

Universidad Nacional Autónoma de México

Facultad de Quimica

"DETERMINACION DE LA ENERGIA LIBRE DE TRANFERENCIA DEL SULFATO DE COBRE AL PASAR DE AGUA A UNA MEZCLA DE ACETONA - AGUA "

> T E S I S Que para obtener el Titulo de Q U I M I C O P r e s e n t a IRMA CAHERO CORNEJO

México, D. F.

1989

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Lista de Símbolos

å	diámetro medio iónico
a	actividad de las especies
a±	actividad media iónica
Å . ·	angstrom 1×10 ⁻⁸ cm
A*	constante de Debye-Hückel
в*	constante de Debye-Hückel
с	concentración g/l de solución
D*	constante dieléctrica
E°	potencial estandar
ē	carga eléctrica
F	constante de Faraday
f	fugacidad
f°	fugacidad en su estado tipo
G	energía libre de Gibbs
G°	energía libre estandar de Gibbs
н	entalpía
5 I	fuerza iónica
i	factor isotónico de Van't Hoff
к	constante de equilibrio
L	solubilidad
ln	logaritmo natural
log	logaritmo en base 10
М	peso molecular
m	concentración en g mol/kg de disolvente

	$\left\{ 1, 2, 1, \frac{1}{2}, \dots, 2\right\}$	
	N	NO. de Avogadro
	n	número de moles
	P	presión
	q	calor
	R	constante de los gases
	r	radio iónico
	S	entropía
	Т	temperatura °K
	t	número de transferencia
1. N. 1	v	número de iones en los cuales una molécula se
		disocia
	w	trabajo
	z+	carga del anión
	z_	carga del catión
•	æ	grado de disociación
	. 7	coeficiente de actividad
	8±	coeficiente de actividad medio iónico
	Ψ	potencial interno eléctrico de una fase
	Д	potencial químico
	ū	potencial electrooufmico
	G	trahajo eléctrico en una celda
ter an		

INDICE

Página

1

5

7

13

16

26

32

37

39

47

63

Introducción Canitulo I Termodinámica de soluciones. Relación entre ΔG v el \mathcal{G} Eléctrico en una celda. Capítulo II Termodinámica de soluciones de elec trolitos. Interacción ión-dipolo en soluciones de electrolítos. Interacción ión-ión en soluciones de electrolitos. Capitulo III Termodinámica electroquímica. Potencial electroquímico. Capitulo IV Celdas electroquímicas. Clasificación de los electrodos. Clasificación de celdas electroquími cas. Capítulo V Parte experimental. Capítulo VI. Resultados.

	Página
Capítulo VII Análisis de resultados.	85
Conclusiones.	87
Apéndice A	90
Apéndice B	95
Apéndice C	96
Apendice D	98
Bibliografia.	99

INDICE

Tablas y Figuras

Página

capicato II	
Figura 1. Celda electrolítica	8
Figura 2. Solvatación del NaCl	14
Figura 3. Gráfica del coeficiente -	
de actividad de un electrolito y un	
no electrolíto.	21
Tabla 1. Valores de coeficientes de	
actividad medios para una solución	
de NaCl.	23
Figura 4. Variación del coeficiente	
de actividad medio vs. fuerza iónica	
de una solución de NaCl.	24
Capítulo III	
Tabla 1. Valores de $\Delta G_{\pm r}^{\circ}$ del HCl	
acuoso en mezclas de agua-metanol	
agua-dioxano.	30
Capitulo V	
Tabla 1. Constantes dieléctricas a d <u>i</u>	
ferentes concentraciones de agua-ace-	
tona.	48
Tabla 2 y 3. Matriz de experimentos.	49
Figura 1. Calibración de la media cel	
da.	52
Figura 2. Electrodo de Hidrógeno	53
Figura 3. Electrodo de Hg ₂ SO ₄ .	54
lizado.	55

Figura 5. Conexión eléctrica.	57
Figura 6. Celdas electroquímicas A y B.	58
Figura 7. Esquema de toda la instala	
ción eléctrica.	59
Figura 8. Esquema de la conexión eléc-	
trica.	61
· •	
Capitulo VI	
Tabla 1. Valores obtenidos de Fem's pa-	
ra el sistema electroquímico A.	63
Tabla 2. Valores obtenidos de Fem's pa-	
ra el sistema electroquímico B.	63
Tabla 3. Potencial estandar en función	
de molalidades en mezclas de acetona-	
agua a diferentes temperaturas.	66
Tabla 4. Potencial estandar en función	
de fracciones molares de soluto a dif <u>e</u>	
rentes temperaturas en mezclas de acet <u>o</u>	
na-agua.	67
Tabla 5. Coeficientes de actividad en -	
sistemas acuoso y mezclas de acetona-	
agua a diferentes temperaturas.	67
Tabla 6. Cantidades termodinámicas de -	
transferencia del CuSO ₄ del sistema acu	<u>o</u>
so a mezclas de acetona-agua a 25°C.	70
Gráficas _D E <mark>m</mark> vs. I	71
Gráficas - log &± vs. √I	78
Capítulo VII	

Tabla 1. $\Delta_{tr}^{G^{\circ}}(e1.)$ a diferentes conce<u>n</u> traciones de acetona-agua y a diferentes temperaturas. Tabla 2. $\Delta_{tr}^{G^{\circ}}(no \ el.)^{a}$ diferentes con-centraciones de acetona-agua y a dife-rentes temperaturas.

86

85

INTRODUCCION

Los fenómenos químicos, desde tiempos remotos, han sido objeto de investigación, por lo que se ha logrado crear criterios que explican el porqué de éstos. Algunas de las i<u>n</u> quietudes actuales se han dirigido al estudio del comporta-miento de soluciones de sales que al disolverse tanto, en -agua como en sus mezclas con distintos disolventes, presentan diferentes características en cuanto a sus propiedades term<u>o</u> dinámicas.

Recientemente [23,25,26], se han venido estudiando las propiedades termodinámicas de algunos electrolítos en base al cobre en disolventes como: etilénglicol, propilénglicol, agua -etilénglicol, metanol-agua, etc. Sin embargo la bibliografía nos muestra que muy pocos trabajos se han realizado en cuanto a la determinación de las propiedades termodinámicas de electrolitos 2:2 en agua y mezclas de disolventes.

Basándose en el hecho de que al mezclarse 2 sustancias o más, se pueden obtener las propiedades termodinámicas de éstas si se conocen las propiedades de los constituyentes p<u>u</u> ros, es posible obtener los valores de $\triangle G$, $\triangle H$, Y $\triangle S$ tanto para soluciones electrolíticas como para soluciones no -electrolíticas. El objetivo de la presente, es la determinación de la FEM de un electrolito 2:2, concretamente $CuSO_4$, al disolve<u>r</u> lo en agua y en mezclas de agua-acetona a diferentes concentraciones y temperaturas.

En base a los datos de FEM obtenidos y estandarizados, se calcularon las energías libres de -Gibbs de transferencia, haciendo una separación de éstas en dos contribuciones:

- a) La parte no electrostática.
- b) La parte electrostática.

A partir de esta separación, se analiza el comportamiento de los sistemas termodinámicos est<u>u</u> diados.

Las energías libres de transferencia en disolventes no acuosos determinan grandes cambios en las velocidades de reacción, en las solubilidades, en los potenciales redox, en las constantes de estabilidad y en los coeficientes de distribución de los sistemas termodinámicos.

Todos estos conceptos han cobrado una importancia fun damental en los sistemas termodinámicos en el desarrollo -tecnológico actual[1], ya que las aplicaciones que se han inferido de éstos, han logrado avances en los procesos de extracción de metales importantes, por citar uno de ellos. Sin embargo, es conveniente mencionar el amplio desarrollo de trabajos de investigación de procesos biológicos en los que participan mezclas de disolventes y en una gran cantidad de ellos, el cobre.

Si queremos comprender la alta complejidad de la química de las soluciones acuosas y el caracter único del agua, necesitamos entender primero la química de muchas soluciones no acuosas sencillas [1-11].

CAPITULO I

Termodinámica de Soluciones

Las soluciones son sustancias que se mezclan intimamente de tal manera que el resultado es únicamente una sola fase.

Desde el punto de vista de estado de agregación, --las soluciones pueden ser: sólidas, líquidas y gaseosas; y de componentes pueden ser: binarias cuando están com-puestas por dos constituyentes, ternarias por 3, cuaternarias por 4, etc.

Todos los estudios realizados en el campo de las soluciones, indican que existe una dependencia bien defin<u>i</u> da entre la naturaleza del soluto, del disolvente, de la temperatura, y de la presión; en este sentido la determ<u>i</u> nación del comportamiento de una solución resulta un pr<u>o</u> blema complejo.

Intrinsecamente la termodinámica no considera el --tiempo de transformación de un proceso, ya que su único interés se centra en los estados iniciales y finales del sitema, sin tomar en cuenta absolutamente la velocidad con que tal cambio se produce; lo importante en todo caso es la espotaneidad de las transformaciones fisicoquímícas.

Las propiedades termodinámicas de las soluciones son descritas por las siguientes ecuaciones:

 $G = \bar{G}_1 n_1 + \bar{G}_2 n_2 + \dots + \dots + \dots$ (1)

Para la Entropía y la Entalpía total de una solución en forma semejante:

$$S = \overline{S}_1 n_1 + \overline{S}_2 n_2 + \dots + \dots + \dots$$
 (2)

 $H = \overline{H}_{1}n_{1} + \overline{H}_{2}n_{2} + \dots + \dots$ (3)

Donde $\overline{G}_1, \overline{G}_2$ = Energía libre molar de Gibbs para cada - componente.

<u></u> ⁵ ₁ ^{, 5} ₂	=	Entropía molar para cada componente.
H ₁ ,H ₂	.=	Entalpía molar para cada componente.
n, , n ₂	=	No. de moles de cada componente.

Generalmente las ecuaciones termodinámicas obtenidas para sistemas ideales (apéndice A) no se pueden aplicar al caso de sistemas reales ya que en estos últimos, los cambios de Energía Libre no son reproducibles por ecua-ciones aplicadas a sistemas ideales, sino por relaciones más complicadas.

G. N. Lewis logró introducir dos cantidades termod<u>i</u> námicas que anteriormente no se habían considerado, y así corregir las simples ecuaciones de Energía Libre p<u>a</u> ra sistemas ideales; la fugacidad y la actividad.

Para comprender mejor estos conceptos, consideremos un sistema compuesto de agua y su vapor. A temperatura constante, existe una presión de vapor de agua bien definida sobre el líquido, que proviene de la fase líquida y representa una tendencia de éste a pasar a la fase vapor y a su vez el vapor tiende a escapar por condensación hacia la fase líquida. Cuando estas tendencias de escape se igualan, el sis tema se equilibra, por lo que la tendencia al escape es la misma en todas las partes de éste.

Esta tendencia puede ser medida por una cantidad f -Llamada fugacidad, que esta relacionada con la Energía -Libre molar definida en los siguientes términos:

 $G = RT \ln f + B$. . (4)

donde B es una función de estado que depende sólo de la temperatura y la naturaleza de la sustancia.

Como la constante B no puede ser evaluada ya que no conocemos los valores absolutos de la energía libre de -Gibbs, hubo de referirse todas las mediciones de una su<u>s</u> tancia a un punto de referencia.

Si designamos a G° como energía libre y f° a la fugacidad en un estado tipo, entonces:

 $G^{\circ} = RT \ln f^{\circ} + B$. . (5)

(6)

(7)

(8)

luego

 $G - G^{\circ} = RT \ln \frac{f}{f^{\circ}}$ con lo que podemos escribir $\frac{f}{f^{\circ}} = a$

Entonces la ecuación (6) quedará descrita por:

 $G = G^{\circ} + RT \ln \alpha$.

La actividad es la concentración efectiva de una especie. En soluciones, la actividad es igual a la concentración multiplicada por un factor que es denominado coeficiente de actividad, el cual por lo general, para soluciones diluídas se acerca a la unidad.

Para cada uno de los constituyentes de una solución, la energía libre molar parcial se puede escribir:

 $\vec{G}_{i} = G^{\circ}_{i} + RT \ln ai$. . (9)

La diferencia de energía libre por mol, escrita en términos de la ecuación (8), correspondiendo al paso de una --energía libre G_1 y su actividad a_1 a otra energía libre G_2 y su actividad a_2 se puede escribir:

 $\Delta g = G_2 - G_1 = (G^\circ + RT \ln a_2) - (G^\circ + RT \ln a_1) \quad . \quad (10)$ $\Delta g = RT \ln \frac{a_2}{a_1} \qquad . \quad . \quad (11)$ y para n moles $\Delta G = nRT \ln \frac{a_2}{a_1} \qquad . \quad . \quad (12)$

Cuando se realiza el proceso de disolución siguiente:

 $n_1A + n_2B =$ solución binaria

el cambio para la energía libre de Gibbs, la entalpía y la entropía vienen dadas por las siguientes expresiones:

 $\Delta mG = n_1 (\overline{G}_1 - G^\circ_1) + (\overline{G}_2 - G^\circ_2) n_2 . . (13)$ $\Delta mH = n_1 (\overline{H}_1 - H^\circ_1) + (\overline{H}_2 - H^\circ_2) n_2 . . (14)$ $\Delta mS = n_1 (\overline{S}_1 - S^\circ_1) + (\overline{S}_2 - S^\circ_2) n_2 . . (15)$

- 4 -

Habiendo una relación entre estas tres cantidades a una determinada temperatura.

(16)

(18)

Cuando se trata de celdas electroquímicas, y aún de los electrodos simples, los potenciales estan determinados no solo por la naturaleza de los constituyentes electródicos sino también por la temperatura y las actividades de las soluciones empleadas, la dependencia de las fuerzas electr<u>o</u> motrices de las últimas variables mencionadas se deduce te<u>r</u> modinámicamente.

En una reacción cualquiera tal como:

$$aA + bB + \dots = cC + dD + \dots$$

El cambio de la energía libre G, está dada por la si--guiente ecuación :

$$\Delta G = \Delta G^{\circ} + RT \ln \frac{a_c^{\circ} a_p^{\circ}}{a_A^{\circ} a_B^{\circ}} \qquad . \qquad (17)$$

Las actividades en el numerador son las actividades de los productos y los del denominador, de los reactivos; ΔG° es el cambio que acompaña a la reacción cuando las actividades de los productos y reactivos son iquales a la unidad.

Relación entre la △G y el 🗭 Eléctrico en una celda.

El método electroquímico es empleado ampliamente para investigar las propiedades termodinámicas en la mayoría de los procesos químicos con relativa sencillez, así como para calcular circuitos electroquímicos en equilibrio.

- 5 -

Si definimos E° como :

sustituyendo (18) y (19) en la ecuación (17)

- nFE=nFE° + RT ln
$$\frac{a_c^c \quad a_D^d}{a^a \quad a^b}$$
 . (20)
 $A \quad B$
E= E° - RT ln $\frac{a_c^c \quad a_D}{a^a \quad a^d}$. . (21)
 $A \quad D$

La ecuación de Gibbs-Helmholtz si la aplicamos a circuitos electroquímicos nos producirá algunas consecuencias importantes.

La ecuación de Gibbs-Helmholtz, la podemos escribir:

	$\triangle G = \triangle H + Td (\triangle G)/dT$	•	•	(22)
У	como $d(\Delta G)/dT = -\Delta S$	•	•	(23)
y	por definición : △G=△H - T △S			(24)

en donde ΔH representa el efecto térmico de la reacción química si es irreversible en condiciones de volúmen con<u>s</u> tante. La ΔS caracteriza la variación de la entropía d<u>u</u> rante el transcurso de la reacción química.

Tendremos en consecuencia que :

$$S = nF \frac{dE}{dT}$$
 (25)

$$H = (T \frac{dE}{dT} - E) nF$$
 . (26)

CAPITULO II

Termodinámica de Soluciones de electrolítos.

El desarrollo de la electroquímica ha sido altamente favorecida por un gran avance de la termodinámica que es el -estudio del calor y su relación a otras formas de energía.

Un sistema termodinámico puede ser cualquier porción arbitraria de materia o espacio. Puede ser, o un volúmen de gas, una celda galvánica, etc.

Cuando el calor interviene en un sistema termodinámico puede tener 2 funciones:

Puede causar el sistema trabajo extermo
 Aumentar el total de energía del sistema

 $\Delta E = E_{R} - E_{\Delta} = q - w \qquad . \qquad (1)$

q es el calor absorbido por el sistema, ΔE es el incremento total de energía siendo la diferencia entre el final E_B e inicial E_A ; w es el trabajo externo.

Para cambios diferenciales se puede escribir de la si--guiente manera:

 $dE \approx 3q - 3w \qquad (2)$

Un ejemplo hará más clara las diferencias termodinámicas relacionadas con las celdas galvánicas.

- Zin SQ, - - - H, SQ, - -

En la fig. 1 se muestra una pieza de zinc colocada en una solución conteniendo H_2SO_4 y ZnSO₄, el otro electródo puede ser un metal conductor químicamente inerte tal como el platino.

Si los dos electródos son conectados eléctricamente, -tendrá lugar la siguiente reacción.

 $Zn + H_2SO_4 \implies ZnSO_4 + H_2$

Con la energía eléctrica pasando a través del alambre conectado a los dos electrodos, puede hacerse el trabajo que será designado como we. La diferencia ΔE será igual a E_B de los productos, menos E_A de las sustancias reactivas, w'es el trabajo realizado por la celda contra la presión atmosférica.

 $\Delta E = E_{B} - E_{\Delta} = q \quad (w' - we)$

El ejemplo descrito anteriormente obedece a circunstancias que en otros tiempos no se comprendían bien; concreta mente, la idea de que en las soluciones de electrolítos existan cargas libres o iones; antiguamente no se había -

fig. 1

considerado.

No fué hasta el siglo XIX en que se formularon modelos teorícos que explicaban el fenómeno de la conductividad en soluciones de electrolítos,[12].

Presentaban por ejemplo, la descomposición del agua en hidrógeno y oxígeno en forma de dipolos, colocándolos en c<u>a</u> denas entre el cátodo y el ánodo de la celda electrolítica y así de esta manera en la electrólisis, el extremo positivo del dipolo se orientaba hacia el cátodo, desprendiendo moléculas de hidrógeno, el extremo negativo orientado hacia el ánodo desprendía oxígeno.

Este modelo fué rechazado porque no justificaba a la m<u>a</u> yoría de los electrolítos.

En la actualidad se sabe que las soluciones no electrolíticas en agua y en otros disolventes no conducen la electricidad, pero existen sustancias especialmente sales, - ácidos y bases, que al disolverse en agua o en un disolvente adecuado, originan soluciones que conducen la electricidaden mayor o menor proporción y que no precisan de electric<u>i</u> dad para la formación de iones.

Al igual que las soluciones no electrolíticas, las ele<u>c</u> trolíticas también pueden estudiarse a través de las propi<u>e</u> dades coligativas como: presión osmótica, descenso de la pr<u>e</u> sión de vapor, aumento del punto de ebullición, descenso en el punto de congelación. Habiéndose observado que los val<u>o</u> res de las propiedades coligativas resultan ser siempre mayores que las que cabría esperar para las mismas concentraciones de soluciones no electrolíticas.

9 -

Los hechos estudiados experimentalmente han servido de base para la teoría de la disociación electrolítica que formuló S. Arrhenius en 1887.

- 10 -

Las tesis que fundamentan la teoría de Arrhenius son las siguientes:

 Las moléculas de ácidos orgánicos e inorgánicos se comportan como un gas ideal (no existe reacción alguna entre estos).

En esta teoría no se estudiaban las causas de la disociación electrolítica ni las causas por las cuales en las partículas cargadas no actuaban las leyes de la electrostática.

2. No existe una disociación completa de iones en la disolución sino únicamente una cierta fracción de -estos a la que llamaremos grado de disociación (\checkmark).

Cuando se disocia una molêcula de electrolíto se forman viones, por lo que su concentración en la solución resulta igual a v≃Cy las molêculas no disociadas serán -(1 -∞) C.

La concentración total molar de las partículas en solución será: $(1-\infty)C + \nabla \sim C = C [1 + \infty (\nabla -1)]$. La expresión 1 + $\infty (\nabla -1)$ equivale al aumento de la concen-tración molar total de las partículas en la solución -debido a la disociación, y si a esa cantidad le llamamos " i "

> $1 + \alpha (v - 1) = i$ $v = 1 \quad y \quad \alpha > 0 \quad i > 1$

como

en donde i = factor isotónico de Van't Hoff.

Esto nos permite dar una mejor explicación del aumento de los valores obtenidos de la presión osmótica, variación de la presión de vapor, disminución de la te<u>m</u> peratura de congelación y ascenso en la temperatura de ebullición en las soluciones de electolítos.

3. Cálculo de la constante de disociación. Según la teoría de Arrhenius para una molécula MA la --disociación electrolítica es igual a :

MA === M⁺ + A⁻

y obtenemos la siguiente expresión para el grado de dis<u>o</u> ciación electrolítica.

 $[MA] = C (1 - \alpha) \qquad [M^{+}] = [A^{-}] = \alpha C$ $\kappa = [M^{+}] [A^{-}] = \frac{\alpha^{2}C}{1 - \alpha}$

De acuerdo con Arrhenius, K es una constante para un ele<u>c</u> trolito dado y una determinada concentración.

Con los datos que se han obtenido de los cálculos de gr<u>a</u> dos de disociación de los electrolítos disueltos en agua,--muestra que casi todas las sales se encuentran muy disocia-das en iones; así como en ácidos y bases.

Cuando las soluciones acuosas de electrolítos presentan un alto grado de disociación, manifiestan valores altos de la conductividad; sin embargo hay soluciones que no son muy

- 11 -

buenas conductoras electricas ya que su conducta coligativa indica que solo estan ligeramente disociadas.

A las soluciones de las sustancias que presentan buena conductancia e indican un alto grado de disociación en sus soluciones, se denominan electrolítos fuertes, y aquellos -que muestran una conductancia pobre y un bajo grado de disociación se les denomina electrolítos débiles.

Por regla general se clasifican a los electrolitos fuertes de acuerdo con la carga de los iones que producen. Cua<u>n</u> do un electrolito origina iones con una sola carga, se denominan electrolitos 1:1 de tal manera que producen iones pos<u>i</u> tivos univalentes y negativos univalentes.

Los electrolítos de tipo 1:2 producen iones positivos -univalentes y negativos divalentes, como K_2 SO₄ , H₂ SO₄.

Existen electrolitos 2:1, 2:2, etc..

Sin embargo, la teoría de Arrhenius contiene dos deficie<u>n</u> cias considerables:

1° Dicha teoría no tomaba en cuenta la interacción de los iones con los dipolos del disolvente, además de no explicar las causas de la disociación electrolítica.

2° La interacción ión-ión tampoco la tomaba en cuen ta;consideraba a los iones como partículas de una gas -ideal, y el concepto de atracción y repulsión entre las partículas no se conocían. Para soluciones muy diluidas se observa que el comportamiento de las partículas siguen a la teoría de la disocia--ción, sin embargo los diferentes métodos de determinación -del grado de disociación « dan valores que no coinciden. Se puede calcular « si conocemos el coeficiente isotónico de Van't Hoff.

Otros métodos para determinar \prec , es mediante la medi-dición de la conductividad y por la diferencia de potencia-les en los extremos del circuito electroquímico en equili--brio.

Se ha observado que los valores obtenidos de \prec con los diferentes métodos, son bastante desiguales, particularmente en soluciones de electrolítos fuertes.

Por estas razones fué necesario establecer otras teorías que justificaran el comportamiento de las soluciones electr<u>o</u> líticas.

> Interacción ión-dipolo en las soluciones de electrolítos.

Mecanismos de formación de las soluciones de electrolítos.

Un sistema electroquímico incluye dos interfases, en cada uno de los cuales un conductor electrónico está en conta<u>c</u> to con un conductor iónico (o electrolíto), es usado en ele<u>c</u> troquímica para referir a un medio de conductividad a través del cual pasa la electricidad. Frecuentemente las moléculas se encuentran en forma de iones inclusive antes de disolverse y al ponerse en contacto con el disolvente se presenta la destrucción de la molécula -(que está generalmente en forma cristalina) debido a la inte<u>r</u> acción de los iones con los dipolos del disolvente.

Figura 2

Un esquema de la disolución de un cristal iónico se mues tra en la fig. 2 interactuando con el disolvente.

La solvatación de los iones se comprueba con los cálculos de la energía necesaria para destruir la red cristalina y elcálculo de la energía de solvatación, que al obtenerse con va lores del mismo orden, puede hacerse la consideración de que queda destruida la red critalina de la sal a causa de la in-teracción ión-dipolo. Existen algunos casos en que la solución del electrolíto realmente se produce al disolverse la sustancia, dentro de éstas se encuentra por ejemplo el $HCl_{(g)}$ que al interaccionar con el agua produce una solución de electrolíto fuerte.

 $HC1 + H_20 \longrightarrow H_30^+ + C1^-$

Desde el punto de vista termodinámico la relación que -existe en el cambio de energía libre de Gibbs en un proceso para la transferencia de iones a la solución es :

 $\Delta G = \Delta E + P \Delta V + V \Delta P - T \Delta S - S \Delta T$

si el proceso ocurre a T y P constantes

P = 0 , T = 0

entonces

 $\Delta G = \Delta E + P \Delta V - T \Delta S \qquad . . (4)$

Si el proceso es reversible, la energía térmica transferida dentro del sistema está relacionada con el cambio de entropía.

 $q = T \Delta S$. (5)

y de la primera ley de la Termodinámica :

$$\Delta E = q - N \qquad . . (6)$$

 $\Delta E = T \Delta S - W$

101

. . (7)

donde w es el trabajo total.

De las ecuaciones (4) y (7) obtenemos por lo tanto:

$$G = -(w - P\Delta V) \qquad (8)$$

La energía libre de Gibbs es igual al trabajo total (w) incluyendo el trabajo mecánico, menos el trabajo de expan-sión-compresión (P△V).

> Interacción ión-ión en soluciones de electrolítos.

Para soluciones diluidas, los iones se encuentran a gran distancia entre sí, por lo que prácticamente la interacción electrostática no parece ser una magnitud de importancia.

Sin embargo cuando la concentración de la solución va aumentando, los iones se encuentran con mayor frecuencia, por lo que las fuerzas electrostáticas tenderán a crear una distribución en donde un ión resulte rodeado por una nube de io nes de signo contrario. Cuando las concentraciones son altas, el grado de disociación y la conductividad afectan directame<u>n</u> te a todas las propiedades termodifiámicas.

De esta manera, cuando existen interacciones entre laspartículas de la solución, se requiere valorarlas mediante las actividades halladas experimentalmente para las concentr<u>a</u> ciones correspondientes.

Potencial Químico y Actividad.

El potencial químico se puede representar matemáticamen te de la forma siguiente:

$$\mathcal{M}_{i} = \left(\frac{\partial G}{\partial n_{i}}\right)_{n_{i\neq j}}, T, p \qquad (9)$$

Como i es una partícula cargada (un ión), el proceso de<u>s</u> crito en la ec.(9) será irrealizable físicamente ya que es -imposible añadir a la solución iones de una sola clase ya sea todos positivos o negativos. Para evitar este inconveniente se supone que la carga de la solución se compensa añadiendo una cantidad equivalente con iones de carga contraria, por lo que la energía libre de Gibbs varía al añadir la sal, entonces el potencial químico de la sal se describe por:

$$\mu_{\rm s} \simeq \mu_{\rm s}^{\rm o} + RT \ln \alpha_{\rm s} \qquad . . (10)$$

 $a_{s} = actividad de la sal$ $<math>\mu_{s}^{c} = valor tipo potencial químico que resulta si <math>a_{s} = 1$ $\mu_{s}^{c} = a suma de los potenciales químicos de cationes y ani<u>o</u>$ nes, y que corresponde a la siguiente ecuación:

$$\mu_{i} = \mu_{i}^{\circ} + RT \ln a_{i} \qquad . \qquad (11)$$

en el cual resulta imposible la determinación experimental de la actividad de un ión aislado.

Para relacionar las actividades de los iones aislados con la actividad de la sal en la disolución se establece que:

$$M_{v+}A_{v-} \longrightarrow v + M^{Z^+} + v - A^{Z^-}$$
 (12)

El potencial químico de la solución está relacionado con los potenciales químicos de cationes y aniones.

Para soluciones patrón también se cumple que:

$$\mu_{c}^{o} = v + \mu^{o} + v - \mu^{o} - ... (14)$$

restando la ecuación (10) de la (13)

$$RT \ln a_{c} = v + RT \ln a_{\perp} + v - RT \ln a_{-} \qquad . \qquad (15)$$

б

$$a_{5} = a_{+}^{V+} a_{-}^{V-}$$

cuando se trata de soluciones de elctrolítos, generalmente se describe el coeficiente de actividad medio:

$$a \stackrel{+}{=} \sqrt[v]{a}_{s} = \sqrt[v]{a+v+a-v-}$$

donde:

La actividad de un ión aislado puede representarse como:

$$a_{i}(m) = i_{i}m_{i}, a_{i}(c) = f_{i}c_{i}, a_{i}(x) = f_{i}^{(x)}x_{i}$$

donde \mathbf{r}_i , \mathbf{f}_i y $\mathbf{f}_i^{(\mathbf{x})}$ son los correspondientes coeficientes de actividad.

 m_{i} = molalidad del ión. c_{i} = molaridad del ión. x_{j} = fracción mol del ión. El coeficiente de actividad caracteriza el trabajo de --transporte del ión de una solución ideal a una real.

En todas las escalas de concentración los coeficientes de actividad medios al diluir infinitamente la solución tienden a cero y la solución adquiere propiedades ideales.

Existen diversos métodos para determinar la actividad y coeficientes de actividad.

La actividad puede determinarse por medio de las propied<u>a</u> des coligativas y/o de la medición de la diferencia de pote<u>n</u> cial en los extremos de un circuito electroquímico en equilibrio.

Todos los valores obtenidos de las actividades y coefi--cientes de actividad por los diferentes métodos termodinámi-cos coinciden dentro de los límites de precisión de cada exp<u>e</u> rimento.

Sin embargo éstos métodos no revelan en ningúno de ellos cuál es el mecanismo de interacción de los iónes.

Termodinámicamente se puede obtener la descripción ade-cuada de un sistema tanto suponiendo que \sim =1 como si se supone que \sim < 1.

En la figura 3 se compara el comportamiento del coeficie<u>n</u> te de actividad de un no electrolíto (azúcar de caña) y un -electrolíto en solución acuosa (LiCl). Debye y Hückel resolvieron el problema tanto de distribución como de interacciones de los iones en las soluciones de ele<u>c</u> trolítos con su modelo en donde los iones manifiestan un movimiento térmico (de naturaleza caótica); se escoge un ión central que es considerado inmóvil, rodeado de una atmósfera iónica donde la carga total de ésta, de acuerdo con el principio de electroneutralidad debe ser igual en valor absoluto a la carga del ión central ace de signo contrario.

En la teoría de Debye y Hückel se considera que las desviaciones de una solución real de la idealestá condicionada a la energía de interacción de los iones con la atmósfera -iónica

$$RT \ln \int_{\lambda}^{(\lambda)} = X_A \Delta G = -X_A \frac{2 \tilde{c} e_A x}{s \tilde{n} \epsilon \epsilon_{\bullet}} \qquad (16)$$

Tomando estas consideraciones se obtiene la primera apr<u>o</u> ximación de la teoría de Debye-Hückel para el coeficiente de actividad de un ión aislado.

$$\ln \left\{ \begin{array}{l} \sum_{k=0}^{1} \frac{z}{2(e_k)} \\ = -\frac{z}{8(\pi e_k \cdot k)^{N_k}} \sqrt{\sum n i \cdot \overline{z}} \end{array} \right\}$$
 (17)

$$\ln \int_{\lambda}^{(\mathbf{x})} = - \frac{e_{\lambda}^{2} e_{\lambda}^{2}}{9ii(\epsilon e_{\lambda} \kappa T)^{\mathbf{y}_{E}}} \sqrt{2 \times 10^{3} X_{A} I} \qquad (18)$$

dende I = fuerza iónica de la solución.

$$I = 1/2$$
 y $K = R/X_A$

Se podría obtener una ecuación más sencilla con logarit-mos decimales:

$$ogfi = zih\sqrt{1}$$

. (19)

donde $h = 1.825 \times 10^6 / (\epsilon T)^{3/2} (1/mol)^{1/2} K^{3/2}$

Figura

3

El coeficiente de actividad de un no electrolíto cr<u>e</u> ce monotónicamente con el aumento de concentración. En los electrolítos se observa al principio una disminución de δ + al aumentar la concentración.

Es entonces cuando surge la necesidad de estudiar ~ este comportamiento en soluciones de electrolítos (inter acción ión - ión) desde el punto de vista de la teoría de los modelos, ya que el método termodinámico no lo ex-plica.

21 -

Con la ecuación (19) se determina el coeficiente de actividad para un ión aislado, y para el coeficiente de actividad medio iónico:

$$\log f^{(x)} + = h \sqrt{1} \frac{v_{+} z_{+}^{+} + v_{-} z_{-}^{+}}{v_{+} + v_{-}} \qquad (20)$$

obteniendose asî la expresión denominada Ley Lîmite de Debye--Hückel:

$$\log f^{(x)} = -|z_+z_-|h\sqrt{I} \qquad . . (21)$$

Los resultados obtenidos de la expresión (21), son muy s<u>e</u> mejantes a los que J. Brönsted [12,14,17] encontrara empfricamente en soluciones de elctrolitos 1-1 valentes para concentr<u>a</u> ciones menores a 0.01 m/l.

$$\log \delta + = -0.5\sqrt{C}$$
 . . (22)

que es similar a la Ley Límite de Debye-Hückel para 25°C y un electrolíto 1-1.

$$\log \int_{-\frac{1}{2}}^{(x)} \frac{1}{2} = -0.507\sqrt{C} \qquad (23)$$

Sin embargo aunque se tuvieron logros importantes con esta teoría, estaba limitada hasta un cierto intervalo de conce<u>n</u> traciones.

El hecho de que en esta teoría se consideraba únicamente la interacción ión-ión de Coulomb y despreciaba cualquiera otras interacciones, dió origen a la segunda aproximación de Debye--Hückel en la cual se tomaban en cuenta las dimensiones propias de los iones.

- 22 -

La segunda aproximación de la tería Debye-Hückel tiene la forma:

$$log \int_{-\frac{1}{2}}^{(k)} = -\frac{la_{*}z_{-} |h\sqrt{l}|}{|+4|\theta|d|}$$

$$log \int_{-\frac{1}{2}}^{(k)} = -\frac{la_{*}z_{-} |h\sqrt{l}|}{|+d|\theta|\sqrt{l}|} \qquad . (24)$$

$$B = \frac{5.03.x10^{11}}{\sqrt{ET}} m^{-1} (1/mo1)^{1/2} K^{1/2}$$

donde

 \mathcal{L} = distancia hasta la cual pueden aproximarse los centros de los iones.

Los valores de los coeficientes de actividad medios para soluciones acuosas de NaCl a 25°C hasta m=0.1 se citan a --continuación.

m	0.001	0.005	0.01	0.05	0.1
(x) log f±					
(experiment.)	0.0155	0.032 7	0.0446	0.0859	0.1072
$log \left\{ \begin{array}{c} x \\ \pm \end{array} \right\}$					
(según4) si Å=4.8)	0.0154	0.032 5	0.0441	0.0844	0.1077

Sin embargo aún introduciendole los parametros d y = ala 2a. teoría de Debye-Hückel, tampoco permitió describir t<u>o</u> talmente $f^{(x)}$ + ya que experimentalmente se observó que al a<u>u</u> mentar las concentraciones se incrementaba bruscamente el -coeficiente de actividad y a la diferencia entre los valores experimentales y teorícos aumentaba notablemente.

- 23

Para expresar este aumento se introdujo en la ecuación (24) un sumando empírico.

$$\log \{ u_{\underline{i}}^{a} = -\frac{|\underline{z}_{\underline{i}}, \underline{z}_{\underline{i}}|_{\underline{j}} \sqrt{1}}{|\underline{i} + d B \sqrt{1}} + CI \qquad . (25)$$

donde C es una constante que carece de sentido físico determinado. A la ecuación (25) se le conoce con el nombre de: 3a. aproximación de la teoría de Debye-Hückel y permite el cálculo de los coeficientes de actividad hasta concentraciones molales de 1 a 2.

En la figura 4 se muestra la variación del coeficiente de actividad medio con la fuerza iónica de la solución acuosa del Cloruro de Sodio.

Figura 4

Primera aproximación de la teoría de Debye-Hückel
 Segunda aproximación de la teoría de Debye-Hückel
 Tercera aproximación de la teoría de Debye-Hückel
 Datos experimentales.

Existen en las soluciones de electrolítos los llamados pares iónicos, que son agregados de iones con carga opuesta, los cuales se forman debido a que en ocasiones la energía de atracción electrostática supera al moviemiento térmico.

La posibilidad de formación de estos pares iónicos aumen ta al incrementarse las cargas de los iones y al disminuir la constante dieléctrica del disolvente.

Es de esperarse que la unión de estos pares y agregados iónicos influyan en la conductividad de las soluciones y en consecuencia en la actividad química de las mismas.
CAPITULO III

Termodinámica Electroquímica.

Dentro de este capítulo se incluirá un término que presenta una importancia fundamental cuando se estudian los equilibrios en la superficie de separación interfa-cial, en la superficie de separación electrodo-solución, y es el potencial electroquímico (\bar{u}_{χ}) que se puede -determinar de modo análogo al potencial químico.

El potencial químico de una partícula no cargada ¿ - es definida por la siguiente expresión:

$$\mu_{i} = (\partial G / \partial n_{i}) \\ p, T, n_{j \neq i} \qquad \dots \qquad (1)$$

dónde G es la energía libre de Gibbs; p, la presión; T,la temperatura; $n_{j\neq i}$, el número de moles de todos los -demás componentes del sistema excluyendo el componente i.

La solvatación de una especie química provoca un --efecto energético, que depende a la vez de la naturaleza del soluto y de la del disolvente.

Este potencial químico o la actividad absoluta son más pequeños cuanto más enérgica es la solvatación del s<u>o</u> luto.

Cuando tenemos un soluto disuelto en una mezcla de disolventes, teniendo en cuenta la ecuación siguiente:

 $\mu_i = \mu_i^* + 2.3 \text{ RT } \log a_i$. . . (2)

tenemos que la diferencia de potenciales químicos que existe entre dos disolventes en los cuales el soluto i se encuentra a la misma actividad relativa a_i (aproximada mente, a la misma concentración C_i) es igual a la dife-rencia de potenciales químicos estandar μ_i^o (cuando $a_i = 1$). Esta diferencia corresponde a la variación de la energía libre de transferencia de soluto del disolvente S_1 al d<u>i</u> solvente S.

$$(\Delta G_{\mathcal{L},\mathcal{U}}^{\circ}) \stackrel{S_2}{S_1} = (\mu i)_{S_2} - (\mu i)_{S_1} \qquad ... (3)$$

Con este concepto podemos relacionar una actividad – $(ai)S_1$ del soluto en el disolvente S_1 con una actividad $(ai)S_2$ en el disolvente S_2 , y si consideramos que las -- dos soluciones tienen la misma actividad absoluta, usan- do la ecuación (2), obtendremos:

 $\{\mu_{i}^{\circ}\}_{S_{1}}^{+}$ 2.3 RT $\log(ai)_{S_{1}}^{-}=(\mu_{i}^{\circ})_{S_{2}}^{+}$ 2.3 RT $\log(ai)_{S_{2}}^{-}$.(4)

relacionando la ecuación (4) con la ecuación (3) tenemos:

$$\log (ai)_{S_1} - \log (ai)_{S_2} = \frac{(\Delta G^{\circ}_{t_1})_{S_2}}{2.3RT} = \frac{(\Delta G^{\circ}_{t_1})_{S_1}}{2.3RT} = \dots (5)$$

finalmente:

$$\frac{(\Delta G^{\circ}_{t,k})^{5} 2}{2.3 \text{ RT}} S_{1} = \log_{5}^{5} 2 \dot{s} \dot{i} \qquad \dots \tag{6}$$

donde S_1^2 coeficiente de actividad de solvatación.

La ecuación (5) se puede escribir de la siguiente forma:

$$(ai)_{S_1} = \frac{S_2}{S_1} \forall i - (ai)_{S_2}$$
 . . . (7)

Una especie iónica disuelta (sustancia ionófora ó -ionógena) necesariamente aporta por lo menos dos iones diferentes, un anión y un catión. Como no se puede estudiar por separado la transferencia de un solo ión de uno a otro disolvente, sino la del par (anión + catión) -que componen al electrolíto y así poder definir a partir de la energía libre de transferencia, el coeficiente de actividad de solvatación medio 8±.

Supongamos que el electrolito ABn que sufre la disocia-ción:

ABn — A + nB (sin especificar cargas de los iones).

el coeficiente de actividad para éste es definido por:

$$\log \frac{M_{1}}{M_{2}} (ABn) = \frac{\Delta G^{2} t_{1} (ABn)}{2.3 \text{ RT}(n+1)} ... (8)$$

El coeficiente de actividad medio representa la me-dia del efecto de la solvatación sobre los n+l iones que aportó el electrolíto ABn completamente disociado.

Cuando se trata de la transferencia de un ión de un disolvente molecular a otro con distintas constantes di<u>e</u> léctricas se evalúan de forma aproximada mediante la --ecuación de Born (1920), ya que ésta transferencia va -acompañada de una modificación de la energía libre debida a las interacciones electrostáticas entre el ión y el medio dieléctrico. Esta ecuación se basa en un modelo sencillo de esferas rígidas uniformemente cargadas, situadas en un medio dieléctrico contínuo, cuya constante dieléctrica es igual a D*.

$$\Delta G^{\circ}_{el} = 2.3 \text{ RT } \log \delta_{el} = \frac{N e^2 z^2}{2r} \left(\frac{1}{D^* s}\right) + \left(\frac{1}{D^* H_2 0}\right). \quad . \quad (9)$$

 $\Delta \tilde{G}_{th}^{\circ}$ = Contribución a la energía libre de transferrencia del efecto electrostático.

Esta misma ecuación permite calcular el valor del -efecto electrostático al coeficiente de actividad de sol vatación medio para un electrolíto 1-1, con cationes de de carga z^+ y radio r, y aniones de carga z^- y radio r,

$$\Delta G^{\circ}_{tn,e1} = 2.3 \text{ RTlogd}_{\pm e1}^{*} = \frac{N \cdot e^{2} z^{2}}{2} \left(\frac{1}{D^{*} s} - \frac{1}{D^{*} H_{2} 0} \right) \left(\frac{1}{r_{a}} + \frac{1}{r_{c}} \right)$$

Sin embargo es preciso señalar que aunque la ecua-ción de Born es valiosa, solamente proporciona una estimación a groso modo de la contribución electrostática a la energía libre de transferencia y al coeficiente de -actívidad de solvatación medio de un electrolíto.

Esta ecuación completamente teórica no reproduce con facilidad los valores reales.

- 1º Los valores de los radios iónicos, considerando los iones solvatados, son muy variables.
- 2º Se considera un medio dieléctrico continuo, que posee en cualquiera de sus puntos idéntica cons-tante dieléctrica.

Estas son las razones por las que no se puede obte-ner una exacta verificación de la ley de variación del log δ ó de log δ \pm . En la tabla 1 se reproducen los valores obtenidos de $\Delta G_{t,t}^{*}$ para la transferencia del ácido clorhídrico acuoso a mezclas de agua-metanol y agua-dioxano, tanto experi--mentales como los calculados en base a la ecuación (10).

TABLA 1

Metanol 90% (peso)	ΔG_{th}° medio 1.9 Kcal / mol.	$ \Delta G_{t \pi e 1}^{\circ} \frac{-calculado}{(con r_{cl}^{-24.6 Å} y)} \\ r_{H}^{+22.8 Å} \\ 1.3 Kcal /mol. $
Dioxano 70% (peso)	2.6 Kcal / mol	4.1 Kcal / mol.

Como se observa, las posibilidades de predecir los valores de los coeficientes de actividad de solvatación son limitadas, sin embargo las conclusiones derivadas de la ecuación de Born proporcionan datos muy valiosos para interpretar o predecir las modificaciones de las propiedades químicas que resultan de los cambios observados por la constante dieléctrica de un disolvente molecular.

Se han propuesto algunos métodos para la determinación experimental del coeficiente de actividad de solv<u>a</u> tación.

1º Uno de los métodos experimentales empleados --cuando se trata de sustancias moleculares que se disuelven únicamente como moléculas, es la medición de las solubilidades. Debido a que el potencial químico de las sustancias en cualquier disolución saturada en equilibrio con la sustancia pura, es la misma y su valor es igual al po-tencial químico de la sustancia pura, entonces el coef<u>i</u> ciente de actividad de solvatación es igual al cociente de las actividades relativas en una disolución acuosa saturada, entre la disolución saturada en el disolvente S.

Si las solubilidades son tan bajas como para que -a=S, entonces el coeficiente de actividad queda definido por:

2º En el caso de electrolítos fuertes, que se di-suelven unicamente como iones solvatados libres, también se emplean medidas de solubilidad como anteriormente se explicó. En este caso se ob-tendrá un coeficiente de actividad de solvata-ción medio de la sustancia.

En el caso de un electrolíto 1-1:

3º Otro método empleado para determinación de los coeficientes de actividad de solvatación medios, es la medida de fuerzas electromotríces.

Por ejemplo, la medida de dos fuerzas electromotríces estandar (E[°]agua y E[°]disolvente) de dos pilas similares:

Pt; H₂ (1 atm)
$$/$$
 H⁺X⁻(a^+ =1) en agua $/$ AgX (Sólido)
o en el disolvente $/$ Ag (Electrodo de ref.)
 $\Delta G^{\circ}_{f_{+}}(HX) = 4.6$ RTlog $\frac{1}{2} \pm (HX) = F$ (E[°]agua - E[°]disolv.) . .(13)

Potencial Electroquímico.

Como se mencionó anteriormente, el potencial elec-troquímico (*ūi*) viene dado por analogía con el potencial químico de una partícula cargada *i*.

$$\overline{\mu}i = \left(\frac{\overline{\partial G}}{\partial ni}\right) p, T, n \neq i \qquad . . . (14)$$

$$\Im G = -SdT + VdP + \sum_{ij} dn_i + F \sum_i Qdn_i \qquad (15)$$

de las ecuaciones (14) y (15) se deduce que para una pa<u>r</u> tícula cargada *i*:

Se ha demostrado teóricamente que termodinámicamente es imposible determinar el coeficiente de actividad de solvatación de un ión individual. La transferencia de un ión implica transferencia tanto de trabajo eléctri co como variación de la energía de solvatación y éstas se encuentran relacionadas con el potencial eléctrico -interno individual el cual es casi imposible de medirlo experimentalmente.

Guggenheim ^[18]tomando en cuenta este problema, -utilizó la propiedad al equilibrio de una especie quím<u>i</u> ca en dos disolventes distintos $S_1 y S_2$ de sus potenci<u>a</u> les electroquímicos en las dos fases en contacto.

$$\log(ai)_{s_1} - \log(ai)_{s_2} = \log \delta_{s_2}^{s_1}(i) + ZiF(\varphi_{s_2} - \varphi_{s_1})$$

. Si tenemos un sistema electroquímico donde se est<u>a</u> blece el quilibrio electrodo-solución:

$$\ddot{n}_{A}A + \ddot{n}_{B}B + ... + = \ddot{n}_{L}L + \ddot{n}_{M}M + ... + ... (18)$$

en donde: A, B, L, M etc. son los componentes de la --reacción; $\overset{n}{n}_{A}$, $\overset{n}{n}_{B}$, $\overset{n}{n}_{L}$, $\overset{n}{n}_{M}$ son los coeficientes estequim<u>é</u> tricos respectivos.

La variación de la energía electroquímica libre de Gibbs se puede definir como:

$$d\overline{G} = -SdT + VdP + \sum_{i} \frac{1}{i} \frac$$

Para la condición de equilibrio químico tenemos:

$$\left(\begin{array}{c} \underline{\partial \overline{G}} \\ \overline{\partial} \underline{N_{i}} \\ u_{i} \end{array}\right)_{p,T} = 0 \qquad \dots \qquad (20)$$

que toma el valor siguiente en el caso de la superficie electrodo-solución:

$$\left(\frac{\partial \overline{G}}{\partial \underline{N_i}}\right)_{p,T} = \sum_i (U_i \overline{\mu}_i) = 0 \qquad ... (21)$$

Al establecer el equilibrio entre dos metales distintos, existirá la igualación de los potenciales electroquímicos de los electrones en los metales -M₁ y M₂

 $\overline{e} (M_1) \xrightarrow{\overline{e}} \overline{e} (M_2)$ $\overline{\mu} e^{M_1} = \overline{\mu} e^{M_2} \dots \dots (22)$

en la superficie de separación metal-metal se obtiene:

$$\Psi^{M}2 - \Psi^{M}1 = (\mu e^{M}2 - \mu e^{M}1)/F$$
 . . . (24)

2º El equilibrio entre un metal M y una solución que contiene los mismos iones del metal, es dada por:

$$M^{Z^+}$$
 (metal) $\longrightarrow M^{Z^+}$ (solución)

y en la superficie de separación metal - metal se tiene:

$$\bar{\mu}_{M}^{M}z + = \bar{\mu}_{M}^{S}z + ...(25)$$

б.

1 🖴

$$\mu_{M}^{M} z^{+} + {}_{z+}F \Psi_{M}^{M} {}_{z} \mu_{M}^{S} z^{+} + {}_{z+}F \Psi_{N}^{S}$$
 . . . (26)

en consecuencia el potencial galvánico en la superficie de separación metal-solución de la sal tendrá la forma:

$$\Delta_{s}^{m} \Psi = \Psi_{s}^{m} - \Psi_{s}^{s} = (\mu_{M}^{s} z + -\mu_{M}^{m} z +)/F... (27)$$

como

У

La ecuación (27) se puede expresar:

$$\Delta_{\rm s}^{\rm m} \Psi = \text{constante} \quad \frac{+\text{RT}}{z+F} \quad \ln a_{\rm M} z+ \qquad . \quad (30)$$

En realidad lo que ocurre en la superficie de separ<u>a</u> ción electrodo-solución es que se presentan los dos tipos de equilibrios tanto el iónico como el electrónico, así al ponerse en contacto el metal con el disolvente se est<u>a</u> blece el equilibrio.

 M^+ (m) + $\overline{e}(m) \longrightarrow M^+$ (s) + \overline{e} (s)

donde $M^+(m)$ y $\overline{e}(m)$ son iones y electrones del metal en la fase metálica; $M^+(s)$ y $\overline{e}(s)$ son iones solvatados del metal y electrones en el disolvente.

En el equilibrio se obtiene:

 $\bar{\mu}_{M+}^{m} + \bar{\mu}_{e}^{m} = \bar{\mu}_{M}^{s} + + \bar{\mu}_{e}^{s}$. (31)

$$\widetilde{\mu}_{M}^{m} + = \overline{\mu}_{M}^{s} + y \overline{\mu}_{e}^{m} = \overline{\mu}_{e}^{s}$$

de acuerdo a la ecuación (27) obtenemos la ecuación de -Nernst en la siguiente forma:

$$\Delta_{s}^{m} \psi = (\mu_{M}^{s} + - \mu_{M}^{m})/F = (\mu_{e}^{m} - \mu_{e}^{m})/F \quad . \quad (32)$$

- 35 -

Las medidas experimentales no pueden proporcionar valores de los coeficientes de actividad de los iones si los consideramos separadamente, pero si el valor de los coeficientes de actividad medios de los iones de -los signos opuestos.

CAPITULO IV

Celdas Electroquímicas.

Las celdas electroquímicas han desempeñado un papel muy importante desde tiempos remotos, siendo la electro química una de las ramas más antiguas de la fisicoquími ca. Sus múltiples aplicaciones prácticas han aumentado día con día por lo que actualmente existe la posibili-dad de crear electricidad por medio de reacciones quími cas y así almacenar energía eléctrica en determinado -momento o lugar.

En las reacciones electroquímicas la estructura de la superficie de separación entre el electrodo y la solución juega un papel muy importante. Posee asimismo considerable importancia la orientación de los flujos del oxidante y del reductor hacia la superficie de los electrodos, y de los productos de reacción, desde los electrodos al seno de la solución.

Una reacción química que acompaña la transición de electrones entre las moléculas de las dos sustancias -que participan en la reacción, se puede expresar en la forma general siguiente.

Si se logra realizar la reacción (1) en el sistema electroquímico, se divide en dos semirreacciones de - oxidación-reducción.

 $0x_1 + \forall n_1 e^- = Red_1 \qquad . . . (2)$ $0x_2 + \forall n_2 e^- = Red_2 \qquad . . . (3)$

los coeficientes estequimétricos ${\mathfrak V}_1$ y ${\mathfrak V}_2$ tienen la si-guiente equivalencia:

$$n_1 v_1 = n_2 v_2 = n$$

donde n es el número de electrones que debe pasar por el circuito para que la reacción química (1) ocurra en un solo sentido.

Nernst supuso que en la superficie de separación -entre dos metales no existía diferencia de potencial,-esto es $\Delta_{M_1}^{M_2} \Psi = 0$, por lo que la fuerza electromotríz del circuitó únicamente se componía de dos saltos de p<u>o</u> tencial.

M₁/ solución I y solución II/M₂ . . .(A)

W.Ostwald ^[12] consideró los saltos de potencial propuestos por Nernst en la superficie de separación metal-solu--ción y únicamente tomó $\Delta_S^M \phi$ como potenciales de elec-trodo absolutos.

El error de no considerar $\Delta_{M_1}^{M_2} \neq 0$ los llevó a que no se podía obtener la fuerza electromotríz del circuito (A) ya que en realidad un circuito electroquímico -constituido por 2 metales distintos contiene tres poten ciales galvánicos y no dos como ellos suponían, y con esto hacía prácticamente imposible la medición experimental de un potencial de electrodo aislado, por lo que la teoría de potenciales de electrodo obsolutos resultó inadmisible.

Actualmente se denomina potencial de electrodo a la fuerza electromotriz del circuito electroquímico const<u>i</u> tuido por un electrodo de hidrógeno tipo y otro electr<u>o</u> do de la semirreacción oxidación-reducción. El electrodo de hidrógeno está constituido por una placa de platino-platinado rodeado por gas hidrógeno a la presión de 1 atm. y sumergido en una solución de ác<u>i</u> do cuya actividad es igual a la unidad.

De esta manera cualquier reacción electroquímica -simple es la suma de otras dos, una de oxidación y otra de reducción cuya suma algebraica es la fuerza electromotríz total de dicha celda. Estas determinaciones de f.e.m. se realizan con un potenciómetro, en el cual la diferencia de potencial se verifica mediante un patrón, suministrada por una fuente de corriente externa.

Clasificación de los electrodos.

Los electrodos están clasificados con base en dos criterios. Uno rigurosamente electroquímico basado en el número de especies con carga eléctrica capáz de atr<u>a</u> vesar la superficie entre el conductor y la solución, así como el número de reacciones electroquímicas que -ocurren en el electrodo.

El otro criterio el cual tiene procedencia histórica, es la composición del electrodo.

De acuerdo al primer sistema de clasificación, un electrodo es simple cuando solamente una partícula elé<u>c</u> trica (un ión ó un electrón) pueden pasar a través de la interfase conductor-electrolíto.

Un electrodo es doble o múltiple cuando dos ó más cargas eléctricas pueden pasar a través de la interfase ó cuando hay dos ó más reacciones electródicas simultáneas. En base a la segunda clasificación los electrodos se clasifican en electrodos de metal ión-metálico (ta<u>m</u> bién llamados electrodos de primera especie).

Dentro de éstos, se encuentra el sistema en el cual la forma reducida es el metal del electrodo y la forma oxidada los iones simples del mismo metal.

La reacción general que sigue a este tipo de elec-trodos es:

M _____ M^{+m} + ne⁻⁻

y su ecuación de potencial electródico:

$$E_{M} = E_{M}^{\circ} - \frac{RT}{nF} \ln a_{M}^{+m} \qquad (4)$$

Cada uno de estos electrodos es reversible con respecto al catión y dan una respuesta de acuerdo a la --ecuación de Nernst para el logaritmo de la actividad de la especie.

Los electrodos de segunda especie, son aquellos en los cuales el metal está cubierto por una capa de su -sal que es dificilmente soluble y la solución contiene aniones de esta sal.

. . . (5)

$$M_{\tau +}A_{\tau} + ne^{-A_{\tau}^{2}}$$

donde n= z+v+ = |z] v -

Su ecuación de potencial electródico es:

$$E = E - \frac{RT}{|z-|F|} \ln a_A z^-$$

Como ejemplo de electrodos de segunda especie se e<u>n</u> cuentran:

- Electrodo de plata-cloruro de plata - Electrodo de calomel.

Los electrodos de tercera especie son aquellos en los cuales el metal se halla en contacto con dos sales dificilmente solubles. Por ejemplo:

> $Pb^{2+}/PbCl_{2}$, AgCl / Ag 2AgCl + 2e⁻ == 2Ag + PbCl_{2}

Durante este proceso se efectúa la transformación de la sal menos soluble en otra con mayor solubilidad. E = $E^{A}g^{+}/Ag + \frac{RT}{F} \ln a_{Ag}^{+} = E^{A}g^{+}/Ag + \frac{RT}{F} \ln L_{AgC1}$ - $\frac{RT}{F} \ln a_{C1}^{-} = E^{A}g^{+}/Ag + \frac{RT}{F} \ln L_{AgC1} - \frac{RT}{2F} \ln L_{PbC1}^{2}$ + $\frac{RT}{2F} \ln a_{Pb}^{2} + = E^{+} + \frac{RT}{2F} \ln a_{Pb}^{2} + \dots$ (6)

Electrodo de gas.

Estos están compuestos de un metal inerte (frecuentemente platino ó platino-platinado) al cual se le burbujea un gas con cierta actividad electroquímica.

El electrodo de hidrógeno es un ejemplo de electrodo gaseoso reversible respecto al catión.

Electrodo de oxido-reducción.

Aunque todas las reacciones electródicas involucran el proceso de oxidación y reducción, el término de oxida ción y reducción, el término de oxidación-reducción se emplea para designar a aquellos donde la fuerza electro motríz se obtiene de iones de un compuesto con dos esta dos de oxidación distintos. La reacción general para este tipo de electrodos es:

$$A^{n}1(a_{1}) + e^{-} = A^{n}2(a_{2})$$

 $a_1 y a_2$ son las actividades del estado oxidado y reducido de los iones respectivamente.

n₁ y n₂ es la valencia del estado oxidado y reducido -respectivamente.

$$E = E^{\circ} - \frac{RT}{nF} \ln \frac{a_2}{a_1}$$
 . . . (7)

Clasificación Celdas Electroquímicas.

El proceso que sique a la transformación en trabajo externo eléctrico del trabajo obtenido cuando un ión p<u>a</u> sa de una actividad inicial a una actividad final, cua<u>n</u> do la concentración iónica cambia.

Si dos soluciones de electrolítos son puestas en -contacto habrá una región la cual la composición variará de una a la otra, dependiendo de factores como difusión, mezclado, etc.

Las celdas electroquímicas se clasifican como: a) Celdas Químicas

- b) Celdas de concentración
- a) Las celdas químicas, en las cuales la f.e.m. obtenida se debe a una reacción química que ocurre en la celda. Estas se clasifican como celdas sin transferencia y celdas con transferencia:
 - i) Las celdas sin transferencia consisten de dos -electrodos y un electrolito; y se caracterizan porque un electrodo porque un electrodo es reve<u>r</u> sible con respecto al catión y el otro electrodo con respecto al anión del electrolito.

Un ejemplo de este tipo de celda está dado por:

$$H_2(P_{H_2})/HC1 (a_{HC1}),AgC1(s)/Ag$$

La fuerza electromotriz total se compone de las que existen en las interfases electrodo-solución.

Para el proceso de oxidación:

$$1/2 H_2 (P_{H_2}) = H^+ (a_{H^+}) + e^{-}$$

$$E_{H_2} = -\frac{RT}{F} \ln \frac{aH^+}{P_{H_1}^{Y_{H_2}}} ... (8)$$

Para el proceso de reducción: $AgCl_{(s)} + e^{-} = Ag_{(s)} + Cl_{(a_{c1}-)}$

$$E_{Ag-AgC1} = E^{\circ}_{Ag-AgC1} - \frac{RT}{F} \ln a_{C1} - \dots$$
 (9)

Para la E total:

$$E_{celda} = E^{o}_{Ag-AgCl} - \frac{RT}{F} \ln \frac{(aH^{+}aCl)}{PH_{a}} + ... (10)$$

$$E_{celda} = E^{o}_{Ag-AgCl} - \frac{RT}{F} \ln \frac{aHCl}{p_{H_{a}}^{\prime \prime \prime \prime \prime \prime }} \qquad (11)$$

Cuando $P_{H_2} = 1$ atm.

$$E_{celda} = E^{\circ}_{Ag-AgCl} - \frac{RT}{F} \ln a_{HCl} \qquad . . (12)$$

ii) Celdas químicas con trasnferencia. Para este tipo de celdas la f.e.m. resultante proviene de una reacción química aunque a diferencia de la anterior, ésta posee una unión líquida entre -las soluciones de los diferentes electrolítos. Algunos ejemplos de celdas de este tipo se citan a co<u>n</u> tinuación:

El potencial electroquímico total para el caso de la primera celda anteriormente mencionada:

$$E = E^{\circ} - \frac{RT}{2F} \ln \frac{a_{Zn}^{2+}}{a_{Cd}^{2+}} \qquad . . . (13)$$

b) Celdas de concentración. A diferencia de las celdas químicas; en las celdas de concentración, la f.e.m. procede de una transferencia de materia de un electrodo a otro como concecuencia de una diferencia de concentración entre las dos.

 i) Celdas de concentración sin transferencia.
 Las celads sin transferencia están constituidas por dos electrodos iguales pero con diferentes concentraciones, el electrolíto es el mismo para ambos electrodos.

Citando un ejemplo de este tipo de celda:

$$H_{2}(P_{H_{2}} = P_{1}) / H^{+}(a_{H}^{+}) / H_{2}(P_{H_{2}} = P_{2})$$

$$E = -\frac{RT}{2F} \ln \frac{P_{2}}{P_{1}} \qquad ... (14)$$

 ii) Celdas de concentración con transferencia.
 En este caso están constituidas por dos electrodos iguales sumergidos en dos soluciones del electrolíto con dif<u>e</u> rentes concentraciones. Un ejemplo de este tipo de celda:

$$H_{2}(1 \text{ atm}) / HC1(a_{1}) / HC1(a_{2}) / H_{2}(1 \text{ atm})$$

$$E = t_{\underline{RT}} - 1n - \frac{a_{2}}{a_{1}}$$
(15)

De acuerdo con la clasificación anterior, esta celda electroquímica queda comprendida en el primer tipo de las arriba mencionadas, es decir, es una celda sin transferencia.

Las reacciones electródicas son las siguientes:

	Oxidación	Cu	≯	Cu ²⁴	+	2e	-
	Reducción	Hg2+	+	2e ⁻		⇒	2Hg
€ _T ≃	(E°cu ²⁺ /Cu	- E°Hg2+/Hg)	-	<u>RT</u> 2F	1 n	<u>Cu</u> Ha	2+ 2+

En este caso se está empleando como electrodo de ref<u>e</u>rencia la media celda Hg/Hg₂SO₄/SO₄²⁻, la cual tiene una f.e.m. con referencia al potencial de electrodo de hidróg<u>e</u> no de 0.79 v.

Sin embargo esta misma celda va a sufrir una modific<u>a</u> ción importante en cuanto al medio en el cual se lleva a c<u>a</u> bo. No se usará agua como disolvente, sino una mezcla binaria constituida por acetona-agua en diferentes proporciones, dando origen a la siguiente celda:

*** Cu / CuSO₄(H₂O-Me₂CO) / Hg₂SO₄ / Hg . . . (II)

Es evidente que la modificación del medio disolvente de la celda, generará una modificación sustancial de f.e.m. obtenida por ésta. De hecho podemos decir, que la celda sigue formando parte de la primera clase de celdas que me<u>n</u> cionamos anteriormente.

CAPITULO V

Parte Experimental

Algunos científicos [11,23,25,26,31]han usado electrodos de cobre para describir estudios involucrando d<u>i</u> ferentes celdas potenciométricas conteniendo sales de cobre.

Sin embargo muy pocos han trabajado con electroli-tos 2:2 y sus propiedades termodinámicas en medios no acuosos y mezclas de solventes. En la presente tésis se determinaron las propiedades terminadinámicas de un electrolito 2:2 - (CuSO₄) en agua y mezclas de acetona -agua.

Todos los valores estandar de Energía libre de ---transferencia ΔG_{tr} al pasar de agua a una mezcla de acetona-agua, se calcularon a partir de los valores de la fuerza electromotríz de la celda. Los resultados se -explican en base a la contribución de la parte electros tática y la no electrostática.

También se determinaron los coeficientes de actividad del sulfato de cobre en agua y acetona-agua en distintas concentraciones (2%, 4%, 5%, 6%, 8%, 10%, 12%,) y a distintas temperaturas (20°, 30°, y 40°C).

Las celdas empleadas para las medidas de la fuerza electromotríz fueron del tipo:

Cu/CuSO₄(m)aq/Hg₂SO₄/Hg y Cu/CuSO₄(m,)acetona-agua (m₂) /Hg₂SO₄/Hg

- 1.- Sistema seleccionado
 - a) Componentes
 - λ) CuSO_d como electrolíto.
 - لتن) Agua deionizada.
 - لتنز) Mezcla de acetona-agua.
 - b) Propiedades a diferentes temperaturas de la mezcla acetona-agua(1).

TABLA 1

Acetona	Densidad	D* a 2 0°C	D* a 30°C	D≭a 40°C
n x	0.9998	80.37	76.73	73.12
Z %	0.9954	79.26	75.65	72.11
4 %	0.9926	78.16	74.58	71.10
5%	0.991Z	77.60	74.05	70.59
6 %	0.9889	77.05	73.51	70.09
8 x	0.9874	77.94	72.44	69.08
10 %	0.9849	74.84	71.37	68.07
12 %	0.9824	73.73	70.29	67.06

 (1) Gösta Akerlöf, Journal of American Chemical Society <u>11</u>,54 (1932) 412 5-4130
 * Constante Dieléctrica.

48 -

c). Celdas electroquímicas estudiadas.

上) Cu/ CuSO₄ (m)/ Hg₂SO₄/ Hg

. . (A)

т℃	Con	Concentración de $Cusp_4$ (m)							
	0.01	0.05	0.10	0.20					
20	(1)	(2)	(3)	(4)					
30	(5)	(6)	- (7)	(8)					
40	(9)	(10)	(11)	(12)					

TABLA 2

 Nº de experimentos = 12.cada uno se realizó por tr<u>i</u> plicado.

- Nº total de experimentos = 36

نند) Cu/CuSO₄ (m₁) Acetona-agua (m₂)/Hg₂SO₄/Hg . . . (B)

TABLA 3

	20°C				30°C			40°C				
Composición	Concentración de CuSC ₄		Concentración de CuSO4			Concentración de CuSC4						
acato na-agua	0.01	0.05	0.10	n. 20	0.01	0.05	0.10	0.20	0.01	0.05	0.10	0.20
0 ¥	1 (1)	(2)	(3)	(4)	(25)	(26)	(27)	(28)	(49)	450)	(51)	(52)
4 %	(5)	(6)	(7)	(0)	(29)	(30)	(31)	(32)	(53)	(54)	(55)	(56)
5 %	(1 3)	(10)	(11)	(12)	(33)	(34)	(35)	(36)	(57)	(58)	{59}	(60)
8 X	(13)	(14)	(15)	(16)	(37)	(38)	(39)	(40)	(61)	(6 Z)	(63)	[64]
10 X	071	(18)	(19)	(30)	(41)	(42)	(43)	(44)	(65)	(66)	(67)	(68)
12 X	(11)	(22)	(23)	(24)	(45)	(45)	(47)	(48)	(69)	(70)	(71)	(72)

 Nº de experimentos =72, cada uno se realizó por triplicado.

- Nº total de experimentos = 276.

2.- Preparación de los componentes.

a) Preparación del CuSO₄ (acuoso)

El sulfato de cobre R.A. marca Merck, fué emple<u>a</u> do sin purificarlo.

Sin embargo, también se utilizó un sulfato de c<u>o</u> bre marca Mallinckrodf para pruebas iniciales de los electrodos, el cual fué purificado por re--cristalización en agua.

Las soluciones se hicieron con agua deionizada proveniente del laboratorio de Bioquímica de la DEPg.

 $(1.1 = 1.7 \quad 10^{-6} - 1.7).$

Para la preparación de las soluciones se pesó -tanto el agua como el sulfato de cobre para obt<u>e</u> ner valores de 0.01, 0.05, 0.10 y 0.20 m.

 b) Preparación de la mezcla de disolventes acetonaagua.

La purificación de la acetona fué realizada por medio de destilación. Se reflujó con pequeñas ca<u>n</u> tidades de KMnO₄ hasta coloración violeta. Tanto las primeras como las últimas fracciones -

del destilado, fueron descartadas. El agua como se mencionó anteriormente, fué dei<u>o</u> nizada en el laboratorio de Bioquímica de la - -

DEPg.

Para las soluciones con distinto porcentaje de acetona, se agregó la acetona al agua por medio de una jeringa, pesando la cantidad necesaria en balanza analítica de acuerdo con los porcentajes mencionados anteriormente en la Tabla 3. c) Preparación de la media celda.

El sulfato mercuroso R.A. marca Merck, fué utilizado sin purificación.

El mercurio usado fué bidestilado.

ん) Descripción de la construcción de la media celda empleada en los estudios iniciales.

Para la construcción de la media celda se empleó un tubo de vidrio Pyrex con las siguientes dime<u>n</u> siones 19.5 x 1 cm., en el fondo de éste se colocó un alambre de platino funcionando como elec-trodo, en seguida mercurio destilado y posterio<u>r</u> mente el sulfato mercuroso.

لنز) Calibración de la media celda.

En la calibración se empleó el electródo de hi-drógeno como electródo de referencia (en la siguiente sección se explica su construcción), pH metro modelo 5.fabricado por Corning / Div. - -Scientífic Instruments.

En la figura 1 se muestra un esquema.

El sistema electrolítico que se empleó fué el -siguíente:

(Pt) H_2/H_2SO_4 (m)/ Hg_2SO_4/Hg (Pt)

ننز) Construcción del electrodo de Hidrógeno.

El electrodo se encuentra en un cilíndro de vi-drio, (como se muestra en la Fig. 2) con dos -placas de platino en su interior, de cada placa sale un pequeño alambre de Pt que llega a un tubo de vidrio al cual se halla soldado, y en el interior de estos dos tubos se hace la conexión eléctrica mediante mercurio, del cual salen cone xiones de nicromel hacia el pH-metro.

Las dos placas fueron platinadas con solución de ácido cloroplatínico R.A. marca J.T. Baker.

El baño electrolítico consistió de:

Acido cloroplatínico 4			
Agua	115	41.	
Acetato de plomo	0.006	mg.	

Se empleó como ánodo un alambrede Platino.

- 52 -

Se aplicó una corriente de 110 mA durante 5 min. -hasta que la placa de platino se observó totalmente cubierta.

FIGURA No. 2

3. Descripción de pruebas iniciales

Se hicieron algunas pruebas iníciales para familiarizarse con el manejo del equipo y la verificación de la reproducibilidad de los resultados.

 a) En el Laboratorio de Calorimetría y Termodinámi ca de Soluciones se diseñó y construyó el siste ma representado en la Fig. 3

3. No. £, 11

54

Para cada una de las celdas fueron utilizados alambres de platino cobrizados que actuaron como electrodos reversibles con respecto al ión cobre.

よ) Descripción de la técnica de cobrizado.

El baño electrolítico que se empleo para cobrizar -los alambres de platino, consistió de la siguiente solución:

Sulfato de cobre R.	.A. Merck 150	g.
Acido sulfúrico	50	g.
Alcohol etilico	50	g.
Agua	1000	g.

ننز) Condiciones de cobrizado.

Se calienta el baño electrolítico a 65°C y se coloca como cátodo al electrodo de platino, como ánodo a una barra de cobre al 99% de pureza, conectada a una fuente de corriente eléctrica directa, genera<u>n</u> do un voltaje entre sus bornes de 2V que se aplica durante un tiempo de aproximadamente un minuto.

 b) Descripción del equipo utilizado en la determina--ción de las fuerzas electromotrices.

Se empleó un potenciómetro de Leeds & Norhtrup mod<u>e</u> lo Student que es de precisión moderada.

De estas celdas no se reportan los valores ya que las pruebas fueron de carácter exclusivamente cual<u>i</u> tativo.

ン)El esquema que incluye toda la instalación se -muestra en la Fig. 4

FIGURA No. 4

لند) Descripción de los instrumentos.

 * Potenciómetro.- Student modelo 7645 fabricado por Leeds & Northrup Company, el cual opera con las siguientes especificaciones:

Intervalo de Medición Límite de error a 25° C Intervalo alto 0 - 1.6 V alto \pm 0.0005 V Intervalo medio 0 - 0.16 V medio \pm 0.0001 V Intervalo bajo 0 - 0.016 V bajo \pm 0.00001 V

- * Fuente de poder.- Modelo 099034 serie 7473 fabricado por Leeds & Northrup Company, que saca un -voltaje de 2.0 VDC <u>+</u> 0.2% con una carga de 24.44 mA. Con un coeficiente térmico de <u>+</u> 0.0005% /°C entre 20°- 30°C.
- * Celda Estandar.- Marca Eppley del tipo Weston modelo Student, la cual corresponde a: Cd(12.5% amalgama de Cd) + CdSO₄*8/3 H₂O_(s), CdSO₄ (sat.)^{Hg}2^{SO}4(s) ⁺ H^g(l)⁺

El cual tiene una Fem de 1.0184 V absolutos a 25. °C y un coeficiente de temperatura de 4×10^{-5} Vgr<u>a</u> do⁻¹. El ánodo consiste de amalgama de Cd bifás<u>i</u>, ca (composición total de 12.5% de Cd en peso) cubierta con cristales de sulfato de Cd hidratado; el cátodo contiene una porción de mercurio cubie<u>r</u> to por una pasta de Hg₂SO₄.

En la práctica real, es más común usar una celda Weston conteniendo una solución no saturada de --CdSO,, como celda estandar. Esta celda tiene la ventaja de que el coeficiente de temperatura es menor (1 X 10^{-5} V grado⁻¹) y la desventaja de que la Fem puede variar lentamente con el tiempo.

Estas celdas tienen una Fem inicial entre 1.0186 y -1.0196 V y deberá ser reestandarizada cada uno ó dos años.

* Galvanómetro.- Modelo 2437 fabricado por Leeds & Northrup Co. Se usó un detector de punto nulo de CD, -equipo que ha sido diseñado para usarse con potenciómetros de precisión en donde se requiere sensibilidades hasta de un microvolt.

لننز) Esquema de la conexión eléctrica.

FIGURA No. 5

 Descripción de los experimentos de naturaleza cuantitativa.

Estos experimentos se realizaron para determinarse -los valores cuantitativos de las celdas electroquímicas (A) y (B).

a) Preparación de las celdas electroquímicas (A) y - (B).

En este laboratorio se diseñó y construyó el sist<u>e</u> ma mostrado en la fig. 6

FIGURA No. 6

Como en las pruebas iniciales, los alambres de platino se cobrizaron de acuerdo a la técnica de la sección 3A (¿) y 3A (¿). b) Descripción del equipo utilizado en la determinación de las Fem's.

Se construyó una caja con paredes de fibracel y de -acrílico donde permaneció aislado el sistema.

El incremento de temperatura se llevó a cabo con dos focos (uno de los cuales era infrarrojo) y se empleó un ventilador cuyo objetivo fué uniformizar la temperatura en todo el termostato.

En la figura 7 se muestra esquemáticamente como quedó el termostato con el sistema de potenciometría.

よ) Esquema que incluye toda la instalación.

FIGURA NO 7

L)Descripción de los instrumentos.

 * Potenciómetro.- Tipo K-4 Modelo 7554 fabricado por Leeds & Northrup Co. cue opera bajo las siguientes condiciones.

Intervalos de medición

Intervalo	alto	-	۷ پر 500	a+1.6105	۷	
Intervalo	medio	-	۷ بر 50	a+0.16105	۷	
Intervalo	bajo	-	۷ سر 5	a+0.016105	۷	

Limite de error

Intervalo	alto	<u>+</u>	(0.005%	de	la	lectura +	(لاسر0.02)
Intervalo	medio	<u>+</u>	(0.007%	de	1 a	lectura +	(⊻ىر0.2
Intervalo	bajo	<u>+</u>	(0.007%	de	la	lectura +	(لاسر5.0

- * Fuente de voltaje constante de precisión.- modelo fabricado por Leeds & Northrup Co. Voltaje de entrada 117 <u>+</u> 10% a 50-60Hz., salida 2 V CD <u>+</u> 2% a -12.1 mA, Coeficiente de temperatura menor de ----0.0002% por °C entre 20°y 30°C.
- * Celda Estandar. Epoley serie # 851386 con un certificado que ampara a la fuerza electromotríz de -0.01930 V a 22°C, la cual fué comparada contra estandares de la NBS.
- * Detector de punto nulo.- Leeds & Northrup Co. Mode lo 2437 fabricado por Leeds & Northrup Co. Caracteristicas descritas anteriormente.

لننز Esquema de la conexión electrica. Se representa en la Fig. 8

FIGURA No. 8

- 61 -
b) Nivel de las variables de operación.

ί) Variables de operación

Concentración del	Concentración de	Temperaturas
disolvente	CuSO4	
Acetona-agua	(m)	°c
m ₂ 0%	m ₁ 0.01	т ₁ 20
^m 2'4%	m ₁ ' 0.05	т ₁ ' 30
mz" 5%:	m ₁ " 0.10	т ₁ " 40
ሚ"'' 8%	m ₁ ‴ 0.2 ∩	
mytv 10%		
m₂ ^V 12 %		

نن) Matriz de experimentos.

		J	۲ ₁			τ ₁				т	ı	
	^m 1	^m 1'	"ı"	^m 1"'	^m 1	^m '1	"i	"i"	^m 1	"1	۳ï	^m 1"
. m ₂	1	2	3	4	2 5	26	27	28	49	50	51	52
· "2'	5	6	7	8	29	30	31	32	53	54	55	56
[.] "ک"	9	10	11	12	33	34	35	36	57	58	59	60
^m 2'''	13	14	15	16	37	38	39	40	61	62	63	64
^س ک ^{۱۷}	17	18	19	S 0	41	4Z	43	44	65	66	67	68
^m 2	51	22	23	24	45	46	47	48	69	70	71	72

Cada determinación se hizo por triplicado

No. total de determinaciones (3) (3) (24) = 216

CAPITULO VI

Resultados.

1.) Resultados experimentales.

Tabla 1. Valores obtenidos de Fems' para el sist<u>e</u> ma electroquímico (A)

m Cu SO		E (V)	
$(mol Kg^{-1})$	20°C	30°C	40 ° C
0.01	0.4172 5	0.41420	0.41241
0.05	0.3972 1	0.39165	0.39145
0.10	0.38534	0.382 18	0.37837
0.2 0	0.37937	0.37229	0.37226

Tabla 2. Valores obtenidos de Fems' para el sist<u>e</u> ma electroquímico (B)

m CuSO4	43	(Acetona~agu E (V)	1a)
$(mol Kg^{-1})$	20°C	30°C	40°C
0.01	0.41147	0.40052	0.39050
0.05	0.3 92 7 9	0.3B2 58	0.37322
0.10	0.38036	0.37353	0.362 44
0.2.0	0.37315	0.36337	0.35081

	5	% (Acetona-	agua)
0.01	0.41003	0.39710	0.38502
0.05	0.39059	0.38032	0.36866
0.10	0.37912	0.37137	0.35846
0.20	0.37159	0.36114	0.35294
		8% (Acetona	-agua)
0.01	0.40508	0.38684	0.36859
0.05	0.38858	0.37352	0.35458
0.10	0.37539	0.36489	0.34651
0.20	0.36693	0.35445	0.34131
		10% (Acetor	na-agua)
0.01	0.402 81	0.38001	0.35763
0.05	0.38647	0.36898	0.34587
0.10	0.392 90	0.36056	0.33855
0.20	0.36382	0.34999	0.33363
		12% (Aceto	na~agua)
0.01	0.39992	0.37316	0.34668
0.05	0.38436	0.36445	0.33675
0.10	0.37041	0.3562 4	0.33058
0.2.0	0.36071	0.34553	0.32 590

- 64 -

2.) Obtención de D^Em^a.
 a) Ecuación para la celda electroquímica empleada
 La para la celda (A).

 $E^{\circ} = E_{obs} + 2K \log m - \ln k^{+} = H_{20} E_{m}^{\circ} - 2Kbm$ $K = RT \ln 10 / F$ $\ln k^{+} = -\frac{A' I^{1/2}}{1 + a B' I^{1/2}} - \log (1 + 0.002M_{H_{20}} m)$

A'y B' son las constantes de Debye-Hückel para el agua como disolvente.

 M_{H_20} es el peso molecular del agua. $H_20^{E^\circ}x = H_20^{E^\circ}m$

Fara la celda (B) E° = E_{obs} +2K log m - $\ln\delta + = {}_{D}E_{m}^{\circ} - 2Kbm$ K = RT ln 10 / F $\ln\delta + = - \frac{A'' \ 1^{1/2}}{1 + \mathcal{L}B'' \ 1^{1/2}} - \log (1 + 0.002M_{D}m)$ A" y B" son las constantes de Debye-Huckel pa-, ra la mezcla de acetona-agua a diferentes concentraciones. M_D es el peso molecular de la mezcla de acet<u>o</u> na-agua. D $E_{x}^{\circ} = DE_{m}^{\circ} + \frac{RT}{F}$ ln 18.016 / M_D

(en el apéndice B se describe el método de cálculo).

- 65 -

b.) Técnica general de obtención de _DE_m.

(en el apéndice C se describe un cáluco compl<u>e</u> to).

c.) Tabla de resultados.

TABLA 3

Potencial Estandar en función de las molalidades del soluto a diferentes temperaturas en aqua y en mezclas de acetona-aqua.

		DE ^e m (V)				
Acetona (% er	a⊷agua n peso)	20° C	30° C	40°C		
0	%	0.2834	0.27732	0.26849		
4	*	0.27793	0.2634	0.2476		
5	*	0.2758	0.26004	0.2422		
8	%	0.2708	0.2507	0.2253		
10	%	0.2671	0.2440	0. 2 153		
12	%	0.26338	0.2371	0.20423		

Como las energías libres de transferencia se van a expresar en términos de fracción mol, entonces debemos transformar los potenciales estandar que se encuentran en función de molalidades a potencial estandar expresados en función de fracción mol.

- 66 -

TABLA 4

Potencial estandar en función de fracciones mola-res del soluto a diferentes temperaturas en agua y en mezclas de acetona-agua.

		D ^{E°} x (V)				
Acetona (% ei	a-agua n peso)	20°C	30°C	40° C		
0	%	0.2834	0.27732	0.26849		
4	*	0,27757	0.26303	0.24722		
5	x	0.27535	0.25958	0.24172		
8	r	0.27008	0.24995	0.22453		
10	x	0.26619	0.24306	0.21433		
12	z	0.26229	0.23597	0.20306		

TABLA 5

Coeficiente de actividades en sistema acuoso y me<u>z</u> clas de acetona-agua a diferentes temperaturas.

	8 ±	(sistema acu	1050)
m CuSO ₄ (m/Kg ⁻¹)	2°0° C	30°C	40° C
0.01	0.4787	0.5707	0.6734
0.05	0.2531	0,2924	0.3346
0.10	0.16977	0.2432	0,2739
0.20	0.10751	0.1666	0.18595

- 67 -

$\frac{1}{20^{\circ}C} = 30^{\circ}C = 40^{\circ}C = 10^{\circ}Kg^{-1}$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	and a second	ያ <u>+</u>	(4%)	
0.01 0.46855 0.5578 0.6583 0.05 0.2345 0.2709 0.3109 0.3109 0.10 0.2124 0.2407 0.27117 0.2 0 0.1486 0.1666 0.1858 $\frac{t}{(5 \times)}$ 0.01 0.46376 0.55226 0.6520 0.05 0.2303 0.2776 0.3082 0.10 0.1974 0.22427 0.2532 0.2 0 0.13846 0.1555 0.1738 $t \pm (8 \times)$	m CuSO ₄ (m/Kg ⁻¹)	20°C	30°C	40*C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.01	0,46855	0.5578	0.6583
0.10 0.2124 0.2407 0.27117 0.20 0.1486 0.1666 0.1858 $\frac{3 \pm (5 \times)}{0.05}$ 0.01 0.46376 0.55226 0.6520 0.05 0.2303 0.2776 0.3082 0.10 0.1974 0.22427 0.25322 0.20 0.13846 0.1555 0.1738 $\frac{3 \pm (8 \times)}{0.2552}$ 0.01 0.254324 0.6417	0.05	0.2345	0.2709	0.3109
0.20 0.1486 0.1666 0.1858 $3 \pm (5 \times)$ 0.01 0.46376 0.55226 0.6520 0.05 0.2303 0.2776 0.3082 0.10 0.1974 0.22427 0.2532 0.20 0.13846 0.1555 0.1738 $3 \pm (8 \times)$	0.10	0.2124	0.2407	0.27117
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.20	0.1486	0.1666	0.1858
0.01 0.46376 0.55226 0.6520 0.05 0.2303 0.2776 0.3082 0.10 0.1974 0.22427 0.2532 0.20 0.13846 0.1555 0.1738 $t \pm (8 \times)$		8 <u>+</u>	(5%)	
0.05 0.2303 0.2776 0.3082 0.10 0.1974 0.22427 0.2532 0.20 0.13846 0.1555 0.1738 $\ell \pm (8 \times)$ 0.01 0.45593 0.54324 0.5417	0.01	0.46376	0.55226	0.6520
0.10 0.1974 0.22427 0.2532 0.20 0.13846 0.1555 0.1738 $t = (8 \times 1)$	0.05	0.2303	0.2776	0.3082
0.20 0.13846 0.1555 0.1738 $t \pm (8 \times)$ 0.01 0.45593 0.54324 0.5417	0.10	0.1974	0.22427	0.253 Z
$(8 \times (8 \times))$	0.20	0.13846	0.1555	0.1738
0.01 0.45593 0.54324 0.6417		۶±	(8%)	
0.01 0.45593 0.54324 0.6417				
	0.01	0.45593	0.54324	0.6417
0.05 0.21553 0.24973 0.28727	0.05	0.21553	0.24973	0.28727
0.10 0.18892 0.21493 0.24299	0.10	0.18892	0.21493	0.24299
0.20 0.13007 0.1639 0.18288	0.2.0	0.13007	0.1639	0.18288
³ ± (۱0 %)		۶±	(10%)	
0.01 0.4493 0.5356 0.6330	0.01	0.4493	0.5356	0.6330
0.05 0.2061 0.2391 0.27548	0.05	0.2061	0.2391	0.27548
0.10 0.17845 0.2034 0.23035	0.10	0.17845	0.2034	0.23035
0.20 0.1484 0.1663 0.1804	0.2.0	0.1484	0.1663	0.1804

	8	8 [°] ± (12 [°] %)				
m CuSO ₄ (m/Kg ⁻¹)	20°C	30°C	40°C			
0.01	0.44097	0.5259	0.62197			
0.05	0.1917	0.2229	0.2574			
0.10	0.16983	0.1939	0.21964			
0.20	0.14955	0.1676	0.17834			

d.) Gráficas _DE_m vs. I

よ) Para sistema acuoso.

此) Para la mezcla acetona-agua

- e.) Gráficas de Y <u>+</u> vs. I i) Para sistema acuoso. ii) Para la mezcla acetona-aqua
- Obtención de propiedades Termodinámicas de Transf<u>e</u> rencia.

a) Ecuaciones para las celdas electroquímicas.

 $\Delta_{tr}G^{\circ} = G^{\circ} (agua) - G^{\circ} (acetona-agua)$ $\Delta_{tr}G^{\circ} = F \left[E^{\circ}_{m}(agua) - E^{\circ}_{m}(acetona-agua) \right]$ $\Delta_{tr}S^{\circ} = \left(\frac{\partial \Delta_{tr}G^{\circ}}{T} \right)$ $\Delta_{tr}H^{\circ} = \Delta_{tr} G^{\circ} + T\Delta_{tr} S^{\circ}$

(En el apéndice D se describe el método de cálculo).

- 69

b) Tabla de resultados

TABLA 6

Cantidades Termidinámicas de Transferencia del CuSO₄ de sistema acuoso a mezclas de acetona-agua a 25°C. en la escala de fracción mol.

Aceto	na-agua	Δ _{tr} g°	۵ _{tr} s	∆ _{tr} ^H °
(%	peso)			
4	z	458.32	-35.608	-10153
5	*	592.20	-43.140	-1 2 26 4
8	*	948.16	-70.660	-20109
10	%	1197.97	-85.215	-24196
12	%	1455.20	-102.193	-29000

GRAFICAS

DE[♠] vs. [

- 72 -

- 73 -

- 74 -

GRAFICAS

- LOG 8 ± vs. √I

- 80 -

÷

- 83 -

CAPITULO VII

Análisis de Resultados

 Separación de los constituyentes a la Energía libre de Transferencia.

a) Electrostática.

$$\Delta_{tr}G^{\circ}(e1) = \left(\frac{N}{2}\right)\left(\frac{1}{r^{+}} + \frac{1}{r^{-}}\right)\left(\frac{1}{D_{s}^{+}} - \frac{1}{D_{w}^{+}}\right) \quad . \quad (1)$$
We we de Ausserdance for 2^{2} is 10^{23}

 $N = N^{\circ}$ de Avogadro. 6.023 x 10²³ e = Carga del electrón r⁺= 1.28 x 10⁻⁸ cm r⁻= 2.89 x 10⁻⁸ cm D^{*}= Constante dieléctrica de la mezcla S D^{*}_x= Constante dieléctrica del agua.

∆ _{tr} G [°] (el)					
acetona-agua	20°C	30°C	40°C		
(% peso)					
4 %	65,490	67.680	72.730		
5%	83.415	88.265	91.562		
8%	136.080	144.358	149.695		
10 %	172.50	183.157	189.880		
12 %	210.00	223.140	231,290		

) No electrostática

 $\Delta_{tr}^{G^{\circ}} = \Delta_{tr}^{G^{\circ}} (e1) + \Delta_{tr}^{G^{\circ}} (no e1.) . . (2)$

TABLA 2

	$\Delta tr^{G^{\circ}}$ (no el.)		
acetona-agua (% peso)	20°C	30°C	40°C
4 %	203.416	591.440	908.340
5 %	287.880	729.985	1142.73Z
8 %	478.299	1118.072	1877.942
10 %	621.304	1397.071	2308.228
12 %	763.736	1684.020	2786.410

86 -

CONCLUSIONES

En la tabla 9 se muestran que las energías libres -estandar de transferencia Δ_{tr} G° a 25°C desde agua ha-cia diferentes concentraciones de agua-acetona, es positiva, indicando que la transferencia de CuSO₄ de agua a agua-acetona es termodinámicamente más desfavorable conforme se incrementa la cantidad de acetona presente.

El proceso de transferencia se encuentra asociado -- con la transferencia de las especies cargadas: Cu $^{2+}$ Y -- SO $_{\rm A}^{2-}$, desde el agua hacia la mezcla de acetona - agua.

En consecuencia, es de esperarse que este proceso -consista de una contribución electrostática ($\Delta_{tr} G^{\circ}_{el}$) la cual se debe al cambio de la constante dieléctrica -del medio, y otra contribución de naturaleza no electros tática ($\Delta_{tr} G^{\circ}_{nel}$) la cual proviene de las interaciones químicas específicas entre los iones y el disolvente dependiendo ésta de la naturaleza del disolvente. Es de-cir, podemos escribir:

$$\Delta_{tr}G^{\circ} = \Delta_{tr}G^{\circ}_{e1} + \Delta_{tr}G^{\circ}_{ne1} \qquad \dots \qquad (1)$$

La contribución electrostática a la energía libre de Gibbs de transferencia la nodemos calcular mediante la ecuación de Born:

$$\Delta_{tr} G^{\circ}_{e1} = \left(\frac{N_{e2}}{2}\right) \left(\frac{1}{r^{+}} + \frac{1}{r^{-}}\right) \left(\frac{1}{D_{H_{2}0}^{\star}} - \frac{1}{D_{M_{3}}^{\star}}\right)$$

en donde N es el número de Avogadro, e es la carga del electrón, r $^+$ y r $\bar{}$ son los radios de los iones:

 $r^{+} = 1.28 \times 10^{-8} \text{ cm}$; $r^{-} = 2.89 \times 10^{-8} \text{ c}$,

 D^* H_2O y D^*M son las constantes dieléctricas del agua y de las mezclas respectivamente.

Las constantes dieléctricas de la mezcla se obtuvi<u>e</u> ron de los datos de: Gosta Akerlöf, Journal of American Chemical Society 11 ,54 (1932) 4125-4130.

Una vez que hemos estimado $\Delta_{tr}G^{\circ}_{el}$ a partir de la -ec. (2). $\Delta_{tr}G^{\circ}_{nel}$ se puede evaluar a partir de la ec.-(1).

Los valores de $\Delta_{tr}G^{\circ}_{el}$ y $\Delta_{tr}G^{\circ}_{nel}$ que hemos obtenido a diferentes temperaturas y cómposiciones de la -mezcla, se reportan en las tablas 10 y 11.

La tabla ll nos muestra que la $\Delta_{tr} \hat{h}^{\circ}_{nel}$ tiende a - incrementarse conforme aumenta la cantidad de acetona - presente.

Esto nos indica que la transferencia del CuSO₄ de agua hacía acetona-aqua no es favorecida por el lado -de las interacciones químicas, y esto nos indica que --todas las mezclas son más ácidas que el agua pura.

En cambio en T Δ_{tr} S°es similar al cambio en Δ_{tr} H°. La disminución de Δ_{tr} H° está asociado con las intera<u>c</u> ciones ión-disolvente formadoras de estructura.

- 88 -

Un análisis de los datos de Δ_{tr} S° de la tabla 9 está de acuerdo con los resultados anteriores, es decir el efecto neto de formación de estructura se manifiesta para valores negativos de Δ_{tr} S° y este tiende a ser -mayor conforme aumenta la cantidad de acetona, o sea, el efecto de formación de estructura por parte de los iones se incrementa por el campo iónico fuerte en me--dios de constante dieléctrica baja.

A P E N D I C E A

Soluciones Ideales.

Se describirá lo que significa una solución ideal, ya que de ésta se derivan las ecuaciones aplicables a soluciones reales.

En cualquier solución, las propiedades del solvente; la presión de vapor y su punto de ebullición quedan modificadas al agregarle un soluto. Esta modificación es debida a los números relativos de soluto y de disolvente así como de las fuerzas intermoleculares entre las distintas moléculas. En soluciones reales las intensida-des de las fuerzas intermoleculares van desde débiles atracciones de Van der Waals hasta fuertes interaccio-nes dipolo- dipolo, e ión-dipolo.

En una solución ideal, las fuerzas de atracción de las particulas de soluto y las de solvente son iguales entre sí. Las propiedades de una solución ideal de un conjunto dado de componentes depende unicamente de su concentración. Las soluciones ideales obedecen la ley de Roult en todo el rango de concentraciones. Las sol<u>u</u> ciones reales, generalemente muestran grandes desviacio nes de la ley de Roult, pero tienden a aproximarse a -ella cuando las concentraciones de soluto son pequeñas.

Para soluciones diluidas que contienen solutos no volátiles se presentan 4 fenómenos en los cuales depende unicamente el número de partículas en solución y no de la naturaleza de éstas. Estas propiedades nos proporcionan métodos valiosos de determinación del peso melecular de las sustancias disueltas y la posibilidad de evaluar cierto número de cantidades termodinámicas de suma importancia.

Presión Osmótica

Cuando dos soluciones de solvente puro se hallan s<u>e</u> paradas por una membrana semipermeable y se encuentran en equilibrio, esto es $P_1 = P_2$, y le agregamos una cantidad pequeña de soluto en una de las porciones, se observa que el solvente puro tiende a pasar a través de la membrana a la solución, al diluirla el pistón donde se encuentra la solución tiende a moverse hacia arriba; este movimiento se detiene al aplicar una presión sobre éste, a fín de mantenerlo en su posición original, es decir, en equilibrio.

Por lo que la presión osmótica de una solución la definimos como la presión mecánica que se aplica a la solución para evitar el movimiento desde el solvente -puro a la solución a través de la membrana.

- 91 -

Descenso de la Presión de Vapor.

Cuando se hace una solución, la presión de vapor siem pre tenderá a descender con respecto a la presión de vapor del solvente puro.

La ley de Roult está definida por: $P = P^{\circ} N_{1}$ $N_{1} = Fracción mol del solvente$ $N_{2} = Fracción mol del soluto$ $P^{\circ} = Presión de vapor del solvente puro$ P = Presión de vapor de la solución.Como $1 - N_{1} = N_{2}$

N₁ en una solución siempre es menor a la unidad, por lo --que P en estas circunstancias siempre debe ser menor a P°.

- 92 -

Aumento del punto de ebullición.

Cuando se realizan soluciones con solutos no voláti les, éstas hervirán a temperaturas más elevadas que las del solvente puro. Esto dependerá tanto de la natural<u>e</u> za del solvente como de la concentración del soluto.

Sí se realiza una gráfica de presión de vapor vs. temperatura, y apoyando la propiedad anterior - descenso en la presión de vepor-; la curva obtenida para la solución quedará debajo de la obtenida para el solvente puro.

Por lo que según se observa en la gráfica, para una misma P° la solución debe hervir a una temperatura ma-yor que la del solvente puro.

Descenso del punto de congelación.

Cuando una solución se enfría a tal grado que llega a la temperatura de congelación, el solvente sólido comienza a separarse de tal manera que la solución se hallará en equilibrio con el solvente sólido.

Si nuevamente se hace una gráfica de la presión de vapor vs. temperatura, la fase sólida y líquida del solvente se hallará en equilibrio a P_e en el punto B,

Como la presión de vapor de la solución es menor -que en el caso del solvente puro, entonces la curva obtenida quedará debajo de ésta. El equilibrio entre la curva de la solución y la del solvente sólido quedará a una presión de vapor P y a una temperatura menor que T_o.

El descenso del punto de congelación de una solu--ción está definida por:

 $T_f = T_o - T$

APENDICE B

Método de calculo para la obtención de

D^{E°}m

Para obtener los valores de "E°" :

- 1º Se hicieron determinacionespotenciométricas obte--niendose las FEM's (E observadas) a distintas temperaturas y concentraciones.
- 2º Se calculó el valor de Eº por medio de la siguiente ecuación.

 $E^{\circ} = E_{obs} + 2K \log m - \frac{A'' l^{1/2}}{1 + d B'' l^{1/2}} - 2K \log(1 + 0.002 m M_D)$

3° Se hace el cálculo de $D^{E^{o}}m$ mediante una gráfica de E^o vs. m. en base a la siguiente ecuación.

$$E^\circ = D^{E^\circ}m + 2kbm$$

donde por extrapolación de la gráfica para m=O, se obtiene para el sistema acuoso como para la mezcla de acetona-agua expresada en molalidades.

 4° Se calcula ${}_D E^\circ{}_X$ (FEM expresada en fracción mol), - por medio de la siguiente ecuación:

$$D^{E^{\circ}}x = D^{E^{\circ}}m + \frac{RT}{F} \ln \frac{18.016}{M_{D}}$$

Mn

^MH₂O = 18.016 peso molecular del agua.

= peso molecular de la mezcla.

- 95 -

APENDICE C Descripción de un ejemplo para la determinación de E° " Con las siguientes condiciones: T = 20°Cm = 0.01 g/kg de solución % = 8% de acetona en aqua Se obtuvieron los siguientes resultados: $E_{obs} = 0.40508 v$ $E^{\circ} = E_{obs.} + 2K\log m - \frac{A^{\circ} I^{1/2}}{1+d R^{\circ} I^{1/2}} - 2K\log (1+0.002 m H_{D})$ (1)sustituyendo los valores en la ec. (1) se obtiene: para $K = RT \ln 10/F = 1.98726(2.3026)(293)/23062.3$ $K = 581.35 \times 10^{-4} v$ A'' = 0.54627 $B''= 3.35 \times 10^{-7}$ I = 4m = 0.004M_D= 19.067973 g/mol $d = 1 \times 10^{-4}$ $E^{\circ}=0.40508+2(581.35\times10^{-4})\log 0.01 \cdot \frac{(0.5428)(0.04)^{1/2}}{1+1\times10^{-4}(3.35\times10^{-7})(0.04)^{1/2}}$ $-2(581.35 \times 10^{-4})$ log 1+0.002(0.01)19.068 $E^{\circ} = -0.3423$ v Graficando E°vs. m cuando m=0 obtenemos DE°m $_{\rm D}{\rm E^{\circ}}_{\rm m}$ = 0.2708 v a 20°C y al 8% de la mezcla acetona-agua.

- 96 -

Para obtener el valor de _DE°_m expresado en frac-ción mol se tiene la siguiente ecuación:

$$nE^{\circ} = nE^{\circ} + RT/F \ln 18.016 / M_{D}$$

 $D^{E^{\circ}}x^{=}$ 0.2708 + (1.98726) (293) in 18.016 / 19.068 23062.3

 $D^{E^{\circ}}x = 0.27008 v.$
APENDICE D

Método de cálculo para la obtención de propiedades termodinámicas

Con los valores obtenidos de las Fem's estandar ---tanto del agua como de la mezcla agua-acetona, mediante -la siguiente ecuación se logró obtener la energía libre -estandar:

$$\Delta_{tr}G^{\circ} = F\left[E^{\circ}_{m}(agua) - E^{\circ}_{m}(acetona - agua)\right]$$

Para calcular otra de las propiedades termodinámicas la entropía, se trabajó con la siguiente ecuación:

$$-\Delta_{tr}S^{\circ} = \left(\frac{\partial \Delta_{tr}G^{\circ}}{T}\right)$$

Por medio de una gráfica de Δ_{tr} G°& 1/T se lograron obtener los valores de Δ_{tr} S°

Con los resultados obtenidos de las dos propiedades anteriores y el empleo de la siguiente ecuación, nos da -los valores a 25°C de la entalpía estandar

$$\Delta_{tr} H^{\circ} = \Delta_{tr} G^{\circ} + T \Delta_{tr} S^{\circ}$$

- 98 -

BIBLIOGRAFIA

- 1.- Parker, A.J. Electroquímica Acta Vol.21 671-679(1976).
- 2.- Feakins, D.; Lawrence, K.C. Journal Chem. Soc. (A) 1458-1462 (1967).
- 3.- Andrews, A.L. Journal Chem. Soc. (A)1486-1492 (1968).
- 4.- Kaiidas, C. J. of Chem. and Engineering Data Vol. 19 No. 3 201-205 (1974).
- 5.- Pohorille, A; et al Methods Enzymol 127 64-78 (1986).
- 6.- Marcus, Y.; Pure Appl. Chem. 58 (12) 1721-1736 (1986).
- 7.- Villamanan, M. et al J. Chem. Eng. Data 29 (4) 429-431 (1984).
- 8.- Chem, Ch.;Britt, H. et al AICHE Symp. Ser. 79 (229) 126-134 (1983).
- 9.- Parker, A.J. Chemical Review 69 1 (1969)
- 10.- Feakins, D.; Voice, P. J. Chem. Soc. Faraday Trans 68 1390 (1972)
- Singh, P.; Parker, A.J. J. of Solution Chemistry Vol.11 No. 7 495-509 (1982).
- 12.- Fundamentos de la electroquímica teórica Damaskin, B. Ed. Mirr URSS 1980.

- 13.- Electrochemistry Milazzo Giulio Elsevier publishing Co. New York 1963.
- 14.- Modern electrochemistry Backris John Vol. I 3a. Ed. 1977.
- 15.- Experimental electrochemistry for chemists Sawyer Donald T. John Wile & Sons Wiley-Interscience publications. New York 1974.
- 16.- Chemical Thermodinamics Wall Frederick T. Cap. XVII W. H. Freeman and. Co. Inc. 1958.
- 17.- Electrochemistry Davis C. W. Willian Clowes & Sons. London 1967.
- Electrolyte Solutions Robinson R.A. Butterworths 2a. ed. London 1959.

- 19.- Principles and applications electrochemistry Koehler, W.A., Grighton, H.J. John Wiley and Sons Inc. Third ed. New York 1935.
- 20.- Electrochemical methods. Ffundamentals and applications Bard, Allen J.; Fauker, Larry R. John Wiley and Sons Inc. New York 1980.
- 21.- La química de los disolventes no acuosos Trémillon, Bernard Cap. I y V Ed. Ballarta Barcelona 1973.
- 22.- Procesos físicoquímicos y mezclas de disolventes Mixed aqueous Feakins, D. Heineman Educational LTD 1967.
- Blokhra, R.L.; Sehgal, Y.P. Electroquímica Acta Vol. 21, (1976) 1079-1083.
- 24.- Rao, V.S.; Kaiidas,C. Journal of Chemical and Engineering Data Vol. 21 No.3 (1976) 314-317.
- 25.- Andrzej Lewandowski. Electroquímica Acta, Vol.29 No. 4 (1984) 547-550.

- 101 -

- 26.- Lewandowski, A. Electroquímica Acta 29 (1984) 547
- 27.- Lewandowski, A. Electroquímica Acta Vol. 30 No.3 (1985) 311-313.
- 28.- Coetzee, J. F.; Istone W.K. Analyt. Chem. 52-53 (1980).
- 29.- Cox, B.G.; Parker, A.J. Journal Am. Chem. Soc. 95 (1973) 1010.
- 30.- Cox, B.G. ;Parker, A.J. J. Phys. Chem. 78 (1984) 1731.
- 31.- Lewis, G.N.; Lacey, W.N. J. Am. Chemical Soc. 36 (1914) 864.
- 32.- Kundu, K.K.;Parker, A.J. Solution Chem. 10 (1982) 847.
- 33.- Wakkad, S.E.S.E.I J. of Chemical Soc. (1950) -3563-3566.

34.- Mousa, A J. of Chemical Soc. (1950) 403-404.