, 1977.
 - 20.- Himmelblau, D.M., Principios y Cálculos Básicos de Ingeniería Química, Compañía Editorial Continental S.A. de C.V., México, 1986.
 - 21.- Hougen, O.A., K.M Watson y R.A. Ragatz, Principios de los Procesos Químicos, Ed. Reverte S.A., Barcelona, 1980.
 - 22.- Jordan, D.G. and Robert E. Krieger, Chemical Process Development, Part I, Publishing Company, New York, 1979.
 - 23.- Kent, James A., Riegel's Handbook of Industrial Chemistry 7th Ed., Van Nostrand Reinhold Company, U.S.A., 1974.

- 24.- Kirk, Raymondo Eller and Donald F. Othmer, Encyclopedia of Chemical Technology, Vol. Ed. Uthea, México, 1961.
- 25.- Levenspiel, O., El Omnibus de los Reactores Químicos, Ed. Reverté S.A., España, 1986.
- 26.- Lewis, W.K., Arthur H. Radasch and H. Clay Lewis, Industrial Stoichiometry Chemical Calculations of Manufacturing Processes, Mc Graw Hill, Tokyo, 1954.
- 27.- Ludwig, Ernest. E., Applied Process Design for Chemical and Petrochemical Plants, Vol. 1, Gulf Publishing Company, U.S.A., 1979.
- 28.- Lugben, W.L., Process Modeling, Simulation and Control for Chemical Engineers, Mc Graw Hill, Tokyo, 1982.
- 29.- Martínez Frías, H. y H. Soto Enriquez, La Formulación y Evaluación Técnico-Económica de Proyectos Industriales, 2a. Ed., Editorial Ceneti, México, 1979.
- 30.- Mc Cabe, Warren L. and Julian C. Smith., Unit Ope rations of Chemical Engineering 3th. Ed., U.S.A., 1976.

- 31.- Merck, The Index Merck 8 th. Ed. Rahway, N.J., -
- 32.- Morrison, Robert Thornton and Robert Neilson Boyd,
 Quimica Orgánica, Fondo Educativo Interamericano S.A., México, 1973.
- 33.- Munier, Nolberto Juan, Pert-CPM y Técnicas Relacionadas, Editorial Prolam, Buenos Aires, Argentina, 1982.
- 34.- Niebel, Benjamin W. and Alan B. Draper, Product Design and Process Engineering, Mc Graw Hill, Tokyo, 1974.
- 35.- Perry, Robert H and Cecil H. Chilton, Manual del Ingeniero Químico, 5a. Ed., Mc Graw Hill, México, 1982.
- 36.- Peters, Max S. and Klaus D. Timmerhaus, Plant Design and Economics for Chemical Engineers, Mc. Graw Hill, Tokyo, 1968.
- 37.- Poder Ejecutivo Federal, Diario Oficial de la Federación, México, 14 de diciembre de 1988; y 30 de diciembre de 1988.

- 38.- Poder Ejecutivo Federal, Programa Nacional de Fomento Industrial y del Comercio Exterior 1984- 1988, Secretaría de Programación y Presupuesto, México, 1984.
- 39.- Powel, Sheppard T., Manual de aguas para usos industriales, Ediciones Ciencia y Técnica S.A., México, 1987.
- 40.- Rase, Howard F. y M.H. Barrow, Ingeniería de Proyectos para plantas de proceso, Compañía Editorial Continental S.A. de C.V., México, 1984.
- 41 .- Secretaría de Programación y Presupuesto, X. Censo General de Población y Vivienda, México, 1984.
- 42.- Shreve, R. Norris and Joseph A. Brink Jr., Chemical Process Industries, Mc. Graw Hill, Tokyo,1977.
- 43 .- Smith, J.M. and H.C. Van Ness, Introduction to -Chemical Engineering Thermodynamics, 3th Ed., Mc.
 Graw Hill, Tokyo, 1975.
- 44 .- Solomons, T.W.G., Química Orgánica, Ed. Limusa, -México, 1981.
 - 45.- Sreitwieser, Andrew Jr. and Clayton H. Heathcock, Introduction to Organic Chemistry 3th. Ed., Mac Millan Publishing Company, U.S.A., 1985.

- 46.- Ulrich, Gael D. Diseño y Economía de los Procesos de Ingeniería Química, Ed. Interamericana S.A. de C.V., México, 1986.
- 47. Vilbrandt, Frank C. and Charles E. Dryden, Chemical Engineering Plant Design, Mc Graw Hill, Tokyo, 1959.
- 48 .- Williams, Theodore J., Ingeniería de los Procesos Industriales, Ed. Alhambra S.A., España, -