UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE CIENCIAS

feet and a set

ESTUDIO DE LA REACCION ²⁷Al (p, \propto_{\circ})²⁴Mg ENTRE 1.3 y 2 MeV

Tesis

Que para obtener el título de Físico

Presenta

ALEJANDRO MARCIANO ARRIOLA MEDELLIN

243

México D.F.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Agradecimientos

Quiero expresar mi agradecimiento al Dr. Jorge Rickards C. por la dirección de este trabajo, así como al Fís. I. Alvarez y Fís. C. Cisne ros por sus valiosos consejos, al Fís. M. Flores por la ayuda en los cálculos teóricos. Al Dr. F. Alba por la ayuda económica otorgada a través del Instituto de Física de la UNAM. De la misma manera aprovecho esta oportunidad para agradecer la colaboración de todos los compañeros del laboratorio Van de Graaff.

INDICE

	Pág.
I INTRODUCCION	· 1
II EXPERIMENTO	-
A DISPOSITIVOS.	3
B METODO EXPERIMENTAL.	6
1 Blancos. 2 Espectro típico. 3 Corriente del haz.	
C CURVA DE EXCITACION	10
D DISTRIBUCIONES ANGULARES	10
E FUENTES DE ERROR	13
III TEORIA DE LAS CORRELACIONES ANGULARES	
A GENERALIDADES.	21
B CASO PARTICULAR 27 Al(p, $\propto \circ$) 24 Mg	27
IV DISCUSION Y CONCLUSIONES	30
BIBLIOGRAFIA	35

I. INTRODUCCION

Los estados excitados del núcleo ²⁸Si han sido investigados por algunos autores: Shoemaker et al, Antufiev et al, Abuzeid et al.^{1, 2, 3}) por medio de las reacciones ²⁷Al(p, \propto)²⁴Mg, ²⁷Al(p, p)²⁷Al y ²⁷Al(p, χ)²⁸Si en el intervalo de energía Ep = (1.4-4) MeV.

Shoemaker et al.¹⁾ obtiene las curvas de excitación de los productos de interacción de un blanco de ²⁷Al bombardeado con protones en el intervalo Ep = (1.4-4) MeV. Encuentra un número de resonancias debidas a reacciones (p, \forall), (p, p), (p, p') y (p, \propto), demostrando que el mecanismo del núcleo compuesto es válido para la discusión de las reacciones resultantes del bombardeo de aluminio con protones en el intervalo de energía mencionado.

Antufiev et al.²⁾ estudia la reacción ²⁷Al(p, \forall)²⁸Si en el intervalo Ep = (0.99-2.52) MeV determinando esquemas de decaimiento con su prob<u>a</u> bilidad (branching ratio), espín y paridad de algunos niveles del ²⁸Si. Por otra parte, Abuzeid et al.³⁾ estudia la reacción ²⁷Al(p, α_{o})²⁴Mg obteniendo la curva de excitación a 150° en el intervalo Ep = (1-2.5) MeV y las distribuciones angulares de 90° a 150° de 13 resonancias de las 21 observadas, asignando espín y paridad sin ambiguedad a solo dos de ellas. Considerando que la información sobre niveles del núcleo ²⁸Si en la región de energía mencionada inicialmente, no es del todo completa, se estudió en este trabajo la reacción ²⁷Al(p, \propto_{\circ})²⁴Mg en el intervalo Ep = (1.32-2.05) MeV obteniéndose la curva de excitación a 90° así como las distribuciones angulares, de 90° a 165°, de 6 de las 10 resonancias observadas. Los resultados se analizaron utilizando el formalismo de las correlaciones angulares para determinar los valores de espín y paridad de los niveles Ep = 1.395, 1.447, -1.587, 1.655, 1.731 y 1.981 MeV así como los valores de dos parámetros no cuantizados δ_{\circ} y δ_{i} que representan mezclas de estados caracterizados por diferentes números cuánticos, (ver tabla 2 y figs. 6 a 11).

La reacción se efectuó en una cámara de dispersión, J. Lira⁴⁾, empleando como fuente de protones el acelerador Dinamitrón del Instituto de Fís<u>i</u> ca de la U.N.A.M.. La detección de partículas se hizo con detectores de estado sólido de silicio de barrera superficial.

El formalismo utilizado ha sido estudiado por parte del grupo del -Laboratorio Dinamitrón de la U.N.A.M. en base al trabajo de A.J. Ferguson⁵⁾ obteniendo las expresiones concretas de la función teórica de correlación y sus gráficas para algunos casos particulares entre los que se encuentra la reacción ²⁷Al(p, \propto_0)²⁴Mg. Fue entonces a partir de este estudio,I. Alvarez, C. Cisneros, M. Flores ^{6,7,8}, que se analizaron los resultados, siendo en nuestro caso las condiciones básicas de trabajo, tanto teórico como experime<u>n</u> tal: a) el haz de partículas que produce la reacción, no está polarizado, b) las resonancias que se analizan están aisladas (las correspondientes al núcleo intermedio ²⁸Si).

- 2 -

II. EXPERIMENTO

A. - DISPOSITIVOS.

Para el estudio de la reacción 27 Al(p, \propto_{\circ}) 24 Mg se empleó el acel<u>e</u> rador Dinamitrón de 3 MeV del Instituto de Fisica de la U.N.A.M. como fuente de protones en el intervalo de energía Ep =(1.32-2.05) MeV.

El haz de partículas una vez que abandona el tubo acelerador, puede ser dirigido a través de la línea de vacío, S. De la Cruz⁹) por medio de lentes electrostáticas y magnéticas que tienen propiedades de enfoque. Antes del deflector magnético de 90°, con el que seleccionamos la energía de las partículas, el haz pasa por una rejilla de tantalio que se encarga de recortar la parte dispersa de éste antes de entrar al campo uniforme del deflector. Posteriormente el haz con energía definida en \pm 5 keV (el campo magnético del analizador es medido por el método de resonancia magnética nuclear de protones) pasa por otra rejilla de tantalio antes de llegar al selector de 5 salidas, el cual es un d<u>e</u> flector magnético que permite, ajustando el campo del imán, dirigir el haz hacia el lugar requerido. Se utilizó en este caso la salida a 0° que corresponde al sistema de la cámara de dispersión, J. Lira⁴). En la Fig. 1 se muestra un esquema del sistema y el diagrama de bloques del equipo electrónico, necesarios para efectuar y analizar la reacción. Las rejillas (1) separadas entre sí 48 cm. con diámetro de 2 mm. definen el área iluminada sobre el blanco. La rejilla (2) de 2 cm. de diámetro evita que lleguen al blanco partículas reflejadas en las paredes de la tubería. Después de atravesar el blanco, el haz se co lecta en una caja de Faraday conectada a un integrador de corriente. Para evi tar que los electrones secundarios producidos dentro de la caja de Faraday sal gan y con ello se tenga una medida errónea de la corriente, a la entrada de la caja se colocaron dos rejillas (3) de 1 cm. de diámetro con una diferencia de potencial de -150 volts relativa.

Para detectar los productos de la reacción se utilizó un detector de estado sólido de silicio de barrera superficial de alta resistividad (3000 a - 6000 ohm-cm.) al cual se le aplicó un voltaje de polarización de 20 volts, haciéndolo suficientemente grueso para frenar protones hasta de 3 MeV^{10} ; subtendiendo un ángulo sólido de $2x10^{-3}$ steradianes definido por las rejillas (4) de 5 mm. de diámetro (que corresponde a la parte sensible del contador) separadas 5 cm., que previenen la introducción de partículas que no provengan directamente del blanco.

Las partículas que inciden sobre el contador producen ionización en su interior, la cual se traduce en un pulso eléctrico de intensidad proporcional a la energía de la partícula cargada incidente; este pulso es enviado a un preamplificador Tennelec 100A¹¹ colocado lo más cerca posible del contador con objeto de evitar que el ruido electrónico producido por el cable mismo que los une, distorsione el pulso inicial. Una vez que el pulso ha sido amplificado, p<u>a</u> sa a un analizador de altura de pulsos T.M.C. de 400 canales donde es analizado para ser enviado al registro del canal correspondiente, dependiendo de -

- 4 -

su altura ¹²⁾. El analizador tiene acoplado un circuito que para automáticamen te el conteo cuando se colecta en el integrador una cantidad específica de carga.

B. - METODO EXPERIMENTAL.

1. - Blanco.

El blanco utilizado se obtuvo según la técnica usual de evaporación al vacío, A. Barragán¹³⁾: sobre películas delgadas de "Formvar" recogidas en anillos de cobre, se evapora por calentamiento la sustancia deseada. En nuestro caso se depositó aluminio natural (monoisotópico).

2. - Espectro típico.

En la Fig. 2 se muestra un espectro de partículas cargadas tomado en resonancia obtenido con el analizador de altura de pulsos T.M.C. de 400 c<u>a</u> nales. El pico de alfas emitidas de la reacción 27 Al(p, \propto_{\circ}) 24 Mg (Q=1.601 -MeV) se puede ver claramente; los grupos correspondientes a los protones dispersados elásticamente del 181 Ta, 27 Al, 16 O y 12 C son identificados en base a su energía, obtenida a partir de cálculos de cinemática y, al número del canal donde aparecen, M. Guerrero 14).

Es conveniente hacer notar que la presencia de carbono y oxígeno en el blanco no afecta los resultados del experimento ya que los valores Q de la reacción (p, \propto_0), para estos elementos, son grandes y negativos. En el caso del ¹⁸¹Ta Q \simeq 8 MeV para la misma reacción, por lo que su presencia no afecta los resultados.

3. - Corriente del haz.

Con objeto de evitar la superposición de pulsos, esto es: cuando dos protones provenientes de una dispersión elástica llegan a la superficie sensible del contador en una diferencia de tiempo menor que el requerido para que las condiciones iniciales se restablezcan en el semiconductor y el sistema electr<u>ó</u> nico, será registrada una "partícula" con dos cargas y con energía correspondiente a la suma de las energías de los dos protones incidentes. Como en nue<u>s</u> tro caso la máxima energía de estas "partículas" (producidas por elásticos de aluminio) es ligeramente mayor que la correspondiente a la de las partículas

 \ll_{\circ} , este efecto se traduce en la aparición de "fondo" que se traslapa con el pico de las \ll_{\circ} . Con objeto de disminuir el efecto de la superposición de pul sos decíamos, es necesario reducir la corriente del haz, puesto que la probabilidad de que ocurra es proporcional a la cantidad de partículas incidentes por unidad de tiempo. La Fig. 3 muestra una comparación de dos espectros toma dos con la misma energía de bombardeo pero con diferentes corrientes, notándose la conveniencia de bajas corrientes. Es por esta razón que la corriente del haz se mantuvo baja con variaciones entre 0.03 μ amperes y 0.06 μ amperes para los puntos de la curva de excitacion y las distribuciones angulares de 5 niveles.

La sugerencia que se hace para eliminar el fondo, que en buena pa<u>r</u> te proviene del efecto de superposición de pulsos, es intercalar un pequeño imán entre el blanco y el detector¹⁵⁾, que sea capaz de separar los diferentes grupos de partículas (en nuestro caso serían protones y partículas alfa), de tal manera que sólo sean detectadas las que interesan.

- 8 -

C. - CURVA DE EXCITACION.

La curva de excitación de las partículas \propto_0 se midió como función de la energía de los protones incidentes a un ángulo de 90[°] en el sistema de l<u>a</u> boratorio, con una carga de 75,4°C acumulada en el blanco para cada punto. Las exposiciones en el intervalo de Ep = (1.32-2.05) MeV se hicieron en pasos de 35 kHz fuera de resonancia y, de 21 kHz en resonancia, que corresponden a pasos de 5 keV y 3 keV respectivamente. En la Fig. 4 se muestra la curva de excitación, donde los números de las resonancias corresponden a las asign<u>a</u> ciones dadas por Abuzeid et al.³⁾.

Tanto para los puntos de la curva de excitación como para aquellos en las distribuciones angulares, el número de cuentas correspondientes al pico de \ll se tomó en base a la suma de pulsos en 6 canales ya que las resonancias se definen mejor que si tomamos 10 o más canales. En las Figs. 5a, 5b y 5c se puede apreciar el efecto de considerar 6 canales, en contraste con los resul tados al tomar 21 y 60 canales. El porcentaje de altura del fondo promedio res_ pecto de la altura de la resonancia (No. 5) es: 13.1 %, 37.2 % y 41.5 % toman do 6, 21 y 60 canales respectivamente. La diferencia en los resultados se debe al efecto de superposición de pulsos antes mencionado.

D. - DISTRIBUCIONES ANGULARES.

Las distribuciones angulares de las partículas \propto o fueron medidas para resonancias aisladas, siendo la intensidad del haz de protones de 0.1 a -0.2 μ amperes para la resonancia Ep =1.477 MeV (Fig. 7), y de 0.03 a - -0.06 μ amperes para las resonancias Ep =1.395 (Fig. 6), 1.587 (Fig. 8), --

A STATISTICS

+1

1.655 (Fig. 9), 1.731 (Fig. 10) y 1.981 MeV (Fig. 11). Se hicieron exposiciones de 75 μ C a 90°, 110°, 120°, 130°, 140°, 150°, 160° y 165°.

Los números de cuentas a ocho ángulos de laboratorio fueron conve<u>r</u> tidos a una distribución $W(\theta)_{exp}$ en el sistema centro de masa. Los datos se ajustaron después a las curvas calculadas, M. Flores⁸, normalizadas a - - $W(90^{\circ})=1.$

E. - FUENTES DE ERROR.

1. - El ángulo del contador respecto a la dirección del haz, se cono ce con un error de + 40¹.

2.- Como mencionamos anteriormente (Sec. II A) la corriente del haz se mide en una caja de Faraday; desgraciadamente en el experimento ésta no estaba alineada correctamente, por lo que una parte del haz que atraves<u>a</u> ba el blanco no era registrada por el integrador. Es difícil estimar la cantidad de corriente que no fue medida; sin embargo, si suponemos ésto como un -error constante, los resultados no serán afectados ya que todas las medidas s<u>e</u> rían corregidas por el mismo factor.

3.- La incertidumbre en la energía del haz es de \pm 5 keV. La cali bración del haz fue hecha con un espectrógrafo magnético absoluto de 1 m. de radio ¹⁶.

4. - La superposición de pulsos produjo un fondo que se restó del espectro cuando excedió del 10 % de la altura del pico de alfas.

5.- El tiempo muerto por canal cuando se utilizan sólo 200 canales del analizador de altura de pulsos está dado por la expresión ¹²:

- 13 -

$$Tc = (39 + 0.4c) \mu seg$$
 donde $c = número de canal$

El tiempo muerto total es :

 $Tm = \sum_{c=0}^{\frac{2}{c} \neq \frac{1}{2}} Tc x Nc$ donde Nc = número de cuentas en el canal c.

Por otra parte, el tiempo total es igual al tiempo vivo (aquel en el cual el analizador acepta pulsos) más el tiempo muerto (el requerido para analizar los pulsos),

$$Tt = Tv + Tm$$

De esta manera, la corrección por tiempo muerto está dada por :

$$Nc' = (1 - Tm/Tt)^{-1} Nc$$

En este experimento la corrección es 🛛 🚣 2 %.

6.- El error estadístico se tomo como $\pm (N)^{1/2}$ donde N es el nú mero de cuentas en cada punto. Las barras de error que aparecen en las gráficas de las distribuciones angulares corresponden a $\pm (N)_{\Theta}^{1/2}/N_{900}$, donde N_{Θ} y N₉₀o son el número de cuentas a los ángulos Θ y 90^o sin normalizar.

III. TEORIA DE LAS CORRELACIONES ANGULARES

A. GENERALIDADES.

La medida de la sección de dispersión, $\nabla(\theta) d\Omega$, es la más simple de las correlaciones angulares que pueden ser hechas en el estudio de la reacción o proceso de dispersión. En este caso, la detección de las partículas emitidas a un ángulo θ con respecto a la dirección del haz paralelo de partículas incidentes y dentro de un ángulo sólido $d\Omega$ constituye una correlación direccional entre las partículas incidente y saliente. Los resultados pueden ser expresados en términos de una distribución angular o correlación, $W(\theta) d\Omega$, la cual da una medida de la probabilidad de detección de la partícula saliente. Esto difiere de la sección diferencial puesto que estamos tratando con probab<u>i</u> lidades relativas para el proceso en vez de absolutas.

Este formalismo aplicado a reacciones, hace uso de la relación entre el momento angular y las paridades de los estados nucleares y las partícu las emitida y absorbida y sus propiedades de simetria bajo operaciones tales como rotaciones espaciales y reflexiones e inversiones temporales. Por la aplicación de leyes generales de invariancia, se pueden calcular las correlaciones angulares y compararlas con el experimento; de esta manora se tiene información concerniente a los espines y paridades de los estados nucleares. Este método hace uso de matrices de densidad y de un formalismo tensorial el cual evita una algebra engorrosa inherente a otros métodos.

En nuestro caso la descripción de la reacción se hará en la represen tación de espín del canal donde los espines del núcleo y el de la partícula incidente se acoplan para dar el espín del canal, el cual a su vez se acopla al momento angular orbital relativo para dar el momento angular total del sistema. Este será el momento angular total del núcleo compuesto, si tal mecanismo es apropiado.

La conservación del momento angular pide que :

$$\underline{a} + \underline{l}_1 = \underline{b} = \underline{c} + \underline{l}_2$$

donde <u>a</u> representa el espín del canal, o sea, la suma vectorial de los espines de la partícula entrante <u>s</u> y del blanco <u>s</u> ,

 $\underline{a} = \underline{s}_1 + \underline{s}_0$

 \underline{l}_1 y \underline{l}_2 son los momentos angulares orbitales de las partículas entrante y saliente respectivamente, <u>b</u> el momento angular total del estado intermedio del núcleo compuesto, <u>c</u> el espín del canal residual.

La introducción de las matrices de densidad facilita una descripción compacta de un conjunto de sistemas los cuales no necesariamente están en el mismo estado, es decir, están mezclados y no pueden ser representados por una sola función de onda. Además de la matriz de densidad ρ , es también conveniente introducir la matriz de eficiencia \mathcal{E} la cual caracteriza los modos de detección de la partícula saliente, es docir, se considera un experime<u>n</u> to en el que interesa calcular la probabilidad de que un detector o un arreglo

de ellos registren todos los sistemas de un stado especificado por un conjunto de números cuánticos.

Es importante notar que la eficiencia total de un arreglo de detectores es igual al producto de las eficiencias de cada uno. Los tensores de efi-= ciencia se definen análogamente a los tensores de densidad, pero dependen del arreglo geométrico del detector, toman expresiones características según el caso en que se usen, donde van incluídos el tamaño del detector, su simetría y orientación. De esta manera, la probabilidad de detección de una partícula por un arreglo experimental está dada por

$$W(\theta) \equiv Traza(\rho E)$$

La manera más fácil de calcular la traza que copresenta una correlación es a través de los tensores estadísticos, cuyo conocimiento equivale al de la matriz, ya sea de densidad o eficiencia.

De esta manera, la funcion de correlación angular expresada en té<u>r</u> minos de los tensores estadísticos, introducidos por A.J. Ferguson⁵⁾ toma p<u>a</u> ra reacciones partícula-partícula, la forma:

donde

- 23 -

Los coeficientes 📃 se encuentran tabulados, y los términos

$$\langle c|l_2||b> ; \langle c|l_2'||b'> (a)$$

 $\langle b||l_1|q> ; \langle b||l_1'|q> (b)$

son elementos reducidos de matriz, Cisneros ⁷⁾ entre dos estados de momento angular, que describen la dinámica del sistema;

$$\langle c_{11} \top J_{2} | | b \rangle \equiv \langle c_{1} J_{2} | | b \rangle \qquad (a)$$

$$\langle b_{11} \top J_{1} | | q \rangle \equiv \langle b_{11} J_{1} | q \rangle \qquad (b)$$

$$(3.3)$$

estos términos se obtienen al aplicar el teorema de Wigner-Eckart a los elementos de matriz del Hamiltoniano de interacción para los procesos de emisión y absorción. Con esta notación se indica (identidad 3.3a) que un estado de espín <u>b</u> emite una partícula con momento angular orbital \mathcal{L}_2 y queda en un estado caracterizado por <u>c</u>, es decir, <u>b</u> = <u>c</u> + \mathcal{L}_2 ; análogamente 3.3b indica la absorción de una partícula con momento angular orbital \mathcal{L}_1 por un estado de espín <u>a</u>, para quedar en un estado caracterizado por <u>b</u>.

Los factores Q_R son coeficientes de atenuación para detectores <u>fi</u> nitos y dependen de las condiciones físicas y geométricas del detector, así como de su distancia al blanco. Para el caso de detección de partículas, este factor se puede considerar $Q_R = 1$ por ser el ángulo sólido pequeño.

La ecuación (3.1) es de gran generalidad ya que se aplica a reacciones que presentan mezcla de estados caracterizados por diferentes momentos angulares orbitales (\mathcal{L} , \mathcal{L}^{\dagger}), así como al caso en que hay mezcla en el -

and the second s

estado intermedio (\underline{b} , \underline{b} ⁱ) o en el espín del canal de entrada (\underline{a} , \underline{a} ⁱ). Como en el caso que trataremos aquí se consideran resonancias aisladas, o sea, que el momento angular del estado intermedio tiene un valor único (\underline{b} , \underline{b} ⁱ), se impondrán restricciones sobre la fórmula anterior. Otras limitaciones están ya involucradas en la misma ecuación: se suponen haces y núcleos no polariza dos y energías definidas para los haces entrante y salieras.

La ecuación (3.1) se puede escribir de la siguiente manera:

$$W(\Theta) = \sum_{R} \alpha_{R} P_{R} (\cos \Theta)$$
(3.4)

Al introducir el factor de normalización

$$N = (16\pi^{2})^{-1} < b \parallel l_{1} \parallel q >^{2} < c \parallel l_{2} \parallel b >$$
(3.5)

en (3.1) y comparar con (3.4) se obtienen los coeficientes en función de elementos tos tabulados \overline{Z} y parámetros de mezcla δ , a saber: mezcla en el espín del canal de entrada

$$\delta_{0} = \frac{\langle b | | P_{1} | q' \rangle}{\langle b | | P_{1} | q \rangle}$$
(3.6)

mezcla en los estados caracterizados por diferentes momentos angulares a la entrada

$$\delta_{i}(a^{i}) = \frac{\langle b | l | l_{i}^{i} | a^{i} \rangle}{\langle b | l | l_{i} | a^{i} \rangle}$$

$$(3.7)$$

mezcla en el momento angular del canal de salida

$$\delta_2 = \frac{\langle c | l_2 | l_b \rangle}{\langle c | l_2 | l_b \rangle}$$
(3.8)

- 25 -

Por el hecho de haber supuesto que no hay mezcla en el estado intermedio <u>b</u>, los valores de k se restringen a números pares ya que una k impar implica mezcla de estados intermedios de paridad diferente. Esto se obtiene a partir de los coeficientes \overline{Z} :

Por definición: Blatt y Biedenharn¹⁷⁾

$$\overline{Z} (l, b, l'b'; aR) \equiv \hat{I} \hat{I} \hat{I} \hat{b} \hat{b} (l, ol'o(RO))$$

$$W(l, b, l'b; aR) \qquad (3.9)$$

El coeficiente de Clebsch-Gordan (lol'ol Ro) se anula si l+l'-k es impar, pero en este caso l+l' es par puesto que l y l' difieren en un múltiplo de dos unidades, entonces k solo puede ser número par. Además, por el término -w(lbl'b; ak) se debe de cumplir la condición del triángulo $\Delta(ll'k)$ por lo que $k \leq 2l_{max}$ y por términos análogos en el desarrollo de la función de correlación obtenemos $k \leq min (2l_{max}, 2b_{max}, 2l_{2max})$.

La función de correlación (3.1) normalizada queda entonces como:

$$W(\Theta) = \sum_{R} \alpha_{R} P_{R}(\cos \Theta) = k = P \wedge R$$
 (3.10)

donde los coeficientes a_k están en términos de los parámetros de mezcla y su'desarrollo se encuentra en Cisneros⁷.

Para facilitar la comparación de las curvas obtenidas a partir del cálculo de W (θ) con aquellas que resultan experimentalmente al efectuar las distribuciones angulares se desarrolla W (θ) en potencias de cos θ obteniéndose la expresión siguiente:

- 27 -

$$W(\Theta) = \sum_{R} b_{R} \cos^{R} \Theta R = PAR$$
 (3.11)

Renormalizando la couación en (3.10) con respecto a 90, es decir, a W(90⁰) obtenemos:

$$W(\Theta) = \sum_{R} A_{R} P_{R} (\cos \Theta) \qquad A_{R} = \frac{q_{R}}{q_{\Theta}} \qquad (3.12)$$

De esta manera con (3.12) y (3.11) los coeficientes b k se pueden obtener con álgebra sencilla en función de los coeficientes A k . Así:

$$b_0 = A_0 - 0.5 A_2 + 0.375 A_4$$

$$b_2 = 1.5 A_2 - 3.75 A_4$$

$$b_4 = 4.375 A_4$$

Para fines experimentales es conveniente trabajar con W (θ) en la forma de la ecuacion (3.11) si no se desea un alto grado de precisión.

B. - CASO PARTICULAR ²⁷Al(p, d.)²⁴Mg.

En la reacción ²⁷Al(9, α_{\circ})²⁴Mg las resonancias del núcleo compues to ²⁸Si sólo pueden ser de paridad natural; como el estado base del ²⁴Mg es -0⁺ (<u>c</u> = 0⁺), el momento angular <u>b</u> del núcleo compuesto es igual al momento orbital de la partícula α_{\circ} y su paridad es (-)^b. Es por esta razón que no hay mezcla en el momento angular orbital del canal en α_{\circ} . En el canal de entrada, por el contrario, el espín del canal toma los valores <u>a</u> = 2 y <u>a</u> = 3 prov<u>e</u> nientes del acoplamiento del momento angular total cal estado base del ²⁷Al --($s_0 = 5/2^+$) con el espín del protón ($s_1 = 1/2^-$). De esta manera las posibles configuraciones para el proceso de la reacción se dan en la tabla 1. La contribución de momentos angulares orbitales mayores que l = 3 se excluyó por considerarse peque

Al considerar resonancias aisladas, esto es, no hay mezcla en el es tado del núcleo intermedio, se reduce a dos el número de parámetros no cuantizados que describen el proceso de formación de la resonancia en el formalismo del espín del canal. Estos parámetros son: el de mezcla en el canal de entrada \mathcal{S}_{\circ} , que es una medida de que tanto se favorece el espín del canal más al to sobre el espín del canal más bajo; y \mathcal{S}_{\circ} , que describe la mezcla de momen tos angulares orbitales y cuyo sentido es análogo al de \mathcal{S}_{\circ} .

Las configuraciones que aparecen en las figuras de las distribuciones angulares correstinam a los casos de la tabla 1, denotados de la siguiente manera: $a^{\overline{w}}$ (l_1) $b^{\overline{w}}$ (l_2) $c^{\overline{w}}$

200	 A) 	-	T A	1.0
183	14		ALC: No.	
-		است.	salarati etc. (40	

DIRERENTES CONFIGURACIONES PARA ZL PROCESO DE LA REACCION 27 Al(p, $\propto \circ$) 24 Mg

a	$ \underline{\mathbf{b}} - \underline{\mathbf{a}} \leq \mathcal{J}_1 \leq \underline{\mathbf{b}} + \underline{\mathbf{a}} $	$J = b^{m}$ $l_{2} \cdot c$
2 +	2	07 0 07
3 * 2 +	3	1 1 0+
2	3	1 1 0 ⁺
3* 2 ⁺	2	2 ⁺ 2 0 ⁺
• 2+	2 0	2 ⁺ 2 0 ⁺
3+ 2+	· - 1	3 3 0 ⁴
3 ⁺ 2 ⁺	3	3 ⁻ 3 0 ⁺
3+	3 1	s - s 0 +
24	3	3 3 0 +

.

101601

- 29 -

IV. DISCUSION Y CONCLUSIONES

En general los resultados de este trabajo coinciden con los de -Abuzeid et al.³⁾; sin embargo se deben hacer notar algunas anomalías. En pr<u>i</u> mer lugar, a 90[°] no se observo el nivel número 6 de aquel trabajo.

En la curva a 90° la resonancia (No. 10) Ep = 1.909 MeV muestra una pequeña anomalía que puede ser considerada como debida a la superposición de dos niveles; la región correspondiente a esta resonancia se recorrió en dos ocasiones observándose en ambas una estructura semejante. Como la resolución en el experimento ($_{-}$ % keV) no es suficiente para separar estos dos posibles niveles, conviene hacer distribuciones angulares en diferentes puntos de la resonancia (para una resonancia aislada la relación entre las medidas a diferentes ángulos de la distribución angular debe ser independiente del punto de la r<u>e</u> sonancia sobre el cual se hace) de esta manere si existen dos niveles traslapados las distribuciones angulares serán diferentes puntos.

Otra de las diferencias aparece en la resonancia (No.11) Ep =1.981 MeV que en la curva a 150° obtenida por Abuzeid et al.³⁾ muestra estructura, no encontrándose algo similar a 90° (en el presente trabajo) donde la resonancia aparece bien definida. La Fig. 6 muestra la distribución angular de la resonancia No. 4 a Ep =1.395 MeV que resulta isotropica dentro del 30 %, siendo los valores pr<u>o</u> puestos para $J^{v} = 0^{-}$, 1⁻, 2⁺, 3⁻. En caso de mezcla en el espín del canal de entrada, \mathcal{S}_{\circ} favorece ligeramente el valor 2 sobre el valor 3; los parám<u>e</u> tros de mezcla \mathcal{S}_{\circ} favorecen los valores pequeños $\mathcal{A}_{\circ} = 0$ y 1 del momento a<u>n</u> gular orbital de la partícula incidente sobre los valores $\mathcal{A}_{\circ} = 2$ y 3 para formar los estados con $J^{v} = 2^{+}$ y 3⁻ respectivamente.

La distribución de la resonancia Ep = 1.447 MeV (Fig. 7), muestra una tendencia a crecer ligeramente para ángulos mayores de 90°. Los valores de los parámetros δ_{\circ} y δ_{1} señalan la tendencia para la formación del estado intermedio a través de valores pequeños tanto para el espín del canal como para el momento angular relativo de la partícula incidente. Las asignaciones pro puestas para este nivel son 1°, 2° y 3°, aunque no se descarta totalmente la po sibilidad de que sea 0° (isotrópico).

Para la resonancia Ep =1.587 MeV (Fig. 8) la distribución angular muestra una tendencia a decrecer ligeramente para ángulos mayores de 90°, con parámetros de mezcla δ_1 que dan mayor probabilidad a momentos angul<u>a</u> res orbitales \mathcal{J}_1 pequeños; los parámetros δ_o , contrariamente al caso anterior, favorecen el valor 3 del espín del canal de entrada. Se proponen - - - $J^{m} = 1^{-}, 2^{+}$ y 3⁻, sin descartar completamente 0⁺ (isotrópico).

Los errores $\simeq 30 \%$ en las distribuciones angulares de los niveles Ep = 1.395 y 1.587 MeV se deben principalmente a la mala estadística en el ex perimento, ya que además de ser resonancias poco intensas, las exposiciones fueron cortas (75 μ C). La distribución angular de la resonancia Ep =1.447 - MeV tiene errores \simeq 30 % a pesar de ser intensa; ésto se debe al efecto de superposición de pulsos (Sec. II B 3) ya que la corriente para esta distribución angular fue de (0.1 - 0.2) μ amperes.

Las distribuciones angulares de las resonancias Ep = 1.655, 1.731 y 1.981 MeV (Figs. 9, 10 y 11), muestran una marcada anisotropía para ángulos mayores de 90°, siendo los errores \leq 15% ya que en estos casos se mejora la estadística por la intensidad de las resonancias. Los valores propuestos de J^W para estas resonancias son 1⁻, 2⁺ y 3⁻, con parámetros de mezcla δ_{0} dando preferencia al valor 3 sobre el valor 2 del espín del canal de entrada para la formación del estado intermedio.

Como se podrá notar, las distribuciones angulares que resultan isotrópicas o muestran tendencia a crecer para ángulos grandes, representan esta dos formados a través del espín del canal de entrada menor. Por otra parte, las distribuciones angulares con tendencia a decrecer (aunque sea ligeramente) para ángulos grandes, dan preferencia al valor mayor del espin del canal de en trada en la formación del estado intermedio. Además, como sería de esperarse a bajas energías, en los casos donde hay mezcla en el momento angular orb<u>i</u> tal relativo de la partícula ente, preferentemente la formación del núcleo intermedio se hace a través de momentos angulares pequeños (2 = 0, 1).

En la tabla 2 se resumen los datos obtenidos para las 10 resonancias observadas.

- 32 -

El hecho de que tenga da dierentes valores de J^m asignados a los niveles del núcleo ²⁸Si sin poder, con la información obtenida en este trabajo, determinarlos univocamente; muestre la neresidad de efectuar experimentos de doble y triple correlación come ²⁷Al(p, \forall)²⁸Si y ²⁷Al(p, \forall)²⁸Si, utili zando en el segundo caso la técnica experimental de coincidencias. De esta manera, la información obtenida de los experimentos mencionados junto con los resultados de este trabajo, ayudaría si no a determinar los valores de --J^m de los niveles del ²⁸Si sin ambiguedad, sí a discriminar algunas posibilidades en las asignaciones.

- 33 -

		BLA	÷	
RESONANCIA No	Ep (MeV)	Ex (MeV)	j ^π PRESENTE TRABAJO	FIG.
2	1,336	12.871		
3	1.372	12,906		
4	1.395	12,928	0 ⁺ , 1 ⁻ 2 ⁺ , 3 ⁻	6
5	1,447	12,978	0 ⁺ , 1 ⁻ 2 ⁺ , 3 ⁻	7
6	NO SE OE	SERVO		
7	1.587	13.113	0^{+} , 1 ⁻ 2 ⁺ , 3 ⁻	8
8	1.655	13.179	1 2 ⁺⁻ , 3	9
9	1.731	13.252	1- 2 ⁴ , 3-	10
10	1.909	13.424		
11 .	1,981	13,493	1 ⁻ 2 ⁺ , 3 ⁻	11
	21.277.5			

- 34 -

э.

BIBLIOGRAFIA

2 T

1	F.C. Shoemaker, J.E. Fauker, G.M. Bouricius, S.G. Kaufmann and F.P. Mooring, Phys. Rev. <u>83</u> (1999) 1011.
2	Y.P. Antufiev, L.M. El-Nadi, D. Darwsh, O.E. Badawy and P.V. Sorokin, Nucl. Phys. <u>46</u> (1963) 1, 54 (1964) 301, 56 (1964) 401.
3	M.A. Abuzeid, F.M. Aly, Y.P. Antufiev, A.T. Baranik, T.M. Nower and P.V. Sorokin, Nuc. Phys. <u>45</u> (1963) 123.
4	J. Lira Chávez, Tesis. "Diseño y Construcción de una Cámara de Dis- persión", México, D.F. (1970).
5	A.J. Ferguson, "Angular Correlation Methods in Gamma-Ray Spec- troscopy" North-Holland Publ. Co., Amsterdam (1965).
6	I. Alvarez Torres, Tesis. "Aplicación de la Teoría de Correlaciones Angulares a Reacciones (Alfa-Gamma)", México, D.F. (1968).
7	C. Cisneros Gudiño, Tesis. "Algunas Aplicaciones de la Teoría de Co- rrelaciones Angulares", México, D.F. (1969).
8	M. Flores Bravo, Tesis. "Cálculos en la Aplicación de la Teoría de C <u>o</u> rrelaciones Angulares", México, D.F. (1969).
9	S. de la Cruz, Tesis. "El Acelerador Dinamitrón y Algunos Aspectos de su Sistema Asociado", México, D.F. (1964).
10	Nuclear Diodes, Instruction inual for Nuclear Diodes Silicon Surface Barrier Detector, Higland Park, Illinois.
11	Instruction Manual, Model 100A, Tennelec, Oak Ridge, Tennessee:
12	Technical Measurement Corp., Instruction Manual for model 404C Pulse Height Analizer, North Haven, Conneticut.
13	A. Barragán, Tesis. "Comparación de Varios Métodos para medir Espesores Pequeños", México, D.F. (1967).
14	M. Guerrero, Teals. "Estudio de la Reacción ¹² C(d, p) ¹³ C de 1.5 a 2.0 MeV", México, D.F. (1970).
15	Kuperus, Etysica. <u>26</u> (1960) 954.

16.- F.Alba, A. Dacel, H. del Castillo, R. Roos, A. Tejera y M. Mazari, A High Precition 180° Magnetic Spectrograph for Nuclear Energy Determinations, Proc. of the Third International Conference on Atomic Masses, University of Manitoba Press, R.C. Barber, edt.

17. J.M. Blatt and L.C. Biedenharn, Rev. Med. Phys. 24 (1953) 258.

÷.