

MEXICO, D. F.

1988.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

RESUMEN

Se analizaron muestras de zooplancton recolectadas durante el crucero CICESE 8403/04 realizado en el Golfo de California, del 23 de marzo al 7 de abril de 1984, cuando el evento de El Nifio de 1982-83, entró en su fæse de relajamiento. De um total de 26 muestras recolectadas con red bongo desde una profundidad aproximada de 200 m a la superficie, se estimó su biomasa y se seleccionaron 15 de ellas para estimar la abundancia por grandes grupos.

El volumen promedio durante la temporada de muestreo (411 cc /1000 m^3) fue alto en relación a otros sistemas como la Corriente de California y el sistema de corrientes del Pacífico tropical oriental. En relación a la primavera de 1983, el volumen y el peso seco, fueron muy similares; aunque en la región sur se observó una ligera tendencia al incremento en biomasa en 1984 (36 %_r considerando al peso seco), lo cual, es inverso a las tendencias en productividad primaria en esta zona.

La estructura de la comunidad zooplanctónica del Golfo en 1984, mostró una dominancia de tres grupos de crustáceos: copépodos, cladóceros y eufaúsidos. La alta densidad de cladóceros es un rasgo peculiar del Golfo en relación a otros sistemas, pero respecto a lo encontrado por Jiménez (1987) para 1983 es semejante. Los grupos de eufaúsidos, tunicados y sifonóforos tendieron a incrementarse ligeramente en 1984, mientras que los ostrácodos y la langostilla (Pleuroncodes planipes) descendieron.

Aunque las condiciones climáticas en cuanto al ambiente abi<u>ó</u> tico fueron muy diferentes entre las primaveras de 1983 y 1984, y demuestran que el Golfo tiene un comportamiento semejante al de <u>o</u> tros sistemas afectados por El Niño; la respuesta de la biota planctónica es diferente, ya que la productividad primaria parece incrementarse durante el evento. El efecto negativo sobre los organismos debido al calentamiento superficial del agua pudo haberse anulado gracias a una disponibilidad adecuada de alimento, y por ello la biomasa se encontró a un nivel semejante. La estructura de la comunidad, aunque tuvo pocos cambios en términos de grandes grupos, indica que algunos de ellos pudieron estar favorecidos por el evento y otros mo.

INDICE

	Pagine
I. INTRODUCCION	and a second
1. Objetivos	
2. Antecodentes	
II. AREA DE ESTUDIO	
III. MATERIALES Y METODO	
1. Huestreo	n an
2. Amálisis de laboratorio	g
2.1. Submaestreo	9
2.2. Determinación de biomass 2.3. Identificación y conteo	de grupes zpoplanctónicos 10
3. Anélisis de datos	11
IV. REBULIAIUS	
1.1. Salinidad	
1.2. Temperatura	
2. Biomasa total	12
2.1. Volumen desplazado	12
2.2. Peso numedo 2.3. Peso seco	1/
2.4. Peso libre de cenizas	lones do biomaga
2.6. Relación entre la biomass	a y las variables físicas
3. Abundancia	16
3.1. Abundancia total	16
3.2. Abundancia por grupos zoo	
4. Diferencia entre muestreos du	irmos y nocturnos 2(
J. Allnidad entre estaciones de s	
V. DISCUSION	2
VI. CONCLUSIONES	3
BIBLIOGRAFIA	

LISTA DE TABLAS

a Maraka ing panganang na panganang panganang panganang panganang panganang panganang panganang panganan ang pa Panganang p

<u>Tabla</u>	Pá	gina
I.	Localización de las estaciones de muestreo durante el crucero CICESE 8403/04 al Golfo de California	41)
II.	Biomasa total del zooplancton por estación de muestreo obtenida por diferentes métodos	42,
III.	Abundancia de grupos zooplanctónicos (org/1000 m ³) por estación de muestreo. Los grupos pertenecientes al holo- plancton están en mayúsculas y los del meroplancton en minúsculas. El nivel taxonómico, cuando no corresponde al de Orden, se indica a la derecha: Ph, phylum; C, cla- se; Sc, subclase y Sf, superfamilia	43
IV.	Abundancia media (org/1000 m ³) y relativa (%) de los grupos zooplanctónicos	44 ¹
v.	Probabilidad de aceptar que sean iguales las biomasas y abundancias entre colectas diurnas y nocturnas, según la prueba de Mann-Whitney (para biomasas: No. muestras noc- turnas = 14 y No. muestras diurnas = 12; para abundan- cias: No. muestras noc. = 9 y No. muestras diur. = 6)	45
VI.	Matriz de coeficientes de correlación de Mendall entre estaciones de muestreo, basada en valores de abundancia de los diversos grupos zooplanctónicos (parte superior a la diagonal). Cuando alguno de los coef. no fué alta- mente significativo, se indica su significancia (parte inferior de la diagonal)	46
VII.	Probabilidad de aceptar que las abundancias y biomasas de los conjuntos de estaciones de muestreo de las zo- nas l y 2 (definidas en la Fig. 22) son iguales, me- diante la prueba de Mann-Whitney	47
VIII.	Comparación de las razones entre mediciones de biomasa por diferentes métodos, para el Golfo y otros sistemas	48
IX.	Comparación de volúmenes promedio de zooplancton (cc/ 1000 m³) del Golfo de California con otros sistemas del Pacífico oriental	49
Χ.	Comparación de promedios de biomasa en peso seco (mg/m³) para el Golfo de California	51
XI.	Comparación de abundancias promedio (org/m ³) de los gru- pos zooplanctónicos del Golfo de California con otros sistemas del Pacífico oriental y central	52

.

•

LISTA DE FIGURAS

Figura

۰.

1.	Area de estudio: Golfo de California, México (la línea punteada indica el límite de la plataforma continental)	53
2.	Esquema de las corrientes del Pacífico oriental tropical en su patrón de flujo de primavera (abril) y de otoño (octubre). CC: corriente de California; CNE: corriente Norecuatorial; CCNE: contracorriente Norecuatorial y CSE: corriente Surecuatorial. La línea punteada indi- ca el límite de influencia de la CC y de la CCNE (mo- dificada de Wyrtki, 1966)	:54
3.	Estaciones donde se realizaron arrastres de zooplancton durante el crucero CICESE 8403/04 (o son lances diurnos; •, nocturnos y ©, estaciones seleccionadas para conteo)	55
4.	Separador Folsom (a) y cámara de conteo (b)	56
5.	Salinidad superficial (izquierda) y a 100 m de profundi- dad (derecha) en °/00	-5 ?
6.	Temperatura sup erficial (i zquierda) y a 100 m de profun . didad (derecha) en °C	; 58
7.	Volumen desplazado (cc/1000 m ³) de zooplancton (N/D es la razón de las medianas de lances nocturnos y diurnos)	59
8.	Peso húmedo (g/1000 m ³) de zooplancton	60
9.	Peso seco (mg/m ³) de zooplancton	61
10.	Peso libre de cenizas (mg/m^3) de zooplancton	62
11.	Distribución de frecuencias de un parámetro de biomasa como porcentaje de otro: A. Volumen desplazado sin lí- quido inters./Volumen desplazado con líquido (100); B. igual que A., pero con el peso húmedo; C. Peso seco/ Feso húmedo (100), y D. Peso libre de cenizas/Peso hú- medo (100)	63
12.	Biomasa media en peso seco (mg/m ³) en función de la	
	temperatura (°C) y Salinidad (°/) superficiales	64
13.	Abundancia total (org/m ³) de zooplancton	65
14.	Abundancia (org/m ³) de copépodos	• 66

LISTA DE FIGURAS (Continuación)

<u>Figura</u> <u>Pág</u>	ina
15. Abundancia (org/m ³) de cladóceros	67
16. Abundancia (org/1000 m^3) de sufaúsidos	'68
17. Abundancia (org/1000 m ³) de quetognatos	'69
18. Abundancia (org/1000 m ³) de radiolarios	'7 0
19. Abundancia (org/1000 m ³) de sifonóforos	71
20. Abundancia (org/1000 m^3) de apendicularias	" 7 2
21. Dendograma de asociación entre estaciones de muestreo basado en coeficientes de correlación de Kendall	73
22. Asociaciones faunísticas por el coeficiente de corre- lación de Kendall	!74

۰.

A mi esposo Efraîn, quiem es un gran compañero y a nuestro pequeño hijo Vladi

A mi gran amiga Lorena

i de la composición Production de la composición de la comp A Chihua, Patricia y Cecilia, mis inseparables cuates de la Facultad

I. INTRODUCCION

El plancton puede definirse como el conjunto de organismos suspendidos en el agua, con movilidad muy limitada, el cual mo puede mantener su distribución contre los efectos del movimiento del agua (Strickland, 1960). Muchas de las especies del movimiento ton extraídas de muy diversos grupos filéticos tienen capacidad de efectuar migraciones verticales, en ocasiones, de gran extensión. Aquéllos organismos que son residentes permanentes del ambiente pelágico pertenecen al holoplanctom, mientras que, aquéllos que pasan ciertas etapas de su desarrollo en la columna de agua y posteriormente se incorporan al bentos o al necton, formam parte del meroplancton.

Los métodos para la evaluación cuantitativa del plancton marino fueron introducidos por Hansen en 1887, y consistian en distintos procedimientos de medición de volumen, peso, contenido quí mico y número de organismos (Beers, 1976). La importancia de estos métodos ha aumentado continuamente debido al interés por comprender la produccióm biológica del océano, especialmente en rela ción a las pesquerías.

La cantidad de materia viviente presente en la forma de una o más de las diversas clases de organismos que comprenden una comunidad de plancton, se define como la 'biomasa' (Beers, 1976). En este trabajo se empleará el término para designar al volumen y al peso, mientras que, al número de organismos se denominará <u>a</u> bundancia.

Por si misma, la medición de biomasa constituye una medida estática del plancton. No obstante, el análisis de la variabilidad de la biomasa en tiempo y espacio, permite desprender información en torno a los procesos dinámicos que operan en el ecosis tema pelágico. La interpretación de dicha variabilidad es compleja, ya que es difícil separar la variación debida al muestreo y a quella causada por factores ecológicos. La elección de métodos de muestreo adecuados y la rigurosidad en el trabajo de campo y de laboratorio ayudan a reducir la variación artificial, aunque subsiste el sesgo introducido por la migración vertical y por la pr<u>e</u> sencia de parches (Longhurst, 1981).

La estandarización de métodos de muestreo (UNESCO, 1968) y la cuantificación de biomasa (Beers, 1976), pero sobre todo la acumulación de series de datos durante largos periodos de tiempo, ha permitido conocer con cierto detalle la dinámica estacional de los ciclos productivos en diferentes latitudes y áreas geográficas (Cushing, 1959 y 1981; Bé et al., 1971; Haury et al., 1978). El empleo de métodos estadísticos, como el análisis espectral de varianza, ha permitido detectar la ocurrencia de variaciones interanuales (Wickett, 1967; Colebrook, 1977; Bernal, 1979 y 1981) correlacionadas con la ocurrencia de los eventos climáticos conocidos como "El Niño".

Considerado inicialmente como un evento local en la Corriente de Perú, manifiesto por un calentamiento de la superficie del agua durante el verano austral, el evento de "El Niño" era explicado por una falla en el mecanismo de las surgencias costeras, conducente a un abatimiento de la productividad (Idyll, 1973). Sin embargo, desde 1966, Bjerknes habia observado la conexión entre el calentamiento anómalo del agua y los cambios en la presión atmosférica del Pacífico ecuatorial, conocidos como la "Oscilación del Sur". Años más tarde, Wyrtki (1975) desarrolló una teoria sobre El Niño, considerándolo un evento a gran escala en el Pacífico ecuatorial, desencadenado por el fortalecimiento de los vientos alisios en el Pacífico central, lo cual a su vez provoca la intensificación de la Corriente Surecuatorial, acumulándose agua en el Pacífico ecuatorial occidental. Tan pronto como la intensidad de los vientos se relaja, el agua acumulada tiende a regresar hacia el este, probablemente como una onda interna de Kelvin; elevándose el nivel del mar y deprimiendo, al mismo tiempo,

la termoclina frente a Ecuador y Perú (Wyrtki, 1975). El sistema de surgencias puede continuar, pero dado que la nutriclina es profunda, la productividad biológica baja.

El modelo propuesto por Wyrtki respondía en gran parte al desarrollo del evento ecurrido en 1972-73, y durante eventos pos teriores, la fuerza de los vientos como un predictor, no ha funcionado como se esperaba. Aunque existen ciertos elementos comunes a los diferentes El Niño, minguno de ellos es precisamente <u>i</u> gual a otro, ni en punto de iniciación, amplitud y características espaciales, mi en consecuencias biológicas (Cane, 1983; Rama ge, 1986).

El pasado evento de 1982-83 ha sido considerado el más pronunciado del siglo (Cane, 1983) tanto en la magnitud del calenta miento en la superficie y subsuperficialmente, como en la elevación del nivel del mar y en la extrema debilidad de los vientos alisios (Rasmusson et al., 1983). El primer indició de una respuesta biológica al evento fue el fracaso reproductivo de la co munidad de aves de la isla Navidad en el Pacífico central (2°N, 157°W) por abandono de los polluelos, en noviembre de 1982 (Schreiber y Schreiber, 1983). Posteriormente han aparecido numerosas publicaciones que dan testimonio del impacto negativo en la productividad primaria (Barber y Châvez, 1983 y 1986), en las capturas de peces de importancia comercial (Valdivia et al., 1983) y en poblaciones de mamíferos marinos de las islas Galápagos y frente a las costas de sudamérica (Lindenberg et al., 1983). Para la Corriente de California se encontró una disminución de la productividad primaria y de la biomasa del macrozooplancton (McGowan, 1984 y 1985), así como la ocurrencia de espe cies tropicales (Bailey e Incze, 1985; Miller et al., 1985; Pearcy et al., 1985; Fulton y LeBrasseur, 1985; Karinen et al., 1985; Brodeur, 1986).

En el Golfo de California las investigaciones recientes so bre este evento han mostrado que, a pesar de los efectos climá-

ticos comunes a los demás sistemas del Pacífico oriental, como som las anomalías positivas en temperatura y nivel del mar y la baja salinidad de sus aguas superficiales (Robles y Marinone, 1987), la respuesta biológica ha sido muy diferente, pues la pro ductividad primaria y la concentración de clorofila <u>a</u> se incrementaron durante el evento (Lara et al., 1984; Valdez, 1986; Val dez y Lara, en prensa). La biomasa del zooplancton también mostro valores altos en relación a otras zonas productivas como la Cerriente de California (Jiménez, 1987).

1. Objetivos

La presente investigación tiene por objeto evaluar la biomasa total del zooplancton y la abundancia por grandes grupos en el Golfo de California, durante la primavera de 1984, cuando el sistema se encontraba en la fase de relajamiento del evento de "El Niño".

2. Antecedentes

El zooplancton del Golfo de California ha sido pobremente estudiado. Aunque existen informes desde fines del siglo pasado acerca de registros de diversas especies de celenterados y crustáceos, como parte de campañas realizadas en una amplia extensión del Pacífico tropical oriental, como las realizadas por el U.S. Fisheries Commission steamer *Albatross* en 1891 y en 1904-1905 y la Templeton Crocker en 1935 (Osorie, 1946); éstos parten de recolectas realizadas una sóla vez y en localidades muy especificas.

A fines de la década de los 1950's da comienzo el estudio sistemático del zooplancton del Golfo con la realización de seis cruceros CalCOFI, los cuales incluyeron al área en su totalidad. El análisis de las muestras recolectadas durante dichos cruceros ha conducido a una descripción bastante completa de las especies de quetognatos, sifonóforos y medusas (Alvariño, 1963 y 1969), de copépodos pontélidos (Fleminger, 1964, 1967 y 1975), enfatsidos (Brinton y Townsend, 1980) y anfipodos hyperideos (Siegel, 1982).

5

Existen estudios sobre el citlo anual del plancton de ciertas zonas costeras, como el de Manrique (1977) para la bahía de Guaymas y el de Gómez et al. (1974) para la laguna de Yavaros y para el sistema lagunar del Huizache-Caimanero (1971).

La primera descripción de la distribución de biomasa del 300 mooplancton para la porción al norte de los 31°N fué efectuada por Farfán (1973), quien registró valores inferiores a 50 mg/m³ de peso seco en febrero y marzo, y máximos de biomasa (>100 mg/ m³) en el delta del Colorado, de abril a octubre. Cummings (1977) interpretó la distribución de biomasa en esta misma región, en términos de las surgencias estacionales postuladas por Roden (1958 y 1964).

Brinton et al. (1986) estimaron volúmenes de zooplancton de las muestras recolectadas en los cruceros CalCOFI de 1956 y 1957, encontrando densos picos en biomasa debidos principalmente al co pépodo <u>Calanus pacificus californicus</u>, al quetognato <u>Sagitta enflata y a los eufaúsidos Nyctiphanes simplex y Nematoscelis difficilis</u>. La biomasa tendía a ser mayor hacia la costa oriental, aunque en abril de 1957 la biomasa sobrepasó los 1000 cc/1000 m³ en ciertas localidades del noroeste del Golfo, debido a concentraciones explosivas de la salpa <u>Thalia democratica</u>. Los valores para el verano eran más bajos que en primavera, pero en relación a otras áreas como la Corriente de California, esos volúmenes son tan altos como los de zonas costeras.

rinalmente, Jiménez (1987) evaluó la biomasa en volumen, p<u>e</u> so húmedo y peso seco para la región comprendida entre isla "iburón y la boca del Golfo, durante la primavera caliente en que se registró un evento de El Niño (1982-83). El promedio en volumen fue semejante al estimado por printon et al. (1986) en abril de 1956 y 1957.

II. AREA DE ESTUDIO

El Golfo de California (Fig. 1) es el resultado del desplazamiento de placas tectónicas a lo largo de fallas transformadoras orientadas de NW a SE, las cuales han dado origen a una serie longitudinal de cuencas profundas (vam Alden, 1964). Se localiza emtre las latitudes de 23°27° y 32°N y las longitudes de 108° y 115°W. Su longitud es de 1000 km aproximadamente y su anchura pro medio de 150 km, con una profundidad media de 813 m.

6

Dos grandes islas, Angel de la Guarda (29°15*N) y Tiburón (29°N), separan al Golfo en dos regiones. Al morte, el Golfo es somero con excepción de la cuenca Delfín; los depósitos aluviales procedentes del río Colorado han producido un piso ligeramente cóncawo, lo cual contrasta fuertemente con la batimetría en el resto del área (van Alden, 1964). Las cuencas presentes al sur de las mencionadas islas, constituyen centros de dispersión y su pro fundidad aumenta progresivamente de norte a sur. Rusnak et al. (1964) señalan que existen dos tipos de elevaciones, aquéllas que dan lugar a islas y bancos de granito a lo largo del margen occidental y las de ubicación central, que no alcanzan la superficie y contienen roca volcánica. La plataforma continental es muy angosta o inexistente frente a la costa occidental, pero ancha en el oriente y de caracter sedimentario (Fig. 1).

El régimen hidrográfico del Golfo también muestra una separación en dos zonas. El alto Golfo se encuentra sometido a una va riación estacional muy extremosa en la temperatura superficial del agua, y a una intensa evaporación que genera una masa de agua tibia y muy salina (Roden, 1964; Alvárez y Schwartzlose, 1979). El agua del bajo Golfo, por su parte, es básicamente la del Pacifico tropical oriental, modificada en la superficie por un exceso de evaporación (Roden, 1964; Wyrtki, 1967).

La circulación del Golfo de California está influenciada 😒

por la fuerza y dirección de los vientos dominantes, que de noviembre a mayo se dejan sentir procedentes del NW, y suelen ser particularmente intensos en la transición del invierno a la primavera; dando lugar a surgencias a lo largo de la costa oriental (Roden y Groves, 1959; Badan et al., 1985). El agua circula de morte a sur durante estos meses, pero, en junio la inversión de los vientos produce una respuesta similar en el patrón de flujo.

En función de las corrientes oceánicas que inciden en el Golfo de California, Wyrtki (1966) describió dos patrones de cir culación (Fig. 2): 1) el patrón primaveral, con influencia máxima en marzo-abril, cuando el giro del Pacífico norte es fuerte y acarrea agua de la Corriente de California a la entrada del Golfo; estando el sistema ecuatorial relativamente debilitado, y 2) el patrón otoñal, con pice en septiembre-octubre, que muestra un giro del Pacífico norte débil en contraste con una Contracorrien te Norecuatorial fortalecida y el desarrollo de la Corriente de Costa Rica, extendiéndose hacia el norte a la entrada del Golfo.

En función de este modelo, Baumgartner y Christensen (1985) han interpretado la ocurrencia de eventos interanuales tipo El Niño con la prolongación anómala durante todo el año del patrón de circulación que normalmente se limita al otoño.

En relación a la biota planctónica, aunque el número de especies tropicales es mayor, las especies templado-cálidas las su peran con mucho en densidad. Cuatro zonas fitogeográficas fueron propuestas por Gilbert y Allen (1943) con base en la dominancia de una especie particular; sin embargo, puede haber cambios sustanciales estacional e interanualmente en distribución de especies y en productividad (Round, 1967). Brinton et al. (1986) hicieron una revisión de los estudios concernientes a la flora y la fauna planctónicas del Golfo, llegando a concluír que existen: 1) una zona al norte de islas Tiburón y Angel de la Guarda, donde predominan las especies neríticas, y 2) una zona sureña en la boca del Golfo y particulafmente hacia el ceste, en la cual, la mayoría de los plancteres están dispersos, a excepción de los fo raminíferos, y donde las especies tropicales ocurren regularmente. Entre estas dos zonas hay una región de flujo estacional, donde las especies templadas muestran una tendencia a sumergirse durante el verano, por debajo de la capa superficial que experimente un calentamiente y un descenso en la productividad progresivos; o biem, una disminución en abundancia com un reemplazo de especies tropicales.

8

III. MATERIALES Y METODOS

1. Muestreo

Las muestras utilizadas en este estudio fueron recolectadas m bordo del Buque Oceanográfico "El Pumm" de la UNAH, durante el crucero CICESE 8403/04 (23 de marzo al 7 de abril de 1984). Se obtuvieron un total de 26 muestras (Fig. 3) dentro del área comprendida entre isla Tiburón y la boca del Golfo. Se hicieron arrastres oblicuos con red bongo de .6 m de diámetro y .333 mm de lum de malla, desde una profundidad y un tiempo de arrastre promedio de 186 m y 19 minutos respectivamente; siguiendo los proc<u>e</u> dimientos de Kramer et al. (1972). Para medir la cantidad de agua filtrada se usó un flujómetro TKS. La hora de muestreo fue en torno al mediodíá y a la medianoche, lo cual determinó la posición de las estaciones de muestreo (Tabla I). Las muestras se preservaron con formaldehido al 4 %, neutralizado con borato de sodio, para su posterior análisis en el laboratorio.

Los datos de temperatura y salinidad fueron facilitados por el grupo de "Oceanografía Regional" de la División de Oceanología del CICESE, y fueron medidos con un CTD modelo Bissett-Berman.

2. Análisis de laboratorio

2.1. Submuestreo

Solo una de las muestras del par recolectado con la red bon go se destinó para ser analizada. Primeramente se fraccionó la muestra mediante un separador Folsom (Fig. 4a), en la forma descrita por McEwen et al. (1934). Una fracción de 1/2 se guardó co mo colección de referencia; 1/4 de la muestra se usó en la deter minación de biomasa, y el 1/4 restante fue sometido a nuevas divisiones hasta obtener una alícuota de 1/32, sobre la cual se practico la separación y conteo de organismos.

2.2. Determinación de la biomasa

La biomasa total se estimó per métodos gravimétricos y volumétricos, después de remover aquéllos organismos de gran tamaño, como peces y algunas salpas, heterópodos, medusas y decápodos. En total se hicieron dos determinaciones de volumen, dos de peso húmedo, uma de peso seco y uma del peso libre de cenizas, en el ordem siguiente:

- 10. Se eliminó la solución de formaldehido dejando escurrir la muestra a través de un tamiz, en un caso, y en otro, filtrandola con ayuda de una bomba de vacio (Kramer et al., 1972).
- 20. El plancton drenado o filtrado se pesó para obtener el peso húmedo.
- 30. El plancton drenado o filtrado se colocó en un frasco previamente calibrado y posteriormente se le añadió líquido con una bureta para obtener el volumen desplazado.
- 40. Nuevamente se dejó escurrir el plancton y posteriormente se introdujeron las muestras en un horno a 60°C, manteniendo la temperatura constante, durante un período variable de tiempo hastæ obtener un peso constante, medida que representó el pe so seco (Beers, 1976).
- 50. Finalmente se trasladaron las muestras a una mufla para cremarlas a una temperatura de 500°C, hasta obtener un peso cons tante, correspondiente al peso de las cenizas o sales inorgánicas; el peso libre de cenizas resulta de la diferencia entre el peso seco y el peso de las cenizas (Beers, op. cit.).

2.3. Identificación y conteo de grupos zooplanctónicos

Para facilitar la separación y conteo de los diferentes organismos en la muestra, se separaron, primeramente, en dos clases de tamaño mediante un tamiz de .560 mm. La fracción >.560 mm se depositó en cajas de Petri y la fracción <.560 mm en cámaras de conteo cuadradas de 5 cm de lado y 5 mm de profundidad (Fig. 4b), diseñadas en el Taller de Óptica del CICESE. Todos los organismos contenidos en la alícuota se separaron y contaron bajo un mi croscopio estereoscópico con ayuda de claves generales de identi ficación (Gurney, 1942; Rusell, 1953; Willianson, 1957; Boyd, 19 1960; Hardy, 1965; McGowan, ; Smith, 1977; Yamaji, 1977 y Mc Laughlin, 1980).

Se seleccionaron exclusivamente 15 de las muestras para esta fase del análisis (Fig. 3).

3. Análisis de datos

Los datos obtenidos en las mediciones de biomasa y en los conteos para cada alícuota empleada, se llevaron a la muestra t<u>o</u> tal mediante la fórmula:

 $N = 2^m C$

donde, <u>N</u> es el total de biomasa u organismos en la muestra; <u>m</u>, el número de divisiones realizadas con el separador Folsom y <u>C</u>, la biomasa u organismos contados en la submuestra.

A continuación se estandarizaron los valores resultantes a1000 m³ de agua filtrada con la fórmula siguiente:

 $N' = \frac{N}{V} (1000)$

donde, \underline{N}^* es el número de organismos o de unidades de biomasa/ 1000 m³ y V, el volumen de agua filtrada. Las unidades de biomasa para el volumen son cc/1000 m³ y para el peso húmedo, g/1000 m³. Para el peso seco y el peso libre de cenizas se hace la conversión a mg/m³.

Las diferencias de biomasa y abundancia entre muestreos diu<u>r</u> nos y nocturnos se probó mediante la prueba U de Mann-Whitney, que es una prueba estadística no paramétrica basada en la asign<u>a</u> ción de intervalos. La elección de este estadístico se tomó deb<u>i</u> do a que la distribución de los datos se aleja significativamente de la distribución normal, pero se aproximó a la normal en la for ma descrita por Siegel (1980).

Para analizar la afinidad entre estaciones de muestreo también se empleó una prueba no paramétrica, el coeficiente de corre lacióm de Kendall, que permite conocer su significancia cuando se le aproxima a la normal (Siegel, 1980). Para extraer los coeficientes de correlación y su significancia se empleo el programa NONPAR CORR dentro del paquete PECS en existencia dentro del sistema PRIME 400 del CICESE. Además, las zonas faunísticas definidas, se compararon usando nuevamente la prueba U de Mann-Whitney para detectar diferencias en las abundancias de cada grupo zooplanctónico.

El coeficiente de Kendall también se usó para correlacionar las estimaciones de biomasa con las variables físicas de temper<u>a</u> tura y salinidad superficiales.

ана сталина стали и ста Има и стали и с

IV. RESULTADOS

1. Condiciones ambientales

En esta socción se describen a grandes rasgos las características físicas del agua durante la temporada de muestreo.

13

1.1. Salinidad

La distribución de salinidad superficial en marzo-abril de 1984 presentó un intervalo de 34.90-35.28 ‰ (Fig. 5). Más del 50 % del área mantuvo valores superiores a 35.2 ‰. En la parte sur, la salinidad va disminuyendo gradualmente hasta alcanzar 34.9 ‰ cerca de Cabo San Lucas (23°N). En el umbral de las islas Tiburón y anexas, también se observa la influencia de agua menos salina.

A 100 m de profundidad (Fig. 5) más del 50 % del área flu<u>c</u> tub entre 34.9 y 35.1 % y únicamente en la región sur se obse<u>r</u> vó la influencia de agua menos salina (34.6-34.9 %).

1.2. Temperatura

En una estrecha banda al sur de isla Tiburón la temperatura superficial fue de 15.9° a 18°C, ascendiendo gradualmente hacia el sur (Fig. 6). Hacia los 26°N se encuentra la isoterma de los 21°C y em la boca del Golfo la de 23°C, aunque al sur de Pta. San Iganacio (25°N) la temperatura descendió hasta 20°C. En la región central, por el contrario la costa occidental mostró temperaturas más frias que la oriental.

La isoterma de los 15°C tendió a dominar en la mayor parte del área a 100 m de profundidad (Fig. 6). Al sur del umbral de las islas y paralelamente a la costa al súr de Pta. San Ignacio, aparece la isoterma de los 14°C. En la cuenca del Carmen el agua era un poco más cálida a esa profundidad (16°C), pero el mayor c<u>a</u> lentamiento se registró entre La Paz y la boca del Golfo, donde alcansó hasta 19°C.

2. Biomasa total

A continuación se describen los resultados obtenidos por c<u>a</u> da uno de los métodos utilizados.

2.1. Volumen desplazado

Cuando el líquido intersticial no se extráe eficientemente, el promedio obtenido fue de 644.68 cc/1000 m³ (164.32-1,673.64), el cual resulta 65.9 % mayor que el promedio estimado sin la pr<u>e</u> sencia de dicho líquido (Table II). Al considerar los valores sim líquido intersticial, el volumen mostró una distribución ge<u>o</u> gráfica (Fig. 7) muy homogénea, ya que el 75 % de las estaciones tuvieron valores superiores a los 250 cc/1000 m². Dos estaciones situadas al sur de isla Tiburón, tres de la cuenca de Guaymas y dos de la boca del Golfo, fueron las que presentaron los valores más bajos.

2.2. Peso humedo

También en este caso el fluido intersticial contribuyó en · un buen porcentaje (23.2%). Considerando los valores sin fluido intersticial, la distribución del peso húmedo en el área de est<u>u</u> dio (Fig. 8) tuvo la misma tendencia que la biomasa en volumen.

2.3. Peso seco

Se encontró un promedio de 30.57 mg/m^3 (11.2-131.72). Los valores superiores a los 60 mg/m³ correspondieron a estaciones muy cercanas a la costa oriental, permaneciendo los valores restantes por debajo de los 40 mg/m³ (Tabla II), distribuídos homogéneamente en toda el área (Fig. 9).

2.4. Peso libre de cenizas

También en este caso se observaron máximos de biomasa (>55 mg/m³ en estaciones próximas a la costa oriental. El resto del <u>á</u> rea fluctúa entre 16 y 32 mg/m³, con excepción de algunas estaciones, particularmente hacia la costa occidental de la región sur, donde la biomasa fue <16 mg/m³ (Tabla II; Fig. 10).

2.5. Relación entre las mediciones de biomasa

La distribución de frecuencias de una estimación de biomasa como porcentaje de otra, por ejemplo del volumen sim líquido intersticial respecto al volumen con líquido (Fig. 11a), indica que la mayoría de las muestras tuvo estimaciones de volumen sin líqui do de 50 a 80 % del volumen con líquido y un porcentaje promedio de 65.5 %; por lo cual, el líquido representó el 34.5 %. El porcentaje que ocupa el peso húmedo sin líquido intersticial respec to al peso húmedo con líquido (Fig. 11b) fue de 76.8 en promedio.

El peso seco constituyó sólo el 7.6 % (4-15) del peso húmedo (Fig. 11c), mientras que el peso libre de cenizas fue el 6.4 % (3-13) del peso húmedo (Fig. 11d). Esto quiere decir que, una vez descontado el líquido intersticial, más del 90 % del plancton consiste de fluídos tisulares.

Considerando al peso húmedo como el 100 %, y suponiendo que un centimetro cúbico de plancton pesa 1 gramo, el volumen desplazado seria el 99 % del peso húmedo. Si se toma al peso libre de cenizas como la unidad, se pueden establecer las siguientes razones entre volumen, peso húmedo, peso seco y peso libre de c<u>e</u> nizas: 15.5 : 15.6 : 1.2 : 1 .

2.6. Relación entre la biomasa y las variables físicas

La biomasa no muestra una dependencia directa de las variables físicas, ya que, aunque la temperatura y la salinidad super ficiales se encuentran negativamente correlacionadas (p = .004) según el estadígrafo de Mendall, ninguna de ellas estuvo correl<u>a</u> cionada com las diferentes estimaciones de bionasa. Sim embargo, al graficar la biomasa media, en peso seco, en función de la tem peratura y salinidad superficiales, se observa que los valores más altos caén entre los 19° y los 21°C de temperatura y entre las 35.1 y 53.3 % (Fig. 12), valores propios de la región central.

3. Abundancia

A continuación se describem los resultados obtenidos para la abundancia total y por grupos zooplanctónicos.

3.1. Abundancia total

La suma de las abundancias de los diferentes grupos componentes del zooplancton arrojó un promedio global para el Golfo de 1,087 org/m³, con un intervalo de 308 a 1,959 org/m³, exceptuando a la estación costera 112, con 3,324 org/m³ (Tabla III). La distribución geográfica de la abundancia total (Fig. 13) indicó la existencia de dos zonas poco densas (< 1,000 org/m³), una al sur de isla Tiburón y otra en la región sur, separadas por una zona central muy densa (>1,000 org/m³).

3.2. Abundancia por grupos zooplanctónicos

Se separaron 29 grupos, de los cuales 7 correspondieron al mereplancton, uno al micronecton (cefalópodos) y 21 al holoplanc ton. Este último representó el 97.4 % de la abundancia total, mientras que el meroplancton, el 2.6 % y el micronecton, sólo el .01 %. Los grupos holoplanctónicos que aquí se tratan, no son del mismo nivel taxonômico, 12 de ellos son órdenes: uno del sub reino Protozoa (Foraminifera), uno del phylum Cnidaria (Siphonophora), dos del phylum Mollusca (Thecosomata y Gymnosomata), cim co del phylum Arthropoda (Cladocera, Isopoda, Amphypoda, Euphausiacea y Decapoda) y tres del phylum Chordata (Appendicularia, Salpidae y Doliolidae). La superfamilia Heteropoda es la única representante del ordem Mesogasteropoda, del phylum Mollusca. Las subclases Ostracoda y Copepoda pertenecem al phylum Arthrop<u>e</u> da. De las clases Radiolaria, Hydromedusae, Scyphomedusae y Poly chaeta, la primera corresponde al subreino Protozoa, las dos siguientes al phylum Cnidaria y la última al phylum Annelida. Finalmente estám los phyla Ctencphora y Chaetegmata.

En cuanto a los grupos meroplanctônicos, uno fue de huevos y larvas de peces y los restantes de larvas de invertebrados (ci fonauta, veliger, cirripedio, stomatópodo, equinodermo y otras mo identificadas.

Considerando la abundancia promedio de cada grupo (Tabla IV), lõs copépodos fueron el grupe más abundante con 560 org/m³ y en segundo lugar los cladóceros con 161 org/m³; en conjunto comprenden el 66.3 % de la comunidad. A continuación, ocho grupos presentaron promedios de abundancia entre 10 y 80 org/m³ y en conjunto representaron el 29.4 % de la comunidad (eufaúsidos, quetognatos, radiolarios, sifonóforos, apendicularias, larvas v<u>e</u> liger, ostrácodos y poliquetos). El 4.3 % restante comprende a los demás grupos, incluyendo algunos ejemplares no identificados. Los rasgos más sobresalientes de la distribución y abundancia de cada grupo se describen a continuación, en orden de impor tancia.

Los copépodos fueron el grupo más importante en diez estaciones, ocupando el segundo lugar en las cinco restantes (Tabla III). Su distribución geográfica (Fig. 14) muestra valores inferiores a los 500 org/m³ en la mayor parte del área, en dos estaciones profundas tuvieron entre 500 y 800 org/m³ y en dos someras, más de 1000 org/m³.

La importancia de los cladóceros varia en las diversas esta ciones. En tres de ellas ocuparon el primer lugar y el segundo en otras tres, pero en el 50 % de las estaciones su abundancia permaneció por debajo de los 50 org/m³ e incluso estuvieron ausentes en la estación 85 (Tabla III). Geográficamente se observa ron dos zonas densas, una hacia la costa occidental, en la región central, y otra al rededor de Pta. San Ignacio (Fig. 15). El 98 % de los ejemplares encontrados pertenecían a la especie <u>Pemilia avirostris</u> y el resto al género <u>Evadne</u>.

Los eufaúsidos, tercer grupo en importancia, abarcaron el 7.3 % de la abundancia total. Aunque en la región sur hubo dos estaciones con más de 5 org/m³, la distribución del grupo presenté una demarcación en dos regiones: la central, con abundancias >5 org/m³ hacia la costa occidental y >50 org/m³ hacia la costa oriental; la sur, con abundancias <5 org/m³ en la mayor parte del área (Fig. 16). En dos estaciones fueron el grupo más importante (Tabla III).

Los quetognatos ocuparon siempre alguno de los cinco primeros lugares (Tabla III) y en promedio comprendieron el 5.5 % de la comunidad. En la región central tuvieron abundancias >50 org/ m³, con máximos en estaciones costeras (Fig. 17), mientras que en el área restante su densidad fue <50 org/m³.

La distribución de los radiolarios contrasta con la de los grupos anteriores en que su densidad al sur de isla Tiburón resultó muy baja ($\langle 5 \text{ org/m}^3 \rangle$) y muy alta en la boca del Golfo (>100 org/m³), en el resto del área su abundancia se mantuvo entre 5 y 50 org/m³, excepto en tres estaciones, donde fue mayor (Fig. 18).

El grupo de sifonóforos es difícil de evaluar por tratarse de organismos coloniales. Considerando a cada parte de la colomia como un individuo, su abundancia media fue de 47 org/m³. Sólamente en tres estaciones situadas hacia la costa occidental en la región central y otra al sur de Pta. San Ignacio mostraron va lores superiores a 105 50 org/m³, fluctuando su densidad entre 5 y 50 org/m³ en el resto del Golfo (Fig. 19).

Las apendicularias tuvieron densidades >50 org/m² en dos p<u>e</u> queñas zonas, una al centro oeste y otra en torno a Pta. San Ignacio; pero en el área restante oscilaron entre los 5 y los 50 org/m³, con excepción del umbral de islas, donde fueron más esc<u>a</u>

sas (Fig. 20).

Las larvas veliger constituyeron el grupo meroplanctónico más abundante, acaparando el 45 % de este y el 1.2 % del zooplan<u>c</u> tom total. En tres estaciones de la boca del Golfo su abundancia estuvo entre 23 y 105 org/m³, en las demás fue inferior a los 14 org/m³.

19

Los ostrácodos representaron el novemo grupo en importancia com 13 org/m³ de abundancia media. Alcanzan mayores tallas en la boca del Golfo.

El grupo de los peliquetos inclye adultos pelágicos y larvas pelágicas y bentônicas. Abundaron en las estaciones ubicadas en la cuenca de Guaymas (Tabla III) y escasearon en las costeras.

En la parte occidental de la boca del Golfo, los doliólidos ocuparon un sitio importante y una abundancia seis veces superior al promedio (Tabla III).

El segundo grupo del meroplancton y doceavo del zooplancton fue el de huevos y larvas de peces. En dos estaciones alcanzaron valores cuatro veces superiores al promedio (Tabla III).

Los foraminiferos tuvieron un promedio de 6 org/m³. En tres estaciones de la región central su abundancia fluctuó entre 10 y 22 org/m³.

Los tecosomados tuvieron un promedio de 5 org/m². El 40 % correspondió al género <u>Cresseis</u>, mientras que <u>Limacina</u> y <u>Clio</u> dan cuenta de 23 % cada uno.

El tercer grupo del meroplancton y decimoquinto del zcoplan<u>c</u> ton fueron las larvas de equinodermo. Estuvieron ausentes en dos estaciones (Tabla III).

Las hidromedusas sólo resultaron importantes en la estación costera 112, con una abundancia 4.6 veces mayor al promedio.

La mayoría de los decápodos encontrados eran larvas, con un

promedio de 2,524 org/1000 m³. La sección Anonura fue la más numerosa debido principalmente a la langostilla <u>Pleuroncodes plani-</u> <u>pes</u>, la cual acaparó el 36.2 % del total. La sección Peneida com prendió el 24.2 %, mientras que los brachiuros y carideos, el 18.5 y 8.6 % respectivamente.

Algunos de los heterópedos de las familias Pterotrachidae y Carinaridae alcanzaron grandes tallas (>5 cm de longitud) em las estaciones de la región sur, donde se encontraron sus mayores abundancias. La especie <u>Firoloida</u> <u>desmaresti</u> acaparó el 71 % del total.

Los anfipodos tuvieron abundancias ligeramente mayores en la parte sur del Golfo, donde hubo algunos de gran tamaño.

Las salpas, con un promedio de 1,221 org/1000 m³, estuvieron ausentes en varias estaciones de la región central, mientras que, en la estación 94 presentaron un máximo de 7,587 org/1000 m³.

Los gimnosomados tuvieron un promedio de 1,111 org/1000 m³ y estuvieron representados por una sola especie del género <u>Des-</u> mopterus.

Dentro de la categoria de 'otras larvas de invertebrados' se inclyen larvas trocófora, auricularia, actinotroca de foronideo y algunas no identificadas. Estuvieron ausentes en diez est<u>a</u> ciones.

Las larvas cifonauta presentaron su máxima abundancia en e<u>s</u> taciones costeras, estando ausentes en cuatro estaciones.

Los grupos restantes constituyeron tan sólo el .1 % de la <u>a</u> bundancia total y no se presentaron en la mayoría de las estaci<u>o</u> nes (Tabla 1II).

4. Diferencia entre muestreos diurnos y nocturnos

La comparación de biomasas y abundancias de los grupos más importantes entre el conjunto de muestras recolectadas en torno

al mediodía y aquéllas recolectadas cerca de la medianoche, no <u>a</u> rrojó diferencias significativas (Tabla V), aunque en el caso del peso seco y de la abundancia de copépodos se acercaron a un valor significativo (p = .063 y p = .079 respectivamente).

21

5. Afinidad entre estaciones de muestree

La afinidad entre lagestaciones de muestreo fue muy alta, ya que el 94 % de los coeficientes de correlación (Tabla VI) resultaron altamente significativos (p(.001), siendo el 6 % restam te muy significativo (.001< p(.01)) y corresponden a coeficientes donde participa alguna de las dos estaciones costeras (85 y 112). En el dendograma de asociación construído con base en los coeficientes de correlación (Fig. 21) se observa que las estaciones costeras fueron las menos afines al resto del conjunto. En dichas comunidades la dominancia del grupo de los copépodos fue extrema acaparando más del 90 % de la abundancia total.

En el dendograma de asociación (Fig. 21) se definen en primer lugar dos pares de asociación independientes (estaciones 65-61 y 124-134), cuya ubicación es en la cuenca de Guaymas y en la boca del Golfo (Fig. 22); y en torno a los cuales se aglutinan el resto de las estaciones. Así pues, este análisis indica la existencia de dos tipos de comunidades o regiones, que llamaremos zonas 1 y 2.

Al comparar las abundancias por grupo entre ambas zonas (Ta bla VII) se encontró que, algunos grupos como copépodos junto con sus depredadores (sifonóforos y ctenóforos) y un conjunto de larvas de invertebrados (equinodermos, cifonautas, etc.) muestran una tendencia a mayores densidades en la zona 1, respecto a la zo na 2, ya que la probabilidad asociada fue <.05. Otros grupos como cladóceros, eufaúsidos, quetognatos, ostrácodos y gimnosonados, se acercaron a un valor significativo (Tabla VII). Otro conjunto de grupos manifestaron la tendencia contraria, es decir, abundancias mayores en la zona 2: larvas veliger, heterópodos, anfipodos y larvas de stomatópodos; y cercanamente, los isópodos y cefalópodos (Tabla VII).

22

El resto de los grupos no tuvo una tendencia definida, mi tampoco la tuvierom la biomasa en volumen y en peso húmedo. En cambio, la abundancia total mostró una diferencia muy significativa (p = .002) entre los valores de las dos zonas; mientras que, el peso seco y el peso libre de cenizas lo fueron significativamente (p = .015 y p = .048 respectivamente), con valores más altos en la zona 1.

V. DISCUSION

La cantidad total de zooplancton es, claramente un parámetro importante para efectuar comparaciones regionales y fluctuaciones estacionales e interanuales, así como consideraciones de producción secundaria. La gram heterogeneidad del zooplancton, no solo en composición taxonómica, sino también en categorías de tamaño y constitución bioquímica imponen una serie de obstáculos de orden teórico y práctico en la elección de una medida "ideal" para la biomasa zooplanctómica. El error principal en los procedimientos volumétricos y gravimétricos es debido a la cantidad de líquido intersticial adherido al zooplancton (Ahlstrom y Thrai kill, 1963; Lovegrove, 1966; Beers, 1976), la cual constituyó el 34.5 % de la estimación en volumen y el 23.8 % del peso húmedo, al comparar los resultados obtenidos al emplear una bomba de vacio o por simple escurrimiento para extraerle (Tabla II). Dichos porcentajes son múy similares a los encontrados por Ahlstrom y Thraikill (1963) en muestras procedentes de la Corriente de Cali fornia.

23

No obstante, la adopción indiscriminada de bombeo no es recomendable en todos los casos, ya que, cuando la muestra contiene grupos gelatinosos, como doliólidos, salpas, medusas, sifonóforos, etc., puede haber pérdida de fluídos tisulares (Ahlstrom y Thraikill, 1963; Beers, 1976). Un bombeo excesivo puede dañar a los ejemplares inutilizándolos para un examen taxonómico posterior. La alternativa de eliminar a la vez fluídos intersticial y tisular por medio de secado es más deseable y permite alcanzar cierta precisión en la estimación del peso del tejido; sobretodo si se siguen las recomendaciones de manipulación de muestras y temperatura de secado (Lovegrove, 1966; Beers, 1976). Evidentemente también es deseable conocer el peso de las sales inorgánicas, para estimar el peso libre de cenizas o peso orgánico, más aún cuando la muestra contiene crustáceos de un tamaño relativamente grande, cuyo esqueleto calcáreo es pesado;asimismo, cuando se trabaja com muestras preservadas, ya que el formaldehido puede contribuír a incrementar la cantidad de sales (Lovegrove, 1966).

Las razones entre las diferentes estimaciones de la biomasa, obtenidas en esta investigación son semejantes a las encontradas por Bé et al. (1971) para el Atlántico y por Ahlstrom y Thraikill (1963) para la Corriente de California (Tabla VIII).

Para establecer una comparación entre promedios de biomasa entre diferentes zonas geográficas o en diferentes períodos de tiempo, deben tenerse en cuenta, no sólo una similaridad en los procedimientos de laboratorio, sino también una misma metodología de muestreo. En este sentido, las estimaciones efectuadas por Jiménez (1987) para el Golfo de California en marzo de 1983, son las únicas estrictamente comparables con las nuestras. Con la excepción de cuatro estaciones de muestreo en la primavera de 1984, las cuáles se ubican en la boca del Golfo ($24^{\circ}-23^{\circ}N$), el plan de estaciones y la técnica de recolecta son semejantes. Excluyendo, pues, dichas estaciones, para el área comprendida entre los 29° y $24^{\circ}N$, el volumen promedio de zooplancton de 1984 (411 cc/1000 m³) es muy semejante al de 1983 (385 cc/1000 m³; Jiménez, 1987).

Tal resultado no se esperaba, dado que la diferencia climática entre ambas primaveras es grande. Durante marzo de 1983 el Golfo experimentaba los efectos de un evento fuerte de "El Niño", el cual comenzó a desarrollarse en julio de 1982, con niveles de la superficie del mar anormalmente altos en el Pacífico ecuatorial; registros de bajos valores en el Indice de la Oscilación del Sur y vientos alisios extremadamente débiles (Rasmusson et al., 1983). En el invierno de 1982-83 aparecieron anomalías positivas en el nivel del mar a lo largo de la costa suroccidental de México y a través del Golfo de California, indicando la exte<u>n</u> sión del evento hacia el Pacífico nororiental (Robles y Christe<u>n</u> sen, 1984).

Para marzo de 1983 los efectos de "El Niño" se manifestaron por una salinidad superficial baja (<34.9%), una anomalía pos<u>i</u> tiva de temperatura de 3°-5°C y la máxima elevación del mivel del mar registrada en 20 años; todo ello indicativo de la invasión de agua tropical (Robles y Marinone, 1987). En cambio, la estructura termohalina descrita en la sección anterior para marzo-abril de 1984 fue más cercana a las condicienes típicas del período primaveral descritas para el Golfo (Reden y Groves, 1959; Alvárez y Schwartzlose, 1979), indicando un relajamiente del evento.

Los volúmenes promedio de zooplancton de 1983 y 1984 tampoco difieron de los registrados por Brinton et al. (1987) para abril de 1956 y 1957 (Tabla IX); aunque en este caso, es importam te tener en cuenta las diferencias metodológicas del muestreo: u na profundidad de muestreo de 140 m, una red de .600 mm de luz de malla, un mayor número de muestras y la inclusión del área co rrespondiente al alto Golfo. Para los meses de junio y agosto de 1957, estos autores encontraron un descenso de 32 y 50 % respectivamente; el cual, si bien es producto de un calentamiento esta cional del agua, debe estar relacionado también con el inicio de otro evento de "El Niño", el cual se extendería hasta los inicios del año 1959. Aunque es difícil evaluar la fluctuación estacional, y más aún interanual, a partir de promedios obtenidos en un sólo año y en dos primaveras mucho tiempo después, lo que si pue de afirmarse, es que en todos los casos la biomasa gurada valores altos en comparación con los registrados en sistemas adyacen tes al Golfo, como la corriente de California y la Corriente Norecuatorial (Tabla IX).

En la Corriente de California, por ejemplo, el volumen promedio de zooplancton para el período comprendido entre 1951 y 1957, en el mes de marzo fue de 160 cc/1000 m³ y para abril de 249 cc/1000 m³; mientras que en 1958 se registró un descenso de 66 y 75 % para cada mes, respecto al promedio histórico (Thraikill, 1961). Durante el verano de 1982, el volumen de zooplancton frente a la bahía del Sur de California (33°30'N) hacia mar

abierto resultó 20 veces más bajo que la mediana del período com prendido entre 1949 y 1969 (McGowan, 1984). Dicha situación se prolongó hasta el invierno y primavera de 1983 (McGowan, 1985). Frente a las costas de Baja California Sur, los volúmenes de zog plancton en el invierno de 1982-83 fueron bajos en relación al Golfo (Green, 1986) pero semejantes a los registrados en la Corriente Norecuatorial y la Contracorriente Norecuatorial en el invierno de 1955 (Holmes et al., 1957) y en el invierno de 1982 (Flores, 1985; ver Tabla IX).

La presencia de volúmenes altos de biomasa zooplanctónica en el Golfo obedecen, en gran parte, a una disponibilidad adecuada de alimento, ya que la productividad del fitoplancton durante el evento fue alta (Lara et al., 1984; Valdez, 1986; Valdez y Lara, en prensa); a pesar de que los efectos climáticos que acarrea "El Niño" sobre el ambiente abiótico se dejaron sentir en toda su intensidad. La estructura peculiar del Gofo, impone una dinámica propia en el ecosistema pelágico, puesto que se trata de un cuerpo de agua semicerrado, con una batimetría va riable, donde el forzamiento por mareas, vientos y calentamiento solar producen vigorosos procesos de mezcla (Filloux, 1973; Baden, et al., 1985) poniendo a disposición del fitoplancton un sumini<u>s</u> tro adecuado de nutrientes.

En otros sistemas pelágicos, como el Pacífico ecuatorial (Dandonneau y Donguy, 1982), la Corriente del Perú (Guillen, 1971; Barber y Chávez, 1983 y 1986) y la Corriente de California (Bernal, 1979 y 1981; McGowan, 1984 y 1985), la nutriclina es más profunda durante los eventos de "El Niño" y la producción primaria baja. En cambio, en el Golfo, el estudio de sedimentos laminados de fitoplancton silíceo procedentes de los fondos anóxicos de la cuenca de Guaymas, ya había revelado incrementos en la cantidad de diatomeas depositadas coincidiendo con años en que ocurrieron eventos de "El Niño" (Baumgartner et al., 1985).

La comparación entre promedios de biomasa en peso seco de

las primaveras de 1983 y 1984 arrojó resultados semejantes (Tabla X); aunque considerades por regiones, los promedios de 1984 fueron ligeramente más altos, sobre todo para la región sur. El peso seco promedio de la boca del Golfo en 1984 es muy parecido al de la región sur en 1983. La comparación no paramétrica de va lores de biomasa entre ambos años, para cada región, es significativa en el caso de la región sur (.01<p<.05), siendo el incremento encontrado en 1984 respecto al año anterior, de 36 %. Dicho resultado contrasta con las tendencias en producción primaria, ya que Valdez (1986) registró un descenso del 62 % en 1984 respecto al año anterior, en dicha región; mientras que en la re gión central, la productividad primaria mantuvo valores semejantes en ambos años. Es probable que, a pesar de que el alimento para el zooplancton haya estado disponible, la temperatura super ficial del agua, que en 1983 estuvo en el límite tolerado para muchos de los organismos con afinidad templado-cálida; haya afec tado la sobrevivencia o bien, la reproducción de éstos. Lavaniegos (1987) encontró un resultado de este tipo para el grupo de los eufaúsidos, donde la especie de afinidad templado-cálida, Nyctiphanes simplex mostró un bajo número de larvas en fase de caliptopis fuera del umbral de islas, donde se mantuvo la temperatura superficial más baja, en 1983; mientras que al año siguien te, la abundancia de caliptopis fué indicio de una reproducción más intensa.

27

En cuanto a las estimaciones obtenidas en el conteo de organismos, la abundancia total de zooplancton, arrojó un promedio de 1,151 org/m³, para el área comprendida entre 29°y 24°N. Jiménez (1987) registró una abundancia total promedio de 768 org/m³ en 1983, pero sus conteos no incluyeron a los grupos de radiolarios y foraminiferos; por lo cual, descontando a estos grupos, el promedio de 1984 sería de 1,106 org/m³. La diferencia entre años parece grande. No obstante, el promedio es una medida muy sensible a valores extremadamente altos o extremadamente bajos, sobr<u>e</u>
todo cuando el múmero de muestras es pequeño; por ello, sería conveniente excluír a las estaciones costeras (85 y 112) al calcular el promedio de 1984, ya que éstas acaparan el 31 % de la captura total, además de que minguna de las estaciones de 1983 fue costera. Ahora el promedio sería de 870 org/m³ y la diferencia entre años ya no parece tam grande, y de hecho, la comparación mo paramétrica no arrojó resultados significativos.

Comparando los valores de abundancia total promedio del Gol fo con otros sistemas, resultam más altos: para la Corriente Norecuatorial y la Contracorriente Norecuatorial, los promedios del Gelfo son hasta cinco y tres veces mayores respectivamente (Hida y King, 1955; ver Tabla XI) en relación a los promedios del verano de 1952. El contraste es aún mayor para la Corriente de California, donde la abundancia total en febrero de 1959 tuvo un promedio de 79 org/m³ (Ahlstrom y Thraikill, 1963), cuando persistíam las condiciones de otro evento de "El Niño". En ese año se registró el volumen de plancton más bajo de la década (32 cc/1000 m³).

La estructura de las comunidades en el Golfo y en los sistemas mencionados (Tabla XI) revela que el grupo de los copépodos fue el más importante en todos los casos; sin enbargo, en términos relativos el grupo representó el 71 % de la comunidad en la Corriente de California y entre el 64 y 74 % en el sistema de corrientes ecuatoriales del Pacífico central. En el Golfo, les copépodes constituyeron el 44 y 45 % para 1983 y 1984 respectiva mente. Esto se debió en gran parte a los altos valores ocupados por el grupo de los cladóceros, y más especificamente por la especie <u>Penilia avirostris</u>, que da cuenta de más del 95 % de ellos. Dicha especie tiene distribución tropical en aguas costeras, pero también habita en mares interiores templado-cálidos, con tendencia a proliferar en el verano (Raymont, 1983). El Golfo de Ca lifornia parece, por tanto, ser un sitio ideal para el desarrollo

de <u>P. avirostris</u>, aunque las altas densidades observadam podrian variar en su tiempo de ocurrencia, ya que el tipo de reproducción incluye una fase de reproducción partenogénetica muy prolífica, y cuando las condiciones dejan de cor apropiadas forman huevos de resistencia que descanzan en el fondo (Raymont, 1983). Al haberle encontrado encontrado muy abundante en marzo de 1983, aunado a la dominancia de copepoditos del género <u>Oithona</u>, Jiménez (1987) sugería la posibilidad de que durante "El Niño", las especies con tendencia a alimentarse de partículas de pequeño tamaño (<20 pm) se hubiesen visto favorecidas, ya que el incremento en la produ<u>c</u> ción primaria en dicho período, fue debido básicamente al nanoplancton (Valdez, 1986). Sim embargo, <u>P. avirostris</u> mantuvo altas densidades en la primavera de 1984 cuando la productividad del nanoplancton descendió (Valdez, 1986).

Las diferencias entre 1983 y 1984, a nivel de grandes grupos, se reflejaron en los grupos de abundancia intermedia, es d<u>e</u> cir, aquéllos cuya abundancia media cae dentro del intervalo de 10 a 100 org/m³. Eufaúsidos, tunicados y sifonóforos mostraron <u>u</u> na tendencia a incrementarse en 1984, mientras que los ostrácodos y las larvas de langostilla (<u>Pleuroncodes planipes</u>) descendieron; según se deduce de la comparación no paramétrica con la prueba de Mann-Whitney. Los cambios en abundancia pueden signif<u>í</u> car una disminución en el número de organismos de especies templadas, como ocurre por ejemplo, con los eufaúsidos, los cuales sufrieron un incremento de 280 % en 1984 gracias a la recuperación de una especie templado-cálida (<u>Nyctiphanes simplex</u>); las especies de afinidad tropical, aunque expandieron su distribución hacia el norte durante el evento, lo hicieron sin un aumento importante en su abundancia (Lavaniegos, 1987).

En otros casos, como ocurre con la langostilla, el calentamiento superficial del agua, favoreció su proliferación, y es in teresante notar que en la Corriente de California también fue abundante en febrero de 1959 (Ahlstrom y Thraikill, 1963), donde

representó el 13 % de la abundancia total (Tabla XI).

El análisis de afinidad entre estaciones de muestreo revelé la presencia de dos tipos de comunidades cuyos centros estuvieron en la cuenca de Guaymas y en la boca del Golfo. Brintom et al. (1986) ya habíam planteado que en la boca del Golfo la mayoría de los zooplancteres tiendem a presentarse en menores densidades que en el resto del Golfo, com excepción de los foraminíferos. Em este estudio, también las larvas veliger, los heterópodos y los anfípodos fueron más abundantes en la comunidad cercana a la boca del Golfo.

IV. CONCLUSIONES

- El método empleado en la determinación de biomasa influye sensiblemente en el resultado. Alrededor del 34.5 % del volumem de la muestra y el 23.2 % de su peso húmedo fué líqui do intersticial. Una vez eliminado, el 92.4 % del planctom consistió de fluidos tisulares, 1.2 % de sales inorgánicas y sóle el 6.4 % de materia orgánica.
- 2. El volumen promedio encontrado para el zooplancton del Golfo en la primaveræ de 1984, fue similar al registrado para otros años, y alto en relación a otros sistemas como el de la Corriente de California y el sistema de Corrientes Ecuatoriales.
- 3. A pesar de que las condiciones climáticas del Golfo en la primavera de 1984 mostraron un retorno hacia condiciones normales, el promedio de biomasa para ese año fue muy similar al de 1983, cuando se registraba un evento fuerte de El Niño.
- 4. Considerando a la biomasa en peso seco, el promedio para la región sur mostró un ligero incremento (36 %) en 1984 respecto a 1983.
- 5. En términos de abundancia el zooplancton del Golfo consistió de 97.4 % de holoplancton y 2.6 % de meroplancton. De un total de 29 grupos, tres de ellos (copépodos, cladóceros y eufaúsidos) acapararon el 73.6 % de la comunidad promedio. En comparación a otros sistemas destaca el papel dominante de los cladóceros y una mayor abundancia de eufaúsidos.
- 6. En general la composición de la comunidad en 1984 se asemeja a la de 1983. Unicamente los eufaúsidos, tunicados y sifonóforos tendieron a aumentar en 1984, mientras que los ostrácodos y la langostilla, a descender.

7. La afinidad entre estaciones de muestres reveló dos tipos de asociaciones faunísticas, una de ubicación central y otra en la boca del Golfo. En esta última, salvo por las larvas veliger, heterópodos, anfipodos y larvas de stomatópodo, la mayoría de los grupos muestra una menor densidad respecto a la zo na central.

here a hard door to be read

BIBLIOGRAFIA

Ahlstrom, E.H. y J.R. Thraikill, 1963. Plankton Volume Loss with Time of Preservation. <u>CalCOFI</u> <u>Rep.</u> 9: 57-73.

- Alvarez B., S. y R.A. Schwatzlose. 1979. Masas de agua del Golfo de Califormia. <u>Ciencias Marinas 6</u>: 43-63.
- Alvariño, A. 1963. Quetognatos epiplanctónicos del Mar de Cortés. <u>Rev. Soc. Mex. Hist. Nat. 24</u>: 97-203.
- ----- 1969. Zoogeografia del Mar de Cortés: quetognatos, sifonóforos y medusas. <u>An. Inst. Biol. UNAM Ser. Cienc. del</u> <u>Mar y Limmol. 40(1): 11-54.</u>
- Badan D., A; C.J. Koblinsky y T. Baumgartner. 1985. Spring and Summer in the Gulf of California: Observations of Ssurface Ther mal Patterns. <u>Oceanologica Acta 8</u>: 13-22.
- Bailey, K.M. y L.S. Incze. 1985. El Niño and the Early Life History and Recruitment of Fishes in Temperate Marine Waters. En:
 EL NIÑO NORTH.- Niño Effects in the Eastern Subartic Pacific Ocean. W.S. Wooster y D.L. Fluharty (eds.) Washington Sea Grant Program. Univ. Washington: 143-165.
- Barber, R.T. y F.P. Châvez. 1983. Biological Consequences of El Niño. <u>Science</u> 222: 1203-1210.
- to Living Resources during the 1982-83 El Niño. <u>Nature 319</u>: 279-285.
- Baumgartner, T. y N. Christensen Jr. 1985. Coupling of the Gulf of California to Large-scale Interannual Climatic Variability. Jour. Mar. Res. 43: 825-848.
- Bé, A.W.; J.M. Forns y O.A. Roels. 1971. Plankton Abundance in the North Atlantic Ocean. En: FERTILITY OF THE SEA. V.1. J.D. Costlow (ed.) Gordon y Breach. East Germany: 17-50.
- Beers, J.R. 1976. Determination of Zooplankton Biomass. En: ZOO-PLANKTON FIXATION AND PRESERVATION. H.S. Steedman (ed.) UNESCO Press. Monographs on Oceanographic Metodology 4. Paris: 37-84.

Bernal, P.A. 1979. Large-scale Hiological Events in the Califor mix Current. <u>CalCOFI</u> Rep. 20: 89-101.

34

- ------ 1981. A Review of the Low-frecuency Response of the Pelagic Ecosystem in the California Current. <u>CalCOFI Rep. 22</u>: 49-62.
- Bjerknes, J. 1966. A Possible Response of the Atmospheric Hadley Circulation to Equator Anomalies of Ocean Temperature. <u>Tellus</u> <u>28</u>: 820-828.
- Boyd, C.M. 1960. The larval stages of <u>Pleuroncodes planipes</u> Stimp son (Crustacea, Decapoda, Galatheidae). <u>Biol. Ball</u>. 118: 17-30.

Brintom, E.; A. Fleminger y D. Siegel C. 1986. The Temperate and Tropical Planktonic Biotas of the Gulf of California. <u>CalCOFI</u> <u>Rep. 27</u>: 228-266.

Brinton, E. y A.W. Townsend. 1980. Euphausiids in the Gulf of California.- The 1957 Cruises. <u>CalCOFI Rep. 21</u>; 211-236.

Brodeur, R.D. 1986. Northward Displacement of the Euphausiid <u>Nyctiphanes simplex</u> Hansen to Oregon and Washington Waters fo llowing the El Niño Event of 1982-83. Jour. Crus. Biol. 6: 686-692.

Cane, M.A. 1983. Oceanographic Events during El Niño. <u>Science</u> 222(4629): 1189-1194.

- Colebrook, J.M. 1977. Annual Fluctuations in Biomass of Taxonomic Groups of Zooplankton in the California Current, 1955-59. Fish. Bull. 75: 357-368.
- Cummings, J.A. 1977. Seasonal and Area Distribution of Zooplankton Standing Stocks in the Northern Gulf of California. M.S. Thesis. Dept. of Ecology and Evolutionary Biol. Univ. Arizona, 61 p.
- Cushing, D.H. 1959. On the Nature of Production in the Sea. Fish. Invest. U.K. Ser. 2(22):
- ----- 1981. The Effect of El Niño upon the Peruvian Anchoveta Stock. En: COASTAL UPWELLING. F.A. Richards (ed.) American Geophysical Union. Washington: 449-457.

Dandonneau, Y. y J.R. Donguy. 1983. Changes in Sea Surface Chlo-

rophyll Concentration related to the 1982 El Niño. Trop. Ocean -Atmos. News. 21: 14-15.

- Farfan, B.C. 1973. Estimación de biomasa de zooplancton en la zona norte del Golfo de California. En: ESTUDIO QUIMICO SOBRE LA CONTAMINACION POR INSECTICIDAS EN LA DESEMBOCADURA DEL RIO CO-LORADO. Reporte final a la Dirección de Acmacultura de la Srím. de Mecursos Hidraúlicos. UABC, Unidad de Ciencias Marinas. Tomo II: 339-364.
- Fillour, J.H. 1973. Tidal Patterns and Energy Balance in the Gulf of California. <u>Nature</u> 243: 217-221.
- Fleminger, A. 1964. <u>Labidocera</u> johnsoni species nev. Crustacea, Pontellidae. <u>Pilot Register</u> Zool., card 3 A.B.
- ----- 1967. Taxonomy, Distribution and Polymorphism in the <u>Labidocera</u> jollae Group with Remarks on Evolution within the Group (Copepoda: Calanoida). <u>Proc. U.S. Nat. Mus. 120</u> (3567): 1-61.
- ----- 1975. Geographical Distribution and Morphological Divergence in American Coastal-zone Planktonic Copepods of the genus <u>Labidocera</u>. En: ESTUARINE RESEARCH Vol.1. Acad. Press. N.Y.: 392-419.
- Flores Z., M. 1985. Determinación y comparación de las biomasas totales y parciales del zooplancton obtenido durante el cruc<u>e</u> ro Domo III en la región del Domo de Costa Rica. Tesis Licenciatura. Fac. Ciencias, UNAM. 54 p.
- Fulton, J.D. y R.J. LeBrasseur. 1985. Interannual Shifting of the Subartic Boundary and some of the Biotic Effects on Juvenil Salmonids. En: EL NIÑO NORTH (*ibid.*): 237-252.
- Gilbert, J.Y. y W.E. Allen. 1943. The Phytoplankton of the Gulf of California obtained by the E.W. Scripps in 1939 and 1940. J. Mar. Res. 5(2): 89-110.
- Gómez A., S; C. Licea y C. Flores. 1971. Plancton de lagunas cos teras I.- Ciclo anual en el sistema Huizache-Caimanero (1969-1970). An.Centro Cien. Mar Limnol. UNAM 42(1): 83-98.
- Gômez A., S; H. Santoyo y A. Martinez. 1974. Plancton de lagunas costeras II.- Ciclo anual en la laguna de Yavaros (1969-1970).

An. Centro Cienc. Mar Limnol. UNAM 45(1): 1-30.

Green R., Y. 1986. Variación cualitativa y cuantitativa de los eufaúsidos (Crustacea, Malacostraca) en un ciclo estacional en el Pacífico oriental de Baja California Sur. Tesis Licenciatura. Fac. Ciencias, UNAM. 80 p.

Guillén, O. 1971. The 'El Niño' Phenomenon in 1965 and its Relations with the Productivity in Coastal Peruvian Waters. En: FERTILITY OF THE SEAS (Íbid.): 187-198.

Gurney, R. 1942. LARVAE OF DECAPOD CRUSTACEA. Ray Soc. London. 306 p.

Hardy, A. 1965. THE OPEN SEA: Its Natural History. Houghton Mifflim Co. G.B.

Haury, L.R.; J.A. McGowam y P.H. Wiebe. 1978. Patterns and Processes in the Time-space Scales of Plankton Distributions. En: SPATIAL PATTERNS IN PLANKTON COMMUNITIES. J.H. Steele (ed.) Plenum Press. N.Y.: 277-327.

Hida, T.S. y J.E. King. 1955. Vertical Distribution of Zooplankton in the Central Equatorial Pacific, July-August 1952. <u>U.S.</u> <u>Dept. Int. Fish Wildl. Ser. Spe. Sci. Rep.</u> 144. 22 p.

Holmes, R.W.; M.B. Schaefer y B.M. Shimada. 1957. Primary Production, Chlorophyll and Zooplankton Volumes in the Eastern Tropical Pacific Ocean. Bull. Inter-Am. Trop. Tuna Comm. 2(4): 127-169.

Idyll, C.P. 1973. The Anchovy Crisis. Sci. Am. 228: 22-29.

Jiménez P., C. 1987. Características estructurales del zooplancton del Golfo de California durante el fenómeno de El Niño (1982-1983). Tesis Maestría. CICESE, Ensenada, México.

Karinen, J.F.; B.L.Wing y R.R.Straty. 1985. Records and Sightings of Fish and Invertebrates in the Eastern Gulf of Alaska and Oceanic Phenomena related to the 1983 El Niño Event. En: FL NI-NO NORTH (ibid.): 253-267.

Kramer, D.; M.J. Kalin, E.G. Stevens, J.R. Thraikill y J.R. Zeifel. 1972. Collecting and Processing Data on Fish Eggs and Larvae in the California Current Region. <u>NOAA Tech. Rep. NMFS</u> <u>CIRC-370. 38 p.</u>

- Lara L., J.R.; E. Valdez H. y L.C. Jiménez P. 1984. Planktom Studies in the Gulf of California during the 1982-1983 El Niño. Trop. Ocean-atmos. News. 28: 16-17.
- Lavaniegos E., B.E. 1987. Efectos del evento de El Niño 1982-83 sobre las poblaciones de cufaúsidos del Golfo de California. Tesis Maestría. CICESE, Ensenada, México.
- Lindemberg, D.; F. Trillmich, G.L. Kooyman y P. Majluf. 1983. Reproductive Failure of Fur Seals in Galapagos and Peru in 1982 -83. Trop. Ocean-atmos. News. 21: 16-17.
- Longhurst, A.R. 1981. Significance of Spatial Variability. En: <u>A</u> NALYSIS OF MARINE ECOSYSTEMS. A.R.Longhurst (ed.) Academic Press.: 415-441.
- Lovegrove, r. 1966. The Determinations of the Dry Weignt of Plank ton and the Effect of Various Factors on the Values obtained. En: SOME CONTEMPORARY STUDIES IN MARINE SCIENCE. H. Barnes (ed.) Allen y Unwin Ltd. London: 429-467.
- Manrique, F. 1977. Seasonal Variation of Zooplankton in the Gulf of California. PROC. SYMP. ON WARM WATER ZOOPLANKTON, Dona Paula, India. 14-19 Oct. 1976. UNESCO/NIO Spec. Publ.:242-249.
- McEwen, G.F.; M.W. Johnson y T.R. Folsom, 1934. A Statistical Analysis of the Performance of the Folsom Plankton Splitter ba sed upon Test Observations. <u>Arch. Meteor. Geophys. Bioklimat.</u> <u>7</u>: 502-527.
- McGowan, J.A. The Thecosomata and Gymnosomata of California. The Veliger 3: 103-129.
- ----- 1984. The California El Niño, 1983. Oceanus 27(2): 48-51.
- En: EL NIÑO NORTH (ibid.): 166-184.
- McLaughlin, P.A. 1980. COMPARATIVE MORPHOLOGY OF RECENT CRUSTA-CEA. W.H. Freeman y Co. San Francisco, Ca.
- Menzel, D.W. y J.H. Ryther. 1961. Zooplankton in the Sargazos Sea off Bermuda and its Relation to Organic Production. <u>J. Cons.</u> <u>Int. Explor. Mer 26</u>: 250-258.

Miller, Ch.B.; H.P. Batchelder, R.D. Brodeur y W.G. Pearcy. 1985. En: EL NIÑO NORTH (1bid.): 185-187.

38

Osorio, T., B.F. 1946. Contribución al conocimiento del Mar de' Cortés. Bol. Soc. Mex. Geogr. Estadist. 62(1): 89-130.

- Pearcy, W; J. Fisher, R. Brodeur y S. Johnson. 1985. Effects of the 1983 El Niño on Coastal Nekton off Oregon and Washington. En: EL NIÑO NORTH (1bid.): 188-204.
- Peterson, J.H.; A.E. Jahn, R.J. Lavenberg, G.E. McGowen y R.S. Grove. 1986. Physical-chemical Characteristics and Zooplankton Biomass on the Continental Shelf off Southern California. <u>CalCOFI Rep. 27</u>: 36-52.

Ramage, C.S. 1986. El Niño. Sci. Am. 241: 55-62.

Rasmusson, E.M.; P.A. Arkin, A.F. Krueger, R.S. Quiroz, R.W. Rey nolds. 1983. The Equatorial Pacific Atmospheric Climate during 1982-83. <u>Trop. Ocean-atmos. News. 21:</u> 2-3.

Raymont, J.E.G. 1983. PLANKTON AND PRODUCTIVITY IN THE OCEANS. Vol. 2: ZOOPLANKTON. Pergamon Press. G.B. 824 p.

Robles P., J.M. y N. Christensen. 1984. Effects of the 1982-83 El Niño on the Gulf of California. <u>Transac. Amer. Geophys.</u> <u>Union 52</u>: 1039.

- Robles, J.M. y G. Marinone. 1987. Seasonal and Interannual Thermo-haline Variability in the Guaymas Basin of the Gulf of California. <u>Continental Shelf</u> (en prensa).
- Roden, G.I. 1958. Oceanographic and Meteorological Aspects of the Gulf of California. <u>Pacif. Sci. 12(1)</u>: 21-45.
- ----- 1964. Oceanographic Aspects of Gulf of California. En: MARINE GEOLOGY OF THE GULF OF CALIFORNIA. T.H. van Alden y G.G. Shor Jr. (eds.) Amer. Ass. Petroleum Geol. Tulsa, Okl<u>a</u> homa. Memoir 3: 30-58.
- Roden, G.I. y G.W. Groves. 1959. Recent Oceanographic Investigations in the Gulf of California. Jour. Mar. Res. 18: 10-35.
- Rusnak, G.A.; R.L. Fisher y F.P. Shepard. 1964. Bathymetry and Faults of Gulf of California. En: MARINE GEOLOGY OF THE...(1bid.): 59-75.

- Round, F.E. 1967. The Phytoplankton of the Galf of California. Part. I.- Its Composition, Distribution and Contribution to the sediments. J. Exp. Mar. Biol. Ecol. 1 (1): 76-97.
- Russell, F.S. 1953. PICTORIAL KEYS TO SPECIES OF BRITISH MEDU-SAE. Cambridge Univ. Press. G.B.
- Schreiber, R.W. y E.A. Screiber. 1983. Reproductive Failure of Marine Birds on Christmas Island, Fall 1982. <u>Trop. Ocean-at-</u> <u>mos. News. 16</u>: 10-12.
- Siegel, S. 1980. ESTADISTICA NO PARAMETRICA. Ed. Trillas. México, D.F. 2da. ed. 346 p.
- Siegel C., D. 1982. Factors determining the Distribution of Hyperiid Amphypoda in the Gulf of California. Ph. Dissertation. Univ. Arizona.
- Smith, D.L. 1977. A GUIDE TO MARINE COASTAL PLANKTON AND MARINE INVERTEBRATE LARVAE, Kendall/Hunt Publ. Co. USA.
- Strickland, J.D. H. 1960. Measuring the Production of Marine Phy toplankton. <u>Fish. Res. Bd. Can. Bull. 122</u>: 1-
- Thraikill, j. 1961. Zooplankton Volumes off the Pacific Coast. U.S. Fish. Wildlife Serv. Spec. Sci. Rep. Fish. 581. 50 p.
- UNESCO. 1968. ZOOPLANKTON SAMPLING. Monographs on Oceanographic Metodology 2. Imprimiere Rolland, Paris. 174 p.
- Valdez H., E. 1986. Distribución de la biomasa y productividad del fitoplancton en el Golfo de California durante el evento de El Niño 1982-1983. Tesis Maestría. CICESE, Ensenada, México.
- Valdez H., E. y J.R. Lara L. 1987. Productividad primaria en el Golfo de California: efectos del evento 'El Niño' 1982-1983. Ciencias Marinas (en prensa).
- Valdivia, J.; R. Jiménez, S. Avaria y D. Mora. 1983. Informe de la Tercera Reunión del Comité Científico del Estudio Regional del Fenómeno El Niño. Comisión Permanente del Pacífico Sur. Quito, Ecuador. 11 p.
- van Alden, T.H. 1964. Recent Mrine Sediments of Gulf of California. En: MARINE GEOLOGY OF THE...(1bic.): 216-310.

Wickett, W.P. 1967. Ekman Transport and Zooplankton Concentration

in the North Pacific Ocean. J. Fish. Res. Bd. Can. 21(3): 581 -594.

- Williamson, D.I. 1957. Crustacea, Decapoda: Larvae, I.- General. <u>COMB. Perm. Int. Explor. Mer</u>, Fiches D[®]identification du zooplancton No. 112.
- Wyrtki, K. 1966. Oceanography of the Eastern Equatorial Pacific Ocean. <u>Oceanog. Mar. Biol. Ann. Rev.</u> 4: 33-68.
- ----- 1967. Circulation and Water Masses in the Eastern Equatorial Pacific Ocean. Int. Jour. Ocean. Limm. 1: 117-147.
- ----- 1975. El Niño.- The Dynamic Response of the Equatorial Pacific Ocean to Atmospheric Forcing. Jour. Phys. Oceamogr. 5: 572-584.
- Yamaji, I. 1977. ILUSTRATION OF THE MARINE PLANKTON OF JAPAN. Hoi kusha Publ. Co. Osaka, Japan.

EST.	LATITUD °N	Longitud °w	PROFUN. EST. (m)	FECHA	HORA	TIEMPO ARRASTRE (mim)	PROFUN. ARRASTRE (=)	VOLUMEN H _T O FIL (= ³)
·····	28 1.2 7.1	113 30 11	E 00	0707	14.50		209 E	21.7 1.7
41	20 4C+ (* 28 20 5t	112 6 01	500	0325	14172	20 0	20067	242042
42	20: 27. 2	112 24 21	500	0324	1742	20.9	201.07	272+07
47 51	28 1.81	111 28 21	270	0325	1+60	20+9	207.03	224+77
66	20 400		1150	0725	1+47	22 0	200 1	271+04
61	57 78 7	112 21 81	630	0726	2.5:50	21.0	20761	207+02
65	27 25 01	111 18 78	2100	0726	15.20	22 0	202+0	266+12
24	27 16 21		1040	0328	1.04	22.0	212.0	247.572
24 25	27 0 71	110 20+4*	62	0320	22+10	21.0 4 5	213+U	610+61
77	27 0.61	111 15.61	1600	0228	12045	21 0	42+1	4/012 205 1/
83	26 13.51	110 45.81	1600	0330	14+51	10.3	211+2	170 27
102	26 37 31	100 31.29	510	0,01	23616	20.6	210 0	21.5 10
91	26 25.9	110 10.78	1100	0331	11+10	21.0	215 1	227 10
97	26 6.01	109 55.11	365	0401	11+18	21.1	212.6	228 12
9h	25 45.31	110 31.81	880	0331	23+52	20.3	201.3	210+12
112	25 18.01	100 2.0*	25	0403	23+11	1 8	12 0	240442
105	25 4.81	110 35.21	130 130	0402	22+15	21.5	212 1	256 1.8
109	24 59.81	109 38.6*	1600	0402	11.51	21.6	215.1	220040
116	24 35,21	109 26.01	2120	0405	13+35	20.0	211 5	188 31
124	24 32.01	108 18.0*	920	0404	23+30	21.4	200.4	231 61
117	24 24.21	110 4.1*	750	0405	22+22	21.3	210 6	220 81
120	24 4.51	100 21.01	1380	0404	10.26	21.5	214 2	200 67
125	24 11.41	107 54.5*	71	0405	11+26	5.4	LI402	60.22
129	23 17.11	108 3.15	1170	0106	0+0%	21.2	4744 211 2	223.84
132	23 20.11	108 56.91	2700	0400	11+60	21.5	212.7	252400
136	23 5.11		850	0407	21+47	2107	212 1	271.07

.

Tabla I. Localización de las estaciones de muestreo durante el crucero «ICESE 8403/04 al Golfo de California.

a da ana an

.

.

.

EST.	VOLUMEN DES (cc/1000	SPLAZADO) m ³) s.1.i.*	PESO HUMEDO (g/1000 m ³)	s.l.i.*	PESO SECO (mg/m ³)	PESO LIB. CENIZĂS (mg/m ³)
41	164.32	153.64	247.99	141.01	11.20	7.79
45	315.94	200.59	331.32	199.14	23.79	22.00
49	978,85	606.89	779.62	582.92	31.99	19.14
54	876.35	886.71	985,35	918.71	131.72	118.29
66	677.07	420.54	562.28	408:58	35.99	31.56
61	763.19	457.91	711.15	444.29	30.45	19.80
65	685.68	491.27	554.72	511.70	30.69	
74	320.79	150.31	223.34	156.22	11.37	9.16
85	1484.62	818.66	955,55	811.07	62.41	57.79
17	229.40	165.83	255.26	167.75	14.08	12.41
83	892.51	603.56	570.38	611.41	39.23	24.26
102	325.73	260.59	342.86	259.35	24.56	22.01
91	537.21	238.66	363,39	240.27	16.09	13.43
97	335.68	260.15	409.19	259.49	21.53	17.84
94	482.49	304.47	368.32	311.42	25.44	22.43
112	1673.64	602,51	946.03	653.56	62.38	57.27
105	257.33	270.59	266.33	268.89	15.20	12.71
109	336.97	294.01	452.31	298.14	19.56	15.98
116	743.45	506.61	627.29	507.61	34.44	28.40
124	604.46	349.73	406.73	361.53	19.90	17.03
117	996.33	622.25	746.34	647.71	34.62	26.24
120	524.63	382.51	388.90	392.97	16.53	13.79
125	1162.40	335.44	577.18	319.38	31.02	26.34
129	429.44	322.08	384.29	326.02	22.49	19.03
132	388.12	213.47	337.16	219.21	13.41	12.35
134	575.00	186.03	301.66	208.71	14.60	12.54
x	644.68	388.65	503.65	393.35	30.57	25.58
S	381.00	202.00	229.00	207.00	24.60	22.90

Tabla	II.	Biomasa	total	de l	zooplancton	por	estación	de	muestreo	obtenida
		por dit	ferente	s mé	todos.	•				

* s.l.i. = sin líquido intersticial

-		0.1.2.0			- V.		100	104	100	120	1.24
-	65	85	83	97	94	112	103	124	120	129	134
	534989	1093362	439114	328701	436336	2381925	164712	264168	351486	379283	261119
	812100	0	255615	275395	30747	222260	268497	25974	2442	43700	811
	68180	136416	27356	3593	57756	152301	338	4146	3700	9585	2776
	69052	194104	101924	70493	34206	125858	24262	24870	42581	63351	23829
	44529	2714	103174	56529	24757	9373	8222	24099	133543	108288	135430
	200309	27147	43911	18932	15973	222260	9570	8238	8089	5359	6368
	116420	4751	14816	60558	15307	112468	33158	26665	38613	31469	16100
	1936	3393	1250	2820	8652	14728	1078	41168	5952	105130	23271
	10196	6108	32309	12890	17170	8034	12805	7875	9005	15803	5682
	24007	2036	38199	13830	10915	0	8626	5397	3663	9818	6900
	12132	1357	3035	5505	2529	2678	5257	22244	38002	825	27600
	10454	1357	25526	8997	25321	5356	1348	2901	1526	10530	3653
	21813	679	17315	6311	1464	9373	270	1796	1374	3710	3112
	8131	4072	5534	7116	6788	14728	2291	1805	8852	6801	2435
	7099	0	17136	146 36	799	4017	3909	276	458	1649	0
	8390	2036	1250	1485	2529	12050	540	872	2289	1787	363
e le ser de la ser de	1517	1527	1339	1913	5998	9037	1651	2168	1488	1993	1455
	774	3393	1428	2.317	2137	1339	404	2 86 7	4273	11336	1362
	258	679	1071	2022	4533	5356	2965	3178	3510	2199	1725
	0	1357	1607	545	7587	0	1887	1036	153	154	2453
	2969	0	4998	1074	1464	1339	270	691	153	721	85
	1162	0	5535	6579	0	1339	0	0	0	0	0
	1936	3393	2678	806	666	2678	0	276	458	0	0
	129	7466	179	134	0	0	0	0	0	0	0
	516	0	0	269	339	1339	135	0	0	0	0
	0	0	55	671	8	0	135	138	305	275	8
	0	0	0	0	133	0	0	553	0	34	169
	0	. 0	0	134	0	0	0	0	153	412	0
	0	0	0	0	33	335	D	9	10	0	17
	0	1357	4284	3088	1464	4017	0	Ō	610	550	1505
	1958998	1498704	1150638	907343	716111	3324188	552330	473410	662688	814762	528228
	12.0	9,2	7.1	5.6	4.4	20,4	3.4	2,9	4.1	5.0	3.2

1/1000 m³) por estación de muestreo. Los grupos pertenecientes al holoplancton están en isculas. El nivel taxonómico, cuando no corresponde al de Orden, se indica a la derecha: superfamilia.

.

.

43

.

.

Tabla III. Abundancia de grupos zooplanctónicos (org/1000 m³) por estación de muestreo. Los grupos pertenecientes al holoplancton están en mayúsculas y los del meroplancton en minúsculas. El nivel taxonómico, cuando no corresponde al de Orden, se indica a la derecha: Ph, phylum; C, clase; Sc, subclase y Sf, superfamilia.

.

•

-

GRUPOS				E S	TACI	ONES	DE MU	ESTR	E 0.			·····			
	41	45	54	61	6 5	85	83	97	94	112	109	124	120	129	134
COPEPODA (Sc)	123699	741220	475207	424512	534989	1093362	439114	328701	436336	2381925	164712	264168	351486	379283	261119
CLADOCERA	657	3997	4462	465741	812100	0	255615	275395	30747	222260	268497	25974	2442	43700	811
EUPHAUSIACEA	151239	45729	490249	36419	68180	136416	27356	3593	57756	152301	338	4146	3700	9585	2776
CHAETOGNATA (Ph)	4206	35621	24601	57463	69052	194104	101924	70493	34206	125858	24262	24870	42581	63351	23829
RADIOLARIA (C)	3550	2116	2677	96107	44529	2714	103174	56529	24757	9373	8222	24099	133543	108288	135430
SIPHONOPHORA	5916	71947	12110	52435	200309	27147	43911	18932	15973	222260	9570	8238	8089	5359	6368
APPENDICULARIA	2037	2234	2932	190779	116420	4751	14816	60558	15307	112468	33158	26665	38613	31469	16100
larvas veliger	394	118	1275	5315	1936	3 3 9 3	1250	2820	8652	14728	1078	41168	5952	105130	23271
OSTRACODA (Sc)	11437	25158	9433	15946	10196	6108	32309	12890	17170	8034	12805	7875	9005	15803	5682
POLYCHAETA (C)	1183	3527	3059	23129	24007	2036	38199	13830	10915	0	8626	5397	3663	9818	6900
DOLIOLIDAE	131	1763	127	2300	12132	1357	3035	5505	2529	2678	5257	22244	38002	825	27600
huev. y larv. peces	131	353	514	5028	10454	1357	25526	8997	25321	5356	1348	2901	1526	10530	3653
FORAMINIFERA	789	235	254	15371	21813	679	17315	6311	1464	9373	270	1796	1374	3710	3112
THECOSOMATA	263	940	1275	6914	8131	4072	5534	7116	6788	14728	2291	1805	8852	6801	2435
larvas equinodermo	1052	1529	3441	12930	7099	0	17136	14636	799	4017	3909	276	458	1649	0
HYDROMEDUSAE (C)	459	2469	381	2155	8390	2036	1250	1485	2529	12050	540	872	2289	1787	363
DECAPODA	362	3042	3314	1051	1517	1527	1339	1913	5998	9037	1651	2168	1488	1993	1455
HETEROPODA (Sf)	131	118	127	1006	774	3 3 9 3	1428	2.317	2137	1339	404	2867	4273	11336	1362
AMPHYPODA	0	118	892	719	258	679	1071	2022	4533	5356	2965	3178	3510	2199	1725
SALPIDAE	0	0	1530	0	0	1357	1607	545	7587	0	1887	1036	153	154	2453
GYMNOSOMATA	131	235	382	2155	2969	0	4998	1074	1464	1339	2 7 0	691	153	721	85
Otras larvas inver.	0	0	0	2011	1162	0	5535	6579	0	1339	0	0	0	0	0
larvas cifonauta	0	823	765	431	1936	3393	2678	806	666	2678	0	276	458	0	0
CTENOPHORA (Ph)	592	0	127	0	129	7466	179	134	0	0	0	0	0	0	0
larvas cirripedio	0	118	0	0	516	0	0	269	339	1339	135	0	0	0	0
ISOPODA	0	0	0	0	0	0	55	671	8	0	135	138	305	275	8
CEPHALOPODA (C)	66	0	382	0	0	0	0	0	133	0	0	553	0	34	169
SCYPHOMEDUSAE (C)	0	· 0	0	0	0	. 0	0	134	0	0	0	0	153	412	0
larvas stomatopodo	0	0	0	0	0	0	0	0	33	335	0	9	10	0	17
no identificados	0	· 0	0	1293	0	1357	4284	3088	1464	4017	0	0	610	550	1505
TOTAL	308425	943410	1039516	1421210	1958998	1498704	1150638	907343	716111	3324188	552330	473410	662688	814762	528228
2	1,9	5.8	6,4	8.7	12.0	9,2	7.1	5.6	4.4	20.4	3.4	2,9	4.1	5.0	3.2
No. de grupos	21	22	24	22	24	20	25	27	26	23	23	25	25	24	23

•

£

•

GRUPOS	x	%	% acum.
COPEPODA (Sc)	560,022	51.54	51,54
CLADOCERA	160,826	14.80	66.34
EUPHAUSIACEA	79,319	7.30	73.64
CHAETOGNATA (Ph)	59,761	5.50	79.14
RADIOLARIA (C)	50,340	4.63	83.77
SIPHONOPHORA	47,238	4.35	88,12
APPENDICULARIA	44,554	4.10	92.22
larvas veliger	14,432	1.33	93.55
OSTRACODA (Sc)	13,323	1.23	94.78
POLYCHAETA (C)	10,286	.95	95.73
DOLIOLIDAE	8,366	.77	96.50
huev. y larv. peces	6,866	.63	97.13
FORAMINIFERA	5,591	.51	97.64
THECOSOMATA	5,196	.48	98.12
larvas equinodermo	4,595	. 42	98.54
HYDROMEDUSAE (C)	2,604	.24	98.78
DECAPODA	2,524	.23	99.01
HETEROPODA (Sf)	2,201	.20	99.21
AMPHYPODA	1,948	.18	99.39
SALPIDAE	1,221	.11	99.50
GYMNOSOMATA	1,111	.10	99.60
otras larvas inver.	1,108	.10	99.70
larvas cifonauta	994	.09	99.79
CTENOPHORA (Ph)	575	。 05	99.84
larvas cirripedio	181	02ء	99.86
ISOPODA	106	.01	99.87
CEPHALOPODA (C)	89	.01	99.88
SCYPHOMEDUSAE (C)	47	.00	99.88
larvas stomatopodo	27	.00	99.88
no identificados	1,211	. 12	100.00
TOTAL	1,086,664	100.00	100.00

•

Tabla IV. Abundancia media (org/1000 m³) y relativa (%) de los grupos zooplanctónicos.

Tabla V. Probabilidad de aceptar que sean iguales las biomasas y abundancias de los grupos seoplénciónicos más imper tantes, entre recolectas diurnas y nocturnas, según la prueba de Mann-Whitney (para biomasas: n = 14 en colectas mocturnas y n = 12, en diurnas; para abundancias: n = 9 y n = 6, respectivamente).

PARAMETRO		P
Biomasa:		
VOLUMEN DESPLAZADO		-284
PESO HUMEDO		.236
PESO SECO		.129
PESO LIBRE DE CENIZ	BAS	.063
Abundancia:		
TOTAL		-278
DOPEPODA		.079
CLA DO CERA		.145
EUPHAUSIACEA		•145
CHAETOGNATA		1.000
RADIOLARIA		.239
SIPHONOPHORA		.405
APPEN DI CULARIA		.278

•

۰.

 $^{1.4}$

Tabla VI. Matriz de coeficientes de correlación de Kendall entre estaciones de muestreo, en base a los valores de abundancia de los diversos grupos zooplanctónicos (parte superior de la diagonal). Cuando alguno de los coeficientes no fué altamente significativo (p<.001), se indica su significancia (parte inferior de la diagonal).

EST	45	54	61	65	85	83	97	94	112	109	124	120	129	134
41	.680	.619	.677	•644	•559	•519	•542	•570	•563	.505	•483	•505	•552	•464
45		.700	.675	•743	•495	•556	.604	•650	•640	•631	•541	•579	•504	•442
54			•591	•511	•484	•514	•521	•680	•549	•610	•529	•478	•493	•437
61				.850	•413	•746	.812	•632	•664	•657	•639	•621	•644	•537
65					•418	•693	.716	•613	•670	•605	•589	•561	•539	•483
85			.010	•010		•347	•353	•509	•498	•357	•458	•570	•436	•470
83					•010		.720	•545	•480	•520	•509	•488	•501	•463
97					•010			•586	•563	•694	.628	.620	•645	•533
94		ĸ							•596	•663	•713	.627	•673	•634
112 *										•473	•526	•528	•535	•391
109					•010						•688	•637	•604	•564
124												+742	•740	•762
120			2 - 1671 - 1 •										•720	•694
129							· · · · ·							₀6 58
134									010					

.

农 :

Tabla VII. Probabilidad de aceptar que sean iguales las abundancias y biomasas entre las zonas 1 y 2 (definidas en la Fig. 25), mediante la prueba de Mann-Whitney (m = 6, para zona 1 y m = 5 para zona 2)

PARAMETRO		P
Abundancia		
APPENDI CULARIA		•535
huevos y larvas peces		•465
THECOSOMATA		•465
HYDROMEDUSAE		•396
DECAPODA		•331
larvas cirripedio		•268
SCYPHOMEDUSAE		•268
POLYCHA ETA		.214
FORAMINIFERA		.214
RADIOLARIA		.123
DOLIOLIDAE		.123
SALPIDAE		123
EUPHAUSIACEA		•089
CHA ETOGNA TA		•089
OSTRA CO DA		•089
GY MNOSOMA TA		•089
ISOPODA		•089
CEPHALOPODA		•089
CLA DO CERA		•063
otras larvas invertebr	ado	•041 😽
CTENOPHORA		•041 🐰
COPEPODA	and the second second second second	•026 💡
HETEROPODA		₊ 015 🧓
larvas stomatopodo		•015 _b
larvas cifonauta		•009 ¥ *
SIPHONOPHORA		. 004 ⊛⊛
larvas equinodermo		•004 **
AMPHYPODA		• 004 ^{**}
larvas veliger		•002 eee
TOTAL		₀002 ∋a
	and a second	
Biomasa		
PESO HIMEDO		. 165
VOLUMEN DESPLAZADO		.123
PESO LIBRE DE CENIZAS		048 *
PESO SECO		-015 ×

*significativo
** muy significativo

Tabla VIII. Co re	omparación de intes médotos,	las razones para el G	s entre med olfo y otro	liciones d os sistema	e biomas s.	a por dife	

.

.

.

SISTEMA	VOLUKEN DESPLAZ	PESC HUMEDO	PESO SECO	PESO LIE. CENIZAS	REFERENCIA
Golfo de California	15.5	15.6	1.2	l	Este estudio
Corriente de Calif.	-	12.3	1.1	l	Ahlstrom y Thraikill
Atléntico	15.9	13.0	1.1	l	(1963) Bé et al. (1971)
Mar de los Sargazos	18.0	-	1.4	l	Menzel y Ryther (1961)

48

.

AREA GEOGRAFICA	VOLUMEN	FE	CHA I	LUZ DE MALLA	REFERENCIA
		•cito		(""")	
<u>Golfo de California</u>				-	
área total	408	1956	abril	. 600	Brinton et al. (1986)
11	490	1957	11	n	11
11	334	11	junio	11	tt
. 17	244	11	agosto	11	tr
de 31 50° a 31 N	880	1973	abr-may	•243	Cummings (1977)
do 29 a 23 N	171	1956	febrero	•600	Brinton et al. (1986)
11	355	1957	17	**	11
17	388	1984	mar-abr	•333	Este estudio
de 29 a 24 N	385	1983	marzo	11	Jiménez (1987)
II and a set of the se	411	1984	mar-abr	**	Este estudio
de 24 a 23 N	264	41	11	**	ŶÌ
<u>Corriente de California</u>					
de 34 a 32 45'N (zo. co	st.) 279	1982-84	febrero	11	Petersen et al. (1986
11	519	้ท	abril	**	11
de 30 a 25 40 M	160	1951-57	marzo	.600	Thraikill (1961)
**	249	11	abril	**	17
**	54	1958	marzo	91	11
11	63	**	abril	**	77
de 25 35' a 23 26'N	152	1982	diciemb	re •505	Green (1986)
11	159	1983	febrero	n	11
**	8	T1 _	11	11	11
Corriente Norscustorial (20 -	10 11				
		1055			
zona oceanica	110	1955	aiciemb:	re "	HOLMES ET AL. (1957)

•

Tabla IX. (Continuación)

م بهر ا

ŕ

•

Domo de Costa Rica n 11	242 118 135	1955 1982 "	diciembre noviembre "	•505 •333 •505	Holmes et al. (1957) Flores (1985) "
Contracorriente Norecuatorial (10 -4 N)			
zona oceánica Domo de Costa Rica n n	167 175 121 121	1955 " 1982 "	diciembre noviembre "	" •333 •505	Holmes et al. (1957) " Flores (1985)
Corriente Surecuatorial (4 N-4	S)				
zona oceánica zona costera	497 348	1955	diciembre noviembre	11 17	Holmes et al. (1957)

•

8

	and the second secon		(a) A set of the se
		(
labla X, Comparacion	de promedios de biomasa en pes	o seco (mg/m³) para e	I GOITO de California

REGION	PESO SECO	n	FECHA	REFERENCIA	
de 29° a 23° N	30.57 ± 24.6	26	1984 mar-abr	Este estudio	
de 29° a 24° N	29,01 ± 21,8	22	1983 marzo	Jiménez (1987)	
"	32,42 ± 26,0	22	1984 mar-abr	Este estudio	
central (29°-27°N)	33,36 ± 26,2	12	1983 marzo	Jiménez (1987)	
"	38,37 <u>+</u> 36,1	10	1984 mar-abr	Este estudio	
sur (27°-24°N)	18,95 ± 8,0	10	1983 marzo	Jiménez (1987)	
"	25,69 ± 12,6	12	1984 mar-abr	Este estudio	
boca (24°-23°N)	20.38 ± 8.0	4	11 11	11	

.

	[
	Pacífico oriental			Pacífico central (150°W) .			
	Golfo de California (29°-24°N)		Cor. Califor. (30°-26°N)	CNE* (12°-10°N)	CCNE* (10°-4°N)	CSE* (4°N-7°S)	
FECHA	1983 marzo	1984 mar-abr	1959 febrero	1952 julio-agosto			
CARACTERISTI- CAS DEL MUES- TREO	oblicuo O-200 m red bongo diām6 m luz de ma- lla .333 mm	oblicuo O-200 m red bongo diám6 m luz de ma- lla .333 mm	oblicuo O-140 m red CalCOFI diám, 1 m luz de ma- lla .600 mm	horizontal 6-11 m red Clarke-Bumpus diámetro .13 m luz de malla .310 mm			
NO. MUESTRAS	11	111	8	3	7	19	
GRUPOS :							
copépodos cladóceros eufaúsidos quetognatos radiolarios tunicados sifonóforos gasterópodos ostrácodos huelar.peces foraminíferos medusas lar. <u>Pleuronco</u> . anfipodos otros	336 232 21 55 12 11 51 3 4 14 2 26 768	390 195 80 44 45 55 41 14 15 7 6 2 1 2 22 22 821 ²	56 1 3 <1 <1 <1 <1 <1 <1 10 <1 <1 <1 7 <1 10 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 <1 7 7 <1 7 7 7 7 7 7 7 7 7 7 7 7 7	118 2 8 <1 2 2 5 <1 6 2 15 15 92	224 3 8 1 14 2 10 <1 30 <1 35 328 ²	244 3 6 3 17 2 10 <1 50 <1 47 2832	
	/08	971-	/9	122.	JL84	3832	
REFERENCIA	Jiménez (1987)	Este estudio	Ahlstrom y Thraikill (1963)	Hida y K	ing (1955)		

 \mathbf{N}

.

52

Tabla XI. Comparación de abundancias promedio (org/m³) de los grupos zooplanctónicos del Golfo de California con otros sistemas del Pacífico oriental y central.

CNE: Corriente Norecuatorial, CCNE: Contracorriente Norecuatorial y CSE: Corriente Surecuatorial

Figura 1. Area de estudio: Golfo de California, México (la línea punteada indica el límite de la plataforma continental).

•

53

Figura 2. Esquema de las corrientes del Pacífico oriental tropical en su patrón de flujo de primavera (abril) y de otoño (octubre). CC: corriente de California; CNE: corriente Norecuatorial; CCNE: contracorriente norecuatorial y CSE: corriente Surecuatorial. La línea punteada indica el límite de influencia de la CC y de la CCNE. (modificado de Nyrtki, 1966).

55

Figura 3. Estaciones donde se realizaron arrastres de zooplancton durante el crucero CICESE 8403/04 (o son lances diurnos; •, nocturnos y ©, estaciones seleccionadas para conteo).

Figura 4. Separador Folsom (a) y cámara de conteo (b) .

.

Figura 5. Salinidad superficial (izouierda) y a 100 m de profundidad (derecha) en %/...

Figura 6. Temperatura superficial (izquierda) y a 100 m de profundidad (derecha) en °C.

.

•

59

Figura 7. Volumen desplazado (cc/1000 m³) de zooplancton (N/D es la razón de las medianas de lances nocturnos y diurnos).

60

Figura 8. Peso húmedo (g/1000 m³) de zooplancton.

Figura 9. Peso seco (mg/m³) de zooplancton.

61

.

Figura 10. Peso libre de cenizas (mg/m³) de zooplancton.

Figura 11. Distribución de frecuencias de un parámetro de biomasa como porcentaje de otro: A. Volumen desplazado sin líquido inters./Volumen desplazado con líquido (100); B. igual que A., pero con el Peso húmedo; C. Peso seco/Peso húmedo (100) y D. Peso libre de cenizas/Peso húmedo (100).

Figura 12. Biomasa media en peso seco (mg/m³) en función de la temperatura (°C) y Salinidad (°/...) superficiales.

Figura 13. Abundancia total (org/m³) de zooplancton.

Figura 14. Abundancia (org/m³) de copépodos.

÷.,

Figura 16. Abundancia (org/1000 m³) de eufaúsidos.

Figura 17. Abundancia (org/1000 m³) de quetognatos.

Figura 18. Abundancia (org/1000 m^b) de radiolarios.

71

Figura 19. Abundancia (org/1000 m³) de sifonóforos.

Figura 20. Abundancia (org/1000 m³) de apendicularias.

·• •

Figura 21. Dendograma de asociación entre estaciones de muestreo basado en coeficientes de correlación de Kendall.

Figura 22. Asociaciones faunísticas por el coeficiente de correlación de Kendell.