

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUIMICA

LAS ECUACIONES DE ESTADO TIPO VAN DER WAALS Y EL CALCULO DEL EQUILIBRIO ENTRE FASES

E Т S S OUE PARA OBTENER EL TITULO DE: INGENIERO QUIMICO Р E ς R F N JOSE ANTONIO ESCAMILLA CORTES

EXAMENES PROFESIONALES FAC. DE QUIMICA

MEXICO, D. F.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

<u>CONTENIDO</u>

INTRODUCCION	1
CAPITULO I. GENERALIDADES	3
I.1 Fundamentos de las ecuaciones de estado tipo van der Waals	с Э
I.2 La ecuación de estado de Giorgio Soave	13
I.3 La ecuación de estado de D.Y.Peng y D.B.Robinson	19
I.4 Nuevas correlaciones para fluidos polares	24
I.4.1 Modificación de P. M. Mathias a la ecuación de Soave	25
I.4.2 Modificación de R. Stryjek y J. H. Vera a la ecuación de Peng-Robinson	29
I.4.3 Modificación de R. M. Gibbons y A. P. Laughton a la ecuación de estado de Soave	31
CAPITULO II. EL EQUILIBRIO ENTRE FASES DE FLUIDOS PURO)S 34
II.1 Algoritmo matemático para el cálculo del equilibrio líquido-vapor	36
II.2 Cálculo de los parámetros característicos de las ecuaciones de estado de Soave y de Peng-Robinsor	1 43
CAPITULO III. EL EQUILIBRIO ENTRE FASES DE SISTEMAS MULTICOMPONENTES	54
III.1 Las ecuaciones de estado para sistemas multicomponentes	57
III.1 Estimación de los parámetros de interacción $a_{i,j}$ y $b_{i,j}$	60

Pag

INTRODUCCION

En el presente trabajo se efectuó un análisis de las ecuaciones de estado tipo van der Waals y su utilización en el cálculo de equilibrio entre fases de sistemas multicomponentes. Este análisis permitió crear una infraestructura de modelos y programas de cómputo que permiten abordar los problemas relacionados con la predicción de las propiedades termodinámicas involucradas en el equilibrio físico.

Esta tesis esta estructurada de la siguiente manera: en el capítulo I se abordan los fundamentos de las ecuaciones de estado tipo van der Waals, en especial la ecuación de estado de G. Soave y de Peng-Robinson. Posteriormente se estudian nuevas correlaciones para extender la aplicabilidad de estas ecuaciones a fluidos polares.

En el capítulo II se describen los algoritmos matemáticos que permiten el cálculo de los parámetros característicos de las ecuaciones de estado de Soave y de Peng-Robinson. Así mismo se describe el algoritmo que se utilizó para el cálculo del equilibrio físico.

En el capítulo III se describe la metodología que se utilizó

CAPITULO

GENERALIDADES

I.1 FUNDAMENTOS DE LAS ECUACIONES DE ESTADO TIPO VAN DER WAALS

La predicción de las propiedades termodinámicas de fluidos puros ha llamado poderosamente la atención de varios investigadores, desde la proposición de las diferentes leyes para los gases que condujeron a la ecuación de estado del gas ideal en 1811:

Esta ecuación conjuga los esfuerzos realizados durante casi 150 años por: Boyle (1662), Charles (1787), Gay-Lussac (1802), Avogadro (1811), etc. la importancia de esta ecuación radica en el hecho de que todos los fluidos sea cuál sea el grado de complejidad de las moléculas que los integran, obedecen a esta ecuación cuando la presión tiende a cero. Este resultado es de gran utilidad ya que constituye un excelente estado de referencia para el estudio de los gases reales.

З

En 1873 van der Waals propone un modelo particularmente interesante y cuyos principios siguen teniendo vigencia en la actualidad. El punto de partida es la propia ecuación del gas ideal cuyas hipótesis son las siguientes^{cia}:

a) En un gas ideal las partículas se consideran puntuales.

b) Las fuerzas intermoleculares se consideran nulas.

van der Waals removió las dos hipótesis anteriores al considerar que las partículas ocupan un volumen en el espacio accesible a ellas a través de un parámetro b:

P(v-b) = RT (I.2)

Δ

Para el cálculo de la constante b, van der Waals considera argumentos meramente geométricos para su estimación, esto es:

Sea un recipiente de volumen v ocupado por un mol de un gas a una presión y temperatura dadas (figura 1). Siendo el lado del cubo igual a $v^{1/3}$. Si se considera que las moléculas son esféricas, de diametro igual a σ y radio $r - \sigma / 2$. Entonces si el recipiente contiene solo una molécula, para el movimiento de su centro es accesible todo el volumen del recipiente menos el de la capa de espesor r, ya que el centro de la molécula no puede aproximarse a la pared a una distancia menor que r. (en la figura 1 esta capa se representada por la línea punteada). Esto significa que la molécula puede moverse en el volumen de un cubo con el lado σ menor que el lado del cubo real del recipiente.

figura 1

Este volumen es igual a:

Si se introduce ahora la segunda molécula el centro de cual-

quiera de las dos moléculas tiene a su disposición el mismo volumen que antes, menos el volumen complementario que se ha hecho inaccesible debido a la presencia de la segunda molécula, en la figura 1 con línea punteada se muestra el volumen que rodea a cada molécula dentro de cuyos límites no puede caer el centro de la otra molécula. Este volumen es igual a 4/3 τ σ^3 . Por consiguiente, para cualquiera de las dos moléculas resulta ser accesible un volumen igual a:

(³√v - σ)³ - 4/3 π σ³

Si se continua este procedimiento hasta las No moléculas (No es el número de Avogadro) que componen a un mol, cada una de ellas tendra la posibilidad de moverse en un volumen igual a:

$$(\sqrt{3}\sqrt{\sqrt{-\sigma}})^3 - 4/3\pi\sigma^3 No$$
 (I.3)

En este cálculo no se ha tenido en cuenta el hecho de que en cada aproximación (choque) toman parte dos moléculas, esto es, se toma en cuenta sólo la mitad de la esfera de aproximación prohibida. Por tanto, si se aplica esta situación a cualquier par de todas las No moléculas, entonces en la expresión (I.3) en lugar de No se deberá escribir No/2.

Finalmente el volumen libre para el movimiento de cualquier molécula resulta ser igual a:

 $v' = (3\sqrt{v} - \sigma)^{3} - 4/3\pi\sigma^{3} No/2$

Como siempre $\sigma << \Im \vee$, entonces, despreciando σ en comparación con $\Im \vee \vee$ ($\Im \vee$ es el lado del recipiente y σ es el diámetro de la molécula) se tiene:

$$v' = v - 2/3 \pi \sigma^2$$
 No = $v - 16/3 \pi r^2$ No

que corresponde a la magnitud (v - b) de la ecuación de van der Waals y, por consiguiente:

$$b = 2/3 \pi \sigma^3 No$$
 (I.4)

La segunda hipótesis de van der Waals consiste en tomar en cuenta las fuerzas intermoleculares. Las fuerzas intermoleculares tienen efecto, entre otros, sobre la presión realizada por las moléculas del gas sobre las paredes del recipiente, por ejemplo, en igualdad de condiciones termodinámicas la presión de un gas real sera menor que en el caso del gas ideal.

Para tomar en cuenta las fuerzas intermoleculares van der Waals introduce el modelo del campo promedio molecular, que consiste en que el efecto de las fuerzas intermoleculares de las No - 1 moléculas sobre una molécula en particular, se toma como un campo de potencial promedio que interactúa con la molécula en cuestión. Esta hipótesis simplifica notablemente el tratamiento de las fuerzas intermoleculares y permite un estudio similar al

del gas ideal.

Esta disminución en la presión para un gas real es proporcional al cuadrado de la densidad de las moléculas esto es:

$$P = \frac{RT}{V-b} = \frac{a}{\sqrt{2}}$$
(I.5)

donde:

 a, es el coeficiente de proporcionalidad cuyo valor numérico depende del carácter de las fuerzas de atracción entre las moléculas.

Esta ecuación relaciona la presión el volumen y la temperatura del gas. En ella se tienen en cuenta tanto las fuerzas de atracción (término de corrección a / v^2) como también las fuerzas de repulsión (corrección b) entre las moléculas.

La ecuación de van der Waals representa cualitativamente bien, tanto los datos experimentales referentes a los gases reales como la forma de las funciones termodinámicas. En esta expresión los coeficientes **a** y **b** se consideran magnitudes constantes cuyos valores numéricos son diferentes para los distintos gases.

Experimentalmente las isotermas de los gases reales están representadas en la figura 2 en el espacio $P = V^{r_{23}}$:

P

figura 2

En esta gráfica se muestran tres isotermas en donde:

$T_1 < T_e < T_7$

La isoterma T_{c} corresponde a la temperatura crítica del fluido y existe un punto llamado 'punto crítico' C, caracterizado porque cuando su presión y temperatura coinciden con las del gas éste pasa súbitamente a su estado líquido. La envolvente SLCVG define la región en la cual las fases líquida y gaseosa coexisten en estado de equilibrio. En esta región la presión de vapor y la del líquido son iguales y su valor se conoce como presión de vapor o de saturación y es función únicamente de la temperatura. La envolvente SLC se denomina frontera líquida, la cual se caracteriza porque cuando se calienta un líquido a presión atmosférica, llega a un estado de equilibrio con su vapor el cual representa un punto de la envolvente correspondiente a la temperatura de ebullición, de manera análoga la porción CVG es la envolvente gaseosa que caracteriza a un gas que al condensarse llega a un punto en el cual coexisten en equilibrio con el líquido, correspondiéndole la temperatura de condensación.

Para estimar los parámetros de la ecuación de van der Waals se toma en cuenta el hecho de que el punto crítico es un punto de inflexión que esta determinado por las condiciones:

$$\left[\begin{array}{c} \frac{\delta}{\delta} P \\ \frac{\delta}{\delta} v \end{array}\right] = 0 \qquad \qquad \left[\begin{array}{c} \frac{\delta^2}{\delta} P \\ \frac{\delta}{\delta} v^2 \end{array}\right] = 0 \\ T = T_{ee} \qquad \qquad T = T_{ee} \qquad T = T_{ee}$$

Estas condiciones conducen al siguiente resultado:

v:

$$a = \Omega_n \frac{(R T_n)^2}{P_n} \quad con; \quad \Omega_n = \frac{27}{64}$$

Es conveniente expresar la ecuación de van der Waals en términos del factor de compresibilidad Z:

$$z = \frac{Pv}{RT}$$

Sustituyendo este valor en la ecuación (I.5) conduce a la ecuación cúbica en 2:

 $Z^{2} - (B + 1)Z^{2} + yBZ - yB = 0$

donde:

y;

$$B = \frac{Pb}{RT}$$

La ecuación de estado de van der Waals representa cualitativamente bien las funciones termodinámicas, así como también el comportamiento de un fluido cuando éste es sometido a diversos procesos. Como se verá posteriormente para la estimación del equilibrio entre fases, Maxwell introduce una hipótesis complementaria que permite la estimación de las transiciones entre fases. Pese a esta gran contribución de van der Waals la representación cuantitativa de las propiedades termodinámicas y del equilibrio

no son satisfactorias.

Durante más de 114 años se han propuesto numerosas modificaciones a la ecuación de van der Waals; más aún. se han propuesto innumerables ecuaciones multiparamétricas, se han hecho también diversas hipótesis sobre la dependencia de los parámetros con respecto a la temperatura, pero quizás las modificaciones más importantes han sido las de G. Soave y en 1976 las de D. Y. Peng y D.B. Robinson. A continuación se describirán brevemente los fundamentos de estas dos ecuaciones.

I.2 LA ECUACION DE ESTADO DE GIORGIO SOAVE.

O. Redlich y J. N. S. Kwong en 1949 propusieron una modificación al término atractivo que mejoró notablemente la calidad predictiva de la ecuación de estado de van der Waals, esta ecuación tiene la siguiente forma:

$$P = \frac{RT}{v - b} = \frac{a}{v (v + b) T^{1/2}}$$
(I.2.1)

Hasta 1972 esta ecuación fué la más utilizada en los cálculos de ingeniería. Soave^{r33} preserva la misma forma de la dependencia del término atractivo en el volumen introduciendo la hipótesis de que el parámetro a depende de la temperatura a través de una función α que incluye el término T^{1/2} de Redlich-Kwong.

La ecuación de Soave tiene la forma siguiente:

$$P = \frac{R T}{v - b} = \frac{a (T)}{v (v + b)}$$
(1.2.2)

donde:

 $a(T) = a_{\alpha} \alpha(Tr)$

por tanto;

$$P = \frac{R T}{v - b} - \frac{a_m \alpha(Tr)}{v(v + b)}$$

(1.2.3)

Tanto el parámetro b como el parámetro a_{\pm} de la ecuación (I.2.3) son constantes y se evalúan a través de las condiciones impuestas por la isoterma crítica, los cuales se obtienen como:

$$a_{i2} = \Omega_{i1} \frac{(R T_{i2})^2}{P_{e}}$$

 $b = \Omega_{b} - \frac{R T_{e}}{P_{e}}$

dando como resultado:

 $\Omega_{-} = 0.42747$

Y:

Y:

Ωь - 0.08664

 $\alpha(Tr)$ es una función que depende de la temperatura con la condición $\alpha(Tr-1) = 1$. Soave correlacionó la función $\alpha(Tr)$ de tal manera que la ecuación de estado fuera capaz de predecir la presión de saturación experimental tomando en cuenta las condiciones termodinámicas del equilibrio; esto es, para cada isoterma se obtiene un valor particular de $\alpha(Tr)$. Posteriormente al conjunto de valores obtenidos para diferentes sustancias observó que podían ser descritos por una ecuación de la forma:

 $\alpha(Tr_{*})^{*/2} = 1 + k(1 - Tr^{*/2})$

donde:

$$Tr_i = T_i / T_c$$

y k es la pendiente característica para cada sustancia que se obtiene a partir de la relación:

 $k = 0.480 + 1.574 w - 0.176 w^2$

donde w es el factor acéntrico.

Una forma alternativa pero equivalente para evaluar los parámetros a_{α} y b es expresando la ecuación (I.2.2) en forma polinomial en función del volumen, esto es:

$$V^{=} - \frac{R}{P} \frac{T}{V^{2}} + \frac{1}{P} \left[a(T) - bRT - Pb^{2} \right] V - \frac{a(T) b}{P}$$

Como una función cúbica en términos del factor de compresibilidad Z se tiene:

$$Z = \frac{Z}{Z-B} = \frac{YB}{Z+B}$$
 (I.2.4)

con:

$$\frac{a}{RTb}$$
 y: $\frac{B}{RT}$

La relación (I.2.4) es la ecuación cúbica en Z que tiene la forma:

$$Z^3 - Z^2 + (yB - B^2 - B) Z - yB^2 = 0$$
 (1.2.5)

En el punto crítico las tres raices de la ecuación (I.2.5) deberán ser iguales, esto es:

$$(2 - Z_{c})^{3} = 0$$

Comparando esta ecuación con la anterior conduce al siguiente sistema de ecuaciones:

3Z - 1			(1	. 2	2.	6	. e	a Ì)
--------	--	--	----	-----	----	---	-----	-----	---

 $3Z_{c}^{2} = yB - B^{2} - B$ (1.2.6.b)

 $Z_e^3 = y B^2$ (I.2.6.c)

de la ecuación (I.2.6.a) se despeja el valor de Z_e y se sustituye en la ecuación (I.2.6.b); posteriormente de la ecuación resultante se despeja el valor de y y finalmente se sustituyen ambos valores en la ecuación (I.2.6.c) dando como resultado:

 $27B^3 + 27B^2 + 9B - 1 = 0$

sumando y restando uno para completar el binomio al cubo:

lo cual conduce al resultado:

$$B = \frac{1}{3} \begin{bmatrix} 3\sqrt{2} & -1 \end{bmatrix}$$

definiendo:

quedando finalmente:

$$B = \frac{1}{3x}$$

que corresponde a $\Omega_{\rm b}$ esto es;

de la ecuación (I.2.6.b) se calcula el valor de y:

como a = y R T b se tiene;

$$a = \frac{x}{9} \frac{(R T)^2}{P}$$

Finalmente de la ecuación (I.2.6.a) se observa que el valor para Z_n es igual a 1/3, el cual es un valor demasiado grande comparado con los valores experimentales ($Zc_{mp} < 0.29$).

 $\Omega_{-} = \frac{x}{-} = 0.42748$

esto es:

Graboski y Daubert⁴³ en 1978 modifican los coeficientes de la pendiente k de la siguiente manera:

k - 0.48508 + 1.55177 w - 0.156137 w*

esto, con la finalidad de mejorar la calidad predictiva del modelo y extender su validez a un mayor número de sustancias.

I.3 LA ECUACION DE ESTADO DE

D. Y. PENG Y D. B. ROBINSON.

En un intento por mejorar la calidad predictiva en el cálculo del equilibrio líquido-vapor obtenido a partir de la ecuación de Soave. Peng y Robinson^{ra;} proponen en 1976 una ecuación de estado que tiene la forma:

$$P = \frac{R T}{v - b} - \frac{a (T)}{v(v + b) + b(v - b)}$$
(I.3.1)

En la cuál se conserva la dependencia del término atractivo con la temperatura:

$$a(T) = a_c \alpha(Tr)$$

sin embargo, se observa de la ecuación, que se modifica la dependencia con respecto al volumen.

De manera análoga al tratamiento realizado para la ecuación de Soave los parametros a y b en este modelo se determinan de acuerdo con las condiciones del punto crítico obteniéndose las relaciones:

$$a_{zz} = \Omega_{a} \frac{(R T_{z})^{2}}{P_{zz}} \qquad y; \qquad b = \Omega_{tz} \frac{R T_{zz}}{P_{zz}}$$

Para temperaturas por debajo del punto crítico, el parámetro α (Tr) se correlaciona con el factor acéntrico de ecuerdo con la relación:

 $\alpha(Tr)^{1/2} = 1 + k(1 - Tr^{1/2})$

en donde la pendiente \mathbf{k} es función sólo del factor acéntrico dada por:

 $k = 0.37464 + 1.542267 w - 0.269927 w^2$

Como se mencionó en el apartado anterior una manera de evaluar los parámetros a y b de la ecuación (I.3.1) consiste en expresar a ésta como una función del factor de compresibilidad Z quedando como:

 $Z = \frac{Z}{Z - B} = \frac{Y B Z}{Z^2 + 2BZ - B^2}$ (I.3.2)

Desarrollando la ecuación anterior, se obtiene una relación cúbica en Z que tiene la forma:

 $Z^{3} - (1 - B)Z^{2} + (y - 3B - 2)BZ - B^{2}(y - B - 1) = 0$

Al aproximarse al punto crítico las tres raices de la ecuación tienden a un mismo valor, esto es:

 $(Z - Z_{e})^{3} = Z^{3} - 3Z^{2}Z_{e} + 3ZZ_{e}^{2} - Z_{e}^{3} = 0$

Como las expresiones en términos de Z³ son representativas del mismo fenómeno físico, se relacionan los términos de éstas y así se obtiene:

$$3Z_{e}^{2} = (y - 3B - 2)B$$
 (1.3.b)

$$Z_e^3 = (y - B - 1)B^2$$
 (I.3.c)

Sustituyendo de la relación (I.3.a) el valor de \underline{Z}_{α} en la relación (I.3.b) y despejando el valor de y de obtiene:

$$y = \frac{(1 - B)^2}{3B} + 3B + 2 \qquad (1.3.3)$$

Igualando esta última relación con el valor de y obtenido de la relación (I.3.c), se tiene una ecuación cúbica para B de la forma:

$$B^{33} + \frac{3}{32} B^{22} + \frac{3}{16} B - \frac{1}{64} = 0$$

de donde:

que es el valor de la raíz real positiva que satisface la ecuación a partir de la cual, se evalúa γ de la relación (I.3.3), dando como resaultado:

y = 5.877364

En relación con las condiciones del punto crítico y de acuerdo con las relaciones:

$$B = \frac{P b}{R T} \qquad y \qquad y = \frac{a_{a}}{R T b}$$

se obtiene:

$$b = B - \frac{R}{P_{ee}} - \Omega_{b} - \frac{R}{P_{e}}$$

con:

Y:

Ωь = 0.077796

$$a_{c} = \gamma B \frac{(R T_{c})^{2}}{P_{c}} = \Omega_{e} \frac{(R T_{c})^{2}}{P_{c}}$$

con:

Extensión a mezclas multicomponentes.

En el caso de sistemas multicomponentes, tanto Soave como Peng-Robinson utilizan las siguientes reglas de mezclado para los parámetros a y b:

α = Σιι Χι Χι αιι

 $b = \Sigma_1 \times b_2$

donde:

ais - Vaias (1 - kis)

el parámetro k., se supone que es función lineal de la temperatura.

"Las reglas de mezclado descritas anteriormente se han utilizado intensamente en la caracterización termodinámica de diversas mezclas multicomponentes de interés tecnológico; en la literatura existe una gran información acerca de la funcionalidad del parámetro k_{1.4}.

Como comentario final se puede mencionar que las ecuaciones de Soave y de Peng-Robinson son en la actualidad las de mayor importancia tecnológica y las más utilizadas en la estimación del equilibrio entre fases de sistemas multicomponentes.

I.4 NUEVAS CORRELACIONES PARA FLUIDOS POLARES

Como se había mencionado en la introducción de este trabajo hasta hace poco tiempo las ecuaciones de estado estaban restringidas al caso de fluidos no-polares. La manera de calcular las propiedades termodinámicas y del equilibrio entre fases de sistemas multicomponentes cuyos componentes podían ser fluidos polares se resolvian mediante modelos de solución. En lo que va de este siglo se han propuesto infinidad de modelos de solución y se ha acumulado una cantidad incalculable de los parámetros característicos de estos modelos. Entre los modelos que se utilizan intensamente en la actualidad se pueden mencionar los de: Wilson. NRTL. UNIFAC. y UNIQUAC. Quizá, como se mencionó, la desventaja de utilizar estos modelos en el cálculo de equilibrio entre fases, es que necesariamente se tiene que utilizar un modelo diferente para la fase gaseosa, además de incluir correlaciones empíricas para extender su validez a presiones moderadas.

I.4.1 MODIFICACION DE P. M. MATHIAS A LA ECUACION DE SOAVE

Recientemente P. M. Mathias^{ca,3}, modifica la ecuación de estado de Soave al introducir un nuevo parámetro k, en la correlación del parámetro α de la siguiente manera:

 $\alpha^{1/2} = 1 + k_0(1 - Tr^{1/2}) - k_1(1 - Tr_1)(0.7 - Tr_1)$ (I.4.1)

Como puede observarse esta modificación preserva la definición del factor acéntrico para la temperatura reducida Tr = 0.7. Así mismo para Tr = 1.0 se preservan las mismas características impuestas por las condiciones del punto crítico.

La inclusión del parámetro k. permite estimar la presión de vapor de fluidos polares con una muy buena aproximación con respecto a los valores experimentales. Para el parámetro k. Mathias utiliza la correlación de Graboski y Daubert (1978) ya mencionada en este capítulo. Para la región supercrítica Boston y Mathias sugieren una manera particularmente interesante para el parámetro α , esto es:

$$\alpha^{1/2} = \exp \left[c_{1} \left(1 - Tr_{1}^{-11} \right) \right] \qquad (1.4.2)$$

donde:

$$d_1 = 1 + \frac{R_0}{2} + 0.3R_1$$

(I.4.3)

Estos parámetros se estiman empatando las expresiones (I.4.1) y (I.4.2) en Tr = 1, mediante el siguiente procedimiento:

El punto de partida son las relaciones (I.4.1) y (I.4.2):

Para T ≤ T_e;

 $\alpha^{1/2}(Tr) = 1 + k_{c}(1 - Tr^{1/2}) - k_{1}(1 - Tr)(0.7 - Tr)$

Para T 2 Ta:

 $\alpha^{1/2}(Tr) = \exp [c(1 - Tr^{1})]$

las primeras derivadas;

Si T's Te:

 $\frac{d \alpha^{1/2}}{d Tr} = \frac{1}{2} k_n Tr^{-1/2} - k_i (-1.7 + 2Tr) \qquad (1.4.5)$

and a start of the second s

Con T 2 T_;

 $\frac{d \alpha^{1/2}}{d Tr} = -\alpha^{1/2} (Tr) c d Tr^{d-1}$ (I.4.6)

36 S.A.

 $c = \frac{d-1}{d}$

. . . .

(1.4.4)

la segunda derivada de (I.4.6) es:

$$\frac{d^{2} \alpha^{1/2}}{d Tr^{2}} = \alpha^{1/2} (cd)^{2} Tr^{2} (u^{-1}) - \alpha^{1/2} cd (d-1) Tr^{d-2}$$

27

siendo ésta;

$$\frac{d^2 \alpha^{1/2}}{d Tr^2} = 0$$

entonces:

$$(cd)^{n} - cd(d-1) = 0$$

de donde:

Contentine and

Identificando (I.4.5) con (I.4.6):

and the standing

$$\frac{1}{2} k_{\rm m} \operatorname{Tr}^{-1/2} = -k_{\rm s} (-1.7 + 2\mathrm{Tr}) = -a^{1/2} (\mathrm{Tr}) (\mathrm{cd}) \operatorname{Tr}^{d-1}$$

para Tr = 1;

$$\frac{1}{2}$$
 k₂ + 0.3 k₁ = cd

1

por tanto:

$$d = 1 + \frac{1}{2} k_{rs} + 0.3 k_{1}$$

La tabla 1 muestra los resultados que obtuvo P. Mathias para la presión de vapor de fluidos polares comparados con la ecuación original de Soave.

TABLA 1

					intervalo	*	DESVI	ACION		
SUSTANCIA	T _e (*K)	P₄(atm)	w	k,	en T (*K)	p max	• 0 prom	p es max	tim prom	
agua	647.30	218.3	0.3439	0.1277	273-647	-33.6	10.2	0.9	0.3	
acetona	508.10	46.38	0.3070	0.0715	259-508	- 9.1	2.5	0.9	0.4	
metanol	512.64	79.91	0.5650	0.2359	288-513	-19.4	4.6	0.9	0.4	
etanol	513.92	60.68	0.6460	0.1006	293-514	- 9.4	1.5	1.7	0.7	
1-pentanol	588.15	38.58	0.5850	-0.2615	348-512	17.9	5.3	1.7	0.7	
1-octanol	652.50	28.23	0.5980	0.2109	386554	17.9	4.0	4.5	2.2	

I.4.2 MODIFICACION DE R. STRYJEK Y J.H. VERA A LA ECUACION DE PENG-ROBINSON.

R. Stryjek y J. H. Vera^{$z\gamma_3$}, mejoran la calidad predictiva de la ecuación de estado de Peng-Robinson y extienden su aplicación a compuestos polares siguiendo las ideas de Mathias, esto es, se preserva la forma de factor α (Tr):

$$\alpha$$
 (Tr) = $[1 + k(1 - Tr^{1/2})]^2$ (I.4.7)

donde k es función del factor acéntrico y la temperatura reducida dada por:

$$k = k_{m} + k_{1}(1 + Tr^{1/2}) (0.7 - Tr)$$
 (1.4.8)

el parámetro k. se correlaciona con el factor acéntrico sobre una gran variedad de sustancias, incluidas las polares. El resultado obtenido es expresado mediante:

 $k_{e} = 0.378893 + 1.489715 w - 0.17131848 w^2 + 0.0196554 w^3$

k: es un parámetro ajustable mediante datos de presión de vapor
y es característico de cada componente puro.

Para sustancias polares la relación (1.4.8) tiene aplicaciones desde temperaturas reducidas bajas hasta la temperatura reducida que corresponde al punto crítico. Para las sustancias no-polares se mejoran ligeramente los resultados para temperaturas reducidas por encima de 0.7.

Los resultados obtenídos por Stryjek y Vera, para una gran variedad de sustancias se dan en el Apendice 1.

La figura 3 muestra las desviaciones en (%) para la presión de vapor, utilizando la ecuación original de Peng-Robinson para algunas sustancias.

ΔP

En cambio la figura 4 muestra dichas desviaciones utilizando la modificación de Stryjek y Vera.

1 acetona 4 1-butanol 2 oxígeno 5 agua 3 hexadecano

I.4.3 MODIFICACION DE R. M. GIBBONS Y A. P. LAUGHTON A LA ECUACION DE ESTADO DE SOAVE

En 1984, R. M. Gibbons y A. P. Laughton^(m); proponen una modificación a la forma funcional del parametro α con respecto a la temperatura para extender el rango de aplicación de la ecuación de Soave a fluidos polares y no polares tanto de sustancias puras como de mezclas. Estos autores toman la forma original de la expresión de α propuesta por Soave;

$$\alpha (Tr) = [1 + k_{\alpha}(1 - Tr^{1/2})]^{2} \qquad (I.4.9)$$

Desarrollando la expresión cuadrática. α tiena la forma funcional con respecto a la temperatura reducida dada por:

 $\alpha = 1 + X(Tr - 1) + Y(Tr^{1/2} - 1)$

donde; X y Y son parámetros que dependen de la sustancia en cuestión. De tal manera que los parámetros X y Y se pueden relacionar con el parámetro $k_{\rm o}$ de la ecuación (I.4.9) mediante las expresiones:

X = ka=

-2 ko (ko + 1)

Gibbons y Laughton (GL) calculan de manera independiente para cada sustancia los valores de X y Y mediante un procedimiento de mínimos cuadrados vía el calculo de la presión de vapor. La tabla 2 muestra las constantes X y Y para 12 sustancias tanto polares como no-polares, también en esta tabla se comparan los resultados con la ecuación original de Redlich-Kwong-Soave (RKS).

TABLA 2

SUSTANCIA	x	Y	GL % error	RKS % error
Ha	-0.590	0.884	0.8	50.1
нсі	0.007	-1.468	0.8	2.3
H20	0.165	-2.456	0.5	14.1
CH-OH	-0.444	-2.112	1.1	13.9
Antraceno	-1.863	0.528	0,5	23.2
Co≃	0.196	-2.102	C.2	0.5
Calla	0.728	-3.048	0,9	1.2
СНа	-0.070	-0.907	0.4	1.6
n~C∋H12	0.567	-2.895	0.7	1.6
n-CaHim	0.900	-4.012	1.2	2.7
CS=	0.112	~1.566	1.3	10.3
CaHe	0.262	-1.810	0.5	1.4

Como puede apreciarse la mejoría en la predicción de la presión de vapor es evidente, comparada con la ecuación de Soave.

Los resultados obtenidos por Gibbons y Laughton muestran que esta metodología se puede aplicar para una gran variedad de sustancias tanto polares como no polares incluyendo virtualmente algunos ácidos. Para el cálculo del equilibrio entre fases de mezclas, utilizan las reglas de mezclado originales de Soave para a y b, y no requieren ninguna regla especial para los parámetros X y Y.

a - Z₁, x₁ x₂ a₁

 $b = \Sigma_1 \times_1 b_1$

 $a_{ij} = (a_i \alpha_i a_j \alpha_j)^{1/2} (1 - k_{ij})$

Como comentario final de este capítulo, es necesario hacer hincapié en que la utilización adecuada de las ecuaciones de estado de Soave y de Peng-Robinson, con sus respectivas modificaciones, requiere de ajustar los parámetros característicos de estas ecuaciones para aquellos fluidos no considerados en las correlaciones propuestas por los respectivos autores. El cálculo de estos parámetros se desarrollará en el capítulo siguiente.

CAPITULO II

EL EQUILIBRIO ENTRE FASES DE FLUIDOS PUROS

En este capítulo se describirán los algoritmos matemáticos que se utilizarán en la estimación de los parámetros característicos para las ecuaciones de estado de Soave y de Peng-Robinson, para fluidos polares. Es común notar en la literatura diferencias en los valores de las propiedades críticas (T_e , P_e , V_e , factor acéntrico w) de una sustancia en particular, este hecho se refleja, por consiguiente, en los valores de los parámetros característicos.

No existe un criterio generalizado respecto a la elección de los valores más probables de las propiedades criticas, solo en algunos casos los autores proporcionan esta información. En este aspecto, la compilación quizás más completa de las propiedades críticas es la proporcionada por Reid, Prausnitz y Sherwood^{reg}, que para efectos prácticos, este banco de datos es el más utilizado.

Recientemente, D. Ambrose^{rio}llevó a cabo una revisión exhaustiva de estas propiedades. Desde el punto de vista experimen-
tal se muestran diferencias notables en los valores de estos parámetros con respecto al banco de datos de Prausnitz. En este trabajo se utilizaron ambos bancos de datos, indicándose en cada caso la fuente de estos parámetros.

Este capítulo está estructurado de la siguiente manera: en la primera parte se describe el algoritmo matemático que se utilizó para la determinación del equilibrio entre fases para sustancias puras. Posteriormente se describe el algoritmo que permite estimar los parámetros característicos de las ecuaciones de estado de Soave y de Peng-Robinson.

II.1 ALGORITMO MATEMATICO PARA EL CALCULO DEL EQUILIBRIO LIQUIDO-VAPOR

Bajo ciertas condiciones de presión y temperatura en un sistema coexisten en equilibrio la fase líquida y la fase vapor. Las isotermas descritas en un espacio termodinámico P-v con temperatura menor que la temperatura crítica, deberán pasar por los puntos de saturación de este espacio generándose la envolvente de equilibrio líquido-vapor. En cualquier punto de esta envolvente se deberán cumplir las siguientes condiciones de equilibrio:

La temperatura de ambas fases deberá ser la misma, de no cumplírse ésto existiría un gradiente de temperatura que se manifestaría como un flujo de calor entre las fases.

_ La presión de la fase líquida y la del vapor deberán ser iguales, si ésto no se cumple, existirá una diferencia de presión lo cual desplazaría la frontera que separa a las dos fases.

_ Los potenciales químicos de las fases deberán ser iguales, si esta condición no se cumple, existirá una acumulación de materia en alguna de las fases.

Estas condiciones de equilibrio pueden expresarse matemáticamente de la manera siguiente:

$$P_{L}$$
 (T, V) = P_{G} (T, V) (II.1.1b)

$$\mu_{\rm L}$$
 (T, V) = $\mu_{\rm G}$ (T, V) (II.1.1c)

donde el subíndice L denota fase líquida y el subíndice g denota fase vapor.

Por definición la energía libre de Helmholtz se expresa como:

d A – PdV – SdT

como se está considerando una isoterma, la temperatura es constante, por tanto, la relación anterior puede expresarse como:

A = -p d V

Por otro lado, el potencial químico μ por mol, es la energía libre de Gibbs y ésta tiene la forma:

$$S - A - V \left[\frac{\delta A}{\delta v} \right]$$

entonces se puede expresar al potencial químico como una función

37

(II.1.1a)

de la energía libre de Helmholtz como:

μ

$$-\lambda - V \left[\frac{\delta \lambda}{\delta v} \right]_{T}$$

y de acuerdo con la condición de equilibrio (II.1.1c) se tiene:

$$\lambda_{L} - \lambda_{L} \left[\frac{\delta}{\delta} \frac{\lambda}{v} \right]_{T} - \lambda_{u} - v_{u} \left[\frac{\delta}{\delta} \frac{\lambda}{v} \right]_{T}$$

por definición se tiene:

$$-\left[\frac{\delta}{\delta v}\right]_{T} - P$$

entonces:

 $A_{L} - v_{L}P = A_{q} - v_{q}P$

La presión de la fase líquida y la del vapor están en equilibrio, esto es, la presión de ambas fases deberá ser la misma; P = Pr por tanto la relación última queda como;

$$P_{\text{EL}} = \frac{A_{\text{EJ}} - A_{\text{L}}}{V_{\text{L}} - V_{\text{L}}}$$

(II.1.2)

La ecuación enterior permite calcular la presión que resulta de la energía libre de Helmholtz cuando se conocen los volúmenes del líquido y del vapor, por tanto, el sistema de ecuaciones denotadas por (II.1.1), permiten calcular el equilibrio líquido vapor para una temperatura dada, ajustando la presión de saturación P con la presión de equilibrio $P_{\rm fc}$. El procedimiento matemático que se sigue se describe a continuación:

i) Para una isoterma dada y una presión inicial P., sugerida, se calculan los volúmenes de saturación v_L y v_e a partir de la ecuación de estado.

ii) Se calcula la energía libre de Helmholtz (referida en el apéndice 3) para las dos fases A_L , y A_{Ξ} .

iii) A partir de estos resultados y de la relación (II.1.2) se obtiene la presión de equilibrio P_E , la cual se compara con la P_b inicial.

Dado que existe un número infinito de soluciones para el equilibrio dadas por la línea $P = P_{rr}$, (figura 5), se presentan en este momento dos casos:

- En el primer caso; si las presiones son iguales $P_{\alpha} = P_{\pi}$, la presión sugerida es la correcta y el equilibrio está resuelto para esa temperatura (figura 5).

Pre

40

figura 5

Р

P.,

Para completar los puntos de la envolvente se barre el intervalo de temperaturas del sistema.

- El segundo caso se presenta cuando la presión inicial $P_{\rm es}$, no coincide con la de equilibrio $P_{\rm rs}$, por lo que el proceso se hace iterativo. Se incrementa entonces la presión inicial en ΔP :

 $P_1 = P_0 + \Delta P$

con la cual, se calculan nuevamente los volúmenes ve y va, así

como la energía libre de Helmholtz para el líquido y el gas, referidos en los puntos i y ii respectivamente, a partir de estos valores se obtiene un nuevo valor para la presión, dado por P_{E1} . (figura 6).

Con estos dos valores (P_{cr} y P_{cr}) se traza una recta la cual se intersecta con la línea de equilibrio. El punto de intersección da un nuevo valor de presión P_{cr} , que es un valor muy próximo a la presión de equilibrio, a partir de éste se calcula el valor de equilibrio correspondiente P_{cr} , siguiendo el algoritmo ya descrito. Con este punto (P_{cr}) y el inmediato anterior (P_{cr}) se

traza una nueva línea con objeto de intersectar la de equilibrio. con lo cual se obtiene un punto P_{π} , que es aún más próximo al valor real de equilibrio, el proceso se repite hasta lograr la autoconsistencia, esto es, hasta que $P_1 = P_{C_1}$. Para completar la envolvente de equilibrio se barre el intervalo de temperaturas del sistema. Dada la versatilidad de este procedimiento mediante tres o cuatro iteraciones, es posible calcular el equilibrio líquido-vapor de una manera relativamente rápida.

De manera gráfica el algoritmo matemático se puede representar de la siguiente manera:

Para estar en condiciones de utilizar el algoritmo descrito anteriormente es necesario calcular la energía libre de Helmholtz para las ecuaciones de estado de Soave y de Peng-Robinson. En el apéndice 2 se deducen estas expresiones.

II.2 CALCULO DE LOS PARAMETROS CARACTERISTICOS DE LAS ECUACIONES DE ESTADO DE SOAVE Y DE PENG-ROBINSON

A continuación se describe el algoritmo que se utilizó para calcular los parámetros característicos de las ecuaciones de estado de Soave y de Peng-Robinson. El punto de partida es la propia ecuación de estado y la diferencia de la energía libre de Helmholtz entre ambas fases, esto es, para la ecuación de Soave:

$$Z = \frac{Z}{Z - B} = \frac{y B}{y + B}$$
 (II.2.1)

y para la ecuación de Peng-Robinson:

$$Z = \frac{Z}{Z - B} = \frac{Y B Z}{Z^2 + 2BZ - B^2}$$
 (II.2.2)

La energía libre de Helmholtz para Soave y Peng-Robinson es respectivamente:

$$\frac{A_{L} - A_{Q}}{R T} = y \ln \frac{Z_{L} (Z_{U} + B)}{Z_{Q} (Z_{L} + B)} + \ln \frac{Z_{Q} - B}{Z_{L} - B} \quad (II.2.3)$$

$$\frac{A_{L} - A_{U}}{R T} = \ln \frac{(Z_{Q} - B)}{(Z_{L} - B)} + \frac{y_{e} \alpha(Tr)}{2 \sqrt{2}} \left[\ln \frac{Z_{L} + B (1 - \sqrt{2})}{Z_{L} + B (1 + \sqrt{2})} \right]$$

$$\ln \frac{Z_{Q} + B (1 - \sqrt{2})}{Z_{U} + B (1 + \sqrt{2})} \left[\ln \frac{Z_{R} + B (1 - \sqrt{2})}{Z_{L} + B (1 + \sqrt{2})} \right]$$

Como se habia visto en el capítulo I:

$$y = y_c \alpha(Tr) / Tr$$

por tanto. las ecuaciones (II.2.1) y (II.2.2) tienen la siguiente forma:

$$Z = Z_{rep} - \alpha(T) Z_{etrec}$$
 (II.2.5)

Entonces las ecuaciones (II.2.3) y (II.2.4) quedan como:

$$\frac{\lambda_{L} - \lambda_{\alpha}}{R T} = \lambda_{rep} - \alpha(Tr) \lambda_{atrac}$$
(II.2.6)

Según la relación del equilibrio entre fases dada por la ecuación (II.1.2):

$$\frac{A_{L} - A_{o}}{RT} = P_{cc} \left(\frac{V_{o} - V_{L}}{RT} \right) = Z \alpha^{c} \frac{Z \alpha^{L}}{Z \alpha^{L}} (II.2.7)$$

Sustituyendo la expresión (II.2.6) en la (II.2.7) se tiene que:

$$\alpha(\mathrm{Tr}) = \frac{\lambda_{res} + Z_{\mathrm{E}} - Z_{\mathrm{E}}}{\lambda_{\mathrm{etree}}} \qquad (\mathrm{II.2.8})$$

La ecuación anterior permite calcular la función $\alpha(Tr)$ si se conoce la presión de vapor en función de la temperatura.

El procedimiento matamático que se sigue para el cálculo de $\alpha(Tr)$ es el que a continuación se detalla:

i) Para una presión de saturación inicial P_{α} y su correspondiente temperatura se calcula Z_{i} y Z_{u} tomando como valor inicial $\alpha(Tr) = 1$.

ii) Los valores calculados de Z_L y Z_u se substituyen en la expresión (II.2.8) para estimar un nuevo valor de α (Tr).

iii) Posteriormente se repite el procedimiento descrito en los puntos (i) e (ii) con el nuevo valor de $\alpha(Tr)$, tomando como criterio:

 $|\alpha(Tr)_n - \alpha(Tr)_{n-1}| < \epsilon$

iv) Los valores de $\alpha(Tr)$ obtenidos mediante este procedimiento para una sustancia y para cada temperatura se muestran en las tablas (3.a,...,g). En general se observó que en una o dos iteraciones se obtenía el valor de $\alpha(Tr)$ apropiado para cada temperatura.

v) Se toma la expressión general de la función $\alpha(Tr)$ propuesta por M. Mathias:

 $\alpha(Tr)^{1/2} = 1 + k_{m}(1 - Tr^{1/2}) - k_{1}(1 - Tr)(0.7 - Tr)$

vi) Por un procedimiento de mínimos cuadrados se estimaron los parametros k_{σ} y k_{1} .

El algoritmo descrito anteriormente es general en el sentido de que puede ser aplicado a cualquier ecuación de estado cúbica en el volumen. cuando se conoce ésta y la energía libre de Helmholtz asociada a dicha ecuación de estado.

En el siguiente capítulo se abordará el equilibrio entre fases de sistemas multicomponentes en los cuales uno o más de los componentes pueden ser polares o no-polares.

TABLA (3.a)

CALCULO DEL PARAMETRO ALFA DE LA ECUACION DE ESTADO

DE SOAVE

Sustancia: Aqua

TC = 647.3	300 PC -	217.600 VC -	56.000	W = .344
т	Р	P(cal)	VL	VG
628.595	174.245	174.245	50.658	159.230
572.480	84.180	84.180	36.516	418.660
497.660	64.196 25.129	64.196 25.129	34.348	1460.852
460.250 452.998	11.703 9.888	11.703 9.888	28.245 27.938	3570.610
422.840 373.150	4.677 1.000	4.677 1.000	26.852 25.454	7047.114 29088.245
366.725 348.020	.789 .377	.789 .377	25.299 24.883	36211.786 71993.422
343.152	.308	.308	24.791	86948.776

Valor promedio de la desviación en la presión

Dp -.002 % No TR ALFA POLAR 1 .9711030 1.0162854 .0017253 2 .9422061 1.0320415 .0027030 з .8844122 1.0627179 .0031265 4 .8555152 1.0779331 .0028443 6 7688243 1.1242463 .0010243 7 .7110304 1.1561457 -.0006896 8 .6998270 1.1628526 -.0006549 9 .6532365 1.1889385 -.0029062 11 . 5764715 1.2336526 -.0071846.5665457 12 1.2397060 -.007698713 .5376487 1.2571019 -.0097574 14 .5301282

Salida por variación débil de los parámetros No. Iter -6 s -.0016702 К1 .0400320

1.2613483

-.0106593

Sustancia: Etanol

тс - з	516.200 PC -	63.000 VC	- 167.000	W635
т	P	P(cal)	VL	٧G
500.714	4 47.479	47.479	132.226	491.758
485.220	8 35.391	35.391	112.760	752.169
469.74	2 26.015	26.015	101,698	1099.400
454.250	6 18.796	18,796	94.250	1585.851
438.770	13.298	13.298	88.783	2290.924
407.796	8 6.139	6.139	81,146	4983.607
392.312	2 3.963	3,963	78,336	7622,891
376.820	6 2.453	2.452	75,969	11977.501
363.14	7 1.558	1.558	74,209	18167.731
361.340	0 1.443	1.443	73.943	19515.444
345.854	4 .801	.801	72.186	33674.864
343.149	9.713	.713	71.886	37511.088
330.368	3.414	.414	70,646	62190.903
323.150	0.291	. 291	69.956	86578,966

Valor promedio de la desviación en la presión

Dp - .001 %

No

NO	18	ALL A	FOLAR
1	.9700000	1.0251052	.0038326
2	.9400000	1.0492657	.0063888
з	.9100000	1.0726922	.0078635
4	.8800000	1.0955871	,0084416
5	.8500000	1.1181412	.0082952
6	.7900000	1.1629066	.0064244
7	.7600000	1.1854169	.0049520
8	.7300000	1.2061772	.0032515
9	.7035006	1.2274115	.0004577
10	.7000000	1.2312785	.0013839
11	.6700000	1.2548288	-,0005756
12	.6647598	1,2595235	0003950
13	.6400000	1,2789204	0025717
14	.6260170	1,2918270	- 0020332

Salida por variación débil de los parámetros No. Iter - 2 S - .0001628 Kl - .1640142

TABLA (3.c)

Sustancia: Dimetil Eter

TC = 400.000	PC -	53.000 VC -	178.000	W = .192
т	Ρ	P(cal)	VL	VG
393.150	46.020	46.020	139.192	347.656
373.150	32.134	32.134	108.282	610.580
353.150	22.137	22.137	94.916	958.626
333.150	14.419	14.419	86.113	1528.021
313.150	8.882	8.882	79.900	2499.923
293.150	5.142	5.142	75.284	4252.696
280.000	3.425	3.425	72.795	6256.400
273.150	2.517	2.517	71.221	8432.857
260.700	1.681	1.681	69.587	12088.685
256.400	1.412	1.412	68.963	14151.536
252.100	1.179	1.179	68.367	16667.803
248.300	1.000	1.000	67.864	19355.784
247.800	.978	. 978	67.798	19758.362
243.500	.805	.805	67.252	23581.982
239.200	.658	.658	66.730	28349.211

Valor promedio de la desviación en la presión

Dp =

.000 %

No	•	-	ΓR		AL	FA			POLAR
1		.982	28750)	1.011	4025			.0047186
2		. 93:	28750)	1.032	6096	i		.0060700
Э	l i	.883	28750)	1.050	6510	1		.0037160
- 4		.83	28750	3	1.070	8199)		.0029035
5		.783	28750)	1.091	5534			.0020156
6	i .	.73	28750)	1.112	0797	•		.0002184
. 7		.70	00000)	1.126	0749	1		-,0008816
8	l I	.68	28750)	1.141	6854	ł		.0067252
9		.65	17500)	1.150	4642	2		.0006956
10	1	. 64	10000)	1.155	9221			.0009571
11		.63	02500)	1.161	3877	,		.0011826
.12	l .	.62	37500)	1.166	1617	,		.0013084
13	1	. 61	95000)	1.166	8601			.0013700
14	•	. 60	3750()	1.172	3384			.0015171
15		. 59	30000)	1.177	8222			.0016226
	Salida	por	var	iación	débil	de	los	pa	rámetros
No	. Iter	- 3	2 5	s –	.00014	63	К1	-	0132345

(3: d)

Sustancia: Anilina

TC - 699.000	PC -	52.400	vc -	274.000	w -	.382
т	Р	P(ca	1)	VL.		VG
683.273 667.545 651.818 620.363 604.635 588.908 557.453 541.725 525.997 494.543 478.815	43.835 36.489 30.193 20.213 16.312 13.020 7.974 6.097 4.578 2.421 1.697	43.8: 36.4; 30.1; 20.2 16.3 13.0; 7.9; 6.0; 4.5; 2.4; 1.6;	35 89 93 13 20 74 97 78 21 97	236.430 205.240 186.507 163.445 155.552 149.073 138.955 134.897 131.330 125.333 122.785		660.528 895.679 1165.423 1892.938 2400.318 3051.313 5028.858 6554.722 8660.128 15914.693 21998.430
463.088 431.633 415.905	1.155 .484 .295	1.1	55 34 95	120,481 116,475 114,723	1	31250.631 69557.700 09946.881

Valor promedio de la desviación en la presión

Dp -

.001 %

No	TR	ALFA	POLAR
1	.9775000	1.0137094	.0017725
2	.9550000	1,0270290	.0030171
з	.9325000	1.0400419	.0038119
4	.8875000	1.0654762	.0043595
5	.8650000	1.0780473	.0042505
6	.8425000	1.0906117	.0039689
7	.7975000	1.1159480	.0030878
8	.7750000	1,1288146	.0025682
9	.7525000	1.1418627	.0020344
10	.7075000	1.1686061	.0009904
11	.6850000	1.1823274	.0004866
12	.6625000	1.1962897	0000118
13	.6175000	1.2249879	0009915
14	5950000	1.2397481	0014760

Salida por variación débil de los parámetros .0000792 .0580831 No. Iter = 2 s К1 -

TABLA (3.e)

CALCULO DEL PARAMETRO ALFA DE LA ECUACION DE ESTADO DE PENG-ROBINSON

DE FENG-RUBINSON

Sustancia: Metanol

TC -	512.580	PC -	79.900	VC -	118.000	w -	.565
т		Р	P(ca	1)	VL		VG
497.2	22	61,005	61.0	04	93.693		359.803
481.8	44	46.078	46.0	178	79,434		549.714
451.0	88	25.146	25.1	46	66.018		1145.748
435.7	10	18.047	18.0	47	.62.097		1640.571
404.9	54	8,606	8.6	606	56.672		3482.985
373.1	50	3.484	3.4	84	52.955		8349.630
356.8	28	2.030	2.0	30	51.480		13704.860
353.1	50	1.796	1.7	96	51.198		15326.344
341.5	53	1.162	1.1	.62	50.306		22919.682
337.8	67	1.007	1.0	07	50.043		26164.039
336.9	34	.970	. 9	70	49.979		27065.399
333.9	64	.862	. 8	362	49,778		30200.375

Valor promedio de la desviación en la presión

Dp 🛥

.002 %

0021546
0035121
0045134
0043843
0032788
0009626
0001729
0011528
0016641
0020791
0022035
0025851

Salida por variación débil de los parámetros No. Iter = 8 S = .0002195 K1 = .0066146

TABLA (3.q)

No

Sustancia: t.ai 101

TC -	513.920 PC -	60.680 VC	- 167.000	W = .644
Т	Р	P(cal)	VL	VG
500.71 485.22 469.74 454.25 438.77 423.28 407.79 392.31 376.82 363.14 361.34 351.44 345.85	.4 47.479 28 35.391 12 26.015 56 18.796 00 13.298 34 9.173 36 6.139 12 2.6453 36 2.453 37 1.558 10 1.443 10 1.000 34 801	47.479 35.391 26.015 18.796 13.298 9.173 6.139 3.963 2.452 1.558 1.443 1.000 .801	$\begin{array}{c} 126.020\\ 105.232\\ 94.050\\ 86.739\\ 81.483\\ 77.477\\ 74.301\\ 71.708\\ 69.544\\ 67.949\\ 67.709\\ 66.680\\ 66\\ 130\end{array}$	456.519 718.094 1065.216 1551.219 2255.679 3310.663 4946.766 7585.060 11977.502 18167.731 19515.444 27395.881 33674.864
343,14 330,36	19 .713 58 .414	.713	65.862 64.757	37511.088 62190.903

Valor promedio de la desviación en la presión

Dp -.001

TR

%

ALFA POLAR .9743034 1 1.0191340 .0026720 2 .9441703 1.0404448 .0043997 ā .9140372 1.0613279 .0053846 .8839041 4 1.0819195 .0057471 5 .8537710 1.1023590 .0056097 6 .8236379 1.1227789 .0050863 7 7935048 1.1433060 .0042834 8 7633717 1.1640535 .0032918 9 .7332386 1.1851202 .0021859 10 7066217 1.2029510 .0000494 11 7031055 1.2065780 .0010108 12 6838418 1.2203363 .0000451 13 . 6729724 1.2285170 -.0001736 14 .6677090 1.2329107 .0001282 15 . 6428394 1,2510191 -.0013187

Salida por variación débil de los parámetros .0000943 No. Iter -2 S К1 -.0947047 -

CAPITULO III

EL EQUILIBRIO ENTRE FASES DE SISTEMAS MULTICOMPONENTES

El cálculo del equilibrio entre fases de sistemas multicomponentes ocupa un lugar predominante en las aplicaciones tecnológicas de la termodinámica, el conocimiento de estos cálculos permite estudiar una gran variedad de operaciones unitarias que manejen fluidos. Hasta hace relativamente poco tiempo las ecuaciones de estado estaban restringidas al cálculo del equilibrio entre fases de sistemas no-polares. El método alternativo que se utiliza para sistemas polares es el de los modelos de solución.

Los modelos de solución han sido propuestos desde finales del siglo pasado y la literatura especializada en este sentido es abundante. Entre estos modelos podemos mencionar el de Margules, Van Laar. NRTL, UNIQUAC, UNIFAC, ASOG, etc. Todos estos modelos son aplicables a fluidos polares. Quizás la desventaja más importante de estos modelos en el cálculo del equilibrio entre fases, es que necesariamente se tiene que utilizar un modelo diferente para caracterizar la fase vapor. Más aún, es necesario introducir hipótesis suplementarias para extender su validéz a presiones elevadas (corrección de Poynting)^{c 113}.

Poy - exp $\left[\int_{-\frac{R}{2}}^{\frac{R}{2}} \frac{v_{1}e^{-dP}}{R}\right]$

donde, para un componente puro el superíndice s se refiere a la saturación y el superíndice c a la condensación.

Las condiciones del equilibrio entre fases para sistemas multicomponentes para ambos métodos, se pueden resumir como:

$$T_{L} = T^{\alpha} \qquad (III.1.a)$$

55

 $P(T, v_L, x_1) = P(T, v_u, y_1)$ (III.1.b)

 $\mu_{L} (T, V_{L}, X_{i}) = \mu^{q} (T, V_{q}, Y_{i})$ (III.1.c)

con las contricciones:

 $\Sigma x_i = 1$ (III.1.d) $\Sigma y_i = 1$ (III.1.e)

En el caso particular cuando se utilizan modelos de solución la última condición es común expresarla como:

 $0_1 P y_1 = \tau_1 f_1 - x_1 Poy$ (III.2)

donde Ø, es el coeficiente de fugacidad de la fase vapor. P es la

presión del sistema, y, la fracción mol del componente i en la fase vapor, τ , es el coeficiente de actividad del componente i, f. es la fugacidad de referencia del componente i en el líquido, x, es la fracción mol del componente i en la fase líquida y Poy es la corrección de Poynting.

Por el contrario si se utilizan las ecuaciones de estado la condición (III.1.c) se puede describir en términos de la fugacidad del componente i en la mezcla esto es:

fı⊢ = fı°

o bién

$$\mathcal{O}_{\star}^{L} = \mathcal{O}_{\star}^{Q}$$
 (III.3)

En este trabájo, se aplicarán los recientes desarrollos para extender la aplicabilidad de las ecuaciones se estado a mezclas de fluidos polares.

111.1 LAS ECUACIONES DE ESTADO PARA SISTEMAS MULTICOMPONENTES

Es un hecho bien conocido que, del conocimiento de las propiedades termodinámicas de las sustancias puras es posible, utilizando la teoría de 1-fluido, extender mediante una elección adecuada de las reglas de mezclado, la validez de la ecuación de estado al tratamiento de sistemas multicomponentes.

La extensión de las ecuaciones de estado de sustancias puras a mezclas, basadas en la teoría de 1-fluido de van der Waals, supone que la mezcla se comporta como un fluido hipotético cuyos parámetros característicos a y b obedecen a una regla de mezclado en particular. En este trabajo se seleccionaron reglas de mezclado cuadráticas en la composición para ambos parámetros, es decir:

$$\mathbf{a} = \Sigma \mathbf{x}_1 \mathbf{x}_2 \mathbf{a}_2 \mathbf{x}_3 \qquad (\text{III.4.a})$$

 $\mathbf{b} = \Sigma \mathbf{x}_1 \mathbf{x}_3 \mathbf{b}_{13} \tag{III.4.b}$

para los parámetros de interacción a., y b., se utilizan las siguientes reglas de combinación:

$$a_{i,j} = [a_i \ a_j]^{1/2} (1 - k^{-}_{i,j})$$
 (III.5.a)

$$b_{x,j} = \frac{b_x + b_j}{2}$$
 (11- $k^{b_{x,j}}$) (111.5.b)

Los parámetros kaus y kaus dependen en general de la

temperatura y son característicos de la mezcla en estudio. Por otra parte, las reglas de mezclado (III.4) se aplican a cualesquiera de las ecuaciones de estado objeto de este trabajo.

Para aplicar las condiciones de equilibrio entre fases es necesario conocer las expresiones del coeficiente de fugacidad para las distintas ecuaciones de estado. Este cálculo se describe en el apéndice 4. De esta manera para el componente í, el coeficiente de fugacidad para la ecuación de Soave-Mathias-Gibbons, se expresa como:

$$\ln \phi_{i} - - \ln \frac{P(v-b)}{R T} + Z - 1 + \frac{a}{R T b} \ln \frac{v}{v+b} + \left[\frac{2}{R T b} - \ln \frac{v}{v+b}\right] (a_{m} - \Sigma + x_{k} a_{ik}) + \frac{1}{2} \left[(Z - 1) - \frac{a}{R T b} - \ln \frac{v}{v+b}\right] - (b_{m} - \Sigma + x_{k} b_{ik}) - (III),$$

y para la ecuación de Peng-Robinson, se tiene:

$$\ln \phi_{1} = -\ln \frac{P(v-b)}{R} + \left[\frac{2}{2\sqrt{2}RTb} \ln \frac{v+b(1-\sqrt{2})}{v+b(1+\sqrt{2})}\right] (a_{m} - \sum x_{i}, a_{i+1})$$

$$\frac{1}{b} \left[2 - 1 - \frac{a}{2\sqrt{2} \text{ RTb}} \ln \frac{v + b(1 - \sqrt{2})}{v + b(1 + \sqrt{2})} \right] (b_m - 2\Sigma x_K b_{1K}) \quad (III.7)$$

Las ecuaciones (III.1.a,b) y (III.3) forman un sistema de ecuaciones no lineales. La solución depende de las condiciones a la frontera que se propongan para su solución, esto es; flash isotérmico, isobárico, etc. y la única información adicional que se requiere es acerca de los parámetros de interacción. Sobre este aspecto tratará la siguiente sección.

111.2 ESTIMACION DE LOS PARAMETROS DE INTERACCION

a., y b.,

Las reglas de mezclado descritas por (III.4) son extremadamente sensibles a la elección de las reglas de combinación seleccionadas para a., y b., esta elección ha sido objeto de inumerables estudios y por lo general para el parámetro a., se toma aquella propuesta por Lorentz:

$$a_{1,j} = \{a_1, a_j\}^{1/2} (1 - k^{a_{1,j}})$$

donde el parámetro k^{*}., es característico de la mezcla ij. Para el caso de fluidos polares este parámetro depende fuertemente de la temperatura.

Para el parámetro b., se elige la media aritmética expresada por:

$$b_{i,j} = \frac{b_i + b_j}{2} (1 - k^{b_{i,j}})$$

Se ha demostrado que para una gran variedad de mezclas el parámetro k^{μ} , es cero y la regla de mezclado para b se reduce a una regla de mezclado lineal en la composición:

$$b = \Sigma x_i b_i$$

Para mezclas en las cuales alguno de los componentes es polar, el parámetro k^o., depende de la temperatura.

En este trabajo para la estimación de los parámetros k⁻., y k^{*}., se utilizó el modelo propuesto por J. Schwartzentruber, L. Ponce y H. Renon.^{r123}. Este modelo consiste en empatar la energía libre de Gibbs de exceso calculada mediante alguna ecuación de estado, y aquella calculada con algún modelo de solución. tal como: (UNIFAC, UNIQUAC, NRLT, WILSON, ...), de esta manera el resultado que se obtiene para la ecuación de Soave es:

$$\frac{a_{12}}{R T} = y_1 y_2 \frac{(1 - \lambda_1) b_2 F_1 - (1 - \lambda_2) b_1 F_2}{\lambda_2 (1 - \lambda_1) y_1 - \lambda_1 (1 - \lambda_2) y_2}$$
(III.8)

이 물을 걸려 가슴 다음을 가슴을 다.

y:

$$b_{12} = \frac{b_1 \ y_1 \ A_2 \ F_2 \ - \ b_2 \ y_2 \ A_1 \ F_1}{A_2 (1 - A_1) y_1 \ - \ A_1 (1 - A_2) y_2}$$
(III.9)

donde:

 $\frac{a_{1}}{R T b_{1}} \qquad y \qquad A_{1} = y_{1} \ln \frac{\delta_{1} + 1}{\delta_{1}}$

$$F_{i} = \frac{1}{2} \left[\ln \frac{\delta_{i} - 1}{\delta_{i} - 1} + \ln \frac{b_{i}}{b_{i}} + \lambda_{i} - \lambda_{i} + 2 - \ln \tau_{i} - \right]$$

 F_{22} se calcula intercambiando los índices 1 y 2. δ_i es la solución de la ecuación de 2º grado que se obtiene cuando P = 0; esto es, la solución para $v_{L} = \delta b$:

$$\delta = -\frac{1}{2} \left[1 - y(Tr) + Q(y) \right] = 0$$

donde:

$$Q(y) = (y^2 - 6y + 1)^{1/2}$$

Como puede observarse las ecuaciones (III.8 y 9) son generales, esto es, del conocimiento de los coeficientes de actividad a dilución infinita (τ_1 =) se puede estimar $a_{i,1}/RT$ y $b_{i,1}$,

Para la ecuación de Peng-Robinson R Cabrales^{1,33} obtiene expresiones similares:

a_{12} y_1y_2 ($-b_2$ $C_1(A_1 + 2) + b_1$ $C_2(A_2 + 2)$	(111.10)
R T $-A_{2}$ y ₁ $(A_{1} + 2) + A_{1}$ y ₂ $(A_{2} + 2)$	(111.10)

	_	y,	. Ъ . А;	₂ C₂	- Y≃	b₂ A.	C=
12	۰.	-A=	Y . (A.	+ 2)	+ A.	y= (A:	2 + 2)

(III.11)

C₂, se calcula intercambiando los subíndices 1 y 2, δ_1 es la solución de la ecuación de estado para P = 0; esto es. $v_{\perp} = \delta b$. dando como resultado:

Los coeficientes de actividad a dilución infinita se pueden estimar mediante algún modelo de solución o bíen, se pueden tomar los valores experimentales directamente. En base a las expresiones (III.8), (III.9), (III.10) y (III.11) se pueden calcular los parámetros de interacción $k_{i,i}$ mediante:

$$k^{a}_{i,j} = 1 - \frac{a_{i,j}}{(a_{i}, a_{j})^{1/2}}$$

 $k^{b}_{i,j} = 1 - \frac{2b_{i,j}}{(b_{i} + b_{j})}$

En el siguiente cápitulo, se presentan los resultados del cálculo del equilibrio entre fases de mezclas polares, aplicando la metodología anteriormente mencionada.

CAPITULO IV

ANALISIS DE RESULTADOS Y CONCLUSIONES

La contribución quizás más valiosa de esta tesis, es que permitió crear una infraestructura en el cálculo de propiedades termodinámicas y del equilibrio entre fases de sistemas multicomponentes. en el Instituto de Investigaciones en Materiales de la UNAM. Esto es, se dispone de métodos, bases de datos y programas de computo que permiten un estudio sistemático de las propiedades termofísicas relevantes en los procesos industriales.

64

Los resultados que se presentan en este capítulo corresponden a 10 mezclas binarias cuyos componentes en la mayoria de los casos son polares. Previamente se calcularon los parámetros característicos de las ecuaciones de estado utilizadas, en particular el parámetro polar. En la siguiente sección se resumen los resultados obtenidos de este estudio.

IV.1 SUSTANCIAS PURAS

La aplicación del algoritmo matemático para calcular el para rámetro polar para las ecuaciones de estado de Soave-Mathias y de Peng-Robinson-Vera y las constantes X y Y de la ecuación de Gibbons, es ilustrado en las tablas (IV.1.2 y 3).

Se observó en general, que la estimación del parámetro polar es sensible a los valores empleados para las propiedades críticas. Por tanto, para aplicar de una manera consistente las ecuaciones de estado es importante tener cuidado en el uso de los bancos de constantes físicas que se utilizan para la correlación de los parámetros característicos de una ecuación de estado. Sólo en unos cuantos artículos los autores indican el banco de constantes que han utilizado para sus correlaciones.

La tabla (IV.1) resume los parámetros polares para la ecuación de Soave utilizando el banco de constantes críticas de Prausnitz y la tabla (IV.2) resume los parámetros polares para la ecuación de Peng-Robinson utilizando el banco de constantes críticas de D. Ambrose de las sustancias que intervienen en las mezclas consideradas en el cálculo del equilibrio líquido vapor. En cambio las tablas (IV.3a y b) resumen los valores de los parámetros X y Y para la ecuación de estado de Soave-Gibbons utilizando tanto el banco de constantes críticas de Ambrose como el de Prausnitz. Como puede observarse en ambas tablas existen grandes diferencias entre los valores de ampas constantes.

Por último, en el apéndice 2 se ilustra los coeficientes característicos de la ecuación de Antoine generalizada empleados en el cálculo de la presión de vapor que se utilizó para generar los parámetros referidos anteriormente.

TABLA (IV.1)

Cálculo del parámetro polar para la ecuación de Soave - Mathias utilizando constantes críticas del banco de datos de Prausnitz

PARAMETRO POLAR. ECUACION DE ESTADO DE SOAVE - MATHIAS						
SUSTANCIA	Тс •К	Pc kPa	w	PARAMETRO POLAR "CAL. *"SPI		
n-Heptano	540.2	2735.775	0.351	-0.06822	0.06894	
o-Xileno	630.2	3728.760	0.314	-0.06279		
MeOH	512.6	8095.868	0.559	-0.00716	0.16870	
EtOH	516.2	6383.475	0.635	0.16401	0.08745 ™0.10060	
Agua	647.3	22048.320	0.344	0.04003	0.14220 ™0.12770	
Acetona	508.1	4701.480	0.309	-0.08008	0.11510	
Cloroformo	563.4	5471.550	0.216	-0.02912		
Benceno	562.1	4893.997	0.212	-0.02932	0.02709	
Acetonitrilo	548.0	4833.202	0.321	-0.01364	0.18630	
Isopropanol	508.3	4762.275	0.724	-0.63031	0.06409	
Anilina	699.0	5309.430	0.382	-0.05716	0.08335	

*Calculado mediante el algoritmo propuesto.

**Tomado del artículo de: Schwartzentruber, Ponce y Renon^{F 123}. "Tomados del artículo de: P. M. Mathias"⁴³.

TABLA (IV.2)

Cálculo del parámetro polar para la ecuación de Peng - Robinson utilizando el banco de datos de D. Ambrose.

PARAMETRO POLAR, ECUACION DE ESTADO DE PENG - ROBINSON					
SUSTANCIA	T∉ °K	Pe kPa	w	PARAMETI •CAL.	O POLAR
n-Heptano	540.10	2735.75	0.35022	0.00000	-0.04648
o-Xileno	630.30	3730.00	0.31000	-0.02073	
DME	400.10	5240.00	0.18909	-0.97410	-0.05717
меон	512.58	8095,79	0.56533	0.12978	0.16816
EtOH	513.92	6148.00	0.64439	0.07067	0.03374
Agua	647.29	22089.75	0.34380	0.03427	0.06635
Acetona	508.10	4696.00	0.30667		0.00888
Cloroformo	563.40	5471.55	0.21800	-0.02261	
Benceno	562.16	4898.00	0.20929	0.00000	-0.07019
Acetonitrilo	545.50	4830,00	0.33710	-0.13384	0.13991
Isopropanol	508.40	4664.25	0.66372		-0.23264
Anilina	699.00	5310.00	0.38400	0.00016	

*Calculado mediante el algoritmo propuesto.

**Tomado del artículo de: J. H. Veracza.

TABLA (IV.3a)

Parámetros X y Y obtenidos a partir de la relación de Soave - Gibbons utilizando propiedades críticas de Prausnitz.

		GIBBONS			
SUSTANCIA	T.	Pr.	W	X	Y
Etileno	282.40	49.70	0.085	0.365104	-1.950995
Etano	305.40	48.20	0.098	-0.103796	-1.146692
Cloruro de vinilo	429.70	55.30	0.122	0.742747	-2.788305
Propileno	365.00	45.60	0.148	0.399078	-2.208116
1.3-Butadieno	425.00	42.70	0.195	0.401049	-2.395834
Oxido de etileno	469.00	71,00	0.200	0.658262	-2.855444
Benceno	562.10	48.30	0.212	0.493228	-2.624294
Ciclohexano	553.40	40.20	0.213	0.482323	-2.605482
1,1-Dicloroetano	523.00	50.00	0.248	1.939099	-5.294888
Amoniaco	405.60	111.30	0,250	0.402375	-2.584193
1,2-Butadieno	443.70	44.40	0.255	-0.180380	-1.530297
Estireno	647.00	39.40	0.257	1.434213	-4.426967
Tolueno	591.70	40.60	0.257	0.346077	-2.539452
1,2-Dicloroetano	561.00	53.00	0.286	-0.014231	-1.949265
n-Hexano	507.40	29.30	0.296	0.792878	-3.449360
Etilbenceno	617.10	35.60	0.301	0.534086	-3.012816
Acetaldehido	461.00	55.00	0.303	-0.535986	-1.062952
Acetona	508.10	46.40	0.309	0.482505	-2.927307
o-Xileno	630,20	36.80	0.314	0.372895	-2.750166
p-Xileno	616.20	34.70	0.324	-0.415671	-1.352439
m-Xileno	617.00	35.00	0.331	0.154446	-2.396649
Acetonitrilo	548.00	47.70	0.321	-0.312241	-1.500432
Agua	647.30	217.60	0.344	0.177797	-2.482313
n-Heptano	540.20	27.00	0.351	0.672669	-3.418452
n-Octano	568.80	24.50	0.394	0.377533	-3.048416
Metanol	512.60	79.90	0.559	-0.079067	-2.778518
1-Butanol	562.90	43.60	0.590	4.028406	
1-Propanol	536.70	51.00	0.624	0.429730	-3.925522
Etanol	516.20	63,00	0.635	-0.063653	-3.058979
isopropanol	508.30	47,00	0.724	3.073278	-8.857303

Temperatura crítica en grados Kelvin.
Presión crítica en Atmósferas.
Factor acéntrico. T.

P...

w

TABLA (IV.3b)

Parámetros X y Y obtenidos a partir de la relación de Soave - Gibbons utilizando propiedades críticas de D. Ambrose.

				GIBBONS	
SUSTANCIA	Te	P=	w	x	Y
Etileno	282.40	49.70	0.085	0.335484	-1.900881
Etano	305.40	48.20	0.098	-0.070323	-1.205552
Propileno	365,00	45.60	0.148	0.426592	-2.257151
1.3-Butadieno	425,00	42.70	0.195	0.401049	-2.395834
Oxido de etileno	469.00	71.00	0.200	0.658262	-2.855643
Benceno	562,10	48.30	0.212	0.490855	-2.619727
Ciclohexano	553.40	40.20	0.213	0,504091	-2.642536
1,1-Dicloroetano	523.00	50.00	0.248	1.939099	-5.294888
Amoniaco	405.60	111.30	0.250	0.285314	-2.385058
Tolueno	591.70	40.60	0.257	0.412229	-2.653791
1,2-Dicloroetano	561.00	53.00	0.286	-0.014231	-1.949265
n-Hexano	507.40	29.30	0.296	0.651678	-3.288448
Etilbenceno	617.10	35.60	0.301	0.592357	-3.113363
Acetona	508.10	46.40	0.309	0.484457	-2.930585
o-Xileno	630.20	36.80	0.314	0.388452	-2.776434
p-Xileno	616.20	34.70	0.324	-0.380337	-1.414894
m-Xileno	617.00	35.00	0.331	0.181811	-2.445451
Acetonitrilo	548.00	47.70	0.321	-0.723201	-0.824385
Agua	647.30	217.60	0.344	0.154894	-2.444709
n-Heptano	540,20	27.00	0.351	0.687495	-3.442773
n-Octano	568.80	24.50	0.394	0.349760	-2.999299
Metanol	512.60	79.90	0.559	-0.057219	-2.816082
1-Butanol	562.90	43.60	0.590	4.036801	
1-Propanol	536.70	51.00	0.624	0.448719	-3.957924
Etanol	516.20	63.00	0.635	-0,029604	-3.147620
Isopropanol	508.30	47.00	0.724	3.073278	-8.857303

T. = Temperatura crítica en grados Kelvin.
 P. = Presión crítica en Atmósferas.
 w = Factor acéntrico.

IV.2 MEZCLAS MULTICOMPONENTES

Para el cálculo del equilibrio entre fases de sistemas multicomponentes el punto de partida son las ecuaciones del equilibrio físico expresados por (III.1) y (III.3). Para la solución de este sistema de ecuaciones se elaboró un programa de cómputo para la determinación de las temperaturas y presiones de burbuja y rocío. Este programa está diseñado de tal manera que permite un estudio comparativo de las calidades predictivas de las ecuaciones de estado, permitiendo además ensayar diferentes reglas de mezclado.

En este trabajo se seleccionaron tanto para la ecuación de estado de Soave, como para la de Peng-Robinson, las reglas de mezclado dadas por las expresiones (III.4) y las reglas de combinación para los parámetros de interacción a., y b., dados por las ecuaciones (III.5).

El procedimiento que se diseñó para el cálculo del equilibrio entre fases, comprende una serie de programas de cómputo que permite enlazar los diferentes métodos descritos en los capítulos anteriores. Este procedimiento consiste en lo siguiente:

a) Se elaboró un programa de cómputo para la estimación de los coeficientes de actividad a dilución infinita utilizando el modelo de solución de Wilson y el modelo de contribución de grupos UNIFAC. A título de ejemplo, la tabla (IV.4) muestra un resultado
típico de este programa para el sistema n-heptano - o-xileno a diferentes temperaturas. La tabla (IV.5) resume los coeficientes de actividad a dilución infinita para los 10 sistemas que se consideraron en este estudio. En esta tabla se indica en cada caso su procedencia.

b) Se elaboró un programa de cómputo para la estimación de los parametros de interacción a, y b., tanto para la ecuación de Soave como para la ecuación de Peng-Robinson, dados por las ecuaciones (III.8,9) y (III.10.11) respectivamente. En las tablas (IV.6a y b) se muestra un resultado de esta estimación para el sistema n-heptano - o-xileno, utilizando ambas ecuaciones. Se resume en las tablas (IV.7a y b) el cálculo de los parámetros de interacción tanto calculados como experimentales para ambas ecuaciones.

c) Se determinó la presión de burbuja de 10 sistemas con la finalidad de llevar a cabo un estudio comparativo de las calidades predictivas de las ecuaciones de estado de Soave y Peng-Robinson. A manera de ejemplo, las tablas (IV.8a y b) muestran resultados que se obtibieron para el sistema n-Heptano -o-Xileno a diferentes temperaturas. La tabla (IV.9) ilustra este estudio con la ecuación de estado de Soave-Mathias. Esta comparación se llevó a cebo de la siguiente manera:

Sistema: n-Heptano - o-Xileno.

El estudio de este sistema se hizo a tres temperaturas y pa-

ra las constantes características de la ecuación de estado de Soave se utilizaron las indicadas en la tabla (IV.1). Los resultados que aparecen en la columna Soave-Mathias, fueron generados utilizando para el cálculo de los parámetros de interacción los valores experimentales de los coeficientes de actividad a dilución infinita; en tanto los resultados que aparecen en la columna <trabajo> fueron generados utilizando el método de UNIFAC para el cálculo de los coeficientes de actividad. Ambos resultados son satisfactorios.

Sistema: Etanol - Agua.

Para este sistema se utilizaron tanto los parámetros característicos de la ecuación de estado de Soave-Mathias, como los parámetros de interacción que aparecen en la referencia [6].

Sistema: Acetona -- Cloroformo.

Para este sistema se utilizó el banco de datos de Prausnitz para generar los parámetros polares. El cálculo de los parámetros de interacción se llevó a cabo utilizando valores experimentales de coeficientes de actividad a dilución infinita tomados de la referencia [16].

Sistemas: Metanol-Agua, Acetonitrilo-Benceno, Acetonitrilo-

Anilina, Metanol-Anilina y Benceno-n-Heptano.

Las constantes críticas para estos sistemas se tomaron del banco de datos de Prausnitz. Tanto el parámetro polar como los parámetros de interacción fuerón tomados de la referencia (12).

Sistema: Acetona - Isopropanol.

Las constantes críticas fueron tomadas del banco de datos de Prausnitz, el parámetro polar para ambas sustancias corresponde a los reportados en la referencia (12), los parámetros de interacción fueron calculados utilizando los coeficientes de actividad a dilución infinita obtenidos éstos mediante el modelo UNIFAC.

TABLA (IV.4)

Coeficientes de actividad a dilución infinita modelo de contribución de grupos UNIFAC.

	Sistema:	n-	He	eptano	- (o−X	(ileno		
Num.	Componente	s	-	2	Nur	n.	Grupos	-	4

Matriz de grupos:

	Кы	Q.
СН-э	0.9011	0.848
CH-	0.6744	0.540
ACH	0.5313	0.400
ACCH3	1.2663	0.968

Matriz de componentes: V(NG,NCOMP)

	n-Heptano	o-Xileno
CHa	2.0	0.0
CH2	5.0	0.0
ACH	0.0	4.0
ACCH	0.0	2.0

Matriz de interacción de grupos: A(NG,NG)

	CH3	CH₂	ACH	ACCH3
CH CH ACH ACCH	0.00 0.00 -11.12 -69.70	0.00 0.00 -11.12 -69.70	61.13 61.13 0.00 -146.80	76.50 76.50 167.00 0.00
	т (K)	GAMMA (1)	GAMMA (2)
	348.10 358.10 368.10	1.39469 1.38917	1.453 1.441	35 13 74

TABLA (IV.5)

COEFICIENTES DE ACTIVIDAD À DILUCION INFINITA									
SISTEMA	т(к)	ΕXI τ	ρ τ₂ ⁻	τ_1	- τ₂=	REF.			
n-Heptano - o-Xileno	348.10 358.10 368.30	1.551 1.497 1.404	1.397 1.367 1.313	1.395 1.389 1.384	1.453* 1.441 1.430	14			
DME - MeOH	313.15 333.15 353.15			2.648 2.510 2.122	2.954 2.806 2.312	15			
Et.OH - Agua	303.15 323.15 343.15 363.15			4.087 4.964 5.587 5.966	2.496 2.521 2.538 2.473	15			
Acetona - Cloroformo	298.15 308.32	0.517 0.406	0.543 0.497		l	16			
Benceno - Acetonitrilo	343.15	3.090	3.560	2.828	2.701*	17			
MeCH - Agua	333.15 338.15 348.15 373.15			2.281 2.284 2.289 2.295	1.657* 1.663 1.675 1.698				
Acetona - Isoprepanol	298.15		1	2.177	2.245=				
n-Heptano - Benceno	333.15	1.820	1.350			18			
Acetonitrilo - Anilina	293.15 343.15 393.15	0.974 0.880 1.042	1.371 1.388 1.470			19			
MeOH Anilina	293.15 338.15 385.15	2.392 2.203 1.981	2.846 2.774 2.612			19			

*Calculados mediante el modelo de contribución de grupos UNIFAC.

TABLA (IV.6a)

Parametros de interacción para el sistema n-Heptano \sim o-Xileno calculados con la ecuación de Soave mediante el algoritmo de cálculo propuesto, utilizando gamma's que se calcularon con el modelo de contribución de grupos. UNIFAC.

	Si	stema:	n-H	eptanc	- o-X	lileno	
	т (к)		GA	MMA 1		GAMMA 2	
	348.10 358.10 368.30		1. 1. 1.	39469 38917 38384		1.45335 1.44113 1.42974	
Sustanc	ia	T _e (ĸı	Pe (k	Pa]	w	POLAR
n-Heptan o-Xileno	0	540. 630.	20 20	2735. 3728.	775 760	0.35100 0.31400	-0.06822 -0.06280
	B(1) - B(2) - B(3) -	142.2 121.7 131.9	4060 4842 9451	sm Sm Sm	(1) - (2) - (3) -	1.0104948 .9569231 .9837624	
Т	I	Al	i	A2	A	12 B	12
348.10 358.10 368.30	1570 1495 1424	.089 .726 .861	1698 1623 1551	.899 .249 .009	1590. 1517. 1448.	790 128. 825 128. 018 128.	868 933 989
т	ĸ	(A)		K	B)	K (Y)
348.10000 358.10000 368.30000	. 259 . 259 . 259	98190D- 90049D- 95162D-	-01 -01 -01	. 2360 . 2319 . 2273	3898D-(9140D-(7166D-(01 .5358 01 .5782 01 .6261	857D-02 423D-02 627D-02
GAMMA: Co	eficier	nte de	activ	idad a	a dilu	ción infini	ta

K(A) y K(B): Parámetros de interacción del componente A y B respectivamente.

TABLA (IV.6b)

Parimetros de interacción para el sistema n-Heptano - o-Xileno calculados con la ecuación de Peng-Robinson mediante el algoritmo de calculo propuesto, utilizando gamma's obtenidas con el medelo de contribución de grupos, UNIFAC.

	Sistema:	n-Heptano	- o-Xileno	
	т	GAMMA 1	GAMM	A 2
348	1.10	1.39469	1.45	335
358	3.10	1.38917	1.44	113
368	3.30	1.38384	1.42	974
Sustancia	Te (K)	P _e (kPa)	Omega	P. Polar
n-Heptano	540.10	2735.750	0.35022	-0.04648
o-Xileno	630.30	3730.000	0.31000	-0.01277
	B(1) = 127.69	9855 SM	(1)8	804524
	B(2) = 109.30	0163 SM	(2)8	248265
	B(3) = 118.50	0009 SM	(3)8	527009
т	A 1	A2	A12	B12
348.10	1606.447	1710.637	1607.661	115.036
358.10	1534.005	1638.659	1538.159	115.103
368.30	1464.863	1569.792	1471.603	115.163
т	K(A)	к	(B)	K(Y)
348.10	0.3019980D-0	0.2922	2963D-01	0.4013667D-02
358.10	0.2983998D-0	01 0.2860	5342D-01	0.4224923D-02
368.30	0.2955417D-0	01 0.2810	5077D-01	0.4446745D-02

GAMMA: Coeficiente de actividad a dilución infinita.
K(A) y K(B): Parámetros de interacción del componente A y B respectivamente.

Esta tesis no debe Salir de la biblioteca₇₉

Las siguientes tablas muestran los parámetros de interacción tanto experimentales como calculados.

TABLA (IV.7a)

PARAMETROS DE INTERACCION ECUACION DE SOAVE - MATHIAS

Sistema	т(к)	Para Experi	ámetros de mentales	interacción Calcu		
		K* 13	k°،	k≞ ⊾a	ت ۲۰	REF.
n-Heptano - o-Xileno	348.10 358.10 368.30	0.00672 0.00529 0.00335	-0.01028 -0.00808 -0.00387	0.02598 0.02590 0.02595	0.02369* 0.02319 0.02277	14
EtOH — Agua	303.15 323.15 343.15 363.15	0.00790 0.00790 0.00790 0.00790	0.11409 0.11268 0.11128 0.10987			6
Acetona - Cloroformo	298.15	-0.06177	-0.02491		. · · ·	16
MeOH - Agua	333.15 373.15	-0.03276 -0.02153	0.05140			12
Benceno - Acetonitrilo	343.15	-0.06371	-0.15877			12
Acetona - 2,Propanol	298.15			0.04304	0.00839	
Acetonitrilo — Anilina	293.15 343.15 393.15	0.02913 0.02322 0.01882	0.04392 0.04040 0.03778			12
MeOH — Anilina	293.15 338.15 385.15	-0.01728 -0.00593 0.00309	-0.05300 -0.05261 -0.05231			12
Benceno - n-Heptano	333.15 348.15 353.15	-0.10243 -0.11392 -0.11754	-0.11710 -0.13194 -0.13661			

TABLA (IV.7b)

PARAMETROS DE INTERACCION ECUACION DE ESTADO DE PENG-ROBINSON

		_	Parametro	e de Intera	cción	
		Expe	rimentales	1.5	Calculados	DEF
SISTEMA	т чк	K"1.1	K. 7	K. * 1	K*14	REF .
n-Heptano -	348,10	-0.00415	-0.01198	0.03019	0.02923*	14
o-Xileno	358.10	-0.00326	-0.00981	0.02984	0.02866	
	368,30	-0.00276	-0.00587	0.02955	0.02816	
DME / McOH	333.15	0.03499	0,03758	0.03807	0.03527*	15
	353,15			0.00288	0.01206	
EtOH / Aqua	303.15	0.09959	0,20522	0.10415	0.20871*	20
	323.15	0.08479	0.18644	0.09079	0.10981	
	343.15	0.08018	0.17745	0.08726	0.18244	
	363.15	0.06891	0.16332	0.07655	0.16845	
Acetona -						
Cloroformo	298.15	0.07157	-0.03334			16
Benceno -						
Acetonitrilo	343.15	0.11832	0.05241	0.13351	0.07500	17
MeOH - Aqua	333.91	-0.04086	0.04507	-0.02973	0.05295*	
	373.15	-0.01683	0.06448	-0.01383	0.06588	
Acetona -						
Isopropanol	298.15			0.05155	0.01302*	
Acetonitrilo	293.15	0.03749	0.05326			19
- Anilina	343.15	0.04034	0.05562	0.04178	0.05634	
	393,15	0.03944	0.04868			
MeOH - Anilina	293.15	-0.01634	-0.05223	-0.01444	-0.05068	19
	338.15	0.00156	-0.04713	0.00304	-0.0455B	
	385.15	0.02491	-0.03498	0.02583	-0.03414	
Benceno -						
n-Heptano	333.00	0.20033	0.21940	0.18137	0.19794	18

La referencia indica el origen de los coeficientes de actividad a dilución infinita a partir de los cuales fueron calculados los parámetros de interacción.

*Calculados a partir del modelo de contribución de grupos UNIFAC.

TABLA (IV.8a)

Equilibrio líquido-vapor para el sistema n-Heptano - o-Xileno utilizando la ecuación de Soave-Mathias.

CALCULO DEL EQUILIBRIO LIQUIDO - VAPOR ECUACION DE SOAVE-MATHIAS(GRABOSKI-DAUBERT)

Sustancia	T. [K]	P_ [kPa]	w	Polar
n-Heptano	540.20	2735.77500	.35100	+.06822
o-Xileno	630.20	3728.76000	.31400	06280

Parámetros de interacción

 $k_{1} = 0.0259819$ $k_{1} = 0.0236890$

Temp. = 348.10 [K]

x(1)	Y	(1)	Dy	P. (kPa]	Dp/p
	cal	exp		cal	exp	96
.0000	. 0000	. 0000	.0000	10.00	10.22	2.15
.0080	.0542	.0510	.0032	9.77	10.63	8.12
.0330	. 1926	. 1930	.0004	11.17	12.16	8.17
.0750	. 3552	.3480	.0072	13.41	14.53	7.68
.1520	. 5358	.5160	.0198	17.22	18.40	6.41
.2380	.6538	. 6290	.0248	21.05	22.04	4.47
.3640	.7588	.7390	.0198	26.03	26.89	3.20
.4850	.8249	.8090	.0159	30.29	30.97	2.20
.6230	.8810	.8650	.0160	34.77	35.50	2.05
.7300	.9174	. 9060	.0114	38.12	39.04	2.36
8720	0615	0590	0025	42 58	43 66	2 40

VALOR PROMEDIO DE LA DESVIACION ABSOLUTA

Dp/p = 4.4810186 %

VALOR PROMEDIO DE LA DESV. REL. ABSOLUTA

Dy = .0110905

TABLA (IV.8a) Continuación

Parámetros de interacción

(-1) = 0.0259005 k^{1} k^{2} k^{2} k^{3} k^{3} k

Temp. = 358.10 (K)

×(1)	Y	(1)	Dy	P	[kPa]	Dp/p
	- cal	exp		cal	exp	%
.0000	.0000	.0000	.0000	14.02	15.30	8.39
.0070	.0443	.0400	.0043	14.57	15.77	7.62
.0820	. 3583	. 3460	.0123	20.16	21.58	6.56
.1530	. 5179	. 4970	.0209	24.97	26,27	4.93
.2270	.6234	,6010	.0224	29.55	30.74	3.68
,3650	.7451	.7250	.0201	37.12	38.05	2.45
. 4950	.8185	.7980	.0205	43.42	44.06	1.45
.6050	.8660	.8540	.0120	48.38	49.04	1.35
.7350	.9135	.9050	.0085	54.02	54.84	1.49
.8610	.9553	.9540	.0013	59.49	60.54	1.74
1,0000	1.0000	1,0000	.0000	65.73	66,93	1.80

VALOR PROMEDIO DE LA DESVIACION ABSOLUTA

Dp/p = 3.7866465 %

VALOR PROMEDIO DE LA DESV. REL. ABSOLUTA

Dy - .0111076

TABLA (IV.8a) Continuación

Parametros de interacción

 k^{-1} , = 0.0259516 k^{1} , = 0.0227717

Temp. - 368.30 [K]

. y	•(1)	Dy	P	{kPa}	Dp/p					
cal	exp		cal	exp	*					
					la de la composición de la com					
.0000	. 0000	.0000	20.70	22.19	6.71					
.2301	.2190	.0111	25.68	27.01	4.92					
.3437	.3280	.0157	29.12	30.52	4.60					
. 4935	. 4720	.0215	35.27	36.62	3.69					
.6054	.5840	.0214	41.73	42.97	2.88					
.7354	.7190	.0164	52:50	53.56	1.99					
.8062	.7930	.0132	60.46	61.26	1.30					
.8544	.8420	.0124	66.92	67.31	.58					
.9063	.8990	.0073	74.79	75.21	.55					
.9526	.9500	.0026	82.52	83.17	.78					
1.0000	1.0000	.0000	90.92	91.98	1.15					
	y cal .0000 .2301 .3437 .4935 .6054 .7354 .7354 .8062 .8544 .9063 .9526 1.0000	y(1) cal exp .0000 .0000 .2301 .2190 .3437 .3280 .4935 .4720 .6054 .5840 .7354 .7190 .8062 .7930 .8544 .8420 .9063 .8990 .9526 .9500 1.0000 1.0000	y(1) Dy cal exp .0000 .0000 .0000 .2301 .2190 .0111 .3437 .3280 .0157 .4935 .4720 .0215 .6054 .5840 .0214 .7354 .7190 .0164 .8654 .8420 .0124 .9063 .8990 .0073 .9526 .9500 .0026 .00000 1.00000 .0000	y(1) Dy P cal exp cal .0000 .0000 20.70 .2301 .2190 .0111 25.68 .3437 .3280 .0157 29.12 .4935 .4720 .0215 35.27 .6054 .5840 .0214 41.73 .7354 .7190 .0164 52.50 .8062 .7930 .0132 60.46 .8544 .8420 .0124 66.92 .9063 .8990 .0073 74.79 .9526 .9500 .0026 82.52 .0000 1.0000 .0000 90.92	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					

VALOR PROMEDIO DE LA DESVIACION ABSOLUTA

Dp/p = 2.6492070 %

VALOR PROMEDIO DE LA DESV. REL. ABSOLUTA

Dy = .0110663

TABLA (IV.8b)

Equilibrio líquido-vapor para el sistema n-Heptano - o-Xileno utilizando la ecuación de Peng-Robinson-Vera.

84

CALCULO DEL EQUILIBRIO LIQUIDO - VAPOR ECUACION DE PENG-ROBINSON-VERA

Sustancia	T.a [K]	P _c [kPa]	w	Polar
n-Heptano	540.10	2735.75000	.35022	04648
o-Xileno	630.30	3730.00000		02073

Parámetros de interacción

 k^{+}_{1} = 0.0301998 k^{+}_{1} = 0.0292296

Temp. - 348.10 [K]

×(1)	, y	(1)	Dy	P (Dp/p		
	cal	exp		cal	exp	*	
.0000	.0000	.0000	.0000	10.40	10.22	1.76	
.0080	.0481	.0510	.0029	10.84	10.63	1.98	
.0330	. 1741	.1930	.0189	12.19	12.16	. 27	
.0750	.3285	.3480	.0195	14.38	14.53	1.01	
.1520	. 5082	.5160	.0078	18.14	18.40	1.43	
.2380	.6304	.6290	.0014	21.96	22.04	. 34	
.3640	.7417	.7390	.0027	26.99	26.89	. 35	
. 4850	.8124	. 8090	.0034	31.30	30.97	1.07	
.6230	.8727	.8650	.0077	35.84	35.50	.96	
.7300	.9117	.9060	.0057	39.22	39.04	.45	
.8720	.9588	. 9580	.0008	43.68	43.66	.06	
1.0000	1.0000	1.0000	.0000	47.84	47.96	.24	

VALOR PROMEDIO DE LA DESVIACION ABSOLUTA

Dp/p = .8291330 %

VALOR PROMEDIO DE LA DESV. REL. ABSOLUTA

Dy = .0059054

TABLA (IV.8b) Continuación

Parámetros de interacción

 k^{+} , = 0.0298399 k^{+} , = 0.0286634

Temp. = 358.10 [K]

×(1)	т у	(1)	Dy	P	[kPa]	Dp/p
	cal	exp		cal	exp	&
					· · · · · · · · · · · · · · · · · · ·	
.0000	.0000	. 0000	.0000	15.43	15.30	.82
.0070	.0395	.0400	.0005	15.95	15.77	1.16
.0820	. 3332	. 3460	.0128	21.35	21.58	1.08
.1530	.4921	.4970	.0049	26,05	26.27	.82
. 2270	.6007	.6010	.0003	30.58	30.74	.51
.3650	.7287	.7250	.0037	38.16	38.05	. 28
. 4950	.8069	.7980	.0089	44.50	44.06	1.00
.6050	.8577	.8540	.0037	49.48	49.04	.91
.7350	.9083	.9050	.0033	55.14	54.84	.55
.8610	.9526	.9540	.0014	60.59	60.54	.08
1.0000	1.0000	1.0000	.0000	66.76	66,93	. 25

VALOR PROMEDIO DE LA DESVIACION ABSOLUTA

Dp/p ~ .6782196 %

VALOR PROMEDIO DE LA DESV. REL. ABSOLUTA

Dy = .0035919

TABLA (IV.8b) Continuación

Parámetros de interacción

keij = 0.0295542 keij = 0.0281608

Temp. - 368.30 [K]

x(1)	ý	(1)	Dy	P	P [kPa]						
	cal	exp	•	cal	exp	8					
.0000	.0000	. 0000	.0000	22.43	22.19	1.07					
.0480	.2118	.2190	.0072	27.17	27.01	.60					
.0830	.3211	. 3280	.0069	30.48	30.52	.14					
.1500	.4699	. 4720	.0021	36.46	36.62	. 45					
.2270	. 5844	. 5840	.0004	42.01	42.97	. 37					
.3720	.7206	.7190	.0016	53.52	53.56	.08					
.4930	.7956	. 7930	.0026	61.49	61.26	.38					
.5980	.8467	.8420	.0047	67.95	67.31	.95					
.7310	.9015	. 8990	.0025	75.81	75.21	.79					
.8620	.9503	. 9500	.0003	83.47	83.17	. 37					
1.0000	1.0000	1.0000	.0000	91.76	91.98	. 24					

VALOR PROMEDIO DE LA DESVIACION ABSOLUTA

Dp/p = .4938537 %

VALOR PROMEDIO DE LA DESV. REL. ABSOLUTA

Dy - .0025833

Las gamma's se calcularon por el método de contribución de grupos UNIFAC

TABLA (IV.9)

SUMARIO DEL EQUILIBRIO LIQUIDO - VAPOR

TABLA COMPARATIVA ECUACION DE ESTADO DE SOAVE-MATHIAS

Sistema	T [K]	Soave-M	athias	Traba jo					
		%	ΔΥ	% ∆ ₽/₽	A Y				
n-Heptano - o-Xileno	348.10 358.10 368.30	5.38 4.92 4.33	0.90 0.83 0.64	4.48 3.79 2.65	1.10 1.11 1.11				
EtOH - Agua	303.15 323.15 343.15 363.15	2.90 1.84 1.86 2.00	2.56 1.16 0.91 0.75						
Acetona - Cloroformo	298.15	4.92	1.45						
MeOH - Agua	333.91 373.15	1.37 2.42	1.01 1.13						
Acetonitrilo - Benceno	343.15	1.86	0.49	· · ·	e state a Telefore				
Acetona - Isopropanol	298.15	3.09	3.88						
Acetonítrilo — Anilina	293.15 343.15 393.15	2.72 1.43 0.83	0.36 0.26 0.22						
MeOH - Anilina	293.15 338.15 385.15	1.89 0.94 1.66	0.13 0.11 0.09						
Benceno - n-Heptano	333.15 348.15 353.15	1.29 1.24 1.49	0.65 0.51 0.45	a A A A A A A A A A A A A A A A A A A A					

d١ La tabla (IV.10) ilustra el estudio comparativo para la ecuacion de estado de Peng-Robinson, tomando como base el calculo de la presión de burbuja de los mismos 10 sistemas. Para las sustancias que integran estos 10 sistemas se utilizó el banco de datos de Stryjek-Vera -reproducido en el ápendice 1- con excepción del o-Xileno, el Cloroformo y la Anilina, cuyos parámetros polares fueron generados mediante el algoritmo presentado en este trabajo, y utilizando el banco de datos de D. Ambrose. Como contribución a este estudio los resultados que aparecen en la columna «trabajo» fueron generados utilizando el banco de datos de D. Ambrose. Para el cálculo de los parámetros de interacción se utilizaron los datos de la tabla (IV.5) de los coeficientes de actividad a dilución infinita, tanto para los resultados que aparecen en la columna PRV como para los que aparecen en la columna trabajo >, exceptuando de los sístemas n-Heptano-o-xileno y « Benceno-Acetonitrilo, en los cuales se utilizó el modelo UNIFAC. En general, esta comparación es satisfactoria.

TABLA (10)

SUMARIO DEL EQUILIBRIO LIQUIDO - VAPOR TABLA COMPARATIVA ECUACION DE PENG-ROBINSON

Sistema	τ (κ)	J.H.	v.	Traba	Traba jo					
ي المحمد الم		%	Δγ	% <u>\</u> P/P	ΔY					
n-Heptano - o-Xileno	348.10 358.10 368.30	0.86 0.37 0.88	0.24 0.18 0.42	0.83 0.68 0.49	0.59 0.36 0.26					
DME - MeOH	333.15	1.95	2.30	3.48	2.45					
EtOH - Agua	303.15 323.15 343.15 363.15	0.65 0.45 0.76 0.50	1.10 0.19 0.32 0.39	2,83 3.19 3.01 3.59	1.32 0.47 0.56 0.53					
Acetona - Cloroformo	298.15	4.59	1.24	49.8명 포크 19 <u>1</u> 2 위·4						
MeOH - Agua	333.15 373.15	0.88 2.16	0.94 1.16	4.05 4.48	1.04 0.75					
Benceno - Acetonitrilo	343.15	4.04	2.71	2.09	1.15					
Acetona - Isopropanol	298.15	1.24	2.76							
Acetonitrilo - Anilina	293.15 343.15 393.15	1.99 3.40 4.91	0.24 0.07 0.56	1.94 	0.07					
MeOH — Anilina	293.15 338.15 385.15	1.70 1.31 1.27	0.03 0.03 0.18	2.29 2.56 2.23	0.04 0.12 0.29					
Benceno - n-Heptano	333.00	0.70	0.57	2.23	0.67					

CONCLUSIONES

1. Se dispone de una infraestructura tanto de métodos como de programas de cómputo, que permite abordar los problemas relacionados con el cálculo de los parámetros característicos de las ecuaciones de estado, tanto de sustancias puras como su aplicación a mezclas multicomponentes en el cálculo del equilibrio entre fases.

 Esta metodología permite hacer un análisis comparativo de las calidades predictivas de las ecuaciones de estado, permitiendo incorporar nuevas ecuaciones.

3. Los resultados que se obtuvieron del equilibrio líquido-vapor de 10 sistemas, son satisfactorios y permitirán sistematizar ésta metodología para abordar problemas del sector productivo, sobretodo de la industria petrolera y petroquímica en general.

4. Como trabajo futuro, sería deseable integrar paquetes de cómputo de propiedades termodinámicas y del equilibrio entre fases por tipo de industria. En estos paquetes se incorporarían, los métodos de cálculo más convenientes, así como también sus propios bancos de datos.

APENDICE

La tabla muestra los resultados obtenidos por Stryjek y Vera

para una gran variedad de sustancias.

				ango	P (%)		
SUSTANCIA	Te (K)	Pc(kPa)	w	k ı	т (К)	Tr≤0.7	Tr20.7
Inoroánicos							
Nitrogeno	126.20	3400.00	0.03726	0.01996	64-126	0.148	0.238
Oxiceno	154.77	5090.00	0.02128	0.01512	56-154	0.226	0.611
Dioxido de C.	304.21	7382.43	0.22500	0.04285	218-304		0.544
Amorniaco	405.55	11287.52	0.25170	0.00100	195-400	0.105	0.120
Aqua	647.28	22089.75	0.34380	-0.06635	274-623	0.033	0.290
Ac. clorhidrico	324.60	8308.57	0.12606	0.01989	159-309	0.852	1.237
Hi drocarburos						·	
Metano	190.55	4595.00	0.01045	-0.00159	92-190	0.109	0.458
Etano	305.43	4879.76	0.097B1	0.02669	120-193	0.280	0.472
Propeno	365.57	4664.55	0.14080	0,04400	140-365	0.587	0.241
Propano	369.82	4247.53	0.15416	0,03136	128-363	0.782	0.405
Butano	425.16	3796.61	0.20076	0.03443	182-413	0.545	0.278
Pentano	469.70	3369.02	0.25143	0.03946	196-453	0.783	0.251
Neopentano	433.75	3196.27	0.19633	0.04303	259-433	0.087	0.277
Hexano	507.30	3012.36	0.30075	0.05104	232-503	1.106	0.823
Heptano	540.10	2735.75	0.35022	0.04648	254-533	0.885	0.417
Octano	568.76	2486.49	0.39822	0.04464	258-563	0.546	0.363
Nonano	574.56	2287.90	0.44517	0.04104	292-563	0.533	0.521
Decano	617.50	2103.49	0.49052	0.04510	310-563	0.618	0.900
Undecano	638.73	1965.69	0.53631	0.02919	348-499	0.370	0.157
Dodecano	658.20	1823.83	0.57508	0.05426	312-520	1.030	0.131
Tridecano	675.80	1722.51	0.62264	0.04157	336-540	0.671	0.350
Tetradecano	691.80	1621.18	0.66735	0.02686	345-559	0.768	0.804
Pentadecano	705.80	1519.86	0.70694	0.01892	337-577	0.513	0,987
Hexadecano	720.60	1418.54	0.74397	0.02665	324-594	0.646	0.844
Heptadecanci	733.40	1317.21	0.76976	0.0404B	401-610	0.840	1.079
Octadecano	745.20	1215.87	0.79278	0.08291	413-625	1.417	0.790
Ciclohexano	553.64	4075.00	0.20877	0,07023	280-553	0.363	0.231
Biciclohexil	731.40	2563.50	0.39361	0.01805	424-577	0.597	1.261
Bencero	562.16	4898.00	0.20929	0.07019	279-543	0.541	0.319
Tolueno	571.80	4106.00	0.26323	0.03849	286-583	0.363	0.346
Etilbenceno	617.20	3606.00	0.30270	0.03994	306-603	0.303	0.400
p-Xileno	616.23	3511.00	0.32141	0.01277	308-603	0.317	0.584
n-Propilbenceno	638.32	3200.00	0.34513	0.02715	324-633	0.342	ò.113
Trimetilbenceno	637.25	3127.00	0.39970	-0.01384	330-633	0.184	0.206
Naftaleno	748.35	4050.93	0.30295	0.03297	360-523	0.432	
1-Metil-naftaleno	766.00	3566.60	0.37666	-0.01842	424-593	0.133	0.359

					67			
					72			
 APENDICE 1 (conti	nuación)							
					rango	P	(%)	
SUSTANCIA	Tc (K)	Pc(KPa)	w	kı	т (к)	Tr 10.7	Tr20.7	an an an Ta
2-Metil-naftaleno	761.00	3505.81	0.37119	-0.01637	424-639	0.260	1.115	
Bifenil	769.15	3120.78	0.38095	0.11467	293-366	0.444	· · · · · ·	
Difenilmetano	770.20	2857.34	0.43724	0.05755	425-647	0.751	1.194	
Cetonas					~ .	0.100	0.175	
Acetona	508.10	4695.00	0.3066/	-0.00983	234-333	0.125	0.435	
Butanona	536.78	4207.00	0.32191	0.00554	316-333	0.075	0.796	
2-Pentanona	561.08	3694.00	0.34719	0.01691	336-385	0.076		
3-Pentanona	561.46	3729.00	0.343/7	0.03558	330-384	0.000		
Metilbutanona	555.00	3790.00	0.31314	0.04113	524-311	0.059		
2-Hexanona	587.00	3320.00	0.39385	0.00984	309-428	0.328	0.101	
3-Hexanona	582.82	3319.00	0.37931	0.02321	349-407	0.081		
Dimetilbutanona	567.00	3470.00	0.32293	0.04005	289-405	0.363	0.038	
2-heptanona	611.50	2990.00	0.42536	0.02731	329-452	0.319	0.030	
5-Nonanona	640.00	2329.00	0.51374	0.02002	358-458	0.235	0.129	
Alcoholes								
Metanol	512.58	8095.79	0.56533	-0.16816	288-485	0.274	0.915	
Etanol	513.92	6148.00	0.64439	-0.03374	293-458	0.463	0.949	
1-0-000001	536.71	5169.55	0.62013	0.21419	333-378	0.196	0.076	
2-Fropanol	508.40	4764.25	0.66372	0.23264	325-362	0.099	0.082	
1-Ducanol	562.78	4412.66	0.59022	0.33431	352-397	0.054	0.067	
2-Butanol	535.95	4248.52	0.58254	0.39045	341-380	0.016	0.071	
IMetil-IPropanol	547.73	4295.12	0.59005	0.37200	343-389	0.052	0.049	
2Metil-2Propanol	506.15	3971.90	0.61365	0.43099	330-363	0.108	0.006	
1-Pentano1	568.15	3909.00	0.57839	0.36781	348-514	0.073	1.124	
1-Heyanol	591.23	3468.15	0.77526	-0.00237	313-438	0.290	0.809	
1-Octanol	64B. BO	2860.00	0.32420	0.82940	328-554	0,180	3,302	
1-Decanol	717.B4	2394.87	0.38355	0.90878	313-503	0.705	0.079	
Etailor								
Digetil eter	400.10	5240-00	0.18909	0.05717	183-503	0.452	0.720	
"etil etil eter	437.80	4410.00	0.23479	0.16948	277-428	0.707	1.842	
Netil normoileter	476.25	3901.00	0.27215	0.02300	754-333	0.330	~~~~	
"at in on leter	464.48	3762.00	0 26600	0.04173	250-325	0 154		
Metti oputil eter	512.78	3371-00	0.31672	0.01622	266-367	0.270	0.077	
Metil thutil eter	497 10	3430.00	0.26746	0.05122	200-30/	0.270	0.027	
Etil moroul eter	500.23	3370.00	0.33612	-0.01648	260 301	0.000	0.179	
Di-p-propil eter	530.40	3029.00	0.37070	-0.03142	201-300	0.751	0.170	
Di-i-propil eter	500.37	20100	0.37160	0.03751	273 360	0.331	0.043	
Metil fenil eter	645.60	4250.00	0.34817	0.01610	383-427	0.122		
Varios	500.00	4717 47	0 74700	-0.10000	544.774			
Acatonityla	545 50	4010.00	0.34700	-0.10299	244-574	1.169		
	503.30	+830.00	0.33/10	-0.13991	200-550	0.260	5.632	
	372.71	5785.00	0.45940	-0.19/24	304-415	0.379	0.023	
	000.V/	5240.66	0.26600	0.18449	303-363	0.748		
_ vetoxietanoi	374.34	3348.38	0.65629	-0.42503	327-397	0.275		

anna a shekara ta sheka Mana a shekara ta sheka Mana ta shekara ta sheka

APENDICE 1 (continuación)

					rango	- F	
SUSTANCIA	Tc (K)	Pc(KPa)	w	kı	T (K)	Tr≤0.7	Tr20.7
1-Propilamina	497.00	4742.00	0.28037	0.14326	296-351	0.112	0.222
2-Propilamina	476.00	5066,20	0.28530	0.06001	277-334	0.334	0.031
2-Metoxipropio-							
nitrilo	636.11	3602.55	0.47656	-0.07508	293-436	0.733	
2-Metil-2-prop-							
oil amina	483.90	3840.00	0.27417	0.13440	292-238	0.135	0.429
Tetrahidrofurano	540.10	5190.00	0.22550	0.03961	296-373	0.136	
Piridina	620.00	5595,26	0.23716	0.06946	340-426	0.116	·
Furfural	652.48	4345.45	0.39983	-0.03471	329-434	3.067	
N-Metilpirroli-							
dona	719.33	4057.72	0.34478	0.11367	373-478	1,407	
Hexafluorobenceno	516.70	3273.00	0.39610	0.02752	278-387	0.282	0.021
Nitrctolueno	743.00	3207.00	0.42200	-0.00901	417-499	0.133	
m-Cresol	705.15	4559.58	0.44492	0.24705	401-594	1.439	2.099
Tionafteno	752.00	3990.71	0.29356	0.06043	424-631	0.367	1.924

APENDICE 2

COEFICIENTES CARACTERISTICOS DE LA ECUACION DE ANTOINE

PARA EL CALCULD DE LA PRESION DE VAFOR

EUSTANCIA	ANT 1	ANT 2	ANT 3	ANT 4	ANT 5	ANT 6	ANT 7	Pef
Etilena	-0.1788460+4	0.7781890+5	0.8311930+2	-0.5786150+0	0.3094280+3	0.3637210-6	0.3000000-1	1
Etano	-0,204103D+4	0.9439548+5	0.8873975+2	-0.6004910+0	0.34B027D+3	0.3174398-6	0.3000000+1	i
Cioruro de vinilo	0.3813100+4	-0.2579950+6	0.1267610+3	0.6122850+0	-0.5920170+3	-0.9549680-7	0.3006000+1	i
Propileno	-0.249579D+6	0.117998D+6	0.9407890+2	-0.8529420+0	0.4267411+3	0.3572290-3	0.2000000+1	i
1,3-Butadieno	0.2066550+2	-0.2142660+4	-9.343000B+2	0.4	0.0	0.0	0.0	1
Orido de etileno	0.1674000+2	C.256761D+4	-0.2901000+2	0.6	0.0	0.0	0.0	2
Benceno	-0.3767550+2	+0.1097520+4	-0.9353259+2	-9.140477D-1	0.9945225+1	0.1041550-16	0.600000+1	1
Ciclohexano	-0.1695990+3	-0,1341639+0	-0.2765990+3	-0.106276D+0	0.3624540+2	0.4801300+4	0.2000000+1	i
1,1-Dicicroetano	0.1608420+2	0.2597290+4	-0.4503000+2	0.0	0.0	0.0	0.0	2
Aschiaco	-0.3689100+2	-0.8034360+3	-0.6616150+2	-0.207253D-1	0.1058780+2	0.7712180-16	9.6000000+1	ī
1.2-Butadieno	0.2059670+2	~0.2397260+4	-0.3088000+2	0.0	0.0	0.0	0.0	1
Estireno	0.2091210+2	-0.332657D+4	-0.6372000+2	0.0	0.0	0.0	0.0	i
Tolueno	-0.2264790+2	-0.1874190+4	-0.729214D+2	-0.1063662-1	0.7485150+1	0.7567230-17	0.6000000+1	1
1,2-Dicioraetano	0.1617640+2	0,2927170+4	-9.502200D+2	0.0	0.0	9.0	0.0	ż
a-Hexaro	0.1583660+2	0.2697550+4	-0.4878000+2	0.0	0.0	0.0	0.0	2
Etilbenceno	-0.1293130+2	-0.3390260+4	-0.365086D+2	-0.1553920-1	0.6602659+1	0.714407D-11	0.4000005+1	1
Acetaldehido	0.2114095+2	-0.246515D+4	-0.3715006+2	0.0	0.0	0.0	0.0	i
Acetona	0.215441C+Z	-0.IP4046D+4	-0.11039(5+2	5,0	0.0	9.0	0.0	1
o-Xilera	0.0081100+1	-0.3424050+4	-0.5081546+2	-0.5246340-2	C.247659D+1	0.481654D-17	0.6000005+1	1
p-lilenc	-0,4363790+4	0.3339760+6	0.1645080+3	-0.7±17920+0	0.5775(00+3	9.1804440-3	0.2000000+1	i
e-Xileno	-0.324472D+4	0.2430240+6	0.1633620+3	-0.5984755+0	0.5069550+3	0.1444430-3	0.2000000+1	i
Acetositrilo	-0.3005730+4	0.2503910+6	0.175084D+6	-0.3695630+0	0.4556030+3	0.4655550-10	0.4000000+1	i
Agua	-0.3139740+2	-0.2046370+4	-0.754022D+2	-0.120544D-1	0.9165750+1	0.4979190-17	0.600000+1	i
n-Heptano	0.1587370+2	9.284506D+4	-0.5360000+2	0.0	0.0	0.0	9.0	÷
n-Octano	-0.117378D+3	-0.1564120+4	-0.6073925+2	-0.8668050-1	0.2697110+2	0.4139820-4	0.2000000+1	ī
Netanol	0.4374450+2	-0. 4£7494D+4	-0.271205D+2	-0.6806640-3	-0.2914140-1	0.1784200-15	0.600000+1	i
1-Sutanol	0.2710960+2	-0.3137020+4	-0.9445000+2	6, 5	6.0	0.0	9.0	i
1-Propanol	0.398264D+J	+0.2209930+5	0.2813410+2	9.5527420-1	-0.5955570+2	0.3303830-5	0.2000000+1	i
Etabol	-0.7576090+2	-0.3100650+4	-0.4050060+2	-0.3314030-1	0.2081210+2	0,5045330-4	0.2000000+1	i
lsoprepanol	0.235857D+2	-9.3640200+4	-0.5354000+2	9.0	0.0	0.0	9.0	i

1 Coeficientes tomados de: Stanley M. Walas, "Phase Equilibria in Chemical Engineering", Butterworth Publishers, 1985.

Ln (P) = ANT1 + ANT2/(T + ANT3) + ANTART + ANT58Ln(T) + ANT68T#8ANT7

Con P = Presión de vapor en KPa y T en grados Kelvin.

1. Coefficientes tomados des Reid, Prausnitz & Sherwood, "The Properties of Bases and Liquids", McGraw-Hill Book Company,

Ln (P) = ANT1 - ANT2/(T + ANT3)

Con P= Presión de vapor en medg y T en grados Kelvin

Third Edition,

APENDICE 3

ENERGIA LIBRE DE HELMHOLTZ.

ECUACION DE SOAVE.

La energía libre de Helmholtz, puede expresarse de la siguiente manera:

$$\frac{\lambda - \lambda_{i_1}}{R T} = - \int (Z - 1) \frac{dv}{v} - \ln \frac{v}{v_0}$$
(1)

donde va es el volumen de referencia.

A partir de la ecuación de estado de Soave (ec. I.2.2) dada en el capítulo I, se obtiene una relación para el factor de compresibilidad Z, en función del volumen de la forma:

$$z = \frac{v}{v-b} - \frac{yb}{v+b}$$

restando 1 de esta ecuacion se obtiene:

sutituyendo en la relación (1):

$$\frac{\lambda - \lambda_{m}}{R T} = \int_{-\infty}^{V} \frac{b}{v - b} = \frac{y b}{v + b} \frac{d v}{v} = \ln \frac{v}{v_{m}}$$

integrando esta ecuación queda:

$$\frac{A - A_{c}}{R T} = y \ln \frac{v + b}{v} + \ln \frac{v}{v - b} - \ln \frac{v}{v_{c}}$$
(2)

evaluando la diferencia en la energía libre de helmholtz de la fase líquida y la fase gaseosa se tiene:

$$\frac{A_{i_1} - A_{i_2}}{R T} = \frac{A - A_{e_1}}{R T} \left[L - \frac{A - A_{i_2}}{R T} \right] G$$

dando como resultado:

$$\frac{A_{i.} - A_{u}}{R T} = y \ln \frac{v_{i.} (v_{i.} + b)}{v_{i.} (v_{i.} + b)} + \ln \frac{v_{i.} - b}{v_{i.} - b}$$
(3)

o en terminos del factor de compresibilidad Z:

$$\frac{A_L - A_{ii}}{R T} = y \ln \frac{Z_L (Z_u + B)}{Z_{ii} (Z_L + B)} + \ln \frac{Z_u - B}{Z_i - B}$$

donde:

$$B = \frac{Pb}{RT}$$

(4

ECUACION DE PENG-ROBINSON

De la forma de la energía libre de Helmholtz dada por la relación (1) y de la ecuación de estado de Peng-Robinson en función de Z descrita por la relación (I.3.2) del capítulo I, se tiene:

$$\frac{A - A_{c}}{R - T} = -\int_{\infty}^{V} \left[\frac{v}{v - b} - \frac{a(T) v}{R T (v^{v} + 2vb - b^{v})} - 1 \right] \frac{dv}{v} - \ln \frac{v}{v_{c}}$$

separando variables e integrando:

$$\frac{A - A_{cr}}{R - T} = -\ln \frac{v}{v - b} + \frac{y_{c}}{2 \sqrt{2}} - \ln \frac{v + b(1 - \sqrt{2})}{v + b(1 + \sqrt{2})} - \ln \frac{v}{v_{cr}}$$

donde:

$$\frac{a_{i}}{R T_{iz} b}$$

evaluando la energía libre entre las fases:

$$\frac{A_{L}-A_{R}}{RT}=\left.\frac{A-A_{R}}{RT}\right|_{L}=\left.\frac{A-A_{R}}{RT}\right|_{G}$$

en el punto crítico con a(T) = a. $\alpha(Tr)$; la energía libre en función de 2 se obtiene como:

				100						222.244		5 C - C - C		100.00.0				Sec. 14.		C. C.M.	- C.C.C.C.A.	1000		N 10 1 1 1 1	10 C C C C	- 1 .2010 - 2	1971 M 1977	146.3.2			TO 0 1 1 1 1			
				3.55		. Ke	 A) 	(-1)	- Sec.	<u>. 1995</u>	1.1	ંગરાજ	10	and C	್ರಿಕ್ಷ	2.5	6 C	steite	1.5	16.15	8.949	<u>e 6</u> ,	1.2	25.44	÷.,	· •	12,30	1.12	100	急烈的	60.7	294	÷.,	н.
•			c trì	1947	- tar		¥	50	10.12	- 1824 ⁻	1.12	0. to	5. AN	1.0	÷	197	htter			1.1.2	1.1	E.S.	9-7-2-	1.1	2.5	1.1	5.77			1.0	tri al	198	122	26
		2		- 5	Δ.	12.	1.62	2.4			<u>بت ا</u>		B		قبارد ب		1	a	(T	r)	14.10	132	wete	1.11	7.		+	Вſ	18	÷.,	5	21		÷
	12	<u>.</u>	- es (10.00		0 (g.)	5 A 7	22			- G	200	(* 1)		1.5	<u>_</u>		÷.,		w	and a set	1.2	(*) 1			1000	100		1.00		20-T-		10.0	199
		_			·	-0	., 1	-91°	-11	1.1		_	<u> </u>	1.14	+%	÷-	÷.,,					1.2.2	t r			÷			<u> </u>			<u> </u>	12.1	τŕ
					• * *		71.23			÷.,	 4.22 	S. A.	-	2,113	1.51	80.0	ω.	- C	120	- 7		1.2	1.7.1		-	140	- N.	07	1.1	÷	÷	22	10	8
			1		1.91	a. j.,	6 . to	4. E	<u>.</u>	- e - e			B	1944	C.29		÷.,	۷. ۲	۷.	4	- 7			199	- 41		T	Β.ι.	T 53		S	⊊J, .	14.9	
						1414	1.2			120	- 11	5. 12		252		ere.	< 13	(1944) (1944)	1.25	510		12.2	- 62	C 13		1.24		120	100			200	111	1
								- Sec. 1	e e a	19.20	12	9 t-	100		÷.,	14.2	in per	Sec.	~ 2	12.5	्रत्ये।	risi:	1.5	- 10	5.00	2274	See.	: 3 N.	e. A	60.0	والمتقالية والتقالية	$\lambda_{i}\lambda_{i}$	160	÷7
				di Si	. de 1			5. F.				5077	(1, 1)		1.10.	ži u	urti,	1923	50) j	34 Y	120-	-16,	. 166 A	0 R.	252		tation,		196		結合の	6230	252	
		۰.						50		, 22	- 25				0.02		2.1	127	122	ξųG		201	197	280	51.7	1973		: 64		2	11	300	72.	
									말을 가	- C.				- 197		(* P	- Y.	1.14	5 A.		2 L			292	2747	822	3613	82.2	6.85	62.6		÷.,	ា	е,
		24		12	ster.		in di	83 - N			1 de 1		÷	1.1	A.	. ch	÷	5. i s	신문	2.3	14143				7	1. C. L	32.1	D'I	۰. 	22.24		21.	× 1.	÷ 1.
								11		100				10.			÷.,	A 3			A.,		199	15.87	-	1		μų	÷ 0.		1	· •		1
									1.575		2,71				가격		100	202	가고의	2.1	영수는	257	1 n	1.1	100000									27
				- 1 - 1		2.21	6 P	S	11.25	1.2	1010	÷			1,1,45	100	e çe	sá à	-14-1	é de	Υģη.	1.00	1.1	·		nter i	100	ه روب	1.15	diy (n	- en - en	1.00	< 1:	e la
										1.1			1 e 1		÷ .	1.754	£1.	- C.	. 76	14.3			- C.	영감	·Z.	LT 6.	+2.1	в(1	+25	- I	2)	3 I.	
						·										²⁴	- 12 -					ai se	12.1		11	7.66	2017 I	1.4	1.	3 C -	éstro:		· •	:
																							1.5.5.5						. 203	201 - AR	Sec. 25. 11	1 A A A A A		

APENDICE 4

COEFICIENTE DE FUGACIDAD

La definición de la fugacidad parcial de una mezcla es:

$$R T d ln f, - v, dP - \left[\frac{\delta n v}{\delta n_i}\right] dP \qquad (1)$$

La diferencial de la presión se elimina en base a la regla de la cadena, quedando como:

$$\left[\begin{array}{c} \frac{\delta n v}{\delta n} \\ \hline \delta n \end{array}\right] dP = - \left[\begin{array}{c} \frac{\delta P}{\delta n} \\ \hline \delta n \end{array}\right] d(nv)$$

Sustituyendo en 1 y restando RT din (v / RT) en cada lado de la expresión:

$$RT \ d \ ln \ \frac{f_{iv}}{RT} = \left[\frac{\mathcal{E} P}{\delta n_{i}} - \frac{RT}{nv} \right] d(nv) - RT \ ln \ \frac{v}{RT}$$
(2)

entonces, integrando 2:

Como:

$$RT \ln \frac{f}{y} = \int_{-\infty}^{\infty} \left[\frac{o P}{o n} - \frac{RT}{nv'} \right] d(nv) - RT \ln \frac{v}{RT}$$

Restando RT in P en cada lado y definiendo al coeficiente de fugacidad 0 como: 0: - f:-/.y.P se tiene:

$$R T \ln \theta_{n} = \int_{-\infty}^{\infty} \left[\frac{\delta P}{\delta n_{n}} - \frac{RT}{nv} \right] d(nv) = RT \ln 2.$$

 $Y = Z = \frac{R T}{v}$ entonces:

de donde:

rearreglando:

Para un componente puro;

$$\ln \theta - \frac{\lambda - \lambda_{0}}{RT} + \ln \frac{v}{v_{0}} + (Z - 1) - \ln Z$$

entonces la ecuación 3 queda como:

$$\ln \theta_{1} = \frac{\lambda - \lambda_{cs}}{RT} + \ln \frac{v}{v_{cs}} - \ln Z + \ln \int_{V} \left[\frac{\delta Z}{\delta n_{1}} \right] \frac{d v}{v}$$

۵

Ecuación de Soave:

$$= \frac{v}{v - b} - \frac{a}{R T (v + b)}$$

evaluando la integral de 4:

z

$$\frac{5}{5N_{1}} \frac{Z}{(v-b)^{2}} \frac{v}{\delta N_{1}} + \frac{a}{R T (v+b)^{2}} \frac{\delta b}{\delta N_{1}} - \frac{1}{R T (v+b)} \frac{\delta a}{\delta N_{1}}$$

$$N \int \left[\frac{\delta Z}{\delta N_{1}} \right] \frac{d v}{v} = \left[\frac{1}{v-b} - \frac{1}{b(v+b)} - \frac{1}{b^{2}} \frac{1}{10} \frac{v+b}{v} - \frac{a}{R T} \right] N \frac{\delta b}{N_{1}}$$

$$\int \left[\frac{1}{v+b} \right] \frac{\delta a}{\delta N_{1}} \frac{\delta b}{\delta N_{1}} + \frac{1}{v+b} \frac{\delta b}{\delta N_{1}} \frac$$

$$\frac{1}{R T b} \frac{1}{v} \frac{1}{v} \frac{1}{\delta N}$$

$$\ln \theta_{1} = \frac{A - A_{0}}{R T} + \ln \frac{v}{v_{0}} - \ln Z + \left[\frac{1}{v - b} - \frac{a}{R^{2}T b(v + b)}\right]$$
$$\frac{a}{R T b^{2}} \ln \frac{v + b}{v} \left[N \frac{\delta b}{\delta N_{1}} + \left[\frac{1}{R T b} - \ln \frac{v + b}{v}\right]N \frac{\delta a}{\delta N_{1}} \right] (5)$$

Para una mezcla binaria con reglas de mezclado dadas por: a = $\Sigma x_i y_i a_{i,j} y_i b = \Sigma x_i y_i b_{i,j}$, la parcial de a y b con respecto a N, es respectivamente:

$$\frac{6a}{6N_1} = -\frac{2}{N} \left[a_m - \sum_{\nu} x_{\nu} a_{1\nu} \right]$$

$$\frac{6b}{6N_1} = -\frac{2}{N} \left[b_m - \sum_{\nu} x_{\nu} b_{1\nu} \right]$$

De tal manera que la relación 5 queda como:

Entonces

$$\ln \phi_{i} = \frac{A - A_{o}}{R T} + \ln \frac{v}{v_{o}} - \ln Z + 2 \left[\frac{1}{v - b} - \frac{a}{R T b} \frac{1}{(v + b)} \right]$$

$$\frac{a}{R T b^2} \ln \frac{v + b}{v} \left| \begin{array}{c} b_m - \sum_k x_k & b_{k,k} \end{array} \right|$$

+
$$\left[\frac{2}{R T b} - \ln \frac{v + b}{v} \right] a_m - \sum_{k} x_{k} a_{kk}$$

Ecuación de Peng-Robinson:

$$2 - \frac{v}{v - b} - \frac{av}{R T (v^2 + 2vb - b^2)}$$

A partir de la relación 4 se evalua 6 / 6x, para la energía libre de Helmholtz dada en el apéndice 3:

$$\frac{\delta}{\delta_{X,v}} \left[\frac{A - A_{v,v}}{R T} \right] = \frac{1}{b} \left[(Z - 1) - \frac{a}{2\sqrt{2}RTb} - \frac{v + b(1 - \sqrt{2})}{v + b(1 + \sqrt{2})} \right]$$
$$b_{w,v} = 2\Sigma \left[x_{w,v} - b_{w,v} \right]$$
$$+ \left[\frac{2}{2\sqrt{2}RTb} - \ln \frac{v + b(1 - \sqrt{2})}{v + b(1 + \sqrt{2})} \right] = \frac{\Sigma}{v} \left[x_{w,v} - a_{w,v} \right]$$

de tal manera que:

$$\ln \theta_{1} = -\ln \frac{P(v-b)}{R T} + \left[\frac{1}{2\sqrt{2}RTb} \frac{v+b(1-\sqrt{2})}{v+b(1+\sqrt{2})} \right] \frac{2\Sigma x_{w} a_{1w}}{F}$$

$$-\frac{1}{b} \begin{bmatrix} (Z-1) - \frac{a}{2\sqrt{2}RTb} & \ln \frac{v + b(1 - \sqrt{2})}{v + b(1 + \sqrt{2})} \end{bmatrix} b_m - \frac{2Z}{k} x_h b_{1h}$$

REFERENCIAS

5.

9.

- I. Kikoin, A Kikoin "Física Molecular" Ed. Mir Mosců (1971).
- 2. García-Colín S. L. "Intruducción a la Termodinámica Clásica" Ed. Trillas Sa. edición México (1986)
- Soave, G. "Equilibrium Constants from a Modified Redlich-Kwong Equation of State". Chemical Engineering Science, 1972. 27 (1197-1203).
- 4. Graboski. M. S.: Daubert. T. F. Ind. Chem. Process Des. Dev. 1978, 17, 443.
 - Valdiviéso. T. M.; Ponce, R. L.: Vizcaino T. R. "Análisis Numérico de la Ecuación de Estado de Peng-Robinson", Revista del Instituto Mexicano del Petróleo, 1984, vol.16, num.1, pag.21.
- 6. Mathias, P. M. "A Versatile Phase Equilibrium Equation of State" Ind. Eng. Chem. Process Des. Dev. 1983, 22, 385-391.
- Stryjek, R.; Vera J. H. "PRSV: An Improved Peng-Robinson Equation of State for Pure Compounds and Mixtures" The Canadian Journal of Chemical Engineering, 1986, 64, 323-333.
- Gibbons, R. M.: Laughton, A. P. "An Equation of State for Polar and Non-Polar Substances and Mixtures" Chem. Soc. Faraday Trans. 2, 1984, 80, 1019-1038.
 - Reid C. R., Prausnitz J. M., Sherwood T. K. "The Properties of Gases and Liquids" McGraw-Hill Book Company Third Edition
- D. Ambrose
 "Vapor Liquid Critical Properties"
 National Physical Laboratory. Division of Chemical
 Standards
 Standards

- John M. Prausnitz, R. N. Lichtenthaler, E. Gomez de Azevedo "Molecular Thermodynamics of Fluid-Phase Equilibria" Prentice-Hall International Series Second Edition
- Schwartzentruber, J.; Ponce, R. L.; Renon, H. "Prediction of the Binary Parameters of a Cubic Equation of State from a Group-Contribution Methods" Ind. Eng. Chem. Process Des. Dev. 1986, 25, 804-809
- R. Cabrales, tesis: "Calculo del Equilibrio entre Fases de Sistemas Multicomponentes utilizando la Ecuación de Estado de Peng-Robinson". Escuela Superior de Física y Matemáticas. Instituto Politécnico Nacional. (por presentar).
- 14 J. Chem. Eng. Data 1980. 25, 329-331. "Vapor-Liquid Equilibria for the System n-Heptane - o-Xylone at 349.1, 358.1 and 368.3*K".
 Patricio C. Praust, Alberto L. Ramírez and Juan B. Yianatos
- 15 J. Chem. Eng. Data 1982, 27, 293-298, "Vapor-Liquid Equilibrium in the System Dimethyl Ether / Methanol from 0 to 180°K and at Pressures to 6.7 MPa Elaine Chang, Jorge G. Calado, and William B. Streett
 - Fluid Phase Equilibria, 4 (1980) 229-255, "Thermodynamics of Acetone-Chloroform Mixtures" Alexander Apelblat, Abraham Tamir and Mosle Wagner

16

17

18

19

20

- J. Chem. Eng. Data 1983. 28. 24-27. "Vapor-Liquid Equilibria for Benzene-Acetonitrile and Toluene-Acetonitrile Mixtures at 343.15*K". Jean-Pierre Monfort
- Fluid Phase Equilibria, B (1982) 149-160. "Correlation for the Ratio of Limiting Activity Coefficients for Binary Liquid Mixtures" Georgieanna M. Lobien and John M. Prausnitz
- J. Chem. Data 1980, 25, 61-68, "Vapor-Liquid Equilibria for Binary System of Aniline with Acetone, Acetonitrile, Chloroform, Methanol and Pentene" Patrick J. Maher and Buford D. Smith
- J. Chem. Thermodynamics 1978, 10, 867-888, "Thermodynamic Properties Mixtures II. Vapor Pressures and Excess Gibbs Energies for Water + Ethanol at 303.15 to 363.15"K determined by an Accurate Static Method" R. C. Pemberton and C. J. Mash