UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

ej =

FACULTAD DE CIENCIAS

ESPECTROSCOPIA POR CAPTURA ELECTRONICA COMO METODO DE DIAGNOSTICO DE PLASMAS ASTROFISICOS Y DE LABORATORIO

TESIS CON FALLA DE ORIGEN

TESIS PROFESIONAL QUE PARA OBTENER EL CRADO DE: F | S | C O PRESENTA

MANUEL ALVAREZ MADRIGAL

MEXICO DF. 1989

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

TITULO DE LA TESIS

ESPECTROSCOPIA POR CAPTURA ELECTRONICA COMO METODO DE DIAGNOSTICO DE PLASMAS ASTROFISICOS Y DE LABORATORIO

RESUMEN:

En la presente tesis, se hace una revisión de los mecanismos de emisión más fundamentales que tienen lugar en los Plasmas. Así como de sus posibles aplicaciones al diagnóstico de Plasmas, en los medios astrofísicos (principalmente) y de laboratorio.

Además de ésta parte de revisión, se pretende emplear a la emisión fotónica que se produce cuando un ion (+), captura a un electrón (radiación libre-ligada), para estructurar un método que nos permita diagnosticar las principales características de un Plasma, a saber: Temperatura, densidad y composición (abundancia de elementos en su interior).

Como parte original del Trabajo se hace una simulación numérica de la interacción de los Rayos Cósmicos Solares (SCR), con la atmósfera solar (Corona), durante un proceso de aceleración de los SCR. Esto con el fin de examinar la posibilidad de emplear a la captura electrónica que se produce en éste escenario, como herramienta para estudiar el origen de los SCR.

	•••••	
	INDICE	n. An an an an an an an ann an tharaige an tha agus
lin a shasar shi	and a second	and a second
DOCC	1010	
PREF	ACIU	· · · · · · · · · · · · · · · · · · ·
CAPI	TULO I	
	Procesos de Emisión	
	I.a Transiciones entre niveles discretos	de energia (excitación)4
	L.b. Transiciones ligado-libre (Bound-Free) id	onización 9
	I.b.a Coeficientes de fotoionización de	l átomo de
		hidrógeno 10
	I.b.b Fotoionización de átomos hidrogen	oides13
	I.b.c Fotoionización para átomos o iones	s no
	hid	rogenoides14
	I.c Transiciones libre-ligado : Recombinación	n 15
	I.d Transiciones libre-libre (Free-Free),	Absorción y
		emisión18

CAPITULO II
Emisión de un Plasma en presencia de partículas rápidas
It a influencia de las contíguios ménidos en las
in a millencia de las particulas rapidas en las
emisiones por transiciones : Discretas (excitación)
y ligado-libre (ionización)24
II.a.1 Ionización y excitación por colisión con
partículas rápidas24
II.a.2 Electrones secundarios y su influencia26
II.a.3 Tasa de ionización y excitación producidos
por electrones termales29
II.b Transiciones libre-ligado modificadas (captura
electrónica)32
II.b.1 Captura electrónica por los iones termales
del Plasma (recombinación)33
II.b.2 Recombinación dielectrónica38

CAPITULO III

a provinsi and and a state of the second state

Emisión fotónica por captura electrónica de particula	s
rápidas cargadas durante su proceso de aceleración.	
Introducción	41
III.a Secciones eficaces de intercambio de carga para	
los proyectiles	43
III.b Delimitación de las condiciones para el	
establecimiento del intercambio de carga	50
III.c Evaluación de la emisión fotónica por captura	
electrónica de los Rayos Cósmicos Solares	
durante su aceleración	56
III.c.1 Análisis del método y sus prespectivas	61
III.c.2 Conclusiones	64

APENDICE I Elementos de Física de Plasmas APENDICE II Espectroscopía y física atómica APENDICE III Termodinámica APENDICE IV Constantes físicas y unidades APENDICE V Verificaciones matemáticas REFERENCIAS

PREFACIO

En esta Tesis, se realiza un trabajo sobre el panorama general de las emisiones fotónicas y su posible estructuración para su estudio, además se plantea un nuevo punto de vista para hacer espectroscopía, la *Espectroscopía de la Emisión por Captura Electrónica*.

En los últimos años la Física Solar, la Astronomía, la Física de Plasmas y muchas otras ciencias afines, han alcanzado un elevado nivel de desarrollo, debido a los avances científicos y tecnológicos que se han producido en la actualidad. Una parte importante y común a todas estas disciplinas es la observación a distancia de procesos que se llevan a cabo en medio ambientes muy lejanos o inaccesibles (de manera directa) a los instrumentos de medición.

La información que se extrae a partir de estas observaciones distantes, depende del método e infraestructura teórica para deconvolucionar los datos obtenidos hasta el nivel mismo de la fuente, así como de la cantidad física a medir, puesto que existen límites (tanto físicos como tecnológicos) para la obtención de información a partir de un parámetro físico y mediante un método dado.

Sin embargo cuando se desean cualidades demasiado específicas y que tienen poco que ver con la composición del material (por ejemplo la aceleración no termal de las partículas en un plasma) éste método no resulta útil. Para estas tareas es necesario cambiar la técnica de análisis de las observaciones del objeto de estudio (por ejemplo se pueden analizar sus ondas de radio, etc.).

La idea fundamental de esta breve exposición sobre el problema del análisis de la radiación para la obtención de información acerca de los cuerpos distantes o inaccesibles es que, aunque tenemos poderosas técnicas de análisis, sería provechoso tener a mano una más, que pudiera servir tanto de prueba indirecta para las demás técnicas, como para obtener información que, hasta ahora, es muy complicado o imposible de obtener en muchos casos (aún contando con mediciones indirectas).

Las técnicas de observación se pueden clasificar en base a lo que observan y la información que obtienen, por ejemplo, la Espectroscopia analiza fotones y obtiene información de las propiedades de la constitución del objeto del que provienen, la Radiotelescopia analiza los fotones en radio frecuencias y obtiene información sobre las características electromagnéticas del medio y del movimiento de partículas, los detectores de partículas observan la radiación de carácter corpuscular, y obtiene información acerca de la estructura de los cuerpos que la emiten y de las partículas mismas.

Estas técnicas de análisis se pueden agrupar en: técnicas que observan fotones y técnicas que observan particulas.

La presente Tesis pretende contribuir a las técnicas que

observan fotones, mediante el estudio de lo que hemos llamado Emisión Fotónica por Captura Electrónica.

En la espectroscopía convencional, el agente excitador del objeto es un campo de fotones, el cual excita al material que los absorbe y después al reemitirlos envia información respecto de las condiciones físicas reinantes, así como de su estructura atómica y molecular. Este es un método exitoso, sobre todo en cuerpos gaseosos (no así en objetos sólidos). Sin embargo, sigue siendo muy "cómodo" analizar fotones, pero es deseable poder extender la clase de cuerpos que se puedan analizar, es decir, conocer alguna otra forma de espectroscopía que nos permita quitar esta limitante. Esta es la finalidad del presente estudio.

En el proceso de la emisión de fotones por captura electrónica el agente excitador son los iones (y/o átomos) que, al colisionar con los átomos (iones y/o electrones) del medio , atrapan a algunos electrones, emitiendo en ese proceso un fotón, ya que al capturar electrones, éstos (los electrones) pasan de un estado libre a un estado ligado (respecto del ion y/o átomo que los captura), teniendose un decremento de energía, que se compensa con la emisión de un fotón, de parte del ion (y/o átomo) receptor.

Cuando tenemos un gran número de iones (incluso átomos o electrones) que atraviesan un medio (ya sean de origen interno o externo), pueden producir una gran cantidad.⁷de fotones a causa de la captura electrónica, dando así "material" para el análisis del que podemos extraer información de las condiciones físicas del objeto tales como: densidad, composición, temperatura, etc.

En esta Tesis se hace una presentación del análisis de este proceso como un método alternativo para analizar observaciones, por lo cual es necesario mostrar primero un panorama general de los mecanismos de emisión fotónica de un cuerpo (interacción de la radiación con la materia), suponiendo que contiene sólo partículas termales en su interior, y a esto dedicaremos todo el primer capítulo. Posteriormente, en el capítulo dos, se presentan las principales emisiones fotónicas de un plasma, modificadas por la presencia de partículas rápidas dentro de él.

Es importante mencionar que, aunque el método se puede aplicar a sólidos y a gases, en el presente trabajo nos avocaremos a un análisis detallado de su aplicación en los plasmas astrofísicos, que es donde puede tener una mayor utilidad, ya que éstos reunen las características ideales para la aplicación de este método en el análisis de sus emisiones.

Debido a que la presentación de los temas presupone un conocimiento básico de Física de Plasmas, Espectroscopía y Termodinámica, se elaboraron apéndices sobre estos temas a los que se puede remitir el lector. De la misma forma, las verificaciones matemáticas y los valores numéricos de las constantes físicas que intervienen en los cálculos, están dados en apéndices, con lo que se pretende dar la mayor coherencia posible y el menor volumen a esta Tesis.

CAPITULO 1

PROCESOS DE EMISION Y ABSORCION

DE RADIACION

Para obtener información acerca de una fuente de emisión a partir del espectro fotónico que proviene de ella, es necesario conocer los diferentes mecanismos que pudieron dar origen a un espectro semejante, así como las propiedades del medio en que se propaga hasta el punto de observación.

Cuando se conocen tales mecanismos, es posible inferir las condiciones y los procesos físicos que se llevan a cabo en el lugar en que se origina la emisión de los fotones.

Es por esto que se dedica un capítulo para revisar los mecanismos de emisión. En general, todos los mecanismos en que la materia es capaz de producir fotones quedan englobados en lo que se llama Interacciones de la Radiación con la Materia.

La emisión de radiación de un átomo excitado, al pasar de una energía E_m a un estado de energía $E_n < E_m$, está dada por un fotón de energía $h\nu_{mn}$ tal que (véase Apéndice II)

$E_m - E_n = h\nu_{mn}$ I.1

La absorción de un fotón de energía $h\nu_{nm}$, que es el caso contrario, implica el paso de un estado de energía E_n a uno de energía E_m . A las diferentes transiciones posibles entre los estados ligados de un átomo (o de un ion) corresponde una serie discreta de emisiones a una energía determinada (proceso ligado-ligado).

Análogamente, un electrón en un nivel libre, que no está cuantizado, pasa a un nivel ligado, (cuantizado) mediante la emisión de radiación, dando origen a un espectro de emisión para el proceso libre-ligado (Free-Bound), en este caso, las emisiones generalmente están en el contínuo pero en ocasiones pueden ser discretas.

El proceso inverso ligado-libre corresponde a la ionización por absorción de radiación (Bound-Free), también conocida como fotolonización.

Las transiciones entre niveles libres, no cuantizados, corresponden a la emisión o absorción de un contínuo, a éstas se les llama transiciones libre-libre (Free-Free). Todos estos tipos de transiciones dan origen a un espectro total de emisión de una determinada fuente de radiación. Luego entonces, si podemos definir cuales son los diferentes parámetros físicos de que depende la intensidad, duración, ancho y ubicación de una línea o un espectro continuo, podremos utilizar estas emisiones para conocer los procesos y la naturaleza de la fuente.

I.a TRANSICIONES ENTRE NIVELES DISCRETOS DE ENERGIA (BOUND-BOUND) EXCITACION

Sean dos niveles en un átomo, n y m, con densidad de población Nn y Na, y energías En y En (Em > En). A la probabilidad finita de que el átomo pase espontáneamente del estado excitado m al estado n, en un tiempo dt (mediante la emisión de un cuanto humn) se le llama Probabilidad de Emisión Espontánea, y se le denota como Amn.

El número de transiciones de \blacksquare a n por emisión espontánea por unidad de tiempo y volumen será :

Estas emisiones espontáneas se dan dentro de un ángulo sólido total de 4π , es decir, en cualquier dirección.

El valor numérico de Amn dependerá del tipo de transición m n. Si ésta es una transición permitida por las reglas de selección el valor de Amn será muy pequeño, de hecho, mucho menor que la unidad, y en el caso de que la transición sea prohibida (véase Apéndice II) el coeficiente será aún más pequeño.

Suponiendo que mantenemos a un átomo excitado en el estado n dentro de un campo de radiación isotrópico y homogéneo que se rige por una distribución de Planck, el átomo podría absorber radiación de la frecuencia ν_{nm} y pasar del estado de energía **E**n al **E**m.

El número de transiciones por cm³ y por segundo debidas a la absorción de radiación, se puede expresar de las siguientes formas, en las que el campo de radiación está definido por su densidad de energía en la frecuencia correspondiente U ν o por su intensidad I ν .

Nn m = Nn Bnm Uvnm I.3

Nn m = Nn B'nm Ivnm

donde Bnm es la probabilidad de absorción de Einstein y B'nm es la probabilidad de absorción de Mille. Estas dos probabilidades están ligadas por una relación simple en el caso de equilibrio termodinámico, puesto que en este caso $cU\nu = 4\pi I\nu$, donde c es la velocidad de la Luz. Para el proceso de desexcitación tenemos que el número de procesos por unidad de volumen y por unidad de tiempo es, en este caso:

1.2

1.4

Estos coeficientes son característicos del átomo, es decir, son independientes del estado de equilibrio en que se mueve el átomo. Entonces basta con deducir las relaciones para átomos (o iones) en un medio en equilibrio termodinámico el cual contiene funciones de distribución en las que se permite la microrreversibilidad de los procesos. (véase Apéndice III)

Entonces, el número total de transiciones del estado m al estado n se puede escribir como:

$$N^{\rm H}$$
 m n + $N^{\rm h}$ m n = N n m I.7

ya que por microrreversibilidad $N_n = N_n$; donde

 $N^{5} = n = \text{transiciones espontáneas (I.2)}$ $N^{1} = n = \text{transiciones inducidas (I.5, I.6)}$

que, expresado en probabilidades de Einstein es

donde Uv se obtiene de la ecuación de Planck

(véase Apéndice III)

$$U\nu = \frac{N_{m} A_{mn}}{N_{n} B_{nm} - N_{m} B_{mn}} = \frac{\frac{A_{mn}}{B_{mn}}}{\frac{N_{n} B_{nm}}{N_{m} B_{mn}} - 1}$$
 I.9

como N_n/N_m está dada por la ley de Boltzman (véase Apéndice III), llegamos a que

I.10

I.8

$$U\nu = \frac{8\pi\hbar\nu^3}{c^3} \cdot \frac{1}{e^{h\nu/kT} - 1} = \frac{A_{nn}}{B_{nn}} \cdot \frac{1}{\frac{g_n B_{nn}}{g_m B_{nn}}} (e^{h\nu/kT} - 1)$$

donde $g_n y g_m$ son los pesos estadísticos de los niveles n y m respectivamente ($g_n = 2n^2$).

Como los coeficientes Amn, Bmn y Bnm son independientes de

la temperatura entonces:

У

$$A_{mn} = (8\pi h\nu^3 B_{mn})/c^3$$
 I.11

gn Bnm = gm Bmn I.12

y de las relaciones que existen con las probabilidades de Mille, tenemos que *[51]*

$$A_{\rm Man} = 2h\nu^3 \mathbf{B'}_{\rm Min}/c^2 \qquad \qquad \mathbf{I}_{,13}$$

$$gn B'nm = gn B'mn$$
 I.14

La absorción y la emisión inducida correspondiente a una frecuencia determinada se da en la misma dirección de la radiación incidente.

Si el plasma es ópticamente delgado, es decir, si todos los fotones emitidos en el medio no se reabsorben, la energía emitida en una línea de emisión será:

$E_{mn} = N_m A_{mn} h \nu_{nm}$ I.15

pero si la radiación de intensidad I ν atraviesa un elemento de plasma de sección recta unitaria (un centimetro cuadrado) y de longitud ds, sufre una disminución de la intensidad dI ν , que depende de un coeficiente de opacidad k ν , que caracteriza a la absorción de un medio (por unidad de volumen) a una cierta frecuencia ν , entonces la intensidad de la línea está dada por la ecuación de transferencia de radiación

$$\frac{\mathrm{d}\mathbf{I}\mathbf{v}}{\mathrm{d}\mathbf{s}} = -\mathbf{k}\mathbf{v} \ \mathbf{I}\mathbf{v} \ \mathrm{d}\mathbf{v} \qquad \qquad \mathbf{I}.\mathbf{16}$$

Una línea de emisión (en una frecuencia central ν_{nm}) en realidad no es infinitamente delgada, ya que existe un cierto intervalo alrededor de la frecuencia ν_{nm} , y el valor de k ν es aproximadamente el mismo (sólo a l^aaproximación) para todas las frecuencias cercanas a la frecuencia central, por lo que puede representar a la absorción que existe en toda la línea. Al integrar todos los efectos de absorción alrededor de las líneas, tenemos que:

$$\frac{\mathrm{d}\mathbf{I}\boldsymbol{\nu}}{\mathrm{d}\mathbf{s}} = -\mathbf{I}\boldsymbol{\nu} \int \mathbf{k}\boldsymbol{\nu} \, \mathrm{d}\boldsymbol{\nu}$$

6

1.17

Si suponemos que $I\nu$ se mantiene constante en toda la linea de emisión, entonces la energía absorbida de la linea por unidad de volumen de materia es:

$$dE\nu = -4\pi I\nu \int k\nu d\nu \qquad I.18$$

y el valor de $\int k\nu \, d\nu$ está dado por la teoría clásica de radiación (oscilador armónico) como [51]:

$$\int k v \, dv = \pi e^2 \, Nn \, f_{nm}/mec$$
 I.19

donde Nn es la densidad de átomos en el estado n capaces de absorber en la línea, me es la masa del electrón, c la velocidad de la Luz y fnm es la fuerza de oscilador relativa a la transición n m. Esta fuerza de oscilador representa el número de osciladores clásicos que tienen la misma acción absorbente que el átomo en el estado n.

Entonces la energía absorbida dEv se expresa:

$$dE\nu = -4\pi I\nu \frac{\pi e^2}{meC} Nn fnm \qquad I.20$$

o, empleando los coeficientes de Einstein para las probabilidades de transición [51]

$$dEv = -Nn Bnm Uv hv = -Nn Bnm 4\pi Iv hv/c$$

y de las ec. 1.20,1.21 tenemos que

$$f_{nm} = m_e h \nu B_{nm} / \pi e^2$$
 I.22

Aunque estamos tratando con emisiones inducidas, por simplicidad matemática podemos expresar a fnm en términos de los coeficientes de emisión espontánea

$$f_{nm} = \frac{g_m}{g_n} \cdot A_{mn} \cdot \frac{m_e c^3}{c_m^2 c_m^2 c_m^2}$$

[véase ec. 1.11, 1.22]. La fuerza de oscilador fnm, en general, toma valores

1.21

1.23

inferiores a 1. Por ejemplo: para las emisiones H α , H β y H δ , toma los valores f23 = 0.641; f24 = 0.119; f28 = 0.0224; respectivamente.

Algunos autores proponen que la fuerza de oscilador se puede expresar como: [51]

Es importante conocer las fuerzas de oscilador para el estudio de los espectros de radiación. Conociendo fum podemos obtener Amm y esto permite deducir la intensidad observada de una línea de emisión de la población Nm (si el medio es ópticamente delgado).(ec.1.20, 1.21, 1.23)

Las fuerzas de oscilador se pueden obtener mediante mediciones en el laboratorio ó mediante cálculos precisos de mecánica cuántica. Los valores resumidos aparecen en las Ref.[2, 4, 15, 41, 75].

En el caso particular de un átomo hidrogenoide se emplea la siguiente aproximación, obtenida a partir de los cálculos de mecánica cuántica: [40, 51]

1.25

1.24

$$f_{nm} = \frac{2^{6}}{3\sqrt{3}} \cdot \frac{1}{\pi} \cdot \frac{1}{g_{n}} \cdot \frac{1}{(1/n^{2} - 1/m^{2})^{3}} \left| \frac{1}{m^{3}} \cdot \frac{1}{n^{3}} \right| \overline{g}$$

donde \bullet y n son los números cuánticos principales, de los niveles de partida y de llegada del electrón, y gn es el peso estadístico del nivel n, g es el factor (promedio) de Krammers-Gaunt, que depende de n, \bullet y de la temperatura. Este factor es cercano a la unidad en el rango visible. Valores precisos de este factor se muestran en [10, 24, 26, 36, 42].

I.b TRANSICIONES LIGADO-LIBRE (BOUND-FREE) IONIZACION

Un átomo en el estado n puede absorber una serie de cuanta h ν correspondiente a las diferencias de energía entre los niveles atómicos pero puede igualmente absorber cuanta de frecuencia tal que h $\nu > \chi_{n\infty} = h\nu_n$ (véase fig.1)

fig. 1

donde hνn es la energía de ionizacion del nivel n. hνnm es la diferencia de energía entre el nivel n y m hν representa a una energía mayor que el potencial de ionización del nivel n

El electrón, al recibir la energía $h\nu$, pasa de la órbita elíptica n (ligada) a una órbita hiperbólica (libre) no cuantizada con energía cinética :

$$E_L = \frac{1}{2} mev^2$$

tal que: [31, 51]

 $h\nu = \chi + \frac{1}{2} mev^2$ I.28

donde χ_{nm} es el potencial de ionización del nivel n.

La absorción continua de la radiación incidente (o fotoionización) empezará a una cierta frecuencia límite ν_n y este límite será diferente para cada nivel n.

El proceso inverso es la recombinación radiativa o captura electrónica, que es el paso de un electrón libre con energía

positiva en una órbita hiperbólica a un estado ligado en una órbita elíptica con energía negativa.

El cálculo del coeficiente de fotoionización (α_v) se resuelve rigurosamente para un átomo hidrogenoide suponiendo un campo central coulombiano, y estas fórmulas se aproximan para el caso de los iones metálicos.

I.b.a COEFICIENTES DE FOTOIONIZACION DEL ATOMO DE HIDROGENO

Basado en los estudios hechos por Menzel y Pekeris [42], se puede hacer una generalización para las transiciones a órbitas hiperbólicas (libres) a partir de las transiciones entre las órbitas elípticas (ligadas) de los estados ligados. El número de onda de toda transición discreta en el espectro del átomo de hidrógeno está dado por la fórmula de Rydberg

$$K(cm^{-1}) = R (1/n^2 - 1/n^2)$$
 I.27

donde R es la constante de Rydberg; n y m son los estados cuánticos inicial y final de la transición, ya que:

-Rch/m² es la energia del nivel m 1.29

entonces, por analogía, el número de onda de las transiciones de un estado ligado a un estado libre será (si se reemplaza m por 4L)

$$K(cm^{-1}) = R (1/n^2 + 1/L^2)$$

donde la energía del estado inicial es

У

$$E_n = -Rch/n^2 \qquad I.31$$

1.30

y EL =
$$\text{Rch/L}^2$$
 es la energía cinética del electrón libre, el número L se obtiene de igualar la energía del electrón en el

estado libre, con EL.

Dado que a las transiciones discretas de n = les está asociada una fuerza de oscilador fma, en este caso se tendrá una fuerza fni reemplazando = por l en la fórmula 1.25. La razón por la que se reemplaza = por l y no por L es, que L representa a un estado de energía positiva (libre) y = a uno de energía negativa (ligado), así pues, obtenemos

$$f_{nL} = \frac{2^{6}}{3\sqrt{3}} \cdot \frac{1}{\pi} \cdot \frac{1}{g_{n}} \cdot \frac{1}{\left[1/n^{2} + 1/L^{2}\right]^{3}} \left| \frac{1}{n^{3}} \cdot \frac{1}{L^{3}} \right| \overline{g}_{II}$$

ec.I.32

donde gII es el valor promedio del coeficiente de Gaunt para la transición n, L. Para una transición discreta, la teoría clásica de radiación nos conduce a que [51]

$$\int \alpha_{\mu} d\nu = \pi e^2 f_{\text{nm}} / \text{mec} \qquad 1.33$$

y por analogía podemos escribir, para una transición al continuo

$$\int \alpha_{\rm u} d\nu = \pi e^2 f n L/mec$$

y, diferenciando la ecuación tenemos que

$$\alpha_{\nu nL} = \frac{\pi e^2}{mec} \frac{dfnL}{d\nu}$$
 I.35

supondremos que fnL es una función contínua de L, ya que las órbitas L no están cuantizadas. Puesto que

$$\frac{dfnL}{dL} \simeq fnL \qquad I.36$$

[véase Apéndice V]

1.34

y puesto que podemos obtener dL/dv del balance de energía

$$h\nu = \chi_{n\omega} + \frac{1}{2} m v^2 = \chi_{n\omega} + \frac{hcR}{r^2}$$
 I.37

entonces

$$\nu = \chi_{n\infty} + \frac{hcR}{L^2} \quad \Rightarrow \quad \nu = \frac{\chi_{n\infty} + hcR/L^2}{h}$$
$$\nu = \frac{\chi_{n\infty}}{h} + \frac{hcR}{L^2} \quad \Rightarrow \quad \frac{d\nu}{dL} = -\frac{2cR}{L^3}$$

y como

h

h

2

entonces

$$\frac{dL}{d\nu} = -\frac{L^3}{2Rc}$$

 $\frac{df_{nL}}{dt} \simeq f_{nL}$ de la ec. 1.36 tenemos que entonces У

$$\frac{df_{nL}}{d\nu} \simeq \frac{dL f_{nL}}{d\nu} \qquad I.41$$

sustituyendo 1.41 en 1.35 y utilizando la expresión para fnL (1.32), tenemos que la magnitud del coeficiente es: [51]

$$\alpha_{\nu nL} = \frac{\pi e^2}{mec} \frac{2^6}{3\sqrt{3}} \cdot \frac{1}{\pi} \cdot \frac{1}{2n^2} \cdot \frac{1}{\left(\frac{1}{n^2} + \frac{1}{L^2}\right)^3} \cdot \frac{1}{n^3} \cdot \frac{1}{L^3} \cdot \overline{g}_{II} \cdot \frac{L^3}{2cR}$$

ec. 1.42

1.45

1.38

1.39

1.40

y dado que

 $\frac{1}{\frac{1}{n^2}} + \frac{1}{\frac{1}{L^2}} = \frac{\nu}{CR}$ 1.43

finalmente

$$\alpha_{\nu_{\rm nL}} = \frac{2^4}{3\sqrt{3}} \cdot \frac{e^2}{mec} \cdot \frac{1}{n^5} \cdot \frac{c^2 R^2}{\nu^3} \cdot \overline{g}_{\rm II} \qquad I.44$$

y, reemplazando la constante de Rydberg, R, por su valor [9, 40, 51]

$$R = \frac{2\pi^2 mee^4}{ch^3}$$

llegamos a un coeficiente

$$\alpha_{\nu nL} = \frac{64}{3\sqrt{3}} \cdot \frac{\pi \operatorname{mee}^{1} \operatorname{GI}_{1}}{\operatorname{ch}^{8}} \cdot \frac{1}{n} \cdot \frac{1}{\nu^{3}} \cdot \frac{1}{g} \operatorname{II}_{1}$$

donde $\alpha_{\nu_{nL}}$ es el coeficiente de absorción por átomo excitado en el estado n. Si el número total Nn de átomos en éste estado está dado por la Ley de Boltzman (Ni es el número total de átomos en el estado n = 1)

$$\frac{N_n}{N_1} = \frac{2n^2}{2} e^{-(hcR/kT)(1-1/n^2)}$$
I.47

la contribución de los Nn átomos al coeficiente de fotoionización $\alpha_{_{\rm DNL}}$ será

$$N_{n}\alpha_{\nu_{n}L} = N_{1} \cdot \frac{64}{3\sqrt{3}} \cdot \pi^{4} \cdot \frac{m_{e}e^{10}}{ch^{6}} \cdot \tilde{g}_{II} \cdot \frac{1}{\nu^{3}} \cdot \frac{1}{n^{3}} \cdot e^{-(hcR/kT)(1-1/n^{2})}$$

I.48

ec. 1:49

I.46

Finalmente, el coeficiente total de fotoionización a una frecuencia determinada α_v se obtiene sumando todas las contribuciones de los posibles estados ligados en el átomo de hidrógeno

$$\alpha_{\nu} = \frac{64\pi^{4} \text{mee}^{10}}{3\sqrt{3} \text{ ch}^{6}} \cdot \frac{1}{\nu^{3}} \sum_{k=1}^{\infty} \sum_{k=R/n^{2}}^{\infty} g_{11} \frac{1}{n^{3}} e^{-(\text{hcR/kT})(1-1/n^{2})}$$

Queda así, totalmente determinado el cálculo del coeficiente de ionización por absorción, para el átomo de hidrógeno, tanto en intensidad y frecuencia, como en otros diversos parámetros.

I.b.b FOTOIONIZACION DE ATOMOS HIDROGENOIDES

Para el cálculo correspondiente a este tipo de átomos,

todas las expresiones son similares a las obtenidas para el átomo de hidrógeno, sólo que se introduce un efecto en los niveles de energía, debido a la carga del núcleo. Este efecto en el número de onda se expresa así :

$$K(cm^{-1}) = R Z^{2}(1/n^{2} + 1/m^{2})$$

lo cual introduce la siguiente variación para el coeficiente total de fotoionización

$$\alpha_{i} = \alpha_{i}$$
 (hidrógeno) Z⁴

I.b.c FOTOIONIZACION PARA ATOMOS O IONES NO HIDROGENOIDES

Ciertos valores del coeficiente de fotoionización α_{y} para

átomos o iones no hidrogenoides calculados en forma precisa están resumidos en las tablas de Allen [2], que resultan de emplear las secciones eficaces para fotoionización de iones y átomos, utilizando el método propuesto por Burgess y Seaton [11] que aplica una fórmula aproximada. Esta se obtiene de introducir el concepto de carga efectiva en los cálculos, esta carga efectiva es la carga egivalente que produciría la fuerza neta que atrae a un cierto electrón en una órbita determinada, y se denota como q[°], la cual al introducirle en la fórmula de Rydberg, ésta toma la siguiente forma:

$$k (cm^{-1}) = R q^{*2} (1/n^2 + 1/L^2)$$
 I.51

y el coeficiente de fotoionización por átomo α_{i} queda

$$\alpha_{\mu} = \alpha_{\mu} (hidrógeno)q^{4}$$
 I.52

que expresado por unidad de volumen es $\alpha_{\nu}' = \alpha_{\nu} N_n$

14

I.50

I.c TRANSICIONES LIBRE - LIGADO : RECOMBINACION

El proceso inverso a la ionización es la recombinación que corresponde a la captura de un electrón libre con velocidad v y energía cinética $1/2 \text{ mev}^2$ en la órbita elíptica n. Nótese que el electrón puede estar ligado a otro átomo o ion, pero con respecto del ion que lo captura está libre, puesto que tiene una energía positiva. En tal situación se emite un fotón con energía hy tal que:

$$\frac{1}{2} mev^2 + \chi_{n\infty} = h\nu \qquad 1.53$$

donde $\chi_{n\infty}$ es el potencial de ionización de un electrón ligado en la órbita n. El número de recombinaciones (por cm³ y por segundo) correspondientes a electrones con velocidad v es:

$$N_{\rm m} = v \sigma \ln N i N e f(v) \qquad 1.54$$

donde

Ni es la densidad de iones en el medio.
No es la densidad de electrones libres.
f(v) es la función de distribución de velocidad de los electrones libres.

La sección eficaz σLn puede obtenerse a partir del coeficiente de fotoionización si se invoca a la α_{νnl} microrreversibilidad de los procesos, válida en las condiciones de equilibrio termodinámico. (véase Apéndice III) (La relación que se obtenga a continuación será válida únicamente para sistemas en equilibrio termodinámico).

Para expresar $N_n \infty$ tenemos que estimar la energía absorbida por cm³ y por segundo, en el ángulo sólido total, en el intervalo de frecuencias $\nu + d\nu$ y por cuanto de energía $h\nu$, según [51]:

$$N_{\rm n} \ \infty = \frac{4\pi \ N_{\rm n} \ I\nu(1 - e^{-h\nu/kT})}{h\nu} \ \alpha_{\nu nL}$$

Entonces, por la microrreversibilidad tenemos que:

Nn co = Nco n

1.56

1.55

lo cual implica que el cociente de $\alpha_{y_{nL}}$ y α_{Ln} es:

$$\frac{\alpha_{\nu nL}}{\sigma \ln} = \frac{N_1 N_e}{N_n} \cdot \frac{1}{4\pi I \nu (1 - e^{-k\nu/kT})} f(\nu) \frac{\nu d\nu}{d\nu} h\nu$$

donde

Iν

NiNe/Nn está dado por la ecuación de Saha está dada por la distribución de Planck. f(v)está dada por la distribución de Maxwell.

(véase Apéndice III)

por otra parte, de la ec.I.53 tenemos que mev dv = h dv(véase Apendice V) entonces

$$\frac{\alpha_{\nu nL}}{\sigma L_n} = \frac{g_1 g_0}{g_n} \cdot \frac{m_0^2 c_v^2 v^2}{2h^2 v^2} = \frac{g_1 m_0^2 c_v^2 v^2}{g_n h^2 v^2}$$
 I.58

ya que ge es el peso estadístico asociado al electrón (véase Apéndice III) y como puede ocupar dos estados su valor es 2. Ahora podemos calcular el número de recombinaciones radiativas (FLn d ν) en el intervalo ν , ν +d ν por cm³, por segundo, para un átomo de hidrógeno, para el que $\alpha_{\nu_{\rm PL}}$ Nn está dado por la Ley de Boltzman (ec.1.47) y, empleando la ec.1.55 donde Iv está dada por la Ley de Planck, podemos calcular Ni

(que es el número de átomos en el nivel n = 1) en función de la Ley de Saha. (véase Apendice V). Entonces, a partir de la ecuación 1.54, FLn dv se puede calcular de la manera siguiente:

 $F_{Ln} d\nu = N_{\infty n} d\nu = N_{iNe} f(v) dv v \sigma_{Ln}$

$$= N_{\rm n} \propto d\nu = \frac{4\pi N_{\rm n} I\nu (1 - e^{-h\nu/kT}) d\nu}{h\nu} \alpha_{\nu nI}$$

ec. I.59

y, sustituyendo a las constantes que intervienen en el cálculo ($\alpha_{\nu_{\rm DL}}$, Nn, I ν , Ni) por la letra C tenemos finalmente:

(véase Apéndice V)

FnL d
$$\nu$$
 = N1Ne $\frac{C \tilde{g}II}{T^{3/2} n^3} e^{-h(\nu-\nu_n)/kT} \frac{d\nu}{\nu}$ 1.60

16

con C = 3.260×10^{-8} (en unidades cgs), entonces la energía emitida en el intervalo ν , ν +d ν es:

ELn d
$$\nu$$
 = FLn h ν d ν = $\frac{h N_1 N_e}{T^{3/2}}$ 3.260 x 10⁻⁶ $\frac{\overline{g_{II}}}{n_1^3}$ e^{-h($\nu - \nu_n$)kT d ν}

Para calcular el espectro de emisión continua para átomos hidrogenoides es necesario multiplicar las fórmulas del número total de recombinaciones (1.60) y la energía (1.61) por 2⁴ [51]. Entonces el número total de recombinaciones al nivel n será:

$$\beta_{n} = \int_{\nu_{n}}^{\Gamma} F_{Ln} d\nu = 3.260 \times 10^{-6} \frac{N_{1}N_{e}}{T^{3/2}} \cdot \frac{Z^{4} \overline{g}_{11}}{n^{3}} e^{h\nu/kT} E_{1} \left(\frac{h}{kT}\right)$$

ec. 1.62

donde E₁ es la función entero exponencial de orden 1. [51] Y la energía total emitida en el contínuo desde el límite correspondiente (ν_n) y por el proceso de recombinación será:

$$\mathcal{E} = \int_{\nu_{\rm B}}^{\infty} E_{\rm Ln} \, d\nu = \frac{N_1 N_0}{T^{1/2}} \, kZ^4 \, \frac{\overline{g}_{\rm II}}{n^3} \, 3.260 \, \times \, 10^{-6} \qquad 1.63$$

Queda así totalmente determinado el espectro para este proceso en condiciones de Equilibrio Termodinámico Local.

ABSORCION Y EMISION

Cuando un electrón libre (véase definición en la sección I.c), bajo el campo de interacción de un ion, pasa de una órbita hiperbólica con energía $1/2mev^2$ a otra con energía $1/2mev'^2$ e igualmente hiperbólica se dice que efectúa una transición libre-libre.

Si v'> v se trata de absorción de energía y si v' < v se trata de la emisión de radiación en el contínuo, ya que:

$$\frac{1}{2} mev^2 = \frac{1}{2} mev'^2 + h\nu \qquad I.64$$

Observacionalmente se encuentra que son mas frecuentes los cambios pequeños de energía mediante este proceso, por lo que la absorción y la emisión libre-libre son particularmente importantes a grandes longitudes de onda (radio, infrarrojo).

Sin embargo existen procesos en las estrellas en que pueden involucrar inclusive hasta rayos X por este tipo de interacción.

Para calcular la intensidad y distribución en frecuencia que produce este proceso, expresamos la energía de los estados libres (en analogía con los estados ligados) de la siguiente manera:

$$\frac{1}{2} m_{\rm e} v^2 = \frac{h c R}{l^2} \qquad y \qquad \frac{1}{2} m_{\rm e} v'^2 = \frac{h c R}{l^2} \qquad I.66$$

donde L y J son los índices que asociaremos a los estados libres (órbitas hiperbólicas) y que se calculan de las ec.1.65,66. Entonces su número de onda lo obtenemos si reemplazamos n por *i*L y m por *i*J en la ec.1.27 y queda

$$K(cm^{-1}) = R(1/L^2 + 1/J^2)$$
 I.65

La mecánica estadística atribuye un peso estadístico g_L^{a} a los electrones en una órbita hiperbólica (caracterizada por L, y con una velocidad v, comprendida entre v, v+dv), cuya

expresión es:

electrónica es: [51]

que por unidad de frecuencia, por unidad densidad de

$$g_{L} = g_{e} \frac{4\pi m e^{2} v}{h^{2}}$$

El coeficiente de absorción (para transiciones hiperbólicas) se obtendrá derivando una fórmula equivalente al caso del hidrógeno (para transiciones elípticas).

$$\int \alpha_{LJ} d\nu = \frac{\pi e^2}{b^2} f_{LJ} \qquad 1.69$$

y derivando el primer término con respecto a $v_1 y v_2$ tenemos que:

$$\alpha_{LJ} = \frac{\pi e^2 d^2 f_{LJ}}{m_{\theta} c d\nu_L d\nu_J} \qquad I.70$$

donde $d\nu_L = m_e v dv/h$ (si v' es constante); $d\nu_J = m_e v' dv'/h$ (si v es constante); au es el coeficiente de absorción por ion y por velocidad electrónica. Y por analogia con el caso de ionización ec. 1.36 se puede suponer que: (véase Apéndice V y [51]).

$$\mathbf{f}_{LJ} = \frac{\mathbf{d}^2 \mathbf{f} LJ}{\mathbf{d} \mathbf{L} \ \mathbf{d} \mathbf{J}} \qquad \qquad \mathbf{I.71}$$

[véase Apéndice V]

de donde

$$\alpha LJ = \frac{\pi e^2}{mec} \cdot \frac{d^2 f LJ}{dL dJ} \cdot \frac{dL}{d\nu L} \cdot \frac{dJ}{d\nu J} = f LJ \cdot \frac{\pi e^2 dL}{mec} \cdot \frac{dJ}{d\nu L} \cdot \frac{dJ}{d\nu J}$$

19

1.72

y de 1.68

I.87

$$m_{ev} dv = \frac{2hcR}{L^3} dL = h d\nu_L$$

1.73

por analogía con el caso de ionización ec.1.42, tomando en cuenta que ahora dul es la variación de ν (si L varía) o bien duj es la variación (si J varía), entonces se obtiene que el coeficiente de absorción para este caso lo podemos expresar como sigue

$$\alpha_{LJ} = \frac{\pi e^2 2^8}{m_e c 3\sqrt{3}} \frac{1}{\pi} \frac{1}{gL} \cdot \frac{1}{(1/J - 1/L)^3} \frac{1}{L^3} \cdot \frac{1}{J^3} \frac{1}{gIII} \frac{L^3}{2cR} \frac{J^3}{2cR}$$

entonces tomando en cuenta la ec. 1.43 tenemos que

$$\alpha_{LJ} = \frac{4\pi e^6 \bar{g}_{III}}{3\sqrt{3} hcme^2 v u^3}$$
 1.75

donde \bar{g}_{III} es el factor de Gaunt para las transiciones libre-libre (free-free). Este factor es cercano a 1 en el rango del ultravioleta al visible y varia fuertemente en las ondas de radio, en la forma:

$$g \simeq \frac{\sqrt{3}}{\pi} \log \left[\frac{KT}{e^{2}N^{1/3}}\right]$$
 I.76

Nota: Para cálculos más detallados véase [49, 66, 67]

Todas las fórmulas precedentes dadas para el átomo de hidrógeno, Z = 1, se multiplican por Z^2 para aplicarlas a los hidrogenoides [51]. La energía total absorbida por los electrones con velocidad comprendida entre v, v+dv (por cm³, por segundo) se puede expresar como [51]

$$E\nu_{LJ} = 4\pi I \nu_{LJ} \alpha_{LJ} N i N_0 f(v) dv (1 - e^{-h\nu/kT}) I.77$$

y el número de procesos L J será igual al número de fotones emitidos, puesto que suponemos que a cada transición corresponde la emisión de un fotón de frecuencia $\nu_{1,1}$ entonces

este número FLJ será

$$FLJ = \frac{E\nu LJ}{h\nu}$$

Reciprocamente, al recordar que en condiciones de equilibrio térmico local

NL J = NJ L

es posible obtener una sección eficaz σ_{JL} a partir de α_{LJ} , si empleamos la microrreversibilidad, análogamente al caso de recombinación ec. 1.54,55,56,57 y entonces

$$\sigma_{LJ} = \frac{4\pi \alpha_{LJ} \text{ NiNe } f(v) \text{ I} \nu (1 - e^{-h\nu/kT})}{\text{NiNe } f(v') dv' \text{ v'h} \nu} d\nu \qquad 1.7E$$

donde f(v) es la función de distribución de Maxwell e I ν está dada por la Ley de Planck y f(v') es la distribución final de las velocidades de los electrones después de las transiciones (free-free) que debe ser una distribución de Maxwell ya que se supone microrreversibilidad en los procesos. Entonces el número total de emisiones espontáneas por segundo y por intervalo de frecuencia d ν a partir de las ec. 1.77,78,79 será:

$$F_{\text{free-free}} d\nu = \frac{\text{NiNe} 27\pi^3}{(6\pi)^{3/2}} (\text{me/kT})^{1/2} \frac{\text{e}^6 \overline{\text{giii}}}{\text{h} \text{c}^3 \text{m}^2} \text{e}^{-\frac{h\nu}{kT}} \frac{d\nu}{\nu}$$

ec.I.80

y la energía emitida por cm, por segundo y por intervalo de frecuencia d ν ec. 1.78,80 es:

$$E_{\text{free-free}} d\nu = \frac{NINe \ 27\pi^3}{(6\pi)^{3/2}} \ (\text{me/kT})^{1/2} \frac{e^{\frac{6}{9}}\overline{g}III}{c^3 \text{me}^2} e^{-h\nu/kT} \ d\nu$$
ec. I.81

- 21

I.78

así, integrando en todas las frecuencias, tenemos la energía total emitida (€i) por las transiciones libre-libre

$$\mathbf{E}t = \int_{0}^{\infty} \mathbf{E}_{\text{free-free}} \, \mathrm{d}\mathbf{v}$$

y ya que $\int_{0}^{\infty} e^{-h\nu/kT} d\nu = kT/h$ entonces

 $\mathfrak{E} \mathfrak{l} = \mathrm{NiNe} \frac{27 \pi^3}{(6\pi)^{3/2}} \mathfrak{g}_{\mathrm{III}} \frac{\mathrm{e}^6}{\mathrm{hc}^3 \mathrm{me}} (\mathrm{kT/me})^{1/2}$

ec. 1.82

= 1.435 X 10^{-27} T^{1/2} gIIIN iNe

(en unidades c. g. s.)

Un cálculo sencillo nos muestra que para T > 3.7×10^{50} K Et > E en el dominio del óptico donde gIII \cong gII $\simeq 1$ es decir, que la emisión libre-libre es más importante en altas temperaturas, (en comparación a la recombinación) y la recombinación (libre-ligado) lo es a bajas temperaturas.

Es necesario recordar que todos los desarrollos en el presente capítulo son para cuando la materia está en equilibrio térmico local (véase Apéndice III) y que las poblaciones de iones y electrónes libres obedecen a la Ley Saha. Una generalización para medios que poseen partículas sujetas a un proceso de aceleración, se presentará en el Capítulo III, en el que se hace énfasis especial en el proceso de recombinación radiativa que en este caso le llamaremos Emisión Fotónica por Captura Electrónica (o electron Pick-Up) para los casos en que los iones que captura a los electrones del medio no poseen velocidades termales y, más aún, están siendo acelerados continuamente.

CAPITULO II

EMISION DE UN PLASMA EN PRESENCIA DE

PARTICULAS RAPIDAS NO ACELERADAS

En una amplia variedad de circunstancias Astrofísicas y de laboratorio coexisten, con la materia termal, partículas rápidas (iones y/o electrones) cuyas velocidades exceden a la de las partículas termales [véase Apendice III].

Consideramos como partículas rápidas a todas aquellas que tengan una velocidad mayor que la velocidad termal del medio en que se encuentran. Su distribución de velocidades es diferente a una distribución de Maxwell y su origen puede ser interno o externo, es externo cuando son inyectadas al medio, y no generadas en el. Esta situación prevalece, por ejemplo, en los experimentos de campo y corriente inversos [17, 34, 35, 46, 58], en donde se inyectan grupos de iones y electrones rápidos, muy separados energéticamente de las partículas termales, y se emplean para calentar y/o confinar el Plasma.

Obviamente estas partículas rápidas contribuyen a los procesos de ionización y excitación en el Plasma y su influencia puede ser importante en el momento de hacer inferencias a partir de las medidas espectroscópicas de los parámetros de Plasma que se supone contiene sólo partículas termales.

La presencia de pequeñas densidades de particulas rápidas en el Plasma termal puede provocar efectos significativos, dependiendo de la situación específica de las condiciones en el Plasma. Hasta ahora se han investigado solamente algunos casos (1, 30) empleando la emisión de Rayos-X para determinar la densidad de los electrones rápidos en Plasmas calentados por Luz Laser y en los que se producen en el TOKAMAK TM3 (Los Alamos).

Recientemente Marchenko [39] calculó la influencia que tienen las partículas energéticas (impurezas de Hierro) sobre la densidad de varios estados de ionización en el Plasma en el que se inyectan tales partículas. En todos estos casos se encontraron efectos importantes, producto de la presencia de las Partículas rápidas en el Plasma.

En el presente capítulo se hará un análisis general de los efectos de las partículas rápidas en el Plasma, pero sólo para haces monoenergéticos. En el capítulo siguiente se abordará con detalle el caso en que tiene lugar un proceso de aceleración en que las partículas cambian de energía y de densidad por banda de energía, limitandonos a analizar el proceso de recombinación radiativa en el Plasma, que (como se dijo anteriormente) en la literatura especializada en se le conoce como Captura Electrónica (Electron Pick Up).

II.a INFLUENCIA DE LAS PARTICULAS RAPIDAS EN LAS EMISIONES POR TRANSICIONES: DISCRETAS (EXCITACION) Y LIGADO- LIBRE (IONIZACION)

Las partículas rápidas pueden tener una influencia notable en los procesos de ionización y excitación de un medio.

Para analizar su influencia en estos procesos, enumeremos la diferentes formas en que se puede ionizar y excitar a los átomos del medio, para analizar los casos que conciernen al presente estudio.

En un medio, las ionizaciones y excitaciones se pueden producir por:

1) Colisión directa de las partículas rápidas del Plasma con el medio (átomos o iones).

2) Colisión de las partículas del medio (Plasma) con los electrones supratermales generados por las colisiones de las partículas rápidas con los electrones termales del medio o bien con los provenientes de las ionizaciones de los átomos o iones del medio mismo.

3) Por colisión de los electrones termales del Plasma con las particulas (iones y átomos) que los rodean.

4) Por absorción de fotones. Este último no se ve afectado por la presencia de partículas rápidas, así que el tratamiento para este proceso es idéntico al del capítulo anterior.

5) Colisión entre partículas (iones o átomos) del medio mismo.

II.a.1 IONIZACION Y EXCITACION POR COLISION CON PARTICULAS RAPIDAS

Inokuti [32] hizo una revisión de los procesos de ionización y excitación producidos por partículas rápidas con carga, cuya velocidad es mayor que la de los electrones que están enlazados al núcleo atómico. Basado en cálculos téoricos, Inokuti concluye que la sección eficaz correcta, en primera aproximación para el proceso, es la fórmula de Bethe [5] modificada por Fano [19], para incluir efectos relativistas.

Esta fórmula (que resulta de aplicar la aproximación de Coulomb-Born a la colisión entre un átomo fijo y una onda plana) es:

 $\sigma_{f-1} = (8\pi a_0^2 Z^2 R^2 f / m_0 v r^2 \Delta E) \left\{ \ln \left[\beta^2 / (-\beta^2) \right] - \right\}$ para toda 1 $-\beta^2 + \ln [2m_0 c^2 C_1/R]$

donde

r, i denotan estados cuánticos (sólo indices) Z es la carga de la partícula rápida vr es la velocidad de la partícula rápida $\beta = vr/c$ c es la velocidad de la Luz

- me es la masa del electrón
- $\Delta E = E_i E_r \text{ diferencia de energía en la transición}$ r i (del átomo o ion blanco)

ec.II.1

R Energia de Rydberg (13.6 eV)

ao Radio de Bohr

- f Fuerza de oscilador (para excitación) del blanco. Y/o fuerza efectiva de oscilador (para ionización) del blanco.
- C: Constante característica de las transiciones (empirica), con ln (Ci) $\simeq 0 - 2.26$

Inokuti [32] comparó los datos predichos por la ec. II.1 con datos experimentales, en procesos de ionización, considerando protones y electrones rápidos impactando sobre Helio [23, 59, 68].

Empleando los valores teóricos calculados para f [37], la fórmula II.1 tiene un error de hasta un 10% para impacto de protones con vr> $5\sqrt{\Delta E/m_{e}}$ y para impacto de electrones, en el mismo límite de velocidad, el error oscila entre 10 - 25 %.

Cran parte de esta discrepancia se corrigió posteriormente al renormalizar la fuerza efectiva de oscilador.

En el caso de excitaciones electrónicas de iones inducidas por electrones, las medidas en LiIII y MgII [50] concuerdan con la aproximación de Bethe, [47] con errores dentro del error experimental (para velocidades de los electrones proyectil superiores a 10 veces la velocidad umbral vu = $\sqrt{\Delta E/me}$). El error puede ser hasta del 15% para electrones con 5 veces la velocidad umbral.

Taylor et. al. [72] mostraron que experimentalmente la sección eficaz para la excitación 2s-2p en C IV, por impacto electrónico, coincide con los cálculos de Coulomb-Born con el 5% de error, a velocidades tan bajas como 1.5 veces la velocidad del electrón con la energía umbral (ΔE).

Jayakumar et al. [34] encuentran también una buena aproximación para Ci (Ci = 1.13). Otros resultados para excitación de iones [16, 28] muestran que los valores experimentales concuerdan con los cálculos de Coulomb-Born, a energías elevadas, con errores experimentales de 20-30%. Generalmente existe poca precisión en los datos experimentales de excitación e ionización de muchos iones y átomos, en particular en las altas energías de impacto.

Sin embargo las comparaciones anteriores con la ec. II.1 parecen adecuadas para estimar los efectos de las partículas rápidas dentro de los límites de validez que se establecen para la velocidad, y en particular para las excitaciones permitidas para las que se conoce la fuerza de oscilador, aunque existen mejores aproximaciones para bajas velocidades, [32] tomaremos la ecuación II.1 para nuestro análisis.

En el caso del impacto de iones, las secciones eficaces correspondientes son más imprecisas que las correspondientes al impacto de iones y/o electrones.

Debido a la ausencia de efectos de intercambio de cargas (electrones), las secciones eficaces por el impacto de electrones deben ser mayores (a bajas energías), que las correspondientes al impacto de iones.

A muy altas energías, Mittleman [45] predice que el desplazamiento spin-órbita (véase Apéndice II) lleva a una pequeña independencia en energía (de la sección eficaz), similar al que ocurre en el caso de impacto con electrones. Cuando aparecen electrones secundarios en el proceso, producto de la colisión de los iones, éstos pueden ser más efectivos que los iones mismos para excitar las transiciones spin-prohibidas.

II.a.2 ELECTRONES SECUNDARIOS Y SU INFLUENCIA

Además de los procesos directos de ionización y excitación provocados por las partículas rápidas, éstas también pueden provocar la ionización y la excitación por medio de los electrones secundarios. En un Plasma, dichos electrones se pueden producir a partir de las colisiones de partículas rápidas con los electrones termales del Plasma, o bien, a partir de la ionización de los átomos neutros o parcialmente ionizados del Plasma.

Estos electrones (secundarios) pueden, a su vez, crear generaciones posteriores de electrones (los que se generan cuando chocan los secundarios con otras partículas). Debido a las pequeñas densidades de estos electrones, únicamente se consideran a los electrones (producidos por los choques) que poseen energías supratermales. En lo sucesivo el término *electrones secundarios* incluirá a todas las generaciones de electrones supratermales.

En la actualidad, sólo se consideran a los electrones secundarios creados a partir de una colisión directa de partículas rápidas con el medio [34], los electrones generados por la ionización de las mismas partículas rápidas, no se ha considerado aún en los tratamientos téoricos de sus efectos sobre las secciones eficaces de ionización y excitación del medio, y por lo tanto de su absorción y emisión de radiación por estos procesos, que a su vez se traducen en modificaciones en los espectros de emisión del medio.

En gran parte de las aplicaciones donde se emplean Plasmas de alta temperatura, esta descripción es suficiente, puesto que la densidad de las especies no ionizadas es mucho menor que n_p (densidad de protones) y donde la creación de electrones secundarios por ionización, se ignora usualmente.

El espectro en estado estacionario de los electrones secundarios producidos por colisiones con los electrones del Plasma, se pueden representar analíticamente [34], en una buena aproximación, como la suma de las contribuciones de las varias generaciones. De acuerdo a este cálculo, el espectro final de los electrones secundarios $dn_{\rm B}/dE_{\rm B}$, a las energías de interés, es comparable a grosso modo con el espectro de la primera generación, que es aproximadamente:

 $\frac{dns}{dE_{a}} = (nr \ 2^{2}a \ / \ EolnA \) \ [\ \sqrt{Eo/Es} \]^{-1}$

ec. II.2

[34]

 $\begin{array}{cccc}
con a = \begin{cases}
2 & para iones \\
1 & para electrones
\end{cases}$

donde	nr	es la densidad de las partículas rápidas
	Пs	es la densidad de electrones secundarios
Es	Es	es la energia de los electrones secundarios
	Eo	es a ² mevr ²
÷ 1	lnΛ	es el logaritmo de Coulomb, que es ≈ 5 - 20
		para colisiones de electrones en un Plasma

y la densidad total de estos electrones es:

$$\int_{E_0}^{\infty} \frac{dn_s}{dE_s} dE_s = \int_{E_0}^{\infty} (nr Z^2 a / E_0 lnA) [\sqrt{E_0 / E_s}]^{-1}$$

ec. II.3

27

y, según [34]

 $n_{B} \approx \begin{cases} n_{f}/lnA & para proyectiles electrones \\ 2n_{f} Z^{2}/lnA & para proyectiles iones \end{cases}$

11.4

es decir, siempre es significativamente menor que la densidad de las partículas rápidas nr.

En el caso de ionizaciones y excitaciones permitidas, la contribución de los electrones secundarios al flujo de absorción o emisión respectivamente es:

$$\tilde{y} = ns(\sigma, v)_{s\forall 1} = \int_{\Delta E}^{E_{\sigma}} (dns/dE_{s})\sigma_{s, 1} (2Es/m_{\sigma})^{1/2} dE_{s}$$

donde $\sigma_{s,i}$ denota la sección eficaz correspondiente a ionizaciones y excitaciones permitidas. Esta integral es la definición del producto $n_s(\sigma, v)_{s \forall i}$ y así lo emplearemos en

lo sucesivo.

Puesto que muchos de los electrones secundarios tienen energías elevadas, la sección eficaz de Bethe (ec. II.1) se puede emplear para calcular el flujo de fotones que se inducen por la ionización y/o excitación que provocan los electrones secundarios. Esto permite tomar un límite superior para la producción de fotones, sin embargo, el factor logarítmico sobrestima la contribución proveniente de electrones secundarios de baja energía [63].

Calculando la integral 11.5 como lo hace Jayakumar [34] tenemos que:

$$n_{B}(\sigma, v)_{g\forall I} = \left(\frac{3.8\times10^{-9}nrZ^{2}r}{\beta \Delta E \ln \Lambda}\right) \left(\left[\ln(C_{I}\beta^{2})+9.23\right]^{2}+4\right)$$
ec. II.6

donde β = vr/c. Comparando los resultados correspondientes al flujo producido por las partículas rápidas por efecto directo, encontramos que

$$\frac{\operatorname{ns}(\sigma, v)_{f}}{\operatorname{nr}(\sigma, v)_{rV_{1}}} \approx \frac{1}{2\ln \Lambda} \frac{\left[\ln(\operatorname{Cl}\beta^{2}) + 9.23\right]^{2} + 4}{\ln(\operatorname{Cl}\beta^{2}) + 11.23}$$

(véase Apéndice V)

evaluando la ec. II.7 podemos ver que la contribución adicional de los electrones secundarios, es menor que la contribución correspondiente a las partículas rápidas, en un factor de 2/lnA a 5/lnA. "Para los Plasmas de interés el valor del lnA es del orden de 10. " [34], entonces la contribución de los electrones secundarios es menor.

ec. II.7

Al parecer los electrones secundarios pueden estimular a las transiciones spin-prohibidas de manera muy efectiva según cálculos de Jayakumar et al [34], pero estas transiciones por ser prohibidas son, de por sí, bastante débiles.

II.a.3 TASA DE IONIZACION Y EXCITACION PRODUCIDOS POR ELECTRONES TERMALES.

En esta sección recordaremos brevemente de nueva cuenta el caso de ionización y excitación por las particulas termales, como hicimos en el capítulo anterior, con el fin de comparar la importancia de las partículas rápidas en estos procesos, respecto de los efectos termales. Para tal fin empleamos un enfoque similar de análisis en ambos procesos.

Regemorter [63] obtuvo la expresión teórica para la tasa de excitación de las transiciones permitidas (véase Apéndice II), a partir de la integración de las secciones eficaces de Born o Coulomb-Born, sobre una distribución de Maxwell y es:

$$(\sigma, \mathbf{v})_{\mathbf{p} \forall \mathbf{i}} = 1.6 \times 10^{-5} \text{ g f } \exp(-\Delta E/T_{\bullet}) / (\Delta E\sqrt{T_{\bullet}})$$

donde

Te es la temperatura electrónica en eV g es el factor de Gaunt (en valor efectivo) ΔE es la diferencia energética entre el estado i y el estado p (en eV)

Para Te < ΔE el factor efectivo de Gaunt está entre 0.1 y 1.0 para elementos tipo Helio, Boro y Berilio [29, 77]. Para átomos neutros, Regemorter obtiene un valor efectivo de Gaunt, por comparación directa entre las secciones eficaces experimentales de H. He y Na (para excitación y/o ionización), y las secciones eficaces predichas por Born sobre una distribución de Maxwell, y puede escribirse de manera general como:

$g \cong 0.1 (T_e/\Delta E)^{0.7}$ para $T_e < \Delta E$ ec.II.8

Esta expresión se obtuvo, sujeta al error experimental, con una precisión mayor del 50% para Te < ΔE . Obviamente esta aproximación del factor de Gaunt, sólo se emplea para estimaciones burdas de la excitación térmica, para obtener la importancia relativa de los efectos de las partículas rápidas, en cuanto a las ionizaciones y/o excitaciones de las partículas del medio, se requieren secciones eficaces más precisas, como las que se emplearán en el siguiente capítulo, para cálculos más específicos.

Se puede escribir una ecuación similar, con la fuerza efectiva de oscilador, para el caso de ionización; en este caso f \approx 1, llegando a una expresión para la fuerza efectiva de oscilador adaptada a las secciones eficaces asintóticas (a energías elevadas). Para la aproximación de Bethe y el factor efectivo de Gaunt (g), la ecuación tendrá las correcciones por la ionización que producen los electrones termales (con Te < ΔEi) sobre las partículas del medio.

Las tasas de: excitaciones permitidas y de ionizaciones inducidas por las partículas rápidas, comparadas con las correspondientes producciones (a causa de los electrones del Plasma), se obtienen al efectuar el cociente entre la expresión del flujo de fotones por partículas rápidas (nr(σ , v)_{rVi}. Este producto se define en la ec. II.5) y la expresión para el flujo debido a los electrones termales del Plasma (np(σ , v)_{pVi}), ec II.8 donde VI se refiere a los procesos de ionización y a las transiciones permitidas, entonces

$$\frac{\operatorname{nr}(\sigma, \mathbf{v})}{\operatorname{np}(\sigma, \mathbf{v})} f \forall \mathbf{i} = F (\operatorname{nr/np}) \exp(\Delta E/T_{\bullet}) \qquad \text{ec.11.10}$$

donde, según [34]

 $F = \begin{cases} 7X10^{-3}\sqrt{T_0} \ 2^2/g & \text{para particulas relativistas} \\ (4.8X10^{-4}\sqrt{T_0} \ 2^2/g\beta)[\ln(C_1\beta)+11.23] & \text{para} \\ & \text{particulas no relativistas} \end{cases}$

De la ecuación II.10 es claro que las partículas rápidas pueden producir un número importante de ionizaciones y de excitaciones aún cuando la densidad de partículas rápidas sea baja en comparación con la densidad de partículas termales, siempre que la energía termal sea mucho menor que la energía necesaria para el proceso de excitación o ionización (ΔE).

En tales circunstancias, cualquier análisis de datos experimentales (por ejemplo, para la determinación de la temperatura de un Plasma, a partir del espectro de emisión) debe incluir el efecto de las partículas rápidas que haya en él (si es que están presentes).

El ensanchamiento de las líneas (a partir de niveles altos) y la aparición de estados altamente ionizados es una medida de la presencia de partículas rápidas en el Plasma emisor. Así mismo, los electrones secundarios que producen las transiciones spin-prohibidas, (véase Apéndice II) pueden ser importantes sólo a muy bajas temperaturas, donde las intensidades espectrales de las transiciones inducidas (normalmente) son también muy bajas por lo que la influencia de los electrones secundarios es más notable.

En resumen, los efectos de las partículas rápidas se obsevarán principalmente en lo referente a los procesos de ionización y excitación permitidas, estos efectos se acentúan en grandes densidades de partículas rápidas y/o para temperaturas muy bajas.

Los procesos productores de ionización y excitación tales como la absorción de fotones y por colisión entre los átomos y/o iones del Plasma mismo, no se ven afectados por la sola presencia de partículas rápidas, aunque pudiesen estar estrechamente asociados con las abundancias de la especies ionicas en el Plasma, esta dependencia es muy baja o casi nula.

31
II.b TRANSICIONES LIBRE-LIGADO MODIFICADAS (CAPTURA ELECTRONICA)

Este tipo de transiciones se ve afectado, en gran parte, por la presencia de las partículas rápidas, ya que éstas producen un gran número de electrones libres (secundarios) al colisionar con el material, sumándose a los ya existentes, aumentando la posibilidad de que los iones del Plasma (y/o las parículas rápidas, en el caso de ser iones) los capturen.

Es importante hacer notar la diferencia que existe entre el proceso de captura electrónica de los iones del Plasma mismo, y el proceso de captura electrónica de los iones proyectil, ya que por tener diferentes energías y densidades, cada uno produce diferentes tipos de emisión y, en particular, la emisión por captura de electrones que producen los iones proyectil, será tratado ampliamente en el siguiente capítulo.

En lo que concierne al proceso de captura efectuado por los iones del medio (cuando existen partículas rápidas en él), el tratamiento matemático que lo describe es similar al que efectuamos para el caso de un Plasma puramente termal, con la salvedad de que la densidad de electrones libres del medio ha aumentado ligeramente debido a que las partículas rápidas han ionizado el medio, por colisión directa y también por medio de los electrones secundarios.

Además, cabe mencionar que, inmediatamente después de que ocurre la captura electrónica en un nivel excitado, el electrón cae a otro nivel atómico (de menor energía) emitiendo la radiación correspondiente al cambio de energía, a este fenómeno se le conoce como Emisión por Recombinación Dielectrónica.

Hasta hace 5 o 6 años se había subestimado este proceso, pero aproximadamente desde 1980, las observaciones solares y experimentos en Plasmas se volvieron más completos y detallados, entonces se reconoció su importancia para las medidas espectroscópicas de estos medios, (ya que pueden afectar directamente a los anchos de línea e intensidad, pudiendo modificar las estimaciones de temperatura y densidad de los Plasmas) que se hacen a partir de la emisión fotónica del Plasma.

II.5.1 CAPTURA ELECTRONICA POR LOS IONES TERMALES DEL PLASMA (RECOMBINACION)

En el capítulo anterior, consideramos a un electrón que pasa de una órbita hiperbólica (con energía $1/2 \text{ mv}^2$) a una órbita elíptica, emitiendo un fotón con energía h ν , tal que:

$$1/2 \text{ mev}^2 + \chi_{nco} = h\nu$$
 ec. II. 12

donde $\chi_{n\infty}$ es el potencial de ionización para un electrón en la órbita n (con número cuántico principal n). En el caso de contar con la presencia de particulas rápidas en el medio, consideraremos nuevamente que N_{∞} n será el número de capturas, de electrones con velocidad v por unidad de tiempo y de volumen, efectuadas por los iones, y:

$N \infty$ n = NiNef(v)dvokn

ec.II.13

donde

 Ni es la densidad de iones termales del Plasma
 Ne es la densidad de electrones libres
 f(v) es la función de distribución de velocidades de los electrones libres

own es la sección eficaz de captura en la órbita n

Ahora podemos emplear el principio de microrreversibilidad de los procesos, ya que el Plasma está en equilibrio termodinámico, aún cuando lo cruce un haz monoenergético de baja densidad (de iones), puesto que, si es de baja densidad la transferencia de energía es muy baja. De otra manera, si el haz fuese lo suficientemente denso como para transferir energía al medio, en principio, el Plasma no podría sobrevivir debido a un gran desequilibrio en su población iónica y en su distribución de carga (véase Apendice I).

Así pues, empleando la ecuación 1.55 para expresar el número de procesos de fotoionización (por unidad de tiempo y volumen), tenemos que:

$$N_{\rm n} \ \infty = \frac{4\pi N_{\rm n} \alpha_{\rm nL} I \nu \ (1 - e^{-h\nu/kT}) \ d\nu}{h\nu}$$

donde Nn es la densidad de átomos en el nivel estado n ,donde por microrreversibilidad tenemos que:

lo cual implica que:

$$\frac{\alpha nk}{\alpha kn} = \frac{N_1 (N_0 \tau f(v) + N_0 f(v))}{N_0 4\pi I \nu (1 - e^{-h\nu/kT})} \frac{dv}{d\nu} h\nu$$

y entonces

$$\frac{\alpha nk}{\alpha kn} = \frac{NiNeTfH(v)dv}{Nn4\pi I\nu(1-e^{-h\nu/kT})} \frac{h\nu}{d\nu} + \frac{NiNefs(v)dv}{Nn4\pi I\nu(1-e^{-h\nu/kT})} \frac{h\nu}{d\nu}$$

Nn co = Nco n

ec.II.16

ec.II.14

donde f $\bullet(v)$ es la distribución de velocidades de los electrones secundarios, fH(v) la función de distribución de los primarios, el primer término es la contribución de los electrones termales (NoT) y el segundo es la de los electrones secundarios (No), que se producen por las colisiones de las partículas rápidas con los átomos y/o iones del medio.

De manera que, la relación entre los coeficientes de absorción se incrementa, debido a la presencia de las partículas rápidas.

El primer término se estudió ampliamente en el capítulo anterior. Queda ahora por estudiar el segundo término de la relación:

anl	ani termal	+	ani	secundario	ec.II.17
αLn	αLn termal		αLn	secundario	

entonces

$$\frac{\alpha_{\text{nL sec.}}}{\alpha_{\text{Ln sec.}}} = \frac{N_1 N_{\text{sfs}}(v) dv}{N_n 4 \pi I \nu (1 - e^{-h\nu/kT})} d\nu$$

y como $d\nu = m/h v dv de la ec. 11.12$ entonces

$$= \frac{NiN_{s}f_{s}(v) h^{2}v}{N_{n}4\pi Iv(1-e^{-hv/kT})m_{e}v}$$

y como Iv está dado por la Ley de Planck:

BAC.

ani

αLn

$$I\nu = \frac{2h\nu^{3}}{c^{3}} \frac{1}{(e^{h\nu/kT} - 1)}$$

si la sustituimos en la «c.II.19, obtenemos que: (véase Apéndice V)

$$\frac{\alpha_{nL}}{\alpha_{Ln}} = \frac{NiNsfs(v)(hc)^2}{2lnANn4\pi wv^2} e^{hv/kT} e^{c.II.21}$$

y como a densisdad de electrones secundarios $N_{\rm B}$ es una fracción de la densidad de partículas rápidas Nr según la ec.II.4 , entonces queda:

$$\frac{\alpha n L}{\alpha L n} = \frac{N N r f (v) h c^2 e^{h \nu / k T}}{2 N n 4 \pi m e v l n \Lambda v^2} e c. 11.22$$

("sec." denota secundarios)

Ahora, de la Ley de Saha podemos calcular el cociente entre la densidad de iones termales y átomos neutros N_1/N_n , y substituyendo el resultado en la ec.II.22 tenemos que:

(véase Apéndice V)

$$\frac{\alpha nL}{\alpha Ln} \text{ sec. } = \frac{Nf}{Ne} \left(\frac{c}{2nh\nu} \right)^2 \frac{(2\pi m_e)^{1/2} (kT)^{3/2} e^{(\nu-\nu_n)h/kT} f_s(\nu)}{\ln h}$$

ec.11.24

ec. II. 19

ec. II. 20

Queda por determinar la función de velocidad $f_{\rm B}(v)$ para los electrones secundarios, para tal fin, partiremos de su energía cinética $E_{\rm S}$ = $1/2m_{\rm e}v_{\rm s}^2$; por lo que derivando respecto de v tenemos que dEs/dv = me v_{\rm S} \Rightarrow dE_{\rm S} = m_{\rm e}v_{\rm s}dventonces

 $dns/dEs = (dns/dv)(1/mev_s)$

dns/dv = mevs dns/dEs

entonces como

$$f_s(v) = dn_s/dv = m_e v_s dn_s/dEs$$
 ec.II.25

y substituyendo la ecuacion 11.2 para dns/dEs, tenemos que

$$f_s(v) = m_e v_s (n_f Z^2 \alpha / E_o lnA) \sqrt{E_s / E_o}$$
 ec. II. 26

y substituyendo el valor de Es, tenemos:

$$f_s(v) = m^{3/2} v_s^2 n_f Z^2 a / (E_0^{3/2} lnA)$$
 ec.II.2

Ahora, calculando el número de recombinaciones radiativas para un ión de Plasma a causa de los electrones termales y secundarios, el número de fotones radiados por unidad de tiempo y volumen será: (de acuerdo con ec.II.13)

$$F_{Ln} d\nu = N_{\infty} n = NiNef(v) dv \sigma_{Ln} =$$

11.28

$$= N_{\rm n} \, \infty = 4\pi N_{\rm n} \alpha_{\rm nL} I \nu (1 - e^{-h\nu/kT}) \frac{d\nu}{h\nu}$$

donde, f(v) es la distribución de velocidades de los electrones (la suma de termales y secundarios), ahora separando los flujos de electrones, en termales y secundarios, queda:

$$FLn dv = NiNeTfM(v)\sigma Lnv dv + NiNefs(v)\sigma Ln v dv$$

11.29

donde, el primer término es puramente termal, y el resultado de esta emisión es conocida (como se vió en el capítulo I), y el segundo término, es la contribución neta de los electrones secundarios al flujo total de emisión, de tal forma que podemos escribir: Fin $d\nu = Fin d\nu$ termal + Fin $d\nu$ secondarios

Fin $d\nu$ secundarios = NiNsfs(v)oin vdv

En este tipo de emisión, por el momento basta con decir que, la presencia misma de partículas rápidas (en este caso iones y/o electrones), puede perturbar de manera importante cualquier tipo de emisión del Plasma y, en este caso, modificar a los coeficientes de fotoionización (como se demostró).

Entonces cuando aumenta la fotoionización, aumenta la probabilidad de captura de electrones, ya que se incrementa la cantidad de electrones libres. Entonces las capturas electrónicas deben aumentar hasta que sean muy semejantes en número, a las fotoionizaciones, ya que estamos suponiendo que existen las condiciones en que es válida la microrreversibilidad. La emisión por el proceso de captura electrónica de los iones del Plasma (recombinación) se ve aumentada en un término debido a la presencia de las partículas rápidas.

Ahora bien, cuando los electrones capturados por los iones del Plasma, se enlazan en estados excitados del ion, eventualmente decaen a un nivel inferior, emitiendo un segundo fotón, a este último fenómeno se le conoce como Recombinación Dielectrónica.

37

11.31

11.30

La recombinación dielectrónica está à intimamente ligada a los procesos de excitación por impado ele electrónico, y en este caso (en que un haz monoenergético de il iones rápidos cruza a través del Plasma) se produce una gran ele catildad de electrones secundarios, que junto con los lonemanes rápidos, podrían impactar a los iones termales del Il Plasma, provocando emisiones por excitación y por recombina senación electrónica.

Por lo tanto, estos procesos puden in presentarse de manera simultánea. Así que, el número tola do de fotornes que pueden emitirse por la desexitación que sige se a la excitación por impacto electrónico, en un volumen delera.erainado , seria igual al número de combinaciones de los es posibles impactos, multiplicados por la probabilidad de comucurencia, es decir

donde	Fie	es el número total deforocotones inducidos por impacto electrónko co
	Ne	es el número de electron-nones en el volumen de interés
	Nmg	es el número de átomos∎∎∎veces ionizados que están en su estadobd base
	Cgi	es el coeficiente de profo~obabiliciæd de excitación por impacto de de electrones

[71]

Y de manera similar se define el núminúmero total de fotones posibles de ser emitidos en un cierlo vœvvolumen, por el proceso de recombinación dielectrónica (FDME).

FDRE = NeNetl, (Cg)gCg)d ec. 11.33

donde	Ne	es el número de electritrones en el volumen de interés
	Nm+1,g	es el número de átoms 2+5 milveces ionizados, que están en su estadobado base.
	Cgjd	es el coeficiente de ron recombinación dielectrónica.

El coeficiente Cgjd representa la paq probabilidad de que un ion, m+1 veces ionizado, capture un elesílectrón, en el estado j y se desexcite al estado base. De Mangaonera que el número total de fotones emitidos por recombinación y desexcitación, lo podemos expresar como: [71]

Este tipo de emisión a provocado interés ya que puede aportar información acerca de los estados de ionización del medio que se observa, a manera de ejemplo, mostramos la expresión que Pottasch [60] encuentra para calcular la porción de la intensidad luminosa del sol que corresponde a las emisiones de éste tipo:

11.35

11.36

donde

Io =	1.744X10 ⁻⁷ (para la intensidad solar observada
	desde la Tierra)
Wij	es la diferencia de energias entre el nivel
	i y el nivel j en eV
Aij	es la probabilidad de transición del nivel i
	al j en unidades de frecuencia (1/seg).
dh	es la fracción del volumen productor o la
	altura, según las unidades de densidad Nai

Con esta formulación, es perfectamente posible conocer la intensidad de la emisión en cada una de las longitudes de onda, o bien la emisión total, conociendo tan sólo los coeficientes de recombinación y excitación de impacto electrónico. Estos coeficientes se calculan mediante la relación propuesta por Regemorter [64] (para excitación por impacto electrónico) y por Burgess [12] (para recombinación dielectrónica).

En el caso de excitación el coeficiente C_g se obtiene en dos rangos de validez, uno cuando $n \neq 1$ ó $n \neq 2$ y en el caso de que n = 1 ó n = 2. [71]

En el primer caso, es decir, cuando n \neq 1, 2 el coeficiente es:

$$C_{gi} = 1.7X10^{-3} \Delta E_{gi}^{-1} T^{-1/2} g f_{gi} \exp(-\Delta E_{gi}/kT)$$

donde

- fgi es la fuerza de oscilador para la excitación, del nivel base al nivel i k es la constante de Boltzman
 - T es la temperatura del Plasma

g es el factor de Gaunt (≈ 0.2) [71]

ΔEgi es la diferencia de energía entre los estados g (base) y el i (excitado)

En los casos en que n = 1 ó n = 2 Mewe et al [43, 44] propone la siguiente expresión para este coeficiente:

$$C_{gi} \approx 2.51 \times 10^{-8} W_g^{-1} y^{1/2} \Omega(y) \exp(-y) Z_{gi}^{-3}$$
 II.37

donde

aqui f'(y) =
$$\ln(y+1 \neq y) - \{0, 36+0, 03(y+0, 01)^{a}\} (y+1)^{-2}$$

con a = 0.5 (si $y \ge 1$) 6 -0.5 (si y < 1). Los valores de A, B, C, D $y \in E$ se dan en la tabla II.1.

Los coeficientes de recombinación dielectrónica [12] son:

$$C_{gld} = 8.22X10^{-4} \Delta E_{g1}^{1/2} f_{g1} A(x)B(Q)T^{-3/2} \cdot II.38$$
$$\cdot \exp \left\{ (-1.1613X10^{4} T^{-1})\Delta E_{g1} (1+0.015Z^{3}/(Q+1)^{2})^{-1} \right\}$$

donde

Q

Т

= m+1, es la carga del ion m veces ionizado que se recombina con un electrón = (10.105)(0.015)(1.100)(1.

A(x) =	(1+0	. 105x+0,	015x ^e)x=	ΔEg1/ 1	3.6(Z+1)

 $B(Q) = Q^{1/2} (Q+1)^2 (Q^2+13.4)^{-1/2}$ $\Delta E_{q1} \qquad \text{es la diferencia energética entre el nivel}$

gyelieneV.

es la	temperatura	del	Plasma	
-------	-------------	-----	--------	--

fgi es la fuerza de oscilador para la excitación de g a i.

Así queda totalmente determinada la cantidad de radiación emitida por este proceso, con lo que concluimos el presente capitulo. El siguiente capítulo trata sobre la emisión fotónica que producen los iones rápidos por sí mismos, al cruzar un Plasma.

TABLA II.1

Parámetros para la excitación de iones tipo helio e hidrogenoides, para los casos en que n = 1, n = 2. Ω i es el valor de Ω en la energía umbral; we es el peso estadístico del nivel 2³Pk, es decir we = 5, 3, 1.

Transición	A	в	с	D	E	Ω1
1s ^{2 1} So - 1s2p ¹ P1	0.55Ωı	0	0	0.225Ωı	$4.44(1-\frac{1.3}{Z})$	1.55 - 3.9/Z
1s ^{2 1} So - 1s2s ³ Sı	0	0	0.6	-0.2 -0.17	O	0.2
1s ^{2 1} So - 1s2p ³ Pk	ο	0	2 ω¤	$\frac{\Omega_1}{2} - \frac{\omega_k}{9}$	0	$\frac{\omega_{k}}{9}(1.5-\frac{2}{2-1})$
$1s^{2}S_{1/2} - 2p^{2}P_{1/2}$ 3/2	1.2 [‡]	0	2	0	4.44	3.2 [‡]

Este valor se usa cuando Z = 6.

‡ Este valor incluye el efecto de resonancia, cerca del umbral

J. Quant. Spectrosc. Radiat. Transfer Vol.26, pp 137, 1981 [71]

CAPITULO III

EMISION FOTONICA POR CAPTURA ELECTRONICA DE PARTICULAS CARGADAS, DURANTE SU PROCESO DE ACELERACION

INTRODUCCION

En los capítulos anteriores, se obtuvieron las emisiones de un Plasma en diversas condiciones físicas, una de las más interesantes es cuando el Plasma contiene partículas rápidas en su interior. A causa de las partículas rápidas, el Plasma puede modificar sus características espectroscópicas, pero, las partículas rápidas (que en lo sucesivo las llamaremos proyectiles), por estar cargadas, interactuan de manera electromagnética con el medio, y son susceptibles de perder o ganar electrones a su paso a través del Plasma (a cuyos átomos, iones y electrones, llamaremos blanco).

Al efectuarse este intercambio de carga, los proyectiles pueden emitir o absorber fotones. Si el proceso que ocurre es el de pérdida de electrones de los proyectiles, se debe a que el proyectil recibió energía del medio, ya sea por colisiones o por absorción de fotones. Pero en el caso en que los proyectiles capturan electrones a su paso, entonces ocurrirá una emisión fotónica, análoga a lo que llamamos recombinación electrónica, con la diferencia de que, en la recombinación, los átomos del Plasma (o el medio), son los que emiten al capturar electrones. En este caso, son los proyectiles que existen en el Plasma, y que se están acelerando, los que capturan electrones, y al hacerlo emiten fotones.

El problema muestra algunas complicaciones adicionales con respecto a los casos que, en los capitulos anteriores, llamamos de recombinación, como por ejemplo: el hecho de que los proyectiles están acelerándose y modificando su carga a medida de que atraviesan el material.

La diferencia fundamental es que en el presente capítulo se estudian las emisiones de los proyectiles al atravesar un medio, y en los capítulos anteriores se estudiaron las emisiones del medio, (constituido por partículas termales) que en un momento dado se ve afectado por los proyectiles que lo cruzan, y hace que tengan una distribución de velocidades distinta a la del medio.

Esto modifica la energía de los fotones que se emiten y la probabilidad de capturar a los electrones del medio, que ahora "pasan" más rápido alrededor del proyectil.

Una vez que se ha logrado integrar a todos estos efectos, y calcular la emisión por captura electrónica de los proyectiles, podemos efectuar el proceso inverso, es decir, a partir de un espectro de emisión, inducir todas las características necesarias para poder producir una emisión semejante, tanto de los proyectiles como del medio.

Esta posibilidad convierte a este estudio en un método poderoso, para sondear las características de los Plasmas (en que se esten acelerando partículas), ya que lo único que se necesita es observar a distancia la emisión fotónica de estos Plasmas y, en base a la forma espectral, deducir las condiciones físicas dentro del Plasma. Estas características lo hacen el método ideal para estudios astrofísicos, aunque también puede ser de gran utilidad en el laboratorio, para hacer diagóstico en experimentos en que esté teniendo lugar una aceleración de partículas.

III.a SECCIONES EFICACES DE INTERCAMBIO DE CARGA PARA LOS PROYECTILES

La ecuación fundamental que describe el proceso de captura electrónica (con la emisión de un fotón), es la misma que en el caso de recombinación (ec.I.53 ec.II.12)

$$1/2 mv^2 + \chi_{n\infty} = h\nu \qquad III.1$$

donde 1/2 mv² es la energía del electrón libre, en su órbita hiperbólica; $\chi_{n\infty}$ es el potencial de ionización de un electrón ligado, en la órbita n; y h ν es la energía del fotón que se emite como consecuencia de la captura de un electrón.

El número de capturas (por unidad de volumen, por unidad de tiempo) correspondientes a proyectiles con velocidad v, en semejanza a la ec.I.54 (en unidades c.g.s.) es:

 $N \infty n = NeNif(v) v \sigma Ln(v) (1/s \cdot cm^3)$

donde No es la densidad de electrones blanco (cm⁻³) oun es la sección eficaz de captura electrónica a un nivel n (dependiente de la velocidad de] proyectil) (cm²) Nif(v) es el espectro de velocidades de los proyectiles

(cm⁻³ ya que f(v) es adimensional)

Se puede apreciar que, para obtener el número de capturas y por tanto el número de fotones o intensidad de emisión, es necesario conocer la sección eficaz de captura electrónica (que en esta ocasión depende de las características del proyectil y no se puede obtener empleando las características de equilibrio térmico del medio, como se hace en el capítulo anterior).

La probabilidad de captura electrónica puede visualizarse con el sencillo ejemplo del radio al que se enlaza un electrón capturado por un ion (figura III.1).

Un electrón con velocidad v (relativa al ion), que colisiona tangencialmente con un ion (la colisión frontal es poco probable), éste queda atrapado por el ion si pasa a una distancia tal que la fuerza de atracción (fuerza electrostática F.) es igual, en magnitud, a la fuerza virtual

111.2

de escape, que siente el electrón ("fuerza" centrífuga Fc), es decir,

ec. III.3

$$|\mathbf{F}_{e}| = |\mathbf{F}_{c}|, y \text{ como } |\mathbf{F}_{e}| = eq/r^{2}; \mathbf{F}_{c} = m_{e}v^{2}/r$$

entonces, como $eq/r^2 = m_ev^2/r$ si $r = r_c$ oc.III.4 entonces $r_c = eq/m_ev^2$ oc.III.5

este radio representa a toda una área transversal (parámetro de impacto) alrededor del ion, en la que si pasa un electrón, éste es capturado por el ion, a excepción de cuando pase a una distancia del ion mayor que rc.

Mediante este sencillo ejemplo podemos observar que, si la velocidad relativa entre el ion y el electrón aumenta, el área (o la probabilidad de captura) se reduce, y así entonces, para un par ion-electrón con velocidad relativa elevada, el electrón necesita pasar muy cerca del ion para que éste lo capture, lo cual se traduce en una menor probabilidad de captura a medida que la velocidad relativa aumenta.

Ahora bien, a los proyectiles sujetos a aceleración, los consideraremos con un vector de velocidad v_p, y a los electrones que provienen del medio, les asignaremos la velocidad más probable (la velocidad termal del medio vt) que denotaremos con el vector vt e introducimos el concepto de velocidad relativa vR, donde

vR = vp + vt ec.III.6

que, de aquí en adelante, representará a la velocidad relativa entre el ion y el electrón.

Las secciones eficaces que se encuentran en la literatura dependen, entre otras cosas, de la velocidad de las particulas incidentes respecto a un medio que se supone en reposo y con temperatura cero. [6, 7, 8, 48]

(véase Tabla III.1)

En el presente trabajo empezaremos por introducir la dependencia de estas secciones eficaces, con respecto a la temperatura, mediante la velocidad relativa entre los proyectiles y los blancos.

Las secciones eficaces de captura dependen, además, del número atómico, de la carga y masa de los proyectiles, Z, q y mp, respectivamente, y del número atómico, de la carga y masa de los blancos, Zm, qm y mb. Los blancos regularmente tienen un estado de carga que es el mayoritario, determinado directamente por la temperatura (véase Tabla III.2).

Para los proyectiles la situación es diferente, ya que la carga efectiva q (v) depende de las interacciones que tengan con el medio en que se encuentran, que a su vez dependen de la velocidad de los proyectiles. Este tipo de interacciones pueden llevar a los proyectiles a intercambiar carga con su medio, por lo que se hace necesario conocer si se establece o no el proceso de captura (además de las secciones eficaces), a una determinada velocidad v_p de los proyectiles en un medio con temperatura y composición conocidas.

Nuevamente aquí se hace necesario distinguir a un medio de baja temperatura, de uno de temperatura elevada, ya que si tenemos un gas inicialmente neutro, con temperatura baja, al subir la temperatura de éste, los componentes del gas se ionizarán y, en el caso de que el medio sea hidrógeno, los electrones disponibles aumentarán su velocidad de manera drástica al liberarse de los núcleos del hidrógeno, los cuales se trasladan mucho más despacio. Esto se debe a que la energía termal moviliza a una masa muy pequeña, en el caso de los electrones. Todos estos factores que afectan a la probabilidad de capturar un electrón, se tienen que tomar en cuenta para elaborar una buena simulación del proceso.

Para incluir esta serie de efectos sobre los proyectiles, se tomaron las secciones eficaces conocidas (algunas de las cuales aún no están corroboradas experimentalmente), y se trató de introducir en ellas los factores que las afectan, respetando su forma funcional.

Cuando la velocidad relativa vR es baja, el radio de captura es grande y, entonces los electrones tienen una elevada probabilidad de quedar atrapados lejos del núcleo del proyectil, en donde los niveles cuánticos de energía están muy próximos entre sí, es decir, están altamente degenerados.

Esto aumenta la probabilidad de que, a bajas velocidades, la captura se lleve a cabo en estados cuánticos permitidos, por lo que el fotón emitido en el proceso, tiene una energía estrictamente igual al cambio entre su energía inicial y la que se calcula a esa distancia del núcleo E(rc). A ese tipo de captura se le da el nombre especial de *Captura Coulombiana*.

En el caso en que el electrón que se captura tenga una velocidad relativa elevada su radio de captura es corto, lo cual implica que al quedar atrapado, está muy próximo al núcleo del proyectil que lo captura, en donde los niveles cuánticos están bastante separados y es muy probable que la distancia a la que se igualan las fuerzas Fe y Fc, corresponda a una órbita prohibida, por lo que el electrón tendrá que "caer" en la órbita inmediata inferior (de menor

TABLA III.1 SECCIONES EFICACES DE PERDIDA Y CAPTURA ELECTRONICA

MEDIO ATÓMICO

PROYECTILES: Protones, iones hidrogenoides

Secciones eficaces para protones

Captura

 $\sigma_{cc1} = \pi a_0^2 z_{t}^{5} z_{t}^{6} (2v_0/v)^{12} (1+4z_{t}^{2}v_0^2/v^2)^{-4} \quad \text{para toda } v$

Pérdida

 $\sigma_{pc1} = 4\pi \alpha_0^2 Z^{1/3} Z t^2 (v_0/v)^3 \qquad si \ v > v_0 \qquad [8]$ $\sigma_{pc2} = \pi \alpha_0^2 Z^{-5/3} Z t^{1/3} (v/v_0)^2 \qquad si \ v \le v_0 \qquad [7]$

Secciones eficaces para proyectiles hidrogenoides.

Captura

Pérdida

σpc2 σpc1 si v ≤ vc si v > Vc

 $\sigma_{cc2}(v_c) = \sigma_{pc1}(v_c)$

donde

 $v_c = 1.27 \ Z^{0.43} v_o$

[48]

PROYECTILES: Iones multicargados

Seccciones eficaces para proyectiles multicargados Captura $\sigma_{cc3} = \pi_{ao}^2 q^2 Z_t Z_t^{*5} Z^{10} (v_0/v)^9 (1+4Z_t^{*2} v_0^2/v^2)^{-4}$

para toda v [54]

continúa Tabla III.1

$\sigma_{pc3}(v_1) = \sigma_{pc4}(v_1)$	donde	$v_1 = 1.32q^{2/3}Z^{-0.26}v_0$
$\sigma_{\rm pc4} = 4\pi a_0^2 q^{1/3} Z t^2 (v_0/v)^3$		si v > vi [7]
$\sigma_{\rm PC3} = \pi \omega^2 q^{-3} Z^{4/3} Z_{\rm L}^{2/3} (v/v_0)^2$		si v ≤ vi [7]
Pérdida		الم الأرك المراجع المر المراجع المراجع المراجع المراجع المراجع

Nota: σ_{cc1} y σ_{cc3} se sustituyen por σ_{cr1} si la energía cinética de los proyectiles es mayor a 9 MeV/nucleón, (la fórmula se encuentra en la sección de Plasma).

PLASMA

PROYECTILES: Protones, iones hidrogenoides
Secciones eficaces para Protones
Captura

$$\sigma_{cr1} = 6.15a_0^2q^4(v_0/c)^3(v_0/v)^2(v^2+q^2v_0/v_0^2)^{-1}$$
 si v < 3Zvo [6]
 $\sigma_{cr} = 9.1X10^{-21}Z^4v_0^4(v^2+Z^2v_0^2)^{-2}(Z^2v_0^2/v^2)$
 $\cdot exp[-(4Zv_0/v)arctg(v/Zv_0)] [1-exp(-2\pi v_0/v)]^{-1}$
 $v \ge 3Zv_0$ [6]
Pérdida
 σ_{pc2} si v < v2
 σ_{pc1} si v < v2
 $\sigma_{pc1}(v_2) = \sigma_{pc2}(v_2)$ donde $v_2 = 1.32Z^{0.4}v_0$

Secciones eficaces para proyectiles hidrogenoides

Captura

siv≤vc

ocr1

vc = 0.0392^{0.91}... $\sigma_{cr1}(v_c) = \sigma_{pc2}(v_c)$ en

continúa Tabla III.1

Vc

si v ≤ vc

si v > vc

Pérdida

Opc2 Opc1

o'cr

 $v_c = 0.392^{0.91} v_c$

PROYECTILES: Iones multicargados

Secciones eficaces para proyectile multicargados

Captura

σ<u>c</u>r1 si v < 3qvo si v ≥ 3qvo Ocr * denota que en la fórmula se reemplaza a Z por q

Pérdida

брс3		si v < v 1
$\sigma_{pc3}(v_1) = \sigma_{pc4}(v_1)$	donde	$v_1 = 1.32q^{2/3}Z^{-0.28}v_0$

Nota : vo es la velocidad de Bohr ; a_0 el radio de Bohr; c la velocidad de la Luz en el vacío ; Z el número atómico de los proyectiles ; Zt es el número atómico del medio con que interactúan los proyectiles; Zi es la carga efectiva del medio con que interactúan los proyectiles; q es la carga efectiva de los proyectiles y v es la velocidad relativa de los proyectiles.

TABLA III.2 ESTADO DE CARGA MAYORITARIO DE ALGUNOS ELEMENTOS V5. LA TEMPERATURA

ar ya muruyin muyahya muhama -ar

n Service Service Service Service Service

.

a ser a s												1.1.1.1	
	1	2	6	7	8	10	11	12	13	14	16	20	26
I (K)		~	~	~	-		~				ંતુ કર		
513	0	0	0	0	0	0	0	0	1	1	0	0	0
6.3£3	0	0	0	0	0	0	1	0	1	1	0	1	0
8E3	0	0	0	0	0		1	1	1	1	0	1	1
1E4	0	0	0	0	0	0	1	1	1	1	.0	୍ୟ 👘	1
1.25E4	• 0	. 0	1	- 1	0	. O je	1 ्र	1	1	1	1	1	1
1.6E4	0	:., 0 .,	1	. 1	0	0	1 77	1	1	2	1	2	1
2E4	1	0	1.1	1	1	0	1	2	1	2	1) (2	1
2.5E4	1.	. 0	11	1	1	1	1	2	2	2	2	2	1
3.1E4	1	. 1	2	1	1	1	1	2	2	2	2	2	2
4E4	1	1	- 2 -	2	2	1	1	2	2	2	2	2	3
5E4	1	. 1	2	2	2	2	1	2	3	3	3	2	3
6.3E4	1	1	2	3	2	2	2	2	3	3	4	2	3
8E4	1	. 1	з	з	3	2	2	2	3	4	4	3	4
1E5	1	2	3	3	з	3	3	2	3	4	4	4	4
1.25E5	1	2	4	4	4	3	3	3	3	4	5	5	5
1.6E5	1	2	4	4	4	4	4	4	3	4	5	5	6
2E5	1	2	4	5	5	5	4	4	4	4	6	6	6
2.5E5	1	2	4	5	5	5	5	5	5	4	6	7	7
3.2E5	1	2	4	5	6	6	6	6	6	5	6	8	8
4E5	1	2	4	5	6	7	7	6	6	6	6	9	8
5E5	1	2	4	5	6	7	7	7	7	7	7	10	8
6.3E5	1	2	4	5	6	Ŕ	8	Ŕ	8	Ŕ	8	10	Ř
8E5	î	2	5	5	6	Ř	Ř	q	ă	ä	ğ	10	ă
1F6	i	2	5	5	â	g	ă	ă	10	10	in	10	ă
1 2556	1	2	6	6	6	8	a	10	10	11	11	10	10
1 6F6	1	5	6	8	a	Ω Ω	a	10	11	11	12	12	11
2F6	î	2	ē	7	â	õ	ă	10	11	12	12	12	12
2 556	î	5	e e	7	7	ŏ	ă	10	11	12	12	14	12
2.320	1	5	6	7	2	0	0	10	11	12	14	10	10
176	1	2	6	'7		0	0	10	11	12	14	17	10
420	1	2	6	4	0	3	10	10	11	12	14	17	10
0.00	1	2	0	4	0	10	10	10	11	12	14	10	10
0.310	1	2	0	7	8	10	10	11	11	12	14	18	10
41-7	1	2	0	4	8	10	11	11	12	12	14	18	16
167	1	2	6	4	8	10	11	11	12	13	14	18	16
1.255/	1	2	6	7	8	10	11	12	13	13	14	18	16
1.02/	1	2	ь	1	8	10	11	12	13	14	15	18	19
ZE/	1	2	6	<u>7</u>	8	10	11	12	13	14	15	18	21
2.517	1	2	6	7	8	10	11	12	13	14	16	18	22
3.2E7	1	2	6	7	8	10	11	12	13	14	16	19	22
4E7	1	2	6	7	8	10	11	12	13	14	16	19	24
5E7	1	2	6	7	8	10	11	12	13	14	16	19	24
6.3E7	1	2	6	7	8	10	11	12	13	14	16	19	24
8E7	1	2	6	7	8	10	11	12	13	14	16	19	25
1E8	1	2	6	7	8	10	11	12	13	14	16	19	25
1.25E8	1	2	6	7	8	10	11	12	13	14	16	19	26
1.6E8	1	2	6	7	8	10	11	12	13	14	16	19	26
2E8	1	2	6	7	8	10	11	12	13	14	16	19	26
2.5E8	1	2	6	7	8	10	11	12	13	14	16	19	26

LA TEMPERATURA ESTA DADA EN GRADOS KELVIN, SE EXPRESA EN NOTACION CIENTIFICA (En = 10^n).

Z ES EL NUMERO ATOMICO DE LOS ELEMENTOS, Y EN EL INTERIOR SE MUESTRAN LOS VALORES DE LA CARGA EFECTIVA EN UNIDADES FUNDAMENTALES DE CARGA (-e).

energía), y se produce un fotón con una energía adicional, desde el punto de vista de la que le correspondería estrictamente si se enlazara a la distancia en que las fuerzas F_0 y F_c se igualan (rc). Esto se puede expresar matemáticamente como sigue: (de la ec.III.1)

$$h\nu = 1/2 m_0 v R^2 - E(r_f)$$

con $rf < r_c y E(r_f) < E(r_c)$

donde	E(rf)	es la energía del electrón en la órbita estable de radio rf
	E(rc)	es la energía del electrón a la distancia del núcleo re
	. rr	es el radio de la órbita estable inmediata inferior al radio de captura.
	Гc	es la distancia al núcleo en que $F_0 = F_c$

a este tipo de captura le llamaremos *Captura Radiativa*. Resumiendo, el caso en que rc = rr se llama *Captura Coulombiana*, y calculando la órbita n de radio rn tal que rn = rr tenemos que :

 $E(rc) = -\chi_n \ \infty = E(rf)$ ec.III.8

ec.III.7

donde

rn es el radio de la órbita con número cuántico n

En el caso radiativo rr≢rc y, entonces, en base a las ecuaciones III.1, III.7 tenemos que:

 $E(rf) = -\chi f \infty$ ec.III.9

con rf < rc

donde $\chi r \infty$ denota el potencial de ionización de la órbita correspondiente al radio rr.

Aquí se presentarán las secciones eficaces que predominan en cada uno de los anteriores procesos (captura coulombiana y radiativa). Las secciones eficaces de captura coulombiana se denotarán como σcc y las que son válidas para la captura radiativa se denotarán como σcr.

A energias cinéticas de $1/2m_{ev}r^2 \leq 9$ MeV/nuc, $rac{edomina}{rac}$ is $3 = 1/2m_{ev}r^2 \geq 9$ MeV/nuc predomina ocr (véase $rac{edomina}{rac}$, III.2)

De acuerdo con la $_{\circ c,III.6}$ se puede obserwar que la captura coulombiana en los Plasmas (T >> 0) es un proceso raro y en ocasiones inexistente, ya que la velocidad termal hace que la velocidad relativa sea enorme.

En nuestro caso, los proyectiles inicialmente tienen una carga QL, que es la carga correspondiente a los ellementos que constituyen a los proyectiles (a la temperaturen local del Plasma), al inicio de la aceleración [33]. Abomra, si este proyectil empieza a ganar energía del medio, está en la posibilidad de intercambiar carga con su alre-dedor. Se supone que los proyectiles no sólo se mueven, simmo que están sujetos a un proceso de aceleración (similmar al que probablemente origina a los Rayos Cósmicos).

La carga del proyectil evoluciona al interac-cionar éste con su alrededor. Las variaciones de la carga, se pueden describir por una ecuación semiempírica que las representa bastante bien, según experimentos efectuados [53] y es:

 $q_{\mu}^{*} = Z [1 - \xi \exp(-130\beta/2^{0.68})]$

donde

 $\beta = v_p/c$ $\xi = exp [-130(kT/mc²)]$ k es la constante de Boltzmanm es la masa de los blancosZ es la carga nuclear del proyectilq es la variación funcional de la cargama

Esta ecuación nos describe únicamente la form=a funcional en que evoluciona la carga desde O hasta Z. Para el presente caso tenemos que la carga q empieza en un valor QL, así que haremos una parametrización para expresar la evol=ución de la carga y la llevaremos desde un valor QL, hasta Z , siguiendo la evolución de acuerdo con la ec. II 1.10, esta parametrización es una recta, lo que nos conmaduce a la siguiente expresión de carga efectiva [53]

111.11

TTT.10

 $q^{\bullet} = [(Z - Q_L)(q_v^{\bullet} - q_{vLh}^{\bullet})/(Z - q_{vLh}^{\bullet})] + = Q_L$

es la carga efectiva de los iones acelerados

cuando están a velocidad termal (ec.III.10) véase fig. III.3. De esta manera, asignamos una carga QL a un ion que tiene velocidad termal, es decir, $q_v(\beta termal) = QL$, y termina asintóticamente hacia Z, de igual manera que como lo describe la ec.III.10.

Con esto tenemos una buena forma de calcular la evolución de la carga de un proyectil que atraviesa un medio, mientras es acelerado a partir de su energía termal local, así que procederemos a evaluar las secciones eficaces.

Para introducir el efecto de la Temperatura en las ecuaciones, tomamos en cuenta que a bajas temperaturas (para gases atómicos), los electrones están atados a sus núcleos, y un proyectil al tratar de arrancar un electrón de los átomos del medio, "sentirá" que esta atadura disminuye con la temperatura, hasta que finalmente los electrones se liberen, cuendo T \geq Tionizacion.

De acuerdo a algunos autores [3,54] podemos escribir el potencial atractivo como un producto de funciones

 $UTOTAL = U_c \psi (T) \qquad III.12$

donde Uc es el potencial coulombiano y

donde

$$\psi(T) = 1 - \exp(1 - T_i/T)$$
 III.13

es una función moduladora del potencial, que depende de la temperatura; de manera que, a temperaturas bajas, el electrón siente (básicamente), sólo la atracción coulombiana del núcleo, y ésta desaparece abruptamente para temperaturas cercanas a Ti (la temperatura de ionización).

Para tomar en cuenta este efecto, dividimos nuestras secciones eficaces (para gases atómicos ,T=O) entre la forma funcional de decaimiento del potencial, ya que al disminuir la ligadura de los electrones, es mucho más fácil capturarlos [55]. Se tomó una temperatura de ionización Ti=2.5X10^{6°}K que es la que corresponde a la temperatura de ionización mayoritaria, para un medio de hidrógeno.

A temperaturas T > Ti las secciones eficaces sufren una drástica disminución a causa de que los electrones se liberan de sus núcleos y la velocidad termal de los blancos, vt, aumenta drásticamente (vt = $\sqrt{3}kT/m$).

En la figura III.4 se ilustra la apariencia de la sección eficaz de captura, en todos los rangos de temperatura y energía. Se muestran también los resultados para $T \leq T_1$ en

que se hizo la siguiente aproximación:

 $\sigma_{cc}/\psi(T)$ con Ti = 2.5 X 10⁴ °K donde 1/2mvr²< 9MeV

y $\sigma_{cr}/\psi(T)$ para cuando $1/2 \text{ mvR}^2 \ge 9\text{MeV}$

y, en las regiones restantes, $(T > T_{\rm i})$ la figura III.4 presenta los resultados de $\sigma_{\rm cr}$ que, suponemos, domina en esas regiones.

El cruce entre σ_{cc} y σ_{cr} , se indica con una línea sólida (caso en que $\sigma_{cc} = \sigma_{cr}$). Para las secciones eficaces de pérdida σ_{pc} (que también se ilustran), introducimos también el concepto de velocidad relativa vR, la cual reemplaza a la velocidad del proyectil, vp, y calculamos las secciones para cualquier rango de temperatura (figura III.5).

Para medio atómico se emplearon las secciones eficaces convencionales, independientes de la temperatura. [48]

Al introducir los efectos de la temperatura en las secciones eficaces, esperamos tener una visión más realista de la transferencia de carga, durante un proceso de aceleración de un proyectil, que está inmerso en un medio de temperatura finita.

Ya que se ha tenido cuidado de poner como condición a la frontera, el que todas las modificaciones tiendan a la forma original de las fórmulas no modificadas, (es decir que se reduzcan a éstas) en el rango en que éstas se derivaron, se puede decir, con absoluta confianza, que no se han modificado las secciones ya conocidas. Con las modificaciones aquí propuestas, se tiene una herramienta adicional para evaluar los sucesos que ocurren en otros rangos de temperatura.

Una vez conocidas las secciones eficaces que van a emplearse, el siguiente paso es conocer la evolución de carga de los proyectiles, (si pierden o ganan electrones) en base a estas secciones. Para tal fin, se proponen aqui algunos criterios de evaluación, para saber que proceso es el que tiene mayor probabilidad de ocurrencia.

III.b DELIMITACION DE LAS CONDICIONES PARA EL ESTABLECIMIENTO DE INTERCAMBIO DE CARGA

Cuando los proyectiles se emplezan a acelerar y están inmersos dentro de un medio gaseoso (por ejemplo en un Plasma, como ocurre en la mayoría de los escenarios astrofísicos), los proyectiles emplezan a interaccionar con la materia circundante.

Dependiendo de la densidad, carga y temperatura del medio, la interacción entre el medio y el proyectil, es más o menos intensa. Al interaccionar el proyectil con el medio, existe un intercambio de energía, lo cual, puede provocar una ionización del proyectil (pérdida electrónica), o bien puede provocar la captura de un electrón del medio (captura electrónica).

Estos procesos dependen tanto del camino libre medio de las partículas, como de las características del medio y del proyectil (por ejemplo de su carga, masa y velocidad). Pero al establecerse el intercambio de carga en el proyectil, ésto puede afectar la ganancia de energía del proyectil, si es que se está acelerando mediante algún mecanismo electromagnético (que son los más comunes). Tal cambio en la ganancia de energía afectaría, a su vez, a los procesos por efectuarse, lo cual implica que puede haber una retroalimentación en estos procesos.

Puesto que es posible que exista una retroalimentación entre las causas del intercambio de carga y el intercambio mismo, es necesario evaluar la importancia entre el camino libre medio para intercambio de carga del proyectil (pérdida y/o captura de electrones) y el paso característico de aceleración.

Por simplicidad consideraremos únicamente dos mecanismos de aceleración en nuestro análisis, a saber: aceleración estocástica (mecanismo Fermi) y aceleraciones por variaciones periódicas de campos magnéticos (mecanismo Betatrón), cuyas ganancias de energía cinética se pueden expresar como:

 $dE/dt = \alpha E^{\eta}$; $\eta = 1/2$; $\alpha = \alpha_{c}(2\mu c^{2})^{1/2}$

(en el caso de aceleración Fermi)

 $dE/dt = \alpha E^{\eta}$; $\eta = 1$; $\alpha = 2 \alpha_{h}$ III.15

111.14

(en el caso de aceleración Betatrón)

donde

α,

es la eficiencia hidromagnética de aceleración del mecanismo Fermi

es la eficiencia hidromagnética de aceleración

del mecanismo Betatrón

Dado que la aceleración se inicia a energías termales, a energías elevadas la captura electrónica es insignificante en relación a la pérdida electrónica, como se puede inferir fácilmente de las secciones eficaces (véase fig III.4,5), por lo tanto en nuestro caso (de captura), estamos en el dominio no-relativista en donde el proceso de captura electrónica es el dominante.

Para rangos no relativistas en la velocidad tenemos que:

$$E = \mu A v_p^2 / 2 \qquad III.16$$

donde μ es la unidad de masa atómica. A es el número de masa atómica, v_P la velocidad del proyectil, y con estos elementos se deducen criterios que nos permitirán decir cuales procesos se establecen en el proyectil, a su paso a través de un medio.

Empleando la regla de la cadena, tenemos que:

$$d/dt = v (d/dx)$$
 ya que $v = dx/dt$ III.17

y sustituyendo III.14 en III.17 tenemos que:

$$(v_p d/dx)E = \alpha (\mu A v_p^2/2)^{\eta}$$

$$\frac{dx}{dt} \frac{dE}{dx} = \alpha (\mu A v_p^2 / 2)^{\eta}$$

entonces

$$dE/dx = \alpha (\mu A/2)^{\eta} v^{2\eta-1} \Rightarrow dE = \alpha (\mu A/2)^{\eta} v^{2\eta-1} dx$$

pero como

$$E = \mu Av^2/2 \Rightarrow dE = \mu Avdv$$

entonces

$$\mu A v dv = \alpha (\mu A/2)^{\eta} v^{2\eta-1} dz$$

entonces

$$\mu A v^{1-2\eta+1} dv = \alpha (\mu A/2)^{\eta} dx$$

$$v^{2-2\eta} dv = \alpha (\mu A)^{\eta-1} 2^{-\eta} dx$$
 III.18

Definamos ahora la velocidad de cruce v $_{\rm c}$ como la velocidad en que

Ocaptura = Operdida

y, a continuación, integramos la eficiencia de aceleración (ec.III.18) para el rango de velocidad en que

V ≤ Vc

que es el rango de velocidades en que domina la captura. Ahora definamos a L = $(x-x_0)$ como la distancia en a que el proyectil alcanza la velocidad vc, e integrando la ec.III.18 a lo largo de L, podemos obtener una expresión para la eficiencia de aceleración en función de la velocidad $\alpha(v_i)$.

Introducimos ahora una condición para que se establezca el intercambio de carga (en este caso, la mayor parte es captura) en base al camino libre medio y la distancia L, que es:

$\lambda = 1/N(Zt)\sigma < L$ III.19

1 < L

v

donde λ es el camino libre medio para el intercambio de carga, L es la longitud de materia atravesada, ℓ es el paso característico de aceleración (dado por el mecanismo), N(Zt) es la densidad numérica del medio con que interacciona el proyectil y σ es la correspondiente sección eficaz (de pérdida σ_p o captura σ_c). Cuando la longitud de materia atravesada, L, es mayor que el camino libre medio (λ), llegamos a la siguiente condición para captura.

$$\alpha < 2(vc^{3-2\eta} - v^{3-2\eta}) N(Zt) \sigma (\mu/2)^{1-\eta} (3-2\eta)$$

111.20

y para pérdida

$$\alpha < 2(v^{3-2\eta} - vc^{3-2\eta}) N(2t) \sigma_{P} (\mu/2)^{1-\eta} / (3-2\eta)$$

111.21

donde α es la eficiencia de aceleración.

Esto nos define un rango en la eficiencia de aceleración en donde sea posible la captura ($v \le v_c$) o la pérdida ($v \ge v_c$).

Sin embargo, a causa de las colisiones inelásticas de los proyectiles con el medio, tenemos también una eficiencia de deceleración.

Por supuesto, para que el mecanismo de aceleración sea efectivo y produzca partículas supratermales, se debe satisfacer la siguiente condición:

α > αc | 111.22

donde α es el valor crítico de la eficiencia de aceleración, definido cuando las tasas de aceleración y deceleración son iguales. Es decir, es el valor que necesita superar nuestro mecanismo, para ser efectivo. A esta eficiencia se le denomina Alfa Crítica. [25]

La Alfa crítica en un medio de hidrógeno atómico, en el caso en que las partículas se aceleran por un mecanismo Fermi, se puede expresar como: [52]

$$\alpha_{c} = 3.38 \times 10^{-13} N(Z_{t}) q^{1/2} / A$$
 III.23

y, en el caso de que el mecanismo de aceleración sea el Betatrón, esta eficiencia se expresa como:

$$\alpha_{c}$$
 = 4.5X10⁻⁹ N(Zt)q^{0.18} T^{-0.27} A^{-0.78} III.24

En un medio compuesto por Plasma las respectivas eficiencias de deceleración son:

para el caso Fermi

$$\alpha_{c}$$
 = 3.89X10⁻⁷ N(Zt)^{0.98} q^{1.92} T ^{-0.96} A^{-0.88}

111.25

y para Betatrón

$$\alpha c = 0.28 \text{ N}(2t)^{0.87} \text{ q}^{1.87} \text{ T}^{-1.45} \text{ A}^{-0.87}$$

111.28

En suma, los criterios de intercambio de carga se pueden reducir a evaluar cuándo:

$$\frac{|\alpha|}{|\alpha_c|} > 1 \quad y \quad \lambda < L$$

para los casos de interés, ya sea Plasma o medio atómico, en los casos de pérdida o de captura.

En base a estas evaluaciones, se puede delimitar cuándo se establece el proceso de captura o el de pérdida o ambos a la vez. En los presentes cálculos se emplearon las siguientes expresiones para la evolución de la carga, en los casos en que domina la pérdida o la captura, respectivamente:

Para pérdida [53, 54]

$$q_p = Z \left[1 - \xi \exp(-130\beta^{0.33}/Z^{2/3}) \right]$$
 ec III.26'

Esta expresión describe un proceso en que domina el proceso de pérdida de electrones, por lo que tiende más rápidamente a Z, que en el caso de equilibrio de carga (ec.III.11).

En el caso de que domine el proceso de captura, la expresión correspondiente muestra cómo la carga efectiva tiende a cero, ya que la partícula se está cubriendo de electrones.

$$q_c = QL \exp \left[-130(\beta - \beta th)^{0.33} / Z^{2/3} \right]$$
 oc III.26'

donde

$\beta = v/c$; $\beta th = vth / c$

Ambas aproximaciones teóricas (qe para la captura y qp para la pérdida) hay que corroborarlas con el experimento, además de que podrian mejorarse introduciendo en cada una de ellas una dependencia con las respectivas secciones eficaces. [53, 54]

III.C EVALUACION DE LA EMISION FOTONICA POR CAPTURA ELECTRONICA DE LOS RAYOS COSMICOS SOLARES DURANTE SU ACELERACION

A diferencia de los procesos de captura electrónica que se presentaron anteriormente, en donde considerabamos que las partículas que capturaban a los electrones eran las del medio, en este caso las partículas que capturan a los electrones serán los proyectiles que cruzan el medio y a su paso tienen la oportunidad de intercambiar carga con el medio.

Aquí se hace un análisis de las emisiones de proyectiles sujetos a una aceleración e intercambio de carga con el medio, los cálculos que aquí se muestran son el resultado de una simulación numérica de un proceso de aceleración en condiciones similares a las existentes en la atmósfera solar (Corona Solar), en el que se presenta el fenómeno de emisión de fotones debido a la captura electrónica.

El escenario físico en que se desarrolla el fenómeno es el siguiente:

En el Sol existe una gran cantidad de particulas ionizadas debido a la elevada temperatura. A tales temperaturas el medio es, comúnmente, un Plasma (véase Apéndice I).

En este medio, las particulas cargadas de la atmósfera solar (iones y electrones) están sujetas a los intensos campos magnéticos que existen en el Sol, así como a la interacción electromagnética de su alrededor, ya que la atmósfera está constituída por partículas cargadas que se desplazan, generando campos electromagnéticos.

Sabemos, porque así lo muestran los experimentos y observaciones de partículas, que en el Sol se llegan a producir intensos mecanismos de aceleración, que aceleran a las partículas del medio, desde energías termales hasta energías muy elevadas, conocidas como supratermales.

Para que esto sea posible, los mecanismos de aceleración deben ser más eficientes que los mecanismos decelerativos.

La deceleración, en su mayor parte, es producto de las colisiones inelásticas que sufren los proyectiles en su trayectoria a través del medio, cuando se están acelerando.

En el presente trabajo, tomaremos en cuenta sólo a tres de los mecanismos de aceleración más comunes y probables, bajo las condiciones solares en que se presume, se generan los Rayos Cósmicos Solares (SCR), y que son: El mecanismo Fermi, el Betatrón y los campos eléctricos estocásticos.

El mecanismo Fermi, es un mecanismo de ganancia de energía

en que la aceleración es producto de las variaciones espaciales del campo magnético y afectan a la velocidad de la partícula en su componente paralela al campo magnético.

El mecanismo Betatrón se presenta cuando existen variaciones temporales de campo magnético y afectan a la componente transversal de la velocidad (respecto del campo magnético), la aceleración que producen los campos eléctricos estocásticos, es muy semejante a la aceleración de Fermi, sólo que la aceleración es producto de colisiones con campos eléctricos fluctuantes alrededor de un valor promedio.

A causa de los mecanismos de aceleración del medio, algunas particulas cargadas (iones y electrones) empiezan a ganar energía, las particulas aceleradas (originalmente con energía termal) llegan a tener energías hasta de GeV's. [56] (véase Apéndice IV. Unidades).

En general, las partículas solares tienen una energía menor a 1GeV, pero en ocasiones se encuentran hasta de una energía mayor, aunque éstas son las menos numerosas.

Las partículas que emplezan a ganar energía, interactúan de forma distinta con su alrededor, alterando su carga, que antes de acelerarse corresponde a la carga de la especie atómica de la partícula a la temperatura del medio, que denominaremos Carga Local (QL(Z)), definida por las condiciones de equilibrio de ionización a energías termales. (véase Tabla III.2)

La partícula, al intercambiar carga con su alrededor, puede perder o ganar electrones. Sin embargo, en forma estadística, una partícula que atraviesa un medio, sufre ambos procesos, pero uno de los dos procesos domina al otro, (dependiendo de la velocidad de ésta) y es así como el proyectil altera su carga neta (o efectiva).

Regularmente, una partícula que atraviesa un medio empieza a decelerarse por las colisiones y a cubrirse de electrones hasta que, finalmente, termina en reposo y muy probablemente con carga efectiva cero o casi cero, dependiendo de la temperatura del medio.

Pero en el caso en que la partícula se acelera dentro del medio, sucede lo contrario, empleza por ganar electrones a bajas velocidades y una vez que alcanza la velocidad crítica vc, empleza a perder electrones a medida que se acelera hasta que, a muy altas energías, termina desprovista de electrones.

Esta serie de fenómenos sucede frecuentemente en el Sol, principalmente durante las fulguraciones solares, (mejor conocidas por su nombre inglés "Solar Flares") y en general en cualquier medio en el que el camino libre medio para intercambio de carga, sea menor que la longitud de materia atravesada L (ec.III.18)

En esta simulación se emplean espectros de aceleración con dependencia temporal, los cuales se obtuvieron al resolver la ecuación de Fokker-Planck sin término fuente, lo que implica que el espectro de inyección q(E,t) = 0. Es decir, que no existe un flujo de partículas aceleradas previamente.

existe un flujo de particulas aceleradas previamente. El término q(E,t) (iones/eV.cm³) representa a la contribución de las particulas que tienen una velocidad y distribución supratermal, antes de empezar a funcionar el mecanismo acelerador, como en el caso de una aceleración en etapas sucesivas. $\{22\}$

Esta suposición corresponde a un escenario donde las partículas que se aceleran son las del material termal que hay en la vecindad, en donde se establece el mecanismo acelerador. A este tipo de aceleración se le conoce usualmente como, la primera etapa de aceleración. En estas condiciones la solución general a la ecuación de Fokker-Planck es de la forma: [21, 22]

$$N(E,t,Z) = \frac{1.41X10^{6}}{A(E)T^{1.5}} N_{0}A(E^{*})(E^{*}-mc^{2})^{0.5} exp[-(E^{*}-mc^{2})/\tau(kT-t)]$$

(lones/eV cm³)

ec.III.27

donde τ es el tiempo promedio de confinamiento en la región de aceleración, K es la constante de Boltzman, No(Z) es la densidad termal de iones con número atómico Z, m es la masa de los iones acelerados, E" es la energía inicial de los iones ($3/2kT \leq E" \leq E$), en la distribución termal y t es el tiempo de aceleración de las particulas y resulta de resolver la ecuación:

 $t = \int_{E^{*}}^{E} dE' / A(E') \qquad \text{ec.III.28}$

donde A(E) es la tasa de aceleración del mecanismo que se considere. En este caso:

 $A(E) = dE/dt = \alpha\beta E$ para el mecanismo Fermi

ec.III.29

 $A(E) = dE/dt = \alpha \beta^2 E$

У

para Betatrón

ec.III.30

 $A(E) = \alpha \beta$

para campos eléctricos fluctuantes (C.E.F)

La tasa de aceleración en el rango no relativista (que es donde se presenta la captura electrónica), se puede expresar como:

$$\Lambda(E) = \alpha e^{\eta}$$

donde

 $\eta = 1$ para Betatrón $\eta = 0.5$ para Fermi y para C.E.F.

Para determinar los enlaces que se producen en el proceso, es indispensable tener información de la eficiencia de aceleración del mecanismo de que se trate. Sabemos que la eficiencia de los mecanismos debe cumplir que:

 $|\alpha_c| < \alpha < |\alpha_c| \delta(\sigma_c, v_c, \eta, T)$ III.31

donde la función $\mathfrak{G} = (\mathfrak{ec.III.20/}|\mathfrak{ac}|)$, con $|\mathfrak{ac}|$ dada por los valores de las ecuaciones III.20,23,24. (de acuerdo a las condiciones del medio y del mecanismo acelerador).

En el presente trabajo suponemos que $\alpha \approx \alpha_c(\mathfrak{S} + 1)/2$, y de esta forma podemos, además, obtener información respecto de la dependencia de la eficiencia de aceleración con la energía (si este parámetro se desconoce), ya que la función \mathfrak{S} depende de σ_c y v_c y estos parámetros dependen de la energía de los proyectiles.

El tiempo de confinamiento de los proyectiles en la región de aceleración (τ), es un parámetro libre muy importante, en esta simulación se tomaron valores dentro del intervalo (10⁻²-10) segundos, ya que es un tiempo típico de confinamiento en las condiciones solares. [21, 57]

Resumiendo el procedimiento anterior, el panorama general se puede describir como sigue: Dado un mecanismo de aceleración, un ion proyectil, la temperatura, densidad y número atómico del medio, se determina si se cumple el criterio de captura electrónica ($_{ec.III.19-22}$), después se determina el nivel atómico en el que se establece la captura ($_{ec.III.7-9}$).

Para tal fin se supone que la velocidad relativa de los proyectiles (que están bajo aceleración) es el resultado de todas las interaciones que tienen con su alrededor, incluida la interación que tienen con el electrón que capturan, es
decir, que la velocidad a la que se establece el enlace (en caso de existir) es la velocidad relativa, y en base a dicha velocidad, se calcula el nivel de enlace.

Una vez que se establece el nivel de la captura, se puede evaluar el fotón emitido en el proceso, (ec.III.7.) y finalmente se evalúa el flujo total de fotones emitidos en cada una de las frecuencias (ec.III.32).

Es necesario recalcar que, cuando los proyectiles (iones) capturan electrones, lo hacen en órbitas que, en ocasiones, corresponden a estados excitados, y es de esperarse que en un tiempo muy corto decaigan a un nivel base del ion, emitiendo un segundo fotón. Sin embargo el presente trabajo se limita sólo a las emisiones que resultan como consecuencia directa de la captura electrónica, ya que las emisiones posteriores corresponden a las transiciones ligado-ligado (desexcitación) a pesar de que son una consecuencia (secundaria) de la captura de electrones.

Para facilitar la comparación con las observaciones, el flujo de energía $F(h\nu,t)$ se calcula al nivel de la órbita Terrestre (1 U.A.), suponiendo un volumen productor típico (V) en una fulguración solar ("solar flare") (véase Tabla III.3) y las densidades de los blancos N(Zt) corresponden a las abundancias solares para cada elemento al nivel cromosférico. [18]

Así que finalmente la expresión para el flujo por captura electrónica de los proyectiles de energía E, al interactuar con un medio con densidad N(Zt) se puede expresar de la siguiente manera:

 $F(h\nu, t) = N(E, t, Z)N(Zt)v_{P}\sigma cEh\nu V/[4\pi(1U, A,)^{2}] \qquad (ergs/cm^{2}seg)$

ec.III.32

donde σ_c denota la sección eficáz de captura de los proyectiles y h ν la energía del fotón que se produce en cada interación (ec.III.7). Por lo que el producto superior representa al número promedio de capturas (por unidad de tiempo) entre los proyectiles de energía E y el medio, las cuales producen un fotón de energía h ν , y cuya producción total se diluye esfericamente hasta una distancia de una unidad astronómica, esta dilución se representa por el denominador. El procedimiento numérico que se llevó a cabo en la simulación se describe con más detalle en tabla III.4.

Ne	Volumen	radio (si	la fuente es e	sférica)
10 ⁹ cm ⁻³	3.4X10 ²⁷ cm ³		9330 Km	
10 ¹⁰	3.4X10 ²⁵		2010	
10 ¹¹	3. 4X10 ²³		430	
1012	3.4X10 ²¹		90	

Tamaño de una fulguración solar ("solar flare"), según imagenes de rayos X. Para varias densidades electrónicas Ne

Parámetros de una etapa post-fulguración ("post-flare") (evento del 6 de noviembre de 1980 14:45)

Pre-fulguración ("pre-flare")

Inicio de la fulguración ("flare onset")

Temperatura maxima Densidad máxima de energía Densidad máxima Volumen total Energía máxima contenida Masa total

 $T = 1.0X10^{7}$ 'K $1 - 1.0 \times 10^{-3}$ 11.2 erg cm^{9} $N_{e} = 2,4X10^{9} \text{ cm}^{-3}$ $1.1X10^{30} \text{ cm}^{3}$ $1.2X10^{31} \text{ erg}$ $4.4X10^{15} \text{ g}$

 $T = 7.2X10^{6} {}^{\circ}K$ No = 6.8X10⁸ cm⁻³

Zdenek Svestka Solar Flares and Coronal Physics Using P/OF as a Research Tool, Proc. workshop. Marshall Space Flight Center Alabama mayo, 1985. pp 41-66. [69]

Para evaluar numericamente las emisiones producidas por el proceso de captura electrónica, se elaboró un programa en lenguaje FORTRAN que calcula tales emisiones.

A continuación se muestra su diagrama de bloques, que se construyó en base a las subroutinas que hay en él.

PROGRAMA PRINCIPAL

- 1...Lee los parámetros iniciales de temperatura, densidad del medio, tiempo de confinamiento en la región de aceleración, números atómicos del proyectil y del medio (T, D, τ, Z_P, Zt) .
- 2...Elige una energía inicial para los proyectiles (la energía termal)
- 3...Selecciona la carga adecuada del medio y de los proyectiles (QL(T)).
- 4...Calcula la carga efectiva en función de la velocidad q*
- 5...Calcula los criterios para decidir si se establece captura electrónica $|\alpha c|<|\alpha|$ y $\lambda < L$, mediante la SUBROUTINE CRITER
- 6...De establecerse la captura se procede a evaluar la emisión por la captura mediante la SUBROUTINE EMIS
- 7...Se incrementa le energía de los proyectiles en una cantidad predeterminada ΔE , y retorna al paso 4, hasta que se cubre el rango deseado.
- 8...Finaliza el proceso.

SUBROUTINE CRITER

- ic. Evalua el alfa crítica $|\alpha_c|$, que es el valor limite en la eficiencia de aceleración del mecanismo.
- 2c..Calcula la velocidad de cruce ve en donde $\sigma_c(v_c)=\sigma_P(v_c)$ mediante la
 - SUBROUTINE VCRI
- 3c..Calcula la seccion eficaz de captura y la de pérdida mediante la
 - SUBROUTINE SECEFI
- 4c..Y finalmente evalua los criterios de captura $|\alpha_c| < |\alpha|$ y $\lambda < L$

5c..Retorna al lugar en que se llamó.

SUBROUTINE VCRI

iv. Elige el valor inicial de la energía de los proyectiles 2v. Calcula las secciones de captura y pérdida mediante la SUBROUTINE SECEFI

3v..Verifica si ambas secciones son iguales si así es finaliza el proceso.

4v..Incrementa el valor de la energía del proyectil en ΔE 5v..Retorna al lugar en que se llamó.

SUBROUTINE SECEFI

- 1s. Elige el tipo de sección eficaz que se ha de emplear en base a la temperatura del medio.
- 2s..Si T< T(ionización) calcula con las secciones de medio atómico mediante la SUBROUTINE ATOMIC
- 3s..En caso contrario llama calcula con las secciones de un medio de plasma, mediante la SUBROUTINE PLASMA
- 4s. Una vez que ha calculado las secciones (adecuadas) de pérdida y captura. Retorna al lugar en que se llamó.

SUBROUTINE ATOMIC

1a. Evalúa las secciones de pérdida y captura, de acuerdo con la velocidad y carga del proyectil, asi como la correspondiente velocidad de cruce, de acuerdo con la tabla III.1

2a..Retorna al lugar en que se llamó.

SUBROUTINE PLASMA

1p. Evalúa las secciones de pérdida y captura, de acuerdo con la velocidad y carga del proyectil, y la velocidad de cruce v_c, acorde con los criterios de la tabla III.1.
2p. Retorna al lugar en que se llamó.

SUBROUTINE EMIS

- 1e. Calcula la eficiencia de aceleración del mecanismo, como una función de la velocidad ($\alpha \approx \alpha_c(\mathfrak{G} + 1)/2$)
- 2e. De acuerdo con la carga efectiva del proyectil se calcula su configuración más probable, suponiendo que el nivel máximo de degeneración de cada uno de los niveles es 2n².
- 3e..Se calcula el radio de enlace al que corresponde la captura.
- 4e..Se calcula la energía del fotón que se emite como consecuencia de la captura (ec.III.i)
- 5e..Se calcula el tiempo de aceleración (ec.111.28)
- 6e. Se calcula el flujo de proyectiles a la energía de interés en base al espectro de aceleración (N(E,T,Z)).
- 7e. Finalmente se calcula el flujo total de fotones al nivel de la órbita terrestre (ec.III.32).
- 8e..Retorna al lugar en que se llamó.

III.C.1 ANALISIS DEL METODO Y SUS PERSPECTIVAS

La característica más importante que hay que hacer notar es, que los flujos de emisión que se obtuvieron por el presente método, (fig.III.6-9) son observables. Las escalas temporales que se requieren, son detectables y el rango de observación en frecuencias que se requiere (de radio a los rayos X) está dentro de las posibilidades de observación, con la tecnología actual. [69]

En el presente análisis se utilizan las emisiones que provienen de proyectiles de Fe, Si y Ca, ya que se encontró que estos elementos tienen emisión por captura electrónica tanto en medios atómicos como en plasmas, por lo que son ideales para ilustrar las diferencias que existen en uno y otro caso. Con ellos se puede ilustrar la dependencia que éste tipo de emisión tiene con la temperatura, y además se encuentran presentes en la atmósfera solar [18] en las cantidades suficientes para que sus emisiones sean detectables. [69]

A continuación se muestra un análisis en base a las emisiones de éstos tres elementos, a diferentes temperaturas $(8 \times 10^3 \, ^\circ K, \, 10^7 \, ^\circ K, \, y \, 5 \times 10^7 \, ^\circ K)$, en difentes condiciones de densidad $(10^{11} y \, 10^{13} \, particulas/cm^3)$ y con tres diferentes mecanismos de aceleración (Fermi, Betatrón, y Campos eléctricos estocásticos), con el fin de ilustrar las condiciones físicas que pueden inferirse mediante el presente método.

En la figura III.6 se muestran los resultados al evaluar el flujo de fotones resultante $F(h\nu,t)$, para un par de procesos de aceleración (Fermi y C.E.F.), en condiciones similares de temperatura, densidad y proyectiles. Esto es con el fin de mostrar que se puede distinguir el tipo de proceso acelerativo que originó la emisión, ya que los diferentes mecanismos aceleran cantidades diferentes de proyectiles a un tiempo dado, produciendo diferencias notables en el flujo de fotones por captura.

Como se puede apreciar, las diferencias en el flujo son detectables (de uno a dos ordenes de magnitud) y las diferencias en la escala temporal son del orden de 20 ms., que coincide con las escalas de tiempo en se presentan las estructuras importantes en los flujos de emisión de las flujouraciones [69].

En esta figura se ilustra el perfil temporal de la emisión resultante de la interacción de proyectiles (iones de fierro acelerados por los respectivos mecanismos) con un medio de iones de fierro, a una temperatura de 10^{\prime} °K. Puede

apreciarse que el mecanismo C.E.F. produce flujos más intensos en ambas bandas de energia, y tarda más tiempo en desaparecer que el mecanismo Fermi (\approx 20ms.). Estas diferencias que se presentaron bajo las condiciones de este ejemplo nos muestran la posibilidad de definir rangos típicos de variación para los diferentes mecanismos para poderlos identificar de una manera rápida.

La figura III.7 nos muestra que la emisión de este proceso en un medio de Plasma, está constituido por bandas estrechas en el dominio de los rayos X, ya que debido a la gran velocidad relativa entre los proyectiles y el medio, los enlaces de los electrones se establecen en niveles atómicos muy interiores donde los niveles energéticos están bastante separados fig.III.10

Esta es una característica importante ya que en un medio atómico la emisión resultante está en el continuo, como se muestra en la figura III.8, así que podemos distinguir, de entrada, si la emisión proviene de regiones a temperaturas elevadas (correspondientes a un medio de Plasma) o si proviene de temperaturas bajas (medio atómico) ya que en un caso esperaremos bandas de emisión y en el otro esperaremos un contínuo.

En un medio atómico la deriva de emisión no es muy diferente para diferentes proyectiles, salvo en las altas energías, (en el lejano Ultravioleta y rayos X) en donde las diferencias entre sus cargas q es más notable ya que se pierden más electrones que a bajas energías.

Estas características del medio atómico se deben a que los electrones que capturan los iones, en su mayoría, están atados (inicialmente) a un núcleo atómico y por lo tanto la velocidad relativa del par ion-electrón es muy baja.

Sin embargo, en el caso de un medio de Plasma, las bandas de energía son características del proyectil de que se trate y de la temperatura a que se encuentre el medio.

En la figura III.9 se muestran unos perfiles temporales en el infrarrojo a dos longitudes de onda (125.2, 49.7 μ m), para un proceso de aceleración tipo Betatrón, en un medio atómico y por lo tanto en una emisión en el contínuo.

Como se puede apreciar, la escala de la evolución temporal y la intensidad de cada una de las líneas, es característica del proyectil de que se trate, y del mecanismo de aceleración, así que, en una emisión real, si se establece el mecanismo acelerador y nos fijamos a una longitud de onda, por las escalas temporales a la que aparecieran las emisiones podríamos decir de que elemento se trata.

Los cálculos y el análisis anterior, están hechos para un evento de aceleración que ocurre en condiciones solares, pero es por completo aplicable a las condiciones que pueden presentarse en un experimento de Plasmas en el Laboratorio, ya que los parámetros pueden modificarse de acuerdo con las

FIG 11.7

condiciones en que tenga lugar el proceso.

Podemos decir que es posible obtener un panorama general de las condiciones que prevalecen en el Plasma, asi por ejemplo de las figuras III.7-8, podemos inferir la temperatura en que se lleva a cabo el proceso de aceleración, el tipo de proyectiles que intervienen, e inferir los elementos presentes en el medio, con los que interacciona el proyectil (blancos).

Al hacer estructura fina en los espectros de emisión, se pueden obtener características importantes del Plasma, como se muestra en la figura III.6, en la que se muestra cómo es que en base a la estructura (≈ 20 ms) temporal del flujo de emisión, es posible inferir el tipo de mecanismo de aceleración, y en base a la intensidad del flujo, se puede inferir la densidad del medio (si se cuenta con un espectro observacional del evento de particulas).

De la figura III.9 se puede inferir, de una manera un poco más fácil, el tipo de proyectil (partícula rápida) que está presente en el Plasma. Esto es particularmente útil en el estudio del origen de los rayos cósmicos solares, y en el estudio de las impurezas de algunos Plasmas de laboratorio.

En el caso de los Plasmas de laboratorio, en muchas ocasiones se contaminan por partículas "indeseables" que, en ocasiones, son partículas que provienen de las paredes del instrumento mismo, y pueden producir inestabilidades que afectan y en ocasiones destruyen el sistema, por lo que la identificación de las partículas responsables es muy importante.

Sin embargo en ocasiones sucede que las impurezas provienen del exterior e inciden con una cierta velocidad inicial, que disminuye a medida que atraviesan el medio, en este caso tiene lugar un proceso decelerativo, al contrario del ejemplo que estamos manejando. Este fenómeno es susceptible de abordarse con el método aquí expuesto, modificando nuestro criterio para el establecimiento del intercambio de carga bajo aceleración.

La modificación necesaria es sencilla, basta con quitar la restricción de que la eficiencia de aceleración sea mayor que la eficiencia crítica, para que este método sea aplicable a las nuevas condiciones. Sin embargo este fenómeno ya se ha estudiado, aunque muy poco, sobre todo para evaluar la emisión resultante de la interacción de los rayos cósmicos al pasar a través del material interestelar [13, 61, 76].

III.C.2 CONCLUSIONES

De la simulación anterior podemos inferir la utilidad de este tipo de espectroscopia, ya que se puede obtener información muy valiosa del medio, como lo es la temperatura, densidad, y composición. Además de estas características, se pueden inferir características de los proyectiles, tales como su densidad, número atómico y mecanismo de aceleración.

De esta manera se puede apreciar que el estudio de este tipo de emisión es muy útil, ya que nos proporciona un panorama general de las condiciones más importantes que se establecen en el Plasma que se observa, ya sea astrofísico o de laboratorio.

Es importante señalar que, en los cálculos anteriores, no se presupone ninguna diferencia fundamental entre un Plasma astrofísico y uno de laboratorio. Lo único que cambia es la evaluación numérica de cada uno de los parámetros que intervienen en el cálculo de la emisión por este proceso.

Este hecho hace que, las perspectivas para el empleo de este tipo de emisión en el diagnóstico de Plasmas sean buenas, ya que lo mismo se puede aplicar a un experimento de laboratorio, que a una instancia astrofísica, como las estrellas. El único requisito es que se establezca la captura electrónica en los proyectiles, ya que si no es así, entonces las emisiones que se producirán, serán las convencionales y el análisis será por completo diferente.

El tipo de aceleración, su eficiencia, el camino medio libre, la densidad, etc., todos son parámetros que se pueden adaptar de acuerdo con el medio que se trate de estudiar, ya que, en general, cada medio necesita una evaluación diferente para poder inferir sus características a partir de sus respectivas emisiones de fotones. La simulación y análisis que aquí se presentan, son sólo una muestra de cómo es que se puede emplear el método para obtener información acerca de un medio.

El análisis de esta emisión puede presentar algunas ventajas respecto del análisis convencional, en el que no se toma en cuenta a las partículas rápidas que pueden estar en el interior del Plasma. Las ventajas son, que podemos inferir características de las partículas rápidas que están presentes en los Plasmas, dando un método alternativo para medir y corroborar las propiedades que ya se podían inferir mediante otros métodos.

El método también tiene limitaciones para su aplicación,

por ejemplo, en la radiación solar el flujo de fotones es poco intenso en las longitudes de onda del visible, si se compara con su emisión térmica, (o de cuerpo negro) por lo que quedaría opacada. Sin embargo esta limitante no es muy seria en el caso de estudiar los plasmas de laboratorio, ya que usualmente son poco densos y por lo tanto ópticamente delgados por lo que no tienen emisión de cuerpo negro.

Otra limitante es que el equipo que se necesita (para el análisis del perfil temporal) es muy sofisticado (actualmente) ya que se necesita de una gran resolución temporal (milisegundos).

Además el hecho de que, de una sola observación, seria muy dificil poder decir algo respecto de las características del medio que se observa, ya que es necesaria una gran cantidad de información acerca de las emisiones para que se pueda precisar el diagnóstico del medio que se observa.

Sin embargo a pesar de las limitaciones que pueda tener este método, las ventajas de tener un método alternativo para el análisis (en los casos que sea aplicable), son de mucha importancia, ya que además de tener un método más de diagnóstico, se tiene una herramienta adicional para apoyar y verificar las observaciones que se hacen por otros métodos.

APENDICE I

ELEMENTOS DE FISICA DE PLASMAS

Este es un breve recordatorio de los conceptos fundamentales de la física de Plasmas, hecho con el fin de aclarar algunas de las dudas del lector, y además, aportarle una visión general del tema, que le facilite la comprensión del trabajo en general.

Los gases altamente ionizados son buenos conductores de electricidad. Las partículas cargadas de un gas ionizado interaccionan con el campo electromagnético local; además, el movimiento colectivo de estos portadores de carga puede producir campos magnéticos y eléctricos.

Cuando está sometido a un campo eléctrico estático, un gas ionizado actúa como cualquier otro conductor; los portadores de carga de un gas se redistribuyen rápidamente de tal manera que la mayor parte del gas se blinda o apantalla del campo. A las regiones del gas relativamente libres de campo, donde las cargas espaciales positivas y negativas casi se equilibran, Langmuir [38] les dió el nombre de *Plasma*, mientras que a las regiones de carga espacial o a las de campo intenso sobre la frontera del Plasma les dió el nombre de *Vainas*.

En forma equivalente podemos decir: un gas ionizado que tiene un número suficientemente grande de partículas cargadas para blindarse a sí mismo, electrostáticamente en una distancia pequeña comparada con la longitud de su sistema, es un Plasma. El interés más antiguo en Plasmas fue en conexión con la electrónica gaseosa (descargas eléctricas a través de gases, arcos, llamas, etc.); el interés más reciente se ha dirigido hacia problemas de Astrofísica Teórica y al problema de confinamiento de iones en reactores termonucleares (fusión).

El área general de estudio que contiene la interacción de gases ionizados con campos electromagnéticos dependientes del tiempo se llama Dinámica de Plasmas. Para muchos de los problemas de esta área (y éstos son los más importantes e interesantes) es imposible tratar a un Plasma adecuadamente con formulaciones puramente macroscópicas. En su lugar, es necesario utilizar lo que se conce convencionalmente como Teoría Cinética. Deben estudiarse los movimientos individuales de los iones y electrones; deben tomarse en cuenta sus colisiones con otras partículas a través de la ecuación de transporte de Boltzman. Por tanto, existe una formulación rigurosa para problemas de Plasma, pero su resolución es extremadamente difícil en general, excepto para situaciones en que es permisible despreciar algunos términos de la ecuación de Boltzman. Sin embargo, hay tres formulaciones aproximadas que proporcionan considerable conocimiento respecto a lo que sucede dentro del Plasma.

El primero de estos métodos es la Teoría del Equilibrio, que se basa en la premisa de que las colisiones entre particulas cargadas son suficientes como para mantener la conocida distribución de Maxwell-Boltzman para particulas en el cuerpo del Plasma:

 $N_{j}(v)dv_{x}dv_{y}dv_{z} = N_{0j} \left(\frac{m_{p}}{2\pi kT}\right)^{3/2} e^{-m_{p}v^{2}/2kT} dv_{x}dv_{y}dv_{z}$

ec. A.1

donde Noj es el número de partículas del tipo j por unidad de volumen en el Plasma, vx, vy, y vz son las componentes de la velocidad, mp es la masa de las partículas del tipo j y T es la temperatura absoluta. Entonces pueden calcularse las propiedades cinéticas y de transporte en función de esta distribución de velocidad.

El segundo método aproximado es la Teoria Orbital, que trata el movimiento de las particulas cargadas (iones y electrones) en campos eléctricos y magnéticos prescritos. Estos campos pueden ser funciones tanto de la posición como del tiempo. La Teoría Orbital es una buena aproximación para el movimiento de particulas en un Plasma cuando las colisiones entre las partículas no juegan un papel importante, esto es, cuando el camino libre medio para colisiones es muy grande comparado con las características de la órbita o el sistema de Plasmas mismo. En estas condiciones, el efecto de las colisiones puede estudiarse como una perturbación, y el problema principal se centra alrededor de hacer el campo electromagnético "prescrito" autocompatible; en otras palabras, el campo prescrito debe ser la suma del campo externo y el campo producido por las partículas orbitales.

El tercer tratamiento aproximado es la Formulación Hidromagnética. Aquí, las ecuaciones electromagnéticas clásicas (ecuaciones de Maxwell) se usan junto con las ecuaciones clásicas del movimiento de fluidos. Evidentemente, el tratamiento hidromagnético es sólo una descripción macroscópica del Plasma; se vuelve una buena aproximación cuando el camino libre medio para colisiones es muy pequeño comparado con las dimensiones del sistema de Plasmas. El panorama hidromagnético forma un buen punto de partida para exponer el movimiento colectivo de las

partículas en el Plasma.

Muchas de las propiedades importantes de los Plasmas pueden obtenerse mediante las aproximaciones mencionadas anteriormente. Para simplificar, se supone que el Plasma consiste de electrones (carga -e) e iones positivos con carga +qe; pueden estar presentes átomos neutros pero en mucha menor proporción que la materia ionizada.

AL.1 NEUTRALIDAD ELECTRICA DEL PLASHA

Una de las propiedades más importantes de un Plasma es su tendencia a permanecer eléctricamente neutro, esto es, su tendencia a blindar la carga espacial positiva y negativa en cada elemento de volumen macroscópico. Un ligero desequilibrio en las densidades de carga espacial da origen a fuerzas electrostáticas intensas que actúan, siempre que sea posible, en el sentido de restaurar la neutralidad. Por otra parte, si un Plasma se somete deliberadamente a un campo eléctrico externo, las densidades de carga espacial se ajustarán de modo que la mayor parte del Plasma se blinde del campo.

Por ejemplo, supongamos que una carga esférica +Q se introduce en el Plasma, sometiendo en esta forma al Plasma a un campo eléctrico. Realmente, la carga +Q se neutralizará gradualmente debido a que le llegan continuamente particulas cargadas procedentes del Plasma. Los electrones se sienten atraídos mientras que los iones se sienten repelidos por la carga +Q y ambos adquieren velocidades de desplazamiento según su estado de energía.

La probabilidad de encontrar una partícula cargada en una región particular de energía W es proporcional al factor de Boltzman $\exp(-W/kT)$. Por tanto, la densidad de electrones No está dada por

$$N_{e} = N_{o} \exp \left(e \frac{U - U_{o}}{kT} \right) \qquad A.2$$

donde U es el potencial local, U₀ es el potencial de referencia (potencial del Plasma), T es la temperatura absoluta del Plasma , k es la constante de Boltzman y N₀ es la densidad electrónica en regiones en que U = U₀. Si N₀ es también la densidad de iones positivos en regiones de potencial U₀ entonces la densidad de iones N₁ está dada por:

$$N_1 = N_0 \exp \left(-e \frac{U - U_0}{kT}\right)$$

El potencial U se obtiene de la solución de la ecuación de Poisson:

ec. A.3

$$\frac{1}{r^2} \cdot \frac{d}{dr} \left(r^2 \frac{dU}{dr} \right) = - \frac{1}{\epsilon_0} \left(N_1 e - N_0 e \right) = \frac{2N_0 e}{\epsilon_0} \operatorname{senh} \left(e \frac{U - U_0}{kT} \right)$$

Esta ecuación es no lineal y en consecuencia debe integrarse numéricamente. Por otra parte, una solución aproximada para A.3, que es rigurosa a altas temperaturas, es adecuada para nuestros propósitos. Si kT/eU, entonces

senh (eU/kT) ≈ eU/kT

У

$$\frac{1}{r^2} \cdot \frac{d}{dr} \left(r^2 \cdot \frac{dU}{dr} \right) = \frac{2N_0 e^2}{\epsilon_0 kT} (U - U_0)$$

cuya solución es

 $U = U_0 + \frac{Q}{4\pi c_0 r} \exp\left(-\frac{r}{h}\right)$

Aquí r es la distancia desde la carga eléctrica esférica +Q y h es la distancia de blindaje de Debye que está dada por

$$h = \left(\frac{\varepsilon \circ kT}{2N_0 e^2}\right)^{1/2} \qquad A.6$$

. .

A. 5

Por tanto, la redistribución de iones y electrones en el gas es tal que deje fuera a Q completamente en una distancia de unos cuantos h.

Un gas ionizado se llama Plasma si la longitud de Debye, h, es pequeña comparado con sus dimensiones físicas. Esto no es una gran restricción mientras que la ionización del gas sea apreciable; a $T = 2 \times 10^{3}$ K y No = 10^{18} part/m³ la longitud de Debye es 2.2 x 10^{-6} metros.

AI.2 APROXIMACION DE PARTICULA SIMPLE. ORBITAS DE PARTICULAS Y MOVIMIENTO DE DERIVA EN UN PLASMA.

La órbita de una partícula cargada q que se mueve en un campo eléctrico y magnético prescrito puede calcularse directamente por la ecuación de la fuerza de Lorentz

$$F = q \left[E + \frac{1}{c} \overrightarrow{v} \times \overrightarrow{B} \right] \qquad A.7$$

Como ejemplo veamos primero el caso en que el campo magnético es constante y $\vec{E} = \vec{0}$. Este caso tan sencillo es, sin embargo, el que fundamenta el funcionamiento de los aceleradores de partículas, tales como el Ciclotrón y el Betatrón. La fuerza de Lorentz se reduce a

$$F = \frac{q}{c} (\vec{v} \times \vec{B})$$

es decir, la fuerza es siempre perpendicular al campo magnético y a la velocidad \vec{v} de la particula de carga q, es decir, la energía cinética total permanece constante

$$k = \frac{1}{2} m_p \vec{v}^2$$

donde mp es la masa de la partícula. Es conveniente descomponer la velocidad \vec{v}_p en dos componentes: vii una velocidad paralela a \vec{B} y v₁ una velocidad ortogonal a \vec{B} . Ya que la fuerza no actúa en la dirección paralela a \vec{B} entonces

$$k_{11} = \frac{1}{2} m_p v_{11}^2$$

también permanece constante, de donde

$$k_{\perp} = -\frac{1}{2} m_{p} v_{\perp}^{2} = k - k_{11}$$

es también una constante de movimiento. La fuerza de Lorentz proporciona una aceleración centrípeta $qv_{\downarrow}B$ a la que se opone la aceleración centrífuga $m_pv_{\downarrow}^2/R$ donde R es la distancia al punto de atracción (la línea magnética), entonces

 $\frac{qv_{\perp}B}{c} = \frac{m_{P}v_{\perp}^{2}}{R} \quad \text{cuando} \quad R = \frac{m_{P}v_{\perp}^{2}c}{qv_{\perp}B} = \frac{m_{P}v_{\perp}c}{qB} -$

El radio R se llama frecuentemente Radio de Larmor de la partícula. El movimiento completo de la partícula cargada se describe como giro de la partícula en una órbita (la órbita de Larmor) superpuesta en un movimiento uniforme del centro orbital, o centro guía, a lo largo de una linea de campo magnético.

El campo magnético actúa para confinar el Plasma, atando a las particulas en órbitas circulares alrededor de las líneas del campo. Por supuesto, no se observa confinamiento en la dirección del campo. Para iones y electrones de la misma energía cinética k_{\perp} , los electrones giran en órbitas mucho menores.

Una cantidad interesante que se emplea a menudo es el momento magnético

$$\mu = \text{corriente } x \text{ área} = \frac{q\pi R^2}{T_c} = \frac{qv_\perp}{2\pi R} \pi R^2 = \frac{qm_Pv_\perp}{2\pi R} \pi = \frac{k_\perp}{B}$$

donde $T = (2\pi/w)$ que es el periodo de giro.

A esta primera parte expuesta a grandes rasgos se le conoce como Teoría del Centro Guía o de Primer Orden. Esta teoría se puede aplicar sólo en casos especiales. Las restricciones se pueden encontrar en [14, 70] y se conocen como las invariantes adiabáticas, que cuando se cumplen, la aproximación de primer orden es buena para describir al Plasma.

CAMPOS UNIFORMES ELECTRICOS Y MAGNETICOS

En un momento y lugar cualesquiera, los campos magnético y eléctrico definen un plano con los dos vectores B y E. Sea êz en la dirección de B

y \vec{E} en el plano z,x entonces $\vec{B} = (0,0,Bz); \vec{E} = (Ex,0,Ez)$

$$\vec{F} = q [\vec{E} + \frac{1}{c} \vec{v}_{x} \vec{B}] \Rightarrow m\ddot{x} = q [E_{x} + \frac{1}{c} v_{y} B_{z}]$$
$$m\ddot{y} = -\frac{q}{c} v_{x} B_{z} \qquad m\ddot{z} = q [E_{z}]$$

(Véase Apéndice V)

por lo cual, la solución para z es inmediata ya que

$$z = \frac{q}{m} Ezt$$
; $z = \frac{q}{m} Ezt^2$

suponiendo

ł

$$t_0 = 0; z_0 = 0; z_0 = 0; x_0 = 0; x_0 = 0; y_0 = 0; y_0 = 0$$

y de la ecuación para ÿ tenemos que

$$\dot{y} = - \frac{q}{c} \times Bz$$

reemplazando en mx tenemos que

$$c = q \left[E_x + \frac{1}{c} \left(-\frac{q}{mc} v_x B_z t \right) \right] = q \left[E_x - \frac{q}{mc^2} \times B_z \right]$$

entonces

mo

$$\ddot{x} = \frac{qE_x}{m} - \left(\frac{q}{mc}\right)^2 \times B_z$$

de donde

$$\ddot{x} + \left(\frac{q}{mc}\right)^2 \times B_z = \frac{qE_x}{m}$$

que es una ecuación diferencial para $\ddot{\mathbf{x}}$ cuya solución general es

 $x = Ae^{mt} + k(t)$

donde k(t) es una solución particular.

Con las condiciones a la frontera apropiadas puede obtenerse x y por lo tanto y, quedando resuelto el problema en su forma más general [14].

CAMPO MAGNETICO CONSTANTE EN EL TIEMPO PERO VARIABLE EN EL ESPACIO. $(\vec{E} = 0)$

Supongamos que una particula cargada se mueve en un campo magnético casi uniforme, en el que las líneas del campo convergen lentamente en el espacio. El movimiento de la particula puede considerarse como una perturbación de la órbita helicoidal.

Supondremos que la línea de flujo que pasa por el centro guía coincide con el eje z y que el campo magnético tiene una simetría azimutal respecto al eje z, como se muestra en la figura AI.1.

Considerando la componente \overline{z} de la fuerza de Lorentz tenemos que

$$F_z = m_p \frac{dv_z}{dt} = \frac{q}{c} v_{\Theta} Br$$

pero como divB = 0, o bien, para el presente caso

$$\frac{1}{r} \frac{\partial}{\partial r} (r B_r) + \frac{\partial B_z}{\partial z} = 0$$

y como las lineas convergen lentamente $\partial Bz/\partial z$ puede considerarse constante sobre la sección orbital donde

Br
$$r=R=\frac{1}{2} R \frac{\partial B_z}{\partial z}$$

además v_{Θ} es análoga a la v_{\perp} del caso anterior. Haciendo estas sustituciones en Fz se tiene que:

$$\frac{mpdv_{11}}{dt} = -\frac{1}{2} \frac{q}{c} Rv_1 \frac{\partial Bz}{\partial z} = -\mu \frac{\partial Bz}{\partial z}$$

empleando la expresión para R en una sección pequeña del espacio. La energía cinética total k de la partícula no se altera en el campo magnético, puesto que la fuerza de Lorentz, que siempre es perpendicular a la velocidad, no puede hacer trabajo. La k_{1} definida aquí no toma un valor constante, como tampoco lo toma k_{11} , pero podemos escribir (por conservación de la energía):

$$\frac{d}{dt} \left(\frac{1}{2} m_p v_{11}^2\right) = \frac{d}{dt} (k - k_1)$$
$$= -\frac{d}{dt} k_1$$
$$= -\frac{d}{dt} (\mu B_z)$$

donde d/dt es la derivada con respecto al tiempo tomada sobre la trayectoria dinámica.

Por otra parte, multiplicando por $v_{11} = \partial z / \partial t$, tenemos

$$\frac{\mathrm{d}}{\mathrm{dt}} \left(\frac{1}{2} \operatorname{mp} \mathbf{v}_{11}^2 \right) = -\mathbf{m} \frac{\partial Bz}{\partial z} \frac{\partial z}{\partial z} = -\mu \frac{\mathrm{d}Bz}{\mathrm{dt}}$$

comparando las dos expresiones podemos darnos cuenta que μ = cte. del movimiento. Sin embargo, debe resaltarse que

este es un resultado aproximado, válido mientras Bz varia lentamente. Si B cambiara sustancialmente en distancias del orden de R, las aproximaciones usadas en la derivación, la segunda expresión de momento, no serían válidas.

También es de interés el hecho de que la particula esté restringida a moverse sobre la superficie de un tubo de flujo. Esto se sigue porque el flujo magnético que atraviesa la órbita es:

$$\Phi = B_{z}\pi R^{2} = \pi B_{z} \frac{m_{p}^{2} v_{\perp}^{2}}{q_{Bz}^{2}} = \frac{2\pi m_{p}k_{\perp}}{q_{Bz}^{2}} = \frac{2\pi m_{p}}{q^{2}} \mu$$

y μ es constante. El movimiento de la particula se ilustra en la figura AI.2.

La componente z (componente paralela) de la fuerza es siempre en tal sentido que acelere las particulas hacia la parte más débil del campo. Las particulas que giran y que se acercan a regiones del campo magnético más intenso, son decelerados en la v_{11} . Por otra parte, si el campo aumenta

v, se incrementa. Entonces, si la convergencia del campo

magnético es suficiente, la partícula girará en una espiral helicoidal cada vez más cerrada hasta que finalmente se refleje hacia el campo más débil (véase Espejos magnéticos, [65]). Los movimientos colectivos de las partículas en un Plasma tales como "el efecto de estricción" y las oscilaciones del Plasma se manejan mucho mejor con una formulación MHD.

Según esta descripción, el Plasma se considera como un fluido clásico que obedece las ecuaciones convencionales de la hidrodinámica. Sin embargo, el fluido es un conductor eléctrico y, por tanto, las fuerzas electromagnéticas deben tomarse en cuenta explícitamente.

La fuerza por unidad de volumen de Plasma se puede escribir como:

donde J es la densidad de corriente y \vec{P} es la presión del fluido.

Otras fuerzas tales como la gravitacional y las fuerzas viscosas, también pueden incluirse como términos aditivos en la expresión de Fv.

Debido a la neutralidad eléctrica (aproximada) del Plasma, el término ρE no necesita incluirse junto con los otros términos de fuerza en la ec. A.8. Las desviaciones de la neutralidad es claro que deben considerarse en la ecuación de Poisson, pero generalmente se desprecian en las ecuaciones dinámicas. Por lo que el equilibrio del momento requiere sólo de que:

$$\zeta \frac{dv}{dt} = \zeta \left[\frac{\partial v}{\partial t} + (v \cdot \nabla) v \right] = \vec{J} \times \vec{B} - \nabla P \qquad A.9$$

que es la ecuación de movimiento o la ecuación de Euler, del fluido. Aquí ζ es la densidad de masa del Plasma y v es la velocidad de su fluido. Para problemas en los que el movimiento hidrodinámico no sea particularmente grande, el término que contiene (v·V)v generalmente puede despreciarse.

En ocasiones conviene interpretar al término $\vec{J} \times \vec{B}$ de la ecuación A.8, como aquel que surge de una "presión magnética". Esto puede hacerse con ayuda de la Ley Circuital de Ampere, que para el presente caso se expresa como

y, la identidad

A. 8

$$B \times \nabla \times B = \nabla(\frac{1}{2} B^2) - (B \cdot \nabla)B$$

Por lo tanto

$$J \times B = -\frac{1}{\mu_0} B \times (\nabla \times B) = -\nabla \left(\frac{B^2}{2\mu_0}\right) + \frac{1}{\mu_0} (B \cdot \nabla)B$$

ec. A.10

A.11

La cantidad $B^2/2\mu_0$ es la densidad de energía magnética que es, por supuesto, a presión magnética Pm:

$$P_{\bullet} = \frac{B^2}{2\mu_0}$$

Sin embargo, deberá resaltarse que $-\nabla P_m$ da, en la mayoría de los casos, sólo una parte de la fuerza magnética; la fuerza restante proviene del término $(1/\mu_0)(B\cdot\nabla)B$, cuando J = 0 los dos términos del segundo miembro de A.10 se anulan. Además de la ecuación A.9 y de las ecuaciones macroscópicas que rigen al electromagnetismo (ecuaciones de Maxwell), necesitamos dos relaciones adicionales para completar la formulación MHD. Estas son:

1) La ecuación de continuidad del Plasma fluido

$$\frac{\partial \zeta}{dt} + \nabla \cdot (\zeta v) = 0 \qquad A. 12$$

2) Una ecuación que relaciona J con las cantidades de campo. La última relación es simplemente una forma generalizada de la Ley de Ohm, que en ciertas condiciones puede escribirse como:

 $J = \sigma \left(E + vd \times \overline{B} \right)$ A.13

aquí va x \vec{B} es el campo eléctrico del movimiento hidrodinámico del Plasma respecto de un campo magnético donde va es la velocidad de difusión del Plasma respecto del campo magnético y σ es la conductividad del Plasma.

Una aproximación muy frecuente es la de hacer la conductividad del Plasma infinita. La ventaja de esta aproximación es que permite una simplificación sustancial en las ecuaciones MHD, presentando así un panorama más claro de los procesos físicos que tienen lugar en un Plasma. En algunos problemas, particularmente de los astrofísicos, la aproximación es bastante buena. Para el caso de la conductividad infinita; la Ley de Ohm se reduce a

$$\sigma \rightarrow \infty \Rightarrow E + \overline{v}d \times \overline{B} = 0$$

La conductividad infinita (o, para fines prácticos, la alta conductividad) tiene una consecuencia importante, es decir, que el flujo magnético se congela en el Plasma. Si la ecuación A.14 se combina con la forma diferencial de la Ley de Inducción de Faraday, obtenemos:

$$\frac{\partial B}{\partial t} = rot \left(\overline{v}_d \times \overline{B} \right) \qquad A.15$$

la componente normal de esta ecuación integrada sobre una superficie S fija da:

$$\frac{d}{dt} \int_{\mathbf{B}} \mathbf{B} \cdot \mathbf{n} \, d\mathbf{a} = \int_{\mathbf{B}} \nabla \mathbf{x} \, (\overline{\mathbf{v}} \mathbf{d} \times \overline{\mathbf{B}}) \cdot \mathbf{n} \, d\mathbf{a}$$
$$\frac{d\Phi}{dt} = \mathbf{f}_{\mathbf{C}} \, \overline{\mathbf{v}}_{\mathbf{d}} \times \overline{\mathbf{B}} \cdot d\mathbf{\ell} = \mathbf{f}_{\mathbf{C}} \, \mathbf{B} \cdot (d\mathbf{\ell} \times \mathbf{v})$$

ec. A.18

A.14

donde c es el contorno fijo en el espacio que limita a S y que es por donde se mueve el flujo macroscópico del Plasma, f_c d $t \times v$ se puede considerar como el incremento de área por unidad de tiempo de la superficie de la cara superior que está limitada por c, y f_c B·d $t \times \overline{v}$ es el flujo magnético

asociado con esta área aumentada. La ecuación A.16 establece simplemente que el cambio de flujo por unidad de tiempo por el contorno c es sólo lo que deberíamos calcular geométricamente sobre la base de que todas las líneas de flujo se mueven con el fluido. Concluímos, por tanto, que las líneas de inducción magnética se congelan cuando $\sigma \rightarrow \infty$ en el material perfectamente conductor.

Así pues, el conjunto de ecuaciones MHD quedan resumidas en:

79

Leyes de Maxwell:

Δ

ó

$$x H = J + \frac{\partial D}{\partial t}$$

ESTA TESIS NO DEBE Salir de la dielidteca $\nabla \times E = -\frac{\partial B}{\partial t}$ $\nabla \cdot D = \rho$ $\nabla \cdot B = 0$

Conservación del Momento:

$$\zeta \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{t}} = \zeta \left[\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{t}} + (\mathbf{v} \cdot \nabla)\mathbf{v} \right]$$

Equilibrio de fuerza:

$$\overline{J} \times \overline{B} = - \nabla \left(\frac{B^2}{2\mu_0} \right) + \frac{1}{\mu_0} (B \cdot \nabla) B$$

Conservación de la masa:

$$\frac{\partial \zeta}{dt} + \nabla \cdot (\zeta v) = 0$$

Ecuación de Ohm

 $J = \sigma (E + \overline{v} \times \overline{B})$

AI.4 OSCILACIONES ELECTROSTATICAS DEL PLASMA

Las oscilaciones electrostáticas en un Plasma fueron expuestas primero por Tonks y Langmuir [73].

Realmente, hay dos tipos posibles de oscilaciones electrostáticas: las oscilaciones de alta frecuencia, que son demasiado rápidas para que las sigan los iones, y las oscilaciones de los iones, que son tan lentas que los electrones se distribuyen alrededor de los iones en una forma estadística. Exponemos sólo el primer caso, el llamado de Oscilación Electrónica, que es el más interesante.

Fijemos nuestra atención en una región del Plasma que contiene una densidad uniforme de iones positivos N. Aquí no hay iones negativos. Inicialmente los electrones también tienen una densidad uniforme N, pero supongámos que cada electrón se desplaza en la dirección x a una distancia ξ que es independiente de las coordenadas y y z, y es cero en las fronteras del Plasma. El desplazamiento de los electrones perturba el Plasma neutro produciendo una carga en cada elemento de volumen $\Lambda x \Delta y \Delta z$:

El movimiento de los electrones produce un campo eléctrico E(x,t) que, debido a la simetria del problema, está en la dirección x. Por tanto

$$\nabla \cdot \mathbf{E} = \frac{1}{\varepsilon_0} \, \delta \rho \qquad \delta \qquad \frac{\partial \mathbf{E}}{\partial \mathbf{x}} = \frac{1}{\varepsilon_0} \, \operatorname{No} \, \frac{\partial \xi}{\partial \mathbf{x}}$$

ec. A.18

que cuando la integramos obtenemos

$$E = \frac{N_e}{\varepsilon_0} \xi \qquad A.19$$

Aquí la constante de integración se ha tomado igual a cero, puesto que la formación de "vainas" blindará o apantallará el Plasma de un campo eléctrico externo.

La fuerza sobre cada electrón es -eE que, según la ecuación A.19, es proporcional al desplazamiento ξ . Por

tanto, cada electrón oscila respecto a su posición original con un movimiento armónico simple. La ecuación del movimiento es:

$$m_{e} \frac{d^{2}\xi}{dt^{2}} + \frac{N_{e}^{2}}{\varepsilon_{o}} \xi = 0 \qquad A. 20$$

entonces la frecuencia de oscilación del Plasma $f_p = \omega_p/2\pi$ se define, en consecuencia, ya que $\omega_p = (N_e^2/m_e \varepsilon_o)^{1/2}$ donde me es la masa del electrón.

APENDICE II

ESPECTROSCOPIA Y FISICA ATOMICA [20, 40, 51]

Cada elemento emite un espectro que le es característico: el espectro de líneas para átomos o iones y de bandas de emisión para moléculas. La presencia de ciertas líneas o bandas en el espectro de un gas o cuerpo sólido indica la presencia de un cierto elemento en la fuente emisora.

Cada línea se caracteriza por su longitud de onda λ , su frecuencia ν y su número de onda k. Estas cantidades están relacionadas de la siguiente forma:

$$\lambda = \frac{c}{\nu} = \frac{1}{k}$$
 AII.1

donde c es la velocidad de la luz en el vacío; en el aire, donde el índice de refracción es n, la longitud de onda es rigurosamente:

$$\lambda_{\text{aire}} = \frac{\lambda_{\text{vacio}}}{n} \qquad \qquad \text{AII.2}$$

pero como para el aire $n \approx 1$, entonces $\lambda_{\text{aire}} \approx \lambda_{\text{vacio}} = \frac{c}{v}$ en este caso, aunque para algunos materiales la n sea considerable.

Los primeros trabajos de espectroscopia, puramente empiricos, permitieron mostrar evidencia de que los espectros de gases contenian series de lineas. Así, Balmer en 1885 hace notar que en el espectro del hidrógeno, entre $\lambda = 3600$ Å y $\lambda = 6562$ Å, existe una serie de lineas (de Balmer) cuya longitud de onda está dada por

$$\lambda = G \frac{n_1^2}{n_1^2 - 4}$$

AII.3

donde G es una constante, ni un número mayor que 2. En 1890, Rydberg generaliza este trabajo y muestra que todas las líneas que aparecen en el espectro del hidrógeno, y descritas por series previamente obtenidas, se pueden obtener por la fórmula:

$$k = R \left(\frac{1}{n^2} - \frac{1}{m^2}\right)$$

AII.4

AII.5

donde R es la constante de Rydberg relativa al hidrógeno (109677.581 cm⁻¹), n caracteriza a la serie y será constante para toda la serie de lineas, por ejemplo:

m caracteriza la linea de cada serie y tendrá valores superiores a n. El límite de la serie está dado por $m \rightarrow 0$ a la que corresponde un número de onda límite

$$k_{11m} = \frac{R}{n^2}$$

A través de la fórmula de Rydberg, la serie de Balmer se escribe como

$$k = R \left[\frac{1}{2^2} - \frac{1}{n^2} \right] \qquad \text{AII.6}$$

En 1908 Ritz generaliza el trabajo de Rydberg y encuentra que el número de onda de cualquier línea está dado por la diferencia de dos términos llamados "términos espectrales", es decir

 $k = \frac{\nu}{c} = \frac{1}{\lambda} = Tn - Tn \qquad AII.7$

Es la Mecánica Cuántica la que nos permite encontrar la relación entre los términos y la estructura del átomo que los emite.

En 1906, Einstein asocia a la radiación de frecuencia ν con un fotón de energía h ν (h es la constante de Planck, h = 6.624 x 10⁻²⁷ ergs seg⁻¹).

Las experiencias de Rutherford (1911) mostraron que el

átomo está constituído por un núcleo de carga ze y, alrededor de él, se encontraban z electrones de carga e. Bohr, en 1913, mostró que los electrones de un átomo no podían efectuar un número indefinido de órbitas alrededor del núcleo, excepto en ciertas órbitas privilegiadas, correspondientes a los estados de energía discretos de un átomo: en las que el electrón no emite energía alguna al moverse alrededor de la órbita, a excepción de cuando pasa de una órbita (m) a otra de diferente energía (n), y esto corresponde a la emisión de radiación (o al proceso inverso, absorción) cuya energía se podía expresar como:

$$hv_{nn} = E_n - E_n \qquad E_n > E_n$$

$$k = \frac{\nu}{c} = \frac{1}{\lambda} = \frac{1}{hc} (E_n - E_n) = T_n - T_n$$

ec. AII.8

La energía E de las órbitas queda definida a través de los términos espectrales. Cuando la energía E_m corresponde a un electrón que ya está libre del átomo, es decir, $E_m = 0$, entonces

$$Tn = -\frac{En}{hc}$$

AII.9

EL ATOMO DE BOHR

Si bien la teoría de Bohr se ha modificado y perfeccionado por las teorías modernas de la Mecánica Cuántica y Ondulatoria, ésta facilita la comprensión de los procesos de emisión que dan origen a los espectros atómicos.

Bohr supuso que en un átomo en que un electrón describe una órbita circular alrededor del núcleo de carga ze, lo hace de manera que la fuerza coulombiana y la centrífuga quedan equilibradas, es decir

$$\frac{ze^2}{r^2} = \frac{mv^2}{r} \quad \Rightarrow \quad r = \frac{ze^2}{mv^2} \quad \text{AII.10}$$

pero, además postuló que sólo son posibles las órbitas en las que el momento angular mvr es un múltiplo entero de $h/2\pi$

$$mv_{\Gamma} = n \frac{h}{2\pi}$$
 $n = 1, 2, ...$ AII.11

que es la condición de que en una órbita existan un número de ondas de deBroglie asociadas al electrón para evitar interferencia destructiva, de lo que se deduce que las órbitas permitidas están a una distancia r_n del núcleo, tal que:

$$r_n = n^2 \frac{h^2}{4\pi m_e^2 z} = \frac{n^2}{z} R_0$$
 AII.12

esto es, son proporcionales a n^2 ; ao se define como el radio de Bohr y es la primera órbita para el átomo de hidrógeno (z=1; n=1) y se emplea como unidad de medida en las dimensiones atómicas.

$$a_0 = \frac{h^2}{4\pi^2 me^2} = \frac{h^2}{me} = 0.529 \times 10^{-8} \text{ cm}$$
 AII.13

y la superficie que se cubre con este radio se emplea como unidad para la medición de secciones eficaces de choque:

$\pi ao^2 = 8.806 \times 10^{-17} \text{ cm}^2$

Para terminar de ilustrar el panorama general, es necesario aclarar que el electrón (o electrones) no gira, en realidad, alrededor del núcleo atómico, lo hace alrededor del centro de gravedad del sistema y lo hace como una partícula de masa reducida

$$\mu = \frac{mM}{m + M}$$
 AII.15

donde M es la masa del núcleo y m es la masa del electrón.
MODELO DE SOMMERFELD

Los electrones dentro de un campo coulombiano pueden describir órbitas elípticas alrededor de un núcleo. Sommmerfeld introduce un nuevo postulado que permite determinar los ejes de la elípse. Este postulado dice que la integral de la fuerza (acción), en un periodo de movimiento, es un múltiplo de nh,

$$f$$
 pi dqi = nih AII.18

donde pi es el momento conjugado de la coordenada qi. En consecuencia, tenemos que para el radio vector y para el ángulo polar

$$\begin{aligned}
\mathbf{\mathbf{f}} & \mathbf{p}_{\mathbf{r}} \, d\mathbf{r} = \mathbf{n}_{\mathbf{r}} \mathbf{h} \\
\mathbf{\mathbf{f}} & \mathbf{p}_{\phi} \, d\phi = \mathbf{n}_{\phi} \mathbf{h}
\end{aligned}$$

que, de acuerdo con el teorema de Liouville [40], el momento angular $p_{\rm de}$ es constante para un sistema aislado, entonces:

$$\int p_{\phi} d\phi = 2\pi p_{\phi} = n\phi h \qquad \phi \qquad \phi = n\phi \frac{h}{2\pi}$$

AII.18

nr es el número cuántico radial y n es el número cuántico azimutal, que en la serle aparecerán como:

$$k(k=n, n-1, ..., 1)$$

y, resolviendo el sistema de ecuaciones se pueden encontrar los parámetros de la elipse, semieje mayor a y semieje menor b,

$$a = \frac{h^2}{4\pi^2 \mu e^2} \frac{n^2}{z} = \frac{a_0}{z} n^2 \qquad b = \frac{h^2}{4\pi^2 \mu e^2} \frac{nk}{z} = \frac{a_0}{z} nk$$
$$\frac{a}{b} = \frac{n}{k} \qquad \text{AII.1}$$

donde n = k + nr es el número cuántico principal.

La energía total del electrón en una órbita circular es la suma de su energía potencial y su energía cinética:

$$E_{n} = \frac{ze^{2}}{r} + \frac{1}{2}mv^{2} = -\frac{ze^{2}}{2r} = -\frac{2\pi^{2}\mu e^{4}z^{2}}{h^{2}n^{2}}$$

AII.20

AII.21

todas las órbitas estables ligadas tienen un valor negativo y para $n \rightarrow \infty$ le corresponde E = 0, es decir, a partir de este momento los electrones están completamente libres.

Sommerfeld obtiene también la energía de las órbitas elípticas y encuentra la siguiente expresión que depende del número azimutal k:

$$E_{n,k} = -\frac{2\pi^{2}\mu e^{4}z^{2}}{h^{2}n^{2}}\left[1 + \frac{\alpha^{2}z^{2}}{n^{2}}\left(\frac{1}{k} - \frac{3}{n}\right)\right]$$

donde $\alpha = 2\pi e^2/hc = 7.2977 \times 10^{-3}$ es la constante de estructura fina.

Ahora bien, mediante la ec. AII.21, podemos obtener la expresión exacta para la constante de Rydberg, ya que

$$k = \frac{1}{hc} (E_{m} - E_{n}) = \frac{2\pi^{2}\mu e^{4}z^{2}}{ch^{3}} \left[\frac{1}{n^{2}} - \frac{1}{m^{2}} \right] = R \left(\frac{1}{n^{2}} - \frac{1}{m^{2}} \right)$$

ec. AII.22

puesto que el hidrógeno tiene un campo perfectamente coulombiano de fuerza central, y como z = 1, entonces

$$R = \frac{2\pi^2 \mu e^4}{ch^3} = 109677.58 \text{ cm}^{-1}$$
 AII.23

Sin embargo, como se aprecia, la constante de Rydberg depende de la masa reducida μ , es decir, de la masa del núcleo, ya que la del electrón se mantiene constante y, por ejemplo, para el He⁺ tenemos

$$R_{He} + = 109722.263 \text{ cm}^{-1}$$

y, cuando se tiene un núcleo de masa infinita

$$R_{\infty} = 109737.3 \text{ cm}^{-1}$$

que es el número de onda que se utiliza como unidad de energía, y que es

$$R = 13.605 \text{ eV}$$

A11.24

REPRESENTACION GRAFICA DEL ATONO

Para facilitar la comprensión de los procesos que tienen lugar en el átomo se puede representar cada nivel discreto del átomo por una línea horizontal separada una distancia proporcional a su separación energética respecto de las demás líneas.

Una linea de emisión (transición entre dos niveles diferentes) se muestra por una línea que va de un nivel de energía a otro (véase figura AII.1).

(a) Proceso de absorción

ESTRUCTURA FINA DE LAS LINEAS DE EMISION

SPIN DEL ELECTRON

Con los números cuánticos definidos, n y k, es suficiente para explicar el espectro del hidrógeno y de los átomos hidrogenoides, pero no explican por qué existe una gran dispersión en las líneas de emisión en los elementos alcalinos y por qué hay líneas que son dobles y aún triples. Un sinnúmero de factores que se observan no pueden explicarse completamente con los números cuánticos n y k.

En 1925, Goudsmit y Uhlenbeck [27] propusieron una explicación alterna que fue apoyada por los experimentos de Stern y Gerlach. La explicación fue que el electrón posee un momento angular intrínseco o "spin", que es independiente de su estado de movimiento traslacional, que se denota como S y puede tomar los valores de $\pm 1/2$ h; y cuya expresión es

 $S = \sqrt{s(s+1)} h$ donde $s = \pm 1/2$

ec. A11.25

A este spin se le asocia un momento magnético igual a un magnetón de Bohr, $(e/2mc)(h/2\pi)$. La interacción del momento magnético del spin con el campo magnético del momento orbital t produce el acoplamiento de los momentos angulares y se obtiene un momento cinético total, caracterizado por un vector J cuyo valor está dado por

$$J = \sqrt{\frac{1}{2}(\frac{1}{2} + 1)} h$$
 A11.26

y $j = \ell \pm 1/2$ para cada una de las ℓ 's, $\ell = k_{,,,0}$, de tal forma que a un electrón en una órbita elíptica, le corresponden 4 números cuánticos n, ℓ , s, j. El electrón con $\ell = 0$ se llamará electrón s, electrón p si $\ell = 1$, electrón d si $\ell = 2$, electrón f si $\ell = 3$, etc.

Para un átomo (o ion) complejo, cada electrón será caracterizado por 4 cantidades numéricas n_i , ℓ_i , s_i , j_i . Los vectores correspondientes no serán independientes y se verán afectados por las colisiones coulombianas, momentos magnéticos externos, etc., que afecten a los electrones de una misma capa.

Las interacciones spin-órbita (l, s) son de origen

magnético. Por el contrario, las interacciones órbita-órbita (t_1, t_2) y spin-spin son principalmente producto de fuerzas electrostáticas.

CONFIGURACION

Los valores de n y ℓ relativos a los diferentes electrones de un átomo o ion constituyen la configuración de éstos.

La energía de un nivel depende de n, el número cuántico principal, los electrones están agrupados en capas correspondientes a los diversos valores de n,

n = 1	capa	ĸ	l = 0	electrón	1s
n = 2	capa	L	l = 0	electrón	2s
	-		l = 1	н	2p
n = 3	capa	М	l = 0	"	3s
			l = 1	**	Зp
			l = 2	11	3d

El número de electrones que existen en cada capa está limitado por el principio de exclusión de Pauli, el cual dice que en un átomo dos electrones no pueden tener el mismo conjunto de valores que los caracteriza (n, l, me, ms) y el número de electrones posible se anota como exponente en el símbolo que representa su configuración electrónica. Así pues, la configuración $1s^2s^2p^4$ es para 8 electrones distribuidos de la siguiente forma:

2	para	n = 1	l = 0	s ± 1/2	1s _
2	para	n = 2	l = 0	s ± 1/2	2s ²
4	para	n = 2	l = 1	s ± 1/2	4p

El número máximo de electrones dentro de un mismo subgrupo está dado por $2(2\ell + 1)$. Los subgrupos que contienen el número máximo se dice que están saturados. Los electrones en un átomo siempre tienden a acomodarse en la configuración de mínima energía.

92

ACOPLAMIENTO L, S

Si las fuerzas electrostáticas entre los diferentes electrones son las más fuertes, el acoplamiento se llamará L,S (o Russell-Saunders). Los diferentes l_i no son independientes y están relacionados de tal forma que forman un vector

$$L = (l_1, l_2, l_3, ...)$$
 AII.27

cuya magnitud es L = $\sqrt{L(L+1)}$ h y se proyecta sobre los ejes tomando todos los valores comprendidos entre L y -L. L está cuantificado, los diferentes *l*i no pueden dar

sino una serie discreta de orientaciones.

Así, para 2 electrones de momentos orbitales l_1 y l_2 , L tomará todos los valores entre l_1+l_2 y $|l_1-l_2|$. Cada valor de L corresponde a un estado de energía diferente. La diferencia de energía entre los diferentes niveles será una medida directa del valor del acoplamiento.

De la misma forma que estas fuerzas, el spin total será:

$$f(s_1, s_2, \dots, s_n) = S \qquad AII.28$$

Se pueden acoplar L y S para dar un momento angular total J que será característico

$$f(L,S) = J \qquad AII.29$$

J es un vector cuantizado de magnitud $\sqrt{j(j+1)}$ ħ y L y S, y tomará todos los valores entre L+S y L-S

Si L>S, J tendrá 2S+1 valores diferentes S>L, J tendrá 2L+1 " "

donde a 2S+1 se le llama la multiplicidad del término. Así,

para un sólo electrón: s = 1/2 = S, 2s+1 = 2, los términos serán dobletes.

para dos electrones: s = 0, 2s+1 = 1 los términos serán singuletes s = 1, 2s+1 = 3 " " tripletes

para tres electrones: s = 1/2, 2s+1 = 2 términos dobletes

s = 3/2, 2s+1 = 4 " cuadrupletes

En resumen, un término espectroscópico caracterizado por ciertos valores de L, S, J se escribirá como:

en algunas notaciones se agrega el indice a si la suma aritmética de *l*i es impar y ningún indice si es par. Por convención:

a	L = 0	se le	denota con	la	letra S,
	L = 1		*		Ρ,
	L = 3			н	D,
	L = 4		44	н	F,
	etc				

similar a las letras de la configuración electrónica. Así, por ejemplo, el término espectral, ${}^{3}P_{2}$, denota un electrón en un estado con multiplicidad 3 = 2s+1, J=2 y L=1, quedando así determinado su estado.

ACOPLANIENTO J, J.

En este acoplamiento, cada momento orbital l_i en un sentido, está cuantizado separadamente, de la misma forma que el spin si. l_i y si componen a un j_i igualmente cuantizado

$$f(l_1, s_1) = f_1 \qquad AII.30$$

y J será la suma cuantizada de todos los 🏄

$$f(\mathbf{J}_1) = \mathbf{J} \qquad \qquad \mathbf{AII.31}$$

Este esquema, llamado acoplamiento J,J es útil en los elementos pesados donde los electrones "activos" son más de 1.

Supóngase que tenemos n electrones activos entonces, para obtener el acoplamiento, primero obtenemos los momentos angulares (l_1) y spinoriales (s_1) y obtenemos un momento

angular resultante para la partícula l:

$$JI = LI + SI$$

y, entonces, podemos combinarlo y obtener el momento angular total resultante:

AI1.33

AI1.32

Este esquema es de gran utilidad para los elementos pesados, en los que la interacción spin-órbita es mayor que la interacción spin-spin o la orbital-orbital.

ACOPLANIENTO J, L

Este acoplamiento es útil para los gases raros como el neón, argón, etc. El neón tiene 10 electrones; la configuración fundamental es $1s^22s^2p^6$. Los seis electrones 2p forman una capa saturada y hace falta una energía considerable para que un electrón pase a una capa n=3.

Suponiendo que se cede tal energía, los 5 electrones de la subcapa 2p se acoplan como

$$J_6 = \sum_{1}^{6} J_1$$

y un acoplamiento liga a Js, de los electrones p, con el momento angular del sexto electrón

$$\sum (J_5, L_8) = k$$

entonces, el momento cinético total es

 $J = k \pm Se$

TRANSICIONES ENTRE NIVELES DE ENERGIA

Una linea espectral es una transición de dos niveles de energía que están representados por la diferencia de los términos espectrales característicos de los niveles inicial y final.

Así por ejemplo, la línea de resonancia del He se escribe como la emisión observada:

$$1s 2p P^{0} - 1s^{2} S_{0} \qquad (\lambda = 584 \text{ Å})$$

No son posibles todas las transiciones entre niveles de energía; tienen ciertas reglas de selección que deben cumplirse. La más importante, la regla de Laporte, da las condiciones en que una transición puede ser posible (sólo para radiación dipolar eléctrica):

Condiciones rigurosas:

 $\begin{array}{l} \Delta \ell = \pm \ 1 \\ \Delta J = \pm \ 1 \\ \text{La transición } J = 0 \rightarrow J = 0 \ \text{está prohibida} \\ \text{Condiciones válidas en acoplamiento L,S:} \\ \Delta S = 0 \ (\text{misma multiplicidad}) \\ \Delta L = \pm \ 1, \ 0 \end{array}$

En una forma más general podemos decir que una transición es posible si los elementos de matriz

$$V_{mn} = \int \varphi_{m}(r) V(r) \varphi_{n}(r) dr$$

son distintos de cero. Donde V(r) es el potencial de acción sobre la función de onda φ , para modificarla. Entre los potenciales más comunes están el de Radiación Dipolar, el Cuadrupolar y de orden mayor.

Por ejemplo, en presencia de campos eléctricos y/o magnéticos intensos, las reglas de Laporte no se cumplen. Existen también tablas que resumen el análisis de los espectros obtenidos en el laboratorio. Estas tablas son muy completas para los átomos neutros, pero muy deficientes para los elementos fuertemente ionizados y, son inexistentes, para algunos iones, ya que jamás se han estudiado en el laboratorio; así que lo que se hace en ese caso son extrapolaciones teóricas. A este tipo de transiciones en que se necesitan términos cuadrupolares y de orden superior para explicarlas, se les da el nombre de transiciones prohibidas.

Esto llevó a la necesidad de conocer una expresión teórica para los pesos estadísticos de un determinado nivel atómico, que nos dé el número de estados simples de la misma energía y así poder determinar las intensidades de las transiciones.

Conociendo J, el número de estados simples de la misma energía es

$$g = 2J + 1$$
 AII.34

llamado factor de degeneración de un nivel. Para un nivel del átomo de hidrógeno con número cuántico principal n, g = $2n^2$, para un electrón libre g = 2 (dos orientaciones posibles del spin). Para un grupo de términos de mismas L y S pero diferentes J como $^{3}P_{2,1,0}$

$$g = (2L + 1) (2S + 1)$$
 AII.35

siendo este el número máximo de electrones con ese estado de energía. [51]

EFECTO ZEEMAN

En ausencia de un campo magnético, los niveles de energía son degenerados, ya que, aún después de todas las interacciones spin-spin y spin-órbita, la energía depende todavía sólo de la magnitud de J y no de su orientación. Pero, cuando se aplica un campo magnético externo, la degeneración se rompe debido a la interacción μ ·B entre el campo magnético y el momento magnético resultante del átomo. Esta energía de interacción tiene tantos valores posibles como haya componentes posibles del momento magnético μ y, así, tiene un valor diferente para cada valor de J. Esto significa que un nivel cuyo número cuántico del momento angular es J, debe dividirse en 2J+1 niveles en presencia de un campo magnético. La explicación cuántica del efecto Zeeman se basa en las transiciones entre niveles de energía separados, como se ilustra en la figura AII.2.

En el caso ilustrado, con cuatro estados iniciales y dos finales, hay ocho transiciones concebibles, así que se pueden esperar ocho líneas espectrales en lugar de tres, como en el patrón normal del efecto Zeeman. Sin embargo, existe una regla de solución

$$\Delta m_1 = \pm 160$$

que reduce a seis el número de transiciones posibles en este caso. El número real de líneas espectrales observado puede

Fig. AII.2

ser menor de seis; si, por ejemplo, la separación de energía entre los niveles superiores ($^{2}P_{3/2}$) es igual a la separación entre los dos niveles ($^{2}S_{1/2}$), entonces transiciones diferentes producen fotones de la misma energía, y se observan sólo tres líneas espectrales (la transición 1 involucra la misma diferencia de energía que la 4, etc.). Así que la observación del efecto Zeeman en un caso dado depende, por lo común, de la división del estado inicial respecto a la división del estado final. Cuando las separaciones son iguales, resulta el efecto Zeeman "normal".

Calculemos ahora la magnitud de la división para cualquier estado dado. Para hacer esto necesitamos evaluar $\mu \cdot W$ para cada uno de los estados atómicos permitidos en presencia del campo magnético externo B. El momento μ es la suma de los momentos

$$\mu spin = -\frac{eS}{m}; \quad \mu orbital = -\frac{eL}{2m}$$

que resultan de los momentos del spin y el orbital del electrón, por lo tanto

$$-\mu = \frac{eS}{m} + \frac{eL}{2m} = \frac{e}{2m} (2S + L) = \frac{e}{2m} (S + J)$$

AII.37

AI1.38

La ec. AII.37 indica que μ no es paralelo a J (a menos que S=0). Veremos que este hecho es responsable de la existencia del efecto anómalo.

Sea B el campo externo, el campo interno acopla a L y S dentro del átomo y hace que L y S precesen alrededor de la dirección J, mientras que el campo externo hace que el vector μ (ó J+S) precese alrededor de la dirección de B (véase fig. AII.3).

La precesión de μ alrededor de J es tan rápida que podemos evaluar el valor promedio de μ ·B promediando el vector μ sobre una revolución completa alrededor del vector J. Durante una revolución, la componente de μ perpendicular a la dirección de J tiene un valor promedio nulo y la componente de μ paralela a J tiene la magnitud constante μ ·J/J. El vector μ promes por tanto un vector de esa magnitud, cuya dirección es la dirección de J, y podemos escribir

$$\mu_{\text{prom}} = \frac{\mu \cdot J}{\left|J\right|^2} J \qquad \text{AII.38}$$

En esta expresión se puede verificar fácilmente que tiene la magnitud y dirección correcta. El valor promedio de la energía de interacción es, entonces:

$$\langle \text{Energia} \rangle = -\mu_{\text{prom}} \cdot \text{B} = -\frac{(\mu \cdot \text{J}) (\text{J} \cdot \text{B})}{|\text{J}|^2}$$

AII.39

Sustituyendo AII.38 en AII.39 tenemos que

$$\langle \text{Energia} \rangle = \frac{+e}{2m} \frac{[(J+S) \cdot J] [J \cdot B]}{|J|^2}$$

AII.40

ó, si B está en la dirección z

$$\langle \text{Energin} \rangle = \frac{+eBJz}{2m} \frac{(|J|^2 + J \cdot S)}{|J|^2} \qquad \text{AII.41}$$

entonces, como

$$|L|^{2} = (J-S) \cdot (J-S) = |J|^{2} + |S|^{2} - 2J \cdot S$$

AII.42

in a star a s Star a star a

entonces

$$J \cdot S = \frac{|J|^2 + |S|^2 - |L|^2}{2}$$
 AII.43

y así, obtenemos finalmente que:

$$\langle \text{Energia} \rangle = \frac{+eBJz}{2m} \left[1 + \frac{|J|^2 + |S|^2 - |L|^2}{2|J|^2} \right]$$

AII.44

Los estados permitidos deben ser, entonces, eigenestados de los operadores ${|J|}^2$, ${|S|}^2$, ${|L|}^2$ y Jz, y los niveles de energía se obtienen sustituyendo los eigenvalores de esos operadores en la ecuación AII.44, tenemos

Energia =
$$\frac{+eBh}{2m}$$
 m g AII.45

donde g es el llamado factor de Landé, que está dado por

$$g = \left[1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}\right]$$

El factor g depende de los pesos relativos de L y S al determinar el vector J. Si L=0 entonces J=S y g=2; si S=0 entonces J=L y g=1. En ambos casos μ es paralelo a J; la diferencia entre los factores g se origina por la diferencia entre las razones giromagnéticas para el spin y el momento angular orbital. Cuando ni L ni S son cero, g puede formar un valor fraccional y hasta menor que 1.

APENDICE III

TERMODINAMICA [51, 74]

EQUILIBRIO TERMODINAMICO Y MICRORREVERSIBILIDAD

Dentro de un gas (ó material) a una temperatura T, en el que se encuentren átomos, moléculas, iones, electrones, etc., a cada instante ciertas partículas se excitarán y otras se desexcitarán, algunas perderán electrones (ionización) y otras podrán capturar electrones.

Un estado de equilibrio termodinámico es aquel en que cada uno de los procesos entre las partículas del medio, como la emisión, absorción, ionización y las colisiones, son contrabalanceadas de manera exacta por su inverso, provocando así que las variables termodinámicas permanezcan constantes en el tiempo. Así, por ejemplo, podemos decir que entre 2 niveles, n y m, de un átomo, el número de excitaciones por absorción de radiación es igual al número de desexcitaciones por emisión de radiación:

y, el mismo número de excitaciones por colisiones inelásticas será exactamente contrabalanceado por el número de desexcitaciones por colisiones

$$N_{n \rightarrow m}^{col} = N_{m \rightarrow n}$$
 AIII.2

En estas condiciones se dice que los procesos son "microrreversibles". La energía cinética promedio de las particulas está regulada por la radiación emitida en los choques, la distribución de las diferentes partículas entre los estados simples de energía que puedan ocupar. Las funciones de distribución microscópicas se determinarán a partir de los parámetros macroscópicos, como temperatura y presión, que existan en el medio.

El equilibrio térmico será en donde las funciones de distribución sean estables desde el punto de vista de la mecánica estadística, suponiendo partículas indistinguibles.

Si decimos que las partículas están determinadas en su

posición por las coordenadas qi y su velocidad por qi y, considerando un sistema con tres grados de libertad, podemos definir la posición de las partículas en el espacio fase por 6 coordenadas: qx, qy, qz, px, py, pz; donde los pi son los momentos de las partículas. El elemento de volumen infinitesimal en este espacio fase será:

$d\tau = dq_x dq_y dq_z dp_x dp_y dp_z$

que podemos escribir como

$d\tau = V dp_x dp_y dp_z$

donde V es el volumen infinitesimal del espacio geométrico.

LEY DE MAXWELL

Esta ley permite encontrar el número dN de partículas de una especie dada (dentro de un medio de temperatura T, en equilibrio termodinámico) con velocidad comprendida entre v y v+dv

ec.AIII.3

 $\frac{dN}{N} = \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-mv^2/2kT} 4\pi v^2 dv = f(v) dv$

donde N es el número total de partículas de la especie, m la masa de cada partícula, \mathbf{k} la constante de Boltzman y T la temperatura del medio. La demostración de esta ley se hace de la siguiente forma:

Supongamos que dentro de un volumen $V = dq_x dq_y dq_z$, existen N1, N2, ..., Nj, ... particulas de energía W1, W2, ..., Wj, Si el sistema de N particulas en total y energía total W está aislado, entonces

Si el número de particulas de un estado o especie es grande, el estado promedio será muy cercano del estado más probable para el que la probabilidad X será máxima.

LEY DE BOLTZMAN

Esta ley nos da la razón entre las poblaciones de dos niveles n y m de un átomo o de un ion, de pesos estadísticos gn y gm, y de energías -En y -Em (suponiendo equilibrio termodinámico).

$$\frac{N_m}{N_n} = \frac{g_m}{g_n} e^{(Em - En)/kT}$$
 AIII.6

donde -Em y -En son los valores de la energía interna, tomando en cuenta que el límite para el continuo es E=O. Pero, en general, se prefiere utilizar la fórmula de Boltzman expresada con los potenciales de excitación de los niveles n y m (potencial $\chi = 0$ para el estado fundamental)

$$E_m - E_n = -\chi_m + \chi_n = -\chi_{nm}$$

entonces

$$\frac{N_m}{N_n} = \frac{g_m}{g_n} e^{-\chi_{nm}/kT} \qquad \text{AIII.8}$$

y para emplear los potenciales en electronvolts (1 eV = 1.602×10^{-12} erg). La ecuación toma la forma: erg). La ecuación toma la forma:

$$\frac{N_m}{N_n} = \frac{g_m}{g_n} 10^{-\chi_{n_m} \theta}$$

donde

$$\Theta = \frac{5040}{T} \qquad \left(5040 = \frac{(1.602 \times 10^{12}) \log e}{k} \right)$$

y, dado que el potencial de excitación $\chi_i = 0$, entonces

2

103

AIII.9

AII1.7

$$\frac{N_m}{N_1} = \frac{g_m}{g_1} e^{-\chi_m/kT}$$

Esto nos ayuda a definir una función de partición de la población en un átomo o ion respecto de los varios niveles. Sabemos que

ec.AIII.11

AIII.10

$$N = \sum N_{m} = N_{1} + N_{2} + N_{3} + \ldots = N_{1} \left(1 + \frac{N_{2}}{N_{1}} + \ldots + \frac{N_{m}}{N_{1}} + \ldots \right)$$

y, mediante AIII.10, podemos escribir a N como

$$N = \frac{N_1}{g_1} \int g_1 + g_2 e^{-\chi 2/kT} + \dots + g_m e^{-\chi m/kT} +$$

Y, esto nos permite definir a

$$B(T) = \sum_{m=0}^{\infty} g_m e^{-\chi_m/kT}$$
 AIII.13

como la función de partición.

LEY DE SAHA

Esta ley permite determinar el grado de ionización de un medio en equilibrio termodinámico.

Un átomo A se ioniza y se convierte en un ion A^+ cuando pierde un electrón

Sean No, Ni las poblaciones de los niveles fundamentales del átomo A y del ion A por cm³. No la densidad de electrones; go y gi los pesos estadísticos de los niveles fundamentales del átomo y el ion, y go el peso estadístico asociado al electrón.

La ley de Saha nos permite encontrar la razón entre NiNe/No en función de la temperatura

 $\frac{N1Ne}{No} = \frac{g1ge}{go} \cdot \frac{(2\pi m e kT)^{3/2}}{h^3} e^{-\chi 1/kT}$

AIII.14

donde me es la masa del electrón; \mathbf{k} la constante de Boltzman; h la constante de Planck y χ_i el potencial de ionización (expresado en unidades cgs).

Si deseamos encontrar el cociente de las poblaciones totales de los átomos neutros N, de los iones ionizados una vez N^{\star} y de los electrones libres N_e, basta con reemplazar en la fórmula los pesos estadisticos por las funciones de partición, entonces

 $\frac{N^{+}N_{e}}{N} = 2 \frac{B_{1}}{B_{0}} \cdot \frac{(2\pi m e kT)^{3/2}}{b^{3}} e^{-\chi 1/kT}$ AIII.15

de un ion r veces ionizado respecto de los r+1 veces ionizados, la ecuación toma la siguiente forma

$$\frac{Nr+1Ne}{Nr} = 2 \frac{Br+1}{Br} \frac{(2\pi m ekT)^{3/2}}{h^3} e^{-\chi r'/kT}$$
 AIII.16

donde χ'_r es el potencial necesario para pasar de r a r+1, y Br+1, Br son las funciones de partición de Nr+1 y Nr.

En el caso de un átomo de hidrógeno, se puede calcular la población total de los átomos en el nivel excitado de número cuántico n (Nn), respecto de la densidad de protones Ni y de electrones libres N_{e} .

$$\frac{N_1 N_0}{N_n} = \frac{1}{n^2} \cdot \frac{(2\pi m_0 kT)^{3/2}}{h^3} e^{-h_0 R/n} kT$$
 AIII.17

donde R es la constante de Rydberg (véase Apéndice II).

La ley de Saha se establece suponiendo que las partículas son indistinguibles e independientes. Pero en el caso de un plasma, cuando su densidad es elevada, no se pueden ignorar las interacciones y conducta colectiva de las partículas. No obstante, se puede aplicar una corrección a la ley para tomar en cuenta las interacciones en estos casos, y que equivale a una modificación en el potencial de ionización χ_i , que se reemplaza por $\chi_i - \Delta \chi_i$, donde

$$\Delta \chi i = (q + 1)e^{f}/\rho_{n} \qquad \text{AIII.18}$$

donde q^{\bullet} es la carga efectiva del ion; $\rho_{\rm D}$ es la longitud de Debye, distancia a la que los iones y electrones de un medio blindan la acción de una carga.

$$\rho_{\rm D}^2 = \frac{kT}{4\pi e^2 (N_0 + \sum_{\rm q}^{\rm e^2} N_{\rm I}^{\rm q^2})} \qquad \text{AIII.19}$$

donde N_{i}^{T} es la densidad de partículas de la especie donizada q veces.

LEY DE PLANCK

Dentro de un medio en equilibrio termodinámico, ciertas partículas se excitan o ionizan con la absorción de radiación y otras se desexcitan o recombinan con la emisión de radiación. La distribución espectral de la radiación que emite este medio en equilibrio radiativo es la que determina la ley de Planck (la radiación de cuerpo negro).

Un cuerpo está en equilibrio radiativo cuando, a cada frecuencia, cada unidad de volumen emite la misma cantidad de radiación que absorbe.

Esta ley proporciona la densidad de radiación u (cantidad de energía por unidad de frecuencia y por cm³, que pasa en un instante dado por un punto dado) y la distribución de la intensidad I ν (energía que pasa normalmente a través de la unidad de superficie por unidad de tiempo y por unidad de ángulo sólido).

Entre W y Iv existe la relación

ec. AIII.20

$$\mathcal{U}\nu = \frac{1}{c}\int_{0}^{4\pi} I\nu \ \mathrm{d}\Omega$$

(Ω ángulo sólido).

que, cuando la radiación es homogénea e isotrópica (como en el caso de equilibrio termodinámico) se transforma en:

El número de oscilaciones de frecuencias comprendidas entre v y v+dv, según el electromagnetismo clásico, es:

$$Qv = \frac{8\pi v^2}{c^2} \delta v$$

pero se obtienen resultados erróneos cuando se le asigna una cantidad de energía a cada frecuencia.

Planck propuso que las oscilaciones de frecuencia ν tenían energías que eran múltiplos enteros de h ν , donde h es una constante pequeña que se determinaría con el experimento. Y que, entonces, en un intervalo ν , ν +d ν existían N ν = 2ν d ν /h ν cuanta luminosos.

La energía total W = $\sum N\nu h\nu$ es constante y entonces el estado más probable se encontrará anulando las derivadas de

$$\delta = \log X - \mu W \qquad \text{AIII.21}$$

donde X es la variable aleatoria que les asigna la estadística de Bose-Einstein, lo que nos lleva a que

$$Nv = \frac{Qv}{e^{\mu h v} - 1}$$

donde

$$Qv = \frac{8\pi v^2}{c^2} \, \delta v$$

Empleando la fórmula de Stirling y suponiendo que $Q\nu >> N\nu$, la densidad de energía se obtiene reemplazando $N\nu$ y $Q\nu$ por sus valores

$$u = \frac{8\pi h\nu}{c^3} \cdot \frac{1}{e^{\mu h\nu} - 1}$$

donde $\mu = (kT)^{-1}$ para un medio con temperatura T. La ley de Planck da la distribución de la densidad de radiación en función de la frecuencia de la siguiente forma:

$$\frac{d\nu}{c^3} \cdot \frac{1}{e^{h\nu/kT} - 1}$$

AIII.22

AII1.23

o la intensidad

$$I\nu = \frac{2h\nu^2}{c^2} \cdot \frac{1}{e^{h\nu/kT} - 1}.$$

donde

Un estudio global de la radiación nos conduce a que, si integramos la radiación sobre todas las frecuencias, tenemos que

$$\mathfrak{U}(\mathbf{T}) = \int_{0}^{\infty} \mathfrak{U} \nu \, d\nu = \frac{8\pi^{5} \mathbf{k}^{4} \mathbf{T}^{4}}{15c^{3}h^{3}} = a\mathbf{T}^{4}$$
 AIII.24

donde $a = 7.569 \times 10^{-15} \text{ erg/cm}^3 \text{ grad}^4$.

La densidad de energía en un cuerpo negro es proporcional a la cuarta potencia de la temperatura (Ley de Stefan-Boltzman), y la intensidad total es

 $I = B = \frac{c\mathcal{U}}{4\pi} = \frac{\sigma}{\pi} T^4$ AIII.25

donde $\sigma = 5.6724 \times 10^{-5} \text{ erg/cm}^2 \text{ grad}^4 \text{ seg}$ (constante de Stefan).

La distribución de energía de $I\nu$ en función de ν o de $I\nu$ en función de λ presenta un máximo en una ν_{max} ó λ_{max} determinada, dependiendo de la temperatura.

La ley de Wien proporciona el valor de λ_{max} . Como sabemos, si hacemos la sustitución de ν por λ mediante la relación $\lambda = c\nu$, tenemos que:

$$I_{\lambda} = \frac{2hc^2}{\lambda^5} \cdot \frac{1}{e^{hc/\lambda kT} - 1}$$
 AIII.26

y, haciendo

$\partial I_{\lambda}/d\lambda = 0$

obtenemos que $\lambda_{max}T = 0.289715 \text{ cm grad}$

y el valor de vmax correspondiente a un máximo de Iv no es más que el valor de ν que corresponde a λ max.

APENDICE IV

CONSTANTES FISICAS Y UNIDADES [9, 20, 62, 65, 74]

CONSTANTES FISICAS

Velocidad de la luz	C_	$2.9979 \times 10^{10} \text{ cm seg}^{-1}$
	c ²	8.988 x 10 ²⁰ erg/g
		931.478 MeV/amu
Carga eléctrica	е	4.8032 x 10^{-10} statcoulomb
		4.8032 x 10^{-10} (erg-cm) ^{1/2}
		$1.6021 \times 10^{-19} C$
		$1.6021 \times 10^{-12} \text{ erg/V}$
		$3.7946 \times 10^{-7} (MeV-cm)^{1/2}$
	2 ²	$1.9040 \times 10^{-13} \text{ MeV-c}$
	• • • • • • • • • • • • • • • • • • •	1.5040 × 10 110 0
Constante de Planck	h	6 6256 x 10 ⁻²⁷ erg seg
constance de l'imick	•• • • • • • • • • • • • • • • • • • •	$4 1356 \times 10^{-21} \text{ MeV-seg}$
	ж ¹	1.054×10^{-27} erg seg
	¹¹ 2	$1.034 \times 10^{-43} (MeV = cerg)^2$
	h/m.o ²	4.3322×10^{-21} cog
	ID INC	2.1512×10^{-17} and cm
	nc	1.0721×10^{-11} MeV erg Cm
	(1.)2	1.9731×10 MeV Cm
	(nc)	389.36 MeV Dn
	e/nc	1.9231 X 10 (MeV cm)
	(e/hc)	3.6982 x 10 (Mev cm)
Constante de Boltzman	ir.	$1.3805 \times 10^{-16} erg/grados$
constante de portenai	~	$0.8617 \times 10^{-4} eV/grados$
	1/1	1.1605×10^4 grados/eV
	1/ •	1.1000 x 10 Brados, 01
Número de Avogadro	NA	6.0225×10^{23} Atomos/mole
Mallero de Mogadio	116	
Faraday	F=NAe	9.6487×10^4 C/mole
Número de masa atómica	$\mu = N^{-1}$	$1,6604 \times 10^{-24}$ g
(-12)		
(C ≡ 12)		
	_	1822.83 me

 μc^2

931,478 ± 0.005 MeV

	a second a second s	그는 것을 가슴을 가슴을 가 봐.		
	Masa del protón	Mp	1.6726 x 10 ⁻²⁴ g	
		mpC ²	938.256 ± 0.005 MeV	
	Masa del neutrón	2 MnC	939.550 ± 005 MeV	
	Masa del electrón	Me	9.1091 x 10^{-28} g	
		2.4955 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199 2.	0.5486×10^{-3} amu	
		MeC	511.006 ± 0.002 keV	
1	Carga electrónica específica	e/me	$1.7588 \times 10^8 \text{ C/g}$	
1	Constante de	$a=e^2/\hbar c$	1/137 039	
	estructura fina	u-c / nc	7.2972×10^{-3}	part of the
		2	-9	
	Radio orbital de Bohr	ao=h/mee"	5.2917 x 10 ° cm	
,	Sección eficaz atómica	πao ²	8.797×10^7 bn	
	Radio clásico del	re=e ² /mec ²	2.8178×10^{-13} cm	
	electrón	2 #Г.	0.2494 bn	
	Magnatán da Bahn	11-mah /2m.a	0 57992 v 10 ⁸ oV/mun	
	nagneton de boin	he-en Swee	0.5/662 x 10 ev/gaus	
	Magnetón nuclear	$\mu_{\rm N} = e\hbar/2m_{\rm P}c$	0.31524 x 10 ⁻¹¹ eV/gauss	
	Factor de conversión de energía	1 eV	1.6021 x 10 ⁻¹² erg	
•	Tiempo	1 dia	86 400 seg ₇	
		1 año	3.156 x 10 'seg	
	Tasa de desintegración	1 curie	3.70 x 10 ¹⁰ dis/seg	
	······································	1 rutherford	10 ⁷ dis/seg	
,	tenutional de ende de		2 95144 × 10 -11	
	Compton	V-UN WeC	J.86144 X 10 Cm	
	(para el electrón/ 2π)			
			2 4 . 2 .	
1	Energía de ionización pa	rael Io=21	(mee /h)	
	atomo de marogeno no	rmai -e/	$(a^2/2)$ 13.60 eV	
		I =Ie	(z^2/n^2)	
	Energía total de enlace	electrónico		
	con coeficientes empiri	cos)		
		,	7/2	
		Be(z) =	15.73 z " ³	
		111		
			the second se	

111

CONSTANTES NUMERICAS

e = 2.718282	1/e = 0.367879
$\log_{10}e = 0.434294$	$\log_{0} 10 = 2.302585$
π = 3.141593	$\pi^2 = 9.864604$
$1/\sqrt{\pi} = 0.564190$	1/√2π

112

TABLA DE UNIDADES Y EQUIVALENCIAS

CANTIDAD FISICA	SIMBOLO	MKS (Papiana) (mada)	CGS
·	_	(Nacionalizado)	(Gaussialo)
			_
Longitud	1	metro(m)	10 ² centimetro
Masa	m	kilogramo (kg)	10 ³ gramo (gr)
Tiempo	· t	segundo (seg)	1 segundo (seg)
Fuerza	F	newton	10 ⁵ dinas
Trabajo	W	joule	10 ⁷ ergs
Energía	U	joule	10' ergs
Potencia	Р	watt	10' erg seg ⁻¹
Carga	q	coulomb (coul)	3x10 ^g statcoul
Densidad de carga	ρ	coul m ⁻³	3x10 statcoul/cm
Corriente	I	ampere (coul/seg)	3x10 [°] statamperes
Campo eléctrico	Е	volt m ⁻¹	$\frac{1}{3}$ x10 ⁻⁴ statvolt/cm
Potencial	φ, V	volt	1/300 statvolt
Polarización	P	coul m ²	3x10 ⁵ statcoul cm ⁻²
Desplazamiento	D	coul m ⁻²	12πx10 ⁵ statvolt/cm
eléctrico			statcoul/cm ²
Conductividad	or	mho m ⁻¹	9 x 10 ⁹ seg ⁻¹
Resistencia	R	ohm	1/9 x 10 ⁻¹¹ seg/cm
Capacitancia	С	farad	9 x 10 ¹¹ cm
Flujo magnético	Φ, F	weber	10 ⁶ maxwell
Intensidad	н	ampere vuelta/m	$4\pi \times 10^{-3}$ oersted
magnética			
Inductancia	L	henry	1/9 x 10 ⁻¹¹ seg ² /cm
Inducción magnétic	a B	weber m	10° gauss

113

CANTIDAD	SISTEMA	
	CGS (Gaussiano)	MKS
Velocidad de la luz	c	(µ000)
Campo eléctrico (potencial,voltaje)	E(¢,V)	$\sqrt{4\pi\varepsilon_0} E(\phi, V)$
Desplazamiento	D	√4π/co D
Densidad de carga	ρ	(1/V4πεο)ρ
Inducción magnética	B	√4π/μ ₀ B
Campo magnético	н	√4πμο H
Magnetización	м	√µ0/4π M
Conductividad	σ	σ/4πεο
Constante dieléctrica	3	E/E0
Permeabilidad	μ	μ/μ₀
Resistencia (impedancia)	R(z)	$4\pi c_0 R(z)$
Inductancia	L	4πεο L
Capacitancia		(1/4πεο)C

TABLA DE CONVERSION DE LOS SIMBOLOS FORMALES (ELECTROMAGNETISMO)

VERIFICACIONES MATEMATICAS

CAPITULO I

....2

Q. E. D.

demostración '

APENDICE V

de la ec. I.20 $dE\nu = -4\pi I\nu\pi e^2 N_n f_{nm}/(mc)$ y de I.21 $dE\nu = -4\pi I\nu N_n B_{nm}h\nu/c$ entonces como 1 = 2 $\Rightarrow \pi e^2 f_{nm}/m = B_{nm}h\nu$ y de 3 tenemos que f_nm = mB_nmhv/(πe^2)

đ

$df_{nk}/dk \approx f_{nk}$

demostración. de la ec.I.32 tenemos que si $\lambda = 2^{8}\overline{g}II/(3\sqrt{3}\pi g_{nn}^{3})$ entonces $f_{nk} = \lambda [(n^2k^2)/(k^2+n^2)]^3k^{-3}$ $df_{nk}/dk = \lambda d/dk [(n^2k^2)/(k^2+n^2)]^3k^{-3}$...1 -32 345 6 7 8 y de 8 podemos observar que si conservamos los terminos cúbicos en k tenemos que dfnk/dk \approx fnk 0.E.D.

de a ecuación del balance de energía tenemos que:

$$1/2 \text{ mv}^{2} + \chi_{n\infty} = h\nu$$

$$\Rightarrow \nu = \text{mv}^{2}(2h)^{-1} + \chi_{n\infty} h^{-1}$$

$$\Rightarrow d\nu/dv = \text{mvh}^{-1} \Rightarrow \text{mvdv} = hd\nu$$

.....

$$F_{u}dv = NiN_{e} \in T^{-3/2} \quad \overline{g_{III}}^{-3} e^{-h(v-v_{I})/kT} dv/v$$

demostración: de la ley de Planck (vé*ase Apéndice III*), tenemos que:

$$I\nu = 2h\nu^{3}c^{-2}(e^{h\nu/kT} - 1)^{-1}$$

y remplazando Iv en la ecuación I.59

$$\begin{split} N_{n\infty} d\nu &= 4\pi N_{n} \alpha_{nk} (1 - e^{-h\nu/kT}) (h\nu)^{-1} 2h\nu^{3} c^{-2} (e^{h\nu/kT} - 1)^{-1} d\nu .2 \\ y \ de \ la \ ley \ de \ Saha (véase Apéndice III). \\ NiNe/Nn &= n^{-2} h^{-3} (2\pi m_{0} kT)^{3/2} e^{-hCR/n^{2} kT}3 \end{split}$$

entonces

$$N_{n} = [(N_{1}N_{e})^{-1} n^{-2}h^{-3}(2\pi m_{e}kT)^{3/2} e^{-hcR/n^{2}kT}]^{-1} \dots 4$$

y reemplazando 4 en 2 tenemos que;

$$\begin{split} N_{n\infty} &= 4\pi\alpha_{nk} \left(1 - e^{-h\nu/kT}\right) (h\nu)^{-1} 2h\nu^{3}c^{-2}(e^{h\nu/kT} - 1)^{-1} X \\ & X \left[(N_{1}N_{e})^{-1} n^{-2}h^{-3}(2\pi m_{e}kT)^{3/2} e^{-hcR/n^{2}kT} \right]^{-1} \dots 5 \\ y \text{ de la ec. I. 44 tenemos que} \\ & \alpha_{nk} = 64(3\sqrt{3})^{-1}\pi m_{e}e^{10}(n^{5}c h^{6}\nu^{2})^{-1}\overline{g}_{11} \dots 6 \end{split}$$

y sustituyendo 6 en 5 tenemos que

 $N_{n\infty} = 4\pi (1 - e^{-h\nu/kT})(h\nu)^{-1}2h\nu^{3}c^{-2}(e^{h\nu/kT} - 1)^{-1} X$ $X = [(N_{1}N_{e})^{-1}n^{-2}h^{-3}(2\pi m_{e}kT)^{3/2}e^{-hcR/n^{2}kT}]^{-1} X$

X $64(3\sqrt{3})^{-1}\pi_{mee}^{10}(n^5ch^6\nu^2)^{-1}\overline{g}II$ 7 por eliminación directa de ν^3/ν^2 y n^2/n^5 y reagrupando los demás términos se tiene que;

$$N_{n\infty} = 8\pi^2 64 \text{mee}^{10} (3\sqrt{3} \text{ ch}^2)^{-1} [2\pi \text{mek}]^{-3/2} \text{ NiNeT}^{-3/2} \overline{g_{11}} n^{-3} \nu^{-1} X$$

$$(1-e^{-h\nu/kT})[(e^{h\nu/kT}-1)e^{-hcR/n^{2}kT}]^{-1}$$

. . . 8

Para poder reducir la ecuación 8 se deducen las siguientes identidades entre los cocientes de exponenciales

$$(1-e^{-h\nu/kT})(e^{h\nu/kT}-1)^{-1} = e^{-h\nu/kT} - e^{-2h\nu/kT}(1-e^{-h\nu/kT})^{-1} \dots 9$$

9 = $(1-e^{-h\nu/kT})e^{-h\nu/kT}[1-e^{-h\nu/kT}]^{-1} = e^{-h\nu/kT} \dots 10$
entonces
 $(1-e^{-h\nu/kT})[(e^{h\nu/kT}-1)e^{-hcR/n^2kT}]^{-1} = e^{-h\nu/kT}e^{hcR/n^2kT} \dots 11$
11 = $e^{-h\nu/kT+hcR/n^2kT}$ v come $cR/n^2 = \nu_n$ entonces

$$1 = e$$
 y como cH/n = v_n entonces

х

$$11 = e^{-h\nu/kT} - h\nu_n/kT = e^{h(\nu-\nu_n)/kT} ...12$$

finalmente tenemos que
$$N = F = NiNe T^{-3/2} \overline{g_{11}} n^{-3} e^{-h(\nu-\nu_n)/kT} / \nu X$$

$$n^{\infty} = 1_{kn} = 10^{10} \text{ m}^{-1} \text{ m}^$$

y de 13 tenemos que si reemplazamos a $8\pi^2 64mee^{10}(3\sqrt{3} ch^2)^{-1}[2\pi m_e k]^{-3/2}$ por una constante \mathfrak{E} entonces tenemos que ($\mathfrak{E} = 3.260 \times 10^{-8}$ en unidades c.g.s.)

$$F_{kn} d\nu = NiNe \ \varepsilon T^{-3/2} \ \overline{g} II \ n^{-3} e^{-h(\nu-\nu n)/kT} \ d\nu/\nu \qquad Q.E.D,$$

CAPITULO II

 $n_{s}(\sigma, v) f \left[n_{f}(\sigma, v)_{s} \forall i \right]^{-1} \simeq (2 \ln \Lambda)^{-1} \left[ln(C_{i}\beta^{2}) + 11.23 \right]^{-1} X$

х

 $([\ln(C_{1}\beta^{2})+9.23]^{2}+4)$

demostración: Para partículas no relativistas la expresión II.1, se puede llevar a la siguiente forma [JK].

$$(\sigma, v)_{f}, \forall i = [7.6X10^{-9}fZ^{2}/(\beta\Delta E)] [ln(Ci\beta^{2}) + 11.23] \dots 1$$
entonces
$$nr(\sigma, v)_{f}, \forall i = nr [7.6X10^{-9}fZ^{2}/(\beta\Delta E)] [ln(Ci\beta^{2}) + 11.23] \dots 2$$

$$y \text{ de la ecuación II.6 tenemos que} \\ ns(\sigma, v)_{s}\forall i = [3.8X10^{-9}nfZ^{2}f/(\beta\Delta Eln\Lambda)] X \\ X ([ln(Ci\beta^{2})+9.23]^{2} + 4) \dots 3$$
Al efectuarse el cociente entre 2 y 3, por eliminación directa (término a término) tenemos que:
$$nr(\sigma, v)_{f}\forall i [ns\forall i(\sigma, v)_{s} \forall i]^{-1} = 2ln\Lambda \frac{[ln(Ci\beta^{2}) + 11.23]}{[ln(Ci\beta^{2})+9.23]^{2} + 4} \dots 4$$
entonces

 $n_{s}(\sigma, v)r [nr(\sigma, v)_{s} \forall i]^{-1} \simeq (2ln \Lambda)^{-1} [ln(Ci\beta^{2}) + 11.23]^{-1} X$ X ($[\ln(C_{1\beta}^{2})+9.23]^{2}+4$) Q. E. D.

demostración: sustituyendo la ecuación II.20 en la ecuación II.19 tenemos ane:

 $\frac{N1N_{s} f_{s}(v) h^{2}v}{N_{n}4\pi (1-e^{-h\nu/kT})m_{e}v[2h\nu^{3}c^{-2}(e^{h\nu/kT}-1)^{-1}]}$ ank/akn sec.

$$= \frac{N_1 N_8 f_8(v) h^2}{2N_0 4\pi (1 - e^{-h\nu/kT})_{mevc}^{-2} (e^{h\nu/kT} - 1)^{-1} v^{-2}}$$

 $(e^{h\nu/kT}-1)$ NiNs $f_s(v) h^2 v^{-2} c^2$ $\frac{1}{(1-e^{-h\nu/kT})}$ 2Nn4mmev

. . . . 1

y como

$$\frac{(e^{h\nu/kT}-1)}{(1-e^{-h\nu/kT})} = \frac{e^{h\nu/kT}-1}{1-1/e^{h\nu/kT}} = \frac{e^{h\nu/kT}-1}{\frac{e^{h\nu/kT}-1}{e^{h\nu/kT}}}$$

entonces

$$\frac{(e^{h\nu/kT}-1)}{(1-e^{-h\nu/kT})} = e^{h\nu/kT}$$

entonces

$$\frac{\alpha_{nk}}{\alpha_{kn}} \text{ sec.} = \frac{NiN_s f_s(v) h^2 v^2 c^2 e^{hv/kT}}{2N_0 4 \pi m_s v}$$

y como $N_B = N_f/lnA$ (para el caso de electrones) entonces:

$$\frac{\alpha_{nk}}{\alpha_{kn}} \sec = \frac{N_1 N_1 f_s(v) h^2 v^2 c^2 e^{h\nu/kT}}{2N_1 4 \pi m e v \ln A}$$
Q. E. D

$$\frac{\alpha_{nk}}{\alpha_{kn}} \text{ sec. } = \frac{N_f}{N_{eT}} \left[\frac{c}{2n \nu} \right]^{2(2\pi m_e)} \frac{1}{h \ln \Lambda v} (kT)^{3/2} e^{(\nu - \nu_n)h / kT} f_a(v)$$

demostración: De la Ley de Saha (*véase Apéndice III*) se tiene que:

$$\frac{N_{1}N_{e}}{N_{n}} = \frac{(2\pi m_{e}kT)^{3/2}}{n^{2}h^{3}} e^{-hcR / (n^{2}kT)}$$

entonces se tiene que

$$\frac{N_{i}}{N_{n}} = \frac{(2\pi m_{e}kT)^{3/2}}{N_{e}T n^{2}h^{3}} e^{-hcR / (n^{2}kT)}$$

y sustityendo 2 en la ec.II.21 tenemos que:

$$\frac{\alpha_{nk}}{\alpha_{nk}} \sec = N_{ffs}(v) \qquad \frac{(hc)^{2} e^{h\nu/kT} (2\pi m_{e}kT)^{3/2}}{\ln \Lambda 2m_{e}4\pi \nu^{2} v \text{ Net } n^{2}h^{3}} e^{-hcR / (n^{2}kT)}$$

finalmente al reagrupar los términos se obtiene que:

 $\frac{\alpha_{nk}}{\alpha_{kn}} \sec c = \frac{N_f}{N_{eT}} \left(\frac{c}{2n \nu} \right)^2 \frac{(2\pi m_e)^{1/2}}{h \ln \Lambda v} (kT)^{3/2} e^{(\nu - \nu_n)h / kT} fs(\nu)$

APENDICE I

Sean: \vec{v} un vector con componentes v_x, v_y, v_z tal que $\vec{v} = (v_x, v_y, v_z)$ y \vec{B} otro vector con una sola componente en la dirección z tal que $\vec{B} = (0, 0, B_z)$

entonces

$$\vec{v} \times \vec{B} = \begin{vmatrix} l & j & k \\ v_X & v_y & v_z \\ 0 & 0 & Bz \end{vmatrix} = l(v_y B_z) - j(v_x B_z)$$

Q. E. D.

Q.E.D

REFERENCIAS

- [1] Alikaev, V. V., Bobrovskii, G. A., Razumova, K. A., (1975), Sov. J. Plasma Phys. <u>1</u>,309.
- [2] Allen, C. W., (1963) Astrophysical quantities (university of London; The Athlone Press), p. 65.
- [3] Bates, D. R., (1962) "In atomic and molecular processes", ed. by D. R.Bates (Academic New York).
- [4] Bates, D. R., Damgaard, A., (1949). Phil. Trans. <u>A</u> <u>242</u>, 101.
- [5] Bethe, H. A. (1930) Ann. Physik 5, 325.
- [6] Bethe, H. A., Salpeter, E. E. (1957) Quantum Mechanics of 1-2 electron atoms. Springer Verlag.
- [7] Bohr, N., (1948) Dan. Mat. Fys. Medd. 18, 8.
- [8] Bohr, N., Lindhard, J., (1954) Dam. Mat. Fys. Medd. 28, no.7
- [9] Book, D. L., (1987) NRL Plasma formulary, Naval Research laboratory, Washington D.C. 0084-4040.
- [10] Burgess, A., (1958) MN 118, 477.
- [11] Burgess, A., Seaton, M., (1960). MN 120, 121.
- [12] Burgess, A., (1965) Astrophys. J. <u>141</u>, 1588.
- [13] Bussard, R. W., Ramaty, R., Omidvar, K., (1978) Ap. J. 220, 353.
- [14] Chandrasekhar, S., (1962), "Plasma Physics" (2^aed. Printed by Chicago University Press) Illinois USA.
- [15] Corliss, C. H., Bozman, W. R., (1962) NBS Monograph 53.
- [16] Crandall, D. H., Taylor, P. O., Dunn, G. H., (1974) Phys. Rev. <u>10</u>, 141.
- [17] Davis, H. A., Meger, R. A., Fleischmann, H. H., (1976) Phys. Rev. Lett. <u>37</u>, 542.
- [18] Eddy, J. A., (1979) "A New Sun" Rein Ise Ed. NASA SP-402, Washinton D. C.
- [19] Fano, U., (1954) Phys. Rev. <u>95</u>, 1198.
- [20] Fong, P., (1964) "Elementary quantum mechanics" (2^aed. ADDISON-WESLEY PU.Co.) USA.
- [21] Gallegos A., Pérez-Peraza, J., (1987) Rev. Mexicana. Astron. Astrof. <u>14</u>, 700, (1987)
- [22] Gallegos A., Pérez-Peraza, J., (1987) Rev. Mexicana. Astron. Astrof. <u>14</u>, 705, (1987)
- [23] Gaudin, A., Hagemann, R., (1965) J. Chem. Phys. <u>43</u>, 1464.
- [24] Gaunt, J. A., (1930) Phil. Trans. R. Soc. 229, 163.
- [25] Ginzburg, Syrovatski, (1964) "Origin of cosmic rays" New York USA.
- [26] Glasco, H. P., Zirin, H., (1964) Ap. J. Suppl. <u>90</u>, 193.
- [27] Goudsmit, S., Uhlenbeck, G. E., (1926) Nature <u>117</u>, 264.
- [28] Gregory, D., Dunn, G. H., Phaneuf, R. A. and Crandall,
- D. H., (1979) Phys. Rev. A20, 410.
- [29] Griem, H. R., (1968) Phys. Rev. 165, 258.
- [30] Hares, J. D., Kilkenny, J. D., Key, M. H., Lunney, J. G. (1979) Fis. Rev. Lett. <u>42</u>, 1216.
- [31] Hutchinson, I.H., (1987) "Principles of plasma diagnostics", ed. by Cambridge University Press, NY.
- [32] Inokuti, M., (1971) Rev. Mod. Phys. <u>43</u>,297.
- [33] Jain, N. K., Narain, V., (1978), Astron. Astphys. suppl. <u>31</u>, 1.
- [34] Jayakumar, R. and Fleischmann, H.H., (1985) JQSRT, <u>33</u>, 177,
- [35] Kapetanakos, C. D., Golden, J., Pasour, J. A., March, S. J., Mahaffey, R. A., (1980) Phys. Rev. Lett. <u>44</u>, 1218.
- [36] Karzas, W. J., Latter, R., (1961). Ap. J. Suppl. 55, 167
- [37] Kunze, H. J., Gabriel, H. A., Griem, H. R., (1968) Phys. Rev. 165, 267.
- [38] Langmuir, I., (1929) Physical Rev. 33, 954.
- [39] Marchenko, V. S., Yokovlenko, S. I., (1979) Sov. J. Quantum. Electron. <u>3</u>, 444.
- [40] Mc. Gervey, J., (1975) "Introducción a la física moderna" ed. Trillas, México.
- [41] Meggers, W. F., Corliss, C. H., Scribner, B. F., (1961) "Tables of spectral lines intensities", NBS Monograph.
- [42] Menzel, M., Pekeris, C. L., (1935) NN 96, 177.
- [43] Mewe, R., Schrijver, J., (1978) Astron. Astrophys. <u>65</u>, 99.
- [44] Mewe, R., Schrijver, J., Sylwester, J., (1980) Astron. Astrophys. <u>87</u>, 55.
- [45] Mittleman, M. H., (1967) Phys. Rev. 164, 48.
- [46] Mohri, A., Narahara, K., Tsuzuki, T., Kubota, Y., Tomita, Y., Ikuta, K., (1978) Proc. 7th Int. Conf. on Plasma Physics and Controled Fusion Research, <u>3</u>, 311.
- [47] Moores, D. L., Nussbaumer, H., (1969) 6th Int. Conf. on the Physics of Electronic and Atomic Collisions. <u>MIT</u>, 17.
- [48] Nicolaev, V. S., (1965) Soviet Phys. Uspekhi 8,269
- [49] Oster, L., (1959). Ap. Z. <u>47</u>, 169.
- [50] Peart, B., Dolder, K. T., (1968) J. Phys. <u>B</u> 1, 872.
- [51] Pecker-Wimel, C., (1966) "Introduction a la spectroscopie des Plasmas" ed. Gordon and Brech, (Paris. New York)
- [52] Pérez-Peraza, J., Villareal, A., Martinell, J., (1983) Adv. Space. Res. <u>2</u>, 197.
- [53] Pérez-Peraza, J., Martinell, J., Villareal, A., (1984) Proc. of 18 ICRC, Bangalore, India <u>9</u>, 302.
- [54] Pérez-Peraza, J., Alvarez-Madrigal, M., (1985) Proc. of 19 ICRC. La Jolla, USA. <u>4</u>, 18.
- [55] Pérez-Peraza, J., Alvarez-Madrigal, M., (1985) Proc. of 19 ICRC. La Jolla, USA. <u>4</u>, 22.
- [56] Pérez-Peraza, J., Alvarez-Madrigal, M., (1985) Proc. of 19 ICRC. La Jolla, USA. <u>4</u>, 26.
- [57] Pérez-Peraza, J., Alvarez-Madrigal, M., (1988) (por publicarse en) Adv. Space. Res.

- [58] Phelps, D. A., Smith, A. C., Woodall, R. A., Meger, R. A., Fleischmann, H. H., (1974) Phys. Fluids 17,2226.
- [59] Pivovar, L. I., Levchenko, Y. Z., (1967) Sov. Phys. JETP 25, 27.
- [60] Pottash, S. R., (1963) Astrophys. J. 137, 945.
- [61] Pravdo, S. H., Boldt, E., (1975) Ap. J. 200, 727.
- [62] Pugh, E. W., Pugh, E. M., (1960), "Principles of electricity and magnetism" (ADDISON-WESLEY ed.) U.S.A. [63] Regemorter, H. Van, (1962) Astrophys. J. <u>136</u>, 906.
- [64] Regemorter, H. Van, (1962) Astrophys. J. 136, 909.
- [65] Reitz, J. R., Milford, F. J., (1981) "Fundamentos de la teoria electromagnética" (ed. UTEHA, S.A. México)
- [66] Rudkjöbing, M., (1959) Ann. d' Ap. 22, 111.
- [67] Scheuer, P. A. G., (1960) MN 120, 231.
- [68] Schram, B.L., Boerboom, A.J.H., Kistemaker, J. (1966), Physica <u>32</u>, 185.
- [69] Solar Flares and Coronal Physics. (1986) (E. Tandberg -Hanssen, Wilson R. M, Hudson, H. S. ed) NASA. CP-2421, USA.
- [70] Spitzer, L., (1956), "Physics of Fully Ionized gases" (Interscience ed.) New York U.S.A.
- [71] Suresh Ch., (1981) JQSRT 26, 135.
- [72] Taylor, P. O., Gregory, D., Dunn, G. H., Phaneuf, R. A., Crandall, D. H., (1977) Phys. Rev. Lett. 39, 1256.
- [73] Tonks, L., Langmuir, I., (1929) Phys. Rev. 33, 195.
- [74] Unsöld, A., (1977) El Nuevo cosmos Siglo XXI editores.
 [75] Varsavsky, C., (1961) Ap. J. Suppl. 6, 75.
 [76] Watson, W. D., (1976) Ap. J. <u>206</u>, 842.

in manina and installant of 123 the state parent was in which and a state of the state of the state of the stat

- [77] Younger S. M., Wise, W. L., (1979), JQSRT 22, 161.