

UNIVERSIDAD LA SALLE

ESCUELA DE QUIMICA INCORPORADA A LA U.N.A.M.

OBTENCION DE ECUACIONES DE ESTADO PARA GASES PUROS POR EL METODO DE GENERACION DE SUPERFICIES

TESIS PROFESIONAL

QUE PARA OBTENER EL TITULO DE; INGENIERO QUIMICO P R E S E N T A ;

MARIA GABRIELA NIETO CHAVEZ

FALLA DE CRIGEN

MEXICO, D. F.,

1988

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

. . . .

[:] A

в

GENERALIDADES	1
INTERDUCCION	
PROPIEDADES GENERALES DE UNA SUBSTANCIA PURA Y	
DIAGRAMAS P-V-T	9
PROYECCIONES DEL DIAGRAMA P-V-T EN DOS PLAVOS	4
CAPITULO I	
EVOLUCION DE LAS EQUACIONES DE ESTADO	

1.1	ECUACIONES PARA EL COMFORTAMIENTO IDEAL
1.2	ECUACIONES PARA GASES REALES
1.3	LEY DE ESTADOS CORRESPONDIENTES
1.4	CORRELACION DE PITZER
1.5	MODIFICACIONES A LA ECUACIÓN DE VAN DER WAALS
1.5.1	Modificaciones con un parametro dependiente de la
	Temperatura29
1.5.2	Modificaciones con ambos parámetros dependientes
	de la temperatura25
1.5.3	Modificaciones en el término de atracción
1.5.4	Modificaciones en el término de repulsión20
1.5.5	Teoria de cadenas de rotores cúbicos

CAPITULO II

PLANTEAMIENTOS GENERALES SOBRE EL METODO DE

GENERACION DE SUPERFICIES

•2.1	PRINCIPIUS BASICOS
2.1.1	Campos escalares y funciones escalares de
	variable vectorial
2.2	SUPERFICIES
2.2.1	Superficies Suaves
2.3	METODO DE GERERACION DE SUPERFICIES
2.4	CARACTERISTICAS DE UNA ECUACION DE SUPERFICIE
2.4.1	Intersección con los ejes
2.4.2	Trazas sobre planos Coordenados
2.4.3	Simetria con respecto a los ejes, planos
	ccordenados y el origen
2.4.4	Secciones por planos parálelos a los planos
•	coordenados40
2.4.5	Extensión40
2.5	QURVAS DE NIVEL42
2.6	SUPERFICIES CUADRICAS
2.6.1	Superficies Cuádricas con centro43
2.6.2	Superficies Cuádricas sin centro

CAPITULO III

APLICACION DEL METODO A LA GENERACION DE UNA ECUACION DE ESTADO

3.1	PROCEDIMIENTO PARA LA APLICACIÓN DEL METODO
3.1.1	Estimación de los coeficientes del modelo
3.1.2	Forma de seleccionar una relación funcional59
3.2	NETODO DE MINIMOS CUADRADOS
3.2.1	Teorema de GAUSS-MARKOV
3.3	REGRESION CURVILINEA
3.4	REGRESION MULTIPLE
3.5	SELECCION DEL MODELO DE AJUSTE PARA LAS EDUNCIONES
	DIRECTRICES DE LA ECLACION DE ESTADO
3.6	ALCORITMO DE LA ECUACION DE ESTADO GENERADA

CAPITULO IV

RESULTADOS GENERALIZACIÓN Y CONCLUCIÓNES

4.1	ESTIMATION DE LAS CUMPICIONES EXTREMO
4.1.1	Análisis de los intervalos de presión82
4.2	GENERALIZATION DE LA EDUNCIÓN DESARROULADA
4.2.1	Superficie y algoritme para el Nitrógeno8?
4.2.2	Superficie y algonitmo para el Etileno
4.2.3	Superficie y algoritmo para el CO2

	4.3	CONDLUSIONES .		
			APENDICES	
	A.A	DATOS PVT PARA	METANO	122
	A.B	DATOS PVT PAPA	NITRUGENO	
	A.C	DATOS EVT PARA	ETILEMO	
	A.D	DATOS PVT PARA	CO2	
		RELIOGRAFIA	•••••	
an a				
and the second				
		landi na se		
		na an ann an tha an Tha an tha an		المراجعين المراجع الم المسير مسيرة المسابقة المراجع ا

I. GENERALIDADES

Una ecuación de estado es una relación entre dos o más variables que definen el comportamiento de una substancia pura o mezcla uniforme.

Generalmente estas relaciones se expresan en función de las variables Presión (P), Temperatura (T) y Volumen (V) ; se oueden emplear para distintos estades de agregación tales como sólidos , líquidos o gases dando así, una representición bastante amplia del comportamiento de las substancias,

El origen de una ecuación de estado puede tener diferentes caminos, como es el caso de un desarrollo teórico basado en la mecánica estadística o en la teoría cinemática considerando las

fuerzas intermoleculares , o bien seguir un proceso emoirico observando las variaciones que presentan las variables fundamentales al establecer nuevas relaciones matemáticas como es el caso de la modificación de la ecuación de estado de Van der Waals elevando a diferentes potencias la temperatura, este último procedimiento ha sido muy utilizado para un amplio rando de densidades o bien en la predicción del comportamiento de substancias no muy comunes.

Dentro de los distintos tipos de ecuaciones de estado podemos encontrar algunas cortas y simples que resultan utiles solo en un pequeños intervalos a bajas densidades, mientras que resultan necesarias otras con un mayor grado de complejidad para poder reproducir altas y bajas densidades ten la mayor parte de los casos las ecuaciones que dan altas precisiones involucran gran número de parámetros los cuales dependen en su mayoria de los intervalos de densidades y en un menor grado de las temperaturas.

Las ecuaciones de estado resultan fundamentales para el desarrollo de procesos químicos ya que mediante la predicción de equilibrios os posible representar el comportamiento de los sistemas involucrados el los procesos.

I. INTRODUCCION

A) PROPIEDADES GENERALES DE UNA SUBSTANCIA PURA Y LOS DIAGRAMAS P-V-T

Si se representan en un sistero de ejes la presion (P), el volumen (V) y la temperatura (T) de una substancia pura se obtiene una representación tridimensional de sus fases y de la coexistecia entre ellas. A partir de esta representación se pueden obtener las correspondientes provecciones bidimensionales manteniendo una de las propiedades constante.

En un diagrama P-V-T todo estado de equilibrio se muestra como un punto sobre la superficie , mientras que un proceso quasiestático vace como una superficie ya que este pasa por estados de equilibrio.

Las regiones que se identifican en dicho dingrama son las siguientes :

a) aquellas en las que coexisten dos fases

S + V		S es sólido
L + V	en donde	L es liquide
S + L		V es vapor

b) y las que existen como una sola fase

S L

v

El punto triple aparece como una línea en donde P v T se encuentran fijas, pero el volumen específico puede variar dependiendo de la proporción de cada area , en estas condiciones coexisten las tres fases.

El punto crítico corresponde a condiciones únicas de presión , temporaturo y volumen en las que la fase líquida y vapor de dicha sustancia son idúnticas; u estas condiciones se les conoce como propiedades críticas ; dicho punto se localiza en la cúspide de la campana que representa la región L - V y en el coinciden las líneas de líquido saturado y vapor saturado.

B) PROYECCIONES DEL DIAGRAMA P-V-T EN DOS PLANOS

En las provecciones P - T ; P - V ; V -T se pueden observar las características que presenta la substacia al variar la tercera propiedad.

En la proyección P -T las líneas líquido saturado y vapor saturado así como la de sólido saturado y vapor saturado , coinciden y se confunden en una sola línea que cambia lígeramente de sendiente en el minto 'siple y que termina en el punto crítico.

La línea de equitivo triple da lugar a un punto . La región S + L da lugar a una línea que parte del punto triple y posee una pendiente mayor que las acteriores. En el diagrama P-V para una substacia pura el punto crítico esta opresentado por un punto de inflexión matemática

 $\left[\partial^2 P / \partial V^2\right] = 0 \qquad \left[\partial P / \partial V\right] = 0$

FIG. I. I SUPERFICIE P-V-T

A strand of the state of the strand of the st

đ

CAPITULO I

EVOLUCION DE LAS ECUACIONES DE ESTADO

1.1 ECUACIONES PARA EL COMPORTAMIENTO IDEAL

Las primeras mediciones cuantitativas del comportamiento de los gases fueron realizadas por R. Boyle en 1662 estableciendo relación con el volumen y la presión manteniendo la temperatura constante, que en forma matemática se expresa de la siguiente manera

PV = f(T)

El volumen que ocupa un gas es inversamente proporcional a la presion que actua sobre él

$$V \propto \frac{1}{P}$$
 $V = \frac{C}{P}$

La idea que se tenía entonces acerca de la estructura de los gases era como de materia finamente dividida, con dimensiones practicamente puntuales , Los conceptos electrostáticos aun no se desarrollaban , y fue hasta 1803 cuando Dalton revivió la teoría atómica.

FIG. 1. 1 LEY DE BOYLE

En 1810, J.Charles v J. Gav Lussac, encontraron otra ecuación estado aplicable bajo la condición de oresión constante. de estableciendo volumen de directamente que ei un Qas es proporcional a la temperatura

 $Vt = Vo + (1 + \alpha)T$

donde

FIG. 1. 2 LEY DE CHARLES

Cuando la presion es muy baja $P \rightarrow 0$ $\alpha \rightarrow 1 / 273.15$

Vt = Vo + (T + T / 273.15)

V ι = volumen a la temperatura deseada V o = volumen a la temperatura de 0°C α = coeficiente de expansion termina f(P)

Vt = Cz T

V ι = volumen a la temperatura T C2 = constante de proporcionalidad T = temperatura del gas en una escala llamada del gas ideal.

En 1811 Avogadro estableció el principio de que "volúmenes iguales de diferentes gases en las mismas condiciones de presión y temperatura deberían contener el mismo número de moléculas, que en condiciones normales es de 6.02217 E+23 moleculas/mol.

Bajo condiciones normales de presión y temperatura constantes :

Van V=Csn

C: = constante de proporcionalidad n = número de moles del gas

De lo anterior se puede concluir que :

V=V(P,T,n)

de donde :

 $\partial V = \left(\frac{\partial V}{\partial P}\right) \frac{dP}{T, p} + \left(\frac{\partial V}{\partial T}\right) \frac{dT}{P, p} + \left(\frac{\partial V}{\partial T}\right) \frac{dT}{T, p}$

Estas derivadas parciales se evaluan a partir de las leyes de Boyle , Charles y Avogadro :

A T y n constantes :

$$V = \frac{C_1}{P} \qquad \left(\frac{\partial V}{\partial P}\right) = -\frac{C_1}{P^2}$$

A P y n constantes :

$$V = C_2T \qquad \left(\frac{\partial}{\partial P} \frac{V}{P}\right) = C_2$$
P,n
A T y P constantes :

$$V = C_3n \qquad \left(\frac{\partial}{\partial n} \frac{V}{P}\right) = C_3$$

$$dV = -\frac{C_1}{P^2} dP + C_2 dT + C_8 dn$$

$$C_1 = PV \qquad C_2 = \frac{V}{T} \qquad C_3 = \frac{V}{D}$$

A 7

por lo que :

dividiendo entre V

$$\frac{dV}{V} = -\frac{dP}{P} + \frac{dT}{T} + \frac{dn}{n}$$

integrando :

Ln V = - Ln P + Ln T + Ln n + Ln R

Esta es la ecuación de los gases ideales.

Partiendo de datos experimentales se determinó que a 0°C y 1 atm, el volumen ocupado por un mol de gas es aproximadamente 22.4 l

$$R = \frac{P V}{n T} = \frac{(1 \text{ atm})(22.41\text{t})}{(1 \text{ mol})(273.15\text{K})} = 0.082 \text{ lt.atm} / \text{ mol} \text{ K}$$

R es conocida como la constante universal de los gases Para establecer la ecuación de los gases ideales (e.1) se tomaron las siguientes consideraciones :

- 8 Se asume que el volumen es finito y que existen gran número de moléculas, todas ellas idénticas y esféricas
- No hay fuerzas de interacción
- Todos los choques son elásticos esto significa que no hay perdidas de energía cinética ni putencial
- Las moléculas se distribuyen uniformemente
- Las direcciones de viaje son igualmente probables
- la fracción de moléculas viajando a velocidad permanece constante en el equilibrio

1.2 ECUACIONES PARA GASES REALES

Uno de los primeros intentos para mejorar la ecuación de los gases ideales fue realizado por G.A.Hirnen 1863, (1) quien propuso una ecuación de estado para representar el comportamiento tanto de gases como de líquidos.

La relación matemática es de la forma :

 $(P + \Pi)(v - b) = RT$

en donde :

V = volumen molar b = volumen de las moléculas R= referida a la presión interna ,representa las fuerzas de atracción entre moléculas.

En 1869 Andrews (2),publicó su trabajo experimental respecto al comportamiente volumétrico del CDz en el cual fue definida la temperatura crítica y se dio una explicación sobre la continuidad de los estado líquido y gascoso de la materia basado en estudios de las isotermas.

En 1873 J.D.Van der Waals (VdW), propuso uan ecuacion de estado cúbica en el volumen bosada en la existencia del punto crítico, y en la desaparición de cualquier distinción entre líquido y gas en la temperatura crítica; así como los estudios de los efectos de la capilaridad de Laplace referidos a la presión molecular "K" (3) que es una medida de la atracción molecular.

Ya que las fuerzas eléctrica y magnética reacccionan a distancias sensibles, sucuso que deberían existir otras que reaccionaran a pequeñas distancias y tuvieran por resultado una serie de fenómenos en el comportamiento de la materia.

En el resultado de caplace para el cálculo de la presión efectiva en el límite de la superficie del líquido

$$P = K + \frac{H}{2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \dots (e.2)$$

Van der Walls encontró que estimando K y H se podría estimar . directamente el rango de las fuerzas intermoleculares (4),

En esa misma época Clausius comenzó con las ideas de que la materia esta formada por moléculas que se encuentran en equilibrio y que las distancias invariantes entre dichas moléculas se deben a las fuerzas de atracción.Tambien realizó un análisis de las condiciones bajo las cuales un gas puede esperarse se comporte como ideal, postulando que :

 El volumen intermolecular puede ser despreciable comparando con el volumen que ocupa el gas.

El tiempo de una colisión entre moléculas es despreciable respecto al tiempo de colisiones sucesivas.

Enfatizó la idea de que las fuerzas de atracción intermolecular que mantienen unido al líquido son las mismas que actuar en el gas cuando sus moléculas se acercan lo suficiente para producir una colisión.

Estas ideas fueron retomadas por VDW refiriendose a la acción de estas fuerzas en un gas cuando se encontraba en un volumen muy reducido y más aún, cuando se encontraba bajo compresión máxuma, lo que representaba una gran similitud entre el gas comprimido y el líquido.

Clasificando las fuerzas intermoleculares en dos tipos y de acuerdo a la ley de Coulomb expresó la fuerza repulsiva como :

 $F_r = K_{r,r}^{-13}$

Fr = fuerza repulsiva r = distancia intermelecular Kr = constante

y la fuerza atractiva como :

FA = KA.--13

FA = fuerza atractiva
r = distancia intermolecular
KA = constante

El volumen excluido es otro factor considerado por VDW que se refiere al volumen que las moléculas ocupan en virtud de sus dimensiones, en base al siguiente razonamiento :

Considerando a las moléculas como esféras rígidas tenemos que los centros molecularos no pueden acercarse a menor distancia que dos veces su radio, el volumen evcluido es el de una esfera de radio igual al diámetro molecular. Fara un par de esferas se tiene

11 .

 $V_{exc} = \frac{\Pi}{6} (2d)^3 = \frac{4}{3} \Pi d^3$

para una sola de ellas :

$$\hat{v}_{exc} = \frac{2}{3} \Pi d^3$$

por mol de gas sera :

$$\overline{V}_{\bullet \times c} = \frac{2}{3} \text{ NIId}^3$$

siendo N el numero de Avogadro

este valor es conocido como constante "b" de VDW

La ecuacion de gases ideales (e.1) establece que :

$$V = \frac{nRT}{P}$$
 SiT + 0 y/0 P + a, V + 0
en donde a es un valor infinito

Lo cual no corresponde al comportamiento real ya que el gas se licuará primero y después se solidificará ; por lo cual el volumen tenderá a un valor aproximadamente constante, correspondiente a la fase condensada, por ello una mejor aproximación es :

cuyo límite cuando T + O y/o P + α es : V = n b

Con respecto a las fuerzas atractivas de interacción molecular que se manifientan a distancias relativamente grandes, propuso que dichas fuerzas, son directamente porporcionales a las concentraciones moleculares en los volumenes Vi y Vz, es decir :

$$F \alpha C^{2}$$

$$F \alpha \frac{n^{2}}{v^{2}} ; \quad F = \frac{a n^{2}}{v^{2}}$$

$$Como \quad P = \frac{F}{A}$$

$$Pn = \frac{a n^{2}}{A v^{2}} \quad Pn = \frac{an^{2}}{v^{2}}$$

Pn es una presión no ejercida debida a las fuerzas de interaccción molecular , por lo que la presión del gas esta dada por : a y b ≠ constante

V = vol. total

$$P = \frac{nRT}{v_{m}} + \frac{an^2}{v_{m}^2}$$

$$P = \frac{RT}{v-b} + \frac{a}{v^2}$$
 $v = vol. molar$

Conocida como la ecuación de Van der Waals (VDW)(e.3)

De acuerdo a las propiedades del punto crítico y a las propiedades reducidas se tienen las siguientes expresiones :

$$Pr = \frac{P}{Pc} \qquad v_r = \frac{v}{v_c} \qquad Tr = \frac{T}{T_c}$$

Las cuales sustituidas en la ecuación de VDW hacen que tome la siguiente forma:

$$\left(\begin{array}{c} P_r P_c + \frac{a}{\sigma_r^2 \sigma_c^2} \end{array} \right) \left(\begin{array}{c} \sigma_r \sigma_c - \sigma_r \end{array} \right) = RTr Tc \\ \frac{\sigma_r^2 \sigma_c^2}{\sigma_r^2 \sigma_c^2} \end{array} \right)$$

Ahora

bien analizando el diagrama T

La isobara crítica presenta un punto de inflexion en punta crítico y su pendiente en ese punto es cero.

$$\left(\begin{array}{c} \frac{\partial}{\partial v} \\ \frac{\partial}{\partial v} \end{array}\right)_{\text{punto crítico}} = 0 \qquad \left(\begin{array}{c} \frac{\partial^2 T}{\partial^2 v} \\ \frac{\partial^2 v}{\partial v} \end{array}\right)_{\text{punto crítico}} = 0$$

despejando a T de la ecuación de VDW :

 $T = \frac{Pv}{R} - \frac{Pb}{R} + \frac{a}{vR} - \frac{ab}{Rv^2}$

obteniendo las derivadas de T respecto a V :

$$\left(\begin{array}{c} \frac{\partial}{\partial v} T \\ -\frac{\partial}{\partial v} \end{array}\right) = \frac{P}{R} - \frac{a}{v^2 R} + \frac{2ab}{v^2 R}$$
$$\left(\begin{array}{c} \frac{\partial^2 T}{\partial v^2} \end{array}\right) = \frac{2a}{v^3 R} - \frac{bab}{v^4 R}$$

evaluando en el punto crítico :

$$\frac{Pc}{R} = \frac{a}{\sqrt{c^2}R} + \frac{2ab}{\sqrt{c^3}R} = 0 \qquad \frac{2a}{\sqrt{c^3}R} = \frac{6ab}{\sqrt{c^4}R} = 0$$

Resolviendo simultaneamente :

o bien :

$$a = \frac{27 R^2 T_c^2}{64 P_c} \qquad b = \frac{R T_c}{8 P_c}$$

Obteniendo así los valores para a y b a partir de las condiciones en el punto crítico.

1.3 LEY DE ESTADOS CORRESPONDIENTES

Empleando variriables reducidas en la ecuación (e.4) no resulta representativo para los comportamientos de todos los gases reales, esta ecuación puede generalizarse para los distintos comportamientos de todos los gases reales unicamente con dos de las propiedados reducidas dadas donde automaticamente se determinara la tercera de ellas.

Cuando se tienen gases distintos a las mismas condiciones de temperatura y presión reducida se dice que se encuentran en estados correspondientes (5) . La ley de estados correspondientes establece que todos los fluidos en estados correspondientes tendran el mismo volumen reducido.

El factor de compresibilidad Z es una expresión de la desviación al comportamiento ideal de un gas . Esta desviación se puede expresar en términos reducidos.

$$Z = \frac{PV}{RT}$$

$$Z = \frac{\Pr V_r \Pr V_c}{R \text{ tr t_c}} \qquad \qquad Z = Ze \frac{\Pr V_r}{R \text{ tr t_c}} \dots (e.5)$$

Considerando que el volumen reducido Vr es una función universal de Pr y Tr la ecuación (e.5) indica que el factor de compresibilidad también es una función universal de Pr y Tr para todos los gases que tengan las mismas compresibilidades críticas.

La mayoría de los gases poseen compresibilidades críticas entre : 0.2 < = 2c < = 0.31

En la figura 1.5 se muestran curvas experimentales para factores de compresibilidad en función de la presión y la temperatura reducidas. Este principio tiene gran aplicación para correlacionar datos P-V-T mediante una curva sencilla.

FIG. 1.4 factores de compresibilidad para Tito

1.4 CORRELACION DE PITZER

Considerando que las interacciones moleculares se reflejan en el comportamiento PVT ; Pitzer (6) introdujo un parametro para la corrección de dicho efecto : el factor ascentrico; el cual definió como :

$$\omega = \log P_{aat} \left[\tau_r = 0.7 - \log P_{aat} \right] \tau_r = 0.7$$

$$\omega = -1.0 - \log P_{\text{sat}} = 0.7$$

Con este factor Pitzer propuso el cálculo de Z en la forma siguiente :

$$Z = Z \phi + \omega Z \mathbf{1} + \dots$$

La cual resulta muy precisa a bajas temperaturas y altas presiones,

En la tabla 1.2 se muestran distintos parámetros reducidos así como factores de compresibilidad y ascéntrico.

			and the second se	and the second sec	And in case of the second seco
COMPUESTO	Tc	Pc	Vc	72.c	ω.
	(K)	(atm)	(cms/mol)		
metano	190.6	45.4	99.0	0.288	0.007
etano	305.4	48.2	148.0	0.285	0.071
propano	369.8	41.9	203.0	0.281	0.145
bericeno	562.1	48.3	259.0	0,271	0,184
oxigeno	154.6	49.8	73.4	0.266	0.021
agua	647.1	217.6	56.0	0.230	0.348

TABLA 1.2 PARAMETROS REDUCIDOS PARA SUBTANCIAS COMUNES

1.5 MODIFICACIONES A LA ECUACION DE VAN DER WAALS

En 1880 Clausius (7) modificó la ecuación de VDW introduciendo una tercera constante.ïambiún postuló la existencia de agrupaciones moleculares temporales , formadas por colisiones a bajas temperaturas , que se rompían al elevarse la temperatura. En estos grupos las fuorzas de atracción son mas grandus que si las moloculas estuvieran separadas en el gas por lo que el termino a/v² de VDW resultaba pequeño para incluir estas fuerzas a bajas temperaturas. Su ecuación se expresa como:

$$\left(P + \frac{a}{T(v+c)}z\right)(v-b) = RT \dots(e,6)$$

donde :

$$a = vc - \frac{RT_c}{4Pc} \qquad b = \frac{3RT_c}{8Pc} - vc \qquad c = \frac{27R^2T_c^3}{64Pc}$$

Al igual que VDW la ecuación predice valores aceptables para el estado gasecso, no siendo así en la región del líquido. Aunque esta ecuación logra mejores resultados para las regiones líquidas a presiones elevadas.

En 1889 Perthelot (8) presentó una modificación a la ecs. de VDW introduciendo la temperatura en el término de atracción :

 $\left(\begin{array}{c} P + \frac{a}{T \sqrt{2}} \end{array}\right) (v - b) = RT \qquad \dots \dots \dots (e.7)$ $a = \frac{4R^2 T c_z^2}{P c c_z} \qquad b = -\frac{R T c_z}{P c e^2}$

Esta ecuación no proporciona tan buena aproximación a los datos experimentales como la ecuación (e.4).

En el mismo año Dieterici (9) propuso una ecuación exponencial con dos constantes de la forma:

$$P = \frac{R T}{v^{-b}} e^{-} \left(\frac{a}{R T v} \right) \qquad \dots (e.8)$$

r

cuyas constantes son :

$$a = \frac{4R^{2}Tc^{2}}{Pc e^{2}} \qquad b = \frac{R Tc}{Pc e^{2}}$$

Su desventaja es que no resulta aplicable al cálculo de propiedades de los líquidos y comparandola con la ecuación de VDW, resulta menos cercana a los datos experimentales en altas y bajas presiones.

A partir de la ecuación de VDW, Redlich y Kwong (10) desarrollaron una modificación en la cual se cambiaba el término atractivo, mientras que el repulsivo se mantiene en la misma forma que en la ecuación de VDW de esta forma presenta mayores aplicaciones que VDW en los fluidos gaseosos y permanece inaplicable al estado líquido

Su expresión es la siguiente

sus constantes son :

$$a = 0.4278 - \frac{R^2 T_c^{2.5}}{P_c}$$
 $b = 0.0867 - \frac{R T_c}{P_c}$

Esta ecuación es de naturaleza mas bien empírica pero proporciona resultados satisfactorios sobre la temperatura crítica para cualquier presión .

Debido a su simplicidad y aproximación en amplios rangos de presión y temporatura, así como su aplicación al estado líquido y gaseoso; ha servido como punto de partida para muchos investigadores asumiendo diferentes layes de dependencia respecto a la temperatura tratando de que las nuevas modificaciones puedan ser aplicadas a ambos estados físicus , compuestos polares , no polares , así como la descripción del equilibrio de fases con un mínimo de parámetros.

Las modificaciones a la ecuación de Redlich-Kwong se pueden clasificar en la siguiente forma:

- a) Modificaciones con un parametro dependiente de la temperatura
- b) Modificaciones con los dos parámetros dependientes de la temperatura

c) Modificaciones en el término de atracción

d) modificaciones en el término de repulsión

A continuación se describirán algunas ecuaciones correspondientes a cada clasificacion :

1.5.1 Modificaciones con un parámetro dependiente de la temperatura

En 1964 Wilson propone el parametro a como función de la temperatura con lo que se mejora la predicción de las presiones de vapor para compuestos puros.

ZЗ

factor ascéntrico

Recomendando que a sea una función lineal de Tr

 $\alpha = T_r (1 + m (T_r^{-1} - 1))$

 $m = 1.57 + 1.62 \omega$

Esta ecuación ganó popularidad hasta el surguimiento de la de Soave (11).

En 1972 Soave propuso la siguiente ecuación generalizada para e

 $\alpha = T_{r} (1 + m (1 - T_{r}^{\circ. 6}))^{2}$ m = 0.48 + 1.574 \omega - 0.176 \omega^{2}

FIG. 1.4 a ve. Temperatura reducida

La ecuación de Soave tiene de gran aplicación para equilibrios
 L-V a presiones elevadas .

En la figura se ilustra la dependencia del parámetro a con la temperatura.

Para compuestos polares a(t) o bien a(t) en forma más general requiere de dos coeficientes adaptables.

 α (Tr) = 1 + m (1 - Tr) + n (1 / Tr) + n (1 / Tr - 1)(e.11) en donde m , n son constantes empíricas derivadas de presiones de vapor experimentales.

Mediante las constantes críticas Tc, Pc, y m ,n queda definido completamente el comportamiento P-V-T para compuestos puros.

 $a = \frac{27 \ \alpha \ Pr}{64}$ $b = \frac{1 \ Pr}{8 \ Tr}$

1.5.2 Modificación con los dos parámetros dependientes de la temperatura

Joffe & Zudkevitch (1970) proponen (a , b) f(t) que establece la dependencia de la temperatura de estos dos parámetros determinada simultaneamente por la densidad del líquido y forzando a que la fugacidad del líquido y el vapor sean iguales a las presíunes de vapor de los componentes puros.

Recientemente han sido desarrolladas otras modificaciones a Redlick-Kwong dentro de esta clasificación con 2 parametros dependientes de la temperatura y tres parametros en total; una de ellas es la de Helens (1980) que involucra la presión de vapor y la densidad del líquido y la otra fue desarrollada por Kubic (1982) quien trabajó con la presión de vapor y el segundo coeficiente virial

1.5.3 Modificaciones en el término de atracción

La más importante de ellas y que sólo cuenta con dos parámetros es la ecuación de Peng-Robinson desarrollada en 1976 (12).

$$P = \frac{RT}{v - b} - \frac{a \alpha}{v(v+b)+b(v-b)} \dots (e.12)$$

La adición de b(v-b) resulta de la predicción de la densidad del líquido sin considerar a b como una función de la temperatura la ecuación (e.12) utiliza α donde "m" esta dada por :

$$m = 0.37464 + 1.54226 \omega - 0.26992 \omega^2$$

Esta ecuación resulta similar a la de Soave nara los equilibrios L-V pero es mejor para el cálculo de las densidades líquidas. Sin embargo para el cálculo de la densidades del vapor es preciso aumentar un tercer parámetro.

Schmidt-Wenzel y Harmens-Knapp (13) usan valores de Zo ajustados muy similares. Heyen considera 3 opciones para Zo: experimental , ajustable o función de ω

> ана сталия 20 л. – Салана Салана, сталия сталия Сталия с славания сталия с сталия с сталия с сталия с сталия с с

EOS (Eq.)			Z	-	
Van Der Waals (1)			٥.:	375	
Redlich-Kwong (2)			٥.	333	
Peng-Robinson (8)			0.3	3074	
	ω	:	0	0.333	0.5
Schimidt-Wenzel(10)	Zc	:	0.333	0.3074	0.296
Harmens-Knapp (11)	2 =	:	0.321	0.299	0.291
Heyen (12)			e×p.	ajust.	f(u)

TABLA 1.3

También se desarrollaron algunas modificaciones a partir de la ecuación de Clausius

Martin en 1979 interesado en los cálculos de propiedades del vapor propone :

Y más recientemente Soave (1984) utiliza la ecuación de Clausius con el fin de mejorar la predicción de las densidades del líquido.

Varias de las modificaciones a Ciausius usan valores de Zc ajustables como es el caso de Kubic (1982).

Zc = 0.857 Zc (exp) + 0.0826

Todas las modificaciones en el término de atracción presentan un menor acercamiento a la predición de B (Segundo coeficiente virial) comparada con la ecuación original de Redlick-Kwong.

Z7

	BPC a TC RTC	(=Ωb-Ωa)
	ω = 0	ω • ο. 5
B CORRELACION VDW	-0.3307	-0.3549
REDLICH-KWONG	-0.297	-0.297
PENG-ROBINSON	-0.3408	-0. 3408
SCHWIDT-VENZEL	-0.3794	-0.3796
14 M 14 M 14	-0.3408	-0.4705
HETEN	(Zc=, 33)	(22c=,25
CLAUSIUS	-0.3985	-0.4219

TABLA 1.4

En la tabla ... se muestran los valores de B a To para distintas ecuaciones en donde B con dos parámetros no depende de ω ; B con 3 parámetros es bastante malo especialmente a ω = 0.5. Sin embargo también se muestra que para Heyen y Clausius el usar Zo ajustando es mejor que el experimental para la predicición de B.

1.5.4 Modificaciones al término de repulsión

Hasta ahora las modificaciones precedentes sólo contemplan variaciones al término de atracción manteniendo el término repulsivo en su forma original; corresponde ahora la presentación de las modificaciones al término repulsivo de la ecs. de VDW.

En las dos últimas decadas el interés se ha incrementado por las modificaciones al término repulsivo . Si consideramos una

esfera rígida de un fluído, no habra término de atracción de la ecuación de VDW y la ecuación se representará por :

$$\mathsf{Phs} = \frac{\mathsf{R} \mathsf{T}}{\mathsf{V}} \left(\frac{1}{1 - \frac{\mathsf{h}}{\mathsf{V}}} \right) \dots (\mathsf{e}.13)$$

Resulta mejor que la ecuaciones del gas ideal ,sin embargo para la mecánica estadística la representación de la esfera rígida (e.13) muestra una aproximación lejana.

Thiele (1963) desarrolló la primera ecuación de la forma de esfera rígida en forma exitosa :

$$P_{ha} = \frac{RT}{V} \frac{1-n^{3}}{(1-n)^{4}} = \frac{RT}{V} \frac{1+n+n^{2}}{(1-n)^{3}}$$
 ...(e.14)

donde: n = b / 4V

Carnahan y Starling (1969-1972) mejoraron la expresión de Thiele adicionando el término (1-n)³

Phs =
$$\frac{RT}{V}$$
 $\frac{1+n+n^2-n^3}{(1-n)^3}$ (e.15)

En la siguiente figura 15 se grafica 2hs para un gas ideal, VDW y Carnahan-Starling, se puede apreciar como existe una notable diferencia entre estas dos últimas, pero siendo más interesante aún el hecho de que al aumentarle el término de atracción a la ecs. (e.15) está no presenta mejoras significativas en cuanto a la reproducción del comportamiento real.

Muchos otros investigadores han propuesto más desarrollos para el modelo de esfera rígida, tratando de mantener la forma de ecuación cúbica, algunas de ellas mantienen el mismo término

Z9

repulsivo y otras introducen nuevos términos como es el caso de la teoría de cadenas de rotores cubicos

1.5.5 Teoria de CADENAS DE ROTORES CUBICOS (CCOR)

Esta Teoría de reciente desarrollo (1985), que al igual que la ecuación Van der Waals o Redlich Kwong ,expresa la presión como la diferencia entre las presiones repulsiva y de atracción (14).

A diferencia de las ecuaciones previas , la ecuación CCOR expresa la presión repulsiva como resultado de la dinámica molecular de esferas rígidas y la contribución rotacional de las moléculas poliatómicas.

Para fluidos no polares esta ecuación es una forma generalizada del tipo de la ecuación de estados correspondientes ; para los fluidos polares se especifican valores constantes.
La expresión para CCOR es :

$$P = \frac{RT (1 + .77 b / v)}{v - 0.42 b} + \frac{c^{R} 0.005 RT b / v}{v - 0.42 b}$$
$$- \frac{a}{v (v + c)} - \frac{b d}{v (v + c) (v - 0.42 b)}$$

El primer término representa la fuerza repulsiva y es el resultado de simulaciones del comportamiento dinámico de las esferas rígidas. En la figura se muestra que el volumen excluido exagera el efecto repulsivo y es un error considerable en altas densidades.

El segundo término es una nueva expresión de la presión rotacional de moléculas poliatómicas obtenida por Chien y Al (1983) y los últimos dos términos son negativos y representan la fuerzas de atracción.

FLUIDO DILUIDO FLUIDO DENSO FIGI.5 VOLUMEN EXCLUIDO

CAPITULO II

PLANTEAMIENTOS GENERALES SOBRE EL METODO DE GENERACION DE SUPERFICIES.

Este capítulo tiene por objeto mostrar en forma general los principios fundamentales del Método de Generación de superficies que posteriormente serán aplicados al deparrollo de una Ecuación de Estado.

21 PRINCIPIOS BASICOS

211 CAMPOS ESCALARES Y FUNCIONES ESCALARES

DE VARIABLE VECTORIAL

Los problemas que se presentan en la realidad, en la mayoría de los casos resultan difíciles para poder ser idealizados matemáticamente como funciones de una sola variable independiente ya que por lo general son varias variables independientes las que resultan involucradas. Por ejemplo la temperatura de un lugar puede variar de acuerdo a la posición de cada punto por lo que :

T = F(x,y,z)

donde T es función del punto (x,y,z).

Las expresiones en que la variable dependiente lo es de más de una variable independiente, se denominan "Funciónes escalares de varias variables independientes o funciones reales de variable vectorial".

Al conjunto ordenado de valores de las variables independientes, se denomina "dominio de la función" y al conjunto de valores que toma la variable dependiente se le denomina "recorrido de la función".

FIGURA 7.1 DOMINIO Y RECORRIDO DE UNA FUNCION

2.2 SUPERFICIES

La representación geométrica de una función definida en un domínio bidimensional y cuyo escalar asociado puede representarse como una altura; es el conjunto de puntos (x,y,z) en el espacio tridimensional y relacionados por la regla de la correspondencia.

 $2 = f(x_1y)$ (2.1)

A dicho conjunto de puntos se le denomina superficie.

Esta ecuación debera ser tal que al despejar al menos una de la variables se obtenga un campo escalar.

S = ((x,y,z) / F(x,y,z) = 0)(2.3)

2. 2. 1 SUPERFICIES SUAVES

ි Considerando a D como una región en el plano E2 y cuyos puntos son P(x,y) ,suponiendo que f e3 una función escalar continua definida en D

El rango de f vendra a ser una superfície S

Las superficies suaves son aquellas que cumplen con las siguentes condiciones :

 D es una región cerrada, acotada, simplemente conexa, cuya frontera es seccionalmente suave.

 Para todo P que pertenezca a D se tiene un plano tangente único.

Para definir un punto perteneciente a una superficie, su elección dependerá unicamente de dos de sus coordenadas ya que la tercera queda determinada por la misma superficie.Este anàlisis

confirma las dos formas de presentar la ecuación de superficie (ecs 2.1,2.2). En conclusión se dice que un punto, cualquiera de una superficie tiene dos grados de libertad.

FIGURA 2. 2 SUPERFICIE Y SUS COORDENADAS

2.3 METODO DE GENERACION DE SUPERFICIES

Este método considera al conjunto de todas las posiciones que toma una curva que se desplaza y deforma según leyes determinadas.

En primer término se situa a la superficie en un sistema de ejes coordenados, como se muestra en la figura 2.4.

FIGURA 2. 3 PARAMETROS DE UNA SUPERFICIE

Se consideran los extremos de la superficie DI y D2 como guías y se indican como $gJ_{,}$, $gZ_{,}$,...,gn a las posiciones que va tomando el filo de superficie denominado G.

Como 6 siempre esta sobre el plano horizontal sus ecuaciones se pueden expresar como las de una recta

 $G \begin{cases} y = \alpha x + \beta \\ z = \gamma \end{cases}$

Para fijar las posiciones de G se deben determinar los valores de los parámetros α (? γ

Las ecuaciones que determinan los valores de los parámetros se les denomina "Ecuaciones de condición " y para establecerlas es necesario considerar a las ecuaciones de los extremos o guías ya que G, las debe intersectar.

La ecuación que genera la superficie (G) se le denomina generatriz,el conjunto de todas las posiciones que adopta la generatriz es la ecuación de la superficie buscada.Tambien se requiere de ecuaciones de condición, cada una do ellas sirven de quia para el apoyo de la generatriz y se les llama directrices.

Al combinar las ecuaciones de la generatria con las de las directrices se obtienen " n-1 " ecuaciones de condición.

Entre las ecuaciones de condición_, y las de la generatriz se eliminan los no parámetros lo que da como resultado la ecuación de la superficie.

2.4 CARACTERISTICAS DE UNA ECUACION DE SUPERFICIE

Una vez conocida la ecuación de la superficie es preciso efectuar la descripcion de la ecuación de superficie ; a partir de un análisis de sus características fundamentales que son las siguientes:

2. 4. 1 INTERSECCION CON LOS EJES COORDENADOS

A los puntos de intersección de la superficie con los ejes de referencia, los denominaremos intersecciones "x","y","z".

Dada la ecuación de las superficie, se obtiene la intersección "x" haciendo y = z = 0 en la ecuación y resolviendo para "x". En forma analoga se procede para las intersecciones "y", "z".

2. 4. 2 TRAZAS SOBRE PLANOS COORDENADOS

Se les denomina de esta forma a la curvas de intersección entre la superficie dada y cada uno de los planos coordenados.

Para obtener la traza sobre el plano x,y se sustituye Z≖O en la ecuación dada. En forma similar se precede para hallar las trazas sobre xz y yz.

.

2. 4. 3 SIMETRIA CON RESPECTO A LOS PLANOS COORDENADOS, EJES COODENADOS Y EL ORIGEN

Se dice que dos puntos son simétricos respecto a un plano, si el plano bisecta perpendicularmente el segmento de recta que une

dichos puntos. Una superficie es simétrica respecto a un plano, si cada punto de la superficie tiene sobre la misma superficie un punto simétrico respecto a dicho plano.

FIGURA 2. 4 SIMETRIA

En la figura anterior los puntos p y pr son simétricos respecto al plano – xz si , y solo si tienen las mismas coordenadas x , z y la coordenada y es de signo contrario a la del punto.

Si la superficie F(x,y,z) = 0 es sumétrica con respecto al plano x2, entonces los puntos P1 (x0,y0,z0) y P2 (x0,-y0,-z0) deben estar sobre la superficie y por consiguiente :

 $F(x_0,y_0,z_0) = F(x_0,-y_0,-z_0) = 0$

Por otra parte si se cumple que :

F(x, y, z) = F(x, -y, -z) = 0

La superficie será simétrica respecto al eje 2, si, y solo si al sustituir "x" por "-x" y "y" por "-y" en la ecuación esta no se altera.

Una superficie es simétrica respecto a un punto, si cada punto de la superficie tiene un punto que permanece simétrico respecto al primer punto.

El punto simétrico de S(x,y,z) respecto al origen, es el S'(-x,-y,-z) porque el punto medio de S S es el origen (0,0,0).

Por lo que una superficie es simétrica respecto al origen si al sustituir "x" por (-x) ,"y" por (-y) y "z" por (-z) en la ecuación correspondiente esta no se altera

2.4.4 SECCIONES FOR PLANOS PARALELOS & LOS PLANOS COORDENADOS

Para conocer la superficie que se estudia, resulta útil identificar que curvas resultan al intersectar la superficie con planos paralelos a los planos coordenados.

Las secciones con planos paralelos al plano XY se obtienen sustituyendo en la ecuación de superficie :

Z = k

Para las secciones paralelas a XZ se sustituye

Y≖k

Y para las secciones paralelas a YZ

X = k

2. 4. 5. EXTENSION

Es un concepto que nos permite investigar la amplitud de la superficie en dirección de los ejes coordenados o bien determina en qué región del espacio tiene representación real la superficie en estudio.

A continuación se resumen las características de una superficie a manera de cuadro sinóptico :

	I N T E R S E C C		E J E & P	{	x Y Z	Y = Z = 0 $X = Z = 0$ $Y = X = 0$
	- I D N E S		L A N O S	ł	xz yz	Y = 0 X = 0
s 1		E J E S	{	X Y Z		F (X, -Y, -Z) F (-X, Y, -Z) F (-X, -Y, Z)
11 E T 21		₽ L N	ſ	XY XZ	-	F (X, Y ,-Z) F (X,-Y, Z)
A	l	O S ORIGE		YZ		F (-X, Y, Z) F (-X,-Y,-Z)
	SECCI	ONES	PLA	NAS		extens I ones
P L N 0 E	xx xx yz	/ 2 2	Z = Y = X =	к к к		$ \begin{array}{c} \mathbf{E} \\ \mathbf{J} \\ \mathbf{K} \\ \mathbf$

TANLA 2.3

2.5 CURVAS DE NIVEL

Cuando una ecuación de superficie adopta una forma funcional Z=f(x,y) en el plano paralelo a xy que corta a la superficie a una altura "C",definirá la curva de intersección.

> f (x,y) = C Z = C

Cada curva que se obtiene al dar valores a "C" recibe el nombre de "Curva de nivel" ya que los puntos que une se encuentran a un mismo nivel o cota. Si las curvas de nivel se trazan a intervalos constantes a dichos intervalos se les denomina equidistantes.

Por existir relación funcional, dos curvas de niveles distintos no pueden intersect.rse.

Cuando una función tiene 3 variables independientes

 $\Box = \neq (x, y, z)$

no hay curvas de nivel. Al hacer U = CTE se tiene la ecuación de una superficie, a la que se llama "superficie de nivel ".

A la ecuación :

 $f(x1, x2, \dots, xn) = cte$

se le llama "hipersuperficie de nivel"

2.6 SUPERFICIES CUADRICAS

Resulta conveniente poder reconocer las superficies más usuales por inspección o análisis de la ecuación.

La ecuación cuádrica general en tres variables se representa

de la siguiente forma :

 Ax² + By² + Cz² + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0...(z.5)
 Cualquier superficie cuya ecuación tenga la forma anterior se
 le denomina superficie cuádrica, si se realizan operaciones de traslación o rotación la ecuación (z.5) puedo transformarse en cualesquiera de las formas siguientes :

> $Kx^{2} + Ly^{2} + Mz^{2} = N$ $N \rightarrow = 0(2. ds)$ $Kx^{2} + Ly^{2} = Pz$ $P \rightarrow 0(2. ds)$

2.6.1 SUPERFICIES CUADRICAS CON CENTRO

Son aquellas cuyo centro de simetría coincide con el de origen , en este tipo de superficies se presentan las siguientes variantes:

> a)N ≖ 0 b)N > 0

para a) se tienen los siguientes casos:

a.₄) Dos de los coefici∈ntes K L M son nulos por ejemplo : Si K = L = O entonces M2² = O donde z = O

a.2) Uno cualquiera de los coeficientes K L M es nulo por ejemplo
 Si M = 0 entonces Kx² + Ly² = 0
 cuya solución real es x = 0 y = 0 que representa al eje z

a.s) K L M son diferentes de cero pero con el mismo signo

 $Kx^2 + Ly^2 + Mz^2 = 0$

representa al origen ya que sólo se satisface en x = y = z = 0

a.4) K L M son diferentes de cero , pero dos de ellos con el mismo signo entonces :

 $Kx^2 + Ly^2 = Mz^2$

Que es la ecuación de un cono elíptico fig. 2.6

b.i) Dos de los coeficientes K L M son nulos, par ejemplo

K = L = O M > O Kx + Ly + Mz = N N >= C Kx² + Ly² = P z P > O

FIGURA 2.5 CONO ELIPTICO

5.2) Uno de los coeficientes M L K es nulo por ejemplo M=0 su expresion es : Kx + Ly = N que equivale a un cilindro con generatriz paralela al eje z.

b.s K L M mayores de cero ; si dos coeficientes son iguales y mayores que el tercero se tendra una elipsoide de revolución

achatado , y si K = L K O el elipsoide será alargado , cuando los tres coeficientes tienen el mismo valor la ecuación representa una esfera.

b. + dos de los coeficientes K,L,M son positivos y el otro negativo que en forma canónica resulta :

$$\frac{x}{a^2} + \frac{y}{b^2} - \frac{z}{c^2} = 1$$

lo que equivale a un hiperbolcide en hoja o manto.

b.s uno de los coeficiente K,L,M es positivo y los otros dos son negativos la ecuación tiene la forma:

$$\frac{x}{a^2} - \frac{y}{b^2} - \frac{z}{c^2} = 1$$

las otras dos superficies difieren en las posiciones con respecto a los ejes coordenados . Determinando sus intercerciones y sus trazas se encuentra su representación gráfica como se muestra en la fig. 2.7

FIGURA 2.7 HIPERBOLOIDE DE NOJAS

2.6.2 SUPERFICIES CUADRICAS SIN CENTRO

Son aquellas que no tienen centro de simetría. Como ya se indicó su ecuación es de la forma:

 $Kx^2 + Ly^2 + = Pz$, (P>0)

Dependiendo de los valores de K y L se presentan los siguientes casos :

I) K = L= 0 entonces :
 Pz = 0 de donde z = 0 que representa al plano xz

II) Uno de los coeficientes es nulo por ejemplo : K = 0

Ly² ≃ Pz que es un cilíndro parabólico cuyo plano de simetría es xz, Si L > O se abre hacia arriba y si L < O se abre hacia abajo

III) Si K y L tienen el mismo signo, se obtiene una superficie que recibe el nombre de Paraboloide Elíptico.

Una de sus ecuaciones en forma canónica es :

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2$$

Due representa una parábola con vértice en el origen y eje real sobre el eje z. Si K y L \rightarrow O el paraboloide elíptico se abre hacia arriba fig. 2.8 y si K,L < O se abre hacia abajo.

IV) Si K y L tienen signo contrario; la superficie que se presenta en este caso se le denomina paraboloide hiperbólico .Tiene por generalriz a una hipérbola que se desplaza paralelamente a si

misma, apoyándose, en forma no simultanea en dos parabolas

directrices.fig. 2.9

FIGURA 2.8 PARABOLIDE ELIPTICO

capitulo III

CAPITULO III

APLICACION DEL METODO A LA GENERACION DE UNA ECUACION DE ESTADO

capitulo III

En el capítulo anterior se presentaron los principios fundamentales en que se basa el método de Generación de Superficies, que ahora serán aplicados junto con los métodos de ajuste para seleccioner las ecuaciones de condición , así como de las regiones en que hay mayor acercamiento a los ajustes. La superficie P V T utilizada para el presente estudio corresponde a los datos experimentales del metano obtenido de la referencia (15).Posteriormente se analizarán otras subtancias puras.

3.1 PROCEDIMIENTO PARA LA APLICACION DEL METODO

Para el análisis de la superficie P V T conviene generar una representación gráfica de ésta a partir sus datos experimentales (apendice A) como se muestra en la figura 3.4, lo que permitirá tener una idea más clara de la geometría que presenta la superficie, así como de los tipos de curvas que servirán como generatrices y directrices.

capitulo III

FIG 3. 1 SUPERFICIE PVT PARA EL METANO

La figura 3.1 representa una superficie que puede ser generada de las dos formas siguientes :

A) Considerando a las isotermas como generatrices y a las isobaras extremo como directrices , rio.3.20

B) Considerando a las isobaras como generatrices y a las isotermas extremo como directrices, Fig. 3.25

En el segundo caso se tiene la facilidad de tener una superficie reglada (esto es que la superficie sea generada por una recta) Por facilidad se enfocara el desarrollo a este segundo caso.

"FIG **9.**20 ISOTERNA GENERATRIZ - FIG.9.25 ISOBARA GENERATRIZ La forma de la ecuación generatríz sera :

,

Mientras que las ecuaciones de condición o directrices son :

$$D_{i} \begin{cases} V = f(P) \\ T = cte.i \end{cases} D_{i} \begin{cases} V = f(P) \\ T = cte.i \end{cases}$$

Estas ecuaciones se determinan en base a las condiciones extremo es decir Di con la isoterma menor y Dz con la isoterma mayor siempre y cuando continuen con la tendencia general de la superficie.La forma de encontrar las condiciones extremo se analizará en el siguiente capítulo.

fig 9.9 PARAMETROS EN UNA SUPERFICIE

Una vez que han sido seleccionadas como directrices Di y Di las isotermas extremo ,se debe definir un modelo de ajuste para sus ecuaciones correspondientes. En el presente caso se han seleccionado las isotermas como modelo . Conviene analizar algunos conceptos generales sobre el método de mínimos cuadrados. 3.1.1 ESTIMACION DE LOS COEFICIENTES DEL MODELO

A continuación se mencionan los tipos de ajuste mas comunes así como sus expresiones matemáticas :

 Modelo lineal con dos coeficientes y una variable independiente:

 Modelo lineal de l'variable dependiente y n'variables independientes :

 $Y = \beta o + \beta s X s + \beta z X z + \dots \beta n X n$

Las variables independientes no lineales :

$$Y = \beta 0 + \beta 1 X 1 + \beta 2 X 2 + \dots + \beta n X n$$

Lineal en ß no lineal en X :

 $Y = \beta_0 + \beta_1 X_1 + \beta_2 Ln X_2 + \beta_3 X_1 X_2$

Lineal en X no lineal en A :

Y = (30 + (31 + (32 + (31 + (31 + (32 + (33 + (33 + (33 + (33 + (33 + (33 + (33 + (33 + (33 + (33 + (33 + (33 + (33 + (33 + (33 + (33 + (33 + (33 + (33 + (3) + (33 + (3) + (33 + (3) +

• No lineal en X y /3 :

9.1.2 FORMA DE SELECCION DE UNA RELACION FUNCIONAL

Una de las principales dificultades reside en la selección adecuada de un modelo de ajuste por lo cual se analizará la forma de realizar una estimación previa del tipo de ajuste.

Cuando se trata de un modelo donde existen dos variables y entre ellas puede establecerse una relación funcional y ademas si los datos experimentales representados en una gráfica se aproximan a una línea recta , puede considerarse un modelo lineal del tipo :

Y = a + b X

pero si dicha gráfica resulta una curva, conviene realizar una transformación de las coordenadas con objeto de obtener una línea recta de la forma :

Y = a + bX

En donde Y y X son las nuevas coordenadas para la linealización de la curva.

En la tabla 3.1 se muestran algunas de las posibles transformaciones para obtener dicha forma lineal.

EGUACIÓN	C008	DENADAS Y	ECUACIÓN DE LA LINEA REGTA
$\frac{1}{y} = \alpha + \beta x$	¥	1 X	$\frac{1}{y} = \alpha + \beta x$
$y = \alpha + \beta - \kappa$	i X	y	y = a + B × x
$\frac{x}{y} = \alpha + \beta x$	×	×ÿ	$\frac{x}{y} = \alpha + \beta x$
$\frac{1}{y} = \alpha + x + \beta$	i X	1 	$\frac{1}{y} = i^3 + \alpha + x$
$\mathbf{y} = \frac{\mathbf{x}}{\mathbf{a} + \beta \mathbf{x}} + \gamma$	x	$\frac{X - X1}{y - y1}$	$\frac{\mathbf{x} - \mathbf{x}\mathbf{i}}{\mathbf{y} - \mathbf{y}\mathbf{i}} = \alpha + \beta \mathbf{x}\mathbf{i} + \frac{\beta}{\alpha} \left[\alpha + \beta \mathbf{x}\mathbf{i} \right]$
v = a x ^B	LOG X	LOO Y	LOG V = LOG X + A LOG X
y + a x ^B + y	LOO X	Louiy-Y	LOG(Y-Y) = LOO (+ A LOO X
y = αβ ^x	×	LOG Y	LOO y * LOO α • χ LOO β

TABLA 9. 1 TRANSFORMACIONES & LA FORMA LINEAL

En las transformaciones aparece un error en la estimación de la variable dependiente.

Por lo que despues de la transformación debera considerarse el error « en la variable transformada para aumentar la precision. Por ejemplo si el modelo es :

La variable dependiente observada será :

Y = a X ^b + c

3.2 METODO DE MINIMOS CUADRADOS

Ya que el objetivo es determinar los coeficientes a y b tales que el error en la estimación sea lo menor posible, se podría considerar que :

Sin embargo esta suma puede hacerse igual o muy cercana a cero para muchas selecciones de líneas inadecuadas ya que los errores positivos y negativos se cancelan de manera que se debe elegir a y b de modo que :

 $\sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2} \quad \text{donde} \quad \hat{Y}_{i} = a + b X_{i} \quad Y \quad \hat{Y}_{i} = Y \text{ estimada}$ $\sum_{i=1}^{n} (Y_{i} - (a + b X_{i}))^{2} \quad \text{sea minimo}$

Lo que equivale a minimizar la suma de los cuadrados de las distancias verticales a partir de los puntos respecto a la recta de regresión,como se muestra en la fig. 3.4

FIG 9. 4 CRITERIO PARA EL USO DE MINIMOS CUADRADOS

Una condición necesaria para que exista un mínimo relativo es la anulación de las derivadas parciales del error respecto a la y b por lo que se tiene :

 $2 \sum_{i=1}^{n} (Y_i - (a + b X_i))(-1) = 0$ $2 \sum_{i=1}^{n} (Y_i - (a + b X_i))(-X_i) = 0$

Escribiendo estas dos ecuaciones como :

$$\sum_{k=1}^{n} \frac{Y_{k}}{Y_{k}} = a n + b \sum_{k=1}^{n} \frac{X_{k}}{x_{k}}$$

$$\sum_{k=1}^{n} \frac{X_{k}}{x_{k}} + b \sum_{k=1}^{n} \frac{X_{k}^{2}}{x_{k}}$$

A este par de ecuaciones se les denomina ecuaciones normales y con ellas se pueden obtener los valores de a y b para el mejor ajuste.

3. 2. 2 TEOREMA GAUSS - MARKOV

Este teorema establece que entre todos los estimadores insesgados de α y β (coeficientes reales de regresión) que son lineales en Yi, los estimadores de mínimos cuadrados son los más confiables por hallarse sujetos a variaciones aleatorias pequeñas.

La variancia σ^2 suele estimarse en términos de las variaciones verticales de los puntos muestrales a partir de la línea de mínimos cuadrados.

La resima de tales desviaciones es :

$$Y_{L} - \overline{Y}_{L} = Y_{L} - (a + b X_{L})$$

$$Se^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (Y_{L} - (a + b X_{L}))^{2}$$

A la raíz cuadrada de S_{\bullet}^{2} se denomina error estandar de estimación y la suma de cuadrados dada por (n - 2) S_{\bullet}^{2} recibe el nombre de suma de cuadrados residual, o suma de cuadrados error.

Otra forma de estimar σ^2 es :

$$Se^{2} = \frac{S_{XX} S_{YY} - (S_{XY})^{2}}{n (n-2) S_{XX}}$$

En donde :

$$S_{XX} = \sum_{i=1}^{n} \frac{X_{i}^{2}}{i} - \left(\sum_{i=1}^{n} \frac{X_{i}}{i}\right)^{2}$$
$$S_{YY} = \sum_{i=1}^{n} \frac{Y_{i}^{2}}{i} - \left(\sum_{i=1}^{n} \frac{Y_{i}}{i}\right)^{2}$$
$$S_{XY} = \sum_{i=1}^{n} \frac{X_{i}Y_{i}}{i} - \left(\sum_{i=1}^{n} \frac{Y_{i}}{i}\right) \left(\sum_{i=1}^{n} \frac{Y_{i}}{i}\right)^{2}$$

3.3 REGRESION CURVILINEA

Cuando las transformaciones a la forma líneal no resultan adecuadas, deberá emplearse las regresiones polinomiales en donde para cada X la media ce las Y esta dada por :

 $\beta \phi + \beta i x + \beta z x^2 + \dots + \beta n x n$

El ajuste de las curvas polinomiales tambien se utiliza para obtener aproximaciones cuando no se conoce la forma exacta, por lo que una ecuación predictora será de la forma :

 $\hat{Y} = \beta_0 + \beta_{1x} + \beta_{2x}^2 + \dots + \beta_{nxn}^n$

Dado el conjunto de datos se estiman los coeficientes minimizando:

$$\sum_{i=1}^{n} (Y_{i} - (\beta_{0} + \beta_{i}x + \beta_{2}x^{2} + \dots + \beta_{n}x^{n}))^{2}$$

Derívando parcialmente respecto a cada coeficiente (30 ,34 , etc) e igualando las derivadas parciales a cero se obtienen n+1 ecuaciones normales se tiene :

$$\sum y = nbo + bs \sum x + ... + bn \sum x^{n}$$

$$\sum xy = bo \sum x + bs \sum x^{2} ... + bn \sum x^{n+s}$$

$$\vdots$$

$$\sum x^{n}y = bo \sum x + bs \sum x^{n+s} ... + bn \sum x^{2n}$$

Con estos sistemas de ecuaciones se encuentra una solución única.

Los riesgos inherentes a una extrapolación aumentan en forma considerable cuando se emplean polinomios para aprovimar funciones desconocidas.Ya que como simpre es posible hallar un polinomio de grado a lo sumo n-1 que pase a traves de caca uno de los n puntos correspondientes a n valores distintos de x, por lo que el objetivo debe ser encontrar un polinómio de grado mínimo y que adecuadamente describa los datos (fig 3.5).

Existe tambien un método mús estricto para determinar el grado del polinómio que se ajusta al conjunto de datos que consiste en ajustar inicialmente una recta, así como un polinómio de segundo grado y probar la hipótesis nula ßz = 0 en el caso de que la hipótesis nula sea rechazada entonces se prueba con uno de tercer grado y así se continua hasta que la hipótesis nula no pueda rechazarse en dos etapas sucesivas.

Para aplicar estas pruebas se requiere de suposiciones de normalidad ,independencia y varianceas iguales , ya que nunca depen ser empleadas sin antes examinar el patrón global de los datos.

3.4 REGRESION MULTIPLE

Las curvas obtenidas no sólo se utilizan para hacer predicciones, a menudo se emplean para fines de optimización, es decir, para determinar los valores de la variable independiente de tal manera que esta represente un máximo o un mínimo.

Los métodos estadísticos de predicción y optimización se consideran incluidos bajo el título general de análisis de superficies de respuesta "Existen dos métodos de análisis de superficies de respuesta el de regresión múltiple y los problemas conexos de experimentación factorial.

En el primero de ellos se manejan datos de n (r+1) coordenadas (Xii , Xzi , . . , Xmi) donde nuevamente se supone que las x se conocen sin error, mientras que las y son valores de variables aleatorias.

Como primer punto de la regresión multiple, se abordara el problema en que la ecuación representa una regresión lineal es decir cuando para cualquier conjunto determinado de valores X1 ,X2 , ...Xn la media de la distribución de las Y esta dada por la

óΟ

expresion :

^ Υι = βο + βικ + βz×z+ + βπκη

En el caso de dos variables independientes debera ajustarse un plano a un conjunto de n puntos con coordenadas (X $_{11}$, X $_{21}$,Y $_{1}$) como se ilustra en la fig. a.o. (x = 1,2,3,...,n)

Aplicando el método de mínimos cuadrados para obtener estimaciones de los coeficientes (30, (31, (52 se minimizará la suma de cuadrados de las distancias verticales de los puntos al plano "Simbolicamente se minimizará 1

$$Y_{L} = Y_{L} = \sum_{i=1}^{n} (-Y_{i} - (\beta_{0} + \beta_{1} \times i i + \beta_{2} \times 2_{n}))^{2}$$

Y las ecuaciones normales para una regresion multiple con r=2 seran :

$$\sum y = nbo + \sum bi \times i + \sum \times 2$$

$$\sum xiy = bo \sum xi + bi \sum xi^2 + b 2 \sum xix 2$$

$$\sum x2y = bo \sum x2 + b i \sum xix 2 + b 2 \sum x2^2$$

la notación abreviaca denota :

$$\sum_{i=1}^{n} x_{ii} = \sum_{i=1}^{n} x_{ii}$$

$$\sum_{i=1}^{n} x_{ii} y_{i} , \text{ etc.}$$

Si se hubiera considerado una ecuación de la forma :

$$Y = \beta_0 + \beta_{1\times 1} + \beta_{2\times 2} + \beta_{9\times 1\times 2} + \beta_{4\times 1}^2 + \beta_{5\times 2}^2$$

El método de mínimos cuadrados habría originado un sistema de ecuaciones normales formado por seis ecuaciones simultaneas

ы

lineales y seis incognitas.

En este método lo mas importante es la cuidadosa elección de valores de la variable independiente, ya que esto permitira mejorar las predicciones. Mediante el análisis de variancia se deben efectuar pruebas relativas a lo significativo de los efectos de ciertas combinaciones de niveles de las variables independientes.

FIG 3. 6 PLANO DE REGRESION.

3.5 SELECCION DEL MODELO DE AJUSTE PARA LAS ECUACIONES DIRECTRICES DE LA ECUACION DE ESTADO

Ahora se aplicarán los conceptos anteriores para encontrar el modelo de las directrices.

Mediante la fig. s.: se puede apreciar que la tendencia que sigue la geometría de las isotermas en la región evaluada es la misma. Por lo que una vez deteminado el modelo de ajuste para cualquiera de ellas, este serviará como base para optener los coeficientes de regresión de cualquier otra isoterma.

En la fig. 3.º se muestra el tipo de curva que presentan las isotermas en las coordenadas P vs. V.

Para una estimación previa del modelo a partir de la tabla s.2 se tabulan los datos (tabla s.3).

MODELO	VALOR CONSTANTE		
$\pi = \alpha + \beta \times$	ΔΥ/ΔΧ		
$n = \alpha \beta^{\kappa}$	ALOGY/AX		
$n = \alpha \times \beta$	Δ Log Y / Δ Log X		
$\Pi = \alpha + \beta \times + \gamma \times^2$	$\Delta^2 Y \neq \Delta X^2$		
n = x / (a + ß x)	Δ(Χ/Υ)		

TABLA S. 1 MODELOS DE AJUSTE

an 🗃

PRESION	VOLUMEN	PRESION	VOLUMEN
15	5 20.45221		0.2418
25	12.2457	1200	0.1917
50	6.0905	1400	0.1572
75	4.0385	1600	0.1329
100	3.0126	1800	0.1156
150	1.9865	2000	0.1030
200	1.4734	3000	0.0737
300	0.9601	4000	0.0632
400	0.7034	5000	0.0576
500	0.5493	6000	0.0542
600	0.4465	7000	0.0517
700	0.3732	BUOO	0.0498
800	0.3182		
700	0.2756	• P = 1.6/	'in

ISOTERMA DEL METANO 255 K (0 .F)

TABLA 3.9 DATOS EXPERIMENTALES DE LA ISOTERMA 255.5 K DEL METANO

Para seleccionar el modelo de ajuste de las isotermas que servirán como guías para la superficie generada,se puede elegir cualquiera de ellas, siempre y cuando presente misma tendencia que las otras.

Para el presente desarrollo se analizará la isoterma a 255 K, la cual se encuentra en una región central de la superficie.

En la tabla 3.4 se presentan los valores de las coordenadas de transformación lineal , lo que permite evaluar con que transformación se obtiene un mejor ajuste.

ISOTERMAS DEL METANO

FIGURA 3.7 ISOTERMAS DEL METANO

FIG. 3.8 COORDENADAS P/V VE.P

GRAFICA 5.9 ISOTERNA EN COORDENDAS LN V VE. LN P

FIG. S. 10 ISOTERMA EN COORDENADAS LN P/V - LN P

đ

GRAFICA 3, 11. LOG P VA. LOG V

En la siguente cabla se muestran los resultados obtenidos para las transformaciones lineales en base a las variancias que presentan.

Grafica #	TIPO DE AJUSTE	ABSCISA	ORDENADA	VARIANCIA
9.10	P/V VS P	•	P/V	
3.11	LN P - LN V	LN P	LNV	2.28 E-2
9.12	LN P/V - LN P	LNP	LN P/V	2.305-3
9.15	LOG P - LOG V	LOG P	100 V	4.70E-4
			1	

TABLA 5.4

Ahora se grafica la misma isoterma con regresión curvilinea para distintos ordenes (2, 3, 4).

En la tabla 3.5 , se puede apreciar el resumen del comportamiento de las regresiones curvilineas, lo siguiente ; A medida que el orden aumenta la variancia disminuye pero , ya que el objetivo es encontrar la expresión mas simple y representativa, no es conveniente que se selecione una ecuación de orden superior porque aumenta el número de parámetros que deberán encontrarse y ademas se incrementa en forma considerable la dificultad para que sea usada como guía.

a second a second s

FIG. 9.12 REGRESION CURVILINEA DE 2 ORDEN

isoterna a 330 C para metano

issterms a 330 C para metano

FIG. 5.14 REGRESION CURVILINEA DE 4 ORDEN

Grafica #	TIPO DE AJUSTE	ECUACION	VARIANCIA
•. 4B	BEQUINDO, ORDEN	4. 07E1-1. 28E2+80X ²	-7.07
3.19	TERCER ORDEN	51. P-108X+204, dX ² -110X ³ 52. P-229. 0X+980. 0X ²	-0.575
3.14	CUARTO URDEN	-312X ⁹ + 00.5X ⁴	-0.29

TABLA S. 5 COMPARACION ENTRE REGRECIONES DE DISTINTO ORDEN

En base a las tablas 3.4 y 3.5 , el modelo resultante para la ecuación directríz es de la forma:

o bien :

Y=axB

Una vez seleccionado el modelo, se determinan los coeficientes α y β para cada una de las isotermas que se tomen como guías .En este caso son las correspondientes a 255 y 433 K .

Los coeficientes para cada una de las directrices son :

TEMPERATURA	a	ß
255.5 K	-0.9394517915	2.415:02549
433.3 K	-0.9969967181	2.712311968

En el siguiente capítulo se analizará la forma en que los coeficientes pueden contribuir a mejorar la precisión en la reproducción de la superficie PVT.

3.6 ALGORITMO DE LA ECUACION DE ESTADO GENERADA

Las ecuaciones de las guías o directrices son :

Asignando estos valores a las letras a , a:, b, b:, r: r: se

$$a = -.9969967181$$
 $b = 2.712311938$ $r_1 = 433.33$
 $a_1 = -.9394517915$ $b_1 = 2.415102549$ $r_2 = 255.55$

Despejando en las ecuaciones 3.10 y 3.12 el volumen. V e introduciendo las constantes se obtienen las ecuaciones siguientes:

> $\forall i = (P / 10^{b})^{i/a}$ (3. 19 $\forall z = (P / 10^{bi})^{i/ai}$ (3. 19)

Como la generatríz es una recta , su ecuacion será :

Sustituyendo 2.13 y 3.14 en (3.15) se obtienen las siguientes expresiones :

 $(P / 10^{b})^{1/a} = \alpha + \beta (r_1) \dots (3.16)$ $(P / 10^{b_1})^{1/a_1} = \alpha + \beta (r_2) \dots (3.16)$ signdo riv rz los valores de T de las directrices

Restando 3.16 a 3.17 se tiene :

$$(P / 10^{bi})^{i/ai} - (P / 10^{b})^{i/a} = \beta (r_2) - \beta (r_1)$$

 $(P / 10^{bi})^{i/ai} - (P / 10^{b})^{i/a} = \beta (r_2-r_1)$

Sir = rz-rs y despejando ß

$$\beta = \frac{(P/10^{b1})^{1/a1} - (P/10^{b})^{1/a}}{r} \dots \dots (9.18)$$

de 3.17 se tiene :

$$\alpha = (P / 10^{bi})^{i/ai} - \beta (r_i)$$

Sustituyendo en 3.15 :

$$V = (P / 10^{bi})^{i/ai} + \beta (T - r_i)$$

Transformando ni = 10^{61/01}

$$V = (P^{i/\alpha i}/n_{i}) + \frac{(P^{i/\alpha i}/n_{i}) - (P^{i/\alpha}/n_{i})}{r} \left(T - r_{i}\right)$$

Por medio de la ecuación 3.20 se podra determinar el volumen conociendo las constantes para la substancia requerida.

CAPITULO IV

RESULTADOS GENERALIZACION Y CONCLUCIONES

En el capítulo anterior se mostro la aplicación del método de generación de superficies y el modelo que presenta la ecuación de estado generada a partir de los datos del metano (ap.A) . El presente capítulo esta enfocado al análisis de los resultados de esta ecuación , con el fin de establecer una comparación entre los datos experimentales y los que se han reproducido.

A partir del modelo desarrollado para el metano y con datos para el nitrógeno, etileno y COz,(ap.B-C-D), en las regiones estudiadas,se tratará de generalizar el modelo , y establecer las ventajas y desvetajas del método de generar las ecuaciones de estado.

4.1 ESTIMACIÓN DE LAS CONDICIONES EXTREMO

Si se grafican distintas isotermas en coordenadas P vs. V (fig. 4.1) y posteriormente en coordenadas logarítmicas para lograr su transformación lineal como se muestra en la fig. 4.2; se puede observar que algunas de ellas no presentan la misma tendencia de la geometría establecida, y se alejan de la linealización lograda usando la transformación de coordenadas.

inn 1838 10 (10) Shin ƙi Li 1860)

Capitulo IV

Este tipo de líneas no seran de utilidad para poder ser consideradas como guías o condiciones extremo, ya que no se ajustan al tipo de geometría de la superficie que se trata de reproducir , por lo que , eliminando este tipo de isotermas , se tomarán como condiciones extremo a aquellas isotermas con temperatura mínima y máxima que presenten menor variancia en su ajuste lineal y que manteniendo la misma tendencia geométrica que las que quedan comprendidas entre ellas. (grafica 4.2).

FIG. 4.1 ISOTERMAS PARA EL METANO P VS. V

FIG. 4.2 ISOTERMAS PARA EL METANO LOG P VS. LOG V

4.1.1 ANALISIS DE LOS INTERVALOS DE PRESION

Es de suma importancia el no pretender reducir los intervalos estudiados a un valor mínimo,tratando con ello de lograr un mejor ajuste de la transformación lineal, ya que esto podría dar lugar al análisis de una parte de la superficie que probablemente no sea completamente representativa de la geometría ; y una extrapolación de estos intervalos podria resultar completamente absurda ,mientras que si las ecuaciones directrices deben ser lo mas representativas posible ,para que permitan extrapolaciones con resultados confiables.

En las gráficas siguientes se puede apreciar como se obtenienen mejores valores en los ajustes para intervalos cada vez menores pero al mismo se puede apreciar la forma en que se limita la región en estudic.y el cambio de geometría que puede generar el basarse en una area limitada fig fig.4.3,4.4,4.5,4.6

Observando los intervalos de presiones que se manejan en estas gráficas en la fig. 4.3 de 10 a 8000 psia se presenta una desviación del ajuste lineal, por lo que graficando nuevamente la misma línea con un intervalo de presión hasta 4000 psia en lugar de 8000 se logra disminuir considerablemente las variancias como se muestra en la tabla (4.1) ; si a su vez se decrementa el intervalo de presiones hasta 2000 psia el ajuste sigue mejorando, y así se podra seguir, pero cada vez la representatividad disminuirá ; lo cual se puede observar en las superficies generadas

FIG. 4.4 ISOTERMA 200.5 K DEL METANO Intervalo de Presion 10 a 4000 pria.

...

...

Este análisis no solo es aplicable a las isotermas sino que resulta extensible a las isobaras , por lo que , tanto en presión como en temperatura , deberan elogirse condiciones extremas óptimas tales que permitan reproducir volumenes realmente representativos de la región a la que pertenecen.

isoterma	intervalo de presion (PSIA)	coeficiente de variancia
255.5 K	10 - 8000	4.712E-03
255.5 K	10 - 4000	9.265E-04
255.5 K	10 - 2000	8.436E-04
255.5 K	10 - 1000	2.834E-04

TABLA 4.1

El estimar los coeficientes del modelo de las líneas directrices en la forma mas precisa posible, tiene una gran repercución en la superficie generada ya que , como se ha podido observar en el capítulo anterior , estos coeficientes se convierten en exponentes en las ecuaciones de estado, confiriendo sensibilidad a la ecuación , lo que puede representar un mayor acercamiento a los datos experimentales o por lo contrario se pueden generar datos muy distintos a los esperados , en ciertas regiones.

En los ejemplos posteriores se dara una explicación más amplia en lo que respecta a las condiciones extremo en base a los resultados obtenidos de las ecuaciones.

4.2 GENERALIZACION DE LA ECUACION DESARROLLADA

los datos experimentales para el metano se Α partir de desarrollo un algoritmo para la región gaseosa, el cual puede se extrapolado al cálculo de otras substancias puras como se demuestra a continuación . Si se trabaja con datos experimentales para el nitrógeno, etileno y COz , observando la superficie PVT reproducida para el Nitrogeno a partir de sus datos experimentales (fig.4.7), se puede apreciar la gran similitud que presenta la geometría de esta superficie con la que ha sido previamente desarrollada para el metano (fig.3.1), por lo que , se puede decir que el mismo algorítmo (ecs.3.30) servirá para reproducir los volumenes del nitrógeno , variando unicamente los parámetros que han sido determinados para el metaño , por lo que de acuerdo a la tendencia general de las isotermas y usando la transformación lineal encontrada, se determinan las condiciones extremo.

A continuación se desarrolla el mismo tipo de análisis efectuado a los datos del metano y a su superfície , para cada una de las subtancias seleccionadas , presentandolas por separado.

4.2.1 SUPERFICIE Y ALGORITMO PARA EL NITROGENO

En la gráfica 4.8 se muestra la tendencia de las isotermas del Nz que como ya se indico presenta el mismo tipo de geometría que el metano, en la fig. 4.9 se muestra la transformación lineal.

La tabla 4.2 resume los resultados de la transformación para cada una de las isotermas , a fin de seleccionar las directrices adecuadas , de acuerdo al modelo de ecuación 3.30 (desarrollado para el metano).

TEMPERA	TURA	ORDENDA AL ORIGEN	PENDIENTE	VARIANCIA
				1
~160	166.6	1.785	-9.839E-1	1.082E-2
~ 80	211.1	2.087	-9.698E-1	3.562E-3
) 0	255.5	2.167	-9.632E-1	2.048E-3
80	300.0	2.235	-9.604E-1	1.506E-3
160	344.4	2.296	-9.5985-1	1.226E-3
320	433.3	2.401	-9.611E-1	9.132E-4
400	477.7	2.446	-9.622E-1	8.130E-4
480	522.2	2.487	~9.635E~1	7.241E-4

TABLA 4.2

Como ya se ha mencionado , la selección de las directrices dete ser función simultanea de que la línea presente la tendencia geométrica general y que sus coeficientes de variancia sean adecuados . En base a estos criterios , si consideramos como directrices las isotermas -80 F y 480 F , los parámetros para la ecuación 3.30 serían los siguientes .

Capitulo IV

FIG. 4.8 TENDENCIA DE LAS ISOTERMAS DEL NITROGENO

ISOTERMAS DEL NITROGENO

FIG. 4.9 LOG F VS. LOG V NITROGENO

T1 = 211.11	A1 =	-0.9698	B1 =	2,087
$T_2 = 522.2$	A2 =	-0.9635	B2 =	2.487

TABLA 4. 3 CONSTANTES ESTIMADAS PARA EL NITROGENO

Estos valores no son los parámetros definitivos de la ecuación , sóló se está tomando en principio como un estimado de los posibles parámetros , con el objeto de ejemplificar como se introducen los coeficientes de las ecuaciones directrices en el algoritmo de la ecuación de estado.

Con el fin de seleccionar las directrices optimas que reproduzcan los volúmenes lo mas cercano posible a los datos reales, en la tabla 4.5 se evalúan los volúmenes estimados según los distintos pares de isotermas consideradas como directrices y condiciones extremo que se presentan a continuación (tabla 4.4).

MODELO	V 1	V 2	V 9
T 1	211.11	255.55	166.60
TZ	522.20	477,77	522.20
A 1	-0.9698	-0.9632	-0,9839
A 2	-0.9635	-0.9622	-1.9850
B i	2.0870	2.1670	2.4870
B 2	2.4870	2.4460	2.4670

TABLA 4,4

		*118065#0							
Resion	TERPERA F	ture *	VCC ETF	¥i	10254	Yî.	LESV	VG	Kić S
10 Lb/182	-26 14	211.11	14 51517	13 20780	• 6 5	13 17418	645	13 14368	4.6
	18 W	255 50	17 5585.	الجزائر دا	4 47	16 27746	ê #7	16 25454	- 41
	89 W	Die w	N 6300	19 41-00	\$ e s	15 35170	4 W.	19 3723	
	161 🖬	344 44	23 715-7	4 134	4 46	Z 15.8	265	11 4 L W	
	244 🗰	362.64	N 76154	25 1.1.50	ê şa	25 645.20	* **	25 55416	
	3.v. er	4.5 %	29 65, 9	S 7.000	* #	X 7.00	÷ 64	35 711 W	÷ 1
	Aler de	477 76	10.00	31 631	÷ •5	31.52774	4.45	31 8228	
	Lini (h)	\$22.20	35 (0.152	34 54070	4 d.	34 34,341	4 43	34 54699	•
25 LB/112	-64 🗰	511 11	5 7965	5 134H	4.B	5 655.9	÷ 12	5 1455m	
	4 #	255 50	7 8,005	6 3.00	¥ 16	6 26.50	4.11	6 3.7%	÷.
	99 M	X	5 261-0	7 52494	4.45	7 45. AC	4 45	7 \$3276	÷.
	164 60	344 49	5 42.3	8 71	8 96	8 66514	1.00	67.500	
	244 W	386.98	10 7152	\$ 51,50	1.00	5 B6. H	4 46	9 517 W	
	3/1 🛲	455.39	11 54.54	11 10.00	6 97	11 16.50	• •7	11 1122#	
	60X.00	477 78	13.17364	1. 3259	• #7	12 200.0	4 87	12 34454	•
	<i>42.4</i>	\$4.2	14 39612	15 19566	9 W	13 401 57	1.45	13 47548	
100 Lb/in2	-# #	211 11	1.4358	1 2259	8 14	1 20756	1 16	1 24540	
	4 46	255 54	1 75656	2 51898	* 14	1.4 (1997)	¥ 15	1 5,469	
	39 BH		2.90214	1 73510	0.13	1.77444	4.14	04458	
	164 40	34.1 44	2.31310	2 97464	4 13	2 9576	0 13	2 4.39	*
	244 🗰	305.0	2 57.43	1 34.30	• 12	2 349-1	• 1a	2 .6.514	
	3.00 10	الا يرة	X 22144	6 5.2.40	• 12	2 6.1.9	6 12	1 64.99	
	444 144	4// /8	3 2.795	1 3,3997	P 34	7.98/56		2 94. 1	
	4,00 90	512 24	3.67785	3 2 2 2	• 11	3 19176	4 12	5 Л.	•
496 LD/10.	-98 🖨	211	\$ 5465F	\$ 29435	1 is	\$ 20m	\$ 19	1 36144	
		255 54	4 45214	8 #475	\$ 3.	6 Sidel	÷ 15	4 x.c.w	
	9e 🕈	સામ સમ	8 514 20	6 12736	• P	1 1245	4.18	0 43235	
	160.80	وما علد	e 55475	4 49574	4 37	4 4.744	0 16	4 49779	
	286 Ø0	6. 00	0 67416	4.56018	• 17	8 55438	* 1d	8 SE316	
	328 4	475 24	 75294 	0.000	* 32	4 62144	•. <u>.</u>	¥ 6.054	
	490 90	6/1.10	. 61176	8 23,054	- 1 I	8 L 2 X		A 2264	
	404° M	20 - 20	< yr725	¥ /5952	4 R	4 /5540	4 U	4.75354	

TABLA 4.3

p3

				N N	1 T R D 6 E	k ()			
PRESIGN	ERPERA	TURA F	WX, ELF	¥1	SDESV	¥.	10ESV	Vi .	\$QE5;
1000 LD/st	- 64 44	211 11	8 131 30	# 11443	ê. 13	ð.11970	0 16	0.118 60	e (e
	* **	255 59	0 17059	e 1396	9 18	0 13650	÷ 29	0 14510	¥ 16
	છે. સર	397 98	2.66	¥ 16559	4 29	0 16250		16:14	4 19
	têr î n	348 849	# 24ther:	0.15114	÷ 21	0 16E14	• 22	0 15:20	÷ ,u
	24ê We	369 749	\$ 274+3	0.216e-	# 21	2175er	0 22	0 21825	1 24
	3.0 00	435 39	1 20.60	0.242.30	¢ 21	# 25mm	• 22	¥ 24.54	• 21
	400 UK	477 7 0	1.36.0	🔹 it.75e	0.21	4 26568	¥ 22	+ 200 S	¥ 21
	4.30 W	522 IV	€ <u>3</u> 7075	# 25347	• 21	0 25145	#.21	e 25347	0.11
1640 La/m2	-60 60	211.11	# #5,30	V 87645	ê 15	6 wi75e	¥.16	1 6739	0.10
	9 P.	35 50	# 1877#	0 \$k615	8 20	\$ 16.3e	• 2	4 #X.8	¥ 38
	50 70	3	0 13136	1016.	1,22	÷ #3365	0.24	\$ 1H.S.	¥ 2i
	1 Can and	344.44	1 55 5	0 11748	¥.24	0 11547	0 25	8 11650	125
	240.00	26.64	0 17510	0 13/24	0 24	1 15:29	+ 25	6 134.9	0.2i
	320 M	الاست فناله	0 156.0	¥ 1466.	0 24	\$.14744	* 25	\$ 14550	♦ 24
	490 BU	477 70	0 21650	¥ 16449	÷ 24	11.56	¥ 25	16465	9.24
	400 m	522 X	\$. A.A.	0 1603B	0 24	1.1702	0 24	0 15018	0 24
3000 Lb/ 102	-in in	211-11	0.84748	e 43500	0 22	€ e35të	03	6 6 56 17	¥ 19
	8 (255 54	e #6167	8 84479	¥ 27	1 542.5	8 29	\$ \$46.8	125
	એવે જેવે	346	0 07525	* *5314	4 25	♦ 4 5.67	ان 🖲	8 8542	* 26
	164 64	344 44	♦ 45,774	# #i127	8 34	1 m. 310	¥.31	4 0C214	* 25
	249 🗰	20, 54	03976	\$ 10.540	6.39	1 (65)22	1.32	0 0700e	1.),
	528. Ht	435 99	0.11137	0 0775ú	ê 34	€ 187-57		ê ¥77%.	6 30
	4im 🖶	477 76	0.12271	8 W. S.	* 30	 (a) (1) 	\$ 31	8 #35fm	1.00
	4)A (#)	5	0 12iec	 # #355.5 	6.34	0 0 5 50	4 31	0.09263	9 (A)
6iilii Lo/an2	-26 (4)	211 11	4 8316	6 41644	¥ 45	0 81724	\$ 4E	\$ \$185.	Ø 41
	U , 00	255 Se	€ € £71	* 0 12	6.45	0.02125	4 45	e e., 78	# A)
	તે છે.	in ne	6 6455-	8 (L554	0.43	0 025.5	0.45	0 02550	÷ 42
	(6ê m)	A8 80	0 05205	1 8.57	¥ 45	0 0 2925	14	0 6365	♦ 42
	2417 10-	10, 10	0 058 iS	0 03%8	0 42	0 03025	¥ 43	8.9342v	# 41
	320 00	405.38	6 19.445	4 63770	4.42	0 \$3725	4 42	8 632,000	# 41
	400 14	4.7.70	\$ 87624	ê 64;76	8 41	0 04125	é 41	0.041.00	4 41
	4.je #1	522 in	6 676.1	4 8457 4	ð 48	4 44 527	₹ 4 1	u 04570	\$ 1¥
tora.					0 19037		4 20336		♦ 18K-36

TABLA 4. 5 CONTINUACION

Analizando la tabla 4.5 de accierdo a los porcentajes de desviación de los volumenes estimados respecto a los experimentales, se puede apreciar que los valores más cercanos se tienen para las directrices seleccionadas de 166.6 K (-160 F) y 522.2 K (480 F) resultando como coeficientes para la ecuación del nitrógeno los siguientes valores :

T1 = 166.6	A1 = -0.9839	B1 = 1.985
T2 = 522.2	A2 = -0.9635	B2 = 2.487

TABLA 4.3 CONSTANTES PARA LA ECUACION DEL NITRODENO Tomando de la tabla 4.5 los volúmenes estimados para el nitrógeno con estas constantes se genera la superficie PVT que se muestra en la fig. 4.10.

Mediante este tipo de análisis se puede apreciar la importancia de la selección de las directrices , ya que con ello los volúmenes estimados en general , pueden mejorar o empeorar notablemente.

Capitulo IV

4.2.2 SUPERFICIE Y ALGORITMO PARA EL ETILENO

Ahora se aplica el mismo procedimiento para los datos del etileno. En la gráfica 4.11 se muestra la superficie PVTgenerada a partir de los datos experimentales del etileno (AP.C)

Dicha superfície es estudiada usando el mismo algoritmo que en las substancias anteriores . En la grafica 4,12 se muestran los ajustes de las isotermas de acuerdo a la transformación logarítmica.

Los coeficientes encontrados para dicha lunesizzación son los siguientes :

TEMPERATURA K	GRDENADA AL ORIGEN	PENUIENTE	VARIANCIA
373	2.367	-1.0592-0	2.218E-2
473	2.419	-1.027E-0	5.116E-3
573	2.461	-1.009E-0	1.9765-3
673	2.500	-9.977E-1	1.122E-3
773	2.534	-9.875E-1	8.3935-4

TABLA 4.7

De acuerdo a estos valores y seleccionando aquellos pares de directrices que presenten los menores procentajes totales de desviación en volumen se presenta la tabla (4.9) de acuerdo a las siguientes combinaciones (tabla 4.8)

MODELO	¥1	¥2	V 3
T 1	365.6	422.2	477.7
T 2	539.3	595.9	599.9
A 1	-1.071	-1.038	-1.021
A 2	-1.010	~1.010	-1.010
B 1	2.319	2.324	2.351
8 2	2.301	2.381	2.381

TABLA 4.8

FIG. 4. 11 SUPERFICIE EXPERIMENTAL PARA EL ETILENO

•

Isotermas del Etileno 4E+1. Δ T = 200 K = 255 K т ε 311 1E+ 366 t Ξ 422 = 533 K 1 E+Ø 1E-1 2E-2 12+2 1E+3 91.+3 16+1 presion (PSIA)

4.

FIG. 4. 12 ISOTERMAS DEL ETILENO

Capitulo IV

	ETILENO								
T Ries.(a	ERFER	ATURA K	VAL EIF	V)	NEW.	12	N ESV	¥3	10È5.
18 15/152	1 64 (41)	33 11	21 33342	19 51626	ù vý	24 272an	6 45	Se C'Ge	4 97
	200 100	Ac \$7	25 17525	20 51500	ê 97	24 10.100	8 84	14 4. 100	4.94
	an the	422.22	29. 07.45	27 51376	ê 6 5	27 69164	\$ 9£	27 65164	3.5
	401.01	477 76	3. 85540	51 5453M	÷ 64	1.644	8 84	al source	3 5.
	Sec es	ند نذا	36 67511	35 54405	÷ #5	35 5#445	4 42	35 54444	3.15
25 LD/112	ier er	311-11	6 40975	8 21571	u 45	6 46643	4 er	6 4-500-	••
	300 60	RE 57	10 04.74	9 6765m	4 mi	9 95770	4 42	9 05,740	
	M	422 22	11 56537	11.14.20	ý #4	11 26737	8.85	11 26734	
	107 00	477 76	13 12524	12 64.44	4 94	12 66453	ê #4	12 6645#	- ÷ +
	500 00	5 33 35	14 6. 7	14 0.4.0	4 41	14 454.00	4 94	14 \$42	
ie us/an2	र्मन स्व	311-11	2 6552	2.21991	(8.67)	2 256.54	(8 8 91	2 25630	(8.8
	* feet det	sec 17	24/12	2 5 41:41	(8.6-1	4 30:47	(8.84)	2 55000	(9.6
	200 00	422.2	2.06.06.1	2 64 14	6 61	2 86078	4 44	2.86,74	
	400 M	477 76	3 26120	3 15014	4 43	3 10.245	0 83	3 1700,00	
	599) eri	ند (ند	3 65499	3 <i>4347</i> e	e es	3 4647e	8 NS	3 56400	0 0
159 1.0/102	160 62	511.11	1 35#77	1 51317	(* 12)	1 51164	00.151	1 43:89	10 8
		A 67	1 6.55	1 70530	(9 乾)	1 74:54	(0,1445)	1 723##	in d
	jana int	144	1 6 972	1.50,70	(ê 👾 '	9.685	(# #))	19.000	(8.8
	400 (**	477.76	2 1649	2,10511	6.43	2 10775	e 65	2 1#77e	
	500) in 1	52333	2 4.720	2.350	8.45	2.29964	# #5	2 55200	
S₩ LD/INI	100 00	ia n	ورعهر به	8 16547	(0.4))	e escie	(0.41)		÷7
	les et		4 45455	8 5:44.	(# 15)	0 53,6+	(0 16)	4 1.40	4.9
	347 64	4.2 Z	* 54.5%	6 55536	10 072	0 50.57	fit 075	0 55200	**
	and in	477 76	0 61115	* 6325	IN MALE	* 6.5484	10 001	0.56.54	
	500 00	635.35	# 71515	8 66. AV	¥ #5	0 66120	4 45	8 63/00	9.1

TABLA 4. P

EIILENG									
PRESION	F		VAL EIF	vi	SUE SV	٧ź	\$QE5V	43	KDESV
1944 LD/112	100 W	3.1 11	0.11315	0 25225	9.29	0.2477e	(1.21)	4 14.200	(\$ 25)
	201 00	24. 1	0 197 99	■ 27376	18 2	1.712	(† 4)	6 20156	sê ê7;
	3 2	A.C. 22	1 25:41	0	(8) (6)	0 25350	LØ 157	• 265 9	(i) 84)
	400 40	471 76	\$ 7.44	8 51004	10 447	8 310-94	19.967	 31599 	18 441
	See et	535 35	4 35+ 34	• soul	8 .45	4 3%1i	0 03	ê 1412ê	4 4 3
15 00 (10/11)2	100 fer	511 11	4.45728	4 17.84	(2.01)	e :652	(156)	e #1555	\$ 55
	20v ún	366 67	4.1166e	¥ 18514	(at 55)	0 18515	(8 57)	6 9 z 🖛	66
	300 00	422 22	0 16110	196.5	(8.25)	1 1965	(0.22)	13515	0.17
	444 M	\$77 76	÷ 19765	0 21135	(# 47)	∎ 2105£	€ \$7)	0 210-6	(0.07 <i>)</i>
	5444 (44)	533 27	0 25954	0 22445	# # 3	0 22465	0 e3	\$ 24M	0 Bi
2009 Lb/1n2 -	100 OF	54.11	0 A1775	* 15112	6, 75	# 12655	(1 69)	4.44.65	12
	200 00	3 56 67	0 00.14	e 14029	ster 713	فلروا ہ	(n de i	0 050ce	125
	34 A	42/2	11656	8 14947	(\$ 26)	14621	t e 277	1.546	tê lêj
	400 W	477.76	14512	* 15365	(8 45)	8 15cm	CB #61	4 14 cm	(\$ 61)
	Silve ekk	63 3 33	17214	÷ 16761	0 43	0 16761	• #S	ê 1566#	4.45
440 Lb/3n2	100.00	311-11	43:57	0 05214	14 751		(8.76)	e 8465r	(8.19)
	200 00	366 €7	0 00521	8 8 S.	(0.46)	0.07647	(0.45)	4 0662V	(1),351
	(He set)	422 22	ê Kans	¥ 47572	(* 26)	¥ 47475	(4.25)	a 9144.	(# 17)
	AND IN	477 76	6 07715	€ #736P	(0, 0))	# #79ci	18, 921	e e*475	4.65
	See in	532 35	0 Hindais	0.00329	÷ 46	0 06329	4.65	4 6529	* *
aaa uu/m2	184 88	311 11		8 84646	(4.25)	1 44435	(4.24)	0.64.25	(0.17)
	200 M	366 67	0.00211	8 04567	(4 16)	0 01745	16 131	8 84317	(0.02)
	300 ee	422 22	# #4527	\$ 15000	(8 45)	1 1.00	(t. b t)	8 8474;	16
	-	477 76		0 05306	+ 10	8 85 YE	¥ 1¥	0 05269	÷ 18
	500 Re	\$35 35	♦ €755	1 1653	0.18	0 05525	¥ 16	1.669	10 021
					-0 15665		4 18:57		4 45105

TABLA 4. 9 CONTINUACION

Como se puede observar, la combinación de directrices que permite mayor acercamiento a los datos experimentales es la siguiente:

T1 = 422.2	A1 = -1.038	B1 = 2.324
12 = 533.3	A2 = -1.010	B2 = 2,381

TABLA 4.10

Empleando los valores obtenidos para el volumen de acuerdo a estas constantes se genera la curva PVT (fig. 4.13), la cual se puede comparar con la experimental (fig.4.11) con lo que se puede apreciar en forma gráfica la gran similitud entre ambas.

FIG. 4.15 SUPERFICIE GENERADA PARA EL ETILEND

4.2.3 SUPERFICIE Y ALGORITMO PARA EL COZ

En base a la misma secuencia de cálculo y estimación de resultados que ha sido utilizada para el Metano, Nitrógeno y Etileno se estudia el CO2.

En la fig. 4.14 se muestra la superficie PVT de datos experimentales y en la figura 4.15 la transformación de las isotermas a la forma lineal empleando las coordenadas LOG-LOG , la tabla 4.9 se indican los coeficientes obtenidos para cada una de ellas.

TEMPERATURA K	ORDENADA AL GRIGEN	PENDIENTE	VARIANCIA
273	2.057	-1.139E-0	1.4452-1
373	2.292	-1.126E-0	2.8826-2
473	2.313	-1.071E-0	2.591E-3
573	2.324	-1.038E-0	6.037E-4
673	2.351	-1.021E-0	2.692E-3
773	2.381	-1.010E-0	8.393E-4

TABLA 4.11

En la tabla 4.13 se presentan los valores de volumenes estimados segun las distintas convinaciones de isotermas (tabla 4.12) como directrices comparando dichos volúmenes respecto a los experimentales, para evaluar el caso con menores desviaciones.

na na sana ang kanang na sana ya sana Na sana

FIG. 4. 14 SUPERFICIE EXPERIMENTAL DEL CO2

MODELO	V1	٧Z	¥3
T1	311.1	422.2	366.5
72	533.3	533.3	533.3
As	-1.393	-1.037	-1.067
A 2	-1.010	-1.010	-1.010
# 6	2.724	2.326	2.309
■2	2.382	2.382	2.382

TABLA 4. 12

FIG 4.15 ISOTERNAS DEL COZ

					(92				
t RESI-A	ExF2441	F y K A	VAL EF	¥1	L E5-	V2	50E%	V5	¥.654
ie is ini	₩ #J	ž., .,	11 14:50	1. 5	10 027	11 suite	લ છે.	1 3555	e .÷
	81.97		15 11)46		÷ 🕫	1. 679	e e.	1 a 1	
	Se		15 877mm	1. 25.8.1	011	1. 7657	4 m	14 5.35	- e (e
	4.1 10	46 غلور	1. 6	12 41740	ê 15	14 77128	● 12	1. 85.0	1 × 1
	5.1 40	2.7	16 2. 19	16 4 Tax	# 15	15 756.0	# 17		* *
	10.00	4.2.31	A 24.00	te anale	¥ 21	is their	v 2*	14 54.14	M 34
	400 C	477 H	2: 10 40	17 49450	¥ 24	17 731 K	4 25	15 10.70	e 5
25 utari	* *	111.14	4.4:224	5 .00 %	10 201	5 256.4	(8.15)	3 59 44	¥ 15
	10 M	195 SK	\$ 217c2	5 64.54	(e m)	5 61256	τες ώσς ι	4 95.0	* L.
	tor m	(a) (a)	有 机运动	5 52570	6.60	5 7010	44)	4 55 60	# 24
	/4 · • ·	الد عفر	6 7 4 5	e jane	4.67	5 3.4.1	9 87	5 6	¥ 25
	3.7 **	100) 5.2.6	6 74. 18	# 12	6 661 2	• 12	5 . W	6 10
	400 m	الفر دداء	6 353	7 (55-5	¥ 16	10.700	€ 16	6 4 . 4	é 17
	403 B.	Sec. 6	9 15407	7 40570	6 15	59.×	8 lý	6 50.0	¥.,t
ter Lo/mi	¥н-	2:1.31	1 45.46	1 65444	ie 57:	1.525.0	18.45	1.07756	(ê €]¢
	र्थत कर	255 54	2000	1.71540	18 35)	1.55.9	10.351	1 1 4.0	1 H.
	104 845		1476#	1 76.50	10 25	1 67.24	14 (3)	1	- e 12
	ÇAH NG	مە مەز س	i éntri	1650	14 651	1 74	1.17 (84.)	1 414.0	ર છે.
	Sire:	22 S	10.5	1 2 2	14 91/	6 . reh	6 62	1 5.05	8 19
	Let w	الأي ورا	1 10.11	7		1 69.70	¥ \$9	1.63.5	0.21
	400 Q.	477.74	2.2795	. 1.1.2	÷ 11	1 96758	• i+	75054	۲.23
15H CONTROL	**	2.5 13	÷ 6155	1.1710	i# 75)	1 - 57.4	(9.5%)	€ 7577#	(e 12
	te a	285 F.	e (1925)	1 25 197	ių dėr	i leste	11 331	4 8 STC	18 (4)
	106 8-	10.00	# 97275	1.14.0	10 S /	100	10 161	6 54150	
	24 m	جە دەر	1 1116.	1 27-144	10 15 1	1 1 1 7 5*	传统	# 5754C	¥ 14
	3.r. H.	34 M		51073	tă (M) t	1 44.00	4 m	1 \$45.50	6 16
	419 10	633 S.	- 10 - 1	1.5.4	9 Ý.	1.00	4 67	1.1174*	÷ 19
	170 M	all in	1 5154.1	1		1 5454	1 N N	1 1 1 1 1 1 1	a 2

TABLA 4.19

					602				
		1 4 6 4	va ili	¥:	Get.	¥.	Line.	V5	136
fis	F	T							
10 LD/10		20.5.	# 4.5°1	6.56° e		8 430e	126 62 /	s 3227e	(19.53
			1 4	# 516#	10.00	e 451er		1.04635	18 25
	107 101		1	\$ 525.0	ve 521	* 4.5×	اغر ف	8 371m	10 85
	24.0	44.41	* 1005-	1 5	10.31	4 6 1.	18.28-	e 245.e	Ø #3
	5. C 🕈	Sec. of	43557	¥ 54(5*	(e 19)	4 67600	1.62	\$ 4.540	**
	49	455 3	4 Sec. 34	e 5457e	18 96.1		ę 🛩	\$ 66.50	# 15
	421 😸	477 7e	\$ 30.4.	ø 557≠	4 ¥.	\$ 52.LV	ê #2	¥ 4677e	9 L7
100 m	¥ in	211-12	P 01554	 23250 	(15.96)	e limbr	(11.15)	¥ 14520	18 34
	6x #*	255 54	e 6245	بلددة	128 517	8 . .	18 451	€ 1537e	16 45
	364 im	Sear and	0.1.14	الملول 🖗		8 1334	18 77 -	4 16m.Y	(0.44
	240 00	امه شهر	# 144 X	8 . S. 44	း ဆ	¥ .74.1	18.41	4 . Ime	. t¥ 15
	3.4 W	Sec. 14	8 i i m	\$ 2 min	14 8	1 11 11	18 2.1	é 1751é	(4 85
	A494 694	633 3	* 195	¥ 2373*	· • 22)	1 21.20	18 89-	# 1676#	4 4z
	tic ee	472 7e	¥ 23/55	e 28.00	(8 85)	¥ 21.5V	1	a lises	ê 1e
ione la/int	ú ine	211-11	* =:53	÷ 1553#	(9 16)	8 124.6	(7.67.	e cierto	15 27
	101 W.	255 50	4 6.05	¥ 1551e	0.22	1 2006	+5 71)	9.161.00	14 37
	168 40	जेलर सर	4 45475	\$.154pe	(1,62)	# 1.518	11 25.1	4.1#i¥	10 93
	244 44*	346 44	# 新华X	¥ 1547ø	(# 51)	 13:00 	14 651	ê 131mi	18 37
	Sit ar	20.00	e mies	+ 15454	(8 54)	# 134.e	14 251	e 145 5e	·# 15
	48) (M	الا ذذة	# 11 4	# 1544P	(4) (2)	 I meth 	(0.16)	e 1242a	18 43
	4izt 199	477 70	# 13294	+ 1542v	10.161	e liter	(# 85)	0 10560	**
Simer Lo/In2	1 .	20.0	* *1272		Q 357	8 863er	(1.57)	0 0557e	(1.42)
	54 a r	155 Se	* \$1654	\$ 6675e	(2.46)		(1 66)	1 900	11 227
	168 184	245 BC	# #154:	8 89,11	(1.71)	بربتك ال	11.50	6 65(22)	(# 5 .)
	. 44) (Re	n مر	8 e	* ***	0.290	8 H4 P	14 65/		18 60:
	320 m	2. 0	11.5	e #5.*	(4.51)	F 149X	10 50	û 640ar	18 S.D
	Loc inc	ته دده	8 8.edd		14.541	0 045.5	(e.17)	6 64.64	10 247
	405.00	-12 24	¥ #4.798	\$ #5:7#	08 (d)	ર ત્વરું જ	18 I.L.	8 e4.is	ie ali
674					-1 636		-1 2811		

TABLA 4.19 CONTINUACION

Las mejores estimaciones segun este analisis tienen lugar con los parametros indicados en la tabla 4.14 , mediante los cuales se genero la superfirie PVT (fig.4.16).

FIR 4. 18 SUPERFICIE GENERADA PARA EL COZ

CONCLUSIONES

La ecuación desarrollada por el método de Generación de Superficies , presenta una forma explicita para el volumen , involucrando coeficientes propios para cada substancia los cuales estan en función de los intervalos de presión y temperatura de la región de la superficie en estudio .

Va que la mayor parte de los gases presenta el mismo tipo de geometría en su superficie , el algoritmo planteado tiene la ventaja de generalizarse para substancias con distintos comportamientos termodinamicos , lo cual se pudo apreciar con desarrollo del algoritmo para el CO2 (substancia polar) en la cual se obtuvieron prediciones satisfactorias.

Cuando se utiliza como directriz una isoterma cercana a la temperatura crítica , se pueden observar desviaciones en la predicción por lo que no es aconsejable su uso.

Por otra parte , se puede conferir mayor exactitud en la predicción de los volumenes si se limitan los intervalos de aplicación de las ecuaciones directrices, ya que una vez evaluandos pequeños intervalos de la superficie se puede proceder a una integración de los mismos para obtener una representación global de la región.

Para evaluar cualquier otra región de la superficie PVT se debe aplicar la misma secuencia de cálculo que se ha presentado , identificando en ella los nuevos parámetros (directrices , generatriz e intervalos). En general cualquier región puede ser reproducida siempre y cuando se tenga un conocimiento completo de su geometría.

El método que se ha utilizado para generar la superficie no es el único , como se mencionó en el capítulo III ,existen algunos otros tales como la regresión polinomial o los métodos diferenciales los cuales pueden ser aplicados para el mismo efecto ,variando unicamente la secuencia de cálculo del algoritmo.

Ya que el cálculo de propiedades termofísicas resulta esencial para el diseño , operación y optimización de procesos químicos , es muy importante que los paquetes termodunámicos puedan ser accesados en forma sistemática y sencilla , por lo que a continuación se incluye un diagrama de bloques para la incorporación del desarrollo de algorítmos a un sistema de computo fig c.l.

Por último, el presente estudio puede hacerse extensible a mezclas, ya que el método de desarrollo de las ecuaciones de estado parte de la Generación de una superficie, que y en el caso de las mezclas se puede hablar de una superficie Temperatura, Presión, composición como lo muestran los siguientes diagramas, aplicando el mismo criterio de selección de parametros, lo cual se deja para estudios posteriores (diagrama de bloques c.2).

DIAGRAMA DE BLOQUES PARA EL DESARROLLO DE ECUACIONES DE ESTADO EMPLEANDO EL METODO DE GENERACION DE SUPERFICIES

DIAGRAMA DE BLOQUES PARA EL DESARROLLO DE ECUACIONES DE ESTADO PARA SISTEMAS DE MEZCLAS

SISTEMA COFIZ (1) FENTANO (2)

з,

DIAGRAMAS TRIDIMENSIONALES PARA MEZCLAS

Si analizamos los datos obtenidos mediante la ecuación desarrollada por el método de generación se superficies , respecto a ecuaciones cúbicas de estado se aprecia que a presiones superiores a 150 psia las ecuaciones cúbicas presentan una desviación considerable respecto a los datos experimentales , mientras que la ecuación desarrollada reproduce las regiones a elevadas presiones con considerable exactitud ya que la geometría en esta parte de la superficie presenta inflexiones mínumas.

Los datos fueron analizados mediante la ecuación de Patel Teja ya que la ecuación de Soave , no permite calcular volumenes en estos intervalos de presiones elevadas . Los resultados se reportan en las tablas c.2 c.3 y c.4 para las substancias estudiadas en el capítulo IV. En la tabla c.4 se puede apreciar que existe una desviación aun mayor en los volumenes reproducidos para el CO2 con la ecuación de Patel Teja ya que se trata de una substancia polar, lo cual no se observa en la ecuación desarrollada.

				RIROFEN	0		
PRESION	TENPERA F	TURA K	VOL.EXP	VI ECS. MGN	1DESV	V7 ECS. P&T	ZDES
•••••							
10 Lb/in2	-80.00	211.11	14.51917	13.14360	0.09	14.10200	0.0
	0.00	255.50	17.59052	16.25450	0.03	17,12600	0.0
	80.00	300.00	20.65600	19.37230	0.06	26.19170	0.0
	160.00	344,40	23.71900	22.48320	0.05	22,90000	0.0
	240.00	388.00	26.78194	25.594:0	0.04	25.70620	0.0
	320.00	433.30	29.65230	28.71190	0.04	28,52700	0.0
	406.00	477.70	32.90900	31.82280	0.03	32.27750	0.0
	460.00	522.20	35.96132	34,94000	0.03	35.42300	0.0
25 Lb/in2	-80.00	211.11	5.79683	5.14550	0.11	5.38920	0.0
	0.00	255.50	7.03069	6.33780	0.10	6.38690	0.0
	80.00	300.00	8.26150	7.53270	0.09	7.70874	0.0
	160.00	344.40	9.49019	8.72500	0.08	8.98510	0.0
	240.00	388.80	10.71920	9.91730	0.07	10,18280	0.0
	320.00	433.30	11.94690	11.11220	0.07	11.20830	0.0
	400.00	477.70	13.17340	12.30450	0.07	12.25090	0.0
	480.00	522.20	14.39612	13.49940	0.06	14.01214	0.0
100 Lb/in2	-80.00	211.11	1.43590	1.24540	0.12	1.23000	0.1
	0.00	255.50	1.75090	1.52460	0.13	1.59060	0.0
	80.00	300.00	2.06200	1.80450	0.12	1,87440	0.0
	160.00	344.40	2.37318	2.06380	0.12	Z.10570	0.1
	240.00	389.83	2.68243	2.36310	0.12	2.34060	0.1
	320.00	433.30	2.99100	2.64300	0.12	2.52430	0.1
	400.00	477.70	3.29914	2.92230	0.11	2.90750	0.1
	480.00	522.20	3.60705	3.20220	0.11	3.14,20	0.1
400 Lb/in2	-80.00	211.11	0.3465B	0.30140	0.13	0.23569	0.3
	0.00	255.50	0.43214	0.36480	0.15	0.30265	0.3
	80.00	300.00	0.51430	0.43239	0.16	0.32569	0.37
	160.00	344.40	0.59475	0.49770	0.16	0.34513	0.4
	240.09	388.80	0.67418	0.56310	0.16	0.37231	0.4
	320.00	433.30	0.75294	0.62860	0.17	0.38695	0.49
	400.00	477.70	0.83126	0.67400	0.17	0.45621	0.45
	480.00	577.79	0,90925	0.75950	0.18	0.38841	0.3/

TABLA C.2 COMPARACION DE VOLUMENES OBTENIDOS CON LA ECUACION Desarrollada por metodo de generación de superficies y la ecuaión de patel - teja para el nitrogeno

				N	ITROGE	NO	
	TERPERA	TURA	VOL.EXP	٧I	IDESV	¥2	ZDESV
RESION	۶ 						
1000 Lb/in	-80.00	711.11	0.13180	0.11500	6.10	0.05698	0.57
	0.00	255.50	0.17689	0.14310	0.16	0.07089	0.59
	B0.00	300.00	0.20660	0.16819	0.19	0.10660	0.4R
	160.00	344.40	0.24083	0.19320	9.70	6.14083	0.47
	240.00	389.80	0.27401	0.21925	0.70	0.17403	0.36
	320.00	433.30	0.30660	0.24334	0.71	0.19875	0.35
	400.00	477.70	0,33880	0.26838	0.21	0.20570	0.39
	480.00	522.20	0.37675	0.29347	9.21	0.22075	0.40
1600 Lb/in2	-80.00	211.11	0.08130	0.07290	0.10	0.12560	(0.54)
	0.00	255.50	0,10770	0.98820	0.1B	0.18975	(0.76)
	89.00	300.00	0.13138	0.10362	0.21	0.75997	(0.97)
	160.00	344.40	0.15365	0.11390	0.23	0.26680	(0.75)
	240.00	388,80	0.17510	0.13420	9.23	0.29874	(0.71)
	320.00	433,30	0,19602	0.14950	0.24	0.31590	(0.61)
	400.00	477.70	0.21650	0.16485	0.74	0.33713	(0.56)
	480.00	522.20	0,23680	0.18018	0.24	0.44590	(0,88)
3000 Lb/in2	-80.00	211.11	0,04740	0.03837	0.19		1.00
	0.00	255.50	0.06187	0.04528	0.25		1.00
	80.00	300.00	0.07523	0.05422	Q.28		1.00
	159.00	344,40	0.08770	0.06214	0.29		1.00
	240.00	388.60	0.09976	0.07000	0.30		1.00
	320.00	433.30	0.11137	0.07798	0.30		1.00
	400.00	477.70	0.12271	0.08590	0.30		1.00
	480.00	522.20	0.13386	0.07383	0.30		1.00
6000 Lb/in2	-80.00	211.11	0.03188	0.0189B	0.41		1.00
	0.00	255.50	0.03871	C.02270	0.41		1.00
	80.00	300.00	0.04556	0.02550	0.42		1.00
	160.00	344,40	0.05205	0.03037	0.42		1.00
	240.00	388.80	0,05835	0.03420	0.41		1.00
	320.00	433.30	0.06446	0.03800	0.41		1.00
	400.00	477,70	0.07040	0.04180	0.41		1.00
	480.00	522.20	0.97621	0.04570	0.40		1.00

TABLA C. Z CONTINUACION

				E	ILENG		
	TEMPERA	TURA	VOL.EIP	٧1	IDESV	¥2	ZDESV
PRESION	F						
10 Lb/in7	100.00	311.11	21.33342	20.27240	0.05	19.03550	0.11
	200.00	366.67	25.17525	24.08200	0.04	21.56988	0.14
	300,00	422.22	29.02945	27.89160	0.04	23.68950	0.18
	400.00	477.78	32.85540	31.69400	0.04	27.54970	0.15
	500.00	533.33	36.67511	35.50405	0,03	31.58900	0.14
25 Lb/in2	100.00	311.11	6.48975	8.46800	0.00	7.57814	6.11
	200.00	366.67	10.04174	9.86700	0.07	8.89745	0.11
	300.00	422.22	11.58537	11.26730	0.03	10.23600	0.12
	400.00	477.78	13.12524	12.66450	0.04	11.08900	0.16
	500.00	533.33	14.66379	14.05420	0.04	13.14780	0.10
100 Lb/in2	100.00	311.11	2.06536	2.25620	(0.09)	2.00985	0.03
	분명이 <u>-</u> 문부	144.44	7.47128	2,55000	(0.03)	2.42560	0.02
	300.00	422.12	2.66861	2.86700	0.00	2.66940	0.05
	400.00	477.78	3.26120	3.17000	0.03	3.10758	0.05
	500.00	533.33	3.65099	3.56400	0.02	3.35742	0.08
150 Lb/1n2	100.0.	311.11	1.35077	1.43180	10,063	1.30459	0.03
	200.00	366.67	1.62965	1.72300	(0.06)	1.72394	(0.06)
	300.00	422.22	1.89972	1.91600	(0.61)	1.91603	(0.01)
	400.00	477.79	2.18496	2.14770	0.01	2.10779	0.03
	500.00	533.33	2.42720	2.35200	0.03	2.29988	0.05
500 Lb/1n2	100.00	311.11	0.34423	0.29430	0.15	0.48460	(0.41)
	200.00	366.67	0.45093	C.44846	0.01	0.53380	(0.19)
	300.00	422.22	0.54398	0.53380	0.02	0.61259	(0.13)
	400.00	477.78	0.63115	0.59829	0.05	0.75821	(0.20)
	500.00	533.33	0.71515	0.68320	0.04	0.82457	(0.15)

TABLA C. 3 COMPARAGION DE VOLUMENES OBTENIDOS CON LA ECUACION Desarrollada por metodo de generación de superficies y la ecuaión de Patel - teja para el etileno

.

PRESION	£	ĸ	JCL .EXF	v; 	1366V	V2	IDESV
1000 Lb/1n7	106.00	MOR		6. 1 4 *57	10.251	6 1458*	(2.79
TONG CELLIL	249.50	"at . 5."	14764	5. 115F	4.4.7	9.77112	(0.37
	500.01	422.27	0.25507	0.22590	rů, 247	0.74171	10.24
	4.0.50	427.78	5.7044*	0.31544	(3, 34)	0.45781	(6.41
	500.00	\$23.30	0.75071	0.34120	5.60	(.42769	:0.39
1500 Lb/in2	:00.00	311.11	0145726	6.: 25EE	0.55	0.(6764	(6.54
	200.00	365.67	0.11560	6.(129)	2.68	0.18734	(C.a)
	360.96	402.00	0.15110	0.10315	6.17	0.25724	10.20
	495.00	477,7E	0,19765	0.21(46	1.17	1,24784	:0.76
	500,00	533.22	0.22054	6.22440	9,63	0.41784	10,80
2000 Lb/in2	100.00	311.11	0.04773	6.64188	1.12	1125	(1.35
	200.00	366.ET	0.02214	0.05660	0,29		1.00
	200 00	422.22	0.17288	0.12940	(2.10)		1.00
	400.00	477.78	0.14612	0.14620	(0.91		1.00
	540,00	533.33	6.17214	0 .15 560	6,85		1.00
4000 Lb/in2	100.00	311.11	0.03897	0.04650	(6.14)	3,12759	(2.25
	200.00	. 66. 6 ⁻	0.04921	0.05052	10.234		1.00
	200.00	422.22	0.36094	0.07047	. 0 . 1 7 ·		:.00
	406.00	177.76	0.07718	0.07475	0.0		1.00
•	500.00	533.00	ú.09086	0.08324	0.0£		1.00
5000 1.b/in2	100.00	311.11	5.03605	3.04228	+C.17:		1.3
	200.77	366.67	4,4211	0.0431	(0,02)		1.00
	300.00	422.22	0.04927	0,04748	0.02		េះ
	400.00	447.7b	0.05868	0.05089	6.16		1.90
	5000	533.33	0.06755	6.0.292	(0.02)		1.00

TABLA C. 3 CONTINUACION

	TEMPERA	T 11 R A	VOL.EXP	V1	IDESV	V2	TOESV
	F	\$.					
Ъ/1	n2						
0	0.00	211.11	11.14379	11,30270	(0.02)	11.81280	(0.06)
	50.00	255.50	13.11146	12.35250	6.06	12.80070	0.02
	144.00	100.00	:5,97766	13.38000	0.13	13,79570	5.09
	240,06	544.40	17.00710	14,40740	6.15	14,7712	0.13
	\$26.00	163.80	19.98259	15.40720	9.19	15.75380	0.17
	400.00	433.30	26.94206	10.40470	0.21	16.74460	0,20
	486.00	477.70	22,90547	17,49450	0.24	17.73190	0.13
5	0.00	211.11	4,41726	5.25870	((5.03414	(4), 10
	30.60	255.50	5.21752	5,54240	(0.08)	5.51790	64.48
	160.35	.00.94	a.01150	5.99570	8.00	5,9657.	9479 6 4.
	240.00	344.40	6.79997	5.34396	3.07	5, 19460	5 o7
	5:0.34	198,80	7.58416	4,70270	á.17	0.08170	010) 0117
	4 50 , 96	423.30	3,75916	7.05590	0.16	7.03756	6.16
	460.00	522.20	9.15477	7.4.970	0.19	7,39390	0.19
00	0.00	211.11	1,05146	1.55240	(0.57)	1.55516	(0.45)
	30.00	255.50	1,26861	1.71340	(0.35)	1.59890	(0.74)
	60.00	.00.66	1.4759		61.203	1.17746	(0.1**
	240.00	11.40	1.68063	1,93920	(0.09)	1.17250	(č. 19)
	320.00	383.80	1.86175	1,70230	(0.04)	1.67260	(0.42)
	403.00	432.30	2.08117	1,95526	5.06	3.17260	(0.52)
	430.00	477.70	2.27952	2.02820	$0, \Omega$	3.57260	(6.61)
50	0.00	211.11	0.67590	1.15110	(0.70)	1.35750	(0.57)
	80,00	255.5%	0.82928	1.20760	(0.46)	1.25950	(0.52)
	160.03	$(1,1)^{\prime}$	0.97577	1.24400	(0.28)	1.5095.	(0.55)
	245.63	[44,40	1.11161	1.2304-	(0.15)	1.75950	(0,59)
	720.50	385.80	1.24790	1.31590	(0.06)	2.05950	(0,65)
	4.0. 66	403.10	1.38230	1.35330	9.02	2.35950	(0.71)
	460,00	477.79	1.51552	1.38930	0.02	2.67950	(0.77)

TABLA C. 4 COMPARACION DE VOLUMENES OBTENIDOS CON LA ECUACION Desarrollada for metodo de deneracion de superficies y la ecuaion de patel - teja para el co2

	TERPERA	TURA	VOL.EXP	¥1	IDESV	V2	ICESV
	F	¥					
RESIC	DN D						
400	0.00	211.11	0.01572	0.05687	(2.24)	0.13373	(7.51)
	SC.00	255.50	0.2774C	0.51590	(0.86)	0.67790	(1.44)
	160.00	306. 0 0	0.34226	0.52510	(0.53)	0.77790	(1,27)
	240.00	144.40	0.\$)059	0.53330	(0.33)	0.28790	(1.22)
	320.00	389.80	0.45559	0.54150	(0.19)	1.02790	(1.26)
	400.00	407.30	0.50894	0.54970	(0.08)	1,19790	(1.35)
	430.00	477.70	0.55101	v.55790	e.ci	1.39790	(1.47)
1000	0.00	211.11	0.01354	0.23250	(13.96)	0.36750	(23,94)
	80.00	255.50	0.02063	0.23340	(10.31)	0.58740	(27.47)
	160.00	360.06	0.11280	0.23440	(1.05)	1.38759	(11.30)
	240.00	344,40	0.14436	0,23540	10.531	1.88759	(12.08)
	320.00	386.80	0.17090	0.23640	(0.38)	2.JE759	(12.97)
	400.00	433.30	0.17511	0.23730	(0,22)	2,28759	(13,80)
	480.00	477.70	0.21799	0.23830	(6.09)	3.38759	[14.54]
1600	0.00	211.1:	6.61538	0.15530	(9.10)	0.62410	(39.52)
	30.00	255.50	0.01867	0.15510	(7.22)	1.05479	(54,90)
	160.00	300.00	0.05495	0.15470	(1,82)		1.00
	246.00	344.40	0.48088	0.15470	(0.91)		1.05
	320.00	388.80	0.10045	0.15450	(0.54)		1.00
•	400.00	433.30	0.11740	0.15440	(0.32)		1.00
	480.00	477.70	0.13294	0.15420	(0.16)		1.00
5000	0.00	211.11	6.01474	0.05870	(2.95)		1.00
	B0.00	255.50	0.01654	0.05750	(2.48)		1.00
	160.00	300.00	0.01946	0.05670	(1.91)		1.00
	240.00	344.40	0.02446	0.05600	(1.29)		1.00
	320.00	383.80	0.03052	0.05520	(0,81)		1.00
	409,00	433.30	0.03644	0.05450	(0.50)		1.00
	480.00	477.70	0.04208	0.05370	(0.28)		1.00

TABLA C. 4 CONTINUACION

APENDICE A

DATOS P-V-T PARA METANO

•	т	- 100	. ~80	~ 60	40	-20	٥	20	40
	*	239.92254	251.57445	205.577.4		294.20140	277.28634	319.89307	133.57857
		-1615.65	-1605-59	-1595+*7	-1585-60	-1575.47	-1545.26	-1554.97	-1544.58
	5	2.00 30	5.4644	2. 1943	2.9741	3.3017	3.0714	3.0.41	3.0683
		1.0020	1.0014	1.0712	1.0040	1.0000	1.0012	1.00 %	1.0028
1.0	v	\$3.47356	75.31.024	76.44919	20.01744	24. 354.42	30.49443	15. 02011	11.34365
	-	-1016-17	-1004-11	+1590+17	-15-0.00	-1575.83	-1545.65	-1995-24	-1344.87
	4	2.4171	2.6415	2.65.7	2.6.927	2.7156	2.734	2.7940	2.7400
		0.445/	0.1446	0.4475		3.4480	3. 4486	0. van 1	0.4447
14.7	*	16.27849	17-13050	15.12294	19124124	17. 35490	20. 7653	21.7860A	>2. 2041 3
		-1616.45	-1605.40	-1540-33	-1980.27	-1576.02	-1545.74	-1555.+5	-15+5-22
		2,5004		1.6206	2.6447	2.6676	2.0402	2.7113	2. 7 110
				0101,5	2			3.4476	0.0074
15	v	17,94564	16+85011	11.751.52	14.45407	19.5540 1	20.44231	21.34413	22.24951
	н	-1010.47	-1035++2	-15 20 - 14	-1546-22	-1574.24	-1545.79	-1555.46	-1545-03
		2.5653	2.4+79	2.6141	2	210053	2.6475	2.2003	2.7105
		0.9935	0.0945	0, 945 3		3.3964	3.0014	5.9974	0.4978
25	v	9.57574	10.07047	10.61607	11.16117	11.70 350	12.24577	12.79539	13.32015
	н	-1017.04	- 1604. 75	-1596.83	-1940-88	-1578.45	-1580-16	-1555.41	-1545.34
	5	2.5019	2.5236	1.5539	2.9791	2.4014	2.4218	2.8455	2.0007
		0.0000	9.9011	0.9921	0.0331	7.3440	C. 494 9	C.9976	0.0067
50	v	4. 70723	4.98756	3.764 90	5.54289	h.#1076	6.03054	0. 10 395	8.03083
	H	-1515.55	-1004.10	-1198.05	-1,47+78	-15**.+7	-1*67+11	-15-5-89	-1545-14
	5	2.4111	3.4474	2.41.65	2.441.4	2.5114	2.5365	2.5584	2.4.747
		0.9783	0.0415	* . 24 19	0.4***?	0.4430	3.9835	0.9463	0.44*0
75	v	3,10206	3.23214	3	3. 46.743	3. ** 3 3 * 3		4.22360	
	H	-1820.07	+1AC9.17	-1299-29		-1578-51	-1568.57	-1157.57	-1547.00
	5	2.3402	2.3477	2.4137	2.4384	2.4420		2.5069	2.5283
		0.4671	0.0110	3.4749	2.4793	0.9770	0.0463	C. 996 1	0.0480
102	*	2.23860	2.44423	2.94414	2.73066	2.47211	3.31242	3+15230	3.24161
	•	-1021-02	-1911-30	~1500.55	~1593.36	-1570.55	~1569.33	-1399.45	-1547,92
	5	5.3511	7.1496	2.3759	2.4004	2.42+8	3.4477	7.470*	2.4415
	***	r	1.9926	3.9670	0.4774	2.9760	2.0791	0.4414	0. 144 3
150	*	1.49411	1.59546	1.09512	1.79340	1.49051	1.98054	2.09198	2.17045
	-	-1854-65	-1613.91	-1403.11	-1402.30	-1581.68	-1570.78	-1567.25	-1540.48
	- S	2.2454	2.2.743	2.1913	2. 3064	2.3/12	2. 3446	2.4171	7.4 140
	F70	0.4144	0.0441	7. 4971	0.4307	3.4842			0.0/61
200	*	1.04087		1.24848	1+32465	1.3995	1.47347	1.54453	1.01484
	н	-1025.15	-1614.45	-le05.74	-1594.75	-1343+83	-1572.25	-1552.07	-1991-10
	5	2234		2.2.121	2.3573	2.3322	2.3500	2.3748	2.4010
		1 5 4	0.9250	0.4104	0.9451	3,4524	r , 9566	3. 46 34	5. 464 J
30.0	*	1.09527	D. 144 15	0.40077	0.0521	0.40830	0. VAD19	1.01116	1.66139
	-	- : • 35. 31	-1425-07	-1811.23	-1905-04	-1594-2	-1-10.00	-1555.76	-1554.55
	5	2.1592	5-1619	2.2214	5.5440	2.2744	2.2.446		2, 3459
	F/P	0.0772	0.8495	2.9053	9*9183	7.7748	2.4344	0.4467	0.4375
403		0.47451	0.52946	0.57592	0.62701	3. 65238	3. 70 1+ 5	C. 74 190	C.78274
	*	- 1 - 4 1 - 30	-1429.91	-1917.37	-1904.81	-1242-85	-1391.14	-1304.34	-1958.03
	\$	2.2075	2.1413	2.1754	2.2047	2.2310	2.2575		2.3043
	, / .	0.4274	0.6517	3,4766	0.8414	0.4003	0101-0		
101	¥	0.35277	D. 19498	0. 4401 7	r.47839	2.51141	0.5.434		0.01364
			-1437.23	-1023.33	-1010.23	3.1965	2.22.11	2.2485	2.2774
		0.7954	0.4142	2.0444	3.4654	0.8819	1000	0.0118	0.9227
							3.44939	******	0.30.37
496	2		-1049.97	+1430.27	-1515.95	-1472.43	1544.81	-1377.37	-1555.14
	-	2.0143	2.0624	2.1014	2.1333	2.1457	8.1937	2.2200	2.2448
		0.74 17	9.7871	3.8144	2.1 454	C. 961 .	0.0798	3.6451	0.9091
76.5					A. 11 A. 2	0. 14141	0. 37 32 3	8. 18965	
			-1635.00	-1637.19	-1922.00	-1607.81	-1494.36	-1381.41	-1968.77
	ŝ	1.9614	2.0240	2.0080	7.1035	2.1 340	2.1675	8.1948	7.2704
		0.7508	0.7497	3.7952	3.4153	0,8401	7+861 0	0.8787	0.9438

•

Thermodynamic Properties of Methane (Continued)

10 Fluid Thermodynamic Properties for Light Petroleum Systems

Thermodynamic Properties of Methane (Continued)

P	т	- 100	-80	60	-40	- 20	O	20	40
902		0.1891	0.19408	0.21270	1. 20444	6. 29749	4.11529	3. 10/50	3.10500
		-1702.24	-1909-14	-1043.19	-1225.39	-1513-19	-1599.02	. 15 15 . 5 ?	-1977.40
		1.9445	1.9440	2.0367	2.0774	2.1124	2.14.74	2 . 1 7 1 4	2.1985
	# + #		3.7135	1.7542	3.7.00	7. 41 44	C. 4425	3. 162 *	2.4794
40 X	v	3.24535	3.15300	9.19345	1.24458	0.75141	1.27567	7,24124	7.11 100
		-1733-54	-1979.49	-1954.14	-1232+15	-1919.76	-1003.40	-1549.70	-1979-19
	1	1.7941	1.4474	1.0344	2.0467	4.0443	5-1611	2.1.2.1	2.1744
		0.40.40		1	3.7464	3.7941			1. 1762
1001		2.01329	1.12075	3.19324	1+19281	0+21971	3.24143	1.20110	2.24124
	м	-1749.29	- 1 - 3 - 7 2	-1761.63	-1042.24	-1929-51	+1-04.57	-1313-33	*******
	•	1.75+5	1.4417	1.4110	7.0246	2.0441	5 1 0 0 5	2 +1 11 2	511234
		2.5557		1.034	3,7428	5.7774	4971	0	3.4524
1122		<u>6</u> - 14	2	1.11112	7.19722	1.11224	1.21471	7.21447	2.29125
	-	-1/51.54	-1701,15	-1973.97	-1947.54	-1513.33	-1513.00	-15 79 . 21	-1331.59
	5	1.7138	1.4517	1.9412	1, , , , , 5	4.3433	5-0403	5.1124	5-1-41
	* / *	0.4370	7.6114	3.0724	0.7144	1. 1.02	2.4323	0.4175	7.4143
1201	v	7.000	7.04474	3.11734	2+1+053	3.17049	0.17170	7.21744	2.32470
		-1/34-61	*1/17447	-14-3.31	-1457.00	-1536-33	-1113.17	-1435.44	-1347.49
	3	1.7140	1.9197	1.4114	1.3740	8.2222	2.0411	2.3453	2+1259
		3.4.194	2.4412	2.0411	1.4374	2. 4 1.91	1.//35		2.1273
1 3 1 1	v		7.77714	3+10147	3.12943	2.13275	3 . 1 / 2 . 12	7+14129	1,10411
		-1751.47	-1729.19	-132210	-1351.37	-1-41-24	-1421-11	-1335-75	-1341.20
	3	1.7974	1.7 15 1	1.4114	1.9912	1.732"	1.9412	2.0744	5+1121
	*/₽	2.4/13	3	3.4.9.00	3.*****	3.7207	3.7575	3.7146	1.4151
		*. *****	3. 17 13	3.54171	1.11575	2413424	3+15721	3.17462	9.19613
	-	-1741-51	-17 -14	-1941.33	-1971-11	-1-1-1-11	-1-14.41	-1016.30	-1-34-30
	5	1	1	1.7537	1. 3245	1. 1424			5. 3344
	* / 0	1.4974	2 134	1.5112	2.4363	3, 1413	2.7.11		
1105		1,15211	7.74275	1, 15 14	1.1-417	n+12600	1.14473	1.10247	1,105.95
	-	111111	· · · · · · · · · · ·	- (* 15 a h f	· (n / * , / h	-1-51-31	*t>33+15	- 1 4 3	
	1	1	1.77.11	1.4451	1	1	2.47.25	1.1.1.1	5.2414
	• / 4		7. 10 14	,	1.0173		1.1111	1, 1973	
1473	•	9.3341.4	1414114	7.34347	167.6971	2,11070	1.11411	1.14444	7.10317
	-	-1 -1 -1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-1111-14	+1711+57	-17-4 - 44	-1124.11	.1.17.7.	-1014-11	-19/2410
		1	1.75.14	1.1.21	1.4320		1		
			1.441)	3.5.14	1.21.12	1.4.10.3	5. 117		3.7419
1 / * * *	v	1. 1. 1. 1	7. 184 14	1,116,10	3.74174	******	A.1.11A.5	5+11938	0.13214
	*	*******	-1741.57	-1711.00	-13-7.71	+455 1a42	-1-42,31	-1522.35	-1-15.56
	5	1.6777	1.74.4	1.411.7	1.4744	6.4574	1	2.11.14	512228
	* **	5,1145		1.54.22	0.6011	7, 2193	3	1.0104	~
1.00		3.244.22	1.20118	3. 2 1 142	1.24394	5415115	2411103	1412451	2.14.194
	-	-1 749.74	- 1 * 4 3 4 S	-147-12	- 1 4 31 4 4 7	-1 -1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-1242-11	-1.5	-14.444
	•	1	1.7145	1.1.1.1.	1	1.4142	1, 14, 14		
		r. 146 1	1.4344	11.2.01	1.1474	3.3412		1.770.5	-,,,,,,
1.405		0.0	n	· • • * * * * *	3.13.16	5.1154A	***J++**	1.1.1.4.4	7 - 1 14 34
		-1/-/	- 1 2 8-42 1	+++/2.5A	-1045-51	-1-711	********	115 11.14	-1-17-78
	•	1	1.2271	1.1111	1.4521	4 - 4754	1. 1-31	1	
	• • •	3.17.5		2.21.22	1	2.87.91		1.11.1	7. 77 34
124	•		1.70.50		** * * * ***	14.7.87.84	******		******
	•	-1194-15	- • * • • • • • • •	-12-275	-13-11.15	1121211		-1-11-1	-1-1-1-1
		1.55.7	1.1.1		2.4421		2		3. ***
1101	<u>.</u>	1,2575.1	24 22 32 1		3. 35 2.54				
	-			-1 - 14 - 1 -			1.444.43	1.1.1.1	
		0.1114	3, 1611				3	2.0111	2.2731
• · · · ·					7.3				
		1		1.0412	1.711	1. 77 17	1.41.24	6.4923	1.4143
		1.,174	3, 311 4	1.14/0	1.441.5	7.4.51	1.4497	3.5944	C 144

Fluid Thermodynamic Properties of Methane 11

-967 v. 0.00000 1.00000 0.000000	۲	Ŧ	100	, ~80	- 60	40	- 70	٥	20	40		
N			9-04610		8-05010	0	C. 14494	4.03/66				
1		H	-1767.61	-1751.99	-1726.15	-1720.07	-1701.75	-1667.71	-1.570 44	- 1 - 5 3 - 81		
P.P. D.2701 D.2701 <thd.2701< th=""> <thd.2701< th=""> <thd.2701< th=""></thd.2701<></thd.2701<></thd.2701<>		•	1.5477	1+0234	1.04.23	1.7074	1.74%4	1.7617	1.8169	1.4509		
ANDD V D.D.M.M.M. C.D.M.M.M. P.D.M.M.M. D.D.M.M.M. D.D.M.M.M. <thd.d.m.m.m.< th=""> <thd.d.m.m.m.m.m.< th=""></thd.d.m.m.m.m.m.<></thd.d.m.m.m.<>		* /*	3.2701	0.1:27	0.3753		3.4406	0.5312	0.5745	0.0751		
n	A100	v	0.04449	2.0407.3	2.04822	1.05075	0.05203	9.05+10	0. 05 b4 0	8.23895		
s. 1.4779 1.4191 <th1.4191< th=""> <th1.4191< th=""></th1.4191<></th1.4191<>		•	-1764.57	- 1744.42	-1734.22	-1714.45	-1703.31	-1187.58	-1071.21	.1		
P/F 0.2750 <th0.2750< th=""> <th0.2750< th=""></th0.2750<></th0.2750<>		5	1-5729	1.0131	1.0714	1.0053	1.72.19	1.7584	1.7	1.0745		
Parts Parts Deckson Parts <		*/0	2.2720	9.3234	0.1798	3.4793	0	0.530 *		0.6254		
n	7000	*	0.04343	0.04528	7.94672	0.04127	2.04973	1.05171	2.03.1.0	0.03301		
s. 1.4870 <th1.4870< th=""> <th1.4870< th=""></th1.4870<></th1.4870<>			-1760.91	-1740-12	-1731.42	-1710.55	-1701.54	-10 90.39	- 1471.00	-1-65.47		
P/F 0.0000 0.1000 1000 0.0000 0.0000 0.0000 MPT 0.0000 1000			1.3970	1.4497	1.0105	1.0721	1.7065	1.7177	1.7.7.	1.00.10		
HPP3 V Stability Constant Constant <thconstant< th=""> Consta</thconstant<>		1/0	0.2374	0.1370	7.3040	3 . 4 37 3	0.4493	0.5401	0.1442	0.6360		
n -1788.00 -18			0-04105		6- 0+h12	3.04547	0	7. 14941				
P T 600 900 1000 1200 1400 1600 1600 2000 P T 600 900 1000 1200 1400 1600 1800 2000 1 V 366000 1000 1200 1400 1600 1800 2000 1 V 366000 1000 1200 1400 1600 1800 2000 1 V 366000 1000 1000 1200 1400 1600 1800 2000 1 V 366000 1000 1700 17100 17100 17100 <th< td=""><td></td><td></td><td>+1755.95</td><td>-1742.51</td><td>-1729.91</td><td>-1/13-54</td><td>-1577.94</td><td>-1044.21</td><td></td><td></td></th<>			+1755.95	-1742.51	-1729.91	-1/13-54	-1577.94	-1044.21				
P T BO BO 100 120 140 160 180 200 1 y Jackson			1.4447	1.5071	4 . 62 35	1-0301	1.0918	1.7741				
P T 60 80 100 120 140 160 180 200 1 * ************************************			****	3.344+	D. 144P	9.4631	0.5057	C. 1573	9.6070	0.4540		
p T 60 90 100 120 140 160 160 100 200 1 v 366,5517 tho.5516 thi.5516 thi.5516 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>······</td><td></td><td></td></t<>								······				
1 y Jake 1817 Wr. 5 136 Wr. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	P	т	60	90	100	120	140	160	180	200		
n		¥	344.45127	1057349	111	141.4444	14 P. AAF PO	413.10114		. 19. 2 4734		
S. J.2000 Life/J Life/J <thlife j<="" th=""> <thlife j<="" th=""></thlife></thlife>		μ.	-1534.04	+1573.45	-1511.75	-15 ° I + 48	-14 37.07	-1479.72	-14-7.43	-1 - 5 - 12		
1/20 1/20233 <th 2023<="" th=""> <th 2023<="" th=""></th></th>	<th 2023<="" th=""></th>			5	3,3865	1.1073	1.1270	1.1400	3+1+57	2+19+7	3.27 16	3.7210
15 v 16.71/273 356.7495 17.477.00 16.76/276 47.76/276 <td></td> <td>*/0</td> <td>1.0234</td> <td>110010</td> <td>1 + 25 35</td> <td>1.0716</td> <td>1.7040</td> <td>1.0542</td> <td>1.7621</td> <td>1</td>		*/0	1.0234	110010	1 + 25 35	1.0716	1.7040	1.0542	1.7621	1		
# -16548.36 -1622.71 -15.2.71 -15.2.71 -15.2.71 -15.2.71 -12.2.72 -	12	v	14.71215	39.07425	17.42074	34.70270	4C.11+3C	41.44870		***115**		
4. 2.4016 2.4016 2.4017			-1514.30	-1523.71	-12.2.79	+1597+11	-10.41.00	-1479.47	-1491.69	+1+47.10		
x/π x_xuun xuun xuuu xuuu xuuu		5	2.4010	2.0719	2.4614	2.0614	2.4457	2.0049	2.354.5	2.116/		
14.7 v 22.41754 24.5145 27.415			5.999n	7.1941	3.444*	C. 1942	3.3992	2.4345	7.9947	1.0000		
#	14.7	v	23. 11 954	74.53943	25.+5052	76. 10484	21.27559	20.20135	29.10417	10.31991		
s. j. 1517 z. 27601 j. 27601 <th. 276001<="" th=""> <th. 27601<="" th=""> <th. 2760<="" td=""><td></td><td>н</td><td>-16 18.30</td><td>-1523.47</td><td>-1513-11</td><td>-1502.22</td><td>-14 41</td><td>-1486.77</td><td>-1065-69</td><td></td></th.></th.></th.>		н	-16 18.30	-1523.47	-1513-11	-1502.22	-14 41	-1486.77	-1065-69			
ν/h Λ.1487.3 Ο.1497.1 Ο.1497.5 Λ.1487.5 Ο.1497.5 Γ.1497.5 Γ.1497.5 <thγ.1497.5< th=""> Γ.1497.5 <thγ< td=""><td></td><td>5</td><td>2.1537</td><td>2.7747</td><td>2.7439</td><td>2-8135</td><td>2-0328</td><td>7.8518</td><td>2.0715</td><td>2.4.49</td></thγ<></thγ.1497.5<>		5	2.1537	2.7747	2.7439	2-8135	2-0328	7.8518	2.0715	2.4.49		
15 r 21.13.47 24.0187.6 <td></td> <td># / P</td> <td>1.99FJ</td> <td>3.9943</td> <td>7.9357</td> <td>C.9980</td> <td>1. 1042</td> <td>0.3199</td> <td></td> <td>0.0009</td>		# / P	1.99FJ	3.9943	7.9357	C.9980	1. 1042	0.3199		0.0009		
n	15		21-14627	24.01824	24. 431 77	23.92990	20.72.12	27.47582		10.41624		
V J. 101.0 J. 101.0 <thj. 101.0<="" th=""> <thj. 101.0<="" th=""> <thj. 10<="" td=""><td></td><td></td><td>-15351</td><td>-1521.40</td><td>-1513-14</td><td>-1502.21</td><td>-1-91.20</td><td>-1467-71</td><td></td><td></td></thj.></thj.></thj.>			-15351	-1521.40	-1513-14	-1502.21	-1-91.20	-1467-71				
P/F P, aver70 5,40004 3,40007 5,40004 0,40000 1,40000 1,41000		•	2.1912	2.7714	2.7913	2.8110	2.0303	2.0441		2.8863		
μ ² v 13,56,85.0 1 + - + + + + + + + + + + + + + + + + +			r. 9979	6.9994		0.9998	3.9990	0.049n	0.9971	0.9994		
θ			11.50830	14-97041	10.94442	15.43651	10.72344	10.00307	11.02.00.0	17-64119		
8 7,4575 2,17575 2,7777 2,7475 2,74875 2,74775 7,7776 7,49715 4,74975 2,74875 2,74975 2,7777 2,74875 2,74975 2,74775 7,7776 7,49715 4,41975 4,74875 4,41975 4,74875 4,41975 4,74875 2,44875 2,44875 2,74875 2,74875 2,44875 2,74875 2,74875 2,44875 2,74875 2,74875 2,44887 2,44887 2,44887 <td></td> <td>÷.</td> <td>-15 14-52</td> <td></td> <td>-1511-19</td> <td>-1507.41</td> <td>-1991.44</td> <td>-1480.23</td> <td></td> <td></td>		÷.	-15 14-52		-1511-19	-1507.41	-1991.44	-1480.23				
Free 1/1000 7/10007 2/10007 2/10007 7/10007 <th7 10007<="" th=""> <th7 10007<="" th=""> <th7 100<="" td=""><td></td><td></td><td>2.4975</td><td>2.1010</td><td>2.1217</td><td>2.1474</td><td>7.7667</td><td>2.7857</td><td>2.4644</td><td>7. 4729</td></th7></th7></th7>			2.4975	2.1010	2.1217	2.1474	7.7667	2.7857	2.4644	7. 4729		
50 τ δ.4.9789.5 τ.1812.0 Γ.7437.5 Γ.777.6 Γ.977.5 Γ.777.6 Γ.978.5 Β.778.7 Β.4.9789.5 Γ.4.976.7 Γ.437.6 Γ.437.6 <thγ.437.6< th=""> Γ.437.6 <th< td=""><td></td><td></td><td>2.9965</td><td>6.9470</td><td>3. 9975</td><td>2.7476</td><td>0.2485</td><td>0.4042</td><td>C.9945</td><td>0.1945</td></th<></thγ.437.6<>			2.9965	6.9470	3. 9975	2.7476	0.2485	0.4042	C.9945	0.1945		
No.					7	7.77.44	1.93612					
1 2 4 6 2 4 6 7 6 4 6 7 6 7 7 7 6 3 6 7 7 7 6 3 6 7 7 7 7 7 6 3 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>		1				-1803-11						
PAR Control Control <thcontrol< th=""> <thcontrol< th=""> <thcontr< td=""><td></td><td></td><td>2.6206</td><td>1.4/10</td><td>2.0010</td><td>2.0052</td><td>2-5451</td><td>1. 6997</td><td>2. 11 42</td><td></td></thcontr<></thcontrol<></thcontrol<>			2.6206	1.4/10	2.0010	2.0052	2-5451	1. 6997	2. 11 42			
γ 4.5 50(1) 4.77211 4.9950(2) 4.1376 γ.3181/2 5.5071 γ.5071 γ.9950(2) 4.1376 γ.318/2 7.1371/2 γ.9950(2) 4.1376 γ.1376/2 γ.9971 γ.9950(2) 4.1376 γ.1376/2 γ.1371/2 γ.9971 γ.9970(2) γ.9371 γ.		4/P	0.9930	1.9414	0.4766	0.9953	7.9958	7.9497	z	7,3971		
i	78		4.53010	4.77271		5.13798	5. 319.30	5. 500-1	3.84171	5. 86 1/8		
S C.5500 C.5500 <thc.5000< th=""> <thc.5000< th=""></thc.5000<></thc.5000<>			+15 16 . 14	-15/5.59	-1314.72	-1523.74	-1442.62	-1401.17	- 1 8 * 4 . In	+1454.40		
\$/# 0.4884 0.4847 0.4817 0.4877 0.41177 4.67741 0.43774 0.41177 4.67741 0.43877 0.4877 0.4877 0.4877 0.4877 0.4877 0.4877 0.4877 0.48774 0.47777 0.48774 0.47777 0.48774 0.47777 0.48774 0.47777 0.48774 0.47777 0.48774 0.47777 0.48774 0.47777 0.48774 0.47777 0.48774 0.47777 0.48774 0.47774 0.47777 0.48774 0.47774 0.47774 0.47774 0.47774 0.47774 0.47774 0.47774 0.47774 0.47774 0.47774 0.47774 0.47774 0.47774 0.47774 0.47774 <th0.47744< th=""> 0.47774 0.47774</th0.47744<>			2.5491	2.3594	1.5849	2.0007	2 7 . 7	2.0041	2.0021	2.6076		
100 v 3,41020 1.54441 3.27013 3.26170 3.36170 3.34547 4.1173 4.7544 4.39100 v 143714 -15240 -15353 3.45170 3.34547 4.1173 4.7544 4.3910 v 143124 7.4312 7.4312 7.4513 7.4517 7.4174 7.4574 7.4574 v 7.3850 7.4577 7.4518 7.4518 7.4573 7.4577 7.44774 7.4574 150 v 7.277057 7.3641 7.4573 7.5506 7.46774 7.45747 7.45767 7.4478 1.100 v 7.277057 7.3641 7.4573 7.5506 7.46774 7.45747 7.45767 7.44598 1.100 v 7.277057 7.3641 7.4573 7.5505 7.46474 7.45747 7.45767 7.44598 1.100 v 7.277057 7.3641 7.45573 7.5505 7.46474 7.45747 7.45767 7.44598 1.100 v 7.47777 7.4588 7.45973 7.45913 7.45777 7.44598 7.45777 7.44598		1/0	0. 2894	9,4917	0.9414	7.9427	3.9931		1.1.1.1.1	0, 1956		
θ -(13)(1) -(12)(2,1) -(13)(3,1) -(12)(3,1)			1.43075	1. 56 48 1	3. 706 72	3.8.370	3, 30507	4.11772				
 5. 1.1.2. 2. 2.1.2.3.2. 2.1.2.3.2. 2.1.2.3.2. 2.1.2.4.2.4. 2.1.1.7. 2.1.1.4. 2.1		H	+1537.11	-1525.20	-1515.14	-1204.37	-1-73.21	* 1 * * 1 * * /	- 1 + 77 - 4 -	-1458.89		
2/20 0.2005 0.2005 0.2005 0.2005 0.2005 0.2005 0.2005 0.2005 150 V 2.20057 2.30411 2.45733 2.50506 2.464774 2.45707 2.45707 H 1230.65 1527.75 1.556.57 1.450.65 1.4647.46 1.461.46 1.471.76 1.457.64 5 2.4667 2.4611 2.5016 2.45715 2.4611 2.5076 2.5070 7/0 0.47970 0.46115 0.4617 0.4656 0.4617 0.46444 0.4693 0.4693			2.3126	2.5332	2.5534	8.5733	2.5420	2.0120	A	2.44.94		
195 V 2,27037 2,36411 2,48733 2,75026 2,44274 2,21574 7,77777 2,4455 N 12545 1,2277 1,5645 1,5777 2,45555 S 2,4653 1,2277 1,5645 1,575 2,5451 2,5575 2,5576 2,5576 2,777 0,0451 2,5575 2,5451 2,5575 2,5451 2,5575 2,5451 2,777 0,0451 0,0451 0,4451 0,5451 0,4451 0,4451 0,4451					0.9891	0.440.	0.941=	3.44	6.9.14	0.~***		
H -[2]16,65 -[327.75 -]5[6,76 -[509,63 -[448,66 -]45],76 -[471.56 -[450,66 5 2.4663 2.4613 2.4611 2.5018 2.5715 2.4611 2.4555 2.5756 2.5756 7/P			2. 22057	7. 16411	2.45733	2. 35020 -	2.64 274	2. 2340.4	1	2.01001		
5 2.444/1 2.4411 2.5014 2.5215 2.4411 2.544 2.5744 2.5744 2.5744 P/P 0.9790 0.9815 0.9417 0.6456 0.9875 0.9444 0.9931 0.9813		Ĥ.	-15 18.67	-1527.74	-1510.74	-1503.63	-1494.40	-1493-74	-1875-54	-1459.89		
F/P 0.4790 0.4815 0.4617 0.6456 0.4873 0.4444 0.4431 0.441		5	2.4403	2.4411	2.3015	2.0215	2.9411	4.44	2.5794	2.5480		
		P/P	0.0790	0.9815	Q.9417	0.6456	0.4+73	0.99-9	0.4431	0.4413		

Thermodynamic Properties of Methane (Continued)

......

12 Fluid Thermodynamic Properties for Light Petroleum Systems

Thermodynamic Properties of Methane (Continued)

•	T	80	80	100	120	140	180	180	200
379	•	1.11122	1-1-0111	1. 20475					
	**	-1541.14	-15 12.1 2	-1410.83		1.10506	1.35775-	1.40021	1+44745
		2.3000	2.1594	2.4101	2.4.10		-1496.40	-1474.70	-1402.47
	F/#	0.4545	3.9635	3.74-8	3.9716	7.9744	3.4754	2.4847	2.5086
409	v	9. 421 31	3.85934 -	C. 89641		3.97094	1.00780		
	M	-1343,44	+1535+07	-1923.30	-1312,00	-1503.37	-1465-04		1101140
	•	2.1279	2. 149A	2.3711	2.3919	2.4122	1.4171	2.4414	
		0.7452	0.9514	3.4575	0.2025	4.9469	0.3708	3.9741	0.9775
480		0.64764	0.6/935		0. 74051	2.77169	0.40047	2.43319	0.45149
	7	-1549.78	-1534-75	-1526.12	-1514-57	-1502.76	-1490.96	-14/4.91	-146.0.83
	2	2.2438	2.3141	8.3346	5.3004	5.3818	2.4317	2.4214	2.4407
			3.4403	2.9474	4. 4937	0.9591	C. 76 19	1.3582	0.9720
600	•	0.53241	7. 13 20 3	0.34555	9.61165	0.83738	9.66293		
	••	-1593.05	-1341.05	-1929.10	-1517-14	-1405.14			2.71241
	S 1	2.2050	2-2914	2 . 31 36	1.3390	1.1500	2.175.	3. 194 1	-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-
	•/•	0.9144	1+141	3-9374	0.7450	0.9515	0.1972	0.9621	0.7465
700	Υ.	0.44457	4.47344	0.49485	7.51474	0.54235	2.56453		
		-1344.30	-1544.05	-1531.48	-1519.72	-1507.55	+1495.15	-1461.09	
	1	3.2444	2.7642	2.2374	2.3120	2.3330	2.1544	2.1747	2.1944
	• / •	C . JO. 4	0.7141	7-9275	0.9365	3.9446	0.7907	0	0. 1AL A
407	¥	0.19791		0.41049	0.45106	9.47124	9. 49110	0.31055	4.5.444
		-1593.59	-1547.12	-1514.57	-1522.29	-1503.34	-1497.58	-1485.17	-1.872.70
	2	3.2710	2.2474	8.8725	2.2727	4.31.43	2.3152	2.3556	2. 1756
	• • •	1.8.40	C.9374	0.8145	3.4242	3.916#	0.7441	9.4910	0.4570
33	¥	0.34412	9.34447	9.37915	1. 197*7	7.41479	7.41419	0.43141	4.44724
			-1517.1/	-1337.46	-1524.86	-1512.32	-1+79.79	-1407.23	-1474-01
			8+2747	5.52.15	2.2744	2.2967	2.1179	2.1345	2. 1596
				1. 1993	3. 1762	7.4242	0.9382	0.7458	0.952)
1100		0.10207	9.32939	7.13917	1.15430	9. 1721 3	0.38443	3. *****	9++1941
	-			-1140.34	-1927.11	-1514.64	-1551.24	-1049.27	-14/1.11
			4.7114	3.2354		5.5464	5. 30 21	2.3230	2.1413
				3.4.14	3.4(24	3.4329	0.9392	3.4404	7.1477
1122	•	6. 2711.2	A. 24421	1.10470	3. 12-13	3.334 51	2.15150	0. 10050	1. 141 11
		-1367.**	-1114.24	-1341.71	-1523.91	-1517.03	-1504.15	*1 * *1 . 10	-1.575.43
	2	2.1.4.76	4.1441	2.2148	>.2412	2.2657	2.2415	2.1047	4.12.92
	• / •	0.4437	0.4744	d		7.7162	3.4244	1.4343	7. 2.33
1203	*	4.24443	0.20139	0.27715	5.27202	1.30459	3. 17041		
		-13/1.51	-1154.24	-1343.78	.1332.50	-1 11 4- 10	41306.31		
	•	2.1440	2.1 40 3	2.2753	2.2291	4.2920	2.2740	7.7.544	2. 11.4
	•/•	0.4447	N.8472	9.6913	0.4374	0.40 18	3. 9701	7.9 10 4	4 141
1337	v	9.23437	4.21424	0.29142	0.26740	3.29144	0.29.94	0. 12 00 1	0.12044
		-14 - 4 - 4 - 7	-1362.13	-1344.31	-1334.18	-1521.00	-1525.43	-1499.27	-1442-11
	2	2.1.942	2-1042	8+1915	2.2144	2. 141	2.2014	2.2430	4.10.00
	•/•	0.9147	0.4574	3.4751	3.4402	9.9033	3.4193	0.9157	2 150
1409	•	******	0.32176	0.23436	0. 24737	0.25038	0.27297	2.24514	2.28774
	-	-1979.77	-1305.27	-1111.21	-1917-46	-1923.23	+1510.53	+1 + 37 - 22	******
	1	211248	8-1324	4 . 1 / 4 /	2.2730	2.2259	2.2440	8.2714	2.2925
		4.4.77	0.9444	1.44.72	5.4113	0.4075	0.4100	9.3252	0.4J11
****	¥.	9.1.011	8.20144	1.11794	0.22471	7.74195	9.233-0	0.20543	9.27444
		-1391.01	-1944.19	-1343-47	-15 14-4-1	-1574.18	-1517.50	-1479.13	-1494.72
	2	7.1110	2.1.1.1	2.1999	8.1 714	2.2155	2.3340	2.297*	1.2314
		3-4177	9.4404	7.4945		6.44t F	0.9990	7. 3144	4. 7273
1.468	ž		0.11072	3,20719	7-21439	0.27437	0.23733	1.24931	7.2341 1
				-1376.65		-1978,36	-1314.42	- 1501.01	-1987.47
			241240		2.1704	8.2044	2.2279	2.2901	3. 2714
		5.4644				g. 4461	4.9011		0.4217
	2	9,10725 -1589,10		3.14454	0.27101	3.21204		4.71114	0.24341
	•	2.3472	2.1.185	2.10.10	1.1647			-1102.44	
	***	1	A		0.9667	0.0007		7.2402	2.2.20
								4.4444	9.4202

APENDICE B

DATOS P-V-T PARA NITROGENO

	т	20	40	60	80	100	120	140	160
•	*	142.94130	190. 26 71.4	148. 18645	100.20551	213.01414	251.5TABE	224.37039	230.24669
	н	118.91	123-07	3.20.40.3	111.74	1 38. 74	143.85	144.54	153.00
		1.798-	1.0009	1	1.0263	1.4731.3	1.0442	1.452.2	1.060*
		1.00.14	1.0074	1.4040	1.00/1	1.0032	1.0017	1.0341	1.0044
10	v	18.35059	19.11700	17. *****	-0.055J-	21.42557	22.18 SOF	22.45545	23.71982
	Ħ	118.83	123.40	124.77	1 2 2 . 7 3	134.70	1 4 3 - 6 7	148.53	153.62
	5	6+8334	1-04 30	1.65.5	1.0532	1.6123	1.0010	1.0844	1.0974
	# /#	1.0001	1+0001	116:05	1.0000	1.00060	1.000+	1.0002	1.000
14.7	v	12.469.38	13. 61005	13.53522	10.05574	14.57450	15.14674	15.61876	10.14188
	H	118.74	1 . 3 . 70	1 24.73	1 \$ 3 . 7 6	130.67	1+3.05	148-67	121.00
	5	1.0001	1.0105	1 *****	1.0354	1.0410	1++537	1-0051	1.0701
		0.3997	6.3447	C .0434	314944	0.00.10	1.0002	1.0003	1.0003
15	×	12-23374	12.145.2	13.25 *** 3	13,74027	14.20086	14.79703	15.303+8	15 -H 1276
	*	114.79	1/3.76	1 28 - 7 2	133.80	138.87	143-05	144+02	153, 59
	5	1.0040	1+0150	1.6.244	1.43**	1 - 04 35	1.1.2522	1.0000	1.04#1
	• /P	0,3496	0.9498	6-9446	1.3026	1+0001	1-6003	1,0003	1.0004
25	*	7.33878	7.04549	7. 45.453	P. 20105	8.56425	0.07628	9+15239	4.44019
	*	118.70	1/3-66	120.00	133.04	134.61	143+59	1	153.55
	\$	1,5683	1.5747	1.5000	1.5481	1.0072	1.6100	1.6243	1.0320
	7/0	5.9990	C.9443	C. 444=	6.9996	0.4947	0	1.2021	1.0003
50	v .	3.00501	3. 8202 7	3.47474	4.12970	4.28307	4.43758	4-54101	
	*	1 58.30	123.44	120.40	123.47	138.40	143.45	144.54	143+42
	•	1.5188	1.52.43	1.4342	1.545#	1.9579	1.5000	1.5750	1.5031
		0.1979	3.94B4	0.4986	C. 9993	3.6445	[.999]	0.4430	1.0001
75	v	2.44122	2.50404	2.44838	1.75154	4.85481	2.45801	3+Cal00	3.16396
	н	116.29	123.30	: 26 - 30	1 3 3 . 3 1	130.31	143+31	145.30	153.10
	5	1.4847	1-5062	1.45.10.2	1.0144	1.5249	1+1377	1.5401	3.5547
	*/P	4. 3464	0.9976	C	4,4767	0.9941	6	C. 3450	1.0003
100	۷	1-45413	1.40717	1.9851	2.00.04	2.1.0063	2,21413	2.24575	2.37318
	*	116.38	123.11	120-13	133.14	138.16	143.17	148.18	153.18
		1.4690	1-4795	1		1.3085	1.5170	1.9255	1.5336
		4, 1454							
150	۷	1 . 21 715	1.30966	1.32208	1.37433	1.42654	1.47457	1.33054	1.28254
	H	117.87	122.73	1 27.78	1 32.02	137.86	142.04	1	152. 44
	110	0.9936	0.9952	D, 94.4	6.947A	0.4963	0.9991	C. 999	1.0003
200	¥	0.01123	0.45040	0.0.0.5	1.03013	117 64	3.10004		1.10/20
		1.4.44	1.4791	1 . 4 30 2	1.000	1.41.67	1.4676	1.4755	1
	:/.	0,4919	0.0437	0.4453	5.9467	3. 9978	C	4. 4447	1.0004
					0.00012	A . 71 PT-	0.13936		3.19714
300		110.00	121.60	1 21 . 74	1 31.07	130.98	147-06	147-17	151.75
	- E	1.1841	1.3991	1.4093	4-41-11	1.9284	1.4374	1.4459	1.4542
	F / P	0.7401	0.9404	\$ 699.0	D. 4452	7.9970	0.4485	0.40+4	. 1.004
			0.07400	0. 49 946	1.534.84	0.53656	5.55009	0.37476	0.59475
	÷.	115.44	120.87	120.07	131.25	130.41	141.55	1.00.08	151.00
		1.3664	1.3774	1.3878	1.3077	1.4071	1.4161	1.4247	1.4130
	# /P	0.9846	4. 46#3	0.4414	ũ . 944 O	9.9003	3-9963	1.0030	1.0015
		0. 101 50	6.37626	0.39488	2-41137	0.42177	0.44407	3- 50 4-0	0.47845
	÷	114.45	120.14	125-21	139.04	135.05	141.04	140.25	151.37
		1.3442	1.3603	1.3708	1,3008	1.3003	1.3994	1.4081	1.4105
	*/P	0.4414	0.9859	0.4897	c.4430	D.4428	0.0483	1.0034	1.0022
600		0.10072	0.31441	0.32096		0.35671	0.37045	5.30411	3.14770
	н	114.07	114.44	124.70	170.52	135.31	1	145.75	150.95
		1.1349	1.3441	1.3587	1.3054	1. 1704	1.3050	1.3966	1,4028
	F/P	0.9784	0.7637	0.9483	0-0955	2.4495	0.9984	1.0034	1.0031
700	٠	0.25743	0.26478	0. 28144	9.29408	0.30606	0.31796	8.12474	3.34184
	*	113+31	118.75	124.13	129.47	134.78	140.00	145.31	
	•	1-3220	1.3340	1.3467	1.3549	1.3640	1.3730	1.001	1.0041
	/	0.0750	d. 401 B	0.4471	0.9015				
600	٧	0.22307	0.23804	0.24680	9-45750	0.20817	D. 17869	0.28413	0.29450
		112.57	118.07	123.52	178-91		1,30.00	1.4724	1. 3010
		1.1110	1.3433	1 - 3 3 - 1	1,3444	0.9944	1.3875	1.002-	1.00**
	114	8.8/31	0.0801	0.4460	0.0013	A1 4423			

Thermodynamic Properties of Nitrogen (Continued)

Fluid Thermodynamic Properties for Light Petroleum Systems

Thermodynamic Properties of Nitrogen (Continued)

•	т	20	40	60	80	100	120	140	160
900	۷	0.20031	0.20989	0.2146J	0.22925	0.11475	0.20421	9.25757	
	н	611.44	617.41	1 22.92	140.17	133.77	1.19.11	144.14	144.74
		1.3021	1.3137	1+3247	1.3351	1.3+50	1.3544	1. 10 11	
	F / D	0. 1738	0.9780	0.9852	6.4.00	9. 1751	0.9990	1.003+	1.0005
1000	ž	0.14005	9.18405	3.14772	3.43687	9.21333	0.12340	0.23239	3.2.093
				1 22 . 3 4	127.54	111-20	132.04	1	199.46
	2	1.2433	1.1051	1 - 110	1.1200	1. 3 500	1.3401	1.3551	1-1-30
		0.4444	0.97/3	C.4846	C.990 d	3.3401	1.000-	1.00+0	1.2080
11.20	2	8.18366	2+12204	0.10323	0.10027	0.19621	9+20+67	3.21145	3.41.937
	2	110.49	119.15		127.33	しきよいのよ	130.27	1+3.17	149.34
	2	1.2452	1 2 971	1 + 3 0 4 3	**7195	1. 18 90	1.3185	1.3.75	4+ 1563
		0.46/0	4.1761	2.3441	0.4334	3.9966	1,0016	4.0344	1+0096
1533	¥.	0+15313	0.19871	0.10555	0.11444	0.14013	9.10759	9.1.487.8	1.231.41
		104.74	115-55	121.23	420.93	1 3 8 - 37	137.06	14 1.40	144.17
		1.4778	1.2096	1.3011	1. 3118	1. 3720	1.1115	1.1417	1.1.1.1.1
		0.1055	0.0/54	6.4014	0.4411	0.391.	1.0027	1.007.	1.0113
1 30 3	¥	0.11700		0.19119		0.16656		1.1.4014	
		103.14	114.37	120.70	128.15	111.44	117.44	1.1.1.1.	1118/00
	\$	1,2734	1.2030	6.2445	1.4012	1. 11.54	1.1751		
	* /*	1	0.9744	0.4874	0.4414	3. 4943	1.00+0	1.3074	1.3131
1400	v	0-12915	J. 1 3835	3.14264	0.1441.4				
	н	104.51	114.40	122.19	143.01	1 11 - 14		1.19411	3 . 1 7420
		1.2544	1.2747	1.2682	1.2391	1.1044			
	/	0.1031	9.3744	C	0+ 14/3	4. 9993	1.0054	1.013.	1.2151
1500	v	9-14103	0.12735	0.13356	0.11364				
	•	107.91	113.40	1 19.70		11-11		3+15/45	3.101/3
	•	1.2543	1.1107	1.2824	1.22.13	1.10.11			
		4.1622	4.17.2	0.4944	3.9451	1.0005	1.0064	1.3124	1+6172
1000	v	9 . 11 . 41	4-11-417						
		107.15		119.12		2.13749	94 10 240		2.15305
	5	1.1544	1.4651	1.1.1.1	1.2474	1 1 0 0 7 1	1 36 . 37		1
		3,1010	0. +/+2		0	1.3013	1.2084	1.31.4	1.0144
1700	*	0.10747	4.1111	3.11458					
	-	106.17	114.03	110.77	128.00	1 10 - 16	0.13.80	0+14033	2.149.1
		1.2471	1.4579	1 4 2 7 1 0	1.242		1 35 40 3		
	+ 10	0.7012	0.4744	3.4650	0	1.30 14	1.0105	1.0105	1.2214
		2.19190	9.10720	3-11253					
	*	134.23	112.14	110.11	128.21	1 12 . 10	4.12784	211 1501	3.13/14
		1.2470	1.2547	1		1 33.00	1 35 4 7 1	1	
	# / H	0. en1 3	0.3744	\$		1.3051	1.0125	1,3156	
1 400		9.03612	6.10/04	4.10101	a				
	м	103.71	411.44	117.45	141.41				
	5	1.7171	1.24.44	1.2019	1.07.30	1.2419	1.4414		1.3120
	• / •	0.4010	9.4753	3-1070			1.0144	1.3414	1.2894
2040	v		6.43131	1. 1921 1	0.13m44	0.11154	0		1.1.1.1.1
		107.001	111.43	117.51	1 4 1 + 9 7	129.13	1 15-10	1	
	1	1 + 2 8 2 4	1.2453	1.2574	1	1.27.45	1.24%		. 10 **
		0. 2012	C	0	6.4447	4.004.	1.0104	1. 14.17	1
1040		0.0.113		0.01174	4.41.21	9 / 1	0.00100		1.04777
	м	101.1.	191.12	1 14. 15	144.04	1/4./2	112.84	1 4 4 4 7	
	3	1.1.44	1.2045	1.0011	1	1.244.3	1.2344	1.1033	1
		0.4741	0.4433	1.0131	1.9644	1.2361		1.3514	1.3832
	*	8.03233	0.03534	1. 25 100		0.045.	C	1. 30 1.	3 . 3 . 4 . 7
		19.01	103.44	112.44	434.44	1111	1.11.49	1 1 7 . 7 .	
	5	1.1071	1.1.41.5	6 . 5 . 4 . 7		1.21.87	1.2297		
	* **	1.54.12	1.0274	1.0.52	1.0017	1. 3/54	1.0874	1	1
9076	•	4.5+11.	9.04724	0. CawlA	0.33124	3.0332+	0.03310	1.2.71.4	3.03.004
		47.01	109.11	111.30	110.40	124.70	1.41.454	1 17 - 16	1
	•	1.1461	1.1403	1.1744	1.1457	1.1744	1.2090	1	1.2.10
	***	1.3455	1.0105	1.0414	4+116+	1.1/34	1.1308	1 . 1 4 4 4	1 . 1

Fluid Thermodynamic Properties of Nitrogen 189

.

Thermodynamic Properties of Nitrogen (Continued)

P	т	20	40	60	80	100	120	140	160
.003		0.0+0+2	0.04213	3.0+ 34 3	3.049.0	6. C . 71 .	C+C4801	3.030.44	0.05305
		47.34	104.47	1 1 1 - 10	110-03	174.03	1 34 - 12	137.56	143.71
		1.0990	1.1411	1.1570	1.1000		1.1413	1.2040	1.2147
7650	¥	0.63/07	0.03053	9.039.4	:	3.24787		2.64576	
		47.57	100.34	111.57	110.34		131.55	134431	
					1.1335		1.1792		1.7004
		1.10.1		1.1.1.4.		1.4976	1	1.2790	
4000	۷	0.03450	1.03545	6.13713	C.C384G	5.63468	C. L . 041	0.04211	3.04319
	•	4n.0d	105.10	614 + 17	114.42	125.00	132.04	1 200 91	145423
	\$	1.1415	1.1103	1.1346	1.1436	1+1553	1.101.1	1.1779	1.1365
		1.2101	1.1002	1.4694	1.41.5	1,3,77	1.3419	1.151.	1.3036
, ,	т	180	200	220	2+0	260	260	300	320
		198.63	167.61	140.14	171.17	110.50	1010		101.00
		1.0083	1.0755	1.68/1	1	1.0477	1.6017	1.4040	
	·/•	1.0725	1.0055	1.0016	1.0044	1.00.	1.256.		1.0043
10		24.48427		20.02510			26. 112.10		
		128.57	1	164-15	1 2 3 4 3 4	179.54	11.41	11. 1	16
		1,7052		1.72**	4.7675	1.7239	1.7414		4 . 75 3 3
	# /P	1.0001	1.06.7	1.0024	1.3524	1.0000	1.0007	1.3024	1.000-
14.7	v	16.662De	17.14374	17.7034+	19.22976	18.74946		1 4. 7 44 52	16.31525
		158.57	16.1455	164.53	173.32	178-51	112.556	108.50	143.51
	\$	1.0779	1,0000	1.4921	1+0497	1. 70+5	1.11.32	1.71.96	1.7280
	* /#	1.0304	1.2005	1.0005	1.0004	1.3001	110001	1.000 \$	1.0005
15	•	10.12657	10.43557	17.35044	11.60354	14.30348	18.00.002	17.36762	14.9571
	*	158.97	11.3.55	166+53	173+52	179.51	183.10	186.57	101.21
		1.0704	1.04.13	1.6412	1.040.	1.7051	1.7117	1.7182	1
	F / P	1.0003	1.0005	1.0052	1.000.	1.0013	1.2003	1.005 #	1.0021
25	•	9.79774	10.10797	10.41260	10.71423	11.02390	1.31214	11.63452	11.44895
	•	156-53	103.51	166.49	173.48	178.00	183.47	194.47	191.40
	5	1,8402	1,6477	1.6549	1.0.25	1.6600	1.4 751	1.0414	1.1483
	# / P	1.0005	1.0004	1.0003	ال ذقانية ا	1.3904		1-0006	1.0005
	v	4.89956	.05305	5.26769	5.36125	5.01458	2.66880	5-62236	5.97642
•••		156.01	103.00	1.00.40	173.29	178.39	163.39	160.40	193.41
	5	1	1.5404	1.0157	1.0127	1.6145	1.67.67	1.6327	1.6345
	F / P	1.6303	1,0004	Lastron	1.0667	1.900*	1.000	1.0004	1.000
15	v	3.20081		3. + 7251	1.775/4	3.6786 9	1.76045	3.84348	3.94490
		151.30	161.30	100.36	373.34	174.31	183.30	101-11	1+3.32
		1-9923	1.5095	\$.1 7bB	1.9836		1		1
	* / P	1.0004	1.0004	1.2008	1.0310	1.0011	1.5017	1.0510	1.0014
100	v	2.45062	e+12807	2.66 525	2.0424.3		1.23687	5.41423	2.99401
		134.19	103.20	101-25	173.25	· · · ·	187.24	308.15	143.20
	\$	1-2-14	1.5484	1.5562		1 C 1 C 1	1 761	1.5#33	1.5897
	f /P	1.0005	+	1,0011	1.201 .	• • ** *	1.2014	1.0018	1.0010
150	v	1.43435	1.00622	1.73797		1.04151	1	1	1.99617
	•	197.97	102.99	1 84.07	173.24	174.04	1+3-64	+=0-12	193-15
	5	1.5123	1.5199	1.0272	1.5163	1+5412	1.5478	1.3544	1.5007
	* / *	1.0008	1.0012	1.0010	1.0014	1.0022	1.0525	1.3027	1.0029
\$00	٠	1.31030	1.20530	1. 3043 8	*****	1.33221	1.42109	1.05.94	
		1 57 . 75	142.70	167.93	172. 47	1	107.94		143.01
		1.4416	1.4941	1.5005	1.074	1.0030	1.0034	1.003.	1.0039
100	2	0.010-6	6.84474	0	0.8-713	0.47328	6.04937	0.07513	192.78
		1.4421	102.40	1.477			1	1.50%5	1. 3149
	810	1.0014	1.0077	1.0034	1.0391	1.0047	.0012	1.0056	1-0000

190 Fluid Thermodynamic Properties for Light Petroleum Systems

ş

Thermodynamic Properties of Nitrogen (Continued)

P	T	180	500	220	240	260	280	300	320
		164-91	162.32	9.83634	3.67418	0.64342	0.71 36 3	0./3330	0.75244
		1.4410	1.4447	1.4141			1 62 . 16	1.47+47	192.55
	\$ /0	1.0027	1.0039	1.0045	3.3637	1-306-	1.0071	1.0377	1.4401
500	1	0.43255	0.30454	0.52448	3.1.4.3.2	0	G. 572.1C	9.50413	3 - 60 344
	5	1.1/45	1 12 2	1.00.11	171.17	177.41	162.12	147+22	\$ 94.33
	1 /0	1.00.0	1+0052	1.004 \$	1.0074	1.0003	1.0091	1.00.00	1.4738
600	۲	0-01123	0.42470	9. 4341 3	1	0.40470	07010		0.54/04
	7	199-15	101.29	160.45	171.59	176.73	1+1.44	ときかいませ	142,12
		1.0134	1.4147	1 2 - 2	1.435	1.4405	1.4.73	1.4540	1.0005
				110040	1.0042	1.3133	1.2112	1.5121	1.0124
100		0, 1992 5	0. 36487	0.17644	3.10031	0.14452	3.41105	3.42344	0.43100
		1 55 - 75	1.00.45	10.11	171-30	179.44	161.05	100.77	101195
	ē / P	1.0062		1.047	1.0112	1.0144	1.01354	1.4426	1.4441
600	۷	0.30.001	0 - 3200 7	3. 13024	3.34346	0.35059	0.30064	3.37075	a. 18079
		155.14	100.02	105.83	171.57	174.21	141.34	100.30	141.73
		1.3492	1.3475	1.4040	1-+120	1 - 41 91	1.+200	1.4127	1.4342
	• • •		1.0044	1.0116	1.0134	1.01.++	1.2136	1.0164	1.0174
404		2.27011	0.29324	5. 29.43	2.12353	0.31294	C. 32163	0.11511	3+33957
		1 140 4	1 40.31	101.13	173.70	172.47	111.11	1 90 - 10	191-23
	i /0	1.00.12	1.0115	1.013+	1	1.0149	1.0142	1.01/4	1.0204
10.33	•	5.24423	5	7. 64500	3.210.5			2	3 - 10 0.00
	*	154.71	1 34.44	105.20	170.00	1 / 24 / 4		140.17	14. 11
		1.1721	1.1930	1.3577	1 * 1451	1++025	1.4073	1.4186	1 20
		1.0139	1.0135	1.0157	1.3170	1.91.91	1-5:208	1.02/1	1.0234
1103	*	9.22721	0.21445	3.24.47	2129935	0	3.20456	1.27833	A
		156.31		1 64 . 3 /	110.20	1 75+ 12	16.16	105.24	. 41 . 21
		1.01.7	1.6155	1.017.	1.34.0	1.3.1.1	1.4.3.1	1.4098	1.0240
1124	•	3.20448	6121033	9.12279	1.4.5141		0.14.14.2		
	H	151.57	1 19.42	164.73	110.21	175-31	100.57	145.42	
		1+357+	1.1024	1 + 37 37	1. 14115	1.3.3.4.4	1.1454	1.4541	1.4044
	• / •	1.31.07	1.0177	1.650.1	1.3225	1.0245	1.0201	1.0278	1.0.184
1360		9+14157	6.2000	0.254.16	1.21.203	3.71743	9.7757-	3+23212	3.21844
	-	1.51.15	191-19	104.44	164.81	175+11	1 *5 + 34	15-+55	196.42
	i	1.216-	1.0.000	1.00.75	1.1750	1 - 3073	1.3491	1. 7405	
					1.0231	1.0717	1.0740	1.3135	1+0114
	÷	1010010	3.146.4	0.14243	3	0.20451	0.21045	3.21010	7.22229
		1.3454	1.13.19	1.1617	1 - 1 - 4 - 6 - 5	1.170.02	146.23	1 4 3 4 5 2	130.01
	* /*	1.1190	1.0223	1 . 6 2 5 1	1.2274	1.2370	1.4314	1.0115	
1500	v	0-15-01	6.17.72	0.14(3+	1.19833	0.17102	0.19714	0.202/3	3.20421
	7	191122	134.34	104.04	101.43	174.74	1 + 0 . 0 7	115-18	1
	FZP	1.3-11	1.0244	1.2163	1.101.1	1.311.7	1.3741	1.3452	1. 1. 1. 1.
1803	v	2.15773		9.10.000		3.14017	0-16551	1.1.934.5	1.14022
		1 22 . 44	1 34.41	161.43	1471	174.54	173.4	103.43	1 40.99
		1.1151	1.3434	1	1.1504	1. 30.002	1.3/34	1.303.4	1 . 1074
	• 20	1.2511	1.0275	1.616.1	1.0135	1.3199	1.0 184	1,0144	1.341.
1140	ž	0.1431.	0.15543	7. 17 0. 1	U.1654V	3.1/04/	0.17543	0-14015	3.4429
	5	1	1.1144	1.1.05	1.3941	1.001	1.30.07	1.4755	
	+ /*	1.0761	1 - 2 12 4	1.0.134	4.3305	\$. 0 3 .0	1.0.17	1.0.31	1
1498	4	0-1+260	3.1.7.2	0.15221	3.13570	0.1.1.0.	0.16634	2+17125	3 . 1 790 *
		1.14.	1	103.44		174.47	1 79.41	145+21	
		1.0.240				1 - 1576	L.J.42	1.1712	

Fluid Thermodynamic Properties of Nitrogen

Thermodynamic Properties of Nitrogen (Continued)

P	T	180	200	220	740	260	280	300	370
	•	9+13507	5.140/6	0. 1		0.153+4	0.15+31	9.10274	2.14711
	-	\$ 32 - 24	157.78	403-21	169.71		174.53	100.41	140.27
	3	1.3/17	1.36.99	1.1374	1.3.54	1 . 35.7 **	1.2411	1. 30 7 0	1, 7738
		4.3310	112107	1.0.3-7	1.0.40	1.0451	1.1474	*****	1.0516
.030		0.12.449	(.)]].,7	\$11771		5.144.86	1.1.1.1	3.15524	0.1 . 44 .
	2	192.34		1	100.01				140.14
	110	1.0347	1.(10)	1 . 5 . 21	1.3.41	1.548 4	1+2513	\$+0*34	1.307
3000		0.0000		1.1.1.1.1					2.11117
		1.2416	1	1. 1.1.1		1.3143		1	1
	¥ /#		1.0752	1.6+05	1.20.1	1.2075	1.0.965	4 . 2	1.0450
		3.27199	a. 67 - 31	3.575.55		5. (4) 54	1.1635	0. 285 s.A	* . C • 7 7 2
		144.70	152.60	101-59	1674.4	17 1.62	174 . 74	174.37	1 * • • * *
	t.	1.2.992	1	1.2411	1.200.0	1.2121	1.327.3	4 . 3 . 17	1
	1 /P	1+1142	1 - 1 - 6 5	1 + 1 2 5 *	1.1.1.1	1+1 1+1	\$. 3 376	1 . 1	1 + 1 + 1 4
\$000	v	0.00003	8.36243	3. 21 - 6.		5.06-3/	1. 1114		3.67470
-	-	144.05	155+57	101.03	101.22	173.30	1 14+ 10	300.43	140.03
	5	1+2.14 4	1.2440	1.2511	1.2041	1+27=1	1.1.010	1.25.44	1.2465
	+ /P	1+20084	1 + 1 7 19	3 + 5 7 9 4	1 * 1 = 2 *	1.1.57	1 + 1 36 7	* * * * * * *	1.1.1.1.1.1
	v	0.05 165	14585.24	0. 651 #6		C.C.Qur	\$. \$ \$ 14.3	3.262.00	3.3
	*	1.4.7.4.4	154+10	102115	204+11	4/4.01	17	1 97. 74	191.50
	5	1-5574	1 42 3 17	1 + 7 4 2 4	4 . 6 2 . 3	1.25.67	1		1.2315
	# /P	1.2214	1 + - 3 + 5	1.0000	1+24+3	1.2474		3	3
7000	•		0.04944	0.001/2	6.05.57	0.05351	1.11.1.L	7.556.25	0.1.47.47
	-	150.65	190.40	1 02 . 47	16 ****	1 7 5 . 2 .	111-56	101140	142.11
	5 7 / P	1.210.	1.2196	1.3672	1 - 31 1 4	1.2-5-	1.2162	1.0011	1.1005
9033		131.57		104.23	174.10	176.23	100000	197141	6.05243
	5	1 . 1		1 + / 10 *	4 . 285 3	1+2330	1	1	1.29.24
	1/0	1.3700	1.3765	1.362.0	1.3042	1.3400	1.3070	1.307-	1.3543
2	т	340	360	080	400	420	140	460	480
		104.47210	Sec. (2555	34.1 . 3+ 5" +		130.2424#	14.3+1.1+4++	34	area fuenc
		199.35	273.16		* * ** * *	610.44	22244	24.15	235.84
		1 . 372 .	1 + + 1 + 2	1	1	1.9461	1.4511	1. 1054	1.9:2.
	+ /12	1.20.3	1 . 25 . 50	1.001.4	2-2-24	1.000.	8.1044	1.37	4
1.2	v	10.02111	22.37520	37-13437	3	1100011	34.4.2.344	25.215 te	354 446 12
		141.53	21 3+24	7 (.	713459	11 P. D.	2.2.11	esuati	223.70
	5	1.7544	1.7655	1.7/14	1.777.	1.7-30	1 a 1 mme	1.7-41	
	* , *	1.0404	1.0010	1.000		1.0004	1	1.1.15	1.2/14
14.7	•	26.05730	2 4 a 36 1 4 a	232 47-11		11.90.07	220-270	23. 49.81.5	
	•	146+52	*****	*****		21-+05		2.2.2.1	1 2 3 4 7 7
		1.0100	1.1302	1.000	1.0440	1.1.1	1.77.17	1	1
\$ 5	2	20.404/2	24.49245	20		114.67	24.3444	223473	233.77
	5	1.7307	1.736.7	1.7427	1.1.55	1. 7.47	1.7-44	1.7034	1.7730
	F7#	1.3000	1.0001		1.34.4	1.0009		1.000	1.0500
25	×	12.25053	17.55876	12.04.47 1	13-173+1	13.47648	1	14.02 # .	14.34012
	H	144.49	20.1.51	260.03		21	2.3.14	***. **	273.70
	5	1.0444	1.7005	1,700.4	1 7177	1.7100	1.72.34	1. 27.51	1.7346
	/	1.0070	1.0004	1-0104	1.0358	1.000*	1.0004	1.0310	1.0010
50	۲	6+12457	6.78282	A. 436 M.		* . 7 . 30 .		7.0.4195	7.20.192
		144.43	203.45		21 1. 51	615.635		· · · · · · ·	
		1 + 0 + 54	1-4513	1.01.17	1.0031				1.0014
	1.0	1.3011	1.0012	1.001.	1.0012	1. 1013	140013		

APENDICE C

DATOS P-V-T PARA ETILENO

Thermodynamic Properties of Ethviene (Continued)

	1	80	- 60	40	-20	0	20	40	60
	•	144.51124	152.3.744	LN4. 41 703	107.30213	175.00651	182.21045	192.63176	199.04523
	H	1040.08	1046.30	16.52.71	1354.29	1215.48	1672.01	1.77.81	1086.97
	•	1.9437	1.954#	1+4757	1.9415	2.001.4	2.5357	2.0340	2.04.88
	f /P	1.0002	1.0010	1.0024	1.0337	1.0073	1.0126	1.0220	1.0035
10	v	14.35112	15.13772	15.41417	10-64701	17.47458	11.74367	19.02240	11.74352
		1010.17	1041.55	10 52 . 2 2	1050.54		1012-27	1574.31	1000.52
	÷	1.7787	1.7454	1.0318	1. 1. 74	1.94.5	1.8572	1.0715	1.8854
	• /•	0.0000	6.1452	0.0416	0.0021	2.4030	0.9	0.4452	0.9958
		9.71075	10.20002	10.70613	11-32347	11-0511-	12, 28214	17.45132	11.44199
			10-5-13	10 11 10 0	1054.30	1265-07	1011,44	1014.35	1 584.28
	1.00	8.9*30	0.9050	0.0077	3.4694	0.4404	0.4920	0.4.10	1.8974
12		*******	1046.00	10.30555	11.000000	11.01174	12.12436	12.05010	13.16488
		1.7441	1.7661	1.7474	1. 74.1	1	1.1.1.1.1.1		1000.20
	i /r	0.9476	3.4853	C. 9674	0.40.2	5.946.4	0.9918	0.9427	6.9434
25		3.03507	3.94120	6.20300		6.92065	7.23674	1.45142	1.30597
	÷.	1937-62	1044.17	1056.01	1257.34	1004.39	1071.10	1025.10	1041.75
		1.7110	1.7263	1.7	1.10.0	1 . 776.1	1.7.15	1.84.34	1.8198
	170	0.4704	6.9953	6.4747	6. 3817	0. 394 1	0-98-1	0	G. 984.
36	v	2.72685	2.63468	5. 26 40 8	3 1042	3.40148	3.56555	3.72734	3.85 * 3*
	H	1334.91	1241,40	10+8.75	1035.80	1002.07	1049.42	1077.38	1584.47
	5	1.05 *0	1.0751	1.0524	1.7548	1.7385	1.7347	1. /541	1.7648
	174	0.9418	5.4535	6.9t /6	0.4C33	3 . 91.81	5.9725	0.4854	2.7.85
75	۷	1.75 334	1.97672	1	2.15345	2.22602	2.3.041	2.45237	2.55222
	м	1035-04	1014-31	1044+51	1223.11	1660.45	10em.25	1075.65	1083-18
		1.6229	1.0420	1.0000	1.6770	1.4932	1,70*8	1.7638	1.7383
	• /•	1. 1128	0.4.54	C.4364	0.3453	0.3622	6.45MI	0.9631	0,3673
100	*	1.26287	1.30246	1.45742	1.55250	1.1.4013	1.73781	1.01306	1.64471
		1024,40	1030.467		1001.00	10-4.15	1311.43	1574.18	1001.82
	1.0	0.** 19	0.4013	3.4154	0.0.00	0.9304	0.4442	0.9514	0.9565
						1.5.6045			
		854-07	865.19	15 14	1047.40	1055-17	1003.27	1071.15	1370.00
		1.1.147	1.1000	1.5950	1.0174	1.0350	1.0524	1.008.0	1.0038
	# / P	0.6007		0.0734	0.09C a	3. 904 #	0.9184	5.4250	0.0156
290	v	0.031 19	0.03207	0-04037	3.60997	0.75333	0.46472	0.85303	0.90150
	н	854.16	801.05	10 33 - 64	1042.04	1951.30	1029.69	1067.37	1076.21
	•	1.1342	1.1002	1.5484	1.5840	1.6059	2.0217	1.0436	1.0596
	+ / P	0.45%5	0	7.4315	4.85.65	0.0735	0.4842	0.4324	0.4136
300	۷	8.01133	0.03/51	0+ 03 397	0.23504	0.44983	C.49183	3.51038	3.56057
	H I	854.34	864.55		892.95	1341.91	1001.71	1001-03	1010.01
	•	1.1331	1+1450	1+1964	1 - 24 9 4	1.5050	1.8559	1,80+0	1.0224
	F / P	0.3103	0.4301	0.5473	3.7621	3,9104	2.6349	0.4545	0.8713
453	v	0.03126	0.03244	2.03385	0.03503	0.03615	C. 32707	3.16415	2.39061
		854+53		874.29		46 1. 42	1047.02	1053.31	104.1.20
	2	1+13-1	0.1241	1.1049	1.2205	3.7328	6.7798	3.8057	0.6792
500	, i	\$103120	800.42	919.37	\$4	90 7.34	1371.57	1041.73	1014.31
	,	1.1311	1+16/6	1.1035	1+2/+6	1.2575	1.0115	1.9415	1.9680
		0.1943	0.2730	0.3474	0.4770	0.5960	0.7238	0.7547	0.7473
		0.0311-	0.03285	C. C 3 3% I	0.03525	0.03745	C. C. C. O. O.		2.21835
	H	\$24.43	80.038	*74.36	842.47	906.86	924.15	1020.51	1045.75
		1 . 1 30 1	1.1015	1+1971	1.2230	1.2560	1.201*	1,5356	1.5176
	* /*	0.1655	0 + 2 3 2 +	C.312A	0.4360	0.5100	0.6/11	0.7033	0.7452
101	• •	0.031-19	0.03.20	0. 03 34 4	0.01534	9.63710	8.64024	0.04754	3.10006
		855-14	867.11	1.1404	1.231.2	1.25.35	1.2874	1.13.9	1.3043
		1.1.237		0.2738	2.3553	0.4444	0.5440		4. 1023

Fluid Thermodynamic Properties for Light Petroleum Systems

Thermodynamic Properties of Ethylene (Continued)

۲	т	- 80	- 40	-40	- 20	0	20	40	60
409	v	0.01103	9. 93218	0.03139		3.03689	0.6 3973	3.04511	a.10139
	H	\$ 7 5 - 35	447.27	474.50	**2.32	766.15	921.07	Ja2. 30	1009-08
	1	6+1294	1.1393	1.1495	1.2.70	1.2504	1.2439	1.1520	1.4552
	• / •	9-1295	0.1010	0.2000	a. 1174	0.3030	0.4671	3.5774	0.0105
989	<u>•</u>	0.03077	9.01705	0.03320	0.33477	0.0304	C.C.1420		3.65634
	2	939.97			4 4 4 4 4 4				1. 14 4 1
	é	3 . 1 1 74	0.1050	0,2270	4. 2	2. 1421	5.4424	3.9757	0.0235
1000	*	\$*240.0	0.07147		0.33452	0.33642	G. C.3865	7-24207	0.09114
		\$\$5.74	407-61	\$ 79.69		105.66	910.46	*37.78	102.74
		1,1203	1.1572	1.1870	1.2165	3.24.4	2.4.167	1. 11 10	1.3420
1100		444 44	0.03140				314 81		
						1. 3444		1.1001	1.181.4
	·/•	0.1004	0.1 408	0.1493	3./*36	0.3044	5.3770	0 /	0. 5219
1 200	v	9-0-0-0	6.73145		3.03435	0.03601	C.C3816	0.34122	2.04617
	•	\$ 30.24	567.47	\$10.42	442.24	20 3 . 3 *	110.40	435.44	451.34
	5	1.12.3	1.1551	1.1647	1.2127	1.2428	4.2724	1.3555	1 - 34 37
	/	0.0740	3.1317	C 1771	9.22.48	3.2440	0.3934	3.4213	3. 6899
1 300		3.03076	0.93177	0.03240	3	3.61543	C. (3748	3.3.367	1.24506
		456.47	838.17	8 80.05	**** 33	399.41	919.12	+ 14.59	352.d4
	5	1.1236	1.1241	1.1035	1.2123	1 - 24 1 1	1.1767	1. 1323	1+3378
	\$ /*	0.0469	C . 12 + 2	0.1669	4	3-2722	0.1330	3. 1973	4.4627
1400	۲	9.43071	0.03173	0.03262	6.03411	3.01565	0.637+7	3.34619	3.4404
		450.71	864.30	840.14	042.30	105.15	315.53	111.15	\$51.1.
	2.0	0.0441	0.117/	0.1002	5.2151	1.2545	7.1147	2.1750	6.0124
			••••						
1500		4.;3366	0.01164	4.03.73	9*91394	31 0 104-1		3.61111	3.24222
			864.36						1. 1784
		0.0401	9.1122		6.1454	21.2457	1.1001		3. 61 92
1000	v	0.03041	9-03137	0.01205	6.0 138 8	4. 735 33	6	3.71353	0.0.252
		557.14	6cA. 17		422.53	909.06	414413	437.04	4+ -0
	3	1.1210	1.1912	1.1002	1.4015	1.2165	1.2447	1.2.114	(* 125)
		9.4141	3.1374	0.14+2	0.1064	0.2350	0.0077	7.3.17	0
17.0		9.03036	0.03151	0.03297	3.31117	3.03518	5. C 1649	4.53424	2.24141
	H	537.44		840.40	4-22.03	\$5.35	215-15	132,24	i 4 fe 73
	5		1.1903	1.1752	1.2073	1	1.2429	1.2460	1.1214
	***	0.3/36	0.1011	3.13#5	0.1745	2	0.27#3	\$ \$ \$ \$ \$	3. Jani
1800	*	0.01052	0.031+5	3. 0324 9	3. 73457	4.03544	6.73667	3.3.6/1	3.04141
		457.67	469.20		892.73		******	* 31, 34	
	10	3.0711	0.0944	6.1334	6.1729	4.2174	9.2002	0.11.1	0.3/28
1909	v	0.0104/	0.03140	1.03242	0.01151	0.03440	3.63644	3	2.04045
• · · ·		\$27.44	464+42	991.01	842.54	405.00	317.40	+ \$ 1 + 5 5	440.27
	5	1.1185	1+1445	1.1772		1 . 2 1 2 3	1.139*	1.2073	1.1140
	/	3.3688	0.3961	6.1290	0.10/1	9.2101	e	3.1971	3. 3031
2000	*		0. 231 14	0.03234	3.33167	9.0 5477		3.33417	3.04043
					1.0010	1.2304	1	1	1 . 11 17
		0.0008	0.0437	0.1250	9.1929	3.2034	0.2493	3.2342	0+ 3472
1020		9.95001	0.03082	u	3. a 1205	9.03371	0.01-08		0.03177
	-	160.87	872.04	* #3.31	4 /4 . 4 3	404+15	410.05	410.23	242.43
	•	1.1101	1+1343	1.1671	4 . 1 / 3 /	1.2194	1.2448	1.2045	1
		3.0346	3.0767	5.1016	2.1314	3-1844	0.2017	0.2414	
4999	1	0.02105	0.030 10	9-03117	3.03291	0.0341	1.63344	8.03497	2.0.51* 342.#T
		1.101		1.1562	1.1491	1.7100	1.2.44	1.45/8	14.7410
									1. 2997

Fluid Thermodynamic Properties of Ethylene 131

Thermodynamic Properties of Ethylene (Continued)

۲	т	- 60	- 60	- 40	- 20	0	20	40	60
		0.07434	0.03002	0.03073	0.03107	0.03727	9.01312	0.23424	0.03003
		865.78	\$77.72		804.34	\$10.20	921.32	444.34	943.94
	\$	1.0967	1+1253	1+1521	1.1776	1.2019	1.2254	1	1.2705
	# /#	0.0495	0.01.00	0.0400	0.1154	0.1.30	C+176i	0.2084	0.2447
BL 0 3	*	0.02900	0.02464	0.07034		0.03174	0.03290	01666.6	3.5 3466
	*	\$69.74	460./8	691.20	902.19	415.41	423.72	¥34.86	445.86
	4	1.0408	111191	1.1457	1+1794	1 - 1 4 7	1.2177	1.2400	1.2617
	e / P	0,0574	0.0004	0.0407	9+1150	0.4+34	0.1705	Q.237B	0.2425
1009	¥	0.02.20	0.02434		0.03053	0.03124	C.C3147	0.03250	0.03345
			803-45		VC 5-17	915-75	974.40	437.15	948.05
	100	0+0527	0.0716	6.0538	2.1142	0.1075	0.1781	1.2328	1.2543
BC 00		0.02014	0.02913	0.:2464	0.00258	0.03094	0.03151	0.03217	0.03286
			807.73	847170	408.24	418.77	429.24	334.84	950.62
	10	3.0542	0.0759	3.0484	0.1.50	0.15+0	0.1051	0.2192	0.2548
₽	۲	во	100	120	140	150	180	200	220
	v	200.05441	713.40143	221. 4108 9	250.31 300	234.00000	244.183-1	251.04317	250.31934
		1094.31	1101+82	1104.53	1117.42	1125.56	1123.70	1192-26	1150++3
	L	7.0446	2.0154	2.44.2	2+1341	2+1150	2.1201	2.1.31	2.1573
	+ / P	1*3514	1.0025		1.0036	1.0034	1.0050	1.0051	1.0004
10	•	20.55832	21.33362	27-16051	22.00674	23. + 1936	24	25.17525	25.04485
	*	10 43.84	1101.44	1109.17	1117.30	1175.14	1133.48	4141.96	1150.67
		1.4295	1.9125	1.9258	1+4390	1.2519	1.9648	1.9777	1.0005
		0.9960	0.490 0	3.9974	6.4972	0.9462	3.9474	0.4499	0.4486
14.7	¥	13-95971	14.49702	15.02240	13.54556	16.07219	10.59395	17.32200	17.63894
	F .	1093.07	1101.23	1100-18	1118.90	1125.02	1133.33	1141.63	1150.53
	4	1.8716	1.4451	1.4984	1.9115	1.0.45	1.9374	1.0003	1.7631
	F / P	0.9444	0.9449	6. 141 5	0.9421	0.9466	0.0018	0.3470	6.4477
15	٠	13-68451	14.19674	14. 71240	15.22775	13.74506	16.75542	16.76768	17.20512
	*	1041.66	1101.27	1100-46	1110.94	1125-01	1133-35	6141+82	1100.52
		1.8701	1.0434	1.846.9	1.9100	1 . 9. 30	[,9359	1.94.88	1.4614
		0.994 5	C.9952	C.491 F	0-4301	9.9463	0.4064	0.79/3	0. 9972
25	v	8-17812		8. MC 208	9.11254	9.42329	4. 13190	10.0.174	10.35080
	ĸ	1093.19		1160-51	1119-95	1174.64	11 32 . 99	1141.51	1120-13
	•	1.0333	1.0413	1,0002	1.0734	1.9462	1.0.444	1.9173	1.9252
	P76	6.1104	0.9415	6.0423	6 31	3. 14 16	0.0045	0. ++5 1	C. 4455
\$0	۷		4.20728	4. 36 5 48	4. 52370		4.FJ892		9.15150
		1045.30	1044-64	1107.04	1115.37	1121.77	1132.16	1140.73	1144.50
	•	1.7028	1.79/15	2.0100	1.4233	1.4764	1.6445	1.8674	1.8753
		6.985)	0.4627	0,4465	3.0401	3, 1875	C. 4476	31.4887	
79	*	2-67176	7.3744.4	2.04720	2.49439	3.10042	3. 20643	3+31272	3.41818
		1040-80	1098-58	1100+51	1114-51	1122.86	(1.31.32	1130.95	1144.76
	•	1.7525	1.7064	1.7+00	1.7935	1.0067	1+8140	1.6324	1.8490
	* /*	0.0710	0.+/*1	0.4768	0.9741	9. 1411	0.4810	0.0846	2
103			2.00536	2.14761	2 + 2 2 7 2 1	2.31032	2.14105	2.47178	2.55122
	×	1041.57	1047.45	1105.47	1111.55	1121.00	1130.40		
	5	1.7376	1.74.7	1.7584	1.1720	1.7834	1.7980	1.0117	
	• /•	0.9614	0.4655	0.9691	9. 113 .	0.7749	0.07/3	0.0174	0.4613
150	•	1.27310	1.35077	1.40774	1.46349	1.91972		1.02085	1.08438
	н	1007.07	1495.15	1107-15	1111-68	1120.15		1137.54	1144.32
	3	1.0.087	1.7131	1.7674	1.7+10	1. 7946	1.7640	1.7813	1+7445
	• /-	0.0432	0,0494	0.9537	0.938*	0.9675	0.4661	0.0842	4.4770
2 04	• •	8.74776	10100.0	1.03760	1.04110	1.12419	1.10044	1.20033	1.25046
		1000.01	109		1	1.71	1.7.4	1.794	1.7724
	1	1.6/44	1.40.44		4.718.8	0.450	0.99.44	8. 857	0.9474
		0.4232	0.9310	0.9385	6.9487	e. 450 t	A14344	** ****	

132 Fluid Thermodynamic Properties for Light Potroleum Systems

Thermodynamic Properties of Ethylene (Continued)

	т	80	100	120	140	160	180	,200	220
	~		6.01021	2.40638		0.77832	6.75441	9.74403	0.41724
100		4.94.34	1047.50	1290.03	1103.50	1114.04	1122.48	1132.63	1141.90
		1.0196	1.0545	1.5700	1.0547	6.8991	1+7334	1-1270	1.7407
	÷/*	3.4755	0.8978	0	0	3.9257	0.4328	2. 1311	9.1000
400		0.42000	0.45346	0	2.56342	3.5 1051	4.55 197	0-57734	0.63038
	-	1072.75	1042.45	1041-01	1131-12	::::::	1110.78	1124.20	
		1.9105	1.6275	1.6436	1.039.	1.0741	1.5441	1.7524	1. /1 / 0
		0.3481	9. 1646	5.8747	219419	3. 101 1	214211		
500	v	0.31924	0.344.23	3. 30 752	3.34039	2.41072	3. 4.1812	0.43643	0.470.24
	-	1004.27	1070-13	10 40 - 54	1 . 44. 2 3	1103474	1115.044		1.4477
	1	1.5455	1.0040	1.0313	1.41/1	1.05.30	1.05-6	7. 403.	0.2097
	* / *	3.9114	319714	3.4444					
400		3.24617	0.27319	4.24134	3.311.66	3. 3 70 48	5 . 34 90 9	3- 35538	2.16348
	-	1050.07	1070.20	1041-15	1031-50		1111140		1.0412
	3	1.5418	1.1423	1.0013	1.5638	1.0373	0.4585	9-4810	2.0917
	***	0.7/46	3.////3						
700	v	3.14172	0.21411	0.2371+	0.25015	0.21378	0.20041	0.13627	3+32153
		1044.69	10 03.13	3279.61	1.40.14	1047.23	1107.02		1.0000
	5	1.5377	1.5618	1.5020	1.0514	110143	1 . 0 35.4	1	1.000
	F/A	9.1378	0.7470	0.7910	0.0132	7.6.117	C. 44 /4		
60.0		0-14749	0+17436	0.19554	3.21410	7.23676	2	3-5-135	3 . 4751 3
	H	10.14.47	1054.45	10.60.54	1-40-83	1242.34	416.101	1114.40	
	3	145111	1,3478	1.+****	1.544.4	1.0312	1.0210	1.4375	1.001
	#/#	3.1009	0.11.9	C. 7635	4.7679	2- 80 -1	0.4276	3. 44 14	
		1.1.111	4.14072	3.14209	0.19131	3.14724	0.21216	3.21598	3.23911
	÷	1221.32	1045.44	10.1.31	1614.07	1087.28	1093.74	1313.41	1121-13
	1	1.4784	1.3/97	1.5482	1.3657	1 + 58 ÷2	1.0074	1	1. 3411
	F.78	3.0020	9.1030	0.7356	0.8031	3. 7963	3.40**	3. 1258	0.ee.v
1030	*	3.34224	3. 61 31 3	0.13010	~.15451	3.17044	A. 18476.	2.14794	3-21041
		1204++1	1034.43	1241.37	1261.33	******	1210.00	1129131	1111-46
	5	1.4403	1.4 44 8	1.5277	1.3512	1 + 2 + 4 +	1.5.4.4	1.1125	
	P/P	3.0204	3.6711	3.7040	€.73a#	3. 10.25	3.7881		
1146	~	0.03484	0.09102	0.11458	2.11333	1,14465	2.10253	3 . 1 / 5 2 3	0.1470
	i.	193.00	10 22.45	10	4061.03	1070.41	10-4.68	1105-13	
	5	1.4113	1.4700	1.5070	1.3375	1 + 54 1 2	1.5217	1	1
	+++	3.5076	9.6140	C	C . 71	2.1414		5./****	
1 300		4.05/24		0.04758	3.11553	3.13576	0.14422	7.15045	3.16714
	, in the second	381.44	1211.53	1034-23	1034. 22	1373.71	1244.40	2499.54	1110.10
	5		1.4477	1.4905	1.54.2	1.5478	1.50.99	1.5498	1.000
	P / P	0.1740	1.0030	0.0147	0.8417	3.72.37	0.7504	s.//42	
1 300		3.03314	4.34/17	9.0****	2.503.66	2.11000	0.12963	3.14040	3.45.07
		417.49	1002.45	10 27 . 77	1040.01	1014.3.	1673.40	10.01.42	
	5	1.1910	1.410.0	1.4733	1.5275	1.4349	1.2.143		
	P / P	0.9258	0.7421	C. 61.90	2.00.14	3. 70 12	3.7324	447374	••••••
		0.03249	0.06131	3. 3/555	3.3433.	4.17491	0.11039	0.12767	3 - 1 3604
1400		\$77.93	******	16 20.35	1041.44	1354.35	1074.03	1004.34	1102.2
	-	1 . 1 2 1	1.4193	1.45#3	1.4435	1 - 92 2 9	1 - 34 /2	1. 20 40	1
	÷ / •	3. 5035	0.5570	C. 40% I	3.6443	3.9839	2.7152	C.7423	2. /43.
		8.0.100	0.05720	3. 26433	3.20166	0.04+28	0.10507	3.11000	3.1.0.36
	÷ .	184.36	++++ 57	1014-93	1012-21	1093.94	10 10 124	1343.15	
		2 . 3091	1.4356	1.4458	1.4439	1.5100	1.0365	1.77.2	0./3.4
	+1+	0/**	0.5344	9.5044		3.0033	0.0.03	******	
1800	v	9.49717	0.054/5	3.06364	0.37444	3.04624		1.10726	3.13.19
	i.	468.74	987.75	:009-50	1010.10	1044.24	124.4.4 74	1001.37	100719
	•	1.3594	1.3469	1.4.10.10	1.4097	1.1001			2. 7341
		0.4542	9-9142	0.3+4\$		7.04.61	216453		
1700	*	4.0.501	0.01203		1.30410			0.07926	0.120
	м	249-13	944-72	10.15-10	1052-20	1344.38	1.412	1.3.1	1.14.28
	3	6.3544	1.3698	1.4259		1	0.007	0	0. 7244
			D.4901	5.346J					

.

APENDICE D

DATOS P-V-T PARA CO2
Fluid Thermodynamic Properties of Carbon Disxide 159

Thermodynamic Properties of Carbon Dioxide (Continued)

	1	100	120	140	160	180	200	220	240
		130.00041				1.5 11.64			
	:	-3744.43	- 3742 . 84	- 37.36 - 6.3	- 17 3 4 4 4 1	- 37 30 - 14	- 3725 - 62	- 1721.+ 6	-1727.05
	5	1.1401	1.2 445	1.30+5	1.5117	1.51.45	1.32.04	1.3313	1.3370
	110	1.0034	1.7512	1.0031	1.0.34	1.0:36	1.4011	1.00.04	1.00hl
10	:	13.63610	44.69567		18.0/714	15. 15.714	16.15 663	10.5.076	17.03310
		1.186.0	8.1478	1.2005		1.71.84	1.1.211	1.2275	
	4.70	0.4440	0. 4 . 7 .	C. 4478	c	3.9484	C	9. 7.83	C. 4440
	۲	4.24416	4.5701:	4. 41 Je f	10.24725	10.51321	12.41361	11.2.454	11.57614
	-	- 3747 - 28	- 37 - 3. ()	- 17 3- + 5	-3734.34	-3726.45	- 3721 - 67	- 17 2 1 . 5 4	- 1717-27
	1.00	0. **55	5. 3460	2.4468	0.3+6 6	2. 1971	C.4477	6. 4974	C. +9#2
	۷	9.05636	9,3=5+3	4.71557		10. 365 94	15.16277	11.01347	11.34471
	н	-3747.29	- 310 3- 10	- 17 35 . 44	- 1734-70	-3730-41	- 31 (m.c. P	- 1721-70	- 3717-27
		1.1682	1. 1764 6. WUSM	6.19.6	6.9467	6.7973	1.7624	1.2041	1.2154 C. 247p
		5. 416.52	5-5146	5. 81/15		6.20020	t.45 802		6.75PuT
	÷.	-1147.35	- 374 3 . 38	- 17 34 - 17	- 37.34 - 91	-37 30	- 3728 + 24	- 1721.07	. 3717.45
	\$	1.1448	1-1921	1.1192	1+1984	1.1778	1.1734	1.1038	1,1922
	110	0.4422	6-4911	(0.9344	0.3455	C. 9 C5a	2. 3×31	[.9464
40	٧	2.64648	2.70766	2. 81.743	2. 4481 9	3	3.16819	3.2 A7 31	1.10083
	*	-3744.21	-314 3.94	- 37 34 - 7 3		- 3731 - 46	- 3741 - 71	- 3727 - 24	-3717.43
	\$ /P	2.4544	C. 9660		C. 360 V	0		0.4414	936
75	v	1.17642	1.04473	1. 41247	1.44064	2.54833	2.11546	2.14252	2.20964
	-	- 1745.87	- 11 + + . + 0	- 37 4C . Si	- 3735- 90	- 5 - 31 - 54	- 372 7 - 1 7	- 3122-11	-1718-#s
		1.0936	1.1010	1.1063	1.1153	1.1235	1.1200	1.1354	
	• / •	3.4766	1.4/41					3. 14/1	3
100	*	1.37129	1, 37352	1. 42636	1.47590	1.52816	1.57.77	1.63506	1.00063
		- 3 - 4 - 1 5	- 37 - 34 2 2			1,1040	3121123	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
	1.0	3. 75.64	0.4725	C.9754	3.4/77	0.4796	C.4816	C . +# 16	C. 4851
150	v	9.00.004	0	0. 4476 1	6.47294	1.(046+	1.4+783	6.01734	1.11.61
	-	- 375 0.07		- 37 42.54		+1733-08		- 1776.52	-3714.45
	2.00	0. ****	0.4584	0.9128		0	C.+728	0.4754	2.4776
200	v	0	8. 06547	0.69362	0.720 40	5.74768	5.77466	9.00136	0.82737
		- 3782 - 33	-1747.78	- 37 43.22	- 37 38 - 07	- 3734 - 10	- 1729.51	- 3724.00	3150.35
	10	1.7449	1.0529	1.00.1	1.38/9	0.4544	6.9636	1.3840	0.6703
100	v	0.43747		0	5.4086I	0.47757			0.5-239
	-	-1755.27	-1750-+5	- 37 45 + 5 7		- 3736-17	- >7 *1 - + 3	- 1126.34	- 3721 . 94
	5	1.6229	1.0313	1.0343	1.0471	1.0545	1.66.67	1.0007	1.0755
	F / P	0.4075	2.4175	ç . 42t. I	5.4317	0.9403	1.4461	2.4911	3.9127
400	¥	0.29452	1.31101	0. 126.07	5.34221	0.35727	C. 271 91	3.30039	2.40344
		- 1754.40	-1751.27	- 17	- 374 3.25	- 2134 31	- 1733.41		- 3723.64
	i	0.0773	0.8400	2.46.1	2. 43.2.5		1.92 mt	6.4362	0.3417
100	•	0,/2510	6. 219a b	0, 2531 3		0.27897	\$14132	3. 10338	2.31920
		- 37 61 - 74	-17 -0.20	- 37 90 . 90	-3745-57	- 1740-52	- 37 12 - 44	-3730.10	- 1725. 17
	è	0.9913 G.8475	0.40+0	0.0783	1.0105	0.901a	0+4411	3. 91 95	0.9276
	•	0.17472	0.19140	1.2(3/4	3.21545	0.77686	0.23744	0.24890	0.25025
	H	-3765-34	-3759.42	- 37 \$3. 71	- 3 7 6 8 9	- 3762-01	- 37 37 - 52	- 37 32 - 30	- 3727.54
	2	0.4782 0.8178	C.4546	0.0003	1.3012	2.8876	41 40. I	0.4040	1.03#8
			0.114	A. 16875	4.174	S-1 9927	6.199.45	0.26462	3.317+*
	1	-1769, 19	-2742.02	- 37 14-47 8	- 3 7 . 0	- 374 7 . 17		3734.04	- 177 6. 64
	5	0.1050	0.9773	6.9070	6.9911	1. 30.0	1	1.0224	1.0300
	# / D	3.7884	0.0150	C.4315	C	4.4638	0.0771	0.1467	6.6440

Fluid Thermodynamic Properties for Light Petroleum Systems

Thermodynamic Properties of Carbon Dioxide (Continued)

P	т	100	120	140	160	180	200	220	240
		-17/1.00	- 17	1-1-1-0	2.15195	3- 161 56	0.17008	2.17472	3+1#720
	5	3.4435	5.3644		- 1/51.5/	- \$7 \$7 \$ 62	- 3761.66	-3730.20	-3730.77
		0.75+1	4.7657	0.4544	3.02.02	3.4453	3.4603	3.0142	1.1220
505		3.0945L	C. 18943	3.12634	4.110.10	2.1.1611			
	•	-3/78-43	- 37 \$6	- 1761.10	- 37 50. 03		- 17		1.16111
	5	3. 1424	0.4540	Q.4.8c	2.47.44	3. 1949	3.9946	1	
		9.7248	0.7600	0.1057	0.4078	3.427:		3.8587	3, 8717
1929	ž	0.37707	0.29245	0-10132	3.112.5	3.12150	6.12954	4.13113	
		- 3/75.31	- 17 74. 43	- 3766 . 77	-3759.47	-3752.71	- 37 * 6	- 1/+0.+0	- 3 7 3 4 . 13
	F /P	3. / 30 4	0.1345	0.7032	3.76/7	3.1645		3. 3435	1.12.10
1103	¥	9.50300	9. 10.19	3					
		-3/42-11	-17 /1 - 7 -	+ 17 26 . 4 1			5.11479	2110201	3.1.2945
	5	3.4119	0,4337	0.4493	6.4442	1. 37.14		-31 +2+ 5 3	-1715.45
	f / P	0-0176	0.1042	0.7409	2.7574	1.7411	0.4116	4 . 12 35	1.5318
1200	•	3.06313	0-09611	0.07740	3.0478.4	0-09505	6 16 M		
		- 1803.97	-3885.21	-3174.50	-3795.95	- 1/ 34 - 11	- 37 - 1 - 36	- 170.0	2.115
	2	4.4.41	0.7220	0.9400	0	1. 0061	2.9764	0.2444	
	f/P	9+6+13	3.0413	C.7184	J. 7484	3.7730	9.7454	3.4133	3.43.4
1303	*	4.33147	6+35571		3.27583	3.0 14-16	9.65 216		3 . 1 242 .
		+1411.39	-3541-15	- 17 74 - 72	-3782.43	- 37 5 1 . 2 1	- 375 3.80	- 1749. 35	- 1745.48
	2.0		3.4319	6.4152	0. /4 > 1	3.4593	0.4701	3. 7835	0. 40.00
				9.1011	0.7242	3./566	6.7904	3. 401 3	24.514
1403		0.02/10	3. 24 74 5	3. 39.96 6	Sttov	3.0 1027	0.00133	1.2.414	0.04341
				- 1/ 51 - 62	- 377 2. 14	* 17: * , 17		- \$ / * * . 1 5	- 1742 - 11
	F / F	3	3.4.1+9	0.0797	3.7134	3. 3.47	0	3. 1760	
1522		1.522.5							
		- 1 - + 1 + 2 1	- 100 1.10			1.22465		2124228	
	•	9.4034	3 . 4457	4		1.14.2		* 1 / 2 1 + 4 1	
	#10	2.3514	0.0113	3.0	5+0+23	4. 14.34	3.756	3.7741	5. 749.
1613	v	3.02168	0.03994	3. 344.22	3.394.5	6.26244	6.06914	9.375.0	
		- 311 - 5 6 ()	- 2123.27	- 37 74 . 4 7	- 31 42 . 2 3	-3113.22	- 17-1.53		+3749+41
	1	3.4144	0	2 a 45 2 M	J	3. 1.100	0.4514	3. 1635	3
		3.4273	0.5410	2.6353	3.0711	3.7472	3.8350	3.7024	2. ****
1120	*	3-95101	8.43139	2.00143	0.44477	8-0-203	0.00150	3. 1. 444	A
	-	- \$947.31	- 1415.22	- 11 16.17	-3741.74		-3779.12	- 17	
		3.4131	0.0013	2.04.1	3.1155	3 3 . 2	2. 1465	3. 13.14	7. 141
		313341	3.70/4	2.0(5)	3.0-74	>. + > + 5	0.1217	2. /	1. 11.
1403		3+3,301	4.32787	4.3310 3	3.2.5.2	2+2>234	Outstary.	3.36425	3 ***
		3.4771	- 1921.10	- 14 - 5 - 4 2	- 37 - 17 - 2 -	- 17 7 - 1 4	- 1710.110	- 3/54.20	- 1 - 2 - 4 - 4
	* / P	3	3.447.	3.5.74	0.0421	3, 37, 7	0.1074	2	
1.123	•	9.32379	4.47.15						
		- 3 1 47 . 74	-10.00.00			3.244.97		3.4.475	
	\$	3. 10. 1	3. 9+1*	2.+1.1		1.445.7			
		3 ·	9.5252	0	3	3. ~ 61 5	C	2 . / 7	c.,
2102	•	0. 11010	0. 32 3+2	3. 3517#	1.41.473		9 53.55	3.0.503	
	**	-304(.01	+ 3H 3L + J 5	- 14, 75		- 17-11.77	-1773-02	- 12 5 1	• بهجر ،
	2.	3.4031	0.444	3.4714	3. 4+5 4	3	34 + 3 6	2. 10 30	
		0	\$.5174	6.5641		2.4477	G.0417	a. Rice	1. *****
10.5.1		0.31 444	0.014/5	3.02192	3.02432	0.727.2	car June	3.334/5	3 7
	:		- 1441.37	- 14, 4, 74	- 1013-03	- 14-2-24	- 37 43 . * 1	+1142.40	
	1.00	0			******	2.45.4	2. 4 36 3	6. 10 . 1	
		*****		· . • · • I	5	3.43.44		3 1	
•03.	2	9.01767	0.01053	2.00454	3.323.41	0.02244	3.62444	4.324.4	
	•	4.11.4	9.1973	2.8144	- 3023-12		- 34 31 - 55	- 27 84 - 14	
	# 24	3.29.2	9.1391	2.1444	3.4.98	9.4724	8.51.17	2. 45/0	3. 34/9

160

.

Flad Thermodynamic Properties of Carbon Dioxide

•

Thermodynamic Properties of Carbon Dioxide (Continued)

۲	T	100	120	140	160	190	200	220	240
		3.01711	3.01780	1-0(457	5-51988	0.32551	6	A.C. 131	
2000	<u> </u>	-3855.02	- 3-45-45	- 10 34	- 31126.47		- 301 1 . 00	- 1747.15	
	ŝ	0.7730	C. 7896	2	2.0213	2.9105		2 . 111 7	
	1 / P	3	0. 16 40	5.3276		5 . 4 3 75	1.4738	6.9141	. 443
	v	9.01676	C. 01728	3.01745	6.0135 W	0.01936	Carls No. 1	0.02118	2.02221
		-3934.5.	- 21 45 +67	· 3+ 3+ . 71	. 1+27.10	- 38 28 - 72	3464.04		- 1741-07
		2.1071		0. /987	2.01.14	3. 4274	5	0.4549	C
	#7P	2.2521	9.2911	0.1304	3.1710	0.4107	G	5.4874	6. 57 36
****	v	0.04634	6	9.01740	2-01797	3+01959	0.01424	4.0.000	5.22082
	*	-1854.71	- 39 25.41	- 34 36 . 74	~ 1020.17	+ 3414.53	- 3810.90	- 1802 - 16	- 1793.75
		7.7630	3. 1776	C.7417	6.4073	9. 1209	2.0341	3.5438	5. +5.91
	610	3.2.00	0.7016	0.3200	5,3580	3. 16 75	C 31.7	3. 4724	
4490	v	3.01612	5.016.54	0.01700	6.01709	0.51855	C+11814	N.21926	0.11985
		-3833.23		- 1/ 1/ . 4 8	- 30 20.03	- 341 4.64	- 38 1 - 21	+ 100 L- 25	- 17 ++ + #0
		9.7574	5.7743	0.7685	0.3322	9.4154	0.0281	0.0404	2.05.22
	1/8	9.7405	9-2173	0.1149	0.3530	2- 1911	2.4201	2.46.1	0.0016

P	۲	260	280	300	320	340	360	380	400
	v	174.79503	180.33434	184.73782	18+.35120	1-4.20630	175.71047	264.73317	203.46004
		-3712.00	-3768.10	-3763.90	+ 365!.¥8	- 3094. 31	· Jor9.09	- 3664.38	-3686.24
	•	1.3438	6.3501	1.3554	1.3418	1+3671	1.3733	1.3741	1.3844
		1.3039	1.0001	1.0027	1.00.00	1.0041	1.0024	1.0003	1.0336
10		17.51903		10.00337	14.30254	19.47057	14.46074	20.45197	20,94208
		-3712.73	- 3708-23	- 37 53.64	-1699.39	- 1694.46	- 3679.74	-3685.20	-3646.33
		1.2-00	1.2460	1.2520	1.2579	1.2637	1.2694	1.3750	1.2007
	# / P	3.9442	0.9495	5.0400	2.***7	1.0945	C.344+	2. 244 2	C+ 4097
			12.24915	12.54148	12.71768	13.24407	13.74169		14.24548
	÷	-3712.00	- 1108.29	- 37 03. 74	- 10 - 2 . 3 4	- 36 - 4 - 52	- 357	-3673-13	-3680.38
		1.2225	1.2286	1.2348	1.2435	1.2463	1. 1975	1	1.20 35
	1 Z M	0.04/*	0.9585	c	0 + + + 36	0.0789	0.4000	0.0001	3. 4443
		11.07035	2.00370	12. 10 096	12105155	12.37687	13.30337	1.3.0.103.0	13.95711
	÷.	- 3712.01		- 3703.75	- 3644.15	- 30 30,52	- 31 29.45	+ 16 # 5 . 1 1	-31
		1.2210	1.2477	1.2337	1. 23 85	1.2453	1.2513	1.2567	1.2623
	1.00	0.9481	6.4.92	0.4484	6.44.39	2.9441	1.0002	0.0492	0.9091
		a. 9×57a	1.19242	7. 10432	7.5041.6	7.79156	1.41828		9.35911
••	÷.	-1712.90	. 3758.44	- 37 03.68	-1649.28		- 30 - 4. 01	-3011.24	- 1406.40
		1.1984	1.2045	1.2105	1.21.84	1. 22.77	1.5274	1	1.2291
	1.10	3 . 1.16 7	C.9970	0.0473	0.4977	0. 4970	C.9970	3.2425	0.9984
••		1. 484.28	3. 505(8	3. 11 18.9	3.79375	1.48145	1.90200		4.17766
				- 17 04 . 2 1	-3049.00	. 3099.94	- 34 91 - 24	- 16 8 3 - 31	-1-00.74
		1.1007	1.1729	1.1784		1.1906	1.1984	1.2021	1. 2076
	1/1	0.9413	0.9939	0.9945	0.4948	0.9954	0	0.4-53	0.9551
				7.44434	2.5158.5	2.56176	2.1.4747	2.71437	2.17082
	Ľ	. 171	1709.15		- 16 49. 61	- 3945.24	- 35 4	-1015.74	- 3005 - 39
	7		1.1542	4.1673	1.1002	1. (78)	1.170	1.1015	1.1421
		0.4448	G. 9407	0.1410	£ . 9923	0.4424	C	0.9940	6.0945
				1.41155	1.00175	1.93107	1.48153	2.93131	2.08117
100			- 1708-51	1204-89	1700.13	- 3495.54	- 1242	- 35 50	- 10.01.475
	2		1.1404	1.1470	1.1330	1.1595	1.1040	1.176.1	1.1759
	1.00	D.98N4	0.4876	0.0087	0.98.26	0.9905	0.9913	6.9.21	0.4426
		1.1	1.10013	1. 21465	1.20792	1.20104	1.31974	1.34692	1.18210
1.30	2		- 1710.22		-3/6.4.47	- 10'0. 14	- 31.91 . 30	- 30	- 31
	7		1.1219	1.1281	1.111.	1.1.35	1.2458	8.1516	1.1572
		B. 4797	0.9815	C . 78 3 1	0.9.45	0.0***	C + 4 # FC	8.9434	0.4490
								_	

162 Fluid Thermodynamic Properties for Light Petroleum Systems

Thermodynamic Properties of Carbon Dioxide (Continued)

P	т	260	290	300	320	340	360	380	400
200									
	, i	-1719-62	-1710.95	- 1701 - 24	-1/31.51	0.43665	- 1001 00	1.00754	1.01292
	\$	1.1919	1.1082	3	1.1.208	1.1265	1.1121	- 100/013	- 10 4 4 . 2 4
	* / *	0.9730	0.9754	0.5775	3	3. 9911	0.4427	9. 10.1	0. 1454
300	ž	3. 560 40	3.57878	0. 19651	3.01413	9.433 51	9.64902	2.94632	
	3	1 . 2921	1.04#3	1.0946	1,1210	1.1271	- 10 1110	- 30 - 1 - 1 - 1 - 1 - 1	
	* / P	3.1597	0.9632	0.4604	0. +6. 9.3	4.9714	3,9742	2. 775 1	3.9742
400	ž	6.41460	0.42844	0. 4421 3	6.43559	0.46915	7.45264	3.44576	3.50444
	ě.	1.0475	- 1/1 3.04		- 37 4 4 . 1 9	- 194 3. 19	- 36 -4 - 26	- 3884.31	-3640.34
	F / P	3. 1465	0.451 1	0.4555		0.1027	0.9658	0.0015	2.9711
900	v	9-32441	4.13424	9. 10952	3.10 37	3.37170	5.38242	0+193+5	3 0420
	-	- 17 20 - 30	- 1715.19	- 17 14. 40	- 370 3. + 2	- 1700.43	- 31 45 . 4 2	- 19 93.91	-1045.38
		0.3338	0.0344	0.9447	1.0755	3.9537	0.4575	3-3024	1.5998
	v	3.26920	0.27912	0.20760	0.29730	9.10070	9.31607	0.125/8	4.11442
		-1722-21	- 7119 - 31	- 37 11 - 82	- 3700.75	- 1701 . 67	- 10 95 . 60	- 1691.51	-1040.42
	5	1.04.60	6.0529	1.0340	1.4601	1.0724	1.0760	1.0447	1.0007
		9.4208	0.9274	0.9340	2.4197	3.9447	3.9471	6. 1334	9.9571
100	¥	3.23648	0.23914	3. 3. 37 3	0.45213	0.20000	0.20650	2.27663	3.70000
	1	-3721.67	- 1718.45	-3713.26	-1108.08	-1/02.73	- 3627 . 77	- 1092. 12	-1047.47
	+ , +	0,4001	0.9163	0.0215	4.4321	0.9359	0.9412	0.3460	0. 950 3
820	v	4.19514	0.10101	0.21071	0.21525	4.23566	0.23296		2.24720
	1	- 17 25. 36	-1120.01	- 37 14 - 70	- 373 + 3	-3694-19	- 31 78 . 96	- 36 4 6. 7 4	- Je 44.52
		1.5296	1.0358	1.0438	1.0500	1.3571	1.036		1.0754
					014256		0.4733	J. (ja /	0.3410
499			0.17400	3.10104	4.1.4.4.1	0.1.475.8	0.20531	3.21144	0.21427
	1	1.0.243	1.02.19	1.4.71		1	1.05.12	1.04.83	- 10
	***	3.4833	3.8437	0.4029	6	0.9147			0374
1000		0.15131	0.15402	0.10414	3.17324	0.17711	2.24321	4.14951	0.145.1
	-	- 17 24 . 45	- 37 2 1. 14	- 37 17.64	- 3712.16	- 1/04 - /1	- 17 G1 - JA	- 10 +5 - 37	-3890.02
	6.00	9.4717	0.0421	0.0434	0.4010	0.4103	8.9177	3.4244	0.0105
1100	•	0.13540	0.14170	8. 14 774	3.15374	0.19490	0.10517	0.17072	0.17614
		- 17 10 - 55	- 3724.76	- 37 19.12	- 3 7 4 3 + 5 3	- 3708.01	- 37 6 2 + 5 3	-3691.34	-1041.67
		1,20/4	0.4714	0.0251	1.0383	1.0342	6.9101	2.4174	0.9241
1230	•	0-12212	9-12512	4.13167	1.11914			0.13816	
	•	- \$7 32 . 32	+ 3726.43	+ \$7 26 . At	- 3714.71	- 3/09.29	- 370 3 . 7 3	- 36 7 1. 20	- 1692.72
		1.0041	1.0151	1.0137	1.3271	1.0341	1.0.64	1.0476	1.0540
	• /•	3.8476	4.8611	0.4712	0.4840	0.4434	0.4036	9.9108	9. 41 14
1 3 3 0	•	0.11101	0.11647	9.15515	0.12734	0.13:30	0.13749	3.14237	0.14715
		- 17 14 - 1 1	- 1/24.04	- 37 23 . 11	- 1716.10	- 1710.57	- 1104 . 92	- 10 4 4 . 15	-1693.77
		0.4360	0.6106		0.4/13		0.0457	4.4016	0.911
1400	•	0	0.10684	3.11208	0.1170 4	3.12194	3.12.00	3.13127	2.1357*
	7	- 37 35 - 31	-3724.64		- 3717.48	- 1/11.00	- 3756 - 12	- 3700. ++	- 16.44. 4
	2	0.1247	0.401	2.2004	3+4057	0.47:9	0.4440	3.4.72	0.4015
1500	•	9.42329	0	0. 10 34 2	0.100.0	0.11282	0.11731	0.121.99	2.12527
		+ 17 17 + 72	- 37 55 . 12	- 17 25 - 1 2	-3714.37	- 17 1 1+ 14	- 1707 . 31	- 1/61 - 15	-1695. **
		0.4.44	0.41.1	0.0442	1.0130	1.3204	1.0276	1.0345	1.0412
1.000		D. 440.4	0.0911	4.0.40	1.13344	A. 1044	0.10914	0.1117	1.11/10
		-1/34.53	- 37 32 . 94	- 37 24.62	- 1/ 20. 12	-3114.43	· #/ CA . 55	-1732.84	- 10 - 10 - 00
	1	0. +137	0.9924	1.0040	1.0764	1.3183	1.4/30	1.0306	1.017*
	* * *	4.4027	0.0202	0.4354	0.00.00	5.4625	6.4/39	0.4n4J	0.0130

BIBLIOGRAFIA

- th	e historical origins of the VDW equation M.J.Klein	
	Physica 73 (1974) 28-47	(I)
- Imp	provement of the VDW equation of state G.Soave	
_	Chemical Eng. Science Vol.39 No.2 1984	(2)
	modified VDW type equation of state G. Schmidt & H. Wenzel Chemical Engineering Science Vol. 35 (1503-1512)	(3)
— Imp	provement of the VDW equation of state G. Soave Chemical Engineering Science Vol. 3 No. 2 (1984)	(4)
- Equ Rec	Lation of state from VDW theory : The legacy of (dlich	Otto
	J. M. Prausnitz Fluid phase equilibria , 24 (1985) 63-76	(5)
- A	comparison of Equations of State K. K. Shah & G. Thodos Ind. and Engineering Chemistry Vol. 27 No. 3 Mar. 1965	(6)
- Ci	ubic Equations of State J. J. Martin	(7)
	Ind, and Engineering Chemistry Vol. 59 No. 12 Dic. 1967	
- E	quation of State for non-attracting rigid spæres Carnahan N. F. & K.E. Starling Journal Chem. Phys. 51 (1969) 635	(11)
- 0; fi	ptimal temperature - dependent "a" and "b" parame or the Redlich - Kwong equation of State. R. W. Morris & E. A. Turek ACS National Meeting , Miami (1985)	ters (10)
- A	new cubic equation of State for fluids and fluids Patel N. C. & Teja A. S. Chem. Eng. Sci. No. 37 , 463 (1982)	i mixtures (8)
- E E	quilibrium cosntants from a modified Redlich-Kwong quation of State G. Soave Chem. Eng. Science No. 27 , 1197 (1972)	(10)
- A	new two constant equation of State Peng D. Y. & Robinson D. B. Ind. Eng. Chem. fundamentals No. 15 (1) (1976)	(12)

 Rigorous and simplified procedures for determining the pure component parameters in Redlich-Kwong-Snave EOS. G. Soave (13) Chem. Eng. Science No. 35, 1725 (1980) 	
- Simplest Equation of State for Vapor-Liquid equilibrium calculation a modification of the VDW equation. Yoshunori Adachi & C. Lu (14) AiChE yournal Vol. 30 No. 6 (1984)	
- Correlation and prediction of VLE and LLE by empirical EOS Grazyna Kolasinska (16) Fluid Phase Enuilibria , No.27 289-308 (1986)	
- Evaluation of Cubic Equation of State Yoshinori Adachi & Hidezumi Sugie (15) Journal of Chemical Eng. of Japan Vol.17 No6 (1984)	
- Phase Equilibria in Chemical Enginering Stanley M. Walas (16) Butterworth publishers (1985)	
- The representation to highly Non-ideal phase using computer graphics (17) G.N. Charos , P. Clancy , E. Gubbins Chemical Engineering Education Spring 1986	
- The use of computer graphics to teach thermodynamic phase diagrams (17) Chandrashekhar , D. Naik, P. Clancy Chemical Engineering Education Spring 1985	
- Recherches experimentales sur quelques proprietes thormiques des gaz (18) Cardoso A. Bruno J. Chim. Phys. No. 20 (347-351) (1973)	
- On The flexibility and limitations of Cubic EOS Vera J. H., Huron M. J. & Vidal J. (19) Chemical Engineering Communication Vol. 26 , 311 (1984)	
- An improved Peng-Robinson EOS for pure compounds and mixtures R. Strvjek & J.H. Vera (13) Canadian Journal of Chemical Eng. Vol 64 (1986)	
- The development of the Peng-Rubinson Equation and its application to phase equilibrium in a system containing methanol D. Robinson , D. Y. Peng & S. Y. Chung (12) Fluid Phase Equilibria No. 24 (25-41) (1985)	

- Evaluación de las diversas modificaciónes a la ecu-	acion de
F. Barnes y J. Flores XVI convencion nacional IMIQ (1976) Nov-Dic	(11)
- Prediccion de las propiedades termodinamicas de ga F. Barnes y J. Flores Rev. INIO (Energeticos) Junio 1976	ses <mark>ideales</mark> (2)
 From Redlich-Kwong to the present C. Tsonopoulos & J. L. Heidman Fluid Phase Equilibria No. 24 , 1-23 (1985) 	(15)
- Computer Aider thermodynamic of gases and theoria models and programs Benedik P. & Olti F. Ed. Walley (1985)	of (18)
- ENGINEERING THERMODYAMICS R. E. Balzhiser & R. Samuels Prentice - Hall (cap. III) (1983)	(5)
- INGENIERIA TERMODINAMICA W. Reynolds & H. Perkins Mc. Graw Hill (cap. IV (1979)	(5)
 FUNDAMENTALS OF STATISTICAL THERMODYNAMICS Scinitag van Wylen Ed. Wiley 	(19)
- PROBABILITY AND STATISTICS FOR ENGINEERS I. Miller & J. Freund Ed. Frentice Hall	(17)
 INTRODUCCION A LA PROBABILIDAD Y A LA ESTADISTICA Mendennall f. Ed. Wadsworth International Iberoamericana 	(20)
- PROBABILIDAD Y ESTADISTICA (Aplicaciones y metodo S. C . Canavos Ed. Mc Graw Hill	15) (19)
- DIFFERENTIAL GEOMETRY Guggenheimer H. W. Ed. Mc. Graw Hill	(21)
- SURVEYING PROBLEMS AND SULUTIONS D. R. Foote & J. Kelly Ec. Mc Graw Hill (cap XI)	(22)