300618

UNIVERSIDAD LA SALLE

ESCUELA DE QUIMICA INCORPORADA A LA U.N.A.M.

"LEGISLACION, CUANTIFICACION, PREVENCION Y
CONSECUENCIAS DE LA CONTAMINACION
AMBIENTAL POR RUIDO EN LA
INDUSTRIA HULERA".

TESIS PROFESIONAL

QUE PARA OBTENER EL TITULO DE: INGENIERO QUIMICO PRESENTA

FRANCISCO CAMPS CRUZ

MEXICO, D. F. EN MAYO DE 1988.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

TESIS CON FALLA DE ORIGEN

INDICE

CAPITULO 1	١:	INTRODUCCION	. 1
CAPITULO 2	2 :	LEGICIACION SCHRE EL RUIDO	6
2.	1 :	INTROLUCCION	7
2.3	2 :	SINTESIS DEL REGIAMENTO PARA LA PROTECCION	
		DEL AMBIENTE CONTRA LA CONTAMINACION ORIGI	
* *.		NADA POR LA EMISION DE RUIDO	8
2.	3 :	LISTALO GENERAL DE ARTICULOS DEL REGLAMEN-	
		TO LE SEDUE	13
2.	4	LISTADO DE NORMAS OFICIALES MEXICANAS RELA	
		TIVAS A TERMINOLOGIA, CLASIFICACION Y MEDI	
		CION LEL SUNIED	15
2.	5	SIRTESIS DEL INSTRUCTIVO No. 11, RELATIVO	
		A LAS CONDICIONES DE SEJURIDAD E HIGIEVE	
		EN LOS CENTROS DE TRABAJO DONDE DE GENERE	
		RUILO	16
2.	E	: LISTADO GENERAL DEL CONTENIDO DEL INSTRUC	
		TIVO Mo. 11, DE LA STPS	35
CAFITULO	3	: CUNTIFICACION DEL RUIDO	36
3.	1	: SONOMETROS PARA USOS GEMERALES	37
3.	2	: ACUSTICA: DETERMINACION DE LOS NIVEIES DE	
÷		RUITY AMENEMPAL	5/

CAPITULO 4 :	DISPOSITIVOS DE CONTROL DE RUIDO	72
4.1 :	INTR DUCCION	73
4.2 :	REDUCCION OF LA EMISION ACTUANDO SOBRE	· · · · · · · · · · · · · · · · · · ·
	LA PURNTE GENERADORA	74
4.3 :	EL ALSLAMIENTO DE LA FUENTE EMISORA DI	3
	RUILO	90
4.4 :	PROTECCION DEL PERSONAL EXPUESTO AL RI	<u>.</u> .
	00.	96
4. F :	TUDUSTRIAS NUEVAS	98
	·	
 CAPITULO 5 :	EFECTOS DEL RUIDO EN LA SALUD	102
5.1 :	IN TRO DUCCION	103
5.2:	ORGANO DEL GIDO	104
5.3 ;	LA AUDICION	105
5.4 :	TRAUNA ACUSTICO AGUDO	107
5.5 :	TRAUMA ACUSTICO CRONICO	108
CAPITULO 6	: APLICACION PRACTICA	112
6.1	: INTRODUCCION	113
6.2	: DECORIPCION GENERAL DE LA PLANTA	114
6.3	: CUANTIFICACION DE LOS NIVELES SONOROS	5
	EN LA PLANTA, ANALISIS E INTERPRETACI	IO V
	DE LOS RESULTADOS	120
. 6.4	: ESTUDIC AUDIOMETRICO A UNA MUESTRA AL	. <u>E</u>
	ATORIA REPRESENTATIVA DE DA POPUACIO	эй
	PRODUCTIVA DE LA EMPRESA	140

6.5 :	ACCIONES DE CONTROL		155
6.6 :	CONCLUSIONES		163
•			

CAPITULO 7 : BIBLIOGRAFIA

CAPITULO 1 : INTRODUCCION.

Este trabajo ha sido desarrollado en conjunto con la Cámara Nacional de la Industria Hulera y con la colaboración de Compañía Hulera Tornel, S.A. de C.V., con el interés de cumplir con la responsabilidad cívica que adquiere todo mexicano que ha sido beneficiado con el apoyo de la sociedad para realizar estudios profesionales.

Es por lo anteriormente expuesto, que al presente trabajo se la ha dado un enfoque destinado a cubrír un hueco existen te en materia de divulgación de información básica sobre contaminación ambiental producida por ruido en la industria hulera, con objeto de que esta rama industrial cuente con una herramienta de consulta para llevar a cabo la resolución del grave problema social del que es representación fidediqua este tema.

El órgano del oído ha sido empleado por la mayoria de -los seres vivos, como un elemento decisivo en su supervivencia
(Referencia 6).

Este órgano evolucionó en mayor grado en los vertebrados, y en los mamíferos llega a una refinamiento y sofisticación tal, que algunos de ellos dependen primordialmente de este sentido para sobrevivir, como es el caso del murciélago, el cual ha sufrido un atrofiamiento del sentido de la vista.

El caso más relevante del uso de este órgano, es sin duda el ser humano, el cual lo utiliza, no sólo como vía de comunicación, sino que llega al grado de emplearlo como un medio de percepción de valores estéticos, como es el caso de la música - (Referencia 10).

Este órgano que durante millones de años ha servido para realizar los fines descritos, se ha visto agredido sistemáticamente a partir de la Revolución Industrial (Siglo XVIII), por un nuevo elemento, que es el ruido, y aunque éste existe desde

siempre en la naturaleza, (como es el caso del rayo, el Oleaje, las erupciones, etc.), su presencia en el ambiente es esporádica.

Sin embargo, no fué sino hasta mediados del Siglo XX, -cuando se descubre el grave efecto nocivo que el ruido represen
ta, tanto para la salud física, al producir atrofia del órgano,
como para la salud mental, que se manifiesta como tensión nerviosa, ansiedad y angustia.

El órgano del oldo es uno de los más importantes sentidos y está constituido de tal manera que proporciona un contacto continuo con el medio ambiente, es decir, que nunca se desconecta, que permanece siempre alerta, aún cuando la persona se encuentra dormida, es debido a esta característica que los relojes despertadores pueden cumplir su función al producir un sonido. Es más, se ha comprobado que este órgano sigue operando de los relojes destados de inconciencia o anestesia, realizando así, su función básica original de proporcionar la información necesaria para resolvar problemas relacionados con la supervivencia (Referencia 30, 31).

Generalmente se piensa que el oldo realiza una actividad simple, siendo que en la realidad su función es sumamente com--pleja, ya que es capaz de distinguir, cambios de intensidad o -amplitud, diferencia en tonos o frecuencias, el detectar el timbre del sonido y el determinar la posición de la fuente emisora;

y además, asociado a éste, se encuentra el órgano que percibe la rotación y mantiente el equilibrio.

Todas estas admirables cualidades naturales que posee este órgano, crean una condición de vulnerabilidad hacia el mismo, revertiéndose en su contra cuando está sometido a condiciones -- ambientales no naturales, como es el caso del ruido, esto es debido a que carece de un sistema de protección natural, como es el caso del ojo, el cual cuenta con un parpado que lo protege. Y - es por esta vulnerabilidad que el trauma acústico crónico y el trauma acústico agudo, constituye una de las principales enfermedades profesionales, presentándose de esta manera un deterioro - de la integridad tanto física como moral de los trabajadores que se ven impedidos para desempeñar normalmente sus labores, y asimismo delimita las oportunidades para conseguir un sustento adecuado. Esto es revertido a su vez en una disminución general de la productividad en la industria del país (Referencia 31).

Por esta razón, es que a continuación se presenta un trabajo de investigación bibliográfica y práctica, donde se conjuntan los aspectos sobresalientes, relativos a la contaminación ambiental originada por ruido en la industria hulera, de tal manera, que sirva de guía a los industriales del ramo, para la resolución adecuada de los problemas derivados por las emisiones de ruido en las empresas y ha sido estructurado, de manera que sirva como un documento básico de consulta para los encargados de este tema,

proporcionándoles la información necesaria, con el objeto de que:

- I. Conozcan la legislación vigente.
- Puedan cuantificar la magnitud de las emisiones de ruido en sus empresas.
- 3. Se orienten acerca de las formas típicas de control de ruido.
- 4. Conozcan los efectos nocivos en la salud.

CAPITULO 2 : LEGISLACION SOBRE RUIDO.

2.1: INTRODUCCION.

En este capítulo se presenta 10 más relevante, en cuanto a legislación vigente al respecto de la contaminación ambiental por ruido.

Las entidades que trabajan con más constancia en la prevención y control de este problema son SECUE y la STPS.

En base a sus reglamentos es que sólo se mencionan losartículos y apartados que de manera más directa afectan el desarrollo de esta tesis.

Cate aclarar que la conciencia a sido de mucho más criterio en los últimos años, ya que sólo hasta 1982 se culmina, por parte de SECUE al reglamento, con anterioridad sólo existian proyectos de desarrollo de leyes, ya que el problema que se describe no presentaba grave incidencia.

2.2: SINTEGIS DIT REGIAN DITO PARA LA PROTEGGICA DEL AMBURT TE CANTRA LA CONTANTIASCON CELDINADA POR LA EMISIÓN -DE RÚLIC.(1)

Artículo Co.- Se consideran como fuentes artificiales de contaminación ambiental originada por la emisión de --ruido las siguientes :

- 1.- Fijas.- Todo tipo de inductrias, maquinas con motoresde combustión, terminales y bases de autobuses y ferrocarriles, aeropuertos, clubes cinegáticos y polígonosde tiro: ferias, tianguis, circos y otras semeiantes:
- II.-Fóviles.- Aviones, helicópteros, ferrocarriles, tracvias, tractores, autobuses integrales, camiones, automótiles, motocicletas, embarcaciones, equipo y maquinaria con motores de combustión y similares.

Artículo 70.- La Secretaría de Selutridad y Asisten-cia en coordinación, en su caso, con las denás dependen--cian del Ejecutivo Pederal, dentro de sus ántitos de competencia, realizará los estudios e investigaciones necesa--rios para determinar:

- I.- Los efectos molestos y peligrosos en las personas por la contaminación ambiental originada por la emición deruido:
- Publicado en el Diario Oficial de la Federación, el día 6 de Diciembre de 1982 (Referencia 3).

an a service of the

- II.- La planeación de programas y las normas que deban ponerse en práctica para prevenir y controlar las causas de contaminación ambiental originada por la emisión de ruido:
- .III.-El nivel de presión acústica, banda de frecuencia, -duración, y demás características de la contaminación
 ambiental originada por la emisión de ruido en las zo
 nas industriales, comerciales y habitacionales;
- IV.- La presencia de ruido específica contaminante del ambiente en zonas determinadas, señalando, cuando proceda, zonas de reestricción temporal o permanente, y
- V.- Las características de las emisiones de ruido de algunos dispositivos de alarma o de situación que utilice las fuentes fijas y las móviles.

Artículo 80.- Los responsables de las fuentes emisoras de ruido, deberán proporcionar a las autoridades competentes la información que se les requiera, respecto a la emisión de ruido contaminante, de acuerdo con las disposiciones de este reglamento.

Artículo 90.- Para determinar si se rebasan los niveles máximos permitidos de emisión de ruido establecidos en este reglamento, la Secretaría de Salubridad y Asistencia-

If A failure approprie

y las autoridades auxiliares competentes realizarán mediciones según los procedimientos que se señalan en el propio reglamento y en las normas oficiales aplicables.

Artículo il.- El nivel de emisión de ruido máximo permisible en fuentes fijas es de 68 db (A) de las seis a
las veintidós horas, y de 65 db delas veintidós a las seis
horas. Estos niveles se medirán en forma continua o semicontinua en las colindancias del predio, durante el lapso
no menor de quince minutos, conforme a las normas correspondientes.

El grado de molestia producido por la emisión de rui do máximo permisible será de 5 en una escala Likert modificada de 7 grados. Este grado de molestia será evaluado-en un universo estadístico representativo conforme a lasnormas correspondientes.

Artículo 15.- los establecimientos industriales, comerciales, de servicio público y en general toda edifica - ción, deberán construirse de tal forma que permitan el aigilamiento acústico suficiente para que el ruido generado en su interior, no rebase los niveles permitidos en el Artículo 11 de este Reglamento, al trascender a las construciones adyacentes, a los predios colindantes o a la vía pública lo anterior sin perjuicio de las facultades que competen al Departamento del Distrito Federal.

En caso de que técnicamente no sea posible conseguir este aislamiento acústico, dichas construcciones deberán-localizarse dentro del predio, de tal forma que la disper sión acústica cumpla con lo dispuesto en el citado artículo.

Artículo 2).- Para efectos de prevenir y controlar la contaminación ambiental originada por la emisión delruido, ocacionada por automóviles, camiones, autobuses,tracto-camiones y similares, se establecen los siguientes
niveles permisibles expresados en do (A).

PESO BRUTO	Hasta	MAS DE 3,000Kg	MAS DE
VEHI CULAR	3,000 Kg	Y HASTA 10,000 kg	10,000K g
NIVET.			
MAXIMO			
PERMISIBLE			
(A) db	79	81	84

Los valores enteriores serán medidos a 15 m de distancia de la fuente por el método dinámico de conformidad con la norma correspondiente.

Para el caso de motocicletas, así como de las bicicletas y triciclos motorizados, el nivel máximo permisible -- será de 84 db(A). Este valor será medido a 7.5 m de distancia de la fact te emisera.

Artículo 52.- Para compreber el cumplimiento de las disposiciones contenidas en este Reglamento, así como de-aquéllas que del mismo se deriven, la Secretaría de Salubridad y Asistencia y las autoridades competentes de acuerdo a su competencia, realizarán visitas de inspección a las fuentes emisoras de ruido y de medición en los predios colindantes.

Artículo 53.- Los inspectores que se designen, deberán tener conocimientos técnicos en la materia y contar con los dispositivos adecuados para la medición de la emisión de ruido.

Artículo 70.- La acción popular para denunciar la exigitencia de alguna de las fuentes de contaminación a que serefiere este Reglamento, podrá ejercitarse por cualquier -- persona ante la Secretaría de Salubridad y Asistencia o ante cualquier autoridad de acuerdo al ámbito de competencia.

2.3 LISTADO GENERAL DEL CONTENIDO DEL REGLAMENTO PARA LA PROTECCION DEL ANBIENTE CONTRA LA CONTAVINACION ORIGINADA POR LA EFISION DE RUILO.

CAPITULO PRIMERO

DISPOSICIONES GENERALES (Artículos to. al 40.)

CAPITULO SEGUNDO

DE LAS DEFINICIONES (Artículos 50. al 60.)

CAPITULO TERCERO

DE LA EMISION DE RUIDO (Articulos 70. al 40)

CAPITULO CUARTO

DE LAS MEDIDAS DE ORIENTACION Y EDUCACION (Articulos 41 al 45)

CAPITULO QUINTO

DE LA VIGILANCIA E INSPECCION (Articulos 46 al 60)

CAPITUIO SEXTO

DEL PROCEDIMIENTO PARA APLICAR LA SANCIONES (Artfculo 61 al 63)

CAPITULO SEPTINO

DEL RECURSO ADMINISTRATIVO DE INCONFORMIDAD (Artículos 64 al 69)

CAPITULO OCTAVO

DE LA ACCION POPULAR (Artfoulog 70 al 72)

CAPITULO NO VENO

DE LAS CANCIONES (Articulos 73 a 79)

ARTICULOS TRANSITORIOS

2. 4: LISTADO DE NORMAS OFICIALES MEXICANAS RELATIVAS A TERMI-NOLOGIA, CLASIFICACIAS Y MUDICION DEL RULD

NOM-DGN-AA-40-1376 C1

Clasificación de ruidos.

NOM-DGN-AA-43-1977

Determinación del nivel sonoro emiti-

do por fuentes fijas.

NOM-DGN-AA-47-1977

Sonómetros para usos generales.

NOM-AA-59-1378

Sonómetros de Precisión.

NON-AA-62-1978

Determinación de los niveles de ruido

ambiental.

NON-C-207-1977

Critérios de ruidos según la función

de los claustros.

NOM-C-102-1976

Medición en campo del nivel de presión

acústica, o del nivel sonoro en el am-

biente de un claustro.

NOM-C-92-1975

Terminología de materiales aislantes -

acústicos.

NOM-C-42-1971

Determinación de la estanquidad de ---

juntas montadas de los tubos de asbes-

to cemento.

NOM-I-41-1972

Terminología empleada en electroacus--

tica.

2.5; SINTESIC DEL INSTRUCTIVO N' 11 RELATIVE A LAS CONDI-BICHES DE SESURIDADE E HIGHERE EN LOS SENTRES DE TRA BASE DELISE SE SESURA RULDE. (P)

- 1. El presente instructivo en de observancia obligada y tiene par objeto establecor medidas para mejorar las condiciones de seguridas e higiene en los centros de trabajodonde se genere ruido que por sus características, niveles y tiempo de acción sean capaces de alterar la salud de los trabajadores, así como establecer las correlaciones entrelos niveles máximos permisibles de ruido y los tiempos -- máximos permisibles de exposición por jor ada de trabajo.
- 2. Los patrones deberán vigilar que no se retone: losniveles máximos permisibles de exposición al ruido que seindican en las Tablas 1 y 2 y Gráficas 1 y 2 de este instructivo, que forman parte de él para todos los efectos ce orrespondientes.
- 8. Para llevar acabo el reconocimiento los patrouss deberán:
 - a) Identificar las fuentes emisores;
 - b) Delimitar las zonas en que exista riesgo de exposición;
 - c) Conocer los características del ruido en cuanto a magnitud y componentes de frecuencia, así como las alteraciones a la salud de los trabajadores;
 - d) Señalar con avisos de seguridad las zonas de exposición en las áreas de trabajo.
- (2) Publicado el 8 de Abril de 1985 (Referencia 24).

- 9. Para efectuar la evaluación el patrón deberá mues trear, cuantificar periodicamente los niveles de ruido, a plicando los métodos indicados en el Anexo 2 de el presente instructivo, que forma parte del mismo para todor los efectos correspondientes, y los instrumentos de medición queseñalen las Normas Oficiales Mexicanas relativas. Asimismohará las anotaciones respectivas al registro a que se refiere la disposición 6 de este Instructivo.
- 10. El Nivel Sonoro Continuo Equivalente (NSCE) se calculará aplicando cualquiera de los métodos indicados en el-Anexo 2.
- 11. Los niveles méximos permisibles de exposición a ruido impulsivo dependen del número de impulsos a que estén expuestos los tratajadores, y nunca deberán exceder los consignados en la Tabla 2, Gráfica 2.
- en los centros de trabajo se encuentran comprendidos entre90 y 105 dB(A), respuesta lenta, el tiempo de exposición de
 los trabajadores, con jornada diaria de 8 horas, no excederá del consignado en la Tabla 1. Si el resultado de la exposición se encuentra comprendido entre dos de las magnitudes consignadas en dicha Tabla, se deberá consultar la Gráfica 1 para obtener el tiempo máximo permisible de exposición preciso. Fara valores mayores de 105 dB(A), respuesta-

lenta, no se permitirá exposición alguna.

16. Cuando se utilicen equipos de protección personal, en la aplicación de la Tabla 1, se deterán considerar los - niveles de atenuación que, conforme a la Norma Oficial Mexicana correspondiente, proporcionen dichos equipos, así como el tiempo que éstos sean utilizados.

GLOSARIO

DEFINICIONES DE LOS TERMINOS Y CONCEPTOS TECNICOS MEPLEADOS EN ESTE INSTRUCTIVO

DECIBEL. — Es una unidad de relación, expresada como 10 veces el logaritmo común (de base 10) del cociente de dos cantidades proporcionales en alguna forma a la potencia acústica. — Se abreviará dB. Si el denominador del cociente es una cantidad cuyo valor ha sido previamente establecido, el decibel seexpresa como una forma particular del significado del cociente denominado nivel.

EXPOSICION A RUIDO. - Es la interrelación del agente físicoruido y el trabajador, en un ambiente laboral.

FRECUENCIA.- Es el número de veces que se repite un fenómeno o suceso acústico con las mismas características en la unidad de tiempo. Su unidad es el Hertz, abreviado Hz.

INDICE COMPUESTO DE EXPOSICION AL RUIDO. Es la suma de los indices perciales de exposición al ruido para todos los nivelles sonoros durante una semana de trabajo de 40 horas.

INDICE PARCIAL DE EXPOSICION AL RUID..- Es el findice determinado por un nivel sonoro y su duración durante una semana de

trabajo de 40 horas.

NIVEL LE PRESION ACUSTICA (NPA).- Es igual a 20 veces el $1_{\underline{0}}$ *garitmo decimal de la relación entre una presión acústica y -- una presión de referencia determinada. Se expresa en decibeles.

$$NPA = 20 \log(P/Po)$$

Donde: P= Presión evaluada.

Po= Presión de referencia = $2 \times 10^{-5} \text{ N/m}^2$

NIVEL SCNORO.- Es el nivel de presión acústica ajustado a la función de penderación denominada A, con una presión eficaz de referencia de 2 X 10^{-5} N/m². Se abreviará NS. El nivel so noro se expresará como un número dado en dB(A).

NIVEL SCHORD CONTINUO FQUIVALENTE (NSCE).- Nivel schoro endB(A) que si estuviera presente durante 40 horas por semana, darfa el mismo índice compuesto de exposición al ruido, que -los distintos niveles sonoros medidos en una semana.

PRESION ACUSTICA EFICAZ. La raíz cuadrada de la media a-ritmética del cuadrado de la presión acústica instantánea registrada en un punto y en un intervalo de tiempo de observa-ción dado el cual es determinado por las condiciones del méto do particular de medición. Se expresa simbolicamente como:

$$P e f = \left(\frac{1}{T} \int_{0}^{T} p^{2} dt\right)^{1/2}$$

En donde: P e f= presión acústica eficaz,

T= intervalo de tiempo,

p= presión acústica instantánea.

RUIDO.- Es un sonido desagradable o molesto, generalmente - aleatorio que no tiene componentes bien definidos (NCM-j-149).

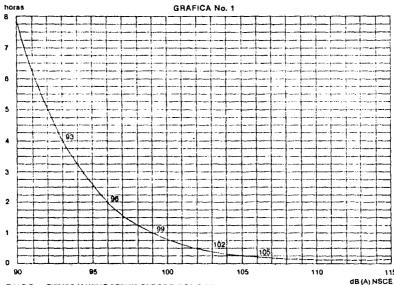
Es todo sonido que causa molestias, interfiere con el sue-ño, trabajo o descanso o que lesione o dañe física o psicológi
camente al individuo, la flora, la fauna y a los bienes de lanación o particulares (NON-C-92).

Para efectos de este Instructivo se entenderá como ruido alos sonidos que debido a su intensidad pueden ser nocivos para el ofdo o bien interfieren con actividades propias del ser humano, tales como el sueño, el descanso, la comunicación o su bienestar.

RUIDO ESTABLE + .- Es aquel que se registra con una varia-ción de su'nivel de presión acústica no superior a + - 2 dB.

RUILO FLUCTUANTE + .- Es aquel ruido inestable que se regis tra durante un perfodo igual o mayor a 1 s.

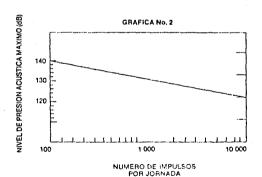
RUIDO IMPULSIVO + .- Es aquel ruido inestable que se registra durante un período menor a 1 s.


RUIDO INESTABLE + .- Es aquel que se registra con una vari<u>a</u>
ción de su nivel de presión acústica superior a (más menos) -2 dB

TIEMPO MAXIMO PERMISIBLE DE EXPOSICION POR JORNADA DE TRABAJO EN FUNCION DEL NIVEL SONORO CONTINUO EQUIVALENTE, PARA RUIDO ESTABLE

Horas	dB (A) (respuesta lenta)
8	90
4	93
2	96
1	99
•30'	102
15'	105

NOM-J-141-1972, Terminología ampleada en electroacústica. NOM-AA-40-1976, Clasificación de ruidos.


El símbolo (1) significa tiempo medido en minutos.

T.M.P.E. = TIEMPO MAXIMO PERMISIBLE DE EXPOSICION

TABLE DE

NUMERO DE IMPULSOS	NIVEL DE PRESION ACUSTICA
POR JORNADA	dB
100	140
1 000	130
10 000	120

SONIDO .- Fa la vibración acústica capaz de producir una -

ANEXO 1

1.- INTRODUCCION.

Las presentes sonrecomendaciones de los puntos que debierran contemplar los exámenes médicos a reglizarse a aquellos trabajadores expuestos a los Niveles Máximos Permisibles de -Ruido.

- 2.- EXAMENES MEDICOS QUE COMPRENDAN PRINCIPALMENTE :
- a) Antecedentes laborales, con énfasis en la exposición a --agentes capaces de dañar el sistema auditivo.
- Antecedentes heredo-familiares y personales patológicos -que permitan identificar alteraciones previas en el sistema auditivo.
- c) Exploración otoscópica y rinofaríngea.
- 3.- ESTUDIO AUDIONETRICO QUE CONTENGA COMO MINIMO :
- a) Exploración de vías aéreas en el intervalo de 125 a 8000 Hz.
- b) Exploración de vías óseas en el intervalo de 250 a 6000 Hz,
- c) Logoaudiometría.
- 4.- Otros estudios complementarios que de acuerdo con los resultados del estudio elfnico, se requieran.
- 5.- Exémenes médicos periódicos cuya frecuencia debiera ser determinada en base al tipo y magnitud del ruido y la exposición. Debiera contemplar lo mencionado en el punto 2, incisoco, punto 3, incisos a / b.y punto 4.

AN EXO 2

1.- INTRODUCCION.

En el presente anexo, se establecen 3 métodos para el cál-culo del Nivel Sonoro Continuo Equivalente, NSCE (Equivalente-continuos sound level. Leo).

El Nivel Sonoro Continuo Equivalente, NSCE, es un nivel --- hipotético en dB (A), que de estar presente en un tiempo t, produce los mismos efectos que distintos Niveles Sonoros, a lo lor go de un período de exposición con una duración de tiempo igual.

2.- METODO DE CALCULO MATEMETICO.

Se define matemáticamente a Nivel Sonoro Continuo Equivalen te como:

NSCE = 10 log
$$\left(\frac{\text{Pefi}}{\text{Po}}\right)^2$$

donde:

Po = Presión de referencia = $2 \times 10^{-5} \text{ N/m}^2$ Pefi = Presión acústica eficaz en el tiempo i Siendo:

Pofi =
$$\sqrt{\frac{1}{t}} \int_{0}^{t} Pi^{2} dt$$

sustituyendo 2 en 1, se tiene:

NSCE = 10 log
$$\left(\sqrt{\frac{1}{t} \int_{0}^{t} P(t^2 + dt)}\right)^2$$

= 10 log
$$\frac{1}{t} \int_0^t \left(\frac{P_i}{P_0}\right)^2 dt$$

= 10 log $\frac{1}{t} \left(\frac{\sum_{i=1}^N \left(\frac{P_i}{P_0}\right)^2}{P_0}\right)^2 dt$

El Nivel Sonoro se define como:

$$NS = 10 \log \binom{P}{Po}$$

$$antilog \frac{NS}{10} = \binom{P}{Po}$$

Sustituyendo 5 en 3, se tiene:

NSCE = 10 log.
$$\frac{1}{t} \left[\sum_{i=1}^{N} \text{ antilog } \left(\frac{\text{NSi}}{10} \right) \text{ti} \right]$$
= 10 log $\left[\sum_{i=1}^{N} \text{ antilog } \left(\frac{\text{NSi}}{10} \right) \text{ti} \right]$ 10 logt \dots 6

NSi = Nivel Senore durante el tiempo i. ti = Tiempo de exposición, del período i.

2.1.- FJEMPIC.- Para el NSCE, de un trabajador que se ha -- expueste a los siguientes Niveles senoros, en los tiempos especificados, se procede como sigue:

Exposición	NS, dB (A)	Tiempo de Exposición t.
1	114	10 min (1/6-hora)
2 .	105	45 min (3/4-hora)
3	92	300 min (5 horas)

Aplicando la ecuación 6, se tiene:

NSCE = 10 log (entilog
$$\frac{114}{10}$$
 t + entilog $\frac{105}{10}$ $\frac{3}{4}$ + entilog $\frac{92}{10}$ (5) -10 log 5.916 = 10 log (4.186 × 10¹⁰ + 2.37 × 10¹⁰ + 7.92 × 10⁹) -7.72 = 10 log (7.348 × 10¹⁰) -7.72 = 108.66 - 7.72 = 100.94 dB(A).

3.- METODO GRAFICO (1)

Este método emplea el nomograma de este anexo. La forma deutilizario es la siguiente:

- 3.1.- Para cada período de exposición dibuje una línea recta que una el Nivel Sonoro (N.S.) en dB (A), localizado sobrela escala N.S. con el tiempo de exposición localizado sobre laescala ty, anote el valor de fleido en la intersección de larecta con la escala central.
- 3.2.- Sume todos los valores de f, recibidos durante la --jornada de trabajo.
 - 3.3. Obtenga el valor del Nivel Sonoro Continuo Equivalen-

te sobre la escala NSCE, opuesta al valor total de f, lefdo en la escala correspondiente.

3.4.- Ejemplo :

EXPOSI- CION	NS, dB	TIEMPO DE EXPOSI- CION	f
1	114	10 min	5.2
2	105	45 min	3.0
3	. 92	5 horas	1.0
			9.2

Para el valor obtenido para f (9.2) el NSCE es aproximada-mente 100 dB (A).

Para el valor exacto del NSCE, deben emplearse las ecuaciones 7 y 8, mostradas en el nomograma de este anexo.

Sin embargo, este método introduce un error gráfico por locual sólo debe emplearse para obtener una estimación rápida del NSCE.

4.- METODO DE LA ORGANIZACION INTERNACIONAL DE NORMALIZACION.
I.S.O.- 1999 (Z).

El procedimiento de sálculo del NSCE sonsiste de las siguien tes etapas:

4.1.- La duración total durante una semana laboral para cada NS, se localiza en la primera columna de la tabla "A" de este anexo, y el índice de exposición parcial a ruido, se lee -en la intersección con la columna del NS correspondiente.

Si la duración semanal total es menor a 10 minutos, se debe utilizar el valor mínimo de 10 minutos.

- 4.2.- Se obticne la suma de todos los índices ce exposición parcial a ruido, la cual se denomina índice de exposición ----- compuesta a ruido.
- 4.3. Localice el valer del Índice de exposición compuestaa ruido en la tabla "B" de este anexo, y lea en la columna de la derecha el NSCE.
- 4.4.- Para los valores, no localizados en las tablas "h" y"B", deben emplearse las ecuaciones 9 y 10, respectivamente.

Para el índice de exposición parcial a ruido, Ei:

donde:

ti = Es el tiempo total por semana de exposición al NSi, en horas

Para el Nivel Sonoro Continuo Equivalente:

Para el Nivel Sonoro Continuo Equivalente:

NSCE = 70 + 10 log.
$$\sum_{J=-1}^{N} Ei \dots 10$$

4.5.- Ejemplo.

EXPOSI- CION	NS dB (A)	Tiempo de exposición semenal (horas)	Ei
1	114		3 139.858
2	105	4.5	1 778.78
3	.92	30 ∑F±	594.33 = 5 512.699

Empleando la ecuación 10, se obtieno: NSCE = 107.41 dB (A)

Debe tenerse presente que el NSCE, obtenido por este método indica el NSCE total de la exposición en 6 días de jornada le ¿ ral, y no el NSCE para una jornada de trebajo.

Para obtener el Nivel Sonoro Continuo Equivalente, total de la semana NSCE laboral, mediante los dos métodos anteriores, se deberá efectuar la suma logarítmica del Nivel Sonoro Continuo -Equivalente diario, NSCEd, mediante la expresión 11.

NSCEs = 10 log (antilog NSCEd/10)11

TABLA "A" DEL ANEXO 2

INDICES DE EXPOSICION PARCIAL A RUIDO

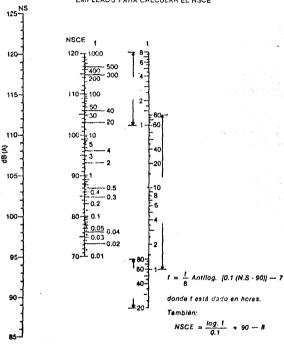

Duración por Semana				Ingices d		on percial a nire 50 y 131	roudo pare v 0 dB (A.	ratores		
					dB	(A)				
Horas	Min	80	85	90	25	100	105	110	115	120
	10					5	15	40	130	415
	12					5	15	50	160	500
	14					5	20	60	185	585
	15					10	20 25	65 75	210 235	565 750
										836
	20 25					10	25 35	85 105	730 565	1 046
0.5	30				5	15	40	125	396	1 250
0.3	40				;	15	- 2	165	525	1 570
	50				;	70	70	210	860	2 080
	60				10	25	80	750	740	2 500
	70			5	10	30	90	290	920	2 9:12
	80				10	35	106	330	1 050	3 330
1.5	90			5	10	40	120	375	1 190	3 750
	100				15	20	130	415	1 320	4 170
2	120			8	15	50	180	500	1 500	5 (00
2.5				5	20	60	200	c25	1 980	8 750
3				10	25	15	235	750	2 3/0	7 500
35 .				10	30	100	275 315	1 004	2 770	5 760 10 000
								1.250	3 950	12 500
5				15	40	150	395 475	1250	4 740	12 500
7			5	15	45 55	175	905	1 760	5 530	17 000
1			3	20	8C	200	630	2 000	t 129	20 000
i			3	25	76	275	710	2 2743	7 110	22 500
10			10	25	80	250	720	7 500	7 910	25 000
12		3	10	jú.	8	300	950	3 300	9 490	30 600
14		•	10	36	110	350	1 100	3 500	11 100	
18		5	15	40	125	400	1.70	4 (31)	12 600	
18		5	15	45	140	450	1.420	4.50	14 50	
20 25 30 36		3	15	50	:60	500	1 560	6 750	15 500	
25		3	20	66	20	625	1 9-0	6 (%)	19 600	
30		10	25	75	235	750	2 370	7 500	23 700	
36		10	30	90	2/5	975	2 770	8 750	27 700	
40		10	30	100	315	1 000	3 180	10 0 30	31 600	

TABLA "B" DEL ANEXO:2

NIVELS SONOROS CONTINUOS EQUIVALENTES A PARTIR DE LOS INCICES DE EXPOSICION COMPUESTA A RUIDO

Indice de exposición – compuesta a ruido		Nivel schoto continuo - Equipa ente NSZE, dB (A
10		8C 82
15 .		82
20 23 30 40 50		83
25		84
30		85 86
=0		96
50		67
€0		6 6
80		69
100		90
125		91 92 93 94 95 98 97 98
100		92
300	•	93
250		№
315	•	16
400		
500		97
\$30		¥6 .
eno.		
1 000		100
1 230		101
1 800		102
2 000	• •	100
2 500		104
3 150		106 108
4 000		107
5 000		109
6 300		108
e 000		110
10 000		110
12 500		112
16 000		112
20 000		112
26.000		112
31 530		115

NOMOGRAMA DEL ANEXO 2 EMPLEADO PARA CALCULAR EL NSCE

2.6 LISTAIC GEORGE DEL CONTROLLO DEL INSTRUCTIVO VO. 11, DE LA S.T.P.S.

I .- Disposiciones Generales,

II.- Del Reconocimiento.

III .- De la Evaluación.

IV. - Det Control.

V.- De los Centros de Trabajo de Nueva Creación,

VI.- De las Sanciones,

VII .- Transitorios,

Glosariò,

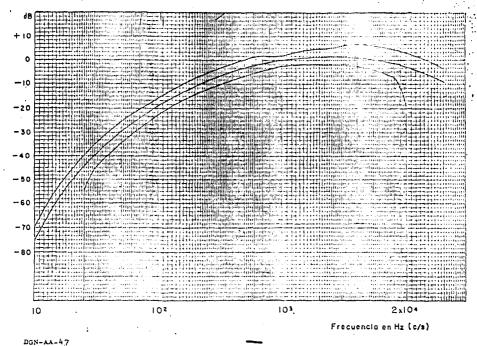
Anexo 1,

'Anexo 2, Anexo 3. CAPITULO 3 : CUANTIFICACION DEL RUIDO.

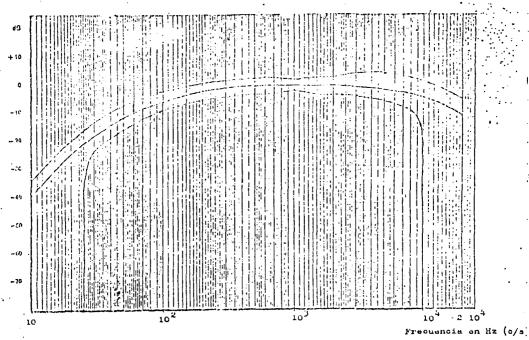
3.1 ; SONO METRO S PARA USOS GENERALES . NOM - DGY - AA - 47 - 1077

SONOMETROS PARA USOS GEMERALES

O. INTRODUCCION


En vista de la dificultad para establecer la medición de--una sensación y de la complejidad de operación del ofdo humano,
no es posible en el presente estado de la tecnología diseñar un
aparato objetivo de medición de ruido que nos de resultados que
sean absolutamente comparables para todo tipo de ruidos, con -aquellos dados por métodos directos subjetivos. Sin embargo, se
considera escencial el normalizar un aparato mediante el cual el ruido sea medido de tal forma que los usuarios de este apara
to en todo el mundo puedan comparar sus resultados.

1. OBJETIVOS Y CAMPO DE APLICACION


En esta Norma Oficial se establecen las características técnicas que debe tener todo aparato del tipo I empleando para lamedición de los niveles de presión acústica sujetos a una ponderación.

Asimismo, se especifican los valores con los cuales se pondera cada una de las componentes sinuosoidales de la presión -acústica en forma de tres curvas de referencia llamadas A, B y-C.

Estas características se aplican a senómetros de usos generales; pero no pueden medirse ruidos impulsivos. Para poder --- simplificar el procedimiento de calibración y revisión del instrumento estas características se refieren a la respuesta en --

CURVA DE PONDERACION

DON-AA-47

CURVA DE PONDERACION

campo libre. Sin embargo, en la práctica las mediciones puedenrealizarse bajo diferentes condiciones que verían desde un campo acústico libre y una fuente simple a un campo difus). Esta norma no es solicable a sonfactivos de precisión (Tipo II).

2. REFERENCIAS

Esta norma se complementa con las Normas Oficiales Mexica-nas en vigor, siguientes:

- NOM-I-41 Terminología empleada en electroacústica.
- DGN-C-92 Terminología de materiales aislantes acústicos.

DGN-AA-40 Clasificación de ruidos.

3. DEFINICIONES

- 3.1. Amplificador. Dispositivo electronico que permite elevarla potencia de una señal electromagnética.
- 3.2. Atenuador. Dispositivo electrónico que permite reducir la resistencia de una señal electroma, mética.
- 3.3. Curvas de respuesta. Es una gráfica trazada en un sistema de ejes cartesianos, intensidad contra frecuencia que une los \$\delta\$ puntos respuesta a una misma señal de entrada.
- 3.4. Características dinámicas de integración. Es la velocidad a la cual una malla electrónica puede realizar la transformadade "Fourier "Frecuencia de Tiempo".
- 3.5. Instrumento Indicador. Transductor que transforma una se-

hal electromagnética en un giro mecánico, contra de una aguja - que se desplaza angularmente con resistencia controlable sobre-una carátula graduada.

- 3.6. Redes de ponderación. Mallas electrónicas que permiten so pesar una señal electromagnética con valores fijos especifica-- dos de acuerdo con la frecuencia de la señal.
- 3.7. Valor eficaz. Es el resultado de aplicar la raíz cuadrada así como la suma de los cuadrados de los valores medios discretos de una señal determinada.

3.8 Sonometro normalizado

Es el aparato que comprence un microfono, un amplificador,redes ponderables y un indicador de nivel, que se utiliza parala medida de los niveles de ruidos según especificaciones deter
minades.

3.9. Nierofono

Es el transductor electroacústico que transforma las ondasacústicas en ondas eléctricas.

- 4. CARACTERISTICAS GENERALES
- 4.1. Un sonômetro debe constar de los siguientes elementos: Micrôfono

Amplificador

Redes de ponderación.

Atenuador e instrumento indicador.

- 4.2. El sonômetro debe oubrir el ámbito de frecuencias de 31.5 8000 Hz.
- 4.3. Debe incluir cuando menos la curva de respuesta A y las -curvas 3 y/o C. Estas curvas deben pasar por los puntos dados en la tabla No. 1 dentro de las tolerancias indicadas.

Aunque las curvas tratan de semejar las propiedades del ofdo, dichas curvas son meramente convencionales. Las tolerancias permitidas son relativamente grandes pero si el fabricante tiene posibilidades de ofrecer tolerancias más pequeñas este hecho debe enunciarse.

Las tolerancias se refieren al equipo en su totalidad o sea que incluyen las relacionadas al micrófono, al amplificador, alas redes de ponderación, al atenuador y al instrumento indicador; se aplican funcionamiento del aparato en un campo sonoro libre en una dirección particular, la cual debe ser especificada por el fabricante.

Se recomienda que el fabricante también indique las condi-ciones para asegurar que el medidor marque correctamente en uncampo sonoro difuso.

4.4. Si el sonómetro está diseñado para usar más de una de lastres curvas de ponderación A, B y C definidas en el párrafo 4.3 debe permitir además que se puedan hacer mediciones con cual----quiera de las tres curvas, para todos los niveles sonoros dentro del ámbito del aparato.

of the state of the state of

.

RESPUESTA DEL SONOMETRO EN UN CAMPO LIBRE, RELATIVA AL MIVEL DE PRE SION SONORA REAL PARA EL ANGULO DE INCIDENCIA QUE SE ESFLCIFICA EM EL PARRETO 4.3.

FRECUENCIA Nz (c/s)	CURVA A	CURVA B	CURVA C	TOLER	
31.5 40 50 63	-39.2 -34.5 -30.2 -26.1	-17.2 -14.2 -11.7 - 9.4	- 3.0 - 2.0 - 1.3 - 0.8	5 4.5 4	- 5 - 4.5 - 4
80 100 125	-22.3 -19.1 -16.1	- 7.4 - 5.7 - 4.3	- 0.5 - 0.3 - 0.2	3.5 3.5 3	- 3.5 - 3.5 - 3
160 200 250	-13.2 -10.8 - 8.6	- 3.0 - 2.1 - 1.4	- 0.1 0 ·	3 3 3	- 3 - 3 - 3
315 400 500	- 6.5 - 4.8 - 3.2	- 0.9 - 0.5 - 0.3		;	- 3 - 3 - 3
630 800 1000	- 1.9 - 0.6	- 0.1 6	•	3.5	- 3 - 2.5 - 2
1250 1600 2000	0.6 1.0 1.2	- 0.1 - 0.2	- 0.1 - 0.3	2.5	- 3.5
2500 3150 4000	1.2 1.2 1.0	- 0.3 - 0.5 - 0.0	- 0.3 - 0.5 - 0.6	4 5 5.5	- 3.s - 4.s
\$000 6300 8000	0.5 - 0.1 - 1.1	- 1.2 - 2.6 - 3.0	- i.3 - 2.0 - 3.0	6	- 4.5 - 5

[↑] Tomado de la Norma DGN-AA-47-1977.

4.5.SI se intenta usar el sonómetro para medir un intervalo --total de más de 30 dB, debe tener más de un sólo ámbito de ---sensibilidad.

Se recomienda que el atenuador funcione en pasos de 10 dB.-Cada Ámbito debe traslapar a los adyacentes por lo menos en 5 dB.

- 5. CARACTERISTICAS DEL MICHOPONO
- 5.1. El micréfono debe ser del tipo omnidireccional.
- 5.2. La variación de la sensibilidad del micrífino dentro de un ángulo hasta de \pm 30° , respecto a la dirección especificada por el fabricante para este propisito en el párrafo 4.3, no debe exceder los valores dados en la tabla No. 2.

TABLA 2

Tolerancias permisibles de sensibilidad de micrófonos en un ánzulo de $+30^{\circ}$.

Precuencias en HE		Tolerancia	permisibles en (dB)
		I	11
31.5-500		± 1.0	<u>• 1</u>
1000		<u>+</u> 1.5	+1-1
2000		<u>• 1.0</u>	v + 1 - 6
4000	• .	• 0.0	+ 1 - 6
8000		+15.0	+ 1 - 15

En la tabla anterior se dan dos series de tolerancias permisibles para la sensibilidad de los micrófonos en un ángulo de - ± 90°, que están dadas de acuerdo a si las mediciones se hacencon el micrófono montado en la caja del sonómetro, o con el ---micrófono solo, físicamente separado del cuerpo del sonómetro, pero conectado a él electrónicamente.

Los valores dados en la columna I, se refieren a mediciones hechas con el micrófono montado en el senómetro, que es el caso del uso normal, cualquier observador debe quedar efectivamente fuera del campo sonoro.

Los valores dados en la columna II, se refieren a medicio-nes hechas con el micrófono solo, físicamente separado del sond
metro, pero conectado a él electrónicamente, cualquier observador debe quedar efectivamente fuera del campo conoro.

NCTA: Un observador queda efectivamente fuera del carpo sonorocuando no produce interferencia alguna con la medición del ---micrófono.

- 6. CARACTERISTICAS DEL INSTRUMENTO INDICATOR
- 6.1. El instrumento indicador debe seguir la ley cuadrática.
- 6.2. La escala del instrumento indicador debe ser graduada en divisiones de 1 dB, sobre un intervalo de cuando menos 15 dB.
- 6.3. Se recomienda que la escala del instrumento indicador segradõe de -5 n +10 dB.
- 6.4. El error que se introduzca mediante un cambio en el ámbito debe ser menor que 1 dE.
- 6.5 Para las cinco primeras divisiones de la escala del instru-

mento indicador, la exactitud de graduación debe ser \pm 1 dB. --Para las otres divisiones la exactitud debe ser \pm 0.5 dB. Debeser posible leer la escala con la misma precisión.

- 6.6. Para cumplir con la característica dinémica de integración que se designa como "rápida", deben satisfacerse las siguientes-especificaciones.
- 6.6.1. Si se aplica una señal sinuosoidal con una frecuencia de 1000 Hz y con duración de 0.2 segundos, la lectura máxima debeser 1 dB menor que la lectura para una señal constante de la --misma frecuencia y amplitud; se admiten tolerencias tales que la lectura máxima de la señal sinuosoidal sen igual a la lectura de la señal constante ó 4 dB menor como máximo.
- 6.6.2. Si se aplica reportinamente una señal sinuosoidal a cual quier frecuencia entre 31.5 y 8000 Hz, y se mantiene constante-posteriormente, la lectura máxima debe sobrepesar la lectura -- constante final en 0.6 \pm 0.5 dB.

Para cumplir con la característica dinámica de integraciónque se designa como "lenta", deben satisfacerse las siguientesespecificaciones:

- 6.7.1. Si se aplica un pulso de una señal sinuosoidal de frecuencia 1000 Hz, y duración de 0.5 segundos, la lectura máxima debe ser de 4 ± 2 dB menor que la lectura para una señal constante de la misma frecuencia y amplitud.
- 6.7.2. Si se aplica repentinamente una señal sinuosoidal a cual quier frecuencia entre 31.5 y 8000 Hz y posteriormente se man-tiene constante, la lectura máxima debe sobrepesar la lectura -

constante final en 0.6 (+ 1, -0.5) dB.

- 6.7.3. La lectura constante para cualquier señal sinuospidal ---entre 31.5 y 8000 Hz no debe diferir de la lectura rápida ----correspondiente en más de 0.1 d3.
- 6.8 Las características especificadas en los incisos 6.6 y 6.7 deben mantenerse para cualquier ponderación y para todas las --posiciones del atenuador.
- 6.9. Se recomienda que la característica dinámica de integración usada se especifique en el informe preliminar.
- 7. CARACTERISTICAS DEL AMPLIFICADOR
- 7.1. Para la calibración eléctrica se recomienda conectar una resistencia de valor conocido en serie con el cable de tierra del micrófono y proporcionar un medio conveniente para su conexión.
- 7.2. Si el sonómetro opera mediante pilas, debe proporcionarseun medio apropiado para la verificación de la tensión en la pila bajo condiciones de carga.
- 7.3. Si el sonómetro también puede ser usado con un cable entre el micrófono y el amplificador, el fabricante debe especificar-las correcciones correspondientes.
- 7.4. Cuendo el micrófono es sustituído por una impedancia eléctrica equivalente, la tensión básica de ruido debe ser cuando menos 5 dB menor que la tensión correspondiente al nivel sonoro mínimo medible para cualquiera de las curvas de ponderación --- usadas.
- 7.5. Cuando el micrófono es sustituído por una impedancia eléc-

trica equivalente y cuando el sonómetro es colocado en un campo sonoro, la lectura en el sonómetro debe ser cuando menos 10dB menor que la que fuese obtenida bajo condiciones normales de
operación. Este condición debe cumplirse para todo el émbito de
la escala del instrumento indicador, cualquiera que sea el nivel sonoro y para cualquier frecuencia entre 31.5 y 8000 Hz.

- 7.6. Los efectos de vibración deben ser reducidos al mínimo.
- 7.7 Los efectos de campos magnéticos y electrostáticos deben -- ser reducidos al mínimo.
- 7.8. El fabricante debe especificar el ámbito de temperatura -para el cual la calibración del aparato entero, incluyendo el micrófono no es afectada en más de 1 dB. Si el efecto de la tem
 peratura es mayor a 1 dB, el fabricante debe especificar las -correcciones que deben aplicarse.
- 7.9. El fabricante dobe especificar el ámbito de humedad dentro del cual debe operar el aparato completo, incluyendo el micró-fono.
- 7.10. El amplificador debe tener una capacidad para manejar --potencia cuando menos de 10 dB más que la correspondiente a lalectura máxima del instrumento indicador.
- 7.11. Cuando se requiere conectar aparatos externos con una --impedancia específica al sonúmetro, por ejemplo audifonos, esta
 conexión no debr afectar en más de 1 dB las lecturas, de lo --contrario el instrumento indicador debe desconectarse automáticamente.

- CALIERACION Y VERIFICACION DE LAS CARACTERISTICAS DEL SONO METRO.
- 8.1. El sonómetro completo debe calibrarse dentro del ámbito de frecuencias de 31.5 a 8000 Hz, dentro de un campo sonoro consiguente en ondas progresivas sensiblemente planas, que lleguen al micrófono en la dirección de incidencia especificada por el ---fabricante. El campo sonoro no debe ser afectado sensiblemente-por la presencia de algún observador.

Debe establecerse si es necesario el uso de un cable de --extensión como se menciona en el párrafo 7.3 para satisfacer -estos requisitos.

8.2. Para determinar la sensibilidad del apareto para un camposinoro difuso, esta sensibilidad se define como el valor eficaz de las sensibilidades en campo libre para toda orienteción. Para este propósito es suficiente medir la sensibilidad del micró fono para ángulos de incidencia de 0°; 30°; 60°; 90°; 120°; --150° y 180°; de la dirección especificada en el párrafo 4.3, y-calcular la sensibilidad para un campo sonoro difuso mediante - la suiguiente fórmula:

$$s^2 = \kappa_1 s_0^2 + \kappa_2 s_{30}^2 + \kappa_3 s_{60}^2 + \dots + \kappa_7 s_{180}^2$$

Donde:

S = sensibilidad en un campo sonoro difuso, en $mV/N/m^2$.

 S_0 , S_{30} , . . . S_{180} = sensibilidades para los éngulos respectivos, en $mV/N/m^2$.

 $K_1 = K_7 = 0.018$

 $K_2 = K_6 = 0.129$

 $K_3 = K_5 = 0.224$

 $K_A = 0.258$

La sensibilidad en un campo sonoro difuso se determina cua \underline{n} do menos para las frecuencias de 250, 500, 1000, 2000, 4000, y-8000 Hz.

8.3. Debe verificarse la conformidad con los requisitos relacionados a las características dinámicas del instrumento indicador (párrafos 6.6 y 6.7) para una lectura estable del instrumento indicador a 4 dB menos que la lectura a escala total.

Esta verificación se hace aplicando una señal eléctrica alamplificador de preferencia en serie con el micrófono, para todas las curvas de ponderación consideradas.

8.4. La verificación de la ley cuadrática de la adición (valor eficaz indicado = raíz cuadrada de la suma de los valores me---dios cuadráticos de las componentes individuales) debe ser efectuada usando un generador de dos tonos o un arreglo semejante - para proporcionar dos frecuencias no armónicas, primero sucesivamente y luego simultáneamente. Las mediciones deben hacerse - para diferentes combinaciones de frecuencias no armónicas y ---diferentes posiciones del interruptor de nivel, para este propósito aplicar a la entrada del micrófono del amplificador una --señal eléctrica de frecuencia for cuyo valor eficaz se ajusta para obtener una lectura x en el indicador, la señal for debe susti

tuirse entonces por una señal f_2 , cumpliendo con las condiciones previamente especificadas, y el valor eficaz de la señal f_2 debe ajustarse para obtener la misma lectura x en el instrumento indicador.

Ambos sehales de frecuencia f_1 y f_2 deben aplicarse simultáneamente con los valores effecces anteriormente usados y anotar la lectura "Y" del instrumento indicador. Bajo estas condiciones se obtiene la siguiente equación:

Se recomienda que esta ecuación se satisfaga con una tolerrancia de \pm 0.25 dB. Efectuar esta prueba para un valor de la electura λ = 7 dB inferior a la lectura de la escala total del --instrumento indicador.

- 8.5 La calibración de la escala del instrumento indicador (para fo 6.5) debe verificarse mediante un método eléctrico para frecuencias de 31.5. 1000 y 8000 Hz.
- 8.6. La exactitud de las indicaciones del atenundor deben verificarse aplicando tensiones sinuosoidales de amplitud ajustable y frecuencias de 31.5, 1000 y 8000 Hz. En cada caso, el error debe ser menor que 1 dB respecto a la lectura de 80 dB.
- .9. MARCALL
- El aperato debe marcarse con las palabras "sonómetro parausos generales".
- 7.2. También deben existir leyendus conteniendo como mínimo lo siguiente:
 - El nombre del fabricante o su marca.
 - El número de serie .

3.2 ; ACUSTICA; DETERMINACION DE LOS NIVELES DE

RUIDO AMBIENTAL

NOM - AA - 62 - 1978

1 .- OBJETIVO Y CAMPO DE APLICACION.

En esta Norma Oficial de estableces procedimientos de campo para determinar el ruido ambiental producido por contribuciones relativas de diversas fuentes, y las acciones reverberante y -- amortiguadora de los pavimentos, edificios, vegetación y otrosobatáculos en la trayectoria de dispersión conora.

Sirve para evaluar el ruido, que está presente durante largo tiempo en áreas definidas, bajo condiciones y variabilidad-diversa. Permite establecer una correlación entre los efectos de las diversas fuentes contribuyentes y el ambiente en el área
de estudió, de tal manera que los valores medidos corroboren -los valores predecidos a pertir de modelos de simulación.

Los métodos descritos en esta norma deben emplearse sólo en casos en que se requiera realizar trabajos de monitoreo de ruido embiental en un punto determinado y sólo son indicativos deles fluctuaciones del ruido durante el lapso y en el punto en el que se hicieron las mediciones. Su variabilidad en tiempo yespacio los hacen poco confiables pera efectos de planificación.
En ningún caso debe usarse para realizar mediciones del ruido producido por fuentes específicas.

2. - REFERENCIAS

Esta Norma se complementa con las normas oficiales mexicanas en vigor siguientes:

NOM-1-41	"Terminología empleada en Electroacústica"
NOM-C-92	"Terminología de materiales aislantes acústicos"
NOM-AA-40	"Clasificación de ruidos"
NOM-AA-43	"Determinación del nivel sonoro emitido por fuen
	tes fijas ^u
NON-AA-59	"Sonómetros de precisión".

3. - DEFINICIONES

Centro acústico de subzona: es el lugar físico de igual deg viación a todos los puntos con equintensidad sonora.

Determinante de ruido: Es la diferencia entre los percentilles 10 y 30, en un muestreo estadístico de ruido.

Indice por ruido de Tránsito: Es un valor estadístico empí-rico para relacioner el ruido de tránsito con los efectos en lacomunidad durante un período de 24 horas y depende del determi-nante por ruido y del percentil 90.

L.S.I.: Lenguaje de proceso Large Scale Integration.

Nivel de contaminación Sonora: Es un nivel equivalente de -ruido, que toma en cuenta un coeficiente de confianza, determin<u>a</u>
do en función de las características de una comunidad.

Nivel dia-noche: Es un nivel equivalente de ruido, determing

do en un período de 24 horas, supesándose durante el período -comprendido entre las 22 y las 7 horas del día siguiente con un
valor de +10 dB.

Nivel equivalente sopesado: Cuando el nivel equivalente semide en decibeles "A", se denomina "Nivel equivalente A". Cuando se mide en decibeles "C" se denomina "Nivel equivalente C".

Nivel de Ruido Comunitario: Es un nivel equivalente de ruido determinado en un período de 24 horas, sopesándose durante el período comprendido entre las 19 y las 22 horas con 3 dB y durante el período entre las 22 horas y las 7 horas del día --siguiente con +10 dB.

Ruido Ambiental: Es la perturbación acústica que se presenta en un área determinada, cuyos confinamientos no formen un -- claustro, producida por un número indeterminado de fuentes, por las contribuciones de las reflexiones de los confinamientos, -- las de los objetos que se encuentran en el área y las de los -- efectos microclimáticos relacionados con el fenómeno de la --- propagación sonora.

Sopesar: Acción de modificar una señal recibida por un son<u>ó</u> metro en cada banda de frecuencias con un cierto valor definido por norma. (NCM-AA-47, NCM-AA-59).

Zona total: Es el área donde se encuentra un nivel de ruido ambiental definido por condiciones de fuente, geográficas y --- urbanísticas.

Zona unitaria: Es una subzona de la total, representante de los fenómenos ambientales tales como fuentes y condicionos rever berantes y absorbentes, de tal mamera que la inclusión de las -zonas unitarias identifique a la total.

4. SIMBOLOS

d =determinante de ruido

dB(dn) =decibel dfa-noche

IRT =indice de ruido por tránsito

k =valor de confianza

m =cada una de las lecturas en cada punto de medición

N =nivel sonoro

Nos =nivel de contaminación sonora

N_d =nivel equivalente durante el perfodo 0700-2200

 N_A^{\dagger} =nivel equivalente durante el período 0700-1900

Na. =nivel dia-noche

Nea *nivel equivalente

 N_{eqA} =nivel equivalente A

 N_{eoC} =nivel equivalente C

N_i =cada uno de los niveles sonoros leídos en una medi⇒

Nmáz = =nivel mázimo leído durante el paso del vehículo

=nivel equivalente durante el perfodo 2000-0700
≠nivel de presión acústica
=nivel de ruido comunitario
=nivel equivalente durante el período 1900-2200
=nivel percentil 10
=nivel percentil 50
=nivel percentil 30
=presión acústica
=presión acústica eficaz
=presión acústica de referencia
*perfodo de tiempo en el que se realiza una inte
gración
=variable tiempo
#desvisción estándar
=tiempo que tarda en decaer 10 dB el nivel máximo

SECCION UNO

MENCO DE PRUEBA

5.- FUNDALIENTO

Dado que el ruido embiental debe definirse en un área determinada, en relación a las consecuencias que este contaminante produce en los individuos de la comunidad en dicha área, durante un período de tiempo largo, es necesario establecer procedimientos de medición que concuerden con esta relación.

Para poder estimar la variabilidad en cuatro dimensiones de la energía acústica presente en una zona determinada, debe em-- plearse un procedimiento estadístico con muestras representativas grandes. Este procedimiento es el de integración continua o discreta, cuyo resultado final es el nivel equivalente de ruido. El período de integración debe elegirse entre las siguientes -- posibilidades:

- a) 24 horas
- o) 7 días
- c) 30 días
- d) naños

Sin embargo, el nivel equivalente por sí solo es insufi---- ciente para indicar la variabilidad estadística, por lo que debe recurrirse además a la obtención de los percentiles N $_{10}$, N $_{50}$ y N $_{90}$.

Para obtener la relación de esta medida estadística con sus consecuencias comunitarias, existen dos opciones:

- a) por su efecto en la comunidad
- b) por sus causas en la comunidad '

Los métodos que toman en cuenta los efectos comunitarios se basan, en la distribución estadística normal bimodal del ruido-ambiental, obien en el concepto de determinante de ruido (diferencia entre los niveles 10 y 90). Estos métodos se sujeton a una comprobación de tipo empírico, con valores específicos para comunidades determinadas. Estos procedimientos son los siguientes:

- a) Vivel de contaminación Sonora (Vos)
- b) Indice de ruido por trânsito (IRT)

Los métodos que toman en quenta las causos del ruido debidos a la actividad comunitaria se basen en que dicha actividad es - recurrente en lagous ofolicos definidos. Supeniendo que algunas actividades requienen niveles de ruido ambiental sás bajos para ser realizadas (descaiso, sucho), se ponderon los niveles equivalentes medidos con determinados valores empfricos. Los pracedimientos causales son los siguientes:

- a) Nivel dfa-woche (Ndn)
- b) Nivel de ruido comunitario (% rc)

6. INSTRUMENTOS

Para medir los niveles equivalentes de ruido en forma con-tinua se puede elegir instrumental entre las siguientes opcio--nes:

- a) equipo básico y equipo periférico
- b) equipo básico y equipo sofisticado
- equipo pásico, equipo periférico y equipo sofisticado

Para medir los nivoles equivalentes de ruido en forma semicontinua se puede elegir instrumental entre las siguientes ---opciones:

- a) sólo el equipo básico
- b) equipo básico y equipo periférico

6.1 Equipo básico

Sonómetro de precisión que cumple con la norma NCM-AA-59 6.2 Equipo periférico

El equipo periférico puede ser intermedio o terminal. El -equipo intermedio requiere necesariamente de equipo terminal -para la evaluación de datos.

6.2.1 Equipo periférico intermedio (registrador magnético).

Debe poseer una cabeza de grabación de respuesta lineal --± 0.1% para el ámbito de frecuencias de 20 a 20 000 Hz. Debe -tener un diseño mecánico tal, que permita que la cinta magnetofónica pase frente a la cabeza a una velocidad constante. Estavelocidad debe estar comprendida en el ámbito entre 0.095 y --0.381 m/s. Los circuitos electrónicos de amplificación de la se
fial deben tener una distorsión armónica inferior a 0.1% dentrodel ámbito de frecuencias antes mencionado.

La cinta magnetofónica a emplearse para grabar la señal, de be ser una calidad tal que no permita un estiramiento mayor al-0.1% a cualquier temperatura de operación y que tenga una relación señal a ruido propio superior a 30 dB.

6.2.2 El equipo periférico terminal (registrador gráfico)

Debe tener circuitos electrónicos de amplificación y atenua ción que permitan detectar las señales en el ámbito entre 20 y-20 000 Hz a respuesta lineal 2 0.1%. Debe poseer un instrumento de escritura que puede ser una pluma o cono para tinta, o un punzón cuya traza no sea de un diámetro superior a 0.25 mm. Es-

te instrumento de escritura debe estar regulado por potenció--metros logarítmicos y lineales que en conjunto outran un ámbito
entre 10 y 75 dB y 10 y 110 mV, respectivamente. La velocidad -de carrera del instrumento de escritura debe ser controlable avoluntad y estar comprendida en el ámbito entre 8 y 1000 mm/s.
El registrador debe poseer un mecanismo que permita depositar-el instrumento de registro sobre una tira de papel, con una pre
sión tal que no lo dañe ni lo perfore y se consiga la velocidad
especificada y que a voluntad pueda levantarse. La tira de pa-pel debe moverse en una trayectoría perpendicular a la de la -carrera del instrumento de escritura a velocidad constante controlable a voluntad en un ámbito de 0.001 a 100 mm/s. El instrumento debe poder calibrarse para que una señal fija produzca -una marca determinada sobre la tira de papel. En conjunto el -registrador debe dar lecturas con error so sayor de 0.5 dB.

La cinta de papel a emplearse para registrar gráficamente - la señal debe ser uniforme y rayada a intervalos regulares, para poder ser calibrada. Puede ser de papel encerado para uso -- con punzones o de papel común para uso con tinta, pero debe procurarse en este caso que el acabado sea tal que no permita quela tinta se extienda. El ancho de la cinta debe estar comprendido entre 50 y 100 mm.

6.9 Equipo sofisticado

El equipo mofiniticado en aquél capaz de procesar y analisar datom y dar como resultado final niveles equivalentes de ruidoy niveles percentiles.

Consiste en una computadora analógica de corriente directapara comparación de señales, con un contador unitario y un cronómetro y en un procesador digital capaz de calcular el nivel equivalente y los niveles percentiles 10,50 y 90.

La computadora análogica debe permitir entrada para una señal de sonómetro con sensibilidad de 15 a 50 mV/la y una entrada directa capaz de captar señales en un ámbito de 20 Hz a 20-kHz y una tensión eléctrica entre 0 y 6.4 V, que sirve para ---sopesedo, integrado o conversión logarítmica de la señal a comparar procedente del sonómetro. Debe poder programarse para ---elegir intervalos de muestreo de 0.1, 0.2, 0.5, 1, 2 y 10 s y - valores del nivel sonoro instantáneo y máximo. Debe tener una memoria capaz de almacener y retener datos durante el tiempo --suficiente para su proceso.

Le computadora, además debe permitir conteo y cronometra---

El contador de señales debe cubrir el ámbito de 1000 a ---- 65000 unidades. El cronómetro debe ser capaz de medir lapsos -- comprendidos entre 100 s y 180 h.

El procesador digital debe operar para un ámbito dinámico no menor de 50 dB, con un número de 5 ámbitos parciales traslapados. Se sugiere que use un lenguaje de proceso LSI o cualquier otro equivalente.

Debe poseer salidas para interconexiones con equipo de grabación o impresores alfanuméricos. Estas salidas deben ser: --- digitales, de corriente continua y de corriente alterna.

7 .- PROCEDIMIENTO

- 7.1 Levantar un croquis de la zona cuyo nivel de ruido ambiental se desea evaluar, donde se muestren las zonas aledañas y -los principales accidentes topográficos y urbanísticos; e in--dicar las razones por las que se limita la zona en la forma --anterior.
- 7.2 Dividir la zona total a medir en tantas zonas unitarias como sea preciso, para representar el fenúmeno ambiental por ---- estudiar. Teniendo en cuenta que un punto de medición es el centro acústico de una zona definida por razones geográficas y --- urbanísticas de acuerdo a un propósito determinado y el radio de influencia que está limitado por la dispersión acústica y --- las condiciones meteorológicas. En cada zona unitaria se debe -- elegir un punto que sea un centro acústico.
- 7.3 Localizar en el croquis mencionado en 7.1 las zonas unitarias con sus centros acústicos, de acuerdo a la elección definida en 7.2.
- 7.4 Elegir período de integración de medición de acuerdo a lo establecia en 5.
- 7.5 Lividir el período de integración en lapsos iguales de medición en cada centro acústico de subzona.
- 7.6 Debe elegirse uno de los siguientes métodos de medición:
 - a) medición continua
 - b) medición semicontinua
- 7.7 Colocar el micrófono del equipo de medición en el centro -- acústico de suzona elegido, a una altura tal que represente el-

fenómeno a medir teniendo en cuenta que nunca esté a una dis--tancia menor de 1 m del piso (esto quiere decir que, de acuerdo
con lo que se va a medir, el microfono puede colocarse en la ca
lle o en lo alto de un edificio). La mentrana del microfono debe colocarse en un plano tal que traduzca optimamente la señalrecibida y deben emplearse los aditamentos necesarios de disper
sión acústica y de protección contra el viento.

- 7.8 Ajustar el sonómetro de acuerdo a la escala de ponderación-"A" o "C", según se elija y el selector de integración "lenta". 7.9 Xedicionos continues
- 7.9.1 Calibrar todo el equipo antes y después del lapso correspondiente al período de integración en cada punto. Si la señalde calibración final difiere en ± 2 dB de la lefda, debe repetirse la medición.
- 7.9.2 En caso de emplear periférico obtener los registros magnético y/o gráfico de todo el período de observación en cada punto. Si se emplea registrador magnético como fase intermedia, --comparar los resultados de este registro con los de la tira depapel torminal; si no coinciden en +2 dB, debe repetirse la ---medición.
- 7.9.2 En caso de emplear equipo periférico obtener los regis--tros magnético y/o gráfico de todo el período de observación en
 cada punto. Si se emplea registrador magnético como fase intermedia, comparar los resultados de este registro con los de la -tira de papel terminal; si no coinciden en ± 2 dB, debe repetir
 se la medición.

- 7.10 Mediciones semicontinuas.
- 7.10.1 Para que una medición semicontinua tenga representatividad y sea comparable a una continua, es necesario que el período de observación sea igual al período de descanso, sin importar la forma en la que éstos se distribuyan.
- 7.10.2 En caso de que se emplee el equipo básico solamente y da do que un observador no puede realizar observaciones durante -- lapsos mayores de 5 s, el período de medición en un punto debeser dividido en lapsos que contengan observaciones y descansos-equivalentes. (Por ejemplo en una hora se pueden hacer 360 períodos de 5 s de observación y 3 s de descanso, más un período de 12 min de descanso).
- 7.10.3 Calibrar el equipo antes y sespués de cada serie de +---abservaciones.
- 7.10.4 Proceder según 7.10.2 y 7.20.3, en caso de emplear un -registrador magnético en la fase intermedia y un sonómetro en la terminal.
- 7.10.5 Proceder según 7.3.2 en caso de emplear un registrador gráfico en la fase terminal.

SECCION DOS

EAPRESION DE RESULTAD C

- 8.- METO DO DE CALCULO
- 8.1 Cálculo de nivel equivalente por mediciones continuas.
- 8.1.1 Calcular el nivel equivalente según la expresión siguien-

te:

$$x_{eq} = 10 \log \frac{1}{T} \int_{0}^{T} 10^{3/10} dt$$
 (1)

- 8.1.2 Obtener el tiempo transcurrido en la medición para cada punto (lapso entre las dos señales de calibración).
- 8.1.3 Obtener el área bajo la curva registrada en la tira cont<u>i</u> nua de papel para ceda punto de medición, (las ordenadas debenconsiderarse a partir del origen).
- 8.1.4 Determinar el cociente entre los valores obtenidos en --- 8.1.3. y 8.1.2. Este valor es la media de los niveles medidos y equivale al nivel 50 (κ_{50}) .
- 8.1.5 Anotar los valores de los niveles máximo absoluto y mínimo absoluto restringidos en cada punto.
- 8.1.6 A partir del nivel máximo trazar rectas paralelas al ejelongitudinal de la tira de papel (eje de los tiempos) en pasosde 2 dB y determinar la longitud de los segmentos bajo la curva registrada, que a una escala adoptada corresponde al tiempo --- durante el que estuvo presente el nivel mánimo.
- 8.1.7 Por una interpolación lineal de los dos valores más cerca nos a N_{10} resultantes de 8.1.6 obtener el nivel $10(N_{10})$ (nivelque estuvo presente durante más de 10% del lapso total registra do).
- 8.1.8 Calcular la desvisción estándar de la medición en cada -punto por la fórmula:

$$\sigma = \frac{\frac{110^{-11}50}{1.2817}} \dots (2)$$

8.1.9 En el caso de empleor el equipo sofisticado omitir lo --- establecido en 8.1.3 a 6.1.8, ya que este instrumento da los -- valores directas ente.

8.2 Cálculo del nivel equivalente por mediciones semicontinuas.
8.2.1 Calcular el nivel equivalente según la expresión siguiente:

$$N_{eq} = 10 \log \frac{1}{\pi} \sum_{m} 10^{N/10} \dots (3)$$

8.2.2 Calcular los niveles N_{50} , N_{10} y la desviación estándar - de las mediciones realizadas en cada punto, por las fórmulas -- siguientes:

$$N_{10} = N_{50} + 1.2817d$$
 (6)

- 8.2.3 Calcular el promedio aritmético de los niveles N₅₀, N₁₀ y de la desviación estándar obtenidos para cada punto.
- 8.2.4 Deben obtenerse por lo menos 360 lecturas para cada horade medición, en forma aleatoria (de preferencia con una tabla de números aleatorios), y seguir lo señalado en 8.2.2 y 8.2.3, si las mediciones son hechas en su fase terminal con un regietrador gráfico.
- 3.3 Calcular el nivel de contaminación sonora por cualquiera de

las expresiones siguientes:

$$N_{CS} = N_{EQ} + 2.56 \, \text{C}$$
 (7)

$$N_{GR} = N_{RG} + d$$
 (8)

$$N_{CR} = N_{50} + d + d^2/60$$
(9)

- 8.3.1 Las fórmulas (7), (3) y (3), no pueden ser empleades en forma concomitante en una misma zona total, y siempre que ses-- una de ellas deben indicarse claramente las razones de elección, con fines de correlación.
- 8.4 Calcular el determinante de ruido por la expresión:

$$d = N_{10} - N_{90}$$
 (10)

8.5 Calcular el índice de ruido por tránsito por la siguiente - expresión:

IRT =
$$4d + N_{90} - 30$$
 (11)

8.6 Calcular el nivel día-noche por la siguiente expresión:

$$N_{\rm dn} = 10 \log \frac{1}{24} \left(15 \cdot 10^{\rm N'd/10} + 9 \cdot 10^{(N_{\rm n} + 10)/10} \right) \dots (12)$$

- 8.6.1 Debe indicarse si el nivel día-noche es "h" o "C" según se menciona en 3.
- 8.7 Calcular el nivel de ruido comunitario por la siguiente --- expresión:

$$N_{rc} = 10 \log \frac{1}{.24} \left(12 - 10^{11/6/10} + 3 \cdot 10^{(N_t+3)/10} + 9 \cdot 10^{(N_0+10)/10} \right). (13)$$

8.7.1 Debe indicarse si el nivel de ruido comunitario es "A" o-

"C" según se menciona en 3.

- 9 INFORME DE LA PRUEBA
- 9.1 El informe de la prueba debe contener los siguientes datos:
 - a) Propfsito de la prueba
 - b) Croquis según lo mencionado en 7.1 y 7.3.
 - c) Tipo de medición realizada (continua o semicontinua) --indicando en el caso de medición semicontinua los períodos de observación y descanso.
 - d) Fquipo empleado incluyendo marcas y números de serie.
 - e) Nombres completos de las personas que realizaron la medición.
 - f) Fechas y lapsos en los que se efectuaron las mediciones.
 - g) Otras eventualidades descriptivas (condiciones meteorológicas, obstáculos).
 - h) Valor del nivel equivalente, indicando si es "A" o "C".
 - i) Valor del determinante de ruido y desviación estándar.
 - j) Método de evaluación de ruido ambiental (Nivel de Contaminación Sonora, Indice de Ruido por tránsito, Nivel día -ncene, o Nivel de Ruido Comunitario), indicando cuál 4-fué el o los utilizados.
 - k) En caso eventual, desviaciones respecto al procedimiento de esta Norma, indicando la justificación teórica y la equivalencia con los valores que hubieran sido obtenidos por medio de esta Norma.

CAPITULO 4 : DISPOSITIVOS DE CONTROL DE RUIDO.

4.1: INTRADUCCION.

En esta receión, en exponen algunas ideas sobre la mamera - más común, acreilla y sem mico de controlar las emisianes de - ruido que se reacrea en las actividades industriales.

Es importante hecor notar, que en la reducción del ruido, - deben atrourne simultáneamente TODAS las fuentes generadoras de ruido si os que se desen obtener resultados satisfactorios.

Debe recordance que el nivel de ruido en un local, se da -por la SUNA TOTAL de todas los ruidos individuales y que cada uno por pequeão que sea, contribuye al nivel total de ruido.

Es de todos sebido, que un área de trabajo con altos nive--les de ruido, es una área INSESUNA doude el riesgo de acciden---tes se increte la.

Existen tres formas de oteoar este problema y son:

1.- REBUCIA IN MISICA DE MUIDO SOTUTADO SOBRE LA PUENTE GENE-RADERA.

- 2.- AISLA LA FUERTE ENTRICE DE RUIDO.
- 3. PROTECER IL PERETALI E APUECCO AL AVIDA.

4.2; REQUOIR DA MILITAN HODOLANDO SOFRO DA PUINTE CHNERODORA.

Esto se refiere a la realización de modificaciones o a la - aplicación de dispositivos que controlen directmente a la fuente emisora y que disminuyen la intensidad de la generación de - muido.

4.2.1; MAQUINARIA QNE TRANSSITA VIERACIONES A TRAVES EM SUMMO.

Los problemos de generación de ruido relacionados con maquinaria posade, se presentan principalmente, debido a vibraciones de beje freduencia que se generan en la maquinaria y se transmiten a través del piso a otras estructuras cercanas como son:

- -Paredes
- -Canceles
- -Flafones
- -Ductos
- -Tableros
- -Ventanas.
- -Recipientes
- -Mesas
- -Guardas, etc.

las cuales entren en resonancia y son las que generan el ruido. Frecuentemente esta situación confunde y se enfocia los cofuernos para reducir el ruido generado por las estructuras en resonancia y se ignora la fuente principa de la vibración, que esla que debe ser controlad...

La maquinaria pesade presenta los siguientes casos típicos:

1.- El como en que la maquinaria se encuentre sobrepuesta en el
piso, ésta debe con muntada sobre placas de hule vulcanizado, poliuretano o algún a terial que impida que los vibraciones soca transmitidas al piso.

Existen en el mercado materiales diseñados para este -fin, que están fabricados de materiales elastaméricos y que
amortiguan, dependiendo del caso hasta el 30% de las vibraciones con este tipo de material absorbente no es acceserlo
anclar les méquinas al piso siempre y cuando los empujes ufuerzos laterales no exceden del 30% del peso de la méqui-no.

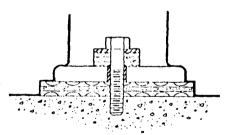


FIG. (1): AISLAMIENTO Y FIJACION DE LA MAQUINARIA.

2.- En el cuso de que la requinaris por su diseño requiera cimentroión, ésta debe construirse de scuerdo a los especificociones del fabricanto de la mequinaria teniendo en cuenta que estos cimentuciones deben quedar pisladas de los pisos. colocándose algún meterial que impide que trememiten las -- vibraciones de la cimentación al piso.

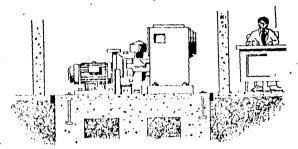


FIGURA (2): ANCLAJE DE LA MAQUINARIA.

Trablén debe tenerse cuidado entes de construir la ---cimentación, debe verificar la resistencia del suelo el cual,
debe ester bien compreto, pero mequinaria muy pesada (MCLINOS Y BARBURYS), vele la pena hacer un estudio de mecánicade suelos y esesorarse per un injeniero especialiste, el -cieto del estudio comperado con el costo de la maquinaria es insignificante, si tenemos en cuento que una buene cimen
tación además de reducir el problema del ruido garantimaráuna largo vida de la máquina, la cual, al no tener movimien
to y vibración no presentará fritiges mecánicas.

4.2.2; RUILO PRODUCIDO FOR PARTES QUE ENTRAN EN RESONANCIA

Uno de las cousas más frequentes de generación do ruido, os el coso en el que una fuente de vibración, hace entrar en resonancia alguna parte, ya sea de la misma máquina o de alguna ---

estructura cercena, como pueden ser: guardas, duetos de lámino, tabieros, mesas, cubiertas, tapos, etc.

En este caso hay dos formas de resolver el problemo:

- 1.- Cambier la frequencia de la vibración directamente en la --fuente, esto puede hacerse cambiando, cuando sen posible, --la velocidad de la maquina, sin embergo esto na siempre estactible.
- 2.- Cambiando las condiciones de la parte que entra co respondecia. Usualmente la vibración se compone de una o más frecuencias a las que corresponden una o más longitudes de ondaque al coincidir con múltiplos o submúltiplos de las dimensiones de algunos objetos los haces entrar en rescusacia yéstos al oscilar son los que producen el ruido, pero sin -ser la fuente primerio. Este tipo de problema de puede resolver de acuerdo al caso específico; a continuación se enumeran algunos cosos típicos:
 - Guardas y partes de l'imine.

Se recomiende cuando sea posible, construir las guardar de materiales camo metal desplegado, lémina perforada o tela de clambre tipo loién, de esta manera se abate el efecto de bocina al eliminar le superficie continua que es la que ak oscilor produce el ruido.

- En algunas ocasiones el ruido se debe a un mal diseño dela piezo o de el número y localización de los soportes de la la misma. - Tembién una pieza suelta, mal colocida o roto producirá - ruido.

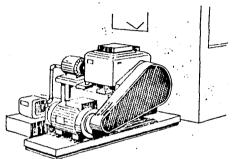


FIGURA (3): GUARDA DE METAL DESPLEGADO.

dentro de este grupo, se clasifican todas las partes hechas de lémines que sean susceptibles de entrer en oscilación -- por resonancia.

- Ordenas de transmisión.

Las cadenas de transmisión cuando trabajan a sitas velo cidades y sin la adecuada lubricación, también son una fuen te de ruido, si es posible sustituir las cadenas de roci---los que trabajan a altos velocidades por bandas de tipo V, se logrará una considerable reducción en la generación de ruido.

ESTA TESIS HO DEBE SALIR DE LA DIBLIOTECA

-Tapes y Guardas.

Es frecuente, que al finclizer un trabajo de munteni--miento en la mequineria, les persones responsables del trabajo, le naignem poca importancie al volver a poner en su lugar tapas y guardas de seguridad » si las colocam no lassujetam adecuadamente creando de esta mamera, trata un problema de seguridad como un problema de generación de ruido.

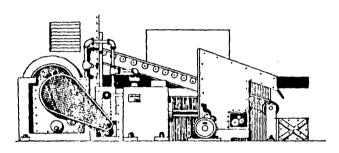


FIGURA (4): GUARDAS DE MALLA ABIERTA

4.2.3; RUIDO GETERATO POR MAQUITARIA EN MAN ESTADO.

Une manera eficaz de prevenir el ruido, es a través de ---PREGRAMAS DI MANTINIMINIO PREVENTIVO, debido a que la maquineria co mal estado es una fuente frecuente de ruido, a continuación se enumeras argunos casos:

- Baleros

Los baleros en mal estado producen vibraciones que se trans

miten a todo la măquina y que usunlmente liberan mucho energisen forma de ruido.

- Lubricación

La deficiente lubricación de la maquinaria es en ocusionesla responsable de que un equipo produzon ruido.

- Engranes

Los engranes en mal estado, contribuyen en buena proporción al ruido total de la planta, en occasiones los engranes se desegastan por falta de lubricación o por el uso de un lubricante eque no tenga la visopoidad adequada.

- Flechas

has fleches toroides o desalineadas, tentión son una fuente de ruido y vibración.

- Coples

Coples sueltos o desgnatados.

4.2.4; RUIDO GENTRADO POR VIERACIONES DE ORIGEN EN FOTEICO.

Otro fuente de ruido son las vibraciones de origen eléctrico. Como es sabido la energía eléctrico que se utiliza indus--triclmente es corriente elterno con una frecuencia de 60 Hz, ca algunos casas, dispositivos eléctricos vibran produciendo rui-do.

- Transformadores.

Ins transformadores de corriente, cuando no están bica ---ensemblados, producen cantidades considerables de ruido y vibro
ción, en este esso lo recomendable es consultar el fabricante del equipo, especialmente cuando se trata de equipo de transfor
meción de alta tensión, puede ser peligroso intentor hacer unareparación sin tener la experiencia necesaria.

- Robinsa

Otra fuente de ruido de prigen eléctrico (20/BEM), son losbobinos de los arrancedores de los motores de las máquinos, --cuando catas dispositivos, debido al uso, se encuentra dergastados o han pardido su ajuste original vibram produciendo ruido, estó se remedia fácilmente mediante limpieza, ajuste y mantenimiento a este tipo de aparatos.

- Mothers

Tambil_stlgunos motores eléctricas producen ruidos debido sque en ocasiones los estatores de estas se encuentran flojos omal ensamblados.

Ductos y tableros Eléctricos.

En ocasiones los ductos y tableros eléctricos vibran produciendo ruido, debido a una deficiente colocación o a un excesoen la centidad de conductores, en este tipo de problema dete -- consultorse el Reglamento de Instalaciones Eléctricas, contisac adenés: Moraus Férmicas para Instalaciones Eléctricas, de la --Secretario de Umancia y Forenta Industrial.

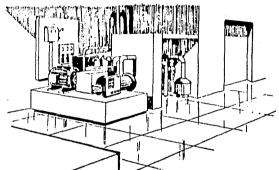


FIG. (5): AISLAMIENTO DE MOTOR S Y MATERIAL ELECTRICO.

4.2.5; RUIDO MA TURAPIAS DEBIDO AL FLUJO DE FLUIDOS.

Cuando en una tutería se menejan fluídos a velocidades altea, puede producirse generación de ruido si se alcanza lo quese cance como "NEUTO SUNICO", esto puede evitarse cantiando -alguna de las siguientes condiciones.

- 1.- Aumentando el diámetro de la tubería.
- 2.- Evitando codos donde sea posible.
- 3.- Instalando válvulas de mayor diámetro.

Otro motivo por el cual una tuberie produce ruido, es por trensmisión de la vibración de las tombas y compresores, esto se climian, instalando JUNTAS ES ENPANSION O JUNTAS ANTIVIPANTO RIAS.

Asimisto, er conveniente que la espertería de la tubería -permita que ésta tença libertad de novisienty con esta se legra
que la vibración producias en el tubo por la circulteián del -fluído no se transmita e otras estructuras.

También los golpes de ariete y los ruidos por expensión tég mica en los tuberfas de vapor y agus caliente se evitan, colocando JUNTAS DE ENPARSION en puntos estratégicos de la tuberfa.

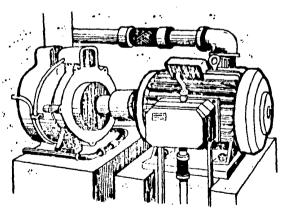


FIG. (6): RECUBRIMIENTO DE JUNTAS DE EXPANSION.

4,2,6; RUIDO SEMERADO FOR ESCAPED DE AMES Y MARCE A TRESTONA

Los escapes de sire o de vapor a presida, ¿c.erc. ruidos -- muy agados e intensos que con frecuercia elemana los 110 do y- que dentro de la industria tiémen una muy elta incidencia.

Un este cada se inchen das condiciones típicas:

- 1.- El creo de les descrigas de vire o vopor cuyo control es -relativamente sencillo, instalando silenciadores que pueden
 ser de varios tipos.
- -Similares a los empleados por los vehículos automotores.

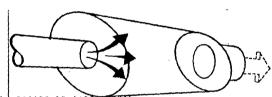


FIG. (7): ESCAPE DE AIRE NURHAL.

Conducted 1s descripe havis us table de segar differing que puede ester reliens de un material em presento, filma de vinnadire, filma setfica, etc.

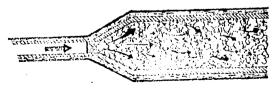


FIG. (8): ESCAPE DE AIRE CON RECUBRIMIENTO.

- Ctra menera de controlar el ruido producido por las descrigos de aire o vopor a presión, es conduciendo todas las solidas - individuales hacia un cabezal que tenge un diómetro consideranblemente mayor que el de las descrigas individuales y que - conduzen el ruido hacia un lugar donde no moleste o se la --- coloque un silenciador general.

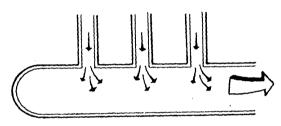


FIG. (9): DESCARGA DE AIRE A CABEZAL.

2.- Si segundo caso es más complejo y más dificil de resolver,se trata de las PUGAS DE MIRD S VAPOR.

En este caso las rugas de aire o vapor se presental --frecuelitemente por falla de empaques de válvulue, bombas,-etc. til bién se presentan en juntas de tubería, tucreas --unión, codis, mangueras perforsidas, válvulas de acquiidad de celúcrias y recipientes a presión en mal estado, sellos de autocloves, etc.

Esta condición, además del grave problema de ruido querepresenta, orea también una considerable pérdida econômica on las empresas, ya que tanto el aire comprimien como el --vapor, son servicios summente coros.

4.2.7: USO DE AIRE COMPRIMIDO EN OPERACIONES DE SOPLETEADO.

Las operaciones de sopleteado contribuyen considerablemente al ruido en el interior de las fábricas, a continuación se describen tres acciones tendientes a disminuir el ruido en esta -- operación.

- -Utilización de loquillas de sopleteado que disminuyen los ni-veles de ruido, las casas comerciales que vendon boquillas tie
 nen gran variedad de éstas y siempre es posible conceguir ol-guna que opere con menor nivel de ruido.
- -Disminuya la presión del sire hasta el afaimo posible de oper \underline{a} ción.

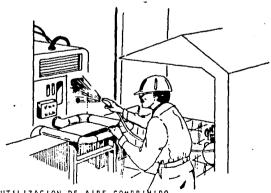


FIG. (10): UTILIZACION DE AIRE COMPRIMIDO.

- Elimine la operación de sopletendo, haga un estudio y deteraj ne si esta operación es verdaderamente indispensable, exister and concres de obtener los mismos resultados.

4.2.8; RUID OMMINADO FUN DISPOSITIVOS PARA TRAMSPORTE DE MATU-RILLING.

De frequente que en las fábricas se utilicen carros para el transporte de materialda, los cuales en occaiones estén constr<u>u</u>f dos de lámina metálica que vibre al moverlos, esto se puede ev<u>i</u> tar bácicado alguna de las siguientes accionos:

- Substituir las ruedas metálicas por ruedas de hula de poliure tana a de algúl, material plástico.
- Combinado la frecuescia de resonancia de la lámina metálica em que cria concindar.
- fractule do los pieza en buen estado, lisas y libres de ba--ches, inatale respes de de res acces ria.

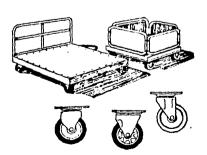


FIG. (11): DIVERSOS RODAMIENTOS

4.2.5: STERACIONES RUILOSAS.

Deutro de les plentes re realizar openiciones que generen muelo muido y que generalmente corresponden al free de mantenimiento como soni

- Movimiento de materiales, placa, Engulo, canal, vigueta, etc.
- Openit when do writiller on plengar atfliers.

Este ruido puede evitorse orpacitando of perconal que real<u>i</u> za dichoa trobajos, al mover materiales metálicos puede hacerne con cuidado, no dejendo care los materiales o coloccado hule o-madera do de se hacea los mavimientos.

Asimismo, los operaciones de martilles, frequenteneste pueden ser cutatituídas par atros métados, como en el como de la extracción y colocación de taleras y coples en freenes, que nar malmente se recliran par pripas y puedan reglianzas con una --prenon hidrámica que cita a protega las pienes, que acquie almente se dobra cuendo son properdos.

Tarkien in operation de dubier piezes metiliers pur guipeupuede son suntituida par métadon que la produce, ruido.

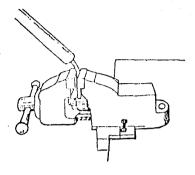


FIG. (12): DOBLAMIENTO DE PIEZAS METALICAS.

4.3: MISHUR IN FULNCE H 1875 DE NUISC.

Cuando no sea técnion o econômicamente posible reducir la intensidad de la emisión de ruido, directemente sobre la fuente
generadora, ésta se debe mislar con el fin de evitar que el rui
do afecte a las personas que se encuentran en las freas corconas.

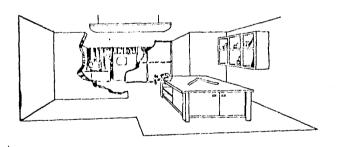


FIG. (13): AISLAMIENTO DE PAREDES.

4.7.1: MINDER IN FURNCE BRICORA DE RUIDO.

Cuando las condiciones de espacio lo permitan, una manera efficar de reducir el probleme en sitios conde el personal se -vea expuesto al ruido, consiste en colocar la fuente emisora de
ruido a la distancio en que el ruido esté dentro de los niveles
aceptables, dabe recordatso el principio físico que dice que -"La intensidad de una emisifa de ruido disminuye proporcional-mente al cuadrado de la distancia entre la fuente emisora y elreceptor", ento se recordada en casos en que las máquinas gene
redoras de ruido pueden trabajor sia la presencia de una persona, como es el caso de compreseras, tontas, torres de cafris--micato, etc.

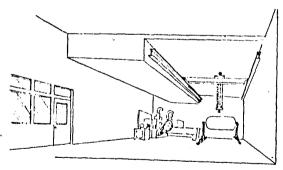


FIG. (14): ALEJAMIENTO DE LA FUENTE EMISORA.

2.3.2: COMPINATIONED DE LA FUENCE EN 18TEAL

Cuendy no sea posible realizar to expuesto en el punto au-terior, se recovienda, confinar el equipo generador del ruido,-

dentro de cuartos construídos especialmente para contener la -calida del ruido hacia las áreas de trabajo, doude se encuentra
personal que puede ser afectado.

In la construcción de ertes cuartes dete teneras en cuenta, para lagrar el efecto deseado la siguiente:

1.- Cimentagiones.

La maquinaria que se encuentre dentre de estos cuartos dobe estar cimentada de acuerdo e lo expresado en 4.2.1 -- para evitar que se transmitan vitraciones a través del suc-lo.

2. - Huros.

La construcción de les mures puede hacerse es muchos -formas; lo primero es determinar el nivel de ruido del equi
po que se pretende confinar, y de esto dependerá el tipo de
muio que se instale.

Or el nivel de ruide de establemente funcione establemente de lémina metélico que simplemente funcione establemente para recurrirse e conceles de lémina de cotesta, (debe touerse procesución - 60 evitor que estas conceles entren en recarrirse por vibra ción como se exprese en 4.2.2 -), el esta un os suficiente debe estudiarse el eusta entre inde calcel de lémina de les

testi, curva de cadero, tebique, nateriples absorbentes deruido de tipo lanes minerales, fibra de vidrio, materisleseglomerados o contilo i os de estar asteriales.

3.- Construcción de ventames.

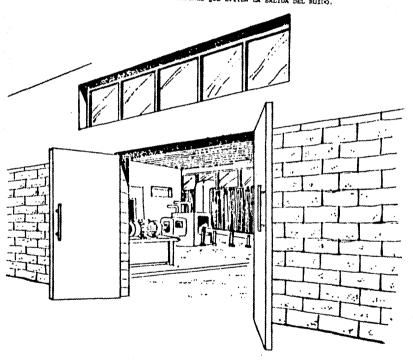
Si el ruido destro del cuarto de conflormiento no es emuy sit quede utilicarse vent, arfo con lo y corriente, con forme los vivales de ruido ao incretentan, puede per necessirio recurror e ventam o ema doble vidro o material cerflico y el el nivel de ruido es muy alto deben construirse e-ventam o en vidro block.

4. - Techos.

has taken de los cuartos de confinemianto de maquiantia como en el como de los cuares, dependent del nivel de ruido-del equipo que se pretante controlor, si este nivel no en auy olta, puede millorezas límina describada de contín o esta besta, a el ruito es se mayor tegnitud puede mocerce de aguidor o paga de la controlor construidos de concreto arando-y pudios olog o un conque el ruido es muy intenso deteral además recurrirse a plofines de material sistante.

5.- Fuertes.

Les puertes de les cuertes de confinamiente, eta un elemente l'eteraliente, en la efficiencia de dates, et les puertes no cuenten con displeitives de cerrado automético (re--


sortes) y no sellam correctamente, puede darse el cubi de que los cuartos para el confinamiento de mequin diu ruidosa no funcionen, coimismo, debe tenerse en cuenta el materiol de que se fatriquen las puertas, si el ruido no es muy intenso puede utilizarse una puerta del tipo común pero si és te es mayor puede usorse el cistema de coble cubicita (tipo tembor) con elgún material misicate en su interior Si el ni vel de ruido fuera muy intenso, puede utilizarse doble puer ta lo cual proporcionará una mayor etenuación del ruido.

6.- Ventilación y Enfricaiento.

La maquinaria que se instala dentro de los cuartos de confinamiento produce calor, el cual debe ser eliminado, de
pendiendo del tipo de maquinaria, esto puede hacerne de varias meneras, dentro de la Industria hulera, es común contar
con sistemas cerrados de agua de enfriamiento y en elgunosequipos puede resultar sencillo y económico, convertir lossistemas de enfricaciento por aire a sistemas de enfriamiento por egua, además los equipos empleados por aire generalmente cuentan con sistemas de ventilación formado o ventire
dores que frecuentemente contribuyen a incrementar los mives
les de ruido por su propia operación y en otras occasiones al proyectar el aire cóliente legos de la maquinaria propician la diseminación del ruido de la planta.

FIG. 15:

TODAS LAS VENTILACIONES DE LOS CUARTOS DE CONFINAMIENTO, DEBEN CONTAR CON EQUIPOS SILENCIADORES QUE EVITEN LA SALIDA DEL RUILO.

4.4: FROTEOGICE DEL PARSICAL TATULSTO AT RUIDO.

Cupade it composible:

- Reducir la emisión de ruido.
- Aister e la fuente generadora de ruido.

Se dobe protéger al personal expuesto al ruido mediente --- equipo de protección nuditiva.

Existen dos tipos de dispositivos para protecció: auditivay son:

- Tipo capa a conche.
- Tipo tepia.

FIG. (16): PROTECCION EXTERNA AL OIDO

The los dos of als recommendable es elide tipo CCFA in CCNOBA, debido a que proporciona mejor atenuación del ruido, es mís hipiénico, y el personal se adapta a ellos fácilmente, son commendate y el personal de supervisión puede visualmente verificar que el personal utilide el equipo de protección. Por el contrario el equipo de tipo TAPCH es menos eficiente en cuantos su capacidad de atenuación del ruido, presenta problemas de tipo higiénico ya que al ser intraducido en el conducto auditivo puede proporcionar por la humedad, la aperición de infecciones y hongos, con frecuencia el personal no se adapta a óllos y en ocasionar puede presentarse dolor de ofdos y evertualmente delor de cateza y marcos, por su reducido tamaño son ifeciles — de extraviar, es difícil para el supervisor determinor si el personal emplea o no el equipo de protección.

Este método, debe emplearse como el UITHO RECURSO para con trolar el ruido debido a que es frecuente encontrar oposición del personal para utilizar los equipos de protección no impor-téndoles el pener en juego su propin salud, sin embargo, esta situación no libera el empresario de la responsabilidea por los problemas de salud que sufra el personal, por la anteriornenteexpuesto, siempre seré más conveniente atsour el ruido en su -causa y no en sus efectos.

4.5: INDUSTRIAS (UEVAS.

La Industria Hulera Dezicana, se inicia en la década de los años 20°s desde entonces hasta la fecha se han instalado muchos empresas, los cuales han crecido en algunos casos en forma saf<u>r</u> quica, sin una adecuada planeación, haciendo muy difícil el moddificar o controlar las fuentes emisores de ruido.

Sin embargo, cuando se realicen ampliaciones o nuevas instalaciones, deberán contemplarse una serie de medidos, que si sin adoptadas desde el principio no representarán un costo adicio---nal y le permitirán evitarse problemas a futuro y tener áreas -de trobajo más seguras y confortables donde los trabajadores ma jorarán su productividad.

à continuación se enumeran algunos puntos a considerar en - el caso de ampliaciones o quevas instalaciones.

1.- Ubicación.

Al uticar una nave industrial dentro de un predio, se - debe procurar construirla dejando especio entre ésta y lus-colindancias, para facilitar el control del ruido hacía elexterior del predio

2.- Equips y lequinaria.

Para la adquisición de equipo nuevo, debe solicitarse - al provocción de éste, las especificaciones sobre generación de ruido, para poder decidir cual es el equipo más converniente para asi prevenir los problemas causados por ruido, como ejemplo diremos que los engranes de tipo recto produccen más vibración y ruido que los engranes de tipo holicoidal, los compresores enfrindos por aire, producen más ruido que los compresores cofriados por ague; también es sabido que los ventiladores y bombas de tipo centrífugo de alta - velocidad (3600 RPM) son más ruidosos que los de baja velocidad (1700 RPM) etc.

3.- Areas de confinamiento de mequinaria ruidosa.

Debe contemplarse en el nuevo diseño, el destinar freas aisladas para la instalación de equipo que al operar genere altos niveles de ruido.

4.- Nurse y Techos.

La la construcción del edificio, debe tenerse en cuenta el tipo de materiales de construcción en muros y techos. -- así como, el especiamiento de los soportes del mismo pora - así prevenir que pertes del edificio producena ruido por -- respandació. Tambián debe procureres construir techos sitos.

5.- Distribución de la l'aquinaria.

Tebe temerco en ouenta la ubicación de la magaineria --

dentro de la nave de tal menera que el menor número de personas que labore ceren de máquinos que generen ruido, es ++
frecuente que el personal espuesto a ruido no intervenga en
la operación ruidere seno que su sitio de trabajo colindo con algún free dande se genera ruido.

6.- Reflexión del ruido.

Las superficies planas y pulides en muros y techos, funcionan como reflectores del sonico, si al construir un local nuevo esto se considera, podrá reducirse la reflexión del ruido modificando simplemente el acabado superficial de muros y techos con lo cual se disminuye el nivel total de ruido.

7 .- Pisos.

Los materiales de los que se fabrican los pisos, deteránser lisos y tener suficiente resistencia para impedir la 46 foranción de baches que producirán vibración en los carrosde transporte, los cuales pueden producir ruido al circular así mismo, deben evitarse desniveles entre lozas, existen aditivos para concreto que proporcionan a éste alta resis-tencia al impacto y al desgaste.

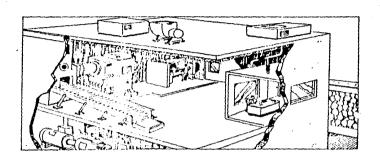


FIG. (17): CONSTRUCCION DE INDUSTRIAS NUEVAS EN BASE A AISLAMIEN-TO DE LA FUENTE GENERADORA.

CAPITUIO 5 : EFECTOS DEL RUIDO EN LA SALUD.

5. 1 : IN TRO DUCCION.

Esta sección es referente a los riesgos ocupacionales originados por la exposición al ruido. Se describirán y ana lizarán conceptos tales como: la audición, el ruido, el ruido acústico y sus consecuencias como son: el trauma acústico agudo y el trauma acústico crónico.

5.2; ORGANO DEL CIDO.

El oído humano está constituido por tres partes:

- a) El oído externo, formado por el pabellon de la preja y el conducto auditivo en cuyo fondo está la membrana deltímbano.
- b) El ofdo medio, que es una cavidad llena de líquido en la cual se alojan cuatro huesecillos llamados yunque, marti llo, lenticular y estribo, que forman una cadena.
- c) El oído interno, constituido por los canales semicircula res, la coclea con su canal en espiral, y los órganos -receptores, así como el canal de Eustaquio, que es un -compensador de presiones.

El pabellón de la oreja recibe y dirige por el conducto auditivo los sonidos hasta la membrana del tímpano la -cual tiene adjunto por dentro el primero de los huesecillos que encadena, transmite y amplifica los movimientos que recibe, hasta la ventana oval cuya parte opuesta está comunicada por un área con el canal de Eustaquio y con otra con el canal espiral de la coclea que tiene tres secciones sepa radas por dos membranas, la vestibular y la basilar.

En la membrana basilar está el sistema u órgano de --Corti que tiene los receptores de sonido, capaces de registrar y enviar al cerebro impulsos provocados por ondas de 20 a 20,000 ciclos con energía inicial de un diez milésimode billonégimo de Watt.

5.3; LA AUDICION.

La audición es un proceso fisialógico compleja, caracterizada por la transmisión, recepción, audicias e integración de - la formación conducido por estímulos acústicos.

Estre estimales, denominados senidos, son el producto de la transmisión de las vibraciones generadas por los eficidos por un medio plástico, como el mire que cum do tiene correcterásticas - particulares de magnitud y frecuencia, provocan esa sensopercegación appecífica en el sistema auditivo.

El tírsino ruido, de severdo a lo establecido por la Reul - Acedemia Popalola deriva del latín "Rugitue" rugido, le von del león y lo define como un somido inarticulado y confuco más o mos fuerte.

He side toutien conceptuado como cualquier sonido desagrada ble.

Si re analiza el desarrollo del conocimiento, se opreciaráque la tendencia es hacis estructurar deficiciones a base de -conceptas objetivos, evitando en lo posible criterios subjeti-vos.

En el sentido científico, el concepto de rundo ao sólo tisne reloción con el fonómeno acústico. Diaude Chambon, lo define como cuniquier perturbació, no deserdo que interfiere ca un --proceso de comunicación, la que debe entenderse como el inter-cambio de información entre dos o más componentes de un sisteme,
con un propósito definid, colocar a ecc sistema en un mejor nivel de organización.

En este concepto do se indica cual es la modalidad de encregía utilizada, para transportar la información, lo cual obliga-a especificar los características del sistema de comunicación, catalogado a ésta, como comunicación acústica. Si la energía utilizada es noústica: comunicación eléctrica, si es la electricidad el medio energético, etc.

Como consequencia de lo anterior, debe concluiros que existen varias categorías de ruido. El ruido soústico, do le define como la perturbación acúctica no desenda, que interfere un proceso de comunicación ocústico. Lo anterior es fundocental paracomprender que hay efectos en el mismo organismo humano ocasionados por la exposición a sonidos cuya magnitud sea igual o superior a los valores máximos permisibles "sonidos de gran magnitud" y efectos producidos por "ruido acústico".

Les efectes producides por sonides de gran magnitud, se divider en des grupes: efectes ruditives y efectes no euditives.

Al primer grupo pertodecen las alteraciones correspondienstes a la entidad appolígica denominado treuma dústico.

5.4 TRAUMA ACUSTICS AGUIC.

La designación trauma acústico agudo, comprende las alteraciones temporales o permanentes del órgeno periférico de la audición causada por la exposición súbita a sonidos transitorios y por transición de gran magnitud.

Los sonidos transituros (por impulso o por impacto).son aquellos caracterizados por el incremento repentino de la
presión acústica con descenso también abrupto de la misma, cuya duración no excede de 0.5 segundos.

Ejemplos de este tipo son explosiones, las detonaciones y los impactos de un cuerpo sólido contra otro.

Los socidos por transición se caracterizan también porel incremento repentino de la presión acústica, la cual se mentiene con un nivel constante, un tiempo breve (superior-a 0.6 de segundo o no mayor de algunos minutos), seguido de un descenso también rápido. Son generalmente producidos por escapes de aire o vapor, como lo es un silbato de una locomo tora.

El daño ocurre cuando el incremento de la presión acús tica en ambos tipos de sonido, es igual o superior a 90 db -

5.5 : TRAUNA ACUSTICO CRONICO.

La denominación de trauma acústico crónico corresponde a las alteraciones temporales o permanentes del oido interno provocadas por exposición constante y prolongada a sonidos estables e inestables, así como a sonidos transitorios-y por transición repetidos cuya magnitud de presión acústica, en relación con los componentes de frecuencia, sea igual o superior a los valores umbral límite o a los valores-máximos permisibles.

Los sonidos estables son aquéllos en los que desde su inicio y hasta su teminación (pueden prolongarse indefinidamente), la presión acústica permanece sin variación o cuando más, variaciones que no sean mayores o menores de 5 dB.

Los sonidos inestables se caracterizan por tener varia ciones caíticas en la presión acústica y sus componentes de frecuencia.

La expresión "sonidos transitorios y por trancición re petidos", corresponde al echo de que se presenten 2 o más - impactos, impulsos o sonidos de duración corta durante la - jornada de trabajo cuya magnitud de presión acústica sea in capaz de provocar daño auditivo en una sola exposición.

Son conocidos como factores etiplógicos del trauma acústico; los caracteres físicos del monido, presión neúrtica y componentes de frecuencia. Son más lesivos los sonidos cuya magnitud es superior a 85 dB (A) y con componentes defrecuencia alta o aguda (1000 a 6000 Hz), que los sonidoscon presión acústica semejante pero con componentes de frecuencia baja o grave.

El tiempo de exposición, que no deberá exceder por jor_ nada de tratajo los valores máximos permisibles, puede obser varse en las tablas 1 y 2.

TABLA I

TIEMPO MAXIMO PERMISIBLE DE EXPOSICION POR JORNADA DE TRARAJO (EN FUNCION DEL NIVEL SONORO)

HORAS	dB (A)
8	90
7	91
6	92
5	9.3
4	95
3	97
2	100
1	105
*45 *	107
30'	110
15'	115

* El simbolo ' significa tiempo medido en minutos.

Cuando el resultado de la medición se encuentra comprendido entre dos magnitudes consignadas en la tabla, se deberá con sultar para obtener el tiempo máximo permisible de exposición preciso.

TABLA 2

TIEMPO MAXIMO PERMISIPLE DE EXPOSICION POR JORNADA DE TRABAJO

(EN FUNCION DEL ANALISIS DE LA MAGNITUD DE LOS COMPONENTES DE FRECUENCIA EN BANDAS DE OCTAVAS)

112			_	dВ	RE.	2 x. 10	-5 N/1	m ²			
125	102	104	107	111	116	119	125				
250	96	96	5 9	102	105	109	114	126			
500	91	92	9.4	96	98	101	105	115	119	124	132
1000	8.8	8.9	8.9	91	93	9.5	àδ	107	110	114	121
2000	8.5	9.5	86	8.7	89	92	9.5	100	103	108	113
4000	8.3	8.5	.85	86	3.8	90	93	ō Ģ	101	105	109
8000	8.8	89	91	93	96	98	102	108	110	114	120
HORAS	8	7	6	5	4	3	2	1	451	30'	15'

CAPITULE 6: APERCAGICA FRACTICA

6.1.; INTRODUCCION.

En este capítulo se presenta el trubajo práctico realizado en una empresa huloro, (Cía. Eulera Tornel S.A. de C.V.), el cual fué llevado a cabo en circo etapas de la planta.

- 1) Descripción general de la planta.
- Aufliris de la planta para la determinación de los nivelessonoros por área.
- Estudio audiómetrico a una muestra del personal, que os res presentativo de la población de la planta.
- 4) Análisis e interpretación de los resultados y proposiciones de control.
- 5) Acciones correctivas.

'Como se verá en este apartado, se logró identificar, nis lar y corregir los problemas inherentes a la contaminaciónambientel por ruido en una planta tipo.

6.2.: DESCRIPCION GENERAL DE LA PLANTA.

El presente estudio dué efectuado en las instalaciones dela planta #2 de la emprese Compañia Hulera Tornel S.A. de C.V. ubicada en: Calzada Santa Lucía #198, fraccionamiento Indus--trial San Antonio, en Atzcapotzalco Yéxico D.F..

Esta empresa del ramo hulero, se dedica a la fabricación - de llantas neumáticas para camión, camioneta y automovil y laplanta #2, la que es objeto de este, cuenta con una superficie de 8000 m² y está constituida en dos niveles, cuyos pormenores se podrán observar en la descripción del plano anexo a este -- inciso.

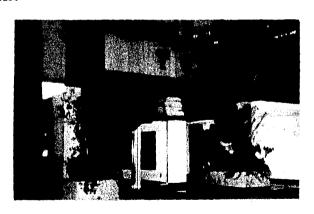


FIG. (1): VISTA DE LA FACHADA DE CIA. HULERA TORNEL, S.A. DE C.V.

La división por áreas generales y departamentos, es la --siguiente:

Planta Baja:

PE 1) Cudrto de Calderan:

- a) Une coldera 200 hp (Cleaver Frooks).
- b) Una caldera 250 hp (Cleaver Brooks).

PB 2) Subestación:

- a) Dos trensformadores de 1500 KVA, 23 Kv/440 v, (Con-tinental Electric).
- b) Un transformador de 150 KVA de 440 v/220 (Continental Electric).
- c) Un transformador de 75 KVA de 440v/220 (Continental-Electric).

PB 3) Currto de generación de agua caliente:

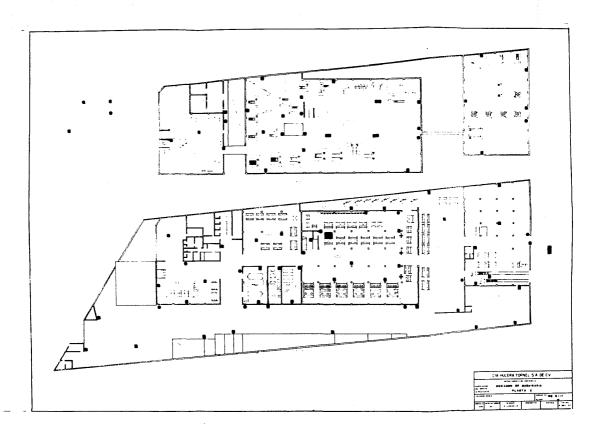
- a) Un generador de 13'000,000 200/HR de 15 hp.
- b) Dos bombas centrífugas para agua de 60 hp cada una.
- c) Dos bombas centrífugas para acente de 25 hp ends una.

PB 4) Departamento de Calandreada:

- a) Dos molinos de 1500 am (Comerio) de 125 hp.
- b) Una calendria de 200 hp.
- c) Un tensionador de 30 hp.

- PB 5) Departamento de vulcanización de llantas de automovil -radial:
 - a) Coho prensas de vulcanización de llantas radial de automovil.
 - b) Ocho bambas de turbina para agua de 30 hp cada una.
- PB 6) Departamento de vulcamización de llentes de camión (Interior):
 - a) Veintincho prensas de vulcanización de llantas.
 - b) Veintiocho bombas de turbina para agua de 30 hp.
- PB 7) Departamento de vulcanización de llantas de camión (Exterior).
 - a) Ocho prensas de vulcanización de llantas.
 - b) Scho bombas de turbina para agua de 30 hp.
 - c) Equipo para desvirado y terminado de llanta.
- PB 8) Departomento de Compresores:
 - a) lono compresoras reciprocentes (Jacuzzi) de 75 hp.
- PB 9) Departemento de Extrusión.
 - a) Juntro molinos de 1500 mm. (Comerio) de 125 hp.
 - b) Dos extrusoras (MRC) de 8 pulgadas.
 - c) Time de enfricciento.
 - d) Use out edrin pore orjines.

PB 10) Taller Recentor:


- a) Cinco tornos horizontales.
- b) Un torno vertical.
- c) Una fresadora universal.
- d) Un taledro.
- e) Una cortadora (doall).
- f) los plantas de soldar.
- g) Una segeta mechnica.

PB 11) Oficinos de Piante.

Planta Alta:

- PA 1) Departamento de contado y preparación de textiles para llanta camión.
 - a) Una contadora horizontal para cuerdo.
 - b) Cuatro Máquinas constructores de bandas de limitas.
 - c) Tres méquines ensembladoras para llenta de comiún.
- PA 2) Departamento de construcción de lienta de carión (1).
 - a) Cuatro constructores para llanta.
- Pà 3) Departamento de construcción de llanta radial de automo vil.
 - a) Cuatro máquinas constructoras de primer paso.
 - b) Cuetro máquinas constructores de sagundo pueto.
 - c) Una cortadora de textil pare cinturón.

- PA 4) Departemento de construcción de llantas de camión (II) y cejos.
 - a) Cuntro máquinas constructores de llantas pera camión.
 - b) Equipo pera construcción de cejus de clombre.
 - c) Un solino de 15 pulgadas.
 - d) Una extrusora de 2 1/2 pulgadas.
 - e) Cuatro adquinas forradoras de cejas.
- PA 5) Departamento de construcción de llanta de camioneta.
 - a) Una cortadora horizontal para cuerda de llanta.
 - b' Seis constructoras de llanta de camioneta manuales.
 - c) Una constructora de llanta camioneta automática.
 - d) Una constructora de bendes para llanta de camioneta.
 - e) Dos cortadores en ángulo para pisos de llanta.

6.3.; CURNITIFICACION DE LOS NIVELES CONCROS EN LA -PLANTA, ANALISIS E INTERPRETACION DE LOS RECUL
TALOS.

En el presente inciso, se encuentra el estudio de cuantif<u>i</u> cación de los niveles enabros cu la pirata #2 de lo Compañia —.
Hulero Tornel S.A. de C.V., los cualca facroa reclizados en ——
base a la Morma MCL-AA-62-1978, mediante un sonfactro marca ——
Quest Electronios. Ansi 51.4 type 2.

Estas vediciones fuerm tomadas en un lapso de 1 hr. 1.30-hrs para de esta momera detectar los miveles de ruido no pero<u>d</u> sibles por sección.

MEAN CHAPTO DE CALIERAS PETS FECHA: 18 DE ENERO DE 1967 FERDIGO: 1E 10 A.M. A 11 A.M.

																	1 1
Ka. H EMINA	15.7	N.S. DE TERRITOR	65 .4:	NIN DE NOTODO	15.1	AND REMINE	15-4	N.M. IS NELLEY	15-	NAME OF STREET	18,4	NAME OF PERSONS	29.5	NAME OF THE SECOND	19.49	400 DE COUNT	N TE
	77	41	92	81	74	i21	şa	161	74	201	91	241	73	381	77	321	1
,	92	42	79	82 82	75	122	77	. 152	- 2	282	92	242	31	383	77	322	82
2	92	43	73	93	76	123	72	163	72	293	72	243	74	283	- 5	3.3	8:
3	73	44	72	23 24	72	124	:3	153	77	294	22	242	34	122 134	31	324	. 5
	73	45	51	£5	12	125	32	165	82	205	- 1	145		265	21	325	12
,	79	46	74	36	74	125	93	166	74	296	-			2%	-3	325	-1
7	79	47	82	9.°	73	127	77	167	64	267	79	046 247	32	297	- 39 - 39	327	
,	23	42	76	38	72	128	32	168	77	298	3	148			201	129	-
,	76	49	76	35 35	75	129		169					32	135	78		79 80
10	75	56	74	39 39	77	129	54 74	179	5G	299	73	149	36	189		329	
- 11	85	51	72					171	79	2:9	7	259		290	32	236	33
12	78	51 52	80	91	66	191 192	32	172	94	211		251	90	291	37	391	73
13	£;	53	72	92	77 72		74 75	172	23	212	73	252	74	292	7:	222	
				93		133			79	213	74	25.2	74	199	30	397	173 174
14	87	54	ál	94 —	79	134	74	174	79	214	89	24	72	294	~	314	
15	77	55	93	95	82	135	73	175	78	215	75	ee	?e	195	92	215	- 77
16 17	78	54 57	73	.96	79	136	84	176	63	216	31	256	33	176	77	326	74
	75		81	97	76	137	79	177	77	217	82	257	34	297	83	317	75
13	74	58 50	79	% %	76	138	31	173 179	73	216	76	258	- 11	199	12	333	22
					80	139	76		73	219	73	259	76	299	7.5	339	. 75
28	78	60	76	166	72	140	69	180	33	220	33	260	23	350	34	349	74
21	86	61	77	101	72	141	94	161	74	221	92	261	94	201	39	341	60
22	84	62	81	102	66	142	32	162	79	222	79	262	7:	302	74	342	34
23	84	63	77	103	83	143	30	183	81	22?	74	163	74	397	31	343	79
24	72	64	76	194	79	144	77	1:4	32	224	75	264	- 22	194	33	344	
25	83	65	75	165	72	145	72	185	79	225	"4	JAT	75	395	77	345	. 59
26	32	56	76	196	78	14 ć	77	196	77	226	6.	265	34	235	31	346	
17	75	4-	77	147	82	147	74	167	77	227	75	267	3.	397	34	347	93 , 33
23	78	65	72	168	31	146	99	128	~6	229	77	24	7	:08	- 73	343	- 19
29	84	69	74	169	8:	149	79	199	78	229	77	167	~é	219	77	319	- 11
30	76	72	77	119	- 76	:50	94	194	74	239	72	177	7	117	7	150	. €
31	74	7:	75	111	75	151	94	191	36	221	77	- 1	~	15.	7.2	:51	31
32	82	72	32	112	76	152	78	192	30	232	77			7.2	34	35.2	3.7
32	75	72	75	113	32	153	52	199	3,5	139	75	272	77	212	32	253	1.3
34	72	74	75	114	94	154	75	194	~2	, 224	79	274	36	114	31	254	79
35	73	75	81	115	79	155	80	195	99	135	52	275	72	.17	34	355	40
36	75	75	76	114	74	156	3.0	135	1.0	236	73	<i>:</i> ">	*5	315	7	275	
37	84	77	77	117	72	157	72	197	79	137	34	277	34	217	Τ.	357	-
38	78	73	75	113	74	158	7	199	75	136	77	279	79	119	1	314	
35	80	79	84	:19	- 75	159	39	190	75	239	73	279	•	319	8.9	359	
40	74	80	72	120	75	150	75	150	7;	[2]	75	183	75	320	50	×9	

ANNIESS: FROMEDOS: 77,74:344 MESS78.4 Nivasos: 72 Nimaxis 64 INTERPRETACION DE RESULTADOS: AFEA: SCHESTALION (AFE)*
FEINA: 18 DE DESO DE 1967
FEFICIO: DE 4 FLAL A 5130 FLAL

NOW, HE MEDICION	(8/4)	NOTO DE PEDICION	89/4	NOT BE MERCEN	(8.4)	REM. DE MEDICION	35.51	NUMBER SERVICES	3914)	NOW THE MEDICION	9 8 41	NOW, DE NEDECION	18:41	na se reteira	15.49	NUMBER OF STREET	ÎB 4
1	82	41	83	81	53	121	30	161	34	291	ŝv	241	79	281	34	201	82 79
. 2	82	42	32	62	63	122	32	162	79	202	50	242	79	232	- ₹4	322	. 79
3	84	43	30	83	81	123	79	. 163	30	289	:4	143	51	283		323	. ŝi
4	18	44	22	94	83	124	á!	164	79	264	47	_24	58	_34	3.2	224	29 30
5	83	45	81	85	80	125	79	165	54	201	12	245	24	285	30	325	. 30
6.	83	46	34	36	60	126	79	166	31	236	:3	146	31	236	. 19	71,6	- 31
7	69	47	89	97	80	127	82	167	79	267	1.	147	34	197	91	327	- :1
9	59	48	83	88	81	123	79	168	-;	108	32	149	23	2+1	91	319	31
9	81	· 49	82	89	88	129	83	169	64	209	11	249	-4	299		329	20 20 21
19	53	20	30	30	84	139	89	170	79	210	12	25)	32	139	34	220	38
11	81	51	73	91	79	131	84	171	81	211	ê.	.51	<u>64</u>	291	5.	331	20
. 12	63	52	79	92	31	132	82	172	91	212	25	-52	32	292	13	392	32
13	83	53	83	93	83	133	83	173	33	213	9;	253	3.2	293	34	333	~2
14	80	54	30	94	81	134	30	174	79	214	89	-51	13	194	23	ĵħ	31
15	98	55	82	95	79	135	85	177	92	215	ê;	255	53	295	*;	335	90
16	82	56	79	96	30	136	83 -	176	73	116	10	256	93	396	5.6	336	30
17	51	57	82	97	90	137	21	177	36	217	£1	257	64	249	- 31	337	80
13	94	59	79	98	91	138	79	178	52	211	1.7	259	79	291	7.9	3.79	10 30
19	89	59	51	99	79	139	94	179	90	219	04	254	24	299	4.7	339	3.2
29	81	€1	99	168	84	140	30	126	333	23 .	9.4	260	34	300	:0	340	3.7
21	91	61	81	101	81	141	50	181	79	22:	đ)	261	34	301	31	341	34
22	52	62	82	102	83	142	94	122	33	222	30	141	- 33	, E	31	342	22 22 31
23	82	63	84	103	63	143	83	153	81	23	22	2+3	34	* 3.7	14	343	32
24	82	64	51	184	83	144	79	124	79	224	77	264	19 62	394 365	12	344	31
25	83	65	66	105	81	:45	81	165	93	225 225	34	165 266	14	265 366	90	345	53
26	96	56	34	196 197	82	145 147	23	155 167	?0 24	117		247 247		295 201	11	346 347	32
27	81	67	51		51 ~g		64	189	54	119	11	257 268	22 22	en lei	14	349	73
28	31	53 69	53 80	168 169	ē1	143 143	84 79	189 189	31 31		-4	266 263	ė.	762 763		349 349	33 79
29	79	70	81 94	219	61 31	156	33	199	31	239	64	35	36	#17 38	70	:4 <i>9</i> 350	31
30	81 79	71 71	79	111	. Sr	.5e	93	191	- 66	21	- 25		- 4	2.4	32	351	
31 32	79	72	91	112	. క ఓ	.152	33	171	51	132	32	•	14 22	312	79	JE 1 JE 2	62
23	80	72	79	112	79	153	96	172	81	233	3. 31	172	÷	111	30	352 353	34 60
	87 82	74	60 80	114	32	154	83	174	33	234	51	272 274	7 29	314	32	32.5 35.4	31
34 35	79	75	77	115	79	155	30	195	79	25	32	14	93	315	21	359 355	21
	30	75	51	115	31	156	55 E5	195	32	25	32	14	50 50	215	- 61	35b	17
36 37	51 84	/5 77	93 83	117	21 21	.:o 157	61	137	79	2.7	13		31	317	31	35. 326	79 32 53
3/	31	73	79	113	31	157	cI ?3	179	30	138	1.2 3.4	Ē	12	21 212	14	35 358	3.4
.18 39	99	79 79	62	113	24	159	91	199	30 31	239	3.	H	8:	11.6	1	35.	
	63	79 35	-4	123	31	150		203	91 94	239 243	30	187	e. 34		- 41	36.	12
40	53	29	:4	123	31	136	32	23	54		2.	427	54		- 41	£.	24

WARLISTS: F50FERG: 81.42229 NESSER.54 Nombris 79 Nombris 94

MIVEL NORMAL, LA MEDICION MAS ALTA FUE POR ESCAPES DE AIRE.

HEAR CHAPTO LE BENEFACION LE POUR CALIENTE PROF FECHAL LO LE BURFO LE 1987 FERROLE: EE EL HUM, A 11 AUM.

NAME RETELLIN	SE 4.	YOM, DE MEDICOON	[F:4:	NOW, SE MEDICIN	(3/4)	74. 15 MILLION	13 41	NAME OF MEDICINA	39 41	NW M 400000	5514	na se essian	19.4	NAN DE PETITIEN	13 #1	M.M. DE METODIC	1 (914)
i	97	41	971	\$1	39	121	161	161	96	261	161	241	100	191	191	301	96
2	99	42	75	ã2	199	122	101	962	29	202	36	242	121	252	35	722	97
3	100	43	98	53	52	123	97	163	97	203	34	243	198	253	97.	327	-
4	99	44	99	€4	37	124	93	164	101	254	159	244	5-	214	#	314	36
5	199	45	95	85	171	125	191	165	97	295	100	245	şe.	285	161	:::	97
6	97	46	35	86	1.0	126	35	166	96	206	36	246	101	296	97	125	79
7	36	47	97	87	99	127	96	167	98	297	191	47	17	197	191	2 E	33
3	100	43	95	38	2.1	128	96	169	9€	208	101	243	97	196	345	1	161
9	99	49	98	89	161	129	97	169	103	209	95	249	15	234	98		180
19	95	56	36	50	99	138	39	178	36	210	191	159	29	194	-55	31)	25
11	96	51	166	91	191	131	97	171	99	211	99	251	76	291	36	391	95
12	95	52	199	92	75	132	97	172	98	212	36	252	×	292	35	324	37
13	95	59	54	93	191	133	100	173	9ê	213	39	253	-4	193	140	329	101
i+	97	54	99	34	191	134	95	174	160	214	97	254	-	344	169	334	101
15	99	55	98	95	76	135	196	175	95	215	95	255	14	195	+3	395	€
16	39	56	35	96	35	136	33	175	÷5	216	97	256		2%	39	114	35
17	161	57	106	97	97	137	39	177	99	217	39	257	76	297	33	717	95
18	95	58	97	78	38	139	33	178	191	218	35	258	196	233	101	228	99
19	9"	59	€	99	37	137	93	179	97	219	99	259	75	299	*9	339	*5
29	99	50	9"	160	97	149	39	199	96	220	97	263	33	3:3	35	349	36
21	95	61	90	191	95	141	75	181	100	221	77	261	79	191	99	345	105
22 -	101	52	95	102	95	142	9.9	182	35	222	96	242	100	3-72	35	34.	35
23	106	63	97	105	97	143	99	183	99	223	96	263	37	30 3	97	340	75
14	79	64	33	104	iel	144	93	134	33	224	35	264	÷÷	394	36	344	36
25	96	65	98	165	100	145	101	155	101	225	97	245	95	365	*	345	97
26	95 97	66	95 161	106 107	139	146	109	186	199	226	75	lie	37	306	35	345	151
27 28	91 36	67 68		108	57	147	97	137	98	227	97	267	101	367	19	347	95
27	93	69	95 98	109	95 95	143 143	39 100	186	27	229	16	268	37	203	151	249	98
27 39	199	76	95	110	75 23	157	161	149	181	229	37	269	35	209	79	349	98
8	160	71	100	111	95	171	39	199 191	.7	290	189	270	-5	318	97	370	169
22 32	37	72	100	112	120	152	37	192	191	231	35	271	35	311	190	251	97
13	96	79	166	113	92	153	181	174	75 95	232	37	272	191	312	100	352 353	9S
34	151	74	36	114	39	154	37	194	35	234	101	273 274	161	513	100		97 101
35	97	75	97	115	95	155	98	195	75 95	235	99	275	98 150	314 315	97 161	354 355	37
36	191	76	35	115	103	154	35	196	199	233	,,,	275				276	
97	161	77	96	117	161	157	100	197	35	237	75 33	277	13 139	316 317	109 101	257	93 85
38	39	73	191	113	98	158	99	123	35	239	29	279	35	319	25	351	100
39	97	79	56	117	100	159	37	179	96	239	36	279	.79 191	319	 	353	3.0
45	99	sa	101	128	96	168	35	200	75	240	103	250	37	325	77 75	3.0	71 H
		••	•••	***	~	•••	7.2	***	7.5	477	140	237	71		72	44.7	71

AMALTERS FROMENTS FRAMENTS AND AMERICAN MARKS SS NO 18-18 101 EMPERATORIS NIVEL GRAVE ESTABLE.

Atai

AREA: SERAPTAMENTO DE CALAMIREARO (FSA) FECHA: 19 DE ENZAD DE 1937 FERSCOCI DE 4 F.M. A 5 F.M.

N.M.	06 ME000000	75 -	NOW, HE PEDICION	18.9	KINGER BEWEIGH	19:44	MAN SE MEDICION	15 (4)	AN RESIDEN) 5 7 £ 4	AND RESIDENCE	19-0	NAME AND ASSESSED.	15.4	RA R AMILIA	19.31	NA. IESTOICO	13
	1	83	4;	£3 ·	81	63	12:	33	161	87	261	37	241	36	291	- 33	721	87
	2	3.	42	35	82		122	- 27	141	37	362	34	142	96	181	36	122	84
	3	25	45	24	65	- 46	123	94	167	35	263	37	(4)	37	239	85	223	66
	4	53	44	35	24	37	124	94	164	36	294	34	241	37	294	67	324	26
	5	83	45	84	65	35	125	83	365	36	265	95	145	33	265	63	2.5	87
	6	86	15	:5	ŝé	96	126	33	166	34	205	÷7	246	34	296	34	326	33
	7	86	47	24	27	\$7	127	33	167	34	107	33	247	36	297	96	27	93
	8	36	45	65	98	57	128	35	153	35	. 1.5	34	143	25	139	56	2.3	85
	9	94	49	83	69	éé	129	84	169	-4	149	16	149	₩	299	37	32.3	85
	16	54	19	83	90	86	130	34	176	85	216	34	259	37	293	26	330	2.3
	11	85	51	86	91	85	131	65	171	27	10	2.4	.51	67	291	ž	111	ā"
	12	34	5.2	25	32	34	132	87	172	37	142	3.4	242	35	292	žč	332	74
	13	66	13	84	93	93	133	87	173	87	11+	15	253	:5	293	97	393	87
	14	- 97	54	34	94	34	134	85	174	35	1.1	3.3	254	24	294	3.3	3)4	36
	15	ć7	55	83	95	23	135	65	175	37	-25	14	255	33	285	63	335	9.3
	16	87	56	84	96	37	136	36	176	84	215	3.4	256	33	795	34	336	83
	17	85	57	85	97	53	137	97	177	64	2.5		257	37	297	33	337	9.4
	13	84	59	÷7	98	97	199	97	173	35	-11	36	258	54	293	36	398	85
	19	94	59	87	99	55	132	94	173	37	214	13	259	57	299	97	339	37 32
	26	24	5ù	87	199	-4	149	95	129	35	223	33	260	34	304	×	340	32
	2)	94	41	87	101	26	141	87	191	52	:::	:7	161	25	301	36	741	55
	22	÷4	\$2	83	1/2	23	140	34	111	54		i:	262	37	202	35	342	36
	22	6.7	49	6.5	103	57	16	92	123	17	***	î.E	141	97	363	35	345	87
	24	35		33	104	87	144 147	34	184	12	224	10	154	34	344	35	344	24
	25	97 95	65	93	195 186	67	146	97 86	185	53	275	35	265	33	345	37 35	345 346	83 87
	26 27	80	66 67	84 94	157	37 57	147		196 197	94 97	226 227	95 97	255	37	R+ ,e7	34	347	83
	28	57	63	37	1.3	65	145	83 36	153	- 5 d ⊕4	129	57	257 268	33 33	278	36	343	34
	29	36	57 57	84	109	93	149	34 34	139	94	229	15	769	33	309 309	36	343 343	86
	30	25	76	83	117	35	15)	36	199	- 37	130	35	277	35	317	85	350	94
	31	94	71	94	111	64	151	30	191	35	24	37	271	36	311	35	151	84
	32	24	72	27	112	87	152	ñ	192	15	132	34	271	36	912	33	352	33
	23	85	75	87	112	57	15	85	195	83	239	11	273	34	313	85	353	96
	34	85	74	24	114	35	154	10	194	15	1.9	35	274	34	314	87	354	84
	35	65	75	56	115	36	255	86	195	84	135	57	75	23	315	36	255	83
	36	35	76	37	116	36	156	37	196	36	14	53	- 14	36	316	35	256	EE
	37	0.3	77	63		94	157	34	197	41	237	17	277	9	317	- 35	357	64
	38	85	7à	83	113	35	158	86	198	37	238	33	15	34	248	35	351	37
	20	07	70	27	119	25	15.	93	199	:1	22.0	44		26	219	37	253	63
	46	83	88	87	120	67	150	35	296	34	240	34	290	43	24.1	e.	369	24

A 11 8

AFER: LEFATIVENTO LE VILONIZIAZION LE LLANTAS DE AUTORIXO, SACIAL (FES) FECHA: DO LE ELERO DE 1787 FERISTO: DE 9730 A.M. A 10000 A.M.

MM. DE MERCOCIA	(2.53	www. is selected	\$8750	$AK_{\rm c} : \mathbb{R} \times R$	18:4:	NEW TENEDRICA	\$9:61	WAY SELECTION	38,45	un ie Cicion	13-91	WAY OF AEROODA	(3-4)	NA. IE SEEDIN	1514	MAN DE MEDICION	19-A)
1	39	41	52	61	5.2	121	89	161	39	261	ė3	241	38	191	37	721	83
2	38	42	39	32	57	122	27	162	29	292	33	242	39	222	39	322	39
3	63	43	89	83	€7	123	39	163	89	203	39	243	99	283	38	323	57
4	33	44	35	84	37	124	38	164	ě9	294	83	244	38	294	27	324	49
ė,	89	45	98	35	88	125	38	165	89	205	86	245	67	385	39	325	89
6	87	46	39	86	57	126	89	166	27	296	39	146	93	136	32	326	27
7	27	47	97	87	23	127	27	167	89	207	89	247	33	297	- 88	327	53
è	83	48	63	38	98	123	88	153	97	298	93	248	39	198	33	323	19
9 .	83	49	89	89	87	129	89	169	37	203	88	249	67	289	89	329	37
10	89	50	89	90	89	130	39	176	33	210	38	258	37	296	87	359	39
ÍI.	87	51	69	91	57	131	97	171	58	211	33	251	86	291	33	331	29
12	33	52	89	92	39	132	37	172	38	212	38	252	39	232	36	292	39
13	89	53	89	93	87	133	89	173	37	213	37	253	36	293	97	333	39
14	89	54	37	94	33	134	69	174	97	214	37	254	37	134	67	394	59
15	89	55	85	95	88	135	39	175	36	215	36	255	39	195	88	325	33
16	87	56	87	96	89	136	33	176	38	216	58	256	39	2%	89	336	29
17	83	57	89	97	87	137	89	177	87	217	38	257	87	297	39	337	- 33
16	38	53	87	93	87	138	88	173	39	218	38	253	37	298	39	138	19 17 18
19	89	59	87	39	36	139	69	179	39	219	53	259	39	299	66	239	áá
20	89	60	88	106	97	146	37	130	37	229	27	263	37	200	89	(4)	39
21	89	61	89	191	87	141	39	191	39	221	38	261	86	301	87	341	57
22	38	52	87	192	39	142	38	182	53	222	37	262	37	302	33	342	39 39
23	89	63	86	103	89	143	89	183	37	223	39	269	89	163	36	343	33
24	89	64	87	194	38	144	87	184	39	224	39	264	સ્ક	364	87	344	39
25	37	65	87	105	67	145	36	185	38	225	38	265	39	305	39	345	38
26	38	55	87	106	33	145	39	126	87	r.	39	266	38	396	33	346	58
27	39	67	88	107	89	147	39	137	37	227	38	267	89	397	39	347	87
22	83	63	39	136	67	143	38	:33	39	229	39	168	37	398	29	249	37
29	87	69	89	109	88	149	37	163	69	229	-9	269	37	303	37	349	89
36	89	70	39	159	39	150	28	199	37	230	37	27.	39	319	37	.59	37
31	67	71	38	111	57	151	63	191	99	231	37	271	36	311	37	351	39
32	37	72	88	112	89	152	37	192	59	222	38	272	37	312	37	152	98
33	69	7)	96	113	98	159	87	192	97	293	37	275	38	313	93	.53	39
34	83	74	97	114	83	154	37	194	38	234	33	274	13	314	37	254	:7
26	87	.75	89	115	87	255	87	135	žė	135	39	275	99	315	36	.55	89 39 37
36	89	76	37	115	39	156	39	196	87	136	39	276	87	715	37	756	37
37	88	77	27	117	87	157	97	197	39	237	39	277	39):7	32	257	27
36	38	78	87	119	83	153	27	198	37	238	-38	278	39	313	39	358	38
39	33	79	83	1:9	53	159	99	139	97 37	259	36 33	279	39 39	319 319	97	259	39 99
40	39	29	33	120	33	160	83	260	31	140	12	259	:9	24.7	ŝŝ	3±3	27

AFERE DEFIG. DE DACAKORATION DE CLARTAS DE CANTIR CONFÉSIOR. AFER FERMEN 20 DE ENETO DE COST FERMINOS DE AFEREN A ENEX FUN.

MW 12	475,0000				MAL REPORTED				1/4 35 ac 55 55 50		WW 15 W51 120				. w. 10 with total	*6.5	U.S. 25 477.777	(A 561.4)
MCD	(C.)		AND IN THE SELECTION		W. O. 12 (21111)		61		CALLE SELLE	.0 -	M.Fr. 16 - C4	2.4	Marine Marine	.7 *	4.75 /E 75. JALY		7.74 12 12.11	, 1 22 -
	1	37	41	96	81	96	101	91	161	1	201	97		.,	381	• 5	321	96
	2	95	42	37	31	96	122	75	162	93 94	102	94	141 242	8	252	96	922	94
	í	92	49	94	\$1. 21	79	177	- 53	165	20	272	24	143	97	180	75 75	322	99
	i				94	76	124											97
	:	99	44	98	24 95	92	124	73 93	164	94 34	294	35	244	94	284	58	324 ****	
									165		285	99	245	99	285	35	***	% %
	4	49	45 47	35	36 27	99	126	37	166	9.9	0	26	246	35	296	37	726	
	-	35					177	94	157	37	267	94	147	-4	297	34	127	39
	9	75	43	*6	24 27	35	128	35	168	36	-33	97	248	34	198	37	323	94
	۰	96	45	QC.		3.4		×	140	:"	מרי	47	. 10	22	199	99	329	97
	10	35	50	39	36	93	130	97	179	- 33	210	75	259	39	230	-4	329	34
	11	33	51	≥6	91	÷	131	¥	171	93	211	97	251	3.9	191	74	371	97
	12	35	52	94	92	98	132	97	172	74	212	59	252	35	292	37	301	75
	12	oe.	#?	œ	97	92	123	06	177	34	213	35	257	35	249	33	337	3€
	14	74	54	39	94	97	134	36	174	35	214	3.4	254	33	294	39	324	39
	15	97	55	97	95	94	135	95	175	39	215	49	255	37	297	76	.395	35
	16	36	56	39	26	33	:3€	97	176	35	215	75	255	25	296	34	335	93
	17	99	57	34	97	33	137	36	177	95	217	H	26.7	9*	2*7	97	31"	- د
	18	94	52	97	93	54	193	-5	179	94	219	94	258	34	2+2	34	338	- 33
	19	97	59	39	90	99	139	35	179	76	319	₽5	153	94	.×.	99	339	76
	29	97	69	33	166	34	143	34	188	25	22.9	37	264	94	3-2	33	346	27
	••	20	41	3e	1911	24	141	24	131	¥	221	33	261	34	361	29	[4]	34
	11	24	62	99	132	23	142	33	192	38	111	33	161	34	342	*	342	2.9
	25	cc	62	00	147	4.7	1.69	94	123	44	121	99	263	37	303	99	343	95
	1	94	64	99	164	35	144	39	194	-47	214	97	264	33	204	94	344	39
	~	65	ie.	GE	105	99	145	24	- 14	43	225	47	265	39	365	75	45	99
	26	34	66	74	105	33	146	-7	136	37	226	39	256		386	- 25	345	95
	27	97	67	36	167	94	147	14	197		227	99	267	36	307	94	347	48
	28	95	69	94	103	- 39	143	97	139	-44	239	34	263	33	203	36	342	14
	79	95	£9	95	149	69	149	34	199	-	229	99	16.9	35	:0?	34	343	;1
	34	93	79	34	119	35	150	96	192		230	-	279		310	39	350	36
	71	44	71	67	111	35	151	12	191	12	231	99	271	25	311	27	351	24
	32	36	72	93	112	99	152	95	.92	-1	232	-7	-	34	312	36	352	24
	33	35	73	99	112	94	157	96	(9)	:-	233	33	279	377	313	94	153	9.9
	34	- 25	74	95	114	99	154	34"	: 94	26	234	-33	274	36	314	94	354	93
	*	92	· ·	93	115	22		24	135	47	135	- 34	25	34	325	97	355	9 7
	16	96	76	37	116	94	256	27	196	37	136	34	23	24	325	-4	256	34
	22	20	70	21	117	67	157	7/ 0F	170	22	199	- 2		20	217	99	257	39 Hi
	าจ	35	79	39	113	39	158	97	199	75	138	97	279	35	21.5		158	23
	79	99	-3	50	110	94	170	67	172	20	279	34	E-9	97	919	44	359	99
	49	36	ēð	- 39	129	35			290	¥	249	- 25	190	35	320	27	24)	25
	44	70	c.i	: 7	149	- 75	160	æ	_30		7	-5	220	-	.49	77	201	72

#NACLESS: FF175110: 76.64711 MEDISTLASE NUMBER: 94 NUMBER: 95 INTERFRETATION DE PERCITATORS AFEA: DEFIC. LE VACAMINATA DE LLAMPAS DE LAMBOS E FÉRGIS. FERS FERSAS DA DE ENERT DE 1917 FERSANCE ES 10:30 AUX. A 10 AUX.

ny, se pos	CON DE AD	MA IE ELKIM	13-41	NA DE MESSES	(4 (9/4)	M.M. BE MEUT	on deren von	M. 15 YETT	115° 15° 4°	um de pedidi	3 3 5 5	ಡ ಕಟ್ಟ	oria e v	A RESS	Di Bert	a Haii	74 IF 4
1	94	41	H	31	94	121	91	161	91	235	81	245	Hé		H	321	95
2	24	42	35	32	- 93	122	33	162	91	271	90	242	- 75	282	32	322	36
	92	43	35	33	- 95	- 129	9;	163	21	267	:5	243	91	283	36	727	35
1	36	44	76	3.1	99	124	96	164	- 8	104	34	244	33	234	- 31	224	24
e	55	45	95	65	36	125	12	165	4	1.5	91	045	52	195	34	2.5	3.2
- 2	54	46	33	56	93	125	91	156	*2	136	22	246	2)	294	H	125	- 10
7	95	47	35	27	94	127	35	:57	26	1.07	74	147	. 30	287	94	1.0	92
	91	42	92	ŝŝ	32	128	74	163	92	298	91	2-3	· 14	198	24	1929	
	- 15	49	93		94	129	91	169	95	269	53	249	44	219	+2	3.5	42
	31	59	54	30	34	139	31	179	94	219	7)	259	25	14	12	12.	1.14
	95	51	31	91	¥	171	- 2	171	**	211	92	351	94	291	94	321	
12	32	52	33	92	96	192	95	172	31	212	99	252	36	252	34	27.2	7.2
12	92	53	93	93	92	133	92	177	25	212	2.	25	22	29.	94	222	34
34	96	54	35	4	92	:34	91	174	4.	2.4	÷1	.54	36	194	A:	2.4	#
	21	55	93	77	91	135	24 34	177			4	166	91	3.5	92	1.5	96
1.0	96	56	34	7. 76	94	136	- 33	170	33	21:	92	255	24	23-	- 2		- 8
15	94	57	32	76 37	74 34	120	- 5	177	73	2.7		257	-4	277	99	33*	92
3 -					24 36		33	178	91	213	34	22.2	14	298	91	1235	- 4
18	96	53	91	9.5	70 30	138	77 74	179	73 34	113	12	253	;4	299	92	333	25
15	96	53	92	93		139			14	55	7±	263	- 53	339		14	1 72
20	93	1	27	199	94	141	91	150 151	94	131	76 96	le:	91	101	99	.4.	15
-1	#	£1	35	181	34	141 142	31 33	182	77 FC	***	22	262	93	1/2	33	.41	91
	34	f2	91	192	99 93	142	7.5 95	182	7- 9-2		91	.63	35	323	35	340	25 25
	35	67	95			144	70 35	124	32	224	34	264	91	37.4	91	144	45
24	92	64	93	194 195	95 90	145	23	135	94	***	4	165	31	315	34	145	91
25	52	55			74 74	146	34	135	91	116	74	186	31	336	31	144	31
26	35	66	91 93	136 197	79 31	147	20	157	74 54	227	94	267	24 24	107	95	347	96
27	92	67		1/3	92	145	7. 23	133	77	229	27	263	7 4	348	31	. 343	32
29 29	94 93	59 69	36 94	139	72 94	143	94	199	- 5	234	27	144	i i	101	74 34	249	93
			74 74	110	7 - 34	153	32	190	31	257	· .	3	94	319	32	35)	31
36	91	79 71	3-	117	- 77	121	26	127	2	24			*1	311	31	251	91
	93 93			112	36	152	34	194		* * * *	#			311	93	22	91
32		72	95		70 94	174	42	152	- 4	::;	20 20	35	9	313	94	353	35
33	91		93	113		154					71	34	- 4	214	70 92	254	93
34	74	74	32	112	34			134		224	71 H			315	72 75	355	91
35	31	75	91	115	94	156	92	1.5	35	235		275	34		75 75		
36	35	75	32	115	93	156	91	196	31	124	20 25	176	32	316		356	75 94
27	93	27	*	117	93	157	-4	127	21	397		277	-1	317	*	257 251	94 12
26	91	78	-	113	*	152	7	171	•	138		- 13	*2	318	*		
39	#	2,5	31	11.5	25	153	+4	194	÷.	253	35	273	- 2	319	-	* 1	94
49	.55	89	31	:17	95	150	8	254	30	143	35	127	27	224	- 11		:5

ANALOSTIS PROPERTIS SESSIONS (ESPANDO NIRVE SE NIRVE SE NIRVE SE

NIVEL GRAVE-ESTATICO, PROVIENE DE FUGAS DE VAPOR.

APERA DEPTO, DE COMPRESORES (FBS) FECHA: 25 DE EJESC DE 1997 FESCOCO: DE 12008 P.M. A 1008 F.M.

MEM. DE MEDICION	(5-4)	NOW, DE MEDICION	19141	NOW, IS NEWSTIN	(4.3)	MUM, DE NEDECCH	19-31	NONE DE MEDICION	19(4)	um. de medicion	19:49	wa, se aesiila	25 -	NAV DE MEDITION	(9-31 N	on de redició	(8.3)
1	165	41	167	8:	105	121	194	151	214	291	195	141	1:4	291	107	321	107
2	107	42	165	÷2	197	122	107	162	:37	292	: 16	242	1,04	232	198	322	138
•	160	47	100	02	140	123	107	123	108	103	197	243	105	293	167	323	165
4	184	44	103	84	168	124	106	154	()4	274	136	244	195	294	167	124	136
5	195	45	167	85	193	125	107	45	106	265	197	245	165	135	166	325	164
6	107	46	108	36	107	126	136	léé	178	296	197	246	184	236	117	140	176
7	105	47	105	87	106	127	194	167	106	207	106	247	1.45	237	165	327	114
à	164	48	105	38	136	123	135	168	184	208	184	248	:37	238	196	223	1.4
è	165	49	105	99	124	129	166	169	195	209	106	249	167	139	194	12-	197
19	107	50	134	70	164	130	107	170	105	210	194	259		24	1.75	329	145
11	105	51	134	91	196	131	364	171	195	211	198	251	197	191	:35	:31	165
12	197	52	136	92	104	132	168	172	199	212	104	252	194	292	147	392	197
13	167	53	10€	93	104	179	146	173	199	21.3	192	253	134	293	34	393	184
14	196	54	168	94	104	134	106	174	195	214	136	254	104	294	. 46	334	176
15	107	55	196	95	106	135	167	175	164	.15	108	255	::*	275	194	325	13€
16	165	56	107	36	166	106	107	176	105	216	1,5	256	.33		194	334	138
17	167	57	196	97	164	137	16€	177	148	217	::6	257	195	297	10€	327	195
19	195	58	197	36	197	136	195	1.76	103	213	1.15	258	.34		134	233	185
:9	154	59	164	99	105	139	184	179	185	213	196	259	144	294	104	334	164
29	135	50	104	100	:06	147	105	130	107	120	157	263	. 16		105	348	195
21	165	61	198	191	166	141	106	191	106	201	163	261	164		184	341	:05
::	101	€2	165	:92	:27	[4]	:55	132	105	222	165	162	105		197	242	1.6
23	154	63	163	2//3	14.5	143	107	189	:0€	229	167	263	:99		196	343	.06
34	178	€4	1.5	364	137	144	104	184	194	224	107	264	197	304	1.18	344	113 125
25	105	65	164	125	:08	145	114	185	194	225	105	265	103	365 306	107	:≃5 :46	:05
25	176	56	105	10-	133	145	197		197	226	197	266 267	106	20°	194 194	247	195
27	103	67	194	107	194	147	105	187 138	106	227 229	126	248	123	308	104	348	105
19 74	166	62 44	194	109	197	143	186 188	108	123	239	117	269	105	303	107	249	197
10			187	F11	lan.	143	103	(3)	34	239		35	137	317	145	356	i je
	105 164	70 71	107 105	110	108	159 151	100	191	165	B	194	Ē	137	311	164	351	162
31 32	107	7i 72	105	111	108	152	104	192	116	232	:37	272	138	312	195	352	104
33	184	73	104	112 113	106	:52	100	192	. 12	293	35	379	108	313	196	353	197
34	186	74	125	114	108	.50 (54	154	134	1.48	294	33	-	:08	314	:97	354	109
35	164	-75	107	115	194	**	165	135	1	725	:66	275	134	315	105	355	164
36	104	76	167	115	106	156	176	196		136	1.35	276	135	315	.34	154	126
37	108	77	107	117	105	1.5	105	197	164	137	1.00	277	197	317	186	357	194
38	107	78	124	118	105	153	134	.98	194	136	198	273	136	319	107	358	:98
39	105	79	105	119	105	153	164	199	16"	239	104	279	117	319	198	75.9	197
40	105	90	135	126	135		194	290	147	140	594	250	.)\$	229	166	369	107

AFERA CEFTO, DE EXTRUEZOA (FERM FECHAL 25 DE ENERC DE 1987 FEFDOOR NE 16:69 A.M. A 11:35 A.M.

	,																	
N,	a is section	56.8) N	OLE CHIN	19(4)	AND RESIDEN	15 A	MAN, DE MEDICION	14 A)	un de Centra	16 A	UM, IE VEIZILIY	25.4	A.A. IE EIII.	.2 4	AND RESERVED A	29.4	W. E 18 0	34 GE 25
	1	96	41	č.	61	35	121	95	161	94	201	95	_41	-5	25.	94	7.1	95
	2	76	42	95	32	35	122	36	162	34	292	75	.41	73	252	34	322	34
	3	; :	43	94	83	95	123	96	147	34	74,3	25	143	ue,	295	30	323	34
	4	96	44	95	54	36	124	95	164	36	294	-4	244	34	134	34	224	35
	5	96	45	94	85	95	115	34	167	74		֎	245	74	.55	94	325	95
	6	94	46	96	86	25	125	:5	150	2€	266	34	246	35	256	95	Xin :	÷
	7	95	47	95	87	95	127	**	167	H	297	×	247	#	267	34	127	91
	9	9.4	13	×	88	34	129	36	163	34	265	34	248		289	- 50	725	77
,	3	96	49	94	ćž	94	129	95	169	95	209	÷5	249	- 5	239	35	1.9	H
	1)	95	59	94	90	96	150	96	179	76	210	95	253	34	230	35	710	25
	11	36	51	96	91	35	131	94	171	94	211	34	251	*	191	75	231	95
	11	95	52	34	92	95	132	96	172	94	212	95	252	75	292	35	721	*
	19	34	53	96	93	96	133	96	173	9€	213	36	253	- 75	292	94	229	96
	14	94	54	34	34	95	134	94	174	34	214	94	254	94	194	95	334	34
	:5	36	55	95	95	94	135	35	175	94	215	76	255	-4	95	- 35	335	35
	1	95	56	36	96	36	136	26	176	35	215	35	256	36	1%	94	336	96
	17	24	57	34	97	95	137	35	177	75	117	#	257	35	297	- 25	337	94
	15	94	58	36	93	35	138	95	178	94	218	34	259	36	293	36	338	76
	35	35	59	*	99	94	133	94	179	7 2	119	34	259	94	299	35	144	95
	20	35	68	34	160	94	140	25	190	94	210	35	2-9	35	309	- 75	341	74
	Ē	€	£1	98	101	95	141	44	191	95	20	25	261	36	391	95	.41	j.c
	-::	96	62	75	192	36	142	55	182	34		245	252	35	302	34	242	3
	23	95	63	34	145	95	143	36	153	95		94	263	25	303	- 4	:41	35
	24	35	64	94	194	36	144	95	184	34	224	34	2:4	25	344	35	344	.55
	25	96	65	94	105	79 96	145	34	155	34	***	34	265	36	305	34	345	25 25
	26	95	66	96	195	95	146	34	126	34	225	- 4	156	36	106	34	346	94
	27	95	67	95 95	167	96	147	94	187	74	Ξ'	- 75	257	35	30"	- 4	747	95
	26	7. H	68	7. H	193	94	142	95	138	- 35	229	- 25	isa isa	- 35	203	75	348	-4
	26	75 35	69	77 96	109	94	149	94	189	- 55	229	95	167	70 34	309	70 36	349	že
	14	7. 75	70	9.	110	76	150	- 5	139	- 12	230	7. H	270	- 5	313	36	350	70 94
		94	71	#	111	35	:51	24	191	14	(3)	-6		35	311	34	351	34
	31			25 25	112	25 25	:52		152	34	***	17		- 5		34 36	352	
	32	96	72 73	72 34	112	36	159	70 94	193		113	44	77		312			94
	33	36					150 154	- 74 55		- 7	234		274	÷	21.2	94	253	#4
	34	35	74	94	114	35			134		235	25 34			314	#	354	24
	35	96	75	96	115	35	155		.35				275	#	315	₹	355	;4
	36	95	76	96	115	35	156	25	135	5	176	-4	. 76	36	315	35	356	H
	97	36	77	95	117	95	157	94	197		117	₹.	277	95	317	%.	357	36
	38	34	78	25	115	95	153	*	195	35	118	34	273	34	318	*	258	75
	39	94	79	94	213	95	15?	34	139	#	339	*	-77	- 75	219	95	259	94
	46	35	60	35	(2)	96	163		239	- 35	.4	14	253)4	329	-5	260	- 25

ANCIEST FOREIGN STREET METHODS WENTERS AND THE DESPOSUES.

ATEA: TALLET MELA-CLO FERD) FECHAL 26 DE ENERG LE 1987 FESTOROS DE 1920 F.M. A 4020 F.M.

M.M. SE MERSON	N 18-49	RM. IE REIMIN	19(4-	NO. 15 YEARTON	(2/4)	NAME OF MEDICAL PARTY	\$9/49	44. 35 E00	19 19 AT	MAN, DE MEDICA	1914	ANY R WILLIAM	3.4	May be vertible.	79.3	Re H TITTO	19 41
4	74	41	91	31	76	121	×.	161	76	16:	11	241	15	29:	- 12	321	77
	31	- 2	73	ii.	77	122		152	- 5	261	31	141		202	73	722	82
- 1	81	45		63	7"	123	75	163	75	203		243	74	283	75	313	30
i	73	44	75	14	75	124	- 52	164	78	234	- 1.	244	32	134	36	324	77
	75	45	89	65	21	115	81	.45	31	1.5	- 1	145	-3	235	78	325	79
1	- 4	4-5	75	96	75	126	50	344		3.6	-	14	30	196	75	325	~5
7	73	47	81	17	76	107	78	iei	- 6	257		24*	73	297	39	927	73
á	62	43	77	18	75	128	31	163		1.6	-5	148	31	292	79	325	79
9	77	49	77		77	(5)	82	169	8:	209	75	249	- 8	197	*9	329	25
10	77	50	74	#3	73	130	75	170	73	210	79	256		(e.	31	220	22
ii	:3	51	78	91	69	171	87	171	52	211	75	251	39	291	32	131	~9
12	78	52	87	92	72	192	76	172	21	212	74	252	74	232	77	330	75
19	80	53	75	93	75	133	77	173	79	213	76	253	72	191	30	338	75
14	- 30		58	34	79	134	76	174	79	214	33	254	75	294	76	334	76
15	78	55	81	95	81	135	79	175	76	115	73	255	77	235	81	335	78
16	79		75	76	79	136	82	176	83	116	- 33	256	- 52	196	75	336	76
17	77	57	61	97	77	137	79	177	76	117	âl	257	52	197	81	337	77
18	76	58	79	39	77	138	31	179	-5	219	73	258	30	298	81	333	:1
19	53	59	81	99	88	139	79	129		219	75	159	77	239	78	229	77
20	79	60	77	166	75	140	30	1±0	:2	23	31	258	32	369	52	349	76
21	80	61	78	161	75	141	52	191	*6	.21	31	261	62	201	36		80
22 -	82	- 52	81	132	30	141	- 21	132	19	111	-9	262	7	392	~5		ė2
23	52	63	76	195	82	143	- 81	183	20	113	76	243	76	363	21	343	79
24	75	≟4	77	174	79	121	13	154	3:	224		264	32	Ju4	30	344	73
. 25	. 82	€5	77	105	75	145	25	135	79	:::	-6	265	77	305	73	345	92
124	81,	- 66 ·	78	135	73	145	79	136	75	126	91	2±€	32	386	31	246	18
27	79	67	75	197	31	147	79	:37	79	227	7	297	8:	397	69	347	ál
1 23	. 73	53	75	169	39	143	30	192		229	75	263	78	205	76	349	33
29	82-	69	76	129	69	147	79	199	73	229	-13	163 279	77	369	17	249 353	32 31
30	78	79	73	113	79	150	11	194	75	223	-	251	77	210 311	79 76		21
31	76	71	77	111	77	151	32	191 192	95 80	134 132	-3	:4	73	312		251 352	91
32	81	72	81	:12	77	152 153	73	195	:: -:	232	++	Ħ	7.9	312	32 30	351	51 79
32	77 -		77	113	91	15a 154	31 76	197 194	: 15	234		274	33	314	90	354	79
34		74	77	114 115	92 73	155	- 81	. 74 135	- 3	275	31	275	27	315	81	355	78
35	75	. 75	83	115	75	106 106	19	íH	81	235	- 2			315	75	354	-3
9	77	76	77	115		157	75	(97		237 237	1	277	12	217	77	357	76
37	81	77	75 77	117	75 76	125	7	191	- 4	131	- 7	173	-3	215		358	i2
36	?6 80	7? 7?	£2	113	77	159	- 6	199		(%)	-:	1-4		319	32	359	
39	69 76	79 89	17		75	157	77	255 255	- 4	249		220		323	33	369	Ý
49		57	.5		70									/			_ ′

NACISTA PARMETON TRUESTS NESTRONG NUMBER TS NUMBER 62 INTERPRETACION DE RESULTANCES

WIVEL NORMAL.

AFER OFFICENCE OF LA FLAMES OFFICE FECHAL 27 DE ENERG DE 1987 FERTINOS DE 9 A.M. A 10 A.M.

NOW, DE MEDITION	19.47	NOW, SE MEDICION	58/41	MON. SE MEDICION	09161	NEM. SE MEDERAN	59:41	NA. SE MINTON	19.25	NATION TEMPORATION	14.21	N.B. 1E STORY	14.41	value attitiv	15.2	WALLE SELLEN	(2.3)
																	1
1	75	41	75	81	77	121	77	161	76	191	1	340	-7	19.	٠.	121	1
2	7 6	42	75	32	71	122	75	161	75	192		141	79	282	-	324	177
3	75	43	75	83	77	123	78	163	73	292	76	243	7.9	253	- 3	327	72
•	75	44	75	84	75	124	ō	164	75	284	75	[44	"5	4	"3	324	1.7
5	76	45	77	25	7.	125	78	165	72	145	75	245	79	265	-9	3.5	- 5
5	79	46	75	36	Ťê	126	7.9	165	77	206	77	246	76	236	79	725	78
7	78	47	76	87	79	177	73	167	79	267	78	247	75	297	76	327	7:
3	75	48	76	33	76	128	78	168	75	238	77	243	78	138	78	129	7
	73	49	75	89	79	129	77	1:9	77	299	79	249	78	269	77	229	75
10	75	50	75	99	*5	136	29	179	76	210	~5	259	77	299	77	259	: "9
11	7₹	51	75	91	7£	131	74	171	7.0	111	~e	751	77	291	77	391	13
12	78	52	78	32	77	132	77	172	73	212		252	17	292	-7	332	
13	78	59	78	93	77	133	75	173	- 77	213	7	253	78	293	7:	294	- 1
14	79	54	79	94	77	34	76	174	77	214	~~	254	*5	234	13	114	
15	77	55	78	95	75	135	77	175	79	215	77	255	7.5	235	77	111	. 35
16	77	56	75	36	79	136	7.9	176	75	216	75		73	296	76	101	**
17	7.9	• 7	76	97	75	157	79	177	79	217	7	207	75	237	73	137	7.5
18	77	53	79	99	77	173	77	173	75	217	78	253	~9	199	75	232	- 1
19	77	59	79	99	~7	199	75	179	74	219	~6	153	77	299	75	308	14
25	76	55	79	103	35	149	.:	150	~		78	264	- 77	30	73	243	. 3
21	75	€1	75	181		141		181	78	21	77	161	79	191	79	341	73
22	75	£2	73	162	7	142	73	132	~7	111	7	191	7	332	75	342	77
23	79	43	75	103	77	143	-5	183	~?	***	7	263		263	77	343	73
24	79	£4	7.7	134	75	- 144	7.	194	79	224		264	79	294	77	344	. 3
25	77	÷1	79	195	75	145	72	135	7	225	-e	265	79	365	77	345	77
26	79	61	78	196	75	146	75	136	"ś	-12-	79	150	- 77	266	7	346	.77
27	75	€7	75	197	-3	147	75	187	7.5	227	7	257	77	367	7	347	75
28	79	69	75	103	- 1	148	75	138	75	228	-5	168	79	368	-7	343	:
25	79	£9	75	1(3	77	145	78	189	- 77	229	7	169		303	73	349	. 7
36	77	70	73	117	75	150	75	199	-5	230	<u>`</u>	279	75	312	`s	350	
31	76	71	79	111	75	151	78	191	15	231	- 1	27	79	311	76	.71	e
32	79	72	76	112	79	151	73	192	7	232	77		- 7	312	72	352	- 7
23	78	73	75	113	75	153	75	193	77	233	77	173	77	313	- 77	253	75
34	78	74	78	114	79	154	.78	194	75	234		[74 	73	314	75	. 14	
35	78	75	75	115	79	175	7	195	74	235	7		-	315	79	355	76
36	78	76	75	116	-3	it-	75	136	- 17	138	-	275	- 22	316	75	He	7
57	76	77	76	117	79	157	77	197	- 77	£27	7	4	77	317		35	12
38	75	75	₹,*	115	72	158	7.5	191	7	231	73	113	"	311	-3	368	75
39	79	79	75	113	78	159		199	79	119	77	27 6 25	79	319	76	35 P 160	73
4)	73	30	75	103	73	ić.	ŝ	208	**	2+9	۰	-:-		323	7	.20	

ANALYSIS FENETIS FILES AFTER STORY STORY OF WHAT ITS INTER-FRENCE FERENCES SEMI-GRAVE, NO EXISTEN PROBLEMAS.

When there is contain a forthermity is to tiles for all other and α for α) for a tile data in the form of the form is to data in the $\alpha_{\rm th}$

NUK. SE MELIKIN	j# 4+	SUM, SE MESSION	18-4	NUM, SE MESSION	(EG)	NW IS SELECTION	58.41	NA DE MOTOR	19 41	NA, 15 ACTION	19 -	NA SE PESSION	18	GN. 18 KEDDISK	14 -	જ.લ દ્વા	N Hee
i	::	41	88	81	59	521	2.7	161	11					***		321	
2	83	42	59	62 62	88	4.53	38	162	- 11	261 262	37 38	141 141	- 13	181 192	33 38	322	29 28
	56	49	89	9	29	127	93	161	- 27	263	#	· 🔅	33	252	29	221	16 .
ĭ	88	24	33	24	2.9	124	- 22	144	14	17		 242	33	274	9	324	
	85	6	83	£5	33	125	- 5	167	66	105	65	245	122	200	19	324	## 25
	13	46	69	26	89	124	- 1	166	15	2.5				255 256		24	39
-	6.0	40	23	87	88	15"	- 27	167	39	207	38 36	345 34	39 36	257	63	327 -	37 88
	89	47	12	38	33	1.5	89	163	98	244	10		200 24	ii.	11	318	::
1	83	22	33	35 35	11	123	99	169	99	264	12	4-1 24,	34	289	99	224	55
ń	35	53	11	37 20	22	139	9	179	- 55	713	39	25.	:3	299	37	220	33
ii	29		84	11	57	171	33		- 25	31	27	iŝi		291	38	331	. 39
12	38	::	59	92	3.9	172	17	172	13	7.1			13	192	53 53	332	. 07 27
13	86	12 53	81	93	89	133	67	171	12	213	12 19	252 253	33	293	36	332	27 27
14	89	54	88	20 34	55	104	39	174	33	214	17	202 254	22	273 274		333	17
15	63	55	9	35	79 23	105	;;	175	34	115	10 19	23	29 29	295	69 66	335	12
15	92	55	- 22	,, H	19	136	33	175	39	316	39	259	77 33	196	12	33	44
17	- 11	57	2. 2.	97	1.9	197	88	177	22	217	39	37	53	19	- 10	27	4
. 13	99	52	19	98	17	177	89	175	38	219	27 86	158	17	299	39	336	11
19	83	ŝ	82	99	85	135	89	179	37	219	**	100	12	393	95	327	89
26	83	60	33	132	99	141	12	(3)	11		15	247	- 5	30.1	11	(an)	37
21	39	53 51	59	161	17	[4]	88	123	- ::	iir.	12	277 281	17	207 201	98	141	36
22	15	71 62	17	192	13	141		150	11	4.4	14	::: :::	- 17	772 772	::		25
23	89	69	55	101	91	142	39 33	183	- 12	***		161	- 15	2.5	:2	343	;
24	33	54	39	194	83	144	#	194		234	12	124	:3	3.4	: 3	100	23
25	29	és.	23	105	86	145	3.2	185	32	135	92	17	14	- 1	11	1-1	ŝŝ
26	22	46	33	126	12	144	33	136	13	111	11	255	33	24	39	46	89
27	99	67	85	167	41	147	44	127	12		24	34	39	307	34	247	86
23	9	68	3.0	131	-	148	18	158	36	223	23	263	39	394	- 19	342	59
29	25	69	33	169	- 11	;±}	- 6	199	į,	29	17	1.9	36	399	39	(4)	88
33	89	79	3.2	117	- 11	150	- 11	.30			23	.70		215	33	178	12
31	69	71	13	111	21	12:	41	3.5	- 11	231	14	Fi	38	311	34	251	- 63
32	88	72	+2	112	37	152	- 11	.92	13	132	9	:÷		312	39	352	13
35	36	73	99	117	13	153	31	193	- 67	239	- 88	iii	23	213	29	353	13
34	98	74	- 33	114	33	154	- 65	194	12	114	- 11	174	23	314	÷5	374	;)
35	63	75	36	115	55	/交	- ::	:95	28	235	5.5	275	18	315	34	:55	34
36	29	76	89	116	39	176	33	1.84	33	236	58	1.6	33	316	17	355	35
37	65	77	39	117	98	157	::	197	81	237	38	277	- 56	317	23	357	29
36	29	78	39	113	23	158	÷÷	199	22	139	14	2.3	33	313	33	456	39
39	86	79	33	119	89	159	ė÷	199	9	293	:6	279	38	313	32	359	àź
40	39	85	ê÷	126	59	150	:)	223	37	249	38	239	33	325	39	350	39

NIVEL NORMAL-INTERMITENTE.

4.34

ASEA: DEFTO RE CONSTRUCCION DE LLANTAS DE CAMBON (Î) UFA 2) FECHA: 31 DE EMBAO DE 1987 FERIOLO: DE 4 F.M. A 5:30 P.M.

NEM. DE MEDICION	25,5	NAME OF MEDITION	SE Ar	WW DE WEDDIN	15(4)	WWW. TE MEDICION	98481	HAM. DE MEDICOON	29(4)	ACAT DE REFORDOR	25	MAN, DE TELLION	13 /-	W6	18.3	er a fairi	3 19 7
1	56	41	82	81	83	121	63	161	9.0	201	36	241	86	261	89	321	15
2	99	42	22	82	39	122	23	162	21	242	34	242	39	282	23	322	99
3	85	43	83	83	25	123	83	163	27	787	82	(4)	33	283	32	323	91
4	32	44	23	24	35	104	54	154	54	234	39	144	3.3	194	34	224	\$9
5 .	85	45	82	25	54	175	£3	165	33	205	13	142	80	265	94	325	a:
6	35	46	16	86	36	126	33	165	35	206	33	24-	90	196	35	325	35
. 7	81	47	60	87	85	127	83	167	94	207,	91	247	:5	267	53	227	85
3	83	43	83	88	83	123	65	168	35	263	30	243	:3	189	31	3	- 55
9	85	49	82	89	83	129	62	169	₹5	299	93	149	33	269	£3	329	85
10	84	50	80	90	82	133	સંદ	170	81	210	32	250	32	299	34	330	35
11	84	51	81	91	85	131	84	171	94	211	81	251	54	291	50	221	€6
12	83	52	92	32	25	132	92	172	34	212	81	252	:5	292	ð5	992	63
13	84	53	81	93	84	133	81	179	60	213	39	253	63	293	31	333	83
14	80	54 - 55	82	94 95	35 87	134	63	174	25	214	31	254	33	294	35	334	94
							28	175	85	215	35	255	81	295	85	335	85
1A 17	63 97	56	82 oe	95 97	33	136	63 61	176	99	216	53	156	83	196	ál	776	84
19	84	58	83		33	178		177 173	82	217	89	257	81	297	91	297	64
10	0,	70 F3	29	98	23	170	80 98	179	89 83	218 219	15	253	54 83	236		308	92 84
26	81	60	85	100	80	143	35	189	35	229	81 35	259 260	20	199 360	87 34	239 343	34
21	62	£1	60	121	64	131	01	100	34	27	81	261	81	301	51	541	83
22	88	62	85	162	86	142	94	182	59	***	39	252	33	302	34	342	22
23	57	65	81	165	85	142	ä	187	35	223	99	263	30	203	54	347	
74	81	64	35	104	2 2	144	35	164	39	224	34	254	35	324	82	344	83
~		24	2.7	105	01	1 15	84	185	3.	575	55	265	34	365	85	245	- ::
24	€5	€6	83	105	81	146	32	156	7.4	226	32	266	32	205	15	344	24
77	C-F	ביז	25	117	24	147	37	127	12		52	267	32	307	29	347	35
28	83	58	53	143	32	149	32	156	3.0	223	13	268	53	393	36	348	29
29	85	69	- 35	1,34	8;	144	85	199	71	2.29	35	249	:5	309	ĉ1	:49	45
30	32	76	82	117	31	159	23	140	85	133	10	273	35	219	32	353 1	81
31	83	71	81	111		(°)	33	191	55	131	3:	:".	35	311	32	251	èú
32	31	72	60	112	36	152	35	192	34	232	:3	272	52	312	31	352	€4
**	¢e.	75	85	117	26	153	35	193	60	233	33	273	÷2	313	32	353	91
ય	34	74	34	114	55	154	33	134	52	134	:)	274	-19	204	35	354	30
*	22	**	97	1+2	97	152	21	125	.27	7.75	if	177	-4	315	92	25	30
34	84	76	52	Hé	31	154	83	176	, 35	236	34	275	34	11:	93	25e	31
27	95	71	\$#.	117	61	157	2.3	197	95	237	52	277	35	317	33	357	34
22	50	76	94	113	64	152	::	152	2.3	236	33	273	25	319	31	255	31
nc 	27	70	55	114	ca.	163	25	199	84	799	38	279	:1	319	35	259	63
44	32	20	82	129	à2	153	30	110 .	32	24)	31	18)	23	329	3.4	368	33

APEA (ESTO LE COATRACTION SE LLAVARS BATEA DE ALTAFORIL. PA D. FECAL: 1 LE FERRET DE LEST FECILLO: LE 1015 API, À 1115 A.M.

																and the secondary	
MUF. 12 72.2020	.h .: - :	in an annual season	25	MIT. TE MENTION		personal personal	12 9	A. 15 8 11 11 A	75,7,	NA . C . S T N		Territory and the second		ANY DE PENDICION		NOR SE PERSON	-5
														***	- 4		
1	41	41	62	\$1	::	111	26	151	61	101	és	141	1.	291	42	121	66
2	€1	42	63	82	64		43	162	÷2	192	14	142	13	292	13	322	έt
,	41	45	64	61		115	-1	-61	64	143	-51	143	12	293	1.0	223	62
4	61	44	54	84	61	124	- 61	154	-1	294	:	144	-:	184	-2	324	12
	47	45	50	36		175	21	128	21	1.4	4.1	.74	- "	106	4.4	115	6 3
4	6-3	4.6	€2	36	-22	116	63	163	7.4	201	7.5	246		256	: 4	326	43
,		**	40	: "	4.3	t 77	44	147	- 3	707	5.0	147	1.1	267	1.0	321	51
٩	63	4.8	63	53	62	125	:1	165	53	134	44	143	- 5	288	:2	11: :	÷.
3	é-i	49	61	£9	63	109	6 1	169	60	249	- 41	243	+3	299	42	323 (ξï
19	63	58	64	96	ť.	130	€3	:73	63	218	- 53	25	- 60	257	62	134	62
11	64	51	€2	91	63	131	€2	171	59	211	+1	151	\$ 7	191	:3	391	52
12	69	52	£1	92	-4	132	64	172	50	212	:2	252	-3	292	52	320	£3
13	€1	53	61	93	€0	133	60	179	62	215	62	253	51	293	-4	233	÷2
14	8.0	54	:0	34	59	134	-1	174	÷i	214	54	254	- 64	294	4.2	334	62
15	47	FC	41	95	6.4	135	44	175	64	1:5	- 4	255	63	235	61	225	42
12	67	56	5.2	}	64	136	- 62	175	64	216	-4	156	52	296	- 52	33e /	€:
17	£4	57	61	97	64	137	63	177	64	217	53	257	- 63	257	-1	127	- 60
15	44	59	62	33	61	133	63	173	- 51	218	- 3	256	- 4	293	+2	103	24
19	69	53	60	99	63	129	63	179	43	213	41	259	69	299	-4	124	43
29	€1	69	- 11	174	60	143	ė3	150	- 61	129	- 11	168	-64	39)	- 2	145	69
21	63	έl	60	191	61	141	- 61	131	- 23	23	+3	261	- 4	561	-4	14	- 4
22	51	52	50	192	44	141	41	162	- 33	112	52	362	-4	392	13	341	64
2)	€:	69	61	163	é;	143	- 12	1.5	2.5	223	- 24	20	-51	362	42	543	- 61
24	60	64	61	194	40	144		184	+2	234	- 4	264	53	134	- 4	344	÷3
25	£4	65	75	105	ě.			:25		225	-4	īde.	52	305		145	63
25 26	6	65	52	105	ći	14:	- 6	124	50	122	22	ine.	54	14	-4	346	52
27	46	-	60	107	€1	147	- 41	197	4.5		4.1	35	÷3	367	40	ja*	63
28	61	-2	61	198	63	123	64	158	42	224	÷	268	52	306	52	45	42
19	64	63	45	114	-0	144	62	189	- 2	Ξ,	-1	269	-4	307	:3	349	61
37	67	79	41	115	64	15:	- 53			259	- 2	279	:3	313	53	350	- 44
Ý.	61	71	-61	111	44	151	4.7	191	23	151	- 23		-4	711	64	351	-2
72	62	72	54	112	64		-	192	::	292	:.		52	312	-3	151	77
32	60	73	64	123	#4		- 63	193	- 22	791	43	273	+2	313	42	352	έί
34		74	61	114	60	174	- 60	194	62	234	= 7	134	-0	314	-3	354	±2
	61				63	120	61	175	27	275	63	:- 3	52	315	50	355	61
35	Ei	75	61	115		.55 :56		196	- 62	225	- 61	276	54	215 216	51	251 254	50
36	62	76	64	116	£1			197	- 42		11	277	54	3.5 317	51	257 257	60
37	64	77	63	117	63	157	54	193	64	138	1	178	64	317 318		252	60 61
38	53	78	53	118	58	153	63 64	175	54 61	132	- 17	176			- 60	216 259	
39	ಟ	79	€1	119	62	159		5 4 4 25 5					ěI	319	62		84
43	śi ·	99	62	120	έı	160	43	2.4	£1	210	41	229	÷1	329	ti	363	61

when the continuous products to the costs with a series of an effect to their expects to the costs of the co

nuy, de reddd	7. 18°E	KIN IS TELLER	13.4	53 E 6000	3.8	MT. 18 (\$570)	15-49	Rest 15 YEAR PER	19.4	MAR. DE MESSION	:: '	NAME ARE SELECTED	33 .	5.5 E E.	.00% DB -8	p. 4. 12 (£011)	
	1.	43	94	91	84	101	85	161	34	261	36	241	š-	251	: 14	121	54
	3.6	42	94	52	36	E .	34	162	35	292	14	. [4]	- 1	282	.4	111	1
	94	43	1,4	93	64	193	54	163	96	. 263	14	741	10	289	8		1
	14	22	55	- 34	3.4	114	35	184	36	234	- 65	24	12	294		324	1 20
ξ.	14	45	94		35	::5	34	124	. :e	- J4 - Cur	36	14	46	245	. 34	2.5	
- 4	9.5	46	1	žė.	34	125				136					34		
	24	47	95	50 57	86		34	168	35		:4	246	54 4	256	- 35	324	:4
,						127	36	167	35	267	66	247		267	31	327	1 3"
	34	43	ě	38	86	123	:5	168	:5	268	34	248	14	253	75	323	31 34
ŧ.	84	49	85	89	84	139	56	149	54	26.7	86	249		269	34	317:	12
19	85	59	36	99	34	170	35	179	34	219	36	151	4	250	34	326	29
13	ê£	51	56	71	\$6	131		175	94	211	25	151	34	191	- 54	531	86
12	86	52	35	92	54	132	24	171	17	212	34	252	36	292	35	332	86
13	95	55	ē4	93	85	133	25	173	35	213	85	253	15	299	94	223	94
54	35	54	35 .	3.2	35	134	86	174	35	264	34	354	- 4	234	55	334	25
15	65	55	ĉŕ	25	100	115	5e	175	32	316	84	755	15	195	25	135	85
16	34	56	34	76	84	115	35	175	±4	216	- 55	256	55	276	34	336	- 4
17	86	57	9.6	57	35	197	35	177	5.5	217	24	257	24	397	35	197	14
13	36	58	95	93	25	132	35	179	54	219	94	153	:5	223	- 24	223	71
19	34	59	85	59	88	129	άĒ	179	- 34	219	į	259	- 56	39	34	232	1-
28	94	59	54	169	24	140	34	180	a.	229	34	260	24	203	23	244	25
21	35	61	ģΔ	101	35	140	56	191	84	444	35	261	25	201	94	341	94
22	96	52	35	125	35	140	35	132	34	2.3	36	1.2	36	31	:6	142	34
23	85	+9	95	163	15	143	35	153	86	***	36	363	34	3:3	35	147	
24	31	64	34	104	1.5	144	11	134	15	54	14	254	27 94	124	94	244	34
	83	65	- 8	1.75	34	145	12	- 54	12	***	- 15	15	3	365	24	325	65
2		46	34	171	- 1		18	.86		113			25				
2	25 65	67	24 24		95	145 147	- 25	.00 (87	#	:::	- 4	260	:	lve	ĉé ce	(4) (4)	15
	34	1		• • •		149	34					257		367	96	349	- 5
20			35	1.1	:1		12	158	-1	223	95	268		203	#		• • • • • • • • • • • • • • • • • • • •
-1	84	19	98	.13	÷	149		127	14	139	35	269	15	998	11	124	::
30	:5	79	1.1	***	23,	121	-1	190	24	233		279	:4	207	1.4	251 [if.
21	84	71	85	111	:1	154	ĉć	191	51		:7	271	14	311	14	3 ⁶ 1 - 3	34
74	84	72	95	112	31	111	65	192	11	232	24	272	35	34.2	35	4411	36
35	54	73	94	115	57	įe;	- 84	197		237	:-	279	4	34.2	- 65	101	34
Э	64	74	64	314	36	154	74	134	64	234	÷	174	85	2.4	36 -	754	55
-35	94	75	65	115	86	155	\$1	131	- 34	174	15	177	14	AT.	12	35	34
34	€€	74	36	116	34	155	52	194	10	2%	. #	276	ić	326	75		35
. 37	35	77	94	117	96	15"	44	197	35	237	36	277	14	347	Ħ	217 - 1	15
38	31	78	24	111	44	.55	34	180	188	133	35	2*3	#	215	16	253	26
39	36	79	45	114	14	:59	- 24	199	- 4	239	95	279	85	318	. 35	5	ř.
43	96	20	- 11	142	34	263	36	294	- 55	243	į,	240	:4	329	1	Sep 1	34

CHANTIFICACION DE LOS NIVELES ROXEROS / ENCIPO: SONOMETRO PLEST

WERE PERFOR THE CONSTRUCTION HE ELEMENTS HE CANDIDATE (FAS)

FECHA: 2 DE FERFERO DE 1987 PERIODO: DE 4 PM A 5 PM

NOW TE RESIDION 1898) NOW TE RESIDION 1899 NOW TE RESIDION 1890 NOW TE R ÷ ~ D:e 5.7 1.3 ÷ 1.71 :4 -5 :4 7.2 -3 3; ŝi -5 2:9 ٠. --34; 9) :43 :03 ie: ċ4 3; 7.5e :5 24.2 -3 ٠, îė. ::: :: -5 31: :32 ... Œ 8) Z. :5 ٠,

-137-

ANALISIS: FFONEDIC: 81.12778 VES:81.33 Nieum): 75 Nieum): 85 INTENTRETACION DE REIRETACOS

NIVEL NORMAL.

FiG. 2

Th esta foto se muestra la manera en la que se calibra el .sonómetro.

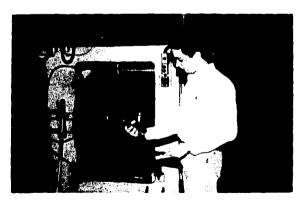


Fig. 3 Les mediciones efectuades fueron situadas en diversos puntos de la planta, para establecer unos parámetros más reales.

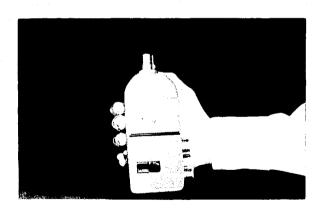
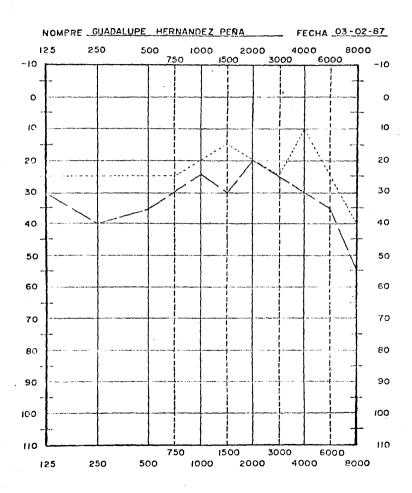


FIG. 4

En esta foto se muestra el sonómetro marca Quest, Electronics Ansi 51.4, Type 2 con el cual fué hecho el estudio.

Estas mediciones se tomaron a 1 metro de la fuente generadora de ruido.

6.4; ESTUDIO AUDIONETRIOC A MUESTRA ALEATORIA REPRESENTATIVA DE MA POELACION PRODUCTI-VA DE LA EMPRESA. A continuación se encontraré un muestres de audiometría -- (estudio de agudeza auditiva) a 150 trabajadores, que representan el 15% de 1900 trabajadores aproximados en la mencionada-- plante, dichas trabajadores fueron tomados de los departementos donde existen niveles de ruido altos y contínuos y en este trabajo se reflejan los casos más representativos.

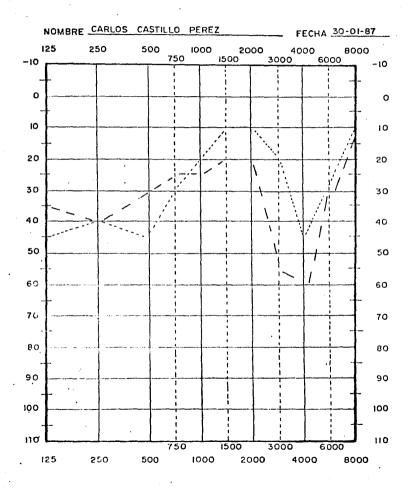

El objeto de este estudio fué el de detectar al personal - que presenta problemas de hipodousia (disminución de la audición).

Para la realización de este estudio se contó con una cámera sonoamortiguada, con un audimetro marca Tracor, Ra-226.

HIPOACUCIA NCDERADA

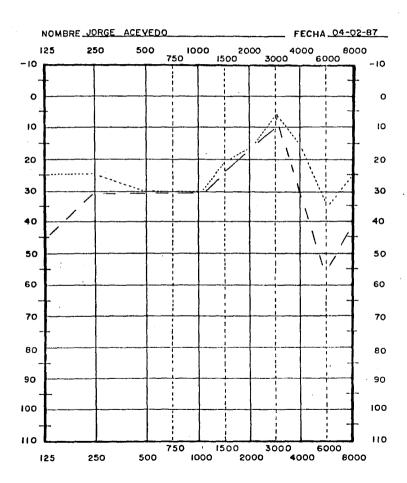
ESTUDIO AUDIOMETRICO INDIVIDUAL

NOMBRE GUADALUPE REENANDEZ PERA		FECHA_FEBRERO_1987
EDAD 42 AGOSTO. TARJETA 0084	PUEST O	CALANDRISTA
DEPARTAMENTOCALANDRIA		PLANTA 2
ANTIGUEDAD EN EL PUESTO 12 AROS AN	TIGUEDAD EN I	LA EMPRESA 15 ASOS
SALARIO DIARIO ACTUAL 8 712 46 TIEMPO	DE EXPOSICI	ON <u>07;30 HORAS.</u>
EXPOSICION EN DECIBELES DE ALTIMAXIM	O PERMITIDO	90
DOSIS AL DIA (+ 13) EQUIF	O DE PROTECC	ION



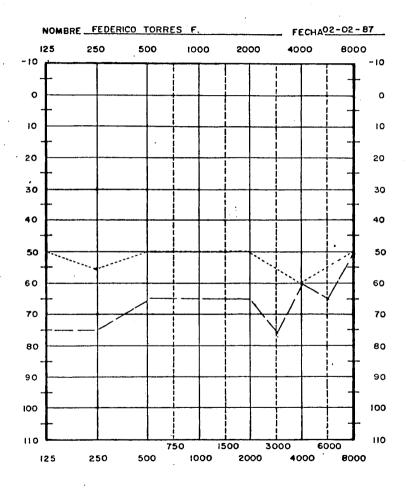
MIPOACUCIA GRAVE

-146-


ESTUDIO AUDIOMETRICO INDIVIDUAL

NOMBRE CARLOS CASTILLO PEREZ	FECHA	FEBRERO	1987
EDAD 34 AGOS No. TARJETA 641 PUESTO VUL	CANIZADO)R	
DEPARTAMENTO VILLE TULKA TIQU		_FLANTA_	2
ANTIGUETAD EN EL PUESTO 4 ASOS ANTIGUEDAD EN LA	EMPRESA	7 A515	
SALARIO DIARIO ACTUAL 6,847.61 TIEMPO DE EXPOSICION	8 HORA	S	
FXPOSICION EN DECIBELESº6,307,114 MAXIMO PERMITIDO	90	• · · · · · · ·	
DOSIS AL DIA (+ 17) EQUIPO DE PROTECCIO			

ESTUDIO AUDIOMETRICO INDIVIDUAL


NOMERE JORGE ACEVEDO PATIRO	FECHA FEBRERO 1987.
EDAD 29 ASOS NO. TARJETA 1507 PUESTO	AYUDANTE GENERAL
DEPARTAMENTO VULCANIZACION	PLANTA 2
ANTIGUEDAD EN EL PUESTO 1 ARO ANTIGUEDAD EN LA	•
SALARIO DIARIO ACTUAL 4,656.26 TIEMPO DE EXPOSICIO	
EXPOSICION EN DECIBELES97al07 MAXIMO PERMITIDO	
DOSIS AL DIA (+17) EQUIPO DE PROTECCIO	ON

HIPOACUCIA CROMICA

ESTUDIO AUDIOMETRICO INDIVIDUAL

NOMBRE FEDERICO TORRES FUENTES	FECHA	FEBRERO 1987
EDAD 26 ANOS NO. TARJETA 1173 PUESTO	VULCANIZADOR	
JEPARTAMENTO VULCANIZACION	P	LANTA2
ANTIGUEDAD EN EL PUESTO 11 MESES ANTIGUEDAD E	N LA EMPRESA	2 AROS
SALARIO DIARIO ACTUAL 6,847.61 TIEMPO DE EXPOSI		
EXPOSICION EN DECIBELES 90-107 MAXIMO PERMITID	0 90	<u>}</u>
DOSIS AL DIA (+ 17) EQUIPO DE PROTE		

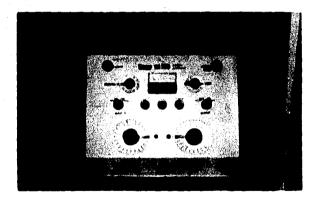


FIG. 5:

Aquí se muestra el AUDIOMETRO marca TRACOR RA 226, con el cual se realizarón las pruebas de hipoacusia.

FIG. 6:
En esta foto se puede observar la cámara sonoamortiguada.-Los audifonos están conectados al audifactro, y el interior --está sellado con polictile.o.

6.5.; ACCIONES DE CONTROL.

- 1) Fare el estudio del inciso 6.3, se recomiendan las siguien-tes sectiones de control:
 - 1.1) La primer lugar dat r of personal de les éreus con mayor ruido de : CONDENS AUDITIVAS por que:
 - Son higi čnican
 - Ficilmente distinguibles
 - No produces diteraciones secuadorias.

Este medida serfu a corto plezo mientras se instale la puesta en príctica de las correciones a las fuentesemisoras de ruidos.

- 1.2) Se recomiendo controlar el ruido de:
 - Fort inflidares.
 - Fuges de vapor.
 - Pistones de les méquinas constructores de llentas.
 - Compressives.
- 1.3) Al existir diverges tipes de equipos para el control del ruido, es recomendades (deptor)
 - Silencindince (Fost infladance)
 - Guardas de malin (Listines)
 - Naterial antivibriania (Fistines y compresores)
 - Condensationes de v. por, silenciacores (fuges vapor) y decCours de Cira.
 - La addisición de un conómetro para:
 - -Difectuar mediciones periódicas.
 - -Afferder un control más preciso para las éresa problema.

- 2) Pera el caso del 6.4, se recomiendan como medidas preventivae:
 - Hiponousin Moderada. Usar durante horas de -trábajo COUCHAS o TAPONES auditivos.
 - 2.2) Hiponousia Grave.- Transladar al personal a ---otra érea de tratajo, en caso de que se pueda
 realizar, y a su vez el uso de conchas o tapones auditivos durante el turno.
 - 2.3) Hippacucia Grínica.- Inevitable cambio de área con el uso de conchas o tapones auditivos.

A su vez se aconseja la adquisición de un aparato -- (AUDICMETRIOD), para realizar los estudios trimestrales -- como lo contempla la S.T.P.S.

De igual manera contemplar los siguientes puntos:

- Chequeo continuo de los trainjadores que recultaron de este estudio con proficmos de hiponoueis.
- Recvaluación del personal con aperato audiométrico después de perados dos meses laborando con conchas o tapones auditivos durante su jornada de trabajo.
- Implantar en el examen de ingreso a todo el personal, a que se someta a un estudio audiométrico, pa ra evitar el ingreso de los trabajadores con daños auditivos, y que después causen problemas para laempresa.

Se les ofreció a los obreros tapones para oidos así como -- prejeras tipo concha, se usaron según el área y la exposición.

FIG. 8 Se instalaron silenciadores como el que se ilustra.

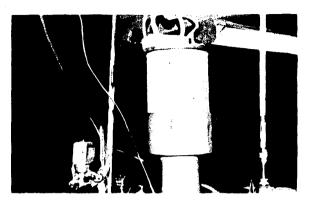


FIG. 9
Uste tipo de silenciadores con mella fué instalado en los lugares que observaban desfoques y escapes de cire.

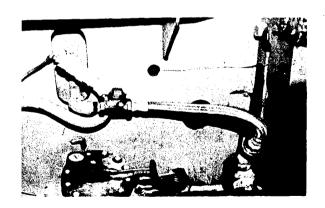
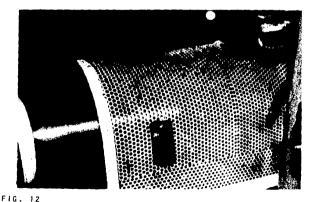



FIG. 10 Se enchaquetaria diversos tuberias en las terial entivibración para evitar vibraciones y fugas de vapor.

FIG. 11
Para el caso de les bombas, se observa las GUARDAS DE MALLA
instalades.

En los equipos que se encontraba, con une gren centre Ce --fuerze; se inetalaron mellas que cispersaban las posibles vibra
ciones por choques.

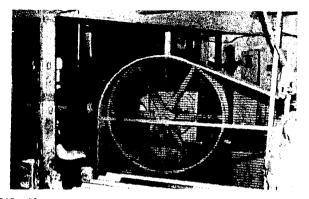


FIG. 13 Para les bandas, se utilizó malle más abierta, como la que se observa.

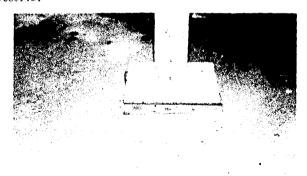


FIG. 14

Se instaló material antivibración (placas de hulo vulcaniza
do) para evitar la transmisión de vibraciones por el suelo, deesta manera los soportes de varios equipos quedaron seguros y se evitó el posible ruido que pudieran ejercer.

FIG. 15

En esta foto se observa claramente el tipo de material antivibración usado, el cual tiene un espesor de 3 a 5 mm.

6.6: CONCLUSIONES.

Como se observí, los estudios llevados a cabo reflejaron fielmente el problema existente, así como el porque de escoger a esta industria en particular para el desarrollo de esta tesis.

A partir de estos estudios en Compañía Hulera Tornol S.A. de C.V. se nan implementado un sinfín de medi
das, algunas de control directo y otras de prevención, así como la instalación de un departamento de control de
ruido, el cual realiza mediciones continuos para ejercer
una estrecha vigilancia sobre este grave problema. Comoonexos se encuentran las tablas de los departamentos con
mayor problema, estos tablas indican mediciones subsecuentes que indican lo que se logró reducir después de lainstalación de las medidas preventivas propuestas para las áreas que presentaben un meyor o más grave problema.

Agradecemos e la Compañía Hulera Tornel J.A. de - C.V. el haber escuchado nuestras recomendaciones de adquirir un sonometrá.

A lo largo de este trabajo, se encuentra todo el -material disponible y necesario para el establecimientodo las medidos de control, así como para evitar el incurrir como empresa en la decidia de no implantar las acciones necesarias para que los empleados que laboran ten
gen una vida sana y de esta manera correspondan con el desarrollo de un trabajo más responsable, mejor y sobretodo con el interes de saber que existe y es palpable la
prescupcielón departe de los dirigentes por la salud y el

bienestar de las personas que trabajan para ellos.

For último, considero de gran importancia el que - este tipo de desarrollos sean llevados a cabo profesignalmente y de manera regular, sobre todo en empresas - que por su naturaleza reflejan una incidencia hacia la conteminación ambiento: originado por ruido.

APER: CLARTO DE GENETACION DE ANIA (RIJENTE ÚFED) FECHA: LA ANISTO DE 1997 FERSICO: SE 10 A.M. A 11 A.M.

NUM. DE MELICION	£8.21	NA IE NOTITO	15(5)	n.m. ie veiiiii	1 19:4	NA DESERVICION	13 51	NA TERROTTA	(\$ 4)	MEM, DE MEDITION	13.14	NOM. DE MEDICOL.	13.4	NA SE MEDICIS	18 4.	va se sikim	DB/At
1	98 33	#1	891	81 -	88	121	36	161	99	261	35	241	::	291	39	221	67
2	33	42	28	82	53	122	37	152	- 55	292	÷	141	15	181	:9	322	15
3	89	43	ě÷	63	97	129	35	160	3€	269	33	243	36	293	:5	123	36
4	26 45	44	23	. 34	3.3	124	37	154	35	264	36	144	13	284	27	314	36 36 31
		Ye.	\$7	25	2.2	175	95	155	95	205	35	145	19	185	÷7	7.5	33
4	58	46	63	36	36	125	35	16é	57	205	38	246	37	196	35	Ho:	17
1	96	47	86	87	26	127	87	167	ð.E	267	87	247	ŝ9	167	37	327	\$7 38 85
3	36	48	35	29	87	123	35	158	35	209	38	246	39	198	37	323	35
9	87	49	87	89	95	129	15	169	89	209	27	249	39	299	÷	32.9	35
10	38	50	36	70	23	139	55	170	35	115	59	259	37	259	:9	359	35
12	57	51	85	51	35	171	59	173	- 77	211	ê7	.#1	33	291	97	231	ēć.
12	89	52	25	92	87	132	97	172	÷ć	212 -	35	152	37	292	38	332	8.
19	88	53	82	93	88	139	58	173	35	213	89	253	33	293	33	393	45
14	86	54	36	94	36	134	55	174	35	214	::	.54	16	294	33	334	ė7
15	36	55	93	95	65	135	86	175	36	115	57	255	i á	195	:5	935	36
15	36	56	85	95	65	126	53	176	35	216	53	154	36	2%	żδ	3.6	35
17	87	57	55	97	35	137	- 17	:77	50	217	39	257	33	297	?6	137	36
19	69	58	85	98	37	133	85	179	27	213	53	153	35	196	చ	338	æ
19	66	55	57	99	65	:39	93	179	86	219	29	253	36	299	36	329	£7
19	97	-0	65	135	59	[4]	36	199	38	229	39	267	39	116	36	[4]	83
21	37	51	87	161	67	141	85	181	35	221	93	26:	19	361	36	141	29
22	87	£2	97	132	63	142	8.9 8.1	132	16	2.2	76	162	38	362	37	343	37
23 14	8i 87	69 64	89	100	11	144			24	273 224	30	353	39	305	59	343 344	27 97
				114			35	134	85		35	254	95	3/4	37		9/
25	95 85	65 66	2: 83	155	17	1-5	57	165 136	39	225	÷	165 168	57 36	305 306	:6	345 346	35
2 5 27	83	57 67	65	105 197	97 27	145 147	88 88	187 187	26	115	37	167	39 39	205 267	37 35	.+s 347	97 25 -
25	37	57 65	#	107		147	22	188	39	Es	:5	148	57 58	. 0 208	39	249	52
29	95	69	55 55	169	27	149	2.7 35	.45	97	副	12	169	36	209	37	343	55 85
39	86	70	29	110	97	150 150	3. i:	.47	: :7	35	37	H	34	310	- 15	357	
31	as	71	85	111	37 86	:51	98	191	94	ži.	:5	H	15	313	15	171	36 67
32	35	72	37	111	et éé	172	83	191	37	111	3-	1:2	17	212	- 15	352	89
33	36	73	85	1(.)	- 65 35	153	96	193	36	語	-	1-1	- 1	313	11	153	ē7.
34	37	74	26	114	87	:54	39	194	38	134	1	74	26	314	38	354	
35	85	75	95	115	85	155	37	195	85	135	12	14	35	315	:0	255	20
36	36	76	57	116	37	156		194	33	238	13	Ħ	16	316	22	256	86 85 87
37	89	77	89	117	87 87	157	21. 27	197	15	3	- 11	7.	36	117	- 27	25°	88
33	36	73	35	117	36	153	::		34	131	33	14	19	113		25	60
23	25	79	37	115	30 89	41.0 15)	37	189	96	299	35	13)	17	313	27	359	99 57
40	88	93	89	120	47	157	37	193	- 39	24)	11	1.	- 29	325	37	363	87
40	30	~	3.	-24	-	***	2.		2.7				:,	***	2/		31

MALLETER FRAMERICA SERVICES ARTERIA NOTIFIE IS NOTE IN SUR SE INTERPRETATION DE RESULTATION

RDA ESTRUMEN NIVEL NORMAL, SE INSTALARON GUARDAS DE MALLA Y MATERIAL ANTIVIRRACION

	3.	27		123	э.	
#ALTHES FA			100 da 1	tir≒: Tê	Note: 11-12	

AFEN BETTOLE COCCATORION DE LÉMATES DE CAMIDA (ENTEFICE ÁBE) FENANT 15 DE 450570 DE 1987 FENICOS DE 1530 FUNTA 4,30 FUE.

NOT BE FELLIN	13.41	NOTALIS REDUCTION	19.4)	NG. IS SELLEN	19 10	ಜ. ಚ ಕಾರ್ಣ	13 :	was de secución	1377	MAY RECEIVE	1874	ner is receive	3 4	W. H. CHILL	1 2 -	MM. TE YEST	18 ±:
1	51	41	82	51	11	;21	79	le i	92	201	78	241	7:		E.	221	96
2	â.	42	31	32	31	122	2.0	162	73	132	79	141	-3	292	32	322	73
3	31	40	~;	99	80	123	٦.	163	74	203	52	243	79	263	. 7ê	523	79 79
4	73	44	21	ŝ÷	11	:24	36	164	**	294	- ;	244	^3	254	- 39	524	~ ;
5	81	45	25	25	7.9	125	25	:47	82	295	78	245	21	185	66	221	81
é	31	46	82	86	79	128	7.5	166	80	235	31	246	12	235	~3	324	10
7	73	47	79	87	29	127	Ξį	167	73	267	30	147	31	267	31	327	10
3	73	46	81	is	Đ	123	- 1	161	-6	264	51	143	31	299	30	129	:: 79
9	30	49	87	19	78	119	81	169	32	199	ât	243	32	299	7.2	229	78
19	81	50	79	93	12	15)	78	:79	73	219	91	150	40	250	::	220	79
11	60	51	78	91	73	131	92	171	10	211	30	151	12	291	33	135	79
12	82	52	73	92	89	132	90	572		212	79	152	19	292	31	232	20
13	81	53	31	99	31	153	äi	173	2.	223	92	25.3	51	293	- 52	193	7è
14	79	54	79	34	79	134	78	174		214	- 61	154	73	294	51	334	80
15	79	55	81	35	78	135	79	175	91	II3	26	255	- 11	195	76	325	80 78
16	31	56	78	36	78	136	51	17e	73	216	31	156	91	1%	79	135	79
17	60	57	31	97	76	137	90	177	79	217	31	-5-	32	3,5	79	337	79
13	82	58	78	38	58	138	78	178	÷0	113	31	253	78	198	78	336	āl
15	79	59	80	**	78	179	92	:79	79	219	- 22	259	79	199	79	339	63
26	30	÷0	73	187	92	140	79	130	31	229	52	253	32	309	79	346	31
21	69	51	8)	191	30	[4]		181	-3	22:	- 51	261	97	391	79	341	32
22	50	62	39	:22	ši	140	32	111	31	22	34	2:2	11	302	88	342	59
23	81	62	32	169	::	143	2	:53	70	223	- 81	263	52	303	32	343	50
	33	64	17	174	32	112	- ;	124	-3	234		is.	73	364	30	344	5.0
.5	- 63	55	7.7	105	- 15	145	9.	:25	- 42	115	32	145	20	jo€	- 4	345	ĉi
26	73	66	32	176	83	144	15	114	79	14	22	265	- 9	316	90	345	£)
27	٤:	67	79	157	9)	147	- 82	117	62	217	917	167	52	307	-3	.47	-;
22	39	£8	41	193	78	149	42	lee	:2	124	- 5	163	-1	žvá	∃2	348	11
25	78	69	78	119	ař.	-24		124	30	129	52	163		369	-5	349	"è
30	79	74	12	110	51	Œ:	:1	164 194	3.	139	*	179	-9	317	79	259	- ,
31	73	7:		111	-:		- ::	12.	÷.	79		111	40	111	12	:6:	36
32	7	72	36	112	81	152	- 81	:92	:3	232	3)	272	30	212	13	.5.	52
33		73	72	113	7.0	.73	73	19.	74	239		[#]	30	313	19	359	72
34	59		79	114	33	154	3.2	194	31	134	32	74		214	:i	354	79
35	-3	-	75	115	73	155	53	195	- 4	25	37	175	- 1	-35	79	355	÷
 H	3)	7e	83	116	80	156	73	136	31	236	72	276	79	316	4	256	30
57	31	75 77	21	110	- 29	157		147	-:	277	*	277	79	31-	36	757	91
20	79	79	78	113	75	156	- 4	191	79	238	32	273	31	313	12	353	52
39	79	79	- 40	115	45	:59	90	199		179	31	279	50	313	12	359	96
4)	31	50	82	129	5.	163	56	199	32	249	79	290	32	113	30	343	39
49	91	211			3.	• • • • • • • • • • • • • • • • • • • •	:0	-34	24		. 7	4				250	.,

LEGAL SECTIONS CONTROLLED FARM CONTROLS CANDRAL SECTION (SECTION SECTION SECTI

NOW, TE RESIDEN	29,40	em. de Medición	35 (2)	NOTE OF MEDICALN	19467	NAME OF STREET	(3514)	NONE DE MESSOON	1514.	N.B. 16 (6000)	0.03-	an Rinili	3514	ner is believed	12.4	NAME OF	IN 19 40 1
1	73	41	76	51	-3	121	~:	141	7	2:1	- 1	141	73	282	72	2.1	. *
2	74	42	75	12	72	122	71	192	*1	192	**	141	-4	152	75	722	74 (
,	75	4)	-3	53	73	123	7.5	143	11	253	• • • • • • • • • • • • • • • • • • • •	243	73	. 285	76	4.1	4
4	7	44	75	Ħ	12	100		1 1 1	-5	: 14 1		114	1	31 1	1.1	12	75
5			75	£2.	- 2	111		145		1.5		245		285	- 25		12
	73	46	72	35	73	122	72 73	1:1	74	1.1	-	244	73	255	3	A. 1	7
7	75	47	75	87	74	127		167	73	3.7	74	.1	7	297	75	447.4	75
है	74	43	76	25	~>	129	75	163	- 32	219	7)	4.5	-1	253	2	129	- 1
\$	7.2	45	72	89	74	129		169	13	234	14	243	-1	259	71	209	
16	73	53	75	3 0		133	73	177	72	213	7.3	259	73	19)	~4	57e 1	- 1
. 11	73	51	76	#	~÷	1:4		(7)	75	211	**	.51	74	4°1	-4	274	3.
12	-4	52	75	31	75	192	-4	172	72	212	-,1	252	73	132	71	311	72
13	75	53	-	93	74	133	77	173	74	213	73	253	72	293	15	231	-
14	75	54	74	? 4	73	114	7.	174	75	214	72	254	3	294	12	234	
15	73	55	75	95	72	137	73	175	-5	215		255		125	1	810	75
15	75	56	75	35	76	136	72	175	73	215	7:	.∷e	75	2%	12	15-1	74
17	.7	57	71	3**	76	137	73	177		217	-1	257		2.5	14	397	14
18	73	53	75	Ħ	74	132	~1	179	*3	258	72	156		143	-3	335	75
19	74	59	75	? ?	- 3	139	72	179	7.4	.13	1.	25.9	~3	199	**	229	13
26	74	4 6	76	189	~4	147	75	193	1.	227	1.1	1:3	73	30.		(44)	72.
11	74	61	7:	101	78	141	7.4	134	*:		~:	161	74	3.1	1	[4]	72
22	75	÷:	75	:71	7€	.42	_1	132	71	121	*		75	161		340	73
23	73	67	74	163	7.1	142	-4	121	•	1		260	74	233	-	4	72
24	72	64	73	174	72	144	~	194	1	114		254	72	2	-1	344	21
25	75	65	76	155	72	:-5		165	7:	:::		207	19	215		345	75
2 1	76	66	73	164	72	145	7.4	17e	12	114	2	151	76 72	205	7.7	346 347	٠
27	74	67	75	107	76	127	79	187	74	227	-3 74	267 269	73	207	2		-
25	74 72	63	71	19 9 189	74 75	145 143	-1	138 139	7	229 229	-5	169	75	169 159	75	343 343	•
23		## "3	75	107	73	157	- 15	139	**	3			73	213	74	74 <i>9</i> 154	
ĸ	75	÷.	77	111	7.7			177	• • • • •	.11	÷	27:	- 4	311	75	351	
3:			72	112	72	:::	75	ŝ	-1	121	;		72	312	72	101	
32	4	79	75	113	75	:53	-3	131		297	-4	273	72	313		253	
39	72	7 4	73 73	114	-1	154	- ;	194	-:	194	-5	274	74	713 714	74	.34	
34	73	75	74	115	-3	125	79	: F	7	225	tí.	275	75	315	76	355	72
95	79	75 76	76	115	- 1	156	-3	176	- 2	224	- 5	276	79 76	315	74	755 756	79
35 37	75 73	75 T7	73	117	-1	157		197		137		277	:3	317		250 357	75
3. 3.6	72	75	-3	::::		153		154	- û	239	72	277		313	4	358	75
.se 39	75	79 79	-7	119	-3	159		199	72	239		:- <u>-</u> -	7.	11.9	٠.	7.7	ě
27 4)	76	7.9 7.3	-3	120	72	1.27	-3	219		144	-1	199		32)	7	337	-:
+9	/0	54	- 79	173	12	*57		4.7		7	•	-79	-	24.7	-		-

AFEAR CERTO DE COMPRESIVES PESO FECHAR SE DE ROCETO DE CARO FERNOLOS DE CONTE NATURA COLOS RATA

NOT. SE MELICION	-5 -51 -	v te verterta	15 51	WAY TE VENTION	19191	WM. IS MEDICALLY	20.25	NAME OF STREET	75	38.12.2003	1411	W. E WILLIA	14.20	a restore	14.0	78. H 21	1100 184
11. 1 12			• •									12.4 14 20.4.4.			**		
1	47	4;	67	31	99	121	ž÷	161	17	21.	34	240	33	381	198	3.1	27
	13	42	88	32	17	122	- ::	152	34	202	-	343	14	241	:5	12	13
5	4	4)	86	53	57	111		167	3.		ě	149	15	283	35		7.5
i	34	11	35	24	36	1	-	154	37	204	- 6	344	45	294	14	24	85
r.	84	45	85	85	9	125	is	195	äŧ	3/5	16	248	38	345	35		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
1	57	44	22	14	23	124	37	166		208	4	246	36	236	30	324	2*
	3:	47	87	87	35	127	35	147	1 35	-	97	247	38	111	1.2	127	14
	84	15	35	20	36	128	- 65	163	- 25	239	12	248	34	238	- 39		
	- 61	43	64	24	3*	3	11	169	35	209	97	249	27	269	98	1.9	
19	35	50	24	¥.	2.5	139	85	179	- 23	136	36	35)	15	299	: 37	129	8
ii	ěé	51	14	51	83	111	85	171	37	111	:5	151	95	Ī9.	57	.31	17
- 12	26	52	33	<u>:</u>	75	122	÷5	172	35	242	34	252	37	191	a5	332	- 15
13	36	59	87	10	84	123	11	173	97	153	34	253	÷	253	- 15	7.333	35
14	- 22	12	86	14	34	134	84	174	34	214	36	254	35	294	- 6		::
	27		87	95	85	115	35	175	37	115	14	165	87	297	33	3.5	1.5
35	34	16	35	99	86	1.74	- 15	176	36	216	es.	156	:4	la r	16	356	- 4
17	14	ii.	87	4,	57	137		177	16	317	- 17	257	óá	297	39	- 11	3.7
11		58	35	16	25	131	1.	179		213	- 22	158	28	298	14	3.08	14
	93	55 55	37	33	86	139	- 25	179	34	269	- 33	.53	17	399	- 45	- 4	42
29	67	÷2	35	- 6	35	140		145	- 10	129	- 11	160	19	8.1	35	340	18
21	98	65	26	161	3.5	141	-	181	44	224	34	38	44	10	24		15 c 15 c 17
<u> </u>	58	- ii	20	:::	12	142	12	182	11	222	39	162	23	361	35		-7
	84	- 5	97	143	84	149	- 1	185	- 32	33	34	265	13	¥1	- 36	343	45
24	25	11	37	114	35	144	- 1	194	- 3	II4	35	2-1	12	204	. 37	.14	:4
.5	85	ÉÉ	88	155	27	145	45		- 34	125	13	245	37	2/5	34	-41	- 60
26	16	38	33	166	e	146	1.0	.16	3.5	126	15	256	-4	26:	15	4-	:2
EF	85	47	32	197	- 33			::"	:4	2.5	35	197	+2	24.	97	347	34 1
1	86	48	33	101	34	141	-	139	14	223	7.9	265	35	10.3	34	1.12	15
25	6.7	63	24	263	ž	219	55	189	42	229	-4	259	59	309	- 77	743	(4)
30	94	71	63	100	5.4	153	35	1543	::	119	.3	27)	34	1.)	36	· 35.E	34
31	25		36	111	35		:*	191	3.4	131	15	171	34	311	35	351	11.
. 22	31	72	93	1:1	17	152	57	192	- 22	132	::	172	:4	312	94	352	1
33	96	73	36	::)	34	:53	34	137	- 57	133	žć	273	37	313	<i>24</i>	753	85
34	74	74	ě"	114	+1	(54	11	194	:5	294	36	274	35	914	38	274	36
35	38	75	ēŝ	115	÷ε	155	::	- 185	11	135	÷	175	95	315	35	A.C.	26 35
26	?1	75	::	116	3.5	1 5 8	÷÷	196	. :4	194	35	.™e	55	316	35	23 t	
37	95	77	38	117	87	:57	24	147	1.5	237	00	277	::	317	*7	31	:5
25	35	73	37	113	36	179	3.5	10	: 33	235	-1	.79	37	313	- 54	358	15
99	93	79	ć.	113	3.5	:5:	10	1.++	:3	299	34	.79	:4	319	87	.59	57
49	98	50	:"	129	- 11	151	55	#10 · 1	1.27	24)	17	18)	25	319	:5	34.0	94

-169-

APEA: TEPTO DE ELTROSION UPER-PECHA: 17 DE PORETO DE 1887 FERGURO: DE 10 AUA: A 11 AUA;

N.M. DE MELICION	75.44	seen, or egocoton	12.4	NOT. DE MEDICION	76.21	N. W. ST. 1877	*=	ga se servis	54.2	an Garren	. 5 . 4	A	27 48	or suppress	14 3	NA HEARING	38124
			••••														
!	33	41	-84	81	31	121	£2	161	::	292	11	241	2 .	281	1.0	1.	12
;	36	42	15	Ë	92		14	162	11	272	+2	10	÷	16	1 11	1	1.0
	85	43	2		35	100	11	143	93	262				299	- 52		
4	32	33	33	j2	14	Ε.	1.	1:4	13	5,4	15	111	,	111	135	324	83 13
r	÷5	45	- 26	35	ää		13	165	12	1.5	12		Ě	135	92	1.4	1 2
	31	46	52	55	35	124	12	lui	12	1.5	- 1	14	5	36	22	134	
	84	47	85	87	35	127	92	162	12	+1			e e		86	137	3.0
	14	43	85	82	35	123	73	168	36		11		4	239	33	14 · · · · · · · · · · · · · · · · · · ·	35 72 92 84
ž	:5	49	86	33	93	123	34	:::	33	13	35			189	- 34	129	
19	35	50 50		9)	14	139	34	176									29
	57 62		96 92		14				21	20	96		-	• •	20	229	52 36
11		51		21		131	37	171	82	211	34)	291	34	151	. 36
12	91	52	36	92	53	132	10	172	54	111	37		.1	130	. 36	332	15
13	11	53	25	73	35	133	84	173	34	213	. 32		3	299	33	393	æ
14	35	54	93	34	34	134	83	174	74	(4 	33		34	194	. 36	254	63
IĘ.	84	4.5	24	:5	34	135	52	175	31		33	255	:	175	:5	935.	94
:5	1.	**	35	*	34	156	:7	176	::	21:	33	256	12			133	14
:*	52	:"	81	97	35	::*	14	177	it.	217	33		4	227	- 60	337	25 81
13	34	73	63	98	30	1.33	26	179	33	213	-4		35	198	33	194	6
19	94	23	92	99	35	139	92	177	36	215	3.2		32	244	::	209	10
25	34	50	13		3.5	(4)	32	189	36	113	-4	25)	82	293	23	(4)	- 20
21	5E	÷:	84	131	32	141	5.2	(3)	:5	40.0	35	161	35	31	14	141	35
22	36	62	83	102	96	[4]	3-	182	94		30	282	33	302	:5	342	32
23	93	\$ 3	86	103	75	[4]	53	143	43		÷÷		-1	313	:4	343	93
24	93	64	3.3	274	:5	133	39	184	24		: 5		- 1	3/4	:2	44	- 4
25	63	65	95	1./5	64	145	43	125	64	225	35		÷.	× 5	34	44	36
26	25	. 66	9.1	106	15	145	3.7	13+	35	226	:4		-4		- 92	34e	- 14
27		£7	93	167	13	; 4	33	137	-4	227	1.			33 T	32	1	34 23
28	82	68	15	198	:7	145	3.2	192	15	<u> </u>	12		12	308	10	146	45
19	84	69	14	109	11	122	13	144	- 14	Mig	+:		-	442	34	144	12
31	35	73	- 30	113	1.		16	1.5	- 5-	Ξυ	- :		1	10	- 1	35.1	55 25 33
31	33			1.1			4	14.			14		-	4.0	14	151	94
32	32		-1	111	- 14	.32	34	142	1,	132	13			112	1.5	252	
53	34	- 4	35	117	44	.5.		1.80	i.i	333	- 11		:	117	15	25	35 35
34	82	74	35	114		154	11	144	::	224	- 11		-	314		254	52
35	85	75	94	115	34	.55	**	145	32	235	91		1	20 5	1	255	12
16	93	76	33	115	35	174	2:	14	42	226	it			2.5			89 38
. 27	ôć	77	92	117	- 23		- 2	197	35	237	11		2		14	255	27
37 38	94 24	79	94 94	113	33	4.	- :	157					2	317	- 11	35.7	53
25 35	34 34	79	57 53	119	94	153	52	197	10	223	3.7		4	313	25	255	12
37 49		98 98	32	127	83	125			- 33	##	:7	-7	2	.::	- 11	353	94
49	93	50	:4	:	72	.10	- 3	2-9	::	249	34	280	2	319	32	250	£2

CAPITULO 7 : BIBLIOGRAFIA.

1) Cohen A., Ward, D., Fricke J.

Efects of noise on Psychological State: Noise as a public -
Health Hazard.

pp 74 a 98, Reports 4
ED. A.S.M.A., Washington D.C., 1969.

 Beranek L., Reynolds J., Wilson K.
 Preferred noise criterion (PNC) curves and their aplications to rooms.
 pp 1229.

Journal Acoustics Society of America, No. 50, 1971.

3) Diario Oficial de la Federación

6 de Diciembre de 1982.

- 4) Deraned L.L.; Acoustics

 Mc Graw & Hill: Nueva York 1975.
- Freund .E.; Mathematical Statistics
 Prentice 5 Hall: Nueva York 1976.
- 6) Groenewold F. La Idiosincrasia del Mexicano como medio normativo de ruído. Ier. Congreso Nacional de Control de Calidad. México, D. F., 1973.
- Groenewold F.
 Manual sobre ruido industrial y su control, CIAT. Reg. 167/ SH-47; Lima-Perú 1975.
- 8) Jones H.W., Stredulinsky D., Vermeulen P.J. Modeling of Environmental Acoustics pp 9, 91 st. Metting of Acoustics Society of America, 1976.

- 9) Kryter K.D., Ward W.D., Hiller J.D.
 Hazardous Exposure to Intermitent and Steady State Noise.
 pp 451, 464
 Journal Acoustics Society of America. No. 39, 1966.
- 10) Kryter K.D. Impairement to Hearing from Exposure to Noise pp 1211, 1234 Journal Acoustics Society of America, No. 53, 1973.
- 11) Langdon f.J. Scholes W.E. The traffic Noise Index: A method of controlling noise - nuisance.
- 12) Norma Oficial Mexicana: DGN AA 40 1976

Architects Journal, No. 147, 1968.

- 13) Norma Oficial Mexicana: DGN AA 43 1977
- 14) Norma Oficial Mexicana: DGN AA 47 1977
- 15) Norma Oficial Mexicana: NOM AA 59 1978
- 16) Norma Oficial Mexicana: NOM AA 62 1978
- 17) Norma Oficial Mexicana: NOM C -207 1977
- 18) Norma Oficial Mexicana: NOM C -102 1976
- 19) Norma Oficial Mexicana: NOM C 32 1975
- 20) Norma Oficial Mexicana: NOM C 42 1971
- 21) Norma Oficial Mexicana: NOM C 41 1972

- 22) Ostle 8.

 Statistics in Research
 University Press, lowa St., 1968.
- 23) Roberts Arthur D. Manufacturing Processes Mc Graw & Hill: New York 1969.
- 24) Secretaría del Trabajo y Previsión Social, y el Instituto Mexicano del Seguro Social, Instructivo No. 11.
 pp 51-73, 124
 Primera Edición: Abril 8 de 1985, México, D. F.
- 25) Schomer P.D. Evaluation of C-Weighted Day-Night Level for Assessment of --Impulse Noise. pp 396, 399
- 26) Schults J.J.
 Noise Criterion Curves for use with the Usasi Preferred Frequencies.
 pp 637, 638
 Journal Acoustics Society of America, No. 43, 1968.

Journal Acoustics Society of America, No. 67, 1977.

- 27) Stevens LG., Mard v.I.
 Procedure for Calculating Loudness
 pp 575, 598
 Journal Acoustics Society of America, No. 51, 1969.
- 28) Skudrzyk E. The Foundations of Acoustics Prentice Hall; Spricer Verial, Nueva York 1974.

29) Velázquez Joel G.

Condiciones del trabajo; Cuadernos de Medicina, Seguridad e --Higiene (S.T.P.S.).

Dirección General de Medicina y Seguridad en el Trabalo.

pp 97-180; Trauma Acústico.

Volumen 7 No. 2/Hayo-Agosto 1982.

México, D. F.

- 30) Ville Claude Biología
 - рр 465-468

Séptima Edición.

Septima Edicion.

Ed. Interamericana, México, D. F. 1985.

31) Ward W.D., Robert M.

Damage Risk-Criteria. The trading Relation Between Intensity and the Number of Nonreverberant Impulses.

DD 1297

FF 1-27

Journal Acoustics Society of America, No. 53, 1973.

32) Ward W.D., Cushing E.M., Barns E.M.

Effective quiet and Moderate TTS;

Implications for Noise Exposure Standarts

pp 160-166

Journal Acoustics Society of America, No. 59, 1976.