UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE ESTUDIOS SUPERIORES
"CUAUTITLAN"

DE DISOLUCION PARA TABLETAS DE CLOROPROPAMIDA

T E S I S

QUE PARA OBTENER EL TITULO DE:
QUIMICO FARMACEUTICO BIOLOGO
PRESENTA:
MARIA REINA HERNANDEZ NAJERA

Director de Tesis: Q. F. B. Guadalupe Lucía Yañez V. Asesor de Tesis: Q. F. B. Virginia Angélica Robinson F.

FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Name of the	. 4.4				
				i	
		CONTENIDO		Hoja.	
		OHIMINO		noja.	
Titoto	de ta	, hlee		111	
		ficas		Λ.	
	de fi			v	
TITOUR	40 116			•	
Capit		ı.			
Capit				_	
		Introducción		1	
	1.2	Objetivos		3	
Capít	alo I	r:			
	Gene	eralidades			
		Disolución		4	
		Biodisponibilidad y Bi	Loecuivalencia	9	
		Cloropropamida			
		2.3.1 Propiedades Fist	lcogufmicas	10	
		2.3.2 Conservación		11	
		2.3.3 Propiedades Fisi	lcas	11	
		2.3.4 Propiedades Farm		12	
0				_	
Capiti	alo III	L.			
	Part	te Experimental			
	_	Equipo y Reactivos		14	
	3.2	Metodología general		14	
		3.2.1 Estudio de disol			
	3-3	Método de cuantificaci	—		
Facilities For Fig.		pamida en las muestras		16	
		3.3.1 Preparación de I			
		de refereccia de cloro	•		
	3.4	Validación del método			
		en la prueba de disolu	-		
		tas de cloropropamida.		16	
		•			
					:
		•			

	3.4.1 Linearided del sistema	Hoja.
	3.4.2 Linearidad del método	
	3.4.3 Precisión y exactitud del método	
	3.4.4 Reproducibilided	
	3.4.5 Estabilidad de la muestra	
Capit	ulo IV.	
, .	Resultados	
	4.1 Metodología general	•
	Control de Calidad	18
	4.2 Estudio de disolución	
	Prueba de disolución	. 19
	Perfiles de disolución	27
	4.3 Determinación de modelo	30
	4.4 Validación del método de cuantificación	
	en la prueba de disolución para table -	
	tas de cloropropamida	36
	4.4.1 Linearidad del sistema	37
	4.4.2 Linearidad del método	40
	4.4.3 Precisión y exactitud del método	43
	4.4.4 Reproducibilidad	44
	4.4.5 Estabilidad de la muestra	45
Capit	ulo V.	
	Análisis de Resultados	48
	5.1 Caracteristicas de Control de Calidad	
	5.2 Estudio de disolución	
	5.3 Determinación de modelo	
	5.4 Validación	
Capíti	ilo VI;	
	Conclusiones	53
Capit	alo VII.	
	Bibliografía	54
	nanaroBr or re	24

LISTA DE TABLAS

Hoja.

I. Resultados del análisis de Control de Calidad para el principio activo de Cloropropamida. 18 Resultados del análisis de Control de Calidad Ia. para los tres lotes de tabletas de cloropro pamida. 19 21 II. ANOVA para tratamientos (pH) y bloques (lotes) III. Resultados promedio (n=6) obtenidos con el tra tamiento correspondiente de datos para table tas de cloropropamida del lote 7F0943 a dife rentes pH (% Disuelto, mg disueltos, cantidad remanente, fracción liberada, ecuación de Hixon-Crowell y de ler. orden). IIIa. pH 1.2; IIIb. pH 3.5; IIIc. pH 5.8; IIId. pH 6.8; IIIe. pH 7.0; IIIf. pH 8.0; IIIg. pH 9.0; IIIh. pH 10.0. 22 Resultados promedio (p=6) obtenidos con el tra tamiento correspondiente de datos para table tas de cloropropamida del lote 7F0944 a dife rentes pH (% Disuctto, mg disueltos, cantidad remanente, fracción liberada, ecuación de Hixon-Crowell y de ler. orden). IVa. pH 1.2 ; IVb. pH 3.5 ; IVc. pH 5.8 ; IVd. pH 6.8 ; IVe. pH 7.0 ; IVf. pH 8.0 ; IVg. pH 9.0 ; IVh. pH 10.0. 24 Resultados promedio (p=6) obtenidos con el tra tamiento correspondiente de datos para tabletas de cloropropamide del lote 7F0952 a difereptes pli (% Disuelto, mg disueltos, captidad

remanente, fracción liberada, ecuación de

Hixon-Crowell y de ler. orden).

	LISTA DE TABLAS (CONTINUACION)	Нојв.
	Va. pH 1.2; Vb. pH 3.5; Vc. pH 5.8;	
. 6	Vd. pH 6.8; Ve. pH 7.0; Vf. pH 8.0;	
	Vg. pH 9.0; Vh. pH 10.0.	26
VI.	Constantes (De Hixon-Crowell, de liberación)en	
	función del pH para los tres lotes.	34
VII.	Absorbancia en función de la concentración	
	mog/ml para la linearidad del sistema.	38
III.	Porciento determinado en función del porcien-	
	to adicionado, para la lineeridad del método.	41
IX.	Porciento de recobro de diez determinaciones	
	para la precisión y exectitud del método.	44
x.	Mesultados de la reproducibilidad del método.	45
Xe.	ANOVA para los resultados de la reproducibili	
	dad de método.	45

H	^	4	9	

LISTA DE GRAFICAS

I.	Porciento disuelto para tabletas de cloropro	
	pamida a los 60 minutos en función del pH.	20
II.	Perfil de disolución para tabletas de cloro-	
	propamida del lote 7F0943 a diferentes pH.	28
III.	Perfil de disolución para tabletas de cloro-	
100	propamida del lote 7F0944 a diferentes pH.	29
IV.	Perfil de disclución para tabletas de cloro-	
	propamida del lote 7F0952 a diferentes pH.	30
٧.	Del modelo de la raíz cúbica de Hixor-Crowell	
	(1-ft) en función del tiempo del lote	
	7F0943 para tabletas de cloropropamida.	31
VI.	Del modelo de la raíz cúbica de Hixon-Crowell	
	(1-ft) on función del tiempo del lote	
	7F0944 para tabletas de cloropropamida.	32
vII.	Del modelo de la raíz cúbica de Hixon-Crowell	
	(1-ft) en función del tiempo del lote	
	7F0952 para tabletas de cloropropamida.	. 33
'III.	Constente de Hixon-Crowell en función del pH.	35
IX.	Constante de liberación en función del pH.	. 36
X.	Curva para la linearidad del sistema. Absor-	
	bancia en función de la concentración mcg/ml.	39
XI.	Curva para la linearidad del método. %deter-	
	minado en función del % adicionado.	42
XII.	Resultados de la estabilidad de la muestra	
	de cloropropamida.	43
	LISTA DE PIGURAS	
	ALVET AND AND COMM	

l. P	100000	rmbrr	CBGO	9B]	a d	isoluc	16n	đe	formes	
. 4	asbilòs	de do	sific	ació	b a	espués	đe	la	admini <u>s</u>	
	tración				-	r Wegn	er.	-		

2. Modelo de la teoría de la película.

1.1 Introducción.

Cuando se llevan a cabo las diversas pruebas de estabilidad y control de calidad que deben oumplir los medicamentos, se está asegurando no sólo el contenido químico y la presentación física, sino también, el que el fármaco contenido en la forma farmacéutica alcance su sitio de acción y el efecto terapéutico deseado.

Es importante que, para que los fármacos puedan ejercer su acción se absorban de manera adecuada y para poder absorberse, el fármaco debe encontrarse en solución en el sitio de absorción. Por lo tanto, equellos fármacos que vayan en formas farmacéuticas sólidas deberán primero disolverse para poder ser absorbidos al torrente sanguíneo. La velocidad de absorción de las formas sólidas está determinada por las propiedades fisicoquímicas del fármaco y por un número variable de factores fisiológicos y snatómicos. Así, cualquier elemento que altere la velocidad de absorción y dependiendo del caso, en su biodisposibilidad.

Se sabe que la cloropropamida es un derivado sulfonilurei co de origen sintético, el cuál es un agonte hipoglucemiante activo oral, se utiliza en el control de la diabetes Mellitus suave, sio acetoacidosis y sin antecedentes de disfunción hepática o renal. Presenta una mayor potencia que la tolbutamida, tolgamida y acetohexamida.

Con lo auteriormente citado podemos darnos cuenta de la importancia de la cloropropamida, por lo que en el presente trabajo se evaluó el efecto del pH en la velocidad de disolución para tabletas de cloropropamida. Debido a que en la prue ba de disolución cuando se emplea el medio de disolución aqua que corresponde a la USP XXI (1) y el medio de disolución buffer de pH = 6.8 que corresponde a la BF (2) para este

producto, el # disuelto es considerablemente más alto en este último medio, pasando la prueba de disolución, no haciéndolo con el medio de disolución agua.

1.2 Objetivos

- Determinar la velocidad de disolución para tabletas de cloropropamida en función del pH.
- Validar el método de cuantificación en la prueba de disolución para tabletas de cloropropamida.

2.1 Disolución.

La disclución es la pérdida de la cohesión de un sólido bajo la acción de un líquido, que conduce a la dispersión homogénea en estado molecular o iónico (3).

La forma més simple de un modelo de disclución de un sólido en un medio discluente, es aquel de una sola partícula es férica que se disuelve en un gran volumen de fluído.

La figura No. 1 muestra el proceso implicado en la disolución de formas sólidas de dosificación después de la administración oral propuesto por Wagner (4).

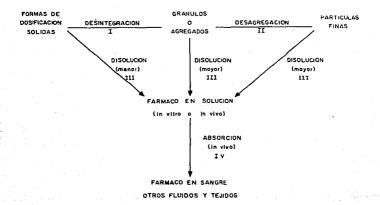


FIG. No. 1 Cuando el proceso III es mucho más lento que los procesos I, II y IV entonces la disolución contro la completamente el grado de absorción. 3e dice que la velocidad de disolución está limitada.

Le mes temprana referencia de disolución es probablemente la de Noyes y Whitney (5) quienes desarrollaron la relación matemática que correlacions la velocidad de disolución con el gradiente de solubilidad del sólido, su trabajo se concentró en el estudio de los aspectos fisicoquímicos de la disolución. Su ecuación es todavía fórmula bésica sobre la cual giran los tratedos matemáticos modernos sobre el fenómeno de la disolución.

La ecuación de Noyes y Whitney es la siguiente:

Dónde:

dC/dt = Velocidad de disolución del fármaco.

$$\frac{dC}{dt} = K (Cs - Ct)$$

K = Constante de proporcionalidad o de disolución.

Ce = Concentración de saturación.

Ct = Concentración a un tiempo t.

Existen tres teorías que explican el proceso de disolución (b).

1.- TEORIA DE LA PELICULA O DE LA CAPA ESTACIONARIA.

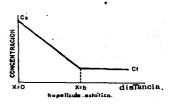


FIG. No. 2 Modelo de la Teoria de la pelicula

Se considera un sólido sumergido en un líquido con agitación y el sólido se deja disolver. Se dan dos pasos consecutivos, primero la solución del sólido a nivel de interfase que forma una delgada capa estática o película alrededor de la partícula y segundo, la difusión desde esta capa a nivel del limite hecia el cuerpo del líquido. El primer paso, la solución es casi instantáneo, el segundo, la difusión es mucho más lento y por lo tanto, es el paso limitante. Se considera que la concentración de la sustancia en la superficie del cristal es igual a la concentración de saturación y por ser un estado estacionario se puede aplicar la primera ley de Fick de difusión a la ecuación de Noyes y Whitney por parte de Nernet y Brunner (7). Ver fig. 2.

La ecuación de Nernat y Brunner es la siguiente:

Donde:

 $\frac{dW}{dt} = \frac{DS}{C} (Cs - Ct)$

D = Coeficiente de difusión.

h = El grosor de la capa estática de difusión.

S = Area superficial del soluto.

Desarrollando también la ley de la raíz cúbica de la disolución por parte de Hixon y Crowell, calcularon la variación de la superficie de las partículas en función de la variación de su tamado; comparando las partículas con esteran y transformando previamente los volúmenes en unidades de mesa (8).

La ecuación de Hixon y Crowell es la siguiente:

Dónse:

Wo = Captidad inicial.

 $y_0 = 1/3 = 1/3 = Kt$ W = Centided remandate.

K = Constante de lixon y Crowell.

t = tiempo.

2.- TEORIA DE LA PENETRACION O DE LA RENOVACION DE SUPERFICIE.

En el caso en que la velocidad de disolución en la superficie sea relativamente leota, limita la velocidad de difu - sión y por consiguiente la concentración en la interfase será menor que la concentración de saturación. Esto hizo que Danck werts (9), descartara la posibilidad de la existencia de una capa de difusión estacionaria. Consideró que la turbulencia (producida por la agitación o movimiento espóntaneo de moléculas en el fluído) se extiende a la superficie y que no existe una capa limitante alrededor. En su lugar supuso que la superficie era renovada continuamente siendo reemplazado con un muevo líquido en contacto con el sólido, basandose en que las moléculas debeu solvatarse y que la difusión del solvente del resto de la solución a través de la capa estacionaria a la superficie es el paso limitante.

Niebergall y Goyan (10) demostraron que la ley de la raíz cúbica no puede ser aplicada cuando se dan las condiciones de liberación de modelo de Danckwerts puesto que se trataría de una circulación turbulenta del líquido en contacto con el sólido.

Toor Marchelo (11) enfatizó que las teorías de la película y de renovación de superficie co soc aspectos separados. Es decir que la teoría de la renovación se aplica hasta que en un momento dedo se establece un estado estacionario y entonces la teoría de la película sería aplicable.

3.- TEORIA DE LA VEIOCIDAD DE SOLVATACION LIMITADA (12).

Es una consecuencia de la seguida ley de Pick (13) que postula que la velocidad de cambio de concentración en cualquier plano perpendicular a la dirección de difusión es proporcional a la velocidad de cambio de gradiente de concentración.

La segunda ley de Fick es la siguiente:

dc/dt = Velocidad de disolución.

 $\frac{d\mathbf{c}}{dt} = \mathbf{D} \frac{d^2\mathbf{c}}{d\mathbf{x}^2}$ $\mathbf{D} = \text{Coefficients de difusión.}$ $\mathbf{C} = \text{Concentración.}$

X = Distancia.

Ecuación que representa la difusión solamente en una direc - ción X. Para expresar el cambio de concentración en las tres dimensiones la segunda ley de Fick se escribiría como:

$$\frac{d\mathbf{c}}{d\mathbf{t}} = \mathbf{D} \quad \frac{d^2\mathbf{c}}{d\mathbf{x}^2} + \frac{d^2\mathbf{c}}{d\mathbf{x}^2} + \frac{d^2\mathbf{c}}{d\mathbf{z}^2}$$

Lagteoría de la película y la teoría de la renovación suponen que el coeficiente de difusión es constante aunque segúa los trabajos de Nedich y Kildsig (12) esto no es siempre cierto, estos autores demostraron que el coeficiente de difusión puede disminuir cuando la concentración de la solución aumenta, sobre todo en presencia de agentes que aumentan la viscosidad (pectina, derivados de celulosa, entre otros).

Prueba de disolución.

La prueba de disoluciós se considera hoy un parámetro de cras ayuda a la industria farmacéutica para el control de Calidad y el desarrollo de muevos productos. Esta prueba "in vitro" puede ser un predictor válido de biosquivalencia (14).

Los objetivos fundamenteles de la prueba de disolución son:

- Procedimiento sessible de Control de Calided, cuando la correlación de los datos "in vitro" e "in vivo" ha sido establecida.
- Pacilitar la selección de varias formulaciones prolimivares a las cuales se les harán estudios proclínicos, probabdose así la eficiencia de las formulaciones.

- Estudiar la liberación en las formas dosificadas sólidas.

Se debe considerar que la liberación "in vitro" de un fármaco no necesariemente refleja la velocidad de absorción. Se ha demostrado que la cinética de disolución de una sustancia depende de numerosos factores (3), (4) y (15). Los cuales se han dividido en cuatro grupos.

- I .- Factores ambientales durante la disolución.
- II.- Factores relacionados con las propiedades fisicocuímicas del fármaco.
- III.- Factores relacionados con la composición y métodos de manufactura.
- 1V.- Factores ambientales involucrados en la forma farmaceútica.

Para determinar la velocidad de disolución se han desarrollado cuatro tipos de aparatos (16).

- Aperatos de depósito cerrado utilizando membranas de diálisis.
- Aparatos de depósito cerrado. Descritos en la USP XXI
 (1).
- 3. Aparatos de flujo cerrado con depósito acumulativo.
- 4. Aparatos de flujo abierto con depósito acumulativo.

2.2 Biodisposibilidad y Bioequivalencia.

La Biodisponibilidad "Es un térmico usado para iodicar una medida, tacto de la cantidad relativa que alcanza en la circulación general una dosis de fármaco administrado como la velocidad a la cuál esto ocurre " (17).

Los factores que afectas a la Biodisposibilidad sos:

- 1. Factores inherentes a la forma farmacéutica.
- 2. Factores biológicos.
- 3. Administración de otros medicamentos al mismo tiempo.

Una de las finalidades del concepto de Eiodisponibilidad es poner en evidencia las diferencias entre medicamentos que contienen un mismo principio activo, generalmente a las mismas dosis nominales y susceptibles a ser considerados como equivalentes.

La Bioequivalencia es un término comparativo de Biodisponibilidad. La Bioequivalencia es "el carácter de los medicamentos de la misma dosis nominal del principio activo, que tieneo una Biodisponibilidad comparable cuando son administra dos con la misma posología a los mismos sujetos " (3).

La diferencia entre Biodisponibilidad y Bioequivalencia es que, la primera es la característica de un medicamento dado que da la idea de la manera en que el principio activo es puesto a disposición del organismo, pero sio prejuzgar de la forma en que este va a disponer de él, ni de la forma en que el principio activo va actuar sobre este mismo organismo y la Bioequivalencia es una condición necesaria, pero no suficiente de la equivalencia terapéutica, pues ésta va a depender en ditima instancia de los factores ligados al paciente y no al medicamento.

2.3 Cloropropamida.

- 2.3.1 Propiedades Fisicoquímicas (18) (19) (20)
 - a. Descripción:
 Polvo cristalico blacco, inchero. Tiene una absorción
 máxima a 232 cm (E 16 , 600) en HCl 0.01 N.
 - b. Nombre químico:
 - 4 Cloro N (vropilamino)carbonil bencensulfonamida.
 - 1 (p clorofemilsulfomil) 3 propilurea.
 - 1 (p clorobeocensulfonil) 3 propilurea.
 - N propil N' (p clorobencensulfonil) urea.

- c. Nombre comercial: Adiaben; Asucrol; Catapil; Chloropase; Diabechlor; Dia
- d. Fórmula condensada: .

e. Fórmula desarrollada:

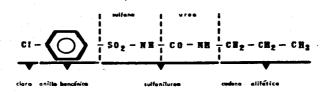
$$CI - \underbrace{\begin{array}{c} 0 \\ -1 \\ 5 \\ -1 \\ 0 \\ \end{array}}_{0}^{0} - NH - CH_{2} - CH_{2} - CH_{3}$$

f. Peso molecular:

- 2.3.2. Conservación.

 Guardor en recipiontes herméticamente cerrados.
- 2.3.3. Propiedades físicas.
 - a. Solubilided:

Insoluble en agua. Soluble 1 en 12 de etanol, 1 en 200 de éter y 1 en 9 de cloroformo (26), en agua a pH = 6, 2.2 mg/ml. Prácticamente insoluble en agua a pH = 7.3. Soluble en alcohol, moderadamente soluble en eleroformo, escasamente soluble en éter y benceno (19).


b. Punto de fusión:

Funde alrededor de 127°C - 129°C.

2.3.4 Propiedades farmacólogicas (21) (22).

a. Origen y química.

La cloropropamida es un derivado de origen sintético de las sulfonilureas, hipoglucemiante activo por vía
oral. La duración de la acción hipoglucemiante se da
por el amillo bencénico unido al radical sulfona, por
el halógeno cloro y también por la cadena alifática de
3C que reemplaza a un hidrógeno de la porción urea de
sulfonilures.

b. Acción y mecanismo.

La acción fundamental es la hitoglucemiante. En el diabético por vía oral provoca descenso de la glucemia dependiendo de la dosis administrada. Debe ser utilizaca en el control de la diabetes mellitus (leve) suave sin cetoecidosis, de comienzo en la madurez y sin antecedentes de disfunción hepática o renal. Es inefectiva en diabetes juvenil o lábil aunque en algunos casos llega a ser efectiva.

Se acepte actualmente que actua estimulando la secreción de insulina por las células beta de los islotes de langerhans.

o. Farmacocinética.

Se absorbe por el tracto gastrointestinal encontrándose unida a proteínas del plasma alcanzando niveles de tectables en una hora y su máximo de 2 a 4 horas después de su ingestión.

Su eliminación es efectuada por el rifion y es muy lenta aproximadamente 72 horas, lo que ocasiona su acción prolongada. La principal forma de eliminación es como cloropropamida sin metabolizar y otros metabolitos como son p-clorobencensulfonilurea y p-clorobencensulfonamida.

La vida media de este medicamento es de 30 - 36 horas.

d. Toxicided.

Se pueden producir trastornos gastrointestinales, hepáticos, outáneos, hemáticos y una reacción semejante al disulfurano cuando se ingiere alcohol. Los trastornos producidos se tratan disminuyendo la dosis o suprimiendo el medicamento, junto con medidas sintomáticas. No se debe emplear en diabetes complicada con infección, en las intervenciones quirúrgicas y en presencia de cetoacidosis y coma.

e. Dosis.

Forma farmacéutica comercial ; tabletas de 250 mg.

Usual 250 mg una vez por día.

Dosis Limites 125 a 750 mg una vez por día.

Máxima por vez 750 mg.

por día 750 mg.

3.1 Equipo y Reactivos.

Equipo.

Agitador magnético (Lab-line-Magnestir No.1278).

Balanza Analítica (Mettler, Modelo 30).

Balanza Granataría (Mettler, Modelo P 163).

Baño de agua a temperatura constante.

Celdas de cuarzo (Coleman S).

Cronometro (Security, Racine).

Disolutor tipo II USP (ELECSA, Modelo 25-250).

Espectofotometro UV-VIS (Beckman, Modelo 35).

Potenciómetro (Corning, Modelo 1360).

Termómetro (Taylor instrumental).

Material de vidrio.

Reactives

Acido Bórico R.A. 99.8% (Merck-México, S.A.).

Acido Clorhidrico R.A. 37.8% (J.T. Baker, S.A. de C.V.).

Cloruro de Potesio R.A. 99.5% (Merck-México, S.A.).

Cloropropamida Patrón 99.64% (Quimica-Hoechst de México). Etanol R.A. 99.8% (J.T. Baker, S.A. de C.V.).

Fosfato Monobásico de Potasio R.A. 99.5% (Merck-México, S.

١.).

Hidróxido de Sodio R.A. 98.9% (Merck-México, S.A.).
Medios de disolución; Soluciones buffer de Acido Clorhídrico, Fosfatos, Borato Alcalino a pH de 1.2; 3.5; 5.8; 6.8; 7.0; 8.0; 9.0; 10.0.

3.2 Metodología general.

► Selección. Se estudio un principio activo de cloropropamida y tres lotes de tabletes con un peso de 396 mg, las cuales contienen 250 mg de cloropropamida por tableta.

◆ Control de Calidad.

Al principio activo de cloropropamida como a los diferentes lotes de tabletas se les efectuaron las siguien tes pruebas de control fisicoquímico con el fin de conocer la calidad de los mismos antes de iniciar el estudio, de acuerdo a especificaciones de USP XXI (1).

Principio Activo.

Identificación.

Pérdida al Secado.

Residuo de ignición.

Metales Pesados.

Punto de Fusión.

Valoración.

Valoración.

Dureza.

3.2.1 Estudio de disolución.

+ Prueba de disolución.

Seguir los linesmientos propuestos por la USP IXI (1), utilizando soluciones buffer de diferente pil como medios de disolución, preparar estas soluciones buffer como se indica en (1).

Condiciones de trabajo:

- Aparato mimero II.
- Volumen del medio de disolución : 900 ml.
- Velocidad de agitación : 50 rpm.
- Temperatura : 37 ± 0.5°C .
- Tiempo : 60 minutos.
- Volumen de la alfouota : 10 ml.

+ Perfiles de disolución.

Utilizar las mismas condiciones enteriores, sólo que se tomarán alícuotas de 10 ml. a los 10, 20, 30, 40, 50, 60, 70, 90 y 120 minutos, reponiendo el volumen extraído en cada ocasión a la temperatura $37 + 0.5^{\circ}C$.

3.3 Método de cuantificación de la cloropropamida en las muestras de disolución.

Retirer una alfcuota de 10 ml. una vez terminado el tiempo de disolución de cada uno de los contenedores del disolutor y transferir a tubos de ensaye. Dejar equilibrar la temperatura a la temperatura ambiente, filtrar en papel filtro Whatman No.41. Tomar una alfcuota de 2 ml. con pipets volumétrica y transferir a un matraz volumétrico de 50 ml., aforar con el medio de disolución con el cual se este trabajando. Leer en UV a una be de 232 mm.

3.3.1 Preparación de la solución patrón de referencia de cloro propamida.

Pesar exactamente 27.77 mg de patrón de cloro ropamida previamente secada a 105°C y transferir a un matraz volumétrico de 100 ml. aforar con el medio de disolución con el cuál se este trabajando y agitar hasta disolución total. Tomar de ésta solución una alicuota de 2 ml con pipeta volumétrica y transferir a un matraz volumétrico de 50 ml. aforar con el medio de disolución respectivo, aritar. Esta última solución tiene una concentración de 11.11 mcg/ml. Leer en el espectofotómetro a una A de 23 cm, las absorbancias correspondientes para ce da pli.

- 3.4 Validación del método de cuartificación en la prueba de disolución para tabletas de cloropropanida.
- .3.4.1 Linearidad del sistema.

Preparar una curva de calibración a partir de una solución concentrada de cloropropamida, de 2.77/ mcg/ml a 22.216 mcg/ml, efectuando por triplicado diluciones na-

ra obtener el 25%, 50%, 100%,150% y 200% respecto al contenido teórico de principio activo (11.11 mcg/ml).

3.4.2 Linearidad del método.

Efectuar por triplicado de mauera independiente la determinación al 6 %, 80%, 100% y el 120% el contenido de cloropropamida por tableta.

3.4.3 Precisión y exactitud del método.

Evaluar el % de recobre de die: determinaciones.

3.4.4 Reproducibilided.

Llever acabo el améliais en diferenter clas y nor diferentes analistas.

3.4.5 Estabilidad de la muestra.

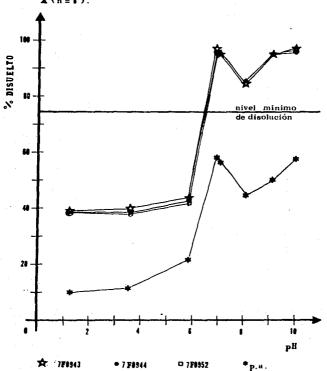
Someter la muestra por triplicado a la oscuridad, refrigeración y radiaciones de luz blanca.

Capitulo IV

RESULTADOS

4.1 Metodología general.

Características de Control de Calidad.


Tabla I . Resultados del análisis de Control de Calidad para el principio activo de cloropropamida.

Pruebas	RESULTADOS	ESPECIFIC ACIONES		
IDENTIFIC ACION	POSITIVA	POSITIVA		
PERDIDA AL SECADO	0.18	MAX1MO 1		
RESIDUC DE IGNICION	0.03	MAXIMO 0.4		
METALES PESADOS ppm	MELOR A 3	MAXINO 3		
PUNTO DE FUSION ^o c	128.5	125 - 129		
VAIORACION %	100.35	97 - 103		

Tabla la . Resultados del analisis de Control de Calidad de tres lotes de tabletas de cloropropamida.

LOTES	7F0943	7F0944 B	7F0952 C	ESPECIFI- CACIONES
IDENTIFICA - CION.	POSITIVA	POSITIVA	POSITIVA	POSITIVA
CONTENIDO QUIMICO % (n = 3)	98.750	98.087	98.320	95 - 105
TIEMPO DE DE- SINTEGRACION min. (n=6)	15	15	15	15
VARIACION DE PESO % (n = 20)	0.27-4.91	0.16-2.78	0-37-4-57	PESO PRO- MEDIO ± 5
FRIABILIDAD (n - 20)	0.2	0.1	0.01	MAXIMO 0.8
DUREZA Kg/ch	5 - 10 X=7.1	6 - 10 X=7•4	5 8 X≃6.1	%1NIMO 5

GRAFICA— I PORCIENTO DISUELTO PARA TABLETAS DE CLOROPROPA— MIDA A.LOS 60 MINUTOS EN FUNCION DEL $_{p}H.$ $\overline{\chi}$ ($_{n}$ = 5) .

EFECTO DEL LOTE EN EL % DISUELTO PARA TABLETAS DE CLOROPROPANIDA

Se utilizó el diseño de bloques aleatorios para probar la hi-

pôtesis de :

$$u_1 = u_2 = u_3$$

$$H_1: U_1 \neq U_2 \neq U_3$$
 para tyr.

Criterio: Si Fc ≤ Ft , se acepta Ho.

t = 8 Diferentes valores de pH (tratamientos). r = 3 tipos de lotes (Bloques).

El porciento disuelto para tabletas de cloropropamida a los 60 minutos es el siguiente:

TRATAMIENTOS pH	7 F0943	BLOQUES 7F0944	7F 0952
1. 1.2	39.758	38.624	38.406
2. 3.5	40.578	39.949	38.650
3. 5.8	44.610	43.739	42.745
4. 6.8	97.576	96.513	96.535
5. 7.0	94.566	94.651	94.511
6. 8.0	85.718	86.887	85.335
7. 9.0	95.738	95.444	95.928
8.10.0	97.838	95.838	96.480

ANALISIS DE LA VARIANZA

Fabla II

rapia II				
FUENTE DE VARIA CION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	MEDIA DE CUADRADOS	F _c
Tratamientos	7	16184.7583	2312.1084	6760.17
Blogues	2	3.4984	1.7419	5.1194
Error	14	4.7883	0.3420	i i
Total	23	16193.0450		

 F_t = 1% (7,14) = 4.2779 Como F_c > F_t . Se rechaza Ho. Tratamien tos. F_t = 1% (2,14) = 6.5149 Como F_c < F_t . Se acepta Ho. Eloques.

Las siguientes tablas muestras los resultados promedio obtenidos, con el tratamiento correspondiente de datos para tabletas de cloropropamida a diferentes pH.

Lote 7F0943.

rote	75094	5.					
Tabla	illa	pH = 1.2					
1	J	mg	Wt	ft	(1-ft)	(1-ft)5	10(1-ft)
0.	0	0	246.875	3	0	0	1
10	6.8	16.788	230.087	0.0680	0.9320	0.9768	0704
20	15.23	37.599	209.276	0.1523	0.8477	0.9464	1652
301	22.18	54.757	192.118	0.2218	0.7782	0.9198	2508
401	30.83	76.112	170.763	0.3083	0.6917	0.8844	3686
50	46.58	114.994	131.881	0.4658	0.5342	0.8114	6270
60.	51.16	126.301	120.574	0.5116	0.4884	0.7875	7166
70	59.79	147.533	99.343	0.5979	0.4021	0.7381	9111
90		155.803	91.072	0.6311	0.3689	0.7172	9972
150	66.33	163.752	83,122	0.6633	0.3367	0.6957	-1.089
Tabla	a_IIIb.	pH = 3.5					
10.	10.08	24.885	221.990	0.1008	0.8992	0.9652	1062
20	17.98	44.388	202.487	0.1798	0.8354	0.9418	1798
30 1	66.14	56.139	190.734	0.2274	0.7966	0.9270	2274
40	28.07	69.298	177.577	0.2807	0.7193	0.8960	3295
50	35.28 39.99	87.098	159.778	0.3528	0.6472	0.8650	4351
60	39.99	98.725	148.150	0.3999	0.6001	0.8435	5106
70		113.859	133.016	0.4612	0.5388	0.8137	6185
90	53.31	131.609	115.266	0.5331	0.4669	0.7702	7833
120	57.15	141.089	105.786	0.5715	0.4285	0.7939	8475
Table	Lille	pH = 5.8 (Agua)				
10	10.08	24.885	221.990	0.1008	0.8992	0.9652	1062
20	13.77	33.995	212.880	0.1377	0.8623	0.9518	1482
30 1	20.73	51.177	195.698	0.2073	0.7927	0.9255	2323
401	25.34	62.558	184.317	0.2534	0.7466	0.9064	2922
50	30.54	75.396	171.479	0.3054	0.6946	0.8856	3644
60	32.26 36.93	79.642	167.233	0.3226	0.6474	0.8651	4348
70	36.93	91.171	155.704	0.3693	0.6307	0.8576	4609
90	42.62	105.218	141.657	0.4262	0.5738	0.8310	5554
1201	46.66	115.191	131.684	0.4666	0.5334	0.8110	6285
Tabla	_JIId_	pH = 6.8	•			•	
10.	45.67	112.748	134.127	0.4567	0.5433	0.8160	6101
201		186.563	60.312	0.7557	0.2443	0.6251	-1.409
301	91.68	226.335	20.540	0.9168	0.0832	0.4366	-2.487
40	98.94	244.258	2.617	0.9894	0.0106	0.2203	-4.547
501		244.604	2.271	0.9908	0.0092	0.2097	-4.689
60		244.727	2.148	0.9913	0.0087	D. 2056	-4.744
701			2.024	0.9918	0.0082	0.2017	-4.806
901	99.15	244.777	2.098	0.9915	0.0085	0.2038	-4.768
120	99.18	244.851	2.024	0.9918	0.0082	0.2020	-4.804

Lote 7F0943.

Tabla		pH = 7.0				· · · · · · · · · · · · · · · · · · ·	
	%1)	ng	₩t	ft	(1-ft)	(I-ft)り	ln(1-ft)
	0	0	246.875		1	7	4020
100	38.31	94.578	152.297	0.3831	0.6169	0.8513	4830 2585
20	53.95	133.189 168.764	113.686 78.111	0.5395 0.6836	0.4605	0.7722	-1.151
30	68.36 76.33	188.440	58.435	0.7633	0.2367	0.6186	-1.441
50	85.31	210.609	36-266	0.8531	0.1469	0.5277	-1.918
60.	91.16	225.051	36.266 21.824	0.9116	0.0884	0.4454	-2.426
70"	92.62	228.656	18.219	0.9262	0.0738	0.4195	-2.606
90	93.23	230.162	16.713	0.9323	0.0677	0.4076	-2.693
120	94.09	232.285	14.590	0.9409	0.0591	0.3895	-2.829
Tabla	JUL	0.8 = Hq					
10.	33.28	82.160	164.715	0.3328	0.6672	0.8738	4097
20	44.90	110.847	136.028	0.4490	0.5510	0.8198	5960
30	59-25	146.273	100.602	0.5925	0.4075	0.7414	8977
40,	72.16	178.145 198.216	68.730	0.7216	0.2784 0.1971	0.6530 0.5820	-1.279; -1.624
1 80.	80.29	211.498	48.659 35.377	0.8567	0.1433	0.5233	-1.942
1701	87.14	215.127	31.748	0.8714	0.1286	0.5048	-2.051
90'	88.93	219.546	27.329	0.8893	0.1107	0.4802	-2.201
120	89.79	221.669	25.206	0.8979	0.1021	0.4674	-2.282
Tabla		pH = 9.0					
10	29.55		202 073	0.2955	0.7045	0.8898	3536
20	52.00	72.952 128.375	173.923 118.500	0.5200	0.4800	0.7830	7340
30'	67.11	165.678	81.197	0.6711	0.3289	0.6903	-i.112
40'	78.15	192.933	53.942	0.7815	0.2185	0.6023	-1.521
1501	87.37	215.695	31.180	0.8737	0.1263	0.5017	-2.069
601	92.80	229.100	17.775	0.9280	0.0720	0.4160	-2.631
700		230.729	16.146	0.9346	0.0654	0.4029	-2.727
90'	94.13	232.383	14.492	0.9413	0.0587	0.3886	-2.835
120	95.55		10,986	0.9555	0.0445	0.3544	-3.112
Tabl		pH = 10.0			· · · · · · · · · · · · · · · · · · ·		
10.	44.60	110.106	136.769	0.4460		0.6213	5906
30,	59.25 75.94	146.273 187.477	100.601	0.5925	0.4075 0.2406	0.7414 0.6220	8977 -1.425
40.	82.33		59.398 31.279	0.7594 0.8233	0.1767	0.5611	-1.733
550	89.68	221.398	25.478	0.8968	0.1032	0.4690	-2.271
60.	94.53		13.504	0.9453	0.0547	0.3797	-2.906
70	96.13		9.554	5.9613	0.0387	0.3382	-3.252
901	97.45		6.495	0.9745	0.0255	0.2943	-3.669
150.	97.90		5.184	0.9790	0.0210	0.2759	-3.063

Dode: Tiempo en minutos

Dode: Tiempo en minutos

De Porciento disuelto

mg = miligramos disueltos

Wt = Cantidad remenente

ft = fracción liberada

Lote 7F0944.

Tabla	IVa .	pH = 1.2					
t	₩a_	mg	Wt	£ŧ	(1-ft)		lo(1-ft)
0.	0	0	245.218	0	1	1	0
10:	9.97	24.448	220.770	0.0997	0.9003	0.9656	1050
20	15.98	39.186	206.032	0.1598	0.8402	0-9436	1741
30	25.85	63.389	181.829	0.2585	0.7415	0.9051	2991
1 40	31.46	77.146	168.072	0.3146	0.6854	0.8817	3778
50	36.93	90.559	154.659	0+3693	0.6307	0.8576	4609
60,	43.68	107.111	138.107	0.4368	0.5632	0.8258	5741
90.	47.87 54.26	117.386 133.055	127.832 112.163	0.4787	0.5213 0.4574	0.7705	6514 7822
120	58.60	143.698	101.520	0.5860	0.4140	0.7453	8819
		pH = 3.5	202.750	0.7000	0.4140	0.1422	
Tabla 10	11.36	27.857	217.361	0.1136	0.8864	0.9606	1206
20	18.94	46.444	198.774	0.1894	0.8106	0.9324	- 2100
30	23.19	56.866	188.352	0.2319	0.7681	0.9158	2638
40	28.14	69.004	176.214	0.2814	0.7186	0.8957	3305
50	32.87	80.603	164.615	0.3287	0.6713	0.8756	3985
60"	38.28	93.869	151.349	0.3828	0.6172	0.8514	4526.
70	42.43	104.046	141.172	0.4243	0.5757	0.8319	5522
90'	51.48	126.238	118.980	0.5148	0.4852	0.7858	7232
120	56.77	139.210	106.008	0.5677	0.4323	0.7561	8386
Table	L IVc	pff = 5.8	(Agua)				
10"	12.82	31.437	213.781	0.1282	0.8718	0.9553	1372
20"	19.15	46.959	198.259	0.1915	0.8085	0.9316	2126
30*	25.76	63.168	182.050	0.2576	0.7424	0.9055	2979
40	31.01	76.042	169.176	0.3101	0.6899	0.8836	3712
50	37.43	91.785	153.433	0.3743	0.6257	0.8553	4688
60	41.61	102.035	143.183	0.4161	0.5839	0.8358	5380
70	46.58	114.223	130.995	0.4658	0.5342	0.8114	6270
90	55.70	136.586	108.632	0.5570	0.4430	0.7623	8142
T50,	59.34	145.512	99.706	0.5934	0.4066	0.7406	8999
Tabl	a_JVq_	pH = 6.8		~~~			····
20		106.621	138.597	0.4348	0.5652	0.8268	5706
301	65.58	160.814 199.485	84.404 45.733	0.6558 0.8135	0.3442 0.1865	0.7008	-1.0665
40	91.28	223.835	21.383	0.0135	0.1865	0.5713 0.4434	-1.6793
50	96.61	236.905	8.313	0.9661	0.0339		-2.4396
60.		237.567	7.651	0.9688	0.0339	0.3237 0.3148	-3.3843 -3.4673
70'	97.35	238.720	6.498	0.9735	0.0265	0.3140	-3.6376
90.		239.284	5.934	0.0758	0.0242	0.7802	ニュュ・フクス 4 (1
90,	97.58 97.41	239.284 238.867	5.934 6.351	0.9758 0.9741	0.0242	0.2892 0.2959	-3.7214 -3.6535

t = Tiempo en minutos.

#D = Porciento disuelto.

mg = mg disueltos.

wt = Cantidad remanente.

ft = fracción liberada.

Lote 7F0944.

Tabla	_IVe.	pH = 7.0								
(t	%D	ng	Wt	ft	(1-ft)	(1-ft)り				
1.0.	0	0	245.218	0	1	1	0			
10	36.75	90.118	155.100	9.3675	0.6325	0.8584	4581			
20	53.25	130.579	114.639	0.5325	0.4675	0.7761	7604			
301	65.80	161.353	83.865	0.6580	0.3420	0.6993	-1.073			
40	76.82	158.376	56.842	0.7682	0.2318	0.6143	-1.462			
50	84.43	207.035	38.180	0.8443	0.1557	0.5380	-1.860			
60,	90.77	222,584	22.634	2.9077	0.9230	0.4520	-2.383			
70.	91.94	445-453	19.765	0.9194	0.0806	0.4320	-2.518			
901	94.71	227.342	17.876	0.9271	0.0729	0.4178	-2.619			
120	93.13	218.372	16.846	0.9313	0.0687	0.4096	-2.678			
Tabla	Tabla IVf pH = 8.0									
110.	34.05	80.554	164.664	0.3285	0.6715	7.8757	3982			
50.	47.44		128.936	0.4742	0.5258	0.8271	6428			
30"	59.67	146.322	98.896	0.5967	0.4033	0.7388	9081			
401	71.85	176.189	69.029	7.7185	ე.∠815	0.6554	-1.268			
501	80.12	196.469	48.749	0.8012	0.1988	0.5836	-1.615			
60.	86.08	211.084	34 - 134	0.8608	0.1392	0.5183	-1.971			
70:	87.14	213.682	31.535	0.8714	0.1286	0.5048	-2.051			
90	89.73	220.034	25.184	2.8973	0.1027	0.4683	-2.276			
120'	91.19	223.614	21.604	0.9119	0.0881	0.4449	-2.429			
Tabla	LIVa	pH = 9.0								
10	29.31	71.873	173.345	3.2931	0.7369	0.6908	3469			
30	54.33	128.323	116.895	0.5233	0.4767	0.7812	7409			
1 30,	67.13	164.615	80.603	0.6713	2.3487	0.6901	-1.113			
40' 50'	79.07	193.894	51.34	0.7907	ა.∠093 0.1218	0.5937	-1.564			
60.	87.82	215.350 228.963	29.868	0.8782		0.4957	-2.105			
70	93.37	233.276	16.258 11.942	0.9337	0.0663 0.0487	0.3654	-2.714			
90.	96.48		8.632	0.9513 0.9648	0.0352		-3.322			
120'	95.99		9.833	0.9599	0.0401	0.3277	-3.347			
Tabla	43.77	pH = 10.0 107.332	137.886	0.4377	7 EZ 05	0.8254	ERT 1			
201	60.18	147.572	97.646				5751			
351	74.54		97.040 62.433	0.6018	0.3982	2.7357	6538			
1 45	83.27	204.193	41.025	3.8327	2.1673	0.6338	-1.368 -1.788			
55'	90.65		22.928	0.9065	0.0935	0.5513	-4.369			
165.	95.33	233.700	11.452	0.9533	0.0467	0.3601	-3.064			
75.	94.86		12.604	0.9486	0.0514	0.3718	-2.968			
951	95.92		10.005	0.9592	2.0408	0.3443	-3.199			
120'	94.17		14.296	0.9417	7.0583	0.3878	-2.842			
						20,070	04-			

Lote 7F0952

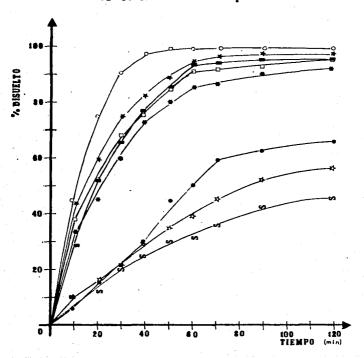
Tabla Ya	pH = 1.2					
	mg	Wt	f t	(1-ft)		In(1-ft)
0 0	0	245.800	0	1	1	0
10, 10.01	24.605	221.195	0.1001	0.8999	0.9655	1065
20 16.36	40.213	205.587	0.1636	0.8364	0.9422	1786
30 26.46	65.039	180.761	0.2646	0.7354	2.9026	3073
40 31.92	78.460	167.345	0.3192	0.6808	0.8797	3845
50 37.34	91.782	154.018	0.3734	0.6266	0.8557	4674
60 44.28	108.840	136.960	0.4428	0.5572	0.8229	5948
70, 48.43	119.041	126.759	0.4843	0.5157	0.7853	7251
90 56.31	138.410	107.390	0.5631	3.4369	0.7588	8281
120 59.37	145.931	99.869	0.5937	0.4063	0.7407	9007
Tabla_Vb	pH = 3.5					
10' 10.46	25.711	220.089	0.1046	0.8954	0.9638	1105
20 17.83	43.836	201.974	0.1783	0.8217	9.9366	1964
30 24 20	59.484	186.316	0.2420	0.7580	0.9118	2771
40 27.32	67.153	178.647	0.2732	0.7268	0.8991	3190
50: 33.86	83.228	162.572	0.3386	0.6614	0.8713	4134
60 39.41	96.870	148.930	0.3941	0.6059	0.8462	5010
70 43.26	106.333	139.467	0.4326	0.5674	0.8279	9667
90 52.15	128.185	117.615	0.5215	0.4785	0.7822	7371
120 57.88	142.269	103.531	0.5788	0.4212	0.7496	8646
Tabla Vc	pH = 5.8	(Agua)				
10: 12.14	29.840	215.960	0.1214	0.8786	0.9578	1294
20 18.96	46.604	199.200	0.1896	0.8104	0.9323	2102
30 25 31	62.212	183.588	0.2531	0.7469	0.9073	2918
40′ 30.92 50′ 37.21	76.001	169.799	0.3092	0.6908	0.8840	3699
50 37.21	91.462	154.338	0.3721	0.6279	0.8563	4654
60 41.15	101.147	144.653	0.4115	0.5885	0.8385	5302
70, 46-31	113.830	131.970	0.4631	0.5369	0.8128	6219
90 55.60	136.665	109.135	0.5560	0.4490	0.7629	8119
120 58.88	144.727	101.073	0.5888	0.4112	0.7436	8887
Tabla Vd. 10 44.00	pH = 6.8					
	108.152	137.648	0.4400	0.5600	0.8243	5798
20 65.96	162.130	83.670	0.6596	2.3424	0.6982	-1.778
30 81.38	200.032	45.768	0.8138	0.1862	3.5710	-1.601
40 92.36	227.021	18.780	0.9236	0.0764	0.4243	-2.572
50, 96.48	237.147	8.652	0.9648	0.0352	0.3277	-3.346
60 96.84	238.033	7.767	0.9648	0.0316	0.3162	-3.456
70, 97.38	239.360	6.440	0.9738	0.0262	0.2970	-3.642
90 97 59	239.876	5.924	0.9759	0.0241	0.2889	-3.726
120 97.87	240.564	5.236	0.9787	0.0213	0.2772	-3.849

- Décide:

 t = Tiempo en minutos.

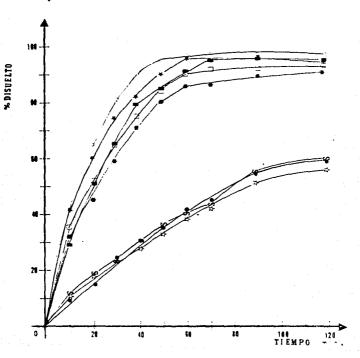
 D = Porciento disuelto.

 mg = mg disueltos.

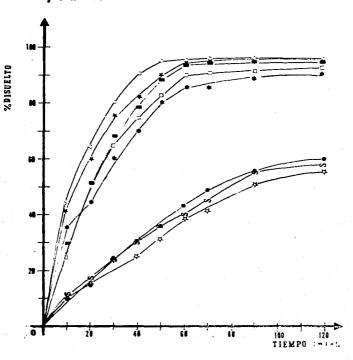

 "t = Cantidad remacente

 ft = Fracción liberada

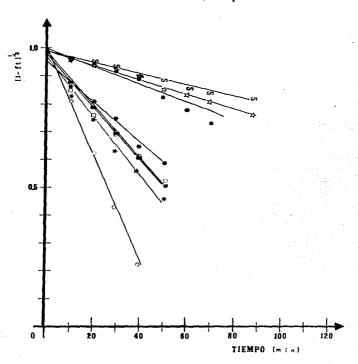
Lote 7F0952


Tabla.	- ∀e %B	pH = 7.0					
- t		mg	₽ Wt-	£ŧ	(1-ft)		In(l-ft)
0	0	0	245.800	0	1	1	
10	35.48 53.11	87.210	158,590	0.3548	0.6452	0.6641	4382
201	53.11	130.544	115.256	0.5311	0.4689	0.7769	7474
301	65.28	160.458	85.342	0.6528	0.3472	0.7028	-1.058
401	75.15	184.719	61.081	0.7515	0.2485	0.6287	-1.392
50	83.20	204.506	41.294	0.8320	0.1680	0.5518	-1.784
601	91.16	224.071	21.730	0.9116	0.0884	0.4455	-2.426
70		227.021	18.780	0.9236	0.0764	0.4243	-2-572
901	93.50	229.823	15.977	0.9350	0.0650	0.4021	-2.733
120	94.98	233.461	12.340	0.9458	0.0502	0.3689	-2.992
Tabla	Vŧ	C.8 = Hcr					
Tabla,	33.00	81.114	164.686	0.3330	0.6700	0.8750	4004
201	47.88	117,689	128.111	0.4788	0.5212	0.8048	6516
301	60.30		97.583	0.6030	0.3970	0.7350	9238
401	71.83	176.558	69.242	0.7183	0.2817	0.6555	-1.267
50	81.14	199.442	46.356	0.8114	0.1886	0.5735	-1.608
601	87.20	414.338	31.462	0.8720	0.1280	0.5040	-2.056
1 70'	87.97	416.230	29.570	0.8797	0.1203	0.4937	-2.118
90'	89.30		26.301	0.8930	0.1070	0.4747	-235
120	92.33		18.853	0.9233	0.0767	0.4 - 49	-2.507
Table	\/-	0.0 = Hor					
10	30.48	74.920	170.880	0.3048	0.6952	0.8859	3636
201	53.83	132.314	113.486	0.5383	0.4617	0.7729	7728
301	68.17	167.562	78.238	0.6817	0.3183	0.6828	-1.145
401	79.23	194.747	51.053	0.7923	0.2077	0.5922	-1.572
1 50'	'88.17	216.722	29.078	0.8817	0.1183	0.4909	-2.134
l 60'	' 93.89	230.781	15.018	0.9389	0.0611	0.3939	-2.796
70	' 95.15	233.879	11.921	0.9515	0.0485	9.3647	-3.026
1 95	96.38	236.902	8.898	0.9638	0.0362	0.3308	-3.319
1,50	96.76		7.964	0.9676	0.0324	0.3188	-3.430
		-11 10 0					
Tabla	_X4_	pH = 10.0	746 076	~			
13	42.71		140.819	0.4271	3.5729	3.8305	5570
1 53			97.755	0.6923	0.3977	0.7354	9221
32	75.01 83.88	184.375	61.425	0.7501	0.2499	0.6299	-1.386
50	91.56	≥06.177	39.623	0.8388	0.1612	0.5442	-1.825
1 2%	77.70		22.746	0.9156	0.0844	0.4386	-2.472
60 70	96.30		9.095	0.9630	0.0370	0.3334	-3.297
1 22	96.71		8.087	0.9671	0.0329	0.3204	-3.414
90			7.669	0.9688	0.0312	0.3148	-3.467
120	95.88	235.673	19,127	0.9588	0.0412	0.3454	-3.1 39

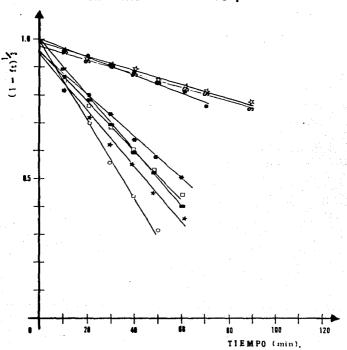
GRAPICA — II PERFIL DE DISOLUCION PARA TABLETAS DE CLOROPROPAMIDA DEL LOTE 770048 A DIFERENTES ph. X(n=6).


+12 ≠15 w51 off a78 +80 m20 +100

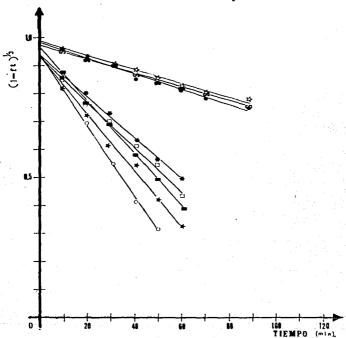
GRAFICA— III
PERFIL DE DISOLUCION PARA TABLETAS DE
CLOROPROPAMIDA DEL LOTE 7F0944 A DIFERENTES
PB. X (n=e).


•U #35 will *H ±H ±H ±10.

GRAFICA—IV
PERFIL DE DISOLUCION PARA TABLETAS DE
CLOROPROPAMIDA DEL LOTE 7F0952 A DIFERENTES
pm. X(n. 6)


11 * 변호 변호 전급 점이 환자 전부 118 *

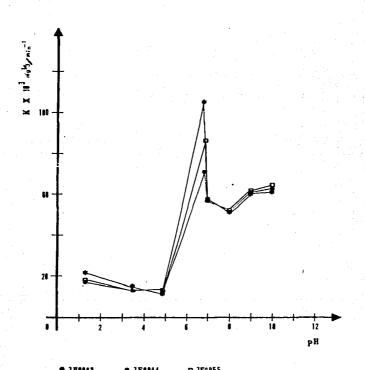
GRAFICA-V DEL MODELO DE LA RAIZ CUBICA DE HIXON— CROWELL $(1-ft)^5$ EN FUNCION DEL TIEMPO DEL LOTE 7F0943 PARA TABLETAS DE CLOROPROPAMIDA A DIFERENTES PH. $\overline{\bf X}$ (n=6)


•1.2 \$35 \$5.8 \$68 \$17.0 \$80 \$9.0 \$10.0

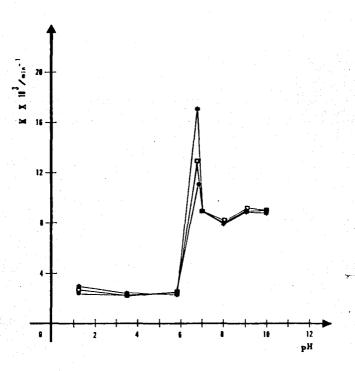
GRAFICA - VI Del Modelo de la raiz cubica de Hixon - Crowell En función del Tiempo del Lote 750844 para Tabletas De Cloropropamida a diferentes ph. X(n=4).

*1.2 x-3.5 \$\sigma 5.8 \cdot 6.8 \cdot 7.8 \text{ #26 } \text{ \$\text{\tin\text{\ti}\tin\tint{\text{\text{\texi}\text{\texiti}\text{\text{\text{\text{\texi}\tilint{\tex

GRAFICA-VII
DEL MODELO DE LA RAIZ CUBICA DE HIXON-CROWELL (1-ft)
5
EN FUNCION DEL TIEMPO DEL LOTE 7F0962 PARA TABLETAS
DE CLOROPROPAMIDA A DIFERENTES PH. X (n=4).



*12 #35 with cell mild #18 #188


Constantes en función del pH

Lote	рн	Hixon - Crowell X 103 mg 1/3/min1	liberación X 10 ³ miñ ¹
7F0943	1.2	- 22.1381	- 3.5142
1	3.5	- 16.0086	- 2.5412
1	5.8	- 13.7086	- 2.1761
}	6. 8	-106.6813	-16.9346
	7.0	- 55.4498	- 8.8021
	8.0	- 49.0582	- 7.7875
	9.0	- 60.9462	- 9.6746
	10.0	- 61.7764	- 9.8063
7 F 0944	1.2	- 17.5998	- 2.7938
1	3.5	- 14.2075	- 2.2553

	7.0	- 55.4498	- 8.8021	1
	8.0	- 49.0582	- 7.7875	
	9.0	- 60.9462	- 9.6746	
• • • •	10.0	- 61.7764	- 9.8063	
7F0944	1.2	- 17.5998	- 2.7938	
	3.5	- 14.2075	- 2.2553	
	5.8	- 15.9386	- 2.5321	
•	6.8	- 75. ≥803	-11.9500	
	7.0	- 55.0453	- 8.7379	
	8.0	- 49.0695	- 7.7893	
•	9.0	- 62.1702	- 9.8689	
	10.0	- 64.0606	-10.1690	
7P0945	1.2	- 18.7363	- 2.9742	
	3.5	- 14.0727 .	- 2.2339	
	5.8	- 15.9443	- 2.5310	
1	6.8	- 84.3914	-13.3963	
	7.0	- 54.8135	- 8.7011	
r, it is a	8.0	- 50.3968	- 8.0000	
	9.0	- 63.∠965	-10.0477	
	10.0	- 66.9421	-10.6264	

GRAFICA -1X CONSTANTE DE LIBERACION EN FUNCION DEL $_{\mbox{\scriptsize PH}}$.

4 1T4647

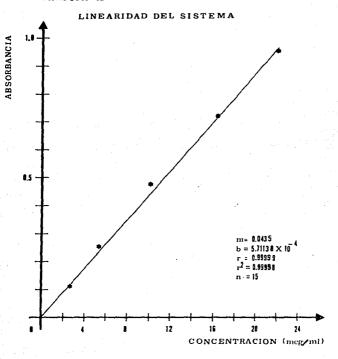
• 7 F8944

□ 7 F6952

Validación del método de cuantificación en la prueba de disolución para tabletas de cloropropamida.

Validación; Es la determinación del grado de validez de un proceso de medición.

Para la validación se evaluó:


- Linearidad del sistema.
- Linearidad del método.
- Precisión y exactitud.
- Reproducibilided.
- Estabilidad de la muestra.

LINEARIDAD DEL SISTEMA

Se preparó una curva de calibración a partir de una solución concentrada de cloropropamida, de 2.777 mcg/ml a 22.216 mcg/ml, efectuando por triplicado diluciones para obtener el 25, 50, 100, 150 y 200%, respecto al contenido teórico de principio activo por tableta. (ll.llmcg/ml).

PORCIENTO ADICIONADO	ABSORBANCIA	
25	0.121	
	0.121	
	0.122	
50	0.242	
	0.240	
	0.242	
100	0.483	
	0.485	
	0.484	
150	0.723	
	0.726	
	0.727	
200	0.965	
•	0.967	
	0,965	

GRAFICA-X

Conc Imcg/mll	2.111	5.554	11.10.0	16.66.2	22,216
ABSORBANCIA	0.121	8.242	£484	LJ2 5	0.966
x (n=3)					l l

Regresión.

y = mx + b donde: Modelo utilizado x = concentración de cloropropamida en mcg/ml. v = absorbancia. m = pendiente. b = ordenada al origen. Para este caso tecemos: m = 0.0435r = 0.99999 $b = 5.71138 \times 10^{-4}$ $r^2 = 0.99998$ a = 15

Intervalos de confianza.

IC_{95%} b = 5.1138 X
$$10^{-4}$$
 ± 7.1980 X 10^{-4} (0.900139 a 9.901282)
IC_{95%} m = 0.0435 + 9.9436 X 10^{-5} (0.94337 a 9.94357)

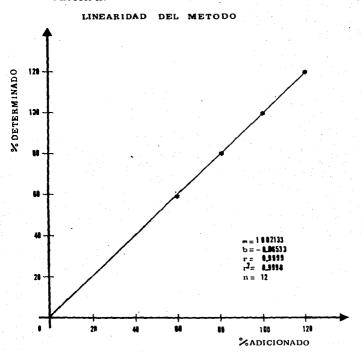
Prueba de la ordenada al origen.

Ho: b=0Ha : b ≠ 0

Criterio : Si to = ttl3gl. , aceptar Ho.

 $t_c = 0.9370$

t_{95,13} (± 2.160).


El velor de t < t, está dentro del criterio de acep tación. Se acepta Ho.

LINEARIDAD DEL METODO

Para determinar la linearidad del método se efectuaron por triplicado de manera independiente la determinación al 60%, 80%, 100% y al 120% del contenido de cloropropamida por tableta.

PORCIENTO ADICIONADO	PORCIENTO DETERMINADO
60	59.05
	59.23
	59.61
80	79.80
	79.12
	78.80
100	99.59
	99.18
•	99.36
120	119.79
	119.13
	119.26

GRAFICA XI

% ADICIONADO	U	u	106	120
> DETERMINADO	56.36	79.57	99.36	119_39
<u> </u>		L		لـــــــــــــــــــــــــــــــــــــ

```
Regresión
```

```
Modelo utilizado
                         y = mx + b donde:
x = porciento adicionado
y = porciento recuperado
m = pendiente
b = ordenada al origen
Para éste caso tenemos:
m = 1.00 \le 133
                          r = 0.9999
                      r<sup>2</sup>= 0.9998
b = -0.86533
0 = 12
Intervalos de confianza
IC_{95\%} b = -0.86533 \pm 0.22400
            (-0.64133 a -1.089933)
IC_{95\%} m = 1.0021 + 9.2273 X 10^{-3}
            ( 0.9929 a 1.01136)
Prueba de hipótesis
- Prueba de la ordenada al origen.
  Ho:b=0
  Ha : b ≠ 0
  Criterio: Si t<sub>c</sub> ≤ t<sub>t</sub>95%
                                  , se acepta Ho.
  t_c = 7.3898 \times 10^{-3}
  t<sub>95,13</sub> (± 2,228)
  El valor de to t, está dentro del criterio de
  aceptación. Se acepta Ho.
- Prueba de la pendiente.
  Ho:m=1
 Ha: m ≠ 1
Criterio: Si t<sub>c</sub> ≤ t<sub>t</sub>13g1.
  Ha : m ≠ 1
                              , se acepta llo.
  t_c = 9.7544 \times 10^{-4}
  t<sub>95,10</sub> ( ± 2,228)
  El valor de te tt, esté dentro del criterio de
  acentación. Se acopta Ho.
```

PRECISION Y EXACTITUD DEL METODO

Se evaluó el porciento de recobro de diez determinaciones.

Tab	la l	ΙX

labia IX	المسترين والمسترين
MUESTRA	PORCIENTO DE RECOBRO
1	100.81
· 2	100.60
. 3	98.70
4	99.30
5	99.19
6	98.99
7	99.39
8	100.00
9	99.80
10	100.00

n = 10 X = 99.687 5 = 0.6821Limites de confianza para la media poblacional.

Criterio: Si C.V. ≤ %, se considera preciso para métodos " in vitro ".

C.V. = 0.6842 %

Criterio: X = 98% - 102%. Promedio de recobro, se considera exacto.

Prueba de hipótesis.

Ho : X = U = 100

Ha : X ≠ U

Criterio: Si $t_c \le t_t$ 95%, se acopta Ho. $t_c = -0.8160$

t_{95.9} (± 2.261)

El valor de to t, está destro del criterio de acestación. Se acepta Ho.

REPRODUCIBILIDAD

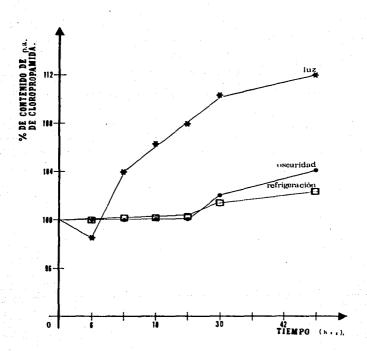
La reproducibilided se midió, llevando a cabo el análisis en diferentes días y por diferentes analistas.

Tabla X	Resultados de la reproducibilidad del método.			
	DIA	ANALISTA 1	ANALISTA 2	
l	(DJ)	(A1)	(Ai)	
	1	98.36	98.99	
j		98.59	98.34	
}		98.19	98.59	
	2	98.79	99.19	
		98.39	98.79	
1.		98.59	98.7≥	

Tabla Xa ANALISIS DE VARIANZA					
FUENTE DE VARIA CION	GRADOS DE LIBERTAD	SUM A DE CUADRADOS	MEDIA DE CUADRADOS	F _c	
Apalista (Ai)	1.	0.234375	0.234375	3	
Día (Dj)	2	0.15625	0.0781250	1.43	
Error	8	0.5078145	6.347%10		
Total	11.				

Reproducibilidad del método = 98.6275 ± 0.4938 Reproducibilidad entre días para el abalista = 98.6275 + 0.13625

Reproducibilidad entre analistas


= 98.6275 ± 0.31629

 $^{\rm F}$ t (95%) = 5.32 Criterio; Si Fc \succeq F_t. Existe efecto significativo. El valor de F_c \prec F_t

ESTABILIDAD DE LA MUESTRA

Se determinó la estabilidad de la muestra mediante un recobro de la muestra al 100% antes de efectuar la lectura de la absorbancia por triplicado, de manera independiente. Posteriormente se dejo por 48 hrs. la muestra a la oscuridad, refrigeración y radiaciones de luz blanca, evaluando el % de contenido de principio activo de cloropropamida a las 6, 12, 24, 30 y 48 horas.

GRAFICA-XII ESTABILIDAD DE LA MUESTRA DE CLOROPROPAMIDA

5.1 Características de Control de Calidad.

Como se observa en la tabla 1 y la, las pruebas de Control de Calidad realizadas a el principio activo de cloropropamida y a los tres lotes de tabletas estudiados cumplen con las especificaciones establecidas en la USP XXI (1) y del laboratorio.

5.2 Estudio de disolución.

Por medio del diseño de bloques aleatorios se determicó, si existía diferencia significativa de disclución entre pH (tratamientos) y lotes (bloques). En la tabla II de ANOVA, se observa que para tratamientos la Pc es mayor que la Ft, con un nivel de significancia de 1 %, con gl. (7.14) y para bloques, la Fc es menor que la F., con un civel de significancia de 1 %, con gl. (2,14). Estableciendose que existe diferencia sig pificativa de disolución entre pH (tratamientos) y no existe diferencia significativa de disolución entre lotes (bloques). es decir que hay un control de fabricación de lote a lote.

Se puede corroborar lo auterior de una forma cualitativa, al observar la grafica I, en donde se examina el comportamiento obtenido en el porciento disuelto para tabletas de cloropro pamida a los 60 minutos en función del pH. El porciento disuel to varia considerablemente en función de los cambios de pH. A pH de 1.2 a 5.8 es poco perceptible la variación que se da (recta casi horizontal) obteniendose el porciento disuelto más alto a pH = 6.8 (pico hacia arriba), a pH de 8.0 hay un decremento (pico hecia abajo), aunque posteriormente el por ciento disuelto se incrementa a pli 9.0 y 10.0 . Actualmente la pruebe de disolución de la USP XXI (1), para tabletas de cloropropamida específica que no debe disolverse menos de 75% de cloroproposition a los 60 minutos. A pH mayores o iguales a 6.8 cumplen con lo estipulado, en cambio a pH de 1.2. 3.5 y 5.8 no pasan con esa condición de disolución propuesta por la

USP XXI (1). El estudio de disolución del principio activo sir vió para determinar que el comportamiento de disolución obteni do a los diferentes pH es similar que en los lotes trabajados.

En las gráficas II, III, IV, correspondientes a los tres lotes, se determinó el perfil de disolución para tabletas de cloropropamida a diferentes pH, para establecer el comporta — miento que sigue. En todos los pH el comportamiento es el de una curva logarítmica. Se observa que todas las curves se concentrac en dos secciones. En una sección estan las curvas a pH 1.2, 3.5, 5.8 y en la otra sección que son valores mucho más altos, están las curvas a pH 6.8, 7.0, 8.0, 9.0, 10.0, siendo el perfil de disolución mayor a pH 6.8.

5.3 Determinación de modelo.

En las tablas II, III, IV, muestrao los resultados promedio (n=6), obtenidos para tabletas de cloropropanida a los 10, 20, 30, 40, 50, 60, 70, 90, 120 de los lotes trabajados a diferentes pH. En las correspondientes columnas se encuentran, el porciento disuelto (%D), miligramos disueltos (mg), cantidad remanente (W), fracción liberada (ft), con el fin de determinar el modelo al que se ajusta; orden coro, primer orden , raíz cúbica.

Se determinó por comparación de r², b , de cada modelo, que los datos obtenidos se ajustaron al modelo de la raíz cúbica además de cumplir con las características propias de este modelo como son ; La disminución gradual de la partícula esférica cuando esta se va disolviendo, además de tener una de sintegración rápida.

En las gráficas V, VI, VII, correspondientes a los tres lotes de tabletas de cloropropamide con la aplicación del modelo de la raíz cúbica de Hixor-Crowell, ne observa que las pendientes de cada recta (pH) de mayor a menor, son en el siguiente orden:

ESTA TESIS NO DEBE SALIR DE LA BIBLIOTECA

pH 6.8 > 10.0 > 9.0 > 7.0 > 8.0 > 1.2 ≈ 5.8 ≈ 3.5 . El valor de estas pendientes corresponden a las constantes de velocidad de liberación en función de la fracción, siendo el valor mayor a pH 6.8 (tabla VI). Esto se observa más claramente en la gráfica VIII y IX. A pH de 1.2 a 5.8 los valores de las constantes no varian significativamente. En cambio a pH mayores de 5.8, la variación en los valores de las constantes es más notable, siendo más marcada en el intervalo de pH 6 - 7 en el cuál con mínimas variaciones de pH, causa grandes cambios en las constantes , por consiguiente hay que tener cuidado al trabajar en estas condiciones.

5.4 Validación.

La validación se llevó acabo para el medio de disolución a pH = 6.8 puesto que se determinó que la cinética de disolución es mayor a ese pH.

5.4.1 Livearided del sistema.

La determinación de cloropropamida en el medio de disolución a pH = 6.8 mostró, utilizando el método espectofotométrico, que el sistema es lineal en el intervalo de concentraciones de 2.777 mcg/ml a 22.216 mcg/ml , (gréfica $\overline{\mathbf{x}}$). Está linearidad se apoya con un análisis estadístico, con un coeficiente de correlación promedio de 0.99999 el cuál se acerca a una linea recta, utilizando el método de minimos cuadrados. Por otro lado se obtuvieron intervalos de confisaza para la ordenada al origen y peodiente, además se hizó una prueba de hipótesis para la ordenada al origen por medio de una prueba "t" siendo el valor de $\mathbf{t}_{\rm c}$ menor que el valor $\mathbf{t}_{\rm 0.95}$ con 13 gl, lo cuel indica que el resultado obtenido no es significativamente diferente de cero, para el nivel de confianza y grados de libertad trabajados. Por consiguiente este análisis indica un sistema lineal.

5.4.2 Linearidad del método.

La linearidad del método (gráfica XI), se hizó por el método de mínimos cuadrados, con un coeficiente de correlación promedio de 0.9999, cuyo valor se acerca a una linea recta, se obtuvieron los intervalos de confianza para la ordenada al origen y pendiente, de acuerdo a las pruebas de hipótesis realizadas tanto para el intercepto como para la pendiente, los resultados obtenidos pueden considerarse cero y uno respectivamente de acuerdo al nivel de confianza y grados de libertad trabajados. Por consiguiente esto indica un método lineal satisfactorio.

5.4.3 Precisión y exactitud.

Se evaluó considerando los datos de porciento recobrado. Se analizaron por medio de la prueba "t" para media. Los valores de to y de to.95, con 9 gl, muestran que están dentro del criterio de aceptación, con un intervalo de confianza de 99.199 a 100.175%. Además tiene un coeficiente de variación de 0.684% que es menor al coeficiente de variación del % que está considerado como el valor límite para métodos " in vitro". El otro criterio para exactitud $\overline{X} = 98\% - 102\%$ promedio de recobro el cuál está dentro de este criterio. Por consiguiente se considera evidencia suficiente para inferir que el método es preciso y exacto.

5.4.4 Reproducibilidad.

La reproducibilidad se midió, llevaodo acabo el analisia en diferentes días y por diferentes analistas. Se probó el efecto de cada uno de los tratamientos (analista , día), con la ayuda de la tabla ANOVA (tabla Xa.) considerando como criterio la prueba " F " . El valor de $F_{\rm C}$ es mesor que el valor de $F_{\rm t}$, con un nivel de significancia de 95%, con l gl. Por consiguiente se considera evidencia suficiente para apoyar que el método es reproducible al no apreciar efecto alguno de ninguna fuente de variación.

5.4.5 Estabilidad de la muestra.

La gráfica XII, corresponde a la estabilidad de la muestra sometida a la oscuridad, refrigeración y radiaciones de luz blanca a las 6, 12, 18, 24, 30 y 48 horas. Se observa que a las <4 horas, el porciento de contenido de principio activo de cloropropamida permanece casi invariable en la oscurided y refrigeración, auque posteriormente varía el contenido de principio activo con el tiempo. En cambio, con las radiaciopes de luz blacca a las 6 horas se ve afectado el porciento de contevido de principio activo de cloropropamida, el cuál ha disminuido, incrementandose después estos valores con respecto al valor original el porciento de contenido de principio activo de cloropropamida, aproximadamente un 12% . For consiguiente es recomendable que al obtener las muestras se lear ec el apectofotómetro enseguida, sino fuese posible. guardar las muestras protegidas de la luz, para obtener unos datos confiables.

CONCLUSIONES

- Los tres lotes de tabletas de cloropropamida y el priocipio activo analizados cumplieros con las especificaciones de Control de Calidad de la USP XXI (1) y del Laboratorio.
- La prueba de disolución mostró que a pH 1.2, 3.5, 5.8, no cumple con la condición de la USP XXI (1). En cambio a pH 6.8, 7.0, 8.0, 9.0 y 10.0, sí cumplen con la condición (no menos del 75 % a los 60 minutos). Obteniendoso un perfil de disolución mayor a pH = 6.8.
- No se encontró diferencias de disolución entre lotes. En cambio sí existe diferencias de disolución entre pH, debido principalmente a la solubilidad del principio activo de cloropropamida en los diferentes medios de disolución de pH.
- En base a los datos obtenidos se puede determinar que el comportamiento del fármaco se ajusta al modelo de la raíz cúbica de Hixon-Crowell, con el cuál se caracterizó el comportamiento cinético de disolución del fármaco.
- La mayor constante de liberación se obtiene a pH = 6.8
- El método espectofotométrico cumple con los requerimientos de linearidad, exactitud, precisión y reproducibilidad, para las concentraciones trabajadas así como el nivel de confianza y grados de libertad fijados.
- Las muestras de disolución de cloropropamida son más estables cuando se protegen de la luz.

Capítulo V

BIBLIOGRAFIA

- The United States Pharmacopeia XXI. The National Formulary XVI. Mack Pub. Co. Easton, Pa. Pennsylvania 206 - 207, 1242 - 1245, 1419 - 1420 (1985).
- British Pharmacopeia. Volume 1 Her Majesteyé Stacionary Office England 746 (1983).
- AIACHE, J.M. et. al., "Biofarmacia"
 El Manual Moderno, México, D.F. 19, 130-150 (1982).
- WAGRER, J.G., "Biopharmaceutics and Relevant Pharmacokinetics" Drug Intelligence Publications, Hamilton, USA 99, 115-116 (1971).
- 5. NOYES, A. A. and WHITNEY, W.R., J. Am. Chem. Soc., 19;93) (1897)
- ALONSO,V., "Apuntes Sobre Teorias de Disolución".
 PES-Guautitian (1986).
- MERNST, W. and BRUNNER, R.E., Zeit.Phys.Chem., 47;52 (1904).
- HIXON, A.W. and CROWELL, J.H., Ind. Eng. Chem., <3;923 (1931).
- 9. DATCEYERVS, P.V., Ind. Eng.Chem., 43;1460 (1951).
- 10. NIEBERGAIL, P.J. and GOYAN, J.E., J.Pharm.Sci., 52; 29 (1963).
- TOOR, H.L. and MARCHELIO, J.M., A.I.Ch.E. Journal., 4;97 (1958).
- 12. NEDICH, R.L. and KILDIG, D.O., J. Pharm. Sci. 61;214 (1972).
- mAnt'In, A.N. and et.al., "Physical Pharmscy"
 ed. Lea-Febriger, Philadelphia 401-404, (1983).
- 14. SKELLY, J., J. Clim. Pnarmacol., 16;539 (1976).

- REMINGTON, "Farmacia" Tomo II Médica Panamericana, Buenos Aires Argentina. 896-931 (1987).
- 16. GARCIA, C.R., GARZON, A., GARISO AIN, Ma. de Jesús.
 " Aspectos Prácticos de Biofarmacia"
 Farmetrix. Capítulo 8 (1977).
- 17. RIEGELMAN, S., Pharmacology., 8;118 (1972).
- MARTINDALE, "The Extra Pharmacopeia"
 The Pharmacoutical Press 27th Ed. London 809-812 (1977).
- The Merck Index
 Teeth Edition Merck. Co. Inc. USA 309 (1983).
- CLARKE, E.G.C., "Insolation and Identification of Drugs" Pharmaceutical Press, Great Britain, 257-258 (1973).
- 21. GOODMAN y GIIMAN., et.al., "Las Bases Farmacológicas de la Terapeútica", Medica Panamericana, Buenos Aires Argentina 1425-1429 (1986).
- 22. LITTER MANUEL., "Farmacologia Experimental y Clinica". El Ateneo 5º Ed. Buenos Aires Argentina 989-998 (1977).
- 23. SNEDLCOR, G.W. and COCHRAN, W.G., "Métodos Estedísticos" Continental, México Capítulo 6 (1979).
- 24. ROBERT JOHNSON, "Estadística Elemental" Trillas México, 369-378 (1982).