

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

INIDAD ACADEMICA DE LOS CICLOS PROFESIONAL Y DE POSGRADO COLEGIO DE CIENCIAS Y HUMANIDADES

INSTITUTO DE CIENCIAS DEL MAR Y LIMNOLOGIA

ESPECIALIZACION, MAESTRIA Y DOCTORADO EN CIENCIAS DEL MAR

GEOQUIMICA DE LOS METALES PESADOS EN LOS SEDIMENTOS DEL MAR DE CORTES

TESIS

QUE PARA OBTENER EL GRADO DE: DOCI OR EN CIENCIAS DEL MAR (ESPECIALIDAD OCEANOGRAFIA QUIMICA)

 $PRESENTA_{3}$

FEDERICO PAEZ OSUNA

1988

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Introducción 1.

2

2.	Area de estudio	- 1
1.1	2.1 Fisiografia	- 2
segi î	2.2 Meteorología	2
1.2	2.3 Circulación general y masas de aqua	5
	2.4 Productividad y oxígeno disuelto	. 7
÷.,	2.5 Tectónica y actividad hidrotermal en el golfo	
	de California	7
	2.6 Sedimentología	. 10
3.	Netodología	19
	3.1 Nuestreo	19
	3.2 Nediciones de pH y Fh	22
	3.3 Analisis de aqua intersticial	22
	3.4 Analisis de sedimentas	23
	3.5 Extracción selectiva de metales pesados	31
4.	Sulfato reducción en el Golho de California	38
	4.1 Potencial Redox y pH	38
	4.2 Sulfato reducción y tasas de sedimentación	
	en el Golfo de California	50
	4.3 Distribución y acumulación de la materia	
	orgánica	58
5.	Distribución y acumulación de metales pesados en	
	el Golfo de California	66
	5.1 Proveniencia de los metales pesados	66
	5.2 Concentración y distribución de metales pesa-	
	dos en los sedimentos del Golfo de California	68
	5.3 Clasificación de los depósitos del Golfo de	
	California	96
	5.4 Acumulación de los metales pesados en la parte	
	centro y sur del Golfo de California	101

INDICE

Pág.

6.	Hetales pes sedimentos 6.1 Distrib geoquim 6.2 Hetales columna 6.3 Balance	ados en las fases geoquímicas de los del Golfo de California ución de metales pesados en las fases icas de los sedimentos superficiales pesados en las fases geoquímicas de la sedimentaria geoquímico de Manganeso	114 114 145 159
7.	Conclusione	۵	167
8.	Literatura	citada	170
	Apéndice 1.	Relación de muestras superficiales colec en los cruceros CORTES 2 y PALEO 1.	tadas 189
	Apéndice 2.	Relación de núcleos colectados en los cru ros BERMEJO-1 y PALEO 2. Resultados anal cos de Eh, pH, sulfatos y carbono orgáni	10e- 193 Eti- co.
	Apéndice 3.	Concentración de metales pesados en los . cleos y sedimentos superficiales del Gol de California.	nú – 208 fo
	Apéndice 4.	Concentración de metales pesados en las geoquímicas de los sedimentos de la part tro y sur del Golfo de California	fases 222 e cen-
	Apéndice 5.	Perfiles de metales pesados en las fases geoquímicas de los sedimentos en la part centro y sur del Golfo de California.	268 e

Pág:

RESUMEN

El objetivo de este estudio fue para investigar la geoquímica de los metales pesados en los sedimentos del Mar de Cortés (Golfo de California). Se colectaron 48 núcleos y 85 miestras superficiales en cuatro cruceros oceanográficos (PALEO-1 PALEO-2, BERMEJO-1 y CORTES-2). A los núcleos se les midió a bordo. (en secciones de 5 cm) el potencial redox y pH, posteriormente en el laboratorio fueron ana lizados en la fase sólida el contenido de metales pesados y carbono orgánico, mientras que en el agua intersticial se cuantificaron los sulfatos.

La tasa de sedimentación fue estimada en varios de los núcleos mediante el modelo diagénetico de Berner (1978). La aplicabilidad del método de Berner fue evaluada con los datos de varios núcleos previamente "fechados" desde las cuencas principa les del Golfo. La regresión entre la tasa de sedimentación y el gradiente de sul fatos presentó la siguiente ecuación: [tasa de sedimentación]=1.26 [gradiente ini cial de sulfatos]-0.005.

Las concentraciones de carbono orgánico se encontró que oscilan entre 0.1 y 5%; dependiendo de la localización y textura de las muestras. La constante de descom posición de C-orgánico fluctuó entre 0.7-80X10⁻³ año⁻¹; correspondiendo estas a una vida media entre 50-450, 100-1000 y 10-330 años para la plataforma continental, el talud y las depresiones de las cuencas respectivamente. La tasa de acumu lación de C-orgánico en los sedimentos del golfo se encontró que está relacionada con la tasa de acumulación sedimentaria y puede ser descrita por la ecuación: (ta sa de acumulación de C-orgánico)=0.057 (acumulación sedimentaria)^{0.82}.

Las muestras para el análisis de metales pesados "totales" (Cu, Ni, Co, Cr, In, Pb, Cd, Ag, Mn, Fe y Al) se digirieron con una mezcla de HNO3 y HCl [3:1] en un sistema de descomposición máltiple de teflón. Las concentraciones se determinaron por técnicas de absorción atómica. La concentración superficial de la mayoría de los metales mostró una tendencia a aumentar hacia la boca del golfo; aunque los niveles más elevados de Cd coinciden con los sedimentos que interceptan la capa del mínimo de oxígeno. Los núcleos que revelan mayor caracter hidrotermal fueron los que se colectaron en las depresiones de las cuencas de Guaymas y Pescadero, mientras que el núcleo del fondo pelágico adyacente a el golfo de Cali fornia tuvo caracter hidrogénico.

Adicionalmente en 19 núcleos se realizó una extracción secuencial para diferenciar geoquímicamente las fracciones de metales pesados en los sedimentos. Cuatro fracciones geoquímicas fueron separadas y las concentraciones de los metales en cada una de ellas determinada; se encontró que Cu, Ni, Cr y Mn están asociadas principalmente a la fracción litogénica, siendo mayores los niveles en la plataforma continental que en las depresiones de las cuencas. En ambos rasgos morfoló gicos se observó que Fe, Cu, y Co poseen mayores concentraciones en la fracción reducible que en la oxidable en contraste a Ni, Cr, Pb y Mn. Cd por su parte en todas las muestras presentó proporciones (50-65%) altas en el extracto de peróxido. Asimismo en este estudio se desarrollaron varios modelos para explicar la transformación geoquímica de algunos metales en la columna sedimentaria.

SUMMARY

The objective of this study was to investigate the geochemistry of heavy metals in sediments from the Mar de Cortes (Gulf of California); fourty-eight cores and \$5 surface samples were collected in four oceanographic cruises (PALEO-1, PALEO-2, BERMEJO-1 y CORTES-2). The cores were sectioned (every 5 cm) aboard and the following measurements made; redox potential and pH. In the laboratory, sulfates in the pore waters, and organic carbon and heavy metals in the solid phase were analysed.

The sedimentation rate was estimated in various cores with Berner's (1978) diage netic model. The reliability of the Berner method was evaluated with the data \overline{of} various cores previously dated from the principal basins of the Gulf. The regression between sedimentation rate and sulfate gradient gave the following equation: (Sedimentation rate)=1.25 (initial gradient of sulfate)-0.005.

The organic carbon concentrations were found to oscillate between 0.1 and 5% depending on location and texture of samples. The decay constant of organic carbon ranged from $0.7-80X10^{-3}$ years⁻¹, corresponding to half-lifes between 50-450, 100-1000 and 10-330 years for the continental shelf, the slope and the basin depressions respectively. The rate of accumulation of organic carbon in the Gulf sediments is closely related to the bulk sediment accumulation rate and can be described by the equation: (organic carbon accumulation rate)=0.057 (accumulation sedimentary)^{0.82}.

The samples for "total" heavy metals (Cu, Ni, Co, Cr, Zn, Pb, Cd, Ag, Mn, Fe and Al) were leached with a 3:1 mixture of HNO3 and HCl in a teflon decomposition manifold system. The concentrations were determined by atomic absorption techniques. The surface concentration of most metals approaches their highest values towards the mouth of Gulf; however, the highest levels of Cd coincide with the sediments that intercept the oxygen minimum layer. The cores that reveal a hydro thermal nature were collected from depressions of the Guaymas and Pescadero basins, while the core from the pelagic floor adjacent to the Gulf of California was of hydrogenic character.

Additionally a sequential chemical extraction for the geochemical partitioning of heavy metals in the sediments was made in 19 cores. Four geochemical fractions were separated and the concentrations of metals were determined in each. The results show that Cu, Ni, Cr and Nn were associated principally with the lithogenic fractions, their overall levels being higher in the continental shelf than in the basin depressions. In both morfologic features it was observed that Fe, Cu and Co have high concentrations, more so in the reducible than in the oxidizable fraction, in contrast to Ni, Cr, Pb and Nn. Cd in all samples leached in higher proportions (50-65%) in the peroxide extraction than any other metal. Various mo dels for the explanation of the geochemical transformation of some metals in the sedimentary column were developed.

VII

1. Introducción

Desde el punto de vista geoquímico, los sedimentos del Golfo de California o Mar de Cortés son intercsantes de estudiar debido a que en ellos se percibe una gran variedad de procesos sedimentológicos y tectónicos que como consecuencia dan un ambiente geoquímico único.

1

Una gran cantidad de literatura científica ha establecido una serie de características que pueden explicar el intenso interés por estudiar el golfo de California: (1) la presencia de una capa mínima de oxígeno en buena parte de las masas de agua que penetran al golfo; (2) la existencia de actividad hidrotermal en la cuen ca de Guaymas; (3) fenómenos de surgencia y de productividad masiva; (4) presencia de turbiditas bien localizadas; y (5) la tasa de sedimentación relativamente alta en comparación a las áreas oceánicas.

Como resultado de tales características los sedimentos se van a acumular en distintas condiciones redox, y según la magnitud y localización de los fenómenos, van a imprimir particularidades distintas a las aguas intersticiales y a los sed<u>i</u> mentos mismos.

Entre las consecuencias más importantes de los procesos sedimentarios está el con trol que estos pueden ejercer sobre la composición química de las aguas suprayacentes, pudiendo recibir estas aguas aportes significativos por este medio, que incluso pueden llegar a ser del mismo orden que los recibidos desde los ríos o las "ventilas" hidrotermales.

De los rasgos geoquímicos más peculiares de los sedimentos del Golfo y en particu lar de las depresiones de las cuencas es la presencia de concentraciones altas y anômalas de manganeso. Este enriquecimiento ha sido explicado principalmente en base al aporte hidrotermal (Campbell, 1985), aunque tambien se ha reconocido la exportación diagénetica desde el talud. Sin embargo esto solo se ha demostrado en la cuenca de Guaymas quedando por investigar si también el aporte hidrotermal es el que ocasiona las anomalias en las otras Cuencas; la cual, si así fuese, que daría por determinar si dicha contribución hidrotermal puede ser detectada en la geoquímica de los sedimentos del golfo. Por otra parte el golfo de California, brinda la oportunidad de examinar la sedimentación hemipelágica y procesos sedimentológicos en una margen continental joven.

Bajo tal contexto el propósito del presente trabajo es analizar la geoquímica de los metales pesados en los sedimentos del Golfo de California haciendo mayor enfá sis en la porción central y sur del mismo; siendo uno de los principales objetivos el de dilucidar como la actividad hidrotermal imprime su influencia en los se dimentos. El trabajo esencialmente está dividido en tres partes; una primera dom de se discuten los aspectos del En, sulfato-reducción, tasa de sedimentación y acumulación de la materia orgánica; otra segunda trata sobre la distribución y acumulación de los metales pesados en cada uno de los rasgos morfológicos del gol fo de California y una tercera parte donde se discute la proporción de varios metales pesados en las fases geoquímicas; de intercambio/adsorción, oxidable (de la materia orgánica/sulfuros), reducible y la residual o litogénica.

2. Area de Estudio

El área de estudio comprende al golfo de California y áreas adyacentes a la boca del mismo.

2.1 Fisiografía

Con unos 1,000 Km de longitud, y un ancho de 100 a 200 Km, el golfo de California está orientado de noroeste a sureste (Fig. 2.1). Las dos principales provincias fisiográficas y oceanográficas, el alto y bajo golfo están separadas por un grupo de islas en los 29°N; el alto golfo es básicamente una plataforma semicircular, la cual encierra las regiones más profundas alrededor de la Isla Angel de la Guar da; el bajo golfo consiste en una serie de cuencas, las cuales van aumentando de profundidad progresivamente, desde los 2,000 m en el centro de la cuenca de Guaymas (en la parte norte), a profundidades de 3,600 m en la boca del golfo.

Mientras que en la parte occidental se presentan fuertes pendientes, en el lado oriental, las planicies deltáicas esparcidas sobre las cuencas, suavizan los fon dos (Rusnak et al., 1964). Sobre bases morfológicas, estos autores, dividieron el golfo en tres regiones; la Norte, la Central y la Sur. La primera es conside rada, en general, desde el delta del río Colorado a las Islas Tiburón y Angel de la Guarda, esta región es caracterizada por sus profundidades someras y por un espesor de sedimentos considerable (>500 m) que han cubierto las irregularidades superficiales; la parte más profunda de esta zona es la cuenca del Delfín.

La región Central, que se extiende en diagonal respecto al eje del golfo, incluye a la más larga depresión del golfo, la cuenca de Guaymas, y a una isla volcánica, la Isla Tortuga.

La región Sur está caracterizada por la diversidad de formas en las cuencas, las cuales están separadas entre sí por riscos o dorsales transversales denominados "sills" (Shepard, 1950), haciéndose más profundas hacia el sur (Fig. 2.2); así mientras que en el norte la cuenca de San Pedro Mártir alcanza una profundidad máxima de 1,000m, en el sur la cuenca Pescadero posee una profundidad máxima de 3,600m. En relación a estos riscos o "sills", Campbell (1985) señala que estos actúan como diques o represas de aguas, los cuales hasta cierto punto previenen que el agua de una cuenca se mezcle horizontalmente con el agua de otra cuenca de profundidad similar.

2.2 Meteorología

La región en cuestión está situada en su mayor parte dentro de la faja subtropical de altas presiones siendo, el extremo sur la excepción, ya que es afectado por los ciclones tropicales. Ahora debido a la presencia de tierras y mares el cinturón subtropical de altas presiones se separa en varios centros anticiclónicos de los cuales dos influyen en la circulación de la República Mexicana según las diversas épocas del año, éstos son el anticiclón de Bermudas-Azores y el anticiclón del Pacífico septentrional. El golfo de California de hecho, queda entre estos dos centros anticiclónicos, si bien sufre mayor influjo del segundo, localizado al oeste de la península, que del primero, pues éste, por quedar al oriente, sobre el continente, interviene muy indirectamente en la circulación del aire en la región de estudio (Maderey, 1975).

Durante la primavera, conforme el centro de alta presión atmosférica del Pacífico inicia su desplazamiento hacia el norte, los vientos geostróficos anticiclóni cos se hacen paralelos al eje axial del golfo; entre este centro de alta presión y el centro de baja presión del desierto de Sonora, tal evento produce fuertes vientos regulares en el golfo, los que transportan agua superficial al sur y generan intensas surgencias a lo largo de la costa oriental. de febrero a abril.

•,

De junio a octubre, los vientos del sureste producen surgencias en la costa occidental (Roden, 1972; Donegan y Shrader, 1982).

El golfo de California está situado entre dos zonas áridas; la Península de Baja California, que lo limita al occidente, y los estados de Sonora y Sinaloa que lo hacen al oriente. El efecto termorregulador del oceáno Pacífico sobre el clima del golfo está muy restringido, debido a la larga cadena montañosa que corre a lo largo de la península de Baja California. Por consiguiente, el clima del gol fo es más continental que oceánico; lo que explica los grandes rangos en los re gistros de temperatura, tanto diurnas como anuales (Roden, 1964). La temperatura del aire decrece hacia el interior del golfo durante el invierno, mientras que en verano se incrementa.

La precipitación es más abundante sobre la costa oriental, donde la descarga flu vial se incrementa hacia el sur. Poca precipitación se registra en el margen occidental, por lo que pocas corrientes fluviales drenan estas costas. La mayor precipitación se registra de junio a octubre cuando predominan los vientos del sureste. En el invierno y principios de primavera, con vientos dominantes del noroeste, el clima es seco (Donegan y Shrader, 1982).

Los rangos de temperatura anual en una localidad dada, van de 6°C en cabo Corrientes a 18°C cerca de la desembocadura del río Colorado, la temperatura del agua superficial en el alto golfo va desde 16°C en invierno y 30°C en verano. El número de días lluviosos por año, decrece de 60 en cabo Corrientes a 5 en la porción central del golfo (Roden, 1964).

2.3 Circulación general y masas de agua

Las intensas fuerzas de marea, el sistema de vientos, el calentamiento solar, y las interacciones con el Oceáno Pacífico juegan, junto con la batimetría un papel importante en los procesos de circulación del golfo (Dangon - Badan <u>et al.</u>, 1985).

La cinculación de las aguas superficiales en la parte sur del golfo de California está muy ligada al patrón de vientos, siendo predominantes hacia el sureste duran te el invierno y hacia el noroeste en el verano. Roden (1964), realizando una sección entre cabo San Lucas y cabo Corrientes, determinó un flujo oceánico super ficial hacia el sureste, con velocidades entre 10 y 15 cm/seg de febrero a mayo, y hacia el noroeste, con velocidades máximas de 10 cm/seg, entre junio y septiembre. -Haciendo un cálculo hidrodinámico, el mismo autor definió una corriente superficial neta de -10 cm/seg en febrero y de +21 cm/seg en agosto (el signo negativo denota salida y el positivo entrada).

Santiago-Mandujano (1980), usando datos de un transecto entre Punta Arena y Alta ta, señaló la existencia de cuatro flujos alternados hacia adentro y hacia afuena del golfo, hasta una profundidad de 500m. El flujo principal y más persisten te lo sitúa en la costa oeste, cerca de Punta Arena, fluyendo hacia afuera del golfo, con velocidades hasta de 50 cm/seg entre 0 y 200m, y de 10 cm/seg hasta los 500m. El considera que este flujo está formado por las llamadas "aguas del golfo" (Róden y Groves, 1959), con salinidades hasta de 35.2 °/oo. Al oriente de este flujo, hay otro que corre hacia adentro del golfo, con velocidades hasta de 30 cm/seg entre 0 y 150m hasta de 25 cm/seg hasta los 700m de profundidad.

Este flujo introduce aguns de baja salinidad, aproximadamente de 34.8°/00. En la parte centro oriental y extremo oriental se observan flujos hacia afuera y ha cia adentro del golfo respectivamente, aunque no tan consistentes como los antes descritos. En general, los flujos que entran al golfo son de más baja salinidad que los que salen.

Se han observado en la entrada del golfo tres tipos de aguas superficiales; (1) el agua de la Corriente de California, de salinidad y temperaturas bajas (T<22°C, S<34.6°/oo), (2) el agua cálida del Pacífico tropical oriental, de sali nidad intermedia (T-25°C, 34.6°/oo<S<34.9°/oo) y, (3) el agua originada en el in terior del golfo, de muy alta salinidad y temperatura.

La masa de agua del Pacífico tropical oriental, proveniente del sureste, durante el verano, penetra muy al norte, limitando posiblemente la influencia de la Corriente de California dentro del golfo (Robinson, 1973; Alvarez-Borrego y Schwartzlose, 1979). El agua del golfo es producto de fenômenos de evaporación, ejercidos sobre la masa de agua del Pacífico tropical oriental (Roden y Groves, 1959). Roden (1964) estimó una evaporación del orden de 130 cm.año⁻¹ en la parte sur del golfo, y en la parte norte realizó mediciones que fluctúan entre 200 y 250 cm.año⁻¹.

Subsuperficialmente, cerca de la boca del golfo, Warsh <u>et al</u> (1973) describen la existencia de una masa de agua formada por la mezcla de <u>aguas</u> de la Corriente de California y del Pacífico Subtropical Subsuperficial (13°C<T<20°C, 34.6°/... S< 34.9°/...), a profundidades entre 50 y 200m. Mundhenke (1969) reporta aguas de estas características hasta los 29°N, dentro del golfo.

La influencia del golfo de California sobre el oceáno Pacífico es pequeña. El flujo de entrada y salida del golfo ha sido estimada en 1.19X10⁶ m³.s⁻¹ y 1.17X10⁶ m³.s⁻¹ respectivamente, siendo la diferencia del orden de 1.7X10⁴ m³.s⁻¹ (Roden, 1958). Warsh y Warsh (1971) estimargn mayores valores, transporte mínimo de entrada y salida de 2.57 a 3.65X10⁶ m⁵.s⁻¹.

Pesde el punto de vista oceanográfico, lo que más destaca en la boca del golfo de California es la existencia de "frentes oceánicos" (Alvarez-Arellano, 1984). Askren y Badan (1978) definen dicho término como la existencia de un fuerte gradiente horizontal de temperatura en zonas de divergencia y convergencia, 6 el formado por el encuentro de corrientes de temperatura distinta.

Griffiths (1963) sugiriô que en la boca del Golfo de California pueden ser forma dos frentes oceánicos en los 120m más superficiales, por el encuentro de dos o tres tipos de agua: (1) la del Golfo de California, (2) la de la Corriente de Ca lifornia y (3) la dei Pacífico Subtropical Nororiental. Warsh y sus colaboradores (1973) sin embargo, llegaron a detectar una cuarta masa de agua subsuperficial, producida por la mezcla de agua de la Corriente de California y de la masa de agua subtropical subsuperficial, entre 50 y 200m de profundidad.

La variación en la posición geográfica de los sistemas de frentes está determina do por procesos atmosféricos (Wyrtki, 1965) por lo que la entrada del golfo resulta altamente "sensible" a los cambios oceanográficos y atmosféricos regionales (Alvarez-Arellano, 1984).

2.4 Productividad y oxígeno disuelto

Uno de los aspectos más sobresalientes del golfo de California viene a ser su gran fertilidad. Lo cual genera comunmente los florecimientos de plancton, producidos por las surgencias de aguas ricas en nutrimentos. Las cuales a su vez están relacionadas con el patrón de vientos estacionales; (Van Andel, 1964). Los vientos provenientes del sureste en verano, además de producir lluvias en Sonora y Sinaloa, traen consigo penómenos de surgencias a lo largo de la costa occidental del golfo (Hastings y Turner, 1965; Roden, 1972). Durante el invierno y pri mavera, los vientos del norveste gobiernan los procesos de surgencias y floreci-miento de plancton en las costas orientales del golfo (Soutar et al., 1981). Los principales centros de surgencias parecen estar en los sotaventos de cabos. islas y puntas (Roden y Groves, 1959). Así Badan-Dangon et al. (1985) han expli cado como sigue el fenómeno de surgencia en el golfo; las surgencias aparecen so bre las diferentes costas dependiendo de la dirección del viento, en todos los casos la pluma de agua fertilizada, parece ser mayor en la costa este que en la oeste, aunque en todos los casos la pluma se origina en un punto, desde donde se mueve a lo largo de la costa en dirección del viento hasta un cabo o punta, y en tonces se mieve mar adentro, de esta manera la pluma fertilizada cruza el golfo a la costa opuesta, en donde al llegar Esta se divide generalmente en dos brazos que finalmente se extienden para cruzar nuevamente el golfo.

Zeitzschel (1969) sugiere que la productividad del golfo de California puede ser comparada con la del golfo de Bengala, que tiene uno de los índices más altos del mundo (98.6-193.5 g $C.m^{-2}$ año⁻¹).

Las bajas concentraciones de oxígeno disuelto en las profundidades intermedias son muy características en las aguas del golfo de California (Roden, 1964). Con excepción de la parte norte, se observa al cruzar el golfo que las concentraciones de oxígeno son mayores que 1 ml.l⁻¹ en los primeros 100m superficiales, mien tras que a profundidades de 150m las concentraciones bajan a menos que 0.5 ml.l⁻¹. En profundidades intermedias (500-1100m) la concentración de oxígeno ge neralmente es indetectable por el método de Winkler (Alvarez-Borrego, 1983). En tre los procesos que aumentan la fertilidad del golfo de California (Mee et al., 1985), están: (1) las surgencias y (2) la mezcla por la corriente de mareas, $\overline{so-}$ bre todo en el canal de Ballenas. Este último proceso indudablemente influye so bre la cuenca de Guaymas y permanece todo el año y durante eventos del fenómeno de El Niño. Esto y los florecimientos de planeton producidos por las surgencias, vienen a jugar un importante papel en la ecología y geoquímica del golfo de Cali fornia, ya que van a definir condiciones estrechas de Eh y H.

2.5 Tectónica y actividad hidrotermal en el Golfo de California

Tectónicamente se considera que el golfo de California se origino a partir de la separación de Baja California desde el continente en el sitio de una antigua cuen ca intra-continental denominada "protogolfo". Comenzando aparentemente la principal fase de dispersión hace unos cuatro millones de años (Larson <u>et al., 1968;</u> Moore, 1973; Curray et al., 1982).

Por otra parte López-Ramos (1980), indica que tomando en cuenta la primera actividad volcánica (hace 28 millones de años), en la sierra de la Giganta al sur de la península en el oligoceno; la presencia de prácticamente todo el mioceno mari no de San Felipe e Isla Tiburón; así como las rocas clásticas del cretácico superior de bahía de Banderas al oeste de Puerto Vallarta; así como los datos

cronológicos de anomalías del fondo del golfo de Californía y del Oceáno Pacífico, se concluye que la edad o el desplazamiento de la península se inició antes del mioceno, estando en concordancia con lo propuesto por Atvater (1970) quien in dica que el movimiento de la península empezó hace treinta millones de años en el oligoceno.

El crecimiento de la corteza en el golfo, ocurre en una serie de ejes de dispersión cortos menores a 50 Km, <u>en echelon</u>, y fallas transformes, generalmente mayores a los 100 Km (Lonsdale y Lawer, 1980), que en el sur se conectan con el dorsal del Pacífico oriental y en el Norte al sistema de San Andrés (Hamilton, 1961) así esta alternación de ejes de expansión vienen a constituír el límite entre las placas Pacífico y Norteamericana. En la figura 2.3 se presenta una representación esquemática de los límites de las placas tectónicas en la parte centro y sur del Golfo de California.

Los ejes de dispersión dentro del golfo están marcados también por pequeñas conca vidades o depresiones lineales que Lonsdale y Lawver (1980) han interpretado como fuentes de regeneración de las cuencas axiales, con acreción de la corteza en los fondos.

Otra notable diferencia entre el alto y bajo golfo es el tipo de corteza sobre la que descansan las cuencas; mientras que en la parte centro y sur las cuencas yacen en una corteza de tipo oceánica flanqueada por corteza continental sobre el talud y la plataforma continental, en el norte el golfo reposa sobre un material intermedio en densidad entre corteza continental y oceánica (Harrison y Mathur, 1964).

Uno de los aspectos que más ha atraído a la comunidad científica es sin duda la actividad hidrotermal, debido entre otras cosas a que en estos sitios se depositan sulfuros polimetálicos que es posible observar directamente como laboratorios naturales en los que se están formando minerales y creando condiciones físicas, químicas y biológicas muy peculiares.

En la década de los setenta se puede decir que se realizaron los primeros estudios que manifestaron que el golfo de California presenta regiones con alto flujo calorífico y variable (Lauver <u>et al.</u>, 1973; Lauver y Williams, 1979; Williams <u>et</u> al., 1979). Posteriormente las mediciones de ³He vinieron a demostrar una clara evidencia de inyección desde el manto; Lupton (1979) realizó las mediciones en las seis principales cuencas del centro y sur del golfo, encontrando que la Cuen ca de Guaymas posee una proporción de ³He/4He de 65-70% mayor que el nivel atmosférico. Adicionalmente las cuencas del camen y Farallón mostraron también un exceso de ³He, pero esto fue interpretado como derivado desde la anomalía de la cuenca de Guaymas. Posteriormente y ya en 1980 fueron descubiertas las ventilas hidrotermales en la cuenca de Guaymas (Lonsdale, 1980) y desde entonces se han realizado dos expediciones más con el sumergible DS/R Alvin en 1982 y 1985. Convirtiéndose así la cuenca de Guaymas en el sitio más estudiado dentro del golfo.

A diferencia con el centro de expansión de los Galápagos y el dorsal del Pacífico oriental en 21°N, la depositación de sedimentos en el Golfo de California es cien veces o más elevada que en dichos lugares; jugando así la capa de sedimentos un papel primordial en la inyección del magma, debido a que este material se introdu ce en la columna sedimentaria en contraste a las cordilleras meso-oceánicas donde este es expulsado sobre los fondos prácticamente sin sedimentos (Einscle <u>et al.</u>, 1980; Einsele, 1982). Así pues el golfo de California y en particular la cuenca de Guaymas se considera como representativa de los estadíos iniciales de la evolu ción oceánica, donde el magma basáltico que forma el nuevo basamento oceánico se introduce como "intrusión" en sedimentos rápidamente depositados, creando así un

8

Figura 2.3. Representación esquemática de los ejes de acreción y fallas en la parte centro y sur del Golfo de California (Modificado de Niemitz,1977)

.

basamento posiblemente distinto al modelo común de las ofiolitas (Gieskes <u>et al</u>., 1982).

A partir de la información obtenida durante el Programa de Perforación Profunda Leg 64 DSDP (Gieskes et al., 1982), fue posible esclarecer la naturaleza de las intrusiones magmáticas, previamente postuladas para la cuenca de Guaymas, estable ciéndose dos tipos de sistemas hidrotermales; [1] cuya actividad hidrotermal es de duración relativamente corta asociada con intrusiones de sill en profundidades relativamente someras ($\leq 50m$), en sedimentos de alta porosidad, e involucrando tem peraturas entre 100 y 200°C; [2] actividad hidrotermal de gran longevidad, asocia das con intrusiones magmáticas de gran escala, en profundidades mayores y en donde las reacciones de alteración vocurren en un sistema abierto a temperaturas del orden de los 300°C. La recarga de las aguas del fondo y descarga de fluídos calientes ocurre a través de las zonas de fractura, con los "sills" actuando como barrera que forzan al fluído en dirección vertical hacia las fallas (fig. 2.4).

A la fecha la cuenca de Guaymas viene a ser el campo de ventilas más grande que se haya explorado en el oceáno Pacífico (Scott, 1985), existiendo en El unos cien "hills" o "lomas" de sulfuros hidrotermales, muchos de los cuáles son activos. En la figura 2.5 se muestra un modelo de circulación hidrotermal en la cueca de Guaymas y en el Dorsal del 21°N. Las reacciones entre el basalto y el agua de mar por debajo del fondo generan un fluído hidrotermal similar al de 21°N (Edmon et al., 1982). Sin embargo en la cuenca de Guaymas estos fluídos tienen que pasar a través de unos 400 m de sedimentos antes de escapar sobre el fondo. El fluído reacciona con el sedimento, dando lugar a un mayor pH, más Ca y CO2, y mu cho menos metales que en los fluídos de 21°N (Edmond y Von Damm, 1983; Bowers et al., 1983), adicionalmente una abundante proporción de hidrocarburos líquidos con la consistencia del petróleo crudo saturan las "lomas" hidrotermales.

La diferencia en la composición de los fluídos de la cuenca de Guaymas y 21°N, se refleja también en la distinta mineralogía de lod depósitos; así en las lomas y chimeneas de Guaymas predominan los minerales no-metálicos tales como anhidrita, calcita y barita, de los sulfuros el más abundante es la pirrotita ($Fe_{1-X}S$), con muy pequeñas cantidades de sulfuros de Zn, Cu – Fe y Pb, y raramente pirita. Los elevados niveles de Uranio (2-10 ppm) y Plomo (>2.1%) no comunes en los depósitos del piso marino moderno, son difíciles de explicar, aunque Scott (1985) supuestamente señala que se derivan del aporte de los sedimentos pelíticos sobreyacentes.

2.6 Sedimentología

La primera investigación intensiva sobre la geología y geofísica del golfo de California se inició en 1959 (Van Andel, 1963; Van Andel, 1964; Van Andel y Shor, 1964). La sedimentología del golfo ha sido descrita a partir de tales investigaciones y los estudios de Calvert (1966a, b), con algunas contribuciones de Niemitz (1977) y del Programa Internacional denominado "Deep Sea Drilling Project", a continuación se resume dichos estudios.

La fuente de sedimento del golfo de California està irregularmente distribuída. Gran parte de las áreas que lo bordean, incluyendo el margen occidental completo, son muy áridas, y el sedimento es aportado por el golfo por flujos ocasionales en abanicos aluviales y por la erosión de la costa. El río Colorado era la fuente principal, proporcionando un 48% estimado, del sedimento total aportado. El margen oriental, al norte de Guaymas, es árido y los ríos son estacionales, con aporte de sedimento intermitente. Al sur de Guaymas las corrientes permanentes son numerosas, y algunos ríos (Vaqui, Mayo y Fuerte) tienen considerable

Figura 2.4. Mecanismos de intrusión del magma en la Cuenca de Guaymas. A. Modelo de un solo conducto (Fisura tensional) causado por la dispersión. B. Secuencia horizontal y vertical de los diques y sills intercalados con sedimento blando y en durecido, los números indican la sucesión de eventos (Según Einsele, 1981).

i.

ω

importancia. Los tres ríos citados en conjunto deben de proporcionar en la actualidad la mayor parte de los sedimentos descargados al Golfo.

Los estudios de minerales ligeros y pesados en los sedimentos del golfo, permiten la determinación del origen de la mayor parte de los depósitos. Petrográficamente, las fuentes principales de los sedimentos del golfo son batolíticas, volcánicos y batolíticos. Solo unos cuantos ríos (Colorado, Concepción y Sonora) drenan sobre extensas áreas de rocas sedimentarias. Como resultado, se encuentran tres conjuntos minerales principales; (a) una asociación de antibola derivada de los grandes batolitos; (b) una asociación de hornblenda piroxeno-basáltica derivada de volcánicos del Terciario (Formación Comondá y equivalentes); (c) asociaciones mixtas, conteniendo los componentes citados anteriormente. con mezcla de minerales derivados de fuentes sedimentarias y metamórficas, como granate, turmalina y zircon. Los sedimentos derivados de fuentes batolíticas son ricos en feldespatos y constituyen verdaderas arcosas; aquellos derivados de volcánicos contienen abundantes fragmentos de rocas volcánicas y grawacas. Algunos sedimentos cuarz<u>o</u> sos más, son aportados por los ríos Colorado y Concepción. Sin embargo, la variedad de minerales es muy restringida y comúnmente se presentan combinaciones de mezclas, pudiendo establecerse asociaciones minerales. La distribución regio nal de esas asociaciones minerales (Fig. 2.6) muestra que los sedimentos en la porción norte del golfo, fueron primariamente proporcionados por el río Colorado. Fuentes laterales de sedimento son evidentes solo en angostas zonas marginales. Sin embargo, el sedimento del río Colorado, no avanza más allá de la cresta al oeste de Isla Tiburón.

En el sur del golfo, parece ser que la fuente de sedimentos son exclusivamente los lados continental y peninsular. A lo largo del margen occidental, se encuen tra una zona relativamente angosta de sedimentos volcánicos, bordeando los escar pes de la Formación Comondú de la parte central de la península (Provincia de Au gita de Baja California), mientras que el batolito de granito del sur de la Península está rodeado por una aureola de arcosa en una asociación con anfibola (Provincia de San Lucas). A lo largo del lado oriental, hay numerosas provincias, están conectadas a menudo con una corriente importante y se siguen unas a las otras en sucesión rápida, desde la Provincia de Bahía Kino que contiene granate, fuera de la costa de Hermosillo en el norte, hasta la Provincia de la costa de Nayarit en el sur.

El contacto entre los sedimentos orientales y occidentales está bien localizado en el oeste del eje del golfo, al pie del talud occidental. Consecuentemente las cuencas del golfo son rellenadas fundamentalmente con sedimentos derivados del lado oriental; la amplia llamina costera oriental. Los deltas napidamente progradantes de los ríos Yaqui, Mayo y Fuerte y el largo y liso talud continental, sugieren fuertemente que el golfo está siendo llenado rápidamente desde el este. Por lo tanto, el golfo de California no representa un caso de relleno lo<u>m</u> gitudinal.

El segundo problema a discutir concierne a la existencia y causas de las diferen cias entre las facies de depósito en los taludes y piso de las cuencas profundas del golfo. Por debajo del borde de las plataformas continentales, los depósitos del golfo son casi siempre de grano fino y varían desde arcillas limosas has ta arcillas. Se han encontrado, solo en un número relativamente pequeño de núcleos de aguas profundas, capas delgadas de arena fina, que posiblemente fue depositada por corrientes menores de turbidez.

La mayoría de los sedumentos del golfo tienen una distribución de frecuencias características de poblaciones bimodales y polimodales. En consecuencia, los parámetros estadísticos como media, desviación estándar y sesgo, tienen poco significado. Los sedimentos del golfo Norte tienen un patrón de distribución regional que se caracteriza por un cambio brusco de modos gruesos a finos, cuando se pasa de la costa a la zona profunda de la cuenca Sal si Puedes; los modos gruesos par<u>e</u> cen estar controlados por las fuentes continentales de suministro de sedimentos.

Los sedimentos en el golfo Central y Sur son predominantemente finos, observándose que las arenas sobre las plataformas estrechas tienen una amplia variedad de fuentes de suministro y de condiciones de depósito. Los modos limoso y arcilloso están sistemáticamente distribuídos bajo el borde de la plataforma. En regiones de gran aporte de sedimentos, los modos más grucesos pueden extenderse a mayor pro fundidad (frente a cabo San Lucas y en la parte Nor-Central del golfo), así como también las arcillas y limo, en ocasiones, pueden estar muy cercanas a la línea de costa (delta del Río Fuerte). En la figura 2.7 se ilustra la granulometría del bajo golfo, así como las localidades donde se ha encontrado glauconita (Niemitz, 1977).

Uno de los rasgos más comunes del golfo en sus porciones centro y sur de la existencia de una banda de sedimentos diatomáceos, laminados hemipelágicos. La existencia de tales sedimentos ha sido explicada en base a la alta productividad primaria, y a la presencia de la capa de oxígeno mínimo en la columna de agua, situa da en profundidades intermedias; con menos de 0.5 ml.l⁻¹, entre 200 y 1500 m [Van Andel, 1963]; con menos de 0.2 ml.l⁻¹entre 450 y 800m [Vonegan y Schrader, 1982]; indetectable por el método de Winkler, entre 500 y 1100m, [Alvarez Borrego, 1983]. Una parte considerable del fondo del golfo está situada entre esos límites de profundidad [Fig. 2.2 y 2.8] y tiene insuficiente oxígeno disuelto para so portar el desarrollo de la infauna béntica, así la bioturbación es mínima y los sedimentos se acumulan aparentemente sin perturbación.

Byrne y Emery (1960) propusieron que las laminaciones resultan del suministro relativamente constante de material inorgñico y un pulso estacional de diatomeas, Calvert (1964) por otro lado propuso que la lámina refleja un pulso estacional en material terrigeno y un aporte relativamente constante de diatomeas al año. Schrader et al., 1980 a, b; han atribuido las láminas a ambos pulsos en el suministro de material terrigeno y producción de diatomeas. Donegan y Schrader (1982) han establecido un modelo de formación de las laminaciones en la porte cen tral del golfo relacionándolo con la circulación del viento; así durante la estación húmeda (en verano) con los vientos del sureste, no se presentan las surgencias y en esos tres meses solo se tiene la componente terrigena; mientras que los utros nueve meses en las "secas" con vientos predominantes del noroeste se presen tan las surgencias con la población fitoplanctónica y escaso o nulo aporte terrígeno. Estos mismos autores observaron que el sedimento está compuesto primordial mente de diatomeas de tamaño Limoso y fragmentos de diatomeas. Las láminas oscuras contienen más material terrígeno que las láminas claras; el material terrígeno principalmente es arcilla (<4 µm) sobre el lado de la Península.

La diferencia entre un sedimento homogéneo y laminado en el golfo ha sido explica da también en base a la proporción de opalo y arcillas, así Calvert (1964) presen ta la siguiente composición en un sedimento típico del golfo de California:

Figura 2.7. Granulometría de los sedimentos de la parte centro y sur del Golfo de California (Niemitz, 1977).

Componente	Sedimento	Sedimento
	Laminado	homogéneo
· · · · ·	(%)	(%)
Opalo	28.8	24.4
Cuarzo	7.3	7.1
Feldespatos	4.0	3.8
CaCOz	8.8	9.8
Materia Orgánica	5.2	5.3
Arcilla	45.8	49.6

Otro hecho notorio que se ha encontrado en los sedimentos del golfo, es que el ma terial sedimentario biógeno es más abundante en la zona del talud, debido a que este se produce principalmente cerca de los márgenes del golfo en zonas de surgen cia y de mezcla, asimismo al interceptarse el talud con la capa de oxígeno mínima de la columna de agua, este ofrece condiciones favorables para preservar dicho ma terial. Además de las diatomeas; que a veces llegan a más de 50%, se encuentran otros componentes biógenos de importancia como son: los foraminíferos, radiolarios, y el material orgánico.

3. Metodologia

3.1 Muestreo

Se colectaron un total de 48 núcleos (28-190 cm de largo) y 85 muestras super ficiales (0-10 cm) de sedimento en cuatro cruceros en el Golfo de California y áreas adyacentes a la boca del mismo (figuras 3.1 y 3.2); en el PALEO-1 (16 mayo-6 junio, 1982); PALEO-2 (2-12 agosto, 1983), BERMEJO-1 (21 enero-10 febre ro, 1984) y CORTES-2 (9-22 marzo, 1985), realizándose todas las campañas en el B/O "El Puma".

La localización del muestreo se obtuvo mediante el sistema de navegación por satélite, y en aquéllos casos donde la ubicación lo permitió se verificaron dichas localizaciones con el sistema de Radar del buque. En las figuras 3.1 y 3.2 y las tablas del apéndice 1 y 2 se describen las posiciones además de algunas de las características más notorias (como color, textura, olor, etc.) del material colectado.

Las muestras de sedimento superficial se colectaron de dos maneras; en el cru cero PALEO-1 se tomaron (42 muestras) los 10 cm supericiales de los núcleos obtenidos con el nucleador tipo caja (Addy y Ewing, 1974) y en el crucero CORTES-2 con una draga tipo Van Veen. Por su parte los mícleos en su gran mayoría fueron extraídos mediante un nucleador de gravedad Meischner y Rumohr (1974), el cual fue modificado en la presente investigación a fin de obtener núcleos más grandes y libres de una posible contaminación metálica (Páez-Osuna et al., 1986); solamente los núcleos P19 y P25 fueron colectados con un nuclea dor de gravedad cuya versión es más grande que la convencional (Myers <u>et al.</u>, 1969; Ingham, 1975).

Para el caso de las miestras superficiales el procesamiento a bordo consistió en mantenerlas en refrigeración a 4°C, después de guardarlas en bolsas de polietileno y sellarlas en una atmósfera inerte de argón. Por su parte la "extrusión" o expulsión de los núcleos, su corte, exprimido y mediciones de pH y Eh se realizaron a bordo inmediatamente después de colectarlos. La expulsión se nealizó mediante la ayuda de un soporte y un pistón de madera y PVC, los cortes se hicieron con laminillas de baquelita previamente lavadas en HNO₂2M. El exprimido se realizó con un expimidor de nylon (Reeburgh, 1967), utilizándo presiones bajas (5 PSi) y empleando filtros de nylon y menbrana Millipore de 0.45 M de diámetro en sus poros. El agua intersticial se colectó en recipien tes previamente lavados en ácido (Moody y Lindstrom, 1977), dividiéndose en alicuotas para posteriormente preservarías y realizar los análisis. En la siguiente tabla se presenta en forma resumida la manera en que se dividieron y preservaron las distintas muestras.

Análisis	Tipo de Muestra	Tipo de Recipiente	Preservación
Sulfatos Sulfuros	Agua Intersticial Agua Intersticial	Polietileno Vidrio	Refrigeración 4°C Adición de Acetato de zino
Hetales Pesados y Carbono Orgánico	Sedimento (húmedo y exprimido)	Polictileno	Adición de helio/ argón y refrigera ción (4°C) o con gelación (-8°C).

- . . .

 \circ

3.2 Mediciones de pH y Eh

Las técnicas descritas a continuación involucran la insertación de los electro dos directamente en los sedimentos recién cortados. Como se sabe estas mediciones son solamente una guía en la prospección y son muy diversos los proble mas en la medición de Eh (los cuales se discutirán en la sección de resultados), no obstante esta determinación puede ser muy valiosa para investigar el origen de un depósito. Las mediciones de Eh dependen grandemente del estado de compactación de los materiales sedimentarios; los núcleos colectados en el presente trabajo generalmente presentaron lecturas aceptables con excepción del núcleo B36, caracterizado por su alto contenido arenoso y abundantes frag mentos de conchas.

Para pH se utilizó un electrodo de vidrio Orion 9101 y uno de referencia 900100 de unión simple, relleno con una solución de KC1 4M saturado con Ag (solución 900011), los electrodos fueron calibrados con dos soluciones tampón NB S de pH= 4 y 7; las lecturas se registraron en un potenciómetro Orion mod<u>e</u> lo 407.

Para las mediciones del Eh, se empleó un electrodo de platino comercial [Fisher] y uno de referencia de doble unión Orion 900200 cuyo relleno interior se hizo mediante una solución de KC1 y exterior por una solución de KNO₃ 10%, la diferencia de potencial fue de +245 mv a 20°C, y las lecturas se registra ron con un potenciómetro Orion modelo 501; la calibración de los electrodos se hizo con la ayuda de la solución Zobell [Eh= +430 mv a 25°C] considerando las recomendaciones dadas por Zobell (I946) y Anatolevich-Solomin (1965), las cuales consistieron en un doble enjuague de los electrodos con H_2SO_4 40% y NaOH 40%. El cálculo de Eh se realizó mediante el algoritmo propuesto por Anatolevich-Solomin (1965), el cual consiste en ajustar las lecturas del Eh (producidas en este caso, cada 5 minutos) y el inverso del tiempo, a una recta del tipo:

 $Eh = M\left(\frac{1}{\mathcal{I}}\right) + b$

donde t es el tiempo en minutos, y b la ordenada, o sea el Eh para un t $\rightarrow \infty$. En el presente estudio, la regresión líneal se realizó por el método estadísti co denominado de los cuadrados mínimos.

3.3 Análisis del Agua intersticial

Los sulfatos fueron analizados por medio de una titulación indirecta, donde el-BaSO, es precipitado en solución ácida de EDTA, el precipitado es lavado y disuelto en un exceso de EDTA en un pH alto, y dicho exceso de EDTA es titulado con una solución valorada de MgCl₂ (Howarth, 1978). La calibración de la téc nica en la presente investigación fue realizada mediante agua de mar patrón de 19.375°/... de clorinidad, suponiendo una relación de sulfatos a cloruros de 0.1400 (Morris y Riley, 1966) y una densidad de 1.0233 g/cm³ (Riley y Skirrow 1978). La precisión de la técnica para un replicado (n= 6) de una muestra con un promedio de 29.60 mM de SO, presentó una desviación estándar de \pm 0.44 mM (coeficiente de variación de 1.5%).

Los sulfuros se cuantificaron espectrofotométricamente por el método del azul de metileno, haciendo tres curvas distintas de calibración (Cline, 1969), esta determinación solamente se realizó en diez mícleos, y en ningún múcleo se encontraron niveles por encima de 0.40 mM, como quiera que sea los valores

encontrados son estimativos ya que durante el corte del núcleo y exprimido del mismo es muy factible que una buena parte de los sulfuros se haya perdido por volatización, o por oxidación rápida.

3.4 Análisis de sedimentos

En los sedimentos tanto superficiales y de los núcleos se efectuaron los siguien tes análisis: humedad, metales pesados (Cu, Cd, Co, Cr, Ni, Zn, Pb, Mn, Fe, Ag y en algunas muestras Al), y carbono orgánico en 19 de los 48 núcleos.

Por otra parte, en 20 de los núcleos se utulizó un procedimiento de extracción selectiva con objeto de diferenciar las principales fases geoquímicas y cuantificar en cada una las concentraciones de Cu, Cd, Co, Ni, Zn, Cr, Pb, Mn y Fe. Las fases ó fracciones operacionalmente definidas fueron: (1) intercambio y/o adsroción, (2) orgánica y/o de sulfuros, (3) reducible ó de los óxidos de hierro y manganeso, (4) carbonatos y (5) residual.

La humedad se obtuvo gravimétricamente, después de secar las muestras a 100 + 10° c durante 24 horas. Por su parte el carbono orgánico se obtuvo como carbono fácilmente oxidable (Jackson, 1958; Gaudette et al., 1974; Loring y Rantala, 1977) sometiendo el sedimento (0.5 g) seco y molido a oxidación con K₂Cr₂O₂ en H₂SO₄, utilizando para la reacción el calor de dilución del H₂SO₄; et exceso de K₂Cr₂O₇ se tituló con Fe (NH₄)₂ (SO₄)₂ usando difenilamina como indicador y en presencia de AgNO₃, H₂PO₄ y NaF. La calibración de la técnica se realizó con dextrosa (C₁H₁O₆) y la precisión para un replicado (n=6) de una muestra con un promedio de 2.47% de carbono orgánico dió un coeficiente de varia ción de 2.13%.

Análisis de metales pesados

Todo el material empleado en el manejo de las muestras, para el análisis de m<u>e</u> tales pesados, se lavó con HNO₂ y HCl 2M, y después se enjuagó con abundante agua bidestilada (Moody y LindStrom, 1977).

Para seleccionar la técnica de digestión, se probaron tres métodos diferentes; uno con HNO_3 , $HCLO_4$ y HF (Agemian y Chau, 1975), otro con HNO_3 , HCL y HF (Loring y Rantala, 1917) y otro con solamente HNO_3 y HCL (Breder, 1982), emplean do distintas proporciones de ácido y sedimento³ en bombas de calor (Stoeppler y Backhaus, 1978).

Los resultados parecen ser muy distintos cuando se emplean distintas proporcio nes de ácido y sedimento, así por ejemplo en una muestra superficial (de la cuenca de San Pedro Mártir) se observó que presenta diferentes concentraciones de cobre y zinc para diferentes cantidades digeridas con 6 ml de agua regia in vertida (HNO₃, Hel, 3:1):

Muestra (g)	Cu (ug/g)	Zn(ug/g)
0.2798	132.0	280
0.3010	132.7	271
0.3795	122.5	249
0.5035	54.5	149

Es evidente que la eficiencia de la extracción de cobre y zinc está determina da por la proporción de la mezcla ácida y la muestra, así entre mayor es esta proporción más eficiente debe ser la extracción. Una vez que se logró optimi zar en cada una de las tres técnicas la proporción de ácido y sedimento, se hizo una comparación de las distintas técnicas, a continuación se presentan los resultados para cobre de una muestra compuesta del golfo de California (MRSG-130286), de 0.25 g después de evaluar su concentración por triplicado, corrien do blancos desde el inicio de la digestión:

Volumen (ml)	Acidos utilizados	Concentración de Cu (ug/g <u>+</u> 3)
		in the state of th
6	HNO,/HCL (3/1)	14.8 + 4.1
- 10	HNO /HCL (3/1)	15.8 7 1.6
2:8	HNO_{2}^{3}/HCL (3/1) = HF	16.8 7 5.6
4:1:6	HNO?: HCLO, : HF	16.2 7 5.8
4:1:8	HNO_{7}^{2} : $HCLO_{4}^{4}$: HF	17.5 7.3

Estos resultados reflejan que a pesar de que la mezcla con HClO₄ produce el promedio más elevado, la técnica con agua regia invertida viene a ser la que produce la menor desviación estándar, además de los blancos más limpios. En base a estos resultados se procedió posteriormente a probar la confiabilidad de la técnica del agua regia invertida con tres muestras certificadas; dos muestras de sedimento estándar (MESS-1 y BCSS-1) de la"National Research Coun cil of Canadá" (Rossel, 1984) y una muestra de sedimento (SD-N-1) del Organismo de Energía Atómica Internacional (IAEA), la cual consiste de una muestra de grano fino colectada desde el Mar del Norte; cuya composición mineral es como sigue: cuarzo 60%, clacita 20%, minerales arcillosos 10%, feldespatos 6%, NaCl 3%, y pirita de 1 a 2% (IAEA, 1985).

En las tablas 3.4.1 y 3.4.2 se presenta una lista de las concentraciones encontradas y las dadas para cada muestra certificada. En general se puede ob servar que en ambas tablas la mayoría de los metales están en razonable concordancia entre sí; las discrepancias en la mayoría de los casos son compara bles a la precisión de la técnica.

En la muestra SD-N-1/2, tanto Ni, Pb, In, Fe y Ag se tiene que caen dentro del intervalo de confianza (a= 0.05), mientras que Cu, Co, Cr, Un y Cd se sa len ligeramente de dicho intervalo, sobre todo Co; ahora el coeficiente de variación para todos los elementos siempre estuvo por debajo de 8.1%.

En el caso de las muestras del Canadá (NEESS-1 y BCSS-1) las diferencias más grandes las tenemos para el Cr y Pb las cuales fueron del orden de 42-47 y 27-28%, respectivamente.

TABLA 3.4.1

Concentración de metales pesados en la muestra de sedimento SD-N-1/2, la cuál está certificada con un grado de confidencia: Satisfactoria (A); Aceptable (B); y No Certificada (C). Dicha muestra fue enviada gentilmente por el Laboratory of Marine Radioactivity del Organismo Internacional de Energía Atómica, a través del Dr. Lawrence D. Mee-Miller.

	Concentración establecida (µg.g ⁻¹)	Clase de Resultado	Intervalo de con fidencia (4=0.05) (µg.g-1)	Concentración en contrada (n=7) (µg.g ⁻¹) <u>+</u> ⊄	- Coeficiente de variación (%)
Cu	72.2	A	68.1-75.2	83.5+3.5	4.1
Ni	31.0	A	27.0-34.0	31.7 <u>+</u> 1.8	5.6
Co	12.1	A	11.2-12.7	15.3 <u>+</u> 1.0	6.4
Cr	149	A	125-161	121.2+5.2	4.3
Pb	120	Α	112-132	131.6 <u>+</u> 7.4	5.6
Zn	439	Α	432-452	442 <u>+</u> 12	2.8
Cd	11.0	A	10.0-12.0	12.3 <u>+</u> 1.0	8.1
Ag	2.3	В	2.0-3.2	3.3 <u>+</u> 0.2	6.1
Mn	777	A	728-801	860 <u>+</u> 14.6	1.7
Fe	3.64%	C	3.53-3.78%	3.63 <u>+</u> 0.07	1.8
Al	3.75%	С	3.58-3.85%		
v	77.7	B	65.0-80.7	· · ·	

Concentración de metales pesados en las muestras certificadas por los laboratorios de Canadá. MESS-1 y BCSS-1, cuvos valores fueron establecidos al menos por dos técnicas independientes. Las incertidumbres (6), representan el 95% del limite de tolerancia, para una sub-muestra individual. Dichas muestras fueron enviadas gentilmente por el-Dr. D.H. Loring del Department of Fisherles and the Environment, Fisheries and Marine Service, Research and Development Directorate del Canadá.

	Muestra Concent	MESS-1	Muestri Concen	a BCSS-1 tración
	Dada (µg.g ⁻¹) <u>+</u> 6	Encontrada (µg_g ^{_1}) <u>+</u> &	Dada (µg:g ⁻¹)±ď	Encontrada (µg.g-1) <u>+</u> c
Cu	25.1 <u>+3.8</u>	<u>27.7+2.2</u>	18:5+2.7	18.4 <u>+</u> 3.0
Ni	29.5 <u>+</u> 2.7	-31.2 <u>+</u> 4.0		58.4 <u>+</u> 3.9
Co	10.8 <u>+</u> 1.9	11.1 <u>+</u> 1.3	11.4 <u>+</u> 2.1	11.2 <u>+</u> 1.5
Cr	!71 <u>+</u> 11	37.9 <u>+</u> 8.1	123 <u>+</u> 14	71.3 <u>+</u> 7.0
Pb	34 <u>+</u> 6.1	31.2 <u>+</u> 7.0	22.7 <u>+</u> 3.4	29.0 <u>+</u> 6.2
Cd	0.59 <u>+</u> 0.10	0.65 <u>+</u> 0.22	0.25 <u>+</u> 0.04	0.24 <u>+</u> 0.10
Zn	191 <u>+</u> 17	202 <u>+</u> 5.0	119 <u>+</u> 12	124 <u>+</u> 6.0
Fe	3.05 <u>+</u> 0.17	2.90 <u>+</u> 0.10	3.29 <u>+</u> 0.10	3.12 <u>+</u> 0.06
Mn	513 <u>+</u> 25	495 <u>+</u> 25	229 <u>+</u> 15	258 <u>+</u> 48

El procedimiento analítico utilizado para la digestión de las muestras fue como se indica en el esquema siguiente:

> 0.25 - 0.30 g Sedimento seco y molido

Sistema de descomposición múltiple

16 Hrs. a 130 <u>+</u> 10°C

Añadir 10 ml de HNO3/HCL

Centrifugación (y filtración)

Extracto

Aforo a volumenes definidos (30-40 ml)

Análisis por absorción atómica

Las condiciones instrumentales de operación con el espectrofotómetro de absorción atómica (Skimadzu AA-630) para los metales analizados fueron como sigue:

Lemento	Longitua ae un	aa (A)	Abertura de	. Tipo de llama	Observaciones
a îtat			La Banda (A		
Cu	3247		1.9	Acetileno-aire	
Co	2407		1.9	Acetileno-aire	
Cd	2288		1.9	Acetileno-aire	Lampara a 6 mA
Cr	3579		1.9	Acetileno-aire	
Fe	2483		1.9	Acetileno-aire	a the second the second states are
Mn	2795		1.9	Acetileno-aire	
Ni	2320		1.9	Acetileno-aire	and the second
Pb	2833	بريد وججر	1.9	Acctileno-aire	Lámpara a 6 mA
Zn	2139	1999 - A.	1.9	Acetileno-aire	•
Ag	3281	5. S. S.	1.9	Acetileno-aire	Expansión de 8.0
ÂĒ	3093		1.9	Acetileno-óxido nitroso	Lámpara a 14 mA

En todos los casos se uso expansión de 1.0 y una corriente de 10 mA en las lám paras, excepto en donde se hacen las respectivas observaciones.

La preparación de los estándares se realizó a partir de las disoluciones patrón de 1,000 g/ml de cada uno de los metales; las disoluciones necesarias (como Fe, Mn y Zn) se hicieron con agua bidestilada empleando micropipetas automáticas y un "dilutor" Shimadzu DIP-1 previamente calibrados, los recipientes utilizados para el manejo de los extractos y los estándares fueron de polietileno convencio nal (de marca nacional), por lo que se evaluó su utilización, almancenando com centraciones conocidas. En la tabla 3.4.3 se presentan los resultados de los análisis después de digerir y sin digerir dichas concentraciones añadidas; las discrepancias nunca fueron mayores a 12.3% por lo que se puede considerar que dichos recipientes cumplen aceptablemente los requerimientos para el manejo de metales en los niveles aquí trabajados.

Los efectos de la matriz también fueron investigados en una muestra compuesta del golfo de California, la cual se preparó mezclando porciones de 24 distintas localidades del golfo, seleccionadas de manera aleatoria, a dicha muestra se le denominó MRSG-130286; ésta se analizó por adición de estándares (añadidos desde el inicio de la digestión) y contra una curva de calibración por triplicado, ob teniéndose los resultados que aparecen en la tabla 4; de esta tabla se puede ob servar que con excepción del cromo todos los demás metales presentan niveles comparables entre sí; siendo las discrepancias como sigue: Cu, <1%; Ni, 22.46%; Co, 26.03%; Cr, 36.61%; Pb, 10.63%; Cd, 13.04%; Zn, 9.62%. Aunque los por centajes de diferencia para Co, Pb y Cd son relativamente altos, la impresición en esos niveles resultó ser algo mayor (37%, 6.61% y 24.50% respectivamente) pa ra estos metales, de allí que solamente Cr y en menor proporción Ni son signifi cativamente diferencies.

De cualquier manera los resultados de esta tabla premiten concluír que las con centraciones obtenidas a partir de la curva de calibración en general son tan exactas como las obtenidas mediante la técnica de adición de estándares, 6 en otras palabras en los sedimentos del golfo de California no se tienen interfe rencias en la matriz que provoquen diferencias significativas con respecto a la reproducibilidad de la técnica.

TABLA 3.4.3

Concentraciones de metales pesados en las soluciones patrón almacenadas durante 6 meses: digeridas y sin digertr. النيك 959

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						D	100	112	131	+12.0	+31.0
•						الله المراجع المراجع (). معالية المراجع من مناطق () م	٢	200	191	199	-4.5	-0.5
						in a fin Alera an Sa tatung Chinan	8	400	369	369	-7.8	-7.8
Patrón	Adicionados originalmente	Sin digerir	Digeridos	Sin digerir	Digeridos		۸.	500	439	457	-12.0	-9.0
	(µg)	(pu)	(µg) (i i i j	(2)	1961 (1) (1963 (1963 (1966 (1966 (1966 (1966 (1966 (1966 (1966 (1966 (1966 (1966 (1966 (1966 (1966 (1966 (1966						7= 1.7	¥- 12.3
			Cu la la compañía de series		and Senate and Senate S Senate Senate		en provinsi Status (Status Maria (Status)	la dege and the second s		at a second		
F	20	19.8	23.6	1.3 4 4 1.3 Y	+16.0							
ε	50	49.0	50.0	-2.0	0.0	en an		20		Pb		
0	100	102.5	114.2	+2.5	+11.2			30	110	100 5	-20	••.0
¢	200	197.5	198.6	-1.3	-0.7	2799년 17월	E	100	112	106.5	+12	+0.5
8	350	353.5	342.2	+0.7	-2.2	회사가 문화 가장		200	219	209	+9.5	*4.5
A	500	499.5	505.2	-0.1	1.0	a ing ting in	G .	400	429	402	+7.0	+0.5
			taita.	X0.25	I = 4.22		B	500	531	504	+5.2	+1.0
							A	1000	1062	1040	+6.2	+4.0
			NI		NG CORANG						X- 3.48	X+ 3,42
F	17.5	12.5	18.2	-28.6	H.0		1					
E	35	34.7	36.3	-0.9	+3.7							
Þ	70	75.6	75.6	+8.0	+8.0					Cd		
С	140	147	147	+5.2	+5.2		F	- 5.0	4.4	5.0	-12.0	0.0
6	245	265	254	+8.2	+3.8	the first second	E	12.5	12.4	12.9	-0.8	+3.2
A	350	380	379	48.6			D	25.0	24.9	25.4	-0.4	+1.6
	,			Σ • 0.2	T. 5 5		C	50.0	50.0	50.3	0.0	•0.6
							в	100	103	101	+3.0	+1.0
							A	125	127	128	+1.6	+2.0
			Co	فيحركمن الدراجا	이 아이는 것을 하는 것이 같이 같이 같이 같이 하는 것이 같이 하는 것이 같이 하는 것이 같이 하는 것이 같이 같이 하는 것이 같이 같이 같이 하는 것이 같이 같이 하는 것이 같이 같이 하는 것이 같이 같이 하는 것이 같이						⊼ = −1.4	X- 2.8
F	25	20.0	26	-20	+4.0							
E	50	55.0	53	•	+6.0							
0	100	108	109	+8.D	+9.0					Zn		
c	200	221	216	+10.5	+R.O		. F	5.0	4.6	4.2	-8.0	-16.0
6	400	391	376	-2.25	-6.0		3	12.5	13.1	14.8	+4.8	+18.0
A	500	550	560	+10	+12		0	25.0	29.1	29.3	+16.4	+17.2
					in the second		с	50.0	55.9	56.0	+11.3	+12,0

25

£

B

A

100

125

. .

105

126

99.Z

125

+5.0

+0.E

ī- 5.1

-0.8

0.0

1.5.1

50

24

59

-4,0

+18.0

33.5

63.0

+34.0

+26.0

x= 5.5 X= 2.7

-

 $\mathbf{r}^{n} \geq$

29

 \sim

Tabla 4

Concentración de metales pesados en la muestra compuesta del Golfo de California MRSG-130286 analizado por adición de está<u>n</u> dares (A) y contra una curva de calibración (B) (n=9).

			 March 1997 (1997) 		Construction of the second	1 e	and a local fraction of	and the second
\sim	154 J.	112	1000			a de Fer	116 146 1	
			A 1 1 1 1	the second se	and the second	4. ******		

Metal	Concentración (µg.g ⁻¹)			
	(A)	(B)		
Cu	25.4	25.5 <u>+</u> 1.1		
Ni se	28.9	23.6 <u>+</u> 1.7		
in Co	9.2	7.3 <u>+</u> 2.7		
Cr	16.1	25.4 <u>+</u> 4.0		
Pb	26.9	30.1 <u>+</u> 5.0		
Cd	2.08	1.84 <u>+</u> 0.45		
Zn	114	104 <u>+</u> 4		
De las 560 muestras que se digirieron con el sistema de descomposición múltiple [Stoeppler y Backhaus, 1978] fue posible analizar todos los metales anteriormen te mencionados, excepto aluminio, ya que en los extractos se pudo observar una contaminación no sistemática de este metal, la cual se debe a las placas de alu minio que precisamente se emplean en el sistema de descomposición para sujetar las bombas de teflón. Por lo anterior se procedió a utilizar el sistema de digestión (recomendado por Agemian y Chau, 1975) de las bombas de acero inoxidable, empleando agua regia y ácido fluorhídrico en la digestión (Bernas, 1968; Dymond, 1981) en lugar de agua regia invertida, la decisión de utilizar esta té<u>c</u> nica y no la anterior en que aín en las pocas muestras que aparentemente no se contaminaron con aluminio, por la técnica de agua regia, se pudo observar una pobre eficiencia en la extracción del aluminio en las muestras certificadas.

En el caso de los elementos que por su baja (o nula concentración) no fue posible detectar, fué necesario establecer el límite de detección; definido este por dos veces la desviación estándar obtenida con un replicado de cuando menos seis determinaciones.

3.5 Extracción selectiva de metales pesados

Entre los estudios que se han realizado con el fin de diferenciar la forma química de los metales en los sedimentos, y que han generado información valiosa están los que se relacionan con las extracciones químicas. Dentro de los prime ros trabajos de este tipo están los de Goldberg y Arrehenius (1958) y Arrehenius y Korkish (1959) quienes establecieron la distribución de distintos elementos en los minerales detríticos de origen ígneo, y las fases autigénicas en sedimentos pelágicos, ellos utilizaron una extracción guímica con ácido etilen-diamino-tetraacético (EDTA) y ácidos clorhídrico y acético diluídos. Posteriormente Ches ter y Hughes (1967) introdujeron un agente reductor ácido del clorhidrato de hi droxilamina IM en ácido acético 25% (v/v) para separar los óxidos de hierro y manganeso, minerales, carbonatos y elementos traza adsorbidos en los depósitos marinos. Este tratamiento fue utilizado subsecuentemente en varios estudios de Los sedimentos oceánicos (Chester y Hughes, 1969; Chester y Messiha-Hanna, 1970; Horowitz, 1974; Sayles et al., 1975; Horowitz y Cronan, 1976; Heath y Dymond, 1977) y en la actualidad todavía es empleada en los esquemas de extracción selec tiva secuencial propuestos (Tessier et al., 1979; Calmano y Förstner, 1983; Me-" quellati. 1983).

Desde mediados de la década pasada se realizaron algunos trabajos para diferenciar entre las fases "oxidable", "reducible" y "residual" en los sedimentos contaminados en la costa de California (Bruland, 1974; Gupta y Chen, 1975) y el Lago Erie (Brannon et al., 1976). Posterior a esto y desde la propuesta de Tessier et al (1979) se han debatido una gran variedad de tratamientos (tabla 3.5.1) para extraer selectivamente los metales asociados a las diferentes fases geoquímicas; estas fases han sido definidas de manera operacional (por ejemplo: fase orgânica adsorbida 6 de intercambio, reducible, etc.) y en la actualidad existe un gran número de esquemas de extracción con distintos reactivos, condiciones y secuencias de ataque (Tessier et al., 1979; Ellaway, 1980; de Groot et al., 1982; Calmano y Förstner, 1983; Maguellati, 1983).

Sin embargo a pesar de existir el gran número de tratamientos y esquemas analí ticos para extraer los metales asociados a determinadas fases, la utilización de estas técnicas ha recibido muchas críticas y varios trabajos han puesto en

con dife	rentes fases geoquímicas, y fraccio	nes en los sedimentos.
Fase Geoquímica	Tratamiento	Referencia
Adsorción e intercambio de cationes	BaCl2 -pH = 7.0 MgCl2 Acetato de amonio	Jackson (1958), Gibbs (1978) Engler <u>et al</u> . (1974) Gupta y Chen (1975)
Carbonatos	Intercambiador catiónico- Acídico, Buffer NaOAc/HO-Ac (pH = 5)	Deurer <u>et al</u> . (1978) Tessier <u>et al</u> . (1979)
Reducible (Oxidos del hierro y manganeso)	Hidroxilamina en HNO ₃ 0.01M Oxalato de amonio Hidroxilamina en ácido acético Buffer de ditionita y citrato	Chao (1972) Schwermann (1964) Chester y Hughes (1967) Holmgren (1967)
Orgānica/Sulfuros	H ₂ O ₂ -NH ₄ OAc (pH = 2.5) H ₂ O ₂ -HNO ₃ Solventes orgánicos NaOH 0.1M/H ₂ SO ₄ NaClO	Engler <u>et al</u> . (1974) Gupta y Chen (1975) Cooper y Harris (1974) Volkov y Fomina (1974) Gibbs (1978)
Fracción No-detrítica ó bio-disponible	CH3-COOH (20-25%)	Skei y Paus (1979) Loring y Rantala (1977)
Fracción no residual (incluye varias fases)	HCl 0.1M diferentes tiempos	Sorensen <u>et al</u> . (1971) Duinker <u>et al</u> . (1974)
Litogénica/Residual	HNO3, HF, HClO4 HNO3/HClO4/ HF / HCl	Gupta y Chen (1975) Bruland <u>et al</u> . (1974)
••	۱۹۹۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ ۱۹۹۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰	· · · · · · · · · · · · · · · · · · ·

Tabla 3.5.1 Resumen de los métodos más comunes para extraer los metales asociados

Ac = Acetato (CH_3 -COO⁻).

duda la validez de los resultados (Guy et al., 1978; Rendell et al., 1980); las dudas han sido dadas en dos sentidos: (\overline{a}) que el extractante químico altere y ataque a otras fases distintas a la descada y (b) que una vez que los metales se liberen de una fase dada, estas pueden asociarse con otra fase en el mismo sedimento en lugar de permanecer en disolución. La dificultad en la falta de se lectividad radica más que cualquier otra cosa, en el amplio rango de propiedades químicas, físicas y mineralógicas de los materiales que componen al sedimento; así por ejemplo, las reacciones de precipitación generalmente se presentan con precipitados metaestables amorfos que con el tiempo pueden ser transformados en fases cristalinas, de aquí que dependiendo de la forma en que se halle el preci pitado, este puede ser o no atacado por un determinado reactivo. Muy reciente mente (Förstner et al., 1985; Kersten y Förstner, 1987) se ha podido demostrar como también el manejo previo de la muestra (como secado) afecta los resultados de la extracción; existen pues todavía muchas limitaciones que todavía no han sido debidamente entendidas. Sin embargo el conocimiento que se ha podido obte ner hasta la fecha, para averiquar los tipos de asociación entre los metales y las fases geoquímicas ha permitido evaluar la magnitud de dichas fases en el ma terial particulado y los sedimentos.

En la actualidad hay un gran debate con relación a la secuencia de las reacciones de extracción, especialmente en lo referente a la utilización del peróxido, ya que ha sido utilizado antes y después de la reducción de la fase oxidada (Martin et al., 1987). Así algunos investigadores como Badri y Aston (1981) y Meguellati et al (1983), han empleado la oxidación antes de la reducción a pesar de que con las condiciones acídicas el H_2O_2 causa cierta disolución de los óxidos de Manganeso (Jackson, 1956).

Es evidente que con este debate y la falta de selectividad de los reactivos es difícil decidir en que orden emplear los reactivos; sin embargo, como un primer criterio es más factible, utilizar el peróxido antes de la reducción en aquellos sedimentos con una escasa o nula proporción de óxidos (y en cambio es más signi ficativa la proporción de metales asociados a sulfuros y al material orgánico); y en aquellos sedimentos con una predominancia de óxidos, utilizar el 11,0, después de la reducción. En esta investigación se tomo la decisión de utilizar el peróxido antes de la reducción, debido a que una gran parte de los fondos del bajo Golfo está interceptada por la capa del mínimo de oxígeno, y ello permite suponer condiciones reducidas. La determinación de utilizar los reactivos y el esquema selectivo de Tessier et al. se debe por un lado a la gran cantidad de trabajos realizados con esta técnica o ligeras modificaciones de la misma (Forst Ner et al., 1979; Tessier et al., 1980; Nembrini et al., 1982 a;-1982b; Rapin y Förstner, 1983; Rapin <u>et al.</u>, 1983; Meguellati <u>et al.</u>, 1983; Calmano y Förstner 1983; Förstner et al., 1985; entre otros) y por otro a que de manera "operacio nal" se han definido ast las fases 6 fracciones geoquímicas de intercambio/adsor ción, carbonatos, de la materia orgánica/sulfuros, reducible o de los oxidos de Fe y Mn. y residual.

Fracción intercambiable/adsorción (I/A) se refiere a los constituyentes de los sedimentos (arcillas, óxidos de Fe y Mn, material húmico) que se ha demostrado que adsorben a los metales pesados.

Fracción de los carbonatos (C). Varios trabajos (Gupta y Chen, 1975; Chester y Hughes, 1967; Förstner, 1982) han encontrado que algunos metales pueden estar asociados en concentraciones importantes a los carbonatos. Fracción de los óxidos de hierro y manganeso (R). Está bien establecido que los óxidos de manganeso y hierro existen como nódulos, concreciones, ó simplemente como cementantes ó revestimiento de partículas; éstos óxidos son excelentes "cap turadores" de los metales pesados y termodinámicamente son inestables en condiciones reductoras (Tessier et al., 1979).

Fracción orgánica/sulfuros (0/S). De los metales pesados pueden estar asociados a la materia orgánica en varias formas; como quelatos de las macromoléculas, as<u>o</u> ciados a los organismos vivos, a las partículas de los minerales, etc. Por otra parte los sulfuros juegan un papel muy importante en la especiación y co-precipi tación de los metales en condiciones anóxicas (Förstner, 1982; Davies-Colley <u>et</u> al., 1985).

Fracción residual (R/S). Se refiere a los sólidos que prevalecen después que las primeras cuatro fracciones son extraídas, ésta fracción residual está compues ta principalmente de los minerales primarios y secundarios, que poscen metales $pe_{\underline{s}}$ sados dentro de su estructura cristalina.

En la figura 3.3 se presenta el esquema utilizado en este estudio para analizar los metales pesados y diferenciar las fases asociadas a ellos. Se emplearon los reactivos de extracción recomendados por Tessier et al. (1979), excepto para los iones intercambiables y/o adsorbidos, en donde el Mg Cl, fué reemplazado por el Ba Cl. Por otro lado la mineralización de la materia orgánica se realizó en el segundo paso, después de la fase de intercambio (Mueguellati et al., 1983); lo anterior se debe a que este autor al experimentar con fases definidas (en su concentración metálica en el laboratorio) encontró que la digestión inicial de la materia orgánica no tiene influencia significativa sobre las otras fases car bonatada y reducible, sino por lo contrario esta parece facilitar la extracción de estas dos fases.

Debido a que Mueguellati et al (1983) inician primero con el ataque del Períxido añadiendo HNO, diluído es difícil aceptar que los carbonatos (Mee, comunicación personal) presentes soporten tal ataque; con objeto de averiguar lo anterior se realizó una comparación entre las concentraciones de metales liberados antes y después del tratamiento con peróxido, al someter el sedimento a una extracción con acetato de Sodio (a pH= 5.0). En la tabla 3.5.2 se presentan las concentra ciones encontradas en 19 muestras; con excepción del In (fig. 3.4) el resto de los metales posee resultados completamente diferentes si se comparan entre sí, en el caso del Ni, Co, Pb, Cd y Mn los niveles obtenidos con el ataque antes del peróxido son siempre más altos. Estos resultados permiten dudar seriamente de las concentraciones producidas después del ataque con peróxido, de aquí que para los fines de este estudio, se considera que los carbonatos son atacados junio con la matería orgánica y allí liberados los metales asociados a la fase carbona tada.

Como se indica en el esquema de análisis, cada uno de los extractos fué centrifu gado, utilizando para ello tubos de polipropileno de 50 ml, y de allí el sobrena dante fué separado para su posterior análisis de los metales, mientras que el re siduo fué lavado en cada paso con agua bidestilada. Las concentraciones de los metales (Cu, Cd, Co, Cr, In, Pb, Fe y Mn) fueron determinados por espectrofotome tría de absorción atómica (AAS) introduciendo directamente la solución en la lla ma de acetileno-aire. Los estándares por su parte se prepararon de manera similar en cuanto a los reactivos de los extractos, y la reproducibilidad con un replicado de 8 muestras de la muestra MRSG-130286, siempre fué mejor al 12° en todos los metales. Respecto a los metales de la fracción nesidual, estos fueron calculados a partir del "total" (extraídos con las bombas de digestión).

	aceraro r	ie soal	n (hu												
Muestra	(1)	Cu (2)	(1)	Ni (2)	(1) (1)	io (2)	Pb (1)	(2)	Zn (1·)	(2)	Cd (1) (2)	Fe (1)	(2)	(1)	Mn (2)
B24/0-5	0.11	1.2	4.5	1.7	1.1	ND	4.2	ND	2.6	2.0	0.88 ND	3.0	231	550	112
5-10	0.23	0.8	4.5	3.2	2.1	ND>	5.0	ND	2.4	3.0	0.94 ND	2.7	351	282	91
10-15	0.12	1.5	4.4	2.7	2.0	ND.	5.5	ND	2.4	2.2	0.98 ND	3.15	314	260	49
15-20	0.37	2.8	4.7	3.5	2.1	ND	6.3	ND	4.0	4.2	0.91 ND	2.28	310	1128	192
20-25	0.42	2.9	7.1	5.7	2.2	ND	7.7	ND	8.0	6.9	0.77 ND	2.50	429	2434	404
25-30	0.43	3,0	4.6	5.9	2.0	ND	7.1	ND	4.3	6.5	1.00 IND	3.0	532	672	177
30-35	0.52	4.6	6.0	5.9	2.2	ND	7.7.	ND	6.8	8.1	0.84 ND	3.2	370	470	107
35-40	0.42	4.6	5.0	6.5	2.5	ND	8.0	ND	4.3	8.6	0.76 ND	3.1	358	344	113
40-45	0.38	3.6	5.4	10.4	2.1	ND	6.9	ND	5.8	11.2	0.77 ND	1.5	400	801	258
45-51	0.67	4.8	7.5	7.5	3.3	ND	10,3	ND	7.7	9.7	1.48 ND	1.6	242	1736	282
B19/0-5	0.47	1.7	3.6	3.8	2.6	ND	9.5	ND	2.4	4.4	0.98 ND	5.5	189	28.4	20.9
B7/0-5	0.10	ND	1.6	ND	1.2	ND	4.9	ND	0,8	0.9	0.35 ND	3.0	55.2	34.4	9.3
B4/0-5	0.22	ND	1.5	ND	0.9	ND	3.7	ND	0.9	0.6	0.59 ND	3.7	14.1	25.4	3.0
B3/0-5	0.28	3.4	5,2	4.1	1.6	ND	5,0	ND	6.7	5.7	0.38 ND	2,1	30,2	593	263
B1/0-5	0.58	ND	2.7	ND 1	2.0	ND	8,8	ND	1,2	1.5	0.71 ND	4.3	130	14.0.	23
B20/0-5	0.48	20	3.5	1.5	2.7	ND	9.3	ND	2,1	2.2	0.58 ND	2.8	25.9	183	35
B17/0-5	0.11	ND	2.1	ND	1,1	ND	2.7	ND	0,9	0.4	0.88 ND	2.5	14.2	15.1	3.9
B22/0-5	0.61	1.7	3.4	2.7	2.5	ND	2.8	ND	2.2	2.5	0.74 ND	2.8	83.6	169	4.1
B31-0-5	16.4	2.7	6.6	1.2	2.3	C C ND C	11 4 1811	'ND:	8.2	0.7	0.42 ND	2,4	69.9	112	37

3.5.2 Contenido metálico en un núcleo y nueve muestras superficiales del golfo de California, extraídos con Tabla

Ö

0

Realizado el ataque antes (1) y después (2) de la destrucción del material orgánico con H_2O_2 .

ND (No detectado)

0

AAS = Espectroscopia de absorción atómica.

Figura 3.4

4 Zn asociado a los carbonatos cuando el CH₃ COONa es usado antes (A) o despues (B) de la extracción con peróxido (r=0.86).

4. Sulfato-Reducción y Sedimentación en el golfo de California

4.1 Potencial Redox y pH:

Mientras que el pH es una medida de tendencia relativa de una solución para acep tar o transferir protones, de manera similar el pE es un parámetro que nos dá la intensidad redox y permite medir la tendencia relativa de una solución para acep tar o transferir electrones (Stumm y Morgan, 1981); En la práctica, no hay forma de medir el potencial absoluto, por ello los potenciales electrodo son referidos contra el electrodo de hidrógeno normal el cual arbitrariamente se le ha asignado un potencial de cero. Así los potenciales redox relativos medidos en esta forma se designan por Eh.

El valor de Eh está relacionado con las actividades de las diferentes formas ioni cas del elemento polivalente (o elementos co-existentes) por medio de la ecuación:

$$Eh = E^{\circ} + \frac{\kappa_{I}}{n_{L}^{\circ}} Ln \left(\frac{Aoxid}{Anad}\right)$$

Siendo E° el potencial redox o estándar del sistema: Aoxid y Ared, las actividades respectivas de las formas oxidadas y reducidas.

El potencial redox pE= -log (e⁻), cuya aplicación está dada por Eh, esto relacionado por la siguiente ecuación:

Un electrodo inerte (generalmente de platino), al introducirse en un medio dado con un sistema redox reversible, no adquiere inmediatamente el potencial sino que requiere de un cierto intervalo de tiempo, la velocidad con que se establece dicho potencial depende de varios factores, entre estos el principal es el de la capacidad redox del medio; el proceso de desarrollar el potencial consiste en que el electrodo adquiera una carga definida a expensas de los agentes oxidantes ó reductores presentes en el medio (Anatolevich-Solomin, 1965).

Desde los tiempos de Goldschmidt (1940-1950) se ha reconocido la necesidad de de terminar el pH y Eh para los distintos minerales y relacionar la composición mine ralógica con las condiciones redox y de acidez en las distintas facies. Varios investigadores (Garrels y Christ, 1965; Krauskopf, 1967; Stumm y Morgan, 1981) han elaborado diagramas teóricos de estabilidad Eh-pH, demostrando la existencia de los campos de estabilidad de diversos sistemas minerales y clasificando los depósitos.

Existen diversas limitaciones en la medición del Eh, las cuales han sido discuti das sobre todo desde consideraciones termodinámicas (Stumm, 1966; Whitfield, 1974; Stumm y Morgan, 1981). Partiendo del hecho, de que el estado redox de un sedimento es el resultado del efecto combinado de los procesos físico-químicos y biológicos, que pueden ser de naturaleza reversible y/o irreversible, es de esperarse que su definición sea difícil y compleja. Así en un medio dado (en aguas naturales ó sedimentos) existen muchas neacciones que no se equilibran ó acoplan rápidamente; por ello al utilizar un sistema indicador como un electrodo, no es posible medir un potencial ó Eh únicos. Al insertar el electrodo este alcanzará solamente el equilibrio con uno de los pares redox, e indicará la intensidad redox de ese par solamente. Entre las condiciones que Stumm y Morgan (1981) juzgan necesarias para obtener valores de Eh operacionalmente aceptables están; (1) que el electrodo empleado en la medición debe ser inerte, lo cual como ha demostrado Whitfield (1974) en el electrodo de platino pueden formarse óxidos (Pt0 y Pt0,) ó sulfuros (PtS) de platino según sean las condiciones aer<u>o</u> bicas ó anaeróbicas. (2) En un sistema donde los distintos componentes redox no están en equilibrio entre sí, el balance de las corrientes anódica y catódica en un potencial de equilibrio aparente, no corresponde necesariamente al mismo proceso redox y priede ser un componente de dos ó más procesos, así uno puede es tar observando un potencial "mezcla" ó "mixto" el cuál no es comprensible a interpretación cuantitativa. Sin embargo, a pesar de que las mediciones redox (con el electrodo de platino), no representan un Eh verdadero, ellas son reproducibles y se ha demostrado su utilidad para caracterizar ambientes sedimentarios (Bagander y Niemisto, 1978; Howes et al., 1981).

En la práctica, los problemas más frecuentes de la medición son la deriva de las lecturas y la relativamente pobre reproducibilidad. En este trabajo se emplearon tiempos de medición de 15 a 40 minutos según la deriva, registrándose las lecturas cada 5 minutos, a fin de conocer la tendencia y magnitud de dicha deriva.

En general la myoría de las mediciones fueron razonablemente aceptables en ese sentido, sólo en aquéllos mícleos con un alto contenido de arena y fragmentos calcáreos se tuvieron lecturas con derivas desordenadas. En las tablas del apén dice 2 se presentan los valores de En medidos con la técnica aquí descrita, ade más de otros parámetros relacionado como pH, sulfatos y carbono orgánico.

Con objeto de comparar este tipo de mediciones con las calculadas desde alguna de las semi-reacciones, se hicieron los cálculos de Eh a partir de las siguien tes expressiones y las concentraciones medidas de H_2S y SO_4^- :

 $Eh = -0.48 + 0.030 \text{ pS}^{=} \qquad (4.1.1) \text{ y}$ $Eh = -0.252 - 0.063 \text{ pH} + 0.007 \text{ log} [(SO\overline{4})/(HS^{-})] \qquad (4.1.2)$

La primera relación fué encontrada por Berner (1963) para sedimentos sulfídicos y la segunda es dechecida y dada por la siguiente semireacción según Stumm y Mor gan (1981):

 $SO_4^{\pm} + 9 H^{+} + 8 e^{-} + 4H_2O$

En la figura 4.1 se presentan como un ejemplo para el núcleo P2 los niveles redox medidos y calculados con las mencionadas expresiones; lo primero que se pue de destacar en es ta comparación, es la notable diferencia entre los valores redox medidos y los calculados, en cuanto a la tendencia que siguen con la profundidad, es importante señalar que los potenciales medidos con el electrodo se correlacionan más G ptimamente con la relación de Stumm y Morgan (1981) (n= 19, r=0.871) que corz la de Berner (1963) (n= 19, r=0.542). La diferencia de los valores redox ha sido explicada por Berner (1971) por la muy baja corriente de intercambio de ciertas semireacciones en la superficie del electrodo de platino (Stumm, 1966). Al ígual que los trabajos de Brooks et al (1968) y Nissenbaum (1972) las medicio nes de este estudio resultan ser más elevadas que las obtenidas por la expresión de Berner, e incluso que las obtenidas con la de Stumm y Morgan, (1981).

Si bien las mediciones de Eh, no reflejan el Eh esperado para cualquiera de las semireacciones (como por ejemplo $SO_{\pi}^{2}/H_{\pi}S$) lo cual se debe a que tanto los sulfa tos u otras especies ($como HCO_{\pi}$, NO_{π}^{2} , etc.) no son electroactivas ó rápidamente

m٧

Figura 4.1. Niveles redox medidos y calculados a partir de la concentración de sulfuros (Berner 1963) y de sulfatos (Stumm y Morgan 1981).

reactivas en la superficie del electrodo, es importante enfatizar que la tenden cia del potencial redox con la profundidad medidos y calculados (con la expresión 4.1.2) si concuerdan de manera significativa, y de allí que las mediciones con el electrodo de platino pueden ser muy valiosas para caracterizar los sedimentos y sobre todo predecir su evolución redox.

En relación al color de los sedimentos se observó que existe una variación consi derable dependiendo del nivel de Eh; sedimentos con elevados ó moderados valores positivos de Eh, son de coloración rojiza, naranja y café, mientras que al decre cer el Eh los sedimentos van de un color verde olivo claro a oscuro. Los sedimen tos de las cuencas del golfo en su mayoría presentaron una coloración verde olivo (con distintas tonalidades), solamente los mícleos y muestras colectadas de la plataforma continental, así como los extraídos fuera del golfo presentaron colores con tonos café ó rojizos (B31, B32). Definitivamente no es fácil explicar las diferencias de color ya que intervienen muchos factores como son: la proporción de minerales arcillosos (tales como ilita, clorita, caolinita, etc.) sales u óxidos de hierro y manganeso, pirita y la presencia de material orgánico altamente pigmentado.

Del total de 48 núcleos trabajados, 13 se colectaron en profundidades menores a los 1,100 m; 12 de éstos presentaron valores de Eh negativos que evidencian condi ciones ligera ó moderadamente reductoras, diez de los núcleos se extrajeron desde profundidades que oscilan entre los 240 y 1,100 m, profundidad a la que se refieren distintos autores (Van Andel, 1963; Roden, 1964; Alvarez-Borrego, 1983) para localizar a la capa mínima de oxígeno en el golfo. Con respecto a los núcleos provenientes de profundidades mayores a los 1,100 m (35 núcleos), todos en su ma yoría tuvieron valores de Eh positivos con excepción de los siguientes: B14 con valores de 252 a -32 mv, núcleo que se localiza en la depresión sur de la cuenca de Guaymas (z= 2020 m), la cual se distingue por ser un área de inteusa actividad hidrotermal; E28, E29 y B35 con rangos de 296 a -387, -12 a -379 y 102 a -52mv respectivamente, los cuales se localizan sobre la zona de fractura Tamayo en la boca del golfo; y B30 (con 102 a -51 mv) localizado en una pequeña cuenca al sur de la boca del golfo (Fig. 3.1) donde la actividad no ha sido reportada.

Es evidente que en las zonas de actividad hidrotermal, sobre todo como en 21°N [Pacífico] y la cuenca de Guaymas se han caracterizado [Edmond <u>et al</u>, 1982; Edmond y Von Damm, 1985], los fluídos de recarga y descarga por poseer elevadas concentraciones de ácido sulfhídrico y otras especies que reflejan niveles redox reductores. Ahora estas descargas de alguna manera van a influír 6 "impac tar" a las áreas adyacentes más cercanas.

Un hecho que es notable en la gran mayoría de los núcleos del golfo de California es la tendencia del Eh a decrecer conforme nos introducimos en el subsuelo; En las figuras 4.2 - 4.7 se puede observar como además esta tendencia está acom pañada con la disminución de la concentración de sulfatos en el agua intersticial. En el caso de algunos núcleos como B1, de la plataforma continental (en el transecto de la cuenca de Pescadero) o B30 (colectado al sur de la boca del golfo), los valores de Eh aunque tienden a decrecer en su sección superficial en las últimas secciones de la base del núcleo contrario a lo esperado tienden a aumentar. Este tipo de tendencias ya ha sido observado con otros trabajos (por ejemplo: Nissenbaum <u>et al.</u>, 1972; McKee, 1977) pero la intensidad del decre cimiento y el valor mínimo alcanzado varían ampliamente (Presley y Trefry, 1980; y otros citados por estos autores).

25

്റ്

0

 \cap

Figura 4.7. Perfil de Eh; pH y Sulfatos en los núcleos P1, P2, P3, B31 y B33.

Ρ2

Una posible explicación de los Eh positivos en aquéllos núcleos donde disminuyen los sulfatos es la de que en tales condiciones las fases metálicas de sulfuros, tales como la pirita son altamente insolubles y entonces el redox es más bien controlado por la solubilidad de carbonatos u óxidos, principalmente de Fe y Mn, y así la relación log (iones metálicos óxidos/iones metálicos reducidos) es la que controlará posiblemente el potencial medido.

Entre los factores que más influyen en el Eh de los sedimentos marinos, está la bioturbación (actividad de los organismos), más que cualquier otro factor (Kaplan y Rittenberg, 1963); siendo más crítico para los centímetros superficiales de la columna sedimentaria, donde los organismos como poliquetos y algunos moluscos pueden perturbar las primeras capas con sus movimientos, y tener así una marcada influencia en mantener oxigenada las primeras secciones de los sedimentos; En el caso particular de las mediciones hechas en este trabajo, sobre el agua sobrenadante (6 que está por encima en contacto con la interfase agua-sedi mento) se observó en todos los núcleos niveles mayores ó similares (figuras 4.7 a los de los primeros centímetros de los núcleos, con redox sobre todo oxi dantes (115-434 mv).

Los organismos también producen heterogenidades locales en los sedimentos, por ejemplo, la deposición fecal puede dar lugar a la formación de zonas localizadas de anoxía aún dentro de la capa óxica bioturbada pudiendo de esa manera pro ducirse pirita en sedimentos aparentemente óxicos.

En los sedimentos de algunas cuencas anóxicas como en el Mar Negro 6 regiones pantanosas se han reportado niveles de -400 mv en condiciones reductoras, solamente algunos micleos del presente estudio (B28, B29 y B30) al sur de la boca del golfo, presentaron valores de esa magnitud. Los micleos colectados que in terceptan la capa del mínimo de oxígeno, no obstante que se ha señalado estar sujetos a bajas o mulas concentraciones de oxígeno disuelto, sus niveles redox (aún en los centímetros del fondo) nunca fueron inferiores a -180 mv. Esto per mite concebir a los sedimentos del golfo como sigue: En los fondos menores a 1,100 m van, desde la superficie al fondo, desde ligeramente oxidantes a moderadamente reductores, mientras que las profundidades mayores a 1,100 m, los fondos son más bien ligera o moderadamente oxidantes, con excepción de las depresiones más profundas en algunas cuencas como la de Guaymas o Farallón.

Pe acuerdo a consideraciones termodinámicas, la oxidación del material orgánico en los sedimentos tiene lugar en una secuencia redox bien establecida (Stumm y Morgan, 1981, Sección 1.2.3), en la que primero se consume el oxígeno con la con secuente disminución del Eh, seguido después por los nitratos, óxidos de mangane so, óxidos de hierro y finalmente los sulfatos. Los intentos para definir valoñes de Eh críticos en los cuáles el sistema redox favorece una u otra forma han sido solo parcialmente satisfactorios (Presley y Trefry, 1980), lo cual es de esperar se si tomamos en cuenta las distintas limitaciones de las mediciones, discutidas previamente. Sin embargo ha habido investigadores como Ponnamperund (1972) que demuestran que el oxígeno desaparece en valores de Eh por debajo de +250 mu, y que los sulfatos se reducen solamente por debajo de -150 mu.

En el caso de los 10 núcleos que se mencionó que interceptan la capa mínima del oxígeno, solamente dos de ellos (B§ y B11) tuvieron (en la superficie) niveles redox superiores a los 250 mv, mientras que 6 núcleos: B1, B17, B13, B28, B29 y B30 presentaron niveles inferiores a los -150 mv. Esto contrasta con los resul tados de las concentraciones de sulfatos, en los que se puede observar (Apéndice 2) que la gran mayoría de los núcleos presentan una ligera pero sensible reducción de sulfatos, de aquí que la sulfato-reducción debe iniciarse antes de los -150 mv.

Las dificultades teóricas en medir el Eh son igualmente válidas para medir pH, sin embargo se han registrado más mediciones de pH que de Eh. En los núcleos colectados en este estudio se observó en general un rango de pH de 5.7 a 8.0, y más frecuentemente un rango de 6.6-7.8 (Apéndice 2).

– En el agua de mar, es bien conocida la capacidad "amortiguadora" del pH de Esta, la cual se debe principalmente al sistema carbonatos, rara vez se sale de un pH de 7.8 a 8.3 (Skirrow, 1965). En la revisión de Presley y Trefry (1980) casi no se encuentran pH fuera del rango de 7.0-8.0 en el agua intersticial de sedimentos costeros, a pesar de las posibles adiciones de O_{0} , NH⁺₁, H₂S y otras especies que resultan de los cambios diagenéticos. Nissembaum⁴et al (1972) explican que al descomponerse la materia orgánica y ponerse en equilibrio los produc tos de Estos con el agua, estos deben de dar un pH de 7.0. En la presente inves tigación solamente unas pocas muestras dieron lecturas de pH por debajo de 6.6. Los rangos encontrados en este estudio son similares a los encontrados en núcleos mucho más largos colectados por el Programa de Dragado del Mar Profundo DSDP, tan to en la entrada (Gieskes et al., 1983), como en el interior del golfo de Califor nia (Gieskes et al., 1981) donde se reportan valores de 6.8 a 7.8 y de 6.0 a 7.7 respectivamente. Adicionalmente es importante aclarar que las mediciones hechas en este trabajo se hicieron mediante la insertación directa de los electrodos en los sedimentos, y que posiblemente el valor real in situ de pH es ligeramente me nor, ya que al manipular la muestra durante la "extrusion" del núcleo y la mati ción pudieron haberse dado perdidas de CO_{q} .

Obviamente el pH de los sedimentos depende no sólo de la cantidad y composición cualitativa de la materia orgánica sino también de otros factores tales como la sulfato-reducción y diversas reacciones diagenéticas. Todos estos factores son reflejados en la distribución del pH en los núcleos. En el caso de la mayoría de los núcleos del golfo de California (de este estudio) la distribución con la profundidad es relativamente constante, y en la mayoría de los casos, con una muy ligera tendencia a aumentar con la profundidad, aunque ocasionalmente en algunos núcleos el pH decrece ligeramente con la profundidad. Esto mismo ha sidu encontrado por Zobell (1946) en el mismo golfo de California y también observado en otros mares (Bordovsky, 1965).

En relación a los sedimentos típicamente occánicos en la mayoría de los casos el pH no se incrementa sino que se mantiene más bien relativamente constante (Roman kevich y Petrov, 1961). Sin embargo en el caso de los núcleos B31 y B32 colecta dos fuera del golfo en fondos pelágicos (fig. 4.4 y 4.7) se observó que estos presentan la misma tendencia a aumentar el pH con la profundidad en el subsuelo, que varios núcleos del golfo.

4.2 Sulfato-Reducción y Tasas de Sedimentación en cl golfo de California

La sulfato-reducción ó reducción de sulfatos es un proceso comín de la descompo sición del material orgánico en los sedimentos, la cual ocurre por debajo ó en la misma zona de bioturbación (Kaplan <u>et al.</u>, 1963, entre otros). Aht los SO son utilizados por las bacterias sulfato-reductoras, como fuente de energía, reduciendo el SO, a H₂S vía un proceso global que ha sido representado esquemáticamente como sigue:

 $2(CH_{2}O)_{x}(NH_{3})_{y}(H_{3}PO_{4})_{z} + XSO_{4}^{=} \rightarrow 2XHCO_{3}^{-} + XH_{2}S + 2_{y}NH_{3} + 2ZH_{3}PO_{4}$ (Richards, 1965)

donde el material orgánico sedimentario está sujeto a la descomposición x, y y z son coeficientes estequiométricos; El H_2S producido reacciona con el hierro para formar sulfuros insolubles como greigita, mackinawita y pirita (Goldhaber y Kaplan, 1974; Berner, 1984). Adicionalmente la reacción libera amonia y fosta to disuelto, los cuales son transportados por difusión molecular y/o mezelado fí sico y biológico a través de los sedimentos y regresados así a ía columna de agua (Aller, 1980; Klump y Martens, 1981; entre otros). La sulfato-reducción conduce así a una sifnificante regeneración de sustancias nutritivas, la cual puede jugar un importante papel en la productividad de los cuerpos de agua.

Respecto a la velocidad con que ocurre la sulfato reducción se ha observado que en general esta varía con la localidad geográfica y la profundidad de los sedimentos, entre las causas de estas variaciones se han reconocido (Boudreau y Westrich, 1984): la temperatura, presión, concentración de carbono orgánico reactivo metabolizable; y la concentración de sulfato disuelto en el agua intersticial.

Desde el modelo original de Berner (1964), la sulfato-reducción ha sido modelada bajo diversas consideraciones (modelo modificado de Berner de Lasaga y Holland (1976); modelo Monod (Boudreau y Westrich, 1984); entre otros). Adicionalmente el mismo autor (Berner, 1978) encontró una relación lineal entre la disminución de la concentración de sulfato disuelto y la tasa de sedimentación (w):

w = -B(3c/3x)o (4.2.1)

donde B representa la constante de proporcionalidad; si (3 c/3x)o es expresada en milimoles por litro (mM) de agua intersticial por centímetro de sedimento y v está en centímetros por año. La proporcionalidad es explicada en base a un mode lo teórico, el cual supone que la descomposición de la muteria orgánica por las bacterias sulfato-reductoras es de primer orden con respecto ala concentración de materia orgánica metabolizable; el modelo también supone que la reactividad de la materia orgánica metabolizable; varía de sedimento a sedimento, mientras su con centración permanece esencialmente constante. Bajo tales consideraciones Berner demuestra lo factible de la relación como un parámetro útil para estimar la tasa de sedimentación en diversas localidades, entre ellas el golfo de California.

La explicación de la relación (1); ha sido dada a partir de los modelos de Berner (1964; 1971; 1974), y Toth y Lerman (1977); y está basada en la ecuación diagenética de sulfayo-reducción en ausencia de la bioturbación y las siguientes suposi ciones: (a) La descomposición del material orgánico que acompaña a la sulfato-reducción bacterial obedece una cinética de primer orden,

51

 $\{4.2.8\}$

- (b) La única reacción química que afecta a la concentración de sulfatos disueltos en el agua intersticial es la reducción por bacterias.
- (c) La adsorción de SO⁼ es despreciable.
- (d) La compactación, el flujo de agua y los gradientes de porosidad pueden ser ignonados.
- (c) La difusión solamente ocurre via molecular.
- (6) Diagénesis en estado estable.

Las ecuaciones diagenéticas de los sulfatos y el material orgánico respectivame<u>n</u> te son:

Ds Z ²	$c/\gamma x^2$	-	w gc/gx -	LFkG = 0	(4.2.2)
	2	-	w dc/dx -	kG = 0	(4.2.3)

donde w es la tasa de sedimentación, c la concentración de sulfatos, G la concentración de carbono orgánico metabolizable (moles/masa de sólidos totales), k la constante de proporcionalidad para la sulfato reducción, L el coeficiente estequiométrico que relaciona el número de moles de SO_4^- reducidos por mol de carbono orgánico oxidado, Ds el coeficiente de difusión en los sedimentos, y F= [[1-\$\phi]] Is donde \$\phi\$ es la porosidad y Is la densidad promedio del sedimento. Partiendo de las condiciones límite (para $x \to \infty$, G ______ o, c ______ y para X=0, Go y Co) la solución de las ecuaciones anteriores, para una \$\phi\$ constante es:

$$C = [(\omega^{2} FL Go)/(\omega^{2} + kDs)] \exp ((-k/u)x) + C_{\infty}$$

$$G = Go \exp (-(k/w)x)$$

$$(4.2.4)$$

$$(4.2.5)$$

y sustituyendo (4.2.5) en (4.2.4): $Co - C_{\infty} = (w^2 FLGO)/(w^2 + kDS)$ (4.2.6)

Por su parte Toth y Lerman (1977) encontraron que (k/w) de las ecuaciones anterio res está relacionado linealmente como sigue: $K = Aw^2$ (4.2.7)

donde A es una constante empírica igual a 0.04 cm^{-2} .

Cualitativamente, Berner (1980) explica que la correlación se debe a que como k es una medida de la reactividad de la materia orgánica o "metabolicidad" de la misma; a tasas de sedimentación mayores hay una mejor preservación de los compue<u>s</u> tos fácilmente metabolizables, los cuales en tasas de depositación l'entas serían destruídas por los organismos que habitan cerca de la capa béntica.

Cuantitativamente, la relación también ha sido explicada, despejando k desde la ecuación (4.2.4):

 $k = (LFGo/Ds (Co-C_{\infty})^{-1}/Ds) w^2$

que por analogía con la ecuación (4.2.7), se requiere que todos los parámetros L,

F y Ds y $Go/(Co - C_{\infty})$ sean relativamente constantes.

Ahora bien, para explicar la relación (4.2.1) del gradiente de los SO $\overline{4}$ y la tasa de sedimentación, la ecuación (4.2.4) ha sido rearreglada como sigue:

$$rac/\partial x$$
) $o = -hwFLGo/(w^2 + hDs)$

que sustituyendo en la ecuación de Toth y Lerman (4.2.7):

$$w = -\left(\frac{1 + AD_{2}}{AFLGO}\right) \quad (\partial c/\partial x)o \tag{4.2.10}$$

que al compararse con (4.2.1), B estaría dada por (1 + ADs)/AFLGO y que para ser constante requiere que todas los componentes de la expresión sean relativa mente constantes, de hecho A es por definición constante, F varía de acuerdo a la densidad y porosidad de un sedimento a otro, D es constante de un factor de dos en los sedimentos finos, y L generalmente se supone constante e igual a 0.5.

Para el caso de la mayoría de los núcleos del golfo de California, analizados en este estudio, la porosidad superficial se mantiene relativamente cercana a 0.80 y 0.90; aunque con ello, F variaría de 0.28 a 0.64, influyendo notablemente en la expresión equivalente a B.

En la tabla 4.2.1 se presenta una lista de los valores de -(3c/5x)o y - (1Eh/Tx)o en los 47 núcleos colectados de este estudio, en donde se puede observarque éstos oscilan desde 0.02 a 0.72 y -4.82 a 2.09 respectivamente. En generalse puede resumir que los mayores valores de <math>-(xc/5x)o se presentan en los núcleos de la plataforma continental (0.42 - 0.72), los bajos e intermedios en el talud o bordes interiores de las cuencas (0.05-0.36), y los más bajos en las de presiones más profundas de las cuencas (0.09-0.26). Esta relación entre la sulfato-reducción y profundidad (incluída el tipo de topografía), no es rara, ya que la velocidad con que ocurre dicha reacción varía en función de la temperatura, presión, cantidad de carbono orgánico reactivo y concentración de sulfato en las aguas intersticiales (Boudreau y Westrich, 1984); parámetros que van a variar según la localidad y profundidad dentro del golfo.

Con objeto de tener una idea, de la confiabilidad del método de Berner (1978) para estimar la tasa de sedimentación, se elaboró la Tabla 4.2.2, donde aparecen núcleos de este trabajo con núcleos vecinos a los cuales se estableció la tasa de sedimentación por métodos radioquímicos e históricos en cuatro de las principales cuencas del golfo de California. Realizando un ajuste a la recta entre - $(\frac{1}{2}c/\frac{1}{2})o$ y las tasas de sedimentación (w) reportadas tendremos una recta del tipo (Fig. 4.2.1);

 $w = 1.26 (\partial c/\partial x) - 0.005$

(4.2.11)

con un coeficiente de correlación significativo ($\propto = 0.01$) de 0.96 (n=9); ahora considerando que la ordenada es despreciable y por analogía con la ecuación (4.2.1), B sería igual a 1.26 en el golfo, en lugar del valor de uno obtenido por Berner (1978) en una diversidad de localidades. Esta diferencia puede ser explicada de dos maneras; una, que se deba simplemente a la ligera diferencia en la posición entre los mícleos utilizados en la correiación, ó que como en los se dimentos del Delta del Mississippi (Berner, 1978), los del golfo de California poseen un valor de A menor que el encontrado en la mayoría de los sedimentos (A= 0.04 cm⁻². año). Así, en los sedimentos del golfo (con f 0.80; D=100 cm². A sería del'orden de 0.03 cm⁻². año.

(4.2.9)

Núcleo	Prof. (m)	Intervalo inicial (cm)	Pendiente inicial de sulfatos (mH/cm) -{\circletcos(cm/cm)	Coeficiente de correlación (-r)	Pendlente inicial del Eh (mv-cm) -{"BEhy">x)o	Coeficiente de correlación (+r)
61	240	0-40	.0.72	0.97	5.27	0.91
R2	1160	0-45	0.10	0.67	D.21	0.04
B3	2500	0-25	¹ 0.36	0.99	2.30	0.27
	1210	15-43	D.05	0.36	-3.64	-D.69
B5	2250	15-50	0.23	0.54	C. Pharter D	
86	2220	0-35	0.30	0.94	1.98	0.91
B7 00000	45	0-20	0.48	0.91	10.9	0.90
88	B40	0+50	• 0.05	0.56	5.61	0.76
B9	1240	0-15	0.28	0.98	20.9	1.00
B10	2450	10-53	0.13	0.77	1.04	0.62
811	1050	0-20	0.04	0.13	18.9	0.95
B12	670	20-58	0.36	0.94	6.64	0.96
R13	610	20+67	A 18	n.97	1.59	0.60
A14	2020	3-30	0.25	0.97	7.26	0.74
015	1815	15-47	0.16	0.67	3.14	0.66
916	1540	0-30	0.21	D. 64	1.74	0.31
817	700	10-35	0.25	n a2	4 94	0.23
510	200	5-40	0.42	0.52	D.23	0.23
010	1500	0-24	0.4	0.73	9.64	0.92
813	1400	26.46	0.00	0.51	5.65	0.74
DZU . 021	2010	23-40	0.00	0.91	2.27	0.55
DC1 D22	1350	0-25	0.27	0.90	9.74	0.83
823	2410	0-25	0.74	0.65	18.1	0.91
874	3250	0-51	. 0.09	0.89	-1.56	-0.58
875	2450	5-44	0.13	0.82	2.01	0.70
D26	3230	0-25	0.10	0.33	9.24	0.95
B27	1600	5-40	0.02	0.15	-4.82	-0.84
828	2590	20-50	0.18	0.90	11.1	0.77
829	3180	10-40	0.29	0.83	-5.53	-0.48
830	2630	0-30	-0.05	-0.47	-5.01	-0.84
831	3410	10-40	-0-03	-0.44	-2.48	-0.72
077 8	3720	15-40	0.15	0.53	3.10	0.75
576	3150	0-25	-0.12	-0.67	9.46	- D.93
223	0045	0-25	-0.04	-0.33	5.36	0.92
036	2600	0-20	-0.04	-0.35	-3.00	-0.89
833 916	2330	0-30	0.13	0.35	-4.5	-0.93
837	25	0-25	0.16	0.91	0.60	0.48
P2	635	15-45	0.15	0.78	8.85	0.98
P3	2020	0-25 -	0.31	0.80	3.84	0.58
P4	2040	5-25	0.08	0.93	1.60	0.20
P5 ⁸	2640	15-45	0.16	0.76	3.95	0.62
P6	2980	15-40	0.12	0,54	0.85	0.31
P7	2700	0-21	-0.07	-0.82	20.B	0.95
P8 ^a	2845	0-10	0.61	0.84	24.7	0.84
P9	2970	10-35	-0.05	-0.65	-0.88	-0.36
P19	3400	0-70	0.06	0.85	0.63	0,18
P25	1200	0-20	0.13	1,00	14.1	1.00

Tabla 4.2.1 Gradiente inicial del potencial electrodo Redox (Eh) y de sulfato disuelto en los sedimentos del golfo de California y áreas adyacentes a la Boca.

^a = Solamente en esos intervalos presentó dicha tendencia.

.

.

. . • .

۰.

TABLA 4.2.2. Tasas de sedimentación y gradientes de sulfato-reducción en cuatro Cuencas del Golfo de California. e jarren en en en en

20

Area	Núc1eo	<u>Latitud</u> N	Longitud W	Prof. T (m) m	asa de sed <u>i</u> entación (cm/año)	Observaciones
Cuen c a de Guaya⇔na s:	L 190 B21 BAV79-B29 BAV79-E9 B13 L 181 B17	27°11' 27°02.2' 26°42.0' 27°53.2' 26°52.6' 28°06' 27°25.1'	111°24' 111°23.7' 111°25.0' 111°37.2' 111°40.0' 112°08' 110°47.1'	1910 2010 635 0 660 0 630 787 790	0.258 -(3c/3x) ≠0.2 .22-0.33 .16-0.25 -(3c/3x)₀=0. 0.340 -(3c/3x)₀=0.5	Establecida con radiocarbono (a) 1 Considerando las laminaciones (b) 18 Establecida con radiocarbono (a) 25
Cuenc≕a de San P≕e dro Marti⊴r:	L138 B19	28°24' 27°46.9'	112°28' 112°03.2'	1056 1500	0.112 -(⁊c/ȝx)₀=0.0	Establecida con radiocarbono (a) 08
Cuenc=a Faral lón:	R-82 B-24	25°27.8'	109°52.0'	3170 3250	0.100 -(⁊c/⁊x)₀=0.(Establecida con radiocarbono (c) 09
Cuencza Pesca±d ero:	R-47 P-19 B-27	23°59.3' 24°07.9'	108°53.0' 108°37.3'	2820 3400 1600	0.046 -(3c/xx)₀=0.(-(3c/λx)₀=0.(Establecida con radiocarbono (c) 06 02

(a) CIa lvert (1964); (b) Estimada desde datos de Donegan y Schrader (1982); (c) Calvert (1966a).

En la figura 4.2.2, se ilustran las distintas tasas de sedimentación en las cua tro principales cuencas del golfo de California, en estas es posible notar, como en general los valores varían según la topografía y localización de las mismas; en base a cuatro núcleos (B14, B21, B15, B16) colectados dentro de la cuenca de Guaymas, la tasa de sedimentación promedio da un poco más que 0.26 cm. año-1 si milar al reportado (0.27 cm. año-1) por Simoneit et al (1982). Por su parte la cuenca Farallón parece ser que es la que posee las tasas de sedimentación más elevadas (0.11 a 0.38, con un promedio en la cuenca de 0.32 cm. año-1) posiblemente a consecuencia de las importantes descargas de terrígenos provenientes del Río Fuerte. De la otra cuenca que se obtuvo también un promedio, fué Pesca dero en la que el valor es de 0.17 cm. año⁻¹, siendo el más bajo de las tres cuencas mencionadas. lo cual es de esperarse en la boca del golfo.

Con el fin de comparar la ecuación 4.2.11 con la de otras áreas de productividad comparable a la del golfo de California, en este estudio se realizó el ajuste de seis pares de datos seleccionados desde la margen del Noroeste Africano (Reimers y Suess, 1983) encontrándose la ecuación siguiente:

$$w = 0.72 \quad (-3c/3x) + 0.001 \quad (4.2.12)$$

Con un coeficiente de correlación significativo de 0.99, que por analogía con (4.2.1) despreciando el valor de la ordenada, B sería igual a 0.72 en lugar del uno obtenido por Berner (1978) 6 del 1.26 obtenido en este estudio para el golfo de California.

Berner (1978) propuso la ecuación (4.2.1) con objeto de estimar la tasa de sedi mentación de los sedimentos marinos en general (donde se presenta la caída de la sulfato-reducción) pero los resultados locales del golfo de California y de la margen Africana, así como los dados incluso por el mismo Berner para el delta del Río Mississippi, sugieren que en cada región este valor puede variar con res pecto a uno notablemente. Por ello, con objeto de optimizar la estimación de la tasa de sedimentación a partir del gradiente de sulfatos, es deseable evaluar B para la región donde se pretenda utilizar esta técnica, y de esa manera reducir la incertidumbre de dos ó más órdenes de magnitud que se pueden tener utili zando B=1. Es muy probable que con la evaluación de B, la técnica del gradiente de sulfatos pueda producir errores comparables a los de otras técnicas de "fecha do".

Diversos investigadores (Robbins, 1978; Church <u>et</u> al., 1981; Páez-Osuna y Mand<u>e</u> lli, 1985) han encontrado que las técnicas radioactivas como 210 Pb; en ciertas situaciones como por ejemplo la dilución causada por el material orgánico y la compactación, pueden producir errores hasta de un 30% o más. Todo lo anterior permite resaltar la necesidad de más estudios cuidadosos de las técnicas radiac tivas para poder así evaluar de manera confiable la relación de la tasa de sed<u>i</u> mentación con el gradiente de la sulfato-reducción.

Figura 4.2.2 Tasas de sedimentación en el Bajo Golfo de California.

4.3 Distribución y Acumulación de la Materia Orgánica

Recientemente (Bender y Heggie, 1984) con la ayuda de modelos y consideraciones termodinámicas se ha demostrado que del total de C-orgánico que llega hacia los fondos, la mayor parte es oxidado por O_2 , mientras que los oxidantes secundarios tales como NO_3^- , NnO_2^- , Fe $2O_3^-$ y SO_3^- nunca oxidan más del 5-10% de dicho material.

Una vez que la materia orgánica se incorpora a los sedimentos ésta es posterior mente descompuesta, durante la diagénesis, en donde si las condiciones lo permi ten Esta puede continuar su oxidación por 02 6 los otros agentes secundarios. Liu y Kaplan (1984) señalan que más de la mitad de Las macropartículas orgánicas depositadas sobre el piso marino pueden ser consumidas por denitrificación en la interfase agua-sedimento. Cuando el aporte del material orgánico es más 6 menos constante se producen los perfiles típicos de reducción del contenido orgánico con la profundidad en la columna sedimentaria; estos perfiles han sido observados tanto en el océano abierto (Miller y Mangini; 1980), como en los mares margi nales (Bordovsky, 1965).

En el golfo de California al igual que en otras margenes continentales, el nivel del C-orgánico es mís elevado en las profundidades en donde la capa del mínimo de O2 imprime 6 intercepta el talud continental; muchos de estos sedimentos son altamente diatomáceos, de aquí que el C-orgánico alcanza generalmente valores del 3-4%, y en algunos casos hasta 5 6 6% (Van Andel, 1964; Niemitz, 1977), mien tras que en las partes más profundas o en la plataforma continental el C-orgánico disminuye al 2-3% o menos según el carácter textural de los sedimentos, un hecho importante en relación al contenido orgánico de los sedimentos del golfo, es la de que sus fondos no requieren de la anoxía completa para tener elevadas concentraciones de materia orgánica, ni la presencia de sills, parecen tener con trol en la distribución del material orgánico; es un hecho que las depresiones de las cuencas con sills, tienen menos material orgánico que el talud continental (Van Andel, 1964; Gilbert y Summerhaycs, 1982; Simoneit et al, 1982; Schrader y Boumgartner, 1983).

En el golfo pues, la oxigenación parece tener una fuerte influencia sobre la acu mulación orgánica, a diferencia de otros lugares de surgencia como el talud Afri cano (SW), donde el C-orgánico y O2 son abundantes, así pues la oxigenación si bien no causa las laminaciones si ayuda a preservarlas.

Otro aspecto que se ha señalado en las zonas de surgencia, viene a ser la descom posición de la materia orgánica en la interfase agua-sedimento y en las secciones superficiales de la columna sedimentaria, la cual utilizará 0_2 no solamente desde las aguas intersticiales, sino también desde la columna de agua sobre yacente modificando así los niveles de 0_2 en la capa del mínimo de 0_2 (Calvert y Price, 1971), así pues en el golfo de California y algunas otras zonas de surgencias las aguas del fondo no son anóxicas en el sentido de que estén estancadas (por los sills), sino que más bien al darse la circulación estuarina y moverse el agua la concentración de 0_2 decrece en las aguas permitiendo así la preservación del material orgánico, mientras que en otros lugares la disminución de 0_2 no siem pre precede a la acumulación de la materia orgánica, sino que más bien le sigue a ésta, como en las costas del Suroeste Africano (Summerhayes, 1983). En conclu sión, la distribución y concentración de la materia orgánica está controlada por su suministro y preservación, los cuales varían en función de la circulación glo bal y local (Damaison y Moore, 1980).

En esta investigación se analizaron por el metodo de Gaudette et al (1974), 19 núcleos y 12 muestras superficiales del golfo de California (Apéndice 2). Al igual que Van Andel (1963) y Niemitz (1977), se encontró que los valores de Corgánico oscilan de 0.1 a 5% según la topografía, localidad y textura de las miestras; ast por ejemplo en la plataforma continental del golfo se pueden encon trar concentraciones tan bajas como de 0.128 en arenas, 6 hasta 2.58 de C-orgáni co en sedimentos más finos (núcleos B1 y B7); mientras que las concentraciones más elevadas se hallan en general en el talud y borde de las cuencas (núcleo B12, por ejemplo), por su parte el núcleo B31 extraído del océano abierto, presentó valores de 0.17 a 0.73% de C-orgánico, con la tendencia a disminuír su concentra ción con la profundidad de la columna sedimentaria; en el interior del golfo, es ta tendencia no fue tan evidente, incluso en varios núcleos y más claramente en dos de ellos, B20 y B24, se presento un notable incremento del contenido de Corgánico con la profundidad. Este enriquecimiento de las capas inferiores sola mente se puede deber a tres causas; (1) que el aporte de C-orgánico en los perto dos correspondientes al enriquecimiento haya sido significativamente mayor con respecto al actual, para producir tal perfil y subyugar la degradación; (2) al aporte repentino de material continental con bajo contenido orgánico (corrientes de turbidez, aporte (luvial excepcional, etc); (3) que de alguna manera se este ejerciendo una invección o aporte de materiales orgánicos desde capas o estructu ras inferiores. Esto último parece mucho más factible; ya que en la cuenca de Guaymas en núcleos más largos, ha sido observado el enriquecimiento en capas más profundas (Simoneit et al, 1979), inclusive en la zona de actividad termal de la cuenca se han detectado enriquecimientos inusitados de sustancias orgánicas, sobre todo en las proximidades de las instrusiones laterales (sills). Estas sustan cias orgánicas llamadas pirolisatos se ha visto además que tiene la capacidad de transferirse por difusion; destilación y circulación hidrotermal (Simoneit, 1982).

En el caso de un núcleo colectado en la cuenca de Guaymas (cercano al B20, 20km) Simoneit <u>et al.</u>, (1979) encontraron que la mayor proporción del contenido orgánico estaba constituído por humatos y berógenos (2%). Los mismos autores postulan que durante los pasados 2000 años, la cuenca de Guaymas ha recibido una mezcla va riable de detritus orgánico proveniente de la producción autóctona primaria (y alteración microbial) y de fuentes terrígenas alóctonas. Sin embargo, la mayor parte es de origen alóctono y diagenéticamente inmaduro; otro hecho que señalan los mismos autores es la generación de algunos hidrocarburos del rango de las ga solinas (C_a a C_b) que parecen estar emigrando a través de las capas sedimentarias.

Pesde la década de los cincuenta se intentó modelar la descomposición del material orgánico; así Emery y Rittenberg (1952), hablan de una profundidad en los sedimen tos de 75 cm en la que se degrada el 50% de la materia orgánica en la cuenca de California, mientras que Starikova (1956) en el Mar de Bering, habla de una descomposición del 20% del C-orgánico en el primer metro.

En relación a la cinética de la descomposición del material orgánico en sedimentos marinos, la información reciente se ha obtenido principalmente desde modelos diagenéticos a partir de la composición intersticial (Goldhaber et al., 1977; Lasaga y Holland, 1976; Berner, 1980; entre otros). La estrategia a seguir para calcular las constantes de descomposición se basa en el decaimiento del C-orgánico con la profundidad en los sedimentos, suponiendo que este decaimiento es esencial mente debido a la descomposición de la materia orgánica durante la diagénesis, y que obedece a la siguiente ecuación (Muller y Mangini, 1980):

 $C = Co e^{-kt} = Co e^{-(k/w)x}$ (4.3.1)

donde C es el contenido de C-orgánico en la profundidad x (ó tiempo t), Co en x=0, k la constante de descomposición del C-orgánico y w la tasa de sediment<u>a</u> ción.

Considerando dicha ecuación, se elaboró la tabla 4.3.1 en donde se presentan los valores de k para varios núcleos del golfo; los valores negativos posiblemente reflejan que el aporte más importante de la materia orgánica, se da desde el in terior de los sedimentos a expensas de la actividad termal (sobre todo en B20 \overline{y} B24).

Con respecto a la magnitud de k, es posible observar que éstos valores varían inclusive dentro de un mismo tipo de rasgo topográfico; ignorando los valores ne gativos tendremos que en la plataforma continental estos van desde 1.53×10^{-3} a 14.5 x 10^{-3} año $^{-1}$, en el talud y bordes de las cuencas de o.70 x 10^{-3} a 7.1x 10^{-3} año $^{-1}$ (excepto un sólo núcleo con 102 x 10^{-3} año $^{-1}$), y en las depresiones de 2.1 x 10^{-3} a 80 x 10^{-3} año $^{-1}$. Estos valores son en general mayores a los reportados para el océano abierto $(2-4 \times 10^{-5} año^{-1})$, Heath et al., 1977; 0.8-1.4x 10^{-6} año $^{-1}$, Waples y Sloan, 1980; $1.7-21.1 \times 10^{-6}$ año $^{-1}$, Muller y Mangini, 1980), pero comparables a los encontrados en lugares como el sitio FOAM en Long Island Sound, U.S.A. (Berner, 1980).

Considerando dichas constantes se puede decir que la vida media del C-orgánico varía de 50 a 450 años en la plataforma continental del golfo, en el talud de 100 a 1000 años y en las depresiones de las cuencas de 10 a 330 años. A pesar de que el intervalo es muy amplio en cada una de estas zonas, es notorio que en los núcleos colectados en el talud y bordes de las cuencas se presentan las vidas medias más elevadas, lo cual es de esperarse si recordamos que una gran pro porción de esta zona en el golfo se intercepta con la llamada capa del mínimo de oxígeno.

Como se discutió en la sección 4.2, en diversos sedimentos marinos se ha observa do una relación directa entre las tasas de sedimentación y las constantes de pri mer orden de la descomposición del C-orgánico (Toth y Lerman, 1977):

 $k = A \omega^2$

 $\{4, 2, 7\}$

ignorando las k negativas (de la tabla 4.3.1), se hizo el ajuste de los datos de este estudio; encontrándose un coeficiente de correlación muy pobre (R= 0.51, n= 13) debiéndose esto a que posiblemente en un buen número de núcleos, el material orgánico que emigra desde las capas internas, no permite describir la cinética de los sedimentos marinos con las simplificaciones de la ecuación general de diagénesis en este estudio.

Otros datos que aparecen en la tabla 4.3.1 vienen a ser las tasas de acumulación de sedimentos (r) y C-orgánico (rc), estas fueron calculadas a partir de las siguientes expresiones:

た =	P 5	(1-	¢)	٠	w	(Robbins,	1978)	(4.3.2)
LC=	ኪ	C-org	9					(4.3.3)

donde \hat{S} s, es la densidad promedio de los sedimentos, la cual en este caso se supuso igual a 2.55 g.cm⁻³, valor que se ha encontrado comunmente sobre todo en sedimentos arcillosos (Berner, 1971). C-org por su parte se refiere a la conce<u>n</u> tración del carbono orgánico. Tabla 4.3.1. Tasas de sedimentación, acumulación de sedimentos (r), acumulación de carbono orgánico (rc-org) y constantes de primer orden (k) para la descompos<u>i</u> ción de carbono orgánico en los sedimentos del Golfo de California.

Núcleo	w (cm.año ⁻¹)	(mg.cm ⁻² .año ⁻¹)	rc-org (mg.cm :año	·1) (10 ^{3 k}) (10 ^{3 .} año) ⁻¹	Sección del núcleo (cm)
		Plataform	a≟continent	al:	
B37	0.20	153	2.34	14.5	20-60
B1 B7	0.60	370	9.25	1.53	15-60
	Ta	lud y borde d	e las Cuenc	as:	
B19	0.10	28.1	1.06	0.70	0-24
B20	0.07	24.5	0.83	-32.4	0-46
B17	0.33	327	3.92	4.8	0-100
B12	0.28	42.8	1.88	-0.76	0-58
B25	0.16	73.4	2.47	7.1	10-44
B4	0.06	54.1	0.68	102	0-20
		Depresiones d	e las Cuenca	as:	
B3	0.45	190	6.70	2.9	5-84
B26	0.12	50.5	1.70	80	0~57.5
50 55	0.38	252	4.69	3.8 1 0	0-45
B24	0.11	61.7	1.17	-92	0-51
B14	0.33	106	3.18	2.9	3-67
B29	0.29	118	2.87	2.1	0-70

De manera muy general se puede observar en dicha tabla que las tasas de acumula ción tanto orgánica como de los sedimentos son mayores obviamente en la platafor ma continental, con un rango que fluctúa entre 2.34-13.9 y 153-557 mg.cm⁻². año⁻¹ respectivamente, mientras que los más bajos valores se localizan en el talud y borde de las cuencas con 0.68-3.92 y 24.5-327 mg.cm⁻². año⁻¹. Los dos parámetros r y re varían pues notablemente en los sedimentos del golfo, sin embargo si observamos la gráfica de la figura 4.3.1, ambos parámetros están altamente corre lacionados sobre una gráfica log-log. La regresión lineal de los datos de la f<u>i</u> gura 4.3.1 está dado por:

rC-org= 0.057 r^{0.82}

(4.3.4)

Así pues mientras que en el golfo de California la regresión lineal sugiere que la tasa de acumulación de C-org es del 5.7 por ciento de la tasa de acumulación elevada a la potencia de 0.82, en lugar del 1.0 por ciento de la tasa de acumula ción elevada a la 1.4, que ha sido observada en sedimentos de tipo oceánico (Heath <u>et</u> al., 1977).

La relación 4.3.4 ha sido explicada (Stein, 1986) en base a que las tasas de sedimentación altas favorecen la preservación del material orgánico marino, reduciendo así su tiempo de residencia en la zona de bioturbación y descomposición óxica. Otro hecho que no ha sido esclarecido en dicha relación es la validez de esta para el material orgánico de origen predominantemente terrestre, ya que supuestamente los terrigenos orgánicos son más resistentes a la descomposición óxi ca (Waples, 1983). La relación obtenida en este trabajo para el golfo de Califor nia indica que aunque esté presente la materia orgánica terrígena (sobre todo en núcleos de la plataforma) la relación presenta una correlación positiva significante (R=0.90; n=16), en contraste a la falta de correlación encontrada por Stein (1986) con datos de sedimentos recientes y del holoceno del Mar Negro. En el golfo de California, se puede concluir que a pesar de que este recibe aportes importantes de terrigenos orgánicos y de las condiciones pobres (6 nulas) de 0, que prevalecen en gran parte del mismo (probablemente entre los 400 y 800 m de profundidad), si se presenta la correlación positiva entre la acumulación de se dimentos y de C-orgánico, de manera similar que en los ambientes óxicos pelági cos.

Como se mencionó en la sección 2.3 de este trabajo, el golfo de California representa un área subtropical con tasas de productividad primarios excepcionalmente altas. Los estudios que se han hecho en el área indican que ésta varía según la época del año y la región; en la parte sur del golfo dan un promedio integrado de 98.6 gC.m⁻². año⁻¹, en la porción de los 25-27°N un valor promedio anual de 138.7 gCm⁻². año⁻¹, mientras que en la porción norte de los 27-29°N, 193.5 gCm⁻². año⁻¹ (Zeitzschel, 1969). Adicionalmente Lara-Lara y Valdez-Holquin (1986) han reportado valores excepcionalmente altos y variables en la parte central del golfo; en un crucero de 1983, midieron 3.1 gCm⁻². día⁻¹ y en 1984, 2.8 gC.m⁻². día⁻¹, disminución que los autores han relacionado con el fenómeno climatológico denominado "El Niño".

En la tabla 4.3.2 se presentan las tasas de acumulación y producción de C-orgán<u>i</u> co en el golfo de California y otras áreas, con objeto de compararlas y analizar los datos del golfo en función del modelo de Suess y Müller (1981). Estos autores han propuesto una relación empírica que relaciona a la fijación de carbono primario, la profundidad x, y el flujo de C-orgánico:

 n C-org = 5.9 X^{-0.616} productividad

(4.3.5)

Figura 4.3.1. Ajuste lineal de logaritmo de la acumulación de C-org y el logaritmo de la tasa de acumulación (r). Tabla 4.3.2. Producción y acumulación de carbono orgánico en diversas áreas marinas. (Tomada parcialmente de Suess y Müller, 1981).

	Acumulación (gCm ⁻² , año ⁻¹)	Producción (gCm ⁻² . año-1	Referencia
Oceáno abierto	0.0031	50	Knauer et al (1979); Cobler y Dymond (1980
Mar Báltico	28	160	Suess y Erlenkeuser (1980); Smetacek <u>et</u> <u>al</u> (1978).
Margen del Perú	38	350	Staresinic (1978); Müller y Suess (1979
Margen de California	2.2	250	Sholkovitz (1973); Bruland <u>et al</u> (1974) Knauer <u>et al</u> (1979)
Golfo de California	40	100-200 (a)	Este estudio; (a) desde datos de Zeitzschel (1969).

65

donde la productividad se refiere a la tasa de productividad de carbono promedio anual.

Esta relación fue deducida a partir de diferentes mediciones de las partículas atrapadas en la columna de agua mediante trampas, Suess (1980) señala que esta relación es el resultado de la cinética de descomposición del material orgánico y de la velocidad de sedimentación de las partículas. Utilizando tal relación, el golfo tendría que tener algo así como 250 m de profundidad promedio para poder satisfacer dicha ecuación, lo cual no es cierto, debido a que en el Bajo golfo, la batimetría (Bischoff y Niemitz 1980) muestra una profundidad promedio de 1000 m, mientras que en el Alto golfo es de 145. lo cual para todo el golfo da algo así como 700 m.; entonces si en el golfo la profundidad promedio es mayor, dicho resultado puede ser interpretado en base a que la materia orgánica se preserva mejor en el golfo que en aquellas zonas en donde se dedujo la expre sion 4.3.5., lo cual parece obvio si tomamos en cuenta que el golfo de California posee varias cuencas (con sills) y la influencia de la llamada capa del minimo de 02. Adicionalmente Summerhayes (1985) señala que la presencia del material orgánico sobre el fondo, puede ejercer un fuerte control sobre la oxigena ción de las aguas del fondo, y localmente afectar la caída de 0_2 de la capa del mínimo de 02. En el golfo de California, la circulación termohalina al mover el agua sobre los fondos que demandan oxígeno (por la descomposición de la materia orgánica) esta favorecerá la caída de 0_2 en la llamada capa del mínimo, permitiendo así la preservación del contenido orgánico, mientras que en otros lugares como en los margenes del Suroeste Africano, la mínima de 09 no siempre precede a la acumulación del material orgánico, sino que más bien se presenta enseguida de Esta.

5. Distribución y Acumulación de Metales Pesados en el Golfo de California.

5.1 Proveniencia de los metales pesados

En el golfo de California existen una gran diversidad de ambientes geoquímicos, en los cuales los metales se pueden encontrar en cuando menos las siguientes fases: detrítica, biogénica, hidrogénica e hidrotermal.

En la fase detrítica, los metales son transformados desde las rocas bajo la acción del intemperismo, en una fase arcillosa (montmorillonita, caolinita, ilita, etc.) y de óxidos (goetita, todorokita, etc.), en donde los metales son transpor tados como parte de la estructura de los minerales, o bien, ad/absorbidos a estos.

En relación a la estabilidad de los óxidos, principalmente de Fe y Mn, estos per manecen como tales, a menos que sean sujetos a condiciones de Eh y pH donde ellos sean reducidos a Fe 2 y Mn 2 ; este Fe 2 puede ser transformado a monosulfu ros de Fe y eventualmente a pirita, mientras que el Mn tenderá a enriquecer las aguas intersticiales, para precipitar nuevamente como óxido o en su caso, como carbonato de manganeso.

Otro posible mecanismo de capturar metales desde el agua de mar es la adsorción de metales como Cu, Ni, Zn y Co sobre las fases minerales del MnO2 (Goldberg, 1954; Krauskopf, 1956).

La otra fuente importante de metales, que en el caso particular del golfo de California ha llamado la atención de la comunidad científica, es la de los metales que provienen de la actividad hidrotermal. Muy recientemente, en la cuenca de Guaymas (dentro del Golfo), Campbell (1985) calculó que el aporte hidrotermal de Mn, viene a ser de 5-10 veces mayor que el valor máximo del flujo diagenético del talud. Estas investigaciones y las realizadas con el sumergible DSR/V "Alvin", demuestran que el aporte metálico hidrotermal es significativo en las áreas activas del golfo y posiblemente en las alejadas a Estas.

Los primeros resultados a los estudios con el sumergible en Guaymas, han revelado que las numerosas "chimeneas" de la porción sur de la cuenca estan constituídas principalmente por sulfuros metálicos como pirrotita $Fe_{1-x}S$, marcasita FeS2, esfalerita y murtzita (In,Fe)S, calcopirita CuFeS2, isocubanita CuFe2S3 y galena PbS.

Recientemente, Peter et al (1987), presentó la siguiente composición química para las "chimeneas" y pequeños "montículos" del campo hidrotermal de Guaymas:

-Chimeneas: Zn, 1.45; Pb, 0.32; Cu, 0.24; AC2O3, 0.31; Fc, 7.02; Mn, 3.8, Ag, 74 ppm; Cd, 37 ppm; Cr, <10 ppm. -Monticulos: Zn, 0.32; Pb, 0.16; Cu, 0.01; AC2O3, 1.32; Fe, 3.48; Mn, 17.0Ag, 63 ppm; Cd, 16 ppm; Cr, <10 ppm; Ni, 33 ppm; Co, 5 ppm.

Otra contribución importante al ciclo geoquímico de los metales, la constituyen el plancton, copépodos y los radiolarios, ya que estas plantas y animales tienen la capacidad de concentrar algunos metales en varios ordenes de magnitud, con respecto a los niveles del agua de mar.

En la Tabla 5.1.1 se muestran las concentraciones de 8 metales pesados en el planeton marino, estos datos y los perfiles oceanográficos de ciertos metales co mo Cu, Ni, Cd y Zn (Bruland, 1980) sugieren que estos metales estan involucrados en el ciclo de las sustancias nutritivas. Adicionalmente, al ir descendiendo ha cia los fondos el material fecal y exo-esqueletal, puede también acumular metales por adsorción desde el agua de mar.
			and the second second second second	a general contraction and the second second
			a and a state of the second	
Fe Mn	Zn Ni	Cu see	Cr	PbCd
serverse provident and the second	an a	an a	an a general service and the service of the service	
178 ^a 10 ^a	44 ^a 6	a 7ª	9.6 ^C	5 ^a 12 ^a
		an sa sa bana		
168 ^b 8 ^b	131 ⁰ 12	D. 14	21 2 ^d	11 [†] - 22 ⁰
		Barrier Alexander Alexander	all and the second s	
631 ^C 18 ^C	366°	C	- a of	219
		An		
	150 ^d	d ₁ d		
그는 그는 것을 가지 않는 것이야?	1658	e <u>,</u> e		
	202	. 4 J	요즘 물건물	
이 지지 않는 것을 통하는 것을 못했다.		f		
신문은 영화 문화 운영되었는	-	39 39	이 집에서 가지 않는 것이다.	
	바늘			
200 11	165 9	18	5	5 12

marino, ppm en peso seco (tomada de Brumsack, 1983).

Tabla 5.1.1. Concentración de metales pesados en el Plancton

(a) Martin <u>et al</u>, 1976; (b) Collier 1981; (c) Bostrom, comunicación personal a Brumsack (1983); (d) Yamamoto y Fujita, 1966; --(e) Presley <u>et al</u>,1972; (f) Fowler (1977); (g) Martin y Knauer, (1973). Debido al hecho de que animales como copépodos son extremadamente abundantes y mudan frecuentemente durante su ciclo biológico, este proceso puede contribuír significativamente en el aporte de metales a los sedimentos, particularmente en el golfo de California donde la productividad primaria es de dos a tres veces mayor que la del oceáno abierto en la misma latitud (Zeitzschel, 1969).

Los sedimentos depositados en el golfo, en su mayoría son producidos en un ambien te donde el material planctónico y esqueletal sufre una moderada dilución por los sedimentos terrígenos, debido a que la región por el lado peninsular es árida y por el lado continental semi-árida con varios ríos temporales pero de escaso caudal.

A diferencia de los sedimentos pelágicos, los hemipelágicos se caracterizan en <u>ge</u> neral por poseer muy pocos o ningún constituyente autigénico (Bostrom <u>et al</u>, 1972).

En resumen, se puede considerar que el golfo de California recibe principalmente un aporte de metales de origen detrítico, hidrotermal y biogénico.

5.2 Concentración y distribución de metales pesados en los sedimentos del Golfo de California.

En las tablas del ApEndice 3 se presentan los resultados de los análisis de los siguientes metales: Cu, Ni, Co, Cr, Zn, Pb, Cd, Ag, Mn, Fe y Al. Los primeros 10 elementos se analizaron en 40 núcleos (localizados en la fig. 3.1) y 85 muestras de la parte superficial de los sedimentos mientras que el Al solamente se determinó en 10 de esos núcleos y 21 muestras superficiales.

Con objeto de complementar más la discusión de la distribución de metales, se con sideraron, además de las muestras superficiales, las concentraciones de las secciones superiores de los núcleos (0-5 cm) colectados en el bajo golfo, estableciendose así un total de 117 puntos o estaciones de muestreo (fig. 5.2.1); 46 den tro de las isóbatas de 20 a 220m en la plataforma continental, 50 sobre los 230-1500m en el talud y/o borde de las cuencas, y 21 en lo que son las depresiones de las cuencas (1350-3250m).

En la tabla 5.2.1 se presentan los promedios con su respectiva desviación y el in térvalo de cada uno de los metales en dichos rasgos fisiográficos; lo primero que es posible observar en esta tabla, es que la mayoría de los metales (Cu, Ni, Cr, Zn, Pb, Mn y Fe) son más concentrados en las depresiones, seguidos después por el talud y la plataforma continental, en cambio, la Ag presentó los niveles más altos en la plataforma y los más bajos en las depresiones; el Cd por su parte, tuvo una concentración promedio de 4.13µg/g en el talud, 3.14µg/g en la plataforma y 2.14µg/g en las depresiones de las cuencas del bajo golfo.

El cobalto fue otra de las excepciones, ya que aunque presento los más altos nive les en las depresiones, sus valores más bajos los tuvo en las muestras del Talud.

No obstante que 117 muestras superficiales son poco representativas para toda el area del golfo, se elaboraron los mapas de las figuras 5.2.2 - 5.2.6 para ilustrar más detalladamente la distribución metálica en los sedimentos superficiales del golfo de California. Obviamente estas figuras reflejan los patrones de concentración estadisticamente calculados en la tabla 5.2.1. Estos patrones de distribución tan marcados sugieren en principio que para metales como Mn, Fe, Cu, Ni, Cr, Zn y Pb; las depresiones de las cuales vienen a ser los sitios más favorecidos para el enriquecimiento metálico. Este enriquecimiento parce tener en todos

-		e		0
Tabla 5.2.1.	Concentraciones promedio	de metales pesados en lo	os sedimentos del golfo de California (ug	/g, Fe en %)

Metal	Plataforma continental (24-220 m) (n=46)				Talud y bo	rde de las cuenc 0-1500 m) (n=50)	as Depresio (13	Depresiones de las cuencas (1350-3250 m) (n=21)			
	R.,	X -	6	R	7	6	R	X	6		
Cu	2.1-31.3	13.2	7.0	6.3-50.2	31.3	11.3	34,1-123	69.3	30,3		
Ni	1.1-47.5	19.6	10.5	7.8-85.5 ^b	39.3		25.8-142	66.9	27.4		
Co	5.1-25.0	16.7	6.1	0.3-25.4	9.7	6.0	11.3-39.9	21.5	6.8		
Cr	4.0-42.2 ^a	21.9	15.2	20.2-58.6	39.0	10.3	27.9-118	45.8	19.3		
Zn	14.7-140	57.4	30.8	39.1-161	101.0	26.7	95.6-317	187.0	59.0		
РЬ	2.2-71.2	34.9	16.6	14.0-62.9	39.2	12.9	28.8-84.5	43.3	11.7		
Cd	1.19-7.04	3.42	1.66	0.89-10.6	4.13	1.96	0,45-5,21	2.14	1.32		
Ag	0.96-6.23	2.63	1.47	0.68 ₇ 3.16	2.0	0.65	0.83-3.37	1.75	0.6		
Mn	63.1-468	209.0	139.0	116-786 ^C	284.0 (423.0) ^c	148.0 (1004)	750-15289	4379.0	4229.0		
Fe	0.37-352	1.67	0.95	1.15-3.94	2.35	0.73	1.94-6.05	3.2 4	0.92		

(a) Un solo valor con 91.8; (b) Un solo valor con 113; (c) Un solo valor con 7375.

R es el intervalo, \overline{x} el promedio y d la desviación standard.

- Figura 5.2.2. Distribución superficial (O-5 cm) de Cu y Ni en los sedimentos del Golfo de California.
- Figura 5.2.3. Distribución superficial (0-5 cm) de Co y Zn en los sedimentos del Golfo de California.
- Figura 5.2.4. Distribución superficial (0-5 cm) de Cr y Pb en los sedimentos del Golfo de California.
- Figura 5.2.5. Distribución superficial (0-5 cm) de Ag y Cd en los sedimentos del Golfo de California.

Figura 5.2.6. Distribución superficial (0-5 cm) de Mn y Fe en los sedimentos del Golfo de California.

estos casos una tendencia a incrementarse de manera general hacia la entrada del golfo en lo que es la zona de fractura de la Falla transforme Tamayo, y ciertamente tiene similitud a un "delta" de descarga de sedimentos.

En el caso particular del cadmio (Fig. 5.2.5) es posible notar que gran proporción de las zonas enriquecidas coincide de manera general con los fondos que interceptan a la concentración mínima de oxígeno (Fig. 2.8), sobre todo en la región central y occidental del golfo.

Respecto a las concentraciones y distribución de metales en la porción sur, que comprende a las cuencas Farallón, Pescadero y Mazatlán, Niemitz (1977) encontró distribuciones y concentraciones muy similares a las de este estudio, sobre todo para el Cu, Ni y Zn. Con relación a los niveles encontrados por otros estudios en núcleos y muestras del golfo (Niemitz, 1977, 1982; Kastner y Gieskes, 1979; Donegan y Schrader, 1982; Gieskes <u>et al 1982</u>) en general se puede observar que todos los valores quedan dentro de los intérvalos encontrados en esta investigación (Tabla 5.2.1), según el rasgo fisiográfico estudiado. En conclusión los ni veles dados en el presente trabajo pueden servir de base para futuros estudios de Indole geoquímico o de contaminación metálica en la zona.

La distribución de los elementos analizados en este estudio y las investigaciones realizadas previamente permiten discutir los factores que controlan la geoquímica de los sedimentos superficiales y examinar el enriquecimiento de las dis tintas facies sedimentarias que se presentan en el golfo de California.

Como se describió en la sección 2.6 de este trabajo, la sedimentología del golfo de California ha sido descrita a partir de los estudios de Van Andel (1964), Cal vert (1966a, b). Niemitz (1977) y del Programa Internacional de Perforación Profunda (DSDP). En estos trabajos se describe para el golfo un "cinturón" de arci lla limosa que cubre las depresiones y la zona del talud, haciendose más rica l \overline{a} proporción arcillosa hacia la parte sur del Golfo, llegando a alcanzar en la boca más de 70%; en la figura 9 dada por Calvert (1966) es posible observar como La distribución del porcentaje arcilloso es muy similar al patrón de distribución de Cu, Ni, Zn, Cr, Pb, Mn y Fe (Figs. 5.2.2 - 5.2.6); la distribución que también se asemeja a la de estos metales es la del porcentaje de carbonatos dada por Calvert (1966) y tambien por Nicmitz (1977), nomás que en lugar de presentar se la tendencia a aumentar el % CaCO3, Este contrariamente disminuye hacia la porción sur y en las depresiones del golfo. Numerosas investigaciones (De Groot et al, 1976; Gibbs, 1977; Mayer y Fink, 1980; entre otras) han demostrado como las características texturales de los sedimentos determina la concentración de metales pesados, a consecuencia de Esto se han propuesto incluso algunas técnicas de normalización (por ejemplo, De Groot et al; 1982). Por otra parte se ha visto que los minerales carbonatados más comunes y abundantes como son la calcita y aragonita se caracterizan por tener concentraciones muy bajas de metales pe sados y más bien tienden a diluir a los sedimentos que acompañan (Forstner y Wittman, 1979; Forstner, 1982).

Por su parte la distribución del Cadmio superficial presenta cierta similitud con la del opalo (Fig. 7, Calvert, 1966) el cual presenta sus mayores proporciones en la porción central y el talud del golfo. Esta aparente asociación entre el cadmio y el material biogénico, ya ha sido propuesta por diversos investigado res (Martin et al, 1976; Boyle et al, 1976; Bender y Gagner, 1976; Bruland 1980; Knauer y Martín, 1981; Gendron \overline{et} al, 1986), ellos han sugerido que el cadmio en el ambiente marino es fijado por \overline{et} fitoplancton en las aguas superficiales y transportado hacía los fondos con los remanentes de estos organismos. Cuando el detritus orgánico enriquecido en cadmio es destruído, el cadmio es li berado junto con los fosfatos y otros productos de la mineralización; Klinkhammer (1980) y Klinkhammer et al. (1982) en estudios del cadmio en sedimentos pe lágicos, concluyeron que el cadmio disuelto es producido cerca de la interfase agua-sedimento como un producto de la degradación del material orgánico. Esto explicaría el que las mayores concentraciones del cadmio se encuentran en el ta lud donde los fondos son pobremente oxigenados en el golfo y no puede así liberarse el cadmio, como ocurre en la plataforma continental y en las depresiones de las cuencas que sí poseen niveles de oxígeno capaces de degradar aerobicamen te el material orgánico.

El cobalto cuyas concentraciones más elevadas se presentan en las depresiones de las cuencas 21.5 + 6.8 u $g.g^{-1}$, intermedias en la plataforma continental 16.7^+ 6.1 u $g.g^{-1}$, y las más bajas en el talud y borde de las cuencas (220-1500 m), con 9.7 \pm 6.0 u g.g-1, pueden ser explicadas en base a la fuerte afinidad que tiene este elemento por los óxidos de hierro y manganeso lo cual ha sido bien establecido en la literatura científica (Goldberg 1954; Murray 1975). Incluso en los sedimentos costeros y pelágicos la movilidad ha sido demostrada por Heggie y Lewis (1983); Heggie et al (1983). La distribución tan marcada que se presenta en el golfo de California es consistente con dicha movilidad diagenética; tanto en la columna de agua y en la capa oxidada de los sedimentos se presenta la aso ciación de cobalto con partículas ricas en óxidos de manganeso y hierro. Lo cual sucederá principalmente sobre la plataforma continental y en las depresiones del golfo. (como se demostrará en la sección 6.2); mientras que en el talud y más específicamente en la zona reducida el cobalto sufre una rápida disolución tendiendo a emigrar junto con el gradiente intersticial, para precipitar posteriormente en la capa oxidada y residtribuírse en los fondos según el despla zamiento regional de las aguas del fondo. Ahora las diferencias entre las concentraciones de la plataforma y las depresiones se pueden deber a que los suministros de cobalto (por unidad de masa depositada) en las depresiones es más elevado que en la plataforma, además del posible efecto de barrera de la capa mínima de oxígeno que esta presenta en gran parte del golfo.

Las distribuciones de Cu, Ni, Pb, Zn, Cr, Pb, Mn y Fe en los sedimentos superfi ciales del golfo son muy similares [Figuras 5.2.3 y 5.2.7] y pueden ser convenientemente consideradas como un simple grupo para los fines de discutir sus concentraciones. Las más altas concentraciones se encuentran en las depresiones y borde de las cuencas en donde se presentan las mayores proporciones de arcilla, menores concentraciones de carbonatos y contenidos orgánico intermedio; por su parte las concentraciones más bajas de éstos elementos se presentan en la plata forma continental en donde ocurren los sedimentos más gruesos en general (arena arcillosa, arcilla arenosa, arena con fragmentos de conchas) con más cuarzo y menor proporción de arcillas y de ópalo. O sea que además del comportamiento geoquímico de estos metales, el sumivistro de material que pueden dilutrlos (car bonatos, arenas, etc) o enriquecerlo (arcillas, materia orgánica, óxidos y sul furos) va a influir preponderantemente en los niveles de concentración encontra dos.

La plata que se presentó más concentrada en los sedimentos de la plataforma y más baja en las depresiones parece sugerir que el aporte más importante de este elemento viene de los materiales terrígenos y esto es lo que define principalmente

ESTA TESIS UN DEBE SALIR DE LA MODELITECA

el patrón de su distribución en el golfo.

Con relación a los niveles de concentración de metales pesados encontrados por otros investigadores en el golfo de California, es difícil hacer una comparación, ya que si bien el trabajo de Niemitz (1977) fue más exhaustivo, la técnica de digestión que el empleo solo extrae a los metales asociados a sulfuros, carbo natos y el material orgánico, atacando solo ligeramente a los minerales arcillosos (Niemitz 1977). Respecto a la técnica empleada por Donegan y Schrader (1982), en ella se analizaron por triplicado seis muestras superficiales (0-5 cm); encontrándose niveles por debajo del 5-40% con respecto a la técnica del agua regia empleada en este trabajo. Las diferencias varían de acuerdo al metal y las muestras por lo que no es posible considerar una diferencia sistemática entre las dos técnicas. En la tabla 5.2.1a se muestran los intervalos encontrados en ambos estudios; en los seis metales se observa que los valores de es te estudio son mayores, incluso en el caso del Pb, Donegan y Schrader (1982) no detectaron dicho elemento en ninguna de las muestras que analizaron en los dos núcleos, lo cual posiblemente se debe a la técnica analítica.

Tabla 5.2.1.a	Comparación de los rangos encontrados en muestras del talud de	l
	golfo de California. ("ug.g ⁻¹ , Fe en %).	

Netal	Donegan y Schrader (1982) (a)	Este estudio (b)
Current de la companya de la company	14-38	6.3 - 50.2
Ni	12.5-38.5	7.8 - 85.5
P6	ND	14.0 - 62.9
Zn	20-111	39.1 - 161
and Mn agent and a second second	78-229	116 - 786
Fe	0.9-2.2	1.15 - 3.94

(a) Incluye solo a dos núcleos del talud adyacente a Cuenca de Guaymas.

(b) Se calculó a partir de 50 muestras distribuídas entre los 230-1500 m.

En la tabla 5.2.2 se presentan las concentraciones de los metales pesados de la plataforma continental del golfo de California y otras regiones en comparación a la composición promedio de los sedimentos costeros (Wedepohl, 1960) y la corteza terrestre (Krauskopf, 1967).

Con excepción del cromo que en la plataforma de la costa de California es ligeramente mayor, todos los demás metales resultan ser más concentrados en la plataforma del golfo de California que en las de otras regiones como la costa sur este de Estados Unidos o el golfo Arábigo, sin embargo estos valores en general son menores a los considerados como promedio de la corteza terrestre; la excep ción a esto vienen a ser solamente, el plomo, cadmio y la plata, las cuales son más concentrados en el golfo de California, sin embargo estos valores en general pueden considerarse como representativos de la zona y la mayoría de los valores son comparables a los reportados como niveles básicos naturales (Knauer,

Tabla 5.2.2. Concentración de los metales pesados en los sedimentos de la plataforma continental del golfo de California y otras regiones en comparación a la composición promedio de la corteza terrestre.

Metal	Golfo de California (1)	Costa sur California (2)	Costa SE de E.U.A. (3)	Golfo Arábigo (4)	Promedio de Sedime <u>n</u> mentos cos teros (5)	Corteza promedio (6)
Cu	13.2	9.02	2	2.59	48	55
Ni	19.6	15.4		10.1	55	75
Co	16.7		S 0.7	2.01	13	25
Cr	21.9	25.5	14		100	100
Zn	57.4	44.4	6	13.7	95	70
РЬ	34.9	10.5-	4	3.55	20	12.5
Cd	3.42	0.43	0.06	0.26		0.2
Ag	2.63	0.41	11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	0.29		0.07
Mn	209		45	51:5	850	950
Fe	1.67		0.30	0.24	6	5.6

. ppm. (Fe. en.%)

- Este estudio; promedio de 46 muestras colectadas entre las isobatas de los 24 y 220 m.
- (2) Katz y Kaplan, (1981); Nivel básico ó natural establecido a partir de una revisión de los estudios en el área.
- . (3) Bothner <u>et al</u>, (1980); concentraciones establecidas a partir de 30 análisis; el 99.9% de las muestras fucron arenas.
 - (4) Al-Hashimi y Salman (1985); promedio de 42 muestras predominantemente limosas y limo-arenosas.

(5) Wedepohl (1960).

(6) Krauskopf (1967).

1977; Bower et al, 1978; Donazzolo et al. 1981; Katz y Kaplan, 1981).

En la tabla 5.2.3 se muestran nuevamente las concentraciones del golho de California y la de otros sedimentos hemipelágicos ricos en materia orgânica, asimis mo se presentan las concentraciones dadas por Calvert (1976) y Calvert y Price⁻ (1983) para los sedimentos del golfo, en las cuales se puede observar que fuera del níquel, los demás metales (Cu, Cr, y Pb) y el C-orgánico son comparables a los encontrados en este estudio como promedio de las depresiones del golfo. De dicha tabla se pueden desprender las siguientes observaciones: el hierro de la plataforma del golfo de California es muy similar a los niveles reportados para zonas de surgencia como la plataforma del Suroeste Africano (Calvert 1976; Bron gersma-Sanders et al, 1980) y la margen Peruana (Brumsack, 1983), mientras que la concentración del hierro de las depresiones del golfo de California es más baja que cualquiera de las áreas comparadas. El manganeso es el caso más peculiar en las distintas regiones que se comparan, ya que sus niveles son más altos; la cuenca californiana de San Pedro (Presley <u>et al</u>, 1972) presenta valores comp<u>a</u> rables a los del talud del golfo de California pero de cualquier modo sus niveles son nueve veces menor a los de las depresiones; por su parte los sedimentos del Mar Báltico aunque son más altos en manganeso que los del talud del golho de California, sus concentraciones de cualquier manera son muy bajas en relación a los 4379 u g.g⁻¹ de las depresiones del golfo de California.

Las concentraciones de zinc, cobre y plomo de las profundidades del Golfo también son más elevadas que cualquiera de las otras regiones, aunque contrariamente, el cromo es más bajo ya que ni los niveles más elevados de las depresiones de las cuencas se acercan al 50% de los valores reportados para las cuencas california nas o la plataforma Africana. Finalmente, el nivel del níquel de los sedimentos superciciales de la plataforma y el talud continental del golfo de California, es siempre menor a cualquier otro de los sedimentos, sólo las concentraciones de las depresiones del golfo llegan a ser comparables a las dadas para el mar Negro pero ligeramente mayores a las del mur Báltico, y las cuencas de Santa Bárbara, Santa Mónica y San Pedro, aunque menores a los niveles de la plataforma peruana y Africana.

Entre las hipótesis que se han dado para explicar las concentraciones relativamente altas de los metales en las áreas de surgencia, destaca la propuesta por Brongersma-Sanders (1969) quien ha argüido que los sedimentos recientes de la plataforma Namibiana vienen a ser el análogo moderno de las pizarras negras ricas en metales en el registro geológico. Ella ha sugerido que el enriquecimiento metálico de tales nocas puede ser fácilmente explicado por la rápida acumulación del material orgánico planctónico, que contiene una serie de metales extraídos desde el agua de mar por el plancton en las áreas de surgencias. Sin embargo los recientes análisis de varios de estos metales en el plancton marino (tabla 5.1.1) revelan que con excepción del zinc las concentraciones de los demás metales que acumulan estos organismos son muy bajas, poniendo así en duda este mecanismo de enriquecimiento.

Por otra parte, algunos estudios sugieren que ciertas fracciones orgánicas de los sedimentos contienen elevadas concentraciones de metales, Nissenbaum y Swai ne (1976) han revisado mucho de esa información y han demostrado que la fracción de los ácidos húmicos en particular es un importante "anfitrión" de metales pesa dos; Calvert y Morris (1977) han demostrado que esta observación también es apli cable a los "oozes" de diatomeas de la plataforma africana. Es posible pues, que en el golfo de Califernia de manera indirecta los florecimientos algales

	Go	olfo de i	California (1)		이 관계 수 있					
Elemento	Plataforma Continental	Talud	Depresiones	- (a)	Mar Bāltico (2)	Africana SW (3)	San Pedro	Cuenca Sta. Monica (5)	Cuenca Sta. Barbara (6)	Margen Peruana (7)	Mar Negro (8)
C-org (%)	1.90	2.92	2.83	2.74	5.9	9.35	3.8	4.0	3.0	16.7	10.67
Fe (%)	1.67	2.35	3.24		4.72	.1.84	4.50	5.00	3.40	1.6	-
Мл (ррш)	209	423	4379	-	720	115	465	335	268	200	-
Zn (ppm)	57.4	101	187	-	- 135	54	111		108	95	147
Ni (ppm)	19.6	39.3	66.9	146	51	87	·57	54	46	123	67
Cu (ppm)	13.2	31.3	69.3	64	37	68	- 43	42	29	68	30
Cr (ppm)	21.9	39.0	45.8	42	81	145	100	88	119	-	-
Pb (ppm)	34.9	39.2	43.3	51	e general a service. Noti s T aria	12	9	10	11	-	24
Cd (ppm)	3.42	4.13	2.14	-	_	i i <u>i</u> se	ne de Cent <u>a</u> ye.	• • • • •	2	-	-

Tabla 5.2.3 . Composición de los sedimentos del Golfo de California en comparación a sedimentos

hemineligicos ricos en Carbono orgánico

0

(1) Golfo de California, la concentración de los metales en la plataforma continental, el talud y las depresiones se obtuvo a partir de 46, 50 y 21 muestras respectivamente; el C-org se calculó con el promedio de las secciones superficiales (O-5 cm) de 3 nucleos de la plataforma continental, 6 del talud y 10 de las depresiones (Este estudio); (a) Dados para el Golfo de California por Calvert (1976) y Calvert y Price (1983).

(2) 7 muestras de arcillas del Mar Báltico (K. Bostrom, comunicación personal a Brumsack, 1983).

(3) Calvert (1976); Brongersma-Sanders <u>et al</u> (1980)

(4) Presley <u>et al</u>, (1972)

(5) Bruland <u>et al</u> (1974) calculado desde los flujos naturales.

(6) Dymond <u>et al</u> (1981)

(7) Promedio de los núcleos 77606-39 y 7706-36 (Suess, comunicación personal a Brumsack, 1983)

(8) Glagoleva (1961), Bevolova (1970), Lubchenko (1970).

contribuyan significativamente con algunos metales a los fondos; o sea que al irse sedimentando la materia orgánica y los productos de descomposición forman complejos con los metales durante 6 después de la formación de las sustancias húmicas, contribuyendo así con los metales a los fondos; un buen número de estudios (Rashid, 1974; Guy <u>et al</u>, 1975; Jenne, 1977; entre otros) han demostrado que entre los metales que selectivamente forman complejos están precisamente el Cu, Pb, In, Ni y Cd.

La fracción de los sulfuros de los sedimentos podrían también jugar un importan te papel en la geoquímica de los metales en los sedimentos anóxicos del golfo de California, desfortunadamente, aunque se conocen más o menos bien los mecanismos de formación de los sulfuros de hierro (Berner 1964; 1974), la precipita ción de otros sulfuros metálicos en tales sedimentos todavía no ha sido conocida en detalle. Es un hecho que los niveles de algunos metales en las aguas intersticiales de los sedimentos anóxicos pueden tener un importante control en la precipitación de sulfuros; igualmente la co-precipitación de otros metales por los sulfuros de hierro puede ser otra vía importante en el enriquecimiento de los fondos anaeróbicos reducidos.

Con relación a los niveles de concentración de los metales en los núcleos, se pueden hacer las siguientes observaciones de acuerdo a la batimetría: (1) núcleos de la plataforma continental (B7, B36, y B37), con excepción del mícleo B37 colectado en la entrada del Puerto de Mazatlán (y posiblemente influencia do por las actividades humanas). Los niveles de los otros dos núcleos en general son similares o menores (Apéndice 3) a los dados para las muestras superfi ciales de la plataforma continental (Tabla 5.2.1); (2) perfil de los núcleos del talud, la mayoría presento niveles comparables a los establecidos en las muestras superficiales, solamente el manganeso en algunos núcleos se enriquece notablemente en las capas superiores (0-5 cm), por ejemplo el núcleo B12 colectado en la cuenca del Carmen desde una profundidad de 670 m , tuvo un potencial electrodo de 186 mu en la superficie mientras que en los intervalos del fondo -96 mv, presentando un aumento repentino desde 148-209 ug.g⁻¹ a 7375 ug.g⁻¹ de manganeso; de manera muy similar se comportaron los perfiles de los núcleos de la cuenca de Guaymas (B16, 1540 m), (B19, 1500 m) y Cuenca Pescadero (B27, 1600 m), aunque el enriquecimiento fue relativamente menor en todos estos núcleos. En realidad de los 18 núcleos colectados en el Talud y bordes de las cuencas solamente cuatro (B12, B16, B19 y B27) presentaron dicho incremento; (3) los 12 nú cleos colectados en las depresiones de las cuencas del golfo, presentaron un aumento en la concentración de manganeso en la sección superficial (0-5 cm), sin embargo solamente en los mícleos-de la depresión sur de la cuenca de Guaymas (B14, 2020 m; B21, 2010 m) y el de la cuenca Pescadero (B26, 3230 m) presentaron una clara tendencia también a aumentar igual que el manganeso, metales como el Cu. Ni. In y en menor intensidad Pb y Ag (Figuras 5.2.7 -5.2.8) algo que lla ma la atención también en el perfil de estos núcleos es la tendencia contraria que presenta el hierro en los dos núcleos de la cuenca de Guaymas. En los demás mícleos esta tendencia no fué tan evidente incluso en dos mícleos de la cuenca Farallón (B5, 2250 m; B_2^24 , 3250 m) aunque si se enriquece la capa super dicial (0-5 cm) con 3149 g.g⁻¹ de manganeso con respecto a la siguiente sec-ción (5-10 cm), la tendencia general de los perfiles (Fig. 5.2.9 - 5.2.10) es la de incrementar la proporción del manganeso con la profundidad al igual que el cobre, Níquel, Cromo, Zinc, Plomo y en menor escala Cobalto y Cadmio. Por otra parte los micleos E23 (2410 m) de la cuenca Farallón y el E29 (3180 m) de la cuenca Mazatlán presentaron un caso muy singular, ya que aunque el incremento de manganeso se presenta desde las capas intermedias de los núcleos (30-50 cm)

Figura 5.2.7 Concentración de Mn, Fe, Zn, Ni, Cu, Cr y Co en el núcleo B14.

Figura 5.2.9 Concentración de Fe, Mn, Zn, Ni, Cu, Cr y Co en el núcleo B5.

Figura 5.2.8 Concentración de Fe, Mn, Zn, Cu, Ni, Cr y Co en el núcleo B26.

los demás metales como Cobre, Níquel y Zinc (Fig. 5.2.11) presentan en las secciones superficiales un perfil contrario al esperado.

Tomando en cuenta los aportes relativamente elevados de materiales terrígenos y de material biogénico, los sedimentos del golfo de California tienen la peculia ridad de poseer concentraciones anomalas de manganeso, ya que sobre todo las con centraciones de las depresiones (con un promedio de 4379 u $q.q^{-1}$) son mayores a las de otras regiones hemipelágicas. En un planteamiento inicial Niemitz (1977) propuso que las anomalías de las cuencas se debía a la exportación del manganeso desde el talud donde se interceptan la capa béntica y la zona del mínimo de oxígeno, sin embargo Kastner y Gieskes (1981); lo explicaron en base al aporte hidrotermal. Adicionalmente Campbell (1985) estudiando el material suspendido de la cuenca de Guaimas demostró que el aporte de manganeso más importante, viene a ser el hidrotermal; así la mayor parte del manganeso hidrotermal se distribuye (después de ser descaraado en las ventilas) desde la columna de agua en la vecin dad de las ventilas, ya sea cerca 6 en las mismas depresiones 6 centros de dispersión del golfo de Californía. Por lo tanto las elevadas concentraciones de los sedimentos de las depresiones es fundamentalmente una consecuencia del aporte hidrotermal, más que de la contribución desde las zonas de talud. La importancia de la actividad hidrotermal en las otras cuencas del bajo golfo en el ba lance del manganeso es incierta debido a que se desconocen la frecuencia, e intensidad de las ventilas hidrotermales incluso en la misma depresión sur de la cuenca de Guaymas. Campbell (1985) en su investigación encontró que el suspen dido enriquecido en manganeso no se encontro únicamente alrededor de las "chime neas" activas sino a varios kilómetros de ellas, lo cual explica en base a la dispersion del Mn hidrotermal por las fuertes corrientes del fondo $(5-15 \text{ cm} \text{ s}^{-1})$, o bien porque el Mn hidrotermal sea extensivamente reciclado por las transformaciones diageneticas. Weiss (1977) utilizando un modelo unidimensional de primer orden en Las Galápagos, estimó un tiempo de residencia de 50 años para el Mn. tiempo que si en el golfo es de tal magnitud le puede permitir viajar hasta varios cientos de kilómetros antes de ser depositado.

En conclusión los altos niveles de Mn en los sedimentos superficiales de las otras cuencas como Farallón y Pescadero (donde no se conoce en la actuolidad la existencia de ventilas activas) pueden deberse a la exportación del Mn hidroter mal y en menor proporción a la contribución de la zona interceptada por la capa del mínimo de oxígeno.

En cuanto a los núcleos colectados en el océano abierto (631 y 632) es posible observar que sus concentraciones metálicas son de dos a cinco veces más elevadas que las encontradas en los sedimentos del golfo de California; en la tabla 5.2.4 sepresentan el intervalo de concentraciones de 11 metales de estos núcleos, en comparación al promedio de las arcillas pelágicas (Turekian y Wedepohl, 1961; Bischoff et al, 1979) y de dos núcleos extraídos desde depósitos metalíferos. El mícleo B3T (Fig. 5.2.12) una arcilla de color café-rojizo (evolucionado hacia el fondo a un tono más bien ocrej fue obtenido desde una profundidad de 3410 m en los 20°32.2' N y 112°01.6' W; mientras que el B32 (Fig. 5.2.13) fue extraido más cerca de la entrada del golfo de California desde una profundiad de 3220m en los 21°41.8' N y 110°0.5.3' W a solamente unos 55 km al Noroeste del campo hi drotermal de 21°N del Dorsal del Pacífico Mexicano, el material de este núcleo consistio basicamente en arcillas también pero de un aspecto casé oscuro en las secciones superficiales y un color verde-olivo en los fondos. Fuera del hierro los niveles de los demás metales encontrados en estos dos núcleos se asemejan més al mícleo del sitio M (MANOP) que fué colectado en las cercanías (-25 km) de

Figura 5.2.11 Concentración de Fe, Mn, Zn, Cu, Ni, Cr y Co en el núcleo B29.

Figura 5.2.12 Concentración de Mn, Fe, Cr, Co, Zn, Cu y Ni en el núcleo B31.

Tabla 5.2.4. Intervalo de concentraciones de metales en los núcleos B31 y B32 comparado a otros núcleos pelágicos (ppm, excepto Fe, Mm y A1 en %).

Metal	(1) 0-105 cm (n=20)	(2) 0-88 cm (n=15)	(3) 0-23 cm (n=22)	(4) (n=26)	(5)	(6)
Cu	282-423	200-280	249-340	130-940 ^b	250	230
Ni	115-471	234-494	243-390	45-850	225	210
Co	29.5-106	39.5-67.8	-	28-100	74	113
Cr	40.5-75.5	38.1-49.2		18–130	90	
Zn	163-209	296-486	414-458	110-520	- 165	165
Pb	48.3-69.4	39.5-59.0		20-320	ALL AND ANEXO LAS	
Cd	1.56-4.04	1.83-6.00	· 이번에 같은 이상은 다음. - 이상은 가운 바람이 아파		.42	
Ag	0.53-2.29	1.02-3.03		ini an orași de la cara de la cara Esta de la cara de la c	er yn gerlân de saar werde. De eeste steren de st Teren de steren de st	
Mn	0.14-2.79	0.32-3.35	0,12-2.31	0.31-9.24	0.67	0.43
Fe	3.58-4.80	2.88-4.27	7.85-9.08ª	5.0-44.0	6.50	5.38
A1	3.18-6.40	고 한 동안 동물 동물한 한	5.90-6.32	2.27-11.9	8.40	9.90

- (1) Núcleo B31, con arcillas café-rojizas del Pacífico oriental (20°32.2'N; 112°01.6'W) desde una profundidad de 3410 m (Este estudio).
- (2) Núcleo B32, con capas superficiales café oscuras, y color verde-olivo en las secciones inferiores del núcleo; colectado desde 21°41.8'N, 110°05.3'W, a solamente 55 km al NW de las ventilas hidrotermales del Dorsal Pacífico Oriental 21°N, y desde una profundidad de 3220 m (Este estudio).
- (3) Núcleo Pluto-III (Box Core 25), desde el sitio M (MANOP) localizado a 25 km al este del Dorsal del Pacifico Oriental en 8°48'N, 104°W, desde una profundidad de 3100 m (Lyle <u>et_al</u>., 1984).
- (4) Muestras desde el sitio 294, del programa de Perforación Profunda del Océano, (DSDP) en la cuenca Oeste de las Filipinas (Bonatti <u>et al</u>, 1979).
- (5) Composición promedio de las arcillas pelágicas (Turekian y Wedepohl, 1961).
- (6) Promedio de las arcillas pelágicas del Pacífico (Bischoff et al, 1979).
- ^a un solo valor con 0.63; ^b dos valores con 1130 y 1200.

La Dorsal del Pacifico oriental (8°48'N, 104°N) desde una profundidad también similar (3100 m) (Lyle et al, 1984). Ahora si se comparan los niveles de estos tres núcleos con los promedios que se han reportado para las arcillas pelágicas, las concentraciones de Cu, Ni, Zn, Cd y Mn en ellos, son del mismo orden que los encontrados en muestras de depósitos metallíferos, como viene a ser por ejemplo las del sitio 294 en la cuenca de las Filipinas (Bonatti et al, 1979).

Materiales separados de los sedimentos

En aquellos núcleos o muestras superficiales que mostraron la presencia de algún material con aspecto distintivo en relación al total del sedimento, este se sepa ró para caracterizarlo a simple vista y analizarlo por separado el contenido metálico.

Del mícleo B4, colectado cerca de la península de Baja California, en el transec to realizado sobre cuenca Pescadero (desde una profundidad de 1210 m), se separa ron en la sección del fondo de 35-43 cm, seis fragmentos de roca color amarillo tabaco claro (B4, 35-43 (c), Apéndice 3), similar al descrito para las fosforitas, (Páez-Osuna et al, 1983) presentando al corte un color gris con brillo metá lico, de la misma sección se separaron también tres fragmentos de color café oscuro (B4, 35-43 (o), Apéndice 3).

Las concentraciones de los metales analizados en estas muestras, mostraron en su mayoría valores muy bajos en comparación a los de sedimentos donde se alojaban; la plata y el níquel por su parte, tuvieron niveles semejantes, mientras que el cobalto y el cadmio presentaron concentraciones más elevadas. Respecto a los contenidos en los fragmentos de distinto color, los metales Cu, Ni, Co, Cr, Zn, Mn y Fe de los fragmentos oscuros, tuvieron mayores proporciones de estos metales, en cambio el contenido de Pb, Cd y Ag fue mayor en los fragmentos de coloración clara.

Con niveles mucho mayores, esta misma tendencia ha sido observada en Los sedimen tos laminados del talud de la cuenca de Guaymas (Donegan y Schrader, 1982) y en la cuenca central de Saanich Inlet (Gross, 1967).

La diferencia en composición de las láminas ha sido explicada en función del con tenido mayor de diatomeas y material orgánico, (y menos terrígenos) en las láminas claras que en las oscuras.

En la cuenca de la Orca en el Golfo de México (Der-Duen-Sheu y Presley, 1986) fué encontrado un mayor contenido de sulfuros de hierro en las láminas oscuras que en las claras, sin embargo el carbono orgánico fué estadísticamente mayor también en estas láminas. No obstante que los fragmentos del núcleo B4 no se en contraban como laminaciones lo propuesto para las diferencias de composición de las láminas claras y oscuras parece explicar consistentemente su composición; in cluso si observanos las concertraciones de metales pesados en el planeton (tabla 5.1.1), es posible observar que aparte del hierro la composición de los fragmentos se asemeja más a la del planeton que a la de los sedimentos lo cual sugiere que estos fragmentos sean de naturaleza más bien biogénica, seguramente un análisis mineralógico y orgánico permitirán confirmar esto.

En el núcleo P3 de la cuenca Mazatlán, extraldo desde una profundidad de 2020 m en los bordes de la cuenca, se separó un fragmento de roca basáltica oscura de aproximadamente 1,97 cm de largo, 1.34 cm de ancho y un espesor de 0.83 cm. Las concentraciones de Cu, Ni, Zn y Mn, en este material resultaron relativamen te bajas y las del Co, Cr, Pb, Cd y Ag más altas que la de sedimentos vecinos (como el núcleo P4, Apéndice 3).

Núcleo B35, fué el núcleo que presentó mayor proporción de fragmentos de basalto:

Sección (cm)	Basalto Peso separado >1mm (mg)
0-5	5776
5-10	342
10-15	5
15-20	15
20-25	45
25-30	59
30-35	609
35-39	trazas

La mayoría de este material es basalto vítreo oscuro en tamaños siempre menores al centímetro y medio, algunos de los cuales mostraron horadaciones en su parte superficial en forma de tubos cilíndricos de aproximadamente 8 mm de diámetro y 3-5 mm de longitud; por su parte los trozos de la sección 30-35 cm, tenían forma más bien laminar.

Estas proporciones de basalto relativamente elevadas, no son raras de encontrar en esta zona, ya que Van Andel (1964) reportó valores de hasta 25% en la fracción 0.06-0.25 mm de varias muestras superficiales.

Para el análisis de los metales pesados se tomó una porción de las secciones 0-5, 5-10 y 30-35 cm; sus concentraciones (Apéndice 3) en general resultaron siempre menores a las de los sedimentos que estaban acompañando, Cd fué la única excepción con valores ligeramente mayores en las secciones 5-10 y 30-35 cm de los sedimentos correspondientes.

En la muestra BCS2 extraída del talud peninsular sobre la cuenca del Carmen se separaron varias pelotillas (pellets) supuestamente de fosforita (Schrader, co municación personal), las cuales fuera de Cu y Zn, las concentraciones en su mayoría fueron siempre de dos a cuatro veces más alta (Apéndice 3), que la de los sedimentos acompañantes.

En relación a las muestras de basalto analizadas en este estudio y con el objeto de compararlas con otros basaltos oceánicos y los de Isla Tortuga, se realizó la tabla 5.2.5; los niveles tan bajos de Cu, Zn, Mn y Fe sugieren que los fragmentos del núcleo B35 y P3 están aparentemente muy alterados en relación a cual quiera de las muestras del Dorsal (Humphris y Thomson 1970; Ortega-Osorio y Páez Osuna 1987) ó de la Isla Tortuga (Batiza, 1978). A pesar de ser muy subjetiva esta observación, viene a coincidir con los metales que se ha sugerido que son aportados (Mn, Fe, Cu, Zn, Ni) a partir de los basaltos alterados tanto a bajas y a altas temperaturas (Thompson, 1983).

Tabla 5.2.5. Comparación del contenido de metales pesados en mue<u>s</u> tras seleccionadas de basalto colectadas en el Golfo de California y otras regiones.

25 - Ek

(µg.g, excepto Fe en %)

무료율위

		Cu	Ni	Со	Cr	Zn	РЬ	Cd	Ag	Mn	Fe
Núcleo B35	(este e	studio):	a sojeni.				يني (فلينتريه فم مرياني فرينيو مرياني			
Sección	(cm)					(40) (40)	য়: তিন্দ্র নার্চাল			6	
Basalto (D- 5	15.5	23.3	20.7	31.1	43.2	16.9	2.81	0.50	386	2.60
Basalto	5–10	21.3	26.3	15.6	29.0	41.6	11.9	3.86	0.88	527	2.63
Basalto 3	D-35	16.1	32.7	18.5	17.6	52.0	<3.5	4:09	1.25	343	1.93
Núcleo P3	(este es	tudio):								
Basalto		22.4	12.0	40.8	154	57:7	64.8	7.77	5.74	231	3.06
						i kuins and State a State					
<u>Basamento</u> 21°N (Orte	<u>en Dorsa</u> ga-Osori	<u>1 de</u> o y P	áez Os	una 19	87):					· · · ·	
Basalto		101	<1.7	63.7	302	105	20.1	2.3	2.1	3000	5.70
<u>Basalto</u> , I	sla Tort	uga (Batiza	, 1978):						
Lava basāl	tica	84	47	46.5	112	-	2.7	-	-	1400	-
Dorsal Mes	oatlánti	ca (H	umphri	s y Th	ompsor	n 1978)	I .				• .
Basalto in	alterado	155	130	38	365	-			.	1274	-

5.3 Clasificación de los depósitos del Golfo de California

Recientemente se han establecido una serie de criterios para identificar y clasificar los depósitos metalíferos (Bonatti et al, 1973; Bostrom, 1975; Bonatti, 1981) considerando las proporciones de Mn/Fe, $\overline{AL}/(Al+Fe+Mn)$, y los diagramas ternarios de Fe, Mn (Cu+co+Ni) X 10, y Fe, Mn y Al. Tomando en cuenta dichos criterios a continuación se discute la clasificación de los depósitos del golfo de California.

En la figura 5.3.1 se muestra un diagrama ternario de Fe/Mn [Co+Cu+Ni]10 para las muestras de la plataforma y talud continental del golfo, asimismo se presen tan los puntos que representan las proporciones de esos elementos en las seccio nes superficiales de los mícleos de las depresiones y bordes de las cuencas del golfo. Es evidente que todos estos múcleos al igual que algunos depósitos hidro termales de Las Galápagos [Corliss <u>et al</u>, 1978] y del dorsal del Pacífico [11°5] quedan dentro de la zona del diagrama definida [Bonatti, 1981] para depósitos de origen hidrotermal. Por su parte el múcleo B31 está dentro de la región de depó sitos de origen hidrogénico mientras que el B32 queda más bien en una zona inter media y aparentemente con mayor influencia del aporte hidrotermal; lo cual habría de esperarse en este mícleo, ya que qué colectado desde 21°41.8'N y 110°05.3'W a unos 55 km al NW de las ventilas hidrotermales del Dorsal de 21°N, y seguramente está influenciado por ellas.

Adicionalmente en la figura 5.3.2 se ilustran las proporciones de dichos metales con la profundidad en varios de los núcleos colectados; en todos se observó la misma tendencia del carácter diagenético que favorece el enriquecimiento de los estratos superiores; este comportamiento es muy semejante al observado en dos nú cleos del Pacífico Ecuatorial Este en los sitios MANOP denominados M y H. (Gray beal y Heath, 1984).

Debido a la alta cantidad de materia orgánica oxidable presente, los sedimentos se hacen más reducidos en general con la profundidad (ver sección 4.1), esta re ducción en los sedimentos de las depresiones del golfo está marcada por un cambio en el color desde café-naranja en las capas superficiales (0-8 cm) a sedimen tos gris-verde oliva. En contraste, las coloraciones y laminaciones en un núcleo típico del talud son de tonos gris, verde-oliva. La transición del color café a verde en los sedimentos marinos ha sido interpetado (Lyle, 1983) como la marca en la cual los nitratos en el agua intersticial han sido reducidos y el Fe (111) reducido a Fe (11).

La disolución de óxidos de manganeso en los sedimentos reducidos o pobremente oxidantes que posiblemente ocurre en potenciales redox por debajo de 250-300 mu (Preley y Trefry, 1980), conduce a una difusión hacia la superficie del Mn (II) de iones disueltos y una re-precipitación de Mn (IV) como óxido en las capas su periores más oxidadas. Los patrones de enriquecimiento de Mn en los distintos núcleos colectados (Apéndice 3) claramente muestran el efecto de este proceso en las depresiones y raramente en algunas zonas del talud.

Con objeto de corroborar el carácter hidrotermal de algunas muestras se elaboró también el diagrama ternario para Fe/Mn/Al (Fig. 5.3.3); las muestras en la grá fica caen en dos campos bien separados, uno a lo largo del lado Fe-Al y el otro más bien cargado hacia el centro del diágrama. Las muestras del primer grupo se encuentran más cercanamente a la zona definida para sedimentos pelígicos (Bonatti et al, 1979; Bonatti, 1981). En el segundo grupo están los múcleos de la depresión sur de cuenca de Guagmas (B14, E21), y el de la depresión de cuenca Pescadero (B26). Es evidente que ninguno de los puntos de este estudio queda en la zona definida para depósitos metalíferos hidrotermales, la razón puede

Figura 5.3.2. Diagramas ternarios de Fe/Mn/ (Co + Cu + Ni)10 en los núcleos B14, B21, B26, B31 y B32 del Golfo de California y regiones adyacentes a la boca del mismo.

4.2

Bauer en el Pacifico Promedio de los sedimentos de Orlantal (Bostrom, 1975).

Promedio desde 8 sedimentos metolíferos del Dorsal del Pacífico Oriental (Bostrom 1975).

(a)

161

Figura-5.3.3. Diagrama ternario de Fe/Mn/A1 en los sedimentos del Golfo de California y otras regiones del Pacífico Oriental.

ser la de que sencillamente esta definición se cumple solo para materiales de ti po pelágico, ya que en el ambiente hemipelágico, los sedimentos van a estar muy influenciados por la contribución terrígena (y por ende de alumino--silicatos) además en el golfo de California, aún en las depresiones la contribución biogéni ca parece ser muy significativa (Calvert 1966a, b; Donegan y Schrader 1982); hecho que no sucede en los sedimentos pelágicos.

Otro parámetro que también se calculó y que ha sido utilizado para detectar concentraciones anómalas de elementos metálicos es la relación Al/(Al+Fe+Mn) originalmente propuesta por Bostrom y Peterson (1969).

Supuestamente un sedimento pelágico "normal" el cual consiste de componentes bio génicos, y principalmente de silicatos terrigenos y autigénicos, presenta un valor de Al/(Al+Fe+Mn) igual a 0.5 ó más. Así Bonatti et al (1979).consideran que cualquier muestra de un depósito hidrotermal deberá poseer una relación siempre menor a 0.4.

De los núcleos de las depresiones y bordes del golfo de California que mostraron cierta anomalía en la gráfica ternaria de la figura 5.3.1, solamente uno de los núcleos de cuenca Farallón (B5) presentó un valor inferior a 0.4, los otros núcleos que claramente habían mostrado su carácter hidrotermal como B14, y B26 por ejemplo tuvieron una relación de Al/(Al+Fe+Mn) de 0.52 y 0.50 respectivamente, o sea un valor más bien similar al de un sedimento típicamente pelágico. En cambio la mayoría de las muestras del talud (BC2, BC14, BC41, BC75, y B83) presentaron una relación de aluminio, sorpresivamente menor a 0.4; mientras que to das las muestras analizadas de la plataforma continental dieron una relación de 0.41 a 0.72.

Estos resultados reflejan que este parámetro de la relación de aluminio, no pue de ser utilizado en sedimentos como los del golfo de California en donde las con tribuciones de aluminio son significativas, por otra parte los valores del talud, deben de ser considerados con precaución, ya que al disminuír el aporte neto de manganeso (como se demostrará posteriormente en la sección 5.4) en esta zona a consecuencia de la mínima de 0_{2} que no permite la precipitación ó preservación de los óxidos de este metal, esto debería provocar que el parámetro más bien se incrementase.

Relación Mn/Fe

Muy recientemente (Hudson y Bender, 1984) se ha demostrado que la relación Mn/Fe en la columna de agua de los sistemas hidrotermales de las cordilleras en $10-13^{\circ}$ N, es similar a los fluídos hidrotermales y los sedimentos metallferos que se acumulan a lo largo del dorsal. La similitud de tal relación entre los fluídos hidrotermales y los sedimentos enriquecidos en hierro y manganeso a lo largo de la cordillera, sugieren que la dispersión del efluente hidrotermal es la fuente que aporta estos metales a los sedimentos (Bostrom y Peterson, 1969; Edmond <u>et</u> al, 1982).

En la cuenca de Guaymas, (sobre el campo hidrotermal de la depresión sur) Campbell (1985) midió las mismas proporciones de Mn/Fe particulado que las reporta das por Von Damm, (1983) para los fluídos hidrotermales inyectados por las "chi meneas". Con tal expectativa es de esperarnos que tal proporción deberá reflejarse en los sedimentos influenciados por la actividad hidrotermal.

Es indudable que se van a esperar variaciones en la composición de las soluciones hidrotermales, las cuales se pueden deber a las diferencias en la proporción de agua-roca ó temperaturas de la interacción agua de mar basalto en las diferentes localidades (Bischoff y Dickson, 1975; Seyfried y Bischoff, 1977; Mottl y Holland, 1978).

Dymond (1981) analizó la variación de Fe/Mn a lo largo del Porsal entre los 5 y 40°S, colectando unas 75 muestras desde una distancia siempre menor a los 100 km, y encontró un valor relativamente constante de 3.45 (Mn/Fe= 0.29). Otros autores han encontrado también datos de Mn y Fe para sedimentos hidrotermales, que dan una relación de Mn/Fe muy similar; 0.35-0.41, Piper (1973); 0.31, Dymond y Eklund (1978).

En la tabla 5.3.1 se presenta una lista de Mn/Fe en algunos núcleos de las prin cipales cuencas del bajo golfo, en comparación a los valores de los fluídos y los depósitos hidrotermales directamente producidos en el campo hidrotermal de la cuenca de Guaymas; es evidente que ningún núcleo de los aquí estudiados presenta una relación de Mn/Fe comparable a la del fluído hidrotermal expulsado en las ventilas de la cuenca de Guaymas, los valores más elevados que sen del orden de 0.52 más bien se parecen a los de los fluídos hidrotermales del dorsal del Pa cífico en 13° y 21°N (Von Damm, 1983; Michard <u>et al</u>, 1984) en los que se ha encon trado 0.339 y 0.8 \pm 0.4 respectivamente. Respecto a la composición de los mate niales del campo hidrotermal es muy clara la déferencia de Mn/Fe entre las "chi meneas" y los "montículos" (mounds), mientras que, en las primeras se tiene un Mn/Fe del orden de 0.54 similar al de varios núcleos de las depresiones, los montículos muestran un valor representativo de 4.88 comparable al encontrado en los fluídos de la cuenca (4 \pm 3) por Von Damm (1983).

Nuevamente es posible diagnosticar que en los núcleos de la depresión de Guaymas (B14, B21) y Pescadero (B26) es más significativa la influencia de la actividad hidrotermal, le siguen posteriormente los núcloes de cuenca del Carmen (B10, B12) cuenca Farallón (B23, B5, B24, B6) y finalmente la cuenca Mazatlán (B29).

Independientemente del contraste que existe entre el golfo de California y los sistemas activos oceánicos (como 21°N y el de Las Galápagos) en el sentido de las distintas tasas de sedimentación, la elevada productividad biológica en las aguas superficiales, y el relativamente alto aporte de materiales terrígenos (Van Andel 1964; Calvert 1966; De Master, 1981; Donegan y Sharader 1982), tanto el diagrama ternario Fe/Mn/(Co+Cu+Ni) 10, y la relación Mn/Fe permiten identificar fas anomalías geoquímicas de los sedimentos depositados recientemente en el golfo de California.

5.4 Acumulación de los metales pesados en la parte centro y sur del golfo de California.

Las tasas de sedimentación utilizadas para el cálculo de la acumulación metálica fueron las obtenidas mediante los gradientes de la reducción de sulfatos (sección 4.2), y la expresión de Dymond y Veeh (1965):

$$A = c w p(\frac{100-H}{100})$$

Ponde A es la tasa de acumulación, C la concentración del elemento, w la tasa de sedimentación, p la densidad del sedimento húmedo (total), y H el contenido del agua (); utilizándose una densidad húmeda de 1.1 g . cm³ (Niemitz, 1977; Don<u>e</u>

Tabla 5.3.1. Relación Mn/Fe en algunos núcleos del Golfo de Cali lifornia en comparación a los fluídos y las chimeneas hidrotermales.

Localidad	Profundidad (m)	Mn/Fe
Cuenca de Guaymas (a):		
Núcleo B14	2020	0.519
B21	2010	0.518
Cuenca del Carmen (a):		
Núcleo B10	2450	0.261
B12	670	0.302
Cuenca Farallón (a):		an an an an an ann an Arranna an Arranna Galaine an Arranna an Arranna an Arranna Arranna an Arranna an Arranna an Arranna
Núcleo B23	2410	0.277
B24	3250	0.090-0.184*
B5	2250	0.171
B6	2220	0.033
Cuenca Pescadero (a):		
Núcleo P19	3400	0.277
826	3230	0.511
B3	2500	0.123
Cuenca Mazatlán (a):		
Núcleo B29	3180	0.058
Depósitos hidrotermales de la Cuenca de Guaymas (b):		
"Chimeneas "	2020	0.541
"monticulos" (mound)	2020	4.88
Fluído hidrotermal de la Cuenca de Guaymas (c)	2020	4 ± 3
Fluído hidrotermal del Dorsal de 21ºN (c)	2600	0.8 ⁺ 0.4
del Dorsal de 13°N (d)	2600	0.339

(a) Este estudio; *En el núcleo B24, en las secciones 15-20, 20-25 los valores se incrementaron hasta \cdot 184, (b) calculado desde el valor promedio reportado por Peter <u>et al</u> (1987);(c)Von Damm (1983); (d)Michard <u>et al</u>, (1984)
gan y Schrader, 1982), en la tabla 5.4.1 se muestra una lista de las tasas de se dimentación y acumulación calcula, y en la tabla 5.4.2 se dan las tasas de acumu lación metálica para los núcleos colectados en este estudio en el bajo golfo. Asimismo, en la tabla 5.4.3 se resume el promedio de cada uno de los metales en las depresiones de las cuencas, el talud y la plataforma continental.

La acumulación metálica promedio para los metales Cu, Ni, Co, Cr, Zn, Pb y Fe se presenta de mayor a menor proporción en cada uno de los rasgos topográficos como sigue:

Plataforma continental > depresiones > talud

En el caso del cadmio y la plata, las acumulaciones de estos metales fueron como las concentraciones, más altos en la plataforma y el talud y los más bajos en las depresiones.

En cambio el manganeso presentó tasas de acumulación más elevadas en los mícleos de las depresiones sobre todo en los mícleos de las cuencas Farallón, Guaymas y Pescadero (Tabla 5.4.2) y las más bajas en el talud, lo cual es de esperarse ya que ahí se tienen las tasas de sedimentación más bajas (Tabla 5.4.1) y las concentraciones intermedias (Tabla 5.2.1). Estas últimas provocadas por el efecto de la capa mínima de oxígeno que intercepta con una gran proporción del talud del golfo de California.

En la tabla 5.4.3 también se indican los resultados de la comparación míltiple entre pares de promedios efectuadas por el método de Gabriel (1978), con excepción de los pares indicados, el resto de los datos no presentó diferencias esta disticamente significativas { d=0.05 }.

En la tabla 5.4.4 se presenta una serie de tasas de acumulación para Cu. Mn. Fe, In y Ni en distintos núcleos del golfo de California colectados en diferentes investigaciones: Niemitz (1977) Donegan y Schräder (1982) y este estudio. En la cuenca de Guaimas en los núcleos trabajados por Donegan y Schrader ellos con sideraron una tasa de sedimentación de 0.185 cm año⁻¹ para sus dos núcleos, tasa de sedimentación inferior a la utilizada en el presente trabajo (0.23 y 0.32 em año-1). Aún así, si se normalizan las tasas de acumulación metólica obtenidas, Estas resultan distintas; siendo de dos 6 más veces mayor (en los cinco ele mentos) en este estudio que los obtenidos por Donegan y Schrader (1982). Ahora los cálculos en ambos casos se hicieron con la misma expresión la diferencia realmente estriba en las concentraciones medidas. Lo cual pudiera deberse a las distintas técnicas utilizadas. En la cuenca Farallón, no obstante que la tasa de sedimentación entre el núcleo R-82 y el B24 fue practicamente la misma $(0.10 y 0.09 \text{ cm } a \bar{n} o^{-1})$, la sedimentación metálica obtenida en esta investigación fue también mayor, siendo diez veces 6 más grande que la calculada por Niemitz (1977); en cambio en el núcleo B27 (de este estudio), con una tasa de sedimen tación de 0.02 cm año⁻¹, tuvo un flujo comparable al R-47 (de Niemitz, 1977), ambos obtenidos en la cuenca Pescadero.

El hecho de obtener diferentes tasas de acumulación metálica puede ser explica ble por las distintas concentraciones obtenidas en los distintos trabajos, en ese sentido Niemitz (1977), reconoce que el ataque con HNO₃ que el empleo (5 ml HNO₂/gramo de sedimento), no ataca a los silico-aluminatos, aunque Donegan y Schrader (1982), aparentemente si utilizaron una técnica más eficiente en la

Guenca de Guaymas B19 1500 0.10 2 B20 1490 0.08 1 B21 2010 0.26 3 B14 2020 0.33 3 B13 630 0.23 4 B15 1815 0.20 5 B16 1540 0.26 21 B17 790 0.32 12 B18 360 0.53 31 Sijl entre B22 1350 0.27 7 C.Guaymas y C.Carmen 7 7 7 7 C.Guaymas y C.Carmen 811 1050 0.04 4 B10 2450 0.13 1 4 B9 1240 0.28 9 9 B8 840 0.05 4 9 9 B7 45 0.48 19 9 P25 1200 0.13 2 2 <t< th=""><th>5.2 1.4 6.0 9.6 9.4 8.6 8 5 4.3 3.0 3.1 5.9</th><th></th></t<>	5.2 1.4 6.0 9.6 9.4 8.6 8 5 4.3 3.0 3.1 5.9	
BZU 1490 0.08 1 B21 2010 0.26 3 B14 2020 0.33 3 B13 630 0.223 4 B15 1815 0.20 5 B16 1540 0.26 22 B17 790 0.32 121 B18 380 0.53 311 Sill entre B22 1350 0.27 7 C.Guaymas y C.Carmen 0.28 91 7 Cuenca del B12 670 0.222 3 B10 2450 0.13 1 1 B10 2450 0.13 24 1 Cuenca B23 2410 0.24 5 B5 2250 0.23 <	1.4 6.0 3.0 9.6 9.4 8.6 8 5 4.3 3.0 3.1 5.9	
B21 2010 0.26 3 B14 2020 0.33 3 B13 630 0.23 4 B15 1815 0.20 5 B16 1540 0.26 2 B17 790 0.32 12 B18 380 0.53 31 Sill entre B22 1350 0.27 7 C.Garmen B11 1050 0.04 1 B10 2450 0.13 1 B9 1240 0.28 9 B8 940 0.05 9 B7 45 0.48 19 P25 1200 0.13 24 Cuenca B23 2410 0.24 B5 2250 0.23 5 B6 2220 0.30 14 B25 2450 0.13 1 B25 2450 0.13 1 B25	6.0 3.0 9.6 9.4 8.6 8 5 4.3 3.0 3.1 5.9	
B14 2020 0.33 3 B13 630 0.23 4 B15 1815 0.20 5 B16 1540 0.26 2 B17 790 0.32 12 B18 360 0.53 31 Sill entre B22 1350 0.27 7 C.Guaymas y C.Carmen 7 7 7 Cuenca del B12 670 0.222 3 B10 2450 0.13 1 B9 1240 0.28 9 B8 840 0.05 9 B7 45 0.48 19 P25 1200 0.13 24 Cuenca B23 2410 0.24 5 B6 2220 0.30 14 B25 2450 0.13 1 B25 2450 0.13 1 Cuenca B26 3230 <td< td=""><td>3.0 9.6 9.4 8 5 4.3 3.0 3.1 5.9</td><td></td></td<>	3.0 9.6 9.4 8 5 4.3 3.0 3.1 5.9	
B13 630 0.23 4 B15 1815 0.20 5 B16 1540 0.26 2 B17 790 0.32 12 B18 380 0.53 31 Sill entre B22 1350 0.27 7 C.Guaymas y C.Carmen 7 7 7 Cuenca del B12 670 0.22 3 B10 2450 0.13 1 1 B10 2450 0.13 1 1 B9 1240 0.28 9 9 B8 940 0.065 9 9 B7 45 0.48 19 P25 1200 0.13 2 Cuenca B23 2410 0.24 5 B6 2220 0.30 14 B25 2450 0.13 1 Cuenca B26 3230 0.10 2 <td>9.6 9.4 8.6 8 4.3 3.0 3.1 5.9</td> <td></td>	9.6 9.4 8.6 8 4.3 3.0 3.1 5.9	
B15 1B15 0.20 5 B16 1540 0.26 22 B17 790 0.32 12 B18 380 0.53 31 5111 entre B22 1350 0.27 7 .Guaymas y 7 7 .Guaymas y 7	9.4 8.6 8 4.3 3.0 3.1 5.9	
B16 1540 0.26 22 B17 790 0.32 12 B18 380 0.53 31 Sill entre B22 1350 0.27 7 .Guaymas y 7 7 .Guaymas y 7 7 .Guaymas y 7 7	B.6 5 4.3 3.0 3.1 5.9	
B17 790 0.32 12 B18 360 0.53 31 Sill entre B22 1350 0.27 7 .Guaymas y 7 7 .Guaymas y 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8 5 4.3 3.0 3.1 5.9	
B18 380 0.53 31 Sill entre B22 1350 0.27 7 Guaymas y 2.Carmen 7 7 7 Juenca del B12 670 0.22 3 B10 2450 0.13 1 B9 1240 0.28 9 B8 840 0.05 9 B7 45 0.48 19 P25 1200 0.13 2 Suenca B23 2410 0.24 5 B6 2250 0.09 4 9 P25 1200 0.13 2 1 Cuenca B23 2410 0.24 5 B6 2220 0.30 14 1 B25 2450 0.13 1 1 Guenca B26 3230 0.10 2 B25 2450 0.30 14 B25 2450 0.13<	5 4.3 3.0 3.1 5.9	
i11 entre B22 1350 0.27 7 .Guaymas y .Carmen 812 670 0.22 3 uenca del B12 670 0.04 4 B10 2450 0.13 1 B9 1240 0.28 9 B8 840 0.05 9 B7 45 0.48 19 P25 1200 0.13 2 uenca B23 2410 0.24 5 arallón B24 3250 0.09 4 B5 2250 0.23 5 5 B6 2220 0.30 14 825 2450 0.13 1 cuenca B26 3230 0.10 2 1 1 cuenca B26 32	4.3 3.0 3.1 5.9	
Juenca del B12 670 0.22 3 Jarmen B11 1050 0.04 1 B10 2450 0.13 1 B9 1240 0.28 9 B8 840 0.05 1 B7 45 0.48 19 P25 1200 0.13 2 arallón B24 3250 0.09 4 B5 2250 0.23 5 6 B6 2220 0.30 14 B25 2450 0.13 1 Cuenca B26 3230 0.10 2 B6 2220 0.30 14 B25 2450 0.13 1 Cuenca B26 3230 0.10 2 'escadero B27 1600 0.02 84	3.0 8.1 5.9	
Duenca del B12 670 0.22 3 Carmen B11 1050 0.04 10 B10 2450 0.13 1 B9 1240 0.28 9 B8 840 0.05 10 B7 45 0.48 19 P25 1200 0.13 2 Cuenca B23 2410 0.24 5 Farallón B24 3250 0.09 4 B5 2220 0.30 14 B25 2450 0.13 1 Cuenca B26 3230 0.10 2 Pescadero B27 1600 0.02 14 B20 B210 0.05 3 3	3.0 8.1 5.9	•
B11 1050 0.04 B10 2450 0.13 1 B9 1240 0.28 9 B8 840 0.05 9 B7 45 0.48 19 P25 1200 0.13 2 Cuenca B23 2410 0.24 5 Saral 16n B24 3250 0.09 4 B5 2220 0.30 14 B25 2450 0.13 1 Cuenca B26 3230 0.10 2 2escadero B27 1600 0.02 84 1210 0.05 3	8.1 5.9	
B10 2450 0.13 1 B9 1240 0.28 9 B8 840 0.05 9 B7 45 0.48 19 P25 1200 0.13 24 Cuenca B23 2410 0.24 5 Faral 16n B24 3250 0.09 4 B5 2250 0.23 5 5 B6 2220 0.30 14 B25 2450 0.13 1 Cuenca B26 3230 0.10 2 Pescadero B27 1600 0.02 64 1210 0.05 3	5.9	- 1 m
B9 1240 0.28 9 B8 840 0.05 9 B7 45 0.48 19 P25 1200 0.13 24 cuenca B23 2410 0.24 5 arall6n B24 3250 0.09 4 B5 2250 0.23 5 5 B6 2220 0.30 14 B25 2450 0.13 1 cuenca B26 3230 0.10 2 Pescadero B27 1600 0.02 3		
B8 B40 0.05 B7 45 0.48 19 P25 1200 0.13 2 Cuenca B23 2410 0.24 5 farallion B24 3250 0.09 4 B5 2250 0.23 5 5 B6 2220 0.30 14 B25 2450 0.13 1 Cuenca B26 3230 0.10 2 Pescadero B27 1600 0.02 64 1210 0.05 3	2.1	• •• •
B7 45 0.48 19 P25 1200 0.13 2 Cuenca B23 2410 0.24 5 Farallón B24 3250 0.09 4 B5 2250 0.23 5 B6 2220 0.30 14 B25 2450 0.13 1 Cuenca B26 3230 0.10 2 Pescadero B27 1600 0.02 64 1210 0.05 3	8.8	
P25 1200 0.13 2 Cuenca B23 2410 0.24 5 Farallon B24 3250 0.09 4 B5 2250 0.23 5 B6 2220 0.30 14 B25 2450 0.13 1 Cuenca B26 3230 0.10 2 'escadero B27 1600 0.02 64 1210 0.05 3	ο	
Cuenca B23 2410 0.24 5 Farallón B24 3250 0.09 4 B5 2250 0.23 5 B6 2220 0.30 14 B25 2450 0.13 1 Cuenca B26 3230 0.10 2 'escadero B27 1600 0.02 3	8.6	
arailon B24 3250 0.09 4 B5 2250 0.23 5 B6 2220 0.30 14 B25 2450 0.13 1 Suenca B26 3230 0.10 2 'escadero B27 1600 0.02 3	5.2	
B5 2250 0.23 5 B6 2220 0.30 14 B25 2450 0.13 1 Juenca B26 3230 0.10 2 Vescadero B27 1600 0.02 3	0.0	
B6 2220 0.30 14 B25 2450 0.13 1 Cuenca B26 3230 0.10 2 Jescadero B27 1600 0.02 84 1210 0.05 3	8.9	
B25 2450 0.13 1 Juenca B26 3230 0.10 2 Pescadero B27 1600 0.02 R4 1210 0.05 3	6	
Cuenca B26 3230 0.10 2 Pescadero B27 1600 0.02 R4 1210 0.05 3	8.6	
rescadero B27 1600 0.02 R4 1210 0.05 3	4.2	
84 1210 0.05 3	3.5	
	2.6	
B3 2500 0.36 13	1	
P19 3400 0.06 2	3.1	
82 1160 0.10 4	4.1	
B1 240 0.72 3	1.3	
B28 2590 0.18 4	8.1	
Cuenca P2 635 0.15 3	3.0	
Mazatlan P3 2020 0.30 6	7.0	
P4 2040 0.08 2	3.5	
PS 2640 0.16 3	5.0	
B29 3180 0.29 7	9.5	
Boca de] Estero de Urías B37 25 0.16 8		

5.4.1 Tasas de sedimentación y acumulación en los sedimentos de la parte centro y sur del colfo de California.

Núcleo	Cu	Nİ	Co	Cr	Zn	Pb	Cd	Ag	Mn Fi	e x 10 ³
			P	lataforma	continen	tal				an a
R1	77 3	03.0	30.7	3 121	416	176	11 4	7.00	1270	110
B7	59.5	72.8	34.2	74.7	238	84.4	2.30	2.60	889	57.4
B37	25.5	21.5	15.5	3.5	123	40.0	1.10	2.26	609	32.4
			Ti	s]ud∶y⊷bo	rde de la	s cuencas		ana ann an Shenn An Airte Tha tha shen		
B2	13.9	17.6	5.8	24.9	99.2	20.0	1.80	0.78	154	14.4
B4	5.7.	6.4	3.3	÷,	-31.8	7.2.	0.40	0.46	120(a)	10.1
B8	3.7	4.5	1.2	5.2	11.5		0.37	0.23	22.8	2.6
89	36.9	41.5	1/.8	3B-9	801	30.9	3.18	2.68	218	19.1
811	3.3	3.9	1.3	3.8	- 8.1 	2./	0.30	0.13	18.3	1./5
DIC R17	13.4 27 4	21.4	0.J	20.2	55 1	21 9	2.53	1.00	119	11.2
B15	24.9	20.9	12.5	19.7	84.9	28.7	1.32	0.92	891(a)	15.4 (a
B16	9.8	9.2	8.4	13.2	33.2	13.2	0.84	0.59	114(a)	9.4
B17	32.8	25.7	32.5	44.2	13.4	48.0	2.92	1.87	395	45.6
B18	68.0	61.7	42.5	96.4	311	115	6.80	7.94	1135	108
B19	10.4	10.6	4.4	8.4	28.7	6.7	0.22	0.67	61.7(a)	5.3
B20	7.9	5.9	2.5	4.1	15.3	9.6	0.47	0.38	28.5(a)	2.2
B22	27.9	34.6	14.9	24.3	71.0	25.8	0.03	0.94	184 (a)	16.5
B25	13.3	11.5	3.8	8.2	34.4	7.8	0.80	0.39	98.6	6.9
82/	1./	2.0	0.4	1.8	5.9	1.5	0.07	0.07	11.3(a) 275(a)	16.9
B28	54.4	44.3	10.5	25.1	113	23.0	2.51	0.01	3/5(d)	10.0
P4	25.0	19.4	0.5	. 11.4	48.8	10.1	1.00	0.39	92.0(a	/ 0./
			De	epresione	s de las	cuencas				
P19	24.0	15.5	4.0	6.5	49.4	11.5	0.77	0.24	335(a)	8.0
B3	110	98.6	20.7	64.8	295	46.1	2.03	1.81	955(a)	45.1
85	32.1	38.6	10.2	22.0	108	22.7	0.52	2 20	815(a) 976(a)	53 0
50	19.8	3/./	24.1	59.0 16 A	197 60 0	14 6	0.53	0.56	2000(a)	14.0
024	14.0 20 C	24.2	10.2	17.9	00.0	24 3	0.03	0.73	1265(a)	16.2
D23 810	29.0	10 4	4 0	5 0	28.0	9.5	0.33	0.36	40.9(b)	3.3
B10 B14	15.0	15.8	7.3	9,9	42.6	11.8	0.29	0.87	226 (d)	6.6(a
014	20.0	20.0							3524 (e)	11.7 (e
B21	16.9	19.9	5.0	10.0	50.4	14.9	0.86	0.80	281 (a)	8.1(d
									2905 (e)	12.2(e
826	22.6	19.8	4.5	9.7	49.4	10.5	0.36	0.52	211(a)	7.0(a
		_						0.07	1940(a)	
B29	93.8	70.9	17.0	37.1	201	29.6	1.02	0.95	1081(a)	31.0

Tabla 5.4.2 Tasas de acumulación de metales pesados en los sedimentos del golfo de California (mg. m^{-2} , año⁻¹).

105

Calculada la tasa de acumulación en las secciones superficiales (a), con el promedio de las secciones 40-53 cm (b), con el promedio de las secciones 10-40 cm (c), con las secciones 55-67 cm (d), y con las secciones 0-15 cm (e).

Meta]	P1.	ataforma continental (n = 3)	Ţalud/bo	orde de las cuencas (n'= 18)	Depresion	es de las cuencas (n = 11)
	R	x +± 6	R		R	<u> </u>
Cu	25.5-77.3	54.1+ 26.3	1.7-68.0	21.2+18.1	8.6-110	37.9+ 33.7
Ni	21.5-93.9	* 62.7+ 37.2	2.0-61.7	*20,1+16,3	10.4-98.6	34.4 27.4
Co	15.5-34.2	* 26.8+ 9.9	0.4-42.5	*10.2+11.1	4.0-24.7	10.6+ 7.1
Cr	3.5-121	* 66.4+ 59.2	1.8-96.4	*20.5+22.4	5.9-64.8	23.6± 21.1
Zn	123-416	* 259 + 148	5.9-311	*69.3+71.8	28.0-295	107 <u>+</u> 86.5
Pb	40.0-176	**100 ± 69.4	1.5-115	**21.3+26.4	9.5-69.6	**24.1 <u>+</u> 18.6
Cd	1.10-11.4	*4.93+ 5.63	0.03-6.80	*1.47+ 1.67	0.29-6.10	1.24 <u>+</u> 1.68
Ag	2.26-7.00	*3.95+ 2.64	0.07-7.94	*1.17± 1.80	0.24-2.39	0.96±-0.65
Mn	609-1270	***923 + 332	11.3-1135	***227 ± 309	226-2000a	***809 ± 541a
					335-3524b	1505 <u>+</u> 983b
Fex10 ³	32.4-110	**66.6 <u>+</u> 39.6	0.9- 108	**16.8 <u>+</u> 24.9	3.3-53.9	**19.1+ 16.9

(a) Calculado con los flujos de las capas subsuperficiales; (b) calculado con los flujos subsuperficiales de 8 núcleos y los superficiales (0-15 cm) de 3 núcleos.

* Significativamente (ス=0.05) diferentes; ** Talud y depresión significativamente (ス=0.05) diferentes de la plataforma; *** Talud significativamente (ス=0.05) diferente de la depresión y de la plataforma continental.

	to the substantial for		이 이 가지 않는 것이 나라?	107
				107
			사람이 있는 것을 알고 있는 것을 하는 것을 수가 있다. 이렇게 좋아하는 것을 하는 것을 하는 것을 수가 있는 것을 것 같이 않는 것을 것을 수가 있는 것을 것을 것 같이 않는 것을 수가 있는 것을 것 같이 않는 것 같이 않는 것 않는 것 않는 것 같이 않는 것 않는	nde elle eller med de la second de
	a sub-sub-states a particular	an ann dhean an an	化氯化 电空气输出 法非法投入	[2] 20 Here 20
T-L]- C 4 4				
Tabla 5.4.4	comparación	Ge Ids Lasas	de acumulació	on metaloca en nucleos
	del Golfo de	e California d	colectados en	diferentes investiga-
	ciones			
그는 문제 문제 전에 전쟁을		日日7月11日,日日日期日月24日	"是要是我们的现在是是我的。"	

Localidad y núcleo	Profundidad (m)	w (cm.a'n	o-1)	(mg.		o - 1) .		
1995 - 1995 -			CU_	e Mn 🖗	Fe	2n	<u>.</u>	
<u>Cuenca de Guaymas</u> Talud peninsu- lar: núcleo B29								
(Donegan y Schrader,1982)	635	.185	9.95	55.5	5459	16.3	9.1	
Núcleo B13 (este estudio)	630	.23	27.4	119	11200	55.1	20.0	
Talud continen- tal: núcleo E-9 (Donegan v	a segura de la construcción de la de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción						na seren presidente de la composition d La composition de la c	
Schrader, 1982)	660	.185	8-2	50.9	5143	23.7	-	
Núcleo Bl7 (este estudio)	790	.32	32.8	395	45600	134	25.7	
<u>Cuenca Farallón</u> Núcleo R-82					ng sa			
(Niemitz,1977)	3165	.10	.56	86	660	6.8	.33	
Núcleo B24 (este estudio)	3250	.09	14.6	2000	14000	60	17.2	
Cuenca Pescader Núcleo R-47 (Niemitz,1977)	<u>o</u> 2822	.046	1.4	11.7	415	3.6	1.2	
Núcleo Pl9	3400	.06	24.0	335	8000	49.4	15.5	
Núcleo 627 (este estudio)	1600	.02	1.7	11.3	900	5.9	2.0	

107

.

. .

Tabla 5.4.5	Tasas de se	dimentaci	ión y de aci	urulación i	metálica	a de los	sed i-
	mentos del	Golfo de	California	comparado	a las e	dé áreas,	oceá-
	nícas.					· · · · · ·	

Атеа	Profundidad (m)	lasa de sedimentació	n		(mg/m ²	añu)	
		(cm/10 ³ años)	Cu	<u>!! i</u>	<u>7.n</u>	łsn –	rex10 ²
Gulfo de California (a): Plataforma							
Continenta	1						
Nucleo 87 (CC)	45	480	59.5	72.8	238	889	574
(CH)	2 5	160	25.5	21.5	123	609	324
<u>Talud</u> cont nental	<u>i</u> -						
Rúcleo B18 (CG)	380	530	68.0	61.7	311	1135	1050
Núcleo B17 (CG)	790	320	32.8	25.7	134	395	456
Núcleo B8 (CC)	840	50					<pre>letter = transformed and transforme And And And And And And And And And And</pre>
Núcelo B2 (CP)	1160	100	13.9	17:6	99.2	1540	- 144
<u>Talud peni</u> sular	<u>n</u> +						영제 - 영화가장 이 모르는 병원에서 하는 것이 이 이
Rúcleo 813 (CG)	630	230	27.4	20.O	55.1	119	112
Núcleo B12 (CC)	670	220	15.4	21.4	53.1	56.1	80.5
Núcleo 84 •(CP)	1210	50	5.7	6.4	31.8	120	101
Depresione bordes	5/						
Núcleo B21 (CG)	2010	260	16.9	19.9	50.4	281-2905	8.1-12.2
Núcleo B15 (CG)	1815	200	24.9	20.9	84.9	891	154
Núcleo B10 (CC)	2450	130	8.5	10.4	28.0	40.9-858	33
(CF)	2250	230	32.1	38.6	108	815	167
(CF)	3250	90	14.6	17.2	60.0	2000	140
(CP)	3230	100	22.6	19.8	49.4	211-194	0 70
(CP)	3400	60	24.0	15.5	49.4	335	80
Oceánica:						- 1 - 1.	
Dorsal del	l				1910 - 19		
Pacifico (b)	2830	1.5		1.6	-	280	8.20 •
Ori <u>ental</u> (C)		1.1	3.3	1.9	1.4	240	ō.30
<u>Atlántico</u> NW (d)	5520	1.02	0.57	U.53	. 08	14.3	3.35

 (a) Este estudio; (CC) cuenca del Cármen; (CG) Cuenca de Guaymas;(CF) Cuenca Farallón; (CP) Cuenca Pescadero; (b) bender, et al(1971), Dorsal del Pacífico Uriental 17°5, 114° P; (c) Dostrom et al(1974)
 (d) Thomson et al (1984) Núcleo 10170 # 102 celectado al Sur del plano abisal de Los Nares. 108

.

extracción (2 ml HF y 2 ml HNOz/100-200 mg de miestra).

Con objeto de comparar las tasas de acumulación metálica en los distintos rasgos morfológicos del golfo de California y compararlos a los de áreas oceánicas se elaboró la tabla 5.4.5; en esta se puede observar las notables diferencias entre los flujos metálicos del golfo y los de cualquiera de las áreas oceánicas. Dentro del golfo, los aportes metálicos sedimentarios del talud penínsular son los que en general presentan los menores flujos. Ahora bien, si se normaliza por ejemplo el núcleo P19 (ó algún otro núcleo de las depresiones), con respecto a la tasa de sedimentación oceánica $(1.02-1.5 \text{ cm}/10^3 \text{ años})$, es interesante notaz que los flujos calculados (Cu, 0.44; Ni, 0.28; Zn, 0.90; Mn, 6.0; Fc, 1.5 mg/m² año), tienen con excepción del Zn más semejanza con los valores del plano abisal de los Nares en el Atlántico (Thompson <u>et al</u> 1984), que con las muestras metalíferas del Dorsal del Pacífico Oriental (Bender <u>et al</u> 1971; Bostrom <u>et al</u> 1973, 1974).

Con el fin de calcular las tasas de acumulación metálica representativas en la porción central y sur del golfo de California, se realizó una estimación de los aportes metálicos en cada rasgo topográfico de cada cuenca (Tabla 5.4.7); para ello primeramente se hizo una estimación de las áreas que cubren cada tipo de fondo (Tabla 5.4.6). Así en el bajo golfo se obtuvo una extensión del orden de $1.21 \times 10^5 \text{ km}^2$; de esa manera incluyendo los fondos de las plataformas adyacentes a las cuencas, tenemos que la mayor área la tiene el sistema* complejo de cuencas de Pescadero (41590 km²), cuenca de Guaymas (34150 km², después, cuenca del Carmen (25150 km²) y finalmente cuenca Farallón (20135 km²).

Todos los flujos másicos (g. ano^{-1}) metálicos se presentaron en una mayor magni tud en la cuenca Pescadero y cuenca de Guaymas (Tabla 5.4.7); mientras que la acumulación metálica (normalizada por el área de cada cuenca), en la mayoría de los casos (Fe, Mn, Cd, Co, Ag, Cr, Pb), fué mayor en la cuenca de Guaymas (Tabla 5.4.8). En esta tabla también es posible observar como las tasas de acumulación metálica de las depresiones son relativamente altas y en algunos casos más eleva dos, siendo ésta más notorio para el manganeso, y en el caso de la cuenca de Pes cadero, esto también se da para Cu y Ni. Respecto a las tasas de sedimentación metálica entre las distintas cuencas es interesante como se puede agrupar a los metales:

Cu y Zn: CP> CG> CC> CF Ni: CP> CC> CG> CF Co: CG> CC> CF> CP Cr, Pb, Ag: CG> CP> CC> CF Cd, Fe, Mn: CG> CP> CF> CC

En donde CG = cuenca de Guaymas, CC= cuenca del Carmen, CF= cuenca Farallón y CP= cuenca Pescadero. Este orden de sedimentación que coincide entre algunos metales se puede explicar en función de su comportamiento geoquímico y de su dis ponibilidad. De ese modo el importante aporte hidrotermal en la cuenca de Guaymas y la rápida sedimentación de una buena parte del Nn inyectado hidrotermalmen te (Campbell, 1908), podrían explicar las relativamente altas tasas de acumulación de Nn en esa cuenca; el caso del hierro serla similar, aunque en la tabla 5.4.8 se nota claramente como la depositación del hierro en el talud de la cuen ca de Guaymas es mucho mayor con respecto a cualquiera de las otras cuencas, la depositación del hierro en esa zona es muy probable que ocurra como sulfuros de hierro, pero su mayor suministro es más difícil de explicar, ya que la precipita ción del aporte hidrotermal es de esperarse que para este metal sea mucho más

<u>Cuenca de Guaymas</u>	Area (Km ²)	Area (%
Plataforma continental, parte continental (<200 m)	4500	13.2
Plataforma continental, parte peninsular, (<200 m)	900	2.6
Talud continental (200-1500 m)	12000	35.1
Talud peninsular (200-1500m)	8000	23.4
Borde/depresión (1500-2000m)	8000,	23.4
Depresión profunda (~2000 m)	750- 34150	<u>2.2</u> 99.9
<u>Cuenca del Cármen</u> :		
Plataforma continental, parte continental (<200m)	8000	31.8
Plataforma continental, peninsular (<200m)	850	3.4
falud continental (200-1500m)	8000	31.8
alud peninsular (200-1500m)	5500	21.9
lorde/depresión (1500–2400m)	2400	9.5
epresión profunda (~2450m)	400	1.6
Cuenca Farallón	25150	100
Plataforma continental, parte continental (<200m)	3600	17.9
Plataforma continental, peninsular, (<200m)	800	4.0
alud continental (200-1500m)	4300	21.3
Talud peninsular (200-1500m)	6100	30.3
Borde/Depresión (1500-2000m)	3750	18.6
Borde/Depresión (2000-3000m) _	1500	7.4
epresión profunda (_3000m)	85	0.4
Suenca Pescadero:	20135	99.9
lataforma continental, parte continental (<200m)	6660	16.0
lataforma continental, peninsular (<200m)	1150	2.7
alud continental (200-2000m)	12940	31.1
alud peninsular (200-2000m)	11470	27.6
orde/Depresión (2000-3000m)	8170	19.6
epresión profunda (3000-3600m)	1200	2.9
	41590	99.9

<u>ت</u>1

110

LOCalidae	Cu. 10 ⁷	N1.10 ⁷	co.10 ⁷	cr.10 ⁷	Zn.10 ⁷	P5.10 ⁷	, Cd.10 ⁵	Ag.10 ⁵	Mn.10 ⁸	Fe. 10 ¹⁰
<u>Cuenca de Guaymas:</u>					an a			86533		
Plataforma continental	34.8	42.3	13.8	54 .4	187	79.2	495	315	57.2	49.5
Plataforma peninsular	0.5	0.6	0.3	0.2	2.9	0.6	3.6	4.1		0.9
Talud continental	39.4	30.8	39.0	. 53.0	161	57.0	350 🛁	224	47.4	54,7
Talud peninsular	21.9	16.0	1 7.2 ese	16.3	44	17.5	202		9.5	9.0
borde/depresión (a)	20.0	15.7	9.1	16.2	67.9	23.0	10B	72	71.3	12.4
Depresión profunda	1.3	1.5	<u>0.4</u> 69.8	0.0	. <u>3.8</u> 466.6	<u>-1.1</u> -178.4	4.3 1162.9	<u>6.0</u> 701.1	2.1 (21.8) 188.6 (208.3)	0.7
<u>Cuenca del Cârmen</u> :						Marile Chos TA	l general de la companya de la comp	$\{V_{i}, \dots, V_{i}\} \} \in \mathbb{R}^{n}$		
Plataforma Continental	47.6	58.2	27.4	59.8	190	67.5	184	208	3. 71. <u>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</u>	45.9
Plataforma peninsular	0.5	0.6			2.9	0.6	3.6	4.1	<u></u>	0.9
Plataforma continental -	16.2	18.4	7.6	17 .6	4. 48.0	-7 13.6	144	118	9,5	8.6
Talug peninsular	5.1	6.9	2.17.0	3.9	.16.8		33	- 27 .5	2.0	2.7
Depresiones	<u> </u>		<u></u>	1.5	7.8	2.7 	9.2	<u>10.1</u> 367.7	<u>1.1 (24.0)</u> 84.8 (107.7)	0.9
<u>Cuenca Farallón</u> :				5 X				<u>i kana</u> ja		
Plataforma continental	21.4	26.2	12.3	26.9	85.4	30.3	82.7	93.5	32.0	20.6
Plataforma peninsular	0.5	0.6	0.3	D.8	2.9	0.6		4.1	marat i 1 .1 - 2010	0.9
Talud continental	8.2	9.4	3.8	8.8	24.0	7.0	74	60.0	5.1	4.6
Talud peninsular	4.0	4.8	2.4	6.4	23.2	4.8	28.8	32.8	8.8	7.2
Borde/depresión (b)	19.5	19.4	7.8	17.0	70.0	20.4	130	78.1	51.7	15.2
Depresión profunda	0.1	0.1	0.1	0.1	0.5	0.1	0.4	0.5	1.0	0.1
Cuenca Pescadero:	23.7	50.5	20.7	6U.U	200.0	6 9. 6	313.3	209.0	99.7	40.0
Plataforma continental	51.5	62.6	20.4	80.5	277	117	733	466	84.4	73.1
Plataforma peninsular	0.7	0.8	0.4	1.0	3.3	0.8	5.1	5.6	1.4	1.2
Talud continental	10.1	12.7	4.0	17.3	67.9	14.2	122	55.6	10.7	9.9
Talud peninsular	8.0	9.6	4.8	12.8	46.4	9.6	128	65.0	17.6	14.4
borde depresión (c)	99.9	80.6	16.9	52.9	241	37.7	166	148	78.0	36.8
Depresión profunda	2.9	1.9 168.2	<u>0.5</u> 47.0	<u>0.e</u> 165.3	<u>5.9</u> 641.5	1.4	9.2 1163.3	4.6	2.5 (23.2) 194.6 (215.3)	1.0
Total	406.5	422.6	182	450.4	1579.6	509.8	3029.5	2082.6	567.7 (631.0)	371.2

Tapla 5.4.7 Flujo másico sedimençario de metales pesados en la parte centro y sur del Golfo de California (g. año⁻¹)

(a) 1500-2000 m; (b) 1500-3000 m; (c) 2000-3000 m; () calculado el flujo con las tasas de acumulación de las secciones superficiales (0-15 cm)

.

.

.

grāfico.			(mg.m]	² año ⁻¹)					
								an <u>a</u> staine BNA Staine		
Cuanan da Cuanan d	Cu	: N 1	Co	Cr	Zn	РЪ	Cd	Ag	"Mn F	ex10 ²
Cuenca de Guaymas:	6 E A	70 /	96 1	102	- 2E 1	1 / 7	0 2	S C O	1000	
Talaiorma continentale	203.4	73.4 22 A	20.1	102	301	141	9.6		200	933
	20.7	23.4	23.1	347.7 10-4	0100	37.2	2.0	1.3		310
Debiezionez (a) sus services a						-∑-`-`-`-	-31-5-5	-// -/		
Promedio	34.5	31.3	20%4	41.4	137	52.2	3.4	2.0	552(610)	372
Cuenca del Cármen:				111		na cui matra Test cara una				
Plataforma continental	54.4	66.4	31.3	68.5	2.18	76.9	2.1	2.4	816	529
Talud	15.8	18.7	7.2	15.9	48.0	12.4].3	1.1	85.2	83.7
Depresiones(b)	8.6	10.4	4.0	5.9	28.0	9.5	0.3	0.4	40.9(858)33.0
Promedio	28.5	34.5	15.3	33.2	106	34.8	-> 1.5	ī.5	337 (428)	235
Cuenca <u>Farallón</u> :										
Plataforma continental	49.8	60.9	28.6	62:9	200	70.2	2.0	2.2	752	489
Talud	11.7	13.7	6.0	14.6	45.4	11.3	1.0	0.9	134	113
Depresiones(c)	36.7	36.6	14.8.	32.0	132	38.4	2.4	1.5	988	287
Promedio	26.7	30.0		29.8	102	31.4	1.6	1.3	495	241
					s in die s Geboort	· · · 2				
<u>Cuenca Pescadero</u> :										
Plataforma continental	66.1	81.1	26.1	103	358	149	9.4	6.0	1090	951
Talud	7.1	8.9	3.6	12.2	46.0	9.7	1.0	0.5	115	99.5
Depresiones(d)	99.0	88.0	18.5	57.2	262	41.7	1.9	1.6	859(1080)	403
Promedio	39.1	40.3	11.3	39.6	154	43.5	2.8	1.8	468(518)	328

د.

ن د

<u>ب</u>

υ

local que para el manganeso. En cuanto al cadmio (como se menciono en la sección 5.2) si este tiene la aparente tendencia a asociarse con el material biogénico (Gendron <u>et al</u> 1986), principalmente fitoplancton, es de esperar que en aquellas áreas como gran parte de la cuenca de Guaymas (Calvert 1966 a, b), se incorporen mayores proporciones del metal que en las demás áreas del golfo.

A pesar de la amplia variabilidad regional en los flujos y tasas de acumulación metálica en las distintas cuencas del Bajo golfo, existe una evidente consisten cia en los datos como un todo en la magnitud relativa de los flujos elementales. Así, es posible observar que tanto para los flujos másicos (g/año), como para las tasas de acumulación (mg/m². año), hay una misma tendencia a decrecer en el orden siguiente:

Fe>Mn>Zn>Pb>Cr>Ni>Cu>Co>Cd>Ag

Los factores que podría esperarse que controlen las magnitudes relativas de los flujos, son los distintos aportes relativos que le suministran los metales al golfo y la relativa eficiencia de los procesos de captura para cada elemento. Suponiendo que el principal aporte fuese riverino, y que las concentraciones di sueltas relativas de los metales en el agua de río que le suministran al golfo de California fuesen los del río mundial promedio (Turekian, 1969; Martin y Maybeck, 1979), tendríamos una secuencia de aporte:

Fe>ZIDMIDCu>Pb>CroNi>Ag>Co>Cd

mientras que en el material particulado de los ríos:

Fe>Mid Zid Pb>Cc>Cu>NisCo>CdsAg

con lo que se puede observar una mayor similitud con la secuencia del particula do de los ríos que con la fracción disuelta, sin embargo si consideramos también la composición relativa de los fluídos hidrotermales de la cuenca de Guaymas. (Von Damm, 1983; Edmond y Von Damm, 1985):

MIDFOZIDCU, Co, Pb, Cd, Ag

siendo incierto para los últimos cuatro metales y si ademós comparamos las secuencias anteriores con las del aporte biogénico relativo (Tabla 5.1.1, Brumsack 1983):

Fe>Zn>Cu>Cd>Mn>Ni>Cr, Pb

Podemos notar que ciertamente las secuencias de las diferentes contribuciones no son tan distintas entre sí, aunque la que guarda más semejanza con los flujos de positados en los fondos del bajo golfo es la del particulado de los rlos.

Elementos con tiempos de residencia mayores como Cu y Ni esperarlamos que fueran transferidos más ulteriormente que elementos con tiempo de residencia cortos como Fe y Mn; como quiera que sea, no obstante la gran variación en los flujos absolutos para metales individuales (Tabla 5.4.7 y 5.4.8), que en gran parte demues tra la importancia de los procesos que controlan la geoquímica de la columna de agua (por ejemplo, sobre gran parte del talud, la capa del mínimo de O_2) parece ser que la similitud en los flujos relativos que pudiesen verse modificados por dichas variaciones no fraccionan lo suficiente a los metales (aquí considerados), para alterar el patrón impuesto por su abundancia geoquímica. 6. Metales pesados en las fases geoquímicas de los sedimentos del golfo de California.

La distribución de los metales pesados en las fracciones o fases geoquímicas, operacionalmente definidas (Tessier et al. 1979; Tessier y Campbell, 1987); De intercambio/adsorción(1/A), materia orgánica y sulfúrios incluyendo posiblemente a los carbonatos (O/S), Reducible (R) y Residual o Litogénica (R/S), están dadas en las tablas del apéndice 4. Se analizaron 9 metales en cada una de las fases de 245 muestras de sedimento de un total de 20 mícleos, 19 de los cualos se colectaron en la parte centro y sur del golfo de California y uno (B31) en los fom dos pelágicos del Pacífico adyacentes al golfo.

Básicamente la discusión de estos datos se ha dividido en dos partes, una en don de se presenta la distribución regional de los metales en las fases de los sedimentos superficiales (0-5 cm) y otra donde se analizan los perfiles de los metales en las fases de la columna sedimentaria.

6.1 Distribución de metales pesados en las fases geoquímicas de los sedimentos superficiales.

En las figuras 6.1-6.9 se ilustra la distribución de los nueve metales analizados en las fases geoquímicas de los sedimentos superficiales de la parte centro y sur del golfo de California, así como en los sedimentos del núcleo pelágico (B31). Entre los aspectos más sobresalientes de estas figuras destaca el contras te de la partición del cobre, zinc, plomo, cobalto, níquel, hierro y manganeso entre los núcleos del golfo y el B31, ya que en este áltimo es elevada siempre la proporción de los metales asociados a la fase oxidable y reducible y en cambio más bajas las proporciones de la fracción litogénica. Ahora, como es de esperarse en los núcleos de la plataforma continental (y sobre todo en los de la parte/continental), así como algunos del lado del talud continental (B18, B17) presentan en la mayoría de los metales una mayor proporción en la fase residual que en los núcleos de las cuencas y del lado peninsular.

En la tabla 6.1. 6.2 y 6.3 se presentan los rangos. La media y la desviación es tándar de las concentraciones para cada uno de los metales en la fracción no-li togénica de la plataforma continental. La zona del talud/borde de las cuencas, y las depresiones de las cuencas respectivamente. Para la plataforma continen-tal se consideraron los valores de los núcleos B1 (colectado sobre los límites de la plataforma continental (Z= 240 m) frente al sistema lagunar de Altata-Ense nada El Pabellón donde desemboca el río Culiacán, y sobre el transecto del complejo de cuencas de Pescadero), B7, (colectado desde una profundidad de 45 m sobre el transecto de cuenca del Carmen, frente a la desembocadura del río Mayo) y B37 (colectado sobre la boca del estero de Urías ó Puerto de Mazatlán desde una profundidad de 25 m). Para el talud y borde de las cuencas se utilizaron los valores de 10 núcleos, dos de ellos (B22, B25), desde las cimas o "sills" que separan a las cuencas del Carmen y Guaymas y Farallón y Pescadero; las loca lizaciones de los 8 restantes (B3, B4, B9, B12, B17, B18, B19, B20) se hallan sobre las cuencas de Pescadero, del Carmen y Guaymas (Fig. 3.1). En las depresiones se consideran 6 núcleos; B14 de la depresión sur [Z= 2020 m) de la cuenca de Guaymas, B5 (Z= 2250 m), B6 (Z= 2220 m) y B24 (3250 m) de las depresiones de cuenca Farallón, B26 de la depresión (Z= 3230 m) de cuenca Pescadero y B29 extrato desde la depresión (Z= 3180 m) de la cuenca Mazatlán.

- FIGURA 6.1. DISTRIBUCION DEL COBRE EN LAS FASES GEOQUIMICAS DE LOS SEDIMENTOS SUPERFICIALES DE LA PARTE CENTRO Y SUR DEL GOLFO DE CALIFORNIA.
- FIGURA 6.2. DISTRIBUCION DEL ZINC EN LAS FASES GEOQUIMICAS DE LOS SEDIMENTOS SUPERFICIALES DE LA PARTE CENTRO Y SUR DEL GOLFO DE CALIFORNIA.
- FIGURA 6.3 DISTRIBUCION DEL PLOMO EN LAS FASES GEOQUIMICAS DE LOS SEDIMENTOS SUPERFICIALES DE LA PARTE CENTRO Y SUR DEL GOLFO DE CALIFORNIA
 - FIGURA 6.4 DISTRIBUCION DEL CADMIO EN LAS FASES GEOQUIMICAS DE LOS SEDIMENTOS SUPERFICIALES DE LA PARTE CENTRO Y SUR DEL GOLFO DE CALIFORNIA.
- FIGURA 6.5 DISTRIBUCION DEL COBALTO EN LAS FASES GEOQUIMICAS DE LOS SEDIMENTOS SUPERFICIALES DE LA PARTE CENTRO Y SUR DEL GOLFO DE CALIFORNIA.
- FIGURA 6.6 DISTRIBUCION DEL NIQUEL EN LAS FASES GEOQUIMICAS DE LOS SEDIMENTOS SUPERFICIALES DE LA PARTE CENTRO Y SUR DEL -GOLFO DE CALIFORNIA.
- FIGURA 6.7 DISTRIBUCION DEL CROMO EN LAS FASES GEOQUIMICAS DE LOS SEDIMENTOS SUPERFICIALES DE LA PARTE CENTRO Y SUR DEL GOLFO DE CALIFORNIA.
- FIGURA 6.8 DISTRIBUCION DEL HIERRO EN LAS FASES GEOQUIMICAS DE LOS SEDIMENTOS SUPERFICIALES DE LA PARTE CENTRO Y SUR DEL GOLFO DE CALIFORNIA.
- FIGURA 6.9 DISTRIBUCION DEL MANGANESO EN LAS FASES GEOQUIMICAS DE LOS SEDIMENTOS SUPERFICIALES DE LA PARTE CENTRO Y SUR DEL GOLFO DE CALIFORNIA.

Metal	<u>Inte</u> de a	rcambia dsorció	bley In		<u>Redi</u>	<u>icible</u>		<u>Oxidable</u>	
neeut	R	x	6	R .	x	6	R	x	6
Cu	0.1	-		3.0-7.0	5.2	2.0	2.6-4.9	3.7	1.2
Ni	0.2-3.1	1.6	-	0.5-6.5	3.7	3.0	1.9-7.7	5.7	3.3
Co	0.5	-	n a sea An an	1,7-3.0	2.2	0.7	1.0-2.0	1.5	0.5
Cr	0.6	- '	-	1.3-4.4	3.1	1.6	2.1-6.4	3.9	2.3
Zn	-	0.23		24.5-30.0	26.9	2.8	6.3-7:9	7.3	0.9
РЬ	0.6	-	-	2.8-5.1	3.9	1.2	10.9-14.2	12.9	1.7
Cd	0.1	-	-	0.1	- 111	n an	0.4-1.4	0.83	0.51
Mn	1.3-8.5	6.1	4.1	49.8-90.2	74.2	21.5	28.5-152	82.4	63.2
Fe	3.6-12.	37,2	4.5		3719		200-956	455	434

Tabla 6.1 Partición de los metales pesados en la fracción no litogénica de los sedimentos superficiales de la plataforma continental de la parte centro y sur del golfo de California (ug.g-1).

R es el intervalo, \overline{x} el promedio y δ la desviación standard.

- No detectado.

ətal		<u>Interc</u> de ads	ambiable y prción		Reduci	ble	(<u>Dxidable</u>	
	R	x	6	R	x	6	R	x	6
ų	0.1-0.7	0.1	-	2.5-29.3	8.1	5.8	2.1-27.3	9.6	7.6
i	0.2			3.8-16.9	10.5	4.6	2.5-43.8	16.1	12.1
3	0.5			1,2-3.0	2.1	0.6	1.0-4.7	2.9	1.4
	0.6			0.5-8.0	4.8	2.5	0.8-9.8	4.1	2.7
l, sta	0.1			18,5-52.3	33.0	10.5	2.8-34.9	14.7	9.2
)	0.6			2.1-5.0	3,6	1.0	4.3-18.8	11.9	4.7
1 *** *	0.1	1	a sea cara an a Tairige T airige a	0.1		- -	0.5-2.3	1.03	0.52
1	4.1-265	51.7	82.0	27.6-132	66.9	85.5	17-1712	371	540
e	1.4-7.2	3.61	1. 1. 1. 1. 1. -	1920-3811	2709	689	61,4-507	197	137

Tabla 6.2 Partición de los metales pesados en la fracción no-litogénica de los sedimentos superficiales de talud y borde de las cuencas de la parte centro y sur del golfo de California (ug.g⁻¹).

C .

R es el intervalo, \overline{x} el promedio y 6 la desviación standard.

- No detectado.

Metal		Inter de ac	rcambiable Isorción	<u>у</u> .		Reductb1		<u>0×</u> i	dable	<u></u>
	R	x	6		R	-44 (188 X - 24 (189		26.26 R.	×	6
Cu	0.1				2.8-38.1	16,5	15.7	5.9-35.7	16.5	12.0
Ni	0.5-2.9	1.1			2.1-24.6	9.6	8.6	7.2-45.6	25.2	13.4
Co	0.5				1.9-6.2	3.2	1.6	1.1-4.2	2.5	1.2
Cr	0.6	-	· · · · · ·		1.8-7.4	4.7	2.2	3.0-9.7	5.1	2.5
Zn	0.1	-			24.9-70.5	43.2	16.9	6.6-43.7	23.6	13.7
РЬ	0.6	-	-	1.1×.	4.0-7.3	4.9	1.4	8.0-24.9	13.6	6.5
Cd	0.1	-			0.1	· _	-	0.7-1.4	1.07	0.25
Mn	85.1-235	160	60.4		180-532	324	116	484-10990	4059	4529
Fe	0.4-4.8	3.0	-	•	2208-4187	3089	649	633-582	412	289

Tabla 6.3 Partición de los metales pesados en la fracción no-litogénica de los sedimentos superficiales de las depresiones de las cuencas de la parte centro y sur del golfo de California (ug.g⁻¹).

R es el intervalo, \overline{x} el promedio y d la desviación standard.

.

- No detectado.

En las tablas 6.1-6.3 se puede observar como en la fracción no litogénica las fases reducible y oxidable que poseen las concentraciones más elevadas, mientras que las concentraciones más bajas se presentan en la fase intercambiable/ adsorción, incluso metales como Cu, Ni, Co, Cr, Pb y Cd no se detectaron en mu chas de las muestras de ésta última fase.

Respecto a la concentración de los diferentes metales en la misma fase en gene ral no parece haber diferencias notables entre los distintos rasgos morfológicos, así el orden secuencial de las concentraciones en general tiende a decre cer como sigue en la fracción reducible:

Fe>Mn>Zn>Cu>Ni>Pb>Co>Cd

Teniendo el hierro reducible del talud y borde de las cuencas el valor promediomás bajo (2709 ug.g⁻¹), mientras que el Mn reducible de los sedimentos de las depresiones tiene las concentraciones más elevadas ($324 ug.g^{-1}$) y en cambio la plataforma continental los más bajos con 74.2 ug.g⁻¹.

En relación a los otros metales es posible clasificar su concentración en la fracción reducible como sigue:

Cu, In, Ni y Cr cuyas concentraciones son más elevadas en los sedimentos de las depresiones, el talud y las más bajas en la plataforma continental (D>T>PC).

Co y Pb cuyas concentraciones más elevadas se presentan en las depresiones, per no las más bajas en el talud (DPC>T).

El cadmio el cual no se detectó (0.1 ug.g^{-1}) en esta fracción en ninguna de las muestras de 17 de los 20 núcleos.

En el caso de los metales que se asocian a la fracción oxidable, es más difícil establecer un orden general de concentraciones relativas en los tres rasgos mor fológicos, ya que por ejemplo el promedio de Mn es mucho más elevado (4059 ug. \overline{g} -1) en las depresiones que en el talud (371 ug. g^{-1}) y la plataforma continental (82.4 ug. g^{-1}) mientras que el Fe en la plataforma continental alcanza los niveles más elevados ($\overline{x} = 455 ug.g^{-1}$) los intermedios en las depresiones (412 ug. g^{-1}) y los más bajos (197ug. g^{-1}) en el talud. Resumiendo los metales pueden clasifi car en la fase oxidable como sigue:

- Cu, Ni, Zn, Mn, Cr y Cd cuyas concentraciones son más elevadas en los sedimen tos de las depreiones, el talud y más bajas en la plataforma continental (D>T> PC).

- Pb cuyo enriquecimiento es mayor en las depresiones y menor en las zonas del talud (D > P > T).

- Co el cual sigue el siguiente orden de enriquecimiento, T>D>PC.

- Fe el cual es más rico en sedimentos de la plataforma, después en las depresi<u>o</u> nes y finalmente en el talud.

Ahora bien, cuando se comparan entre sí las concentraciones en los diferentes m<u>e</u> tales en las fracciones oxidable y reducida en los tres tipos de topografía es interesante como se pueden agrupar los metales: - Tanto en la plataforma continental como en las depresiones de las cuencas se puede observar que tanto el Fe, Cu, Co y In están más concentrados en la fracción reducible que en la oxidable., En cambio el Ni, Cr, Pb y Mn son más enriquecidos en la fracción oxidable que en la de los óxidos.

- En los sedimentos del talud y borde de las cuencas se tiene que, con excepción del Fe todos los demás metales (Cu, Cr, Zn, Ni, Pb, Co y Mn) presentan mayores niveles en las fracciones oxidables que en la reducible, lo cual cierta mente es de esperarse.

El cadmio presenta un comportamiento muy singular ya que en cualesquiera de los rusgos morfológicos del golfo de California siempre se encontró que las concentraciones más elevadas y a veces hasta constituyendo el 100% del total se asocian a la fracción extraíble con el peróxido. (Tablas 6.1-6.6).

Con objeto de comparar las proporciones o porcentajes relativos al total deposita dos en cada zona topográfica se elaboraron las tablas 5.4-6.9, si se comparan los porcentajes entre si en cada una de estas zonas salvo ligeras excepciones, nueva mente se presentan las generalizaciones dadas para las primeras tablas.

- La principal forma no-litogénica de Fe y In en cualesquiera de los rasgos fisio gráficos del golfo de California es la reducible, con un promedio que oscila entre el 10.1, 10.8 y 20.4-25.1% del total respectivamente.

- Cd, Mn, Ni y Pb, en cambio se depositan mayormente asociados a la fase oxidable, tanto en las depresiones, talud/borde de las cuencas y la plataforma conti nental, con un 49.5-64.7, 14.4-53.5, 17.6-42.0, 26.6-34.5% respectivamente.

- Cu no-litogénico en la plataforma continental se asocia predominantemente a los óxidos de hierro y manganeso en cambio en el talad y las depresiones de las cuencas se deposita principalmente enlazado al material orgánico y los sulfuros.

- El Cr no-litogénico en la plataforma y depresiones del golfo de California se deposita principalmente en la fracción oxidable, mientras que en el talud la ma yor proporción se asocia a la fracción reducible.

- El Co no-litogénico tanto en la plataforma continental (15.0%) como en las de presiones de las cuencas (16.4%) se acumula en los sedimentos predominantemente asociado a los óxidos de hierro y manganeso, en cambio en el talud, este elemen to parece encontrarse mayormente(16.1%) como parte de la fase de los sulfuros y el material orgánico.

En la tabla 6.9 se muestran las concentraciones promedio de los metales en la fracción residual o litogénica de las secciones superficiales (0-5 cm) de los mícleos colectados en el golfo y que se calcularon mediante la diferencia entre el contenido elemental total dado y la suma de las fases intercambiable, oxidable y reducible.

En esta tabla se tiene que tanto en las depresiones como en el talud de las cue<u>n</u> cas del golfo de California la secuencia de enriquecimiento metálico es como sigue:

Fe>Mn>Zn>Cu>Cr>Ni>Pb>Co>Cd

mientras que en la plataforma continental es ligeramente diferente:

Fe>Mn>Zn>Pb>Cr>Cu>Ni>Co>Cd

Tabla 6.4 Partición de los metales pesados en la fracción no-litogénica de los sedimentos superficiales de la plataforma continental de la parte centro y sur del Golfo de California (%).

Meta	a)	<u>Interc</u> <u>de ads</u>	ambiable orción	Y	<u>Réducible</u>	<u>Oxidable</u>	
·		R	x	6	<u> </u>	R ×	6
Cu		< 1.0			12.3-24.1 18.2 5.9	9.0-16.0 13.1	3.6
Ni		0.8-8.1	≤4.5		2.0-17.0 10.9 7.9	7.8-25.0 17.6	8.9
Со		< 2.8			10.8-17.5 15.0 3.7	5.7-20.6 11.5	8.0
Cr	-	< 2.9	-		6.2-11.3 8.9 2.6	8.0-16.3 11.4	4.3
Zn	and the		≤ 0.18	≤ 0.19	17.5-24.0 20.4 3.3	4.7-6.3 5.5	0.8
РЬ	,	< 1.4	-		6.3-11.2 8.0 2.7	24.1-31.2 26.6	4.0
Cd		< 8.5	n an an an an Airtín		< 8.5	38.5-58.8 49.5	10.3
Mn		0.3-1.8	1.1	0.8	7.6-20.4 15.8 7.1	7.0-22.0 14.4	7.5
Fe		0.01-0.03	0.02	0.01	9.4-12.7 10.8 1.7	0.57-2.60 1.29	1.14

- No Detectado

R es el intervalo, \overline{x} el promedio y δ la desviación standard.

Tabla 6.5 Partición de los metales pesados en la fracción no-litogénica de los sedimentos superficiales del talud y bordes de las cuencas de la parte centro y sur del Golfo de California (%).

47 SREET

Metal	Intercambiable y de adsorción		<u>Reducible</u>	Reducible. Oxidable							
	RX	б	<u>R</u> R G	 R	x	6					
Cu	<0.03-0.8≰0.2		1.7-20.9 18.3 8.6	8.6-32.3	19.6	8.1					
Ni	< 5.0 -	in ing ping Para T	9.2-29.5 22.1 7.0	12.8-58.2	32.2	13.3					
Со	< 2.5		6.2-19.0 12.2 4.0	4.0-29.7	16.1	8.2					
Cr	< 2.0 -		1.6-22.0 13.0 6.5	2.3-31.7	11.4	8.2					
Zn	< 0.1 -	-	18.1-32.5 25.1 5.1	2.7-18.7	10.7	5.1					
Pb	<1.8 -	-	7.2-12.4 10.5 1.7	11.5-72.9	37.2	18.0					
Cd	< 0.1 -	-	<7.4 - ~	23.2-100	52.0	28.8					
Mn	1.0-6.3 3.9	3.7	1.1-16.2 9.5 6.1	0.2-56.0	28.4	21.7					
Fe	∠ 0.004-0.02 ≤0.011	-	6.0-18.2 10.3 3.9	0.30-2.4	0.73	0.63					

- No Detectado

R es el intervalo, \overline{x} el promedio y δ la desviación standard.

Tabla 6.6 Partición de los metales pesados en la fracción no-litogénica de los sedimentos superficiales de las depresiones de las cuencas de la parte centro y sur del Golfo de California (%).

	 		No. 1						 2 million and a state	 	 					
	 		A. C. A. M. M. C. M.	W # 12						 						
	 						 	· · ·	 	 	 	· /		 		
			a share that he had				 		 	 	 A second data and the second sec		and the second sec	 A 1		
	 and the second second second	and the second state of th			And American And A.		 	the second s	 	 	 		the second s	 		
	 		Contract of the second s		[10] S. M.	* * **/ *	 		 A = a = b = a 	 Sec. 18 (2015)	 3 6 4 4 5	- C CO O	1 1 1 T 1 1 1 1 1	 		
							 		 		 			 	- 1	

	<u>Intercambiable y</u> de adsorción	<u>Reducible</u>	<u>Oxid</u> able	
Metal	R X 6	<u>R</u>	R x	٢
Cu	< 1.0	7.7-44.9 21.8 10.4	17.3-30.2 23.8	5.2
Ni con electricadore de la constante Ni constante de la constante de	< 0.4-11.2 ±2.6 -	4.4-21.4 12.9 7.2	25.7-55.8 42.0	13.2
Co	< 2.5 -	8.5-29.0 16.4 7.5	6.5-19.0 12.9	5.9
Cr	∠ 2.0	6.0-19.3 10.8 6.0	7.3-24.3 13.4	7.4
Zn	< 0.7	18.4-29.7 24:2 4.6	4.9-25.3 13.8	8.3
РЬ	< 4.6	8.4-19.0 12.5 3.6	20.7-69.5 34.5	18.1
Cd	< 6.7	< 6.7	16.7-100 64.7	27.8
Mn	0.9-12.8 5.4 4.8	3-13.1 6.5 4.3	34.5-83.3 53.5	19.5
Fe ·	<0.001-0.020 ≤0.009 -	8.7-12.0 10.1 1.3	0.19-3.0 1.4	1.1

- No Detectado

R es el intervalo, \overline{x} el promedio y **6** la desviación standard.

en de la factoria. En esta **l**'esta de

					1977) 1979 - Angel 1979 - Angel 1970 - Ange	
Tabla 6.7 Por	centaie de met	ales pesados	asociados a 1	a fracción rec	lucible de los	sedimentos superficiales
de	la parte centr	ro y sur del G	olfo de Calif	ornia.		
		요즘 김홍영 성격은 것도 같다.	김 화가 중에는 것 같아.	경찰 수도 가격 가슴다운 것		

Metal,	<u>Plataforma</u> . <u>Continental</u>		<u>Talud y borde de</u> las cuencas las cuencas						
	R	۲	R	x 6	R	x	6		
Сц	12.3-24.1 18.2	5.9	1.7-20.9	- 18.3 8.6	7.7-44.9	21.8	10.4		
N1	2.0-17.0 10.9	7.9	9.2-29.5	22.1 7.0	4.4-21.4	12.9	7.2		
Со	10.8-17.5 15.0	3.7	6.2-19.0	12.2 4.0	8.5-29.0	16.4	7.5		
Cr	6.2-11.3 8.9	2.6	1.6-22.0	13.0 6.5	6.0-19.3	10.8	6.0		
Zn	17.5-24.0 20.4	3.3	18.1-32.5	25.1 5.1	18.4-29.7	24.2	4.6		
Pb	6.3-11.2 8.0	2.7	7.2-12.4	10.5 1.7	8.4-19.0	12.5	3.6		
Cd	<8.5 -		<7.4	<u></u>	< 6.7	-	-		
Mn	7.6-20.4 15.8	7.1	1.1-16.2	9.5 6.1	3.0-13.1	6.5	4.3		
Fe	9.4-12.7 10.8	1.7	6.0-18.2	10.3 3.9	8.7-12.0	10,1	1.3		

.

- No detectado

R es el intervalo, \overline{x} el promedio y δ la desviación standard.

Tabla 6.8 Porcentaje de los metales pesados asociados a la fracción oxidable de los sedimentos superficiales de la parte centro y sur del Golfo de California.

Metal	<u>Plataforma</u> <u>Continental</u>		<u>Talud y borde de</u> <u>las cuencas</u>	<u>Depresiones de</u> <u>las cuencas</u>	_
	R	6	<u>R</u> x 6	R ×	6
Cu	9.0-16.0 13.1	3.6	8:6-32.3 19.6 8.1	17.3-30.2 23.8	5.2
N1	7.8-25.0 17.6	8.9	12.8-58.2 32.2 13.3	25.7-55.8 42.0	13.2
Со станата станата с	5.7-20.6-11.5-	8.0	4.0-29.7 16.1 8.2	6.5-19.0 12.9	5.9
Cr	8.0-16.3 11.4	4.3	2.3-31.7 11.4 8.2	7.3-24.3 13.4	7.4
Zn	4.7-6.3 5.5	0.8	2.7-18.7 10.7 5.1	4.9-25.3 13.8	8.3
Pb	24.1-31.2 26.6	4.0	11.5-72.9 37.2 18.0	20.7-69.5 34.5	18.1
Cd	38.5-58.8 49.5	10.3	23.2-100 52.0 28.8	16.7-100 64.7	27.8
Mn	7.0-22.0 14.4	7.5	0.2-56.0 28.4 21.7	34.5-83.3 53.5	19.5
Fe	0.57-2'60 1.29	1.14	0.3-2.4 0.73 0.63	0.19-3.0 1.4	1.1

R es el intervalo, \overline{x} el promedio y **6** la desviación standard.

Tabla 6.9 Concentración de los metales pesados en la fracción litogénica de los sedimentos superficiales de la parte centro y sur del Golfo de California.

(µg.g⁻¹, excepto Fe en %)

			1000	 1.2.23	and an an an arrival state of the	 د ارد شیسه	and a straight straig	114 TO C 107	a da serie de la companya de la comp	1. 4. 1. 1.		- 1.S.A	
	1.11		$x_{1} \in \mathbb{C}^{n}$	 - 18 S.A.	1. Sec. 1997	 1.			والإواسات	- 14 M	÷ 24.1		· 7 · .
· `•.		1	ii.	 	1995 - Series		5 PR N		್ಷ-೧೯೯೯ ಮ				

Meta 1		<u>Plataforma</u> <u>Continental</u>	<u>Talud y b</u> <u>de las cu</u>	orde encas	<u>Depresiones</u> <u>de las cuencas</u>	
	R	x6	·R		R x	ବ
Cu	18-20	19.0 1.0	9-47	26.1 12.5	23-33 28.5	7.3
Ni	16-21	19.0 2.6	8-28	17.6 7.8	10-39 22.5	10.6
Co	4-13	9.7 4-9	6-20	12.0 4.2	9-17 12.5	2.7
Cr	16-30	24.7 7.6	13-39	25.8 6.7	20-34 26.7	5.6
Zn	86-107	97.3 10.6	48-140	83.3 29.7	59-103 106	33.4
РЬ	19-37	27.0 9.2	2.6-29	16.7 8.6	5-24 19.5	7.2
Cd	0-1.74	0.71 0.91	0-2.48 1	.05 0.94	0-2.98 0.72	1.14
Mn	293-479	358 105	143-7317	1100 2216	399-3726 1480	1154
Fe	2.71-3.13	2.98 0.24	1.62-3.46	2.50 0.72	1.69-3.30 2.73	0.59

R es el intervalo, \overline{x} el promedio y b la desviación standard.

Ahora en promedio los niveles de elementos metálicos que se depositan asociados a los silicoaluminatos y otros minerales resistentes a los ataques utilizados en el esquema analítico selectivo (Fig. 3.3) se observa que:

- Metales como Mn, Co, Cu y Cr son más concentrados en las depresiones que en la plataforma continental del golfo de California.

 Ni y Zn son más ricos en las depresiones también pero más bajos sus niveles en los sedimentos superficiales del talud.

- El Fe y Pb litogénicos cuyas concentraciones más altas se encuentran en la pla taforma continental y más bajas en la zona del talud.

- Cd con las concentraciones ligeramente más elevadas en el talud y las más bajas en la plataforma continental.

Ahora en proporción del total depositado (de cada metal) se observa (Tabla 6.10) en general que con excepción del Cd la mayor parte de los metales se incorporan a los fondos del Bajo golfo asociados a la fracción litogénica de los sedimentos.

- Los mayores porcentajes de Cu (67.5%), Ni (63.9%), Cr (74.9%), Zn (73.2%) y Mn (69.2%) litogénicos se hayan depositados en la plataforma continental y los menores en las depresiones de las cuencas del centro y sur del golfo.

- Pb por su parte se acumula en un porcentaje del 54.7% en la plataforma continen tal y un 46.8% en el talud del total acumulado en cada zona topográfica.

- Co y Fe con porcentajes muy similares en los tres rasgos morfológicos menciona dos contribuye con la mayor proporción en el talud, después en las depresiones \overline{y} finalmente en la plataforma continental.

- Cd litogénico el cual presenta los porcentajes promedio más bajos con un 32.2, 37.5 y un 28.0% del total depositado en la plataforma, el talud y las depresiones de las cuencas del golfo de California en su porción central y sur.

Como se discutió en la sección 5.4, los factores que deben de controlar la magni tud relativa de la sedimentación metálica son dos: [1] el de los distintos sumi nistros que aportan metales al golfo, como son, las descargas hidrotermales, la contribución biogénica, autigénica y la descarga de rlos; [2] el de la relativa eficiencia de los procesos de captura para cada elemento. Si se comparan las se cuencias dadas en dicha sección con las aquí presentadas es notable observar el mismo ordenamiento secuencial entre el particulado de los ríos en general (Turekian, 1969; Martin y Maybeck, 1979) y el de las concentraciones de metales asociados a la fracción litogénica.

Fe>Mn>Zn>Pb>Cr>Cu>Ni>Co>Cd

Esto permite sugerir que los metales enlazados a la fracción residual o litogéni ca, efectivamente representan a aquellos metales asociados a minerales que resis ten los cambios durante la erosión química y la diagénesis temprana. A continua ción se discute individualmente cada uno de los metales analizados, haciendo una comparación con otras áreas.

Cadmio

En contraste a estudios previos (Gupta y Chen 1975; Helsinger y Friedman 1982; Lion et al 1982; Rapin et al 1983; Abaychi y Pouabul 1986; Rosental et al 1986; entre otros) donde se ha encontrado que la mayor parte del cadmio se halla aso ciado a los carbonatos y a la fracción reducible, en el presente estudio los <u>se</u> dimentos del golfo de California presentan las mayores proporciones del metal (49.5-64.7\$) asociados a la fase oxidable. Lo anterior puede deberse a dos cau sas: una, a la distinta naturaleza de los sedimentos en cuestión, y la otra a la diferencia secuencial del tratamiento utilizado en el análisis selectivo de los metales. Es muy factible que las dos causas sean las que expliquen las diferencias tan pronunciadas; el golfo de California en contraste a los fondos de Bahía False en la Costa Sudafricana (Rosental <u>et al</u> 1986) 6 el Golfo Arábigo (Abaychi y Douabul 1986) posee condiciones (Eh, sedimentación orgánica, capa del mínimo de O₂, etc.), que favorecen más la formación de posibles sulfuros o complejos orgánicos con el cadmio.

En la tabla 3.5.2 (Cap. 3) donde se presentan los resultados de las concentraciones metálicas para nueve muestras y un núcleo, es posible notar que con la extracción "carbonatada" realizada antes del ataque con peróxido la proporción carbonatada sería la predominante en muchos de los casos (22 - 100%).

Ahora respecto al tratamiento selectivo, cuando este se inicia atacando con clor hidrato de hidroxilamina (en ácido acético 25%) en sedimentos reducidos se tie ne que el cadmio se extrae en un 75-100% (Meguellati et al 1983; Gendron et al 1986), de tal manera que esto puede erróneamente ser interpretado como Cd-reduci ble.

La predominancia de cadmio en la fracción oxidable de los fondos sedimentarios, puede apoyarse también en el sentido de que varios estudios han demostrado que la biogeoquímica del cadmio está dominada fuertemente por el cíclo de la materia or gánica. Martin et al (1976); Bender y Gagner (1976); Bruland (1980); entre otros han sugerido que el cadmio en el ambiente marino es fijado por el fitoplancton en el agua superficial y transportado hacia los fondos con los remanentes de estos organismos, cuando el detritus orgánico que contiene cadmio es destruído. el cad mio es liberado junto con otros productos de la mineralización. Evidentemente la degradación aeróbica del detritus orgánico recién depositado debe ser más intensa en las secciones superficiales de los sedimentos y así mucho del cadmio en lazado orgánicamente será solubilizado antes de que sea enterrado dentro de la capa reducida de los sedimentos. El cadmio liberado en forma disuelta es entonces libre para transportarse, aunque si las condiciones lo permiten este puede precipitarse como un sulfuro metálico (Jacobs y Emerson, 1982; Davis-Colley et al (1985). Por su parte la predominancia del Cd en la fracción carbonatada puede ex plicarse por la asociación del metal con las partes duras de los organismos.

Los datos encontrados en esta investigación son consistentes con la explicación anterior, ya que las diferencias que pudiéramos inferir en cuanto a la relativamente mayor preservación del material orgánico en la zona del talud y borde de las cuencas, parece reflejarse en las concentraciones y porcentajes encontrados.

Cromo

Tanto en la plataforma continental como en las depresiones de las cuencas del bajo golfo, se encontró una concentración del Cromo en la fracción oxidable $(3.9 \ y \ 5.1 \ ug.g^{-1}$ en promedio) con un porcentaje del 11.4 y 13.4% respectivamente. La mayor proporción del metal existe asociada a minerales resistentes al tratamiento selectivo (67.6-74.9%) estos últimos valores resultan relativamente elevados si se comparan a los reportados en otras regiones como Bahía False (Rosental et al 1986) o Bahía de Villefranche (Rapin et al, 1983) aunque comparable a las proporciones dadas para el Golfo Arábigo (Abaychi y Vouabul, 1986).

Diversos investigadores entre ellos Turekian (1967) y Chester y Messiha-Hanna (1970) han sugerido que el cromo junto con otros metales como rubidio y zirconio son referidos como elementos_de origen detrítico en los sedimentos pelágicos. Tratándose de sedimentos hemipelágicos en el golfo de California no es raro encontrar elevados porcentajes de cromo litogénico.

Cobre

El cobre no-litogénico (32.2-48.9%) en la plataforma se asocia predominantemente (18.2%) a los óxidos de hierro y manganeso, mientras que en el talúd y las cuencas del golfo de California en su porción central y sur, se halla depositado principalmente enlazado al material oxidable (19.6 y 23.8%).

Las concentraciones más altas de Cobre fueron encontradas en los sedimentos de las depresiones de las cuencas, con un promedio de 8.1 y 9.6 u g.g⁻¹ en las fases reducible y oxidable respectivamente. Las elevadas concentraciones de Cu en los sediemntos, en muchos trabajos se han explicado en base a que la principal forma del Cu es un complejo orgánico de Cobre (Presley et al, 1972; Foster y Hunt, 1975; Tessier et al 1979; Rapin et al 1983; Rosental et al 1986).

A diferencia de False Bay (Rosental <u>et al</u> 1986) los sedimentos del golfo de California si poseen una proporción importante de cobre en la fracción reducible, lo cual probablemente se debe a que las condiciones de ese cuerpo de agua sean más reducidas que la de los fondos del golfo de California. En la tabla 6.11 se pueden observar los porcentajes en los principales rasgos morfológicos del golfo de California y los promedios para Saanich Inlet y las cuencas de la costa de California. En dicha tabla es posible observar la gran variación en las proporciones de las distintas fases en las cuencas y los fondos del fiordo. La diferencia más singular que poseen los sedimentos del golfo de California viene a ser las elevadas proporciones de Cu reducible (18-22%) ya que ninguno de los otros lugares presenta esa magnitud a pesar de que la extracción realizada en esas investigaciones incluye además de la fracción de óxidos de Fe y Mn, a los carbonatos y algunos sulfuros.

Cobalto

En general, los sedimentos del golfo de California (parte centro y sur), se hallan conteniendo entre un 60.6 y 64.3% de Co litogénico del total, el resto se haya predominamtemente asociado a los óxidos de hierro y manganeso (15.0-16.4%) en los fondos de las depresiones de las cuencas y la plataforma continental; en cambio en el talud este elemento es depositado primordialmente (16.1%) enlazado
						raine an an S)	· · · ·
Tab]a 6.10	Porcentaje de	los metales	pesados en	la fracción	litogénica	de los sedime	entos superficiales	de la
	parte centro	y sur del gol	lfo de Calif	ornia.		ne ne contra la sur- Categoria de la sur-		

Meta]	Plataforma. Continental			Talud y borde de las cuencas		Depresiones de las cuencas			
	R	X	6	R	x	6	R	x	6 -
Cu	64.0-73.8	67.8	5.3	46.2-70.4	58.2	9.1	45.9-68.5	51.1	15.6
Ni	52.2-86.1	63.9	19.3	26.2-61.2	41.7	12.0	24.4-44.2	38.5	7.3
Co	41.2-73.9	60.6	17.2	44.3-78.7	64.3	9.5	51.7-76.2	63.0	9.2
Cr	71.2-77.3	74.9	3.3	42.1-91.5	71.5	13.5	56,4-80,3	67.6	8.3
Zn	68.8-76.4	73.2	3.9	49.1-73.3	62.4	9.4	45.7-69.1	60.6	11.4
РЬ	43-66	54.7	11.5	10.1-77.3	46,8	19.0	14.0-61.8	48.4	17.3
Cd	0-48.7	32.2	27.9	0-60.8	37.5	21.1	0-71,3	28,0	27.4
Mn	66.0-72.3	69.2	3.2	20.2-99.2	56,5	26.2	12.5-46.0	30.1	11.4
Fe	84.6-89.6	87.7	2.7	77.4-93.0	88.5	4.7	85.2-90.8	88.2	2.3

	·	Ċu						Co		· · · · · · · · · · · · · · · · · · ·	NI	
LUCATION	07s	R	R/S	075	R	R/S	075	R	R/S	<u>0/s</u>	R	R/S
Golfo de California (1) Plataforma Continental	13.1	18.2	67.8	5.5	20.4	73.2	11.5	15.0	60.6	17.6	10.9	63.9
Talud y borde de las cuencas	19.6	18.3	- 58.2	- 10.7	25.1	62.4	16.1	= 12.2	64.3	32.2	22.1	41.7
Depresiones de las cuencas	23.8	21.8	51.1	13.8	24.2	60.6	12.9	16.4	63.0	42.0	12.9	38.5
Cuencas de California (2 San Pedro) ^a 4	-4	93	- 9	14	77	5	3	91	15	20	65
Santa Mónica	5	4	91	14	15	71	4	5	91	16	23	61
Soledad	17	11	72	18	18	64	10	4	86	48	27	25
Saanich Inlet (3) ^a				r .								
Núcleo 1 (somero)	52.4	4.8	42.8	19.3	20.4	61.3	8.8	6.5	84.7	9.8	10.9	79.3
Núcleo 3B (Depresión)	79.4	6.3	14.3	56.1	28.0	15.9	34.0	23.4	42.6	52.4	19.8	27.8

Tabla 6.11 Porcentaje de metales pesados asociados a las fases oxidable (O/S), reducible (R) y residual (R/S) en sedimentos hemipelágicos ricos en materia orgánica.

(1) Este estudio; (2) Bruland et al, (1974); (3) Presley et al, (1972).

1

а

. La fase reducible incluye además de los asociados a óxidos de hierro y manganeso a los carbonatos y algunos sulfuros. a los sulfuros y/o componentes orgánicos de los sedimentos.

En la Tabla 6.11 se muestran los porcentajes de Co, asociados a las fracciones oxidable, reducible y residual en los sedimentos del golfo de California, cuen cas de California y el Fiordo reducido de Saanich Inlet en British Columbia.

A pesar de que en el ataque químico realizado en los sedimentos de la cuenca California y Saanich Inlet, se incluyen además de la fase reducible a los carbo natos y algunos sulfuros, las fracciones tanto reducible como oxidable son inf<u>e</u> riores a cualesquiera de los rasgos topográficos del golfo de California.

A diferencia de metales como el Cadmio, el cobalto es más litogénico y tiene una gran afinidad por los óxidos de manganeso y hierro (Goldberg 1954; Heggie y Levis 1983). Diferentes estudios han demostrado su gran movilidad en los sedimentos costeros y pelágicos (Heggie et al 1983; Sundby et al 1986). El mecanis mo que se ha propuesto (Gendron et <u>al</u> 1986) para explicar el comportamiento del Cobalto es como sigue: El Co se asocia tanto en la columna de agua como en la capa oxidada de los sedimentos con partículas ricas en óxidos de manganeso y hierro, posteriormente se presenta la disolución rápida en la zona reducida de los sedimentos, provocando la emigración vertical a lo largo del gradiente inters ticial y precipitación nuevamente en la capa oxidable, ahora bien, dependiendo de las condiciones referentes a favorecer la resuspensión y el transporte de los materiales, se van a generar una determinada distribución regional en los fondos. Este mecanismo es consistente con los datos encontrados en este estudio ya que en términos de la concentración, el talud posee las concentraciones más bajas en general del Co extractable en la fracción reducible.

Zinc

Al igual que Cr, Cu y Co aproximadamente un promedio de 60.6%-73.2% del total del In se deposita en el golfo asociado a la fracción litogénica. El resto se va a los fondos principalmente (20.4-25.1%) asociado a los óxidos de hierro y manganeso.

En comparación a otras regiones con elevada proporción de material orgánico, po demos observar en la tabla 6.11 como en general, son mayores los porcentajes re lativos de Zn reducible en el golfo, que los obtenidos para las cuencas califor nianas (Bruland et al 1974) y el núcleo somero de Saanich Inlet (Presley et al 1972). Estos porcentajes más bien son equivalentes a los encontrados (25%) por Rosental et al (1986), en Bahía False. De cualquier modo los sedimentos del golfo de California, poseen una proporción baja y poco común de Zn, enlazado al material orgánico y los sulfuros.

Seguramente al igual que Co y Cu, la diagénesis del In está muy influenciada por su asociación con los óxidos de Fe y Mn en los sedimentos del golfo de California.

Niquel

Del total, un 63.9, 41.7 y un 38.5% en la plataforma continental, talud y las de presiones de las cuencas respectivamente, se deposita como constituyente de los minerales de origen litogénico. El resto principalmente se asocia a la fase oxidable (17.6-42.0%), aunque una proporción significativa también se acumula in volucrada a los óxidos de hierro y manganeso (10.9-20.0%).

Al igual que en el golfo de California, también en otras regiones como Bahla False (Rosental et al 1986), Mobile Bay, USA (Branon et al 1977), 6 la depresión del Fiordo de Saanich Inlet (Presley et al 1972) el Ni potencialmente disponible se halla predominantemente en asociación con la materia orgánica y los sulfuros.

Plomo

Al igual que Ni, el Pb no-litogénico se deposita principalmente asociado a la <u>fa</u> se oxidable en los tres rasgos morfológicos del golfo de California con un prom<u>e</u> dio que oscila entre el 26.6-34.5%.

En contraste a la mayoría de estudios (Patchineelam y Fortner, 1977; Rapin <u>et al</u> 1983; Abaychi y Douabul 1986; Rosental <u>et al</u> 1986), donde se ha encontrado que el Pb no litogénico predomina unido a los carbonatos u óxidos del Fe y Mn, en el golfo, el metal aparentemente prefiere asociarse a los compuestos orgánicos y/o sulfuros. Desafortunadamente es difícil de "garantizar" tal afirmación ya que la técnica utilizada en el presente trabajo inicia después del tratamiento de ex tracción de iones de intercambio con la extracción de los metales enlazados orgá nicamente y a los sulfuros. Como se refleja en la tabla 6 la proporción de Pb, sería significante si el ataque de los carbonatos se iniciara antes de destruír el material orgánico. Adicionalmente es importante destacar que algunos óxidos como el de Hierro, pueden formar complejos con la materia orgánica, como es el caso del material húmico de los sedimentos (Nissenbaum y Swaine 1976; Tschapeck y Masowski 1976) y mucho de este material pudiera ser atacado y liberado en la extracción con H₀O₂.

Hierro

Con un promedio del 87.7, 88.5 y 88.2% del Fe, se asocia a la fracción residual o litogénica de los sedimentos de la plataforma, el talud y depresiones de las cuencas del golfo de California. El resto se deposita principalmente como óxido extraíble con hidroxilamina (10.8, 10.3 y 10.1%). Una pequeña proporción también del Fe se acumula (1.29; 0.73, 1.4%) como Fe, asociado a la fracción oxidable.

La proporción del 10% del Fe, en la fracción reducible, encontrada en este traba jo viene a ser ligeramente mayor que la de algunos otros valores reportados que oscilan entre 1.5% (Presley et al 1972) y 8% (Chester y Messiha-Hana 1970; Chao 1972; Foster y Hunt 1975; Deurer et al 1978) aunque menor al de algunos lugares como Bahía False (15%) (Rosental et al 1986) o la Bahía Francesa de Villefranche donde Rapin et al (1983) sorprendentemente encontró un porcentaje de 32-50% del Fe en dicha fracción.

Manganeso

Los mayores porcentajes del Mn Litogénico se depositan en la plataforma continen tal $(\bar{x} = 69.2\%)$ y los menores $(\bar{x} = 30.1\%)$ en las depresiones de las cuencas del centro y sur del golfo de California. El resto se deposita primordialmente asociado a la fase oxidable, con un 14.4, 28.4 y un 53.5\% en los fondos de la plata forma, el talud y las depresiones de las cuencas. Este elemento junto con el cadmio viene a ser el que presenta las mayores variaciones en su contenido en to das y cada una de las fracciones analizadas.

AREA		Fe	Mn	Co	Ni	Cu	Zn	
<u>Pelágica:</u>				許 御 御				
Atlantico Norte	(1)	18	68	58	45	56		
Pacífico Norte	(2)	4	83	82	75	_ 32		
Pacífico Oriental	(3)	24	98	90	.84	51	49	
<u>Hemipelágica</u> :								
Golfo Arábigo (Porción NW)	(4)	18.4	1.1		2.9	9.6	4.5	
False Bay (Sudáfrica)	(5)	15	35		10	10	25	Anna -
Golfo de California	(6)		(日常)(1988)来 (1915年)(1989)年	si organization The designment	suite anna 1886 A bha saide an			
Plataforma Continent	al .	10.8	. 13.1	15.0	10.9	18.2	20.4	yan salah Marina
Talud y borde de las cuencas		10.3	8.8	12.2	20.0	18.3	25.1	
Depresiones de las cuencas		10.1	5.9	16.4	12.9	21.8	24.2	
Saanich Inlet	(7)	7.1	36.8	14.4	18.6	4.9	28.3	

Tabla 6.12 Porcentaje de metales pesados en la fracción reducible de sedimentos pelágicos y hemipelágicos.

(1)Chester y Messiha-Hana (1970). (2)Chester y Hughes (1967). (3)Sayles et al (1975). (4)Abaychi y Douabul (1986). (5)Rosental et al (1986). (6)Este estudio. (7)Promedio de 8 núcleos, Presley et al (1972).

 α

El hecho de tener una importante proporción de Mn asociado al material orgánico y sulfuros pudiera ser algo esperado en los sedimentos del talud, pero los nive les tan elevados del metal que se tienen sobre todo en las depresiones (Tabla 6.3) son más difíciles de explicar, ya que si bien existen concentraciones relativamente altas de materia orgánica (2° C-Org). las condiciones redox son en todos los casos ligera o moderadamente oxidantes (111 a 360 mu en la sección super ficial de los núcleos) por lo que habría de esperarse la predominancia de los óxi dos de Mn y Fe. Sin embargo, recientemente se ha demostrado que las sustancias húmicas interactúan sobre los particulados naturales (incluídos los óxidos), modi ficundo así, sus propiedades superficiales (Tipping 1981; Davis 1982). Empleando el modelo de los ligandos orgánicos Davis y Leckie (1978) demostraron que los ligandos orgánicos pueden aumentar o disminutr la adsorción del Cu sobre el óxido de hierro amorfo, dependiendo de la configuración de los grupos funcionales. Pue de ser que michas de las buenas correlaciones encontradas citre los metales y el hierro (por ejemplo Zn y Fe, McKelvie, 1980), reflejan simplemente la posibilidad de que los óxidos de hierro actúen como sustratos de una delgada película de mate rial orgánico y así el material orgánico podría ser el que realmente está involucrado en la adsorción de los metales, incluído el Mn (Jenne, 1977; Tipping, 1981). Más recientemente Laxen (1985), investigó artificialmente la adsorción de metales como Cd, Cu, Ni y Pb, sobre el óxido férrico en presencia de sustancias húmicas; el encontró que ciertamente la adsorción/co-precipitación de Cd y Ni (y en menor grado Pb) es favorecido en la presencia del material húmico.

Pesfortunadamente no es posible asegurar una interpretación más allá de esto, ya que la selectividad de la técnica y el manejo de la muestra, previo al análisis, no han sido debidamente comprobados, pudiendo suceder que aunque mucho del Mn es extraído con peróxido de hidrógeno, como Mn asociado a la fracción orgánica, renl mente se trate de óxidos de Mn relativamente inestables. Esto viene a ser uno de los aspectos probablemente más vulnerables en la técnica modificada (Meguellati et al, 1983) de Tessier et al (1979). Por otra parte, se ha reconocido ampliamen te que los oxihidróxidos de Mn son más fácilmente reducidos que los del Fe, bajo las condiciones que ocurren naturalmente de pH y Eh (Krauskopf 1957), hecho que de alguna manera refleja una mayor susceptibilidad del Mn a los ataques químicos iniciales.

En el núcleo B24 colectado de la depresión (Z=3250 cm) de la cuenca Farallón se separaron de la parte superior del núcleo, algunos granulos o costras de color ca $\{\mathcal{E}$ -rojizo, supuestamente de óxidos de manganeso y hierro. Se realizó una prueba simultánea con el tratamiento de hidroxilamina y el H₂O, en cuatro alicuotas, encontrándose que del 100% extraído de manganeso con el extractante de la hidroxila mina, el peróxido remueve del 30 al 68%. Esto permite concluír que mucho del Mn extraído en la fracción de la materia orgánica y sulfuros puede incluír hasta un 68% casi del Mn, prosiblemente asociado a los óxidos. Seguramente que las varia bles proporciones en el naterial separado reflejan sobre todo la proporción variable de formas "jóvenes" y amorfas de los óxidos que son relativamente menos estables.

En el mícleo B31 colectado en las afueras del golfo de California, en los fondos pelágicos del Pacífico, se refleja una situación más o menos similar a la del Go<u>l</u> fo, ya que los niveles redox (en la sección superficial, 317 mv) esperaríamos una mayor porporción de Mn, en la fracción reducible, sin embargo, el mayor porcentaje se halla (de acuerdo al resultado analítico) asociado a la fase "Oxidable" (74.8%) mientras que en la fracción reducible solamente es de un 3.3%. Realmente el 74.8% es más semejante a los valores dados para la fracción reducible en los sedimentos pelágicos (Chester y Hughes, 1967; Chester y Messiha-Hana 1970; Sayles <u>et al</u> 1975), que la proporción oxidable supuestamente encontrada.

Estos resultados y la comparación de las dos rutas (Ortega-Osorio y Páez-Osuna 1987); (1) iniciando con iones de intercambio y en un tercer paso hidroxilamina en ácido acético, (Tessier et al 1979) y (2) en un segundo paso H2O2 y en un cuar to hidroxilamina en acético (Meguellati et al 1983); permiten sugerir que la prime ra ruta es más apropiada para sedimentos predominantemente oxidantes, y la segunda para sedimentos más bien reducidos o ligeramente oxidantes.

Las tendencias observadas en las diversas regiones son muy variadas en cuanto a la proporción de este metal en los distintos extractos de la diferenciación geoquí mica. Como un ejemplo de tal variación y con objeto de comparar las proporciones de algunos metales aquí analizados con sedimentos de tipo pelágico y hemipelágico se elaboró la tabla 6.12. En esta tabla se puede observar como en general se tie nen porcentajes mucho más altos de Mn- en los sedimentos pelágicos (68+98%) que en los hemipelágicos (1.1-36.8%).

Aunque no es tan evidente como en Mn, para el Fe ocurre algo muy similar ya que nuevamente se puede observar que los porcentajes de los fondos pelágicos tienden a ser más altos que los hemipelágicos. Si comparamos las proporciones de los otros metales (Co, Ní, Cu, Zn), también se puede observar nuevamente esta misma tendencia.

En forma global se puede concluír que los metales pesados en el golfo de California, a pesar de ser altamente variables en su distribución regional, los patrones de distribución en las fases geoquímicas, para la mayoría de los metales es razona blemente constante; siendo más o menos bien marcadas las diferencias entre los ras gos morfológicos principales del golfo.

- Con excepción del Fe y Mn (y en algunos pocos casos el In y Ni) los demás metales no se pudieron detectar en la fase de intercambio/adsorción, se puede decir que solamente el Mn posec proporciones apreciables del metal de esta fase.

- Con la salvedad del Cd, los más altos niveles de todos los metales pesados está presente en la fracción residual o litogénica.

- Los óxidos de Fe y Mn y la fracción oxidable constituyen importantes fases para la mayoría de los metales.

6.2 Metales pesados en las fases geoquímicas de la columna sedimentaria.

Con objeto de organizar la discusión de los metales pesados en las fases geoquímicas de la columna sedimentaria de la parte centro y sur del golfo de California, esta sección ha sido dividida en varias secciones según el rasgo morfológico donde se colectaron los núcleos, y por el comportamiento de cada metal específicamente.

Plataforma Continental

En las figuras 5.1-5.6 (apéndice 5), se muestran los perfiles de los metales en las fases no-litogénicas analizadas en el núcleo B7. Con excepción de las seccio nes superficiales del Cd, Pb y Ni todos los metales se presentan predominantemente en la fracción residual ó litogénica. En los perfiles de las figuras, se observa como la mayoría de los elementos de la fracción oxidable (Cd, Co, Zn, Ni, Cr, Cu, Fe y Mn) tienden a aumentar en su concentración con la profundidad, al igual que el C-orgánico, aunque este de man<u>e</u> ra menos pronunciada, manteniéndose casi constante.

El potencial electrodo redox Eh (fig. 5.1), se observa que sigue el comportamiento típico de la mayoría de los núcleos (Sección 4.1), lo que sugiere que con la profundidad de los sedimentos estos se vuelven cada vez más reducidos, en la sec ción del fondo (60-72 cm) este núcleo alcanzó un nivel redox de -50mV, a pesar de que partió desde 168mV en la superficie (0-5 cm).

Con excepción del Fe y Cu (que es más bien constante) los demás metales de la fracción reducible tienden todos a disminuír con la profundidad, como habría de esperarse en esta fase, ya que al disminuír el potencial redox las especies químicas óxidas deben de reducirse.

A diferencia del múcleo B7, el B1 presenta un perfil típico de decrecimiento del C-orgánico desde la superficie hacia el fondo (Fig. 5.7), al igual que In, Cd, Co, Pb, Ni y Cu, asociados a la fracción oxidable, mientras que el Mn y Fe de esta mis ma fase por lo contrario hacia el fondo tienden a aumentar en su concentración. (Figs. 5.8 y 5.9). El Eh es el que más bien tiene la tendencia a aumentar con el fondo al igual que el Fe reducible (Fig. 5.10). El resto de los metales de la fase reducible. (Fig. 5.11 y 5.12) por lo contrario todos tienden a disminuír, aunque con menor intensidad que en el caso del núcleo B7.

Al igual que en el núcleo B7, en el B37, la mayoría (Cu, Ni, Cr, Co, Cd, Mn, Zn y Fe) de los metales enlazados al material oxidable, tienden a aumentar su concentra ción con la profundidad (Fig. 5.13 y 5.15); el Pb y el C-orgánico en cambio, más bien disminuyen hacia las secciones del fondo del núcleo. También el comportamien to de los metales de la fracción reducible fué igual que en el núcleo B7 (Fig. 5.76 y 5.17).

Talud y borde de las cuencas

En el apéndice 5 (Figs. 5.18 y 5.73) se muestran los perfiles de los distintos m<u>e</u> tales analizados en las diferentes fracciones de los núcleos colectados en el talud y borde de las cuencas. Según el metal, la fracción y núcleos, los perfiles muestran distintos patrones con la profundidad; a continuación se resume una generalización, aprovechando los ajustes de las regresiones semilogarítmicas de las <u>fi</u> guras.

En los núcleos B17, B18, B20 y B25 por ejemplo, la mayorla de los metales asociados a la fracción oxidable tienden a aumentar su concentración en función de la profundidad, mientras que en los núcleos B22, B19 y B9, ocurre lo contrario (de ma nera similar que el Eh) en estos núcleos localizados en los "sills" o cimas que s<u>e</u> paran a las cuencas.

La concentración de la mayor parte de los metales de la fracción reducible de los mícleos B12, B20 y B22 por su parte disminuyen hacia el fondo y lo contrario ocurre en los núcleos B17, B18 y B25.

Entre los aspectos que más destacan en la mayoría de los núcleos del talud, está el hecho de que el Mn en las distintas fracciones se comporta de manera similar que el Eh; por su parte algunos metales como Co, Zn y Cr, en las distintas fases muestran un comportamiento similar al del Fc.

Depresiones de las Cuencas

En las depresiones de las cuencas de la parte centro y sur del golfo de California, se analizaron 6 múcleos: 514, de la depresión sur (Z= 2020m) de cuenca de Guaymas, B5, B6 y B24 de las principales depresiones de cuenca Farallón (de 2250, 2220, 3250 m respectivamente de profundidad), B26 de la principal depresión (Z= 3230 m) de cuenca Pescadero, y B29 de la depresión (Z= 3180m) de cuenca Mazatlán.

En el núcleo 514, en la fracción de los metales asociados al material oxidable, con excepción del Fe, todos los demás metales junto con el C-orgánico y el Eh tienden a decrecer en la concentración con la profundidad (Figs. 5.74 a 5.76). En la fracción reducible otra vez se repite el mismo tipo de perfil, nada más que, además del Fe, el Ni y el Cr, también tienden a aumentar sus proporciones hacia el fondo del núcleo (Fig. 5.77 a 5.79).

Núcleo B5_de la cuenca Farallón, al igual que en el núcleo B14, otra vez el Fe es el único que se incrementa en su concentración hacia el fondo, en tanto que los demás metales asociados a la fracción oxidable todos decrecen (Figs. 5.80-5.81).

En la fracción de los óxidos de Fe y Mn, se tiene que Zn, Ni, Cu y Co, siguen la misma tendencia del Fe, mientras que Cr y Pb la del Mn, el cual disminuye en sus concentraciones hacia las secciones del fondo (Figs. 5.82 y 5.84).

Núcleo B6 de la cuenca Farallón, presenta un perfil de la fase oxidable similar a los dos anteriores núcleos (Figs. 5.85 a 5.87), sólo que adicionalmente al comportamiento del Fe le acompaña el Cd. La fracción reducible por su parte muestra (Figs. 5.88-5.90) un patrón también semejante al de los núcleos anteriores, pero Cu y Cr acompañan el incremento de Fe, en tanto que la caída del Eh va acompañada por Mn, Zn, Pb, Ni y el apenas perceptible decrecimiento de Co.

Núcleo B24, también de la cuenca Farallón, pero de la parte más profunda, contrario a los anteriores núcleos de las depresiones, en el B24 todos los metales junto con el C-orgánico y el Eh sorprendentemente tienden a aumentar con la profundi dad (Figs. 5.91-5.93), únicamente Fe permanece prácticamente constante en todo el perfil sedimentario.

Respecto a los metales de la fase reducible se puede observar en las figuras 5.94 5.96, que aparte del Pb, todos tienden a incrementarse con la profundidad.

Núcleo B26, colectado en la depresión norte de cuenca Pescadero, al igual que el B14 (extraído desde el campo hidrotermal de la depresión sur de cuenca de Guaymas), todos los metales con excepción del Fe presentan una clara evidencia a decrecer con la profundidad en la fase oxidable (Figs. 5.97-5.99). En la fracción reducible también se repite el perfil de los primeros múcleos de las depresiones, ya que por un lado el Fe y Pb tienden a aumentar sus concentraciones hacia el fondo, en tanto que los demás decrecen (Figs. 5.100-5.102).

En el núcleo B29 (colectado en la entrada del golfo y en la cuenca Mazatlán), en la fracción oxidable, otra vez con la salvedad del Fe y Ni los demás metales todos tienden a decrecer con la profundidad, al igual que el C-orgánico aunque este lo hace de una manera apenas perceptible (Figs. 5.103 y 5.105).

En el caso de la fracción reducible al patrón de decrecimiento del Mn, le acompañan solo el Pb, mientras que el incremento del Fe va acompañado por los demás metales (Figs.5.106 y 5.108).

Fondos Pelágicos

De los fondos pelágicos adyacentes a la entrada del golfo en lo que es el Pacífico oriental, se colectó el núcleo B31, el cual consistió principalmente de arcillas de coloración rojiza-naranja, este núcleo fue extraído desde una profundidad de 3410 m; en la fase de los metales asociados a la fracción oxidable en las figuras 5.105-5.112, se observa como (excepto el Cr), todos los metales, el Eh y el C-orgá nico muestran el típico perfil de calda con la profundidad.. En la fase reducible, con la excepción de Cu, Zn, Ni, Cr y Co que se enriquecen hacia el fondo, Fe, Mn y Pb por lo contrario disminuyen como es de esperarse con la profundidad (Figs. 5.113 5.115].

Cuenca de Guaymas

En las figuras 5,116-5,134 (Apéndice 5) se presentan algunos perfiles donde se com paran varios metales de los núcleos B14, B17-y B18 colectados en la cuenca de Guay mas, la idea es ilustrar y comparar los niveles y comportamiento de los metales en las fases de la depresión y el talud en la cuenca de Guaymas.

En la figura 5.116, se muestran los diferentes perfiles para el Mn de intercambio adsorbido, es evidente que las concentraciones son mucho más elevadas en el núcleo del campo hidrotermal (30 ug.g⁻¹) que ciertamente tiende a decrecer con la profundidad mientras que en el talud los dos perfiles del Mn potencialmente soluble son muy similares y tienden ligeramente a enriquecerse hacia el fondo.

En estos mismos tres núcleos en las figuras 5.117 y 5.118 se observa nuevamente la misma situación en la fase del Mn enlazado a la fracción oxidable y reducible. Si se parte de la suposición de que la diagénesis es de tipo estable, y de que la proporción de las fases también es estable en los fondos de la depresión, cabe plantearse entonces, ¿Qué sucede con el Mn que se transforma necesariamente con la profundidad?, en otras palabras, en los núcleos del talud continental adyacente a Guay mas parece ser que el Mn 1/A que incluye parte del Mn soluble y el adsorbido (e intercambio) se transporta hacia la columna de agua, por el gradiente de concentración, pero los perfiles también de Mn-0/S y Mn-R, sugieren que con el tiempo o la profundidad se enriquecen estas fases, la figura 5.119 y 5.120, ayudan a explicar el origen de este enriquecimiento, el cual (como se observa por los perfiles de los núcleos B17 y B18) debe provenir del Mn residual o asociado a los silicoalumina tos, ya que los gradientes en los perfiles son complementarios. Todo esto permite sugerir las siguientes neacciones esquematizadas en esta zona del talud mediante un modelo de transformación de las fracciones:

Este simple modelo, y los perfiles del Mn de las figuras 5.119 y 5.120 permiten explicar que:

- Hay una aportación de Mn desde la zona del talud en esta región, lo cual ya ha sido sugerido por otro tipo de estudios (Niemitz, 1977).

- Que el Mn exportado proviene de los distintos equilibrios en que se ve involucra do el Mn soluble en el agua intersticial pero que de manera indirecta, este resulta de la transformación neta de las otras fases como la oxidable, reducible y posi blemente la carbonatada, mismas que tienden a enriquecerse a consecuencia del Mn residual (R/S) el cual viene a ser el final al que suministra el Mn también exportado desde los sedimentos.

A pesar de que han sido desarrollados muy poco este tipo de modelos que involucran el transporte desde las fases sólidas, han habido algunos trabajos (Callender y Bowser 1980; Klinkhammer, 1980; Klinkhammer <u>et al</u>, 1982), que han demostrado que algunos metales como Cu son liberados desde <u>las fases</u> sólidas en el fondo marino a una velocidad capaz de suministrar el cobre que se acumula en los nódulos de man ganeso. Recientemente Lyle <u>et al</u>, 1984; desarrolló un modelo para explicar el cr<u>e</u> cimiento de los nódulos, el cual está basado en la transferencia de los metales a través de los metales adsorbidos (extraídos con acetato de sodio en ácido acético a pH= 5 desde el inicio) en los sedimentos superficiales. De hecho esta nueva modalidad de modelos parecen ser promisorios en relación a muchas cuestiones relacio nadas con el origen de los metales transferidos o capturados por materiales deposi tados como los mismos nódulos polimetálicos.

En el caso del núcleo B14 colectado en el campo hidrotermal, se presenta el hecho importante en que el Mn "Total" disminuye si se compara la capa superficial (0-70 cm) con la capa más profunda (55-70 cm) (Fig. 5.8). Si el flujo de Mn es, a gran des rasgos, en estado estable, entonces hay una enorme pérdida de Mn (probablemen te hacia la columna de agua) durante su depositación y diagénesis temprana.

Es evidente (Figs. 5.121 y 5.122) que a pesar de la coexistencia de las distintas fracciones, una gran cantidad del Mn que se deposita sobre la superficie se redisuelve en los primeros 50 cm de la columna sedimentaria de la depresión de Guaymas.

En las Figs. 5.123 -5.128 se muestran los perfiles del Fe en las distintás fraccio nes de los núcleos B17, B18 y B14; nuevamente en el talud se repite la situación del Mn (Fig. 5.126 y 5.127). En el caso del núcleo B14, la conducta del Fe contras ta dramáticamente con la del Mn; los perfiles de la figura 5.128 sugieren que con la profundidad se forma más Fc en las distintas fracciones.

En la fig. 5.129 se presenta el perfil del Cd asociado a la fracción oxidable, esta fracción en el talud continental constituye entre el 13.9 y 59.7% mientras que en el mícleo B14 (de la depresión sur de cuenca de Guaymas), entre el 48.1 y 100% del total presente. En contraste con el mícleo B14 y B18, en el mícleo B17 se tie ne que el Cd oxidable, se incrementa con la profundidad, en donde por cierto el C-orgánico es relativamente constante con la profundidad (Fig. 5.20). El caso del Ni, Pb y Zn orgánicos es también similar al del Cd (Figs. 5.130-5.134), con la figura 5.131 se puede observar como el Zn por ejemplo se comporta de manera muy similar al Mn, aunque en el caso de los carbonatos y sobre todo en la fracción reducible (Fig. 5.132) es más clara la diferencia entre el perfil del Zn y el del Mn, ya que mientras en el Mn los núcleos del talud se enriquecen y el de la depresión decrece, en el Zn los tres mícleos tienden a disminuír en sus concentraciones.

Cuenca del Carmen

En las figuras 5.135- 5.137, se muestran los perfiles pero el Mn en las distintas fases de los mícleos B7, B8 y B12 de la plataforma continental, el talud continen tal y el talud peninsular de la cuenca del Carmen. Solamente en la fase oxidable se observa la diferencia en los perfiles, ya que el B17 y B7 en contraste con el B9 (Z= 1240 m) presentan un evidente incremento con la profundidad.

En el núcleo de la plataforma continental adyacente a cuenca del Carmen, se puede observar (Fig. 5.137) que a diferencia del núcleo B9 la disminución del Mn en la fase reducible se traduce en un incremento ligero en la fracción residual, y en uno más intenso en la fracción oxidable. Por su parte en el núcleo del talud peninsular el incremento en la fase Mn oxidable, se traduce principalmente en una reducción con la profundidad del Mn residual y el asociado a los óxidos (Fig. 5.138).

En las Figs. 5.139-5.141, se pueden observar los perfiles para el Fe en los tres núcleos de la cuenca del Carmen, tanto el Fe de intercambio, y el oxidable en los tres núcleos se comportan similarmente, la figura 5.140, indica de alguna manera que en los tres núcleos se están formando con la profundidad asociaciones entre el Fe y el material oxidable.

Ahora debido a que el C-orgánico tiende a ser relativamente constante ó a decrecer con la profundidad en estos tres núcleos (apéndice 2), es de esperarse que el Fe en la fase oxidable se incremente a expensas de la formación de sulfuros de hie rro, precipitando como mackinawita, greigita o la misma pirita. Berner (1964), en el núcleo L62 vecino al B12 midió niveles de pirita (más azufre orgánico) hasta de 1.45% en las secciones del fondo con una clara tendencia a aumentar hacia el fondo. En la figura 5.142, es posible observar como el incremento de la fracción oxidable incluído los sulfuros, coincide con la caída del Fe Litogénico.

En las figuras 5.143-5.151, se ilustran también los perfiles para Cd, Pb y Zn. Llama la atención el comportamiento del Pb, (perfiles 5.146 y 5.147), acerca del destino del Pb conforme se van sepultando las fases del metal asociado a la fracción oxidable y a los óxidos, ya que la reducción del Pb en estas fases se traduce en un incremento del Pb en la fase residual. En el caso del Zn es notorio como se diferencia el metal en su comportamiento en las fases de los núcleos del talud y el de la plataforma continental, por ejemplo el Zn adherido a las partículas (o en posición de intercambio) solamente se detectó en el núcleo B7, luego en la fase oxidable se tiene que el núcleo de plataforma el Zn tiende a enriquecerse hacia el fondo, contrario a los otros dos núcleos (Fig. 5.149) mientras que en la fase car bonatada parece suceder lo contrario. (fig. 5.151). Ahora bien, respecto a la fase del Zn-litogénico este no parece estar involucrado en las transformaciones de las demás fases, de aquí que se pueda plantear para el Zn en la plataforma el siguiente tipo de transformación con la profundidad:

 $Z_{II} - C \longrightarrow Z_{II} - O/S$ (6.2.1)

 $Zn - R \longrightarrow Zn - 0/S$ (6.2.2)

y en el talud continental de cuenca del Carmen:

 $Zn - O/S \longrightarrow Zn - C$ (6.2.3)

$$Zn - O/S \longrightarrow Zn - R$$
 (6.2.4)

en tanto que en el talud peninsular:

Zn - R	Zn - C		(6.2.5)
Zn - R	ZIL - 0/S	a tha an an	(6.2.6)

Cuenca Pescadero

En las figuras 5.152-5.154 se ilustra el comportamiento del Mn en las distintas fases en los núcleos colectados en el transecto realizado sobre cuenca Pescaderu. En la fase de intercambio se puede observar como a pesar de que el núcleo B26 fué exprimido (perdiendo un 80-95% del agua), este junto con el B3 son los que presen tan los mayores niveles del metal (hasta 240 ug.g⁻¹) aunque en los dos casos (y al parecer también en el B4) la proporción tiende a empobrecerse con la profundidad. Esta misma tendencia parece ser que es la que predomina también en la fase oxidable y neducible, solamente el núcleo de la plataforma BI presenta la tendencia con traria.

El perfil del Mn en la figura 5.155 sugiere que diagencticamente el Mn en la plata forma continental adyacente a Pescadero sufre las siguientes transformaciones.

A diferencia con el modelo propuesto para el talud continental en Guaymas, en este caso el Mn⁺² exportado está soportado por el decrecimiento hacia el fondo del Mn reducible que a la vez favorece posiblemente la precipitación de carbonatos de ma<u>n</u> ganeso y de sulfuros.

En el caso del núcleo B3 la tendencia del Mn es distinta y algo difícil de interpre tar ya que es muy clara la tendencia a decrecer de todas las fases incluída la resi dual (Fig. 5.156) aunque si obviamos la sección superficial (0-5 cm) el ajuste de las gráficas cambia dramáticamente (Fig. 5.157) e incluso parece notarse una ligera tendencia a aumentar del Mn en las secciones subsuperficiales del núcleo. En el caso del núcleo colectado en el borde adyacente a la península, también ocurre (in cluído el Mn residual) que todas las fases tienden a decrecer hacia el fondo (Figs. 5.158-5.159); igualmente en el núcleo B26 de la depresión se repite este tipo de comportamiento, aunque al parecer se denota en las secciones de los 25-35 cm otro máximo.quizás como remanente de un evento que suministró importantes concentraciones de manganeso en el pasado (Fig. 5.160).

En las gráficas de las figuras 5.161-5.163 se muestran los perfiles del Fe para los cuatro núcleos de cuenca Pescadero. En común se puede notar en los cuatro núcleos que en la fase oxidable el Fe se enriquece hacia los fondos, pero en la fase reducible el núcleo B4 se diferencia porque más bien tiende a decrecer con la profundidad (Fig. 5.164). En las figuras 5.165-5.167, se ilustran los perfiles de manera individual, en el caso de los núcleos B3 y B26 (de las partes más profundas) se observa como el Fe asociado a los minerales resistentes es el que parece soportar la formación de sulfuros de hierro.

151

Como se mencionó anteriormente el Cd en los sedimentos se presentó predominantemen te en las fases oxidable y residual y solamente en unos cuantos mícleos tuvieron concentraciones detectables en las otras fases, en las figuras 5.168 y 5.169, tene mos los perfiles del Cd para los núcleos de cuenca Pescadero, y en ellos se puede notar como únicamente en el núcleo Bl de la plataforma se pudieran medir niveles de este elemento, en el se nota también como el Cd más bien tiende a decrecer en esta fase al igual que en la oxidable; ahora en el núcleo B26 de la depresión tam bién se nota la tendencia a decrecer hacie el fondo, en tanto que en los núcleos B3 y B4 se presenta el patrón contrario.

Las figuras 5.170-5.179 se ilustran los perfiles de los núcleos de cuenca Pescade ro para el Cu, Zn y Pb, en ellos es posible observar la similitud entre los perfi les de Cu y Zn, como quiera que sea en los demás metales es más difícil observar un patrón general.

En el caso del núcleo B26 llama la atención sus perfiles individuales en el sentido de que reflejan un suministro variable en concentración en la depresión como se pue de notar en el Zn (Fig. 5.177), Pb (Fig. 5.178), Cr (Fig. 5. 179) y Ni (Fig. 5. 180), en el Co (Fig. 5.181) a pesar de tal variación se puede observar como el decremento del metal se traduce en un incremento del Co residual con la profundidad.

Cuenca Farallón

En esta cuenca solamente se colectaron tres núcleos de las depresiones, B5 [Z= 2250 m], B6 [Z= 2220 m] y B24 [Z= 3250 m]. En las figuras 5.183-5.186, se presentan los perfiles individuales de Mn para cada núcleo en las distintas fases; tonto en el B5 como en el B6 se puede observar que en todas las fases del Mn siempre tien de a decrecer hacia el fondo de los núcleos, lo cual puede deberse a la variación del suministro y que en estos últimos años se hayan depositado partículas más nicas en Mn. En el caso del núcleo B24 de la depresión profunda, en cambio se presenta el comportamiento contrario ya que con excepción del Mn-I/A, todos los demás incluído el Mn residual tienden a enriquecerse con la profundidad, este núcleo como se nota en el apéndice 2, presenta un perfil anómalo en su contenido de humedad Eh, C-orgánico, además de la alcalinidad, cloruros y amonia del agua intersticial (Osuna-López, en preparación).

Entre las posibles explicaciones que se pueden plantear para los perfiles de este micleo están: (1) Que el punto ó localidad donde fue colectado el micleo B24, cons tituye una trampa de sedimentos finos, y aunado a esto la diagênesis y cambios redox dan lugar a una redistribución del Mn; (2) Que dicha anomalía sea una consecuencia de la actividad hidrotermal. Es difícil con la información disponible evaluar estos planteamientos; evidentemente se requiere verificar con otro tipo de análisis (relación isotópica de Helio y oxígeno, por ejemplo), las hipótesis.

En el Fe nuevamente son muy similares los núcleos B5 y B6 (Figs. 5.187-5.190) dichos perfiles pueden interpretarse en términos de una transformación del Fe-residual a Fe-oxidable y reducible conforme se sepultan los sedimentos, mientras que en el núcleo B24 el decrecimiento del Fe-orgánico parece más bien reflejarse en un incremento del Fe-reducible con la profundidad (Figs. 5.191 y 5.192). En otros me tales tales como Ni (Fig. 5.193) y Cu (Fig. 5.194) en todas las fases incluída la residual se observa un evidente aumento hacia el fondo, auxique en metales tales como el Zn, dicho aumento parece deberse a la disminución del In orgánico (Fig. 5.195).

Cimas o sills

Tanto el mícleo 522 (Z= 1350 m) como el B25 (Z= 2450 m) presentan un perfil muy similar de Mn en todas las fases analizadas (Fig. 5.196-5.197) en la sección su perficial de ambos múcleos se presenta un gran enriquecimiento del metal para luego decrecer hacia el fondo, esto denota que dicho enriquecimiento es el resul tado de la emigración del Mn soluble desde las capas sub-superficiales con el pos terior proceso de formación de los óxidos del Mn en las respectivas fases de los estratos superiores, Esto último es muy factible de que ocurra ya que los perfiles del Mn-I/A se caracterizan por el gran enriquecimiento también en el estrato superficial (Fig. 5.199-5.200).

En las figuras 5.200, 5.203 y 5.204 se muestran los perfiles del Fe en las distin tas fases de los núcleos 622 y 625 nuevamente en los dos núcleos se presentó el mismo comportamiento, el Fe que se incrementa en las fases no-litogénicas aparentemente es suministrado por los silicoaluminatos en ambos núcleos. En cambio en el caso de otros metales como Pb y Cr el decrecimiento del elemento en fases como la oxidable, da como resultado un enriquecimiento del metal en la fase nesidual [fig. 5.205 y 5.206], en tanto que en el Ni parece suceder justamente lo contranio (Fig. 5.207).

Cuando se comparan los perfiles de los metales (fig. 5.208-5.224) en las distintas fases de los núcleos de las depresiones de las cuencas del bajo golfo de California, se puede corroborar que el núcleo de la cuenca Farallón, es ciertamente anómalo, siendo más evidente el contraste en las fases del Mn, Fe, O/S, Cu-O/S, Ni-O/S, pb-O/S, Cd-O/S y Zn-C. De manera común los perfiles del Mn-T/A (Fig. 5.207) en las depresiones de las cuencas reflejan una precipitación superficial del metal, siendo un poco menos evidente en el núcleo B24 de cuenca Farallón.

Pe los nateriores resultados a continuación se presentan algunas generalizaciones en el comportamiento de los metales en las fases geoquímicas de los perfiles sed<u>í</u> mentarios de la parte centro y sur del golfo de California.

A pesar de la diversidad de comportamientos de los metales en las distintas fases, es posible observar un patrón general que permite sugerir modelos esquematizados sobre las principales transformaciones de los metales en las fases a medida que estos se van acumulando en la columna sedimentaria. De manera general se observa que el Mn viene a ser el elemento más perceptible a los cambios del nivel redox (Eh), en algunos casos se puede notar como este elemento sigue el mismo tipo de perfil que el Eh (por ejemplo: en los núcleos ET y B20) en contraste a veces del Fe.

Diferentes investigadores (Krauskopf 1957; Lynn y Bonatti, 1965; entre otros) han argumentado que los óxidos de Mn son más estables en potenciales redox elevados, que los óxidos del Fe, sin embargo los del Mn se reducen primero, y el Mn+2 puede emigrar hacia un ambiente más oxidante y precipitar. En apoyo a este tipo de argu mento, en la literatura existen una gran diversidad de trabajos con datos tanto de agua intersticial y del sedimento (por ejemplo, Froelich et al, 1979).

Con los resultados de esta sección, en el presente trabajo se puede esquematizar el transporte y transformación del Mn y Fe en las distintas fases; en la figura 6.2.1 se ilustra el modelo generalizado el cual se refleja con más claridad para el Mn en núcleos como el B14, B29 y B9; y para el Fe en el B31, y B29, éstos últi mos dos núcleos que por cierto se colectaron en las afueras del golfo.

Figura 6.2.1. Modelo de transformación y transporte de Mn y Fe en los fondos de la depresión sur de Cuenca de Guaymas, Cuenca Mazatlán y fondos pelágicos adya centes a la zona de actividad hidrotermal 21°N.

En la figura 6.2.2, se miestran las principales transformaciones para el Fe y Mn en el talud continental adyacente a la cuenca de Guaymas (núcleos B17 y B18). Adicionalmente el Fe en los núcleos B5 y B6 de la depresión principal de cuenca Farallón, B3, B4 y B26 de cuenca Pescadero y los núcleos de las cimas o sills B22 y B25, también presentan este tipo de transformaciones.

Igualmente en la figura 6.2,3, se presenta el modelo para explicar el cambio que sufren las fases del Un en la plataforma continental de la porción central y sur del golfo de California.

Respecto a los demás metales, no es fácil generalizar ya que un mismo núcleo se presentan diversos patrones de comportamiento en las fases según el metal; por ejemplo, en el núcleo B25, se tiene que el cromo al acumularse se transforma bás<u>i</u> camente de la fase oxidable a las fases reducible y residual:

> $Cr - O/S \longrightarrow Cr - R$ (6.2.7) $Cr - O/S \longrightarrow Cr - R/S$ (6.2.8)

mientras que el níquel más bien parece transformarse solamente desde la fracción litogénica a la oxidable:

Mi - R/S ______ Ni - O/S (6.2.9)

Por su parte el Pb-R y Pb-0/S al acumularse parece inse transformando en Pb-R/S:

P6 -	R Pb -	R/S	(6.2.10)
P6 -	0/S Pb -	R/S	(6.2.11)

presentándose esta misma tendencia en otros núcleos como el B7 de la plataforma continental y el B12 del talud peninsular (adyacente a cuenca del Carmen) o incluso en el núcleo B25 colectado en el "sill" o cima que separa a las cuencas de Pescadero y Farallón.

Ve los modelos anteriores, es posible concluir que en el caso de sedimentos como los de la depresión de la cuenca de Guaymas, hay un aporte de Mn desde las fases no-litogénicas que tiende a decrecer hacia el fondo al asociarse el metal a fases más resistentes; en cambio, en el caso de los sedimentos del talud, las fracciones de los silicoaluminatos parecen servir como una fuente del aporte de Mn disuelto; en la plataforma continental, también parece ocurrir algo muy similar, la diferen cia estriba solamente en que en lugar de los silicoaluminatos, vienen a ser los óxidos (más estables) la fuente de aportación del Mn.

En relación al volúmen bibliográfico que existe sobre la asociación de los metales a las fases geoquímicas, es notable la mayor abundancia de trabajos en muestras su perficiales y material suspendido que en núcleos. Respecto al núcleo colectado en la Bahía Francesa de Villefranche (Nembrini et al, 1982; Rapin et al, 1983) se pue de observar que en este núcleo no obstante haber sido colectado en un área altamen te contaminada presenta un perfil de Mn y Fe similar al de los núcleos del talud continental adyacente a cuenca de Guaymas (B17 y B18).

Ahora respecto a otro tipo de estudios que han sugerido la participación de los sedimentos silícicos, en las reacciones diagenéticas, investigadores como Gieskes et al. (1983); han sugerido que estos sedimentos son los que aportan el Mn y Li

Figura 6.2.2. Modelo de transformación y transporte del Mn en el talud continental adyacente a Cuenca de Guaymas.

Figura 6.2.3. Modelo de transformación y transporte del Mn en la plataforma continental de la parte ce<u>n</u> tro y sur del Golfo de California.

disuelto de las aguas intersticiales; para el Mn esto se ha interpretado que ocurre como resultado de la presencia del Carbono orgánico reactivo el cual sirve como agente de reducción.

Otro hecho que llama la atención en los perfiles de la columna sedimentaria es que el Fe asociado a los óxidos, en ocasiones (como por ejemplo núcleos B17 y B18) se incrementa su concentración con la profundidad a pesar de que el Eh más bien tien de a caer a valores hasta de -44 mv (núcleo B14, por ejemplo). En este sentido Postma (1985) habla de que el Fe no siempre se apega a los modelos de equilibrio, ya que los óxidos de hierro pueden persistir en sedimentos anóxicos donde incluso esté presente H_2S (Berner, 1970; Jorgensen, 1978) en obvio desequilibrio. Para aclarar esto Stúmm y Morgan (1981) han sugerido una explicación cinética, la cunt se refiere a la más lenta oxidación del Mn^{+2} comparada a la det Fe⁺².

En cuanto a la fracción de intercambio y adsonción, como es de esperarse las mayones concentraciones detectadas en los núcleos fueron las del Mn y Fe; en el caso de los núcleos de la plataforma y el talud, y sobre todo en la parte continental del golfo de California fue más evidente el perfil que refleja una exportación ó emigración del Mn hacia la columna de agua. El Mn disuelto en condiciones óxicas, es de esperarse que esté en equilibrio con óxidos como la hausmanita (Mn304) ó el B-Mn00H (Bricher, 1965; Klinkhammer y Bender, 1980); en tanto que en los ambientes de ficientes de O2, la solubilidad del Mn ha sido explicada en base a la existencia de una mezcla carbonatada de Mn similar a la rodocrosita (MnC03) (Manheim 1961; Li et al, 1969; Holdren et al, 1975; Suess, 1979; Klinkhammer, 1980) aunque en condiciones extremadamente reducidas pueden formarse sulfuros de Mn. Suess (1979) ha su gerido que la composición del agua intersticial puede de hecho controlar la composición de la fase sólida a través de la formación de soluciones sólidas de la forma Mn_{1-x-u}Ca_xMg_uCO3.

A pesar de que se han identificado las fases del Mn carbonatado tanto en ambientes lacustrinos (Callender, 1973; Nembrini et al, 1982), como marinos (Manheim, 1961; Hartmann, 1964; Calvert y Price, 1970; Suess, 1979) poco se ha discutido realmente (Pedersen y Price, 1982) sobre los factores que controlan su distribución y formación.

En todos los estudios que se ha caracterizado la fase carbonatada, se ha encontrado que está constituída por un carbonato impuro con proporciones variables de Mn, Cr, Mg y a veces Fe; así mientras que en el lago Suizo de Lacléman los difractogra mas confirmaron la presencia de rodocrosita y en menor extensión siderita (Nembrini et al, 1982), Pedersen y Price (1982) en la cuenca de Panamá en cambio encontra ron que los difunciogramas correspondieron al mineral denominado Kutnahorita Ca (Mn, Mg) (C03)?.

La solubilidad del Fe por su parte en ei ambiente anórico está limitada principalmente por la reacción con H_2S (Berner, 1977; Murray et al, 1978; Boulegue et al, 1982); la solubilidad de otros metales como Cu, Cd, Cr y Pb en general tiende a incrementarse en las aguas sulfídicas (Gaillard et al, 1986), la naturaleza de la fase sólida que precipita en las aguas ricas en H_2S no es conocida (Emerson et al, 1983; Dyrssen, 1985), Fe siempre se ha considerado como el metal que principalmente precipita en las diferentes formas de compuestos sulfídicos (Goldhaber y Kaplan, 1974; Berner, 1984); de acuerdo a Franson y Leckie (1978) y Elderfield et al, 1979; los metales pesados son más bien capturados por los sulfuros de hierro que Precipitados puramente como minerales de sulfuros. Este tipo de sugerencias ha hecho suponer (Gaitlard et al, 1986) que los sulfuros son eficientes en remover los me tales desde las aguas intersticiales. Cuando los sulfuros alcanzan concentracio nes de mi las fases comunes de los óxidos e hidróxidos son reemplazados por sulfuros (Framson y Leckic, 1978). El phsp de los sulfuros de metales pesados varía de 25.2 para el ZnS(S) a 53.2 para el HgS(S) (Leckie y Nelson, 1975), de aquí que una gran fracción de los metales pesados acuosos este unida como sulfuros sedimen tarios en condiciones anaeróbicas.

Recientemente Jean y Bancroft (1986) experimentalmente demostraron que sulfuros mi nerales tales como $Fe_{1-x}S$, $FeS_{2,Zn}S$, PbS, son excelentes capturadores de metales como el Pb, Zn, Hg y Cd, estos autores encontraron que el pH en el cual los sulfuros adsorben la mayor proporción de Zn y Cd es entre valores de 6-8 y 7-9 respectivamente; intervalos que corresponden muy bien con la mayorla de los pH medidos en los sedimentos del golfo de California. (Apéndice 2).

En este sentido la mayorla de los sedimentos del golfo de California presentan una clara evidencia a formar sulfuros de hierro asociado a metales como el Pb, Ni, Cr, Cu y Cd, sobre todo en los micleos del talud continental (B17, B18, B4 por ejemplo).

Como se ha mencionado en las secciones anteriores el cadmio en el ambiente marino en gran extensión es biogénico (Bender y Gagner, 1976; Knauer y Martin, 1981); en los núcleos del golfo de California en general se observa que a diferencia de los demás metales analizados este se halla predominantemente asociado a la fase oxida ble (49.5-64.7 § en la sección superficial de los núcleos), en esta fase los núcleos del golfo caen en dos categorías; (1) aquellos en que el Cd-O/S decrece hacia el fondo de los núcleos o sea que no se ve favorecida la formación posiblemen te de sulfuros de cadmio (B18, B12, B7, B1, B37, B29, B31, B14, B5 y B26) y (2) en los que sí se favorece con la profundidad la formación de fases orgánicas, sul furosas (y posiblemente carbonatadas) del Cd (B17, B9, B6, B25, B20, B22, B24, B4, B3).

Es evidente que en aquellos núcleos con una mayor proporción de C-orgánico, menos Eh, como son los del talud se favorece más la formación de Cd-O/S en la columna sedimentaria.

El mecanismo que se ha sugerido en la diagénesis del Cd (Gendron et al, 1986), par te del hecho de que cuando el detritus orgánico que contiene cadmio es destruído (sobre todo en ambientes anóxicos y bajas tasas de sedimentación), parte del cadmio es liberado junto con otros productos de la mineralización, El cadmio liberado en forma disuelta es entonces libre para transportarse, pero si el metal se sobresatura con el sistema H2S (lo cual seguramente ocurre en las capas subsuperficiales) es de esperarse que precipite el elemento acompañado generalmente al hierro y en ocasiones al manganeso (núcleos B17, y B24 solamente).

6.3 Balance geoquímico del Manganeso

En base al capítulo quinto, en esta parte se presenta un balance de masas para el Mn y Cu; es de especial interés el Mn, debido a que es un elemento muy estudiado y de comportamiento muy peculiar (muy móvil químicamente y sensible a cambios redox), contrariamente el cobre es el típico oligoelemento que para fines de compar<u>a</u> ción con el manganeso resulta de gran utilidad.

159

En la tabla 6.3.1 y 6.3.2 se presenta el balance giobal estimativo de estos elementos. Para el Mn se emplearon los datos de la Tabla 5.4.7 de este estudio, para calcular el aporte hidrotermal y del talud, se revisó el trabajo de Campbell (1975) para estimar el aporte riverino se usó la concentración de los ríos del mundo (Holland, 1981) debido a que no se tiene esta información para los ríos que desembocan en el golfo de California. Si se observa el total de Mn depositado contra el flujo aportado globalmente en el golfo, resulta imposible establecer un sistema en estado estable, debido a que el flujo de Mn depositado es cinco veces mayor que lo aportado, por tanto si el sistema golfo-océano opera en estado estable, lo anterior necesariamente se tiene que explicar por una sobreestimación en el flujo depositado, lo cual es factible en el complejo de cuencas Pescadero, o bien por una sub-estimación en el aporte de Mn hidrotermal, lo cual también es posible, debido a que en cuencas como Del Carmen y Farallón, se han tenido indicios de actividad hidrotermal (Lupton, 1979).

A diferencia del Mn, <u>en</u> el Cu los flujos aportados $(13-393.10^7 \text{ g} \cdot año^{-1})$ y depos<u>i</u> tados (407 · 10⁷ g · $año^{-1}$) son razonablemente comparables, tomando en cuenta las consideraciones realizadas. Este balance permite reforzar la idea de que el Mn hidrotermal es subestimado en el anterior balance, ya que en el cobre se aplicaron las mismas tasas de acumulación sedimentaria, que para el manganeso.

En las figuras 6.3.1 a 6.3.4 se ilustra la sedimentación del Mn (en sus respectivas fracciones geoquímicas), en las cuencas del bajo golfo; en estas figuras se presenta también la proporción de Mn en cada una de las fracciones extraídas con el MgCl₂ a pH7 (I/A), H₂O₂ (O/S), hidroxilamina (R) y la residual o litogénica (R/S) (ver sección 6.1). Este modelo de depositación del Mn en las cuencas permite visualizar los flujos de cada una de las fracciones del metal en los distintos rasgos mon fológicos; así por ejemplo es fácil notar como es mayor la acumulación del elemento en la depresión (71.3 [+2.1-21.8] \cdot 10⁸ g . año⁻¹) de la cuenca de Guaymas que en el resto de las cuencas.

Tabla 6.3.1 Balance de Manganeso para el golfo de California

I. <u>Depositado</u>

والمستعلقة والمستعد والمستعين والمستعد المستعد والمستعد والمستعد والمستعين والمستعين والمستعين والمستعين والمست		0
Cuenca de Guaymas	188-208 . 10) (Ver Tabla 5.4.7 este estudio)
Cuenca del Carmen	85-108 . 10) ⁸
Cuenca Farallón	100 . 10) 6 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Cuenca Pescadero	195-215 . 10) ٩
Total del Mn depositado:	568-631 . 10	
	en en el ser en el ser el s	에 가지 않는 것이 있는 것은 것은 것을 알았다. 그 것은 가지 않는 것이 가지 않는 것이 가지 않는 것이 있는 것이 있다.

II. Aporte

Intercambio anual de agua $:.5 \times 10^6 1^{\circ}$ (Roden y Groves 1959)

Concentración promedio de agua de mar	0.5 n mol . kg ⁻¹ (Bruland 1983)
Aporte oceánico	0.14 g.año ⁻¹
Aporte riverino	3.7 x 10^{13}] . año ⁻¹ (Byrne 1957) .
Concentración	0 – 185 ug . kg ⁻¹ (Holland, 1981)
	0 - 68 . 10 ⁸ g . año ⁻¹
Aporte hidrotermal	23-58 . 10 ⁸ g . año ⁻¹ (Campbell, 1985)
Aporte del talud	10-40 . 10 ⁸ g . año ⁻¹ (Campbell 1985)
Aporte total:	101 - 166 . 10 ⁸ g . año ⁻¹

Tabla 6.3.2 Balance de Cobre para el golfo de California.

I. Depositado

				きょくちき かたため かたい			しんし ちょうぞう うちんせん かうばやきやうい	the second s	
Cuenca	de Guaymas		1.	18 🕄 10	梁 憲 (Ver Tab	ola 5.4.7	este esti	(oibu
Cuenca	del Carmen			72 . 10	7			- 홍영 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	
Cuenca	Farallon			54 . 10	7				N. Star
Cuenca	Pescadero		<u>16</u>	5 <u>3 . 10</u>					한 원은
To+-1	do Cu don	ocitado	• A1	17 8 10	7	-1		11月1日 主要	n an an tair. Tair an tair
Iucai	i ue cu uepi	US I LUUU	· 化心油 花牙的	<i></i> 10	99 - 9 - •	anv		옷에 가장하는	Q

II. Aporte

Intercambio anual de agua 5×10^6 (Roden y Groves (1959) Concentración promedio del agua de mar $4 n mol. kg^{-1}$ (Bruland, 1983) Aporte oceánico 1.3 g año Aporte riverino $3.7 \times 10^{13} \text{ l}$ año⁻¹ (Byrne 1959) Concentración 0.8-105 ug kg⁻¹ (Holland, 1981) 10-390, 10^7 g año⁻¹

Aporte hidrotermal

Relación molar del fluído hidrotermal en Guaymas (Edmond y Von Damm 1985): 139:1

 3.3 . 10⁷ g . año⁻¹

 Aporte total:
 13- 393 . 10⁷ g . año⁻¹

Figura 6.3.1 Balance del Manganeso y sus fracciones geoquímicas en la Cuenca de Guaymas (108.g.año-1). Sedimentación en la Cuenca 189-208.10⁸ g.año⁻¹.

Figura 6.3.2 Balance del Manganeso y sus fracciones geoquímicas en la Cuenca del Carmen (10⁸ g.año⁻¹) sedimentación en la cuenca 85-108 g.año⁻¹.

1

Figura 6.3.3 Balance de Manganeso y sus fracciones geoquímicas en la Cuenca Farallón (10⁸ g.año⁻¹) sedimentación en la Cuenca 100.10⁸ g.año⁻¹.

.

Figura 6.3.4 Balance de Manganeso y sus fracciones geoquímicas en la Cuenca de Pescadero (10⁸ g.año⁻¹). Sedimentación en la cuenca 137.10⁸ g.año⁻¹

7. Conclusiones

- Si bien las mediciones del Eh no reflejan el potencial redox esperado para las semircacciones, en esta investigación se demuestra que la tendencia del redox medido en la columna sedimentaria, como el calculado (a partir de las concentraciones de los componentes de la semireacción S0j/H₂S) concuerdan de manera significativa; de aquí que las mediciones pueden Ser valiosas para caracterizar los sedimentos y su evaluación redox. Así los sedimentos del golfo de California se pueden categorizar como sigue: En los fondos menores a 1100 m (desde la superficie al fondo) los núcleos van desde ligeramente oxidantes a moderadamente reductores; mientras que en las profundidades mayores a 1100 m, los fondos son más bien moderadamente oxidantes, con excepción de algunas depresiones de las euencas, como la de Guaymas ó Fara llón.
- El pH, de manera similar a muchos otros estudios de los sedimentos del golfo de California, cae en el orden de 6.8 a 7.8, solamente unas pocas muestras presentaron lecturas por debajo de 6.6.
- 3. La tasa de sedimentación en varios de los mícieos colectados fué estimada mediante el modelo diagenético de Berner (1978), y su aplicabilidad fué eva luada comparandola con tasas de sedimentación previamente medidas por métodos radioquímicos e históricos de las principales cuencas del golfo de Cali fornia. El ajuste entre el gradiente de la sulfatoreducción $-(\partial c/\partial x)_0 y$ la tasa de sedimentación w produce una recta de tipo:

$$w = 1.26 (-3c/3x)_0 - 0.005$$

con un coeficiente de correlación significativa (A=0.01) de 0.96 (n = 9).

- 4. En relación al C-orgánico, al igual que Van Andel (1963) y Niemitz (1977), se encontró que los valores de C-orgánico oscilan entre 0.11 y 5% según la topografía, localidad y textura de las muestras; asl en la plataforma conti nental del golfo se pueden encontrar concentraciones tan bajas hasta el 0.72% en sedimentos arenosos, mientras que las concentraciones más elevadas en general se hallan en el talud y borde de las cuencas. Por su parte el núcleo B31 extraído de los fondos pelígicos fuera del golfo, presenta valores de 0.17 a 0.73%.
- 5. Las constantes de descomposición del C-orgánico k, varían según el rasgo mor fológico en el golfo de California: de 1.5 a 14.5 X 10⁻³ año⁻¹ en la plataforma continental, de 0.7 a 7.1 X 10⁻³ año⁻¹ en el talud y berde de las cuen cas, y de 2.1 a 80 X 10⁻⁵ año⁻¹ en las depresiones; lo cual se traduce como vida media del C-orgánico en 50-450 años en la plataforma continental, 100-1000 años en el talud y de 10-330 años en las depresiones de las cuencas.
- 6. La regresión lineal entre la acumulación de C-orgánico (^AC-org) y la tasa de acumulación de sedimentos (r) en el golfo está dada por:

Así pues mientras que en el golfo de California la regresión sugiere que la tasa de acumulación de C-orgánico es del 5.7% de la tasa de acumulación ele vada a la potencia de 0.82, en lugar del 1.0% de la tasa de acumulación ele vada a la 1.4 que ha sido observado en sedimentos de tipo oceánico (Heat, <u>et al</u>, 1977).

- 7. Respecto a la distribución superficial (0-5 cm) de los metales pesados en el golfo de California, se tiene que para metales como Mn. Fe. Cu. Ni. Cr. Zn y Pb. las depresiones de las cuencas vienen a ser los sitios más favorecidos por el enriquecimiento metálico. La distribución de la concentración por su parte en todos los casos muestra una tendencia común a incrementarse hacia la entrada del golfo. En el caso particular del cadmio este coincide de mane ra general en su enriquecimiento con los fondos que interceptan el mínimo de oxígeno, sobre todo en iz región central y occidental del golfo.
- 8. De acuerdo al diagrama ternario de Fe/Mn/(Co+Cu+Ni)10 los múcleos que presentan mayor carácter hidrotermal son: el B14, B21 y B26 de la depresión profunda de cuenca de Guaymas y del complejo de cuenca de Pescadero; mientras que el único múcleo que presenta mayor carácter hidrogénico viene a ser el B31 co lectado en los fondos pelágicos del Pacifico oriental adyacente al golfo de California.
- 9. La tasa de acumulación promedio para Cu, Ni, Co, Cr, Zn, Pb y Fe se presenta de mayor a menor proporción en cada uno de los rasgos topográficos como sigue:

plataforma continental > depresiones > talud

En el caso del Cd y Ag las acumulaciones más altas se presentan en la platafor ma y las más bajas en las depresiones; en cambio el Mn presenta las más elevadas tasas de acumulación en los núcleos de las depresiones, sobre todo en los núcleos de las cuencas Farallón, Guaymas y Pescadero.

- 10. Considerando el área de los distintos rasgos morfológicos del golfo de California, el flujo másico de los metales en general se presenta en una mayor magnitud en la cuenca Pescadero y cuenca de Guaymas, mientras que la acumulación metálica normalizada por el área de cada cuenca en la mayoría de los metales (Fe, Mn, Cd, Co, Ag, Cr y Pb) es mayor en la cuenca de Guaymas.
- 11. A pesar de la amplia variabilidad regional en los flujos y tasas de acumulación metálica en las distintas cuencas del bajo golfo, existe una evidente consistencia en los datos como un todo en la magnitud relativa de los flujos elementales. Así, es posible observar que tanto los flujos másicos (g/año), como las tasas de acumulación (mg/m2 . año) de los metales, presentan una misma tendencia a decrecer en el orden siguiente:

Fe > Mn > Zn > Pb > Cr > Ni > Cu > Co > Cd > Ag

secuencia que tiene una gran similitud con la de la descarga del particulado metálico de los ríos.

- 12. En lo concerniente a la asociación de los metales pesados con las fracciones geoquímicas operacionalmente definidas en los sedimentos de la parte centro y sur del golfo de California se pueden resumir las siguientes conclusiones:
 - Con excepción del Fe y Mn (y en pocos casos el Zn, Ni) la mayorla de los me tales no se pudo detectar en la fase de intercambio o adsorción, pudiéndose decir que solamente el Mn posee proporciones apreciables del metal en esta fase.
 - Con la omisión del cadmio, la mayor parte de los metales está presente en la fracción residual o litogénica.
 - Los óxidos de Fe y Mn, y la materia orgánica constituyen fases importantes para la mayoría de los metales.

165

13. Se elaboraron varios modelos esquematizados que permiten explicar la exportación del Mn, y el involucramiento de las demás fases en el empobrecimiento ó enriquecimiento de algunos metales en la fase sólida; así por ejemplo se demuestra que la exportación del Mn en el talud continental adyacente a cuenca de Guaymas proviene desde el Mn-residual, mientras que en la plataforma conti nental adyacente a la cuenca Pescadero se observá que el Mn+2 exportado está soportado por el decrecimiento y transformación hacia el fondo del Mn reducible.

8. LITERATURA CITADA

Abaychi J.K., y A.A.Z. Douabul, 1986. Trace element Geochemical associations in the Arabian Gulf. Mar. Poll. Bull. 17(8):353-356.

Addy S.K. y M. Ewing, 1974. A new box corer design for the investigation of manganese-nodule distribution in a sediment column. Mar. Geol. M16-M25.

Agemian, H. y A.S.Y. Chau. 1975. An atomic absorption method for the determination of 20 elements in Lake Sediments after acid digestion. <u>Anal. Chim. Acta,</u> <u>80</u>:61-66.

Al-Hashimi A.H. y H.H. Salman, 1985. Trace metals in the sediments of the North western coast of the Arabian Gulf. <u>Mar: Poll. Bull.</u> 16(3):118-120.

Aller, R.C. 1980. Diagenetic processes near the sediment-water interface of Long Island Sound, I. Decomposition and nutrient element geothemistry (SNP), Adv. Geophys. 22:235-348.

Alvarez-Arellano, A.D. 1984. <u>Evolución del Frente Térmico de la Boca del Golfo de California</u>. Tesis de Maestría en Ciencias del Mar (Oceanografía Geológica). CCH, UACPP, ICML, UNAM 124 p.

Alvarez-Borrego, S. 1983. Gulf of California. en: <u>Estuaries and enclosed seas</u> (ed. Ketchum B.H.), cap. 17, 427-449. Elsevier Scientific Pub. Co.

Alvarez-Borrego, S. y R.A. Schwartzlose. 1979. Masas de agua del Golfo de California. <u>Ciencias Mar</u>. 6:43-63.

Anatolevich Solomin, G. 1965. <u>Methods of Determining Eh and pH in Sedimentary</u> rocks. 56p. Consultants Bureau. New York.

Arrhenius, G.O.S. y E. Bonatti, 1965. Neptunism and Volcanism in the Ocean. En: <u>Progress in Oceanography</u> Vol. 3, (ed. M. Sears) London, Pergamon Press, 7-22.

Askren, D. y A. Badan. 1978. <u>Conceptos de Oceanografía Física</u> School of Oceanography. Oregon State University 120 p.

Baas Becking, L.G.M., Kaplan I.R. and Moore V. (1960). Limits of the natural environment in terms of pH and oxidation-reduction potential Jour Geol. 68, 243-284.

Badri M.A. y S.R. Aston 1981. A comparative study of sequential extraction procedures in the geochemical fractionation of heavy metals in estuarine sediments. Proc. Int. Conf. Heavy Metals in the Environment, Amsterdam CEP Consultant Eds. Edinburgh, 205-708.

Badan-Dangon, A., C.J. Koblinsky y T. Baumgartner. 1985. Spring and Summer in the Gulf of California: Observations of surface thermal patterns. <u>Oceanologica</u> <u>Acta</u> 8(1): 13-22.

Bagander L.E. y L. Niemisto. 1978. An evaluation of the use of redox measurements for characterizing recent sediments. Est. Coast. Mar. <u>Sci</u>. 6:127-134.

Batiza R. 1978. Geology, Petrology and geochemistry of Isla Tortuga, a recently formed tholeiitic island in the Gulf of California. <u>Geol. Soc. Am. Bull.</u> 89: 1309-1324.

Belova J.V. 1970. Zinc in Holocene Black sea sediments. <u>Doklady Akademii Nauk</u> S.S.S.R. 193: 433-436.

Bender M.L. y C. Gagner. 1976. Dissolved Copper; nickel and cadmium in the Sargasso Sea. J. Marine Res. 34:327-339. Bender M.L. y D.T. Heggie 1984. Fate of organic carbon reaching the deep sea floor: a status report. Geochim. Cosmochim. Acta, 48: 977-986. Bernas B. 1968. A new method for decomposition and comprehensive analysis of silicates by atomic absorption spectrophotometry. Anal. Chem. 40(1):1682-1686. Berner R.A. 1963. Electrode studes of hydrogen sulfide in marine sediments. Geochim. Cosmochim. Acta 27, 553-575. Berner, R.A. 1964. An idealized model of dissolved sulfate distribution in re cent sediments. Geochim. Cosmochim. Acta 28, 1497-1503. Berner R.A. 1964. Distribution and diagenesis of sulfur in some sediments from the Gulf of California. Mar. Geol. 1, 117-140. Berner R.A. 1970. Sedimentary pyrite formation. Amer. J. Sci. 268:1-23. Berner R.A. 1971. Principles of chemical sedimentology, McGraw-Hill, New York, 240 p. Berner R.A. 1974. Kinetic models for the early diagenesis of nitrogen, sulfur, phosphorus, and silicon in anoxic marine sediments, En: The Sea Vos. (Ed. E.D. Goldberg), Wiley, New York, 427-450. Berner R.A. 1977. Stoichiometric models for nutrient regeneration in anoxic sediments, Limnol, Oceanogr, 29:781-786. Berner R.A. 1978. Sulfate reduction and the rate of deposition of marine sediments. Earth and Plan. Sci. Lett. 37: 492-498. Berner R.A. 1980. Early Diagenesis, Princeton Univ. Press., 241 p. Berner R.A. 1984. Sedimentary pyrite formation: an update. Geochim. Cosmochim. Acta, 48: 605-615. Bonatti E. 1981. Metal deposits in the oceanic lithosphere En: The Sea, (ed. Emiliani C.). Wiley-Interscience, New York, 639-685. Bonatti E. 1983. Hydrothermal metal deposits from the ocean rifts: A clasification. En: Hydrothermal processes at seafloor spreading centers (eds. Rona, P.A. K. Bostrom, L. Laubier, y K.L. Smith). Plenum Press, New York, 491-502. Bonatti E. y O. Joensun. 1966. Deep sea iron deposits from the south pacific. Science 154: 643-645. Bonatti E., V. Kolla, W.S. Moore, y C. Stern 1979. Metallogenesis in marginal basins: Fc-rich basal deposits from the Philippone Sea. Mar. Geol. 32:21-37. Bordovskiy O.K. 1965. Transformation of organic matter in bottom sediments and its early diagenesis. Mar. Geol. 3: 83-114. Bostrom K. 1975. The origin and fate of ferromanganoan active ridge sediments. Stockholm. Contrib. Geol. 27: 149-241. Bostrom K. y M.N.A. Peterson, 1969 a. Origin of aluminium-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise. Marine Geology, 7: 427-447.

171

Bostrom K., M.N.A. Peterson, O. Joensuu, y D.E. Fisher, 1969b. Aluminium-poor ferro-manganoan sediments on active oceanic ridges. J. Geophys Res. 74:3261-3270.

Bothner M.H., P.J. Aruscarage, W.M. Ferrebee y P.A. Baedecker 1980. Trace metal concentrations in sediment cores from the continental shelf off the south-eastern United States. <u>Est. Coast. Mar.</u> Sci. 10:523-541.

Boudreau, B.P. y J.T. Westrich. 1984. The dependence of bacterial sulfate reduction on sulfate concentration in marine sediment. <u>Geochim. Cosmochim. Acta.</u> 48: 2503-2516.

Boulegue, J.C.J. Lord, y T.M. Church 1982. Sulfur speciation and associated tr<u>a</u> ce metals (Fe, Cu) in the pore waters of Great Marsh, Delaware. <u>Geochim. Cosmo-chim. Acta</u> 46:453-464.

Bower P.M., H.J. Simpson, S.C. Williams y Y.H.Li. 1978. Heavy metals in the sediments of Foundy Cove, Cold Spring, New York, Environm. Sci. Technol., 12:693-687.

Bowers T.S., K.L. Von Damm, y J.M. Edmond. 1983. Chemical evolution of hot springs on the East Pacific Rise and in Guaymas Basin (abs.) Eos . 64:723.

Boyle E.A., F.Sclater, y J.M. Edmond 1976. On the marine geochemistry of cadmium Nature 263:42-44.

Brannon J.M., J.R. Ross, R.M. Engler y I. Smith 1977. The distribution of heavy metals in sediment fractions from mobile Bay, Alabama. En: Chemistry of Marine Sediments (Yen, T.F. ed.) Ann Arbor Science. Ann Arbor 125-149.

Breder R. 1982. Optimization studies for reliable trace metal analysis in sediments by atomic absorption spectometric methods. <u>Fresenius Z Anal. Chem</u>. 313: 395-402.

Brewer, P.G. y J.P. Riley. 1965. The automatic determination of nitrate in sea water, <u>Deep Sea Research</u>, 12, 765-772.

Brewer P.G. y J.P. Riley 1966. The automatic determination of silicate-silicon in natural waters with special reference to sea water. Anal. Chim. Acta 35, 514-519.

Bricker D.P. 1965. Some stability relations in the system MnO_2 H₂O at 25°C and one atmosphere total pressure. <u>Aw. Mineral</u> 50: 1296-1354.

Brongersma-Sanders M. 1969. Permian wind and the ocurrence of fish and metals in the Kupferschiefer and marl slate, en: <u>Sedimentary Ores</u>. (C.H. James ed.) 61-68 Univ. of Leiscester Press.

Brongersma-sanders, M., K.M. Stephan, T.G. Kwee y M. DeBruin 1980. Distribution of minor elements in cores from the south west Africa shelf with notes on plankton and fish mortality. Mar. Geol. 37:91-132.

Brooks R., B.J. Presley y I.R. Kaplan 1968. Trace elements in the interstitial waters of marine sediments. <u>Geochim. Cosmochim. Acta</u> 32:397-414.

Bruland K.W. 1980. Oceanic distributions of cadmium, Zinc, nickel and copper in the North Pacific. <u>Earth Planet. Sci. Lett. 47</u>:176-198.

Bruland K.W., K. Bertine, M. Koide, y E.D. Goldberg, 1974. History of metal pollution in southern California coastal zone. Environ Sci. Technol. 8:425-432.

Brumsack H.J. 1983. A note on cretaceous Black shales and recent sediments from oxygen deficient environments: Paleoceanographic implications. En: <u>Coastal Up-welling</u> (Suess E. y J. Thiede eds). Plenum Press. 471-484.

Brumsack H. y Gieskes J.M. 1983. Interstitial water trace metal chemistry of <u>la</u> minated sediments from the Gulf of California, Mexico. <u>Mar. Chem.</u> 14:89-106.

Byrne J.V. y L.P. Emery. 1960. Sediments of the Gulf of California. <u>Geol. Soc. Am.</u> Bull. 71: 983-1010.

Callender E. 1973. Geochemistry of ferromanganese crusts, manganese carbonate crusts, and associated ferromanganose nodules from Green Bay, Lake Michigan. <u>In-ter University Program of Research on Ferromanganese deposits of the Ocean Floor</u> Phase I. Report, Natl. Sci. Found Washington. 105-120.

Callender E. y C.J. Bowser 1980. Manganese and Copper geochemistry of interstitial fluids from manganese nodule rich pelagic sediments of the northeastern equatorial Pacific ocean. Amer. J. Sci. 280: 1063-1096.

Calmano, W. y U. Förstner, 1983. Cheical extraction of heavy metals in polluted river sediments in central Europe. <u>Sci. total Environ</u>. <u>28</u>:77-90.

Calvert, S.E. 1964. The diatemaceous sediments of the Gulf of California. Tesis doctoral, University of California, San Diego 235 p.

Calvert, S.E. 1966a. Accumulation of diatomaceus silica in the sediments of the Gulf of California. Geol. Soc. Am. Bull. 77:569-596.

Calvert, S.E. 1966b. Origin of diatom-rich varved sediments from the Gulf of Cal<u>i</u> fornia, <u>J. Geol.</u> 76: 546-565.

Calvert, S.E. 1976. The mineralogy and geochemistry of Near-shore sediments en: Chemical Oceanography (J. P. Riley y R. Chester eds). Vol. 6, 2nd. edition. Academic Press. 187-274.

Calvert, S.E. y A.J. Morris, 1977. Geochemical studies of organic rich sediments from the Namibian shelf. II. Metal-organic associations en: <u>A voyage of Discovery</u> (n. Angel Ed.) Pergamon Press, 580-667. Londres.

Calvert, S.E. y N.B. Price 1970. Composition of manganese nodules and manganese carbonates from Loch Fyne, Scotland. <u>Contr. Mineral. and Petrol</u>. 29:215-233.

Calvert, S.E. y N.B. Price 1983. Geochemistry of Namibian sediments En: <u>Coastal</u> <u>Upwelling</u> (Suess E. y J. Thiede eds.). Plenum Press 337-375.

Campbell, A.G. 1985. <u>Geochemistry of hydrothermal clouds in the Guaymas Basin.</u> Gulf of California. Ph. Doctor Thesis. Univ. Southern California, 262 p.

Carmody, D.J., J.B. Pearse y W.E. Yasso. 1973. Trace metals in sediments of New York Bight. <u>Mar. Poll. Bull.</u>, 4:132-135.

Clarke F.W. 1924. The data of geochemistry U.S. Geol. Jour. Bull. 770:841 p.

Cline, J.D. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limn. & Oceanogr. 14: 454-458.

Cobler R. y J. Dymond 1980. Sediment tra experiment on the Galapagos spreading center. Equat. Pacific Sci. 9:25-29.

Collier, R.W. 1981. The trace element geochemistry of Marine Biogenic particulate matter. Ph. D. thesis, MIT-Woods Hole Oceanographic Institution, 298 p.

Cooper B.S. y R.C. Harris 1974. Heavy metals in organic phases in river and estuarine sediment. <u>Mar. Pollut. Bull</u>. 5:24-26. Corliss J.B., J. Dymond, L.I. Gordon, J.M. Edmond, R.P. Von Herzen, R.D. Ballard K. Green, D. Williams, A. Bainbridge, K. Crane, y T.H. Van Andel, 1979. Submarine thermal springs on the Galapagos Rift. <u>Science</u>. 203:1023-1083.

Curray J.R., D.G. Moore, 1982. Init. Repst. of DSDP 64, Washington, U.S. Government printing Office, 1313 p.

Chao T.T. 1972. Selective dissolution of manganese oxides from soils and sediments with acidified hydroxylamine hydrochloride. Soil. Sci. Soc. Amer. Proc. 36:764-768

Chan, K.M. y J.P. Riley. 1966. The automatic determination of phosphate in seawater. <u>Deep. Sea Research</u> 13, 467-471.

Chester R. y M.J. Hughes 1967. A chemical technique for the separation of ferromanganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments. <u>Chem. Geol. 2</u>:249-262.

Chester R. y M.J. Hughes 1969. The trace element geochemistry of a North pelagic clay core. Deep sea Res. 16: 639-654.

Chester R. y R.G. Messiha-Hanna 1970. Trace element partition patterns in North Attlantic deep-sea sediments. <u>Geochim. Cosmochim. Acta 34</u>:1121-1128.

Chester R. y S.R. Aston 1976. The geochemistry of Deep-Sea sediments. En: <u>Chemical</u> <u>Oceanography</u> (J.P. Riley y R. Chester eds.) Vol. 6. 281-390. Academic Press. London.

Chweh T.M., C.J. Lord III y B.L.K. Somayajula 1981. Uranium, Thorium and Lead nuclides in a Delaware salt marsh sediment. Est. Coast. Shel<u>f Sci</u>. 13:267-275.

Davies-Colley R.J., P.O. Nelson y K.J. Williamson, 1985. Sulfide control of cadmium and copper concentrations in anaerobic estuarine sediments. <u>Mar. Chem.</u> 16: 173-186.

Davis J.A. y J.O. Leckie 1978. Effect at adsorbed complexing ligands on trace me tal uptake by hydrous oxides. Env. Sci. of Techn. 12:1309-1315.

De Groot A.J., K.H. Zschuppe, y W. Salomons. 1982. Standardization of methods of analysis for heavy metals in sediments. Hydrobiologia, 92:689-695.

De Groot A.J., W. Salomons y E. Allersma 1976. Processes affecting heavy metals in estuarine sediments. <u>Estuarine Chemistry</u> (J.D. Burton y P.S. Liss Eds.) 131-157. Academic Press.

De Master D.J. 1981. The supply and accumulation of silica in the marine environ ment. Geochim. Cosmochim. Acta 45:1715-1782.

Der-Duen Sheu y B.J. Presley 1986. Variations of calcium carbonate, organic carbon and iron sulfides in anaxic sediment from the orca basin, Gulf of Mexico. Mar. Geol. 70:103-118.

Devrer R. U. Forstner y G. Schmoll. 1978. Selective chemical extraction of carbonate associated metals from recent lacustrine sediments. <u>Geochim. Cosmochim. Ac-ta</u> 42:425-427.

Donazzolo, R., O.H. Merlin, L.M. Vitturi, A.A. Orio, B. Pavoni, G. Perin y S. Rabitti. 1981. Heavy metal contamination in Surface sediments from the Gulf of Venice, Italy. Mar. Poll. Bull., 12:417-425.

. . .
Donegan D. y H. Schrader. 1982. Biogenic and abiogenic components of laminated hemipelagic. Sediments in the central Gulf of California. Mar. Geol., 48:215-257. Dymond J. y H. Veeh, 1965. Metal accumulation rates in the southeast Pacific and the origin of metalliferous sediments. Earth Planet Sci. Lett. 28:13-22. Dymond J. y W. Ekland 1978. A microprole study of metalliferous sediments components. Earth Planet Sci. Lett. 40:243-251. Dymond J., K. Fisher, M. Clauson, R. Cobler, W. Gardner, M.J. Richardson, W. Berger, A. Soutar, y R. Dunbar 1981. A sediment trap intercomparison study in the Santa Barbara Basin. Earth Planet Sci. Lett. 53: 409-418. Dymond J., J.B. Corliss y R. Stillinger 1976. Chemical composition and metal accumulation rates of metalliferous sediments from sites B19, 320, and 321. en: Initial Reports of the Deep Sea Drilling Project, Leg. 34, U.S. Govt. Printing Office, Washington, D.C. 575-588. Dyrssen D. 1985. Metal complex formation in sulfidic seawater. Mar. Chem. 15: 285-293. Edmond J.M. 1970. High precision determination of titration alkalinity and total CO₂ of seawater by potenciometric titration Deep Sea Research. 17:737-750. Edmond J.M., R.L., Von Damm, R.E. McDuff y C.I. Measures 1982. Chemistry of hot springs on the East Pacific Rise and their effluent dispersal. Nature 297:187-191. Edmond J.M. y K.L. Von Damm 1985. Chemistry of ridge crest hot springs. Biol. Soc. Wash. Bull. 6:43-47. Einsele G. 1982. Mechanism of sill intrusion into soft sediment and expulsion of pore water. Initial Reports of the DSOP 64, 1169-1176. U.S. Government Printing Office, Washington, D.C. Einsele, G., J. Gieskes, J. Curray, D. Moore, E. Aguayo, M. Aubry, D. Fornari, J. Guerrero, M. Kastner, K. Kelts, M. Lyle, M. Matoba, A. Molina Cruz, J. Niemitz J. Rueda, A. Saunders, H. Schrader, B. Simoneit y V. Vacquier. 1980. Intrusion of basaltic sills into highly porous sediments, and resulting hydrothermal activity Nature. 283:441-445. Elder J.W. 1965. Physical processes in geothermal areas. Am. Geophys. Union 8:211-239. Elderfield H., A. Hepworth, P. N. Edwards, y LM. Holliday 1979. Zinc in the Conway river and estuary. Est. Coast. Mar. Sci. 9:403-422. Ellaway E.M. 1980. A study of trace metals in the Yarra River system, Victoria. M. Sci. Thesis, Caulfield Inst. Tech. Australia, 172 p. Elwakeel, S.K. y J.P. Riley 1961. Chemical and mineralogical studies of deep sea sediments. Geochim. Cosmochim. Acta, 25:110-146. Emerson S., L. Jacobs, y B. Tebo. 1983. The behavior of trace metals in marine ano xic waters: solubilities at the oxygen hidrogen sulfide interface. En: Trace metals in seawater (C.S. Wong, E. Boyle, K.W. Bruland, J.D. Burton y E.D. Goldberg). 579-608. Plenum Press, New York. Emerson, S. R. Jahnke, M. Bender, P. Froelich, G. Klinkhammer, C. Bowser y G. Setlock. 1980. Early diagenesis in sediments from the Eastern equatorial Pacific I. Pore water nutrient and carbonate results. Earth and Planet Sci. Lett. 49:57-80.

Emery K.O. y S.C. Rittenberg 1952. Early diagenesis of California Basin sediments in relation to origin of oil. <u>Bull. Am. Assoc. Petrol Geol</u>. 36(5):755-806.

Engler R.M., J.M. Brannon, y J. Rose 1974. A practical selective extraction proce dure for sediment characterization. <u>168th Meeting ACS</u>, Atlantic city, 17 p.

Ewing J. y M. Ewing 1970. Seismic reflections. En: <u>The sea</u> (ed. A.E. Makcoell) New York, Wiley-interscience, 1-51.

Farrah, H. y W. Pickering 1977. Influence of clay-solute interactions on aquerus heavy metal ion levels. Water, air and soil Pollut, 8:189-197.

Flanegan F.J. 1976. Description and analysis of eighy new U.S. G.S. rock standards <u>Geological Surv. Prof. Paper</u> 840:131-183.

Forstner U. 1982. Accumulative phases for heavy metals in limnic sediments. Hydro biologia 91:269-284.

Forstner U., W. Ahlf, W. Calmano, M. Kersten y W. Salomons 1985. Mobility of heavy metals in dredged harbor sediments En: <u>Sediment/water symposium Genova</u>,(Sly P. G. ed.) Springer-Verlag, New York 1-25 p.

Forstner U. y S.R. Patchineclam 1979. Sediment associations of heavy metals in marine sediments with special reference to pollution in the German north sea. <u>Symposium/Workshop on sediment and pollution interchange in shallow seas. Texel,</u> 24-26 sept. 1979. Paper No. 11.

Forstner U. y G.T.W. Wittmann 1979. <u>Metal pollution in the aquatic environment.</u> Springer-Verlag. Berlin 486 p.

Foster P. y D.T.E. Hunt 1975. Geochemistry of surface sediments in an acid stream estuary. <u>Mar. Geol</u>. 18:13-21.

Fowler, S.W.1977. Trace elements in zooplancton Particulate products. <u>Nature 269:</u> 51-53.

Framson D.E. y J.O. Leckie 1978. Limits of coprecipitacion of cadmium and ferrous sulfides. <u>Env. Sci. & Tech</u> 12:465-469.

Franche-eau J., H.D. Needham, P. Chouckroune, T. Juleau; M. Seguret, R.D. Ballard, P.J. Fox, W. Normak, A. Carranza, D. Cordoba, J Guerrero, C. Rangin, H. Bougalt, P. Cambon, R. Hekinian 1979. Massive deep sea sulfide-ore deposits discovered on the East Pacific rise. Nature, 277:523-530.

Gabriel K.R. 1978. A simple method of multiple comparisons of means. <u>J. Amer.</u> Stat. Assoc. 73:724-729.

Gaillard J.F., C. Jeandel, G. Michard, E. Nicolas y D. Renard. 1986. Interstitial water chemistry of Villefranche Bay sediments: trace metal diagenesis. <u>Mar. Chem.</u> 18:233-247.

Garrels, R.H. y C.C. Christ. 1965. <u>Solutions, Minerals and Equilibria</u> Harper and Row, N.Y. 420 p.

Gaudette, H.H., W.R. Flight, L. Toner, y D.W. Folger 1974. An inexpensive titration method for the determination or organic carbon in recent sediments. <u>Journ.</u> <u>Sedim. Petrol.</u> 44:249-253.

Gendron A., N. Silverberg, B. Sundby y J. Lebel, 1986. Early diagenesis of cadmium and cobalt in sediments of the Laurentian Trough. <u>Geochim Cosmochim Acta 50</u>: 741-747. Gibbs R.J. 1978. Transport phases of transition metals in the Amazon and Yukon rivers. <u>Bull. Am. Geol. Soc.</u> 88:829-843.

Gieskes J.M. 1976. Analytical procedures for interstitial water <u>analysis and se-</u> diment analysis. manuscrito no publicado. 19 p.

Gieskes J.M. 1983. The chemistry of interstitial waters of Deep Sea sediments: Interpretation of Deep Sea Drilling Data (Cap. 46) En: <u>Chemical Oceanography</u> Vol. 8 (J.P. Riley y Chester R). 221-265. Academic Press Londres.

Gieskes J.M., H. Elderfield J.R. Lawrence, J. Johnson, B. Meyers, y A. Campbell 1982. Geochemistry of interstitial waters and sediments, Leg 64, Gulf of California En: <u>Initial reports of the Deep Sea Drilling Project</u>, Vol. LXV, Washington U.S. 675-694.

Gieskes J.M., H. Elderfield y B. Nevsky. 1983. Interstitial water studies, Leg 65, Deep Sea Drilling Project En: <u>Initial reports of the Deep Sea Drilling Project Vol. LXV</u>, Washington U.S. 441-449.

Gieskes J., M. Kastner, G. Einsele, K. Kelts y J. Niemitz. 1982. Hydrothermal activity in the Guaymas basin, Gulf of California a synthesis. <u>Initial reports</u> of the DSDP 64, 1159-1167. U.S. Government Printing Office, Washington D.C.

Gieskes J.M. Y W.C. Rogers. 1973. Alkalinity determination in intertitial waters of marine sediments, J. Sedim. Petrol. 43:272-277.

Glagoleva M.A. 1961. Zirconium in recent black sea sediment. <u>Doklady Akademii</u> <u>Nauk S.S.S.R. 195:184-187.</u>

Goldberg E.D. y G.O. Arrhenius, 1958. Chemistry of Pacific pelagic sediments. <u>Geo</u>chim. SCosmochim. Acta 13:153-212.

Goldhaber M.B., R.C. Aller, J.K. Cochran, J.K. Rosengold, C.S. Martens y R.A. Berner 1977. Sulfate reduction, diffusion, and bioturbation in Long Island Sound sediments: report of the FOAM group. Am. J. Sci. 277:193-237.

Goldhaber, M.B. y I.R. Kaplan, 1974. The sulfur cycle. en: <u>The sea (</u>ed. E.D. Goldberg), Vol. 5, Cap. 17, 569-655. John Wiley and Sons.

Goldschmidt V.M. 1954. Geochemistry oxford, Clarendon Press. 730 p.

Gran G. 1952. Determination of the equivalence point in potentiometric titrations Part 2. Analyst 77:861-871.

Graybeal A.L. y G.R. Heath, 1984. Remobilization of transition metals in surficial pelagic sediments from the eastern Pacific. Geochim. Cosmochim. Acta 48:965-975.

Green-Ruiz, M. de J., S. Caschetto y S. Alvarez-Borrego. 1984. Silice disuelto en la columna de agua y en las aguas intersticiales de una laguna costera <u>Ciencias</u> <u>Marinas</u>, 9(2): 51-74.

Griffiths, R.C. 1963. Studies of oceanic fronts in the mouth of the Gulf of California, an area of tuna migrations, FAO Fish. Rep. 6(3): 1583-1609.

Gross M.G. 1967. Concentrations of minor elements in diatomaceous sediments of a stagnant fjord. En: <u>Estuaries (</u>G.H.Lautt ed.) Am. Assoc. Adv. Sci. Publ. 83:273-282.

Gupta S.K. y K.Y. Chen, 1975. Partitioning of trace metals in selective chemical fractions of near-shore sediments. Environ. Lett. 10:129-158.

Guy R.D., C.L. Chakrabarti, y D.C. McBain 1978. An evaluation of extraction tech niques for the fractionation of Copper and lead in model sediment systems. Water Res. 12:21-24. Hamilton W. 1961. Origin of the Gulf of California Geol. Soc. Am. Bull. 72: 1307-1318. Hale S.S. 1974. The role of benthic communities in the nutrient cycles of Narragansett Eav M.S. Tesis. Univ. of Rhode Island. Kingston, 123 p. Harrison J.C. y S.P. Mathur 1964. Gravity anomalies in the Gulf of California, en: Marine Geology of the Gulf of California, Van Andel T.H. y Shor G.G. (eds). AAPG, Mem 3:76-89 Hartmann M., P.J. Müller, E. Suess, y C.H. Van der Weijden. 1976. Chemistry of Late Quaternary sediments and their interstitial waters from the NW African Continental Margin. Meteor Forsch. Reihe C. No. 24, 1-67. Hartmann M. 1964. Zur Geochemie von Mangan and eisen in der ostsee. Meyniana 14: 3-20. Hastings, J.R. y R.M. Turner. 1965. Seasonal precipitation regimes in Baja California México. Geografiska Annaler 47: 204-223. Heath G.R., T.C. Moore, y J.P. Dauphin 1977. Organic carbon in dep-sea sediments en: The fate of fossil fuel CO, in the Oceans, (J. Anderson y M. Halahoff eds). penum Press, 605-625. Heggie D. y T. Lewis 1983. Cobalt in pore waters of marine sediments. Nature 311: 453-455. Heggie D., T. Lewis y E. Saravo 1983. Early diagenesis of Cobalt, nickel, mangane se and iron in sediments. EOS 64(52): 1097. Heirtzler, J.R., G.O. Dickson, E.M. Herron, W.C. Pitmann y X. Lepichon 1968. Mari ne magnetic anomalies, geomagnetic field reversals and motions of the ocean floor and continents J. Geophys. Res. 73: 2119-2136. Helsinger M.H. y G.M. Friedman G.M. 1982. Distribution and incorporation of trace elements in the bottom sediments of the Hudson River and its tributaries Northeastern Environ Sci. 1(1): 33-47. Hem J.D. 1978. Redox processes at surfaces of manganese oxide and their effects on aqueous metal ions. Chem. Geol. 21:199-218. Holdren G.R., O.P. Bricker y G. Matisoff 1975. A model for the control of dissolved manganese in the interstitial waters of chesapeake Bay. En: Marine Chemistry in the coastal environment (ed. T.M. Church). Vol. 18: 364-481. Amer. Chem. Soc. Symp. Series. Holmgren G.S. 1967. A rapid citrate-dithionite extractable iron procedure. Soil Sci. Soc. Am. Proc. 31:210-211. Horn, M.K. y J.A.S. Adams. 1966, Computer-derived geochemical balances and element abundances Geochim. Cosmochim. Acta, 30:279-297. Horowitz A., 1974. The geochemistry of sediments from the northern Reykjanes Rid ge and the Iceland-Faeroes ridge, Mar. Geol. 17:103-122. Horowitz A. y D.S. Cronan, 1976. The geochemistry of basal sediments from the north Atlantic Ocean. Mar. Geol. 20:205-228.

Howarth, R.W. 1978. A rapid and precise method for determining sulfate in seawa ter, estuarine waters, and sediment pore waters. <u>Limnol. Oceanogr</u>. 23(5): 1066-1069.

Howes B.L., R.W. Howarth, J.M. Teal y I. Valiela 1981. Oxidation-reduction potentials in a salt marsh: Spatial patterns and interactions with primary produc tion <u>Limnol. & Oceanogr</u>. 26:350-360.

Hudson A. y M. Bender 1984. Hydrothermal iron in seawater around the East Pacific Rise. <u>EOS Trans. Am. Geophys. Union 65</u>, 974 (Abstract).

Humphris S.E. y G. Thompson 1978. Trace element mobility during hydrothermal alteration of oceanic basalts. Geochim. Cosmochim. Acta 42:127-136.

International Atomic Energy Agency. 1985. Intercomparison of Trace element measurements in marine sediment sample SD-N-1/2 Report No. 24, 74 p.

Ingham A.E., 1975. Sea surveying. J. Wiley and Sons, New York, 306 p.

Jackson M.L. 1958. Soil chemical analysis, prentice Hall publ. 602 p.

Jacobs L. y S. Emerson 1982. Trace metal solubility in an anoxic fjord <u>Earth</u> <u>Planet Sci. Lett.</u> 60:237-252.

Jahnke, R., D. Heggie, S. Emerson y V. Grundmanis. 1982. Pore waters of the central Pacific Ocean: nutrient results. Earth and Plan. Sci. Lett. 61:233-256.

Jean G.E. y G.M. Bancroft 1986. Heavy metal adsorption by sulphide mineral surf<u>a</u> ces. <u>Geochim. Cosmochim. Acta</u> 50: 1455-1463.

Jorgensen B.B. 1978. A comparison of methods for the quatification of bacterial sulfate reduction in coastal marine sediments: III. Estimation from chemical and bacteriological field data. Geomicrobiol. J. 1:49-64.

Kaplan I.R., K.O. Emery y S.C. Rittenberg 1963. The distribution and isotopic abun dance of sulphur in recent marine sediments off southern California: <u>Geochim. Cos-</u> <u>mochim. Acta.</u> 27:297-331.

Kaplan I.R. y S.C. Rittenberg 1963. Basin sedimentation and diagenesis, en: <u>The</u> <u>Sea</u> (ed. M.N. Hill), John Wiley & Sons, 583-619.

Kastner, M. y G. Gieskes. 1981. Hydrothermal activity in the northern spreading axis of the Guaymas Basins Gulf of California, Geol. Soc. Am. Abstr. Prog. 11:454.

Katz A. y I.R. Kaplan. 1981. Heavy metals behavior in coastal sediments of southern California: A critical review and synthesis. Mar. Chem. 10: 261-299.

Kersten M. y U. Förstner 1987. Effect of sample pretreatment on the reliability — of solid speciation data of heavy metals implications ses for the study of early diagenetic processes. Mar. Chem. 22:299-312.

Klinkhammer G.P. Y M.L. Bender 1980. The distribution of manganese in the Pacific ocean. <u>Earth Planet Sci. Lett.</u> 46:361-384.

Klinkhammer G.P. 1980. Early diagenesis in sediments from the eastern equatorial pacific II. Pore water metal results. Earth Planet <u>Sci. Lett.</u> 49:81-101.

Klinkhammer D., D.T. Heggie y D.W. Graham 1982. Metal diagenesis in oxic marine sediments. <u>Earth Planet Sci. Lett.</u> 61: 211-219.

Klump, J.V. y C.S. Martens. 1981. Biogeochemical cycling in an organic rich coastal marine basin 11. Nutrient sediment-water exchange processes. <u>Geochim. Cosmochim. Acta.</u> 45, 101-121. Knauer, G.A. 1977. Inmediate industrial effects on sediment metals in a clean environmet. <u>Mar. Poll. Bull</u>. 8:249-254.

Knauer G.A. y J.H. Martin 1981. Phosphorus-cadmium cycling in northeast Pacific waters. J. Marine Res. 39:65-76.

Knauer G.A., H.H. Martin y K.W. Bruland 1979. Fluxes of particulate carbon, nitrogen, and phosphorus in the upper water column of the northeasth Pacific. <u>Deep</u> <u>Sea Res.</u> 26A, 97-108.

Kuenen Ph. H. 1946. Rate and mass of deep-sea sedimentation <u>Am. J. Science</u>, 244: 503-572.

Kuenen pH. H. 1950. Marine Geology, New York, John Wiley & Sons 568 p.

Lara-Lara J.R. y J.E. Valdez-Holguin 1986. Producción primaria del Golfo de California, en: <u>Memorias de los resumenes del Primer Coloquio de Plancton y Fertitidad de las aguas</u>, Mazatlán, sinaloa 2-4 mayo de 1985.

Larson R.L., H.W. Menard y S.M. Smith (968 Gulf of California: A result of Ocean floor spreading and transform faulting Science, 161, 781-782.

Lasaga, A.C. y H.D. Holland 1976. Mathematical aspects of nonsteady-state diagenesis. <u>Geochim. Cosmochim. Acta</u> 40:257-266.

Lawver L.A., J.G. Sclater, T.L. Henyey, y J. Rogers 1973. Heat flow measurements in the southern portion of the Gulf of California <u>Earth Planet Sci. Lett.</u> 12: 198-208.

Lawver L.A. y D.L. Williams 1979. Heat flow in the central Gulf of California <u>J. Geophys</u> Res. 84: 3465-3478.

Laxen D. p.H. 1985. Trace metal adsorption/coprecipitation on hydrous ferric oxi de under realistic conditions Water Res. 19: 1229-1236.

Leckie J.O. y M.B. Nelson 1975. The Role of Natural Heterogeneous sulfide systems in controlling the concentration and distribution of Heavy metals. <u>2nd. Int</u>. Symp. on Environmental Biogeochemistry Burlington Ant. Canada.

Lerman A. 1979. <u>Geochemical processes water and sediment environmets</u> John Wiley & Sons. 481 p.

Li Y.H., J.L. Bischoff y G. Mathieu 1969. The migration of manganese in the Artic Basin sediment. <u>Earth Planet Sci. Lett. 7</u>:265-270.

Lion L.W., R.V. Harvey y J.O. Leckie 1982. Mechanisms for trace metal enrichment at the surface microlayer in an estuarine salt marsch. Mar. Chem. 11(3):236-244.

Liukonkee y I.R. Kaplan. 1984. Denitrification rates and availability of organic matter in marine environmets. Earth Planet Sci. Letters. 68: 88-100.

Lyle M. 1978. Form and growth of ferromanganese oxides on the Nazca Plate: Ph. D. dissertation, Oregon State Univ. 172 p.

Lyle M. 1983. The brown-green color transition in marine sediments: A marker of the Fe (III) Fe(II) redox boundary. <u>Limnol. Oceanogr. 28</u>(5):1026-1033.

Lyle M., G.R. Heath, y J.M. Robbins 1984. Transport and release of transition elements during early diagenesis: sequential leaching of sediments from MANOP sites M and H. part I. Ph S. acetic acid leach. <u>Geochim. Cosmochim. Acta</u>. 48: 1705-1715.

Lynn D.C. y E. Bonatti 1965. Mobility of manganese in diagenesis of deep-sea sediments. <u>Mar. Geol</u>. 3:457-474.

Londsdale P.F. 1980. Hydrothermal plumes and baritic sulfide mounds at a Gulf of California spreading center. EQS, Trans. Am. Geophys. Union 61:995 (abstracts).

Lonsdale P. y L. A. Lawver 1980. Immature plate boundary zones studied with a submersible in the Gulf of California Geol. Soc. Am. Bull. 91:555-569.

López-Ramos E. 1980. Geología de México, Tomo 11, 454 p.

Loring D.H. y R.T.T. Rantala. 1977. <u>Geochemical Analysis of Marine Sediments and</u> <u>Suspended Particulate Matter Technical report No. 700, 58 p.</u>

Lubchenko I. Y. 1970. Lead in Holocene black sea sediments. Doklady Akademii Nauk S.S.S.R. 193: 445-448.

Luoma, S.N. y G.W. Bryan 1981. A statiscal assessment of the form of trace metals in oxidized estuarine sediments employing chemical extractans. <u>Sci. Total</u> <u>Environ.</u>, 17: 165-196.

Lupton J.E. 1979. Helium-3 in the Guaymas Basin: evidence for injection of mantle volatiles in the Gulf of California J. Geophys. Res. 84: 7446-7452.

Maderey L.E. 1975. La Humedad y la Vegetación en la Península de Baja California Bol. del Inst. de Geogr. UNAM VI, &3-85.

Manheim F.T. 1961. A geochemical profile in the Baltic sea <u>Geochim Cosmochim Acta</u>. 25: 52-70.

Martin J.H. y G.A. Knauer 1973. The elemental composition of plankton. <u>Geochim.</u> <u>Cosmochim. Acta.</u> 37: 1639-1653.

Martin H.J., K.W. Bruland, y W.W. Broenkow. 1976. Cadmium transport in the California current, En: <u>Marine Pollotant Transfer</u> (H.L. Windom, y R.A. Duce eds). 159-184. Lexington Books, Toronto.

Martin J.M. y M. Meybeck 1979. Elemental mass-balance of material carried by major world rivers. <u>Mar. Chem.</u> 7:173-206.

Martin J.M., P. Nirel y A.J. Thomas, 1987. Sequential extraction techniques: Promises and problems Mar. Chem. 22:313-341.

Matisoff G., Bricker III, O.P. Holdren Jr. G.R. and Kaerk P. 1975. Spacial and Temporal variations in the interstitial water chemistry of Chesapeake Bay sediments en: <u>Marine Chemistry in the Coastal environment</u> (Church T.M. Ed). Am. Chem. Soc., Washington D.C. 343-363.

Mayer L.M. y K. Fink. 1980. Granulometric dependence of chromium accumulation in estuarine sediments in Maine. Estuar. Coast. Mar. Sci. 11:491-503.

Mckee, T.R. 1977. Ferromanganese remobilization in recent sediments of the Gulf of Mexico. Ph. D. dissertation, Texas A & M. University, College Station Texas.

Meeguellati, N., D. Robbe, P. Marchandise y M. Astruc 1983. A new chemical extraction procedure in the fractionation of heavy metals in sediments-interpretation Proceedings of the international conference. Heavy metals in the Environment Heidelberg.

Meischner, D. y J. Rumöhr. 1974. A light-weight, high momentum gravity corer for subaqueous sediments. Senchenbergiana Marit., 6:105-117.

Michard G., F. Albaréde, A. Michard, J.F. Minster, J.L. Carlou y N. Tan. 1984. Chemistry of solutions from 13°N East Pacific Rise hydrothermal site Earth Planet Sci. Lett. <u>67</u>:297-307.

Morris A.W. y J.P. Riley 1966. The bromide/chlorinity and sulphate/chlorinity ratio in sea water Deep Sea Res. 13:699-705.

Moody, J.R. Lindstrom, R.M. 1977. Selection and cleaning of plastic containers for storage of trace element samples. Anal. Chem. 49:2264-2267.

Moore, D.G. 1973. Plate edge deformation and crustal growth, Gulf of California structural province. Geol. Soc. Am. Bull. 84;1883-1906.

Moore C. y K. Bostrom 1978. The elemental compositions of lower marine organisms. Chem. Geol. 23:1-9.

Mongan W.J. 1968. Rises, trenches, great faults, and crustal blocks. <u>J. Geophys</u> Res. 73:1959-1982.

Müller P.J. y A. Mangini, 1980. Organic carbon decomposition rates in sediments of the Pacific manganese nodule belt dated by ²³⁰Th and ²³¹Pa. <u>Earth, Planet</u> <u>Sci. Lett.</u> 51: 94-114.

Müller P.J. y E. Suess (1979). Productivity, sedimentation rate and sedimentary organic matter in the oceans I. Organic carbon preservation. <u>Deep Sea Res</u>. 26: 1347-1362.

Mundhenke, D.J. 1969. <u>The relationships between water mases and euphausids in</u> the Gulf of California and the Eastern Tropical Pacific, M.S. Thesis Postgrad. School Monterey, Calif. 114 p.

Murray J.W. 1975. The interaction of cobalt with hydrous manganese dioxide. Geochim. Cosmochim. Acta 39: 635-647.

Murray J.W., V. Grundmanis, y W.M. Smethie 1978. Interstitial water chemistry in the sediments of Saanich Inlet. Geochim. Cosmochim. Acta, 42:1011-1026.

Myers J.J., C.H. Holm y R.E. Mcallister, 1969. <u>Handbook of Ocean and Underwa-</u> ter Engineering McGrawn-Hill, New York, 325 p.

Nembrini GP., F. Rapin, J.I. García y U. Förstner 1982. Speciation of Fe and Mn in a sediment core of the Baie de Villefrance (Mediterranean sea, France), Env. Techn. Lett. 3: 545-552.

Nembrini G., J.A. Capobianco, J. García y J.M. Jacquet 1982. Interaction between interstitial water and sediment in two cores of Lac Leman, Switzerland Hydrobiologia, 92: 363-375.

Niemitz, J.W. 1977. Tectonics and geochemical exploration for metal deposits in the Southern Gulf of California. Ph. Doctor Thesis, Univ. Southern California. 354 p.

Nissenbaum, A., B.J. Presley y I.R. Kaplan. 1972. Early diagenesis in a reducing fjord Saanich Inlet, British Columbia-I Chemical and isotopic changes in major components of interstitial water. <u>Geochim. Cosmochim.</u> Acta 36: 1007-1027.

Nissenbaum A. y D.J. Swaine 1976. Organic matter-metal interactions in recent sediments: the role of humic substances. Geochim. Cosmochim. Acta 40:809-816.

Ortega-Osorio y Páez-Osuna F. 1987. Geoquímica y mineralogía de los depósitos del Dorsal del Pacífico Mexicano (21°N) VII Congreso Nacional de Oceanografía Ensenada, B.C.N. México (Resumen).

Páez-Osuna F., H. Fernández y E.F. Mandelli. 1983. Mineralogía de los sedime<u>n</u> tos de un núcleo de Laguna Mitla, Guerrero, México. <u>An. Inst. Cienc. del Mar</u> y Límnol., Univ. Nal. <u>Autón. México</u> 10(1):271-276.

Páez-Osuna F y E.F. Mandelli 1985. ²¹⁰Pb in a Tropical coastal lagoon sediment core. Est. Coast. Shelf. Sci. 20: 367-374.

Páez-Osuna, F., J.I. Osuna-López, L.D. Mee-Miller y M.I. Abdullah. 1986. Modificación a un nucleador ligero y económico para muestrear sedimentos sin disturbarlos: Nota Científica. <u>An. Inst. Cienc. del Mar y Limnol., Univ. Nal.</u> <u>Autón. México</u>, 13(1): 449-454.

Páez-Osuna F., J.I. Osuna-López and L.D. Mee-Miller. Potencial redox, pH y porosidad de los sedimentos del Golfo de California y áreas adyacentes (Agosto 1983 y Enero-Febrero 1984). (remitido).

Patchineelam S.R. y U. Förstner 1977. Bindungsformen von sedimenten Senckenbergiana Marit 9: 75-104.

Pedersen T.F. y N.B. Price 1982. The geochemistry of manganese carbonate in Panama Basin sediments. Geochim. Cosmochim. Acta 46: 59-68.

Peter J.M., S.D. Scott y W.C. Shanks 1987. Mineralogy and geochemistry of hydrothermal Vent deposits in the southern trough of Guaymas basin, Gulf of Cal<u>i</u> fornia NSF. Conference on the Mexican-American Guaymas Basin Expedition, 1985. Mazatlán, México. Abstract.

Piper D. 1973. Origin of metalliferous sediments from the East Pacific Rise. Earth Planet Letters, 19: 75-82.

Poldervaart A. 1955. Chemistry of the Earth's crust Geol. Soc. Am. Special Paper 119-144.

Ponnamperund F.N. 1972. The chemistry of submerged soils En: <u>Advances in Agronomy</u> Vol. 24, (N.C. Brady ed.) Academic Press, New York 121-140.

Postma D. 1985. Concentration of Mn and Separation from Fe in sediments- I. Kinetics and staichiometry of the reaction between birnessite and dissolved Fe (II) at 10°C. Geochim. Cosmochim. Acta 49: 1023-1033.

Presley, B.J. y J.H. Trefry. 1980. Sediment-water interactions and the geochemistry of interstitial waters. En: <u>Chemistry and Biogeochemistry of Estuaries</u> (eds. Olausson E. y I. Cato) Cap. 6, 187-232. John Wiley & Sons.

Presley, B.J., Y. Kolodny, A. Nissenbaum y I.R. Kaplan, 1972. Early diagenesis in a reducing fjord, Saanich Inlet, Brithish Columbia-II Trace element distribution in interstitial water and sediment. <u>Geochim. Cosmochim. Acta 3</u>6: 1073-1090.

Rapin F., G.P. Nembrini, U. Forstner, y J.I. García 1983. Heavy metals in marine sediment phases determined by sequential chemical extraction and their interaction with interstitial water. <u>Env. Techn. Lett.</u> 4: 387-396.

Rashid M.A. 1974. Adsorption of metals on sedimentary and peat humic acids. <u>Chem. Geol.</u> <u>13</u>: 15-123.

Reeburgh, W.S. 1967. An improved interstitial water sampler. Limnol. Oceanogr. 12: 163-165.

Rondel P.S., G.E. Batley y A.J. Cameron, 1980. Adsorption as a control on metal concentrations in sediment extracts. Environ. Sci. Tech. 14: 314-318.

Reusch-Berg, B. y M.I. Abdullah. 1977. An automatic method for the determination of ammonia in seawater. <u>Water Research</u> 11: 637-638.

Richards, F.A. 1965. Anoxic basins and fiords. En: <u>Chemical Oceanography.</u> (ed. Riley J.P. y G. Skirrow), Vol 1, 611-645 Academic Press.

Robbins J.A. 1978. Geometrical and geophysical applications of radioactive lead. En: The biogeochemistry of Lead in the Environment (Nriagu, I. ed).Elsevier North-Holland Biomedical Press, New York.

Robinson, W.K. 1973. Atlas of monthly mean sea surface and subsurface temperatures in the Gulf of California, México. San Diego Society of Natural History Mem. 5, 97 p.

Roden, G.I. 1964. Oceanographic aspects of Gulf of California en: <u>Geology of the Gulf of California</u>, Van Andel T. y G.G. Skor (eds.). <u>Am. Assoc. Petrol. Geol</u>. <u>Mem. 3: 30-58</u>.

Roden G.I. 1972. Temperature and Salinity fronts at the boundaries of the subartic-subtropical transition zone in the Pacific. J. Geophys. Res. 77:7175-7187.

Roden G.I. y G.W. Groves. 1959. Recent oceanographic investigations in the Gulf of California: Sears Foundation, J.Nar. Res. 18(1): 10-35.

Rosental R., G.A. Eagle, y M.J. Orren 1986. Trace metal distribution in different chemical fractions of Nearshore Marine Sediments. <u>Est. Coast. Shelf. Sci.</u> 22:303-324.

Rusnak, G.A., R.L. Fisher y F.P. Shepard. 1964. Bathymetry and Faults of the Gulf of California. In: Marine Geology of the Gulf of California, Van Andel T. y G.G. Shor (Eds.) Am. Assoc. Petrol. Geol. Mem. 3: 59-75.

Russel, D.S. 1984. Variable standars for use in the analysis of marine materials. Marine Analytical chemistry standards program No. 23025. Report No. 8. National Research Council of Canada.

Riley, J.P. y G. Skirrow 1975. <u>Chemical Oceanography</u>. Academic Press New York, Vol. 2. 647 p.

Salomons W. 1985. Sediments and water quality. Env. Techn. Lett. 6:315-326.

Salomons W. y A.J. Groot. 1978. Pollution history of trace elements in sediments, as affected by the Rhine river. In: Krumbein, W.E. (ed.) <u>Environmental</u> <u>Biogeochemistry and Geomicrobiology</u>, Vol. 1: The Aquatic Environment. Ann. Arbor Science Publishers Inc., Ann Arbor., Michigan. 394 p.

Santiago-Mandujano, F. 1980. <u>Aplicación de método dinámico y análisis de co-</u> rrentometría para el estudio de la circulación y el transporte de agua en la <u>boca del Golfo de California</u>. Tesis de Licenciatura. Facultad de Ciencias, UNAM, 78 p.

Sayles F.L., T.Ku, y P.C. Bowker, 1975. Chemistry of ferromanganoan sediment of the Baver <u>Deep. Geol. Soc. Am. Bull.</u> 86: 1423-1431.

Scott S.D. 1985. Seafloor polymetallic sulfide Deposits: Modern and ancient Marine Mining, 2(2): 191-212.

Schrader, H. 1979. Cruise report Baja Vamonos 79, Sep. 7-30, 1979. Data report 78. School of Oceanography, Oregon State University.

Schrader, H., D. Murray, A. Matherne, D. Donegan, S. Crawford y G. Schuette. 1980b. Laminated marine sediments in the central Gulf of California. En: Geol. Soc. Am. Cordilleran section meeting corvallis, Oreg., Abstracts with Programs 151-152.

Schrader, H., K. Kelts, J. Curray, D.Moore, E. Aguayo, M.P. Aubry, G. Einsele D. Fornari, J. Gieskes, J. Guerrero, M. Kastner, M. Lyle, Y. Matoba, A. Molina Cruz, J. Niemitz, J. Rueda, A. Saunders, B. Simoneit, y N. Vaquier, 1980a. Laminated diatomaceous sediments from the Guaymas Basin slope (Central Gulf of California): 250,000 year climate record, 207: 1207-1209.

Schwertmann U. 1964. Differenzierung der Eisenoxide des Bodens durch photochemische Extraktion mit saurer Amonium oxalat Lösung. <u>Z. Pflanzenernähr. Düng.</u> Bodenkde. 105: 194-202.

Sholkovitz E. 1973. Interstitial water chemistry of the Santa Barbara Basin Sediments. Geochim. Cosmochim. Acta 37: 2043-2073.

Simoneit B.R.T. 1982. Hydrothermal effects on recent diatomaceous sediments in Guaymas Basin, Gulf of California: Genesis of Petroleum and degradation of Protokerogen Spectra 8(2): 52-57.

Simoneit B.R.T. 1984. Hydrothermal effects on organic matterhigh vs low temperature components. Org. Geochem. 6: 857-864.

Simoneit B.R.T., C.P. Summerhayer, y P.A. Meyers. 1982. Sources, preservation and maturation of organic matter in pliocene and Quaternary sediments of the Gulf of California: A synthesis of organic geochemical studies from Deep Sea Drilling Project Leg 64. En: <u>Initial Reports of the Deep Sea Drilling Project</u>. (J.R. Curray y D.G. Moore eds.) Vol. 64, U.S. Government Printing Office Washington, D.C. 939-951.

Simoneit B.R.T., M.A. Mazurek, S. Brenner, P.T. Crisp y I.R. Kaplan 1979. Organic geochemistry of recent sediments from Guaymas Basin, Gulf of California. <u>Deep Sea</u> Res. 26A., 879-891

Skirrow G. 1965. The dissolved gases-carbon dioxide. En: <u>Chemical Oceanography</u> (eds. Skirrow, G. y J.P. Riley), 185-192. Academic Press.

Skornyakova, I.S. 1964. Dispersed iron and manganese in Pacific Ocean sediments Int. Geology Rev. 7: 2161-2174.

Smetacek V.K., B. Brockel, B. Zeitzschel y W. Zenk. 1978. Sedimentation of particulate matter during a phytoplankton spring bloom in relation to the hydrographical regime. Mar. Biol. 47: 211-226.

Soutar A., S.P. Johnson y T. Baumgartner. 1981. Search of modern depositional analogs to the Monterey Formation in: <u>The Monterey Formation and related siliceous rocks of California</u>, Garrison, G.E. y R.G. Douglas (eds.) <u>Soc. of Econ.</u> <u>Paleon. and Min. 123-147</u>.

Staresinic N. 1978. Ph D. Dissertation Woods Hole Oceanographic Institution, Joint Program in Oceanography (abstract).

Starikova N.D. 1956. Organic matter in Bering Sea sediments. Dokl. Akad. Nauk. S.S.S.R. 106(3) en ruso (citado por Bordovskiy 1965).

Stein R. 1986. Organic carbon and sedimentation rate-further evidence for ano xic deep-water conditions in the cenomaniian Turoniam Atlantic Ocean. <u>Mar.</u> Geol. 72: 199-209.

Stoeppler, M. y F. Backhaus. 1978. Pretreatment studies with Biological and Environmental Materials Fresenius Z. Anal. Chem. 291: 116-120.

Strickland, J.D.H y T.R. Parsons. 1972. <u>A practical handbook of seawater analysis</u>, Bulletin 107, Alg. Press. 310 p.

Stumm W., 1966. Redox potential as an environmental parameter: conceptual sig nificance and operational limitation, <u>Third Int. Conf. on Water Pollution</u> <u>Research</u>, Paper No. 13: 1-16.

Stumm W. y J.J. Morgan 1981. <u>Aquatic Chemistry</u> 2nd. Ed. John., Wiley Brisbane 780 p.

Suess E. 1979. Mineral phases formed in anoxic sediments by microbiol. decomposition of organic matter. <u>Geochim.</u> Cosmochim. Acta 43: 339-352.

Suess E. 1980. Productivity, Sedimentation rate and sedimentary organic matter in the oceans. VI Vertical Carbon Flux. Nature 277: 450-451.

Suess E. y P.J. Muller, 1981. Productivity, Sedimentation rate and sedimentary organic matter in the oceans II Elemental fractionation <u>Colloques Internationaux</u> <u>de C.N.R.S. no. 293, Biogéochimie de la matiére organique a L'interface Eau-</u>sédiment Marin 17-26.

Summerhayes C.P. 1983. Sedimentation of organic matter in upwelling regimes. en: Coastal upwelling (J. Thiede y E. Suess eds.) Plenum Press. 29-72.

Sykes, L.R., J. Oliver y B. Isacks, 1970. Earthquakes and tectonics. en: <u>The Sea</u> (ed. A.E. Maxwell), New York, Wiley Interscience 353-420.

Tessier, A., P. G.C. Campbell y M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate Trace Metals. Anal. Chem. 51(9):644-651.

Tessier A., P.G.C. Campbell, y M. Bisson. 1980. Trace metal speciation in the Yamaska and St. Francois Rivers (Quebec). <u>Can. Jour. Earth Sci</u>. 17:90-104.

Thompson G. 1983. Basalt-seawater interaction.En: <u>Hydrothermal Processes at</u> <u>seafloor spreading centers</u>. (P.A. Rona, K. Bostrom, L. Lanbier y K.L. Smith eds.), 225-278. Plenum Press.

Thomson J., M.S.N. Carpenter, S. Colley, T.R.S. Wilson, H. Elderfield y H. Kennedy. 1984. Metal accumulation rates in north west Atlantic pelagic sediments. Geochim. Cosmochim. Acta 48: 1935-1948.

Tschapek M. y C. Masowski, 1976. The surface activity at humic acid <u>Geochim</u>. <u>Cosmochim. Acta</u> 40:1343-1345.

Turekian K.K. 1965. Some aspects of the geo-chemistry of marine sediments. En: <u>Chemical Oceanography</u> Vol. 2 (J.P. Riley, y G. Skirrow eds.) 81-126. Academic Press.

Tunekian K.K. 1967. Estimates of the average Pacific deep sea clay accumulation rate from material balance considerations <u>Progress in Oceanography</u> 4:226-244.

Turekian K.K. 1969. The oceans, streams, and atmosphere. En: <u>Handbook of</u> Geochemistry Vol. I (K.H. Wedepahl, ed.) 297-323 Springer-Verlag. Berlin.

Turekian K.K. y K.H. Wedepohl. 1961. Distribution of the elements in some major units of the earth's crust. <u>Bull. Geol.Soc. Am.</u> 72: 175-192.

Van Andel Tj. H. 1963. Algunos aspectos de la sedimentación reciente en el Golfo de California Bol. Soc. Geol. Mexicana XXVI, (2): 85-94.

Van Andel Tj H. 1964. Recent marine sediments of Gulf of California. In: Van Andel Tj H. y G.G. Shor (eds.) <u>Marine Geology of the Gulf of California a</u> Symposium. The American Association of Petroleum Geol. Mem. 3. 216-310.

Van Andel Tj. H. y G.G. Shoy 1964. <u>Marine Geology of the Gulf of California a</u> Symposium. The American Association of Petroleum Geol. Mem. 3.

Vine F.J. 1966. Spreading of the ocean floor:new evidence science, 154:1405-1415.

Valkov I.I. y L.S. Fomina 1974. Influence of organic material and processes of sulfide formation on distribution of some trace elements in deep-water sediments of the Black Sea. Am. Ass. Pet. Geol. Mem. 20: 456-476.

Von Damm K.L. 1983. <u>Chemistry of submarine hydrothermal solutions at 21°N East</u> <u>Pacific Rise and Guaymas Basin, Gulf of California</u>. 240 p., Ph D. Thesis M. 1. T. and Woods Hole Oceanographic Inst.

Walter P. y P. Stoffers 1985. Chemical characteristics of metalliferous sediments from eight areas on the Galapagos rift and East Pacific Rise between 2°N and 42°S. <u>Mar. Geol</u>. 65:271-287.

Waples D.W. y J.R. Sloan 1980. Carbon and nitrogen diagenesis in dep sea sediments Geochim. Cosmochim. Acta 44:1463-1470.

Warsh, C.E. y K.L. Warsh. 1971. Water exchange at the mouth of the Gulf of Cal<u>i</u> fornia. <u>J. Geophys. Res.</u> 76: 8098-8116.

Warsh, C.E., K.L. Warsh y R.C. Staley. 1973. Nutrients and water mases at the mouth of the Gulf of California. <u>Deep. Sea Research</u>, 20: 561-570.

Wedepohl K.H. 1960. Spurenanalytische Untersuchungen an Tiefseetonen aus. dem. Atlantik. <u>Geochim. Cosmochim. Acta</u>. 18:200-231.

Wedepohl K.H., 1969. Handbook of geochemistry, New York, Springer Verlag 342 p.

Weiss R.F. 1977. Hydrothermal manganese in the deep sea scaverging residence time and Mn/³He relationship <u>Earth Planet Sci. Letters.</u> 37:257-262.

Whitfield M. 1974. Thermodynamic limitations on the use of the platinom electrode in Eh measurements Limnol & Oceanogr. 19:857-865.

Williams D.L., K. Becker, L.A. Lawver, y R.P. Von Herzen 1979. Heat How at the spreading centers of the Guaymas Basin, Gulf of California. <u>J. Geophys. Res</u>. 84: 6757-6769.

Wyrtki, K. 1965. Surface currents of the eastern tropical Pacific. <u>Inter-Am.</u> <u>Trop. Tuna Comm. Bull. 9:271-304.</u>

Yamamoto, T. y Fujita T., 1966. A summary of chemical abundance in seaweeds. Bull. Kyoto Univ. Ed. Series D, 29: 9-12. Zeitzschel, B. 1969. Primary productivity in the Gulf of California <u>J. Mar</u>. <u>Biol.</u> 3: 201-207.

Zobell, C.E. 1946. Studies on Redox potential of Marine sediments <u>Bull. of the</u> <u>Am. Ass. of Petr. Geol.</u> 30(4): 477-513.

APENDICE 1

RELACION DE MUESTRAS SUPERFICIALES COLECTADAS EN LOS CRUCEROS CORTES 2 Y PALEO-I.

Relación de	muestras	superf	Icia	lescol	ecta	tas i	en el	Crucero
PALEO-1 BAP	-82, medi	inte el	Nuc	eador	de Ci	ja.		영지원은

	그는 그는 그는 것 같은 것을 알려야 했다. 방법에 가장에서 가장을 받았다. '오늘' 가지 않는 것 같이 가지?
Ruestra	Localización Prof. Descripción General del
8C2	J0*05.0' 113*39.0' 230 / Limo-arcillosos con poca
463	arena color verde olivo.
663	JU UL.3 113 40.1 JO2 LIMO-ArC1 LOSOS COLOF verde olivo.
866	29°59.7' 114°06.9' 380 Limo-arcillosos color verde olivo ligero olar
869	Sulfuroso.
	verde olivo.
8611	29°01.4° 113°00.1' 350 Arenoso con abundantes fragmentos de conchas.
8613	28°20.1' 112°27.4' 935 En los 5 cm superficiales; sedimento oscuro con grava
	y arena, y en la superficie presencia de ofluroideos,
	gasteropodos, políquetos, etc.
8613	28*20.1' 112*27.4' 935 Después de los 5 cm super

unione etaplicienti (equinite porticiales del núcleo BC13. se observô sedimento color verde olivo, además de ves tigios de laminaciones con una capa amarillosa de 2-3 mm y una oscura de ~1 cm.

> Limo-arcillosos, color ver de olivo, fuerte olor sulfuroso (Cuenca de San Pe-dro Hártír). Además lamin<u>a</u> ciones de 3-4 mm.

Arenosos, con muchos fora-miniferos, y sobre la super ficte l juveniles de lango<u>s</u> ta.

Fuerte olor a sulfuros, sobre-penetró el nucleador.

Huestra Localización Prof. Latitud N Long Itud W ់(៣)ៈ BC2D 27*56:5 112-23.9 873 8024 28-05-0 111*44.0 350 BC25 28*05.0 111*41.3* 356

.

8C26 28 04 8' 111-41.31 477 A second state of the second stat 8C27 28*04.01 111.41.5 520

8630 27*54.5 111-42.1 610

8631 27.49.8 111-43.6 668

8033 27 46.5' 111 44.01 810 608

BC40 27*40.9 111*05.6' Descripción General del Sedimento

Verde oscuro, ligera olor a H-S, arcillo-limoso y presencia de herodaciones. y laminado,

Arenoso, verde olivo oscuro, ligero olor a H.S. y pocos foraminiferos'(1 por campo de 50x).

Arenoso, con un poco de fi nos, verde olivo oscuro, con políquetos y foraminí-feros escasos (1 por caroo de 50x), además de un ligero alor de H₂5.

Finos, con poca arena, ver de oscuro, con ligero olor a sulfuros escasos foraminiferos y diatomeas.

Finos con poca arena, verde oscuros.

Huy acuosos, verde oscuros, sin arena con olor H.S con muy pocos foraminiferos y diacomeas.

Café-verdosos, finos com ligero olor a H₂S y laminados.

Finos, pero más compactos, café - verdosos.

Finos, café - verdosos, muy acuosos y andaicos.

90

8014

8C17

8018

28"15.0"

27*52.5'

27*56.6

112*25.0'

112*31.5*

112*23.5*

900

610

		•			•					
Huestra	Local Latitud N	ización Longitud W.	Prof. (m)	Descripción general del sedimento		Huestra	Local Latitud N	zeción Longitud W	Prof. (m)	Descripción general del sedimento
BC41	27*38.0'	111*04.8'	860	Finos verde ascuros con olar e H2S.		8C69	24*05.3'	. 108"03.4"	220	Arenoso, con abundantes moluscos y algunos gui- jarros y gravas. En la parte superficial se o <u>b</u>
8642	27*50.5*	111*43.6'	647	Finos verde oscuros muy fangosos, foraminiferos y bacterias filamentosas		8C70	21*58.9*	106*08.9'	600	servo una capa cafe-na- ranja bien consolidado. Fino con noca azena no-
8C52	26*26.41	109*55.6*	515	Laminado, gris-verdoso,						laminado y capas amari- llas en la superficie.
8653	26 • 17 . 6'	110*02.4*	745	A H ₂ S.		BC72	23*49.3'	108*15.9'	900	Finos con poca arena, color verde grísiceo, sin olor no~lamínados,
				lolor a H.S y color verde grisáceo:		8C75	24*32.2*	110*15.3*	745	Finos, verde grisiceos, con láminas de L mm a cm
8656	26 * 19 . 5 *	109*45.2*	412	Laminado, color verde grisáceo pero menos acuoso.		8C77	-24•33.51	110 15.5	725	y dior n ₂ s. Laminados, finos verde grisiceos, con muchos
BC57	a ta anna an Arainn An Arainn Arainn									foraminiferos.
8058	26*04.6*	109*49.5*	600	Finos, con los primeros 20 cm color café verdoso, desnués verde oscuro		BC79	25-52.31	111*08.2'	26O	Verde oscuros, no lamin <u>e</u> dos.
BC59	25*39.5*	109*40.3*	650	fino, café verdoso con		8680	25*57.6'	[11*05.7*	640	Verde oscuros, sin olor a H ₁ S y con laminación no-homogénea.
		والمعدورة بالمعقولية	an genere	abundances poliquetos.		9C82	25*52.3*	- 110-59.2*	600	Arenas con arcillas y
8660	25*40.1*	109*35.6*	350	Finos, café verdoso.	$(k_{1},\ldots,k_{n}) \in \mathbb{R}^{n}$					limos y fragmentos de rocas y basalto, además
8661	25*40.8*	109*34.3*	162	Oscuros y más bien gnuesos.	•				6	de fosforito.
BC63	25.00.0	109*01.0*	645	Finos, laminados verde orisáren con onliquetos.		8C83	25*32.2*	110*43.5*	615	Gríses, no-laminados.
				foraminiferos, micromolus cos y bacterias filamento sas,		8C85	25*41.1*	110*51.0'	638	Verde oscuros, langoso, laminado y con fuerte olor a H ₂ S.
BC66	24*48.5'	108 32.6'	645	Limos con poca arena, caba amarillosa en la superfí- cie.		alter de selo. Les de Selo Selo				
8688	24*44.9'	108*33.7*	860 .	Yerdosos, más consolidado.						• ·
·										
				الدينية (1997) 1994 - المراجع المراجع (1997) 1994 - مراجع المراجع (1997) 1994 - مراجع (1997)						

Aelación de muestras superficiales colectadas en el Crucero CORTES 2, mediante la draga Van Yeen y Smith-Hc. Intyre.

						LOCALI	246100	Profundidae
					Kuestra	Latitud H	Longitud W	(m)
Huestra	Localización	Рго	fundidad					
	Latitud N Long	itud ¥	(m)		C-44	30°02.5'	112-56.0'	104
					C-46	28-09.0	111'31.5'	95
C-2	24*37.0' 108*	21.8	880	a teste a diferencia. El la capita de el com	C-47	28*17.9*	111*37.1*	37
C-3	25*02.0*	J2.0	28		C-48	28 16.2'	111-36.6'	64
C-5	24*53.1* 108*	46.2'	120		C-49a	26.59.7	111*50.4'	101
C-8	25"34.2'	59.2'	52		C-49b	26*59.5'	111*53.4'	68
C-3	25*47.9	03.5	77		C-49c	26*59.4	111*58.8'	29
C-10	25°58.7'	05.5	42		C-50-	25*49.2	109-33.8'	97
C-14	26*46.7' 110*	06.8	92		C+51	25*41.5'	109*30.2*	48
C-15	26*51.3' 110*	06.5'	50		C-52	25*40.0*	109*28.1*	28
C-16	26*53.7* 110*	05.4	24	Na destructions de la composition de la Composition de la composition de la comp	C-55	23*08.7*	109 28.1	34
C-19	28*10.2*	48.2	26		C-56	23*06.5'	109-24.2'	98
C-21	28"08.3'	41.6'	108		C- 57	23*06.5'	109*27.9*	53
C-25	29"12.5" 112"	J1.4'	106		C-59	20*49.9'	105*41.6*	99
C-26	29-23.7' 112-	31.3'	72		C-60	20"51.8"	105-33.3'	75
C-27	29"26.2" 112"	28.2'	35		C-61	20*54.1'	105*27.4*	49
C-32	29*47.0*	21.7'	36		C-62C	21*38.1'	106*31.9*	29
C-33	29*55.6* 114*	19.4	81		C-62D	21*38.6	106*31.7*	122
C-34	30*12.0* 114*	31.9'	33					
C-37	31*15.9*	21.7'	30					
C-38	31*10.0* 114*	15.2	53					
C-42	30*12.1' 112*	47.0'	30		the term of the second			

69

192

C-43

30*08.8

112-50.5

APENDICE 2

RELACION DE NUCLEOS COLECTADOS EN LOS CRUCEROS BERMEJO 1 (B) Y PALEO 2 (P). RESULTADOS ANALITICOS DE EH, PH, SULFATOS Y CARBONO ORGANICO.

				a series and a series of the series of th Series of the series of the									
	. <u>.</u>												
NUCLEO B2	C Protui	101080 110	JU M; POS1	C107 24	19. . 7441. 108-51	2.1284.	UCLED BI	; Protun	JIGAG (41	/m; //0\$1C1(DA 24-25.6	"N: 108-9.4"	¥.
	Eh		SO 4	, 2	Porosidad	C-org		Eh		SO 4	^H 2U	POPOSIdad	C-org
Seccion	. (mv)	PH	[#7]				Section	(ma)	pn	(11 11 3	(F)		(2)
Agua							Agua	사망에 가 걸었다. 1993년 - 1993년 - 1993 1993년 - 1993년 -					
0 - 5	292	7.6	27.9				0 - 8	434 🔃	6.9	27.3	100	1.00	
			e e e e e e e e e e e e e e e e e e e				0 - 5	14.55	25 7.4	26.4	60.5	0.80	1.93
0 - 5	113	7.3	33.7	59.9	0.79		5 -10,	-56	7.1	18.9	57.5	0.77	2.56
5 -10	66	7.0	32.8	54.1	0.75		10-16	-86	7.2	12.2	51.1	0.73	2.16
10-15	183	6.7	31.5	58.4	0.78		16-21	- 151	7.4	11.8	59.9	0.79	. 2.29
15-20	149	7.4	30.1	49.8	0.72		21-25	-96	5.4	7.6	63.8	0.82	2.28
20-25	-8	6.7	27.0	44.3	0.67		25-30	-178	7.5	3.4	74.2	0.88	2.48
25-23	168	7.2	29.9	45.2	0.68		30-35	-182	6.8	1.5	52.2	0.74	2.29
10-35	185	6.7	29.0	49.6	0.72		35-40	- 180	7.4	0.5	62.1	0.81	2.47
35-40	164	7.6	35.5	37.6	0.61	an an tha an Tha an tha an	40-45	-154	7.4	0.3	57.6	0.78	2.07
40-45	- 18	7.1	25.5	45.5	0.68	and a second br>Second second	45-50	-92	7.7	0.0	56.0	0.76	2.05
45-50	-70	6.4	30.1	44.9	68		50-55	-59	7.7	0.0	57.7	0.77	2.23
50-60	46	7.0	30.1			Geographic (milities of the second	55-60	-26	7.8	0.0	54.9	0.76	2.49
60-70	90	7.4	27.0				60-65	-106	7.6	2.5	54.7	0.75	1.77
70-82	81	7.Z	28.4				65-70	-5	7.4	0.0	54.6	0.25	1.87
						<u>영상</u> 가슴 가슴 가슴 것	70-75	- 35	6.3	0.0	58.3	0.78	1.82
NUCLEO 83	le Profili	didad 250	0 m: Pasi	+16n -23"	49' DIN: 109*04		75-80	45	7.7	0.0	58.8	0.78	2.32
							80-85		7.7	0.5	57.1	0.77	7.47
0 - 5	301	7.0	29.0	66.9	0.84	2.89	85-91	-79	2.5	0.0	50.0	0.72	1.67
5 -10	112	7.3	27.9	65.7	0.83	3.57	91_101	19	7.5	0.0	50.0	0.71	2.00
10-15	176	7.4	25.3	67.6	0.84	3.56	101-117	76	7.6	0.0	55.3	0.75	2 70
15-20	187	7.3	23.6	63.9	0.82	3.59				0.0	33-1	0.70	2.23
20-25	206	7.5	22.1	66.2	0.83	3.64							
25-30	192	6.9	29.3	64.4	0.82	3.45			1.11				
10-35	212	7.3	28.7	64.9	0.83	3.90	i an	alto a trans Constantes					
35-40	187	6.9	31.9	62.8	0.81	3.61							
40-45	149	6.6	29.5	62.1	0.81	3.50			e de la				
45-50	249	7.4	28.7	59.5	0.79	3.63							
50-55	151	5.6	40.6	65.7	0.83	3.22	and the second second	e je stali					

3.20

3.48

3.58

3.34

3.25

0.80

0.78

0.81

0.80

0.80

194

257

204

Z75

119

268

55-60

60-65

65-70

70-75

75-84

7.6

7.5

7.4

7.6

7.4

0,0

30.3

28.7

25.5

25.5

61.0

57.7

61.8

60.4

60.3 |

		· · ·			나라나 것 것은 같은 철상 문화 것		اند. منطق مرجع			and de Witting de	n de la Francis Altre composito			
NUCLEO 86	; Profun	11dad 21	220 ms, Post	ción 25*;	21'.7N: 109*39			NUCLED 84	; Profund	idad 121	Omt Posic	16n 23*36		sw.
Sección	£h (mv)	pH	50 [°] 4 (mH) ⁴	H ₂ 0. (%)	Porosidad	C-org (%)		Sección	Eh (mv)	pH	50 [°] 4 (mM) ⁴	H ₂ 0 (1)	Porosidad #	
Agua	· · · ·	t i de	26.0											
0 - 5	114	7.3	29.1	55.7	0.76	1.86	포함한 비행하는	U. −_ 1	239		2/.1	40.7	0.64	
5 -10	97	7,4	26.2	51.5	0.73	1.81		5 - 10	. 14		۷۲.9	40.8	0.64	
10-15	73	7.5	27.4	52.1	0.74	1.82		10-15	142		29.6	40.5	0.54	
15-20	62	7.4	22.5	. 52.9	0.74	1.75		15-20	136		30.0	42.1	0.65	
20-25	74	7.4	22.5	52.3	0.74			20-25	41	0.9	59.U	41.3	0.65	
25-30	66	.7.4	ZO.1	52.6	0.74	1.76		23+3U	[63		23.3	47.0	0.70	
10-35	42	1.6	20.6	53.2	0.75	1.75		30-35			27.9	37.8	0.61	
35-40	87	7.4	21.9	51.7	0.73						30.0	38.1	0.51	
40-45	69	7.5	22.5	54.1	10.75	1.75					an a			
45-50	55	7.6	19.6	51.3	0.73	1.24					n nada			
50-55	85	7.6	20.1	48.7	0.71	1.59		HUCLEU 83	; Protuno	1040 22:	JUM; POSIC	100 23-00		
55-60	52	7.6	20.1	45.1	0.68	1.72-		Q - S	295	7.7	27.3	76.7	0.87	
60-70	72	7.6	16.7	52.9	0.74	1.85		5 -10	Z21	7.8	28.7	74.8	0.88	
70-80	13	7.6	20.2	52.2	0.74	1.91	회원자들의 관심을	10-15	139	7.7	30.3	72.1	0.87	
80~89	86	7.7	16.5	48.9	0.71	1.91		15-20	72	7.6	31.7	72.0	0.87	
								20-25	56	7.7	28.6	70.4	0.85	
NUCLEO 87	Profund	lidad 49	in; Posici	ón 26*39	.5N; 109*55'.	5W.		25-30	128	7.8	24.9	67.0	0.84	
Agua			26.4					30-35	134	7.8	23.8	65.5	0.83	
9 - 5	168	7.6	28.3	64.1	0.82	2.27		35-40	117	7.7	31.3	69.5	0.85	
5 -10	37	7.5	28.1	61.5	0.81	2.27		40-45	160	7.8	19.0	68.5	0.85	
10-15	45	7.6	22.3	60.6	0.80	2.47		45-50	218	7.6	25.3	58.4	0.78	
15-20	-16	7.5	22.2	56.4	0.76	2.48		50-55	202	7.6	31.6	67.5	0.84	
20-25	1	7.7	25.5	55.0	0.76	2.55	4 (<u>)</u>	55-60	160	7.7	31.4	67.3	0.84	
25-30	34	1.7.	25.3	55.5	0.76	2.51								
10-35	89	1.7	25.1	55.0	0.76	2.48								
35-40	2	1.7	26.6	54.3	0.75	2.51	age ta the s							
49-45	-18	7.6	22.3	53.4	0.75	2.55								
45-50	-16	7.7	21.6	52.1	0.74	2.47								
50-55	-58	7.6	21.2	53.2	0.75	2.38	· · · · · ·							
55-60	-49	7.7	20.1	53.3	0.75	2.40	the second							
60-72	-50	7.7	19.3	51.4	0.73	2.47								
									•					
			and the second second				··				· ·			
			a se de la Com	م میں اور اور اور میں جانب اور اعداد اور										
									1997 - 1997 -	····	••••••		· · · · ·	-
			14 14 14 1		and a second	an the second second	a ter a							

C-org (:) 1.27 1.18 1.20 1.14 .1.25 1.51 1.32 1.34

> 3,54 3.47 3.66 3.57 3.66 3.70 3.67 3.66 3.63 3.66 3.62 1.64

UCLEO	88;	Profume	idad 84	Om: Pos	ición i	26°311.BN;	110.10.	. ON .
	المعرب ا					l_Q Por	osidad	
eccló		(av)	94	(mH)	4	(1)		

29.2

11.1

28.Z

30.1

31.3

28.8

28.4

29.2

29.0

29.4

27.2

28.00

29.0

28.6

389

356

132

117

118

122

176

202

71

79

124

134

308

6.9

6.6

6.7

6.6

1.0

1.4

1.4

1.4

54

7.4

2. 1.4

7.4

14

Secclor

Agua

0 - 5

5 -10

10-15

15-20

20-25

25-30

30-35

15-40

40-45

45-50

50-55

55-60

60-70

84.0

75.9

73.1

76.4

74.5

72.2

69.2

70.6

70.8

77.3

69.3

69.5

69.8

0.93

0.89

0.87

0.89

0.88

0.87 0.85

0.86

0.86

0,90

0.85

0.85

0.85

Conre

(%)

RUCLEO 810; Profundidad 2450 m; Posición 26*15*.58; 110*42*.5

196

	en	H ₂ O Porosidad C-org
Sección	(mv) pH (mH) ⁴	(1)
Agua	26.1	
0 - 5	256 7.7 29.4	88.9 0.95
5 -10	28 7.7 30.9	83.8
10-15	30 7.7 34.3	81.0
15-20	-15 7.8 29.1	76.0
20-25	19 7.7 30.5	76.4
25-30	4 7.7 29.3	75.0 0.89
30-35	-21 7.8 30.0	73.6 0.87
35-40	-26 7.7 28.5	80.3
40-45	0 7.6 26.4	75.6 0.89
45-53	-20 7.8 28.0	

HUCLED BI1: Profundidad 1050m; Postcion 26"10"N; 110"52'W

			- 1997年1日本での設計電子構成の時間の構成である。1997年1日に、1997年1日に、1997年1日に、1997年1月1日に、1997年1月1日に、1997年1月1日に、1997年1日に、199	
0-5	339	7.4	29.3 81.7 0.91 NUCLED 89: - Profund 1 did 1240 mt Postción 26*23*.5N; 110*26*.	зм
5 -10	193	7.5	24.8 73.2 0.87	
10-15	82	7.4	28.8 A 94.5 A 94.5 A 94.6 A	
15-20	60	7.5	27.3 72.5 50.2 70.1 0.86	
20-25	64	7.5	29.3 71.9 29.3 71.1 0.86	
25-30	-8	7.5	26.8 74.0 0.88 10-15 1.5 27.4 71.2 0.86	
30-35	-43	7.5	26.8 59.8 30.4 70.4 0.85	
35-40	-20	7.6	26.8 69.1 0.85 20-25 99 7.6 10.0 69.2 0.85	
40-45	-20	7.5	31.0 68.7 0.85 25-28 t71 7.7 27.9 66.8 0.83	
45-51	17	7.5	2. 25.5 (1) 68.6 (1) 0.85 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	

CLEO BI4: -:10 -:10 -:1 -:10 -:15 -:20 -:35 -:40 -:15 -:40 -:15 -:40 -:15 -:40 -:45 -:45 -:40 -:15 -:40 -:15 -:40 -:15 -:40 -:15 -:40 -:15 -:45 -:-50	Profun Eh (mv) 316 252 182 32 -10 -32 -22 -27 -5 -44 75 0	ndidad 20 pH 7.7 7.7 9.0 6.8 7.7 7.3 7.6 7.5 7.5 7.6	20m; Post (mt)4 25.8 30,7 32,3 30,1 29.8 27.8 27.8 27.3 26.0 28.0	c16n 27*00 H20 (2) 100.0 92.7 90.2 83.8 84.6 84.6 83.5 82.0 79.7	.6N: 111225 Porosidad d 0.97 0.93 0.93 0.93 0.93 0.92	2.88 2.32 2.10 2.92 3.11 1.14	NUCLEO 81 Sección Agua 0 - 5 5 - 10 10-15 15-20 20-25	2; Profu Eh (mv) 106 174 118	rdidad 67 pH 7:5 7:7 7:9 7:9	'Om: Posic 50 ⁻¹ , (mH) 25.1 26.3 24.7 24.7	16n 26°06 H20 (1) B3.6 B6.2	.4N: 110*59 Porosidad 9 0.93 0.94	'. 34 C-org (Z) 4.48 4.19 4.32
cc:dn gua -10 - 3 - 6 -10 15 25 5-20 25 5-30 25 5-30 35 5-40 5-45 5-50	Eh (mv) 316 252 182 32 -10 -32 -22 -27 -5 -44 75	pH 7.7 7.7 8.0 6.8 7.7 7.3 7.6 7.5 7.5 7.5 7.6	50 [°] 4 (mh) ⁴ 25.8 30.7 32.3 30.1 29.8 27.8 27.8 27.3 26.0 28.0	H 20 (3) 100.0 92.7 90.2 83.8 84.6 83.5 82.0 79.7	Porosidad 0.97 0.96 0.93 0.93 0.93 0.93 0.92	C-org (1) 2:88 2:92 3:11 1:14	Sección Agua 0 - 5 5 - 10 10-15 15-20 20-25	Eh (mv) 196 174 118 101	рН 7:5 7:7 7.9 7.9	50 ⁻¹ 4 (mH) 25.1 26.3 24.7 24.7	H20 (1) 83.6 86.2	0.93 0.94	C-org (Z) 4.48 4.19 4.37
cción gua -10 -15 5-20 D-15 5-20 D-25 5-30 D-35 5-40 J-45 5-50	(mv) 316 252 182 32 -10 -32 -22 -27 -5 -44 75 0	PH 7.7 7.7 8.0 6.8 7.7 7.3 7.6 7.5 7.5 7.6 7.5 7.6	(mt) ⁴ 25.8 30.7 32.3 30.1 29.8 27.8 27.3 26.0 28.0	(1) 100.0 92.7 90.2 83.8 84.6 83.5 82.0 79.7	0.97 0.96 0.93 0.93 0.93 0.93 0.92	2:88 2:92 3:11 1:14	Sección Agua 0 - 5 5 - 10 10-15 15-20 20-25	LD (mv) 196 174 118 101	рН 7.5 7.7 7.9 7.9	50 (mH) ⁴ 25.1 26.3 24.7 24.7	(1) B3.6 86.2	Perosidad 4 0.93 0.94	4.48 4.19
- 10 - 10 - 10 - 10 D-15 5-20 2-25 5-30 2-35 5-40 2-35 5-40 2-35 5-40 2-35 5-40 2-35 5-40 2-35 5-40 2-35 5-40 2-35 5-40 2-35 5-40 2-35 5-40 2-35 5-50 2-35 2-35 5-50 2-35 5-50 2-35 5-50 2-35 5-50 2-35 5-50 2-35 5-50 2-35 5-50 2-35 5-50 2-35 5-50 2-35 5-50 2-35 5-50 2-35 5-50 2-35 5-50 2-35 5-50 2-35	316 252 182 32 -10 -32 -27 -5 -44 75	7.7 7.7 8.0 6.8 7.7 7.3 7.6 7.5 7.5 7.6 7.6	25.8 30.7 32.3 30.1 29.8 27.8 27.3 26.0 28.0	100.0 92.7 90.2 83.8 84.6 83.5 82.0 79.7	0.97 0.96 0.93 0.93 0.93 0.93 0.92	2,88 2.92 3.11 3.14	Agua 0 - 5 5 - 10 10-15 10-5 20-25	186 174 118 101	7.5 7.7 7.9 7.9	25.1 26.3 24.7 24.7	83.6 86.2	0.93 0.94	4.48
- 0 - 1 - 6 -10 D-15 5-20 3-25 5-30 D-35 5-40)-45 5-50	252 182 32 -10 -32 -22 -27 -5 -44 75	7.7 8.0 6.8 7.7 7.3 7.6 7.5 7.5 7.5 7.6	30.7 32.3 30.1 29.8 27.8 27.3 26.0 28.0	92.7 90.2 83.8 84.6 83.5 82.0 79.7	0.97 0.96 0.93 0.93 0.93 0.93 0.92	2,88 2,92 3,11 1,14	0 - 5 5 - 10 10-15 15-20 20-25	186 174 118 101	7.5 7.7 7.9 7.9	26.3 24.7 24.7	83.6 86.2	0.93 0.94	4.48
- 6 -10 D-15 S-20 D-25 S-30 D-35 S-40 D-45 S-50	182 32 -10 -32 -22 -27 -5 -44 75	0.0 6.8 7.7 7.3 7.6 7.5 7.5 7.5 7.6	32,3 30,1 29,8 27,8 27,3 26,0 28,0	90.2 83.8 84.6 83.5 82.0 79.7	0.96 0.93 0.93 0.93 0.93 0.92	2.88 2.92 3.11 3.14	5 -10 10-15 15-20 20-25	174 118 101	7.7 7.9	24.7	83.6	0.93 0.94	4.19
-10 D-15 S-20 D-25 S-30 D-35 S-40 J-45 3-50	32 -10 -32 -22 -27 -5 -44 75	6.8 7.7 7.3 7.6 7.5 7.5 7.6	J0.1 29.8 27.8 27.3 26.0 28.0	83.8 84.6 83.5 82.0 79.7	0.93 0.93 0.93 0.92	2.92 3.11 1.14	10-15 15-20 20-25	118 101	7.9	24.7	86.2	0.94	4.32
2-15 5-20 2-25 5-30 2-35 5-40 2-45 3-50	-10 -32 -22 -27 -5 -44 75	7.7 7.3 7.6 7.5 7.5 7.6	29.8 27.8 27.3 26.0 28.0	84.6 83.5 82.0 79.7	0.93 0.93 0.92	3.11 3.14	15-20 20-25	101	1 7 4 10 10	1627. 99 B 2 7 Tak	Non o	and the second sec	
5-20 0-25 5-30 0-35 5-40 1-45 5-50	-32 -22 -27 -5 -44 75	7.3 7.6 7.5 7.5 7.6	27.8 27.3 26.0 28.0	83.5 82.0 79.7	0.93 0.92	3.14	20-25		AND 115 - 15 - 20		89.9	0.95	4.41
0-25 5-30 0-35 5-40 3-45 3-50	-22 -27 -5 -44 75	7.6 7.5 7.5 7.6	27.3 26.0 28.0	82.0 79.7	0.92			75	7.9	24.5	88.1	0.95	4.29
5-10 0-35 5-40 0-45 3-50	-27 -5 -44 75	7.5 7.5 7.6	26.0 28.0	79.7			25-30	68	7.8	23.5	87.9	0.95	4.63
0-35 5-40 3-45 3-50	-5 -44 75	7.5	28.0 28.0		2 TO DE		30-35	10	7.8	20.9	81.5	0.91	4.14
5-40 3-45 3-50	-44	7.6	40.V			6.09	35-40	16	7.8	19.1	82.0	0.92	4.82
9-45 3-50	75	7.6	the second s	in an	U.80	C+28	40-45	-58	7.8	20.4	81.2	0.91	4.44
0-45 5-50	15 .		21.2	DY.4	0.85	2.11	a Fill Matter (1997) 45-50 機能	-61	7.7	16.8	80.6	0.91	4.41
5-30		7.4	10.1	02.4	53. 0.81	2.06 (C) (C) (C)	50-58	-96	7.7	12.4	79.5	0.91 -	4.25
		7.3	24.8	62.4	0.81	2.06				gining satur S			
J-55	86	7.4	24.6	60.1	0.80	2.03				1.1.1			
5-60	55	7.2	24.4	60.7	0.80	2.04		40 P. S.					
3-67	88	7.4	18.3	61.5	0.81	ve 1.83	KUCLEO B	13: Profu	indidad 6	i30m; Post	ción 26"5;	2'.6H: 111*40)'.OW
esencia de fi	'ranjas (oscuras er	n las capas	superficiale			Agua	338	7.5	29.5	100.0		
						a New Yest Contract	0 - 5	126	6.8	27.9	80.4	0.91	
CLE0 815;	Profun	ndidad 18	115m; Posi	ción 27°08	1.4N; 111111	1.21	5, -10	137	5.0	27.2	81.8	0.91	
		•					10-15	134	7.6	31.3	84.8	0.93	
gua	373	7.5	29.9			화한 2017 - ET - E	15-20	-9	7.1	31.7	83.9	0.93	
- 5	223	7.6	29.9	73.0	0.87		20-25	-99	7.2	31.9	82.8	0.92	
-10	206	7.5	30.1	59.4	0.79		25-30	-104	5.3	28.1	82.3	0.92	
0-15	129	7.6	33.5	58.2	0.78		30-35	-130	7.0	25.7	75.1	0.89	
5-20	126	7.5	35.3	59.1	0.79		35-40	-122	7.2	24.1	77.9	0.90	
0-25	65	9.2	31.5	72.9	0.87		40-45	-139	7.1	75.7	75 3	0.87	
5-00	14	9.2	29.5	73.4	0.87	waanin'i Argenia. Manaka amin'ny fisiana	45-50	-166	7.1	24 A	11.2	0.87	
0-35	20	9.2	32.2	71.5	0.86	pending in the	50-55	-168	7 4	71.9	76 7	0.00	
5-40	10	9.3	12 4	66.9	0.85		55-60	177	7 3	23.7	70 6	0.00	
0-17	18	at	79 8	58 7	A 45	Sector Anna Anna	50.67	- 1 - 1				0.75	
j-47	47	7.3	28.8	05.2	0.85	itteration de la servición Norma de la servición de la serv Norma de la servición de la serv	60-67	-171	7.3	22.1	69.1	0.85	
							1						
				117 A. A. A. A.	gi a li ta								
			and a state	and and a									
			1. 1										
		1.1			an think a								

				$(A_{ij}) \in M^{1}$										
VCI FO 818.	Profus	AL NADID	Nm. Postc	16- 27-22	1.248+ 110+43	• 614		NUCLEO 81	6; Profu	didad 1	540m; Post	168 27*1	6'.0N; 110"5	6* .SV
ección.	Eh (mv)	pK	50°4 (mH) ⁴	H ₂ 0 (2)	Porosidad	C-org (1)		Sección	Eh (mv)	рH	50°4 (mil)4	₩20 (\$)	Porosidad	C-org (\$)
Aqua .	188	7.7	24.3	100.0				Agua	. 175	7.4				
0 - 5	88	6.8	28.1	56.0	0.77	1.03		0 - 5	192	7.1	28.1	89.7	0.95	
5 -10	78	7.1	28.3	57.5	0.78	1.17		5 -10	106	7.4	27.7	65.2	0.81	
10-15	59	7.2	25.1	57.7	0.78	1.27-		10-15	88	7.5	24.6	59.7	0.79	
15-20	55	7.3		62.5	0.81	1.26	2012년 2012년 2013년 2013	15-20	132		25.9	62.2	0.81	
20-25	76	7.3	23.4	54.5	0.76	1.25		20-25	223	7.3	25.7	58.3	0.78	
25-30	77	7.3	19.3	55.0	0.76	1.18		25-30	174	مۇلىتە مەر مەتلەر ئۇلۇپ يەر مەر مەن	-21.7	60.2	0.80	
30-35	68	7.3	16.7	57.8	0.78	1.22		30-35	64'	7.5	29.9	63.4	0,82	
35-40	54	7.4	15.6	57.6	0.78	1.27		35-40	189	7.5	37.7	56.5	0.77	
10-45	39	7.4	16.4	57.9	0.78	1.23	2011년(11년(12년)년) 1972년 12년(12년)년(12년)	40-45	156	21.6	25.9	61.4	0.81	1
±5-50	33	7.4	12.8	63.4	0.82	1.03		1	207	7.0	28.6	56.7	0.77	
50-60	50	7.4	13.7	51.0	0.73	0.94		SO-55	132 Sec. 132		- 26.1	57.1	0.77	
0-70	95	7.5	5.6	61.4	0.80	1.15	ر منه درو مراجع الروابية الروابية (1997). المحمد المحدود ومحمد المحمولية (1997)					영화 관계 가지	ta di kacala di kacal	
0-80	32	7.6	1.9	55.4	0.76	1.00	있다. 1993년 2월 21일 1993년 2월 21일	NICI FO AT	7. Profu	didad 7	90m, Posic	160 27-25	1.15N+ 110+4	71.078
10-90	-41	7.7	2.8	40.3	0.64	0.81		4	179		26 1			
0-100	,	7.6	4.4	48.0		1.12	ارتی اور بر میکند. موجود از میکند و میتواند و م	n 2 5	206	200 7 1 / 2	24.7	52.6	0.74	1.51
0-110	57	7.6	0.0	44.9	0.68	1.29		5 in	221	7.0	7H g	69.0	0.85	1.47
							이 물건이 물건이 많다.	10-15	154	7.2	28.9	50.9	0.23	1.52
		• • •	يفريد ومحا				and the second second second	15-20	146	7.1	28.5	54.1	0.75	1.58
CLEO 819;	Profus	didad 15	00m; Post	ción 27*4	6'.9N; 112*03	•.2W		20-25	-145	7.2	25.2	54.6	0.75	1.55
		14 - 14 A. A						75-10	-147	7.1	25.9	51.8	0.74	1.47
Agua	370	7.4	25.8		열객 전 소란 문화	이 같은 것이 같이 같이 같이 같이 같이 같이 같이 같이 같이 많이 많이 했다.	al de la serie br>Serie de la serie	30-35	177	7.4	24.0	46.4	0.69	1.30
) - 5	188	7.4	28.5	77.2	0.89	3.72		35-40	146	7.3	25.3	52.3	0.74	1.56
i -10	198	7.5	26.5	75.8	0.89	3.79		40-45	143	7.3	25.5	54.1	0.75	1.48
0-15	157	7.5	27.1	77.2	0.89	3.82		45-50	152	6.4	24.3	48.8	0.71	-
5-20	100	7.5	27.7	75.3	0.88	3.85		50-55	152	6.8	21.2	47.0	0.70	1.32
0-24	-4	7.6	26.2	78.6	0.90	3.68		55-60	179	6.1	21.1	51.5	0.73	1.81
4-28	-18	7.5	28.7	74.1	0.88	3.88		60-70	173	7.8	21.7	54.5	0.75	1.45
						a di ta		70-80	157	5.1	19.9	49.0	0.71	1.33
					a de la compañía de l			20-89	197	7.4	22.7	54.6	0.75	1.50
			· ·					· · _ · · · · · ·			•			
								Presencia d	e equinode	imus en i	a capa super	10141 (0-6	CW1	
										•				
				· · ·	and the second second									
					· · · ·									
			1.1											

				an a				•			u da ara Maria da A		ntan Lista ya terseri	
UCLEO BI	8; Profu	ndidad ji	Om; Poste	16n 27*27	.24N; 110*4	1'.61W	a shi nga nga nga N	UCLEO 01	6: Profun	didad 1	540n; Posie	ción 27°1	6'.0H; 110*5	51.5W
ección	Eh (mv)	pH	50°4 (mH) ⁴	H ₂ 0 (=)	Porosidad	C-org (X)	5	ección'	Eh (mv)	pH	50 [°] 4 (mti) ⁴	11 ₂ 0 (=)	Porosidad ø	C-01 (1)
lana.	101	· · · ·	74 1	n. nnt	an a			Agua	375	7.4				
	88	6.8	28.1	56.0	0.77	1.01		0 - 5	192	7.1	28.1	89.7	0.95	,
-10	78	7.1	28.3	57.5	0.78	1.17		5 -10	106	7.4	27.7	65.Z	0.83	
0-15	59	7.2	25.1	57.7	0.78	1.27	영상 소설 수 있는 것이 없다.	10-15	. 68	7.5	24.6	59.7	0.79	
5-20	55	7.3		62.5	0.81	1.26		15-20	.132	- 7.4	25.9	62.Z	0.81	. '
0-25	76	7.3	23.4	54.5	0.76	1.25		20-25	223 ु	7.3	25.7	58.0	0.78	
5-30	27	7.3	19.3	55.0	0.76	1.18	영상 가지는 것이 가지 않는 것을 같다. 같은 것은 것은 것을 알려졌다.	25-30	174	7.4	21.7	60.2	0.80	
0-35	68	7.3	16.7	57.8	0.78	1 - 22		30-35	. 64	7.5	29.9	63.4	0.82	
15-40	54	.7.4	15.6	57.6	0.78	1.27		35-40	189	7.5	37.7	56.5	0.77	
0-45	39	7.4	16.4	57.9	0.78	838-923 (Constant) 1936 - 19 23 (California)	n (d. 1999) en graak en de kriederen. Gebouwen gebouwen (d. 1997) en gebouwen.	40-45	156	7.6	25.9	61.4	0.81	· ·
5-50	33	7.4	12.8	63.4	0.82	1.03		45-50	207	7.0	28.6	56.7	0.77	
0-60	50	7.4	13.7	51.0	0.73	0.94	[2] M. L. M. M. M. M. Martin, "A second strain of the second strain o	50-55	132	7.7	26.1	57.1	0.77	
0-70	95	7.5	5.6	61.4	0.80	1.16								
0-80	32	7.6	1.9	55.4	0.76	00 - 00			अस्ट विक्र के					
0+90	-41	7.7	7.8	40.3	0.64	0.81		ACU-	7. 770	01040 /	JUM; PUSIC	1011 27 23	.150: 110 4.	
0-100	,	7.6	4.4	48.0	0.70	1:12		AYU4	373		20.1		0.74	
0-110	57	7.6	0.0	44.9	0.68	1.29		u - 3	200	ali stek en. Siste n of Stat	24.7	52.0	0.00	
	. •••							3 -10	461	7.0	28.9	69.U	0.85	
						a construction and a second br>Second second br>Second second		10-13	124	1.4	28.9	20.9	0.73	
ICLEO BI	9: Profu	ndidad 1	100m: Post	c16n 27*4	6'.98: 112*0:	1 . ZW		13-20	140		20.3	54.6	0.73	
								20-23	140	1.2	23.2	34.D	0.75	1.
gua	370	7.4	25.8					23-30	177		23.9	31.0	0.74	
- 5	188	7.4	28.5	77.2	0.89	3.72	열린 일어 같이 말이 다.	30-33	146	7.4	24.0	40.4 57 3	0.03	1.
-10	198	7.5	26.5	75.8	0.89	3.79		10.45	140	7.3	23.3	52.3	0.74	1
0-15	157	7.5	27.1	77.2	0.89	3.82		40-43	143	·	20.0	12 0	0.73	
5-20	100	7.5	27.7	75.3	0.88	3.85	zi zizote en el	43-30	132	6.9	24.3	40.0	0.71	, . , .
0-24	-4	7.6	26.2	78.6	0,90	3.68		50-55	132	7.8	21.2	-1.0	0.75	
4-28	-18	7.5	28.7	74.1	0.88	3.88		53-00	179	v.i 7 a	21.1	51.5	0.75	1.
			a stall					30 80	1/3	/.0 /.0	21.7	11.0	0.73	1
				da sa sa sa	an a	بديد والأشر البيوية	and the second	70-60	137		17.7	49.0	0.71	
								20-84	131	7.4	· · · ·	24.0	0.13	4.5
							,	Presencia d	le equinode	rmas en l	a capa superi	ficial (0-6	em i	
			1997 - 1997 -											
					i na kata da s	te di serie								
					e des la servición de la servic									
		· .	an sha				a da anti-							
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.10 1000 100	 Margin 201 	in the first state of the	a service and a service of the servi								

				• • •		·	1999 (B. 1997) 1997 - 1997 (B. 1997)						÷.		et gebe					
							e e la felle F	1	1.5	- <u>`</u>				la Cia						
	. Profu		160m. 00		26*1	7* RN	11100	4 * RU				NUCLEO	820:	Profun	didad	1490m: F	osición	27-21	.8N: 111*4!	5'. SW
NUCLEO DEL				ĥ	-0								공자은	Fh		sn'	Н,	0	Pornsided	[+0z
Sección	τη (my)	pH	(mM) ⁴		÷)	FOFO	1	(:)				Secció	n	(mv)	pH	(mH	÷ ()		(T)
												Agua		420	7.4	28.4			e e transforma de la	
Agua	355	1.1	26.5		\otimes dt							0 - 5		295	7.1	28.0	87	.0	0.94	3.42
0 = 5	296	7.5	30.5		5.4	0.E	19 1					5 -10		175	7.3		77	.6	0.90	J.46
-5 -10	126	6.4	27.1		73.4	0.8	9			-	e de la companya Agrica de la companya	10-15		153	7.3	29.7	78	.z	0.90	3.61
10-15	167	7.5	27.4		73.8	, 0. 8	2012					15-20		120	7.4	29.9	74	.8	0.88	3.83
15-20	157	6.7	27.1	2.181	13.5	<u>्</u> र 0.8	7				تسبير والأرار	20-25		88	7.4	78.9	74		0.48	1.75
20-25	37	7.6	23.8	1997	70.6	.0.8	16	26.00				25-10		161		10.5	79		0.87	3.84
25-30	26	7.6	30.9		7Z.9	0.8	7					10-15		124		79 0			0.97	1 56
30-35	-3	7.1	29.3	20030	70.0		36					15 40		140	all an iter vit	70 7	75		0.06	1 16
35-40	0	7.6	28.2		7.1		17 🖓 🖓) for the second se	33-40		LOU AND		69.3	/0		0.00	3.00
40-46	-12	6.9	28.8		59.1	0.8	15			Ş		4U-46		. 38 55 -		<a.1< td=""><td></td><td>.0</td><td>0.85</td><td>J./8</td></a.1<>		.0	0.85	J./8
				an a	200		a l			12 전송	¹ 11,		1977		Steries -					
		1.4			21.27	101-2-2						NUCLEA		Benfun		0010-		270029		1 * 70

NUCLEO B23:	Profundidad	2410	Posició	in 25*40	.2N:	110	
					CA171 T.		and the second second

							Agua	347	7.4	41.0		
Agua	425	7.4	29.3		학생님 문제 가지?		0 - 3	360	7.7	26.8		-
0 - 5	418	7.8	29.0	78.7	0.90		3 - 6-	146	7.7	30.9	87.3	0.94
5 -10	188	7.8	26.2	73.4	0.87		6 -10	111	7.6	29.2	78.1	0.90
10-15	90	7.8	27.1	71.1	0.86	الفكعيا بجرادكي عيروا	10-15	41	7.5	27.9	77.0	0.89
15-20	50	7.7	28.8	73.8	0.87		15-20	103	7.5	27.8	68.8	0,85
20-25	34	7.6	21.8	SS.9	0.77	an <u>a</u> lana ang kara	20-25	29	7.4	28.1	66.4	0.83
25-30	22	7.5	31.5	71.6	0.86		25-30	75	7.4	26.3	64.8	0.82
30-35	14	7.3	28.7	71.5	0,86		30-35	69	7.3	23.8	61-1	0.80
35-40	23	7.5	29.1	71.0	0.86	All and the second	35-40	112	7.2	23.3	61.0	0.80
40-45	10	7.6	31.5	74.0	0.88	1	40-45	163	7.Z	25.0	60.9	0.80
45-50	2	7.5	29.6	75.4	0.89	•	45-50	165	7.2	23.4	62.3	0.81
50-55	3	7.5	27.9	65.5	0.83	1 - E	50-55	42	7.3	24.3	63.1	0.81
55-60	43	7.6	27.9	67.0	0.84	1. A.	\$5-60	89	7.2	21.2	61.5	0.80
60-65	52	7.4.	31.5	65.7	0.83		60-70	144	7.Z	23.7	50.8	0.80
						* · · · · · · · · · · · · · · · · · · ·	10 00		7 7	20 6	61.0	A 91

Capa superficial color café (0-4cm)

		A the second	and the second	(i) A set of an experimental difference of the set o	and the second
	المراجع والمراجع وال	A second of the second s	المراجعة والمراجع المراجع فتعرب والمراجع		
		A CONTRACTOR OF		(1) The first of the first of the second state of the second st	and a second
•	计算法 机结构 经支付 医血管白癜				
		승규는 사람이 많다. 여러 가지 않는 것이 없다.	and the second		

.

201		277 1						de Berr	NUCLEO B24	Profun	didad	3250m; Posi	ción 25*27'	.8N: 109*52	
NUCLEC) BZ6; Prof	undidad	J2JOm; Posic	16n 24 1	. 'APU! INA N	/ .240		an an an tao an a' an tao a Tao an tao an t		EM		1991 (A) 60 - 60 - 60 -	H.,0	Bonnelded	
Secció	Eh Sn (mv)	рН	\$0, (mH ⁴)	^H 2 ^U (≍)	Porosidad Ø	C-arg (2)			Sección	(mv)	pH	(m/1)	(=)	J .	(1)
Agu 4	399	7.5	28.4						Aqua			28.1			
0 - 5	236	7.5	26.6	78.5	0.90	3.37			5 -10	289	7.5	29.1	59.4	0.79	2.44
5 -10	126	7.6	25.2	70.8	0.86	3.35			10-15	246	7.3	27.4	56.4	0.77	2.45
10-15	111	7.6	27.J 28.7	70.0	0.85	3.12			15 - 20	212	. 7.1	28.9	59.6	0.79	2.76
20-25	.5 23	7.6	22.4	63.0	0.81	3.00			20-25	234	7.2	27.6	58.0	0.78	2.62
25.5-30	.5 203	7.6	26.6	65.9	0.83	3.52			30-35	268	7.6	27.3	59.5	0.80	3.30
30.5-35	.5 123	7.3	26.0	63.3	0.82	3.34 2 95			35-40	. 310	7.5	25.8	61.3	0.80	J.26
35-40	.5 110	7.7	20.8	57.2	0.77	2.55	georgigeorgie geboeken. Yn geboender	ಮಕ್ಕೆ ಪ್ರತಿಯಾ ವಿವರ್ಷಗಳು	40-45	295	7.2	26.0	50.7	.0.80	09.C
45.5-50	.5 28	7.5	23.1	49.5	0.72	2.01			- 45-51	JO1		24.2	61.4	0.80	1.25
50-57	.5 25	8.3	20.1	48.8	0.71	2.06			Presencia de te tamaño.	una capa	café en	los 8 cm sup	erficiales y	de gránulos de	diferen-

Presencia de capas cafés y oscuras.

.

NUCLEO 825; Profundidad 2450m; Posición 24*51*.90N; 109*21*.36V NUCLED 827; Profundidad 1600m; Posición 24*07*.9N; 108*37*.3H . المراجع فأشتع والمراجع Agua Agua 28.7 0 - 5 143 7.4 29.6 77.5 0.90 3.37 0.93 0 - 5178 7.3 28.0 83.8 5 -10 152 30.4 65.7 0.83 3.18 7.2 70.4 0.86 5 -10 7.5 28.0 10-15 28.6 63.5 0.82 3.52 162 142 7.2 0.85 25.8 68.3 200 7.1 15-20 180 7.4 31.8 63.0 0.81 3.59 10-15 0.85 68.7 5.7 25.1 20-25 130 7.5 28.0 61.0 0.80 3.54 15-20 207 0.83 65.7 20-25 321 7.4 Z8.7 25-30 110 7.5 28.2 60.9 0.80 3.54 0.82 28.1 64.3 30-35 60.1 0.60 3.54 25-30 Z93 7,6 140 7.5 27.4 0.83 66.0 30-35 295 7.6 26.4 35-40 83 7.5 27.1 58.8 0.79 3.39 62.1 0.81 25.7 40-44 25.3 59.2 0.79 3.47 295 1.4 35-40 0.80 7.5 27.1 60.6 40-45 Z69 Presencia de una capa superficial café oscura (2-5cm) y de una concreción 0.82 45-50 Z29 7.8 30.5 63.3 ovoidal de 2 por 3 cm en la sección 20-25cm. 0.60 7.6 30.5 60.5 . 50-55 177

100000 03); Profu	ndidad 25	30m; Pos i	c16n 22"	27°.52N; 107	29.348		HULLU DEG			อ้มายายจาก 553 ก			
Sección	Eh (mv)	pH.	50 (mH ⁺)	H ₂ 0 (\$)	Porosidad d	C-org (I)		Sección	Eh (mv)	pH	\$0 (m ^H ¹)	H ₂ 0 (\$)	Porosidad 1	C-0 (1
								Agua			29.6		Area de la composición de la c	
Agua								0 - 5	296	7.4	31.2	75.6	0.89	
0 - 5	86	7.7						5 - 10	113	7.4	20.9	69.9	0.85	
0 - 5	-208	6.8	25.8	64.8	0.83	2.54		10-15	102	7.1	JO.8	67.5	0.84	
5 -10	-91	7.3	26.2	61.4	0.80	2.61		15-20	106	7.2	30.1	66.7	0.84	
10-15	-102	7.3	25.8	59.7 =	0.79	2.71		20-25	126	7.5	33.0	66.2	0.83	
15-20	-89	7.4	28.1	58.8	0.78	Z.56		25-30	. 92	7.3	32.1	66.7	0.84	
20-25	-60	7.1	25.5	59.1	0.79	2.40		30-35	108	7.3	32.6	64.4	0.82	
25-30	-54	7.1	27.7	57.6	0.78	2.25		35-40	92, 5	7.4	31.8	57.3	0.84	.•
30-35	-77	7.5	26.2	53.4	0.75	2.46		40-45	44	7.4	28.9	63.9	0.62	
35-10	-54	7.3	27 .9	51.5	0.73	2.29		45-50		7.4	28.7	64.7	0.82	
40-45	36	7.3	28.1	53.4	0.75	z.3 6		50-55	-367	7.4	30.7	63.1	0.81	
45-50	94	7.2	27.0	57.9	0.78	2.35		55-60	- 387	7.2	31.6	64.2	0.82	
50-55	-30	7.8	27.0	58.9	0.79	2.58	- 1993년 br>1993년 1993년 199 1993년 1993년 199	60-70	-383	7.6	JL .1	62.9	0.01	
55-60	39	7.7	27.5			2.54		70-76	-226	7,6	30.6	62.5	0.81	
Capa suber	ficial (O	-2cm) café	ەتىلەتتىرى ئې ئېلى					Agua	73	7,8	27.2	74 11	ri 96	7
			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	소가 가장 같은		화가는 것이 있는 것이 없다.		5 - 10	-176	77	30.0	69.7	0.65	2
			1. A. A.					10-15	- 179	7 2	31.2	66 1	0.03	2.
								15-20	-252	7.0	27.1	63.6	0.62	2.
						i de la sete de		20-26	-153	6.6	79.7	62 4	0.51	2
				1 . J. 1 .		and the second second		25-30	-105	7 2	23.1	59.6	0.24	,
								20-25	-179	7 5	25 d	60.7	0.50	2
				1 I.		a di Nationalia.		35-40	-283	7.2	22.5	58.7	0.28	2.
								40-45	-17	7 6	27.5	62.6	0.81	2.
			1.11.1		lage an an traini		· · ·	45-50	-88	2.5	27-0	\$9.9	0.79	2.
					1			50-55	-256	7.3	29.8	50.3	0.30	2.
					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			55-60	-216	a.a	29.9	61.6	0.80	2.
								60-70	318	7.6	27.8	60.9	0.80	2.
								Presentia de	e una capa	café en	la sección O-	2cm		
				·	Sec. 4	1								
							•							

									· · · · ·					
5			· -			n n Agrickersk								
N						이 같이 있는 것이 같이 같이 같이 했다.								
. NUCLEO 83	12: Profu	didad 3	220m: Posi	ción 21*	11.77N: 110*0	5'.27W		NUCLEO B3	1: Profun	didad 3	410 m; Pos	ición 2023	21.2N: 112*	01 ¹ .6W
	56		د م "	н,о	Deposided	6-0-0			Eh		50 .	H20	Peresidad	C-org
Sección	(mv)	n ∎H.	(mH4)	(=)	1	(*)		Sección	(mv)	ρX	(mH ⁺)	{*}		(*)
Aqua						이 같은 것은 것을 수 있다.		Agua	ېلېدې وله کې ولک وړکې. د تو وې کې د کې ولک وړکې و					
0 -10	293	7.5	30.0	나는 가구 다		이 같은 것이 같이 같이 같이 같이 같이 같이 같이 같이 같이 많이 많이 했다.		0 -10	310		2/13 20 C	77 0	0.00	0 71
0 - 5	374	7.2	29.3	82.2	0.92			U - 3	201	6 5	27+0 98 1	K5 7	0.83	0.19
5 -10	305	7.2	28.7	75.0	0.88			10-15	719	613	27.7	64.7	0.82	0.34
10-15	246	7.3	28.7	74.B	0.88	승규는 것 같은 것		15-20	297	7.0	29.2	61.5	0.80	0.17
15-20	167	7.7	31.6	74.4	0.88			70-25	259 -	6.9	29.6	62.7	0.81	0.15
20-25	178	7.4	29.2	73.2	0.87	이 법법을 받을 수요. 일정	and Maria and Tana Maria and Angelanda and Angelanda Maria ang maria ang maria ang maria	25-30	272	6.9	28.3	64.4	0.82	0.30
25-30	105	7.5	30.7	69.3	0.85	land a start of the second of the second		30-35	284	6.8	28.8	63.0	0.81	0.26
30-35	135		25.9	66.8	0.84			35-40	311	6.9	29.4	65.2	0.83	0.26
35-40	111	8.1	29.6	68.6	0.85			40-45	250	6.6	29.4	64.8	0.82	0.37
40-45	98	7.7	32.0	71.4	0.86			45-50	261	6.7	30.0	63.4	0.82	0.30
45-50	78	7.8	30.3	69.8	0.85		이 이 다 나 전자, 단함 	50-55	259	5.9	30.7	64.5	0.82	0.30
50-55	102	7.9	30.0	70.8	0.86			55-60	317		27.1	63.5	0.82	0.35
55-60	131	7.9	29.8	68.6	0.85		a di Tangan seri	60-65	309	6.5	33.5	66.9	0.84	0.28
60-70	125	7.7	27.3	70.0	0.86	ereest and a second	andaran kara	65-70	257	7.1		68.4	0.85	0.36
70-80	116	1.7	31.5	66.6	0.84	internet and the	et a leger tal	70-75	250	6.7	29.6	66.3	0.83	0.40
80-88	59	7.8	28.2	68.1	0.84			75-80	273	7.2	30.1	66.6	0,84	0.37
Presencia o presentó el	de capas su I tínico co	perficial	les café oscui -otiva	ras, pero	en los demás inte	rvalos		80-85	272	6.8	31.4	51.7	0.80	0.33
prosente e	,,,							85-90	256	6.9	29.6	63.6	0.82	0.29
								90-95	278	7.1	30.0	64.1	0.82	0,36
NUCLEO BJ	3; Protur	Ididad 3	150m; Posta	c108 22~)	().Tax: IDA.12.	·.4W		95-105	-104	7.3	32.1	66.4	0.83	0.20
Agua														
0 -10	222	7.3	27.5					Núcleo colo	or café-roj	izo, de sad	oscuro roji	zo en la suc	perficie a ton	os más
0 - 5	234	7.0	24.3	71.5	0.86			Ciaros en o	el touro.					
5 -10	124	6.7	27.8	61.3	0.80									
10-15	102	7.0	26.7	58.7	0.78									
15-20	37	6.9	26.9	56.7	0.77									
20-25	41	7.5	27.8	59.1	0.79									
25-30	47	7.5	26.7	57.7	0.78									
30-35	31	7.6	26.5	57.2	0,78									
35-40	34	7.4	28.0	55.0	0.76								•	
40-45	58	7.4	27.3	51.1	0.73									

•

50-54]] 7.4 25.7 54.7 0.76 Capa café rojita en los primeros 6 cm con un cambio gradual hasta el intervalo 10-15cm, donde se inicia el típico color verde-olíva.

			1100		20 - J	6.16	22.5	ar.	÷ ŝŝ, i	15 E .	Star.	i più	late.	10	 1 		s 1.5	6 H - 1	1.00			:				e steré		- 1 [°] - 1		·		
NUCLEO E	336; Pro	ofundi	dad (4	0 m ;	Pos	10	őn	23*	36.	5N :	106	5*55	•.ov	n er	1147		1 12		19 M J		NUCL	. EO	834:	Pre	ífún	didad	280	0m; F	osic	10n 22*	381.53N; 108*3	30'.84W
Sección	E) (m)	, ,	pH	- - -	504 mM	3		H ₂ 0 (%)		Pc	ros F	i da d		C-01 (X	7 9						Seco	::61		Eh (mv		pH		SO (mH	С Ч	H20 (1)	Porosidad ø	C-org (1)
Agua	14	Q O			1														11		Agu			24	1	7.4		29.0	,			
0 - 5	-1	3	30.3	3	4.5			0.5	8												0 -	5		17	5	7.2		29.6		57.0	0.77	
5 -10	-2	3	33.9	3	0.1		e È l	0.5	3		1.1	2425				11 A.P			1.1	1.5	5 -	10		្រះ	n de la	7.0		29.8		65.7	0.83	
10-15	2	8	31.7	2	4.8			0.4	6										1.1	COV LA REALE	10-	15	100	80) (7.2		32.2		\$9.8	0.79	
15-20	3	0	25.6	2	0.8			0.4	0	िष्कृष्ण			e Hi	-			8.52	重志	h th	in en	15-7	20	ere è s	7	,	7.Z		30.0		57.0	0.77	
20-24	7	3	31.1	1	9.7	÷.,		0.3	9			<u>.</u>	le l		141)		÷.		l, A		20-2	25	ga estate	S 71	É R	7.0		30.6		58.0	0.78	
Sadlesate													26	191	20				19 J.		25-	30		121	ï –	7.3		30.6		54.3	0.75	
Jeumentu	4160020	y con	1 Fagai	ntas	ac	CON	cna s			4.6	1,325	1.15	t de	r s i den	-		1 A	1 A A A	a se d	<u></u> ²	30-3	35 ·		6.6	1	7.3		28.1				

NUCLEO 837; Profundidad 25m; Posición 23*10*.5N; 106*25*.3N

1

Capa superficíal café con ligeros tonos oscuros declinando al verde-oliva nacia el fondo.

Agua	160	29.3			n i na si isan Ali ang si isan		-				
0 - 5	-8	30.6 50.4	0.72	1.53							
5 -10	-33	29.0 52.3	0.74	1.49	al de terre	NUCLEO	835: Profum	didad	2590m: Post	ción 22*44	1.4N: 108"17".0W
10-15	-16	28.4 47.7	0.70	1.38		•					
15-20	-25	28.8 53.5	0.75	1.45		Agua	115	7.6	30.7	100.0	
30.35			0.70			0 - 5	-26	6.3	29.4	70.2	0.86
20-23	-67	26.8 47.1	0.70	1.64	1	5 -10	4	7.0	70.7	65 A	0 23
25-30	-26	31.0 40.6	0.64	1.40	1. A. A. A. A.				50.7	03.4	0.00
30-35	-30	25.2 46.3	0.69	1.43		10-15	-6	7.2	20.8	62.5	0.81
20 10	20			1.10		15-20	44	7.2	30.3	62.7	0.81
22440	-69	20.8 48.0	U.71	1.48		20-25	50	2.0	10 1	61.8	0.90
10-45	-27	23.9 45.8	0.69	1.40						01.4	0.00
45+50	+71	23.9 47.6	0.70	1.40		25-30	41	7.2	30.5	60.7	0.80
					· · · · ·	30-35	- 52	7.4	29.2	57.7	0.78
50-55	-20	25.1 47.4	0.70	1.43		3530	102	75	10 0	£0.0	0.70
55-60	- 39	24,3 45.7	0.69	1.48	•	53-57	101	1.7	63.3	30.9	0.73
60-70	-11		1	1 - 1		Presenci	a de capas ca	fé en la	superficie y	remanentes	de basalto.

NUC1 ED P1+	Pen fund I dad	BOnt Doe	A	5 T 44	1074051 70
HOLLEV FIL		0001 005	1010157.10	•/8:	107-03-174

											12.1	s.,			¹			1.11	e				1.11					1.1	· ·	3.1
							£ .			·		. t. 1		1 <i></i>				÷	19.9	· · ·		1.125	1 . A.	legi-	12.1	1. 11.		· .	8 E.	· · · ·
5				1.1	Lis fr	124.4	- 19 ger	la pro	(4. <u>19</u> 11)	- 612	19 g	- <u></u>	31	ti i	5 - E (1		1.12		1274	가장	1.00	1.97	11. H	3.2			19 A.	11. N	a ser i la	1.1
~			. . .	Sec. 1					1.1	. 1	14.	111	1.44							1.2	11 - C		- <u></u>	: <u>.</u>		2.13	1.192.2	<u>.</u>		£
NUCLEO PJ	s Profund	1049 2020	m; Pos	1010 n	57.12		101-1	0.38	1.1.1.1.1	125	· · .	1	14.1		NUCL	ĘU P	11 9	rofu	ndid	8 1 8	Bm 🕻 📜	Post	c 1 őr	1,53,	, <u>1</u> 6. '	-7N:	107	05'.	2 W 🤤	
•	Eb		50.	H.	,0	Por	nsidad		H-S.	1.1	1.2	. 1	문제품	1.1	空谷	2. 19	i de	E.	121			ີເດີ	8.8	: Н.	0				. 1817	H "S 🤆
Sección	(mv)	pH	(mH ⁴)		21		1		(mm)		зÈ.	3. s.	100		Secc	íðn -		(mv)		pH		(mH.	3	ંદ)		1002 E	040		{mH}
Agua	278	6.1	29.6						0.06				the second	9. S	Agu	4		334		8.0		27.5								
0 - 5	192	6.1	33.6						80.0				a in the second		0 -	5		267		7.1		34.7	1						. 19. T	1.
5 - IÓ	97	6.1	29.6						0.07			1			5 -1	0		236	645	7.5	C a	25.6								<u> </u>
10-15	195	6.3	29.9						0.09				22472		10-1			306		7.3	9 (7 S					ويت مشر				
15-20	115	6.1	31.0			i e cier			0.10	. 57.1			1997	r ar i Geografie	12-2	0		276		7.5					an an an a'				na e Angel A	Sec.
20-25	87	6.4	25.1						0.08						20-2	5		151			1.17	2355		<u> </u>		565				
25-30	98	6.1	31.4		et de				0.06						25-3	0		202		7.3								있었다. 11		e é
35-40	105	6.3	28.4						0.07			<u>.</u>		in the second	30-3	5	1.541	76			0.1	يىتىرىيە 1945-يارى				- 19 - T			0.000	12.1
40-45	111	6.5	27.4	nyi etkerik L				eriel da Special	0.09	n Gerta. Nga ara					4	U.		111			23 () 2	1. N. S.		100		- 51 -	191		ب تېرز د	se es
45-49	213	6.3	28.7	, s (s to	See 8	9.94%.		- 19	0.08						- 40-4		go.vitini Salahari	415		.4				(- 						
40-63	Marca.	compareto		3.1	gara a		- 19. A.					1444			43-5	u:::://	uy co	mpaci	.0			- 4.4			N7863	/1920B			19. S.	19-12-12

	۶h		so*	H ₂ O	Porosidad	H ₂ S		Agua	329	5.7	25.5		. 0.05
Sección	(mv)	рH	(mH ⁴)	(2)	4	(mH)		0 - 5	207	5.6	27.7		0.08
Aqua	123	6.3	29.2			میں اور	عقبمت تعبقها بنبية يسبيني	5 -10	164	6.0	27.4	andra • a stratistication T	0.07
0 - 5	325	J.8	27.7	72.6	0.87	0.09	and the second secon	10-15	110	6.8	27.1		0.07
5 -10	123	5.5	28.7	62.8	0.81	0.16		15-20	190-	0.0	27.2		0.08
10-15	238	7.5	28.5	63.2	0.81	0.15		20-25	154	7.0	28.9		0.09
15-20	109	7.0	27.6	60.9	0.80	0.22		23-30	74	7.6	23.3		0.00
20-25	135	5.8	27.6	59.8	0.79	0.18		36-40			23.4		0.00
25-30	109	7.3	29.0	60.5	0.80	0.11	이는 것 같은 것이 같이?	40-46	10	7 7	27.7		0.02
30-35	124	7.7	28.4	61.0	0.80	0.16		45-50	-10	7.2	25.0	•	0.20
35-40	207	7.7	28.2	58.6	0.78	0.19	te fa esta de	50-55		7.2	23.9		0.03
40-45	204	7.8	29.5	61.8	0.81	0.23		55-50	-14	7.2	23.5		0.05
45-50	226	7.6	27.9	58.2	0.78	0.15	1. A. S.	50-65	-45	7.6	22 7		2 09
50-55	168	7.5	31.0	51.6	0.73	0.15	and the second	65-70	•54	7.6	22.9		0.10
					•			70-75	-61 -	7.1	21.3		0.14
							•	75-60	-64	7.4	23.0		0.10
•								80-85	-71	7.4	20.2		0.12
• ·					e a ser a set			85-90	-65	7.4	20.2		a.07

205

. . .

		na su a su turunt									
NUCLEO P7:	Profund	Idad 270	00m; Posición	22*40'.9N: 108*2	B*.4W	NUCLEO PS	Profun	didad 26	40m; Posic	10n 23*02'.3N: 108*03'.	. O W
Sección	Eh (mv)	ρH	so [*] (mH ¹) (l ₂ 0. Porosidad ≡) ø	H ₂ S (mN)	Sección	Eh (mv)	pH -	50; (mM))	H ₂ O Porosidad (;)	H ₂ S (mH)
Agua			28.5		0.06						·
0 - 1	417	7.5	28.7		0.07	Aqua	402	7.8	30.9	21 전철 것이 있어?	0.(7
J - 6	331	7.8	28.2	한 물건을 가 있었다.	0.11	U - 3	205	D.2	28.1		0.20
6 -10	199	6.1	28.7		0,12	10 15	130				0.27
10-15	153	8.1	28.9	i ante i a come con la caraci Esperante en entre entre interese	0.12	15-2n	120		30.7		0.20
15-21	107	7.8	29.5		0.11	20-26	116				0.01
					متحمد موتد ببرجين از يحاذبوا كفري	26-10	170		70.5	n a Constantino de Carlos de C Carlos de Carlos de C	0.19
						30-35	109	7.9			0.27
NUCLEO PB	; Profund	iidad 28	45m; Posición	22-38.4H; 108-4	0°,5W	15-40	210	7 0	20 2	line in the second s	0.15
Aqua	375	8.0	28.2		0.06	40-45	245	7.6	29.2		0.17
0 -2.5	390	4.8	32.8	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	0.10	45-50	251	7.6	30.6	···· -	D 22
2.5- 5	290	6.9	28.7		0.11	50+60	227	7.A	29.0		0.27
5 -7.5	170	6.0	27.9	· . · · ·	0.11	60-75	111	7.3	28.7	the second se	0.21
7.5-10	224	5.6	28.1		0.10		•••				
10-15	176	6.7	28.9		0.15	NUCLEO P6.	Profun	didad 29	80m: Posic	16n 22*54'.8N: 108*15'.	. 1 W
15-20	160	7.3	28.5		0.11						
20-25	169	6.9	28.9		0.12	Agua	297	5.5	28.7		0.07
25-30	189	7.E	28.9		0.11	0-3	292	5.5	28.9		0.08
30-35	230	7.0	28.2		0.08	3 -10	134	6.4	28.2		0.09
35-30	224	6.6	27.6		0.08	10-13	163	6.0	28.7		0.10
40-45	167	6.8	28.7		0.12	13-20	144	1.0	28.2		0.09
45-60	157	6.8	29.0		0.11	20-25	137		29.0		0.09
50-55	161	6.7	27.6	,	0.14	25-50	169	6 0	24 6		0.12
55-60	151	7.0	28.9		0.10	35-35	100	6.3	24.3		0 10
60-65	147	6.9	29.7		0.13	40-45	205	6.3	20.3	•	0.10
65-70	158	6.8	28.7		0.10	46-45	203	7 1	29.3		0.10
70-77	129	6.7	24.5	•	0.10	40-65 60-65	110	6 3	20.2		3.10
						50-55	119	0.3	20.7		0.11

÷

-	n - n f	 و مرد د د د	101- P	orielan 2	6*10'.8N: 11	0*50'.OV			NUCLEO P9	; Profun	didad_29	70m: Posto	:10n 22-30'.4N; 108*55	*.1W
S NUCLEO P25	; Protur	101040 L,	(U)	н ₇ 0	Porosida	d H ₂ S	i Sala ya ƙ			Eh		50.	H20 Porosidad	H ₂ S
Sección	(mv)	pH,	(mH ⁴)	(ī)		(mH)			3666104	, <i>1</i> 71 ▼ <i>1</i>	en en			(mar)
			10 5			0.06			Agua	385	7.5	28.7		0.07
Agua	375		20.0	이 같은 영화	영양 김 승규는	0.07			3 -2.5	399	7.2	28.1		0.07
0 - 5	165	7.4	28.7			0.10	이 영화는 아니는 것	이 노동물 등을	2.5- 5	349	2.7.1	28.5		0.11
5 -10	63	7.4	28.1	영제하는 것을		0.10			5 -7.5	219	7.2	28.9		0.14
10-20	24	7.6	27.4			0.12			7.5-10	163	7.8	28.7		0.23
20-30	- 38	7.5	28.9			U.13			10-15	130	7.6	28.2		0.23
10-40	-65	7.5	28.4			0.18			- 15-20	161	8.2	28.7		0.19
40-50	12	7.6	28.2			0.14			20-25		7 R	28.1	en e	0.21
50-70	126	7.5	28.1	na si ka sa		0.27	بدائية وليتريد		76 10			50 A		0.16
70-90	50	7.5	27.6			0.16			23-30	109		20.4		0.13
90-110	-3A	7.4	28.4			0.12			10-15	121	1.8	69.5		0.20
110 130	176	7.5	26.3			0.19			35-40	144	7.6	29.0		0.22
110-130	110		16 1			0.15	27 19 19 19 19	생동을 감각	40-45	142	7.6	28.1	•	0.22
130-150	231	0.4	20.3				1.794.000 C		45-50	163	7.9	29.5		0.21
			19 A. 19		그는 가격 가지				50-55	233	7.7	28.5		0.19
			a da qu	an the second					55-60	284	7.7	28.7		0.14
			a di salata	la la servici	a a mera de la datas	사람을 가지 않는	e i strandije iza V na strandije iza	- 115 - 114 - 114 - 114 - 114 - 114 - 114 - 114 - 114 - 114 - 114 - 114 - 114 - 114 - 114 - 114 - 114 - 114 - 1 21	60-65	265	.7.7	28.5	•	0.12
			1. a. a. a. b.						65-70	143	7.6	28.7		0.12
			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	a ser s	이 사람은 이 가슴을				20-78 6	168	7.5	2R 1		0.12

28.1 NUCLEO PI9: Profundidad 3400m; Posición 23"59".3N; 108"53".0W

Agua	374	7.6	29.2			0.07
0 - 5	224	7.5	30.4	65.1	0.83	0.27
5 -10	124	7.3	28.4	68.9	0.85	
10-15	132	7.2	27.9	62.4	0.81	0.31
15-25	274	7.4	27.7	63.3	0.81	0.27
25-35	215	7.7	27.7	64.1	0.82	0.24
35-50	238	7.2	27.7	54.1	0.75	0.26
50-70	107	7.4	25.5	41.2	0.64	0.20
70-90	251	7.6	22.9	50.0	0.79	0.15
70-110	Z69	8.0	22.7	61.4	0.80	0.15

APENDICE 3

CONCENTRACION DE METALES PESADOS EN LOS NUCLEOS Y SEDIMENTOS SUPERFICIALES DEL GOLFO DE CALIFORNIA. NUCLEO B1

Sección ug/g (Fe en t) Cu HI Co. Pb .Cd Ag (cn) Zn 100 0 - 5 24.4 30.0 9.7 38.8 133 56.1 3.64 2.25 405 5 - 10 24.9 35.9 7.8 37.3 131 -48.3 4.83 1.84 405 10-15 22.5 34.8 15.6 36.9 118 52.2 4.59 1.87 399 15-20 21.2 18.7 9.5 32.6 106 49.7 2.74 1.60 340 3.04 20-25 22.9 24.4 6.6 36.Z 11B 53.1 4.66 1.90 380 3.32 25-30 22.9 24.5 12.8 37.7 119 50.3 4.34 1.91 391 3.37 30-35 24.7 30.5 13.8 38.4 124 48.1 3.81 1.50 411 3.44 15-40 25.0 30.8 15.4 37.5 129 54.3 3.85 2.20 414 3.55 40-45 25.6 29.7 9.6 38.5 130 46.9 3.26 1.20 416 3.56. 45-50 27.0 42.3 14.2 38.4 139 55.5 4.63 1.55 423 3.61 50-55 25.6 39.0 10.2 36.5 133 55.0 3.81 1.80 425 3.58 \$5-60 24.3 50.2 8.1 60.7 134 59.0 5.02 2.08 424 3.52 60-65 19.5 21.7 7.8 34.6 138 56.5 4.54 1.64 .463 3.46 65-70 31.7 163 10.2 165 178 52.7 4.43 Z.66 451 3.67 70-75 36.9 141 11.5 97.3 228 66.7 5.50 1.82 457 3.68 30.1 75-80 58.3 13.7 57.8 216 59.1 4.12 2,50 430 3,57 80-85 22.1 26.8 10.7 34.3 123 61.7 3.55 1.50 397 3.42 85-90 22.9 22.2 14.1 32.7 123 55.5 4.25 2.20 418 3.59 90-100 21.1 21.6 9.2 33.0 125 50,6 3.54 3.50 2.31 407 21.2 27.4 37.6 124 2.69 413 3.51 100-113 9.4 57.1 3.86

ى بالمائر بىرىكە بەرەپە سەرەبى كىلىرۇپ يېرىسىيىر بارىپى

4

1	a na star ann an star An st	alah di kampini Ma		navan som T	n an gri Au	· · · · · · · · · · · · · · · · · · ·	398 338 - 1 	nanan ara 1918 Ali 1919							
1.1				e der	1.1.1			an hai							
	1.1		1 - A			영산문화						1		$(x_i, f_i) \in \mathbb{N}$	
8 a - 19	1.1	lander.	1.	14							10 m	5. S.			
t ti Naga	a an isteac Atabé			NUCLE) BZ							1.1			
n a da series de la composición de la c	de la composición de La composición de la c		S. 1	Secci	រត]្រា	*	1997 - 1997 -			pg/g	(Fe en 1				
1997 - S.				(cm)		initia initia. Ny INSEE dia	8 61 - 1		Cr	ZN	PD	Cđ	Ag	Kn	Fe
Fé	가지하네	2016년 1788		0 - 5	194	33 5	40.0	17 1	56 S	141	45.4	: # 08	1 77	740	3 76
				5 -10		31.0	48.9	R.7	57.2	136	27.0	5.09	1.75	312	1 16
3.53				10-15		33.6	46.5	11.2	60.7	142	53.1	3.63	1.60	320	3.35
3.62				15-20		33.7	44.8	8.2	58.2	138	32.6	4.70	2.42	317	3.52
3.38		9	YAN R	20-25		32.4	46.9	15.1	55,3	133	31.6	6.00	1.27	305	3.61
3.04		e ne	공신권	25-30		-31.7	40.3	10.0	54.3	134	39.4	4.82	2.68	314	3.59
3.32		e la Alexandre de Carele de Car		30-35		_ 33.1 _	42.3	15.7	47.8	131	43.7	5.63	Z.55	300	3.50
3.3/		명이 있는		35-40		30.5	46.5	5.2	49.0	136	49.1	4.51	2.00	308	3.61
3.94	i dari	ф. "З.	5 E C -	40-45		27.3	40.5	6.8	44.4	132	48.9	4.84	1.61	301	3.49
3.55		19 A.	sa lih	45-50		25.6	29.1	10.0	52.6	118	39.5	4.09	1.25	293	3.40
3.61	teg ete p	1.211		50-60	1.14	28.1	55.2	8.7	67.5	128	50.2	4.23	1.84	316	3.56
3.58	n an An ann an An	1		60-70		25.5	28.9	11.5	44.0	124	39.4	4.08	1.42	293	3.29
3.52				70-82		17.8	17.4	13.0	32.5	104	z7.1	3,64	1.23	313	3.08

NUCLEO 83

0 - 5 84.4 75.3 15.8 49.5 225 35.2 1.55 1.38 4229 3,44 5 -10 88.4 82.3 18.4 49.6 232 42.9 2.35 729 1.85 3.33 10-15 90.2 82.3 20.4 50.6 237 43.B 1.54 2.39 628 3.38 15-20 92.0 82.5 12.5 52.6 232 48.9 4.04 1.69 605 3.33 20-25 17.1 51.5 236 43.4 85.4 75.1 1.19 1.87 565 3.41 25-30 87.9 82.1 22.9 57.1 242 48.9 2.15 2.86 610 3.66 30-35 90.3 84.0 20.4 53.4 252 49.7 2.91 1.88 726 3.58 35-40 93.2 88.7 21.0 52.4 259 39.5 3.36 2.83 726 3.74 40-45 87.5 84.2 16.1 51.8 240 41.8 3.33 1.23 697 3,60 45-50 14.9 54.2 243 2.51 93.0 90.0 36.9 1.25 615 3.57 50-55 89.0 85.2 16.7 49.3 240 40.2 2.18 1.63 631 3.41 55-60 84.0 82.3 12.7 54.6 232 43.5 2.05 2.05 666 3.46 60-65 14.7 49.8 220 87.3 87.2 66.8 3.73 2.31 618 3.40 65-70 81.1 84.1 16.1 54.5 231 51.0 1.33 1.40 683 3.49 70-75 79.7 85.0 18.1 54.2 234 48.8 2.50 z.33 699 3.58 75-84 78.0 77.0 15.8 49.4 223 29.9 1.54 1.89 3.50 679

35-43(o)

						الله المحمار ال	Salar ng ng Salar ng ng	ياري الداري الريانية				usur ente n L					4 7 7 			
210						ott Kjelski														
NUCLEO 84												 	NUCLEO 86				اید. در باری			
Sección (cm)	Ču		60	Cr	<u>ия/д</u> Дл	(Fe,Al Pb	<u>r)</u> Cd	Ag	Mo	Fe	- A1 -		Sección (cm)	<u>cu</u> –	NS	<u>Co</u>	Çr.	<u>ua/a (</u> Zn	Fe <u>Al 3</u> Pb) .
0 - 5	L7.6	19.6	10.0	27.2	97.6	22.2	1.24	1.42	407	3.10			0 - 5	34.1	25.8	16.9	40.8	135	47.7	4.18
5 -10	14.6	17.8	5.2	6.2	92.5	22.6	2.34	0.90	367	2.98			5 -10	33.7	27.3	16.2	40.3	133	43.6	4.13
10-15	15.6	17.2	6.6	23.7	93.8	28.5	2.94	0.87	374	2.95			15+20	16.0	14.0	15.7	40.2	135	45.8	4.71
15-20	10.0	14.9	1.9	25.6	106	20.9	1.84	1.67	346	2.86			20-25	34.0	28.8	18.7	15 2	130	50.2	4.05
20-23	10.9	10.9	0.3 ·	23.3	106	12.9	4.08	2 10	- J46	2.98			25-30	29.9	27.5	18.8	36.0	130	39.3	4.20
10-35	17 4	17 4	5.5	26.0	09 0	24.5	1 50	2.39	120 -	3.03			30-35	31.3	27.5	14.8	40.5	134	33.3	2.40
15-43	18.5	20.5	<1.9	26.2	80.A	21.4	2 57	1.71	267	2 52			35-40	28.4	32.2	15.0	40.6	122	39.4	2.58
222				20.2	03.0		2.37	••••	-	£.J.	 1 		40-45	26.8	32.5	14.5	36.9	122	43.0	2.82
													45-50	27.3	29.4	16.6	34.0	115	44.5	3.22
NUCLEO B5									· · · · · · ·			-	50-55	31.2	25.3	20.3	36.1	122	43.6	4.50
													55-60	29.4	35.5	14.2	42.9	119	35.Z	2.77
0 - 5	54.5	65.6	17.4	37.4	184	38.6	0.88	2.28	4846	2.84	1.43		60-70	28.0	29.3	14.8	41.4	121	35.3	3.58
5 -10	56.8	71.4	23.3	35.8	185	46.0	1.21	2.90	2050	2.68	1.75		70-60	29.1	37.2	16.1	39.1	120	45.3	3.55
10-15	52.5	6.2	11.0	22.4	105	40.0	1.58	1.93	1134	2.79	2.22		80-89	27.3	31.5	18.0	37.0	116	37.3	3.85
15-20	58.9	63.5	14.1	39.3	187	42.4	0.86	2.44	1384	2.66	1.55									
20-25	64.2	83.5	23.8	36.5	224	42.5	0.88	2.29	1253	2.85	2.53									
25-30	60.9	77.5	18.5	37.5	212	37.7	<0.50	1.89	1267	2.74	1.47		NUCLEO 87							
30-35	65.4	86.1	25.3	40.5	228	42.6	3.33	3.15	1260	2.96	1.70									
35-40	64.0	81.4	17-8	39.4	227	43.7	0.90	2.70	1478	2.92	1.89		. 0 - 5	31.3	38.3	18.0	39.3	125	44.4	1.19
40-45	71.0	90.5	20.3	39.1	230	38.2	0.87	2.61	1457	2.91	1.82		5 -10	37.4	27.5	15.3	40.7	116	31.2	1.52
45-50	78.5	79.6	21.1	41.5	228	43.8	2.16	2.34	1396	2.98	1.91		10-15	29.6	32.8	20.5	39.1	117	31.0	0.84
50-55	64.8	85.3	26.6	41.2	223	34.4	2.43	3.31	1188	2.90	1.69		15-20	29.4	34.4	18.7	42.4	118	Z9.0	0.86
55-60	63.5	85.6	18.8	41.3	240	34.5	1.87	2.95	1239	2.87	2.23		20-25	30.4	31.9	11.7	9.81	109	9.16	2.08
													23+30	36.9	37.7	18.5	40.5	117	32.0	1.57
													35-35	10.7	37.7	41.2	42.7	119	30.2	1.13
NUCLEO B4													10.45	39.0	Jd.2	14.5	4.1.4	124	37.4	3.00
													45-50	33.8	30.5	13.9	40.9	118	32.3	1.45
15-43(c)).O	18.2	9.8	3.9	27.0	8.3	4.25	L.14	40.0	0.82			43-30	42.6	31.7	41.1	41.1	124	33.6	3.65

3.1 19.1 16.5 4.1 32.0 <2.0 2.93 0.52 54.8 1.37

		÷.,		-	. . '	- 12			- 21			2.55		
n	IUCL	EC	3.	E	6	•		11.31	÷.,,	÷.,			÷., 1	
÷.		\mathcal{A}		• •		<u>, 1</u>	2.5	- ÷	21	- 1	· • •	ej el	 11	

60-70

18 - C. (<u> </u>	1997	<u>.</u>		.ug/g (Fe Al 1	}				
Sección (cm)	Cu	NI	Co	Çr.	Zn	80	Cd	Ag	80	fe	ÂÌ
0 - 5	34.1	25.8	16.9	40.8	135	47.7	4.18	1.64	1219	1.69	3.65
5 -10	33.7	27.3	16.2	40.3	133	43.6	4.13	2.34	820	3.74	3.14
10-15	34.4	34.0	15.7	40.2	135	45.8	4.71	2.10	728	3.61	3.90
15-20	36.0	30.3	15.8	36.6	140	56.Z	4.73	1.93	686	3.72	4.41
20-25	34.0	28.8	1B.7	35.2	130	50.0	4.05	1.24	685	3.85	4,27
25-30	29.9	27.5	18.8	36.0	130	39.3	4.20	1.84	695	3.66	3.40
30-35	31.3	27.5	14.8	40.5	134	33.3	2.40	2.17	638	3.55	1.38
35-40	28.4	32.2	15.0	40.6	122	39.4	2.58	2.63	686	3.65	5.12
40-45	26.8	32.5	14.5	36.9	122	43.0	2.82	1.59	605	3.51	4.65
45-50	27.3	29.4	16.6	34.0	115	44.5	3.22	1.53	597	3.47	2.89
50-55	31.Z	25.3	20.3	36.1	122	43.6	4.50	1.83	624	3.44	2.73
55-60	29.4	35.5	14.2	42.9	119	35.Z	2.77	1.21	561	3.33	
60-70	28.0	29.3	14.8	41.4	121	35.3	3.58	1.91	606	3.27	Z.46
70-60	29.1	37.2	16.1	39.1	120	45.3	3.55	2.06	666	3.42	2.26
80-89	27.3	31.5	18.0	37.0	116	37.3	3.85	2.06	596	3.28	1.65
NUCLEO 87											

0 - 5 31.3 38.3 18.0 39.3 125 44.4 1.19 1.35 438 3.02 5 -10 37.4 27.5 15.3 40.7 116 31.2 1.52 1.86 364 2,88 10-15 29.6 32.8 20.5 39.1 117 31.0 0.84 2.85 389 3.26 15-20 29.4 34.4 18.7 42.4 118 29.0 0.86 1.94 404 3.24 20-25 30.4 31.9 11.7 38.8 109 31.9 2.08 2.60 381 3.12 25-30 36.9 37.7 18.5 40.5 117 32.0 1.57 1.57 420 3.13 30-35 30.7 37.7 21.2 42.7 119 30.2 1.29 1.29 454 3.31 35-40 39.0 38.2 14.5 43.9 124 39.4 3.00 3.01 461 3.27 40-45 35.8 30.5 15.9 40.9 118 32.5 1.23 1.76 462 3.24 45-50 33.9 31.7 21.1 41.1 124 33.6 3.85 2.38 466 3.31 50-55 41.9 36.3 15.1 40.3 123 27.5 1.18 3.36 470 3.18 55-60 33.7 39.4 21.0 40.8 115 33.6 1.64 3.29 460 3.15

33.3 2.18 2.53 413

3.23

36.8 33.4 19.2 38.0 118
NUCL EO	810	

						1 - E E E E			1.17		1.1	1.1	
Sección			<u> </u>	191743	ug/g {	Fe en i	2)		تدمظب		1.5	dişa d	
(cm)	Ču	- N1 _	Co	Cr	ζn	Po	Cd Sta	Ag	- Mn (Fe	1950	80 L	
				1.15			500						Millioner,
0 - 5	54.4	65.5	25.Z	37.0	176	59.9	2.10	2.28	6958	2.67	. s		
5 -10	49.5	63.0	18.8	35.8	165	46.6	3.49	1.92	9958	2.51		227	
10-15	53.3	66.0	20.7	36.2	170	47.2	4.59	1.94	5916	2.62	18.		
15-20	53.4	66.2	22.5	33.1	166	56.1	2.48	1.95	6832	2.38			
20-25	47.7	65.7	21.7	32.8	159	49.5	3.34	2.04	4916	2.45	17.7		
25-30	48.4	55.2	18.3	33.2	153	45.5	2.40	1.55	4155	Z.22	Sati		1.000
30-35	46.4	59.0	17.8	33.7	150	47.0	3.60	2.88	4600	2.37			
35-40	33.9	71.8	24.4	36.0	183	70.B	4.76	4.82	5933	2.30			
40-45	41.3	47.5	9.3	42.6	100	33.2	3.80	2.24	297	2.09			
45-53	41.B	60.3	15.0	33.6	140	16.0	4.00	2.88	218	2.08			
											3.25	2190	
							· · · · · · · · · · · · · · · · · · ·		240-0			-1-1-1-1	ing the state of t
								· · · .	192			1.00	
								···· · · · · ·					
MOCTED BIT							·				بية. 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990	1.500	n de la compañía A compañía de la comp
0 - 5	40.6	48.2	16.1	47.3	99.4	32.9	3.76	1.51	226	Z-16			
5 -10	45.1	46.1	15.4	48.0	109	38.2	3.93	Z.22	224	Z.23	1.1		
10-15	43.9	50.0	13.3	47.3	111	29.4	5.37	1.97	215	2.25			

123

142

124

32.7 4.97

31.8 5.18

31.4 4.78

32.9 4.65 1.97 207

36.3 5.35 2.32 223

36.0 5.33 2.66 243

44.0 5.46 3.09 248

2.30 213

2.94 221

2.05 210

2.34

2.38

2.48

2.39

2.57

2.69

2.76

4	÷	فالتوجارية	en 100 de			111.06	21 - 12 - 12 -	المحمد ف				- englise	11.1718	- 1. e - 1. f - 1	19 S. A. A.	- er (1975	******	ng a s	1.122.4	12.5.25
		2.15			10.10	, -C	· · · ·				÷.,							1		1.11
	e 2.		11 A			di kurde.	1911				÷				1.1	e de	1	191		یہ آب
1.			1.000	1.2	1.20	in en di	·	e - 2			· -	110	1.21		1.1		<u>1</u>	- i		8 M
	(100		éricia.		1. State 1.	÷				2.1			e fa ta		1.4		1.5.3
- 1		,	- 1941 - A	- 22			1.1 611	: * (?)		<u>,</u>		1.1				1.1	$\gamma \to \gamma_1$	10 - 12 A. 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -		1.15
		1.2.5	1.124	-	, sete	Sec. Co.	Yasti s	1 . C. J.		1 . J.				- 2° - 1	11.11	NUCI	EO E	9		
0.JI		ire -	2.94		e 1945				가영화	1.1		44	с М.,	1.11	1.1				1.12	1.2
	· ·	6 e . 1.	1166		11.11	294 A 4	a 1926)	1 - AN				10.00		· • •			2 1 A A A		- 14 î.,	

				ne ne prese Stationes Stationes	en en en en en en Ser en en en en en Ser en en en en en en en	а«" Сл. – ям"с					
and the second		1.1.1.1.1.1.1					1.				
					8. A						
		Zur Heiren. Mitter									
	NUCLED B9										
	Sección					in in 1	En en 7	•			
	(cm)	Cu	NI.	Co	Cr :	<u>20,3 3</u>	10 10	<u>. ca -</u>	Ag	Mn	Fe
						500					
	0 - 5	40.1	45.1	19.3	42.2	117	33.5	3,45	2.91	505	2.07
	5 -10	52.9	63.6	14.9	64.7	128	33.5	4,46	2.97	334	2.06
	10-15	42.2	45.6	18.7	45.3	119	35.9	4.44	3.89	237	2.14
	15-20	37.7	46.0	12.7	42.4	111	28.0	3.60	2.91	224	2.09
la la factoria de la companya de la La companya de la com La companya de la com	20-25	43.6	52.1	20.6	55.2	131 -	27.5	3.85	3.18	235	2.21
	25-28	43.3	53.7	13.3	48.8	129	29.4	4.12	2.31	240	2.28
					11	· .					
				en e fr	÷ .						
	NUCLEO B8										
		an part	6 ¹ 1								
	0 - 5	41.9	51.6	14.2	58.6	131	34.4	4.23	2.62	259	2.95
	5 -10	42.2	46.9	11.1	60.0	133	30.5	3.30	2.11	234	2.84
Reading and	10-15	42.1	57.0	17.4	64.2	133	30.1	5.21	Z.64	243	2.94
	15-20	52.4	70.0	18.8	57.2	146	45.6	3,50	3.30	236	2.97
والمعادية والمتعاوية	20-25	45.0	63.6	14.Z	63.8	135	33.B	4.15	2.27	225	3.09
	25-30	67.7	78.3	18.7	63.0	164	68.8	7.85	4.50	225	3.06
	30-35	44.9	61.8	20.4	64.7	141	22.3	4,89	2.97	234	3.23
	35-40	44.9	61.8	12.6	66.7	143	30.2	2.80	2.20	234	3.18
	40-45	50.Z	64.3	15.9	64.5	144	26.7	6.00	2.48	233	3.11
	45-50	45.5	60.8	11.1	67.5	146	38.4	5.40	1.95	232	3.13
	50-55	48.5	67.5	17.4	68.3	144	38.7	4.58	2.11	234	3.21
								4.60	7		
	55+60	45.4	64.Z	19.0	69.5	140	38.5	4.58	2.33	229	3.26

•

211

15-20

20-25

25-30

30-35

35-40

40-45

45-511

40.2

48.6

45.8 13.1 51.0

57.4 16.9 49.8

43.8 55.6 16.1 53.8 115

54.8 57.2 18.8 58.1 134

51.2 58.6 13.5 65.3 134

46.5 62.2 15.4 54.5

50.3 53.6 8.9 51.5

NUCLEO B14

Seccion					q/g	116.001	*/					
(cm)	Cu	NT	Co .	Cr	Zn	Pb	Çd	Ag	Mn	Fe	AI	-
-				1 E .		11 A.						
0 - 5	45.5	48.0	22.1	30.0	129	35.8	1.89	2.65	10272	1.90	3.25	
5 -10	45.3	44.2	15.6	29.9	124	39.2	2.99	1.40	8169	5.00	1.90	
10-15	46.2	52.5	21.7	28.3	132	32.0	0.87	0.87	13636	1.96	1.88	
15-20	51.5	49.5	18.7	28.4	: :132	34.9	2.55	2.73	3602	Z.06	1.96	and the second
20-25	45.7	46.0	16.9	28.5	128	26.0	3.61	2.28	1707	2.33	4,47	
25-30	38.5	38.0	20.4	29.3	119	38.5	2.51	2.41	4293	2.14	7.47	
30-35	35.2	36,5	18.8	30.2	111	34.6	2.07	2.05	2300	2.36	8.89	all a l'Arthreige
35-40	31.2	43.0	16.6	30.7	109	38.6	0.87	1.92	1341	Z.93	5.58	100 C 100 C 100
40-45	31.1	31.5	15.5	34.0	109	31.8	2.08	1.92	863	3.09	9.24	
45-50	29.6	36.6	17.8	31.6	114	38.4	1.55	Z.24	838	3.34	8.24	
50-55	29.3	36.0	20.2	31.3	111	34.7	1.55	1.37	708	3.39	7.87	
55-60	30.5	39.5	21.0	35.1	115	29.2	1.34	1.96	677	3.60		
60-67	31.3	33.4	20.5	35.4	114	32.0	1.56	1.93	693	3.48	5.37	
						÷		·				
NUCLED BIS												
0 - 5	42.0	35.Z	21.1	33.1	143	48.4	2.23	1.55	2382	3.39		
5 -10	36.8	34.6	17.9	32.6	128	31.1	2.55	1.18	1191	3.31		
10-15	31.0	26,0	19.7	30.3	112	28.0	0.51	1.37	855	3.34		
15-20	31.4	JJ.8	21.3	27.9	115	25.2	1.39	1.21	868	2,98		
20-25	43.6	46.1	14.1	35.8	129	28.1	3.43	1.54	1605	2.19		
25-30	47.6	56.3	16.5	32.3	153	28.7	1.40	1.92	2771	2.42		
10-15	52.9	62.4	23.A	30.3	184	41.4	1.37	2.05	2557	2.55		
35-40	55.8	62.1	19.1	16.0	185	41.5	v0.50	1.66	1405	2.59		
10-46-5	51.0	61 7	76 9	11 0	100	70,5	7 80	1 07	1410	2 41		
	-1.0	~ * * * /	e D	21.0	100	33.4	2.00		1410			

		· · · · ·					200 y 1 1 1 1	•			NUCL	EO 812					a/n (f	e.A1: z		<u> </u>	<u>.</u> .			
J	NT	60	Cr	Zn Pb		Ag	Mn	Fe	AI	- :	(cm)	Cu	- NT	Co	Cr	źn	Pb	<u> </u>	Ag	An	Fe		
.5 3 5 7 5 2 2 1 5	48.0 44.2 52.5 49.5 46.0 38.0 36.5 43.0 31.5 36.6 36.0	22.1 15.6 21.7 18.7 16.9 20.4 18.8 16.6 15.5 17.8 20.2	30.0 1 29.9 1 28.3 1 28.4 2 28.5 1 29.3 1 30.2 1 30.7 1 34.0 1 31.6 1 31.3 1	129 35.8 124 39.2 132 32.0 132 34.9 128 26.0 119 38.5 109 38.6 109 38.6 109 31.8 114 38.4 111 34.7	1.88 2.99 0.87 2.55 3.61 2.51 2.07 0.87 2.08 1.55 1.55	2.65 1.40 0.87 2.73 2.28 2.41 2.05 1.92 1.92 2.24 1.37	10272 8169 13636 3602 1707 4293 2360 1341 863 838 708	1.98 2.00 1.96 2.05 2.33 2.14 2.36 2.93 3.09 3.34 3.39	3.25 1.90 1.88 1.96 4.47 7.47 8.89 5.58 9.24 8.24 7.87		0 5 -11 10-1 15-2 20-2 25-3 30-3 35-4 40-4 40-4 45-5 50-5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	46.6 39.3 35.3 34.5 36.1 35.7 37.7 38.2 29.5 39.9 38.7	64.8 52.3 47.6 45.3 48.4 53.5 54.0 56.6 48.3 56.1 56.5	19.8 6.0 6.3 9.6 10.7 11.0 11.2 14.6 11.1 12.5 9.4	30.9 42.8 43.8 46.8 44.0 47.4 59.3 55.1 39.3 45.9 44.1	161 90.7 76.6 83.3 87.9 91.4 92.4 99.2 73.8 90.9 89.1	25.8 35.1 22.4 30.9 29.8 26.7 22.8 19.2 18.8 26.3 18.8	2.72 3.90 3.11 4.60 5.10 5.26 3.90 6.48 4.57 4.50 3.85	2.66 1.90 J.J6 2.04 1.93 2.66 1.98 2.29 1.38 1.74 2.25	7375 209 169 159 165 167 202 241 148 170 171	2.44 2.09 1.82 1.93 1.99 1.97 2.09 2.33 1.70 2.05 2.06	10.46 13.96 8.18 9.87 12.78 13.45 16.13 8.36 9.41 9.00 8.15	

NUCLEO B13

0 - 5 55.2 40.4 18.4 41.1 111 44.2 5.11 2.01 239 2.26 5 -10 41.8 35.2 14.2 42.4 94.3 46.5 4.18 1.92 202 2.00 10-15 28.8 39.0 13.1 35.7 79.2 32.2 3.70 2.01 156 1.68 15-20 32.0 38.3 10.9 39.0 89.8 33.3 4.85 1.91 192 2.04 20-25 29.3 33.6 17.3 37.1 86.5 37.8 6.79 2.98 180 1.92 25-30 31.0 33.8 11.0 35.0 86.0 24.8 4.55 1.75 160 1.86 30-35 30.9 39.8 15.6 40.0 97.5 50.6 4.55 2.60 222 2.10 35-40 33.8 32.2 12.6 40.5 89.8 24.9 4.91 2.28 210 2.25 40-45 32.7 43.6 14.0 41.6 90.8 38.1 7.56 1.58 207 2.30 45-50 40.0 38.5 16.6 42.7 98.5 32.1 5.02 2.01 223 2.31 50+55 38.0 36.2 12.4 44.8 97.6 37.2 5.50 1.38 215 2.25 55-60 36.0 32.5 11.1 39.7 90.5 42.7 5.30 1.76 208 2.17 39.8 47.8 12.9 44.7 99.1 21.0 5.04 1.62 225 2.41 60-67 . • .

fannet-

55-60

60-70

70-80

80-89

30.0

30.0

30.6

38.7

27.6

25.0 21.7

26.4

17.8

29.3 30.7 17.4 31.0 107

39.5 ' 106

35.9 106

31.9 105 30.6

18.9

30.1 1.76

30.3 2.25

1.34

4.09

Fe

3.27

3.35

3.46

3.44

3.46 3.53

3.27

3.40

3.07

3.39

3.33

3.56 3.83

3.79

3.84

4.00 3.77

3.95 3.74

3.79

3.77

3.79

3.65

3.64

3.92

3.70

350

366

1.45

1.09 336

1.80

1.42 340

	513																						
					· .					stan. Maria			gin ann a' tha an Air Ann an gra						·· .				
	NUCLEO 818									antes 1910 - 1910 1910 - 1910				NUCLEO BIG									
	Sección (cm)	<u> </u>		6		<u>hald (</u>	Fe.Al I	<u>)</u>					•	Sección					ug/g (f	e en 1)			
	•- •												le program de la composición de la comp	(cm)	<u> u</u>	#1	C 0	, Cr	, Zn	Pb	Çđ	Ag	Ha.
	0 - 5	21.6	19.6	13.5	30.6	98.7	36.5	2.16	2.52	360	3.43	5.60		0 - 5	34.1	32.2	29.5	46.0	116	46.0	2.92	2.07	934
	5 -10	10.0	22.5	31.3	33.2	115	32.2	2.80	2.78	344	3.64	5.57		5 -10	31.7	29.4	17.4	37.5	108	47.0	2.64	1.55	389
1	10-15	27.9	22.1	23.1	32.5	110	34.7	3.60	2.39	342	3.66	5.74		10-15	26.8	25.7	20.3	35.9	100	37.6	1.21	1.91	407
i	15-20	27.9	18.6	23.1	33.7	107	34.7	4.28	1.54	359	3.58	6.05		15-20	26.6	23.7	13.9	29.4	92.0	28.7	1.69	1.40	394
:	20-25	30.3	26.8	21.2	29.8	112	37.5	2.69	1.85	377 -	3.69			20-25	26.8	27.4	20.3	41.1	107	33.3	1.21	1.40	420
,	25-30	32.1	28.3	19.3	33.9		36.2	3.38	2.67	392	3.78	5.57	a an teolo ing <u>ana an in</u> Ganazarta na satutati	25-30	30.0	30.9	15.0	36.2	114	35.6	3.71	0.95	419
	30-35	31.1	18.8	20.2	34.0	109	45.2	4.32	2.76	419	3.66	5.13		30-15	31.1	35.8	20.2	42.0	105	28,9	4.15	2.25	394
	35-40	30.6	21.9	19.9	33.5	106	34.5	3.23	2.72	400	3.62	5.73		35-40	29.0	26.4	19.3	34.8	106	38.7	3.56	1.60	415
	40-45	29.3	27.2	20.0	32.5	111 /	31.5	3.25	1.37	410	. 3.81	5.84		40-45	31.3	37.0	20.0	34.2	105	32.9	2.57	1.71	370
1	45-50	26.7	27.5	14.1	30.6	102	31.8	3.98	1.21	384	3.57	5.28		45-50	29.4	32.0	23.1	39.6	106	37.2	3.77	1.05	409
1	50-60	24.7	21.3	22.2	28.4	98.0	26.9	2.68	1.84	422	3.56	- i		50-55	30.4	38.1	16.7	37.0	110	45.0	3.71	1.35	386
1	60-70	31.6	29.7	10.1	29.6	109	40.5	3.85	1.84	402	3.71	5.00	na an airte airte	a de contra a po	i fazi en								
ţ.	70-80	30.3	20.7	23.1	29.4	101	29.5	2.57	Z.88	407	3.53	4.88			141.4								
1	80-90	32.4	19.5	17.7	34.3	90.1	30.1	1.96	2.15	428	3.60	4.91			na an an s A								
1	90-100	24.6	20.1	18.2	34,4"	100	27.6	2.36	2.19	418	3.69	4.79		1.1.1									
	100-110	25.8	30.9	24.1	30.6	106	33.9	3.85	2.17	380	3.60	4.52		NUCLEO B17									
Ì								ł						0-5	25.6	20.1	25.4	34.5	105	37.5	2.28	1.46	306
														5 -10	26.4	27.1	16.0	32.2	116	33.4	1.33	1.95	325
1	NUCLEO B19													10-15	27.5	24.2	19.6	39.Z	113	25.4	0.46	1.67	311
į.														15-20	27.1	23.9	22.5	38.8	109	31.3	3.50	1.83	298
1	0 - 5	41.Z	42.0	17.4	33.3	114	26.7	1.89	2.65	297	2.09			20-25	27.1	29.8	17.9	35.0	114	46.7	1.83	1.64	307
	5 -10	42.4	43.7	17.3	32.1	116	34.4	3.70	3.00	245	2.10			25-30	26.2	28.4	15.3	35.3	112	34.9	0.47	0.75	309
1	10-15	41.3	41.2	15.6	32.1	109	26.2	1.22	3.13	250	1.99			30-35	28.0	28.7	23.2	31.1	109	25.8	3.77	1.51	323
÷	15-20	34.8	37.8	20.1	27.8	99.0	30.3	1.50	3.50	226	1.80			35-40	26.5	25.3	20.5	33.7	109	18.2	1.78	1.42	314
1	20-24	35.8	33.7	16.9	27.6	92.3	29.9	3.28	2.80	217	1.65			40-45	28.8	26.4	20.0	34 .8	110	25.6	3.91	1.25	313
ł	24-28	55.7	47.4	18.7	35.2	139	61.6	4.23	5.63	246	2.18			45-50	29.1	33.9	15.0	34.8	106	35.0	2.18	2.25	323
														50~55	29.Z	28.7	21.7	31.0	107	16.0	2.20	Z.46	352

NUCLED B20

70-20

29.2 41.5 17.5 47.2 114

43.3

5.02 2.27

820

3.50

214

NUCLED 822 2012 (d. 1 Sección (Fe . A) *) Sección (cm) τü ug/g (Fe en I) Pb Cd Âġ ζū (cm) G 7 n ie Mr 0 - 5 69.4 21.8 51.4 36.2 134 44.5 4.08 3.37 750 1.94 0.43 37.5 46.6 20.1 0 - 5 32.7 95.6 34.7 <0.45 1.27 E01 2.22 5 - 10 38.5 34.8 18.5 32.3 95.9 29.3 3.75 2.68 379 1.79 0.70 5 -10 39.3 39.3 11.1 37.2 95.5 34.9 0.46 2.37 249 2.28 10+15 27.8 93.1 32.6 3.36 36.7 35.5 -14.5 1.59 246 1.76 0.50 33. CZ 6. M 10-15 39.7 40.0 18.1 39.0 94.7 29.6 3.54 1.95 15-20 216 2.30 30.1 31.7 10.6 28.6 BO.1 22.8 4.19 1.46 - 183 1.61 15-20 34.2 40.6 18.3 35.4 85.6 30.0 0.90 1.44 214 2.ZO 20-25 41.9 40.4 12.4 35.3 106 23.4 3.93 1.65 234 2.04 2.13 20-25 37.B 47.2 15.1 34.6 93.0 33.7 2.63 1.58 228 25-30 36.9 38.7 12.7 31.0 2.30 99.5 28.0 3.25 1.71 212 1.94 1.61 25-30 40.0 44.3 19.8 32.3 92.3 29.8 1.79 2.14 220 2.27 30-35 41.8 44.B 15.6 34.1 112 35.2 4.00 1.60 239 Z.06 1.55 30-35 36.5 43.5 18.7 37.5 92.0 30.7 0.46 2.02 224 2.39 35-40 50.4 50.3 22.7 35.8 🗟 38.7 - 5.03 1.73 - 244 : 133 2.26 0.51 35-40 37.3 42.7 18.4 36.7 99.5 34.6 3.15 1.9B 254 2.50 40-46 47.7 53.7 15.2 42.2 139 37.6 4.63 3.15 475 .2.58 0.07 40-46 39.2 49.0 14.2 39.8 97.4 25.7 1.85 1.63 241 2.37 والمواجعة كعبر والمترج مسترجع والمركز عراقهم والمركز والمركز NUCLEO R21 NUCLED 823 0 - 5 47.0 55.4 13.8 27.9 140 41.4 2.39 2.22 10613 2.05 0 - 5 52.7 60.8 18.1 31.6 177 43.3 1.47 1.30 7974 2.88 5 -10 38,8 42.B 16.5 25.1 123 32.1 3.16 2.00 8567 2.20 5 -10 52.2 56.9 33.3 21.6 175 41.7 1.20 1.72 3814 2.82 10-15 34.9 43.3 17.6 26.6 112 35.4 2.80 1.47 5031 2.56 10-15 47.5 57.0 14.9 28.3 167 34.4 3.26 15-20 2.41 2122 2.44 21.9 38.2 18.2 33.3 110 36.7 4.90 1.35 1841 3.14 15-20 55.8 66.8 20.0 33.6 178 44.6 1.51 2.18 2014 Z.48 20-25 30.4 34.9 21.3 32.1 108 28.2 4.55 1.69 1232 3.27 20-25 57.4 62.4 19.1 34.5 176 41.9 1.21 2.42 3027 2.85 25-30 29.B 33.3 13.7 34.5 109 41.0 3.89 2.37 914 3.41 25-30 56.0 65.7 21.4 32.0 186 37.4 0.85 1.36 2015 2.87 30-35 30.3 34.7 18.8 32.8 110 34.9 4.02 0.95 917 3.21 30-35 57.4 67.3 19.5 33.7 194 36.0 2.29 1.79 2261 2.84 35-40 29.0 44.3 21.5 34.9 114 30.9 3.38 Z.25 997 3.38 35-40 56.2 67.9 21.3 33.8 194 45.0 2.03 1.86 2211 40-45 2.94 29.3 36.8 16.0 31.8 100 28.1 4.25 1.75 728 3,00 40-45 56.5 73.1 19.7 33.1 190 45+50 47.B 2.31 1.65 2222 2.87 30.6 33.5 23.3 33.1 112 43.2 4.05 1.30 79**B** 3.51 45-50 58.5 79.1 20.4 34.2 199 33.9 1.54 1.54 2209 50-55 2.87 29.2 36.6 17.5 35.2 107 39.2 3.49 1.78 780 3.31 50-55 59.9 70.0 20.3 33.1 198 25.9 1.54 1.88 2586 Z.91 55-60 29.4 36.9 23.4 36.5 113 31.3 4.40 1.95 767 3.44 55-60 80.6 77.0 27.2 33.8 223 70.0 60-70 Z.09 4,00 2341 3.17 29.7 35.6 23.8 37.0 120 35.8 3.47 1.48 783 3.41

60-65

60.Z

71.1 20.3 34.1

200

39.1 2.24 2.25 2328

3.13

NUCLED B24 NUCLEO 826 Sección (Fe ,A1 1) Sección uq/g (cm) Cū íe (cm) ζū Ľo 0.-5 0 - 5 36.5 43.0 22.3 41.1 149 36.6 1.32 1.39 3149 3.51 5.40 93.3 81.7 18.4 40.0 204 43.5 1.49 2.16 15289 2.99 4.56 44.4 15D 35.7 2.20 2.46 1935 3.33 4.78 5 -10 84.5 :71.3 16.1 44.3 212 44.3 2.00 2.54 4467 3.13 4.65 5 -10 40.1 51.1 12.2 10-15 87.6 75.7 16.8 45.9 Z11 83.6 1.58 3749 4.60 10-15 37.8 48.5 20.0 46.8 150 36.6 3.16 1.80 1706 3.36 4.80 1.30 3.29 15-20 197 30.4 3.30 2.48 4076 3.33 4.57 15-20 61.3 49.7 13.8 43.4 169 51.2 1.50 1.36 2312 3.17 4.94 46.5 70.5 21.0 45.4 20-25 54.6 71.4 226 42.4 2.52 6491 3.52 48.0 17.0 43.0 162 33.4 1.48 2.13 3976 3.05 4.95 20-25 59.3 31.5 42.9 3.08 4.66 25-30 83.4 72.0 43.7 24.2 45.7 225 2.22 3164 3.54 16.0 186 1.17 2.14 6202 2.90 25-30 59.2 80.4 24.0 41.4 2.99 4.38 5.10 265 38.9 2.18 1.58 2305 30-35 86.4 65.8 19.5 40.6 197 20.5 <0.50 2.13 6347 3.14 4.48 30-35 71.6 98.6 34.2 48.0 3.37 3.46 35-40 65.4 101 19.4 52.3 267 39.0 2.19 2.45 4025 3.26 4,45 35-40 64.3 51.2 20.2 42.0 171 27.7 1.20 1.02 2390 2.91 5.71 40-45 31.8 28.4 15.9 37.4 130 30.4 1275 40-45 79.5 124 37.3 50.0 304 44.0 Z.28 2.91 . 5345 3.44 3.73 1.49 0.99 3.04 4.72 2.00 5800 45-50 32.6 20.1 12.2 36.3 106 23.9 2.81 45-51 298 4.50 3.65 1.20 1.65 921 5.67 74.5 112 29.4 52.9 47.6 3.42 42.5 50-57.5 25.6 28.3 12.2 37.3 108 23.9 2,88 5.44 36.1 42.8 20.2 - 147 40.0 2.25 2.15 4986 4.19 1.48 1.49 818 Pesas . NUCLEO 825 NUCLEO B27 0 - 5 3.72 47.Z 55.8 11.3 50.9 169 41.5 2.13 2.66 20.2 44.0 185 41.7 4.31 2.07 1690 1.88 420 0 - 5 71.4 62.8 4.37 2.59 4.17 5 -10 50.4 59.1 17.2 48.5 163 25.2 <0.5 2.48 324 2.58 5 -10 74.7 68.6 27.7 49.1 194 56.5 535 2.71 48.3 199 33.4 3.98 2.08 469 4.10 10-15 53.0 61.9 16.2 56.2 176 33.8 2.11 1.69 317 10-15 76.6 69.8 21.8 15-20 14.9 15-20 82.5 79.5 22.3 48.1 201 44.1 3.14 1.50 526 3.66 52.7 61.5 57.6 167 25.5 1.68 1.69 313 2.E0 20-25 58.1 206 40.7 4.88 1.85 527 3.76 20-25 52.0 59.2 15.9 54.2 163 29.0 1.25 1.63 305 2.85 82.4 72.7 24.2 25-30 77.6 22.7 63.0 199 44.9 3.86 1.68 558 3.66 25-30 52.8 71.3 15.0 56.0 177 29.5 2.94 1.85 324 3.06 80.7 2.13 3.27 30-35 48.1 51.2 16.9 46.5 151 34.2 2.20 1.58 293 Z.71 30-35 59.5 17.7 48.6 191 43.7 3.43 510 75.4 3.05 188 2.60 2.11 529 3.27 35-40 56.4 74.7 20.7 61.4 164 28.9 2.06 2.95 317 35-40 73.4 68.7 24.9 47.3 43.4 2.82. 61.3 22.5 52.5 193 36.1 3.83 2.16 524 3.44 40-45 56.3 52.6 12.5 56.4 160 29.7 2.54 3.55 313 40-44 73.6 45-50 Z.96 54.2 57.2 19.6 72.5 165 29.0 2.09 2.20 300 2.69 50-55 57.0 64.4 18.5 59.4 161 29.0 2.92 2.64 287

.

.

2																		•			•	·
NUCLEO B	20											NUCLEO B	28					: ·				
												Sacción		신한 것			14. 14.4					
(cm)	Cu	Ni	60	Cr	20/0 2n	Pb) 	Ag	Hn	Fe	A1	(cm)	Cu	81	Co	Cr	<i>2</i> n	P6	<u>, ca</u>	- Ag	Mrs	Fe
0-5	109	68.3	27.1	60.B	274	45.0	D.8A	1.41	1412	1 70		0 - 5	113	92.1	22.6	52.2	234	47.9	5.21	1.26	1537	1.79
5 -10	110	99.8	31.7	61.1	229	39.2	1.77	2.30	456	3.64		5 -10	116	90.1	19.9	51.6	232	53.0	2.67	2.00	681	3.16
10-15	102	93.3	30.5	63.2	230	45.7	<0.40	2.14	385	1.61		10-15	119	87.2	- 22.7	51.3	238	53.6	3.89	1.18	650	1.29
15-20	98.8	87.3	30.4	68.5	215	48.5	2.67	1.96	-363	1.55		15-20	125	90.3	28.0	52.7	250	45.5	3.92	1.33	692	3.68
20-25	80.4	65.6	26.1	55.7	185	40.0	0.45	2:16	351-	1.60	er synet, i sait i de Herena de la des	Z0-25	128	95.4	28.4	51.4	252	52.7	3.82	Z.02	698	3.49
25-30	67.0	57.9	21.6	55.3	160	36.9	0.40	1.26	329	1.65		25-30	126	90.8	23.7	55.0	253	44.9	4.21	1.52	713	3.53
30-35	43.5	51.6	22.1	50.7	135	31.5	1.83	1.29	345 -	1.27		30-35	125	106	26.3	54.1	255	45.0	4.21	1.34	726	3.59
35-40	65.1	68.8	29.7	70.6	148	34.5	1.83	2.02	354	4.12		35-40	129	99.5	23.6	55.9	264	49.1	3.19	2.34	735	3.63
40-45	78.7	57.2	26.7	56.5	157	47.0	2.30	2.02	342	3.54		40-45	132	103	28.5	56.6	270	44.6	3.04	2.62	762	3.66
45-50	101	72.0	29.5	61.5	186	52.6	1.82	3.08	328	3.91		45-50	129	101	28.O	56.6	266	43.8	5.41	2.18	764	3.65
50-55	106	79.8	32.6	67.3	190	43.5	2.25	1.09	- 335	3.91	, de en an elle	50-55	138	117	28.6	55.8	283	61.4	4.52	2.51	790	3.74
55-60	94.5	76.6	30.6	70.3	185	39.7	3.13	1.61	345	3.97	والمراجع بالمراجع المراجع	55-60	128	110	32.3	56.5	283	48.7	4.17	2.17	798	3.87
60-66	71.5	61.6	23.0	65.0	167	39.9	4.04	1.62	341	3.52		60-70	123	117	30.4	58.7	291	49.6	5.61	1.36	932	3.72
			**									70-76	117	123	32.9	52.5	292	45.4	5.61	1.53	1010	3.73
NUCLEO B:	31										· · · · ·											
												NUCLEO BE	29									
0 - 5	336	398	99 . 0	44.9	191	53.9	2.28	1.05	18849	3.60	3.97											
5 -10	344	406	101	40.5	205	68.3	2.72	1.63	19929	3.79	3.83	0 - 5	118	89.2	21.4	46.7	253	37.2	1.28	1.20	2054	3.54
10-15	269	306	65.2	40.5	177	66.3	3.00	2.29	16008	3.58	3.28	5 -10	120	99.7	28.5	52.4	261	44.2	2.12	0.85	1356	1.68
15-20	345	433	87.9	40.9	196	63.B	2.83	1.78	Z1436	3.68	3.18	10-15	125	104	31.7	51.8	269	36.4	2.93	1.51	1357	3.75
20-25	391	471	103	40.4	209	69.0	4.04	1.93	27850	4.01	3.93	15-20	128	106	33.5	49.6	278	31.9	2.05	1.25	-1359	3.72
ZS+30	312	203	106	42.9	167	60.0	3.00	1.41	11441	4,04	4.44	20-25	130	105	33.7	48.9	280	43.0	2.24	1.81	1295	3.83
30-35	281	138	01.2	45.1	163	57.1	2.29	1.94	6290	4.26	5,52	25-30	131	104	30.1	53.1	290	43.2	2.50	1.80	1225	3.93
35-40	282	146	84.2	47.4	170	45.1	1.58	1.58	6216	4.42	5.88	30-35	. 127	105	31.6	48.4	269	49.3	2.00	1.75	1232	3.89
40-45	330	162	86.0	45.5	171	65.3	1.56	1.22	7417	4.08	5.87	35-40	125	105	32.8	57.7	285	41.4	1.40	1.75	136Z	3.88
45-50	360	177	90.2	48.2	173	61.0	1.61	1.07	8396	4.19	6.11	40~45	131	103	32.3	58.5	294	35.6	3.25	1.00	1161	4.04
50-55	384	201	103	48.1	181	48.3	2.17	0.73	7844	4.21	5.78	45-50	123	108	26.0	58.6	297	44.4	0.85	1.36	1562	3,98
55-60	396	196	102	98.2	187	55.0	2.33	0.90	7464	4.17	5.78	50+55	128	107	28.7	65.1	292	29.6	1.70	1.52	1241	4.25
60-65	395	168	82.0	52.5	202	63.8	3.37	0.53	5618	4.61	6.40	55-60	130	111	.31.1	54.8	313	35.7	2.50	1.82	1393	4,16
65-70	308	119	37.3	7 0. B	194	62.8	1.59	0.87	2571	4.60	5.83	60-70	137	123	26.8	23.2	316	38.0	1.30	1.60	1632	4.26
70-75	332	123	37.0	75.5	200	64.9	2.35	1.80	1381	4.50	5.65											
75-80	347	115	29.5	68.5	197	61.5	3.43	1.08	1970	4 74	5.13											

.

NUCLEO B31 (Continua)

Sección					µq/q	(Fe,A1)	:)	1.12	89 G 6 G		- 61 - 61 - 61 - 6		MUCLEO B33		t da che	la serie de la s	- 1. C						
(cm)	Cu	NI	Co	Cr	Zn	Pb	ы.	Ag	Mn	fe	्र ी हहा	6. ji j		Philait,		i. Na di	·	·					
80-05	170	177	17.8	67 5	101	69.4	2.77	1.85	1476	4.81	4.21	alian, tang Sang dalah	Sección	· · · ·				<u></u>	(Fe en	1			
AU-03	31.7	120	37.0	64 0	. 100	46 5	2.16	1.45	1631	4.37	4.70		(C m)	cu	11	 .	- μr	20	. •••	Lu	۳ġ	mn	16
85-90	218	120	31.0	67.0	104	41 R	2 77	1 45	3175	4.19	4.12						·						
90-95	141	221	40.4	66.0	174	E4 7	7 67	1 42	6561	4 67	4 01		0 - 5	123	142	39.9	39.4	317	28.8	1.25	0.83	10620	3,94
92-102	923	152	71.4	03.0	195	34.F.		1 1					· · · · 5 · = 10	136	154	29.8	42.4	370	37.0	4.30	2,04	1704	4.00
						44.14	a travele s	na ga	10010	1997. A 1997. A	n grig na feste s	- 1 11, 111, 111, 111, 111, 111, 111, 11	10-15 mm	120	tt 138 ≥:	30.9	·38.7	355	32.0	0.82	1.31	1530	4.02
						ang na sa			ang par				15-20	108	172	42.7	42.9	326	36.5	2.10	1.51	1668	4.06
					1.11	19 - E	u tah i	i e e e e	i e tel s	dan sek	Seeta ta S	e di deni	20-25	118	190	41.0	. 45.4	350	43.2	2.50	2.00	2010	4.08
NUCLEO B	32									1.1.1			25-30	118	171	34.4	43.0	338	32.9	2.54	1.86	2009	4.15
												2.1.1.1	30-35	110	163	33.5	40.5	326	33.4	1.80	2.20	1952	4.21
0 - 5	258	337	67.8	42.5	445	40.3	1.83	1.83	33520	3.79			35-40	108	139	34.4	38.6	305	32.2	4.80	2.44	1898	4.01
5 -10	263	279	62.6	48.2	463	44.5	1.87	1.02	15632	3.96			40-45	104	150	31.8	43.7	285	36.4	2.94	2.18	1673	3.79
10-15	Z24	258	39.5	45.3	485	40.8	1.85 -	3.03	5355	4.27			45-50	104	151	37.0	42.3	284	28.7	2.50	1.99	2005	3.76
15-20	278	301	42.6	43.8	421	40.4	4.51	2.67	4409	4.05			50-54	107	165	37.1	42.7	277	44.6	1.75	2.23	2158	3.73
20-25	261	306	54.3	42.5	449	45.3	4.33	2.42	4216	3.70			and the second										
25-30	280	334	55.0	41.8	350	52.6	6.00	2.46	4619	3.77			an a branca										
30-35	268	914	135	44.2	326	59.0	5.37	2.77	6256	3.55			• •										
35-40	212	467	57.1	42.0	351	51.0	5.59	Z.84	4523	3.60													
40-45	200	214	47.4	38.1	296	39.5	4.66	2.93	3342	2.88													
46-60	210	245	47 3	44 R	340	50.0	3.99	2.50	3309	3.52					106	75 7	110	205	40.3	7 64	1 16	7700	6.05
40-20 E0 EE	221	750	44 G	44 4	375	49 1	4.35	2.44	3341	3.55				100	100	33.7	176	232		7 70	1.00	100	E 76
50-55	224	200	45.0	47.7	220	40 4	4.71	1.94	3203	3.63			5 -10	100	112	37.3	120	311	30.0	2.10	1.00	180	5,10
55+60	224	209	40.0	-2.2	360	47.0	5 00	1 01	3471	3 66			10+15	105	117	33.2	119	308	43.9	4.66	1.49	052	5.00
60-70	231	298	42.0	49.2	793	47.3	4.00	2.00	2601	3.00			15-20	102	112	34.5	115	298	45.2	4.00	2.04	712	4.39
70-80	236	318	50.7	45.7	415	53.0	4.80	3.00	2224	3.77			20-25	89.2	103	37.2	91.3	241	37.B	3.96	1.55	645	5.02
80-88	230	494	56.7	44.3	389	53.0	2.98	2.04	3724	3.71			25+30	95.9	103	35.3	106	235	41.0	4.55	1.18	590	4.22
													30.05	100	104	77 0	104	200	80.0	A 15	1 00	600	4 10

MUCLEO 835

Sección Secction (cm) Cu Co Č, : (cm) . 0 - 5 31.3 1.43 2430 0 - 5 29.0 45.5 2.57 3.68 \$.56 91.2 81.5 18.2 66:7 243 1.43 4.21 24.4 17.6 21.0 140 1.28 69 Z 5 -10 261 5 -10 20.5 3.51 4.23 106 68.2 22.1 72.9 44.7 0.92 1.64 819 4.42 29.6 18.0 19.8 147 89.7 0.85 2.66 714 10-15 120 103 25.7 61.0 283 59.2 2.66 -2.31 674 4.26 10-15 24.1 13.5 13.6 23.6 135 51.9 2.09 1.50 668 3.49 5.03 15-20 116 96.5 31.6 258 3.18 2.48 720 4.28 15-20 29.9 15.9 19.1 145 57.0 1.60 2.05 691 3.49 5.05 69.9 51.0 .17.6 20-25 111 36.Z 69.0 260 42.9 2.50 1.78 626 4.28 20-25 27.5 21.7 15.4 20.4 144 69.4 2.16 1.91 1065 3.56 5.82 100 0.89 4.13 25-30 3,36 5.96 25-30 113 101 37.7 63.9 258 43.0 1.42 637 24.3 21.5 17.9 21.1 136 57.5 0.43 2.41 686 30-35 109 101 41.7 66.9 234 54.9 2.65 2.47 639 3.97 30-35 26.5 21.0 17.5 21.7 148 56.1 <0.40 2.18 673 3,54 5.34 35-39 92.9 86.2 34.5 66.6 210 42.7 3.16 2.45 612 3.56 35-40 27.8 16.1 21.1 20.6 141 59.8 0.42 2.17 666 3.92 5.97 0 - 5 (Bas) 15.5 23.3 20.7 31.1 43.2 16.9 2.81 0.50 386 2.60 40-45 26.8 16.8 16.3 Z4.0 146 56.8 Z.55 1.87 680 3.93 4.16 5 -10 (Bas) 21.3 26.3 15.6 29.0 41.6 11.9 3.86 0.88 527 2.63 45-50 28.85 11.9 18.4 19.5 140 51.6 1.70 1.00 659 3.46 6.15 3.74 5.59 30-35 (Bas) 16.1 32.7 18.5 17.5 52.0 Q.5 4.09 1.25 343 1.93 50-55 32.0 20.9 21.1 23.6 146 63.7 1.26 2.18 732 57.9 1.62 2.60 672 3.33 4.23 55-60 28.2 15.3 15.6 21.9 138

NUCLEO 836

0 - 5	11.7	10.4	12.4	19.8	81.8	25.5	1.25	1.16	421	2.76
5 -10	11.9	12.3	9.0	21.2	82.6	33.8	1.70	1.54	379	2.74
10-15	16.1	17.4	10.0	19.0	77.0	21.9	0.43	1,20	406	2.80
15-20	10.0	15.6	13.7	17.9	81.4	25.4	1.65	1.00	411	2.68
20-24	9.6	20.2	14.9	20.5	71.9	25.2	1.25	2.00	460	2.61

1

NUCLEO P	\$									
0 - 5	105	81.4	27.4	48.1	205	42.6	4,45	2.49	1929	3,45
5 -10	105	86.6	28.1	53.4	215	27.5	3.83	2.37	397	3.55
10-15	113	91.9	23.0	56.9	228	39.1	4.14	1.98	374	3.59
15-20	126	92.1	31.7	54.0	240	46.2	3.72	2.66	352	3.54
20-25	123	95.0	30.7	55.8	249	51.0	4.10	2.88	156	3.64
25-30	114	89.8	31.5	55.6	227	34.3	3.69	2.11	369	3.55
30-35	110	9Z.5	30.0	55.5	226	38.1	4.39	1.93	357	3.67
35-40	111	94.7	35.1	59.6	235	42.8	4.83	2.15	387	3.85
40-45	107	88.5	32.7	\$7.8	254	35.7	3.84	2.20	360	3.73
45-50	104	84.6	30.5	59.3	245	34.7	4.10	1.96	433	3.77
50-55	106	81.8	30.0	56.4	246	42.0	4.04	2.30	397	3.76

NUCLED 837

NUCLEO P17

Section				San Afrika Maria	ua/a	(Fe en l	1 1			
(cm)	Cu	<u>, 10 - </u>	Co		Źn	PÞ	Cd	Ag	Мл	Fe
		li da		<u> </u>						
0 -10	102	82.2	27.2	43.5	221	30,5	1.94	1.94	545	3.76
10-20	97.1 -	78.3	28.7	48.2	224 :	29.1	2.69	2.02	608	3.64
20-30	95.8	81.2	27.7	51.0	227	44.6	2.74	1.71	619	3.69
30-40	89.8	87.5	35.1	47.5	225	37.2	3.08-	2.74	685	3.51
40-50	83.5	64.8	30.3	49.8	202	46.2	3.72	2.66	680	3.36
50-70	77.7	61.1	30.7	46.3	162	34.4	1.88	1.54	613 -	3.00
70-90	65.9	49.4	22.9	42.5	135	36.6	1.85	3.20	511	2.86
90-110	73.4	50.4	23.9	42.4	143	37.3	3.61	2.75	504	3.19
110-130	78.5	47.5	26.7	41.7	: 151	36.0	1.91	2.20	497	3.13
130-150	60.7	51.4	25.4	47.2	. 155	38.1	3.16	1.93	500	3.37
150-170	8.0 6	55.1	23.4	50.4	153	34.0	2.75	1.72	469	3.33
170-190	80.0	47.6	25.1	46.7	160	40.5	3.11	3.29	503	3.23
NUCLED P19										
0 - 5	104	67.3	17.3	28.2	214	49.8	3.33	1.05	9636	3.48
5 -10	102	77.9	28.2	35.9	209	45,4	4.00	1.39	7060	3.34
10-15	105	74.9	24.1	37.8	Z14	4216	2,85	Z.14	4544	3.47
15-25	102	69.7	24.5	38.5	211	43.3	4.17	1.82	3755	3,46
25-35	98.0	66.3	19.1	39.6	207	34.5	3.71	1.78	2740	3.41
35-50	44.7	28.2	19.4	34.0	145	55.0	4.50	1.80	1386	3.53
50-70	27.3	25.4	15.4	31.5	115	25.9	3.60	1.37	1424	3.29
70-90	114	76.8	28.4	42.2	234	34.1	3.70	1.93	1453	3.65
90-110	109	71.1	31.0	36.7	227	37.5	3.98	0.88	5450	3.68

NUCLED P3

Basalto

22.4

12.0 40.8 154

57.7 64.8 7.77 5.74

3.06

•

231

S Concentración de Metales Pesados en las Muestras Superficiales Colectadas en el Crucero PALEO-1, BAP-82.

Crucero	PALEO-1	ι.	BAP
---------	---------	----	-----

					ua/o 1	Fe.Al	51			na segura se An o composito	걸고 공신 ?			12 A. S.										
Huestra	Cu	NI	Co	Ċr	Żn	Pb	Cd	Ag	Нл	Fe	A1			Huestra	ធ				19/19[F	e Al 1	L			
BCZ	32.2	39.3	20.9	40.0	111	55 6	7 90	7 46	705	2.07											~		1.14	
BC3	25.7	34.0	8.4	31.2	89.4	31.6	2.20	1 05	400	2.97	1.63			8666	26.2	27.6	10.1	J2.8	121	50.0	2.72	1.63	3.3	L Z.5
866	8.1	15.6	11.4	20.2	39.1	16.7	4 57	1 41	710	1.50				8668	27.3	45.0	15.2	42.6	132	56.4	3.63	2.97	320	2.9
809	25.4	35.5	16.4	42.7	101	41.7	2 74	7 40	£10 £71	1.40				8669	7.8	47.5	n. i	42.Z	75.4	28.6	29.10	1.54	186	1.9
BC11	26.2	35.4	0.3	40.0	107	50 4	2 07	1 01	721	2.00	en de service Central de la composition	esta den Secon	144 J.S.B. 1	BC70	36.2	51.8	. 12.7	55.0	129	6Z.9	4.80	1.89	290	Z.8
BC13	25.5	19.4	9.3	36.9	85.7	10.5	2.77	1.10	210	2.40				8C72	30.4	49.2	7,4	56.1	98.3	42.1	4.10	2.84	153	1.8
8013*	12.9	28.7	19.1	52.1	48.0	29.2	2.98	1 75	204	2 60				8C75	44.6	35.7	6.6	51.7	129	42.0	5.21	2.60	174	1.9
BC14	19.0	16.3	<1.0	20.9	62.2	17.3	2 07	1 22	175	1 47	0.85			BC77	50.2	65.0	3.3	55.5	102	57.0	7.00	3.17	190	1.7
8017	16.1	23.0	3.5	47.3	60.7	29.3	3.51	2.98	184	7.94				BC 79	48.3	58,3	9.8	36.3	81.7	51.2	5.97	3.16	158	1.8
BC 1B	25.7	32.2	1.9	28.1	79.6	24.8	4.20	1.58	217	1.45			12	8080	40.9	46.0	8.4	30.6	91.7	52.0	4.63	2.14	165	1.5
8020	41.3	113	4.8	24.9	99.5	36.2	2.51	2.67	229	1.68		inter a jo dalar Tati ta ayar		8082	28.0	29.4	6.5	32.1	81.1	15.6	5.10	0.68	165	2.1
8CZ4	6.5	7.8	1.3	20.5	50.5	14.0	8.70	0.48	116	1.15				BC8J	44.6	59.Z	10.9	44.3	106	65.7	4.02	2.18	196	1.8
BCZS	6.3	12.5	5.0	22.6	62.4	20.0	10.60	1.54	176	1.45	ः , स्ट्रेस्ट्		er Greite	8685	43.7	51.1	5.3	40.0	90.8	48.9	5.12	1.83	168	1.8
8026	12.5	16.9	0.3	24.4	68.7	32.7	10.20	1.71	185	1.41				IC-82(Fo	f) 26.0	58.7	27.8	71.5	58,4	81.3	7.44	5.54	240	2.4
BC27	27.9	31.Z	14.1	35.9	89.9	22.2	3.60	1.71	178	2.09		5 - A -												
BC30	31.0	31.0	4.6	33.1	80.5	38.7	4.47	1.28	157	1.82		- 1 - E												
BC31	41.Z	45.0	0.4	35.1	77.6	34.9	4.51	1.77	139	1.50														
8C33	34.5	39.8	9.6	34.4	85.2	37.1	5.13	2.22	122	1.48														
8040	28.3	32.7	9.1	33.9	90.8	37.5	3.93	1.55	211	2.39														
BC41	38.5	54.2	6.4	45.6	112	40.9	4.05	2.37	240	3.10	1.65													
BC42	32.7	36.2	6.7	34.B	79.4	36.5	2.86	2.02	151	1.56														
8C52	95.2	85.5	11.3	40.9	105	51.0	5.60	1.57	237	2.65	1.45													
BC53	18.7	47.3	6.4	52.6	100	49.5	5.23	2.72	Z24	2.14													•	
BC56	38.4	43.6	11.5	48.0	147	49.0	5.42	1.70	356	3.80														
9057	30.5	40.4	6.3	42.2	107	49.0	2.94	2.68	786	2.46					•			- 14 - La						
8652	33.4	49.0	9.4	39.5	148	61.7	4.37	1.85	312	3.04														· 1
8657	32.1	32.5	10.8	36.0	122	46.2	3.06	1.46	348	3.44														
SC60	26.7	24.1	1.9	28.4	138	49.9	3.59	1.27	373	. 3.45				· .			÷					1.1		· .
BC 61	23.6	28.2	7.7	30.8	99.3	43.5	2.28	1.96	344	3.52						•	÷ .		$\{ (1, 2) \} \in \mathcal{A}$			100		
8063	26.8	31.3	9.1	41.7	128	41.4	Z.50	2.80	404	3.18							1.1							· ·

2,13

1.56

0.50

Concentración de Metales Pesados en las Muestras Superficiales colectadas en el

Crucero CORTES 2.

.

(Fe.A1 11 P/PH Huestra Gu Ní Co Čr Zn Co Ag Mo Fe Huestra Cui Co Cr ζ'n ŶЪ Cd 14 Мл Fe A1 4,512 C+2 4.5 3.3 11.5 12.3 28.8 28.6 1.60 1.31 121 1.28 1.60 C-51 Z1.0 18.2 29.0 98.8 29.3 2.34 1.00 381 2.96 23.1 C+3 7.2 14.0 18.8 15.2 59.3 35.1 3.00 450 2.83 2.49 3.31 C-52 29.4 3.00 20.2 18.1 20.5 101 45.5 2.39 2.05 424 C-4 10.4 21.4 12.0 21.4 65.9 26.6 3.04 0.96 355 2.44 C-55 6.1 17.8 22.9 13.2 14.7 47.4 4.25 4.79 53.1 0.52 C-5 14.0 19.6 6.5 23.0 73.1 29.1 4.32 1.66 289 2.16 0:85 Selector -C-56 24.5 21.5 59.1 6.62 5.13 0.79 11.4 24.5 24.6 86.5 0.5Z C٠8 12.6 25.0 22.1 14.5 55.4 56.5 5.58 5.75 87.2 0.65 C-57 10.3 23.9 22.7 10.9 23.4 61.B 5.71 6.23 69.2 0.34 C-9 13.1 16.6 23.3 13.4 30.7 71.2 7.04 5.20 77.6 0.37 1.65 C-59 17.0 33.2 25.0 91.8 23.8 64.3 6.40 5.44 76.8 Z.09 C-10 14.4 19.5 24.4 17.0 33.3 47.7 4.95 3.78 79.9 0.74 C-60 13.4 28.3 22.4 41.2 35.4 68.3 4.45 102 1.06 5.64 C-14 13.7 25.9 24.3 21.0 33.6 38.5 5.ZO 3.33 179 1.71 0.42 C-61 8.9 . 12.3 17.2 20.5 77.B 27.1 3.74 2.14 285 2.26 C-15 9.7 11.3 \$5.8 24.9 7.7 25.3 1.47 1.80 219 2.40 C-62C 5.4 <3.0 9.0 36.4 22.4 2.78 2.61 0.76 14.1 98.5 C+16 8.4 11.6 13.6 12.5 82.0 21.6 1.64 1.66 176 1.97 1.35 C-620 17.2 15.8 14.4 23.4 73.1 35.1 3.72 2.66 164 1.27 C-19 5.4 11.9 9.7 9.0 34.9 18.5 1.90 1.04 131 1.10 1.01 ينتمين كمنهم تبعينك أأتته C-20 4.6 15.3 9.7 8.7 35.9 16.7 2.58 1.05 154 1,00 이 영화는 요구는 것 같아요. 우리 C-21 6.7 11.5 25.6 44.2 14.2 7.6 3.82 2.99 66.5 0.47 C-25 5.3 8.6 13.0 8.9 16.5 30.1 2.41 1.89 134 0.39 C-26 25.9 6.2 19.8 15.0 8.7 29.4 2.69 3.02 151 0.55 0.87 C-27 10.2 25.3 21.1 8.9 92.2 57.1 5.65 4.62 66.7 0.42 C-32 20.3 25.9 17.0 38.2 92.0 22.6 2.80 2.45 278 2.64 C-33 19.8 30.3 22.4 41.2 93.9 26.0 2.74 2.22 286 2.89 0.85 C-34 17.7 29.4 20.5 36.2 91.1 40.3 3.49 2.49 332 2.94 C-37 11.0 5.3 ő.9 a.1 30.6 11.0 1.59 1,42 161 0.85 2,20 C-38 3.7 <3.0 5.1 7.6 46.1 10.5 1.87 1.35 284 1.49 C-39 5.4 10.3 16.7 9.8 38.4 10.7 2.41 0.86 160 1.14 C-42 17.9 17.6 13.1 25.0 77.4 16.7 2.90 1.27 187 1.58 C-43 21.5 30.4 16.6 34.5 99.9 26.1 6,52 1,54 218 1.96 C-44 16.1 27.7 14.8 24.7 59.1 25.2 3.49 2.16 246 1.52 1.29 C-46 2.1 <1.0 6.7 27.6 <3.5 8.9 1.50 0.69 105 1.09 C-47 7.0 <3.0 9.1 9.9 31.0 6.6 1.56 1.04 112 1.48 2-46 6.9 8.5 25.8 18.0 9.7 42.5 1.53 2.21 92.9 0.98 0.84 2-19. 12.5 26.4 21.9 27.7 54.1 48.3 3.01 3.84 98.6 1.90 C-49b 19.9 13.9 22.5 25.6 48.7 45.5 5.67 4.30 119 1,28 4.00 C-49c 13.3 28.5 16.5 32.1 44.4 29.8 1.58 2.38 115 1.17 C-50 17.6 18.3 23.4 27.1 95.2 40.8 3.86 304 2.52 2.79

APENDICE 4

CONCENTRACION DE METALES PESADOS EN LAS FASES GEOQUIMICAS DE LOS SEDIMENTOS DE LA PARTE CENTRO Y SUR DEL GOLFO DE CALIFORNIA $(\mu g, g^{-1})$

NUCLEO BI NUCLEO B3 0/s R R/S Sección 1/1 Sección 0/5 R/5 I/A R. (cm) (ca) 0 - .5 <0.1 3.5 3.0 18 45 - 50 27.5 0.3 28.0 37 5 - 10 -2.2 4.7 18 50 - 55 0.2 28.7 21.9 38 2.2 3.0 17 10 - 15 55 - 60 0.2 15.5 33.9 34 ίć 20 2.1 3.6 16 60 - 65 0.z 23.6 11.7 52 25 Z.5 17 20 3.5 65 - 70 0.2 27.0 37 16.6 3.1 17 25 30 3.0 · _ 70 - 75 0.2 24.6 13.4 42 2.0 30 35 3.3 19 75 - 84 0.2 23.5 14.6 39 3.3 20 35 40 2 : Z 40 45 2.2 2.6 21 NUCLEO B4 2.6 23 45 .50 1.1 0 - 5 < 0.1 3.5 4.2 9 1.0 22 50 55 3.1 2 S .. 10 3.4 3.8 7 3.3 0.6 55 60 °z o 10 - 15 2.9 4.7 8 1.1 16 60 63 2.8 15 - 20 10 z.8 4.1 65 70 2.Z 2.0 28 _ zo 25 3.1 4.9 9 1.9 0.5 35 70 75 . 25 - 30 4.1 5.Z 11 2.0 24 75 -60 4.0 30 - 35 4.3 4.8 8 Z.5 3.3 16 80 -85 7 35 - 43 6.7 4.8 3.2 18 85 -91 1.7 NUCLEO B12 4.0 15 91 - 101 1.8 101 - 113 3.3 1.8 16 0 - S. <0.1 8.7+1.0 14.6 23 8,7 12.2 18 5 - 10 NUCLEO 83 10 - 15 8.2 9.Z 18 27.3 12.0 44 0 - 5 0.7+0.2 10.5 18 15 - ZO 5.8 5 - 10 0.4 30.2 26.9 31 20 - 25 5.1 10.8 20 10 - 15 24.8 31.3 34 0.3 25 - 30 5.7 10.0 20 10.3 35 15 - 20 0.3 16.5 30 - 35 8.7 6.9 22 25.3 34 20 - 25 0.4 27.1 35 40 8.5 8.9 24 4 28.3 25.0 34. 25 - 30 0.4 5.6 8.0 16 40 - 45 25-2 35 30 - 35 29.4 0.5 45 - 50 7.8 7.5 25 43 33.3 35 - 40 0.5 16.7 50 - 58 7.0 6.5 24 40 - 45 0.4 15.7 37.8 34

.

				신상의 전문 전문을				lite the second	
		김 김 승규는 물건을							
NUCLEO B7		Cu			NUCLEO) BS	Cu		
Sección (cm)	1/A	0/5	R	R/S	Secció (cm)	in 1/A	0/5	R	R/5
0 - 5	<0.1	4.9	5.7	20	0 - 5	<0.1	14.3+1.1	14.8	25
5 - 10	-	4.8	6.3	26	8 (1994) - See (1995) - See (1	0	14.9	16.1	26
10 - 15	•	5.6	6.4	18	10 - 1	5	13.7	15.3	24
15 - 20	-	4.4	7.8	17	15 - 2	-	- 12.3	14.8	32
20 - 25	- 11	5.3	7 .7	T 172 172 172 17	20 • 2	5	14.3	17.1	30
25 - 30	÷	5.4	6.7	25	-25 - 3		15.2	16.5	29
30 + 35	· •	5.8	6.8	18	30 - 3	States and states and states and	13.4 million	18.1	34
35 - 40	-	8.0	6.1	25	135 • 4	0	15.7	18.0	30
40 - 45	•	6.4	6.9	23	40 - 4	5	14.7	23.2	33
45 - 50	-	6.9	6.4	21	45 - 5	0	13.8	31.8	33
50 - SS	• .	7.2	6.7	28		5	10.9	27.2	2.4
55 - 60	-	6.5	6.6	- 21	55 - 6	•	10.9	25.3	27
60 - 72	•	7.7	7.2	22			an a		
					NUCLEU) 80			
NUCLEO B24					• 0 • 5	<0.1	5.9	4.9	23
0 - 5	< 0.1	7.6	4.0	25		0	5.7	4.7	23
5 - 10	-	4.6	1.3	8	10 - 1	- 5	5.1	6.6	23
10 - 15	-	6.6	6.5	25	15 • 2	.0	5.4	6.5	24
15 - 20	•	10.4	14,5	22	20 - Z	5 -	4.5	6.2	23
20 - 25	-	11.6	6.1	42	25 • 3	i0.	4.6	6.4	- 19
25 - 30	•	15.5	5.0	39	30 - 3		4.2	5.7	21
30 - 35	-	20.6	13.0	38	35 • 4		4.2	ь .0	18
35 - 40	•	18.6	12.9	34	40 • 4	S	3.7	5.8	17
40 • 45	•	17.2	11.8	S1	45 - 5	i0 -	3.9	5.3	18
45 - 51	-	17.9	14.4	42	50 - 5	55 -	3.0	5.8	22
					55 - G	- 0	4,3	5.7	12
					60 - 7	· 0	2.8	6.1	19
					- 70 - 8	30 -	3.9	5.1	19
					80 - E	39 - ;	2 - 4	5.1	20

NUCLEO B25		Cu			NUCLEO B17				
Sección (cm)	τ/Λ	0/5	R	R/S	Sección (cm)	1/A	Cu 0/S	R	R/S
0 - 5	0.0+0.2	16.3	20.9	33	25 - 30		1997 - 1997 -	in de la companya de Esta de la companya d	17
5 - 10	0.5	13.7	20.9	10	30 - 35		1.9	6.7	10
10 - 15	0.6	15.9	22.4	38.	35 - 40		2.2	7.8	17
15 - 20	0.7	16,8	22.5		40 - 45	المراجع المحمد المراجع المراجع المراجع المراجع المراجع المراجع المراجع المحمد المراجع المراجع المراجع المراجع محمد المراجع ال	<u> </u>	8.5	19
20 - 25	0.7	18.5	26.8	36	45 - 50	antenaria de entre activitadores de las Calencias de las constituentes de las constituentes de las constituentes de las constituentes de las constituen	2.3	7.7	19
25 - 30	0.6	19,4	24.4	36	50 - 55		2.3	6.5	20
30 - 35	0.6	19.5	23.9	31	55 - 60	711 - 1 .C. M	2.0	5.5	23
35 - 40	0.7	18.1	25.3	29	60 - 70		2.3	4.9	23
40 - 45	0.8	18.3	20.0	35	70 - 80	and a state of the second	2.3	6.3	22
NUCLEO 826					80 - 89		2.9	6.5	20
0 ~ 5	<0.1	26.3	25.4		NUCLEO BIB				
5 - 10	•	26.0	21.1	37				anto francisca e e e e e e e e e e e e e e e e e e e	
10 - 15	-	27.6	18.6	41	0 - 5	< U.1	4.1	5.3	14
15 - 20	+	19.6	12.9	29	2 - 1U			8.5	19
20 - 25	-	16.3	11.1	27	10 - 15		2.2	7.5	10
25 - 30	•	15.0			10.000 C		2.0 7 E	77	20
30 - 35	-	17,3	19.7	49	25 _ 10		2.7	8 1	21
35 - 40	-	20.7	17.0	计一77 计数字时 医特别	30 - 35		2.4	7.3	21
40 - 45	-	9,0	9.5	13	35 - 40		2.2	7.8	21
45 - 50	•	8.4	7.6	17	40 - 45	alis en tragol de labor. Es rect o rens directo de	2.6	7.9	19
50 - 57	-	6.7	5.3	성화 11일 문화 영거에 있는	45 - 50		2.3	6.9	18
NUCLEO B17					50 - 60		2.0	6.4	16
0.5	< 0. 1	7 7.0 4			60 - 70		2.7	9.2	20
5 - 10		1 4	- 0	10	70 • 80		4.0	6.8	20
10 + 15	-	1.7	7.3	10	80 - 90		2.3	4.9	25
15 - 20	-	1.7	7.8	18	100 - 110		7.1	5.5	17
20 - 25	•	1.8	7.5	18	100 - 110		••••	0.9	• •
				그 집안 가슴 가 줘.					
							· · · · ·		
•	1. J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	n a sugarangi nang		가지 아파	and a second br>Second second	a a chairte ann an Airtean an Airt			
				an taon an taon ann an taon an Taon an taon an					
				and the second					
				· · · · · · · · · · · · · · · · · · ·					

.

			a a gran	···	Construction of the second s second second sec second second s second second s second second se
					이 같은 것은 것은 것은 것은 것을 알았다. 것은 것을 하는 것이다. 같은 것은
					이 같은 것 같은 것에 있는 것은 것을 가지 않는 것을 알려야 한다. 가지 않는 것은 것은 것이 있는 br>같은 것은 것 같은 것은
					승규가 잘 넣다. 그는 것은 것은 것을 못한 것을 가지 않는 것이 것을 가지 않는 것이 같아요. 이 것을 하지 않는 것이 같아요. 아니는 것이 같이 같이 않는 것이 같아요. 아니는 아니는 것이 같아요. 아니는 아니는 아니는 것이 같아요. 아니는
UCLEO N9		Cu	가 확실하는 것이 같다. 1944년 1949년 1971년 197		NUCLEO B14
ección (cm)	1/4	0/S	R	R/S	Sección I/A 0/5 R R/1 (ca)
) - S	<0.1	8.8	4.5	27	0 - 3 <0.1 9.0 12.8 24
- 10	-	9.3	7.7	36	
) - 15	-	8.1	6.6	28	0 - 10 - 23
- 20	•	7.6	3.7	26	10 15
- 25	•	7.6	4.6	31	10.2 33
- 28	-	10.0	6.S.	27 2000 21	20 - 25
CI TO 1110		n an	en de la construction de la construction de la construcción de la construcción de la construcción de la constru La construcción de la construcción d		25 • 30 - 9.1 6.8 23
CLEO 819					30 35 B.1 6.4 21
- 5	<0.1	8,0	4.2	29	35 - 40 - 7.5 5.7 18
- 10	-	7.7	3.2	32	40 - 45 6.5 18
• 15	•	6.8	3.Z	32	45 - 50 5.5 7.5 17
- 20	•	6.7	3.1	24	6.8 5.8 16
- 24	-	6.6	3.8	25	<u>6.1</u> 17
- 28	•	10.0	5.0	41	60 - 67
LEO B20		and a start of the second s			NUCLEO B22
۰s	<0.1	8.0	14.4	47	0.+5 <0.1 11.5 7.3 19
- 10	•	12.6	9.9	16	5 - 10
- 15	-	9.1	9.8	18	8.8 10.2 21
- 20	-	11.6	9,7	9	9.6 6.6 18
- 25	•	11.0	13.4	23	20 - 25 8.8 4.2 25
• 30	-	11.5	5.4	20	25 - 30 - 8,1 5,3 27
- 35	-	10.9	7.4	24	30 - 35 - 8.8 6.2 22
- 40	•	10.8	5.8	34	8.2 6.6 23
) - 46	-	9.9	8.4	29	40 + 46 9.2 3.4 27

	e e e e e e e e e e e e e e e e e e e				n an teach An an teachtraige	e e e e e e e e e e e e e e e e e e e				
NUCLEO BI	57	.				NUCLEO B31		Cu		
Sección (cm)	1/۸	o/s	R	R/5		Sección (cm)	1/A	0/5	R	R/S
0 - 5	<0.1	2.6	7.0	19		0 • 5	<0.1	198	41	97
5 - 10		2.7	6.2	21	꽃에 가는 것을 가 물을 즐기 못했다.	5 - 10	ىرىيىلامىتىت تىڭ مىلى بىر ئېرىدىغىرۇندۇر دەنچە ئىر دەن	176	34	134
10 - 15		2.6	7.0	15		10 - 15		168	37	84
15 - 20		2.9	6.9	20		15 - 20		200	39	105
20 - 25		3.3	7.7	17	영상 것은 영상 가격을 통	20 - 25		159	47	185
25 - 30		344 (1 2.59. 54 (1490)	7.0	145000	화가지가 관람으로 한다.	25 - 30	un de stand angel 19 de 57 August de st	189	56	67
30 - 35	이 이야. 아파물로라	3.7	6.7	16		30 - 35		92.4	42	147
35 - 40	aller der E	3.8	6.7	17		35 - 40		88.0	85	109
40 - 45	 • • • • • • • • 	3.1	7.0	17		40 - 45		110	91	128
45 - 50	.	3.3 States	7.5	18		45 - 50	edet in been	134	90	136
50 - 55		3.3	7.5	21	물이 관재하는 것 같은 것 같아.	50 - 55		130	97	157
\$5 - 60	•	Z.9	5.9	19		55 - 60		120	104	171
						60 - 65	-	98.6	110	187
NUCLEO B2	19 J Tar	a a a cara a cara a farma				65 70	a na sa	42.9	109	153
0 - 5	<0.1	35.7	50.5	32		70 - 75	•	38.2	109	185
5 - 10	•	40.1	46.8	33		75 - 80	11. - 11.	49.1	110	168
10 - 15		32.4	47.4	45		80 - 85	·	51.3	105	172
15 - 20	-	33.8	60,1	- 34		85 - 90		54.9	101	163
20 - 25	•	36.5	57.1	36		90 - 95	-	70.1	91	180
ZS - 30	•	26.6	69.7	35		95 - 105	-	95.1	68	261
30 - 35	- '	36.5	54.3	42						
35 - 40	-	30.2	63.2	35						
40 - 45	-	24.4	71.5. viji	aa 35 oo A						
45 - 50	-	18.6	65.9	39	gan teoris de la se					
50 - 55	•	34.0	58.0	36	Andrew Angel					
FF 4.0		16 6		(1) TT 1 (1) (1) (1)	4. 10					

55 - 60 - 26.0 71.8 32 60 - 70 - 31.4 68.6

			$\mathbb{R}^{2n+1} \mathbb{R}_{2n}$		an an an Arrange. An an Arrange an Arrange an Arrange an A				
CLFO BI						NUCLEO B3	Cu		
			Cu			Sección	1/A 0/S	R	
cción cm)	1/1		0/5	R	R/S	(cm)	물건 가장 이 집에 걸었다.		
		h i langan.				45 - 50	1.4		1.11
• 5	-	1 - A. A.	1,4+0.1	<0.1	1986), 1.74 (1.797) (1.877) 1987: 1981 (1.877)	50 • 55	• 1.2	•	0.95
- 10	• .		1.3	0.2	3.33	55 - 60	• 1.5	-	0.55
• 15			1 - 1 1 - 2 - 7 - 144 1 - 14 - 1 - 2 - 7 - 144		1998 3.1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -	60 - 65	2.0		1.73
- 20	-		1.2	0.2	1134 (* 124.) 1995 - Julia Alexandro, 1997 (* 1997) 1996 - Stationard Stationard (* 1997)	65 - 70	1.6		0.73
- 25	•		1.4	0.1	3.16	70 - 75	1.5		1.00
- 30	•		1.4	0.2	2.74	75 - 84	1.4		0.14
- 35		19 1 1 49 1	1.5	7	2.21			an agus an constan a' An cashar an c	Ne de la composición br>Composición de la composición de la comp
- 40	•		1.1	0.3	2.45 States and the second	NUCLEO B4			
- 45	•	1.11	1.1	0.2	1.96	0 • 5	D.5+0.1	<0.1	0.24
- 50	-	1.1.1.1.1.1	0.8-	0.3	3.53	5 - 10	- 0. 5		1.84
- 55	-		1.2	0.1	2.51	10 - 15			2.44
- 60	-		1.3	0.1	3.62	15 - 20	• • • • • • • • • • • • • • • • • • • •	•	1.44
- 65	-	1.1	0.8	0.1	3.64	20 - 25	• D.s		3.58
- 70	-		0.9	0.2	3.33	25 - 30	0.7	- 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 141 - 1	2.05
• 75	-	- 10	0.9	0.1	4,50	30 - 35	0.7	gerrege i e	0.88
- 60	-		1.1	0.1	2.92	35 - 43	0.8		1.77
- 85	-		0.7	0.2	2,65		사람은 관계를 위해 있는 것이 있는 것이 같이 가지 않는 것이다. 같이 같이 같이 많은 것이 같이 있어요. 것이 같이 있는 것이 같이 있는 것이 같이 있다.		
- 91	•		0.6	0:2	3.25	NUCLEO 812		- 1 <u>1</u>	
- 101	-		0.6	0.1	2.80		이 잘 많은 것은 것 같아요.	0.2	0 7
- 113	•		0.6	<0.1	2,96			0.1	1.4
FO B3						10 15		0.5	n c
			an an saidheach			15 - 70	승규는 것을 가져 들었는 것 같아요.	0.0	7.0
- 5	•		0.8	<0.1	0.25			0.2	7.1
- 10	-		1.4	e de la sel de la Constante La sel de la sel de l	0,95	ವರ ವಿಷ್ಣ ನಿಂದಾ ಕಳ್ಳಿಗೊಂಡಿಗಳು. ಬೆಂದ್ ಪೇಟ್ ಕ್ರಿಯಾಗ್ರಾಶ್ವೇಟ್ ಇರು ಸೇಳಿಗ	a katipa kang sukin sa kang kat an sa k nangganatan kang sa pinanang p	· • •	2.4
- 15	-		1.2		0.34	40 - JU		0.4	4.1
- 20	-		1.4	•	2.64	30	4.1	0.5	0.9
- 25			1.2	•	-0.01	······································	4 .2	0.5	3.9
- 30	•	· .	1.6			4045		0.3	2.1
- 35	-		1.4		1.51	45 - 50	• 2.1	0.3	2.1
- 40	•		1.2	•	2.16	50 - 58	- 2.2	0.3	1.4
- 45			1.2						

ICI.EO B7		Çd			NUCLEO BS		Cd		
cción	1/A	0/5	R	R/S	Sección (cm)	1/۸	0/s	R	R/S
0		0.7	· · · · · · · · · · · · · · · · · · ·	0.01		<0.1	1.4	<0.1	0.52
5 - 10	•	0.6		n 97	5 • 10		1.4		-0.19
0 - 15		0.6		n 74	10 - 15		1.6		-0.02
5 - 20	🖕 👘 jeren dar	0.6		0 76	15 - 20		1.5	•	-0.62
0 - 25		0.7	이 같은 것 같은 것	1 38	20 - 25		1.5		-0.62
15 - 30		0.6	en de la companya de la constante de la consta La constante de la constante de La constante de la constante de	ñ 97	25 - 30			n a la compensa da la Esta compensa da la co	
0 - 35		0.6		0.69	30 - 35			nie in serie de la serie. Na serie de la s	0.23
5 - 40	and the states	0.8	المراجع (1997) منه (1995) (1997) (1997) مراجع (1997) (1997) (1997)	2.20			4. (2013) 4. 6 - (2013) 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	un en tra de la composición de la compo Composición de la composición de la comp	-0.70
10 - 45	•	0.7		0.53				viteri "terre "	-0.53
5 - 50	•	0.8		3.05	N3 - 5V		CARANE 1.0 SCT	7a (7	1.16
0 - 55	• · · · · · · · · · · · · · · · · · · ·	0.7		0.48					1.33
5 - 60	•	0.7		0.94	1997 - 1997 -		an a		0.57
0 - 72	-	0.7		1.48	NUCLEO B6				
	e de la compañía de l	n seren ya yang	in a <u>na sea an /u>			·····		CO 1	7 68
CLEO B24		ek e e a colorador. A colorador					о.,		1 11
					10 - 15		0.6		4 11
0 - 5	•	0,9	<0.1	-0.08	15 - 70		0.0		3 03
5 - 10	•	1.0		0.60	20 - 25		0.5	_	3.55
0 - 15	•	1.4		1.76	25 - 30		0.A	-	3.40
5 - 20	•	1.2	•	2.10	30 - 35		0.6	•	1.80
0 - 25	•	1.3		1.78	35 - 40	[28] 영상 등 1.	0.5	•	2.08
5 - 30	•	1.5		1.49	40 - 45		0.8	+	2.02
0 - 35	•	1.3		0.88	45-50		1.0	-	2.22
5 - 40	•	1.6		0.59	50 - 55		1.0	-	3.50
u - 15	•	1.8		0.48	55 - 60		1.0	• ·	1.77
5 - 21	•	1.9	•	2.00	60 - 70		0.7	-	2.88
				승규가 물건가 가지?	70 - BO	antre i servici	0,B	-	2.75
	÷ .				60 - 89		0.9	-	2.96
			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	and the second second					
						a di kata kata s			
			11 - 11 - 14 - 14 - 14 - 14 - 14 - 14 -	전 사람 가지 않는 것					
		1997 - E. 1997 - A. 1	and the second second	et al de la companya					
				e de la complete de l					
	an the second second	an a	ang halaniga	يو بر ايد به معدومه	أدبأ بجرد بجدة يستحدر المجامعون	ant i she a li sh			
÷.	· · · ·	141 - 15 M.		nghi shina she	a an	a esta A esta a production de la composición d			
		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	The second second						
		· · ·							
						·	1		

			· .'	à chuir ann an tha an t				المعارض أنريه	n sen an se		
					지역 20년 1일 - 1년 1일 기억 1일 - 1일 - 1일						
						요즘 솔 좋 글					
D 825		1	Cd				NUCLEO B17		દત		
6n	1/٨		0/S	R	R/S		Sección (cm)	1/A	0/5	R	R/S
5	< 0.1	1.1.1.4	1.0	<0.1	.2,41		30 - 35		0.6	0.1	3.07
10	•		1.1		3.27		35 - 40		0.9	0.1	0.78
15			1.1		2.88		40 - 45		0.9	<0.1	2.91
20	-		1.2		1.94		45 - 50		0.9		1.28
25	•		1.4		3.48		50 - 55		0.9	0.1	1.20
30	- 11		1.4	den se den veren	2.46	 Refer to the count of the second sec second second sec second second sec	55 - 60	indiana politica e de la como de la serie de la se Nota de la serie br>Nota de la serie	0,8	0.1	0.44
35			ાસો માટે છે. જે		2.03	그는 전문을 알려졌다.	60:70		1.D	0.1	Z.99
40	: . -	문문문	1.3		1.30		70 - 80		1.0	0.1	0.56
45	-		1.6	에 다 가 가지 않는 것이 같다. 이 같은 것이 같은 것이 같다.	2.23		80 - 89		1.1	0.1	1.05
O B26		n Bulgé					NUCLEO BIB				
	-0.1			< 0.1	0.29	n a séa a la factorio a de Alexa. A la revisió da Alexa de Alexa de Alexa.	0 - 5	na an an Air an Anna an Anna an Anna Anna an Anna a	0.6	<0.1	1.06
5 .	<0.1		1.7		0.70		5 - 10		0.6	2 - 1 - - 1	· 2.20
10			1.5	taniti et a ttanit	0.00		10 - 15		0.5		3.10
12			1.5		0.00		15 - 20		0.7		3.58
20	-		1.4	i para la relation de competition. En la competition de l	0.08				D.6	(ter di str•	2.09
. 30	- <u>-</u>			an an Rapas		이 아이지 않는 것	25 - 30	[19] 관계 관계	0.6	. •	2.78
10	-						30 - 35		0.8	-	3.52
40	-			_	0.00		35 - 40	•	0.6	-	2.63
45			1.2		0.19		40 - 45	-	0.6	+	2.65
50	-		1.3	e in traite	0.00		43 - 50	•	0.6	-	3.38
57	-		1.2	1	0.2B		50 - 60	•	0.4	-	2.28
				and the second			60 - 70		0.0	-	3.25
O B17				a a series a series and a series and a series and a series of the series of the series of the series of the ser		na na seu de la constante de la seconda br>En esta de la seconda de la En esta de la seconda de la	70 + 80	-	0.5	-	2.07
5	-		0.6	0.2	1.08		80 - 90	•	0.4		1.56
- 10	-		0.7	0.2	0.43		90 - 100	-	0.5	• '	1.86
- 15	-		0.7	<0.1	0.76	승규는 승규가 다니	100 - 110		0.6	-	3.25
- 20	-		0.7	0.2	2.60						
. 75	-		1.0	0.1	0.73						
- +3	-		0.6	-0.1	0.77						

		an Tagairtí an sao spísichte		المراجع br>مراجع المراجع ا		an an Ara An Ara
	میں بالاست بنی کہ ہے ایک ہے۔	والمراجع المحاجم والمراجع	s prepair			
				가지 않는 것이 있는 것이 있는 것이 있는 것이 있는 것이다. 같은 것이 같은 것이 있는 것이 가지 않는 것이 없다.	· 영국은 사람은 가격에 가지 않는 것을 가지 않는 것이다. 같이 같이 가지 않는 것은 것은 것은 것이 같이 있는 것을 하는 것이다.	
UCLEO BI4	Ca			NUCLEO B9	Cd	
Sección I/	A D/S	R R/S		Sección 1/A	0/S R	R/S
(cm)	and an a' Carological provident and 2000 to the second second second second second second second second second The second se		ab sign for the r	(cm)	ur ann an 1976 a' bhailte a' chuir a bhailte ann an 1977. Tha an 1977 ann an 1977 ann an 1977 ann an 1977 ann a Tha na 1977 a' bhailte ann an 1977 ann an 1977 a' bhailte ann an 1977 ann an 1977 ann an 1977 ann an 1977 ann a	
0 - 3 -		~U.L. U.r		0 - 5 -	1.0 <0.1	1.95
3 6			8	5 - 10	1.5	2.96
0 - 10 -				10 - 15 -	1.2	3.24
10 - 15 -			15	15 - 20 -	1.5	2.10
15 - 20 -				20 - 25 -	· 建筑建筑建备413 的复数形式 1-11月	z.55
cu = 25 =	and a second			25 - 28 -	1.6	2.52
13 - 30 -			7. 10. 55 (St. 2010) - 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	NUCLEO B19		Sec. A
na sea anna sea	್ಯಾಲ್ಗಳ ಸಂಪರ್ಧ ಗ್ರಾಮಿಸಿಗೆ 12,7 ಪ್ರಶಸ್ತಿ ಸಂಪು ಗ್ರಾಮಗಳನ್ನು ಸಂಪುದ ಸಂಪುದ 19,455 ಸರ್ಕಿಸುವ		3			
10 - 10 - 10	1.0	- 1.() 8		and a second	0.79
C . CA	n 9	• 0.0	5	10 10		2.10
			STATISTICS STATES	er en la ser la factoria da constructione de la serie de la ser Nota de la serie	an a	-0.08
10 - 33				1317 EU	anna an ann an Aontaine an Aontaine an Aontaire ann an Aontaire. A bhann an Aontaichte ann an Aontaichte	0.00
40 - 67 · · ·	· · · · · · · · · · · · · · · · · · ·	• 0.	46	20 24		. 1./0
uu e ux satist				44 4	k a Maria ya Maria a Sana a Maria a Maria a Sana a San Mana kata ang kata sa	2.33
UCLEO BZ2	•			NUCLEO B20		
0 - 5 -	1.3	<0.1 -0.	80	0 - 5	1.1 <0.1	2.48
5 • 10 -	1.5	-0.	84	5 - 10 -	1.6 -	2.15
10 - 15 -	1.5	• 2•	04	10 - 15 -	1.2	2.16
15 - 20 -	1.5	0;	6	15 - 20 -	1.7	2.49
20 - 25 -	1.6	- 1.	03	- 20 - 25	2.0	1.93
25 - 30 -	1.5	- 0.	29	25 - 30	1.6	1.65
30 - 35 -	1.5	1.	04	30 - 35 -	• • • • • • • • • • • • • • • • • • •	1.9
35 - 40 -	1.5	- 1.	65	35 - 40 .		3.53
40 - 46 -	1.9	0.	05	360 (a. 1997) - 199 40 - 146 (a. 1997) - 1997	2.0	2.63

NUCLEO B37		Cd	des van een een de staar de s <u>een de staar /u>	NUCLEO B31		Cu	
Sección (cm)	1/٨	0/S R	R/S	Sección (cm)	17. 0	/5 R	R/S
0 - 5	-	0.4 <0.1	0.38	영상 동안은 이상 정말을 열었다.			
5 - 10	-	0.4	0.45	U • 5		.2 <0.1	0.58
10 - 15	•	0.3	1.79	S • 10	i de transformente de la companya d Companya de la companya de la company		1.42
15 - 20	-	0.6	1.00	2000-000-00-00-00-00-00-00-00-00-00-00-0			1.60
20 - 25	-	0.5	1.66	15 • 20			1.23
25 - 30	-	0.4	0.03	20 - 25			2.14
30 - 35	-	0.4	0.10	23 - 30			1.60
35 - 40	•	0.4	0.02				1.09
40 - 45	-	0.4 -	2.15				1.18
45 - 50	-	0.4	1.30	1	U		1.10
50 · 55	-	0.4	0.86	45 SU		en al propio de la composición de la c Esta de la composición	1.41
55 - 60	-	0.5	4. 1.12 (1.17)				1.77
		그는 것이 많이 많이 많이 많이 많이 많이 했다.	دور و در می اود و است. ماهمانی بروی و بر و زیر از این ا	55 • 6U			1.93
NUCLEO B29				60 • DS		•••	3.07
0 - 5	•	0.5 <0.1	U - 28	65 - U	· · · · · · · · · · · · · · · · · · ·	• • •	1.09
5 - 10	-	0.7		70 - 75	U	• 2	2.13
10 - 15	•	0.7	a 2.23 a sa s	75 - 80	0	• •	3.03
15 - 20	-	0.5 -	1.55	80 - B5	•	.0	2.17
20 - 25	-	0.7	1.54	85 • 90	0	.8 -	1.50
25 - 30	•	0.7 -	1.80	90 - 93	•	.8 -	1.92
30 - 35	-	0.6	1.10	95 - 103	- 0	.3 -	2.37
35 - 40	-	0.6	0.80		승규 같은 것은 동안이 있는		
40 - 45	-	0.6 •	2.65				
45 - 50	-	0.4 •	0.45				
50 - 55	-	0.5	1.20	이 안에 가 한 것이 가 있었다.			
55 - 60		0.6	1.90		al training a train		

0.90

.

										tant Rođenski
NUCLEO DI		Co .				NUCLEO 83		Co		
Sección -	1/٨	0/5	R	R/S		Sección	1/A	0/S	R	R/S
(cm)	an a					(cm)			1월 21일 전 21일 - 11일 12일 - 11일 전 11일 - 11일	ny Ngang Shang ang Pangalan. Ngang Pangalan
0 - 5	<0.5	2.0	H H H H H H H H	방법, 4월 문화가		45 - 50		3.5	5.7	6
5 - 10	•	1.8	1.8	4		50 - 55		4.0	4.5	na 8
10 - 15	•	Z.1	1.9	12		55 - 60		3.3	6.2	3
15 - 20	•	1.6	1.7	6		60 - 65		4.7	4.4	6
20 - 25	- 1	1.5	1.7	3		65 - 70		4.7	4.5	7
25 - 30	. 	2.0	1.7	9		70 - 75		4.6	4.3	9
30 - 35		1.6		11		75 - 84	이 가지 않는 것은 가지 않는다. 이 가지 않는 것은 가지 않는다. 이 가지 않는 것은 것이 있는 것이 같이 있는다.	4.1	3.7	8
35 - 40		1.4	1.8	12	신경 및 영양 소망에서 가격하고 있다. 1995년 - 1997년 - 1911년 -			같은 눈 눈 옷을 벗어?		
40 - 45	•	_ 1.5				NUCLEO B4				t fin a start a
45 - 50	• • • •	1.6	1.2	11	관계 관계 관계 관계	0 - 5	<0.5	· · · · · · · · · · · · · · · · · · ·	1.5	
50 - 55	• .	1.7	1.4	7.		5 - 10	김 나는 말을 하는 것이 없다.	0.9	1.3	3
55 + 60	. •	1.7	1.6	entre de l'Alter de l'Alter de la composition de la composition de la composition de la composition de la compo La composition de la c		10 - 15		0,6	1.4	4
60 - 65		1.2	1.6	\$		15 - 20	e de trades es	0.8	1.2	6
65 - 70		1.7	这些多效的第 14 08	7		20 - 25	1999 -	1.0	1.4	4
70 - 75		1.6		9	lin din k ana kata kata kata kata kata kata kata k	25 - 30	Sin en ser e	.an 1.4	1,6	2
75 - 80		1.5	1.3	11	[16] (18) (18) (18) (18) (18) (18) (18) (18)	30 - 35	•	1.4	1.5	2
80 - 8S			1.6	and the set of the set	Santa anipris di sci sci si	35 - 43		1.5	1.5	6
85 - 91	-	1.3	1.6	11						
91 · 101	•	0.9	1.9	6		NUCLEU BI	4			
101 - 113	•	0.8	1.4	7		U • 5	<0.5	3.5	1.5	12
			승규는 승규는 승규는		같은 이 가지 않는 것이 있는 것이다. 같은 것이 있는 것이 없는 것	5 - 10	-	3,0	0.9	3
NUCLEO B3	10.5		τ.0			10 - 13	•	3.7	0.9	
0 - 3	×0.3					15 - 20		1.3	0.0	~
5 - 10	-	3.7			an a	20 - 25	•	2.9	0.9	-
10 • 15	•	3.0				25 - 30	•	2.5	1.4	,
15 - 20		4.8				30 - 35	-	3.0	0.4	1 1
20 - 25		3.2		• •		35 40	-	1.5	0.,	
25 - 30	•	3.9		10		40 - 45	•.	2.0	0.5	10
30 - 35	• •	4.0	Q.1	11		45 - 50		1.9	1.0	10
35 40	•	3.1	7.0	44		50 - 58	-	2.5	0.8 .	0
40 - 45	-	3.0	6.8	U						

NUCLEO B7		Co	NUCLUD B5 Co
Sección (cm)	1/A	0/S R R/S	Sección I/A O/S (cm)
0 - 5	<0.5	1.5 3.0 12	Ű • 5 <0.5 3.2
5 - 10	•• [*];	1.5	5. • 10 ·
10 - 15	-	1.1	10 - 15 - 3.4
15 - 20	•	1.6 2.5 15	15 - 20 -
20 - 25	• • • • • • • • • • • • • • • • • • •	0.9 * 2.3 9	20 - 25
25 - 30		1. Solution of the second state of the seco	25 - 30 - 3.0
30 - 35	 A 100 March 	2.0	30 - 35 2.2
35 • 40	•	2.0	35 - 40 - 2.7
40 - 45	•	1.9 1.6 12	40 - 45 - 2.8
45 - 50	-	2.7	45 - 50 - 1.5
50 - SS	-	2.7	50 - 55 +
55 - 60	-	2.8	55 - 60 - 2.1
60 - 72	-	2.7 1.6 15	.NUCLEO_B6
NUCLEO B24		가 있는 것은 이번 것이 있는 것은 것은 것은 것이 있는 것은 것은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 같은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것이 있는 것이 있	0 - 5 <0.5 1.1
0 - 5	<0.5	1.5 1.9	
S - 10	-	1.9	10 - 15 - 1.0
10 - 15	-	1.4	15 - 20 + 1.2
15 - 20	-	1,5 3.1 16	20. • 25. • 0.7

15 + 20	•	· · · · · · · · · · · · · · · · · · ·	1.5	3.2
20 - 25	-		1 2	3.1
25 - 30		2.0		
		[17] 178. HE 198. 199. 199. 199. 199. 199. 199. 199.	0.5	2.5
30 - 35	-	Z.4 u dia suburte Z.7 (1980) All COZ STATE Commence and the second state of the second state of the second state	1 2	2.8
35 - 40	-	1 310		
		202 July 2, Jack College Brank Brank College College College College College AS (+ 50 - 50 - 50 - 50 - 50 - 50 - 50 - 50	1.4	2.8
40 - 45	•	3.4 (新知道) (新知道) (新知道)(新知道)(新知道)(新知道)(新知道)(新知道)(新知道)(新知道)	0.9	2.7
45 - 51	-	3.2 34.0 PA 10 PA	4.5	
		· · · · · · · · · · · · · · · · · · ·	1.3	2.8
		· · · · · · · · · · · · · · · · · · ·	1.0	2.7
			0.9	2.6

80 - 89

I

0.9

R

3.5

4.1

3.6

3.4

4.3

3.1

3.9 4.5 😒

5.1

6.Z 5.7

5.5

2.6

2.6 3.0

3.3

3.2

z.7

R/S

9

16

4 7

17

12

19

11

12 13

19 11

12 12

12

11

15

14

11

1 Z

11

12

17

10 11 13

14

			and see the						ta para da series	· · · ·
	· · · · ·								i North C	
NUCLEO B17	a secondada						영상 관계 전문			
				<u></u>	금경 영향 사람은 것을	NUCLEO BZS	승규는 것 같아요.	Co	s the second	5. j.
Sección (cm)	1/A	0/5	R	R/S		Sacción				
,			영화 소문 문문			(Cm)	L/A	0/5	R	R/S
0 + 5	×U.5	1.0	2.9	20,		in a ch	en frigheide geschiede die beste Grif die Fri gheide die besterne			• -
5 - 10	•	0.9	2.5	13	이 승규는 것 같은 것 같아?	5 - 10			2.0	14
10 + 15		1.0	2,9	16	가장님 가장에서 가장에서 같이 주요? 같은 것은 것이 가장에서 같이 가지?	10 - 15	: 2019년 - 1919년 br>1919년 - 1919년		3.3	22
10 10	•	1.0	2.6	19		15 - 70			3.0	10
20 - 25		1.6	2.2.2	14 (j. 14) 14		70 - 75		, le f e a l la seu se	Z.8	17
23 + 30			Z.O	12		75 - 30		3.3	3.5	17
20 - 22		1.2. Substantia		19		30 - 35 -			3.3	16
35 - 40		1.5	2.7	16		35 - 40	en en ser de la service de Notas de la service de la s	99 9 • / 37570 - 310 - 51		11
40.45	n an		3.8	15				3.9	3.4	18
45 - 50		1.7	2.4	11					2.7	16
30 - 35		Z.O	3.0	17			사람님, 말랑 감독 같은	2011년 11년 <u>-</u> 11년 - 11		
53 - 60	•	1.8	2.8	22		NUCLEO B26	医白斑 化分子物 建立		•	
60 - 70	a de la compañía de l	2.0	2.8	13						
70 - 80	•	2.1 mail 18	2.6	17		U - 3	< 0.5	3.1	2.9	11
80 - 89	• • • • • • • • •	2.1	3.0	12		3 - 10		2.2	3.6	10
NUCLEO BIS						10 - 15		2.3	3.9	11
	· · · · · · · · · · · · · · · · · · ·					13 - 20		1.9	2.1	10
0 - 5	<0.5	1.2	2.2	9	2명 관계를 가장 수가 있는 것을 통하는 것이다. - 같은 것은 명령은 그가 있는 것은 것은 것이다.	20 - 25		2.1	1.8	13
5 - 10	•	0.8	2,1	28		23 - 30	•	2.4		14
10 - 15	•	0.6	2.4	20		30 - 35		2.5	3.2	14
15 - 20	•	1.0	2.3	20		35 - 40	•	2.4	2.9	15
20 - 25	-	0.7	2.1	18		40 - 45	-	1.2	2.2	13
25 - 30	•	1.1	2.1	16		45 - 50		1.1	1.8	. 9
30 - 35	•	1.4		16		30 - 57	•	1.0	1.4	10
35 - 40	•	1.0	2.5	16						
40 - 45	• •	1.1	2.5	16	1. 2006년 10년 10년 10년 10년 10년 10년 10년 10년 10년 10	and the second second	e			
45 - 50	•	1.5	CT 213 CT 20	10						
50 - 60	• .	1.5	3.2	1B						
60 - 70	•	1.7	2.8	14						
70 - 80	-	1.3	2.5	19						
80 - 90	•	1.3	2 .2 g by Fr	14						
• 90 • 100	-	1.3	2.2	15						
••• •••		••				e di setta p				
		te e de tils t	en e							

235

 $\frac{1}{2}$

					an an that			n an an Arran		
NUCLEO B9	•	Co				NUCLEO B14		Co		
Sección (cm)	3/A	0/S	R	R/S		Sección (cm)	1/A	0/5	R	R/S
0	-0 E		· · ·	a de la compañía de l Compañía de la compañía		0 • 3	<0.5	1.2	2.1	14
0 - 5	çuia	1 7	2.1			3 - 6			-	-
10 - 15		tan ang sang sang sang sang sang sang san	1.7	10 13 13 19 10 10 10 10 10 10 10 10 10 10 10 10 10		6 • 10		3.6	1.9	12
15 - 20		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1.4			10 15				•
20 - 25		3.7	1.2	- 16	en her die d	15 - 20		2.8	2.0	14
25 - 28	그 것 같은 부분을	3.4	1.7	8	한 같은 물건을 많이	20 - 25	•	3.4	1.9	14
						25 - 30	· 2· · 2: 1 - 1 - 1 - 1	2.8	1.5	10
NUCLEO B19						30 - 35	•	2.1	1.7	13
0 - S	<0.5	4.9	3.2	10		35 - 40		1.2	2.2	13
5 - 10	- 1	5.0	2.0	<u> 10</u>		40 - 45	•	1.4	2.0	14
10 - 15.	-	4.1	3.1	9	한 국민 문민 문민 가격을	45 - 50		1.1	2.0	13
15 - 20	•	4.5	1.8	14 Service -		50 - 55		1.0	2.0	18
20 - 24	-	4,2	1.4444	11		55 - 60	•	1.0	2.0	10
24 - 28	-	4.5	2.0	12		60 - 67		0.9	2.0	10
						NUCLEO B22				
NUCLEO 820						n - 5	<0.5	3.8	Z.3	12
0 - 5	<0.5	2.4	2.3	16		5 - 10		3.7	2.8	5
5 - 10	-	4.2	1.8	13		10 - 15		3.5	2.9	12

5 - 10	-	4.2.00 (Astronomic Based Astronomic Based	3.5	2.9	12
10 - 15	-		3,3	3.3	12
15 ~ 20	•	2.4 (1) (1) (1) (5) (2) (4) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	3.4	1.7	10
20 - 25	-	3.3 (a) (b) (b) 1.5 (b)	3.0	2.2	15
25 - 30	-	3.0 1 State and 1.4 Registers 8 state and 1.4 Registers 8 state and 1.4 State and 1.4 State 3.5 State 3.5 State	3.2	2.8	13
30 - 35	-	3.3 · · · · · · · · · · · · · · · · · ·	2.6	2.5	1 3
35 - 40	-	3.5	3.0	2.4	9
40 - 46	-	2.3			

			en e		and provide a set				
			이 말라는 것이 가지?	이번 이번 영습					
JUCLEO 837		Co				NUCLEO B31	Co	<u>-</u>	
Sección (cm)	1/A	0/5	R	R/S		Sección I/A (cm)	0/s	R	R/5
0-5	<0.5	1.0+0.4	1.9	13		0 - 5 < 0.5	\$2.0	5.9	10
5 - 10 .		0.6	a (1.4 . 20)	18		5 - 10 -	47.0	5.7	48
10 - 15	•	0.9	1.8	11		10 - 15 -	50.3	5.8	29
15 - 20		0.8	1.7	15		15 • 20 •	47.5	6.4	34
20 - 25	al de la constance de la const La constance de la constance de	1201011333888888888888 1997-1997-1997-1997	a an t 1,5 ages a mart 1,5 ages	13 (1997) - 19 (1997) 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		20 - 25	49.9	8.8	44
25 - 30	• • •	1.8	1.6		latak ne koevonikin	25 - 30 -	52.0	10.4	4 2
30 - 35		1.6	24 (1976) 1 (4 1997) (197	15		30 - 35 -	- 1997 - 1912 - 1913 - 41.4	6.0	33
35 - 40		0.8	1.0	19		35 - 40 -	35.2	12.5	35
40 - 45		0.7	1.1	19		40 - 45 -	39.5	13.5	33
45 - 50	승규는 한 번째 관계적	in 1.6 to 18	an conception in the second second	10.22	비행 방송 방송의 방송의	45 - 50 -	48.8	11.6	30
50 - 55		1.4	1.0	1960 - 19 1961 - 19 1961 - 1965 - 1965 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 19		50 - 55 -	47.2	13.7	42
55 • 60	•	0.7	1.1	°-7₀.14		55 - 60 -	48.1	14.1	40
	a da anti-arra da arra				e per en	60 - 65 -	39.1	14.5	28
OCTEO BIS						65 - 70 -	7.8	8.1	21
0.5	<0.5	2.1	0.2	16		70 - 75 -	3.6	5.4	28
5 • 10		2.2	6,Z	20		75 - 80 -	5.9	5.6	18
10 • 15	•	.2.2	5.0	25 (Base) 2019		80 - 85 -	5.6	4.9	27
15 - 20	•	0.6	7.6	25		85 - 90 -	6.9	4_4	20
20 - 25	•	Z.4	7.0	24. Jan 24. Ja		90 - 95 -	12.8	5.4	28
25 • 30	•	2.1	7.5	21) 		95 - 105 -	23.5	4.8	43
30 · 35	•	2.5	6.1	23					
35 - 10	•	1.7	na na kati 7.7 2 kiliki Na na kati prografiya kati s	299, 697 23 (299, 201) 1999, 603, 617, 417, 200					
40 - 45	•	1.5	6.4	849.0012 24 1999.001224					
45 - 50	-	2.0	6.3	18					
50 - 55	•	1.5	5.5	22		· · · ·			
55 - 61)	•	1.5	7.2	22	n de la companya de l				
60 - 78	-	2,4	7.2	17					
					at a star de la secola de la seco				
			and the second	and the second					

NUCLEO B1 NUCLEO B3 Cr Ċr Sección 174 0/5 R R/S R/S I/A 0/5 R Sección (cm) -(cm) 45 - 50 8.0 44 2.3 0 - 5 4.4 30 <0,6 3.1 3.6 39 50 - 55 6.4 5.0 5 - 10 ۰., 2.5 30 55 2.3 6.4 43 - 60 2.0 4.7 30 10 - 15 60 - 65 3.9 6.0 40 15 - 20 1.7 5.1 26 65 - 70 45 3.3 6.2 20 - 25 3.9 4.Z 28 70 - 75 3.3 \$.Z 46 25 - 30 2.6 5.6 30 75 - 84 γ., 2.8 5.2 44 30 - 35 3.5 4.3 31 ang bahawi NUCLEO B4 35 - 40 2.0 5.1 30 40 - 45 z.2 4.4 32 <0.6 21 0 - 5 3.1 1.8 1.8 45 - 50 4.1 33 5 - 10 4.3 2.2 20 3.1 31 50 . 55 3.2 10 - 15 4.3 1.4 18 3.5 55 55 - 60 2.7 15 - 20 . 3.8 1.5 20 60 - 65 2.8 2.9 29 20 - 25 4.1 1.8 17 65 - 70 2.2 3.9 50 25 - 30 3.5 2.1 21 3.5 70 - 75 1.5 52 2.1 21 30 - 35 3.5 2.7 3.8 51 75 - 60 35 - 43 4.2 2.4 20 28 80 - 85 2.3 4.0 27 NUCLEO BS 85 - 91 1.7 3.8 4.1 1.7 27 91 - 101 25 3.4 6.8 0 - 5 <0.6 32 101 - 113 2.5 3.3 . Z 1 5 - 10 3.9 11.4 -10 - 15 3.6 7.6 11 NUCLEO B3 3.4 7.3 29 15 - 20 5.1 39 0 - 5 4.4 < 0.6 26 20 - 25 3.6 7.4 3.7 .7.1 39 5 - 10 -25 - 30 3.7 6.6 27 8.8 .39 10 - 15 2.6 3.0 6,8 31 30. - 35 41 15 - 20 z.5 9.4 3.2 7.2 29 35 - 40 20 - 25 2.5 7.6 41 29 2.2 7.9 40 - 45 7.7 45 Z5 - 30 3.2 30 45 - SO 2.2 9.0 7.1 42 30 - 35 Z.8 8.7 42 1.9 35 - 40 . 1.7 43 40 - 45 7.2

NUCLEO B5 NUCLEO B26 Cr Cr Sección 1/8 0/5 R R/S Sección L/A 0/5 R R/5 (cm) . (cm) 0 - 5 <0.6 9;7 4.1 25 50-- 55 7.4 2.1 32 5 - 10 6.5 5.5 3: 55 - 60 z.3 10.1 29 10 - 15 6.6 5.4 31 -NUCLEO B6 15 - 20 6.6 5.6 31 20 - 25 8,0 4.6 30 0 - 5 < 0.6 4.5 13.2 23 Z5 -0 30 5 - 10 3.2 3.8 30 30 35 6.2 î., i i 6.9 28 10 4.0 - 15 3.2 33 35 - 40 4.1 6.0 32 15 - 20 3.7 4.0 29 40 - 45 2.7 7.6 27 20 - 25 2.8 3.9 **Z**9 45 - 50 3.4 5.2 26 25 - 30 2.2 4.4 29 50 - 57 5.0 4.5 28 30 - 35 2.5 4.3 34 35 - 40 Z.3 4.0 34 NUCLEO B12 40 • 45 2.5 4.4 30 0 - 5 45 + 50 2.6 473 27 < 0.6 9.8 6.3 13 50 - 55 2.3 4.0 30 5 - 10 9.5 6.7 27 10 - 15 27 55 - 60 3.2 4.4 35 11.9 4.8 60 - 70 15 - 20 10.8 5.4 2.2 4.7 35 31 70 - 80 z.3 4 :7 32 20 - 25 7.0 5.2 32 80 - 89 3.2 5.0 29 25 - 30 7.2 6.6 34 30 - 35 6.8 6,4 46 NUCLEO 825 35 - 40 6.7 6.0 4.2 7.2 40 - 45 6,4 6.0 27 6.5 29 0 • 5 <0.6 7.7 7.5 34 45 - 50 6.5 7.0 32 5 - 10 10 - 15 6,1 8.Z 34 50 - 58 6.7 6.6 31 5.8 8.6 34 15 - 20 NUCLEO B7 9.8 20 - 25 5.5 43 0 • 5 6,4 3.0 28 25 - 30 5.5 9.4 48 < 0.6 33 5 - 10 5.4 4.1 31 30 - 35 4.8 .11.2 34 10 - 15 5.2 4.1 30 35 - 40 3.9 9.9 4.8 32 \$.0

ao • 45 · The first line 3; 4 clightly Markes 8; 8 Markes (40 Charles Collar of College) · 15 - 20 · The first second sec

1. Second statistics of the case of a statistic statistic statistics of the
이는 같은 것 같은 것 같은 것은 것은 것은 것이 있는 것이 있는 것이 있다. 이 가지 않는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 이 가지 않는 것이 있는 것이 같은 것은 것이 같은 것이 있다. 것이 있는 것이 있

•			. .		e Ne stationer de la compositioner de la compositioner de la compositioner de la compositioner de la compositione			,	e ger er de	
		and the second	19 - E Au	a strand for						100 A.
					s algebraid	and the second secon				
					사람 가 너				n an	
										1997 - 1997 -
		an in a data an					e se en la seconda da s	a di tapi saliti	a Bragan and Ar	
NUCLEO B7		Gr		an terra ang sa na si ang sa terra. Ng pananana ang sa terra ang sa terra sa terra sa terra sa terra sa terra s	las présidentes de la comp	NUCLEO B17	Maria de Calendaria de Cale	Cr		승규는 가지?
- Sección (cm)	1/A	0/5	R	R/5		Sección (cm)	1/A	0/S	line di Roccitto di	R/S
20 - 25	- 11	8.5	3.9	26		30 - 35		1.1	2.6	27
25 - 30	•	11.7	3.2	26	걸 같은 것을 알 수 있다.	15 - 40		0.000 1.4 0.000	2.6	30
30 - 35	• · · .	12.5pm	3.5	27		40 45	ling faille instantion And an an an an an	1.4	3.0	30
35 - 40	-	12.9	4.1	27		45 - 50		1.3	3.3	30
40 - 45	-	12.8	2.9	21		50 - 55	n na star na star star star den Star de Frank star star star star star star star star	1.2	2.4	27
45 - 50	-	13.0	2.7	25	la lan di Borra la contra da Subi da Subi Subi di Subi da Subi da Subi da Subi Subi di Subi da Subi da Subi da Subi da Subi	55 - 60		1.2	3,3	35
50 - 55		13.4	3.0	24		60 - 70		1.0	3.9	31
55 - 60	-	13.4	2.5	25	g ag i na shipina a tarihin na shipin Tara na sangar sa sangar sa sa	70 - 80	ala da ante da algoridada en estas Personal en estas en	0.7	2.2	29
60 - 72	•	13.8	3.6	21		80 - 89		1.1	1.9	27
NUCLEO B24						NUCLEO BIA		a da Alianda da Alianda Alianda da Alianda Alianda da Alianda da Alianda		
0 - 5	<0.6	3.0	3.3	33	성공과 승규가 있는	0 - S	<0.6	0.9	0.5	28
5 - 10		-2.6	5.9	34		5 • 10		1.4	0,5	31
10 - 15	-	2.4	6.0	38		10 - 15		1.6	0.6	30
15 - 20	-	2.0	6.4	36		15 - 20		0.8	1.0	32
20 - 25	•	2.6	6.0	33		20 - 25	- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	1.0	0.4	28
25 - 30	-	3.1	5.5	36	he significants	25 - 30		1.2	0.8	32
30 - 35		2.9	5.6	38		30 - 35		1.1	0.9	32
35 - 40	-	3.6	6.4	201 47 000 - 101		35 - 10		1.2	8.0	32
40 - 45		3.2	7.3	40		40 - 45		1.2	0.0	31
45 + 51	•	2.9	0.4	1997 - 1997 - 44 - 1997 - 19	u de la la la la sec	43 - 50		0.6	0.8	29
NUCLEO B17						50 - 60		0.6	0.0	27
0 - 6	20 4	0.4		10		60 - 70.		0.6	1.0	28
5 - 10	ζυ.υ	0.8	3.0		na je namerské s	70 • 80		0.6	0.8	25
10 - 15	•	0.9	4.5 7 0	49 10		BO • 90		0.6	0.5	33
15 - 20		0.9	3.0	دد ۱۸		90 - 100		0.7	1.1	33
20 - 25		1.7		JU 10		100 - 110	•	0.6	0.9	29
25 - 30		, 	 	30 11		and the second second	e e e e e e e e e e e e e e e e e e e			
	-			34	the second second	فالفقار الأني الأراب وراجاه	n an tha first start an			

						• · · ·		n lagura a' lina na		
	an a	المراجع (المراجع) مرجع المرجع (المرجع)		an an taon an t	e e la tradición de la construcción.	Natari ang pananan		n an	anti. Antina di serajara di A	
							이 것은 영화한			
			요즘 것을 가 물었다.							
ICLEO B9		<u>Cr</u>	n den gegennen er standen som Regelser i den som er som som som	<u>, 1997</u> , 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997		NUCLEO DI4		<u>Cr</u>		<u>.</u>
cción (cm)	ι/Λ	0/S	R	R/S		Sección (cm)	1//	0/5	A .	R/S
0-5		6.2	9.2	27		0 - 3	<0.6	6.3	1.8	20
5 - 10		5.8	11.2	48		3 - 6			가지 않는 것이 같은	
0 - 15 🖯	•	5.7	9.7	30	옷을 모양하는	6 - 10		5,0	1.2	24
5 - 20		S.O	11.0	26		10 - 15			이 같은 동일이다.	e de liter
0 - 25	i an co s tair (glas) China	4.3	11,5	39		15 - 20		5.8	2.2	20
25 - 28	ं सेन्द्र स्थान वर्ष	4 . 9	11,8,000 States	32	9 89 4 79 4 - 9 1	20 - 25		ti, (†15,•3≥, †17,2	2.7	21
	가라는 동안은 것이. 1998년 1993년 - 1997년					25 - 30		3.7	1.8	: 24
CLEO B19	la esta da la contra de la contra En la contra de la co		a na sana ang kanalan na sana na sana na sana na sana sa		na de la complete de Complete de la complete de la complet	30 - 35	lai eren = lain landain ann. A ampir familia a baigir		2.1	23
0 - 5	<0.6	3.4	7.5	21		35 - 40		1.9	Z.4	25
5 - 10		2.4	5.6	24		40 - 45		3.0	2.2	29
0 - 15	•	3.0	6.5	Z3	같은 '오고'? 신전:七 : 114 : 114 : 114 : 114 : 114 : 114 : 114 : 114 : 114 : 114 : 114 : 114 : 114 : 114 : 114 : 114 : 114 : 11	45 - 50		Z.4	2.4	27
5 - 20		2.4	6.7	19		50 - 55	gelent 등 12 march	2014 - 2 3, 8 Martin	2.8	25
0 - 24	•	2.2	7.9	18	영품 승규는 것을 가지?	55 - 60	이 문화 것	3.1	2.8	10
4 - 28		2.8	6.0	26		50 - 67	iraan saargan daa		2.1	29
· · . ·					a presenta de la	NUCLEO B22		a di tana ta		
CLEO B20								State and State	4 3	25
0 - 5	< 0.6	3.1.	4.9	27	Asia, analisian di Al-	0 - 3	<0.0	4.0	τ.ο	28
5 • 10	•	3.7	5.1	. 24		2 - 10		3.6	4.6	31
0 • 15		2.7	5.0	20		10 - 13		3.8 3.8	4.7	27
5 - 20		4.9	6.0	16		10 - 20		3.9	4.0	27
0 - 25		3.2	5.8	26		25 - 30		2.3	4.2	26
5 - 30		3.6		27.		30 - 35		3.1	6.1	28
50 - 35	. 1 12	2.8	5 .3	Z5		35 - 40		2.5	4.6	30
55 - 40		3.8	6.Z	. 25	NG 12 COLUMN COLUMN	40 - 46	•	3.4	5.5	31
10 - 46		• 3.2	7.4	32						
1.5		line and the second		e satur ta data Amerikan Kapatan	المتحدي أرسو مرأجا	NUCLEO B37				
					요즘 전화가 있는 것	0 - 5	<0.6	2.1	1.3	16
				신 가지 말했다.		5 - 10	•	1.7	1-4	17
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	and the second second				1 - 1 - N	10 - 15	-	2.2	1.2	20
1 1 1 H					and the second sec	15 - 20	· · · ·	2.4	0.9	10

							en strettere 1999 - Diese			
NUCLEO B37		Cr				NUCLEO B31				
Sección (cm)	1//	0/S	R	R/S		Sección (cm)	1/A	- 0/5	R	R/S
20 - 25		2.7	1.2	17	-	76 . 30			5.0	36
25 - 30		3.9	0.6	17		30 - 15			3.7	39
30 - 35	•	4.9	0.6	16		35 • 40			7.6	38
35 - 40	•	4.8	0.4	15		40 - 45		3.1	8.5	34
40 - 45	- - 1 -1	4.7	0.6	19	See an state of the	45 - SN	Genderste en en ser for Se al 1998 en en en for		8.9	35
45 - 50	•		0.3	15		50 - 55		2.6	7.7	38
50 - 55	•	4.2	0.8	19	در با از با از کرد. از مراجعیه روز از با است. از کرد است می موجهان	55 + 60		4.0	9.0	35
55 - 60	그는 일이 집에 했다.	6.1	0.8	15		60 - 65		7.7	8.5	41
	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -					65 70	Rad Private Constant		14.0	51
NUCLEO B29						70 75	이 가 문을 가 있다. 이 가 문을 통해 이 가 있는 것이 이 가 문을 통해 이 가 만들었는 것이		11.2	61
	60 6 ···	and a second				76 - 80		4 7	11.7	53
0.5	~U. 0	3.0				10 10		4.6	9.6	53
3 10	· • • • • • • •	4.0 			والمجاجة بمراجع والمجروب وسيقطع ويترا	95 00				51
10 + 15	-	3.1		- za	문화 영상 말을 얻	00 - 0r		3.3	7 4	57
13 • 20	•	4.0				90 - 95 Or 10r		3./	F 4	56
20 - 25	•	3.3				22 - 102		19 19 10		
25 - 30	•	3.0								
30 - 35	-	5.8	3.U				a se que tanta e la			
35 - 40	-	3.0								
40 - 45	-	2.8	1.0	44	승규는 것 같아.	학교에 관한 가슴 가슴	an an an			
45 - 50	•	2.0	0.9	49						
50 - 55	-	3.5	0.4		a phanaichte an fhair an Annaichte An tha ann an tha an tha an tha an tha		a shi ta a	1.1		

B,O 43 55 2.9 - 6 0 4.1 7.9 42 60 70

NUCLEO B31

0 - S	<0.6	•	2.3	5.
5 - 10	<u> -</u>		2.1 34.4 34.34	din ta
10 - 15	-		2.3 Marken 194.9 Mark 19 33 Marken 19 19 19 19	
15 - 20	-		2.4 34	
20 - 25	- '		2.5	

د ایند، اینیک برزی بردید. از ایند اینک برزی بردید ایند ا e veriese del f

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NUCLEO B1	1997) 1997 - Star Star Star Star Star Star Star Star	NI			NUCLEO B3		NL		n de la la composition de la compositio La composition de la c
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sección	1/A	0/5	R	R/S	Sección	1/A	0/s	R	R/S
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 - 5	1.4	7.5+1.0	4.1	16	(cm)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 - 10	0.5	5.0	7.6	3 - 22 V - A - C - C	50 - 55		30.8	29.4	25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 - 15	0.7	5.3	6.1	23	55 - 60		(12,9) (12,9)	e 1924 44 14 1986	25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 - 20	0.7	4.5	4.8	9	60 - 65		27.5	33.0	27
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 - 25	1.2	7.3	3.9	12	55 - 70		32.0	29.6	23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25 - 30	1.3	6.5	6.3	10	70 - 75		28.1	30.7	26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30 - 35	1.3	8 4 4 4 4 6 6 6 6 F	2004 Co.3.7 200-00	17. (* 17 . (* 1995) 19. (* 17 . (* 1995)	And Antonio and		22.9	32,7	21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35 - 40	0.8	5.2	7.2	18	NUCLEO 84				s .'
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40 - 45	0.8	5.5	5.0	18		م با در میرد در میرد. مربع			an in
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	45 - 50	0.5	3.6	5.2	33	0 - 5	883 1,1	6.2	3.8	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50 - 55	0.7	8.1	3.0	27		1.0	5.6	3.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55 - 60	1.4	7.4	4.6	64. (S 37)	en statenske statenske statenske sou i Secondarije († 1975) Statenske statenske s	1.6	5.5	3.5	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60 - 65	1.9	5.4	4.4	10	15 - 20	2.0	5.3	3.1	5
70 - 75 1.5 5.2 5.4 29 $30 - 35$ 0.4 7.8 4.5 1 $75 - 80$ 1.3 619 5.5 45 $35 - 30$ 0.4 7.8 4.5 4.5 $80 - 85$ 2.2 5.4 4.2 15 $35 - 34$ 0.4 8.8 5.7 $85 - 91$ 2.6 4.0 6.0 9 NUCLEO B12 $91 - 101$ 2.1 3.4 6.4 10 $101 - 113$ 2.4 5.2 411 16 $0 - 5$ $ 20.0$ 16.9 2 NUCLEO B3 05 $ 20.0$ 16.9 2 $0 - 5$ 5.10 $ 17.0$ 16.6 1 $0 - 5$ 50.2 43.8 10.7 21 $10 - 15$ $ 21.4$ 15.3 1 $0 - 5$ 50.2 43.8 10.7 21 $15 - 20$ $ 18.3$ 15.3 1 $0 - 5$ 50.2 43.8 10.7 21 $15 - 20$ $ 18.3$ 15.3 1 $10 - 15$ $ 19.8$ 26.8 26 25 $30 - 35$ $ 17.3$ 18.9 1 $10 - 15$ $ 19.8$ 26.8 26 25 $30 - 35$ $ 17.3$ 18.9 1 $20 - 25$ $ 19.1$ 38.5 25 $30 - 35$ $ 19.3$ 16.6 1 $20 - 25$ $ 24.9$ 31.8 19 $35 - 40$ $ 27$	65 - 70	2.0	5.0	3.8	52	20 - 25	0.9	5.1	4.2	7
75 - 80 1.3 6.9 5.5 45 $30 - 35$ 0.7 5.6 4.8 80 - 85 2.2 5.4 4.2 15 35 - 43 0.4 8.8 5.7 85 - 91 2.8 4.0 6.0 9 NUCLEO B12 9 101 1.3 3.4 5.4 10 101 - 113 2.4 5.2 4.1 16 0 - 5 - 20.0 16.9 2 NUCLEO B3 0.4 5.2 4.1 16 0 - 5 - 20.0 16.9 2 NUCLEO B3 0.5 43.8 10.7 21 15 - 20 - 18.3 15.3 1 5 - 10 - 30.4 27.8 24 20 - 25 15.1 18.2 1 10 - 15 - 19.8 26.8 26 25 - 30 - 17.3 18.9 1 15 - 20 - 19.1 36.5 25 30 - 35 - 19.3 16.8 1 20 - 25 - 24.9 31.8 19 35 - 40	70 - 75 -	1.5	5.2	5.4	29		ter 0.4. Setting	7.8	4.5	11
80 - 85 2.2 5.4 4.2 15 $35 - 43$ 0.4 8.6 5.7 $85 - 91$ 2.8 4.0 6.0 9 NUCLEO B12 $91 + 101$ 2.1 3.4 6.4 10 $101 - 113$ 2.4 5.2 4.1 16 $0 - 5$ $ 20.0$ 16.9 2 NUCLEO B3 $0 - 5$ 4.1 16.6 10.7 21 $10 - 15$ $ 21.4$ 13.2 1 $5 - 10$ $ 30.4$ 27.8 24 $20 - 25$ $ 15.1$ 18.2 1 $5 - 10$ $ 30.4$ 27.8 24 $20 - 25$ $ 15.1$ 18.2 1 $10 - 15$ $ 19.8$ 26.8 26 $25 - 30$ $ 17.3$ 18.9 1 $10 - 25$ $ 24.1$ 30.7 21 $40 - 45$ $ 19.3$ 16.8 1 $20 - 25$ $ 24.1$ 30.7 21 $40 - 45$ <td>75 - 60</td> <td>1.3</td> <td>6.9</td> <td>5.5</td> <td>45</td> <td>30 - 35</td> <td>0.7</td> <td>5.8</td> <td>4.8</td> <td>6</td>	75 - 60	1.3	6.9	5.5	45	30 - 35	0.7	5.8	4.8	6
85 - 91 2.8 4.0 6.0 9 NUCLEO B12 $91 + 101$ 2.1 3.4 6.4 10 $101 - 113$ 2.4 5.2 4.1 16 0 - 5 - 20.0 16.9 2 NUCLEO B3 5 - 10 - 17.0 16.6 1 $0 - 5$ <0.2	80 - 85	2.2	5.4	4.2	15	35 - 43	0.4	8.8	5.7	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	85 - 91	2.8	4.0	6.0	9	NICLEO B12			•	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	91 - 101	2.1	3.4	6.4	10					
NUCLEO B3 5 - 10 - 17.0 16.6 1 $0 - 5$ < 0.2 43.8 10.77 21 $10 - 15$ - 21.4 13.2 11 $5 - 10$ - 30.4 27.8 24 $15 - 20$ - 18.3 15.3 11 $10 - 15$ - 19.8 26.6 26 $20 - 25$ - 15.1 18.2 11 $15 - 20$ - 19.1 36.5 25 $30 - 35$ - 17.3 18.9 11 $20 - 25$ - 19.1 36.5 25 $30 - 35$ - 17.3 18.9 11 $20 - 25$ - 24.0 31.8 19 $35 - 40$ 27.1 9.2 27 $30 - 35$ - 24.0 35.8 24 $40 - 45$ - 14.4 16.4 11 $35 - 40$ - 13.9 35.6 29 $45 - 50$ 25.6 15.5 $140 - 45$ 21.5 12.3 24.3 $24.$	101 - 113	2.4	5.2	- 4.1	16	0 - 5		20.0	15.9	29
NUCLEO B3 10.7 21 10 15 - 21.4 13.2 1 $5 - 10$ - 30.4 27.8 24 15 20 - 18.3 15.3 1 $5 - 10$ - 30.4 27.8 24 20 25 - 15.1 18.2 1 $10 - 15$ - 19.8 26.8 26 25 - 15.1 18.2 1 $15 - 20$ - 19.1 38.5 25 30 - 17.3 18.9 1 $20 - 25$ - 24.1 36.7 21 30 35 - 19.3 16.8 1 $20 - 25$ - 24.1 36.7 21 40 45 - 14.4 16.4 1 $25 - 30$ - 24.0 35.8 24 40 45 - 14.4 16.4 1 $35 - 40$ - 13.9 35.8 29 45 50 - 25.6 15.5 1 $40 - 45$ - </td <td></td> <td>· .</td> <td></td> <td></td> <td>에 가방에 있는 것이 있는 것이 있다. 이 가방에 있는 것이 같은 것이 있는 것이 있다.</td> <td>5 - 10</td> <td></td> <td>17.0</td> <td>16.6</td> <td>19</td>		· .			에 가방에 있는 것이 있는 것이 있다. 이 가방에 있는 것이 같은 것이 있는 것이 있다.	5 - 10		17.0	16.6	19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NUCLEO B3					10 - 15	-	21 4	13.7	13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 - 5	<0.2	43.8	10.7	21	15 - 20	-	18.3	15.3	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 - 10	-	30.4	27.8	24	20 - 25	<u>.</u>	15.1	18.2	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 - 15	٠	19.8	26.8	26	25 - 30	.	17.3	18.9	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 - 20	-	19.1	38.5	25	30 - 35	_	19.3	16.8	1.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 - 25		24.9	31.8	19	35 - 40	•	27.1	9.7	20
30 - 35 - 24.0 35.8 24 45 - 50 - 25.6 15.5 1 35 - 40 - 13.9 35.8 29 50 - 58 - 21.5 12.3 2 40 - 45 - 15.6 44.6 24 50 - 58 - 21.5 12.3 2 45 - 50 - 20.0 40.9 29 -	25 - 30	•	24.1	36.7	21	40 - 45	-	14.4	16.4	18
35 • 40 - 13.9 35.8 29 50 - 58 21.5 12.3 2 40 • 45 - 15.6 44.6 24 50 - 58 - 21.5 12.3 2 45 • 50 - 20,0 40.9 29 - - - 12.3 2	30 - 35	-	Z4.0	35.8	24	45 - 50	•	25.6	15.5	15
40 • 45 - 15.6 44.6 24 •45 • 50 - 20.0 40.9 29	35 - 40	-	13.9	35.8	29	50 - 58	•	21.5	12.3	23
•45 • 50 - 20.0 () () () () () () () () () () () () ()	40 - 45	•	15.6	44.6	24					
	•45 • 50	-	20.0	40.9	29					
,1111年,11月1日,1111年,1111年,111日,11日,11日,11日,11日,11日,			in distance defination	an a					•	
						anti il constructione a statistica e a constructione de la constructione de la constructione de la construction A constructione de la constructio	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
에는 것이 있는 것이 가지 않는 것이 있는 것이 있는 것이 가지 않는 것이 가지 않는 것이 있는 것이 가 같은 것이 같은 것이 있는 것					- A nton o coleccie defense anne Antonio	en Trent (2012) and care of	$(x_{i},y_{i}) \in (x_{i},y_{i}) \in (x_{i},y_{i}$	11 J. 1		

									Maria da Cara d	
									· · ·	
EO B7	· · — —	NI			NUCLEO BS	en andra i finance a com Statement	NI			
ión)	1/A	0/S	R	R/S	Sección (cm)	1/۸	0/5	R 1997 - R 1997 - 199	R/S	
- 5	3.1	7.7	6.5	20	25 - 30		26.3	25.8	25	
- 10	2.1	7.6	7.4	ii	30 - 35		26.6	23.8	36	
- 15	2.0	9.1	6.2	16	35 - 40		28.4	27.1	26	
- 20	Z.4	11.6	4.5	16	40 45		29.1	29.9	32	
- 25	3.5	17.5	5.4	13.	45 - 50		21, 3	2011- 34.3	24	
- 30	2.9	14.3	2.6	18	50 - 55		23.7	33.0	29	
- 35	3.4	13.9	2.4	18	55 60		27.9	34.8	23	
- 40	3.8	13.4	2.4	19	MICLEO BA					
- 45	2.5	14.0	1.9	12	Carlo Maria Carlo Carlo Carlo Carlo					
- 50	3.6	14.1	1.4	13				5.0	10	
- 55	4.0	14.6	1.4	16	10 - 15	60.2	0,7		16	
- 60	4.0	14.1	1,4	20	15 - 20	Π 0	· · · · · · · · · · · · · · · · · · ·	0.1	23	
- 72	2.9	15.4	1.7	13	70 - 75	1		5.7	17	
					75 - 10	1.0	tergen an 6,0 9 (in terg 12 4 - A	5.9	10	
LEO B24				같은 1. 전 전 전 전 전 전 전 전 전 전 전 전 전 전 번 것 : 이 전에 이 번 것 같아요. 전 전 전 전 전	30 - 35	2.5	1.0	5.2	16	
- 5	< 0.2	16.4	7.0	19	35 - 40	1.7	. 21	5.5	23	
- 10	-	17.2	12.7	21	40 - 45	1.3	2 7	5.0	23	
- 15	-	16.3	15.7	17	45 - 50	1.1	2.7		20	
- 20	-	26.1	21.0	23	50 - 55	<0.7	3 3	4.0	18	
· 25	-	30.2	20.6	21	55 - 60	4.4	7 8	5.0	73	
- 30	-	29.7	25.9	45	60 - 70	1.4	4.7	6 1	1.8	
• 35	-	38.4	30.4	30	70 - 40	2.0	1.2	5.1	10	
- 40	-	38.0	31.4	32	80 - 89	Ó. 8	3.0	5.7	27	
- 45		44.0	36.9	43		-				
- 51		40.3	35.6	36	- NUCLEO B2	5				
					0 - 5	<0.2	22.6	11.Z	28	
	< A 2	14 0	16 1		5 - 10	•	20.8	12.5	35	
		24.6	77.1		10 - 15	•	26.1	12.7	30	
- 15	-	26.0	71.0	2010 21	15 - 20		27.1	12.2	40	
- 20	-	24.7	23.1	16						
- 25		25.7	27.6	30						
- 13	-	23.7		n an	in the second	-	• "		•	
				법 이 분이 있는 것은 것이 있는 것이 없다.	en de la companya de					
						. *				
		16.54								
		· · · ·	And the second second							

				n en en stead ant a fael. Is de la tradición		en de la seten El sector seten			문제	
			김 씨는 영상							
CLEO B25		<u>Ni</u>			NUCLEO B17		<u>NI 100</u>	<u>n sin sin sin sin sin sin sin sin sin si</u>		
cción	1/A	0/S	ran dan dan di di Geografia	R/S	Sección	1/A	0/5	R	R/S	•
ст}				영화 슬랫동안 그 방문가	(cm)	n en de la compañía d	and and the second states and the second states of the second states of the second states of the second states	물건물 날 옷이 있		
20 • 25	요즘 영화 영화	29.9	13.3	30	45 - 50		4.3	4.5	25	
23 - 30			11.0	30	5 U - 5 5	•	3.9	1.5	20	
30 - 35		29.8	12.4	17	55 - 60		3.5	5.2	30	
35 - 40			12.5		00 • 70			6.0	1,1. j 17	
40 - 45	s. Et dans	28.7	10.7	ZZ	70 - 80	1		4.2	1.7	
	ويعيدونه المراج	n an			80 • 89 1,1		5.0	an a	22	
ICLEO 826			1996 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		NUCLEO B18		그는 것 가슴에 봐.		- 10 A	
0 - 5	<0.2	45.6	3.8	31	relativene in set in t					
5 - 10	1. • 1 - E	33.9	B.4	29	0.•.5	<0.2	2:5:5:000000000000000000000000000000000	4.8	· 12	
10 - 15		30.2	9.7	36	5 - 10		3.2	3.0	15	
15 - 20		24.0	4.7	21.	10 - 15		4.1	2.8	15	
20 - 25		28.1	2.9	17	15 - 20		3.0	3.6	12	
25 - 30		30.9			20 - 25		3,4	3.5	20	
30 - 35	n •n sta	26.0	7.5	32			5.6	ang an 3.7 - 1	21	
35 - 40	•	26.0	6.5	19	30 - 35	영화 문화	3.0	3.6	12	
40 45	•	12.8	3.9	12	35 - 40	•	2.8	3.7	15	
45 - 50	-	9.7	7.4	19	40 - 45	•	3.3	4.0	20	
50 - 57	•	9.7	2.5	17	43 - 50		2.8	3.5	21	
CLEO B17	1993 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 -				50 - 60	· • • •	2.4	3.1	16	
					BUU	-	3.3	3.2	23	
0 - 3	< 0.2	3.1-0.0	에는 이번 가슴에 가슴을 가슴다. 이는 이번 것은 가슴다.	Arian 11 - Arian Sanatari Arresta 1 1 - Sanataria Sanataria	7 0 - 60		2.7	2.8	15	
5 - 10	•	4.1	3.0		80 - 90	•	2.1	2.4	15	
10 - 15	•	5.0		10	90 - 100	· -	2.5	2.7	15	
15 - 10	•	4.4	3.9	10	100 - 110	•	2.9	2.6	27	
20 - 25	•		2.0	19	NUCLEO B9					
23 - 30	•			20	n - 3	0.2+0.1	18.3+1.0	15.1	12	
30 - 35			4.3	44	S - 10	2.1	17.7	15.6	25	
35 - 40	-	0.3	3.0	10	10 - 15	<0.2	16.3	16.9	12	
40 - 45		4.3	0.1	4D	15 - 20	3.4	18.4	16.3	8	
					20 - 25	0.6	18.7	18.3	15	
					25 - 28	2.5	20.3	20.3	11	
		11 میں اور ایسراد میں راد ہیں اور ا	يري وترجع مرتونيا الرابي وحمد ويريد بالمالي برابي	ال بې د بې د د د د د د د د د د او د و د رو د د رو د که بې مېرې د او بې و رو	in the second				••	
			이 제가 가격했							

UCLEO B19					NUCLEO B14	NUCLEO B14			
cción cm)	·· 1/A	0/5	R	R/S	Sección // I/A (cm)	0/S	R	. R.	
0 - 5	<0.2	16.3	15 0	n sere establishe i sere i sere Geo Sont i Status Status i sere s	50 - 55 -	10.6	2.8	23	
5 - 10		16.1			55 • 60 -	10.4	2.7	20	
	_	14 4	15 0		60 - 67	11.3	2.7	19	
5 . 20	-	1,000	10 1	n standar – standardar santa sa	NUCL DO				
0 - 24		17 7			NOCLEO BI	and the second			
4 - 28	<u>_</u> 1	15.6	15.0	16	0 - 5 <0.2	16.7 <u>+</u> 1.3	11,2	19	
		• • • • •			5 - 10 -	16.0	12.5	11	
LEO B2					10 - 15 -	12.1	16.7	11	
		an and sold with	an an an Air an Air an Air an Air Air an Air an		15 - 20 -	13.5	18.1	9	
1 + 5	1.9	11.0	12.4	26	20 - 25 -	16.6	12.4	18	
- 10	1.0	15.8	13.5	1996년 5 7일 - 1917년 - 19		15.5	14.6	14	
- 15	<0.2	12.3	15.6	8	30 - 35 -	16.2	15.3	12	
- 20	<0.2	14.4	16.5	6	35 - 40 -	11.8	19.3	12	
- 25	<0.2	15.8	18.0	6	40 - 46 -	19.7	13.4	16	
- 30	1.0	16.2	15.4	6					
- 35	<0.2	17.6	17.3	10	NUCLED B37				
- 40	1.1	17.2	16.9	15	0 - 5 <0.2	1.9	< 0.5	21	
- 46	< 0.2	18.1	19.1	16	5 - 10	2.1	-	16	
CLEO B14					10 - 15 -	1.3	0.7	12	
	< 0.2	-5.1		20.00	15 • 20	1.3	0.7	15	
					20 - 25 -	2.3	-	19	
- 10		22.6	те	77	25 - 30	2.2	-	19	
- 15	-				30 - 35	2.3	-	19	
- 20	-	19.8	3.9	76	35 - 40 -	2.3	•	14	
- 25	-	22.6	1.7	10	40 - 45 -	2.2	•	15	
- 30		15.4	la de la de la com	a na an	15 - SO	2.4	•	10	
- 35		17.5	5.0	16	50	2.3	· •	19	
- 40		11.8	4.0		55 - 00 -	1.5	•	14	
- 45	-	11.3	17. 7 . 18 2 . 9 . 50	erer <mark>ij</mark> e en en star	나는 것 사실 것 수 한 것 수 것 거절가 것 수 있는 것 같아. 나는	and the state of the			
- 50		10.6	5.5	23	한 김 이 유지한 그를 많은 것이 같은 것을 하는 것을				
						N			
		and which have to							
		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			ne en transminister en propositionen en en	··· / ···			
					(a) A set of the se				

2.16
	ana an taona an taon an	ليتقربون بخورد الو		كبيا لأقيدتني أرايعت	والمؤالين والحمية	الإروائية محتوية	an a	n waa inga d
				a la francia da babana. A tega de la composición				e di serie de la composition de la comp
					n an			
			المراجع (1997) المراجع (1998)					
NUCLEO B2	9	NI_	1997 - 1814 - 1992 -			NUCLEO B31	NI	
Sección	1/A	0/5	R	R/S		Speción I/A	0/5	R R/
(cn)						(cm)		
0 - 5	2.8	22.9	24.0	39	유민이 아이는 것이 같아.	80 - 85 -	8 (1993) - 1 8 (1993)	24.5 89
5 • 10	3.9	20.5	32.2	43		53 - 90 -	5.0	24.0 97
10 - 15	3.0	19.8	30.0	51'		90 - 95 -	27.6	25.2 172
15 - 20	5.4	20.1	33.8	instanto A Tark out fait in the		95 - 105 -	50.7	21.3 80
20 - 25	4.4	21.8	33.6		and and a sea	antan ana dalah s		
25 - 30	4.9	21.8	35.7	45	Alfred and a second second second	e a construction de la construction	an an an an Arten an Arten an Arten an Arten an Arten an Art	nen an
30 - 35	6.5	27.7	28.3	43			n yezhoù naturrezh (billen derezhoù e) Al 1915 - Engel Philippi, en even	1774) - Bonne Goldson, and Alexan Agente anti-anti-anti-anti-anti-anti-
35 - 40	5.9	19.9	38.6	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	말 있는 말 것 같아요.			Andreas (Constant) Andreas (Constant)
40 - 45	3.3	24.2	39.0	Sector 37 and the sector in the sector				
45 - 50	3.9	22.7	23.1	58				
50 - 55	4.9	21.0	32.0		민준이 같이 많이 많이 했다.			
55 - 00	1.9	24.2	35.0	<u></u> 9U		الأشابية والمتحاد أتفار	where the state of the	and the second second
60 - 70	2.1	33.5	30.74 ac			and the second second		and the second
NUCLEO BI	1			ternel (nelevice (R. C. Service (R. C.)) Company (New York, C. Service (R. C.)) Company (New York, C. Service (R. C.))	ti air tha seach ann ann an ta Bhailte ann an tartairte	n denimen der Litter eine eine Stellter		
0 - 5	<0.2	270	13.5	113				1
5 - 10	•	236	11.3	159				
10 - 15	-	210	12.3	83				and the second
15 - 20	•	284	15.3	133	ang	talah seri seri seri di		
20 - 25	-	261	18.4	190		a di karang k		
25 - 30	-	133	17.9	50		1		
30 - 35	-	54.5	15.0	67		1. The second second	the state of the s	
35 - 40		44.6	22.8	76	and the second second	الراجع المتحد المتحد والمعد	, and the segment of the	
40 - 45	-	67.7	25.2	66				
45 - 50	-	79.5	23.4	71				
\$0 - 55	•	92.7	23.5	81				
55 - 60	-	74.4	25.8	93				
60 - 65	•	49.6	26.1	90	a de la companya de l			
65 - 70	•	8.4	26.3	83				
70 - 75	-	3.2	24.0	94				and the second
75 - 80	-	7.7	25.0	81	and the second	and the second	and the second second	

R/S

		1.1						•			
90									1		
24											
		e e à la construction de la construcción de la construcción de la construcción de la construcción de la constru La construcción de la construcción d			이곳은 영화를 만들었다.					1997 - 1997 -	
. NU	UCLEO B1	17 - MA	Zn	an san sa sa sa		NUCLEO B3		7 n			
Se	ессібл	1/A	0/S	R	R/S	Sección	I/A	0/5	R	R/S	 .
	(cm)	c0 1		76.7		(CM) 45 - 50	finite de la calencia	78 7	61.0	140	
	5 - 10			26.0	99	50 - 55		33.7	75 0	177	
. ,	10 + 15		3.4	24.0		55 - 60		19.4	77-5	175	÷.,
	15 - 20			Z4.8	76-	60 - 65-	e de la composición d Composición de la composición de la comp	31.5	70.0	111	
. 2	20 - 25		5.1	24.1	88 -	65 - 70		34.2	54.2	134	
. 2	25 - 30		4.6	24.5	89	70 - 75	나는 것 같은 것	33.3	49.1	145	
· 3	30 - 35	•	6.3	22.5	94	75 - B4		30.5	48.3	137	
3	35 - 40	- 1	3.9	25.5	97 -	100 m m m m m m m m m m m m m m m m m m					
. 4	40 - 45	· -	3.8	21.2 (103	NUCLEO B4			•		
· 4	45 - 50		1.0	21.6	115	D - 5	<0.1	8.8	18.5	70	
5	50 - 55	•	6.8	20.3	105	5 • 10		8.2 P	17.5	66	
5	55 - 60	- 1	6.1	20.4	105	10 - 15		7.5	18.6	67	
e	60 - 65	•	5.7 _{12.} jej	20.5	110	15 - 20	•	7.5	16.9	81	
6	65 - 70	•	3.5	21.5	151	20 - 25	•	7.7	18.7	79	
7	70 - 75	•	3.5	20.3	202	25 - 30	•	9.2	19.7	80	
7	75 - 80	-	6.2	21.7	186	30 - 35	-	11.2	18.3	68	
6	80 - 85	•	3.9	24.3	93	55 - 43		10.9	19.3	59	
8	85 - 91	-	2.7	21.2	97	NUCLEO B12					
5	91 - 101	-	2.5	24.5	96	an a					
10	01 - 113	-	4.5	22.6	95	0-5	<0.1	13.0	29.2	117	
NL	UCLEO B3				: 2012년 1월 19일 - 11일 br>- 11일 - 11 - 11일 - 11	5 + 10	•	12.1	27.6	49	
	0 + 5	<0.1	34.9	44.7	140	10 - 13	•	12.4	23.6	38	
	5 - 10		32.9	55.9	138	13 - 20	-	8.9	20.7	40	
1	10 - 15	-	24.8	59.3	146	20 - 23	-	0.4	29.0	50	
1	15 - 20	. ·	18.3	69.0	139	30.35	-	17.0	27.1	35	
7	20 - 25	-	27.5	61.5	141	35 - 40	-	13.5	20.0	49	
2	25 - 30	•	31.1	62.6	140	40 - 45	_	6.8	74 A	40	
3	30 - 35	•	52.0	66.0	147	45 - 50	-	11 5	27.0	54	
	35 - 40	- · ·	18.6	74.2	156	50 - 58	-	15.7	27.4		
4	40 - 45	-	19.3	71.0	141	An and a second second second			27.54	45	
			a sente a subsection de la sente		· 사람이 가장은 아파트를 가지 않는다. 이 것은 것은 것은 것은 것은 것을 수 있다. - 동작은 전화가 같은 것은 것은 것은 것은 것은 것은 것은 것을 수 있다.					·	· ·
					승규는 것이 아이지 않는 것이 없다.						
									÷		
				an ann an tartais a' fhailte an Thailte an tartais an tartais	Alter distant of the second						

NUCLEO B5 NUCLEO B7 Źn I/A 0/S R R/S R/5 Sección 0/5 R Sección 1/A (cm):::: (cm) 95 0 - 5 <0.1 27.8 54.7 7.9+0.5 30.0 86 0.5+0.5 0.5 5 - 10 25.5 58.4 95 8.0 30.1 77 5 - 10 0.2 10 - 15 24.0 53.5 101 28.9 79 10 - 15 0.3 7.7 15 - 20 21.5 63.4 95 29.4 77 15 - 20 2.5 8.5 20 - 25 23.5 72.5 122 28.1 70 9.4 20 - 25 0.6 25. - 30 25.1 63.0 116 24.6 25 - 30 0.4 13.1 78 30 - 35 22.7 134 66.6 13.6 23.0 82 30 - 35 <0.1 35 - 40 22.7 74.1 124 20.4 87 16.5 35 - 40 -40 - 45 23.0 93.2 107 22.4 81 13.6 40 - 45 119 45 - 50 16.1 85.4 21.3 14.7 87 45 - 50 ٠ 50 - 55 19.9 83.2 113 22.8 54 15.6 50 - 55 55 - 60 25.6 86,0 119 21.9 78 55 - 60 14.7 23.7 16.5 77 60 - 72 . NUCLEO B6 0 - S 24.9 103 NUCLEO B24 <0.1 6.6 5 - 10 -6.2 24.0 102 31.1 13.3 103 0 - 5 <?.1 10 - 15 5.0 26.0 103 100 32.0 15.3 5 - 10 15 - 20 108 5.3 26.2 99 36.4 10 - 15 12.0 20 - 25 4.5 23.8 101 21.3 60.4 111 15 - 20 25 - 30 6.2 25.5 98 50.9 137 31.4 20 - 25 30 - 35 4.5 24.9 104 55.0 133 25 - 30 .30.6 35 - 40 4.6 22.7 94 75.4 143 -30 - 35 38.9 40 - 45 4.5 24.1 93 72.5 150 35.8 35 - 40 21.6 45 - 50 4.8 88 79.8 169 40 + 45 43.8 21.0 96 50 - 55 4.1 39.0 87.9 161 45 - 51 5.4 22.5 91 55 - 60 60 - 70 4.3 24.2 92 24.0 90 70 - 80 5.5 80 - 89 6.Z 23.5 88

					en andere og her og de besener i der star der 19 - Andere andere de besener i der star der 19 - Starten Die Marine andere starten andere starten.		e fa sale Alisa Maria Alisa di Alisa	
					가슴에도 있는 것은 물건을 가운 것을 했다. 1988년 1987년 - 1987년 - 1983년 1987년			
UCLEO B25		<u>Zn</u>			NUCLEO B17	Zn	an a	
Sección (cm)	1/A	0/S	R	R/S	Sección I/A	0/5	R	R/S
0 - 5	<0.1	20:8	52.3	- 111	n han been na shi berin an an anna an tarabin a ta Na sera a sa		an a	
5 - 10		10.8	. 30.5	. 127	25 • 30 · · ·	- • 8	4	
10 - 15	-	.22.8	51.Z	124	30 - 35 25		-2.9	84
15 - 20		24.6	50.2	126	35 - 40 -	3.0	22.1	84
0 - 25	actar (comp)	24,4	57.3	124 - Alexandra († 192	1997 - 1997 - 1997 - 1997 - 199	Z•7	18.5	88
5 - 30		25.9		117	45 - 50 -	3.0	ZZ.8	82
0 - 35 - C		28.3	62.3	100	50 - 55 -		19.6	84
5 - 40		25,3	56.7	106	55 - 60 -	2.7	20,5	82
0 - 45		24.9	48.8	119	60 - 70 -	3.1	21.2	81
	-	n in an an ann an Anna ann an Anna Anna	an a	n an Shan Angara Shan an Angara an Angara 20 Angara 1997 - Angara Angara ang ang ang ang ang ang ang ang ang an	70 - 80 -	2.6	19,8	82
ICLEO BZ6					80 • 89 •	3.1	21.5	82
0 - S	<0.1	43.7	43.5	116	NUCLEO B18			
5 - 10	غنا بويور والمروار و	22.5	47.3	142				70
0 - 15	· ·	19.9	47.9	143	U • 5 <u-1< td=""><td>4.0</td><td>23.1</td><td>70</td></u-1<>	4.0	23.1	70
5 - 20	•	16.9	29.9	122 CONTROL	an an an an an ann an an 1965. Th a O utres an tha an	····		94
0 - 25	-	21.4	32.3	108	10 - 15 -	2.4	18.2	89
5 - 30					15 - 20 -	2.0	10.2	87
30 - 35	• ÷	21.5	57.8	117	20 - 25 -	1.9	17.3	92
5 - 40	-	16.4	46.9	167	Z5 - 30 -	2.1	15.6	93
10 - 45	-	9.0	28.0	93	30 - 35 -		23.4	83
15 - 50		6.9	22.5	77	35 - 40 -	1.8	16.9	89
50 - 57	•	8.0	21.3	86	40 - 45 -	2.2	17.9	91
					45 - 50 -	2.1	1015	83
JULEO BIJ					50 - 60 -	1.8	17.0	79
0-5	<0.1	2.8	24.3	77	60 - 70 -	1.8	19.5	87
5 + 10		2.5	20.8	92	70 - BO -	2.4	15.0	82
10 - 15	-	2.7	21.5	88	80 - 90 -	3.1	15.9	70
15 - 20	• ·	2,5	23.0	83	90 - 100 -	1.9	14.2	83
20 - 25	•	3.8	23.1	87	100 - 110 -	2.1	14.7	89

250

	An and the second s	
Sección I/A O/S R R/S	Sección 1/A O/S R	R/5
0 + 5 <0.1	ie see na eine stationen de gebruik her stationen bei konstruktionen de stationen de stationen de stationen de The set of the station	59
5 - 10		•
10 - 15 - 14.0	6 - 10 - 31.8	59
15 - 20	10 - 15	•
20 • 25 • 13.6 77	15 - 20 - 26.8 31.4	71
25 - 28 -	20 - 25 - 20.1 31.8	74
NICIEN BIO	25 - 30 23.5 28.9	65
	30 - 35 - 17.9 24.1	66
0 • 5 COLUME CONTRACTOR SECTION 10.5 (STREETWARD AND ADDING TO ADDING TO ADDING THE ADDING ADDING TO ADDING TO ADDING THE ADDING ADDING TO ADDING TO ADDING THE ADDING ADDING TO AD	35 - 40 mm - 19 - 19 - 19 - 5 - 9 - 5 - 19 - 24 - 3	74
5 - 10 5 - 10 CONTRACTOR STATE OF A	40 - 45	79
10 - 15	45 - 50 - 6.2 22.7	85
15 - 20 - 13.3	50 - 55 - 6.9 21.0	63
20 - 24 -	55 - 60 - 8.2 21.3	83
24 - 26 - 18.7	60 - 67	84

	1.1							N	UCLEO	22	1		
<0.1		11.9		38.6	81		and a star		이 같이 관심				
	10 A.	17.5		28.6	47		National Antonio		0 - 5	<0.1	17.9	4 + - 4	44
-	. ė.	13.0		24.2	52				5 - 10		10.0	29.7	48
- 1		17.0		27.7	31		문 같은 것이다.		10 - 15	•	12.0	29.8	49
		16.7		35.2	50				15 - 20		13.6	32.1	30
	1997 - N	17.1	出版金代码	29.1	48	erel parte	1.1		20 - 25	-	14.3	27.5	49
		18.0		35.7	53	ni enti di			25 - 30		12.1	29.5	48
		18.9		39.5	70				30 - 35	· · · • · · ·	16.4	32.3	40
_ · · .		21.7		39.7	72	e production			35 - 40		10.7	31.1	54
-						er Karnels	· . • · • • · · .	udu e.	40 - 46	1.H. .	17.3	30.5	47
	- 1. S. S.												
	1.11	1. S. S. S.				an tha a' g	a de la companya de la		44 - Ar				
	1997 - M.								1.1				
	1	an in i	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		al de prove				1.1.1.1				
	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	te de la secola de l		a and a second			a da a		1.1.1.1				
-	<0.1	<0.1	<0.1 11.9 - 17, 5 - 35, 0 - 77, 0 - 16, 7 - 17, 1 - 16, 7 - 17, 1 - 18, 0 - 18, 9 - 21, 2 	<0.1 11.9 17.5 13.0 17.0 16.7 17.1 18.0 18.9 21.2	<pre><0.1 11.9 38.6 17.5 28.6 - 13.0 24.2 - 17.0 27.7 - 16.7 35.2 - 17.1 29.1 - 18.0 35.7 - 18.9 39.5 - 21.2 39.7</pre>	<pre><0.1 11.9 36.6 81 17.5 28.6 47 - 13.0 24.2 52 - 17.0 27.7 31 - 16.7 35.2 50 - 17.1 29.1 48 - 18.0 35.7 53 - 18.9 39.5 70 - 21.2 39.7 72</pre>	<pre><0.1 11.9 38.6 81 17.5 28.6 47 . 17.6 24.2 52 . 17.0 27.7 31 . 16.7 35.2 50 . 17.1 29.1 48 . 18.0 35.7 53 . 18.9 39.5 70 . 21.2 39.7 72</pre>	<pre><0.1 11.9 38.6 81 17.5 28.6 47 - 13.0 24.2 52 - 17.0 27.7 31 - 16.7 35.2 50 - 17.1 29.1 48 - 18.0 35.7 53 - 18.9 39.5 70 - 21.2 39.7 72</pre>	<pre><0.1 11.9 38.6 81 17.5 28.6 47 . 17.5 28.6 47 . 13.0 24.2 52 . 17.0 27.7 51 . 16.7 35.2 50 . 17.1 29.1 48 . 18.0 35.7 53 . 18.9 39.5 70 . 21.2 39.7 72</pre>	XUCLEO NUCLEO Nuclea Nuclea<	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

NUCLEO B37		م معرفة المحرور محافية المحرور المحرور محافية المحرور ا	Zn				
Sección (cm)	1/A	0/5		R	R	/s	

CLEO B37		Zn			NUCLE	O B31	Zn		· · ·
ción m)	1/A	0/5	R	R/S	Secci (cm)	6n 1/A	0/s	R	R/5
- 5	<0.1	7.8	24.5	107	0	- 5 <0.1	56.6	27.5	106
- 10			25.2	114	승규가 잘 물건을 물건을 물건을 들었다.	- 10 -	58.4	24.0	122
• 15		6.7	25.9	102	10	- 15 -	53.7	27.1	100
- 20		6.4	23.8	500 115 States	15	- 20 -	54.4	25.8	115
- 25.		8.0	20.7-	115	20	- 25	40.0	27.4	141
- 30	el a selection de Non - Loran Adda	8.7	22.8	105	25	- 30	44.5	24.1	98
- 35	n ng ang ang ang ang ang ang ang ang ang	11,5	19.7	117	30	- 35 -	15.5	18.1	129
- 40		14.0	19.0	108	35	- 40	13.0	28.7	128
- 45		11.9	18.5	116	40	- 45 -	14.5	28.8	127
~ 50		12.9	21.2	106	2 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	- 50 -	15.9	29.1	127
- 55		14.1	20.8	111	50	- 55 -	14.0	28.5	138
- 60	en en tre ja de 1992 - Disidares	13.2	22.5		55	- 60 -	13.5	31.6	141
					60	- 65	10.5	31:7	159
EO 829		- بینی و به سیر و دیا به می داد. مرب			65 ·	- 70 -	3.6	33.0	157
- 5	<0.1	17.4	70.5	162	70 -	- 75 -	2.5	31.5	165
- 10		17.2	64.0	177	75 -	- 80 -	5.8	32.1	159
- 15	- - 1977 - 1	13.2	55.0	195	80	- 85 -	6.7	33.3	153
- 20		13.6	74.2	187	85	- 90 -	6.6	32.1	151
- 25		14.8	71.3	191	90	- 95 -	19.1	35.9	138
- 30		11.7	83.0	191	95 -	- 105 -	13.1	26.5	155
- 35	-	16.9	64.1	206	ga Mona C				
- 40	- <u>-</u>	13.6	84.5	183					
- 45		11.7	91.2	187					
- 50	· -	12.9	80.D	201					
- 55	. .	15.5	69.9	201					
- 60	-	13.0	87.6	207					
		· • • •	e- e	710					

60 - 70

a de la companya de Esta de la companya d Esta de la companya d and the second
252

.

			e de la se Regeneration		an a	na shin yekara. Shi wasar ƙwarda	an a	i tyre Linger de
			한 것 같다. 것 같아요?					
	· · · · · · · · · · · · · · · · · · ·							
NUCLEO B1		Bh		화 같은 것이 같을 것	NUCLEO B3		Pb	
C			P	ni ni presi in come in		1/4		B/S
(cm)	1/A				Steel in the second sec			
· ·				사람이 가지 않는 것이 가지도 있었다. 이 가지도 제품은 가지도 가지도 있는 것이다.	40 - 45		3.2	31
0 - 5	< 0.0	13.3	3.1		45 • 50	9.1	3.2	25
10 - 15		0 B		το	50 - 55		2.5	30
10 - 13			3.6		55 • 60	- B.C	3.1	32
20 - 25		2014-1202-007-05-007-007-007-007-007-007-007-007-	7.7	36	60 - 65	• 10.0	2.1	siyet of 1 44 0 10
25 - 30	t i filipera des	in the second	T R		65 - 70	- 12.2		37
10 . 35		14 4		1	70 - 75	- 12.1	1.9	35
30 - 33				4	75 - 84	- 10.9	2.2	37
39 - 40	이야 한 같은 것이 같이 많이 많이 많이 많이 했다.	ulan ang sang bang bang bang bang bang bang bang b			승규는 물건을 물건을 물건을 물건을 물건을 물건을 물건을 통하는 것이 없다.			
40 - 43		na sana sa na na na sa	ನಾರ್ ಎಂ. ಕ್ಲೇಕ್ ಕೊಡಲಾಗಿದ್ದಾರೆ. ನಿನ್ನ ಎಂದು ಕ್ಲೇಕ್ ಕೊಡಲಾಗಿದೆ.	Ness Trensland	KUCLEO B4	الی الا الاتری الی الی الی الی الی الی الی الی الی ال		
4J - 50		17 4		1997 - 1997 -		<0.6	2.1	10
50 - 55	이번 물건을 위한	14 5		40		B D	2.5	12
60 65	n sa nEpresepter Na s	17 0		10				21
65 70		a n			1999 - 1997 - 19		1.8	12
70 - 75		10.7	4 4	50 •			2.9	11
70 - 73		17 7			75 10		2.7	12
75 - 80 80 - 85		A 8			23 - 30		2.3	12
66 - 61			1 9	9.9999.000 19.999 4 1 .999 (19.999)		10.5	2.5	8
01 - 101	-	5.8		30				
301 - 101	_	8.0			NUCLEO B5	김 사람이 물건을 했다. 아파	영화 가지 않는 것이 있는 것이 없다.	
101 - 115	-					<n (<="" 6="" 8="" td=""><td>7.3</td><td>22</td></n>	7.3	22
NUCLEO B3				(1997) (1997) (1997) 1997 - 1997 (1997) (1997)	5 - 5	11.	6.4	25
					10 15		4.3	21
0 - 5	<0.6	15.6	3.0	17	10 - 10	15.6	5.0	22
5 - 10	-	15.2	2.8	25			4.8	2.4
10 - 15	•	9.4	3.0	31	75 - 50	15.6	4.4	16
15 - 20	• .	7.9	3,2	38	10 - 35	12.3	5.2	25
20 - 23	-	10.9	2.9	30	35 - 10	12.2	4.0	27
25 - 30	-	11.3	2.7	35 A		17.6	4.0	22
30 - 35	•	9.2	Z.5	38	40 - 43	11 1	4.3	28
35 - 40	•	8.9	2.6	28	43 - 50 60 - 65		6.5	21
			18 J. C. 18 J.	an an an an a'	30 = 33	0		71

statistic second sec

NUCLEO B6		Pb			NUCLEO B2	5			: :
Sección (cm)	1/A	0/5	R	R/5	Sección (cm)	I/A	0/5	R	
0 • 5	<0.t	17.5	4.0	2	0 - 5	<0.6	12.5	6.0	
5 - 10		13.3		26	S - 10		12.0	4.6	
10 • 15		14.2	<u>474_</u>	27	10 • 15	unita en Pratación (12.8	5.5	
15 • 20	ని కోషా కార్ కి జాల్లో బాజ్లు ఉ	13.4	4.1	39	15 - 20	n an air an	16.1	4.0	
20 - 25		9.9	3.8	36	20 - 25		15.8	3.8	
25 - 30	•	11.0	3.8	24	25 - 30			•	
30 - 35		11.1	3.7	Stable 1967 - 25 States - 200	30 - 35		15.1	4.4	
35 - 40		9.3	3.7	26	35 - 40	111 - 1945 - 518 - 5	15.3	5.1	
40 - 45	-	11.7	3.0	28	40 - 45		11.4	5.2	
45 - 50	• . <u>.</u> .	13.6	3.0	28	45 - 50	ad if waarde	8.9	4.3	
50 + 5S	-	9.4	3.5	31	50 - 57	1 .	8.6	3.1	
55 - 60	· • ·	10.4	4.0	<u> </u>		ुरस्ट के मुंह	and the second second		
60 - 70	-	8.7	3.3	2 12 23 12 12 12 12 12 12 12 1	KUCLEO BI				
70 - 80	-	9.5	3.5	32	0-5	<u+6< td=""><td>18.5</td><td>2.0</td><td></td></u+6<>	18.5	2.0	
80 - 69	-	9.9	2.8	25	5 - 10	• .	20.6	2.5	
					10 - 15	-	18.3	2.3	
NUCLEO B15					15 - 20	-	18	2.2	
0 - 5	<0.6	6.9 <u>+</u> 2.0	5.0	28	20 - 25	-	13.7	2.0	
5 - 10	•	-	3.3		25 - 30	-	13.1	2.2	
10 - 15	-	•	3.8	30	30 - 35	-	12.5	2.4	
15 - 20	-	9.1	4.1	31	33 - 40	-	5.2	2.0	
20 - 25	-	•	3.7		40 - 45	•	10.1	2.2	
25 - 30	-	•	3.4		45 - 50	-	1.1	1.5	
30 - 35	-	4.5	4.5	35	50 + 58	-	0.5	1.7	
35 - 40	•	4.1	4.2	35	NUCLEO B7				
40 - 45	•	4.2	3.5	28	0 - 5	<0.0	10.9	2.6	
		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	1 A A	and the growth of the	5 - 10	-	10.5	5.1	
					10 - 15	-	6 6	77	

								1. S.
	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			the second se		and the second		
					에는 사람들에게 물건한 것이 가지 않는 것을 가지 않는 것을 물건을 했다. 같은 것은 것은 것은 것은 것을 것 같은 것은 것을 가지 않는 것이 없다.	이 아들이 영화 문	والمتحيدين أزرك	la segui
					것 같은			
					이 동물에서 전 물건이 가능되었다. 물건			ya di sangara. Ngana di sangara
					NUCLEO B17	РЬ		
NUCLEO 87		Pb		<u> 65 - 67 - 67 - </u>		andread and a stand of the second		
	1/A	0/s	R	R/S	Sección I/A	0/5	R	R/S
Sección					에는 사람이 있는 것이 된다. 이 가지는 것은 것이 있는 것이 없이 있는 것이 없는 br>것이 없는 것이 있는 것이 없는 것이 없 않이 않는 것이 없는 것이 않은 것이 없는 것이 않은 것이 않이 않은 것이 없는 것이 않이			la secto dan
20. 76		9 6 3		70	40 - 45	2.6	3.1	20
75 - 30			1 9		45 - 50	an Grand States and States and States and States States and States and States and States and States and States States and States and States and States and States	3.0	30
30 - 35					50 - 55 -	2.2	. : (* : : : 2.2 /(* : * :	32
30 - 39					55 - 60	4.0	3.0	24
33 - 40 40 - 45			a na independente da la companya da serie da se Companya da serie da s	224 ST 7	60 - 70	6.1	3.6	29
45 . 50					70 - 80 -	- 1.2.2.5.2.5. 7 .1.2.2.5.5	7487.84 2.7 570.0	22
50 - 55		2.0	1 3	23	80 - 89	6.1	2.7	22
55 - 60		1.5		den con a menerio nella de la contra de la	NICI BO BIR			
60 - 72			1.4	30		한 같은 것을 받았	한동안 집에 다	÷. 11
					0.5 <0.6	10.3	4.2	20
NUCLEO B24	pin a service state				5 - 10 -	8.5	3.0	21
0 - 5	<0.6	10.9	4.2	20	10 - 15	6.4	23.31 ×	26
5 - 10		12.4		19	15 - 20 -	6.0	3.4	22
10 - 15	-	5.1	3.6	26	20 - 25	6.6	and 1 3.1	28 -
15 - 20	•	3.2	5.4	25		5.7	3.7	27
20 - 25	-	10.4	4.4	28	1997 - 1997 -		2.3	36
25 - 30	-	6.2	3.9	29	55 - 40 -	2.9	2.9	29
30 - 35	•	9.0	4.0	26	40 - 45 -	3.5	2.9	25
35 - 40	•	13.1	3.8	22 () () () () () () () () () (45 - 50	4.0	3.0	25
40 - 45	•	20.5	3.8	20	50 • 60	4.3 	2.8	20
45 - 51	-	11.9	5.1	33	60 - 70 -	6.7	2,5	31
	_				ee na eaelar e en dari e nacional e da 702€080 ten da grege grad era Anto e federa en el forma da como contra da esta a esta activadade		2.2	25
NUCLEO BI	.7				reinalista (1997). Nationalista (1997). Nationalista (1997).	5.5	2.0	22
0 - 5	<0.6	4.3	2.7	29	90 - 100	6.2	2.6	19
5 - 10	-	3.3	1.5	29	100 - 110 -	2.0	2.4	20
10 - 15	-	2.0	1.9	<u></u>	NUCLEO B3			
15 - 20	-	1.1	2.4	28	8 - 5 < 8 6	10.2	4.1	17
20 - 25	-	3.3	2.7	41	5 10	12.9	2.9	18
25 - 30	-	2.0	3.0	30	10 - 15	9.8	4.1	22
30 - 35	-	1.2	3.0	22	15 - 20	10.6	2.8	14

15 20 10.5 2.6 14 2.5

					ah dalamati					
LEO 89			гь			NUCLEO B14	Pb			
~1 6 n	1/4	e stast kan e	/c	in an	p/s	and the second	in an an an an an an <u>an an a</u>	<u></u>		
cn)						Sectión 1/A	0/5	R	R/5	
0 - 25		9		3.1	15	(CR)				
5 - 28	•	9	.8	3.0	17	30 - 35	10.5	3.1	21	
			이슈프 그			35 - 40 -	5-1	3.1	30	
LEO 819	ani ya ta sani Ta shi ta sa	ta se a serie de la companya de la c Esta de la companya de		는 유가는 것이다. 같이 아파 아파 아파	ender der der der der Seiner in der	40 • 45	2.0	3.6	27	
0 - 5	<0.6	14	9	3.3	7	45 50		3.4	35	
5 - 10		10	.6	- 2.4	20	50 • 55 •		2.7 ····	32	
0 - 15	-	10	.7	3.4	10	55 - 60	성감되었는 것 같아?	2.7	27	
5 - 20		9	•2-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	2.6	17	60 - 67 -	an anna 2010 an Anna Anna Anna Anna Anna Anna Anna	1.0	20	
0 - Z4		10	.0	3.7	15	NUCLEO B22				
4 - 28		9	150000000	3.9	47	0 + 5 <0.6	15.8	3.7	14	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.111253425				n sentin di sentin d Antanini di sentin di	13.8	3.3	18	
LEO B20						10 - 15 -	11.2	3.1	15	
0 - 5	<0.6	16	7	4 . B	22	15 - 20	1217	2.4	15	
5 - 10		15	.0		10	20 - 25 -	9.6	1.3	23	
1 - 15	· · ·	10	.0	4.3	18	25 - 30 -	9.2	3.2	17	
5 - 20	• <u>•</u> ;	13	.5	6999 - 1999 -	6	30 - 35 -	8.1	3.2	19	
0 - 25		11	.7	3.7	8	35 - 40 -	8.5	3.1	23	
5 - 30	•	11	. 7	2.7	14	40 - 46 -	6.0	3.3	16	
0 - 35	•	11	.2	3.8	20	일을 잘 물 걸려 가 다 물질과 관람을 들어야 한				
5 - 40	- ·	11	.0	3.3	24	NUCLEO B37	en de la companya de			
0 - 46	•	13	.0	2.9	22	0 - 5 <0.6	14.2	5.1	25	
		5 1 1 1 N. AS				5 - 10 -	14.5	6.2	69	
LEO B14						10 - 15 -	14.2	7.6	30	
0 - 3	<0.0	24	.9	4.0			13.9	7.6	36	
5 - 6	-	-				20 - 25 -	14.1	5.7	50	
- 10	•	18	9	3.3	17	25 - 30 +	16.5	7.0	34	
0 - 15	-					30 - 35 -	10.2	4.0	40	
5 - 20	•	. 12	.5	3.8	19	35 - 40 -	16.1	5.0	37	
- 25	-	. 10	.6	3.5	12	40 - 45 -	12.5	3.8	39	
- 30	•	. 15	.1	4.0	19		14.0	4.9	31	
		and the second	د ماز ماند. از از باده به راست را بر باده	an a	الارتيان المتعالم المراجع المر المراجع المراجع		10.6	5.2	46	
						60 [24-14] •	11.8	4.0	40	
						그는 것 같은 것을 위한 구성 것이 있는 것				
					18 A. 19					
						and the second				

	 ÷		an a

NUCLEO B29

257

	1 A A A A A A A A A A A A A A A A A A A	and the second second			and the second	
100					ala de la composición	
		the state of the second			and the first state of the second state of the	
1.1			가 있는 것이 같아요.			
		فتنقص المرزم مالت	a fan i gan	المستخلف والمراجع والمراجع والمراجع	et a substant a final a substant a	
		i gala Kiteti yila lah	en dat de fière	جرا المرجانية أراطي بالرابات	المتحدي والمتحد والمتحد	4.1.1

NUCLEO B31 Pb

Sección (cm)	1/A O/S R R/S Sección 1/A O/S (cn)	R	R/S
0 - 5	<0.6 8.1 5.1 2.0	17.5	55
5 - 10	19.9 5.0 19 85 90	12.6	40
10 - 15 -	90. 35 June 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1	5.5	49
20 - 25		7.4	45
25 - 30	- <2.0 5.7 36		
30 - 35			
35 - 40 40 - 45	$^{-1}$		
45 - 50			
50 - 55	5 :9 21		
55 - 60	- · · · · · · · · · · · · · · · · · · ·		

NUCLEO B31

23 GG	-	-	- 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
60 - 70	-	· · · •	
			이 같은 것 같은
UCLEO B31			이 이는 사람은 소문화 활동 전화 방문에 있는 것은 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이 하는 것이 하는 것이 가지 않는 것이 하는 것이 같이 하는 것이 같이 하는 것이 하는 것이 하는 것이 하는 것이 하는 것이 않아? 것이 하는 것이 이 하는 것이 하는 것이 하는 것이 하는 것이 하는 것이 하는 것이 하는 것
0.5	< 0.6	τ,	그는 가는 것 같은 사망 방법 가슴 방법 방법에 있는 것 같은 것이 같이 있는 것 같은 것 같
			이 것 이 사람들은 성화 방화를 통해 좋아 지수는 것 같아. 이 집 집 집 집 집 집 집 집 집 집 집 집 집 집 집 집 집 집
5 - 10	-	8.5	1. 11、11、11、11、11、11、11、11、11、11、11、11、11、
10 - 15	-	35.3	10.77 化输出器 20 微微学校 10 20 20 20 20 20 20 20 20 20 20 20 20 20
15 - 20	-	19.3	
20 - 25	-	17.6	1318-0757322-380-1425751-1-1-425-45-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
25 - 30	-	7.7	n de sein -12 seksi kiri 45 maria kiri kalaki dara dara dara dara dara dara dara dar
30 - 35	-	<2.0	5.0
35 - 40	-	4.0	12.2.
40 - 45	-	-	10.5 10.5 12.4 10.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12
45 - 50	-	4,4	11.9
50 - 53	-	-	10.7
55 + 60	•	-	10.9. 10.9. 10 10 10 10 10 10 10 10 10 10 10 10 10
60 - 65	-	•	
65 - 70	•	-	그는 것은 1 <u>12 12 문제, 가족, 1</u> 7만만 전체, 2000년 2010년 1월 17일 - 2010년 1월 201
70 - 75			
75 . 80		· ·	sa sa kanang manang mang mang mang mang mang ma
/3 - 60	•		

UCLEO B1		Mn			NUCLEO B5		Mn	
Gección (cn)	1/A	0/5	R	R/S	Sección (cm)	1/A	0/S	. R
0 - 5 🛸	1.3+1.0	25.5+3.1	62.6	293	0 - 5	85.1	2096	532
5 - 10	1.2		84.6	an 1929 an tha an t An tha an tha	5 - 10	70.5	575	314
10 - 15	- 1.1	20.9	81.5	296	10 - 15	44.8	686	243
15 - 20	1.1	19.5	81.6	238	15 - 20	25.4	358	181
20 - 25	1.0	28.9	79.4	271	20 - 25	18.8-2	250	348
25 - 30	1.1	26.4	85.1		25 - 30	16.9	242	118
30 - 35	1.1	39.9	78.7	291	30 - 35-	18.7	207	266
35 - 40	1.2	24.3	95.6	293	35 - 40	18.0	268	155
40 - 45	<1.0	28.3	78.9	305	40 - 45	16.4	240	171
45 - 50	1.0	12.1	92.4	318	45 - 50	16.5	204	214
50 - 55	1.4	49.0	72.1	alah 303 kachén kané kané di kacéné di kacéné di kacéné di kacéné di kacéné	50 - 55	16.5	and and a set of the second	187
55 - 60	1.5	50.5	74.3	298	55 - 60	18.3	245	214
60 - 65	1.6	45.0	76.4	340		م بر او در ۲۰۰۱ میرد. مربع و در ۲۰۰۱ میرد کرد	2022년 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -	
65 - 70	1.8	31.2	91.7	326	NUCLEO BO		inden er staten er som	···· · · ·
70 - 75	1.8	32.8	. 63.3	92 339 7.2227	0 - 5	156	464	180
75 - 80	2.0	44-1 (Alternative)	86.6	297	5 - 10	26.5	284	118
80 - 65	2.2	36.3	82.8	276	10 - 15	18.6	149	122
85 - 91	2.0	25.6	91.1	299	.15 • 20	16.6	126	117
91 - 101	1.9	25.3	96.7	44.283 1997 - Constant State (1997)	20 - 25	16.0	125	109
101 - 113	2.0	35.4	92.6	2 B O	25 - 30	22.7	128	113
				2016년 2017년 - 1119년 br>- 1119년 - 1119년	30 - 35	16.4	99	94
VOCTED B3	and the second		en de la compañía de la compañía de la compañía En el compañía de la compañía de la compañía de la compañía de En el compañía de la compañía de la compañía de la		35 - 40	22,4	113	83
0 - 5	265	1712	380	1800	40 - 45	13.5	106	79
5 - 10	28.5	104	85.3		45 - 50	15.8	105	82
10 - 15	18.5	68.9	/0.0	4/V	50 - 55	11.6	108	72
15 - 20	16.8	70.7	(4.5	an a	55 - 60	15.3	110	76
20 - 25	15.5	71.3	00.0	471	60 - 70	13.7	110	76
25 - 30	12.1	65.5	01.5		70 - 80	14.4	117	73
30 - 35	15.0	82.5	50.8	274	80 - 89	12.9	140	82
	10 5	64 5	/0.3	3/3	>			
35 - 40	10.5							

9.1 Solution of the second sec

ت

.

· 1

92.4

-

		an a		an a			an an a' suite ann an Anna Anna Anna Anna an tha ann an Anna Anna Anna Anna Anna Anna A		
								a de la composición d	
NUCLEO B3		Иn			NUCLEO B14		Мл		
Sección (cm)	I/A	0/5	R	R/S	Sección (cm)	1/A	0/5	R	R/5
50 - 55	9.8	67.6	72.4	480	6 - 3	95.0	8554	335	1268
55 - 60	9.0	54.4	90.0	513	3 - b	135			
60 - 65	9.0	82.2	4.2	463	6 - 10	305	7400	670	- 4 4
65 - 70	12.1	108	90.8	472	10 • 15	202	pakada ana ang sana a		
70 - 75	12.5	103	73.1	510	15 - 20	130.	1056	202	2214
75 - 84 -	12.0	89.6	71.0	506	20 - 25	93.9	846	100	601
	an a				25 - 30	89.4	Z549	212	1445
NUCLEO 84					30 - 35	218	1400	205	477
U - 5	4.1		75 0	367	35 • 40	135	/18	134	234
3 - 10	1.2		76 8		40 - 45	95.9	343	134	277
10 - 13	1.0	B 1 2 2 2	719	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45 - 50	30	294 185	97	399
20 - 20	<1.0		21.6	313		31.0	103	. 89	381
25 - 25	<1.0	R 7	25.4	330	33 - GU		181	83	393
30 - 35	<1.0	7.2	23.4	288	e nees a balance de la colorez GV e B. Octava de la Caractería de la colorez GV e B. Octava de la colorez d	3-03			
35 - 43	<1.0	7.4	23.4	225	NUCLEO B22				
NUCLEO BI	2	가 있는 것이 있는 것이 있다. 이 같은 것이 있는 것이 같은 것이 있는 것이 같은 것이 없다.			0 - 5	104	448	87.5	162
0 - 5	<1.0	17.0	41.0	7317	5.+ 10	6.0	55.1	44.9	142
5 - 10	-	22.5	39.4	147	10 - 15	4.0	32.1	40.5	133
10 - 15	-	12.2	25.6	128	12 - 20	9.6	42.3	13.5	150
15 - 20	-	10.8	22.8	122	()e, statistic al. 11 2000 - 25 .00 Statistic territoria internationality at 25.00 m	3.9	43.5	30.2	138
20 - 25	-	12.4	27.3	- 125	25 - 30	3.5	43.3	37 7	129
25 - 30	-	16.1	29.8	121		3.5	54.5	JJ.8	155
30 - 35	-	26.0	29.3	145	33 + 40		60.6	35.3	141
35 - 40	-	28.5	20.3	192	40 + 4B	3.0	00.0		
40 - 45	•	16.1	26.1	106					
45 - 50	•	27.7	26,6	110					
50 - 58	-	28.3	20.5	116					4
		이 가지 않는 것을 하셨다.	김 의학 영화						
						1. A.			
			الا با موجوع المراجع المراجع الماري. المراجع المحجود المراجع						· · · · · · · · · · · · · · · · · · ·
		کی میکردان از این از از میریش این این این از این از	las an ann an an an Seol agus anns anns	en alte e ser en en en en presenta. Le la désente en entre a ser la regione	والمحرور ويقاصرون بتتقارب والا	e i terra	e de la companya de l		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
				an an Arran an Arra an					
									· · · ·
						1 A A			
		1							
		1		and the second second second	and the second				

NUCLEO	197 1979 - 1979 1979 - 1979 - 1979					la vel a contra da la Granda da contra da serio da s	e e e e e e e e e e e e e e e e e e e		en di seri L'hin di Lin
NUCLEO BI	. <u> </u>	Mn		shadir tar addi	All States and States a	NUCLEO B17	n Péles da	Maistra	real de la chece e
Sección (cm)	1/1	0/5	R	R/S		Sección	1/A	0/5	R
0 - 5	8.5	60.5	90.2	303		25 - 30	3.4	0 k ¢	77 6
5 - 10	2.5	28.6	68.1	265		30 - 35	3.5	25 0	10 0
0 - 15	- 2.7 (* 13)	43.2	49.2	294		35 - 40	3.8		
5 - 20	1.9	60+4	47.3	294		40 - 45	4.6	30. R	
0 - 25	1.7	69.8	39.3	270		45 - 50 -	4.2	33.2	37 0
5 - 30 .:	2.9	79.8	35.2	302	alaria ana marina di salaria dalaria d	50 - 55	6.1	1	32.0
0 - 35	2.4	91.1	38.0	323	un de la compañía de Compañía de la compañía de la compañí	55 - 60	4.9	40.2	47 0
5 - 40 .	2.7	108	40.8	310		60 - 70	5.1	47.6	AT 6
0 - 45	1.9	112	.38.1	310	akon ing Kalender (n. 1997) Marijan (n. 1997) 1995 - Marijan (n. 1997) 1995 - Marijan (n. 1997)	70 - 80	4.8	47.1	43.0
5 - 50	2.2	121	30.4	312		80 - 89	5.9	AR 1	10 1
0 - 55	2.5	127	30.5	310					33.1
5 - 60 👘	2.3	139	28.4	290					
0 • 72	1.5	105	36.1	270		AUCLEO BIS			
						0 - 5	4.9	32.1	39.1
JCLEO B24	and the second sec					5 - 10	5.4	23.1	19.5
1-5	710	1570	in de la désida. A la ser eta da da da de la deserva de la	7		10 - 15	4.6	26.6	18.9
5 - 10	 	1320		1010	동생은 보이는 것이	15 - 20	5.4	33.1	35.0
0 - 15	70 5	156	247	1010	한 방송 이가 방송이다.	20 - 25	6.3	33.6	30.6
50	116	450	207 292	973. 		25 - 30	6.0	39.2	36.1
	115	2042	020	1283		30 - 35	5.1	\$3,9	53.0
	130	3008	889	1838		35 - 40	9.0	54.6	49.1
) - II	137	1004	407	14/D		40 - 45	8.6	53.3	45.9
	1 - 7	930	400	B10		45 - 50	6.9	52.5	50.0
,u	120	107	403	2/35		50 - 60	7.9	57.8	69.8
v - 45 5 - 51	129	1050	/28	2838	tana ta ini ini ini ini ini ini ini ini ini in	60 - 70	6.7	54,9	59.1
ə - əl	102	2244	818	2270		70 - 80	7.0	56.0	56.9

4.8

4.7

6.2

62.0

73.1

45,5

66.6

49.4

38.8

.

- 90

- 100

100 - 110

				an an an an Arra. An Anna an Arra		ang		이상 동안한 것		2
· •										
							사람 영화 관	가 같다. 것은 것은 가지만 것이라고 한다. 같이 같이 같		-
				이야 나는 것이다.						
NUCLEO B9		Mn		<u> Real Pe</u> r A		NUCLEO B25		No.		-
Sección	1/A	0/5	R Star			Sección (cm)	1/A	0/5		ġ.
(ca)										
0-5	16.5	282	94.0	115		0 • 5	62.1	853	104	
5 • 10	8.4	76.1	65.3	184		5 + 10	6.1	1. Sec. 11. 77 - 7 . 2. C.	45.0	
10 - 15	3.0	17.5	34.9	183		10 • 15	6.1	61.1	37.0	2
15 20	1990 TET SAMA Marina 312 Marina	16.2	32.8		anta da serencia da serencia. En las literas de talendos	15 • 20	9.0			
20 - 25	2.6	17.4	. 31.0	185		20 25	radiois 8 . 7 a sin solitain (1993) Anna anna an Anna anna anna anna anna a	80.4	30.1	
25 - 28	3.1	21.7	32.5	183		25 - 30	8.5	83	39.4	
						30 - 35	9.8	104	43.4	
NUCLEO B19	9.41.444		รัสสุรัตร์ พระการการการการการการ การการการการการการการการการการการการการก		금차 농가까	33 - 40		103	30.0	
0.•5	0.5	286735 79 4 485*	1.27 (127 65.8 (127)	145 (m. 145) 1993 - Jacob Maria		40 45		- Constant of South States and Stat	34. /	
5 - 10	S.1.	58.5	60.3	121		5101 CO 832				
10 - 15	4.4	\$5.8	62.2	128		AULLEU B20				
15 - 20	4968 4 . 3 1080 9 5 19 10 9 5 5 10 7 7 7 7 7	56.3 A.	66.4	28. 28. 99 28. 28. 28. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29	kali un serie	0 - 5	235	10990	338	
20 - 24		42.0		119	eta esta la presenta de la competencia de la competencia de la competencia de la competencia de la competencia En esta de la competencia de la	5 - 10	234	Z292	337	
24 - 25	4.0	65.8	51.9	2 1 24 5		10 - 15	160	1728	323	
						15 - 20	105	1125	271	
NUCLEO B20						20 - 25	150	2040	118	
.0 - S	44.0	231	132	343		25 - 30	227			
5 - 10	9.8	193		101		30 - 35	235	3157	408	
10 - 15	4.5	52.1	53	134		35 - 40	153	1200	176	
15 - 20	1.2 -3.7 .599	14.6	a sasanga la asarat 174 Japan 19 41 saja pros	93		40 - 45	56.1	602	111	
20 - 25	3.3	39.2	35	153		45 - 50	43.8	<u>- 411</u>	75	
25 - 30	3.5	42.2	34	133		50 - 57	44.7	247	50	
30 - 35	4.2	37.7	39	158		NUCLEO B17				
35 - 40	3.9	44.1	e ja 16 32 00-9.40	164		0 - 5	4.1	16.9	39.8	
40 - 46	3.1	40.0	35	396		5 - 10	3.5	21.6	26,2	
						10 - 15	3.7	23.2	24.5	
						15 - 20	3.8	23.8	25.0	
						20 - 25	5.6	30.2	20.5	

•					an a	and an	e en	• · · · · · · · · · · · · · · · · · · ·	· .	
								a segue da contra da segue da		and the second
				e la seconda de la seconda La seconda de la seconda de	المراجعة المراجع الأراج. المراجعة المراجع الراجع	n je na stali i svetska stali s				and the second
62				공동 이 영화 중						
					김 김 말에서 관계로 했다.			그는 말 물건물이 많		는 것은 물건이 나는 것이다. 같은 것이 가지 않는 것은
		· · ·				그렇는 그는 것 같은 동안을 했다.				
	AULLED BSI		NB			NUCLEO B37		Mn		
	Sección (cm)	1/A	0/5	R	R/S	Sección (cm)	1/A	0/5	R	R/S
							5 (S. 5	Realistant and a state of the line of the second		4.00 A 10 A
			an an an ann an Star an Anna an Anna. An Anna Anna an Anna an Anna Anna Anna			S - 10	9.4	184	60.1	479
	0 - 5	<1.0	14104	658	4080	10 - 15	9.3	153	74.9	451
	3 - 10	1.3	16740	603	0487	15 - 20	6.7	164	77.3	443
	15 - 15	<1 0	1000		2972	20 - 25	6.5	410	71.1	577
5	70 - 75	<1.0	10073	ана (133 мар.) Сталка (135 мар.)		25 - 30	5.9	- 170	48.5	462
	25 - 30		10300	E C C	20//0	30 - 35	6.9	162	35.9	468
	30 - 35	<1.0	7015	507	1877	35 - 40	8.1	189	38.3	431
	35 . 10	5.5	3365	712		40 - 45	6.4	165	36.2	472
	40 - 45	28.5	3275	699	7414	45 - 50	60 515 06750	175	39.0	440
	45 - 50	12.9	5490	601	7797	50 - 55	5.6	303	20.Z	403
	50 - 55	16.0	5455	618	1755	55 - 60	6.3	205	43.9	417
	55 - 60	19.9	4315	560	2569					
	60 - 65	19.1	4208	522	868	NUCLEO B29				
	65 • 70	13.2	775	488						
	70 - 73	5.4	310	344	721			108	220	945
	75 - 80	4.0	465	316	1184	3 1 1 1	39.9	215	167	914
	50 - 53	<1.0	531	301	642	10 12	30.4	102	140	085
	S3 - 90	< 1.0	659	258	713		-0.3	1	144	1059
	90 - 93	<1.0	1405	278	998			130	139	1001
	95 - 105	1.6	2765	249	3546		-3.1	104	142	934
				uat traduit. Galeria	이 승규는 것을 위해 가는 것이 있는 것이다.		22.8	102	115	929
					은 별로 잘 가지 않는		13.3	100	136	1097
						40 - 45 21 - 50	-3.8	129	1.4	534
			• · · · · · · · · · · · · · · · · · · ·			~ - 50 50 - 25		100	38	1057
						30 - 33	~	4-3		100_

21.0

.

NUCLEO B1					NUCLEO B3		Fe		
Sección (cm)	1/A	0/5	R	R/S	Sección (cm)	1/A	0/5	R	R/5
0.5	3.6	200	3751	31345	50 - 55	5.7	614	3217	3020
5 - 10	2.1	93.2	3904	32201	55 - 60	4.9	99.5	3715	3071
10 - 15	3.1	83.1	3870	29844	60 - 65	7.2	798	3512	296
15 - 20	3.6	77.3	3967	26352	65 - 70	5.7	1189	3182	305
20 - 25	3.6	3\$0	3598	29248	70 - 75	3.5	901	3369	315
25 - 30	4.1	153	4085	29458	75 - 84	5.8	676	3247	310
30 - 35	2.9	812	3708	29877	NUCLEO B4				
35 - 40	2.7	150	4574	30773			173	2251	7850
40 - 45	2.7	205	4245	31147				2124	2751
45 - 50	2.3	16.9	4868	31213	10		81.0	2030	273
50 - 55	2.6	861	3728	31208	15 • 70	5.0	97.2	1868	266
55 - 60	3.5	865	4403	29928	20 - 25	11.6	185	2054	276
60 - 65	5.1	805	4339	29453	25 + 30	18.1	201	2221	278
65 - 70	2.5	197-	4408	32092			224	2067	248
70 - 75	2.6	147. 200 5.	4108	32542	35 - 43	8.0	320	2085	227
75 - 80	3.7	596	4381	30719					
80 - 85	3.6	186	4438	29572	NUCLEO BIZ				
85 - 91	2.9	151	4219	31547	0 - 5		78.2	3475	2084
91 - 101	z.7	134	4552	30711	5 • 10		78.6	3705	1707
101 - 113	4.0	487	4757	19851	10 - 15		89.7	2000	160
		n an tha Addina Taona an Anna			15 - 20		104	2730	1643
0 - 5	7.2	224	2214	31925	20 - 25	•	175	2919	1673
5 - 10	4.5	79.9	2115	31056	25 • 30		ىكى 180	1754	1773
10 - 15	4.2	46.9	2237	31459	30 · 35		739	2544	1763
15 - 20	4.5	49.5	2794	30391	35 • 40		1223	1691	2038
20 + 25	4.7	115	2795	31073	40 - 45		477	1892	1461
25 - 30	3.7	109	2767	33619	45 - 50		803	1833	1786
30 - 35	3.5	176	3197	32246	50 - SS	-	918	2366	1731
35 - 40	5.0	68.5	3460	33667		ate a la			
40 - 45	5.5	114	3905	31802					
45 - 50	3.6	296	3496	31902	at an every second second second				
			a tang iku Misala.						
	· · ·		19.1.25 B 20.0		ter da la compañía de la compañía. Francés de la compañía de la compañía	na shekara ta shekara t	· · · ·		
					and the second second	100 C			

		and the second second								
				an an the s					na station and an a	
	5 S. 1.									
	1.4								•	
NUCLEO B7	<u> </u>	Fc		en distanti da 19 - Tan anti da 19		NUCLEO B5	<u></u>	Fe P		·····
Sección (cm)	1/A	0/s	R	R/S		Sección (cm)	-1/A	0/5	R	R/S
0 - 5	5.7	210	2909	27075	리가 있는 것을 같은 것이다. 같은 사람들은 사람들은 것은 가능	0 - 5	2.9	63.3	2890	25367
5 - 10	5.7	297	3228	25271		5 - 10	4.2	59.9	3393	23267
10 - 15	7.6	1100	3467	28085		10 - 15	5.2	95.0	3350	24358
15 - 20	7.0	1330	4090	26973	승규는 것 같은 것이	15 - 20	3.8	113	3645	22778
20 - 25	4.4	1843	4646.	24707	An and a second se	20 - 25	4.1	<u>109</u>	3782	24492
25 - 30	5.4	(1)111111112621開始 (1)111111112621開始	4174	24502	사이가 전문을 다 가지 않는 가지 않는다. 소사는 연중 것 같은 사이가 가지 않는 것을 같은 것을 했다.	25 - 30	21.2	22 Marcine 1192	3170	23950
30 - 35	3.7	2610	4067	20213		30 - 35	6.7	9 - 10 - 14 3 	3540	25/5/
35 - 40	4.8	3928	4050	24/11		35 - 40	25.4 Argent (1.0%)	199	3952	24805
40 - 45	3.0	3385	3835	25400		40 45		109	4452	24173
45 - 50	3.3	3087	4312	11777	영상 전 전 전	45 50	5.6	986325944 - 2224 Amerikan Amerikan	4074	2404/
50 - 55	3.3	3510	4312	73850		50 - 23 - 23 - 23 - 23 - 23 - 23 - 23 - 2		d 2019 - 1 1 / 4	4929	23003
55 - 60	3.3	3565	4072	73007		55 - OU		<u></u>	2090	
60 - 72	1.1	- 34 4 9	4740 			NUCLEO B6				
NUCLEO B2	4		사람으로 만큼 만큼 있습니다. 			0.5		549	3220	33010
0 - 5	1.6	772	4418	29908	inge - Park and States in the second seco	5 - 10	2.1	633	2947	33696
5 - 10	1.6	1006	4418	27874		10 - 15	3.7	617	3250	32123
10 - 15	<0.4	965	6179	26436		15 - 20	0.8	662	3204	33210
15 - 20	1.0	815	6039	26445		20 - 25	5.2	557	3003	34521
20 - 25	1.5	1103	4903	29183		25 - 30	2.6	074	3367	32246
25 - 30	3.1	763	5022	29612		30 - 35	5.4	503	3555	31273
30 - 35	2.7	669	4806	28222		35 - 40	3.5	648	3205	32518
33 40	2.4	844	5068	20686		40 - 45	2.5	837	3838	30273
40 45	0.9	930	4500	28970		45 - 50	2.4	1028	3881	29578
45 - 51	1.4	481	5440	30377		50 - 55	2.3	720	3799	30601
						55 - 60	2.6	732	3345	29095
						60 - 70	4.0	575	3755	26229
						70 - 80	2.2	904	3500	29638
		11 A.				80 - 89	2.3	971	3524	28303
							. 1 a 1			
•	14				and the second second	a sharan an an	19.00			
	·	en e	الاي المحالية المحالية المراجع المحالية. محاليها الحالية المحالية المراجع الت	an shaara				an ann an t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-		
		مر ومصحف من الم	a di sharay na ana ana	aya ya ana ana ang ang ang ang ang ang ang an	andra 1990 - Einen Angel Angel					
			an an an tha an t	$(1,\infty) = \frac{1}{2} (1,\infty) = \frac{1}$	egenerie de la composition de					
				and the second			1.1			

NUCLEO B25	
Sección (cm)	I/A O/S R R/S
0 - 5	6.3 322 2255 34606
5 - 10	1.3 371 2658 38664
10 - 15	0.9 639 3029 37318
15 - 20	2.3 477 2671 33442
20 - 25	5,9 631 3234 33721
25 - 30	5.9 738 3149 32693
30 - 35	2.2 800 - 3660 - 28201
35 - 40	1.6 785 28436
40 - 45	5.9 750 3205 30430

			a construction of the states o	 Build and the state of the stat	· 이 문제 사람들은 사람은 가지 않는 것은 것이라. 學學 관측 이번 물건을 받았다. 승규가 한 것이라는 것이다. 이 가지 않는 것이다.			
35 - 40	1.6	7.85	3463	28436	70 - 80 -	597	3891	33507
40 - 45	5.9	750	3205	30430	80 - 89 -	767	4166	31807
NUCLEO BIG	مواليج البراجي							
NUCLEO 220			78.16	26606	NUCLEU B18			
U - S	ere fre generation				0 + 5 1.4	105	2718	31288
5 - 10	Z.3	232	-373	-040	5 - 10 2.9	202	2622	33493
10 - 15	2.7	247	2775	74800		235	2856	33442
15 • 20	2.4	628	2130	28918 •		195	3049	32417
20 - 25	10.5	1234	2119	27118		178	2725	33898
25 - 30				일을 알려야 한다.		101	7837	34670
30 - 35	2.9	545	3000	27843	ana na sa 21 sa sa sa sa sa sa 25 sa 30 sa sa 2,12 Na sa	101	2222	32960
35 - 40	3.0	683	3000	25404	1.4 Jacob 1.4 Ja	1/0		17577
40 - 45	3.2	1597	3860	24877	35 • 40 1.4	222	32.3	32375
45 - 50		1400	428	22349	양양관했는, 동생은 것 140 - 145 - 58 147 - 5 1 - 5	175	3224	34330
43 - 30		2088	5840	77817	45 • 50 ° 1.5	180	3080	32310
50 - 57	3.4	2000			50 - 60 1.4	170	3587	32672
NUCLEO 817					60 - 70 1.7	421	3768	32711
NOCEED DI					70 - 80 1.5	851	3482	30965
0 - 5	<1.4	246	3668	31544	80 - 00 1 9	728	3708	31562
5 - 10	-	346	3618	34175		195	3424	32977
10 - 15	•	426	4039	33301	90 - 100 - 1.4	615	3489	31864
15 - 20	-	345	4368	33566	100 - 110 3.3	V- J		
20 - 25	•	1021	4215	34601	and the second state of the second			
				33576				

ġ,

NUCLEO B17.

1/A

Sección (c=)

30 - 35

35 - 40

60 - 70

- 50

 R/S

R

0/5

and to be

چەر بىرىي ۋىرى ئىمى ب

					4					
		and the second second			ça en ana	teres de la composición de la	anteste da		and the second sec	
								이야 한테, 것 아이		
					Sec. All and		an ann an Alba An Albana an Albana		e traja en la com	
		승규는 것은 것을 가지?								
and to BD				n a statu Sector tito t		an a				
NUCLEO BA		Fe			<u></u>	NUCLEO B14		Fe	unter de la trat	
Sección	1/A	0/S		R/S		Sección		0/5	R	R/S
(Cm)			1670	17857		(cm)				
0 - 5	3.2	184	2378 7851	17573		0 - 3	4.8	582	2208	16939
5 • 10	1.0	103	2672	18565		5 - 6	3.6.21.21. 			17610
10 • 15	1.3		3079	17495	32748778233 (UP) 	6 - 10	8.5	360	1910	17059
20 - 25	2.0		3367	18341		10 - 15	8.3	7	1994	12630
20 - 23	1.0	583	4139	17840		70 - 75	······································	854	2168	20107
					영상 영화의 문화	25 . 30		1483	2141	17646
NUCLEO BI9						30 - 35	<0.4	2470	2661	18354
0 - 5	4.3	507	3811	10189			4.5	1969	3552	23494
5 - 10	1.4	- 205	2960	16773		40 - 45	2.4	2291	3723	24629
10 - 15	2.9	320	1977	13786		45 • 50	4.0	2000	3612	27493
15 - 20		244	2800	15343		50 - 55	4.8	3063	3125	27487
20 - 24	4.0	4 19	3674	17381	2011년 1월 1931년 1931년 1931년 1931년 193 1931년 1931년 193	55 - 60	6.5	3468	3125	29133
24 * 28	4.4					60 - 67	4.5	3090	3181	28285
NUCLEO B20		그는 문제가 관람을				NUCLEO 821				
0 - 5	3.0	61.4	2202	17107		AUCLED BL2				
5 - 10	2.9	112	1700	16038		0 - 5	3.1	106	1920	20087
10 - 15	2.9	117	2380	15043		5 - 10	3.0	79.5	2051	20902
15 - 20	1.3	168	2580	13211		10 - 15	1.4	731	2034	18684
20 - 25	2.8	178	2923	17157		70 - 25		245	2480	20143
25 • 30	3.1		2974	15711		25 - 30	7.0	330	3021	19181
30 - 35	2.4	574	3120	16620		30 - 35	1.6	410	3667	19611
35 - 40	2.2	659	3460	18229	and a set of the	35 - 40	2.3	355	3351	21127
40 - 46	1.0	540	4000	20030		40 - 46	1.0	585	3375	19295
				1997 - 19		100 B				
				A CONTRACTOR		•1 •1				
			1.1				the second of the			
		and the second				1				
			1. A.			and the second	1	4		1. A.
		na an a' na sangaran tang katalon katalon. Ng katalon kata			a da	사 방 것 사망 같습.				
			e Al the second second		1	e portente que				
		• • • •				and the state of a				
		and the second				1				

 817	

UCLEO B37		Π α			NUCLEO B31				
ección (cm)	1/A	0/5	R	R/S	Sección (cm)	1/A	0/S	R	R/S
0 - 5	12.3	956	4683	31139	0 - 5		2649	4870	2840
5 - 10	7.6	1072	4158	29851	5 - 10	7.1	2128	4195	3150
10 - 15	6.8	1290	4056	28887	10 • 15	5.7	2479	4865	2839
15 - 20 -	7.6	1211	4346	29280	15 - 20	1. 1.7	2152	4780	2982
20 - 25	11.2	1094	4734	29751	20 - 25	2.7	1115	5245	3369
25 - 30	10.4	1328	4653	27596	25 - 30	3.5	1474	4160	3469
30 - 35	4.8	1375	4531	29479	30 - '35	2.4	1063	3125	3835
35 - 40	4.8	1448	5072	32666	35 - 40	2.7	753	4582	3879
40 - 45	9.8	1330	4394	33557	40 - 45	4.7	795	4198	3576
45 - 50	5.0	1200	5100	28287	45 50	2.9	787	4263	3675
50 - 55	9.2	1220	5227	30935	50 - 55	1.6	835	3715	3750
55 + 60	13.0	1376	5018	26905	55 - 60	0.7	610	4025	3702
	- 1				60 - 65	2.2	507	3840	4171
ACCEO 838			مرجعية فتعتل ويوارك والم	a yang pertambahan dara dari sa pertambahan dari sa pertambahan dari sa pertambahan dari sa pertambahan dari s Pertambahan dari pertambahan dari sa pertambahan dari sa pertambahan dari sa pertambahan dari sa pertambahan da Pertambahan dari pertambahan dari sa pertambahan dari sa pertambahan dari sa pertambahan dari sa pertambahan da	- 65 - 70	2.9	307	4031	4380
0 - 5	<0,4	69.7	3182	32131	70 - 75	1.5	145	3187	4164
5 - 10	•	80.4	2548	34155	75 - 80	4.0	281	3306	3979
10 - 15	- ·	64.1	2221	35177	80 - 85	1.4	166	3365	4453
15 - 20	- <u>-</u>	147	2815	34195	85 - 90	1.7	568	2970	4014
20 - 25	• · · · · .	144	3097	35021	90 - 95	2.6	302	2858	4062
25 - 30	•	138	2698	36410	95 - 105	2.9	276	2871	4313
30 - 35	-	148	2854	35877					
35 - 40	- 14	130	3140	35482					
40 + 45	-	155	3974	36204	그 같은 것 같은 것 같이 같이 같이 같이 같이 않는 것이 같이 않는 것이 같이 했다.				
45 - 50	-	192	3260	36272	이 문화 이 문제 가지 않는 것이 있다.				
50 - 55	. -	244	3860	38305	h in Statistics - S	a ta kana a			
55 - 60	•	185	3545	3/803					
0 - 70	-	307	3860	38333					
									1.1
								· · · ·	
				e angle and the second second second		ante de la seconda de la s		1	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		an a	an an an Arlanta a she ar e sa	a sa ka sa sa ka sa		a de la companya de l		
				nyanya mayar na pilanya na manaka a	ann an tha a gàrt ann r A	na zmenova i Andra. Maria			
		이번 전 문제품	1999 - 1998 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		de la servició de la composición de la	deb i de etc.			1 - 1 - E
					1	and the state of			

APENDICE 5

PERFILES DE METALES PESADOS EN LAS FASES GEOQUIMICAS DE LOS SEDIMENTOS DE LA PARTE CENTRO Y SUR DEL GOLFO DE CALIFORNIA

			269
		t e	
	·	. 1	
•	Núcleos	de la	a Plataforma Continental
	Figura	5.1	Eh y concentraciones de Pb, Co, Cd en la fracción oxidable del núcleo B7.
	Figura	5.2	C-org y concentraciones de Zn, Ni, Cr y Cu, en la fracción oxida- ble del núcleo B7.
	Figura	5.3	C-org y concentraciones de Fe y Mn en la fracción oxidable del núcleo B7.
	Figura	5.4	Concentraciones de Zn, Cu y Ni en la fracción reducible del nú- cleo BZ.
	Figura	5.5	Concentraciones de Cr, Pb y Co en la fracción reducible del nú- cleo BZ.
	Figura	5.6	Eh y concentraciones de Nn y Fe en la fracción reducible del nú- cleo B7.
	Figura	5.7	C-org y concentraciones de Zn, Cd, Co y-Cr; en las fracciones oxi dables del núcleo B1.
	Figura	5.8	C-org y concentraciones de Pb, Ni y Cu en la fracción oxidable del núcleo B1.
	Figura	5.9	C-org y concentraciones de Mn y Fe, en la fracción oxidable del núcleo B1.
	Figura	5.10	Eh y concentraciones de Mn y Felen la fracción reducible del nú-
	Figura	5.11	Concentraciones de Pb, Co y Cd en la fracción reducible del nú- cleo Bl.
	Figura	5.12	Concentraciones de Zn, Ni, Cu y Cr en la fracción reducible del núcleo B1.
	Figura	5.13	C-org y concentraciones de Cu, Ni, Co y Cd en la fracción oxida- ble del núcleo B37.
	Figura	5.14	Concentraciones de Pb, Zn y Cr, en la fracción oxidable del nú- cleo B37.
	Figura	5.15	C-org y concentraciones de Fe y Mn en la fracción oxidable del nú- cleo B37.
	Figura	5.16	Concentraciones de Cu, Pb, Co y Cr en la fracción reducible del núcleo B37.
	Figura	5.17	Concentraciones de Mn, Fe y Zn en la fracción reducible del núcleo B37.
	Núcleo	s del	Talud y Borde de las Cuencas
	Figura	5.18	C-org y concentraciones de Ni, Zn y Cu en la fracción oxidable del
	Figura	5.19	C-org y concentraciones de Pb, Cr, Co y Cd en la fracción oxidable del núcleo B17.
	Figura	5,20	C-org y concentraciones de Mn y Fe en la fracción oxidable del nú- cleo B17.
	Figura	5.21	Concentraciones de Zn, Cu y Ni en la fracción reducible del núcleo
	Figura	5,22	Concentraciones de Cr, Pb, Co y Cd en la fracción reducible del núcleo B17.
	Figura	5.23	Eh y concentraciones de Mn y Fe en la fracción reducible del nú- cleo B17.

		na sense se s
		270
	Figura 5.24	C-org y concentraciones de Pb, Ni y Zn en la fracción oxidable del núcleo B18.
	Figura 5.25	C-org y concentraciones de Cu, Co, Cr y Cd en la fracción oxidable
	Figura 5.26	C-org y concentraciones de Mn y Fe en la fracción oxidable del nú- clen B18
	Figura 5.27	Concentraciones de Cu, Pb, Ni, Co y Cr.en la fracción reducible del núcleo B18.
1	Figura 5.28	Concentraciones de Mn, Fe y Zn en la fracción reducible del núcleo B18.
 	Figura 5.29	C-org, Eh y concentraciones de Mn y Fe en la fracción oxidable del núcleo B19.
- 17 -	Figura 5.30	C-org y concentraciones de Cu, Co, Cr y Cd en la fracción oxidable del núcleo B19.
	Figura 5.31	Concentraciones de Zn, Ni y Pb en la fracción oxidable del núcleo B19.
-	Figura 5.32	Concentraciones de Zn, Ni y Cr en la fracción reducible del núcleo B19.
i te y M	Figura 5.33	Concentraciones de Pb, Co y Cu en la fracción reducible del núcleo B19.
	Figura 5.34 Figura 5.35	Concentraciones de Mn y Felen la fracción reducible del núcleo B19. C-org y concentraciones de Zn, Ni, Pb y Cu en la fracción oxidable del núcleo B20
	Figura 5.36	C-org y concentraciones de Cr, Co y Cd en la fracción oxidable del núcleo B20.
	Figura 5.37	C-org, Eh y concentraciones de Mn y Fe en la fracción oxidable del núcleo B20.
•	Figura 5.38	Eh y concentraciones de Mn y Fe en la fracción reducible del núcleo B20.
	Figura 5.39	Concentraciones de Cr, Pb y Co en la fracción reducible del núcleo B2O.
	Figura 5.40	Concentraciones de Cu, Ni y Zn en la fracción reducible del núcleo B2O.
	Figura 5.41	Concentraciones de Cr, Co y Cd en la fracción oxidable del núcleo B22.
	Figura 5.42	Concentraciones de Cu, Pb, Ni y Zn en la fracción oxidable del nú- cleo B22.
	Figura 5.43	Eh y concentraciones de Mn y Fe en la fracción oxidable del núcleo B22.
	Figura 5.44	Concentraciones de Cu, Ni y Zn en la fracción reducible del núcleo B22.
	Figura 5.45	i Concentraciones de Cr, Pb y Co en la fracción reducible del núcleo B22.
	Figura 5.46	Eh y concentraciones de Fe y Mn en la fracción reducible del nú- cleo B22.
	Figura 5.47	Concentraciones de Ni, Pb, Cu, Cr, Co y Cd en la fracción oxidable del núcleo B9.
	Figura 5.48 Figura 5.49	8 Concentraciones de Mn y Fe en la fracción oxidable del núcleo B9. 9 Concentraciones de Cr, Ni y Zn en la fracción reducible del núcleo 89.

		271
тарана (тр. 1996) 1970 — Прила Парана 1970 — Прила Парана (тр. 1976)	• •	
Figura 5	5 50	Concentraciones de Cu. Ph.v.Co.en la fracción reducible del núcleo
i igui a S		B9.
Figura 5	5.51	Eh y concentraciones de Mn y Fe en la fracción reducible del nú- cleo 80
Figura 5	5.52	Concentraciones de Ni, Pb, Zn y Cu en la fracción oxidable del nú-
Figura 5	5.53	Cleo B12. C-org y concentraciones de Cr, Co y Cd en la fracción oxidable del
		núcleo B12.
rigura c	5.54	B12.
Figura 5	5.55	Concentraciones de Zn, Ni, Cu y Pb en la fracción reducible del nú
Figura S	5.56	Eh y concentraciones de Fe y Mn en la fracción reducible del núcleo
Figura {	5.57	Concentraciones de Cr, Co y Cd en la fracción reducible del núcleo
Figura !	5.58	C-org y concentraciones de Mn y Fe en la fracción oxidable del nú-
Figura 9	5.59	Cieo B25. Concentraciones de Cd, Co, Cr, Cu, Ni y Zn en la fracción oxidable
Figura	5 60	del núcleo B25. Concentraciones de Co. Ph. Cr. Cu. Ni y 7n en la fracción reducible
		del núcleo B25.
Figura Figura	5.61 5.62	Concentraciones de Mn y Fe en la fracción reducible del núcleo B25. Concentraciones de Cr. Co y Cd en la fracción oxidable del núcleo
		B3.
Figura	5.63	Concentraciones de Pb, Cu, Zn y Ni en la fracción oxidable del nú- cleo B3.
Figura	5.64	C-org y concentraciones de Mn y Fe en la fracción oxidable del nú- cleo B3.
Fitura	5.65	Eh y concentraciones de Mn y Fe en la fracción reducible del nú-
Figura	5,66	Concentraciones de Ni, Cu y Zn en la fracción reducible del núcleo
Figura	5.67	Concentraciones de Cr, Co y Pb en la fracción reducible del núcleo
Figura	5.68	C-org y concentraciones de Mn y Fe en la fracción oxidable del nú-
Figura	5.69	Cleo B4. C-org y concentraciones de Pb, Cr, Co y Cd en la fracción oxidable
Figura	5 70	del núcleo B4.
r i gui u		nucleo B4.
Figura	5.71	En y concentraciones de Mn y Fe en la fracción reducible del núcleo B4.
Figura	5.72	Concentraciones de Cr, Pb y Co en la fracción reducible del núcleo
Figura	5.73	Concentraciones de Ni, Cu y Zn en la fracción reducible del núcleo

:

Núcleos de las Depresiones de las Cuencas Figura 5.74 C-org y concentraciones de Pb, Ni y Zn en la fracción oxidable del núcleo B14. C-org y concentraciones de Cu. Cr. Co y Cd en la fracción oxidable Figura 5.75 del núcleo B14. Eh, C-org y concentraciones de Mn y Felen la fracción oxidable del Figura 5.76 núcleo B14. Eh y concentraciones de Fe y Mn en la fracción reducible del nú-Figura 5.77 cleo B14. Concentraciones de Cu, Pb y Zn en la fracción reducible del núcleo Figura 5.78 B14. Concentraciones de Ni, Cr y Co en la fracción reducible del núcleo Figura 5.79 B14 Concentraciones de Co, Cr, Cu, Pb, Ni y Zn, en la fracción oxida-Figura 5.80 ble del núcleo B5. C-org y concentraciones de Mn y Fe en la fracción oxidable del nú Figura 5.81 cleo B5. En y concentraciones de Mn y Fe en la fracción reducible del nú-Figura 5.82 cleo B5. Concentraciones de Co, Cu, Ni y Zn en la fracción reducible del Figura 5.83 núcleo B5. Concentraciones de Cr y Pb en la fracción reducible del núcleo B5. Figura 5.84 Eh y concentraciones de Pb, Zn, Ni y Cu en la fracción oxidable Figura 5.85 del núcleo B6. Eh y concentraciones de Cr. Co y Cd en la fracción oxidable del nú Figura 5.86 cleo B6. Figura 5.87 C-org y concentraciones de Mn y Fe en la fracción oxidable del núcleo B6. Eh y concentraciones de Mn y Fe en la fracción reducible del nú-Figura 5.88 cleo B6. Figura 5.89 Concentraciones de Ni, Pb y Zn en la fracción reducible del núcleo B6. Figura 5.90 Concentraciones de Cu. Cr y Co en la fracción reducible del núcleo B6. Figura 5.91 Eh, C-org y concentraciones de Mn y Fe en la fracción oxidable del núcleo B24. Figura 5.92 C-org y concentraciones de Pb, Cr, Co y Cd en la fracción oxidable del núcleo B24. Figura 5.93 C-org y concentraciones de Cu, Ni y Zn en la fracción oxidable del núcleo B24. Figura 5.94 Concentraciones de Cu, Ni y Zn en la fracción reducible del núcleo B24. Figura 5.95 Concentraciones de Co, Pb y Cr en la fracción reducible del núcleo B24. Figura 5.96 Eh v concentraciones de Mn v Fe en la fracción reducible del núcleo B24. Figura 5.97 C-org y concentraciones de Pb, Ni, Cu y Zn en la fracción oxidable del núcleo B26. Figura 5.98 C-org y concentraciones de Cd. Co y Cr en la fracción oxidable del núcleo B26.

Figura 5.99	Eh, C-org y concentraciones de Mn y Fe en la fracción oxidable del núcleo B25.
Figura 5.100	Concentraciones de Ni, Cu y Zn en la fracción reducible del nú- cleo B26.
Figura 5.101	Concentraciones de Cr, Co y Pb en la fracción reducible del nú- cleo B26.
Figura 5.102	En y concentraciones de Mn y Fe en la fracción reducible del núcleo B26.
Figura 5.103	C-org y concentraciones de Cu, Ni y Zn en la fracción oxidable del núcleo B29.
Figura 5.104	C-org y concentraciones de Cr, Co y Cd en la fracción oxidable del núcleo B29.
Figura 5.105 Figura 5.106	Concentraciones de Mn y Fe en la fracción oxidable del núcleo B29. Concentraciones de Mn y Fe en la fracción reducible del núcleo B20
Figura 5.107	Concentraciones de Cr, Co y Pb en la fracción reducible del nú- cleo 829.
Figura 5.108	Concentraciones de Ni, Cu y Zn en la fracción reducible del nú- cleo B29.
	·

and the second states of a		
Núcleo	de los	Fondos Pelágicos
Figura	5.109	Eh, C-org y concentraciones de Mn y Fe en la fracción oxidable del núcleo B31.
Figura	5.110	Concentraciones de Pb, Co y Zn en la fracción oxidable del núcleo B31.
Figura	5.111	C-org y concentraciones de Ni y Cu en la fracción oxidable del n <u>ú</u> cleo B31.
Figura	5.112	C-org y concentraciones de Cr y Cd en la fracción oxidable del núcleo B31.
Figura	5.113	Concentraciones de Cu, Ni y Zn en la fracción reducible del núcleo B31.
Figura	5.114	Concentraciones de Co, Cr y Pb en la fracción reducible del núcleo B31.
Figura	5.115	Eh y concentraciones de Mn y Fe en la fracción reducible del nú- cleo B31.

Núcleos de la	Cuenca de Guaymas
Figura 5.116	Concentración de Mn disuelto y adsorbido en los núcleos B14, B17 y B18 de la Cuenca de Guaymas.
Figura 5.117	Concentración de Mn en la fracción oxidable de los núcleos B14, B17 y B18 de la Cuenca de Guaymas.
Figura 5.118	Concentración de Mn en la fracción reducible de los núcleos B14, B17 y B28 de la Cuenca de Guaymas.
Figura 5.119	Concentración de Mn en las principales fracciones del núcleo B17.
Figura 5.120	Concentración de Mn en las principales fracciones del núcleo B18.
Figura 5.121	Concentración de Mn en las fracciones reducibles y la extraída con BaClo (pH=7) en el núcleo B14.

	a de la companya de Companya de la companya de la company
Figura 5.122	Concentración de Mn en las fracciones oxidable y residual del nú cleo B14.
Figura 5.123	Concentración de Fe disuelto y adsorbido en los núcleos B14, B17 y B18 de la Cuenca de Guaymas.
Figura 5.124	Concentración de Fe en la fracción oxidable de los núcleos B14, B17 y B18.
Figura 5.125	Concentración de Fe en la fracción reducible de los núcleos B14, B17 y B18.
Figura 5.126	Concentración de Fe en la fracción reducible y residual del nú- cleo B17.
Figura 5.127	Concentración de Fe en las fracciones residual y reducible del núcleo B18.
Figura 5.128	Concentración de Fe en las fracciones residual, reducible y oxi- dable del núcleo B14.
Figura 5.129	Concentración de Cd en la fracción exidable de los núcleos B14, B17 y B18.
Figura 5.130	Concentración de Ni en la fracción oxidable de los núcleos B14, B17 y B18.
Figura 5.131	Concentración de Zn en la fracción oxidable de los núcleos B14, B17 y B18.
Figura 5.132	Concentración de Zn en la fracción reducible de los núcleos B14, B17 y B18.
Figura 5.133	Concentración de Zn en la fracción carbonatada de los núcleos B14, B17 y B18.
Figura 5.134	Concentración de Pb en la fracción oxidable de los núcleos B14, B17 y B18.

Núcleos de Cuenca del Carmen

in a gri da

Figura	5.135	Concentración d y B12.	le Mi	n di	isuelto y adsorbido en los núcleos B7, B9
Figura	5.136	Concentración d B9 y B12.	e Mi	ı en	n la fracción oxidable de los núcleos B7,
Figura	5.137	Concentración d dable del núcle	le Mi o Bi	n en 7.	n las fracciones residual, reducible y oxi-
Figura	5.138	Concentración d	e Mi	n en	n las fracciones del núcleo R12
Figura	5.139	Concentración d y B12.	e Fe	e di	isuelto y adsorbido en los núcleos B7, B9
Figura	5.140	Concentración d B9 y B12.	e Fo	e en	ı la fracción oxidable de los núcleos B7,
Figura	5.141	Concentración d B9 y B12.	le Fe	e en	n la fracción reducible de los núcleos B7,
Figura	5.142	Concentración d	e Fe	e en	n las fracciones del núcleo B7.
Figura	5.143	Concentración d B9 y B12.	e Co	d en	a la fracción oxidable de los núcleos B7,
Figura	5.144	Concentración d B9 y B12.	e Cı	r en	n la fracción oxidable de los núcloes B7,
Figura	5.145	Concentración d B9 y B12.	e Ci	en en	n la fracción reducible de los núcleos B7,
Figura	5.146	Concentración d B9 y B12.	e Pl	o en	n la fracción oxidable de los núcleos B7,

Figura	5.147	Concentración de Pb en la fracción reducible de los núcleos B7, B9 y B12:
Figura	5.148	Concentración de Zn disuelto y adsorbido en los núcleos B7, B9 y B12.
Figura	5.149	Concentración de Zn en la fracción oxidable de los núcleos B7, B9 y B12.
Figura	5.150	Concentración de Zn en la fracción reducible de los núcleos B7, B9 y B12.
Figura	5.151	Concentración de Zn en la fracción carbonatada de los núcleos B7, B9 y B12.
Núcleos	s de Cue	enca Pescadero
Figura	5.152	Concentración de Mn disuelto y adsorbido en los núcleos B1, B3, B4 y B26.
Figura	5.153	Concentración de Mn en la fracción oxidable de los núcleos B1, B3, B4 y B26.
Figura	5.154	Concentración de Mn en la fracción reducible de los núcleos B1, B3, B4 y B26.
Figura	5.155	Concentración de Mn en las fracciones del núcleo B1.
Figura	5.156	Concentración de Mn en las fracciones del núcleo B3.
Figura	5.157	Concentración de Mn en las fracciones del núcleo B3, (sin la sección 0-5 cm).
Figura	5.158	Concentración de Mn en las fracciones no-litogénicas del núcleo B4.
Figura	5.159	Concentración de Mn en las fracciones reducible y residual del núcleo B4.
Figura	5,160	Concentración de Mn en las fracciones residual, reducible y oxid <u>a</u> ble del núcleo B26.
Figura	5.161	Concentración de Fe disuelto y adsorbido en los núcleos B1, B3, B4 y B26.
Figura	5.162	Concentración de Fe en la fracción oxidable de los núcleos B1, B3, B4 y B26.
Figura	5.163	Concentración de Fe en la fracción reducible de los núcleos B1, B3, B4 y B26.
Figura	5.164	Concentración de Fe en las fracciones residual y reducible del núcleo B4.
Figura	5.165	Concentración de Fe en las fracciones residual y reducible del núcleo B1.

id m

Figura 5.166 Concentración de Fe en las fracciones residual y reducible del núcleo B3.

Figura 5.167 Concentración de Fe en las fracciones residual, reducible y oxi dable del núcleo B26. Figura 5.168 Concentración de Cd en la fracción reducible de los núcleos B1, B3, B4 y B26.

Figura 5.169 Concentración de Cd en la fracción oxidable de los núcleos B1, B3, B4 y B26.

Figura 5.170 Concentración de Zn en la fracción oxidable de los núcleos 81, B3, Br y B26.

Figura	5.171	Concentración	de	Zn	en	la	fracción reducible de los núcleos B1,
$(1,1) \in [1,2]$		B3, B4 y B26.	÷	1.1.1.2		чар При	에 가장 수가 있는 것은 것을 가장
Figura	5.172	Concentración	de	Zn	en	la	fracción carbonatada de los núcleos B1
	i filo di second	B3, B4 y B26.	.*	1.1			- 영향 방법 방법 사망가 있는 것 이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 것이 있는 것이 없다. 것이 있는 것이 없는 것이 없다. 것이 있는 것이 있는 것이 없는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 없다. 것이 있는 것이 있는 것이 있는 것이 없는 것이 없 것이 없는 것이 없 것이 없는 것이 없 않이 없이 없다. 것이 없는 것이 없 않이 않는 것이 없는 것이 없는 것이 없는 것이 없 않이 없는 것이 없 않이 않이 않이 않은 것이 없는 것이 없 않이 않이 않이 않이 않아. 것이 없는 것이 없는 것이 없는 것이 없는 것 않이 않이 않아. 것이 없는 것이 없이 않이 않아. 것이 않이 않이 않이 않이 않이 않이 않이 않이 않이 않아. 것이 않이 않 않 것 않아, 것 않아, 것 않아, 것 않아, 것 않아, 것 않아, 것 않아, 않아, 것 않아, 것 않아, 않아, 것 않아, 것 않아, 것 않아, 것 않아, 않아, 않아, 것 않아, 않아, 않아, 않아, 않아, 않아, 않아, 않아, 않아, 않 않아, 않아,
Figura	5.173	Concentración	de	Cu	en	la	fracción oxidable de los núcleos B1,
		83, B4 y B26.			1.1		말한 일반성적, 백산법과, 일, 것은 것은 것은 것은 것이 가지 않는 것이다.
Figura	5.174	Concentración	de	Cu	en	la	fracción reducible de los núcleos B1,
		B3, B4 y B26.					
Figura	5.175	Concentración	de	Рb	en	la.	fracción oxidable de los núcleos B1, 🚽
	-	B3, B4 y B26.					
Figura	5.176	Concentración	de	ΡЬ	en	la	fracción reducible de los núcleos B1,
1		B3, B4 y B26.					
Figura	5.177	Concentración	de	Zn	en	las	fracciones del núcleo B26.
Figura	5.178	Concentración	de	Ρb	en	las	fracciones del núcleo B26.
Figura	5.179	Concentración	de	Cr	en	las	fracciones del núcleo B26.
Figura	5.180	Concentración	de	Ni	en	las	fracciones del núcleo B26.
Figura	5.181	Concentración	de	Со	en	las	fracciones del núcleo B26.
	Figura Figura Figura Figura Figura Figura Figura Figura Figura Figura	Figura 5.171 Figura 5.172 Figura 5.173 Figura 5.174 Figura 5.175 Figura 5.176 Figura 5.176 Figura 5.178 Figura 5.178 Figura 5.180 Figura 5.181	Figura 5.171 Concentración B3, B4 y B26. Figura 5.172 Concentración B3, B4 y B26. Figura 5.173 Concentración B3, B4 y B26. Figura 5.174 Concentración B3, B4 y B26. Figura 5.175 Concentración B3, B4 y B26. Figura 5.176 Concentración B3, B4 y B26. Figura 5.176 Concentración B3, B4 y B26. Figura 5.177 Concentración Figura 5.178 Concentración Figura 5.179 Concentración Figura 5.180 Concentración Figura 5.181 Concentración	Figura 5.171 Concentración de B3, B4 y B26. Figura 5.172 Concentración de B3, B4 y B26. Figura 5.173 Concentración de B3, B4 y B26. Figura 5.174 Concentración de B3, B4 y B26. Figura 5.175 Concentración de B3, B4 y B26. Figura 5.176 Concentración de B3, B4 y B26. Figura 5.177 Concentración de Figura 5.178 Concentración de Figura 5.178 Concentración de Figura 5.179 Concentración de Figura 5.180 Concentración de Figura 5.181 Concentración de	Figura 5.171 Concentración de Zn B3, B4 y B26. Figura 5.172 Concentración de Zn B3, B4 y B26. Figura 5.173 Concentración de Cu B3, B4 y B26. Figura 5.174 Concentración de Cu B3, B4 y B26. Figura 5.175 Concentración de Pb B3, B4 y B26. Figura 5.176 Concentración de Pb B3, B4 y B26. Figura 5.177 Concentración de Pb B3, B4 y B26. Figura 5.178 Concentración de Zn Figura 5.178 Concentración de Zn Figura 5.179 Concentración de Cn Figura 5.180 Concentración de Ni Figura 5.181 Concentración de Co	Figura 5.171 Concentración de Zn en B3, B4 y B26. Figura 5.172 Concentración de Zn en B3, B4 y B26. Figura 5.173 Concentración de Cu en B3, B4 y B26. Figura 5.174 Concentración de Cu en B3, B4 y B26. Figura 5.175 Concentración de Pb en B3, B4 y B26. Figura 5.176 Concentración de Pb en B3, B4 y B26. Figura 5.176 Concentración de Pb en B3, B4 y B26. Figura 5.177 Concentración de Pb en B3, B4 y B26. Figura 5.178 Concentración de Pb en Figura 5.178 Concentración de Zn en Figura 5.179 Concentración de Cr en Figura 5.180 Concentración de Ni en Figura 5.181 Concentración de Co en	 Figura 5.171 Concentración de Zn en la B3, B4 y B26. Figura 5.172 Concentración de Zn en la B3, B4 y B26. Figura 5.173 Concentración de Cu en la B3, B4 y B26. Figura 5.174 Concentración de Cu en la B3, B4 y B26. Figura 5.175 Concentración de Pb en la B3, B4 y B26. Figura 5.176 Concentración de Pb en la B3, B4 y B26. Figura 5.176 Concentración de Pb en la B3, B4 y B26. Figura 5.176 Concentración de Pb en la B3, B4 y B26. Figura 5.176 Concentración de Pb en la B3, B4 y B26. Figura 5.177 Concentración de Zn en las Figura 5.178 Concentración de Zn en las Figura 5.178 Concentración de Pb en la Sigura 5.180 Concentración de Cr en las Figura 5.180 Concentración de Ni en las

Núcleos de Cuenca Farallón

Figura	5.182	Concentración de Mn en las fracciones residual, reducible y oxidable en el núcleo B5.
Figura	5.183	Concentración de Mn en las fracciones residual y oxidable del nú- cleo B6.
Figura	5.184	Concentración de Mn en las fracciones reducible y de intercambio del núcleo B6.
Figura	5.185	Concentración de Mn en las fracciones reducible y de intercambio del núcleo B24.
Figura	5.186	Concentración de Mn en las fracciones residual y oxidable del nú- cleo B24.
Figura	5.187	Concentración de Fe en las fracciones oxidable y de intercambio del núcleo B5.
Figura	5.188	Concentración de Fe en las fracciones residual y reducible del núcleo B5.
Figura	5.189	Concentración de Fe disuelto y adsorbido en el núcleo B6.
Figura	5.190	Concentración de Fe en la fracción oxidable en el núcleo B6.
Figura	5.191	Concentración de Fe en la fracción reducible, oxidable y residual del núcleo B24.
Figura	5.192	Eh y concentración de Fe en las fracciones residual y reducible del núcleo B6.
Figura	5.193	Concentración de Ni en las fracciones residual y reducible del nú cleo B5.
Figura	5.194	Concentración de Cu en las fracciones residual y reducible del núcleo B5.
Figura	5.195	Concentración de Zn en las fracciones del núcleo B5.

Núcleos de las cimas ("Sills")

Figura 5.196 Concentración de Mn en las fracciones residual, reducible y oxidable del núcleo B22.

	Figura	5.197	Concentración de Mn en las fracciones residual, reducible y oxid <u>a</u> ble del núcleo $B25$.
	Finura	5 198	Concentración de Ma disuelto y adsorbido en el núcleo B22
	Figura	5 199	Concentración de Mn disuelto y adsorbido en el núcleo B25.
· · ·	Figura	5.200	Concentración de Fe en la fracción oxidable del núcleo B22.
	Figura	5 201	Concentración de Fe en las fracciones residual y reducible del nú
	i igui u	0.201	cleo B22.
1.12	Figura	5.202	Concentración de Fe disuelto y adsorbido en el núcleo B25.
- 1 m.	Figura	5.203	Concentración de Fe en la fracción oxidable del núcleo B25.
	Figura	5.204	Concentración de Fe en las fracciones residual y reducible del nú
			cleo B25.
· ·	Figura	5.205	Concentración de Cr en las fracciones del núcleo B25.
	Figura	5.206	Concentración de Pb en las fracciones del núcleo B25.
	Figura	5.207	Concentración de Ni en las fracciones del núcleo B25.
10 A. 10	Figura	5.208	Concentración de Mn disuelto y adsorbido en los núcleos de las de
			presiones de las Cuencas de Guaymas, Farallón, Pescadero y Maza- tlán.
1.1.1.1	Figura	5.209	Concentración de Mn en la fracción oxidable de los núcleos de las
	19. J. J. J.	· · · ·	depresiones de las Cuencas de Guaymas, Farallón, Pescadero y Maza
			tlân.
an galana	Figura	5.210	Concentración de Mn en la fracción reducible de los núcleos de
	ega Na V		las depresiones de las Cuencas de Guaymas, Farallón, Pescadero y
			Mazatlán.
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	Figura	5.211	Concentración de Fe disuelto y adsorbido en los núcleos de las de
			presiones de las Cuencas de Guaymas, Farallón, Pescadero y Maza-
	P 2	E 010	tian. Composition (E 1. Composition , sideline de las stalementes de las
	rigura	5.212	Concentracion de re en la traccion oxidable de los nucleos de las
			depresiones de las cuencas de Guaynas, Farallon, Pescadero y Maza
	Figura	6 213	uran. Concentración de Felen la fracción neducible de los núcleos de
	iguio	5.215	Las denoseriones de las fuencas de fuencas de sus nacieus de
1997 - N.			Mazatlán
	Figura	5.214	Concentración de Cu en la fracción oxidable de los múcleos de las
و الحرب ال		••••	depresiones de las Cuencas de Guavmas, Farallón, Pescadero y Maza
			tlân.
	Figura	5.215	Concentración de Cu en la fracción reducible de los núcleos de
			las depresiones de las Cuencas de Guaymas, Farallón, Pescadero y
			Mazatlán.
	Figura	5,216	Concentración de Co en la fracción oxidable de los núcleos de las
			depresiones de las Cuencas de Guaymas, Farallón, Pescadero y Maza
· · ·	· · · ·		tlān.
	Figura	5.217	Concentración de Co en la fracción reducible de los núcleos de
			las depresiones de las Cuencas de Guaymas, Farallón, Pescadero y
			Mazatlān.
	Figura	5.218	Concentración de Zn en la fracción reducible de los núcleos de
			las depresiones de las Cuencas de Guaymas, Farallón, Pescadero y
			Mazatlan.
	Figura	5.219	Concentración de Zn en la fracción carbonatada de los núcleos de
			las depresiones de las Cuencas de Guaymas, Farallón, Pescadero y
			mazatian.

.

277

4

ţ

ł

Figura 5.22U	depresiones de las Cuencas de Guaymas, Farallón, Pescadero y Maz <u>a</u>
Figura 5.221	tlân. Concentración de Ni en la fracción reducible de los núcleos de
	las depresiones de las Cuencas de Guaymas, Farallón, Pescadero y Mazatlán.
Figura 5.222	Concentración de Pb en la fracción oxidable de los núcleos de las depresiones de las Cuencas de Guaymas, Farallón, Pescadero y Maz <u>a</u> tlán.
Figura 5.223	Concentración de Pb en la fracción reducible de los núcleos de las depresiones de las Cuencas de Guaymas, Farallón, Pescadero y Mazatlán.
Figura 5.224	Concentración de Cd en la fracción oxidable de los núcleos de las depresiones de las Cuencas de Guaymas, Farallón, Pescadero y Maz <u>a</u> tlán.
Figura 5.225	Concentración de Zn en la fracción oxidable de los núcleos de las depresiones de las Cuencas de Guaymas, Farallón, Pescadero y Maz <u>a</u> tlán.

Figs. 5.3 y 5.4

Figs. 5.9 y 5.10

Concentracian (ug/g)

NUCLEO B1: R C P (z=240m)

Figs. 5.11 y 5.12

Figs. 5.15 y 5.16

Figs. 5.19 y 5.20

Concentracion (ug/g)Fe.10 C-org (%/10).

10 20 30 40 50 60 70 80 90 100110

2.2.2.2

0

80-89

Figs. 5.21 y 5.22

NUCLEO B19: O/S C G (z=1500m)

NUCLEO B19: R C G (z=1500m) Motal ZZ Zn 22 0~5 . N ZZ cr 5-10 E 10-15 ເວັ ວິສຸ ນີ້ 15–20 71121111 20-24 7777 24---28 777 35 40 25 30 20 0 5 10 15 Concentracion (ug/g) Figs. 5.31 y 5.32

Figs. 5.59 y 5.60

Figs. 5.79 y 5.80.

NUCLEO B24: R C F (z=3250m)

Figs. 5.95 y 5.96

C. GUAYMAS: Mn-0/S

C. GUAYMAS: Mn-R

C. GUAYMAS: Fe-I/A

C. GUAYMAS: Fe-R

C. GUAYMAS: Ni-O/S

C. GUAYMAS: Zn-0/S

C. GUAYMAS: Zn-C

C. GUAYMAS: Pb-O/S

C. CARMEN: Mn-1/A

NUCLEO B12: Mn C C (z=670m)

C. CARMEN: Fe-I/A

Concentracion (ug/g) Figs. 5.139 y 5.140

C. CARMEN: Fe-R

Figs. 5.141 y 5.142

C. CARMEN: Cd-O/S

C. CARMEN: Cr-R

C. CARMEN: Pb-O/S

C. CARMEN: Pb-R

C. CARMEN: Zn-R

C. CARMEN: Zn-C

C. PESCADERO: Mn-O/S

C. PESCADERO: Mn-R

Figs. 5.159 y 5.160

C. PESCADERO: Fe-I/A

C. PESCADERO: Fe-O/S

1

Figs. 5.161 y 5.162

C. PESCADERO: Fe-R

C. PESCADERO: Cd-O/S

C. PESCADERO: Zn-O/S

C. PESCADERO: Zn-R

C. PESCADERO: Zn-C

C. PESCADERO: Cu-O/S

C. PESCADERO: Pb-0/S

Figs. 5.175 y 5.176

NUCLEO B26: Pb

HUCLEI EI, HI

Figs, 5.193 v 5.194

Mn-I/A

Mn - O/S

Mn-R

Concentracion (ug/g) Figs. 5.209 y 5.210 C/Nucleo CG/B14 CF/B24 CF/B26 CM/B29

Fe-I/A

Concentration (ug/g) Figs. 5.211 y 5.212 C/Nucleo CG/B14 CF/B24 CF/B26 CM/B29

Cu-O/S

C/Hucleo CG/B14 CF/B24 CF/B26 CM/B29

Concentracion (ug/g)

Co-O/S

C/Nucleo 00/B14 CF/824 222 CP/826 ₩ См/В29

C/Nucleo

Zn--R

Ni-0/S

C/Nucleo CG/B14 CF/B24 CF/B26 CP/B26 CM/B29

Ni-R

Pb-0/S

C/Nucleo CG/B14 CF/B24 CP/B26 CP/B29

Cd-O/S

Zn-0/S

Fig. 5.225

391