UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE CIENCIAS

LA MODULACION DE LA RADIACION COSMICA GALACTICA EN EL MEDIO INTERPLANETARIO

T E S I S OUE PARA OBTENER EL TITULO DE: F I S I C O P R E S E N T A SILVIA SUSANA BRAVO NUÑEZ

México, D. F.

EXAMENES 1968 FESIONALES

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

A mis Padres A mis Hermanos

Desco manifestar mi profundo agradecimiento a la Dra. Ruth Gall por su inapreciable ayuda en la elaboración de esta tésis. Así mismo quiero agradecer al Dr. Arcadio Poveda sus utilísi mas orientaciones.

Agradezco también al Instituto de Geofísica la beca que me fué concedida para la realización de esta tésis.

INDICE	
	Pági
PROLOGO	1
I INTRODUCCION	2
1 Rayes Cosmices y sus Variacienes	2
a) Características de la Radiación Cósmica	2
b) Variaciones de la Radiación Cósmica	3
2 Medie Interplanetario	6
a) Campes Magnétices en el Sel	6
b) Viente Selar	7
c) Campe Interplanetarie	11
d) Estructura Secterial	15
e) Irregularidades Magnéticas en el Campe Interpla-	
netarie	16
f) Cavidad Solar	16
II VARIACIONES DE INTENSIDAD DE LA RADIACION COSMICA CON EL	
TIENPO	20
1 Variación de Once Añes	20
2 Variación de 27 Días	26
3 Variación Diurne	29
4 Decrecimiente Ferbush	34
III MODULACION DE RADIACION COSMICA EN EL MEDIO INTERPLANETARIO	40
1 Novimiente de Partículas Cargadas en Campes Magnétices	41
a) Campes Magnétices Estacionaries	41
b) Campes Magnétices Hemegénees	42
c) Campes Magnétices Homogénees más una Fuerza ne Mag-	
	1.7

	Página
d) Campe Magnétics Henegenee Con Irregularidades	45
e) Campes Magnétices ne Henegéneos que Varían Lentamente	46
1) Concepte de Centre Guía	47
11) Invariantes Adiabátices	47
f) Rigider Magnética	47
2 Medele de Convección - Difusión	49
a) Medele Original de Cenvección - Difusión	49
b) Medificaciones de Parker al Medele Original	57
e) Medificaciones de Dorman al Medele Original	59
d) - Gradiente de Radiación Cósmica en el Medie interpla-	
ne netarie de la constante de La constante de la constante de	62
•) Discusión del Madele de Cenvección - Difusión	66
3 Modeles de Pérdida de Energía	68
a) - Modelo de Campo Bléctrice Heliocéntrico	69
b) Modeles que Consideran Desaceleración Difusiva y Des-	
aceleración de Betatrón	72
c) Discusión de los Modelos de Pérdida de Energía	77
4 Medeles que Consideran la Presencia de Campos Eléctricos	
Estacionarios en el Medio interplanetario Además de la	
Convección - Difusión	79
a) Medelo de Abluvalia y Dessler	80
b) Modele de Parker para la Variación Diurna	31
s) Modele de Axford	85
d) - Expresión de Jokipis para el Coeficiente de Difusión	
Anisetrópice come Función de la sucreía	મુધ
e) Discusión de les Mecanismos Propuestos por Parker y	
Axford para la Variación Diurna	95

A		
5	Medeles de Decrecimientes Ferbugh	4g1na 98
	a) Medeles de Nubes	99
	b) Medeles de Lengüetas	100
	c) Mensle de Onäs de Cheque	102
	d) - Discusión de los Mecanismos de Decrecimiente Ferbush	102
1V D180	TUSION GENERAL DEL PROBLEMA DE LA MODULACION DE RADIASION	
COS	AICA IN ML MIDIO INTERPLANETARIO	106
BIBLICOR	JAA	109

PROLOGO

1 -

El objeto de esta tésis es presentar y discutir los principales modelos de la modulación de la radiación cósmica galáctica, en el medio interplanetario. Se analiza hasta qué punto los modelos actuales son capaces de explicar las variaciones que sufre con el tiempo la intensidad de la radiación cósmica observada en la Tierra.

Sólo se considerará la manera como el medio interpla netario puede alterar el movimiento de las partículas de rayos cósmicos galácticos y no se tomará en cuenta la radiación cósmica solar ni sus variaciones.

Evidentemente no se consideran aquí todos los modelos que se han propuesto hasta la fecha, sino solamente aquellos que par<u>e</u> cen dar la explicación más adecuada a los fenómenos observados.

El trabajo se halla dividido en cuatro partes: la primera contiene una introducción en la que se describen las caracteristicas de la radiación cósmica, sus variaciones y las características del medio interplanetario; en la segunda parte se da un análisis experimental de las variaciones sufridas por la radiación cósmica y se muestra cómo las observaciones sugieren que estas variaciones se deben al paso de las partículas de rayos cósmicos a través del medio interplanetario, el cual, a su vez, está controlado por la acatividad solar; en la tercera parte se describen y analizan los principales mo delos teóricos que pretenden explicar estas variaciones y se discute la plausibilidad de los mismos; la cuarta y última parte está dedicada a una discusión general del problema de la modulación de la radia ción cósmica galáctica en el medio interplanetario.

I.- INTRODUCCION

El descubrimiento de la radiación cósmica data de aproximadamente 50 años. Desde entonces a la fecha se han acumulado un gran número de conocimientos experimentales y se han propuesto numerosos modelos teóricos respecto a la manera como estas partículas son moduladas en el medio interplanetario, entendiéndose por modulación los cambios que sufre el movimiento de las partículas debido a su interacción con dicho medio. En esta sección se discutirán las características de la radiación cósmica y del medio interplanetario, con objeto de poder discutir más adelante las posibles formas de interacción y las consecuencias de las mismas.

2

1.- Radiación Cósmica y sus Variaciones.

El nombre de radiación cósmica fué usado primeramente por Millikan (1923) para designar a la radiación de gran poder de penetración que llega a la Tierra desde el espacio exterior. Inicialmente se creyó que esta radiación consistía principalmente de fotones de energías mayores a las descubiertas anteriormente, pero los experimentos y observaciones realizados posteriormente han mostra do que la radiación cósmica está constituída principalmente por partí culas cargadas.

a).- Características de la Radiación Cósmica.-

La mayor parte de la radiación cósmica registrada en la Tierra es el producto de la interacción con la atmósf<u>e</u> ra terrestre de la radiación cósmica que proviene del espacio exterior. A esta última se le llama radiación cósmica primaria y a las partículas producidas por ella en la atmósfera se les denomina radiación cós mica secundaria. La radiación cósmica primaria se divide, según sus fuentes, en dos grupos: radiación proveniente del Sol o rayos cósmicos solares y radiación que viene de fuera del sistema solar, que son los rayos cósmicos galácticos o metagalácticos. El origen de estos últimos es aún tema de discusión, pero todo parece indicar que llega a nuestro sistema solar uniformemente desde todas direcciones y que pro bablemente no sufre variaciones apreciables con el tiempo. En cuanto a la radiación cósmica solar, ésta se emite en forma esporádica o con tinua, asociada en general con la actividad solar.

Como se dijo anteriormente, la radiación cósmica cong ta principalmente de partículas cargadas; las energías de éstas llegan a ser hasta del orden de 10^9 Gev y son las partículas más energéticas conocidas en la naturaleza. Los rayos cósmicos primarios son principalmente protones, aunque se encuentran también partículas d y algunos núcleos más pesados, además de fotones y electrones. En la f<u>i</u> gura I-l se da una tabla de las abundancias relativas de cada una de estas componentes. La radiación cósmica secundaria tiene tres componentes: la componente nucleónica, constituída por protones y neutrones, la componente dura o mesónica constituída por mesones μ , mesones π , y mesones k, que tienen gran poder de penetración y la componente blanda, de muy poco poder de penetración, constituída por fotones y electrones. También se forman en la atmósfera otro tiro de partículas, tales como positrones e hiperones, pero en mucha menor cant<u>i</u> dad.

b) .- Variaciones de Radiación Cósmica.-

Las observaciones realizadas sobre las variaciones de intensidad de la radiación cósmica han mostrado que, den

- 3

Z	FLUJO %	
1	86.814 ± 4	
2	12. 729 ± 0.36	
3-5	0.286 ± 0.03	
6-9	0.801 ± 0.03	
10-19	0.268 ± 0.04	
20-28	0.100±0.025	

<u>Fig. I-1</u> : Espectro de Carga de los Rayos Cósmicos (Waddington, 1960). No se obtuvieron datos para electrones y fotones.

785

- 4 -

tro del sistema solar, ósta sufre variaciones temporales de dos tipos: periódicas y esporádicas. Eliminando los efectos de la atmósfera terrestre y del campo geomagnético sobre la radiación primaria, se ha ob_ servado que ósta tiene tres tipos de variaciones periódicas: una variación con período de once años, una variación con período de 27 d<u>í</u> as y una variación diurna, con período de 24 horas; se discute aún la existencia de una variación semidiurna, de período de 12 horas. Las variaciones esporádicas que sufre la radiación cósmica primaria son principalmente los decrecimientos Forbush y los eventos solares (estos últimos no se discutirán aquí).

La variación de once años coincide con el ciclo de actividad solar, pero en fase contraria, esto es, la mayor intensidad de radiación cósmica se registra durante el mínimo de actividad solar y viceversa. La variación de 27 días se caracteriza por la ten dencia de ciertos días de especial intensidad, de volver a aparecer cada 27 días y evidentemente está asociada con la rotación solar, ya que este período es precisamente el período de rotación del Sol. Los decrecimientos Forbush son el resultado de explosiones y ráfagas sola res esporádicas. La variación diurna es función de la hora solar local, por lo que está relacionada con la rotación de la hora solar local, mente se ha encontrado que este último tipo de variación se explica como una anisotropía en la intensidad de radiación cósmica en el medio interplanetario, que debido a la rotación terrestre aparece como una variación diurna.

Con el advenimiento de los satélites artificiales y sondas espaciales, Fan, Meyer y Simpson (1960) y Anderson y Neber (1963) han mostrado que todas estas variaciones ocurren aún más alla

- 5 -

del alcance del campo geomagnético, por lo que las causas de ellas se encuentran en el medio interplanetario, controlado por el Sol.

En las siguientes secciones se tratarán las características generales del Sol, sus emisiones y la manera como éstas afeg tan al medio interplanetario, para discutir después la manera como ég te puede alterar los movimientos de las partículas de rayos cósmicos, o modularlos, y producir así las variaciones observadas.

2.- Medio Interplanetario.

La exploración del medio interplanetario, reali zada en los últimos años por medio de satólites y sondas espaciales, mediante observaciones in situ, ha demostrado que el medio interplane tario no es un medio vacío, sino que contiene partículas de plasma que provienen del Sol. Este plasma "transporta" en el medio interplanetario las características de la actividad solar y de esta manera el Sol controla el espacio que lo rodea. A continuación se describirán los campos magnéticos en el Sol y las características del flujo constante de plasma que el Sol emite, al cual se le conoce como "viento solar".

a).- Campos Magnéticos en el Sol.-

Las primeras evidencias de la existencia de campos magnéticos en el Sol fueron encontradas en las manchas solares en 1908. Los campo en las manchas son sumamente fuertes, del orden de 300 a 1000 gauss, por lo que su detección por efecto Zeeman resulta bastante fácil. Estas manchas aparecen en grupos unipolares o bipolares y sólo se encuentran en latitudes solares menores que ± 55°. Hacia los polos del Sol se observan los llamados "rayos coronales", o sean haces de plasma coronal que salen del Sol, siguiendo aparentemen

6 -

te la estructura de las lineas de un campo dipolar. Esto sugirió la existencia de un campo general en el Sol de tipo dipolar, pero los in tentos por medirlo resultaban negativos o inconsistentes. Con el mejo ramiento de las tócnicas de detección para el efecto Zeeman, Babcock (1955) observó por primera vez la existencia de un campo general del Sol, cuya magnitud en la superficie de éste es del orden de l gauss. En la figura I-2 puede verse un mapeo magnético, o magnetograma, del Sol, en el cual se muestra que para latitudes mayores que ±55° la polaridad del campo se mantiene relativamente constante, siendo positiva hacia el polo norte y negativa hacia el polo sur; para latitudes menores que ± 55° el campo es muy irregular tanto en polaridad como en magnitud.

Se ha observado que los campos magnéticos en el Sol no son estacionarios. Las manchas solares, junto con los campos magné ticos asociados a ellas aparecen y desaparecen del disco solar siguien do un ciclo de aproximadamente ence años; esta es sólo una de las características, probablemente la más fácil de observar, del cilo de ag tividad magnética solar de once años. Además, las manchas solares invierten su polaridad aproximadamente cada once años, por lo que también existe un ciclo de 22 años de la polaridad de las manchas. Se ha observado que la polaridad del campo general del Sol también se invier te, pero aún no se sabe si esta inversión está asociada con el ciclo de 22 años.

b) - Viento Solar -

La idea de que el Sol emite partículas cargadas que llegan a la Tierra se debe originalmente a Birkeland (1896) quien propuso esto como una posible explicación de las auroras. Lin-

7 -

1953 JULY 19 IN VILL COL

Figura I-2: Magnetegramas de Babcek que muestran la magnitud y pelaridad del campe magnético en la superficie del Sel. demann había sugerido la emisión solar de nubes neutras de hidrógeno ionizado para explicar las tormentas geomagnéticas que suceden a eventos solares. Pero todas estas teorías se referían a emisiones sola res esporádicas y no continuas.

Las primeras observaciones que hicieron sospechar la existencia de un medio interplanetario no vacío fueron las de la luz zodiacal (una banda brillante de luz a lo largo de la eclíptica). Se trató de explicar este efecto como luz solar dispersada en el medio interplanetario por electrones, y aunque posteriormente se encontró que los agentes dispersores eran partículas de polvo cósmico y no electrones, esto llevó a la búsqueda de partículas cargadas <u>constante-</u> mente presentes en el medio interplanetario.

Chapman (1957), al estudiar la conductividad eléctri ca de la corona solar (la tenue atmósfera exterior del Sol constituí da principalmente por hidrógeno ionizado) encontró que ésta no sólo de bería envolver al Sol, sino que debía extenderse a todo el sistema so lar. Chapman sugirió una extensión estática de la corona. Sin embargo, Parker (1958a) hizo notar que la temperatura de la corona y su conduc tividad tórmica son demasiado altas para poder satisfacer las condiciones a la frontera de una solución estática, por lo que más bien de be esperarse una <u>expansión continua</u> de la corona solar.

Anteriormente, las observaciones hechas por Wurm (1943) de que las colas de los cometas se hallan siempre dirigidas r<u>a</u> dialmente hacia afuera del Sol, llevaron a Bierman (1951) a predecir la existencia de un flujo constante de material proveniente del Sol. Parker (1950a) demostró, mediante un tratamiento hidrodinámico de la corona solar, que la extensión de ésta no era estática, cino que la

9 -

corona solar se encuentra en expansión continua y propuso el nombre de "viento solar" para designar ese flujo constante de plasma proveniente del Sol.

La teoriá de Parker de la expansión de la corona se basa en la falta de balance entre los efectos térmicos y gravitaciona les. La conductividad térmica de la corona es tan grande que su tempe ratura disminuye más lentamente con la distancia al Sol que las fuerzas gravitacionales que tienden a retenerla, de manera que después de una cierta distancia la energía térmica del plasma coronal excede a su energía gravitacional y el gas caliente se expande en forma de vion to solar. Así pues, la corona tiene la propiedad de ser más o menos estática en su base y expanderse con una velocidad que aumenta confor me se aleja del Sol. Según esta teoría hidrodinámica, a una distancia de aproximadamente 10⁹ Km. del Sol, la velocidad del viento se vuelve supersónica y tiende después a un valor asintótico constante.

Un tratamiento más sencillo de la expansión de la co rona se debe a Clauser (1960) quien compara dicha expansión con el flujo de un gas a través de una tovera de deLaval. Con este análogo, Dessler muestra que existe un punto sónico en el cual la energía térmica del gas coronal se convierte en energía translacional y se inicia la expansión supersónica de la corona.

Un factor determinante que puede impedir la expansión de la corona es el campo magnético del Sol.Si este campo es lo suficientemente fuerte como para que la densidad de energía magnética del plasma coronal sea mayor que la densidad de energía cinética, el campo paralizaría la expansión y no habría viento solar. Sin embargo, se encuentra que para el caso de la corona solar la densidad de energía

- 10 -

cinética es mayor que la densidad de energía magnética, por lo que en los tratamientos anteriores puede despreciarse esta última. A la altu ra de la Tierra se ha observado que la densidad de energía magnética del viento solar es aproximadamente 120 veces mayor que la densidad de energía magnética.

La teoriá de Parker de la expansión de la corona pre dice valores para la velocidad del viento solar y la densidad de partículas en él, a la altura de la Tierra, que son consistentes con los valores obtenidos experimentalmente con los detectores a bordo de satélites que actualmente sondean el medio interplanetario. Estos valores dependen del nivel de actividad solar. Se ha encontrado que en tiempos quietos la densidad es de 10 - 20 part/cc y la velocidad es de aproximadamente 400 Km/seg. Cuando el Sol está activo, la velocidad del viento alcansa valores hasta de 1000 a 2000 Km/seg y la denesidad de partículas cerca de la Tierra puede llegar a ser hasta de 100 part/cc. La mayor parte de los iones en el viento solar son protones, pero se ha encontrado evidencia de una cierta fracción de iones más pesados, principalmente otros isótopos de hodrógeno y helio.

c) .- Campo Interplanetario .-

La corona solar tiene una conductividad eléctrica sumamente alta, de manera que puede considerarsele como un conductor perfecto. Cuando un plasma de conductividad infinita (como la corona) se mueve en presencia de un campo magnético, se inducen corrientes en su interior que tienden a conservar constante el flujo magnético. Este hecho se conoce como el "congelamiento del campo" dentro del plasma. Así pues, cuando un volúmen de viento solar sale del Sol, lleva en su interior el campo magnético congelado, o sea, el

- 11 -

viento solar transporta los campos magnéticos solares dentro del medio interplanetario. Este campo magnético es el campo general del Sol, que ya se discutió anteriomente.

Los campos magnéticos planetarios no contribuyen al campo interplanetario, ya que al ser el viento solar un plasma de con ductividad prácticamente infinita, excluye a estos campos de su interior y los comprime dentro de cavidades magnéticas. Para el caso de la Tierra, la cavidad geomagnética tiene aproximadamente 10 radios t<u>e</u> rrestres del lado del Sol y por el lado opuesto se extiende en forma de una cola magnetosférica hasta más allá de la luna.

Modelo de Parker del Campo Magnótico Interplanetario: Si el Sol no rotara, el campo magnótico interplanetario estaría constituído por líneas de fuerza radiales saliendo del Sol, de manera que los tubos de flujo serían simplemente elementos de ángulo sólido y por conservación del flujo magnótico, la magnitud del campo disminuiría hacia afuera del Sol como:

 $B_r(r) = \frac{\alpha^2}{r^2} B_0$ sieudo $B_0 = B_r(\alpha)$ I-1

Como el Sol tiene un movimiento de rotación, el lugar geo métrico del plasma emitido por una misma región del Sol en diferentes tiempos, sobre el plano de la eclíptica, será una espiral de Arquímides, cuya ecuación en coordenadas polares es:

$$\Psi = \Psi_0 + \frac{\Omega}{V} (r - r_0)$$

siendo Ω la velocidad angular del Sol y V la velocidad del viento so lar, supuesta uniforme. Fuera del plano de la eclíptica, el lugar geométrico del plasma es más complicado y no se discutirá aquí. Considerando que el plasma "transporta" las líneas de

campo solares dentro del medio interplanetario, estas líneas adquirirán también la configuración espiral, con lo que, además de la componente radial dada en la ecuación I-1, habrá una componente azimutal cuya magnitud será:

$$B_{V}(r) = \frac{\Omega \alpha^{2}}{V r} \cdot B_{0}$$
 I-3

Con esto se obtiene que la magnitud total del campo interplanetario está dada por:

$$B(r) = \frac{\alpha^2}{r^2} B_0 \left(1 + r^2 \frac{\Omega^2}{V^2} \right)^{1/2}$$
I-4

y el ángulo que en cada punto forma la línea de campo con la dirección radial desde el Sol, al cual se le llama ángulo de flujo o "ángulo de manguera", es:

$$\Psi = \tan^{-1} \frac{\Sigma}{V} r$$
 I-5

La figura I-3 muestra la configuración del campo mag nético interplanetario dada por estas ecuaciones.

De la ecuación I-4 se observa que a cortas distancias del Sol, la magnitud del campo varía como $1/r^2$ y a grandes distancias varía como 1/r. Nótese que si no hubiera expansión de la corona el campo disminuiriía como $1/r^3$.

De las ecuaciones I-l y I-3 se ve que cerca del Sol el campo magnético es casi radial, pero como la componente azimital del campo disminuye menos rápidamente con la distancia al Sol que la componente radial, a grandes distancias, el campo magnético interpla netario será más bien azimutal.

El modelo anterior es el modelo de Parker (1950a),

Figura 1-3: Campe Interplanetarie espiral de Parker, para un viente selar uniferme de 300 Km/seg. (Parker (1963)). para el campo magnético interplanetario. Considerando una velocidad <u>u</u> niforme del viento solar de 300 Km/seg y una magnitud del campo de 1 gauss en la superficie del Sol, Parker obtiene que a la altura de la Tierra la magnitud del campo debe ser de aproximadamente 4.5×10^{-5} gauss (o⁴.5%) y el ángulo de manguera de $= 50^{\circ}$. Las observaciones hechas por aparatos a bordo de satélites dan un campo promedio de 57 a una U. A., o sea a la altura de la Tierra, lo cual concuerda con las predi<u>c</u> ciones de este modelo.

De la magnitud del campo como función de la distancia heliocéntrica se puede obtener la relación esperada de la energía cinética a la energía magnética del viento solar en diferentes regiones del espacio. El valor teórico obtenido para esta relación a la al tura de la órbita de la Tierra concuerda con el valor experimental re gistardo (= 10^2) y según la teoriá de Parker en la que la velocidad del viento se vuelve constante, también esta relación tiende a un valor constante a grandes distancias del Sol.

d) .- Estructura Sectorial .-

Como se dijo anteriormente, los magnetogramas solares muestran que el campo magnético en la fotosfera está dividido en grandes áreas de diferente polaridad. Puesto que éste es el campo transportado por el viento solar, Ahluwalia y Dessler (1962) propusieron que el campo interplanetario debería tener una estructura sectorial, con sectores de diferente polaridad, curvados en una espiral de Arquímides. Wilcox y Ness (1965) encontraron experimentalmente por medio de satélites esta estructura sectorial del campo interplang tario, en la cual no solamente cambia la polaridad de sector a sector, sino que también cambian la velocidad del viento solar, la densidad de

- 15 -

partículas y la magnitud del campo; también se observó que esta estruc tura sectorial no es estacionaria.

> e).- Irregularidades Magnéticas en el Campo Interpla netario.-

La configuración del campo magnético interplanetario dada en la figura I-3, es en realidad una idealización. Debido a que la temperatura de la superficie del Sol no es uniforme, habra regiones que engendren viento solar con mayor velocidad que otras. El viento emitido por una región caliente alcanzará al viento más lento emitido anteriormente por una región más fria, produciendo ondas de choque que guebrarán las líneas de campo. La abundante canti dad de pequeñas ondas de choque en el medio interplanetario, producirá irregularidades del campo magnético. Además, la turbulencia en el gas que constituye el viento solar y las inestabilidades del placma también son causas de irregularidades magnéticas en el campo interpla netario. Las observaciones experimentales hechas con satelites han mostrado que efectivamente existen regiones de campos desordenados o irregularidades, superpuestas al campo espiral regular. Estas irregu laridades se mueven radialmente nacia afuera con una velocidad aproxi madamente igual a la del viento solar y como se verá más adolante, juegan un papel primordial en la modulación de la radiación cósmica.

f) .- Cavidad Solar .-

De la misma manera que el viento solar con fina a los campos magnéticos planetarios, él mismo se halla confinado dentro de una cavidad en el medio galáctico. Debido a que la densidad de energía cinética translacional en el viento solar es mucho mayor que la densidad de energía magnética, la condición que determinará la

- 16 -

la terminación de la cavidad solar será un equilibrio entre la presión de gas en el viento y la presión magnética en el medio interestelar, pues en este último la densidad de partículas es mucho menor que la densidad de energía magnética.

En el modelo original de Parker de la expansión de la corona, la velocidad del viento solar alcanza un valor supersónico que se mantiene aproximadamente constante después de algunos radio so lares, mientras que la densidad de partículas disminuye radialmente como $1/Vr^2$. Clauser (1960) ha hecho notar que la expansión supersóni ca debe sufrir una transición de choque que cause la disminución de la velocidad del viento solar hasta un valor subsónico, antes de que éste se difunda en el medio interestelar. Al diminuir la velocidad del viento, la densidad de partículas decaerá más lentamente con la distancia y la frontera de la cavidad solar quedará más lejos del Sol que la que se obtendría según el modelo de Parker de una velocidad de expansión constante.

Aún conociendo las características del viento solar, la determinación de la frontera implica el conocimiento de la densidad de energía magnética en el medio interestelar. Axford, Dessler y Gottlieb (1963), con la suposición de que el campo interestelar es de ≈ 1 °, obtienen que la transición de choque debe ocurrir a una dis tancia heliocóntrica de ≈ 60 U.A. Después de esta transición habrá una región frontera en donde se encuentran mezclados el viento solar subsónico y el medio interestelar, en equilibrio hidrostático. Más allá de esta región se encuentra el medio galáctico.

En cuanto a la forma de la región frontera, Dessler (1967) considera que debido a que el Sol se mueve respecto al medio

17 .

interestelar con una velocidad de 20Km/seg, la frontera exterior del viento solar se verá comprimida en la dirección de movimiento del Sol, dando como resultado una cavidad solar como la de la figura I-4. Según sugiere Axford, la compresión de la región frontera puede deber se a dos causas: el enfriamiento de ésta debido al intercambio de car ga entre los protones calientes del viento solar y el hidrógeno frío del medio interestelar o a una presión ejercida por los rayos cósmicos galácticos de bajas energías que no pueden penetrar al medio in terplanetario. Las estimaciones del espesor de esta región frontera varían entre 10 y 40 U.A.

En la región frontera se espera que el campo magnét<u>i</u> co sea muy irregular como consecuencia de la turbulencia inducida por la transición de choque y por inestabilidades producidas por la inte<u>r</u> acción del medio interestelar y el viento solar. Más adelante se verá que algunos modelos suponen que ésta es la principal moduladora de la radiación cósmica.

Como no se han realizado observaciones in situ que permitan situar tanto la frontera de transición como el límite del viento solar, las estimaciones experimentales de la localización de óstas se basan en observaciones indirectas. Por ejemplo, el comportamiento de las colas de cometas parece indicar que la turbulencia y los campos desordenados empiezan a aproximadamente 2 U.A. del Sol; por otra parte, ciertas características de la intensidad de la radiación cósmeica solar parecen indicar que dicha frontera se encuentra entre las órbitas de Marte y Júpiter, mientras que algunas earacterísticas de la variación de once años conducen a una frontera a aproximadamente 30 U.A.

- 18 -

Figura I-4: Diagrama que ilustra una posible configura ción de interacción entre el viento solar y el medio interestelar. -La simetría que se muestra es causada por el movimiento del Sol a través del medio local interestelar. (Axford et al. (1963))

19

II .- VARIACIONES CON EL TIEMPO DE LA INTENSIDAD DE RADIACION COSMICA

20 -

Con el advenimiento de satélites y sondas espaciales y con el mejoramiento de las técnicas de detección de radiación cósmica, se ha conseguido actualmente bastante información experimental acerca de las características de las variaciones que sufre la intensidad de rayos cósmicos con el tiempo.

En esta sección se analizará, en base a los resultados experimentales, la manera como estas variaciones dependen de la actividad solar y de las características de las partículas de la radiación cósmica, tales como energía, rigidez magnética, carga eléctri ca, etc. Primeramente se discutirán las variaciones periódicas, que son la variación de once años, la variación de 27 días y la variación diurna y posteriormente se vorá el decrecimiento Forbush, que es una variación esporádica.

1.- Variación de Once Años.

Esta variación fué descubierta por Forbush (1957 y 1958 a y b) quien mostró que existe una correlación negati va entre el ciclo solar de once años y la intensidad de radiación cósmica registrada en la Tierra. La intensidad registrada en el máxi mo de la actividad solar es aproximadamente el 75% de la intensidad registrada en el mínimo, o sea, hay una disminución en la intensidad de radiación cósmica de aproximadamente 25% entre el mínimo y el máxi imo del ciclo solar. (Vésse la fig. II-1).

La variación de once años no es igual para todas las partículas. Neher y Forbush (1958) observaron que la disminución de

Para la definición de rigidez véase deg. 147

Figura II-1: Variación de 11 años para la intensidad de radiación cósmica (Sadström (1965)). intensidad es mayor para bajas energías que para altas (ver fig. II-2). Haciendo un análisis comparativo de la modulación (o variación de intensidad) para partículas alfa y para protones durante el ciclo de once años, Webber (1965) ha encontrado que la modulación para pro tones es aproximadamente el doble que para partículas alfa de la mis ma energía por nucleón, o sea de la misma velocidad (ver fig. II-3). Esto puede explicarse si la modulación depende del inverso de la rigidez de las partículas, ya que la rigides de las partículas alfa es el doble de la rigidez de protones, para una misma velocidad. Experimentalmente se ha encontrado una dependencia de tipo exponencial con el inverso de la rigidez.

Como hizo ver Webber (1967), la modulación dependiente del inverso de la rigidez también puede interpretarse, separadamente para protones y partículas alfa, como una modulación que depende del inver so de la velocidad a bajas energías y del inverso del producto de la rigidez por la velocidad a altas energías (véase fig. II-4).

Se ha dicho que existe una correlación inversa entre la intensidad de radiación y el nivel de actividad del Sol, pero debe ha cerse notar que en realidad existe un defasamiento entre el ciclo de actividad solar y la variación de once años; la periodicidad de rayos cósmicos se atrasa aproximadamente un año respecto al ciclo solar, cuando éste se mide por medio del número de manchas.

De las características descritas de la modulación de once años es evidente que ésta no puede deberse a producción solar de radiación cósmica, sino a un mecanismo de modulación inducido por la ac tividad del Sol, que actúa sobre la radiación cósmica galáctica, difi cultando más su llegada a la Tierra, mientras mayor es la actividad solar.

Figura II-2: Espectro diferencial de protones como función de la energía para diferentes épocas de actividad solar. (Neher (1967))

Figura II-2: Espectros de Energía para Protones y Partículas alfa a diferentes niveles de Actividad Solar. Los niveles 1 , 2 y 3 son niveles cercanos al mínimo solar de 1965. Los datos de 1a Universidad de Chicago son de Fan et al. (1967) y Fan et al. (1965); los datos de MASA de Balasubrahmanyan et al. (1967) y Teegardon (1967); los datos de 1961 son de Fichtel, et al. (1964); y los datos de 1959

> andara ang katalan Tang katalan ang katalan

Figura II-4: Comparación de los cambios fraccionales relativos a diferentes niveles de actividad solar. Los datos se comparan separadamente como función de la rigidez y como función de la rigidez & por la velocidad SC. Los cambios en protones se incican por • y en partículas alfa por • . (Tomada de Webber, 1967)

2.- Variación de 27 Días.

Al observar la intensidad de radiación cósmica durante días seguidos, se ha encontrado que existe una tendencia de recurrencia de 27 días de ciertos días de especial intensidad (véase la fig. II-5).

26

La amplitud de la variación de 27 días es muy variable y según mostraron Sokolov(1958) y Venkatesan (1958), tiene una correlación directa con el ciclo solar: las mayores amplitudes de esta varia ción se observan en períodos de máxima activdad solar, mientras que en el mínimo solar este tipo de variación está prácticamente ausente.

Aunque la variación de 27 días en sí es periódica, su apa rición es esporádica: los análisis hechos por Forbush (1955) de la es tabilidad de la onda de 27 días, muestran que esta variación tiene una duración promedio de dos a tres rotaciones solares, aunque se han observado algunas que han durado hasta treinta rotaciones solares.

Evidentemente las variaciones de 27 días están asociadas con la rotación del Sol y con la aparición en él de centros activos. Collins (1959) encontró experimentalmente que en períodos en que la amplitud de la variación de 27 días es máxima (períodos de gran actividad en el Sol), no se registró ningún aumento en la intensidad de rayos cósmicos durante las horas en las que las estaciones de observa ción yacían en zonas de impacto solar, lo que indica que esta variación no se debe a un arribo directo de partículas de radiación cósmica solar, sino más bien a una modulación de la radiación cósmica galáctica, producida de alguna manera por las zonas activas del Sol. No puede precisarse una dependencia funcional de la

Figura II-5: Variación de 27 días (Derman (1963a). amplitud de la variación de 27 días con la energía de las partículas, pero Dorman y Shatashvili (1961), analizando los datos de muchas estaciones, encontraron que el cambio en intensidad es mayor para partículas de baja energía que para partículas de alta energía. Los resultados obtenidos por estos autores se muestran en la figura II-6.

Figura II-6: Dependencia de la variación de 27 días con la energía de la partícula (Dorman (1963a)

3.- Variación Diurna.

La variación diurna de la intensidad de radiación cósmica fué observada primeramente por Linholm (1928) quien a travós del análisis de las intensidades registradas durante horas consecutivas, descubrió la existencia de una variación de la intensi dad de radiación con la hora solar local. Esta variación tiene una amplitud normal de unas décimas de por ciento, generalmente menores que 0.5%. . La figura II-7 muestra la variación de la intensidad de radiación cosmica con la hora local, respecto al promedio diario.

La amplitud y principalmente la fase de la variación diurna son muy irregulares y cambian considerablemente de un día a otro. Sin embargo, se ha observado que si se toman promedios anuales de esta variación, la fase permanece aproximadamente constante. Esto indica que la mayoría de los efectos perturbadores son eliminados al promediar sobre doce meses y que la variación diurna restante se debe a una anisotropía en la intensidad de rayos cósmicos, cuya dirección es constante respecto a la línea Tierra-Sol. Debido a la rotación de la Tierra, los detectores de radiación fijos en la superficie de esta, verán esa anisotropía e una determinada hora local y por lo tanto registrarán una variación diurna.

Aunque la hora local a la que ocurre el máximo de intensidad no es la misma para todas las estaciones, Brunberg (1953) sugirió que esta diferencia de horas se debía a la desviación de par tículas de rayos cósmicos por el campo geomagnético y que si se elimi nara este efecto, todas las estaciones registrarían la máxima intensidad a la misma hora local.

Brunberg y Dattner (1954), analizando los datos de va rias estaciones durante un período de 20 años, establecieron que du-

- 29

Tiempo Local

Figura II-7: Variación Diurna de la Intensidad de Radiación Cósmica. (Sandström (1965)) rante esa época la anisotropia había tenido una dirección promedio de aproximadamente 90° con la lines Tierra-Sol, en la dirección tarde (18.00 hrs.). En cuanto a la dirección de esta anisotropia con el plano de la eclíptica, las observaciones muestran que puede cons<u>i</u> derarse como paralela a este plano.

Como una posible explicación de esta anisotropía, Brunberg y Dattner propusieron que una parte de la radiación cósmica galáctica está sujeta a la rotación del Sol, de manera que gira en el espacio interplanetario alrededor del Sol con una velocidad an gular igual a la de éste.

Sin embargo, observaciones más recientes han mostrado que la anisotropia causante del promedio anual de la variación diurna no es en realidad constante ni en amplitud ni en fase. Venkatesan y Dattner (1959) han encontrado que existe una correlación positiva entre la amplitud de la variación diurna y la actividad solar. Duggal, Pomerantz y Forbush (1967) han reportado una disminución de 26% de la magnitud promedio de la anisotropia entre 1958 y 1965. En cuan to a la fase Thambyahpillai y Elliot (1953) observaron que el tiempo local del máximo para promedios anuales de la variación diurna, varía con el año, e hicieron notar la posibilidad de la existencia de una onda de 22 años en la fase. Posteriormente, Venkatesan y Dattner (1959) y Forbush y Venkatesan (1960) han confirmado esta variación de fase, observando que efectivamente la dirección de la anisotropía tiende a moverse hacia las horas de la mañana en períodos de mínima actividad solar. La magnitud del corrimiento varía de ciclo a ciclo y es mayor para los mínimos más bajos de la actividad solar (de Junio a Julio de 1954) la dirección de la anisotropía estuvo entre las 6.00 y las 7.00 horas). Esta variación de la amplitud y la fase de

- 31 -

la anisotropia puede verse en la figura II-8.

La dependencia de la anisotropia diurna con la energía o la rigidez de las partículas es aún muy discutida. Dorman (1957) y Kuzmin (1960) reportaron que la amplitud de la variación diurna depen de de la energía en la forma E⁻¹ para energías mayores que una cierta energia minima, aunque las energias minimas encontradas por ambos autores no fueron las mismas. Dorman y Kuzmin coinciden en que para energías menores que la mínima no existe variación diurna. Según Sanda tröm (1965) es la región de bajas energías la que juega el papel prin cipal en la variación diurna y la razón de la parte anisotrópica a la isotrópica disminuye al aumentar la energía. Kolomeets et al. (1965) reportaron una dependencia de la amplitud de la variación diurna con la energía de la forma E aparentemente a todas las energías y según otros trabajos recientes, parece ser que la amplitud de la aniso tropia causante de la variación diurna no depende de la energía de las partículas. Todas estas discrepancias pueden deberse a que los da tos utilizados no corresponden al mismo nivel de actividad solar para todos los casos. Sin embargo, todos coinciden en que aparentemente no hay un límite máximo en cuanto a la energía de las particulas causantes de la variación diurna.

También se discuten mucho las variaciones con el ciclo so lar de la amplitud y la fase de la variación diurna, mencionadas anto riormente. Según un trabajo reciente de Duggal et al. (1967) la direc ción de la anisotropía ha permanecido constante e igual a 90° al este de la línea Tierra-Sol, para el período 1958-1965. Las discrepancias pueden deberse a los diferentes métodos estadísticos empleados en pro cesar los datos, así como a diferentes elecciones de períodos para pro

32

Figura II-8: Dirección y magnitud de la anisotropía de rayos cósmicos en el plano orbital de la Tierra, para diferentes épocas del ciclo solar. (Sandström (1965))

4 .- Decrecimiento Forbush.

El decrecimiento Forbush es una disminución esporádica de la intensidad de radiación cósmica, que se caracteriza por un marcado decrecimiento de la intensidad en un período de pocas horas (hasta 12% en 6 horas) el cual es seguido de una lenta recuperación de la intensidad que toma desde algunos cuantos días hasta algunas se manas. Observados en la Tierra, estos decrecimientos ocurren simultáneamente en todas las estaciones, sin importar su localización. La fi gura II-9 muestra un típico decrecimiento Forbush observado en la Tie rra.

El primero en reportar este tipo de decrecimientos fué For bush (1937) a quien deben su nombre. Tanto la magnitud como la duración de los decrecimientos Forbush varían considerablemente de un even to a otro. Se han observado desde algunos decrecimientos sumamente pe queños hasta otros de un 20% en la magnitud total y aunque generalmen te sólo toma unos cuanto días en volver la intensidad a su nivel normal, hay algunos decrecimientos en los que esta recuperación no ocurre. Los decrecimientos Forbush emplezan gradualmente pero el gradiente au menta con el tiempo. Algunas veces la pendiente termina abruptamente; en otros casos el decrecimiento presenta una región de gradiente menos pronunciado, antes de que la intensidad alcance su valor mínimo. Se ha observado que algunas veces ocurren superposiciones de decrecimientos Forbush y que a veces aparecen pequeños decrecimientos en la etapa de recuperación.

En ciertas ocaciones, los decrecimientos Forbush están precedidos por un ligero aumento en la intensidad, con una amplitud <u>a</u> proximada de 1.5% (Lockwood (1956)).Blokh et al. (1959) encontraron

- 34 -

que este aumento previo al decrecimiento se debe a partículas de alta energía que no pueden asociarse con emision de rayos cósmicos solares en la ráfaga, pues éstos tienen un espectro mucho más blando. También se han observado eventos en que la intensidad regresa a un nivel lige ramente más alto que el nivel previo al decrecimiento, y desqués disminuye hasta alcanzar el nivel anterior. Este aumento parece deberse a partículas de rayos cósmicos solares de bajs energías que aparentemente, después del decrecimiento Forbush, tienen un acceso más fácil a la Tierra. Debe tenerse en cuenta que tanto la variación diurna como la de 27 días alteran la forma de los decrecimientos Forbush.

Se ha encontrado que la recuperación del nivel de intensi dad, después del decrecimiento, sigue aproximadamente una ley exponen cial de la forma:

 $\Delta I(t) = \Delta I_0 \text{ exp}(-t/t_0)$

donze $\Delta I(t)$ es la diferencia entre la intensidad previa al decrecimiento y la intensidad observada después de un tiempo t de haberse re gistrado la mínima intensidad, ΔI_0 es la máxima disminución en la in tensidad y t_0 es una constante que depende del decrecimiento en particular. En los decrecimientos en los que la recuperación no ocurre, el valor de esta constante será infinito.

Según las observaciones de Trumpy (1959), la amplitud del decrecimiento es inversamente proporcional a la energía de las particulas y además existe una energía máxima (diferente para cada evento) tal que para partículas con energías mayores que ésa no hay ninguna disminución en la intensidad. Sandström (1965) encontró que la depen dencia de la disminución de la intensidad con la rigidez de la particula es de la forma a R^{-b}donde a y b son constantes que varían de un evento a otro. Webber (1962) ha encontrado que aparentemente **b** tiene una variación con el ciclo solar.

La frecuencia con que ocurren los decrecimientos Forbush es mayor durante los períodos de alta actividad solar. Bachelet et al. (1960b) encontraron que el 75% de estos decrecimientos están asociados con fuertes ráfagas solares; el decrecimiento ocurre 1 o 2 días después de observada la ráfaga y sólo para posiciones angulares de éstas restringidas respecto de la Tierra. Kamiya y Wada (1959) han encontra do que la magnitud de estos decrecimientos, cuando ocurren, es indepen diente de la posición de la ráfaga sobre el disco solar. Estos mismos autores también han reportado decrecimientos Forbush asociados con ez plosiones de radio onda de tipo IV en el Sol.

Se ha observado que todos los decrecimientos Forbush están asociados con comienzos repentinos de tormentas geomagnéticas. La mayoría de las veces el decrecimiento se inicia después del comienzo repentino, pero Balata et al. (1959) han reportado comienzos repentinos que han tenido lugar después del decrecimiento. En un estudio de 48 decrecimientos, Sandström (1961) encontró que el 65% de ellos presentaron una diferencia de menos de 6 horas entre el comienzo repentino de tormenta y el centro de la parte descendiente de la curva de de crecimiento (ver fig. II-10). Para el 25% la diferencia fué menor de 2 horas y menos del 5% de los decrecimientos ocurrieron antes del comienzo repentino.

Simpson (1954) y Kane (1955) encontraron decrecimientos en los que el mínimo de intensidad fué registrado de 4 a 6 horas antes que el máximo de perturbación geomagnética. Van Heerden (1955) encontró eventos en los que el mínimo de intensidad ocurrió aproximadamen-

37

Figura II-10: Histograma de las variaciones en el tiempo de atraso entre la mitad del decrecimiento y el comienzo repentino de tormenta () asociado a éste. (Sandström (1965)) te 5 días después que el máximo de perturbación geomagnética. En gene ral, las perturbaciones geomagnéticas cesan antes de que se alcance nuevamente el nivel de intensidad normal.

Todo esto sugiere, que aunque las tormentas geomagnéticas y los decrecimientos Forbush están asociados, ninguno es consecuencia del otro, sino que ambos tienen una causa común, relacionada con explosiones solares. Los decrecimientos Forbush son producidos por perturbaciones en el medio interplanetario, más bien que en el espacio circunterrestre, ya que éstos han sido observados con satélites efectuando mediciones in situ, hasta una distancia de 2 U.A.

Se deduce que ciertos eventos solares son capaces de producir un barrimiento de partículas de rayos cósmicos durante cierto tiempo, permitiendo después que la intensidad de partículas vuelva a su nivel normal.

IIT .- MODULACION DE RADIACION COSMICA EN EL MEDIO INTERPLANETARIO

40 .

En la primera parte de esta sección se presentarán las generalidades del movimiento de partículas cargadas en campos mag néticos y en la segunda se describirán y analizarán los principales modelos de modulación de las partículas de rayos cósmicos en el medio interplanetario, los cuales se basan ,principalmente, en el campo mag nético interplanetario como causante de la modulación.

Para la descripción del movimiento de partículas cargadas en campos magnéticos no homogéneos se empleará la aproximación adiabá tica y se discutirán las condiciones en las que ésta puede emplearse. Respecto a la modulación, se verá que mientras algunos modelos consideran constante la energía de las partículas de rayos cósmicos y basan la modulación en cambios de la densidad de partículas, otros modelos la atribuyen a cambios en la energía y otros más toman en cuenta cambios tanto en la densidad como en la energía. También se verá que las regiones donde se considera que se modulan las partículas no son igua les para todos los modelos, sino que algunos consideran que la modula ción se realiza en el interior de la cavidad solar, mientras que otros suponen que sólo ocurre en la región de campos magnéticos desordenados que rodea a esta cavidad (ver fig. I-4).

Finalmente se discutirá la manera como los diferentes mode los pueden o no explicar las características de las variaciones obser vadas, ya discutidas en la sección anterior

> Nota: Todos los modelos discutidos en esta sección se refieren a la modulación de la radiación cóemica galáctica y no toman en exenta la radiación cósmica selar.

1.- Movimiento de Partículas Cargadas en Campos Magnéticos.

Cuando una partícula con carga e y velocidad Y se mueve en una región en la que hay un campo magnético, actúa sobre ella una fuerza dada por:

- 41 -

 $\underline{F} = e \underline{E} + e_{e} \underline{W} \times \underline{B} \qquad \text{III-1}$

donde <u>B</u> es el vector de campo magnético y <u>E</u> es el vector de campo eléctrico inducido en el casô en que el campo magnético no sea estacionario ($\frac{OB}{OL} \neq O$). La fuerza de la ecuación III-l se conoce con el nombre de fuerza de Lorentz.

a) .- Campos Magnéticos Estacionarios .-

Una característica general de los campos magnéticos estacionarios, sea cual fuere la forma de las líneas de campo, es que no alteran la energía de las partículas que se mueven en su interior. Si el campo magnético es estacionario no existe el vector de campo eléctrico y la fuersa de Lorentz se reduce a : $\underline{F} = \frac{q}{c} \quad \underline{W} \times \underline{B}$ III-2

La ecuación II-2 se puede poner como:

$$\frac{11}{2} = 4 \times \mathbb{E}$$

donde <u>P</u> es la cantidad de movimiento de la partícula dada por $\underline{P}=wW$, siendo <u>m</u> la masa. Si se multiplica escalarmente la ecuación III-3 por <u>P</u> se obtiene:

$$\underline{P} \cdot \frac{d\underline{P}}{dt} = \alpha_{e} \underline{P} \cdot (\underline{W} \times \underline{B}) = 0$$

ya que el producto $\underline{w} \times \underline{B}$ es perpendicular a \underline{P} por ser éste un vector paralelo a la velocidad. Así pues se tiene:

$$\frac{dP^2}{dt} = 0 \qquad \therefore |\underline{P}| = P = dt.$$

Para una partícula no relativista, la energía está dada por $\mathcal{E} = \frac{P_{2}^{2}}{2}$ y para una partícula relativista por $\mathcal{E} = \sqrt{P_{2}^{2}c^{2} + w_{0}^{2}c^{4}}$. En

ambos casos la constancia de P asegura la constancia de la energía. Entonces, la energía de una partícula, relativista o no, que se mueva en un campo magnético estacionario, es constante independientemente de la configuración de B.

b) - Campos Magnéticos Homogéneos --

Campo magnético homogéneo es aquel que es <u>u</u> niforme y estacionario. Considérese una partícula no relativista que se inyecta en una región de campo magnético homogéneo, de tal manera que su vector velocidad forma un ángulo Θ con la dirección del campo (fig. III-1).

Descomponiendo el vector \underline{w} en una componente paralela y otra perpendicular al campo, se tiene de la figura: $\underline{W}_{ij} = \mathbf{W} \mathbf{C} \mathbf{O} \mathbf{\Theta}$ III-4

₩₁ = W Mu O III-5

Como la fuerza es perpendicular a la dirección del campo $\frac{dW_{ij}}{dt} = 0$: $W_{ij} = 3$

La constancia de la magnitud de <u>P</u> implica la constancia de la magni tud de la velocidad; entonces, si $W_{i,2}$ da también $W_{j,2}$ da . De las ecuaciones III-4 y III-5 se concluye que $\Theta = da$. Así pues, la trayectoria de una partícula que se mueve en un campo magnético homogéneo es una hélice cuyo eje coincide con la línea de campo, o sea que la partícula se movera describiendo círculos alrededor de un pun to que se desplaza con velocidad constante a lo largo de la línea de campo.

Como en este caso la fuerza dada por la ecuación III-2 es una fuerza centripeta se tiene que:

$$m \omega^2 p = \frac{e}{c} B W_1$$
 III-6

donde CD es la frecuencia de giro y P el radio de la órbita circular de la partícula. La frecuencia de giro está dada port

43

$$\omega = \frac{\omega_{L}}{2}$$
 III-7

Substituyendo esta expresión en la ecuación III- 6 se obtiene:

y de la ecuación III-7

tonces:

 $\omega = \frac{eB}{mc}$ El período y la frecuencia de giro están relacionados por T= 211

III-9

Las ecuaciones III-8 , III-9 y III-10 son las expresio nes para el radio, la frecuencia y el período de giro de la partícula alrededor de la línea de campo, para el caso de particulas no relativistas que se muevan en campos magnéticos homogéneos.

En caso de que las partículas sean relativistas las ex presiones anteriores son las mismas, ya que la única suposición que se hizo fué que la energía es constante y anteriormente se probé que esto también ocurre para partículas relativistas. Sólo debe tomarse en cuenta que para estas particulas la expresión de la masa es:

ca.-

donde W. es la masa en reposo. (Para particulas relativistas puede haber emisión sincrotrónica, pero será despresiada en este tratamien to).

c).- Campos Magnéticos Homogéneos más una Fuerza no Magnéti

Para este caso, la fuerza que actúa sobre la particula está dada por :

$$\frac{d}{dt} = \alpha_{c} \cdot \underline{W} \times \underline{B} + \underline{F}$$

donde <u>F</u> es la fuerza adicional al campo magnético homogéneo <u>B</u>. Si se divide el movimiento en paralelo y perpendicular a las líneas de campo, se tiene:

$$M \frac{dW_{ii}}{dt} = F_{ii} \qquad M \frac{dW_{I}}{dt} = \mathscr{C}W_{I} \times \mathcal{B} + F_{I} \qquad \text{III-11}$$

De la ecuación III-ll se ve que el movimiento de la partícula parale lo a las líneas de campo será a celerado por la componente de la fuer sa en esa misma dirección. Para analizar el movimiento perpendicular a las líneas de campo considérese un sistema de referencia que se mueve con una velocidad u, tal que para este sistema la partícula só lo esté girando por la acción del campo <u>B</u>. Para que esto courra, la velocidad <u>u</u> debe ser tal que se cumpla:

$$g_{E}W_{I}\times B + F_{I} = q_{C}(W_{I}-W)\times B$$

$$\therefore F_{I} = -q_{C}(W\times B)$$

Multiplicando esta última ecuación vectorialmente por <u>B</u> se obtiene:

$$F_{1} \times B = U_{1} B^{2} C$$

$$U_{1} = C \frac{E \times B}{C B^{2}}$$

de donde:

Entonces, para un sistema de referencia fijo, la velo cidad perpendicular a las líneas de campo es:

III-12

$$W_1 = W_1 + C \frac{E \times B}{C B^2}$$

donde W_{L}° es la velocidad que tendría la partéula si sólo estuviera el campo magnético B homogéneo.

Todas las velocidades del tipo de <u>u</u>, que son perpendi culares a las líneas de campo y adicionales a la velocidad de giro W_{λ}^{ϕ} se llaman velocidades de arrastre, o simplemente arrastres. Para el caso de un campo eléctrico <u>E</u> superpuesto al campo magnético, el arrastre dado por la ecuación III-12 se convierte en :

$$\underline{\mathbf{U}}_{\mathbf{z}} = \mathbf{C} \frac{\mathbf{E} \times \mathbf{E}}{\mathbf{B}^2}$$
 III-13

Nôtese que si el campo eléctrico es constante y perpendicular a las líneas de campo magnético, la partícula no sufrirá ninguna aceleración, ya que tanto W₁ como W₂ serán constantes.

d).- Campo Magnético Homogéneo con Irregularidades.-

Considérese una partícula moviéndose en un campo magnético homogéneo, en el cual se hallan regiones de magnitud \mathcal{A} en donde cambia la intensidad del campo. Sea <u>Be</u> el campo homogé**neo** y <u>B'</u> el campo en la irregularidad. Mientras está en <u>Be</u> la partícula tendrá un radio de giro \mathcal{P} que al entrar a la irregularidad se convertirá en \mathcal{P}_{i} (véase la fig. III-2). Si $\mathcal{P}_{i} > \mathcal{A}$, la deflaxión \mathcal{A} sufrida por la partícula puede considerarse como: (ver fig. III-2b)

III-14

$$\Delta = \frac{\chi}{\mathcal{S}_{i}}$$

Δ

Al salir de la irregularidad, su radio de giro volverá a su valor original, pero su centro de giro se habrá desplasado una distancia d, la cual está dada por: (ver fig. III-2e).

$$\underline{d} = -\frac{P_0 - P_i}{P_i} \underline{L}$$

Figura III-2: Deflexión que sufre una Partícula al interaccionar con una irregularidad magnética. Las figuras III-2b y III-2e son amplificaciones de ciertas partes de la figura III-2a para dar mayor claridad a las relaciones geométricas. Como el radio de giro es proporcional a la magnitud del campo se tienes

$$\underline{d} = -\underline{l} \quad \underline{AB}_{B_0}$$

Diviviendo la ecuación anterior entre Δt , considerando que $\frac{Q}{\Delta t} = \frac{W_1}{\Delta t}$

donde <u>U</u> es nuevamente la velocidad de arrastre que sufre el centro instantáneo de giro de la partícula.

e).- Campos Magnéticos no Homogéneos que Varian "Lentamente"-

Cuando el campo magnético no es homogéneo sino

que tiene derivadas respecto a la posición o al tiempo, o respecto a ambos, la ecuación III-l no tiene soluciones exactas. Sin embargo, si la energía de la partícula y las variaciones del campo son tales que la partícula no note un cambio considerable del campo durante un giro, el movimiento de ésta puede describirse por medio de la teoría de pertErbaciones (o teoría adiabática) como un movimiento cuasine licoidal. Esto fué demostrado por Kruskal (1960) de una manera matemáticamente rigurosa, aunque anteriormente Alfvén (1950), de manera más bien intuitiva, habiá demostrado que si se cumplen las condicionesi

(a las cuales se les conoce como discriminantes de Alfvén) el mo vimiento de las partículas en el campo será cuasihelicoidal. Mótese que el que este tipo de movimiento exista o no, no sólo depende de las características del campo, sino también de la energía de la partícula, mientras que en el caso de un campo homogéneo, todas las par-

ticulas describirán hélices, independientemente de su energía.

1).- <u>Concepto de Centro Guía</u>.- El movimiento cuasihelicoidal puede considerarse como constituído por dos movimientos su perpuestos: un movimiento de giro alrededor de un punto y el movimien to de ese punto, obedeciendo a las variaciones del campo. El punto al rededor del cual gira la partícula es el que se conoce como contro guía. El concepto de centro guía fué introducido primeramente por Alfvén. La interpretación geométrica del centro guía es diferente según el orden al que se use la teoría adiabática, pero básicamente es una aproximación al centro instantáneo de giro.

- 47 -

11).- <u>Invariantes Adiabáticos</u>.- Al aplicar la teoría adiabática al movimiento de partículas en campos lentamente variables, se encuentra que este movimiento tiene a lo sumo tres invariantes adia báticos o constantes aproximadas de movimiento. Estos tres invariantes adiabáticos son: el momento magnético de la partícula $\mu_{o} = \frac{MM_{2}^{2}}{2}$, la variable de acción dada por $J=\oint P_{u} dS$, asociada al movimiento para lelo a las líneas de campo, cuando éste es un movimiento periódico entre dos puntos de reflexión, y el flujo magnético a través de la cásca ra sobre la que se mueve el centro guía, cuando existe este tipo de mo vimiento. El más fuerte de los invariantes adiabáticos es el momento magnético, el cual se conserva siempre que los discriminantes de Alfvén son mucho menores que l. Cuando el campo magnético por la energía de la partícula, que como se demostró al principio de esta sección, es una constante del movimiento.

f) .- Rigidez Magnótica .-

Un parametro de gran utilidad en el tratamiento

del movimiento de partículas en campos magnéticos es la rigides magnética, la cual es una medida de la resistencia que presenta la partícula a curvar su trayectoria al entrar en una región de campo magnético. La rigidez magnética se define como:

$$R = PB$$

Substituyendo el radio de giro de la ecuación III-8 se obtiene:

$$\mathcal{R} = \frac{\mathcal{P}_{\mathcal{L}}}{\mathcal{Q}}$$
 III-15

En lo sucesivo, al referirnos a la rigidez magnética de una partícula nos referiremos a la relación dada en la ecuación III-15, de la cual se ve que la rigidez es directamente proporcional al momento de la par tícula e inversamente proporcional a su carga.

El análisis hecho en el párrafo anterior del movimien to de partículas cargadas en campos magnéticos, no es, de ninguna mane ra, un análisis completo. Sin embargo, las características de este movimiento desarrolladas aquí son suficientes para poder comprender los modelos de la modulación de radiación cósmica galáctica en el medio in terplanetario, que serán discutidos a continuación.

2.- Modelo de convección-Difusión.

En el modelo de convección-difusión, la modulación de la radiación cósmica galáctica en el medio interplanetario es producida por la interacción de las partículas de rayos cósmicos con las irregularidades magnéticas transportadas por el viento solar. Según este modelo la densidad de partículas en el medio interplaneta rio es el resultado de dos mecanismos competitivos: la convección o barrimiento de particulas hacia afuera del sistema solar, producido por el movimiento de las irregularidades y la difusión de partículas hacia adentro del sistema solar por entre y a través de estas irregu laridades. En este modelo se supone que en la interacción de los rayos cósmicos con las irregularadas magnéticas del medio interplane tario, se conserva la energía de las partículas. Se considera que la convección de partículas es mayor para períodos de gran actividad se lar que para períodos en que la actividad solar es baja, por lo que la densidad de radiación cósmica en el medio interplanetario es monor durante el máximo solar que durante el mínimo. De esta manera eg plica el modelo de convección-difusión la modulación de once años; ésta es la única variación que puede explicar este modelo por sí mig mo y no proporciona ninguna explicación para los otros tipos de varisciones.

A continuación se discutirá el modelo original de con vección-difusión y las modificaciones que ha sufrido.

a) .- Modelo original de convección-difusión.-

El primero en suponer una modulación de radiación cósmica por interacción con irregularidades magnéticas fué Horrison (1956), quien sugirió que el Sol emitía grandes nubes de plag

49 -

ma magnetizado turbulento las cuales dispersaban las partículas de ra yos cósmicos en el medio interplanetario. Posteriormente Parker (1958b) desarrolló el que abora se conoce como modelo de convección-difusión para explicar la modulación de once años.

En este modelo, Parker supone que la modulación se reg liza únicamente en la región frontera de la cavidad solar, donde se encuentran campos magnéticos sumamente irregulares. Una vez que las partículas de rayos cósmicos han atravezado esta zona, ya no sufrirán ninguna modulación que pueda alterar su densidad por lo que la densi dad de partículas será constante en todo el interior de la cavidad solar.

Parker atribuye la modulación de once años al hecho de que las características de esta capa cambian con el ciclo solar, siendo una capa densa y amplia para el máximo solar y desapareciendo durante el mínimo. En su modelo sólo considera la configuración de la capa durante el máximo de actividad solar y analiza el efecto de ósta sobre la radiación cósmica galáctica, la cual considera que es la que se observa durante el mínimo solar, pues al desaparecer la capa no hay modulación.

Para facilitar el desarrollo matemático de este modelo, Parker supone a la cavidad solar con simetriá esférica heliocentrica, así como también a la región frontera. (Véase fig. III-3). Con sidera además que la difusión de las partículas dentro esta cáscara es isotrópica, ya que la cáscara lo es y las partículas se mueven en ella al azar, debido al gran desorden de los campos magnéticos.

Para obtener la ecuación que defina la densidad de par tículas de rayos cósmicos en el sistema solar interno que, como ya

- 50 -

Figura III-3: Cavidad Solar con simetría Esférica usada por Parker en su modelo de Convección-Difusión. Supone una zona dispersora de aproximadamente 4 U.A. de espesor, situada entre las órbitas de Marte y Júpiter. se dijo, es el resultado de la convección y difusión de las partículas en la capa dispersora, se considerará primero el efecto de la d<u>i</u> fusión, esto es, se supondrá que las irregularidades magnéticas ho se mueven y que por lo tanto no hay convección.

Para la discución se introducirá un parámetro V definido como la relación de la enrgía cinética de la partícula a su energía en reposo.

Debido a la difusión de partículas dentro de la capa se tendrá un flujo dado por (ver Parker (1956)):

donde $\lambda(\chi)$ es el camino medio libre para partículas con energía χ que se muevan en el interior de la cáscara y $N(\chi)$ es el número de partículas por unidad de volúmen con energía χ . Como la energía y por lo tanto, la velocidad de las partículas se conserva constante, la ecuación anterior puede ponerse como:

$$\frac{1}{2} (\lambda) = -\lambda^3 M(\lambda) \gamma(\lambda) \Delta M(\lambda) = -\beta(\lambda) \Delta M(\lambda) \qquad 111-12$$

donde R(Y) es el coeficiente de difusión definido como:

$$k(y) = \lambda^3 M(\lambda) y(\lambda)$$
 III-18

La ecuación III-17 es la expresión para el flujo de partículas con energía 2 en el interior de la capa dispersora, debi do a la difusión.

Considérese ahora el efecto de la convección. Al estarse moviendo el medio dispersor con la velocidad \underline{V} del viento solar, habrá un flujo debido a la convección de partículas hacia afue- 53

ra, dado por:

El flujo total será:

$$\overline{t}^{\perp} = \overline{t} + \overline{t}_{1} = N(\beta) \overline{\Lambda} - \gamma (\beta) \Delta N(\beta)$$

De la conservación de la materia, suponiendo que no hay ni fuentes ni sumideros de partículas y recordando que la energía se conserva, se tiene:

$$\frac{\partial f}{\partial n(\delta)} = -\Delta \cdot t^{4}$$

de donde:

$$\frac{\partial f}{\partial N(\mathcal{B})} = -\Delta \cdot (N(\mathcal{A}) \Lambda) + \Delta \cdot [f_{\mathcal{B}}(\mathcal{A}) \Lambda N(\mathcal{A})]$$
III-13

Esta última ecuación nos da el cambio en la densidad de partículas, como función de la energía, debido a los efectos de convección y difusión.

Como el período de modulación de once años es muy grande comparado con los tiempos característicos de la difusión y la conveg ción, la modulación de once años se puede considerar como una susesión de estados estacionarios, que serán diferentes dependiendo del nivel de actividad del Sol. Para un estado estacionario se tiene que Q___O y por lo tanto:

$\Delta \cdot (\mathsf{N(N)} X) = \Delta \cdot [F(X) \Delta \mathsf{N(N)}]$

III-20

Para el caso de una simetría esférica la solución de la ecuación III- 20 será:

donde W(Y)es la densidad de partículas con energía \mathcal{N} en el sistema solar interno; W(Y)es la densidad de partículas en el medio galácti co y (T_2-T_1) es el espesor de la capa dispersora (véase fig. III-3) La ecuación III-21 de la relación entre la densidad

54

de particulas en el sistema solar interno y la densidad en el medio galáchico, para una modulación por convección y difusión de partículas que tiene lugar solamente en una región $\gamma_1 \leq \gamma \leq \gamma_2$.

Para este modelo, Parker supone que ni el coeficiente de difusión ni la velocidad del viento solar dependen de <u>r</u> en la región de integración. La suposición de que la velocidad del viento se mantione constante en esa región, la basa Parker en su modelo de expansión de la corona, según el cual, después de algunos radios solares, la velocidad del viento solar se mantiene practicamente constante y supersónica, a través del espacio interplanetario (lo cual ya se vió que es incorrecto). Con estas dos suposiciones, la couación III-21 se reduce a:

$$N_{0}(y) = N_{\infty}(y) \exp\left[-\frac{V(r_{2}-r_{i})}{k(y)}\right]$$
III-22

La expresión para el coeficiente de difusión depende de las características de la zona dispersora. Parker considera que esta zona está constituída por irregularidades magnéticas contiguas, todas de la misma magnitud **A** y con el mismo campo promedio B. Supo ne que **B** y **A** son tales que el radio de giro de las partículas **P** siem pre es mayor que **A**, para cualquier energía. Considera que una partícula se ha dispersado cuando cuando se ha deflectado un ángulo de

T respecto a su dirección inicial.

De la ecuación III-14 se tiene que la deflexión sufr<u>i</u> da por la partícula al interaccionar con cada una de estas irregularidades es: $\Delta = \frac{4}{9}$. Después de n de tales deflecciones, el ángulo total que se habrá deflectado la partícula estará dado por $\Delta N^{\sqrt{2}}$ spa ra que la partícula se haya deflectado un ángulo total de $\frac{7}{2}$ es nece sario que n sea $\frac{\pi^2}{9}$. $\frac{9}{4}$ L. Este es el número de irregularidades que la partícula debe atravezar para ser dispersada.

55 -

Como las irregularidades son contiguas, el camino medio li bre entre dos dispersiones sucesivas será.

$$\lambda = n \ell = \frac{\pi^2}{4} g^2/\ell$$

El camino medio libre dependerá de la energía ya que 6 depende de ella. De la ecuación III-18, el coeficiente de difusión será:

 $h = \frac{\pi^2 W S^2}{\frac{12A}{\frac{12A}{66}}}$ De la relación $V_2 = \frac{6-6}{66} = \frac{\sqrt{910^2 + W^2 C^2}}{W_6 C^2}$ jse obtiene que la velocidad de la particula como función de V_1 está dada por:

$$\mathcal{W}(n) = \sigma \frac{(n)(n+s)}{n+1}$$

y de la ecuación anterior y la ecuación III-8, el radio de giro es:

$$\mathcal{G}(n) = \frac{me}{cb}$$

Entonces, el coeficiente de difusión depende de la energía de la par tícula en la forma:

$$f_{2}(n) = \frac{\mu_{2}}{12} \left(\frac{\mu_{2}c_{0}}{c_{1}B_{2}d} \right) \frac{\left[\mathcal{R}(\mathcal{R}+2) \right]_{2}}{\mathcal{R}+1}$$

Substituyendo esta expresión en la ecuación III-22 se tie-

no:

 $N_{0}(\gamma_{2}) = N_{0}(\gamma_{2}) \sup \left\{ \frac{-12 V(r_{2}-r_{1}) \left\{ 2^{2} B^{2}(\eta_{1}+1) \right\}}{\Pi^{2} w^{2} c^{5} C \gamma(\eta_{1}+2) \right\}^{3/2}} \right\}$ III-23 Le ecuación III-23 describe la modulación de la radiación cósmica galáctica, según el modelo eriginal de convección-difusión. De

esta ecuación se ve que la modulación es mayor para partículas de bajas energías que para partículas de altas energías.

Para el máximo solar, Parker supone los siguientes valores: B = 23; $L = 2 \times 10^6$ KuL; $T_2 - T_1 = 6 \times 10^9$ KuL/seg que substituídos en la ecuación III-23 dan una modulación para protones de

$$N_{0}(y) = N_{0}(y) \exp \left\{ \frac{-2.44(y+1)}{[y(y+2)]^{3/2}} \right\}$$
 III-24

Como en este modelo so considera que no hay modulación en el mínimo so lar se tiene que la densidad de partículas observadas en la Tierra durante el mínimo es precisamente la densidad de partículas galáctica. Con esta consuderación se puede obtener el espectro teórico esperado para el máximo solar a partir del espectro observado en el mínimo solar, pues el espectro diferencial de partículas j(y) (número de partículas por unidad de tiempo que atraviesan una unidad de área, las cuales tiene energía entre y y y+dy) está relacionado con la densidad de partículas en el espacio por la relación

$$j(r) = N(r) w(r)$$

Puesto que la velocidad se considera constante, el espectro teórico par ra el máximo solar estádado por:

$$j_{(N)} = j_{(N)} \frac{\rho_{\alpha}}{\mu_{\alpha}} \left\{ \frac{-2.44(3+1)}{[V_{0}(3/2)]^{3/2}} \right\}$$
 III-25

- 56 -

Usando como $\int_{Min}^{(M)}$ el espectro observado durante 1954 (ver fig. II-2), Parker obtiene un espectro teórico para el máximo solar de 1958, que concuerda satisfactoriamente con el observade, en la rg gión de energía entre 1 y 4 Gev. Para energías mayores e menores que esas, su modelo predice una intensidad bastante menor que la observa da.

Para obtener una mejor concordancia entre la teoría y el experimento, Dorman (1963 a y b) y Parker mismo (1963) hicieron eleg tas modificaciones al modelo original, que serán discutidas a continuación.

b) - Modificaciones de Parker al Modelo Original -

Las modificaciones hechas por Parker (1963) al modelo original de convección-difusión, conducen solamente a un mejor acuerdo con la teoría a emergías bajas.

En este modelo modificado, Parker conserva la imágen de la capa dispersora con irregularidades del mismo tamaño 1 y con el mismo campo magnético promedio E, aunque considera valores un poce distintos de estas dos cantidades. Las modificaciones al modelo original son las siguientes: considera que las irregularidades magnéticas, en ves de ser contiguas, están distriduídas en el interior de la capa con una densidad D por unidad de volúmen; además, en este modelo ya toma⁴ en cuenta la posibilidad de que el radio de gi=o de las partículas sea monor que la magnitud de la irregularidad (de aquí que sólo se modifique el espectro teórico a bajas energías); ade más considera que una partícula se ha dispersado cuando su dirección cambia en l radián o más.

Para partículas de energías tales que P3L se tiene

- 57 -

al igual que en el modelo eriginal, que la deflexión sufrida en cada interacción es $\Delta = \frac{9}{P}$; para que la partícula cambie su dirección en un radián se necesitan $M = \frac{9}{2} \frac{1}{2}$ interacciones, por lo que el cam<u>i</u> no medio libre para partículas con $\frac{9}{2}$ stá dado por:

$$\lambda = \frac{1}{D} \cdot \frac{3}{2}$$

Si la energía de la partícula es tal que $\rho \leq 1$, cada deflaxión sorá una dispersión y por lo tanto, para estas partículas, el camino medio libre es: $\lambda = \frac{1}{2 \sqrt{2}}$

so el eamino medio libre <u>no depende</u> de las características de las partículas.

Así pues, se tendrán dos expresiones distintas para el coeficiente de difusión, dependiendo de la energía de las partículas. Estas expresiones son:

$$f_2(\chi) = \frac{W(\chi) P^2(\chi)}{3DQ^4} \quad \text{form } \chi \leq \chi^*$$

donde $\sum_{i=1}^{n} es$ el valor de la energía para el cual el radio de giro de la partícula sea igual a la magnitud de las irregularidades. Subtit<u>u</u> yendo estos valores para el coeficiente de difusión en la ecuación III-22 se obtiene:

$$N_{0}(\gamma) = N_{0}(\gamma) \operatorname{soch} \left\{ -\frac{3 \operatorname{VD} I^{2}(r_{2}-r_{1})}{C} \cdot \frac{Y+1}{[\gamma(\gamma+2)]} \right\}^{\gamma_{2}}$$

$$\operatorname{ci} \gamma \leq \gamma^{\ast}$$

$$N_{0}(\gamma) = N_{\infty}(\gamma) \operatorname{soch} \left\{ -\frac{3 \operatorname{VD} I^{4}(r_{2}-r_{1}) e^{2}B^{2}}{M^{2}C^{5}} \cdot \frac{Y+1}{[\gamma(\gamma+2)]^{3/2}} \right\}$$

$$\operatorname{ci} \gamma \geq \gamma^{\ast}$$

En este modelo modificado, Parker supone los valores siguientes para la magnitud de las irregularidades y el campo promedio en ellas:

 $l = 10^{6}$ cm ; B = 37de donde resulta que el valor de y^{4} para protones es M_{\pm}^{4} 0.416. La energía total correspondiente a ese valor de ves E = 1.33 Gev. Consideran do los mismos valores para $V = T_{1}$ que en el modelo emiginal, la mejor concordancia entre las curvas teórica y experimental se obtiene para un valor de D= 3.75x10⁶/U.A. Así pues, para este modelo de convección-difusión modificado por Parker, la densidad de protones observada en la Tierra durante el máximo solar está Pelacionada con la densidad gálactica (o sea la densida observada en el mínimo) por la ecuación:

µ(y) = N(y) in each f -2(y+1) [N(y) in y ≤ y*

III-27

N(y) = N(y) in exp { -2(2+1)/3/2 } in y > y*

Con estas modificaciones del modelo original se obtiene una buena concordancia entre las curvas teórica y experimental en la región de bajs energías, pero la discrepancia a altas energías sigue igual.

d) .- Modificaciones de Dorman al Modelo Original.-

Las modificaciones de Dorman (1963a) conducen a una buena consordancia entre los resultados teóricos y los experimenta les en todo el rango observado de energías.

La principal modificación introducida por Dorman es el con siderar que no todas las irregularidades magnéticas de la capa dispersora tienen la misma magnitud \mathcal{L} , sino que existe toda una jerarquía de tamaños que va desde una $L=Q_{-1}$ hasta una $\mathcal{L}=Q_{-1}$. Hace ver, además, que las partículas de rayos cosmicos serán dispersadas más e fectivamente por aquellas irregularidades cuyo tamaño sea del orden del radio de giro de la partícula. Esto se debe a que cuando el radio de giro es muy pequeño comparado con 🎤; (tamaño de la irregularidad con la que interacciona) puede aplicarse la proximación de centro guía y la partícula seguirá las líneas de fuerza magnética de la irregularidad; la deflexión la sufrirá unicamente en la frontera de las irregularidades, por lo que su camino medio libre será del orden de la magnitud de éstas y por lo tanto mucho mayor que el radio de giro. Así pues, la dispersión es peugeña. Si por otra parte, el radio de giro de la partícula es mucho mayor que la magnitud de la irregularidad, la deflexión que sufre la partícula es bastante pequeña al interaccionar con la irregularidad y como ya se vió, tendrá un camino medio libre del orden de $S^2/1$; que también es mucho mayor que el radio de giro de la partícula, por lo que tambien habrá poca dispersión. Cuando el radio de giro de la partícula es comparable con el tanaño de la irregularidad, el camino medio libre será del orden del radio de gire y por lo tento, la dispersión es bastante significativa. (Parker (1964a) explica esto como una resonancia entre la frecuencia de giro de la partícula y la frecuencia con que ésta ve variar el campo, debido a su movimiento. Comprueba analíticamente estos resultados para varios tipos de irregularidades magnéticas, obte niendo en todos ellos un máximo de dispersión cuando el radio de giro es comparable con la dimensión de la irregularidad.)

En base a estas consideraciones, Dorman propone las siguientes expresiones para el camino medio libre de las partículas, dependiendo de la energía de éstas:

60

Substituyendo los diferentes coeficientes de difusión ebt<u>e</u> nidos de III-28 en la ecuación III-22, se obtiene: $N_0(\chi) = N_0(\chi)$ sup. $[-A(\chi)]$

III-28

tebrob

$$I(\eta) = \begin{cases} \frac{3Y(r_{z}-r_{i})(y_{i+1})}{c I C v_{i}(y_{i+2}) J^{\gamma_{z}}} & \text{if } \rho \leq 2 \\ \frac{3Y(r_{z}-r_{i}) e B(y_{i+1})}{wc^{3} [v_{i}(y_{i+2})]} & \text{if } Q \leq \rho \leq 1 \\ \frac{3Y(r_{z}-r_{i})e^{2}B^{2}L(y_{i+1})}{w^{3}c^{9} [v_{i}(y_{i+2})]^{\gamma_{z}}} & \text{if } \rho \geq L \end{cases}$$

Dorman considera la $\lambda = 2 \times 10^6 \text{ m.del}$ modelo de Parker como la Ω_{mlm} y da un valor para la L máxima de **b**=10⁶ m... Conserva el valor del campo magnético dado por Parker, B= 2 Y y obtiene, para protones:

donde E es la energía total de la partícula. Entonces, para los valores de V=10° ang. y(r.-r.)=6Kio anse obtiene:

$$N_{0}(y) = N_{0}(y) = \log \left\{ -\frac{3(y+1)}{[y_{0}(y+2)]y_{2}} \right\} = i y \le 0.71$$

$$N_{0}(y) = N_{0}(y) = \log \left\{ -\frac{3.8(y+1)}{y_{0}(y+2)} \right\} = i y \le 63$$

$$N_{0}(y) = N_{0}(y) = \log \left\{ -\frac{236(y+1)}{[y_{0}(y+2)]^{3/2}} \right\} = i y \ge 63$$

Las tres ecuaciones anteriores representan la modulación para protones según el modelo de convecció-difusión modificado por Dorman.

Suponiendo, nuevamente, que el espectro observado durante el mínimo solar es el espectro galáctico, Dorman obtiene una curva teórica para la modulación esperada en el máximo solar que se ajusta bastante bieu a la curva experimental, para todas las energías. Sin embargo, sugiere que el ajuste sería mejor si se considerara un valor menor para la velocidad del viento solar.

> d) - Oradiente de Radiación Cósmica en el Medio Interplanetario.-

Una interesante modificación a la configuración de la cáscara dispersora ha sido discutida por Dorman (1963b). El autor arguye que más que en una capa heliocéntrica, la convecciónedi fusión debe ocurrir en todo el espacio donde sople el viento solar y halla irregularidades magnéticas que se muevan con él. En este caso, la solución a la ecuación III-19, suponiendo también una simetría es férica es:

$$N(\tau, \gamma) = N_{\infty}(\gamma) \operatorname{satip} \left(-\int_{\tau} \frac{\sqrt{d}}{k} d\tau\right)$$
 III-29

donde Y es el punto de observación y R el límite de la región modu ladora. Nótese que según la ecuación III-29, la densidad de partíou las de radiación cósmica depende de Y, por lo que habrá un gradien te de densidad en la dirección radial, en el espacio interplanetario. En este trabajo, Dorman hace también ciertas modifica ciones a la velocidad del viento solar y al coeficiente de difusión. Primeramente considera que el coeficiente de difusión no solamente es función de la energía de las partículas, sino que también es función de la distancia heliocóntrica T. Esto obedece al hecho de que al expanderse el viento solar, llevando consigo las irregularidades magnóticas, será más fácil para las partículas moverse en regiones lejanas del Sol, donde ya las irregularidades están muy separadas, que cerca de él. Así pues, es de esperarse que el camino medio libre y por consiguiente el coeficiente de difusión, aumenten con la distancia. Aunque es de esperarse que el camino medio libre en la región frontera, debido a la gran irregularidad del campo, Do<u>r</u> man no considera este efecto.

En cuanto a la velocidad del viento solar, al autor considera que más allá de la Tierra esta velocidad disminuye exponencial mente con la distancia; esta suposición está más de acuerdo con lo que predicen los modelos teóricos de la expansión de la corona solar, (ya discutidos en la sección I) que la suposición hecha en los modelos anteriores de que la velocidad del viento se mantiene constante más allá de la Tierra.

Aunque Dorman no lo dice, probablemente en la modulación no considera la región frontera de campos desordenados, debido a que, a esa distancia , la velocidad del viento es tan pequeña como para que el efecto de convección en esa sona sea despresiable, y pue da considerarse que todas las partículas atraviesan la capa.

Las funciones que en este modelo describen al coeficiente de difusión y a la velocidad del viento solar en el espacio interpla netario son, respectivamente:

- 63 -

$$k(r) = k_T \frac{r}{r_T} ; \quad V(r) = V_0 e^{-r/R}$$

- **6**h

donde el Índice T se refiere al valor del parámetro a la altura de la órbita de la Tierra. Realisando la integral de la ecuación III-29 para tres casos: a).- Ni el coeficiente de difusión, ni la velocidad del viento solar dependen de r; b).- El coeficiente de difusión no depende de Υ , pero la velocidad desas exponencialmento ; c).- La velocidad del viento es constante pero el coeficiente de difusión cambia con la distancia en la forma antes indicada, se obtienen las ecuaciones:

a).-
$$N(r, \gamma) = N_{on}(\gamma)$$
 such $\left[-\frac{V}{4\epsilon}(R-r)\right]$
b).- $N(r, \gamma) = N_{on}(\gamma)$ such $\left[-\frac{V_{0}R e^{-\gamma/R}}{k(\gamma)}\right]$
o).- $N(r, \gamma) = N_{on}(\gamma)\left(\frac{\tau}{R}\right)^{V_{r}/k_{r}}$

De estas tres ecuaciones se obtiene que la expresión para el gradiente relativo de densidad de partículas en el espacio es:

a).-
$$\frac{\nabla N(r, \varrho)}{N(r, \varrho)} = \frac{V}{t_2(\eta)}$$

b).-
$$\frac{\nabla N(r, \varrho)}{N(r, \varrho)} = \frac{V_0 \mathcal{L}^{-T/R}}{t_2(\varrho)}$$

c).-
$$\frac{\nabla N(r, \varrho)}{N(r, \varrho)} = \frac{V}{t_2(\varrho)} \cdot \frac{r_r}{r}$$
De las expresiones anteriores, y considerando que V a la al tura de la Tierra tiene un valor de $200\frac{1}{5}$ $k=10^{21}$ $m^2/5$ para bajas ener glas y k=10 $m^2/5$ para altas energías (según sugieren las observaciones de rayos cósmicos solares), Dorman obtiene:

$$\frac{\nabla N}{N}\Big|_{T_{T}} \simeq 50\% / U.R.$$

para bajas energias

 $\frac{\nabla N}{N}\Big|_{T_T} \approx 5\% / U.A.$

para altas energías

Con aparatos a bordo de satélites se ha intentado medir d<u>i</u> rectamente el gradiente de densidad de rayos cósmicos a la altura de la órbita de la Tierra y los resultados obtenidos son sorprendentes. Meher y Anderson (1963) obtuvieron para la intensidad total de radiación có<u>s</u> mica durante (1962) un gradiente de $12\% \pm 4\% / U.A.$ Durante el mínimo solar de 1965, 0'Gallagher y Simpson (1967) encontraron un gradiente de $10\% \pm 1\% / U.A.$, para partículas de altas energías y un gradiente de 50% a 60% / U.A., para partículas de bajs energías. Nótese que el gradiente medido en el mínimo de actividad solar es <u>mayor</u> que el medido en épocas de Sol activo, cuando de las teorías se esperaría lo contrario. En vi<u>a</u> ta de que se han hemo muy pocas medidas directas del gradiente y de que la determinación de éste a partir de los datos es difícil, los valores anteriores pueden no ser exactos y es necesario realizar más mediciones antes de poder afirmar algo acerca de los valores reales del gradiente de densidad de radiación cósmica en el medio interplanetario.

dos teóricos surge de la medición del gradiente durante el mínimo solar. El hecho de que exista este gradiente implica que aún en esa época

Una interesante condieración que afecta mucho los resulta-

existe modulación, por lo que no puede considerarse que el espectro de radiación cósmica galáctica observado en la Tierra durante el mínimo de actividad solar, sea en realidad el espectro galáctico. Para poder conocer el verdadero espectro galáctico es necesario conocer esta modula ción "residual". Actualmente se está trabajando en eso.

e).- Discusión del Modelo de Convección-Difusión.-

En la sección anterior se vió que la modulación de once años de las partículas de rayos cóamicos puede interpretarse como dependiente de 1/w a bajas energías y de 1/Q w a altas ener gías. Aunque las expresiones dadas para la modulación en el modelo de convección-difusión están en función de la energía de las partículas, puede estudiarse la dependencia de la modulación predicha por este mecanismo con la rigidez, a través del coeficiente de difusión. Efectiva mente, según este modelo, la dependencia de la modulación con las características de la partícula entra solamente a través del coeficiente de difusión.

Recordando que $\lambda \cdot \lambda$ W y considerando λ según la ecuación III-28, se ve que para bajas energías el modelo de convección-difusión predice una modulación dependiente de 1/w, que es precisamente la observada, mientras que para energías mayores la modulación depende de $\sqrt{n}^{1} \circ \sqrt{n}^{1}$, lo cual no coincide con el experimento. Así pues, el modelo de convección-difusión puede exclicar satisfactoriamente la modulación observada para protones y partículas alfa a bajas energías, pero <u>separadamente</u> y no es capaz de explicar la modulación relativa de estos dos tipos de partículas, pues a bajas energías predice la misma modulación para ambas, lo cual, como se vió en la sección anterior no ocurre.

- 66 -

Sin embargo, la forma general de la modulación predieha por el mecanismo de convección-difusión parece ser la adecuada para explicar las características generales de las observaciones. Se ha observado que el coeficiente de difusión en el medio interplanetario ha cambiado en un factor de \approx 5 entre 1962 y 1965. Para este mismo período, la intensidad de protones aumentó por un factor de 4 a 5. Como la modu lación predicha por el modelo de convección-difusión sigue una relación inversa con el coeficiente de difusión, esta observación representa una evidencia a favor del modelo discutido.

O'Gallagher y Simpson (1967) encontraron experimentalmente que cerca del mínimo solar la dependencia del coeficiente de difusión con la rigidez es practicamente la misma que la dependencia de la modu lación con la rigidez. Debido a que en el modelo de convección-difusión toda dependencia de las características de las partículas entra a través del coeficiente de difusión, esta observación sugiere que al menos durante el mínimo de modulación solar, el mecanismo dominante de la mo dulación de rayos cósmicos en el medio interplanetario es la convección y difusión de partículas. Sin embargo, para épocas de mayor actividad solar es necesario introducir algunos otros mecanismos de modulación, para poder explicar las observaciones.

- 67 -

3.- Modelos de Pérdida de Energía.-

A raíz del descubrimiento de Webber (1965) de que la modulación depende de la rigidez de las partículas, los investigado res volvieron a considerar un modelo, deshechado durante algunos años, que asocia la modulación con la presencia de un campo eléctrico heliocéntrico. Este campo eléctrico cambia la energía de las partículas que viajan hacia la Tierra y de esa manera produce una modulación en el es pectro diferencial. Como la aceleración de campo eléctrico depende de la carga de las partículas, el cambio de energía por nucleón para partículas alfa será la mitad del cambio para protones; este tipo de modu lación es equivalente a una modulación dependiente del inverso de la rigidez, pues de la ecuación III-15 puede verse que la rigidea de las partículas alfa es el doble de la rigidez para protones de la misma energía por nucleón, o sea, la misma velocidad.

Se han evocado además otro tipo de mecanismos que consideran que además de que las partículas son dispersadas en el medio inter planetario por las irregularidades magnéticas, sufren pérdidas de ener gía en el sistema solar debidas a desaceleración adiabática y desaceleración de betatrón. La modulación obtenida al considerar este tipo de pérdidas de energía junto con la convección y difusión de las partículas puede explicar la dependencia con la rigidez, y en este sentido es muy parecida a la modulación obtenida por el modelo de campo eléctrico.

En ambos tipos de modelos, la modulación conduce a la pérdida de energía de las partículas de rayos cósmicos en su penetración a través del medio interplanetario, contrariamente a la suposición que se hace en el modelo de convección-difución de que la energía de las partículas es constante, durante toda su travesía hacia la Tierra.

- 68 -

La diferencia principal entre el modelo de convección-difu sión y los modelos de pérdida de energía consiste en que el primero eu pone que la disminución en el espectro diferencial de energías, registrada en el máximo de actividad solar, se debe a exclusión de partículas del sistema solar por convección hacia afuera de las mismas, mientras que los modelos de pérdida de energía consideran que la disminuc ión en el espectro se debe a una disminución en la energía de las partículas, aún cuando el número total de ellas sea el mismo.

a).- Modelo de Campo Eléctrico Heliocentrico.-

Alfven (1949) fue el primero en sugerir que la modulación de la radiación cósmica galáctica en los decrecimientos Forbush podía deberse a campos electricos creados en las tormentas geo magnéticas. La modulación producida por este tipo de campos eléctricos inducidos en el espacio circunterrestre fué deserrollada matemáticamen te por Nagashima (1951). Al descubrir con ayuda de satélites que el de crecimiento Forbush no es un proceso geocéntrico, estas teorías fueron parcialmente abandonadas. En 1961, basado en el trabajo de Nagashima, Enmert sugirió la existencia de campos eléctricos heliocéntricos como responsables de la modulación sufrida por los rayos cósmicos en el me dio interplanetario. Debido a que la gran conductividad eléctrica del medio interplanetario impide la existencia de un campo electrostático. Freier y Waddington (1965 a y b) sugieren la presencia de campos eléctricos de origen dinámico. Los autores suponen además que el campo eláctrico sólo existe en la región frontera de la cavidad solar, después de la transición de choque y que en el sistema solar interno el potencial eléctrico se mantiene constante, con un valor positivo respec

69 -

to a infinito.

La modulación producida por campos eléctricos se basa en la extensión del teorema de Liouville, heca por Swan (1933). El teorema de Liouville establece que para cualquier sistema que pueda ser descrito por las ecuaciones de Hamilton, la densidad de puntos en el espacio fase permanece constante a través de la evolución del sistema:

 $D = \frac{SN(x,y,z,P_x,P_y,P_z)}{Sx\cdot Sy\cdot Sz\cdot Sp\cdot Sp} = ete.$

La densidad de puntos en el espacio fase puede relacionarse con la intensidad de partículas considerando un haz de partículas <u>o</u> rientadas a lo largo del eje <u>z</u>. Haciendo un cambio de variable se tiene:

y además:

Así pues, la densidad en el espacio fase se puede expresar como:

Como para todo tiempo t el número de puntos en el espacio fase es igual al número de partículas:

$$Sn/Sa.4t.4x.1p = J(B)$$

será el número de particulas que atraviesen una unidad de área por unidad de tiempo y por unidad de ángulo sólido, con momento entre \mathbf{P} y

P+ dP, lo que es precisamente el espectro diferencial de momentojentonces se tiene:

$$j(\mathbf{r})w_{\mathbf{r}3} = d\mathbf{z}$$

El espectro diferencial de momento está relacionado con el espectro diferencial de energía por

$$\dot{J}(\mathbf{P}) = \dot{J}(\mathbf{c}) \frac{\partial \mathbf{c}}{\partial \mathbf{P}}$$

Siendo \mathcal{E} la energía total de la partícula dada por $\mathcal{E} = \sqrt{p^2 c^2 + w_c^2 c^4}$. Así pues, la ecuación III-30 implica que

$$j(\epsilon)/p_2 = d\epsilon.$$
 III-32

III-30

En la conservación de esta cantidad se basa la modulación para campos eléctricos.

Si la Tierra se encuentra a un potencial positivo V_{e} respeg to a infinito, las partículas de rayos cósmicos perderán en su trayeg to hacia ella, una cantidad de energía dada por $\frac{2 \ll V_{E}}{M}$ (donde se es la carga de la partícula y A es su número de masa) por cada nu cleón. Así, una partícula que es registrada en la Tierra con una ener gía E por nucleón, habrá tenido una energía $E + \frac{2 \varepsilon V_{E}}{M}$ antes de entrar al sistema solar. La aplicación de la condición dada en III-31 conduce ai

$$\int_{\Omega} \left(\mathcal{L} \right) \left[\frac{\mathcal{L}}{\mathcal{L}} \left[\frac{\mathcal{L}}{\mathcal{L}} \left[\frac{\mathcal{L}}{\mathcal{L}} \right]^{-1} \right]^{-1} = \int_{\Omega} \left(\mathcal{L} + \frac{2\mathcal{L}}{\mathcal{H}} \right) \left[\frac{\mathcal{L}}{\mathcal{L}} + \frac{2\mathcal{L}}{\mathcal{H}} \right]^{-1} \left[\frac{\mathcal{L}}{\mathcal{L}} + \frac{2\mathcal{L}}{\mathcal{L}} \right]^{-1}$$

Entonces, según el modelo de campo eléctrico heliocéntrico, el espectro observado en la Tierra está relacionado con el espectro galáctico a través de la relación:

71 -

 $j(E) = j_{0}(E + \frac{2eV_{E}}{R}) \frac{E^{2} - W_{0}^{2}C^{4}}{(E + \frac{2eV_{E}}{R})^{2} - W_{0}^{2}C^{4}}$ III-32

72 .

Nótese que este tipo de modulación produce un cambio en la energía por nucleón de las partículas, que es proporcional a ze/A ; así pues, el cambio de energía para partículas alfa es la mitad del cambio de energía para protones. Una modulación de este tipo es equi valente a una modulación que dependa del inverso de la rigidez de las partículas ya que $\Re \ll \frac{\Lambda}{\lambda c}$.

Entonces la modulación dada en la ecuación III-32 es capas de explicar la modulación relativa observada para protones y partícu las alfa, mediante una elección adecuada del valor de N_E y de la forma del espectro galáctico. Freier y Waddington suponen que el espectro galáctico es una función de potencia de la energía total de la forma $j(t) \in t$ tanto para protones como para núcleos de helio y que $-j(t) = 15 M_{Helio}$. Con esta condición encuentran que las curvas dadas por la ecuación III-32 tanto para protones como para part<u>í</u> culas alfa, concuerdan bastante bien con las curvas experimentales si se supone un potencial de $V_E = 50$ MV en el mínimo solar y 700 MV en el máximo.

> b).- Modelos que Consideran Desaceleración Difusiva y Desaceleración de betatrón.-

Este tipo de modelos consideran las pérdidas de energía que sufren las partículas de rayos cósmicos en el medio interplanetario causadas por la expansión del viento solar que lleva consigo tanto las líneas de campo espiral, como las irregularidades magnéticas. Los dos tipos de pérdida de energía que pueden sufrir las partículas debido a esta expansión son la desaceleración de betatrón y la desaceleración adiabática.

La desaceleración de betatrón se basa en la conservación del invariante adiabático de (ya discutido al principio de esta sección), dada por la relación:

$$\frac{P_1^2}{B} = \frac{1}{2}$$

En este tipo de desaceleración, la componente paralela al campo del momento de la partícula P_{ij} se conserva, pero la componente perpendicular debe cambiar proporcionalmente al campo magnético, para conservar constante la relación III-33. Así pues:

Como $P^2 = P_{11}^2 + P_{2}^2$ y P_{11} es constante se tiene ques

 $\frac{dP}{P} \propto \frac{dB}{dB}$

111-34

Al estar girando una partícula de rayos cósmicos alrededor de una liñea del campo magnético interplanetario, notará una disminu ción en la magnitud del campo debida a la separación de las líneas causada por la expansión del viento solar. De la ecuación III-54 se ve que una disminución en la magnitud del campo produce una disminución en el momento de la partícula y consiguientemente una disminución en su energía.

La desaceleración adiabática es producida por el hecho de que las partículas de rayos cósmicos en el medio interplanetario, eg tán colidiendo con irregularidades magnóticas que, debido a la expansión, se estań separando unas de otras.

Como hizo ver Fermi (1949), cuando una partícula cargada choca con una irregularidad magnótica <u>que se mueve</u>, sufrirá un cam bio de energía en la interacción. Este cambio de energía está dado -por la relación:

$$\Delta \varepsilon = - \frac{2\varepsilon}{c^2} (\underline{w} - \underline{V})$$

donde <u>V</u> es la velocidad de la irregularidad y <u>w</u> es la velocidad de la partícula. Este cambio de energía se debe al campo eléctrico <u>E</u> induc<u>i</u> do por el movimiento del campo magnético"congelado"en la irregularidad. La expresión para este campo eléctrico es:

$E = - \frac{1}{2} \frac{V \times B}{V}$

Entonces, el cambio en energía será: $\Delta E = \frac{1}{2} \alpha \int (\underline{E} \cdot \underline{d} \underline{s})$

De la figura III-4 puede verse que: $\int \underline{E} \cdot \underline{dS} = 2 \underline{E} \beta \operatorname{cau} \hat{\Phi}$ siendo $90^{\circ} - \hat{\Phi}$ el ángulo entre la velocidad de la inhonogeneidad y la velocidad de la

particula. Así pues, el cambio en la ene<u>r</u> gía de la particula es:

AE= 220 EPrenop

Substituyendo la ecuación III-8 se tiene:

$$\Delta E = 222 \frac{V_{LB}}{C} \frac{E}{22BC} eug = -\frac{2E}{C} (W \cdot V)$$

Cuando una partícula se halla en una región donde sufre va

rias interacciones de este tipo con irregularidades magnéticas (como es el caso de una partícula de rayos cósmicos que se mueve en el modio interplanetario) en total ganará o perderá energía según que las irregularidades se acerquen o se alejen. Consideremos una partícula que rebota entre dos irregularidades magnéticas que se mueven con ve locidad V₁ y V₂ respectivamente. Si llamamos χ a la distancia en tre las irregularidades, en el tiempo $\Delta t = 2x/w_n$ la partícula habrá sufrido un cambiototal en su energía de $M_1 + M_2$. Entonces se tiene que:

$$\frac{d\varepsilon}{dt} = \frac{\Delta \varepsilon_1 + \Delta \varepsilon_2}{\Delta t} = \frac{2 \varepsilon w_1^2}{c^2} \cdot \frac{u_1 + u_2}{2x} = -\frac{\varepsilon w_2^2}{c^2} \cdot \frac{dx}{dt}$$

donde w_{il} es la velocidad de la partícula en la dirección de movimien to de las irregularidades. Poniendo esta expresión en función del mo mento de la partícula se tiene:

$$\frac{1}{7}\frac{1}{9}\frac{1}{9}=-\frac{x}{7}\frac{1}{9}\frac{1}{7}$$

Nótese que si la distancia entre las irregularidades aumenta, la energía de las partículas disminuye. Para el caso tridimencional de una expansión radial de las irregularidades, con velocidad \underline{V} , la ex presión anterior se convierte en (ver Parker (1965 y 1966)):

$$\frac{1}{P}\frac{dP}{dt} = -\frac{2}{3}\frac{V}{r}$$

Expresando esto en función de la energía cinética de las partículas se tiene:

$$\frac{1}{E_{c}} \frac{dE_{c}}{dt} = -\frac{2}{3} \sigma(\mathcal{E}_{c}) \frac{1}{2}$$

$$\frac{1}{E_{c}} \frac{dE_{c}}{dt} = \frac{C_{c} + 2 wc^{2}}{C_{c} + wc^{2}}$$

Laster, Lenchek y Singer (1962) mostraron que si <u>a</u> demás del efecto de convección-difusión se considera la desaceleración adiabática y la desaceleración de betatrón sufrida por las partículas, se obtiene una modulación muy parecida a la de un campo eléctrico. La idea oroginal de estos autores fué aplicada a los eventos Forbush. Hasta ahora no se han hecho cálculos precisos de la manera como estas pérdidas de energía afectarán al espectro de rayos cósmicos en el medio interplanetario, pero algunos cálculos aproximados (Parker (1965) y Quenby(1965)) han mostrado que la modulación esperada por la desaceleración difusiva y desaceleración de betatrón es al menos tan grande como la esperada del proceso de convección-di fusión solamente.

Cuando se toman en cuenta estos cambios de energías la ecuación III-**Ta se** convierte en:

 $\frac{\partial N(r, \mathbf{E}_{e}, t)}{\partial t} + \nabla \cdot (N \, \underline{V}) + \frac{\partial}{\partial \mathbf{E}_{e}} \left(N \, \frac{d \mathbf{E}_{e}}{d t} \right) - \nabla \cdot (k \, \nabla N) = 0$

Una esuación de este tipo no tiene una solución analítica general. Hasta hora no se ha realizado ningún trabajo que relacione la intensidad de rayos cósmicos a la altura de la órbita de la Tierra con la intensidad galáctica para este tipo de mecanismos de modu lación. Sin embargo se han hecho estimaciones de la cantidad de ener gía que pueden perder las partículas en el medio interplanetario, antes de llegar a la Tierra; aunque estas estimaciones presentan la di ficultad de determinar el tiempo que ha pasado la partícula en el sistema solar antes de ser registrada en la Tierra. Parker (1965) su giere que en general las partículas pasan algunos días en el medio interplanetario y obtiene que con esto habrán perdido una cantidad

76 -

de energía de 15% o más de su energía inicial, por desaceleración d<u>i</u> fusiva.

Nótese que la cantidad de energía que pierde una partícula por desaceleración difusiva o desaceleración de betatrón, depende de su energía, siendo mayor la pórdida de energía para partículas de al ta energía que para partículas de baja energía. Así pues, este tipo de modulación contribuye a disminuir la intensidad de partículas a altas energías y a energías más bajas produce un aumento que cance la parcialmente la reducción por convección.

c) .- Discusión de los Modelos de Pérdida de Energía.-

Aunque el modelo de modulación basado en la presencia de campo eléctrico produce ana forma funcional de la modulación compatible con la modulación observada, existen ciertas dificulta des de tipo teórico para aceptar este mecanismo. En este modelo la can tidad de modulación que sufre una partícula depende del potencial eléo trico desacelerador al que se encuentre la Tierra en cada nivel diferente del ciclo solar. Este potencial debe estar cercanamente relacionado con la velocidad del viento solar; sin embargo, los cambios obser vados en la velocidad del viento del máximo al mínimo solar son mucho menores que el cambio en el potencial requerido por este modelo para explicar la modulación observada entre estas dos épocas.

Por otra parte, la existencia de un campo eléctrico heliocóntrico es poco probable y aún en el caso de existir no puede suponer se que toda la modulación se deba a él pues la existencia de irregularidades magnéticas en el medio interplanetario está totalmente comproba da y no puede ignorarse el efecto de éstas sobre los rayos cósmicos.

77 -

En cuanto a los mecanismos de desaceleración de betatrón y desaceleración difusiva, no se espera que tengan gran importancia para radiación cósmica de baja energía debido a que la cantidad de energía que pierde una partícula por estos dos efectos a su energía. Por otra parte, al agregar el efecto de estas desaceleraciones a la modulación esperada de la convección-difusión solamente se aumenta la discrepancia entre la teoriá y el experimento, para ciertas energías. Estas di<u>s</u> crepancias pueden deberse a la serie de dificultades que presenta el estimar la cantidad de energía perdida por una partícula a causa de es tos dos tipos de desaceleraciones.

4.- Modelos que Consideran la Presencia de un Campo Eléotrico Estacionario en el Medio Interplanetario.-

Este tipo de modelos incluyen en la modulación de la radiación cósmica el efecto del campo eléctrico estacionario que aparece en el medio interplanetario, a causa de la expansión del viento solar que lleva consigo el campo magnético del Sol. Este campo eléctri co está dado por:

$$\mathbf{E} = -\frac{1}{2} \mathbf{V} \times \mathbf{B}$$

III-35

donde <u>B</u> es el campo magnético regular y estacionario del medio interplanetario y <u>no incluye</u> las irregularidades magnéticas.

A diferencia de los modelos anteriormente discutidos, estos modelos que incluyen al campo eléctrico pueden explicar además de la modulación de once años, la variación diurna. El efecto del campo <u>e</u> léctrico, junto con el efecto de convección difusión causado por las <u>i</u> rregularidades, conduce a una corriente (del inglés "streaming") de rayos cósmicos en la dirección y sentido del movimiento de traslación de la Tierra. Esta corriente debe entenderse como un movimiento preferente de las partículas de rayos cósmicos en una cierta dirección; dicho movimiento está superpuesto al movimiento casual de las partículas que constituyen el "gas" o conjunto de rayos cósmicos. En lo sucesivo, al hablar de corriente y de velocidad de corriente de rayos cósmicos nos referiremos a este movimiento preferencial y a la velocidad con que se lleva acabo.

Se verá en los párrafos siguientes que la corriente de rayos cósmicos en el medio interplanetario equivale, según los modelos expuestos, a una rotación rígida del gas de partículas con el Sol, la cual produce la anisotropía en el flujo de la radiación cósmica que se observa en la Tierra como una variación diurna.

a).- Modelo de Ahluwalia y Dessler.-

Los primeros autores que consideraron la existencia del campo eléctrico dado en la ecuación III-35 fueron Ahluwalia y Dessler (1962) quienes sugirieron que la corriente de rayos cós micos, causante de la variación diurna, podría deberse a un arrastre <u>e</u> léctrico producido por dicho campo. Como se vió en la primera parte de esta sección, el arrastre eléctrico está dado por la expresión:

$$\underline{\mathbf{L}}_{\mathbf{E}} = \mathbf{C} \quad \frac{\mathbf{E} \times \mathbf{B}}{\mathbf{B}^2} \qquad \text{III-36}$$

De la expresión anterior se ve que esta velocidad de arrag tre no depende de las características de las partículas, sino solamente de las condiciones existentes en el medio interplanetario; así pues, esta velocidad será igual para todas las partículas, por lo que el gas de rayos cósmicos que inicialmente tenía una distribución isotrópica de velocidades, tendrá a hora una velocidad neta dada por la ecuación III-36. Por lo tanto, la velocidad U_E sería la velocidad de corrien te del gas de rayos cósmicos.

Sin embargo, esta velocidad no tiene la dirección adecuada para explicar la variación diurna, pues está en la dirección perpendicular a las líneas de campo magnético y no en la dirección azimutal co mo se requiere para explicar esta variación. Además, Stern (1964) ha hecho notar que ningún campo estacionario, como lo son en este caso <u>E</u> y <u>B</u>, puede producir una corriente neta, pues los arrastres debidos a la interacción de las partículas con los campos son cancelados exactamente por arrastres debidos a gradientes de presión que resultan de es tos mismos campos. La cancelación de arrastres para el caso de partículas en los campos interplanetarios regulares puede verse en Parker (1964b) en donde se muestra que para este caso la velocidad total de corriente e<u>s</u> tá dada por:

$$\underline{U}_{I} = \underline{U}_{E} + \frac{\underline{W}_{C}}{\underline{B}_{z}} \underline{B}_{x} \nabla (\underline{\lambda}_{z} \underline{N} \underline{M}_{z}^{z})$$
III-57

Siendo \underline{E} un campo estacionario se tiene que:

$$-\nabla (Y_2 N W_1^2) = \nabla \tilde{\Phi} \cdot eN \qquad \text{III-38}$$

donde Φ es el potencial eléctrico dado por $\underline{E} = -\nabla \Phi$.

Substituyendo las ecuaciones III-36 y III-38 en la ecuación III-37, se tiene:

$$\underbrace{V}_{1} = \underbrace{c}_{B^{2}} \underbrace{E \times B}_{B^{2}} - \underbrace{c}_{B^{2}} \underbrace{E \times B}_{B^{2}} = 0$$

Esto prueba que los campos regulares interplanetarios no son capaces de producir una corriente neta de rayos cósmicos. Sin embargo, el campo magnético interplanetario no es en pealidad un campo regular, sino que tiene irregularidades magnéticas que son transportadas radialmente hacia afuera por el viento solar. Parker (1964b) y Axford (1965) han realizado trabajos en los que incluyen el efecto de las irregularidades además del campo regular y han encontrado que estos dos mecanismos, operando conjuntamente, sí conducen a una velocidad neta de corriente de los rayos cósmicos en el medio interplanetario.

b) .- Modelo de Parker para la Variación Diurna.-

Parker (1964b) propone una manera de eliminar el gradiente de densidad $\nabla(V_2 N W_1^2)$ para evitar que éste cancele el arras tre eléctrico y sugiere además que en el sistema solar interno las par tículas se mueven a lo largo de las líneas de campo espiral. El movimiento a lo largo de las líneas de campo, sumado al arrastre eléctrico, da como resultado una velocidad neta de corriente en la dirección azimutal.

El autor sigiere que la zona de campos desordenados que ro dea al sistema solar interno disminuye considerablemente el gradiente de densidad, debido a que las partículas son barridas por las irregula ridades que se mueven hacia afuera, y de hecho demuestra que este gradiente es mucho menor cuando además de los campos estacionarios hay irregularidades magnéticas que se mueven y producen el efecto ya discutido de convección-difusión. Entonces, en este caso puede despreciarse el segundo término en la ecuación III-37 y se obtione un arrastre perperdicular a las líneas de campo dado por:

$$\underline{V}_{1} = c = \frac{E \times B}{B^{2}}$$

Si se considera que a la altura de la Tierra el campo está lo suficientemente ordenado como para aplicar la aproximación de centro guía, se puede considerar que además del arrastre las partículas tienen una velocidad a lo largo de las líneas de campo $\underline{U}_{\underline{u}}$. En este c<u>a</u> so, la velocidad total de corriente será:

$$\vec{\Lambda} = \vec{\Lambda}^{+} \vec{\Lambda}^{-}$$

III-39

Parker no da ningún argumento teórico para determinar la magnitud de \underline{U}_{ij} , sino que escoje el valor de ésta de tal manera que se anule la componente radial de la velocidad de corriente. El propósito de esta anulación es mantener un estado estacionario en el medio in terplanetario, ya que de existir un flujo en la dirección radial se a-

82

cumularian o perderian particulas en el sistema solar.

Como puede verse en la ecuación I-5, el ángulo entre las líneas de campo magnético espiral y la dirección radial está dado por:

$$\tan \Psi = \frac{\pi r}{v}$$

Descomponiendo la velocidad de la ecuación III-39 en sus componentes radial y azimutal, se tiene:

De la ecuación III-35, que da el campo eléctrico se obtiene:

U_ V Rea 4

Ahora bien: sea N_i el número de partículas que se mueven ha cia adentro del sistema solar y N_O el número de partículas que se mue ven hacia áfuera con velociad U_i y U_O , respectivamente. Entonces, el flujo total de partículas en las direcciones radial y azimutal será:

$$F_{\tau} = (N_i + N_0) V \operatorname{pur}^2 \psi - N_i U_i \cos \psi + N_0 U_0 \cos \psi$$

$$F_{m_2} = (N_1 + N_0) \vee e^{\mu \mu} \psi \cos \psi + N_1 U_1 e^{\mu \mu} - N_0 U_0 \cos \psi$$

Si el flujo radial se hace cero se obtiene:

$$N_{L}U_{L} - N_{0}U_{0} - (N_{L} + N_{0}) \frac{V \operatorname{rem}^{2} \Psi}{\cos \Psi}$$

Substituyendo esta relación en el flujo azimutal se obtiene:

Así pues, la velocidad total de corriente de rayos cosmicos en el medio

interplanetario está dada por:

 $V = \Omega \times \Sigma$

III-LO

Notese que esta velocidad no es solamente una velocidad azimutal, sino que equivale a una rotación rígida del gas de rayos cosmisos con el Sol, puesto que N es la velocidad angular de éste. Por lo tanto, el efecto de la modulación producida por las irregularidades magnéticas que se mueven con el viento solar y los campos interplaneta rio regulares y estacionarios E y B es una corotación del gas de rayos cósmicos con el Sol, la cual, como ya se vió en la sección anterior, puede explicar el promedio anual de la variación diurna.

Sh.

La amplitud de la variación diurna producida por una velocidad de corriente U, está dada por la formula de Compton y Getting (1935) (vor también Sandström (1965)):

 $\frac{\nabla}{2}(u+\varepsilon)=H$

donde μ es el exponente del espectro diferencial de energía, $j(c) \neq \tilde{c}$, observado en la Tierra. La forma de una ley de potencias para el espec tro diferencial es sólo una aproximación a lo que realmente se observa y no tiene ninguna validez a bajas energías. Esto puede verse en la fi gura II-2 y también en las expresiones teóricas de los modelos ya discutidos para el espectro diferencial de energías observado en la Tierra. Sin embargo, para el tratamiento de la variación diurna es una buena aproximación y permite obtener una expresión sencilla para la am plitud de esta variación.

De la ecuación III-40 se obtiene una velocidad de corriente a la altura de la orbita de la Tierra de aproximadamente 350 Km/s.

Con esta velocidad y considerando que $\mu \approx 2.5$ se obtiene una amplitud para la variación diurna de $\approx 0.6\%$.

Aunque este modelo de Parker es más bien intuitivo, la velocidad de corriente que se obtiene de él es la misma que resulta de tratamientos matemáticos más rigurosos como el de Axford que se discutirá a continuación.

c).- Modelo de Axford.-

El tratamiento más riguroso y más general de la modulación de rayos cósmicos en el medio interplanetario, ha sido desarrollado por Axford (1965), a partir de la ecuación de Boltsman. Para este tratamiento, Axford considera el campo interplanetario como la superposición de dos campos: el campo espiral estacionario que se mueve radialmente hacia afuera con la velocidad del viento solar y que da origen también al campo eléctrico estacionario, y una componente fluctuante debida al paso de las irregularidades magnéticas que el vien to solar lleva consigo. Considera el efecto de estas irregularidades como un efecto de dispersión que puede describirse (como en el modelo de convección-difusión) por un simple tratamiento de camino medio libre. Para el gas de rayos cósmicos que se mueve en el campo descrito, la equación de Boltzman es:

$$\frac{\partial f}{\partial t} + \frac{\partial f}{\partial t} + \frac{\alpha}{m} \left(\mathbf{E} + \frac{1}{2} \mathbf{W} \times \mathbf{B} \right) \left(\frac{\partial f}{\partial \mathbf{W}} \right) = \left(\frac{\partial f}{\partial t} \right)_{0}$$

donde $f(\underline{\tau}, \underline{w}, \underline{t})$ es la runción de distribución para partículas de rayos cósmicos con carga \underline{e} , masa <u>m</u> y velocidad <u>w</u>, en el tiempo <u>t</u>; <u>B</u> es el campo magnético regular interplanetario y <u>E</u> el campo eléctrico dado por la ecuación III-35. El término $\begin{pmatrix} \partial f \\ \partial t \end{pmatrix}_b$ representa los cambio en la fun

85 -

ción de distribución debidos a colisiones de las partículas con las irregularidades, consideradas como esferas rígidas.

Tomando los dos primeros momentos de esta ecuación, Axford

llega a :

$$\frac{\partial U}{\partial U} + (\overline{U} \cdot \nabla) \underline{V} = -\frac{n}{T} \Delta \cdot \overline{\tilde{z}} + \frac{c}{C} (\overline{E} + k \underline{\Lambda} u \overline{B}) + \frac{n}{T} \int (\frac{\partial f}{\partial t}) k \eta_{3} \overline{m}$$

$$\lim_{U \to T} \frac{\partial f}{\partial t} + \Delta \cdot (n \nabla) = 0$$

donde $N(I,4) = \int f(I,4,4) d^3 \Psi$ es el múmero de partículas por unidad de volú men con cualquier energía, ya que se ha integrado a todas las velocida des; $U=\frac{1}{2}\int f(I,\frac{1}{2},4)\Psi d^3W$, es la velocidad promedio del gas de rayos + cósmicos, o sea la velocidad de corriente (nótese que si el gas tiene una distribución isotrópica de velocidades este promedio es cero y la velocidad de corriente es nula); \sum es un tensor de esfuerzos asociado a los movimientos aleatorios de las partículas.

Para un simple tratamiento de camino medio libre, el tórmi no de colisiones resulta: $\int \left(\frac{\partial f}{\partial t}\right) \frac{\partial f}{\partial t} = \frac{\partial f}{\partial t} \int \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial t} - \frac{\partial f}{\partial t}\right) = \frac{\partial f}{\partial t} \left(\frac{\partial f}{\partial$

cos. Esta aproximación es correcta ya que la energía promedio de la ra

- 86 -

diación cósmica es de 2 Gev, y para esta energía w=0.95 c . Substitu yendo III-44 y III-45 en III-43 se obtiene:

$$\frac{\partial f}{\partial \Omega} + (\overline{\Omega} \cdot \Delta) \overline{\Omega} = -\frac{Nm}{T} \Delta_{\overline{T}}^{2} Nm c_{\overline{T}} + \frac{m}{\varepsilon} (\overline{E} + \overline{f} \overline{\Omega} \times \overline{B}) + \frac{S}{\overline{\Lambda} - \overline{\Omega}}$$
 III-70

Dado que los tiempos asociados con los cambios en el estado de movimiento del gas de rayos cósmicos son grandes comparados con el intervalos de colisiones con las irregularidades y con el período de -Larmor de una partícula individual, pueden despreciarse los términos <u>i</u> nerciales del primer miembro de III-46 y se obtiene:

$$O = \frac{c^2}{3N} \nabla N + \frac{c}{m} \left(E + \frac{1}{2} \underline{U} \times \underline{B} \right) + \frac{1}{2} \left(\underline{V} - \underline{U} \right) \qquad \text{III-47}$$

Eliminando U de III-47 y III-42 se tiene:

$$\frac{\partial N}{\partial t} = -\nabla \cdot (N\underline{V}) + (\nabla \cdot \underline{k} \cdot \nabla) N \qquad \text{III-48}$$

donde 2 es el coeficiente de difusión, que es un tensor diagonal no isotrópico dado por:

$$k_{11} = \frac{1}{2}c^{2}c^{2}$$
 $k_{1} = \frac{1/3}{1+(\omega c)^{2}}$ III-49

donde los índices ||y|| se refieren a las direcciones paralela y perpendicular a las líneas de campo magnético, respectivamente y donde (D) es la frecuencia de giro de la partícula dada en la ecuación III-9. El hecho de que en este caso el coeficiente de difusión no sea isotrópico como en los modelos anteriores se debe a que en el sistema solar inter no no hay suficientes irregularidades como para lograr una dispersión isotrópica. Este coeficiente sí puede considerarse isotrópico en la región frontera, donde el campo es sumamente irregular.

El camino medio libre de las partículas, en el modelo de Az

ford, está relacionado con el intervalo entre colisiones por:

 $\lambda = 2c$

Substituyendo esta relación en el coeficiente de difusión se obtiene -

$$k_{11} = \frac{1}{3}c\lambda = k \qquad ; \qquad k_{1} = \frac{1}{1+(\omega\delta)^{2}} = \frac{k}{1+(\omega\delta)^{2}}$$

Nótese que la ecuación III-48 se reduce a la ecuación III-19 cuando el coeficiente de difusión es un escalar en vez de un tensor, lo cual ocurriría si da además de ser diagonal fuera isotrópico.

Las ecuaciones III-49 muestran que la componente del coef<u>i</u> ciente de difusión a lo largo de las líneas de campo es siempre <u>mayor</u> <u>o igual</u> a la componente perpendicular. Cuando $\omega_{k}^{2} \rightarrow 0$ o sea, cuando las colisiones son muy frecuentes, $k_{1} \rightarrow k_{1}$ y se tiende a una dispersión <u>i</u> sotrópica. Por otra parte, cuando $\omega_{k}^{2} \rightarrow \infty$ la componente del coeficien te de difusión perpendicular a las líneas de campo magnético tiende a cero, lo cual significa que si las colisiones son muy poco frecuentes la difusión se lleva a cabo principalmente a lo largo de las líneas de campo. El que $k_{1} \rightarrow 0$ equivale al argumento de Parker en el modelo anterior de que puede aplicarse la aproximación de centro guía al movimien to de las partículas.

Para facilitar la solución de la ecuación III-47, Axford - . considera una configuración cartesiana del modelo para el medio inter planetario de Axford, Dessler y Gottlieb (1963) dado on la figura I-4. La configuración cartesiana usada por Axford se muestra en la figura -III-5; el plano XY representa el plano de la eclíptica con el eje Y apuntando hacia afuera del Sol y el eje X en la dirección de la órbita de la Tierra, pero en sentido contrapio al movimiento de ésta; el eje Z es normal al plano de la eclíptica y apunta en la dirección norte. -

CAVIDAD SOLAR

Figura III-5: Configuración Cartesiana del Modelo de Axford, Dessller y Gottlieb (1963), usada por Axford en su Modelo para la variación diurna. El eje z agunta hacia afuera de la figura. (Tomada de Axford (1965)) En esta idealización del campo interplanetario, el autor supone un cam po magnético homogéneo cuyas líneas en todo punto son paralelas al pla no de la eclíptica. La solución del problema cartesiano sólo será váli da para una región cerca de la Tierra, lo suficientemente pequeña como para poder considerar a las líneas de campo como rectas y se aplica só lo a partículas cuyo radio de Larmor sea pequeño comparado con una uni dad astronómica ($\mathcal{E} < 10^{\circ} a^{\circ}$). De acuerdo con la figura III-5; las com ponentes del campo eléctrico, campo magnético, velocidad del viento so lar y velocidad de corriente son, respectivamente:

$$\widetilde{U} = (0, 0, e_{2})$$

$$\widetilde{U} = (0, 1, 0)$$

$$\widetilde{U} = (0, 1, 0)$$

De la ecuación III-35 y la figura se tiene

E= ζ (0,0, BV αμ ψ) III-50

Y las componentes de <u>B</u> serán:

B = (B (my, B cro 4, 0)

Axford considera que la región de modulación se extiende desde el Sol hasta la transición de choque del viento solar (Rg) <u>an-</u> tes de la región frontera y considera que en esta región frontera la convección de partículas no es muy efectiva debido a la velocidad tan pequeña del viento solar (\simeq 50 Km/seg) y como tanto la radiación g<u>a</u>

láctica como la difusión en esta región son isotrópicas, el efecto de esta zona de campos desordenados no cambia ni la isotropía ni la densi dad del flujo de radiación cósmica galáctica de manera considerable.

Las condiciones a la frontera son: U=0 para y≥(Rs-R)

III-51

Anteriormente se vió que para un caso estacionario es nece sario que no halla flujo radial, lo cual en este modelo equivales a -

para todo punto. Por consiguiente, para satisface la ecuación III-42 es necesario que $\frac{\partial N}{\partial x} = \frac{\partial N}{\partial t} = 0$. Con estas condiciones las tres componentes de la ecuación III-47 resultan:

$$\frac{e^{2}}{2N} \frac{dN}{dy} + \frac{e}{we} B_{x}U_{z} + \frac{V}{z} = 0$$

$$\frac{e}{wc} B_{y}U_{z} + \frac{1}{z}U_{x} = 0$$

$$\frac{e}{wc} (E_{z} + \frac{1}{z}U_{x}B_{y}) - \frac{1}{z}U_{z} = 0$$

de las que se obtiene: cE+/

$$U_{x} = -\frac{78y}{1+(1/\cos\cos\psi)^{2}}$$
$$U_{z} = -\frac{U_{x}}{\sqrt{2}}$$

$$k \frac{dN}{dy} = -\left[\frac{1+(\omega \delta)^{2}}{1+(\omega \delta (\omega \psi)^{2})}\right] N V$$

Do III-50 y III-51 so obtions que, a la altura de la Tierra: $CE_{By} = V \tan \psi$; $V \tan \psi = \Omega R_{T}$

Entonces:

$$U_{x} = \frac{-\Sigma k_{T}}{1 + (1/\omega c \cos \psi)^{2}}$$
III-52
II ΣR_{T}

$$\int_{2} = \frac{1 + (1/\omega c \cos \psi)^{2}}{2(1 + (1/\omega c \cos \psi)^{2}} \frac{1}{2}$$

III-52

III-53

- 91 -

Para obtener la dependencia de la densidad de partículas de rayos cósmicos con la distancia desde el Sol (r), se substituye y = r-R, y se obtiene

$$\frac{dN}{dy} = \frac{dN}{dr} : \frac{dN}{dr} = -\frac{1}{k'} V N$$
III-54

donde

$$k_{1}^{2} = \frac{1+(m_{S}cm_{A})_{1}}{p[1+(m_{S}cm_{A})]_{2}} = p^{2}[1+m_{S}cm_{A}]_{5}$$

Las ecuaciones III-52', 53' y 54 constituyen el modelo de Axford para la modulación de partículas de rayos cósmicos en el medio interplanetario, considerando tanto los campos magnético y eléctrico e<u>s</u> tacionarios, como el efecto de dispersión de las irregularidades tran<u>s</u> portadas por el viento solar.

De las observaciones de rayos cósmicos solares cerca de la Tierra se deduce que el camino medio libre es del orden de 0.1 U.A. Por otra parte, se ha medido el campo interplanetario corca de la órbita de la Tierra y se ha encontrado $B=4\gamma$. Esto conduce a un valor de $\omega celo$ $para protones y como cerca de la Tiorra <math>\omega \psi=0.7$, las ecuaciones anteriores pueden ponerse como:

$$\begin{array}{c} U_{\mathbf{x}} = -\Omega R_{\mathbf{T}} \\ U_{\mathbf{z}} = \mathbf{O} \end{array} \right\} \therefore \underline{U} = \underline{\Sigma} \times \underline{R}_{\mathbf{T}} \qquad \text{III-55}$$

$$\frac{dN}{dr} = -\frac{N}{k} \frac{1}{k} \cos^2 \psi$$
III-56

Nótese que la expresión obtenida para la velocidad de corriente en este modelo de Axford coincide con la velocidad obtenida por el modelo anterior de Parker, aún cuando los tratamientos son diferentes. Sin embargo, en este modelo de Axford la corrotación cólo ocurre cuando el número de irregularidades es pequeño y cuando el ángulo de flujo de las líneas del campo interplanetario no es muy grande.

La expresión III-56 representa el gradiente de rayos cósmi cos en el medio interplanetario para este modelo. Con los valores $\lambda = 0.1 \cup R; V = 800 \%; \downarrow = 15$, Azford obtiene un gradiente de densidad a la altura de la órbita de la Tierra de $\approx 10\%/U.A.$, valor que más o menos coincide con los medidos directamente con satélites.

De la solución de la ecuación III-56 puede obtenerse la mo dulación de once años. Esta solución es:

Introduciendo la dependencia con la encrgía de las particulas a través del coeficiente de difusión se tiene:

$$W_0(r, \varepsilon) = W_{\infty}(\varepsilon) = v_{\gamma} - \int_{\tau}^{\infty} \frac{V}{\frac{1}{2}(\varepsilon) \cos^2 \psi} d\tau$$
 III-57

Comparando la ecuación III-57 con la III-29 se ve que para la modulación de once años, el modelo de Axford tiene la misma forma que el modelo de convección-difusión, salvo que según el modelo de Axé ford, la modulación depende del ángulo de flujo de las líneas de campo magnético, además de la distancia y la energía de las partículas.

En este modelo el autor no da una expresión teórica para el coeficiente de difusión como función de la energía, pero propone que és te depende de la distancia en la forma:

$$\lambda(\tau) = \lambda_{\tau} \left(\frac{\tau}{R_{\tau}}\right)^{s}$$

Para que las observaciones experimentales concuerdan mejor con las teóricas, Axford oncuentra que s debe estar estre 1 y 2, mien tras que, como se vio anteriormente, Dorman propone S=1

Lientras que la mayoria de los modelos se crean con el obje to de explicar alguna variación en particular, este modelo de Axford, a partir de la ecuación de Boltzman para particulas que se muevon en el medio interplanetario, explica las dos variaciones "permanentos" de la radiación cósmica (variación diurna y variación de once años) a partir de las condiciones permanentes en el medio interplanetario, como son los campos estacionario eléctricos y magnéticos y las irregularidades. d).- Expresión de Jokipii para el Coeficiente de Difu

sión Anisotrópico como Función de la Energía.-

Jokipii (1966) hizo un analisis esta-

distico del movimiento de particulas cargadas en el campo interplanet<u>a</u> rio, suponiendo a éste como formado por una componente regular estacio naria de forma espiral en la cual se hallan superpuestas irregularidades magnéticas con una <u>distribución contínua</u> de tamaños, que se mueven aproximadamente con la velocidad del viênto solar.

En su tratamiento considera el hocho, enteriormente expues tos por Dorman, de que el movimiento de una partícula de rayos cósmicos en el medio interplanetario sólo es afectado considerablemente por su interacción con aquellas irregularidades magnéticas cuyos tamaños sean comparables al radio de giro de la partícula. En estas condiciones, Jokipii obtiene también un tensor de difusión diagonal, en el que el tórmino pararlelo a las líneas de campo es aproximadamente treinta veces mayor que los términos perpendiculares a las líneas. La expresión que obtiene para el coeficiente de difusión paralelo a las líneas de -

 $k_{II} = \frac{meW^3}{3\pi(2e)^2} \cdot \frac{1}{M(1/p)}$

campo es:

III-58

- 94 -

En la expressión antorior $M(Y_k)$ es el espectro de potencia de las irregularidades de magnitud k y debe entenderse como sigue: Un observador en un sistema de referencia fijo respecto al Sol que vez pa sar el viento solar con velocidad Y, llevando consigo las irregularida des magnéticas, notará variaciones en el campo magnético con una cierta frecuencia f dada por

$f = V/2\pi L$

Entonces, notará un espectro de potencia W(f) de las varia ciones del campo magnético de frecuencia f. El espectro de potencia M(f/t)de las irregularidades espaciales estará dado por la relación

 $M(Y_{1})d(Y_{1}) = w(f)df$

de donde:

$M(Y_{R}) = \frac{V}{2\pi} w(f)$

El hecho de que en la ecuación III-58 aparezos $M(\frac{y}{p})$ se de Nos a la condición de que la partícula cuyo radio de giro es ρ sólo se rá afectada por aquellas irregularidades de magnitud L tal que $L > \rho$.

Actualmente esta expressión de Jokipii para el coeficiente de difusión anisotrópico en el medio interplanetario parece ser la más cercana a la realidad.

e).- Discusión de los Mecanismos Propuestos por Parker y Axford para explicar la Variación Diurna.-

En la sección anterior se vió que el promedio anual de la variación diurna puede explicarse con la existencia de una aniso tropía de radiación cósmica que formara en todo momento una dirección a de 90° al este de la línea Tierra-Sol y que esta anisotropía puede explicarse como una rotación del conjunto de rayos cósmicos alrededor del Sol y en el mismo sentido que el movimiento de translación de la Tierra. Los modelos propuestos por Parker y Axford predice una corotación del gas de rayos cósmicos con el Sol y obtienen una amplitud para la variación diurna de 0.6%, aproximadamente el doble de la amplitud observada.

Sin embargo, si la velocidad de rotación de los rayos cósmicos alrededor del Sol fuera menor que la velocidad de rotación del -Sol puede obtenerse el valor adecuado para la amplitud de la variación diurna.

El modelo de Parker supone que todo el gradiente de presión es eliminado por las irregularidades que se encuentran más allá de la Tierra y esto deja como única velocidad de corriente en la dirección perpendicular a las líneas de campo, al arrastre eléctrico. Si se con sidera que estas irregularidades disminuyen grandemente pero no anulan del todo el gradiente de presión, puede obtenerse un valor adecuado p<u>a</u> ra la velocidad de corriente.

En cuanto al modelo de Axford, también puede disminuirse la discrepancia entre la teoría y el experimento si en vez de considerar que $\frac{1}{4}$ $\frac{1}{6}$ $\frac{1}{6}$

Las variaciones observadas en la amplitud de la variación diurna con el ciclo solar pueden explicarse en el modelo de Parker en virtud de un mayor o menor barrimiento de partículas por la región de campos desordenados, dependiendo de la actividad solar. En el modelo d e Axford puede explicarse como una variación del coeficiente de difusión durante el ciclo solar, lo cual ofectivamente se la observado.

- 96 -

Las variaciones observadas en la dirección de la anisotropía no pueden ser explicadas por estos modelos tal y como han sido desa rrollados, ya que tanto Parker como Axford hacen cero el flujo radial de partículas para obtener un estado estacionario, y esto deja únicamen te la componente azimutal. Sin embargo, al cambiar la velocidad del viento solar con el ciclo de actividad solar, como efectivamente ocurre, es de esperarse que cambie la dirección de la anisotropía. De hecho, durante el mínimo de actividad solar la velocidad del viento y las irregularidades magnéticas pueden ser incapaces de producir una corrien te neta de la radiación cósmica y en ese caso, la única anisotropía que se observaría sería la producida por el movimiento de translación de la Tierra dentro de un gas isotrópico de rayos cósmicos. Esto conduciría a una variación diurna con un máximo de aproximadamente 0.03% sobre el promedio, registardo a las 6.00 horas, lo cual parece coincidir con el promedio obtenido de la variación dirurna para 1954 (mínimo solar).

. 97 -

5.- Modelos de Decrecimientos Forbush.

Hasta aquí se han discutido los principales mecanismos de modulación relacionados con variaciones periódicas en la intensidad de radiación cósmica. Los procesos de modulación para los + decrecimientos Forbush son fundamentalmente los mismos que para las va riaciones periódicas, pero siendo éstos variaciones esporádicas relacionada con eventos solares, no pueden explicarse en base a la presencia del flujo constante de viento solar y al transporte contínuo de irregularidades magnéticas por este viento. De las observaciones experi mentales se deduce que los decrecimientos Forbush están asociados con emisiones esporádicas del Sol, que tienen lugar en las explosiones solares. Chapman y Ferraro (1931 a y b), al tratar de explicar las perturbaciones geomagnéticas que acompañan siempre a los decrecimientos Forbuch, supusieron que durante los eventos solares el Sol emitía haces neutros de partículas cargadas, o sea plasma solar. Siendo que este plasma llega a la Tierra después de uno o dos días después de ocurrida la ráfaga (pues este es el intervalo de tiempo entre la observa ción de la rafaga y el registro de un decrecimiento Forbush) se deduce que debe viajar a una velocidad de 1 ó 2x10³ Km/seg. De alguna manera el plasma emitido impide la llegada a la Tierra de ciertas partículas de rayos cósmicos, cuando pasa a través de ella, y produce así la disminución de intensidad registrada.

Hay varias interpretaciones acerca de la manera cómo este plasma viaja y los efectos que produce en la radiación cósmica. Algunos autores suponen que el plasma se emite en forma de nubes, otros consideran que se forman lengüetas con su base fija en el Sol y algunos más consideran que este plasma induce la formación de una onda de cho-

- 98 -

que en el viento solar normal de tiempos quietos. En cuanto a la manera como este plasma modula la radiación cósmica, algunos autores consideran que produce pérdida de energía en las partículas, otros consideran que barre a las partículas del sistema solar y otros hablan de la difusión de radiación cósmica a través de nubes de plasma desprovistas, al momento de salir del Sol, de partículas de rayos cósmicos.

A continuación se dará una breve descripción de los principales modelos de decrecimiento Forbush, la mayoría de los cuales sólo son cualitativos.

a) - Modelos de Nubes.-

El primero en sugerir que las nubes que sa lían del Sol en el momento de la explosión estaban vacías de radiación cósmica galáctica fué Morrison (1956). El autor arguye que en el interior de la nube se encuentran campos magnéticos "congelados" muy desor denados, debido al origen violento de la nube. Como en el momento de a bandonar el Sol está nube se halla desprovista de radiación cósmica, al irese moviendo hacia afuera los rayos cósmicos se difundirán en su interior. Si el proceso de difusión es lo suficientemente lento, cuan do la nube llegue a la Tierra aún no se habrá alcanzado la concentraci ón de equilibrio y se registrará un brusco decrecimiento en la intensi dad.

Otro modelo de nubes con campos magnéticos irregulares en su interior es el de Lenchek et al. (1961) que se basa en un efecto di ferente de esa nube sobre la radiación cósmica. Según este modelo, las partículas de rayos cósmicos se dispersan y difunden dentro de la nube debido a colisiones con las irregularidades magnéticas. Como esta nube

- 99 -

se expande al alejarse del Sol, las partículas sufrirán una desaceler<u>a</u> ción adiabática,o difusiva, en su interior y ouando la nube envuelva a la Tierra, alterará el espectro de energía de las partículas que lleguen a ella, produciendo que se observe una disminución en la intensidad.

b) .- Modelos de Lengüetas.-

Este tipo de modelos consideran que la cau sa de los decrecimientos Forbush son lengüetas de plasma formadas por la emisión prolongada de este plasma desde regiones activas en el Sol, que ancladas a dichas regiones se"estiran"a través del medio interplane tario, llevando consigo las líneas del campo magnético del Sol, del mis mo modo que el viento solar; así pues, las líneas de campo en el interior de la lengüeta estarán ordenadas. La magnitud del campo magnético dentro de las lengüetas es mayor que fuera de ellas debido a que las re giones de donde provienen, generalmente tienen campos magnéticos más fuertes que el campo general del Sol.

Alfvón (1954) fué el primero en sugerir que este tipo de haces corpusculares, con campos magnéticos congelados, podían producir decrecimientos Forbush. Alfvén considera que la modulación de la radia ción cósmica está producida por el campo eléctrico que se induce por el movimiento de los campos magnéticos en el interior del has. Este campo eléctrico no sólo alterara la energía de las partículas, sino que servirá de barrera para partículas de bajas energías. Así pues, al cru zar la lengüeta a la Tierra, se producirá una disminución en la intensidad.

Otro modelo de lengüeta es el de Gold (1959, 1962) (ver fi

- 100 -

Fig. III-6: Modele de Gold para el decrecimiente Ferbush. (Sandström (1965))

gura III-6) que se basa en un mecanismo de modulación diferente. Gold propone que los campos transportados por las lengüetas son originados en grupos bipolares de manchas, de manera que las líneas de campo en la lengüeta son cerradas, teniendo sus dos "pies" en el Sol. Las part<u>í</u> culas de rayos cósmicos serán reflejadas por los campos en la dengüeta dificultando el que logren penetrar a ella. Cuando esta longua envuelve a la Tierra dificulta la entrada a ésta de partículas de radiación có<u>s</u> mica y producirá un decrecimiento en la intensidad.

c) - Modelo de Onda de Choque -

Los modelos discutidos anteriormente (de nubes y longüetas) ignoran la existencia, previa a la ráfaga, de un viento solar estacionario y no consideran posibles interacciones entre el plasma emitido en la ráfaga y el plasma que ya ocupaba el medio interplanetario. Un modelo que si considera esta interacción es el modelo de Parker (1961,1962). Parker propone que la disminución en la inten sidad se debe a un barrimiento de partículas de rayos cósmicos hacia a fuera del sistema solar, producido por una onda de choque que se origi na en el viento solar a causa de que el plasma relativamente rápido, e mitido en la rafaga, tiene que moverse en un medio en el que hay un plasma que se mueve más lentamente. El campo magnético detrás del fren te de onde será más intenso que el campo magnético normal del medio in terplanetario y esta discontinuidad reflejará algunas de las particulas de rayos cosmicos y les impedirá atravesar el frente de onda. Cuan do este frente de onda de choque cruce la Tierra se observara un decre cimiento en la intensidad.

> d) - Discusión de los Mecanismos de Decrecimiento For bush -

102 -

Una característica general de todos los modelos de de crecimientos Forbush es que predicen el decrecimiento en una cierta re gión del espacio cuando pasa por esta región el plasma intensificado que sale del Sol en las explosiones solares. Así pues, los decrecimien tos Forbush en la Tierra se observan cuando este plasma llega a ella. El hecho de que siempre haya tormentas geomagnéticas con comienzos repentinos asociadas con los decrecimientos Forbush observados en la Tie rra se explica teóricamente por el hecho de que el mismo agente que causa el decrecimiento Forbush altera bru: camente la configuración del campo geomagnético. Según esta interpretación, los decrecimientos de radiación deben ocurrir <u>después</u> del comienzo repentino de tormenta, lo cual, como se vió en la sección anterior, no siempre ocurre. Ninguno de los modelos discutidos aquí pueden explicar el que algunos comienzos repentinos de tormenta ocurran despúes de observado el decrecimiento Forbush.

En cuanto a la forma general del decrecimiento, todos los modelos presentados predicen una brusaa disminución de la intensidad de radiación cósmica, seguida de una recuperación que se inicia al abandonar la Tierra la región de plasma intensificado y que continúa lentamente debido a que algunas partículas aún tienen que atravesa el plasma antes de llegar a la Tierra.

En general, cualquiera de estos modelos predice una mayor disminución en la intensidad para partículas de bajas energías, ya sea por una cifusión más lenta de estas partículas en el interior de una nube"vacía", ya sea por ser más afectadas estas energías por barreras de potencial eléctrico, o por ser barridas más fácilmente hacia afuera del sistema solar.

- 103 -

Cualquiera de estos modelos puede explicar también el hecho de que a veces se observen varios decrecimientos Forbush sucesivos. En los modelos de nubes o de ondas de choque puede explicarse como una emisión sucesivas de varias nubes cercanas o como una formación de fren tes de onda de choque sucesivos, provocadas por emisiones discontinuas de plasma en la región activa del Sol. Con el modelo de lengüetas, esto sólo puede explicarse si se considera (Sandström (1965)) que dentro de la lengüeta pueden ocurrir nuevas inyecciones de plasma de man<u>e</u> ra que esta lengüeta adquiera una estructura sectorial; al barrer esta lengüeta e la Tierra, cada une de estos sectores producirá un decrecimiento Forbush.

Sin embargo, hay ciertas características que sólo son explicadas por algunos de los modelos. La tendencia de recurrencia de 27 d<u>f</u> as de algunos decrecimientos Forbush sólo es explicada por el modelo de lengüetas ya que supone que éstas están fijas en el Sol, giran con él y duran todo lo que dure la actividad de la zona donde se engendran; así pues, cada 27 días volverán a pasar por la Tierra y volverán a pr<u>o</u> ducir un decrecimiento Forbush.

El hecho de que generalmente antes de un decrecimiento se observe un ligero aumento en la intensidad debido a partículas de **a**lta energía, sólo puede explicarse con el modelo de onda de choque, ya que al ir avanzando el frente de onda hacia la Tierra, hará rebotar partículas hacia ésta que de otra manera no hubieran llegado; las partículas ganarán energía en esta colisión y de esta manera producirán un aumento en la intensidad de partículas de alta energía. Este modelo también pu<u>e</u> de explicar el ligero aumento de intencidad que se observa antes de r<u>e</u> cobrar el nivel normal. En la sección anterior se vió que **en a**lgunos casos la intensidad de radiación cósmica después de un decrecimiento: Forbush regresa a un nivel más alto del normal, aparentemente causado por un mayor acceso a la Tierra de partículas de rayos cósmicos solares. Esto puede explicarse con el modelo de onda de choque ya que detrás del frente de onda las líneas de campo magnético son de memor cur vatura por lo que una vez que ha pasado el frente de onda por la Tierra, el acceso a ésta para partículas de rayos cósmicos solares es mucho más fácil.

Actualmente no hay un solo modelo que explique todos los t<u>i</u> pos observados de decrecimiento Forbush. Probablemente estos decrecimientos no se deban siempre a las mismas causas, sino que a veces son producidos por nubes, otros por lengüetas y otros más por onda de choque. También es posible que haya varios de los mecanismos discutidos <u>o</u> perando al mismo tiempo.

En las observaciones de decrecimientos Forbush realizadas con satélites en el espacio interplanetario no se ha registrado la pr<u>e</u> sencia de nubes con campos magnéticos desordenados, por lo que este ti po de modelos ha sido deshechado. Sin embargo, no se han realizado el suficiente número de observaciones in situ como para concluir que estas nubes nunca aparecen. De cualquier manera, es evidente que se necesitan más observaciones y más modelos o mayores refinamientos de los modelos existentes para los decrecimientos Forbush.

- 105 -

IV.- DISCUSION GENERAL DEL PROBLEMA DE LA EXODULACION DE RADIACION COS-MICA EN EL MEDIO INTERPLANETARIO

Aunque mucho se ha logrado en el entendimiento de los posibles mecanismos de la modulación para la radiación cósmica en el me dio interplanetario, no puede considerarse que el problema de la modulación sea un problema resuelto. La principal dificultad se debe al desconocimiento de la configuración y el estado exactos del medio interplanetario. Los satélites y sondas espaciales han proporcionado datos acerca de las características de este medio cerca de la Tierra, pe ro las regiones lejanas de la cavidad solar permanecen inexploradas.

Por otra parte, las dificultades matemáticas de los tratamientos teóricos del comportamiento de las partículas de rayos cósmicos en el medio interplanetario, hacen necesarias ciertas idealizaciones, tales como simetrías esféricas, estados estacionarios, etc., que no siempre resultan buenas aproximaciones.

Así mismo, la comprobación experimental de las predicciones de las teorías anteriormente expuestas, se dificultan debido a la producción solar de radiación cósmica, que en todos los modelos se despre oia y que sin embargo puede alterar considerablemente las característi cas tanto espaciales como temporales de la intensidad de radiación cós mica predicha por estos modelos, principalmente a bajas energías. Así pues, ciertas discrepancias entre las observaciones y las predicciones teóricas, pueden deberse, más que a fallas en las teorías de modulación, al hecho de no temarse en cuenta la producción solar de radiación cósmica.

Le variación respecto a la cual se han desarrollado más mo delos os la variación de 11 años. En cuanto a esta variación, el modelo

「たったい」というというというが、ため、

de convección-difusión con pérdidas de energía difusivas y de betatrón parece ser el que mejor explica las observaciones aunque aún no ha sido totalmente desarrollado.

Respecto a la variación diurna, tanto el modelo de Parker como el de Axford son plausibles y básicamente se refieren a los mismos mecanismos de modulación. Sin embargo, hay ciertas características de estas variaciones que no son explicadas por estos modelos, por lo que parece necesario realizar ciertas modificaciones o refinamientos de <u>e</u> llos, aunque en realidad el problema estadístico del análisis de la v<u>a</u> riación diurna provoca que los experimentadores no se pongan de acuerdo en cuanto a las características de esta variación y no puede saberse a ciencia cierta qué es lo que deben explicar los modelos teóricos.

En cuanto a los modelos presentados de los decrecimientos Forbush todos son plausibles y sólo un mayor número de observaciones en el espacio interplanetario podrá determinar cuál o cuáles de los me canismos discutidos son los correctos. Por otra parte, la mayoría de los modelos presentados sólo son cualitativos y no se han desarrollado matemáticamente, por lo que es necesario hacer estos desarrollos matemáticos para poder comparar los resultados experimentales.

Por lo que toca a la variación de 27 días, no se ha desarro llado ningún modelo que pueda considerarse importante.

Concluyendo, se puede decir que actualmente se ha logrado bastante en cuanto al entendimiento físico de los mecanismos que produ cen las variaciones en la intensidad de la radiación cósmica galáctica en el medio interplanetario, pero es indudable que se requieren aún más mediciones espaciales, principalmente en regiones lejanas a la Tie rra que son las menos exploradas, para poder determinar con mayor cer-

- 107 -

tema la veracidad de los mecanismos de modulación propuestos. For otra parte es necesario aún un mayor refinamiento matemático de los modelos discutidos que permita incluir características menos idealizadas del espacio interplanetario.

Finalmente es necesario asentar que el conocimiento de la modulación de la radiación cósmica galáctica en el medio interplanetario es indispensable para conocer la intensidad de radiación cósmica -"que llega al sistema solar desde fuera de éste, lo cual tiene gran im portancia para las teorías de origen de radiación cósmica y de la propagación de ésta en el medio intergaláctico. Por otra parte, las obser vaciones del comportamiento de la radiación cósmica en el medio interplanetario permite conocer mejor a este medio.

BIBLIOGRAFIA

109 -

- 1.- Ahluwalia, A.S.; Dessler, A.J. (1962) Planet. and Space Scien. 2, 195
- 2.- Alfvén, H. (1949) Phys. Rev. <u>75</u>, 1732
- 3.- Alfvon, H. (1950) Cosmical Electrodynamics. Oxford University Press
- 4.- Alfvén, H. (1954) Tellus <u>6</u>, 232
- 5.- Anderson, H. R.; Neher, H. V. (1963) Proc. Int. Conf. on Cosmic Rays, Jaipur
- 6.- Axford, W. I. (1965) Planet. and Space Scien. <u>13</u>, 115
- 7.- Axford, W. I.; Dessler, A. J.; Gottlieb, B. (1963) Astrophys. Jour. <u>137</u>, 1268
- 8.- Babcock, H. W.; Babcock, H.D. (1955) Astrophys. Jour. <u>121</u>, 349
- 9.- Bachelet, F.; Balaba, P.; Conforto, A. M.; Marini, G. (1960a) Nuovo Cimento <u>16</u>, 292
- 10.- Bachelet, F.; Balata, P.; Conforto, A. M.; Marini, G. (1960b) Proc. IUPAP Moscu Conf. (1959) 4, 149 6 150
- 11.- Balasubrahmanyan, V. K.; Boldt, E.; Palmeira, R. A. R. (1967) Jour. of Geophys. Res. <u>72</u>, 27
- 12.- Balata, P.; Bachelet, F.; Conforto, A.M.; Iucci, N.; Marini, G. (1959) Nuovo Cimento 13, 1055
- 13.- Biermann, L. (1951) Z. Astrophys. <u>29</u>, 274
- 14.- Birkeland, K. (1896) Arch. Soi. Phys. Naturelles 1, 497
- 15.- Blokh, Ya. L.; Glokova, E. S.; Dorman, L. I. (1959) "C.R. Variations underground, sea-level and in stratosphere" Moscu 7
- 16.- Brunberg, E. A. (1953) Tellus <u>5</u>, 135
- 17.- Brunberg, E.A.; Dattner, A. (1954) Tellus 6, 73
- 18.- Chapman, S. (1957) Smithsonian Contrib. Astrophys. 2, 1

110 ----19.- Chapman, S.; Ferraro, V.C.A. (1931a) Terr. Mag. 36 , 77 20.- Chapman, S.; Ferraro, V.C.A. (1931b) Terr. Mag. 37 , 147 21.- Clauser, F.H. (1960) Johns Hopkins University Laboratory Rept. AFOSR TN 60 , 1386, Nov. 22.- Collins, M. A. (1959) N.Z.J. Sei. 2 , 313 23.- Compton, A.H.; Getting, I.A. (1935) Phys. Rev. 47, 817 24.- Dessler, A. J. (1967) Reviews of Geophys. 5 , 1 25.- Dorman, L.I. (1957) "Cosmic Rays Variations" Technical liaison office, Wright - Patterson Air Force Base, Ohio. 26.- Dorman, L.I.; Shatashvili, L.K. (1961) Results of IGY (Moscu) Cosmic Rays Nº 4 27.- Dorman, L.I. (1963a) "Progress in Elementary Particles and Cosmic Ray Physics" Vol. VII North - Holland Publishing Company - Amsterdan 28.- Dorman, L.I. (1963b) Proc. Int. Conf. on Cosmic Rays, Jaipur 2 29.- Duggal, S.P.; Pomerantz, M.A.; Forbush, S.E. (1967) Nature 214 , 155 30.- Ehmert, A. (1960) Proc. Int. Conf. on Cosmic Rays, Moscu. 4 . 142 31.- Fan, C.Y.; Meyer, P.; Simpson, J.A. Phys. Rev. Lett. 5, 272 (1960) 32.- Fan, C.Y.; Gloeckler, G.; Simpson, J.A. (1965) Proc. Int. Conf. on Cosmic Rays, Londres 1, 380 33.- Pan, C.Y.; Glockler, G. ; Simpson, J.A. Phys. Rev. Lett. 17, 329 (1966) 34.- Fitchel, C.E.; Guss, D.E.; Stevenson, G.R.; Waddington, C.J. (1964) Phys. Rev. 133, 818 35.- Fonger, W. (1953) Phys. Rev. 91 , 351 36.- Forbush, S.E. (1937) Phys. Rev. 51 , 1108

37.- Forbush, S.E. (1957) Proc. Nat. Acad. Soi. 13, 28 38.- Forbush, S.E. (1958a) Trans. Am. Geophys. Union 39 . 1004 (1958b) 39.- Forbush, S.E. Jour. of Geophys. Res. 63 , 651 40.- Forbush, S.E. (1966) Handbuch der Physik, 49-1, 159 41.- Forbush, S.E.; Venkatesan, D. Jour. of Geophys. Res. <u>65</u>, 1377 (1960) 42.- Freier, P.S.; Waddington, C.J. (1965a) Proc. Int. Conf. on Cosmic Rays, Londres 1, 176 43.- Freier, P.S.; Waddington, C.J. Space Science Rev. 4, 313 (1965b) 44.- Gleeson, L.J.; Axford, W.I. Astrophys. Jour. 149, 1115 (1967) 45.- Gloeckler, G.; Jokipii, J.R. (1967) Astrophys. Jour. <u>148</u>, 141 (1959) 46.- Gold, T. Jour. of Geophys. Res. 64 , 1665 (1962) 47.- Gold, T. Jour. Phys. Soc. Japan 11 , Supp A-II, 607 48.- Jokipii, J.R. (1966) Astrophys. Jour. 146 , 480 49.- Jokipii. J.R. (1967) Astrophys. Jour., Agosto 50.- Kamiya, Y.; Wada, M. (1959) Ion. Sp. Res. (Japon) <u>13</u>, 105 51.- Kane, R.P. (1955) Phys. Rev. <u>98</u>, 130 52.- Kolomeets, E.U.; Sergeeva, G.A. Nemolochnov, A.N.; Chumbalova, R.A. Zusmanovich, A.G. (1965) Proc. Int. Conf. on Cosmic Rays, Londres <u>1</u>,197 (1960) 53.- Kruskal, M. "Asymptotic Theory of Systems of Ordinary Differential Equations" John Wiley

- 111 -

•	- 112 -
54	Kuzmin, A.I. (1960) Trams. Ya FAN (ser. Fiz.) 3, 99
55	Laster H.; Lencheck, A.M.; Singer, S.F. (1962) Jour. of Geophys. Res. <u>67</u> , 2639
56	Lenchek, A.M.; Singer, S.F.; Wentworth, R.C. (1961) Jour. of Geophys. Res. <u>66</u> , 4027
57	Lindholm, F. (1928) Ger. Beitr. Geophys. 20, 12
58	Lockwood, J.A. (1958) Phys. Rev. <u>112</u> , 1750
59	Lockwood, J.A.; Webber, W.R. (1967) Proc. Int. Conf. on Cosmic Rays, Calgary
60	Morrison, P. (1956) Phys. Rev. <u>101</u> , 1397
61	Nagashima, K. (1951) Jour. of Geomagnetism and Geolelectricity 3, 100
62	Neher, H.V. (1957) Jour. of Geophys. Res. <u>72</u> , 1527
63	Neher, H.V.; Anderson, H.R. (1964) Jour. of Geophys. Res. <u>69</u> , 807
64	Neher, H.V.; Forbush, S.E. (1958) Phys. Rev. Lett. <u>1</u> , 173
65	O'Gallager, J.J.; Simpson, J.A. (1967) Astrophys. Jour. <u>147</u> , 819
66	Parker, E.N. (1956) Phys. Rev. <u>103</u> , 1518
67	Parker, E.N. (1957) Phys. Rev. <u>107</u> , 924
68	Parker, E.N. (1958a) Astrophys. Jour. <u>128</u> , 664
69	Parker, E.N. (1958b) Phys. Rev. <u>110</u> , 1445
70	Parker, E.N. (1961) Astrophys. Jour. <u>133</u> , 1014
71	Parker, E.N. (1962) Jour. Phys. Soc. Japan <u>17</u> , Suppl. A-11, 563
72	Parker, E.N. (1963)

"Interplanetary Dynamical Process" Interscience Publishers University of Rochester Vol. VIII 73 .- Parker, E.N. (1964a) Jour of Geophys. Res. 69 , 1755 74.- Parker, E.N. (**1**96µb) Planet. and Space Scien. 12, 735 75 - Parker, E.N. (1965) Planet. and Space Scien. 13, 9 76.- Parker, E.N. (1966) Planet. and Space Scien. 14, 371 77.- Parker, E.N. (1967) Planet. and Space Scien. <u>15</u>, 1723 78.- Sandström, A.E. (1961) Astronaut. Acta 7, 141 Sandström, A.E. (1965) "Cosmic Rays Physics" 79.- Sandström, A.E. North-Holland Publishing Company - Amsterdan 80.- Simpson, J.A. (1954) Phys. Rev. <u>94</u>, 426 81.- Sokolov, V.D. (1958) Trams. Ya FAN (ser. Fiz.) 2,123 82.- Stern, D.P. (1964) Planet. and Space Scien. 12, 973 83.- Swann, W.F.G. (1933) Phys. Rev. 111, 224 84.- Teegarden, B. (1967) Goddard Sp. Fl. Cent. Res. Rep. X-611-67 85.- Thambyahpillai, T.; Elliot, H. (1953) Nature 171 , 918 86.- Trumpy, B. (1959) Arbok. Univ. Bergen Naturavit. rekke, Nº 2 87.- Van Heerden, I.J.; Thambyahpillay, T. (1955) Phil. Mag. 46 , 1238 88.- Venkatesan, D. (1950) Nuovo Cimento 8, Suppl., 285 89.- Venkatssan, D.; Dattner, A. (1959) Tellus 11 , 116

- 90.- Vernov, S.N.; Samosudov, B.E.; Tulinov, V.F.; Charakhchyan, A.N.; Charakhchyan, T.N. (1960) Proc. IUFAP Moscu Conf. (1959) 4, 49 6 53
- 91.- Webber, W.R. (1962) Progress in Elementary Particles and Cosmic Ray Physics, Vol. VI North- Holland Publishing Company - Amsterdan
- 92.- Webber, W.R. (1965) Proc. Int. Conf. on Cosmic Rays, Londres, 1, 345
- 93.- Webber, W.R. (1967) Proc. Int. Con. on Cosmic Rays, Calgary, 146
- 94.- Webber, W.R.; Mc Donald, F.B. (1964) Jour. of Geophys. Res. <u>69</u>, 3097
- 95.- Wilcox, J.M.; Ness, N.F. (1965) Jour. of Geophys. Res. 70, 5793
- 96.- Wurm, K. (1943) Mitt. Sternw. Hamburg - Bergedorf 8, Nº 51

114 -