UNIVERSIDAD AUTONOMA DE GUADALAJABĂ

Incorporada a la Universidad Nacional Autónoma de México

ESCUELA DE BIOLOGIA

TESIS CON FALLA LE ORIGEN

DINAMICA POBLACIONAL DE LOS INSECTOS
DEL ESTIERCOL DE BOVINO LECHERO.

ĩ		E		S			ł	S
Preser	itada	con	10	Requ	uisito	o	Parcial	Par a
OBTE	NER	EL	TIT	ULO	PR	OF	SIONA	L DE
В	1	0		L		0	G	0
				POR				
FRA	NC	ISC	0	DIA	Z	FL	EISC	HER
				1987				

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

	eagina
INDICE DE TABLAS Y FIGURAS	i
ABSTRACT	. 1
INTRODUCCION	3
LITERATURA REVISADA	5
MATERIALES Y METODOS	10
RESULTADOS	13
DISCUSION	70
CONCLUSIONES	73
RESUMEN	74
BIBLIOGRAFIA	76

INDICE DE TABLAS Y FIGURAS

HDLH	•		FAGI	INM
1.	Relación de	capturas	del orden diptera	13
2.	Relación de	capturas	del orden coleoptera	14
3.	Relación de	capturas	de larvas de Musca domestica	18
4.	Relación de	capturas	de adultos de Musca demestica	19
٤.	Relación de	capturas	de larvas de Haematobia irritans	20
6.	Relación de	capturas	de adultos de Haematobia irritans	21
7.	Relación de	capturas	de larvas de Stomoxys calcitrans	22
8.	Relación de	capturas	de adultos de Stomogys calcitrans	23
9.	Relación de	capturas	de Orthelia caesarion	26
10.	Relación de	capturas	de Phaenicia se	27
11.	Relación de	capturas	de Ebormia regina	23
12.	Relación de	capturas	de larvas de Bayinia se	32
13.	Relación de	capturas	de adultos de Bayinia se	33
14,	Relación de	capturas	de Baxinia lberminieri	34
15.	Relación de	capturas	de Segsis peogypiesea	35
16.	Relación de	capturas	de Adia cinerella	36
17.	Relación de	capturas	de Platystethus sp	39
18.	Relación de	capturas	de Aleochara sel	40
19.	Relación de	capturas	de Chilonthus se	41
20.			de Neobyenus se	
21.			de Neobispius se	
22.			de Stepus se	
22	Dalasiis da		de Cabaanidius aaanabaanidaa	40

24.	Relación de capturas de Sagripus se49
25,	Relación de capturas de Sagripus geopsylyapicus50
26.	Relación de capturas de Appodius lividus:
27.	Relación de capturas de Appodius graparius
28.	Relación de capturas de Agbodius vittatus55
29.	Relación de capturas de Agbodius fimetarius59
30.	Relación de capturas de Opthophagus gazella59
31.	Relación de capturas de Iyebaea stercorea60
32.	Relación de factores ambientales registrados en el
	periodo julio de 1986 a marzo de 198766
33.	Resumen de la correlación de los órdenes diptera y
	coleoptera con los factores ambientales
34.	Resumen de la correlación entre diptera y coleoptera69
IGURA	PAGINA .
IGURA	PAGINA Variación semanal del número de larvas de Musca domestica,
IGURA	
	Variación semanal del número de larvas de <u>Musca domestica</u> ,
1.	Variación semanal del número de larvas de Musca domestica, Macratobia irritados y Stomogys calcitrados capturadas durante
1. 2.	Variación semanal del número de larvas de Musca domestica. Wastatobia irritado y Stomogys calcitrado capturadas durante el estudio
1. 2.	Variación semanal del número de larvas de Musca domestica, Wastatobia irritados y Sigmosys calcitrados capturadas durante el estudio
1. 2.	Variación semanal del número de larvas de Musca domestica, Wassatóbia irritans y Siomoxys calcitrans capturadas durante el estudio
2.	Variación semanal del número de larvas de Musca domestica. Wastatobia irritados y Stomoxys calcitrados capturadas durante el estudio
2.	Variación semanal del número de larvas de Musca domestica. Wassatchia irritados y Stomoses calcitrados capturadas durante el estudio
1. 2.	Variación semanal del número de larvas de Musca domestica, Haccatobia irritados y Stemesus calcitrados capturadas durante el estudio

	estudio30
۶.	Variación semanal en el número de adultos de Segsis
	neocynipses y Adia ciperella capturadas durante el estudio
	31
6	Variación semanal en el número de adultos de Clatystetbus se.
	Aleochara sp. y Ebilonthus sp. capturados durante el estudio
	38
7.	Variación semanal en el número de adultos de Nephyenus se.
	Neobishius sp. y Stepus sp. capturados durante el estudio
	4343
8:4	Variación semanal en el número de adultos de Sebaeridium
	scarabaeoides, Sagrinus se. y Sagrinus gennsylvanicus
	capturados durante el estudio
9.	Variación semanal en el número de adultos de Aphodius
•	lividus, Aebodius graparius y Aebodius vittatus capturados
	durante el estudio
10.	Variación semanal en el número de adultos de Agbodius
•••	finetarius, Onthophagus gazella y Ivebaea stercorea
	capturados durante el estudio
11.	Relación de la abundancia de insectos capturados con las
••.	temperaturas media, máxima y minima y la humedad relativa
	registradas durante el estudio
12.	Abundancia de insectos capturados en relación con la
•••	precipitación registrada y relación de capturas de dipteros
	y coleopteros con la temperatura media
13.	Relación de la abundancia de dipteros y coleópteros
	capturados con la humedad relativa registrada durante el
	AND AND WALL MANY OF THE COMPANY OF THE STREET STREET, STREET STREET, STREET, STREET, STREET, STREET, STREET,

	estudio	• • • • •	• • • • • •	• • •	• • • • • • • •	• • •	• • • •	• • • • • • • •	• • • • • • • • •	.65
14.	Relación	de la	curvas	de	captura	de	los	ordenes	diptera	У
	coleópter	a								. 68

ABSTRACT

This study was conducted to determine the insect species which inhabits bovine dung and its seasonal distribution. The following environmental factors were measured; temperature, relative humidity and rainfall.

The samples were collected from the Escuela Superior de Agricultura "Hermanos Escobar" in Cd. Juarez, Chiuhuahua, between July 1986 and March 1987.

Twenty five species of diptera and coleoptera were noted. Musca domestica (L.) was the more abundant pest fly, probably due to the city nearness. The staphylinids (Coleoptera) were the most numerous in species and specimens.

The flies were captured in a larger number between July and August. The scarabs were found more abundant in August and September.

The reduction of insect population was recorded when the temperature dropped from 19.3 to 11.3 Celsius degrees and the relative humidity rose from 76% to 82%. There were no insects at 6 degrees or lower.

The decreasing of both orders was observed during October. From November to March no insects were found in any sample. The correlation analysis showed that the temperature and the relative humidity were the more important factors in the insect abundance. The temperature indice was 0.5677, for relative humidity the correlation indice was -0.5594.

INTRODUCCION

La producción lechera en Cd. Juárez es una actividad económica de gran importancia, pues existen en el área urbana y rural cuatro grandes lecherias: lecheria "Modelo", "Escobar", "Zaragoza" y "Anita", además de algunos establos independientes como el de la Escuela Superior de Agricultura "Hermanos Escobar", de los que dependen gran número de familias y en los que conviven bastantes trabajadores (Perfil Socioeconómico Municipal 1985). En estos lugares existe una gran producción de estiércol de bovino, que sirve como hábitat y alimento a un gran número de insectos, entre los cuales se encuentran especies de dipteros que lo utilizan como medio de ovoposición y desarrollo larval (Meyer y Petersen 1983).

Las moscas que utilizan el estiércol de bovino como medio de desarrollo larval, son de gran importancia ecológica, pues debido a sus hábitos coprófagos ayudan a la degradación de las deyecciones de vacunos (Margalef 1977). Los sistemas de producción en confinamiento que existen atualmente, han favorecido el desarrollo de moscas perjudiciales cuyos hábitos hematófagos, afectan la producción lechera y de carne, y que también actúan como transmisores de enfermedades a los animales y a los humanos (Campbell et. al 1977).

En este estudio se pretende determinar la fluctuación

poblacional de los insectos que habitan en el estiércol de bovino, y la forma en que algunos factores climatológicos afectan las poblaciones de insectos, pudiendo asi determinar las fechas más adecuadas para realizar un programa de control biológico de los dipteros plaga.

LITERATURA REVISADA

El adecuado manejo de las especies animales es un recurso natural. El conocimiento de la dinámica de una población es esencial, porque permite determinar el estatus de la población y esto deriva en una estrategia de manejo o control apropiada. La dinámica de cualquier población animal, es una función de la densidad de la población, edad, sexo y crecimiento. Estos parámetros cambian con el tiempo, y algunas veces no es posible evaluarlos con precisión. Cuando ésto sucede, es necesario evaluar solamente los más importantes parámetros como la densiad de población (Ffolliot et. al. 1981).

La distribución poblacional, abundancia, depende también de la cantidad y localización de los recursos disponibles para la explotación y la manera en que los individuos se integran dentro del sistema trófico. La relativa disponibilidad de estos atributos para la coexistencia de especies, determina la abundancia de la población y la dominancia y diversidad características de las comunidades (Price 1934).

Los insectos constituyen plagas cuando son lo bastante numerosos para causar pérdidas económicas. La adecuada identificacin de una plaga y sus enemigos es obviamente fundamental, dado que sin un nombre científico, no podrián ser adecuadamente examinadas referencias previas de las especies (De Bach 1968).

En los últimos diez años, los problemas de control de la mosca casera han aumentado con la llegada de los sistemas de producción animal en confinamiento (Maxcy y Nolan 1981).

En los establos existe una gran produción de estiércol (12 devecciones por dia por cada bovino adulto) que sirve como hábitat a un gran número de insectos y otros artrópodos (Waterhouse 1974, Blume 1985). Entre los más conspicuos están los insectos del orden diptera que incluye especies inocuas y especies plaga. La mosca de los cuernos (Haematobia irritans (L.)), la mosca del establo (Stowoxys calcitrans (L.)) y la mosca casera (Musca domestica (L.)) estan entre las especies más comunes y económicamente importantes que se desarrollan en el estiércol de bovino (Geetha Bai y Sankaran 1977, Meyer y Petersen 1993). La mosca del establo ha sido reportada como causante de la reducción en la ganancia de peso y aprovechamiento del alimento en ganado de engorda en crecimiento y finalización (Campbell et. al. 1977) y de causar pérdidas en la producción lechera (Bruce y Decker 1958). La mosca casera no ha sido reportada como causante de detrimento de la producción lechera o de carne pero induce respuestas de conducta muy semejantes a las causadas por la mosca del establo, asi como también es vector de enfermedades y molestias en los humanos (Campbell et. al. 1981). Cheng (1988) reportó detrimento en la ganancia de peso en ganado de engorda como resultado de la acción de las moscas picadoras, principalmente la mosca de

los cuernos y la mosca del establo.

La presencia de otros artrópodos en el estiércol de bovino ha demostrado que reduce la población de la mosca de los cuernos (Blume 1970, Roth et. al. 1983).

Los parásitos y depredadores actuán como agentes reguladores de las poblaciones de insectos dañinos (De Bach 1968). Dentro de los insectos depredadores y parásitos de las moscas plaga se encuentran las familias Staphylinidae, Histeridae (Coleóptera) y Pteromalidae (Hymenoptera) (Axtell 1981, Morgan 1991, Roth 1982, Figg 1983). Los staphylinidos del género Ebilopthus han sido reportados como los más importantes depredadores de las moscas que ovipositan en el estiércol de bovino (Roth 1982).

Investigaciones de Summerlin y Kunz (1978), indicaron que la hormiga de fuego Solepopsis invicta Buren, depreda sobre varios estadios de la mosca del establo Stomoxxs calcitrans (L.) en pastizales del este de Texas. La mayor depredación ocurrió sobre el estado de pupa.

Los cuatro parásitos más comunes de la mosca casera recobrados de las casetas de aves en el noreste de Florida, incluyen Spalangia cameropi(Perkins), S. pigrgaenea, S. endius Walker, y S. pigra (Latreille) (Butler y Escher 1981).

El parasito más común de la mosca de los cuernos en Missouri

es Spalangia nigra (Thomas 1981).

4

La competencia por habitat y alimento es otra posibilidad para reducir las poblaciones de dipteros dafinos. Los competidores más importantes se encuentran dentro de la familia Scarabaeidae (Coleòptera) y las familias Muscidae, Sarcophagidae, Calliphoridae, Sepsidae y Anthomylidae (Diptera) (Blume et. al. 1970, Waterhouse 1974, Kunz 1978, Roth et. al. 1983).

Figg (1983) encontro catorce especies de moscas de las devecciones artificiales expuestas durtante un estudio realizado en Missouri : Sargus cuerarius (L.) (Stratiomydae), Seesis biflexuosa (Strobl) y Saltella sebondylii (Schrank) (Sepsidae), Paresle ciperella (Fallen) (Anthomytidae), Gymnodia arcuata (Stein), Myoseila meditabunda (F.), Ortbellia caesarion (Meigen), Musca autumnalis (De Geer) y M. domestica (L.) (Muscidae), y Dyysercodexia yetricosa (Wulp), Bayinia derelicta (Walker), B. latischosa (Parker), B. lberminieri (Robineau-Desvoidy) y B. guerula (Walker) (Sarcophagidae).

Los factores climatológicos como la temperatura, la humedad relativa y la precipitación, influyen de manera importante, en el desarrollo y la abundancia de las poblaciones de la mosca de los cuernos Haemalobia irritans (L.)(Kunz 1977).

Thomas et. al. (1974) reportò que los tiempos promedio

de desarrollo de la mosca de los cuernos variaban entre 9 y 25 días, con una temperatura media de 17.5 a 27.5 grados centigrados.

Thomas (1985) encontró que las pupas de las moscas de los cuernos, pupan en el estiércol en verano, pero en otoño el 45% de las pupas se encontraron en el suelo.

MATERIALES Y METODOS

El estudio fue realizado en los meses de julio de 1986 a marzo de 1987. La investigación se llevó a cabo en el establo lechero de la Escuela Superior de Agricultura "Hermanos Escobar" (E.S.A.H.E.), situada en el Km 12.5 de la carretera Panamericana de Cd. Juárez, Chihuahua, México. - -

El hato constaba de 21 vacas adultas, un toro y 17 becerras, todos de raza Holstein. El ganado no tenía antescedentes de haber sido tratado con insecticidas, ni fué tratado durante el estudio.

El área del corral era de 1250 m2, y fue dividido en 50 cuadrantes de 25 m2 cada uno, numerados del 1 al 50. Las muestras se tomaron los viernes de cada semana. Dichas muestras fueron tomadas de diez cuadrantes seleccionados al azar con la ayuda de una tabla de números aleatorios. La cantidad de estiércol colectada en cada cuadrante fue de 2000 ml.

Las muestras fueron desmenuzadas manualmente sobre una charola de plástico de 40 cm de largo, 30 cm de ancho y 3 cm de profundidad. Los insectos adultos, larvas y pupas fueron capturas con ayuda de pinzas. Los insectos voladores, pricipalmente dipteros, que se encontraron sobre el estiércol, fueron capturados con una red entomológica.

Con los insectos colectados, se hicieron dos grupos, cada uno de ellos conteniendo todas las especies y estados de desarrollo encontrados, un grupo fué enviado al Departamento de Agricultura de los Estados Unidos en Beltsville, Maryland, para su identificación hasta género y/o especie; el otro grupo fué conservado como colección de referencia.

Los insectos adultos fueron preservados en alcohol etilico al 70% y después fueron montados en alfileres entomológicos.

Las larvas colectadas fueron contadas y separadas en dos grupos: uno de los grupos fué tratado con KAAD (solución quimica letal para larvas, que se compone de una parte de petróleo, siete a diez partes de alcohol etilico, dos partes de ácido acético glacial y una parte de dioxano) y después tranferidas a frascos con alochol etilico al 70% para conservarlas como colección de referencia. El segundo grupo de larvas fué incubado en frascos de vidrio de 800 a 1,000 ml, La boca de los frascos se cubrió con malla mosquitera de aluminio. El medio de cultivo utilizado fué estiercol colectado con las mismas larvas (Bridges et. al. 1983, Schmidt 1985), en una cantidad de 500 ml por frasco. Se les conservò a la temperatura ambiente durante 12 a 18 dias. En cada frasco se depositaron un número conocido de larvas (el número de larvas depositadas en las incubadoras dependió de la abundancia de inmaduros colectados) separadas por tamaño. Los adultos obtenidos por este medio se montaron y conservaron como colección de referencia.

Las pupas colectadas fueron incubadas en su totalidad en cajas de Petri con una pequeña cantidad de estiércol a temperatura ambiente, para facilitar su identificación en estado adulto.

Se utilizaron las claves de Peterson (1979) como auxilio en la identificación de las larvas de los diteros, y las claves de Moore y Legner (1974) para axiliar la identificación de staphylinidos.

Los datos obtenidos fueron analizados utilizando rango, media y desviación estándard para determinar la variación promedio de las poblaciones insectiles y la dispersión de los datos de captura obtenidos con respecto a los valores promedio. El rango se utilizó para saber los limites de captura (Schefler 1981).

Utilizando análisis de correlación, se determinó la influencia que los factores ambientales tales como: humedad relativa, temperatura y precipitación, ejercieron sobre las poblaciones de los organismos encontrados en el estiércol, así como la relación depredador-presa que existe en las especies de los órdenes hallados durante el estudio. Los datos climatológicos fueron tomados de la estación meteorológica del Valle de Juárez en la E.S.A.H.E..

RESULTADOS

POBLACIONES DE INSECTOS

El estiércol de bovino es hábitat para una gran variedad de insectos que lo utilizan como medio de desarrollo y alimento. En estas comunidades se presentan relaciones muy complejas, como son: el parasitismo, la competencia y la depredación. Estas poblaciones varian en abundancia durante el año, pues son afectadas por factores climáticos y por las mismas relaciones que se presentan entre ellos.

Durante este estudio se encontraron cinco familias del orden diptera (Tabla 1) y cinco familias del orden coleòptera (Tabla 2). Se observaron a la vez 10 géneros correspondientes al orden diptera y quince géneros pertenecientes al orden coleòptera.

Tabla 1. Relación de capturas totales de diptera en el periodo o correspondiente de julio de 1986 a marzo de 1987.

FAMILIAS	NUMERO DE GENEROS	EJEMPLARES CAPTURADOS
Muscidae	4	4794 .
Calliphoridae	2	27
Sarcophagidae .	2	172
Sepsidae	1	185
Anthomyiidae	1	17

Tabla 2. Relación de capturas totales de coleóptera en el periodo correspondiente de julio de 1986 a marzo de 1987.

~~~~~~~~~~~~~~~				· · · · · · · · · · · · · · · · · · ·	~~~~~~~
FAMILIA	NUMERO	DE	GENEROS	EJEMPLARES	CAPTURADOS
Staphylinidae	$\epsilon$	;		32327	·
Hidrophylidae	1			18	
Histeridae	2	?		49	
Scarabaeidae	5	<b>.</b>		2810	
Mycetophagidae	1			2	

Las familias de diptera se encontraron distribuidas durante los muostreos, de la siguiente manera:

#### Muscidae

Se colectaron cuatro especies de Muscidae en este periodo: Dusca domestica (L.), Haemaiobia irritans (L.), Stomoxxs calcitrans (L.) y Ortholia caesarion (Meigen). Esta última especie solo fue capturada en estado adulto, y el resto, tanto en estado adulto como en larval.

Las larvas más conspicuas fueron las de M. domestica. Se les encontró durante todo el estudio, principalmente en los meses de julio y agosto, fechas en las cuales se capturaron el 92% de las 2631 larvas colectadas. En los meses de septiembre y octubre disminuyeron en forma drástica, capturándose sólo el 8% del total. En el período comprendido entre noviembre de 1966 a marzo de 1987

no se registró captura de éstos inmaduros (Fig. 1, Tabla 3).

Los adultos de Musca domestica se encontraron en mayor cantidad durante julio, agosto y septiembre, capturándose en este periodo, el 92% del total. En el mes de octubre, el número de capturas se redujo al 8% restante, sin registrarse capturas en los meses posteriores (Fig 2, Tabla 4).

Se capturaron un total de 967 larvas de 8. irritans, el 68% de ellas se colectó en el mes de agosto (Fig. 1, Tabla 5). A partir de noviembre de 1986, ya no se registraron capturas de esta especie. Fueron a su vez capturados un total de 264 ejemplares de 8. irritans adultos. De los ejemplares mencionados, fueron capturados 224 durante julio y agosto y los 40 restantes durante septiembre y octubre, sin que se registraran capturas a partir de noviembre (Fig. 2, Tabla 6).

Sólo 96 larvas de <u>S. calcitrans</u> fueron colectadas durante el estudio, <u>el 59%</u> de la cuales se atraparon en el mes de julio. En los meses siguientes, las larvas de esta especie se colectaron espaciadamente. En el periodo octubre-marzo, no se encontraron inmaduros de este diptero (Fig. 1, Tabla 7).

Se capturaron un total de 51 adultos de 5. calcitrans en las redadas realizadas durante el estudio. Todos los especimenes fueron colectados en el período julio-septiembre excepto 3 que fueron capturados en octubre. A partir de la segunda mitad de

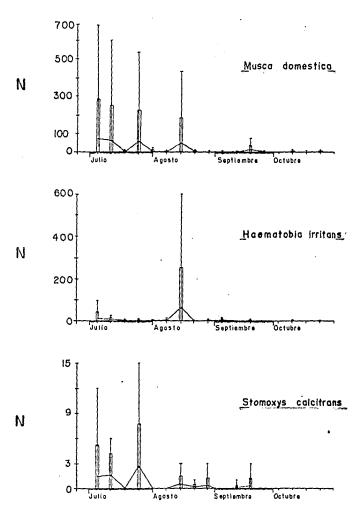



Fig. 1 Variación semanal en el número de larvas de muscidae, capturadas en el estiercol de bovino en el periodo verano-otoño de 1986.

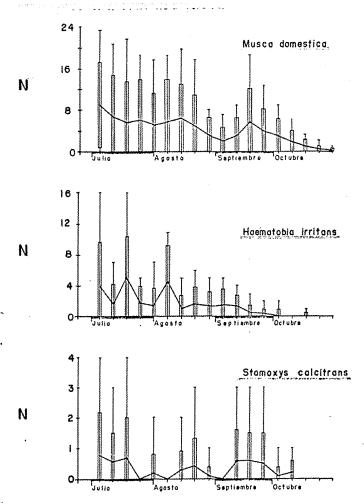



Fig.2 Variación semanal en el número de dipteros adultos atrapados en el estiercol de bovino, en el periodo verano-otoño de 1986.

Tabla 3. Relación de capturas de larvas de Musca demestica (L.).

Meses	Media 🕟 😘	Desviación estandard		
Julio	71.4	214.9	0-683	~~~
	65.2	188.0	0-601	
	3.6	4.8	0-14	
	57.8	167.8	0-535	
Agosto	2.9	6,5	0-21	•
	1.4	2.3	0-7	
	47.7	135,2	0-432	
	1.7	3.1	0-10	
	1.4	2.5	0-7	
Septiembr <b>e</b>	0.2	0.6	0-2	
	0.5	1.2	0-4	
	8.8	22.8	0-73	
	0.5	0.9	0-3	
Octubre	0.2	0.4	0-1	
	2.0	4.4	0-14	
	··· 0.7	1.0	0-3	
	2.1	2.9	0-7	
	0.0	0.0	0	
Voviembre	0.0	0.0	0	
·	0.0	0.0	0	
•	. 0.0	0.0	٥	
	0.0	0.0	٥	

Tabla 4. Relación de capturas de adultos de Musca demestica (L.). ...

Meses ···	r c v <b>Hedia</b> v w et	Desviación estandard	Rango	
Julio	8.7	8.0	0-23	
	6.6	7.8	0-20	
	5.3	7.4	0-21	
	5.8	7.4	0-18	
Agosto	4.8	6.0	0-17	
	5,5	7.9	0-18	
	6.1	6.3	0-19	
	4.7	5.7	0-17	
	2.7	3.4	0~8	
Septiembre	1.9	2.4	0~7	
	2.9	3.2	0-9	
	5.5	6.0	0-18	
	3.7	4.1	0-12	
Octubre	2.8	3.2	0-9	
	1.6	2.1	0-6	
	0.9	1.2	0-3	
	0.3	0.6	0-2	
	0.2	0.4	Q~1·	
Noviembre	0.0	0.0	0	
	0.0	0.0	0	•
	0.0	0.0	0	
	0.0	0.0	0	

Tabla 5. Relación de capturas de larvas de <u>Haematobia</u> inrit**ans** (b.)o

	scMedia som / Da	sviación estandard	··· Rango
	11.5	29.9	0-96
	7.3	9.6	0-27
	0.9	2.0	0-6
	2.1	3.4	0-11
Agosto	1.1	1.5	0-4
	1.7	3.9	0-12
	66.1	186.0	0-597
	.1.0	1.2	0-3
	1.2	2.2	0-6
Septiembre	2.0	3.9	0-12
	0.0	0.0	0
	1.3	2.5	0-7
	. 0.0	0.0	0
ctubre '	0.0	0.0	0
	0.4	1.2	0-4
	0.0	0.0	٥
	0.1	0.3	0-1
	0.0	0.0	0
oviembre	. 0.0	0.0	<b>0</b>
	0.0	0.0	0
•	0.0	0.0	0
•	0.0	0.0.	

Tabla 6. Relación de capturas de adultos de Haematobia irritans (L.)

Julia	4.1	5.6	0-16
<b>34110</b>	1.6	2.6	0-7
	5.1	5.3	0-16
	1.7	2.2	0-5
Agosto ···	1.4		0-7
	4.6		0-11
	1.0	1.6	0-5
	44.6	2.2	0-6
	1,3	1.8	0-5
Septiembre	1.5	2.0	· · · · • • • • • • • • • • • • • • • •
	1.3	1.4	0-4
	0.5	0.9	0-3
	1.0.3	0.6	0-2
Octubre		0.6	0-2
111.0	0.0	0.0	0
	0.1	0.3	0-1
	0.0	0.0	٥
	0.0	0.0	<b>o</b> .
Noviembre :	0.0	0.0	0
		0.0	0
	0.0	0.0	0
	70.0	0.0	0

Tabla 7. Relación de-capturas de larvas de <u>Sigmoxys calcitrans</u> (L.).

Julio · · ·	1.4	3.7	0-12
	1.6	2.6	0-6
· .	0.0	0.0	<b>o</b> ·
•	2.7	5.0	0-15
Agosto	0.0	0.0	0
	0.0	0.0	0
	0.5	1.0	0-3
	0.1	-0.3	0-1
	0.3	0.9	0-3
Septiembre	• 0.0	0.0	•
	0.1	0.3	0-1
	0.3	0.9	0 <b>-3</b>
	0.0	0.0	0
Octubre	0.0	0.0	0
	0.0	0.0	0 .
	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	• 0
Noviembre	0.0	0,0	0
	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	. 0

Tabla 8. Relación de capturas de adultos de Sigmoxys calcitrans (Lab...

Julio 0.8			0-4
	,		·· 0-3
			0-4
	•		0
Agoston review - 0.2			0-2
	•	. 0.0	. 0
0.3	9	0.6	0-2
₹0.4	·	0.9	0-3
0.1	1614 L	0.3	0-1
Septiembre 0.0			· • •
tions to be about the 0.6	er cynys	1.0	0-3
0.6	٠.	0.9	0-3
0.5		1.0	0-3
Octubre 0.1		0.3	0-1
0,2		0.4	0-1
0.0		0.0	
0.0		0.0	0
0.0		0.0	0
Noviembre 0.0		0.0	. 0
0.0		0.0	٥
0.0		0.0	0
:0.0		0.0	. 0

este mes ya no hubo registro de capturas (Fig. 2, Tabla 8).

Orthelia caesarion fue capturada en estado adulto unicamente. Se atraparon 30 especimenes en el periodo muestral julio-octubre y no hubo más capturas en los meses subsiguientes (Fig. 3, Tabla 9).

#### Callieboridae

Los dos géneros de esta familia, fueron capturados en estado adulto únicamente y en número muy reducido.

Se capturaron 14 especimenes de Phaenicia se, siete de los cuales se colectaron en el mes de julio y las siete restantes en los meses posteriores. No se reportaron capturas de esta especie en el periodo noviembre-marzo (Fig. 3, Tabla 10).

Ebermia regina (Meigen) fue capturada en los meses de julio y agosto únicamente, en un número de 13 individuos (Fig. 3, Tabla 11).

#### Sarcophagidae

Se colectaron dos géneros de esta familia: Bayinia se, y
Rayinia lherminieri (Robineau-Desvoidy).

Razinia SP. se colectó en estado larval y en estado adulto. Durante los muestreos se atraparon 114 larvas, de las cuales 106 se encontraron en julio y agosto, y el resto durante

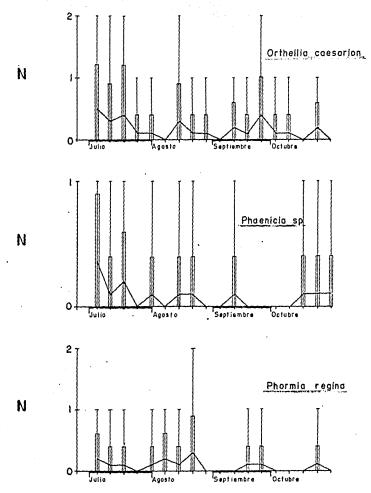



Fig.3 Variación semanol en el número de dipteros adultos atrapados en el estiercol de bovino, en el periodo verano-otoño de 1986.

Tabla 9. Relación de capturas de Orthelia caesarion (Meigen).

Meses'	# "Hedia	Desviación estandard	Rango · ····
Julio	0.5	0.7	0-2
	0.3	0.6	0-2
	0.4	0.8	0-2
	0.1	0.3	0-4
Agosto	0.1	0.3	0-1
•	0.0	0.0	0
	0.3	0.6	0-2
	0.1	0.3	0-1
	0.1	0.3	0-1
Septiembre	0.0	0.0	0
	0.2	0.4	0-1
	0.1	0.3	0-1
	0.4	0.6	0-2
Octubre	0.1	0.1	0-1
	0.1	0.3	0-1
	0.0	0.0	0
	0.1	0.3	0-1
	0.0	0.0	۰ .
Noviembre ·	0.0	0.0	0
	0.0	0.0	•
	0.0	0.0	o
	. 0.0	0.0	0

Tabla 10: "Relación de capturas de Phaenicia se.

Meses Participal		sviación estandard ···	Rango
Julio	0.4	0.5	0-1
	0.1	0.3	0-1
	0.2	0.4	0-1
	0.0	. 0.0	٥
Agosto	0.1	0.3	0-1
	0.0	0.0	0
	0.1	0.3	0-1
	0.1	0.3	0-1
	0.0	0.0	0
Septiembre	0.0	0.0	0
	0.1	0.3	0-1
	0.0	0.0	o
	0.0	0.0	0
ctubre	0.0	0.0	0
	0.0	0.0	0
	0.1	0.3	0-1
	0.1	0.3	0-1
	0.1	0.3	0-1
loviembre	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	٥

Tabla 11. Relación de capturas de Ebormia regina (Meigen).

		Desviación estandard	
Julio	0.2	0.4	0-1
	0.1	0.3	0-1
	0.1	0.3	0-1
	0.0	0.0	0
Agosto	0.1	0.3	0-1
	0.2	0.4	0-1
	0.1	0.3	0-1
	6.0	0.6	0-2
	0.0	0.0	ò
Septiembre	0.0	0.0	0
	0.0	0.0	0
	0.1	0.3	0-1
	0.1	0.3	0-1
Octubre	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	٥
	0.1	0.0	0
	0.0	0.0	0
Noviembre -	0.0	0.0	0
	0.0	0.0	Ó
	0.0	0.0	٥
	0.0	0.0	0

septiembre y octubre (Fig. 4, Tabla 12).

Los adultos de Bayinia sp. se colectaron principalmente en los meses de julio a septiembre. El número de capturas de estas moscas fue de 28 (Fig. 4, Tabla 13).

Rayinla lherminieri se capturò unicamente en estado adulto en un total de 36 especimenes, de los cuales, 34 se colectaron en los meses de julio a septiembre (Fig. 4, Tabla 14).

#### Seesidae

Seesis negraniesea (Melender y Spuler), fue la única especie de esta familia capturada durante el estudio. Se le encontró en estado adulto sobre el estiércol. El rango mayor por redada fue de 10 especimenes. Esta especie se capturó únicamente durante los meses de julio y agosto, en un total de 185 individuos (Fig. 5 Tabla 15).

#### Anthomylidae

Se capturaron 17 moscas adultas de <u>Adia cinerella</u> (Fallen) en el mes de julio y no se capturó en las redadas de los meses posteriores. El rango mayor fue de 5 (Fig. 5, Tabla 16).

Las familias de coleóptera se encontraron distribuidas : durante el estudio, de la siguiente manera:

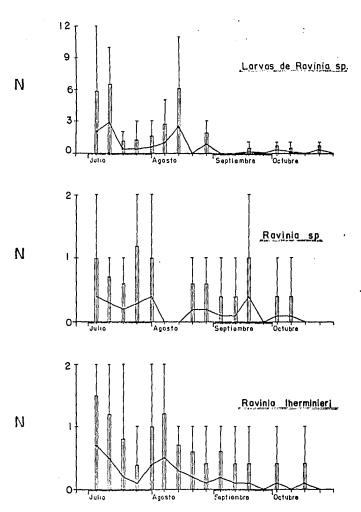



Fig. 4 Variación semanol en el número de larvas y adultos de sarcophagidae durante el periodo verano-atoño de 1986.

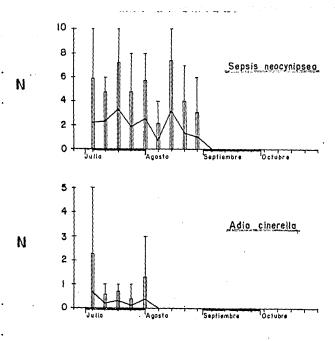



Fig.5 Variación semanal en el número de dipteros adultos atropados en el estiercol de bovino, en el periodo verano-otoño de 1986.

Tabla 12. Relación de capturas de larvas de Bayinia SP.

Meses	· Media ·	- Desviación estandard	Rango
Julio	2.0	3.8	0-12
	2.9	3.6	0-10
	0.4	0.7	0-2
	0.3	0.9	0-3
Agosto	0.6	1.0	0-3
	1.0	1.7	0-5
	2.5	3.6	0-11
	0.0	0.0	0
	0.9	1.1	0-3
Septiembre	0.0	0.0	0
	0.0	0.0	0
	0.1	0.3	0-1
	0.0	0.0	0
Octubre	0.3	0.4	0-1
•	0.1	0.3	0-1
	0.0	0.0	0
	0.3	0.4	0-1
	0.0	0.0	0
Noviembre ···	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	

Tabla 13. Relación de capturas de adultos de <u>Bayinia sp.</u>

	Media	:Desviación estandard	Rango
Julio	0.4	0.6	0-2
	0.3	0.4	0-1
	0.2	0.4	0-1
	0.3	0.9	· · · · · • • • • • • • • • • • • • • •
Agosto :	0.4	0.6	0-2
1.1	0.0	0.0	٥
	0.0	0.0	0
	0.2	0.4	0-1
•	0.2	0.4	0-1
Septiembre	0.1	0.3	0-1
$\mathbf{v}(\mathbf{A}) = (\mathbf{v}, \mathbf{v}) \cdot \mathbf{z} = \mathbf{v}.$	0.1	0.3	0-1
	0.4	0.6	· · · · 0-2
	0.0	0.0	0
Octubre	0.1	0.3	0-1
$(\mathbf{v}^{k}-1)^{-k}(1)=(\mathbf{v}^{-k})^{-k}$	0.1	0.3	0-1
	.0.0	- · · · · · · · · · · · · · · · · · · ·	
·	0.0	0.0	•
	0.0	. 0.0	<b>o</b> ·
Noviembre :	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	0
	0.0	. 0.0	0

Tabla 14. Relación de capturas de Bayinia Iberminieri (Robineau-Desvoidy).

		Desviación estandard	
		0,8	
	0.5	0.7	0-2
	0.2	0.5	0~2
	0.1	0.3	0-1
Agosto	0.4	0.6	0-2
•	0.5	0.7	0-2
•	0.3	0.4	0-i
	0.2	0.4	0-1
	0.1	- 0.3	0-1
Septiembre	0.2	0.4	0-1
	0.1	0.3	0-1
	0.1	0.3	0-1
	0.0	0.0	0
ictubre -	0.1	0.3	0-1
	0.0	0.0	0
	0.1	0.3	0-1
	.0.0	0,0	0
	0.0	0.0	0
oviembre	0.0	0.0	٥
	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	0

Tabla 15. Relación de capturas deSeesis neocyniesea (Melander y Spuler).

Meses	Media	Desviación: estandard (1916-1916).
Julio	2.2	
<i>i</i> ,	2.3	2.5 0-6
	3,3	3.9 0-10
	1.8	3.6 0-8
Agosto	2.5	3.3 - 0-8
	0.7	1.4 0-4
	. <b>3.2</b> :	4.2 0-10
e e	1.3	2.7 0-7
Serptiembre	1.0	2.1 0-6
•	0.0	0.0 0
	0.2	0.6 0-2
	0.0-	0.0
	0.0	0.0
Octubre ·	0.0	0.0 0
	0.0	0.0
	0.0	0.0
	0.0	0.0
	0.0-	0.0
Noviembre	0.0	
Production and the second	0.0	0.0
	0.0	0.0
	0.0	0.0

Tabla 16. Relación de capturas de Adia cinerella (Fallen).

		. Desviación estandard		
Julio		1.6	0-5	
	0.2	0.4	0-1	
	0.3	0.4	0-1	
	0.1	0.3	0-1	
Agosto	0.4	0.9	0-3	
	0.0	0.0	0	
	0.0	0.0	0	
	0.0	0.0	0	
	0.0	0.0	0	
Septiembre	0.0	0.0	0	
k **	0.0	0.0	0	
	0.0	0.0	0	
	0.0	0.0	0	
Octubre	0.0	0.0	<b>o</b> -	
	0.0	0.0	0	
	0.0	0.0	0	
	0.0	0.0	٥	
	0.0	0.0	0	
Noviembre	0.0	0.0	0	
	0.0	0.0	0	
	0.0	0.0	0	
	0.0	c.o	0	

## Staebylipidae

Esta familia fue la más abundante en el número de especies y en la cantidad de individuos capturados. Se encontraron seis géneros que se describen a continuación:

Platzstetbus se, fue el género más abundantemente colectado de ambos órdenes, ya que se atraparon 16419 individuos. Su talla fue de dos a tres milimetros ± 1. Se le encontró en rangos hasta de 1506 individuos por muestra. Se capturó principalmente en los meses de agosto y septiembre, fechas en que se encontró el 97% de ellos (Fig. 6, Tabla 17).

Alecchara se. Se capturaron 15690 especimenes de este género, la mayoria con una talla de dos a tres milimetros ± 1, aunque hubo algunos de 5 a 6 mm. El 95% de estas capturas fueron conseguidas durante el mes de agosto y la primera quincena de septiembre. El rango mayor de este género fue de 1260 especimenes (Fig. 6, Tabla 18).

Ebilonibus se. Estos staphylinidos son de una talla de 6 a 10 mm ± 1, son muy rápidos y de color negro. Se capturaron 14i-individuos de esta especie, registrândose el pico de abundancia en el mes de septiembre. El 73% de las capturas de este gênero se realizaron en los meses de agosto y septiembre (Fig. 6, Tabla 19).

<u>Neobyenus</u> se Este género mostró curvas de variación

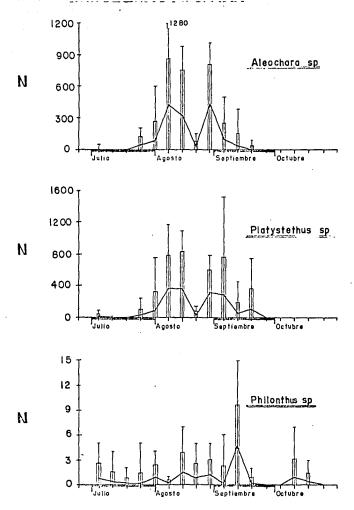



Fig 6 Variación en el número de coleópteros atrapados en el estiercol de ganado bovino durante el periodo verano otoño de 1986.

Tabla 17. Relación de capturas de Platystetbus se.

Neses	Media	Desviación estandard	. Rango
Julio	13.8	30.5	0-89
	1.5	4.7	0-15
	0.6	1.8	0~6
	32.1	74.6	0-237
Agosto	84.2	234.0	0-749
	364.4	415.4	0-1165
	354.4	475.0	0~1078
	25.8	46.5	0-147
	311.1	286.1	0-778
Septiembre	285.4	470.1	0-1506
	56.3	138.7	0-441
	110.8	248.5	0-734
	0.0	0.0	0
Octubre	0.0	0.0	٥
10 m	0.0	0.0	0
	0.5	1.0	0-3
	0.0	0.0	0
	0.0	0.0	0
loviembre	0.0	0.0	٥
	, 0.0	0.0	o
	0.0	0.0	0
	0.0	0.0	0

Tabla 18. Relación de capturas de Alegobara se.

Meses		Desviación estandard	
Julio ·		18.8	0-54
	0.4	1.2	0-4
	0.4	1.2	0-4
	49.8	85.2	0-218
Agosto	77.8	195.1	0-628
	452.5	464.6	0-1280
	340.7	456.6	0-1036
	23.1	50.6	0-160
	457.2	395.0	0-1074
Septiembre	100.7	165.1	0-529
	42.4	128.5	0-408
	9.7	26.1	0-83
	0.0	0.0	0
Octubre	0.0	0.0	0
·	0.4	0.8	0-2
	0.3	0.9	0-3
	0.0	0.0	0
	0.0	0.0	0
lovi <del>e</del> mbre ·	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	

Tabla 19. Relación de capturas de Ebilonthus se.

		Desviación estandard	Rango
Julio		1.7	0-5
	0.4	1.2	0-4
	0.2	0.6	0-2
	1.0	1.7	0-5
Agosto	0.8	1.4	0-4
	0.2	0.4	0-1
	1.5	2.4	0-7
	0.8	1.7	0-5
	1.2	1.8	0-5
Septiembre	1.0	2.1	0-6
	4.7	4.9	0-15
	0.2	0.6	0-2
	0.0	0.0	0
Octubre	0.0	0.0	0
	0.9	2.2	0-7
	0.4	0.9	0-3
	0.0	0.0	٥
	0.0	0.0	0
Noviembre	. 0.0	0.0	0
	. 0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	0

poblacional muy semejantes a las de <u>Philonthus sp.</u>, aunque fue capturado en números menores. Se atraparon 58 individuos de esta especie, el 74% de los cuales se encontraron en los meses de agosto y septiembre (Fig. 7, Tabla 20).

Nechisnius se. Este staphylinido de color rojo y negro, cuyas tallas oscilan entre 6 y 8 mm ± 1, se presentó con mayor abundancia a fines del mes de julio y durante el mes de agosto. Se capturaron únicamente 15 especimenes, con un rango mayor de 3 (Fig. 7, Tabla 21).

Siepus se. Se capturaron sólo cuatro individuos durante todo el estudio. Los meses en los que se le observó fueron julio y septiembre (Fig. 7, Tabla 22).

### Hydrophilidae

Sebaeridium scarabaerides (L.) fue la única especie de esta familia capturada durante el estudio. Son escarabajos color negro con manchas rojas en los élitros. Se capturaron en bajas cantidades aunque muy constantemente. Los rangos mayores fue de dos especimenes por muestra y el número total de capturas fue de 18. El mes en que se presentó más abundantemente fue julio ya que se atraparon siete individuos (Fig. 8, Tabla 23).

#### Historidae

Se colectaron dos géneros de esta familia de escarabajos depredadores:

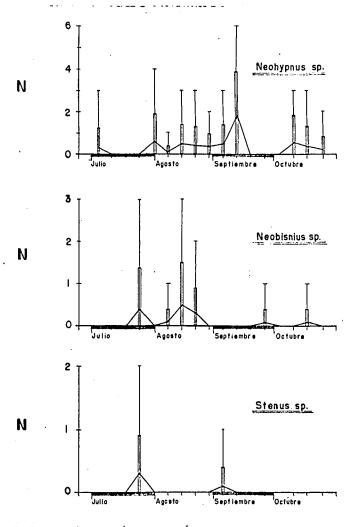



Fig. 7 Variación en el número de coleópteros atrapados en el estiercol de ganado bovino durante el perlodo verano-otoño de 1986.

Tabla 20. Relación de capturas de Neobyenus se.

Meses	Media	Desviación estandard	Rango	
Julio	0.3	0.9	0-3	
	0.0	0.0	0	
	0.0	0.0	0	
	0.0	0.0	0	
Agosto	0.6	1.3	0-4	
	0.1	0.3	0-1	
	0.5	0.9	0-3	
	0.4	0.9	0-3	
	0.4	0.6	0-2	
Septiembre	0.5	0.9	0-3	
	1.8	2.1	0.6	
•	0.0	0.0	0	
	0.0	0.0	0	
Octubre	0.0	0.0	0	
	0.6	1.2	0-3	
	0.4	0.9	0-3	
	0.2	0.6	0-2	
	0.0	0.0	0	
Noviembre	0.0	0.0	0	
	0.0	0.0	0	
	0.0	0.0	0	
	0.0	0.0	0	

Tabla 21. Relación de capturas de Neobispius se.

	Media	Desviación estandard	
Julio		0.0	0
	0.0	0.0	0
	0.0	0.0	0
	0.4	0.9	0~3
Agosto	0.0	0.0	0
	0.1	0.3	0-1
	0.5	1.0	0~3
	0.3	0.6	0~2
	0.0	0.0	0
Septiembre	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	o
: +	0,1	0.3	0-1
)ctubre	0.0	0.0	0
٠	0.0	0.0	٥
	0,1	0.3	0-1
	0.0	0.0	0
	0.0	0.0	0
oviembre	. 0.0	0.0	0
	. 0.0	0.0	0
	.0.0	0.0	0
	0.0	0.0	. 0

Tabla 22. Relación de capturas de Stenus se.

Meses · · ····	ar « <b>Media</b> »	Desviación estandard	Rango
Julio	0.0	0.0	0
	0.0		. 0
•	0.0	0.0	0
	0.3	0.6	0-2
Agosto	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	ó
Saptiembre	0.1	0.3	0-i
	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	0
Octubre	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	: <b>0</b>
	0.0	0.0	' o
	0.0	0.0	0
Noviembre	0.0	0.0	o o
	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	0

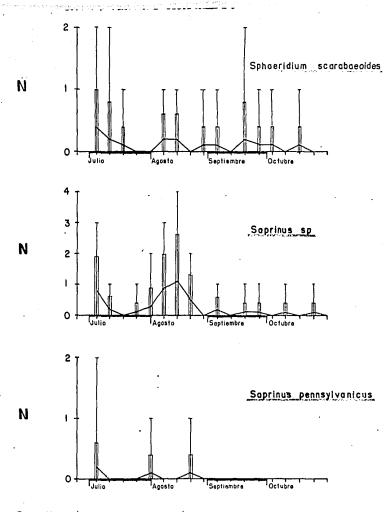



Fig. 8 Variación en el número de coleópteros atrapados en el estiercol de ganado bovino durante el periodo verano-otoño de 1986.

Tabla 23. Relación de capturas de Sphaeridium scarabaegides (L.).

		Desviación estandard	Rango
Julio		0.6	0-2
	0.2	0.6	0-2
	0.1	0.3	0-1
	0.0	0.0	0
Agosto	0.0	0.0	0
	0.2	0.4	0-1
	0.2	0.4	0-1
	0.0	0.0	0
	0.1	0.3	0-1
Septiembre	0.1	0.3	0-1 .
	0.0	0.0	0
	0.2	0.6	0-2
	0.1	0.3	0-1
Octubre	0.1	0.3	0-1
	0.0	0.0	0
	0.1	0.3	0-1
	0.0	0.0	0
	0.0	0.0	<b>O</b> .
Noviembre	0.0	0.0	٥
•	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	0

Tabla 24. Relación de capturas de Sagribus se.

		Desviación estandard	
Julio	0.6	1.1	0-3
	0.2	0.4	0-1
	0.0	0.0	0
•	0.1	0.3	0-1
Agosto	0.3	0.6	0-2
	0.9	1.1	0-3
	1.1	1.5	0-4
	0.5	8.0	0-2
	0.0	0.0	0
Septiembre	0.2	0.4	0-1
	0.0	0.0	0
	0.1	0.3	0-1
	0.1	0.3	0-1
Octubre	0.0	0.0	0-
	0.1	0.3 •	0-1
	0.0	0.0	o ·
	0.1	0.3	0-i ·
	0.0	0.0	· • · ·
Noviembre	0.0	0:0	0
•	0.0	0.0	0
	0.0	0.0	0
,	0.0	0.0	0

Tabla 25. Relación de capturas de Sagripus geppsylyapicus (Paykull).

Meses		Desviación estandard	
Julio	0.2	Q.4	0-1
1	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	0
Agosto	0.1	0.3	0-1
	0.0	0.0	0
	0.0	0.0	0 ,
	0.1	0.3	0-1
	0.0	0.0	Ō
Septiembre	0.0	0.0	0
	0.0	0.0	٥
	0.0	0.0	0
	0.0	0.0	0
Octubre	0.0	0.0	. 0
	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	0
Noviembre	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	٥
	0.0	0.0	0

Sagrinus se.

#### S. cennsylvanicus (Paykull).

Saprinus MP. fue el más abundantemente colectado ya que se capturaron 45 especimenes. El pico de abundancia se registró en la segunda mitad del mes de agosto. El 86% de las colectas se realizaron en los meses de julio y agosto (Fig. 8. Tabla 24).

S. gennsylvanicus. se capturaron cuatro individuos de esta especie durante todo el estudio, y únicamente durante los meses de julio y agosto (Fig. 8, Tabla 25).

### Scarabaeidae

Esta familia de copròfagos, cuya importancia radica en su · · · habilidad para degradar el estiércol, fue la segunda en importancia por el número de especies encontradas durante el estudio.

Se capturaron cuatro especies del género Agbodius. La más abundante de ellas fue A. lividus (Olivier), la cual se colectó en un número de 2674 individuos. Los meses de mayor abundancia fueron agosto y septiembre, colectándose el 74% del total. El rango mayor fue de 128 individuos (Fig. 9, Tabla 26).

A_ graparius (i.) Fue colectada constantemente durante todo el estudio, aunque en números muy bajos, ya que sólo se atraparon 33 individuos, el 69% de los cuales fueron encontrados en el mes

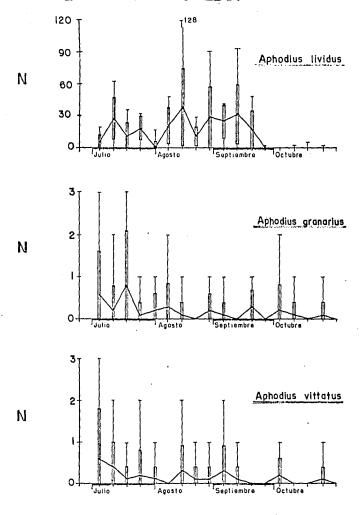



Fig 9 Variación en el número de coleópteros atrapados en el estiercol de ganado bovino durante el periodo verano-otoño de 1986.

" Tabla 26. Relación de capturas de Agbodius lividus (Olivier).

Meses		Desviación estandard	-
Julio	5.9	7.1	0-22
	30.4	21.7	0-68
	11.5	13.3	0-38
	19.9	12.2	0-34
Agosto	6.1	0.7	0-18
	22.9	18.8	0-52
	42.3	39.4	0-128
	12.6	10.5	0-31
	32.2	31.0	0-99
Septiembre	27.1	17.0	0-45
	34.7	30.5	0-102
	19.8	18.5	0-53
•	0.5	0.8	0-2
Octubre	0.0	0.0	0
	0.3	0.6	0-2
	1.0	1.9	0-6
	0.2	0.6	0-2
	0.0	0.0	0
Noviembre	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	٥

Tabla 27. Relación de capturas de <u>Aphodius graparius</u> (L.).

Meses		Desviación estandard	Rango	
Julio	0.6	1.0	0-3	
	0.2	0.6	0-2	
	0.8	1.3	0-3	
	0.1	0.3	0-1	
Agosto	0.2	0.4	0-1	
	0.3	0.6	0-2	
	0.1	0.3	0-1	
	0.0	0.0	0	
	0.2	0.4	0-1	
Septiembre	0.1	0.3	0-1	
	0.0	0.0	0	
	0.3	0.4	0-1	
	0.0	0.0	0	
Octubre	0.2	0.6	0-2	
•	0.1	0.3	0-1	
	0.0	0.0	0	
	0.1	0.3	0-1	
	0.0	0.0	o	
Noviembre	0.0	0.0	0	
	0.0	0.0	0	
	0.0	0.0	0	
	0.0	0.0	o	

Tabla 28. Relación de capturas de <u>Appodius vittatus</u> (Say).

Meses		Desviación estandard	Rango
Julio	0.6	1.2	0-3
	0.4	0.6	0-2
	0.1	0.3	0-1
	0.2	0.6	0-2
Agosto	0.1	0.3	0-1
	0.0	0.0	0
	0.3	0.6	0-2
	0.1	0.3	0-1
42.	0.1	0.3	0-1
Septiembre	0.3	0.6	0-2
	0.1	0.3	0-1
	0.0	0.0 r	0
	0.0	. 0.0	0
Octubre -	-0.2	0.4	0-1
•	0.0	0.0	0
	0.0	0.0	0
	0.1	0.3	0-1
•	0.0	0.0	0
Noviembre	0.0	0.0	0
	.0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	. 0

de julio y la primera quincena de agosto (Fig. 9, Tabla 27).

- A. vittatus (Say) Se encontraron 26 individuos de esta especie. Los meses con los registros más altos de capturas fueron julio y agosto, en los cuales se atraparon 19 especimenes, equivalentes al 73% del total (Fig. 9, Tabla 28).
- A. fimetarius (L.) Esta especie se colectó escasamente durante el estudio, ya que sólo se capturaron 4 individuos, tres en el mes de julio y uno en agosto (Fig. 10, Tabla 29).

Onthophagus gazella (F.) Es un escarabajo de gran tamaño de color café verdoso. Fueron colectados 73 individuos de esta especie, de los cuales el 94% se atrapó en los meses de julio y agosto. El pico más alto de la curva se registró en la mitad del mes de agosto. El rango mayor fue de 12 (Fig. 10, Tabla 30).

#### Mycelophagidae

Sólo se capturaron dos especimenes de INPhaea sterrorea (L.), en el primer muestreo de julio, y no se le encontró en los meses posteriores (Fig. 10, Tabla 31).

# EBCIORES AMBIENIALES

El número de insectos capturados durante el estudio, se vió afectado por factores ambientales como la temperatura, humedad relativa y precipitación.

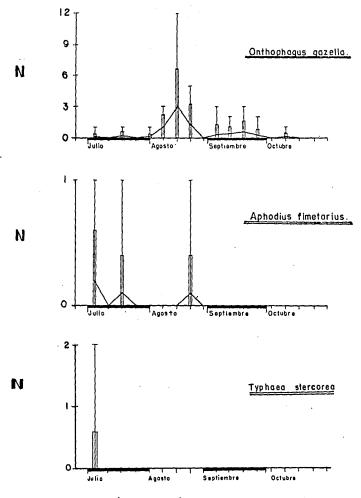



Fig.10 Variacion en el número de coleópteros atropados en el estiércol de ganado bovino durante el período verano otoño do 1986.

Tabla 29. Relación de capturas de Ambodius fimetarius (L.).

Meses		Desviación estandard	Rango
Julio	0.2	0.4	0-1
	0.0	0.0	0
i j	9.1	0.3	0-1
	0.0	0.0	0
Agosto	0.0	0.0	0
	0.0	0.0	•
	0.0	0.0	۰ .
	0,1	0.3	0-1
	0.0	0.0	O
Septiembre	0.0	0.0	0
	0.0	0.0	0
	0.0	0:0	0
	0.0	0.0	٥
Octubre w.	0.0	0.0	o
	0.0	0.0	0
•	0.0	0.0	٥
	0.0	0.0	0
	0.0	0.0	0
Noviembre	0.0	0.0	0
	0.0	0.0	0
*	0.0	0.0	٥
	0.0	0.0	٥

Tabla 30. Relación de capturas de Opthoebagus gazella (F.).

Meses	Media	Desviación estandard	Rango
Julio	0.1	0.3	0-1
	0.0	0.0	ο.
	0.2	0.4	0-1
	0.0	0.0	0
Agosto	0.1	0.3	0-i
	1.0	1.2	0-3
	3.0	3.6	0-12
	1.3	1.9	0-5
•	. 0.0	0.0	0
Septiembre	0.3	0.9	0-3
	0.4	0.6	0-2
	0.6	1.0	0~3
	0.2	0.6	0-2
Octubre	0.0	0.0	0
	0.1	0.3	0-1
	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	0
Noviembre	0.0	0.0	0
	0.0	0.0	0
	0.0	0.0	٥
	0.0	0.0	0

Tabla 31. Relación de capturas de Ixebaea stercorea (L.).

Meses		Desviación estandard		
Julio	0.2	0.4	0-1	
	0.0	0.0	0	
	0.0	0.0	0	
	0.0	0.0	0	
Agosto	0.0	0.0	0	
	0.0	0.0	0	
	0.0	0.0	0	
	0.0	0.0	0	
	0.0	0.0	0	
Septiembre	0.0	0.0	0	
	0.0	0.0	0	
	0.0	0.0	0	
	0.0	0.0	0	
Octubre 🕶	0.0	0.0	0	
	0.0	0.0	0	
	0.0	0.0	0	
	0.0	0.0	0	
	0.0	. 0.0	0	
Noviembre	0.0	0.0	0	
	0.0	0.0	. 0	
	0.0	0.0	0	
	0.0	0.0	0	

La temperatura fue el factor ambiental que afectó más las poblaciones insectiles, ya que, cuando la temperatura media disminuyó de 19.3 a 11.3 grados centigrados, en los meses de septiembre a octubre (Tabla 32), el número de capturas también disminuyó (Fig. 11 ). Utilizando el análisis de correlación se obtuvo una relación directamente proporcional entre la cantidad de especimenes capturados y la temperatura ambiental, con una confiabilidad del 99% (t = 3.0837). En los meses de noviembre de 1986 a marzo de 1987 la temperatura media mensual se mantuvo por debajo de los 10 grados centigrados por lo que no se reportaron capturas de insectos.

La humedad relativa afectó en forma negativa a los insectos, pues se pudo observar una reducción en la cantidad de especimenes capturados conforme el aumento de la humedad relativa (Fig. 11). Este aumento de la humedad relativa en los meses de septiembre y octubre, que fue del 15% con respecto a agosto, influyó en el descenso del número de capturas. En los meses siguientes, noviembre y diciembre, el aumento de la humedad relativa, que fue del 13% con respecto al anterior, aumado a las bajas temperaturas provocó que no se reportaran capturas en ese periodo (Tabla 32). El análisis de correlación fue negativo, la confiabilidad del 99% (t = 3.0182) utilizando una dócima bilateral en la tabla de valores de t (Tabla 32 y 33).

La precipitación fue un factor importante en relación con el

número de capturas de insectos. En este estudio sólo afectó el muestreo de el día 22 de agosto (Fig 12) fecha en que la cantidad de insectos colectada mostró un descenso drástico. El análisis de correlación, aunque fue negativo, no fue significativo pues tuvo una t de 0.4649 (Tabla 32 y 33).

Los órdenes separadamente se comportaron en forma semejante con respecto a los factores ambientales. La temperatura afectó en forma directa el número de capturas registradas en ambos órdenes, aunque el análisis de correlación mostró una significancia mayor en el grupo de coleóptera, ya que fue del 98% (t = 2.7898) mientras que en diptera, fue del 95% (t = 2.3155) (Fig. 12, Tabla 32 y 33 ). La humedad relativa ambiental fue bastante más significativa en el orden coleóptera que en el de diptera, pues mientras para los escarabajos la significancia fue del 98% (t = 2.8403), para los dipteros fue del 80% (t = 1.6556) (Fig. 13, Tabla 32 ).

Se observó una relación entre los dos órdenes de insectos encontrados durante el estudio, aunque el análisis de correlación mostró que no era significativa (t=1.1705). Separando el grupo de coleópteros en depredadores y coprófagos, se encontró que estos últimos si tenían una relación significativa con los dipteros, que fue del 99% (t=2.8819) (Fig. 14, Tabla 34).

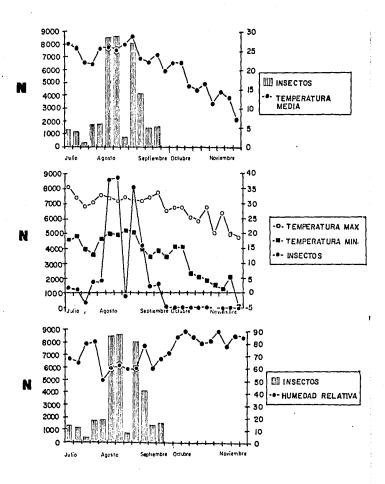



Fig.II Relación de la abundancia promedio de los insectos del estiércol y la marcha de las temperaturas y la humedad relativa del área durante el período verano otoño de 1986

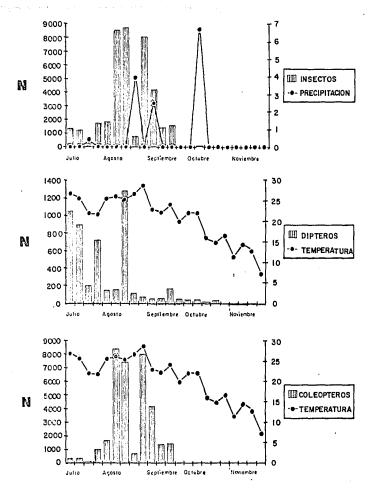
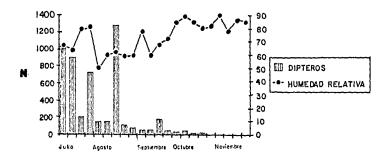




Fig. 12 Relación de la abundancia Promedio de los insectos del estiércol y la precipitación y las temperaturas registrados en las fechas de muestrea durante el período verano otoño de 1986.



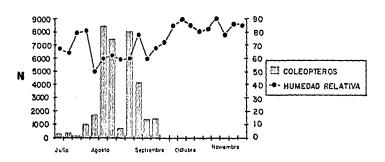



Fig. 13 Relación del promedio de dípteros y coleópteros capturados en el estiércol de bovino y la humedad relativa registrada durante los mues treos en el período Verano-Otoño de 1986

Tabla 32. Factores ambientales registrados durante el periodo; julio de 1986 a marzo de 1987. (*)

Meses ·	Temp. Máxima oC	Temp. Minima oC	Temp. Media oC	Humedad Relativa %	Precipitación
Julio	33.9	20.6	23.5	66.9	1.98
Agosto	33.8	20.7	23.2	66.7	0.7
Septiembre	31.3	15.8	19.3	76.7	0.38
Octubre	25.3	9.2	11.3	76.4	0.3
Noviembre	16.7	3.0	5.8	83.7	1.18
Diciembre	12.1	0.35	1.86	85.2	1.4
Enero	17.0	1.9	0.15	79.5	12.5
Febrero	20.3	~4.1	5.1	76:4	9.2
Marzo .	23.2	6.3	8.05	69.8	10.1

(*).- Datos tomados de la estación climatológica del Valle de Juárez, en la E.S.A.H.E.

: Tabla 33. Resumen de la correlación de los órdenes Diptera Coleoptera con los factores ambientales.

Ordenes		Temperatura			· · · Humedad Relativa		
	r	r2	t	r	r2	t	
Diptera	0.4598	0.2114	2.3155	-0.3472	0.1205	1.6556	
Coleóptera	0.5293	0.2001	2.7898	-0.5361	0.2875	2.8403	
Total	0.5677	0.3222	3.0837	-0.5594	0.3130	3.0182	

,	Tabla	33.	Continuación 🐗 🖰	
---	-------	-----	------------------	--

	ordenes		Precipitat	: ton ·	
		r		r2	t
,	Diptera	-0.1639	0.0	268	0.7403
	Coleoptera	-0.0856	0.0	073	0.3844
	Total	-0.1034	0.0	107	0.4649

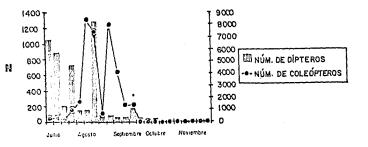



Fig. 14 Relación de los promedios de capturas de los órdenes diptera y coleóptera durante el período Verano-Otoño de 1986

Tabla 34. Resumen de la correlación entre Diptera y Coleóptera

	~~~~~~~~~~		
Ordenes	r	r2	t • · · ·
Diptera/Coleôptera ··	0.2532	0.0641	1.1705
Diptera/Coprofagos.	0.5417	0.2934	2.8819
Diptera/Depredadores	0.2338	0.0547	1.0758

DISCUSION

El total de insectos colectados durante el estudio, fueron encontrados en el período julio-octubre de 1986; las bajas temperaturas y la elevada humedad relativa de los meses comprendidos entre noviembre de 1986 y marzo de 1987, mantuvieron las poblaciones insectiles del estiércol en cero.

El orden coleóptera se vio más afectado por los factores de temperatura y humedad relativa que el orden diptera. Esto es debido a que los inmeduros de los dipteros tienden a enterrarse para protegerse de los cambios climáticos bruscos (March y Bay 1933, Chamberlain 1985, Kunz et. al. 1985, Kunz 1985, Thomas 1985), mientras que a los coleópteros les es más dificil defenderse de esta manera, con excepción de las especies de la familia scarabaeidae.

La precipitación no fue un factor muy importante durante el estudio, en cuanto a que sólo afectó el muestreo del 22 de agosto, fecha en la que se observó una caida drástica en la cantidad de especimenes capturados en ambos órdenes, aunque la temperatura y la humedad relativa fueron favorables (Fig. 11, Tabla 33).

Por la distribución de la abundancia de los géneros encontrados, se observó que, los que pertenecen al orden diptera, se presentaron en mayor cantidad en los meses de julio y agosto, esta en contrador de los meses de julio y agosto, esta en contrador de los meses de julio y agosto, esta en contrador de los meses de julio y agosto, esta en contrador de los meses de julio y agosto, esta en contrador de la contrador de los géneros encontrador de los generos encontrador de los géneros encontrador de los generos encontrador de los géneros encontrador de los generos encontrador de los generos encontrador de los géneros encontrador de los gé

mientras que los coleópteros se colectaron con mayor abundancia en los meses de agosto y septiembre (Fig 11).

Entre los insectos de ambos órdenes, capturados durante el estudio, se encontraron algunas familias cuyos géneros han sido reportados como depredadores de huevecillos, larvas y pupas de las moscas plaga. La familia staphylinidae posee los más efectivos depredadores de inmaduros de moscas perjudiciales, aunque, únicamente el género Ebilontous ha sido estudiado con atención, por ser el de mayor talla dentro de los staphylinidos del estiércol, esto le permite atacar los diversos estados inmaduros de las moscas picadoras (Roth 1982, Hunter et. al. 1986). Los céneros Aleochara y Elatystetbus se capturaron generalmente en la misma muestra y en cantidades muy grandes, pero su talla es muy reducida, lo que hace dudar de su efectividad como depredador de las larvas y pupas de las moscas plaga, aunque podrián alimentarse de los huevecillos de estos dipteros (Wingo et. al. 1974).

Las familias histeridae en estado adulto e hydrophilidae y sarcophagidae en estado larval, también han sido reportadas como buenos depredadores de los inmaduros de los dipteros plaga (McQueen et. al. 1975, Pickens 1981, Figg et. al. 1983). En este estudio, los géneros de estas familias, no fueron capturados en número suficiente como para afectar las poblaciones de los dipteros hematófagos.

La influencia que los depredadores ejercieron sobre las

poblaciones de dipteros no pudo ser comprobada; ya que el análisis de correlación que se realizó, no mostró números sigalenticativos (Tabla 34).

Durante el estudio se observó la presencia de aves que revolvián el estiércol en busca de granos y/o insectos, este factor, aunado al pisoteo del ganado, podria haber influido en estos resultados.

La competencia por hábitat y alimento es otro factor importante en el control de los dipteros plaga. Dentro de este estudio, se encontraron varias especies de la familia scarabaeidae que se alimentan de estiércol, tanto en estado larval como en adulto. Las más importantes, por su abundancia fueron: Onitocabagus gazella y Ambodius lividus. Q. gazella es un robusto escarabajo traido de Africa y que ha sido reportado como un eficiente comedor de estiércol de bovino (Waterhouse 1974). A: lividus es de talla muy pequeña pero fue encontrado en mayor cantidad que Q. gazella (Tablas 26 y 30).

El análisis de correlación entre las poblaciones de escarabajos coprófagos y la de los dipteros, nos indica que la presencia de los escarabajos influyó en un 29% para que se presentaran los dipteros (Tabla 34). Esto significa que ambas poblaciones coincidieron en sus picos de abundancia, y que se comportaron de forma semejante ante los factores climáticos, por de que se deduce que hubo competencia entre ellos (Fig. 14).

CONCLUSIONES

La temperatura es el factor ambiental que más influye en la poblaciones insectiles, ya que cuando la temperatura media descendió, la cantidad de insectos también se redujo significativamente. Los meses en los que la temperatura media permaneció entre 19.3 y 23.5 grados centigrados fueron los que presentaron mayor cantidad de insectos.

Los coleópteos de las familias scarabaeidae y staphylinidae constituyen los grupos más importantes de insectos utilizables en el control biológico de los dipteros plaga en el corral de la E.S.A.H.E., debido a que son coprófagos y depredadores de inmaduros de diptera y a que fueron encontrados con gran abundancia.

Un programa de control biológico de los dipteros plaga, debe efectuarse en las fechas en que estos presenten mayor suceptibilidad al ataque de parásitos y depredadores así como a la competencia por hábitat de desarrollo y alimento, esto sucede cuando los dipteros se encuentran en estados do huevecillo, larva o pupa. En el establo de la E.S.A.H.E., las fechas en las que se recomienda la liberación de depredadores y parásitos, corresponde a los meses de junio y julio, ya que fue en este último mes cuando se colectó el mayor número de inmaduros de moscas perjudiciales a la producción lechera.

RESUMEN-

El estudio fue realizado para determinar las especies de insectos que habitan en el estiércol de bovino lechero y la variación estacional de sus poblaciones, para lo cual se tomaron en cuenta factores ambientales como son; temperatura, humedad relativa y precipitación.

Los muestreos se llevaron a cabo en el establo lechero de la Escuela Superior de Agricultura "Hermanos Escobar " (E.S.A.H.E.), en Cd. Juàrez, Chihuahua, de julio de 1986 a marzo de 1987.

Veinticinco especies de los órdenes diptera y coleóptera fueron colectados. Musca demestica (L.) fue la especie de diptera más abundante, posiblemente debido a la cercania de la ciudad. La familia staphylinidae (Coleóptera) presentó el mayor número de especies y de especimenes durante el estudio. Las especies de diptera se encontraron más abundantemente en los meses de julio y agosto, mientras que los coleópteros se colectaron en mayor cantidad en los meses de agosto y septiembre. El decrecimento de las poblaciones de los dos órdenes se regitró, cuando las temperaturas medias bajaron de 19.3 a 11.3 grados centigrados y la humedad relativa aumentó de 76% a 83%.

El análisis de correlación indica que la temperatura y la humedad relativa fueron los factores que más afectaron las poblaciones de insectos, correspondiendo un indice de correlación de 0.5677 para la temperatura y de -0.5594 para la humedad relativa.

BIBLIOGRAFIA

- Axtell, Richard C. 1981. Use of predators and parasites in filth flies I.P.M. programs in poultry housing. Status of Biological Control of Eilth Elies. Deet. Garic. Publ. 212 pp.
- Blume, Richard R. 1970. Insects Associated with Bovine Droppings in Kerr and Bexar Counties Tx.. J. of Economical Eulemal, 63:1023-1024.
- Blume, Richard R., Sidney E. Kunz, Billy F. Hogan and Jesse J. Matter. 1970. Biological and ecological investigations of horn flies in Central Tx.: Influence of other insects in cattle manure. J. of Economical Entempl. 63:1121-1123.
- Blume, Richard R. 1985. A checklist, distributional record, and annotates bibliography of the insects associated with bovine droppings on pastures in America North of México. The Southwest. Enlogol. Suppl. 9. 55 pp.
- Bridges, A. C., and G. E. Spatos. 1983. Larval Medium for the stable fly Stomonys calcitrans(L.). The Southwest. Entomol. 8:6-8.
- Bruce, W.N., and G. C. Decker. 1958. The relationship of stable fly abundance to milk production in dairy cattle. J. of Economical Enigmol. 51:269-274.
- Butler, J. F., and R. Escher. 1981. Life cycle: development times of various pupal parasites of house flies and horn flies in Florida. Status of Biological Control of filth flies. Dopt. Agric. Fubl. 212 pp.
- Campbell, J. B., R. G. White, J. E. Wright, R. Crookshank and D. C.Clanton. 1977. Effects of stable flies on weight gains and feed efficiency of calves on growing or finishing rations. J. of Economical Entempl. 70:592-594.
- Campbell, J.B., D.J. Boxler, J.I. Shutgart, D.C. Clanton and R. Crockshank. 1981. Effects of house flies on weight gains and feed efficiency on yearling heifers on finishing rations. J. of Economical Entomol., 74:94-95.
- Chamberlain, U.F.1985. Factors modifying the effect of temperature on the survival of horn fly larvae in manure pats. Ibe Southwest_ Epigmol_ 10:185-194.
- Cheng, Tien-Hsi. 1958. The effect of biting fly control on weight gain in beef cattle.J. of Ecopomical Entomol. 51:275-278.

- De Bach, Paul. 1968.Control biologico de las plagas de insectos y malas bierbas. Compania Editorial Continental. 949 pp.
- Figg, D.E., Robert D. Hall and Gustave D. Thomas. 1983. Insect parasites associated with diptera developing in bovine dung pats on Central Missouri Pastures.Environ. Entomol. 12:951-965.
- Ffolliot, Peter F. and Sonia Gallina. 1981. Deer biology, bebitat requirements, and management in Western North Smerica. Instituto de Ecologia A. C., México. 233 pp.
- Geetha Bai, M. and T. Sankaran. 1977. Paragites, predators and other arthopods associated with Musia demostica and other flies breeding in boving manure. EDICMORDAGA. 22:163-167.
- Hunter, J.S., D.E. Bay and G.T. Fincher. 1986. A survey of staphylinidae associated with cattle dropping in Burleson County, Tx.Ibe Southwest, Entomol. 11:83-88.
- Kunz, S.E., and J.R. Cunningham. 1977. A population prediction equation with noted on the biology of the horn fly in Texas. The Southwest_ Entomol_ 2:79-87.
- Kunz, S.E. 1978. Notes on the seasonal activity of dung infesting diptera in central Texas. The Southwest. Enteral 3:167-169.
- Kunz, S.E., and J. Allen Miller. 1985. Temperature threshold for the development of diapausing horn flies. The Southwest. Entempol. 10:152-155.
- Kunz, S.E. 1985. The pupation site of some dung-breeding diptera in central Texas with special emphasis on the horn fly Haematchia irritans (L.). The Southwest. Entemol. 10:280-284.
- MacQueen, Angus., and Bryan P. Beirne. 1975. Influence of other insects on production of horn fly Haematchia irritans (Diptera: Muscidae) from cattle dung in South-central British Columbia. Can. Ent. 3:1255-1264.
- March, P.A., and D.E. Bay. 1983. Vertical distribution of horn fly (Diptera Muscidae) larvae in response to manure pat temperature gradients. Epyingn_Enigmod_ 12:1159-1165.
- Maxcy, P. Nolan, Jr. 1981. Monitoring house fly populations and carrying out an insect pest-management program in caged layer operations. Status of Biological Control of Filth Flies. Dept. Agric. Publ. 212 pp.

- Meyer, J.A., and J.J. Petersen. 1982. Sampling stable fly and house fly pupal parasites on beef feedlots and dairies in Eastern Hebraska. <u>The Southwest</u>. Entgool. 7:119-126.
- Meyer, J.A., and J.J. Petersen. 1983. Characterization and seasonal distribution of breeding sites of stable flies and house flies(Diptera: Muscidae) on Eastern Nebraska feedlots and dairies. J. of Economical Enloyal, 76:103-103.
- Margalef, Ramón. 1977. <u>Ecologia</u>, Ediciones Omega. Barcelona, España . 951pp.
- Moore, Ian, and E.F. Legner. 1974. Keys to the genera of the Stephylinidae of America North of Mexico Exclusive of the aleocharinae (Coleoptera: Staphylinidae). Hilgardia: 421543-563.
- Morgan, Phillip B. 1981. The potential use of paramites to control Musca demonstra (L.) and other filth breeding flies at Agricultural Installations in the Southern Unites States. Status of Biological Control of Eilth Elies. Dept. Agric. Fubl. 212 pp.
- Perfil Socioeconomico Municipal, 1995. <u>Compendio Estadistico</u> Presidencia Municipal, H. Ayuntamiento 83-36. Dirección General de promoción de la comunidad. Dirección de, Desarrollo Socioeconómico, 185 pp:
- Pickens, Lawrence G., 1981. Labotaroty tests of Rayinia iborninical as a predator of the face fly. Status of Biological Control of Eilth Elies. Gapt. Agric. Publ. 212 pp.
- Price, Peter W. 1984. Insect Ecology John Wiley & Sons, Inc. U.S.A. 607 pp.
- Peterson, Alvah. 1979.Larvae of incerts. Edwards Brothers, Inc. Ann Arbor, Michigan. Part 2. 416 pp.
- Roth, J.P. 1982. Predation of the horn fly Haematobia irritans(L.), by three Philonthus species. The Scuthwest Entempl. 7:26-31.
- Roth, J.P., G.T. Fincher and J.W. Summerlin. 1983. Competition and predation as mortality factors of the horn fly, Hassatchia irritans (L.)(Diptera: Muscidae) in Central Texas Pasture Habitat. Environ_ Entemol_ 12:106-109.
- Schefler, Villiam C. 1981. Bicestadistica. Fondo Educativo Interamericano, S.A. U.S.A. 267 pp.

- Schmidt, Charles D. 1985. Production of horn flies in manure from cattle on three different diets. The Southwest. Eptomol. 10:279-282.
- Summerlin, J.W., and S.E. Kunz.1978.Predation of the red imported fire ant on stable flies. The Southwest. Entomol. 3:260-265.
- Thomas, Donald B. 1985. Phenology of the intra-puparial metamorphosis in horn fly and stable fly; a note on the diapause stage of the horn fly. Ibs Scutbwest. Entempl. 10:139-147.
- Thomas, Donald B. Jr. 1985. The pupation site of some dungbreeding dipters in Contral Texas with special emphasis on the horn fly Hagmatchia irritans (L.). The Scuthwest. Entomol. 10:283-287.
- Thomas, Gustave D., Ivan L. Berry and Clyde E. Morgan. 1974. Field developmental time of nondiapausing horn flies in Missouri. Engirep. Entemol. 3:151-155.
- Thomas, Gustave D. 1981. Insects parasites of the horn fly and face fly in Missouri. Slatus of Biological Control of Filth Flies. Dept. Agric. Publ. 212 pp.
- Waterhouse, D. F. 1974. The biological control of dung. Scientific American. April:99-108.
- Wingo, C.W., G.D. Thomas, G.N. Clark and C.E. Morgan. 1974. Succession and abundance of insects in pasture manure: Relationship to face fly survival. App. Entemol. Soc. Am. 67:336-390.

ESTA TESIS NO DEBE SALIR DE LA BIBLIOTECA