

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE INGENIERIA

INTERACCION SUELO-ESTRUCTURA EN UNA CIMENTACION SUPERFICIAL TOTALMENTE COMPENSADA

T E S I S QUE PARA OBTENER EL TITULO DE INGENIERO CIVIL

P R E S E N T A : Ignacio guerra gutierrez

1987

México, D. F.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

SIMBOLOGIA

PROPIEDADES INDICE Y NECANICAS DE LOS SEDIMENTOS PARA EL DISENO DE CIMENTACIONES.

N Estrato.

1.

17

19

22

23

H

ú

- 2 Za Profundidad media.
- 3 W Contenido de agua.
- 4 Se Gravedad específica o densidad de sólidos.
- 5 S% Grado de saturación.
- 6 γ Peso volumétrico.
- 7 Dr Compasidad relativa.
- 8 Lv, Pv Limites de Atterberg.
- 9 N Resistencia a la penetración estandar.
- 10 q Consistencia natural.
- 11 C Cohesión.
- 12 ϕ Angulo de fricción interna.
- 13 k Coeficiente de permeabilidad.
- 14 Mo Módulo de respuesta elástica.
- 15 Mee Módulo de deformación unitaría elastoplástica.
- 16 Kv Coeficiente visco-plástico.

 $\sigma_{\rm L}$ Esfuerzo crítico en prueba de compresibilidad.

- 18 Coeficiente de compresibilidad volumétrica unitaria elasto-plastico.
 - Coeficiente unitario de viscosidad intergranular volumétrico...
- 20 Cv Coeficiente de consolidación primaria.
- 21 Cvp Coeficiente aparente de consolidación viscosa intergranular.
 - Módulo dinámico al esfuerzo cortante.
 - Relación de Poisson.

PIEZOMETRO

INDICE

I. INTRODUCTOR	1.	DUCCION
----------------	----	---------

2.	IMPORTANCIA DE LOS PARAMETROS MECANICOS.		
2.1	Antecedentes.		. 12
2.1	.1 Tipos de sedimentos.	• • • • • • • • • • •	. 12
2.1	.2 Tipos de cimentaciones.		. 16
2.2	Uso de los parámetros mecánicos en el análisis de interacción suelo-estructura.		23
2.3	Interacción suelo-estructura. (Cargas estáticas)		. 24
2.4	Cálculo de las reacciones que se originan bajo la cimentación.		27
2.5	Corrección de los valores de α por histéresis.	• • • • • • • • • •	28
3.	INTERACCION SUELO-ESTRUCTURA EN UNA CIMENTACION COMPENSADA.		
3.1	Estudio de compensación.	• • • • • • • • • •	34
3.1	.1 Perfiles de presiones totales, hidráulicas y efectivas. Esfuerzos críticos de consolidación	1	34
3. 1	.2 Clasificación de los estratos compresibles.		38
3.1	.3 Profundidad de desplante. Caracterización geométrica para el análisis de interacción.	•••••	38
э. г	Distribución de esfuerzos en la masa de suelo.	• • • • • • • • •	. 40
3. 3	Estimación preliminar de los desplazamientos verticales.	• • • • • • • • • •	45
3. 3	.1 Módulo de deformación unitaria de respueta elástica.		45
3. 3	2 Determinación del coeficiente de deformación volumétrica, por expansión.	••••	., 46

3.3.3 Expansiones producidas por la excavación, sin tomar en cuenta el efecto del bombeo.	· · · · · · · · · · · · · ·	47
3.3.1 Reducción de los esfuerzos por la excavación	J	47
3.3.3.2 Corrección del coeficiente de expansión.	• • • • • • • • • • • •	48
3.3.3.3 Cálculo de expansiones sin considerar el efecto del bombeo.	•••••••••••••••	50
3.3.4 Expansiones producidas en el fondo de la excavación considerando el efecto hidráulico.	•••••	51
3.3.4.1 Determinación del coeficiente de permeabilidad.		51
3.3.4.2 Cálculo de los abatimientos piezométricos.		52
3.3.4.3 Cálculo de los incrementos de esfuerzos por excavación y bombeo.		55
3.3.4.4 Corrección del factor de expansión.	• • • • • • • • • • •	57
3.3.4.5 Cálculo de las expansiones definitivas.		58
3.3.4.6 Procedimiento alterno para verificar la magnitud de las expansiones obtenidas.		60
3.3.5 Deformaciones verticales por recompresión.		61
3.3.5.1 Selección de parámetros para una primera interacción. Cimentación 100 % flexible.	· • · • • • • • • • • • • • •	61
3.3.5.2 Cálculo de esfue rzos y deformaciones para t = 15 años.		66
3.3.5.3 Cálculo de deformaciones y distribución de reacciones considerando cimentación rígida.		69
3.3.5.4 Determinación de los elementos mecánicos en la cimentación.	• • • • • • • • • • •	77
3.3.5.4.1 Cálculo de la carga longitudinal, uniformemente repartida, en la dovela "i-ésima".		77
3.3.5.4.2 Determinación de las fuerzas cortantes.		78
3.3.5.4.3 Determinación de los momentos flexionante	s	78

3.3.5.5 Determinación de las presiones de contacto en el sentido corto de la cimentación.	82
3.4 Estudio de pozos de bombeo. Estudio de las condiciones hidrodinámicas.	87
3.5 Estructura de retención. Empujes en tablestac y deformaciones.	as 92
3.5.1 Distribución de empujes de tierras, en el respaldo de la tablestaca. Empuje del agua en condiciones dinámicas.	93
3.5.2 Cálculo de la distribución de presiones de tierra activas.	94
3.5.3 Cálculo de la magnitud del empuje activo tot	al 97
3.5.4 Cálculo del empuje hidrodinámico atrás de la ataguía.	100
3.5.5 Determinación del factor de seguridad para el puntal A.	108
3.5.6 Calculo del factor de seguridad para los dos puntales.	108
3.6 Determinación de la cedencia de la tablestaca en el fondo de la excavación.	110
3.7 Análisis de la falla de fondo.	116
3.8 Procedimiento constructivo.	118
4. CONCLUSIONES.	
BIBLIOGRAFIA.	

ANEXO

A.1 Algoritmo para el cálculo de abatimientos en la masa de suelo, debidos a bombeo.

INDICE DE FIGURAS

A.	Características del edificio.	••••	121
B.	Sección transversal de la cimentación.	••••	122
1.	Pozo de muestreo. Perfiles de presiones.	• • • • • • • • • •	123
2.	División del área de cimentación para el análisis de interacción.	· · · · · · · · · · · · ·	124
з.	Influencia de la dovela I en los estratos del suelo.	• • • • • • • • • •	125
4.	Parámetros para detorminar influencias de dovelas.	• • • • • • • • • •	126
5.	Determinación del módulo de deformación eláti	.ca	127
6.	Configuración de expansiones en el fondo de la excavación.	••••	128
7.a	Variación del coeficiente de compresibilidad volumétrica unitaria elasto-plástica.		129
7. b	Variación del coeficiente de compresibilidad volumétrica unitaria elasto-plástica.	• • • • • • • • • •	1 30
7.c	Variación del coeficiente de compresibilidad volumétrica unitaria elasto-plástica.	• • • • • • • • • •	1 31
7. d	Variación del coeficiente de consolidación primaria.	• • • • • • • • • • •	132
7.e	Variación del coeficiente de consolidación primaria.	• • • • • • • • • • •	133
8.	Curvas de abatimiento debidas a bombeo.	• • • • • • • • • • •	134
9.	Variación del alivio de esfuerzos efectivos con la profundidad.	• • • • • • • • • •	135
10.	Configuración de expansiones por efectos combinados.	• • • • • • • • • •	136
11.	Variación del coeficiente de compresión volumétrica sin corregir, de cada estrato	• • • • • • • • • •	137

12	Configuración del asentamiento.	•••••••	1 38
13	Resultados finales de la interacción.		1,39
14	Diagrama de fuerzas cortantes.	••••••	140
15	Diagrama de momentos flexionantes.	••••	1 4 1
16	Distribución de los pozos de bombeo.		142
17	Red de flujo horizontal.		143
17'	Red de flujo vertical.	• • • • • • • • • • •	144
18	Perfil de abatimientos piezométricos.		145
19	Distribución de fuerzas actuantes y resist	entes	146
20	Distribución de presiones horizontales e hidráulicas.	•••••	147
51	Correcciones de los abatimientos en el subsuelo (Componente vertical).	•••••	154

I. INTRODUCCION

La compatibilidad de los desplazamientos en la interfase, entre estructura de cimentación y suelo, es importante en el diseño de la ingenieria de cimentaciones. Conocidas las fuerzas que actúan sobre la estructura de cimentación inducidas por la superestructura y reacciones del suelo, el ingeniero de cimentaciones podrá estimar los elementos mecánicos (momentos flexionantes y fuerzas cortantes) que actúan en los elementos que forman la cimentación para realizar un diseño justificado y económico.

En mecánica de suelos se presentan múltiples problemas relacionados con la interacción suelo-estructura, como son:

- Zapatas continuas de cimentación.
- Cimentaciones compensadas.
- Cimentaciones profundas con pilotes.
- Muros de retención.
- Elementos subterráneos (pilas, ataguías, tubos, túneles, etc.)

En la mayoría de los casos las estructuras de cimentaciones se construyen de concreto simple o reforzado. Esto tiene como consecuencia el conocer las propiedades mecánicas (esfuerzo-deformación-tiempo) del concreto y del suelo bajo diferentes condiciones de carga. Además de las propiedades mecánicas del suelo, es necesario conocer la estatigrafía y condiciones hidráulicas del lugar; más aún, en regiones sismicas las propiedades dinámicas del concreto y suelo deben determinarse para un problema especifico en cuestión.

Una buena solución de la interacción entre la estructura y el suelo podrá obtenerse solamente si se conocen las propiedades reales esfuerzo-deformación-tiempo de los dos materiales y si se establece la compatibilidad de deformación entre la estructura y el suelo.

Las teorías convencionales de interacción suelo-estructura de cimentación están basadas en la siguiente ecuación diferencial:

$$(E_{C}I_{C}) \xrightarrow{dy^{4}} = -K_{B}(y) + q$$

En donde $K_{\rm g}$ se considera un parámetro constante denominado "coeficiente de reacción" ó "constante de resorte" por unidad de longitud de viga.

.... (1)

El valor de I_ces el momento de inercia equivalente de la seccian de concreto reforzado de la viga v E_c es el madulo de elasticidad del concreto. La rigidez a la flexion de la viga se mide por el producto F_cI_c .

El resultado obtenido por medio de la ecuacian (1) no constituve una solución exacta de una viga sobre un suelo compresible, ya que $K_{\rm p}$ no

puede considerarse, en el sentido estricto, como un parametro constante y la razon es que esta es una variable discreta.

El valor de K_n depende de los siguientes factores:

- Sistema de cargas aplicado.
- La extension de la superficie cargada.
- La distribución de las reacciones.
- El comportamiento plasto-viscoso del suelo.
- El nivel de esfuerzos inducido en la masa del suelo.
- El tiempo.

DE .

- La estatigrafia.
- La disipación de esfuerzos en la masa de suelo.
- La profundidad del estrato firme.

En lo que respecta al concreto este no se comporta estrictamente como un material elastico. El Dr. Zeevaert propone representar la deformabilidad del concreto usando el concepto de modulo de deformación unitaria definido por:

$$M_{c} = \frac{\Delta \varepsilon}{\Delta \sigma} = \frac{\Delta \varepsilon_{os} + \Delta \varepsilon}{\Delta \sigma}$$

(2)

Donde:

- Δε = Deformacion unitaria para una accion rápida ^{*p} elasto-plástica.
 - Deformación unitaria que representa el comportamiento plasto-viscoso del concreto. Esta deformación es función del tiempo.

El modulo estatico de deformaci:n del concreto puede expresarse como:

 $\mathbf{M}_{\mathbf{G}} = \mathbf{M}_{\mathbf{G}_{\mathbf{F}}}^{\mathsf{T}} \left(\mathbf{1} + \mathbf{w}_{\mathbf{F}} \right)$

... (3)

10

Donde × es una función que mide el efecto de las propiedades plasto-viscosas del concreto y depende de varios factores, como son:

- La relación agua-cemento.

- La relación cemento-agregado.

- La humedad.

Para efectos a largo plazo puede alcanzar valores del orden de 2 y en los primeros años del orden de 0.5 a 1.0.

El modulo Mepuede considerarse como el modulo de deformación unitaria elasto-plastica del concreto determinado en pruebas rapidas y puede expresarse de la siguiente manera, (leglexiones en miembros reformados a la flexion, ACL-4250;

 $M_{\rm eff} = C_{\rm eff} (W_{\rm eff}^{\rm eff})^{-10} \qquad \dots \qquad (4)$

Donde C., r son parametros que se suponen "constantes". Sin embargo,

indudablemente dependeran de la relación cemento-agregado y resistencia o calidad del agregado. El valor de W es el peso del concreto, / es la resistencia a la compresión simple del concreto.

En el caso de problemas dinamicos, el modulo de deformación bajo condiciones dinamicas debe determinarse para el rango de frecuencias que se espera en la estructura de cimentación. Su valor puede ser una función de los siguientes factores:

- ~ Dimensiones de los elementos estructurales.
- Niveles de deformación o esfuerzo.
- Porcentaje de acero de refuerzo.
- Relacion cemento-agregado.
- Relación agua-cemento (resistencia).
- Edad del concreto.
- Humedad.

Esta propiedad dinimica del concreto simple o reforzado no ha sido investigada en forma extensiva.

Las dificultades para obtener mejores soluciones en la interaccian suelo-estructura son principalmente dos:

1).- Métodos de calculo.

2).- Conocimiento de los parametros mecanicos adecuados.

11

Actualmente el problema puede resolverse con precision aceptable. Usando computadoras. El segundo problema es considerablemente mas difícil de resolver porque es necesario conocer las propiedades mecánicas estaticas o en su caso: dinámicas del concreto y suelo. Aún más, la investigación para cada caso especifico de las propiedades mecánicas esfuerzo-deformación-tiempo del concreto y suelo es costosa.

El objetivo principal del presente trabajo es mostrar, desde un punto de vista práctico, como realizar el análisis de interacción suelo-estructura de una cimentación superficial totalmente compensada. En el capitulo 2 se presenta un breve resumen de diferentes tipos de sedimentos y de los tipos de cimentación que seria conveniente desplantar en ellos; también se muestra la importancia en la determinación de los parametros mecánicos del suelo. En el capitulo 3 se realiza propiamente el análisis de interacción suelo-estructura de la cimentación mencionada anteriormente.Finalmente, en el capitulo 4 se mencionan las conclusiones a que se llegaron en la realización del presente trabajo.

2. IMPORTANCIA DE LOS PARAMETROS MECANICOS.

2.1 ANTECEDENTES.

Antes de mencionar la importancia de los parámetros mecanicos, es conveniente mencionar los principales tipos de sedimentos que existen, así como las distintas cimentaciones que se utilizan en las obras de ingenieria civil.

2.1.1 TIPOS DE SEDIMENTOS.

- * Residual
- * Eólico
- * Aluvial
- * Lacustre
- * Marino
- * Depósitos de piemonte

Los depósitos glaciares y volcánicos, podrían estar dentro de estos seis grupos mencionados.

a) Depósitos residuales.

Son producto de la desintegración "un-situ" y de las alteraciones mecánicas de los componentes de la litósfera de origen rocoso que tienen lugar en el tiempo.

Pueden ser de diferentes tamaños, desde grandes fragmentos de grava, arena hasta arcilla y coloides. Además puede ser variable su densidad y grado de cementación, llegando a tener materia orgànica. Se caracterizan por tener densidades bajas en la parte superior del subsuelo debido a la eluviación. La compresibilidad puede variar de alta a muy alta, y tener resistencia al esfuerzo cortante muy baja. En regiones húmedas, los estratos que sobreyacen los depósitos profundos, presentan características de compresibilidad que van de medianas a altas, y bajas resistencias al corte.

La hidratación de silicatos de aluminio, produce arenas minerales. En áreas volcánicas los minerales pueden ser de tipo expansivo, conteniendo arena mineral monolítica. En regiones semiáridas el material es mas estable y la rigidez de los depósitos que lo sobreyacen es pequeña. En climas secos se forma el caliche, dando una mejor cementación al material. Las propiedades expansivas de estos suelos pueden ser muy importantes para la selección del tipo de cimentación. Existen posibilidades de tener una expansión arriba del 5% en arcillas expuestas al agua. Es difícil de predecir el tipo de cimentación a usar. Generalmente estos suelos soportan zapatas aisladas o corridas.

13

Si el suelo contiene materia orgánica, no se puede utilizar para soportar cimentaciones, ya que es muy sensible a pequeños cambios de humedad y oxidación. Además su variación volumétrica no es fácil de predecir.

La capacidad de carga del suelo residual puede variar desde 0.5 Kg/cm^2 hasta 4 Kg/cm^2 , Cuando el suelo es de tipo expansivo una losa de cimentación es la adecuada.

b) Depósitos eólicos

Son materiales transportados por el viento que sobreyacen depósitos de sedimentos a los cuales el ingeniero les debe prestar especial atención. Algunos de estos sedimentos forman dunas, loess, depósitos de tipo loessial, playas eólicas y grandes depósitos de tierra volcánica. Pueden tener de mediana a alta compresibilidad. Tienen baja densidad relativa y poca o ninguna cohesión. Son característicos de regiones áridas y el nivel de aguas freáticas se encuentra a gran profundidad de la superficie. Los depósitos eólicos muestran por lo tanto, la característica de cambiar sus propiedades mecánicas cuando están totalmente saturados. A estos depósitos también se les conoce con el nombre de suelos colapsibles. Si la densidad relativa cambia de mediana a alta, la capacidad de carga puede ser buena bajo condiciones satisfactorias de confinamiento.

Si se van a utilizar estos depósitos en su estado natural, es necesario conocer su resistencia al esfuerzo cortante v compresibilidad, así como la ocurrencia de un posible incremento en su contenido de agua. Si no cambian sus condiciones de humedad, pueden utilizarse zapatas aisladas y corridas para cargas bajas y losas de cimentación para cargas altas. La capacidad de carga permisible tiene un rango de variación de 1 a 4 Kg/cm² .Los asentamientos pueden ser estimados conociendo las relaciones esfuerzo-deformación del suelo, las condiciones hidráulicas y ambientales del sitio. Existirán problemas de hundimientos diferenciales solo si el suelo se encuentra en estado suelto o existen cambios de humedad en el suelo que subyace la cimentación.

c) Depósitos aluviales

Son depositados por el agua en movimiento y pueden ser grandes fragmentos de roca (en el cauce de rios), grava, arena, limos y algunas arcillas. Son materiales bien graduados y su compacidad varia de mediana a muy compacta. Los sedimentos finos tienen mediana compresibilidad y los gruesos baja o muy baja, siempre y cuando no esten sujetos a estados de esfuerzos muy altos (materiales utilizados como respaldo en una presa de tierra y enrocamiento).

Cuando estan bien confinados no existen problemas de cimentación, excepto cuando existan condiciones del agua en el subsuelo muy especiales. En general se pueden usar zapatas aísladas, aunque en arcillas arenosas las zapatas continuas y las losas de cimentación son las adecuadas. En ríos planos donde los sedimentos son muy finos la cimentación compensada y en algunas ocasiones las pilas y pilotes son utilizadas.

d) Sedimentos lacustres y marinos

Son sedimentos muy finos como limo y arcilla, y se encuentran en depósitos de agua (lagos, márgenes de lago, estuarios y deltas). Pueden tener mediana, alta o muy alta compresibilidad. También pueden estar formados parcial o totalmente por materia orgánica. El comportamiento esfuerzo deformación es complicado comparado con otros sedimentos. La cimentación compensada con pilotes de fricción puede ser usada en los depósitos compresibles, llevandose a grandes profundidades.

15

e) Depósitos de piemonte.

Son depósitos acumulados al pie de una montaña debido a deslizamientos o avalanchas de la superficie. Contienen materiales de todo tipo y de gran tamaño, incluyen vegetación y materia orgánica. Como cimentación se utilizan pilas excavadas a grandes profundidades.

e) Depósitos volcánicos recientes.

Los sedimentos volcànicos no consolidados, pertenecen a un grupo muy especial por su variabilidad. Los materiales piroclásticos pueden encontrarse en avalanchas y en forma de grandes fragmentos de roca, hasta finos (tierra volcánica). Desde el punto de vista de la sedimentación, compresibilidad y remistencia al corte, pueden clasificarse entre los sedimentos eclicos, aluviales y lacustres, dependiendo del medio de transporte y de las características físicas del medio ambiente. Con el tiempo pueden considerarse como soporte de suelos remiduales. Se características granulométricas van desde una suave piedra pómez, hasta fragmentos de basalto y vidrio volcánico, desde polvo (limos) hasta arenas (que contienen principalmente cuarzo). Los granos son usualmente de forma angular con buenas condiciones de confinamiento que proporcionan una alta resistencia al corte. En caso de detritus volcánicos se pueden encontrar una gran variedad de materiales, grava fundida, bombas, grandes fragmentos de roca, arena y finos.

Las soluciones en estos casos, son similares a las descritas en los depósitos de piemonte. Las cimentaciones tienen profundidades y secciones variables, y van desde una cimentación superficial (zapatas), hasta cimentaciones muy profundas (pilas). Es importante investigar el terreno que subyacera a cada columna o muro, para detectar posibles oquedades provocadas por el hombre (minas), que pudiesen provocar la inestabilidad de la estructura.

2.1.2 CIMENTACIONES TIPICAS. .

Para elegir el mejor y más económico tipo de cimentación en una estructura específica, se requiere la realización de una investigación compuesta por varios estudios.

Como primera condición se necesitan conocer los factores ambientales presentes del sitio, así como la compatibilidad de las condiciones del suelo con el tipo de cimentación seleccionada. En un principio esto se logra conociendo las propiedades índice y las características mecánicas del sitio. Esto permite efectuar un juicio preliminar del comportamiento del suelo, bajo la aplicación de cargas después de haber analizado diferentes tipos de cimentaciones, y en consecuencia decidir cual cumple con los requerimientos del proyecto. Asi mismo para la realización del diseño de una cimentación hay que considerar dos importantes características mecánicas:

17

- La capacidad de carga del suelo, donde se apoyará la construcción.

 La compatibilidad de los asentamientos diferenciales y totales con la estructura de cimentación, tipo de superestructura y demandas arquitectónicas del proyecto.

A continuación se mencionan las principales cimentaciones típicas:

a) Zapatas aisladas.

Estan compuestas por una base rectangular rígida, formada por piedra o concreto de ancho "B" y de largo "L", donde la relación L/B no debe exceder de 1.5. Esta estructura soporta a una columna y su capacidad de carga puede ser estimada en función de sus dimensiones, permitiendo esto calcular los asentamientos.

Una zapata simple, generalmente solo se utiliza en suelos de baja compresibilidad y en estructuras donde el asentamiento diferencial entre columnas pueda ser soportado por la flexibilidad de la superestructura (uso de juntas de construcción). b) Zapatas corridas.

Este tipo de cimentación se utiliza cuando es necesario controlar el asentamiento diferencial entre columnas, es decir cuando el suelo es de mediana a baja compresibilidad.

Su resistencia se puede definir en función de los elementos de las juntas de las columnas y vigas de cimentación. El desplazamiento diferencial vertical puede controlarse mediante el uso de vigas de cortante.

La selección de las vigas de cimentación, que estaran colocadas a lo largo de las filas de columnas, dependen de la distribución de cargas en las columnas, así como de los requerimientos funcionales y arquitectónicos del proyecto.

Este tipo de cimentación es de gran utilidad en suelos de mediana compresibilidad, donde generalmente es necesario el uso de vigas de cortante en ambas direcciones.

d) Losa de cimentación.

Esta estructura de cimentación generalmente se utiliza, cuando las cargas son tan grandes, que el uso de zapatas corridas deja de ser la solución apropiada, porque ocuparian más del 50% del área de cimentación, por lo tanto es más eficiente y económico el uso de una losa de cimentación. En esta solución las cargas son transmitidas de manera uniforme al suelo de cimentación por la superestructura. Debido a esto, las reacciones sobre la losa, son determinadas a partir de su capacidad de carga, calculada esta como si se tratara de una zapata aislada de grandes dimensiones.

En los capitulos posteriores se verá como calcular los asentamientos haciendo un análisis de interacción suelo-estructura (tanto para una losa rígida como para una losa flexible).

Es conveniente por su economia, que la losa sea flexible, sin embargo, no siempre esto es posible, debido a la existencia de restricciones importantes en los asentamientos diferenciales que pueden admitir las estructuras. Cuando se tienen problemas de este tipo es necesario aumentar la rigidez de las losa, o en su defecto recurrir a el uso de vigas de cortante a lo largo de las filas de columnas.

Este tipo de cimentación, puede utilizarse en suelos de mediana compresibilidad e inclusive en algunos de alta o muy alta compresibilidad, si los asentamientos diferenciales no rebasan los permisibles.

d) Cimentación compensada

Este tipo de estructura se usa en suelos de mediana, alta o muy alta compresibilidad y baja capacidad de carga. Consta de un cajón de cimentación colado monolíticamente.

En el análisis de una cimentación compensada es importante tener en consideración los siguientes dos efectos:

- La sustitución del peso sumergido de sólidos (peso efectivo).
- El efecto flotante del peso del liquido desplazado.

Los dos efectos anteriores son importantes para equilibrar correctamente el peso total de la construcción.

El propósito fundamental en este tipo de cimentación, consiste en lograr el minimo cambio de esfuerzos efectivos durante la excavación y la construcción de la estructura de cimentación. El asentamiento diferencial puede controlarse dando a la estructura la rigidez necesaria

Es importante tener en cuenta otro factor que juega un papel muy importante en este tipo de cimentación, y que es el del agua en condiciones hidrodinámicas. El cálculo de su influencia se verá en capitulos posteriores.

e) Cimentación compensada con pilotes de fricción.

Cuando la cimentación compensada no es capaz de soportar las cargas que van a actuar sobre ella, o que las profundidades de excavación necesarías sean muy grandes, es necesario combinar esta solución con otro tipo de cimentación (pilotes de punta o de fricción), logrando que los asentamientos totales y diferenciales sean los permisibles. La cimentación compensada con pilotes de fricción, se utiliza en depósitos de alta o muy alta compresibilidad, que se extiende a grandes profundidades.

El asentamiento total que se presenta en este tipo de cimentación, depende del camino que sigan los pilotes de fricción, así como del espaciamiento y longitud de cada uno de ellos, Durante el proceso de perforación y excavación, es importante el control de las condiciones hidráulicas del subauelo, para lograr un cambio mínimo en los esfuerzos efectivos.

Una vez incados los pilotes y durante la excavación, se desarrollan progresivamente en el fuste de estos, esfuerzos de tensión. Esto permite conservar lo mas posible el confinamiento original del suelo, lo que a su vez permite reducir las expansiones en el fondo de la excavación. f) Cimentación compensada con pilotes de punta.

Este tipo de cimentación se utiliza cuando las cargas son muy grandes y es necesario apoyar los pilotes en un estrato profundo y de baja o muy baja compresibilidad y de alta resistencia al corte. Este tipo de cimentación, se utiliza en las siguientes dos situaciones:

21

- En estratos duros y rigidos, compuestos por materiales de mediana compresibilidad (uso de pilas). Si se encuentra un estrato de muy baja compresibilidad, puede no ser necesario determinar la magnitud de las cargas que se van a desplantar, obteniendose un asentamiento permisible si se le da la suficiente rigidez a la superestructura. Las columnas se apoyan sobre la losa de cimentación y esta sobre los pilotes.

- El segundo caso, se presenta cuando los pilotes se tienen que apoyar en estratos muy profundos, por lo que es más económico utilizar grupos de pilotes. Las columnas se apoyan sobre placas aisladas y estas a su vez sobre grupos de pilotes.

La capacidad de carga de esta cimentación esta en función de los siguientes factores:

- La resistencia al corte del suelo.
- La separación de los pilotes.
- La longitud de penetración.
- El estado de densidad y confinamiento de cada estrato.

Es importante tener en cuenta el efecto de la fricción superficial negativa debido a que esto provoca confinamiento a los depósitos. La fricción negativa se origina cuando el estrato compresible que se encuentra sobre el estrato duro se comprime, produciendose un desplazamiento relativo entre el pilote y dicho depósito. Este fenómeno implica una transferencia de carga, de la masa de suelo a los pilotes o pilas y en consecuencia se produce una reducción del esfuerzo vertical de confinamiento en el estrato en el que se apoyan las pilas o pilotes de punta.

g) Pilas de cimentación.

Son utilizadas cuando hay que soportar cargas muy altas en suelos de muy baja compresibilidad. La capacidad de carga esta en función de las propiedades mecánicas del suelo y del esfuerzo de confinamiento de los estratos superiores.

Soportan cargas del orden de 500 toneladas o más, por lo que el estrato debe tener muy baja compresibilidad. La capacidad de carga depende tambien del procedimiento de excavación y las condiciones hidráulicas manejadas. Si la cohesión es pequeña es necesario utilizar un sistema neumático de excavación que proporcione presiones suficientes de aire que permitan enviar el agua hacia abajo de la excavación, pretendiendo con esto, mantener sin variaciones las condiciones de confinamiento y densidad del estrato de soporte. En regiones sismicas es necesario conocer el efecto del movimiento horizontal de la masa del suelo.

h) Pilas de arena

Este tipo de cimentación es usado cuando se incrementa la capacidad de carga del suelo, reduciendose la compresibilidad y aumentandose la capacidad al corte.

2.2 USO DE LOS PARAMETROS MECANICOS EN EL ANALISIS DE INTERACCION SUELO-ESTRUCTURA.

Un aspecto muy importante que debe tomar en cuenta un ingeniero en el diseño de una cimentación, es el conocimiento adecuado de los parámetros mecánicos del subsuelo. Para la determinación de estos parámetros es necesario obtener muestras inalteradas en el sitio y realizar en ellas pruebas de laboratorio que permitan modelar las condiciones de estado de esfuerzos que estan sometidos en el lugar.

Para el análisis de interacción, la teoría tradicional, trata con un coeficiente de reacción constante, que representa la respuesta del suelo (solución de Winkler). Esta hipótesis es válida únicamente cuando el espesor del estrato compresible es delgado y como en esta situación no es siempre cierta, no es difícil pensar que el manejar el concepto de "coeficiente de reacción" en ocasiones es incompatible con la interacción real de la estructura y el suelo.

Para el análisis de interacción suelo-estructura, que se presenta en este trabajo, el área de cimentación está dividida en 10 dovelas de 3 X 16 m. CEl ancho de 3 m se mide en el sentido largo de la cimentación). Si se conocen las propiedades de deformación unitaria Mi para cada estrato del subsuelo de espesor ói, el hundimiento bajo cada dovela se podrá estimar como:

....ce

$$\delta i = \sum_{i=1}^{N} CMi \ di D \ \Delta \sigma_i$$

En donde: $\Delta \sigma_i$ es el incremento del esfuerzo medio en el estrato "i-ésimo", de acuerdo con la carga que actúa uniformemente en la dovela "i".

Se define como coeficiente de deformación volumétrica α = Mi di , quedando la expresión (1) de la siguiente manera:

$$\delta i = \sum_{i=1}^{10} \alpha_i \Delta \sigma_i$$

Conociendo los valores de δ_i para un nivel de esfuerzos $\Delta \sigma_i$ cercano al esperado, se pueden calcular los valores de la constante "Kj" que representa la respuesta elástica del suelo, para cada dovela.

Es decir:

$$K_j = \frac{Q_j}{\delta_j}$$

Donde:

K = Respueta elástica de un estrato localizado bajo la dovela "j~ésima".

Q = Carga que actúa en la dovela "j-ésima".

 δ_{j} = Desplazamiento vertical al centro de la dovela "j-ésima"

24

El desplazamiento vertical del suelo "d", puede calcularse para un cierto tiempo con las propiedades esfuerzo-deformación-tiempo (prueba de consolidación) y con la estratigrafía del suelo bajo la cimentación.

2.3 INTERACCION SUELO-ESTRUCTURA (CARGAS ESTATICAS).

El subdividir el área de cimentación en un número finito de dovelas, podría ser equivalente a considerar un número grande de zapatas colocadas unas a continuación de otras. Los esfuerzos que estas zapatas originan al subsuelo interfieren entre si, considerando que esta actúe como una masa continua. Por consiguiente el concepto de módulo de cimentación constante ya no es válido.

Para resolver este problema de manera práctica se procede primero a encontrar un método de cálculo para encontrar los valores de los asentamientos ól bajo cada una de las dovelas con reacciones unitarias q. (Fig. 2., Capítulo 3). Se coloca una carga unitaria en la banda "i"

y se calculan las influencias I_{ii}^N (Fig. 9 , Capitulo 3).

El cálculo de I_{ii}^N se puede efectuar usando las soluciones de

Boussinesq, Westergard o Frölich, dependiendo de la estratigrafía y de las propiedades de deformabilidad del suelo. En el presente trabajo, se utiliza Frölich para un valor de x = 2.

Conociendo las deformaciones de los estratos α^N , se pueden calcular **los asentamientos** δ_{ji} , producidos en "j", por la carga unitaria q_i= 1 **aplicada** en la dovela "i" :

$$\vec{5}_{ji} = \sum \mathbf{I}_{ji}^{N} \alpha^{N} \qquad \dots \dots \dots (4)$$

Por lo tanto, el valor de los desplazamientos verticales bajo la dovela "j-ésima" y expresado en forma matricial es:

.. (6)

Lo anterior implica el siguiente cálculo, para cuando la carga unitaria se coloca sucesivamente en cada una de las bandas:

$$\vec{\delta}_{j\alpha} = \begin{bmatrix} \mathbf{I}_{j\alpha} \end{bmatrix}^{\mathsf{T}} \quad \boldsymbol{\alpha}^{\mathsf{N}}$$
$$\vec{\delta}_{j1} = \begin{bmatrix} \mathbf{I}_{j1} \end{bmatrix}^{\mathsf{T}} \quad \boldsymbol{\alpha}^{\mathsf{N}}$$
$$\vdots \qquad \vdots \qquad \vdots \\ \vec{\delta}_{j9} = \begin{bmatrix} \mathbf{I}_{j9} \end{bmatrix}^{\mathsf{T}} \quad \boldsymbol{\alpha}^{\mathsf{N}}$$
$$\vec{\delta}_{jb} = \begin{bmatrix} \mathbf{I}_{jb} \end{bmatrix}^{\mathsf{T}} \quad \boldsymbol{\alpha}^{\mathsf{N}}$$

Conociendo los valores de los desplazamientos verticales originados por las cargas unitarias, se establece la "ecuación matricial de asentamientos", que en lo sucesivo se llamará EMA :

Por medio de la ecuación anterior se pueden calcular los hundimientos producidos por las cargas q aplicadas en las bandas

consideradas. La precisión del método de cálculo mejora cuando se considera un número suficiente de dovelas y esta es aceptable cuando se satisface que $\delta_{ji} = \delta_{ij}$ (Principio de Maxwell) y en consecuencia

se tiene una matriz de flexibilidad simétrica. En forma matricial EMA se escribe como:

Cuando se trata de un caso simétrico (Fig. 2 , Capítulo 3), se cumple que:

 $\mathbf{q}_{a} = \mathbf{q}_{b}$ $\mathbf{q}_{i} = \mathbf{q}_{b}$ $\mathbf{q}_{i} = \mathbf{q}_{b}$

q_ = q_ q_ = q_ Por lo tanto, la ecuación matricial EMA (Ecuación 7) se puede escribir como:

Saa+ Sab	5 + 5	õ _{a2} + õ _{a7}	5 + 5	5 . + 5 . 5	q_	<i>ا</i> م	
5 10 + 5 1b	5 11 + 5 18	õ, 2+ õ, 17	5 13 + 5 10	5 + 5 15	q,	6 1	
5 2 a + 5 26	522+ 528	522+ 527	523+ 520	524+ 525	q ₂ =	6 ₂	(10)
5 + 5 36	5 + 5	5 + 5 37	533+ 539	534+ 535	q,	<i>б</i> в	
5 + 5 + b	õ. + õ.	542+ 547	543+ 540	δ.+ č.5	9.	6.	

O bien:

 $\left| \overline{\delta}_{ij} \right|_{\text{SIM}} \left| \mathbf{q}_{i} \right|_{\text{sim}} = \left| \delta_{i} \right|_{\text{sim}} \dots \dots (11)$

2.4 CALCULO DE LAS REACCIONES QUE SE ORIGINAN BAJO LA CIMENTACION.

Si suponemos ahora que se requiere encontrar las reacciones que se originan, si se considera la estructura de cimentación como un cajón rígido; los desplazamientos verticales tendrán una variación lineal y podrán calcularse de la siguiente manera:

$$\delta_{a}^{\prime} = \frac{1}{10} - \sum_{i=1}^{10} \delta_{i} \qquad \dots \dots (12)$$

....(13)

Donde δ_a^* es un hundimiento medio obtenido de la ecuación (12), sumtituyendo este valor en la ecuación (11) y despejando q :

$$\left|\mathbf{q}_{i}\right| = \left[\delta_{ij}\right]^{-1} \qquad \left|\delta_{\alpha}\right|$$

Donde q es el vector de presiones de contacto.

2.5 CORRECCION DE LOS VALORES DE α POR HISTERESIS.

Las cimentaciones para edificios pesados o altos, en suelos compresibles, generalmente se diseñan con cajones rígidos de cimentación con uno o dos sotanos bajo la superficie del terreno. La realización de la excavación para alojar la cimentación provoca una disminución de los esfuerzos efectivos en la masa de suelo (Fig. 9, Capítulo 3), Posteriormente se coloca la carga recomprimiendo al suelo. El ciclo de descarga y carga se origina a diferentes niveles de esfuerzo, con la profundidad.

El módulo de deformación unitaria Mz se define como:

$$M_{z} = \frac{\Delta \varepsilon}{\Delta \sigma}$$

En donde :

 Δc = Incremento en la deformación unitaria originada por el incremento de esfuerzo $\Delta \sigma$.

Esta propiedad mecánica del suelo se determina en el laboratorio con muestras inalteradas, en las que se ha retirado el estado de esfuerzos al que estaban sometidas, después de lo cual se recomprimen para determinar el valor de Mz (Pruebas triaxiales).

Consideremos la Figura 9 del Capitulo 3; para un ciclo de descarga total, donde la expansión máxima es Δx_{co} y la recompresión es Δx_{co} .

Este fenómeno de descompresión y recompresión total se produce **unicamente en la superficie** de la excavación en donde el alivio de **esfuerzos es total. Sin embargo, a cierta profundidad el alivio de esfuerzos es parcial** ($\Delta \sigma$) y provoca únicamente una expansión parcial

 $\Delta s_{\rm c}$ y posteriormente al cargar, una recompresión parcial As

Supongamos que se quiere corregir el módulo de deformación unitaria por expansión o respuesta elática M_, debido a una expansión parcial.

28

El Dr. Leonardo Zeevaert ha encontrado que la Ley fenomenológica es:

En donde $(\sigma_{oi} - \overline{\sigma_{oi}}) = \Delta \sigma_{r}$; representa el alivio de esfuerzos a la profundidad investigada. Por consiguiente el módulo secante de deformación unitaria por expansión será:

En el laboratorio por medio de un ciclo de histéresis se determina el módulo secante M____ para la expansión total que vale:

En consecuencia la relación de los dos módulos de expansión anteriores será:

Si se define el factor de expansión ρ_{\perp} como:

$$\rho_{\bullet} = \left(\frac{\Delta \sigma_{r}}{\sigma_{oi}}\right)^{C-1} \left(\frac{\sigma_{oi} - \sigma_{oi}}{\sigma_{oi}}\right)^{C-1} = \left(1 - \frac{\sigma_{oi}}{\sigma_{oi}}\right)^{C-1} \dots (19)$$

Por lo tanto el módulo de expansión parcial es:

Si "d" es el espesor del estrato, la expansión volumétrica del estrato es:

Al recomprimir el material por el mismo alivío de esfuerzos $\Delta \sigma = (\sigma_{oi} - \sigma_{oi})$ se verifica como una compresión elástica, plástica y

visco-plastica. Es decir:

$$\Delta \varepsilon_{\text{pr}} = \Delta \varepsilon_{\text{pr}} + \Delta \varepsilon_{\text{pr}} + \Delta \varepsilon_{\text{pr}} \qquad \dots \dots (22)$$

El módulo de deformación unitaria por compresión parcial (Fig.9 Capítulo 3) es:

$$M_{cr} = \frac{\Delta c_{er}}{\Delta \sigma_{cr}} \left[1 + \frac{\Delta c}{\frac{\rho r}{\rho_{r}}} + \frac{\Delta c}{\frac{\nu \rho r}{\rho_{r}}} \right] \qquad \dots \dots (23)$$

$$M_{cr} = M_{r} \qquad 1 + K_{pr} + K_{vpr}$$

.....(24)

Donde:

$$K_{pr} = \frac{\Delta c}{\rho r}$$

$$K_{vpr} = \frac{\Delta c}{\frac{\nabla p r}{\Delta c}}$$

Para la recompresión total efectuada en el laboratorio en probetas de suelo inalterado se obtiene:

O blen:

$$M_{co} = \frac{\Delta \varepsilon_{eo}}{\sigma_{ol}} \left[1 + \frac{\Delta \varepsilon_{po}}{\Delta \varepsilon_{eo}} + \frac{\Delta \varepsilon_{vpo}}{\Delta \varepsilon_{eo}} \right] \dots (26)$$

$$M_{co} = M_{eo} \left[1 + K_{po} + K_{vpo} \right] \dots (27)$$

En donde:

$$K_{po} = \frac{\Delta \varepsilon_{po}}{\Delta \varepsilon_{o}} \qquad K_{vpc} = \frac{\Delta \varepsilon_{vpo}}{\Delta \varepsilon_{o}} \qquad (28)$$

Por consiguiente la solución de módulos de compresión unitaria es:

$$\frac{M_{cr}}{M_{co}} = \frac{M_{or}}{M_{oo}} \left[\frac{1 + K_{pr} + K_{vpr}}{1 + K_{po} + K_{vpo}} \right] \dots (29)$$

Donde

$$\frac{M_{or}}{M_{po}} = \rho_{o}$$
 y los valores de K_{po} y K_{vpo} se pueden

determinar en el laboratorio en pruebas completas de histéresis. Sin embargo, los valores Kpr y Kvpr son desconocidos pero puede suponerse que son proporcionales nivel de esfuerzos.

Aproximadamente:

Por lo tanto:

$$\frac{M_{cr}}{M_{co}} = \rho_{o} \qquad \frac{1 + (K_{po} + K_{vpo}) \left(\frac{\Delta \sigma}{\sigma_{oi}}\right)}{1 + K_{po} + K_{vpo}} \dots (31)$$

La expresión anterior, proporciona el factor de recompresión para l fenómeno de histéresis:

$$\rho_{e} = \frac{1 + (K_{po} + K_{vpo}) \left(\frac{\Delta \sigma_{r}}{\sigma_{oi}}\right)}{1 + K_{po} + K_{vpo}} \dots (32)$$

En donde en $M_{cr} \approx \rho_c M_{co}$ el valor de M_{co} y los valores $\Delta \varepsilon_{co}$ y $C\Delta \varepsilon_{po} + \Delta \varepsilon_{vpo}$) se determinan en el laboratorio en muestras inalteradas de suelo con ciclo de histerésis. La compresión volumétrica de un estrato es:

3. INTERACCION SUELO-ESTRUCTURA EN UNA CIMENTACION SUPERFICIAL TOTALMENTE COMPENSADA.

Para efectuar este trabajo se obtuvo primeramente, un perfil de suelo, en este caso en un lugar de la Ciudad de México cercano al lago de Texcoco. Este depósito esta formado por materiales de muy alta compresibilidad.

En dicho perfil se consignan además de las propiedades indice, la distribución de esfuerzos efectivos en función de la profundidad, obtenidos para condiciones estáticas del agua. Sin embargo, los niveles piezomátricos han cambiado quedando actualmente a las elevaciones que se indican en la figura 1.

Además se obtuvo la información necesaria y suficiente por lo que respecta a propiedades mecánicas de compresibilidad y resistencia al esfuerzo cortante de los diferentes estratos que forman el depósito de suelo.

Así mismo, en este lugar se proyecta construir un edificio con las características geométricas que se indican en la figura A. De acuerdo a las condiciones del suelo y al peso del edificio, se propuso utilizar una cimentación superficial totalmente compensada con las características mostradas en la figura B.

De acuerdo a los datos mencionados, se procede a realizar el análisis de interacción suelo-estructura en una cimentación superficial totalmente compensada.

3.1 ESTUDIO DE COMPENSACION.

3.1.1 Perfiles de presiones totales, hidráulicas y efectivas. Esfuerzos críticos de consolidación.

Los perfiles de presiones totales, hidráulicas y efectivas, se obtuvieron a partir de un muestreo inalterado con un tubo de pared delgada conocido como "Shelby".

El objetivo de realizar un sondeo inalterado, fue que debido a las condiciones de proyecto, se necesitaba definir de una manera confiable, la estratigrafía del sitio, y obtener a la vez muestras que conservaran la estructura del suelo, para realizar con ellas, pruebas mecánicas que permitieran interpretar su comportamiento bajo las condiciones de trabajo que se impondrán.

Los perfiles mencionados se presentan en la figura (1).

Respecto a los esfuerzos críticos obtenidos en pruebas de compresibilidad, los resultados se presentan a continuación:

Muestra	Profundidad (m)	$\sigma_{\rm b}$ (Kg/cm ²)
РСА-3-МЗ	3.05	0.62
1-H-3	5.40	0.80
1-J-3	8.40	0.95
1-L-6	11.80	0.95
1-0-7	16.55	1.00
1-8-3	20.10	1.00
1-U-2	24.40	1.08
1-X-3	23.05	1.10
1-a-4	33.50	1.50
1-f-4	40.85	1.80
1-=-2	45.85	2.20

TABLA(1)
DISTRIBUCION DE PRESIONES INICIALES

Prof B	Poi Tn/B ²	Prof M	Poi Tn/E ²	Prof B	Poi Tn/m ²	Prof m	
0.00	0.00	5.49	8.63	10.21	14.45	15.15	20.29
0.70	1.16	5.71	8.89	10.43	14.74	15.33	20.52
0.89	1.53	5.93	9.14	10.65	14.97	15.55	20.77
1.10	1.87	6.15	9.33	10.83	15.20	15.77	21.02
1.29	2.24	6.26	9.48	11.05	15.46	15.99	21.27
1.50	2.59	6.33	9.66	11.27	15.71	16.21	21.52
1.69	2.80	6.55	9.91	11.49	15.96	16.43	21.77
1.90	2.95	6.79	10.17	11.71	16.21	16.65	21.97
2.06	3.13	6.99	10.42	11.73	16,46	16.72	22.17
2.27	3.33	7.21	10.67	12.15	16.69	17.00	22.42
2.48	3.51	7.43	10.94	12.33	16.93	17.22	22.67
2.69	3.50	7.65	11.17	12.55	17.19	17.44	22.92
2.90	3.93	7.83	11.41	12.77	17.46	17.66	23.17
3.29	3.97	8.65	11.67	12.99	17.72	17.82	23.43
3.51	4.05	8.27	11.93	13.21	17.98	18.10	23.67
3.73	4.11	8.49	12.18	13.43	18.24	18.28	23.92
3.95	4.13	8.71	12.44	13.65	18.47	18.50	24.18
4.13	6.92	8.93	12.68	13.83	18.72	18.72	24.44
4.34	7.17	9.15	12.92	14.05	18.99	18.94	24.71
4.55	7.49	9.33	13.31	14.27	19.27	19.16	24.97
4.83	7.82	9.55	13.69	14.49	19.55	19.38	25.24
5.05	8.12	9.77	13.94	14.71	19.80	19.60	25.47
5.27	8.37	9.99	14.20	14.93	20.02	19.78	25.73

Prof	Poi Tn/m ²	Prof	Poi Tn/m ²	Prof m	Poi Tn/m ²	Prof B	Poi Tn/m ²
20.00	25.99	24.94	31.75	30.15	37.98	35.83	44.76
20.22	26.26	25.16	32.00	30.37	38.23	36.04	45.12
20.44	26.55	25.38	32.25	30,59	38.49	36.25	45.50
20.66	26.84	25.60	32.45	30.81	38.74	36.43	45.85
20,88	27.06	25.74	32.65	31.03	38.99	36,64	46.22
21.10	27.29	25.96	32.90	31,25	39 26	36,85	46.71
21.28	27.52	26.18	33.14	31.51	39.53	37.14	47.15
21.50	27.78	26.40	33.60	31.73	39.79	37,35	47.58
21.72	28.03	26.98	34.11	31.95	40.09	37.63	47.90
21,94	28.29	27.20	34.37	32.95	41.16	37.84	48.17
22.16	28.55	27.42	34.64	33,17	41.41	38,05	48.35
22.38	28.80	27.64	34.93	33.39	41.66	30.13	48.52
22.60	29.05	27.86	35.28	33.61	41.90	38.34	48.77
22.78	29.29	28.08	35.54	33.83	42.15	38.55	49.00
23.00	29.56	28.30	35.77	34.05	43.21	38,73	49.23
23.22	29.81	28,48	36.01	34,13	42.29	38,95	49.48
23.44	30.07	28.70	36.28	34.35	42.70	39.17	49.73
23.66	30.31	28.92	36.52	34.51	42.94	39,39	49.98
23.88	30.56	29.14	36.79	34.79	43.23	39.61	50.33
24.10	30.79	29.36	37.05	35.01	43.48	39.83	50.58
24.28	31.01	29.58	37.31	35.23	43.74	40.05	50.72
24.50	31.26	29.80	37.52	35.45	44.10	40.18	50.87
24.72	31.51	29.93	37.73	35,62	44.43	40,30	51.11

Prof a	Poi Tn/m ²	Prof m	Pci Tn/m²	Prof m	Pc: Tn/m ²	Prof m	P=: Tn/m ²
40.52	51.36	44.64	56.47	48.41	61.01	52.07	65,50
40.84	51.60	44.88	56.75	48.63	61.27	52.29	65.67
40.96	51.85	45.10	57.01	48.85	61.52	52.51	66.04
41.18	52.10	45.53	57.27	49.03	61.75	52.73	66.31
41.40	52.50	45.55	57.54	49.24	62.00	52.95	66.56
41.88	52.89	45.77	57.80	49.45	62.23	53.13	66.80
42.10	53.15	45,99	58.06	49.63	62.48	53.35	67.07
42.32	53.40	46.21	58.32	49.85	62.74	53.57	67.34
42.54	53.67	46.43	58.58	50.07	63.01	53.79	67.61
42.76	53.94	46.65	58,84	50.29	63.28	54.01	67.89
42.98	54.20	46.87	59.10	50.51	63,59	54.23	68.16
43.20	54.45	47.09	59.37	50.73	63.85	54.45	68.41
43,38	54.68	47.31	59.65	50.95	64.10	54.64	68.67
43.59	55.09	47.53	59.91	51.14	64.37	54.86	68.95
43.80	55.45	47.75	60.11	51.36	64,64	55.08	69.23
43.98	55.68	47.86	60.28	51.58	64.91	55.30	69.57
44.20	55.94	47.97	60.49	51.80	65.20	55.58	69.88
44.42	56.20	48,19	60.75	52.07	65.50	56.00	70.62

3.1.2 Clasificación de los estratos compresibles

De acuerdo al perfil estratigráfico obtenido a partir del pozo de muestreo, se consideran los siguientes estratos compresibles:

Estrato	Localización (m)	d (m.)
	De A	
А	6.00 - 9.30	3.30
B	9.60 - 13.70	4.10
С	14.50 - 18.30	3.80
D	18.30 - 23.00	4.70
Ε	23.00 - 26.50	3.50
F	26.50 - 30.00	3.50
G	30.00 - 35.50	5.50

TABLA(2)

3.1.3 Profundidad de desplante. Caracterización geométrica para el análisis de interacción.

La determinación de la profundidad de desplante es muy importante, ya que el efecto de compensación se consigue, sustituyendo el esfuerzo efectivo actuante en el lugar (σ_{od}) a dicha profundidad (D_f), con la presión que trasmite la estructura al suelo (q) reducida por el empuje ancendente ($D_f - N_{AS}$) γ_v , que proporciona el volumen sumergido de la cimentación.

Por lo tanto para que exista compensación total:

$$\sigma_{\rm od} = q - (D_{\rm f} - N_{\rm AS}) \gamma_{\rm o} \qquad (1)$$

. (2)

Expresándolo en forma más simple:

 $q = \sigma_{od} + (D_f - N_{AS})\gamma_v = P_{od}$

De esta manera, basta buscar la profundidad "D_f", en la gue $P_{d} = q$

En el perfil de esfuerzos (Fig. 1), se puede observar que en $D_f = 6.00 \text{ m}$, $P_{od} = 9.2 \text{ T/m}^2 = \text{g}$, siendo:

$$(D_r - N_{ro})\gamma = (6.00 - 1.55)(1.00) = 4.45$$

Por lo tanto:

$$(D_{r}-N_{AS})\gamma_{U} = 4.45 \text{ T/m}^{2}$$
(3)

Donde la expresión anterior (3), representa el esfuerzo que toma el agua por efecto de flotación, por lo tanto, el esfuerzo que se trasmite a la parte sólida de la masa de suelo, y que corresponde al esfuerzo efectivo $\sigma_{\rm od}$ en el lugar, será:

$$\sigma_{1} = 9.2 - 4.45 = 4.75 \, \mathrm{T/m}$$

 $\sigma_{od} = 4.75 \text{ T/m}^2$

39

Por consiguiente, la cimentación deberá desplantarse a $D_r=6.00$ m .

Así mismo, para efecto del análisis de interacción, se considera el área de cimentación dividida en 10 dovelas de 3.00 m de ancho cada una en el sentido largo, como se muestra en la figura (2). 3.2 DISTRIBUCION DE ESFUERZOS EN LA MASA DE SUELO

En la distribución de esfuerzos se debe tener en cuenta lo siguiente:

- El nivel de desplante (Z=-6.00 m), se considerará como cota 0.
- Por facilidad de cálculo se supondrá que la carga es unitaria, y se reparte uniformente en cada una de las dovelas en que se ha dividido la planta de cimentación.
- De acuerdo a lo anteriormente mencionado, se obtendrán los valores de influencia I^N_{ji}, para cada estrato "N" en el centro de la dovela "j", debido a la aplicación de una carga unitaria y uniformemente repartida en la dovela "i".
- Para la determinación de estos valores, se utilizará un método analítico propuesto por el Dr, Zeevaert, el cual consiste en calcular las matrices de influencia para cada una de las dovelas. (Por ejemplo, ver Fig. 3 para la dovela 1)

Donde λ = ancho de cada dovela = 3.00 m

Las influencias se calculan según Fröhlich y para un valor x = 2 (*), con las siguientes expresiones:

 $I_{j_1} = \left(\alpha_0 + \left(\frac{1}{2} \right) \operatorname{Sen} 2\alpha_0 \right) \left(\operatorname{Sen} \psi_1 - \operatorname{Sen} \psi_2 \right) \dots (4)$

(*) Este valor de x se definió en base a las características estratigráficas del subsuelo.

Donde los valores de α_0 , ψ_1 y ψ_2 , se obtienen de la figura 4, a partir de simples relaciones trigonométricas.

41.

....(5)

.... (6)

De lo anterior se tiene lo siguiente:

$$\alpha_{o} = tg^{-1} \frac{B}{\sqrt{x^{2} - z^{2}}}$$

$$\psi_{i} = tg^{-i} \frac{x + \lambda/2}{z}$$

$$z_{2} = tg^{-1} \frac{x - \lambda/2}{z}$$
(7)

Los valores de influencia obtenidos para todas las dovelas, se indican a continuación, denominandose al arreglo matricial que contiene estos valores, "Matriz de influencias I_{ii}^{N} ".

				[I .	1					
				[]a	1					
0.670	0.219	0.017	0.004	0.002	0.001	0.000	0.000	0.000	0.000	
0.233	0.161	0.071	0.029	0.013	0.006	0.003	0.002	0.001	0.001	
0.104	0.090	0.063	0.038	0.023	0.013	0.00B	0.005	0.003	0.002	
0.060	0.055	0.045	0.033	0.023	0.016	0.011	0.007	0.005	0.004	
0.039	0.037	0.032	0.026	0.020	0.015	0.011	0.008	0.006	0.004	
0.027	0.027	0.024	0.021	0.017	0.014	0.011	0.008	0.006	0.005	
0.014	0.013	0.013	0.012	0.011	0.009	0.008	0.007	0.006	0.005	

				[I] 1]				
0.129	0.670	0.129	0.017	0.004	0.002	0.001	0.000	0.000	0.000
0.161	0.233	0.161	0.071	0.029	0.013	0.006	0.003	0.002	0.001
0.090	0.104	0.090	0.063	0.038	0.023	0.013	0.008	0.005	0.003
0.055	0.060	0.055	0.045	0.033	0.023	0.016	0.011	0.007	0.005
0.037	0.039	0.037	0.032	0.026	0.020	0.015	0.011	0.008	0.006
0.027	0.027	0.027	0.024	0.021	0.017	0.014	0.011	0.008	0.006
0.013	0.014	0.013	0.013	0.012	0.011	0.009	0.008	0.007	0.006

ſ	Ŧ	- 1
L	¹ ,2	J

0.017	0.129	0.670	0.129	0.017	0.004	0.002	0.001	0.000	0.000
0.071	0.161	0.233	0.161	0.071	0.029	0.013	0.006	0.003	0.002
0.063	0.090	0.104	0.090	0.063	0.038	0.023	0.013	0.008	0.005
0.045	0.055	0.060	0.055	0.045	0,033	0.023	0.016	0.011	0.007
0.032	0.037	0.039	0.037	0.032	0.026	0.020	0.015	0.011	0 008
0.024	0.027	0.027	0.027	0.024	0.021	0.017	0.014	0.011	0.008
0.013	0.013	0.014	0.013	0.013	0.012	0.011	0.009	0.008	0.007

0.029 0.071 0.161 0.233 0.161 0.071 0.029 0.013 0.006 0.003 0.038 0.063 0.090 0.104 0.090 0.063 0.038 0.023 0.013 0.006 0.008 0.033 0.045 0.055 0.060 0.055 0.045 0.033 0.023 0.016 0.011 0.026 0.032 0.037 0.039 0.037 0.032 0.026 0.020 0.015 0.011 0.021 0.024 0.027 0.027 0.027 0.024 0.012 0.013 0.013 0.013 0.014 0.018	0.004	0.017	0.129	0.670	0.129	0.017	0.004	0.002	0.001	0.000
0.038 0.063 0.090 0.104 0.090 0.063 0.038 0.023 0.013 0.008 0.033 0.045 0.055 0.060 0.055 0.045 0.033 0.023 0.016 0.011 0.026 0.032 0.037 0.039 0.037 0.032 0.026 0.020 0.015 0.011 0.021 0.024 0.027 0.027 0.027 0.024 0.017 0.014 0.011 0.012 0.013 0.013 0.013 0.013 0.012 0.011 0.009 0.008	0.029	0,071	0.161	0.233	0.161	0.071	0.029	0.013	0.006	0.003
0.033 0.045 0.055 0.060 0.055 0.045 0.033 0.023 0.016 0.011 0.026 0.032 0.037 0.039 0.037 0.032 0.026 0.020 0.015 0.011 0.021 0.024 0.027 0.027 0.027 0.024 0.021 0.017 0.014 0.011 0.012 0.013 0.013 0.014 0.013 0.013 0.012 0.011 0.009 0.008	0. 03 8	0.063	0.090	0.104	0.090	0.063	0.038	0.023	0.013	0.008
0.026 0.032 0.037 0.037 0.032 0.026 0.020 0.015 0.011 0.021 0.024 0.027 0.027 0.027 0.024 0.021 0.017 0.014 0.011 0.012 0.013 0.013 0.014 0.013 0.013 0.012 0.011 0.009 0.008	0.033	0.045	0.055	0.060	0.055	0.045	0.033	0.023	0.016	0.011
0.021 0.024 0.027 0.027 0.027 0.024 0.021 0.017 0.014 0.011 0.012 0.013 0.013 0.014 0.013 0.013 0.012 0.011 0.009 0.008	0.026	0.032	0.037	0.039	0.037	0.032	0.026	0.020	0.015	0.011
0.012 0.013 0.013 0.014 0.013 0.013 0.012 0.011 0.009 0.008	0.021	0.024	0.027	0.027	0.027	0.024	0.021	0.017	0.014	0.011
	0.012	0.013	0.013	0.014	0.013	0.013	0.012	0.011	0.009	0.008

	. •			[I ₁₄]				
0.002	0.004	0.017	0.129	0.670	0.129	0.017	0.004	0.002	0.001
0.013	0.029	0.071	0.161	0.233	0.161	0.071	0.029	0.013	0.006
0.023	0.038	0.063	0.090	0.104	0.090	0.063	0.038	0.023	0.013
0.023	0.033	0.045	0.055	0.060	0.055	0.045	0.033	0.023	0.016
0.020	0.026	0.032	0.037	0.039	0.037	0.032	0.026	0.020	0.015
0.017	0.021	0.024	0.027	0.027	0.027	0.024	0.021	0.017	0.014
0.011	0.012	0.013	0.013	0.014	0,013	0.013	0.012	0.011	0.009

43

 $\begin{bmatrix} \mathbf{I}_{j5} \end{bmatrix}$

0.001 0.002 0.004 0.017 0.129 0.670 0.129 0.017 0.004 0.002 0.006 0.013 0.029 0.071 0.161 0.071 0.029 0.013 0.233 0.161 0.063 0.013 0.023 0.038 0.090 0.104 0.090 0.063 0.038 0.023 0.016 0.023 0.033 0.045 0.055 0.060 0.055 0.045 0.033 0.023 0.015 0.020 0.026 0.032 0.026 0.020 0.037 0.039 0.037 0.032 0.014 0.017 0.024 0.021 0.027 0.027 0.027 0.024 0.021 0.017 0.009 0.011 0.012 0.013 0.013 0.014 0.013 0.013 0.012 0.011

[I]]

0.000	0.001	0.002	0.004	0.017	0.129	0.670	0.129	0.017	0.004
0.003	0.006	0.013	0.029	0.071	0.161	0.233	0.161	0.071	0.029
0.008	0.013	0.023	0.038	0.063	0.090	0.104	0.090	0.063	0.038
0.011	0.016	0.023	0.033	0.045	0.055	0.060	0.055	0.045	0.033
0.011	0.015	0.020	0.026	0.032	0.037	0.039	0.037	0.032	0.026
0.011	0.014	0.017	0.021	0.024	0.027	0.027	0.027	0.024	0.021
0.008	0.009	0.011	0.012	0.013	0.013	0.014	0.013	0.013	0.012

0.000	0.000	0.001	0.002	0.004	0.017	0.129	0.670	0.129	0.017
0.002	0.003	0.006	0.013	0.029	0.071	0.161	0.233	0.161	0.071
0.005	0.008	0.013	0.023	0.038	0.063	0.090	0.104	0.090	0.063
0.007	0.011	0.016	0.023	0.033	0.045	0.055	0.060	0.055	0.045
0.008	0.011	0.015	0.020	0.026	0.032	0.037	0.039	0.037	0.032
0.008	0.011	0.014	0.017	0.021	0.024	0.027	0.027	0.027	0.024
0.007	0.008	0.009	0.011	0.012	0.013	0.013	0.014	0.013	0.013

[I₁₇]

[I_{je}]

0.000	0.000	0.000	0.001	0.002	0.004	0.017	0.129	0.670	0.129
0.001	0.002	0.003	0.006	0.013	0.029	0.071	0.161	0.233	0.161
0.003	0.005	0.008	0.013	0.023	0.038	0.063	0.090	0.104	0.090
0.005	0.007	0.011	0.016	0.023	0.033	0.045	0.055	0.060	0.055
0.006	0.008	0.011	0.015	0.020	0.026	0.032	0.037	0.039	0.037
0.006	0.008	0.011	0.014	0.017	0.021	0.024	0.027	0.027	0.027
0.006	0.007	0.008	0.009	0.011	0.012	0.013	0.013	0.014	0.013

[1₁,,]

0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.017	0.129	0.670
0.001	0.001	0.002	0.003	0.006	0.013	0.029	0.071	0.161	0.233
0.002	0.003	0.005	0.008	0.013	0.023	0.038	0.063	0.090	0.104
0.004	0.005	0.007	0.011	0.016	0.023	0.033	0.045	0.055	0.060
0.004	0.006	0.008	0.011	0.015	0.020	0.026	0.032	0.037	0.039
0.005	0.006	0.008	0.011	0.014	0.017	0.021	0.024	0.027	0.027
0.005	0.006	0.007	0.008	0.009	0.011	0.012	0.013	0.013	0.014

3.3. ESTIMACION PRELIMINAR DE LOS DESPLAZAMIENTOS VERTICALES

3.3.1 Módulo de deformación unitaria de respuesta elástica (Me).

Para la obtención de los desplazamientos verticales, es necesario conocer el módulo de deformación unitaria de respuesta elástica (Mo), el cual se obtuvo en el laboratorio. Posteriormente se elaboró una gráfica (Fig. 5) que relaciona los valores de Mo vs Zi, con el objeto de seleccionar el valor de Mo que sea representativo de cada estrato.

Los resultados obtenidos fueron los siguientes:

Estrato

Me (cm²/Kg)

A	0.029
В	0.033
C.	0.032
D	0.040
Ε	0.043
F	0.032
G	0.030

TABLA (3)

3.3.2 Determinación del coeficiente de deformación volumétrica, por expansión ($\alpha_{o,i}^N$)

El coeficiente de deformación volumétrica por expansión (α_{oi}^N), se obtiene a partir de la siguiente expresión:

aⁿ = Moi di

.....(8)

donde, di es el espesor de cada estrato.

Estrato	d _i (cm)	M _e (cm ² /Kg)	a _{ei} (cm³/Kg)
	330	0.029	9.57
В	410	0.033	13.53
C	380	0.032	12.16
a	470	0.040	18.80
E	350	0.043	15.05
	350	0.032	11.20
G	550	0.030	16.50

TABLA (4

3.3.3 Expansiones producidas por la excavación, sin tomar en cuenta el efecto de bombeo.

3.3.3.1 Reducción de los esfuerzos por la excavación

Debido a que la descarga sobre el terreno es uniforme en toda el área de cimentación, se utilizará la matriz general de influencias, es decir la suma de todas las matrices de influencias obtenidas para cada dovela (i=1,2,9,4,5,6,7,8,9,10). Esta matriz multiplicada por el esfuerzo efectivo a la profundidad de desplante, nos da la reducción de esfuerzos por la excavación. Así:

 $\left[\Delta\sigma_{exci}\right] = \sigma_{cd} \sum_{i=1}^{10} \left[I_{ji}\right]$

Siendo $\sum_{j=1}^{10} \left[I_{ji}^{N} \right]$

6 1 S з 4 5 7 8 9 10 A 0.823 0.953 0.969 0.974 0.975 0.975 0.974 0.969 0.953 0.823 B 0.522 0. 682 0.752 0.779 0.789 0.789 0.779 0.752 0.682 0.522 C 0.349 0.437 0.497 0.530 0.544 0.544 0,530 0.497 0.437 0.349 0.257 0.309 0.349 0.375 0.387 D. 0.387 0.375 0.349 0.309 0.257 0.199 0.231 E 0.258 0.276 0.285 0.285 0.276 0.258 0.231 0.100 F 0.163 0.185 0.204 0.217 0.224 0.224 0.217 0.204 0.185 0.163 G 0.129 0.144 0.156 0.164 0.168 0.168 0.164 0.156 0.144 0.129

47

....ເອນ_

De (1) se tiene que: σ_{od} = 4.75 T/m² = 0.475 kg/cm²

Sustituyendo valores en (9):

	1	2	Э	4	5	6	7	8	9	10		
A	0. 391	0.455	0.460	0.463	0.463	0.463	0.463	0.460	0.455	0.391		
В	0.248	0.324	0.357	0.370	0.375	0.375	0.370	0.357	0.324	0.248		
C	0.166	0.208	0.236	0.252	0.258	0.258	0.252	0.236	0.208	0.166		
D	0.122	C.147	0.166	0.178	0.184	0.184	0.178	0.166	0.147	0.122		
E	0.095	0.110	0.123	0.131	0.135	0.135	0.131	0.123	0.110	0.095		
E	0.077	0.068	0.097	0.103	0.106	0.106	0.103	0.097	0.038	0.077		
G	0.061	0.068	0.074	0.078	0.080	0.080	0.078	0.074	0.068	0.061		
	(Kg∕cm ²)											

Δσ_{exc}]

3.3.3.2 Correction del coeficiente de expansión ($\alpha_{\rm s}^{\rm N}$)

Para la descarga parcial de esfuerzos, en el punto "i-ésimo", el coeficiente de expansión α_{μ}^{N} . debe corregirse por el factor de expansión: (Ref. 1, Pag. 207)

$$\rho_{ei}^{N} = \left(\frac{A\sigma_{exci}}{A\sigma_{oi}}\right)^{C-1}$$

Donde:

A σ_{exci} = Alivio de esfuerzos en el punto "*i-ésimo*", debido a la excavación.

... (10)

 $A\sigma_{oi}$ = Esfuerzo efectivo inicial "in-situ", en el punto "i-ésimo".

48.

Para el caso de arcillas de la Ciudad de Mexico, el Dr. Zeevaert recomienda utilizar c=1.5 , por lo tanto:

Siendo el coeficiente de expansión volumétrica corregido para el centro del area de cimentación:

 $\tilde{\alpha}_{a_1}^{N} = \rho_{a_1}^{N} \alpha_{a_1}^{N}$

. (12)

En la siguiente tabla se presenta el cálculo de los coeficientes de **expansi**ón volumétrica corregida ($\tilde{\alpha}_{\alpha_1}^N$), utilizandose:

- La expresión (11), para el cálculo de ρ_{a1}^{N} - La tabla (4), para los valores de α_{ol}^{N}
- Y la expresión (12), para el calculo de $\bar{\alpha}_{\alpha_1}^N$

Est	d	z,	Ao exc	ø oi	P	an	an ei
A	(c∎) 330	(篇) 1.65	(Kg/cm ²) 0.463	(Kg/cm ²) 0.502	0.960	(cm ⁸ Kg) 9.57	(c∎ ⁸ Kg) 9.187
B	410	5.65	0.375	0.598	0.792	13.53	10.716
C	380	10.40	0.258	0.682	0.615	12.16	7.478
D	470	14.65	0.184	0.765	0.490	18.80	9.212
R	350	18.75	0.135	0.827	0.404	15.05	6.080
P	350	22.25	0.106	0.906	0.342	11.20	3.830
G	550	26.75	0.080	0.965	0.288	16.50	4.752

3.3.3.3 Calculo de expansiones sin considerar el efecto del bombeo

En rigor se debe construir una matriz de factores de corrección (ρ_{i}^{N}) debido a que el alivio de esfuerzos provocado por la excavación (Ao no es constante a lo largo de un mismo estrato, sin embargo por simplicidad y por no alterar en gran medida los resultados, en este **trabajo se** considerará constante el valor de ρ_a^N para todo el estrato "n-esimo".

Por lo tanto el valor de $\bar{\alpha}_{e}^{N}$ tambien será constante para todo el estrato "n-esimo". Las expansiones serán calculadas con la siguiente expresion matricial:

> $\delta_{\mathbf{e}} = \begin{bmatrix} A \sigma_{\mathbf{e} \times \mathbf{c}}^{\mathsf{N}} \end{bmatrix} \tilde{\alpha}_{\mathbf{e}}^{\mathsf{N}}$

Sustituyendo (9) y los valores de $\overline{\alpha}_{A}^{N}$ (Tabla 5), en (13), se tiene que:

		[Ao ^N exc] ^T			a#		ୢଌୣ
0.391	0.248	0.166	0.122	0.095	0.077	0.061	9.187		9.777
0.453	0.324	0.208	0.147	0.110	0.088	0.068	10.716		11.872
0.460	0.357	0.236	0.166	0.123	0.097	0.074	7.478		12.817
0.463	0.370	0.252	0.178	0.131	0.103	0.078	9.212	=	13.304
0.463	0.375	0.258	0.184	0.135	0.106	0.080	6.080		13.503
0.463	0.375	0.258	0.184	0.135	0.106	0.080	3.830		13,503
0.463	0.370	0.252	0.178	0.131	0.103	0.078	4.752		13.304
0.460	0.357	0.236	0.166	0.123	0.097	0.074			12.817
0.453	0.324	0.208	0.147	0.110	0.088	0.068			11.872
0.391	0.248	0.166	0.122	0.095	0.077	0.061			9,777

La máxima expansión se presenta en el centro del área cargada y es del orden de 13.503 cm.

La configuración de las expansiones en el fondo de la excavación se presenta en la figura 6

3.3.4 Expansiones producidas en el fondo de la excavación, considerando el efecto hidráulico (con bombeo).

3.3.4.1 Determinación del coeficiente de permeabilidad.

Para calcular las expansiones producidas en el fondo de la excavación tomando en cuenta el bombeo, es necesario primeramente calcular el coeficiente de permeabilidad, el cual se obtiene a partir de datos generados en pruebas de compresibilidad realizadas en el laboratorio (Figs. 7.a,b,..n), los cuales se presentan a continuación:

Est	Prof.	Muest.	Esp.	Zm	a si	m ep	Cv	k
		kepre.		(m)	(Kg/cm ²)	(cm²/Kg)	(cm²/s)	(cm/s)
								(x10 ⁻⁸)
		1-J-3						
A	6.00- 9.30	(8.4)	3.30	7.65	0.502	0.0194	0.0022	4.628
		I-L-0						
В	9.60-13.70	(11.80)	4.10	11.65	0.598	0.0181	0.0013	2.371
		1-0-7	• • •					
С	14.50-18.30	(16.55)	3,80	16.40	0.682	0.0394	0.0021	8.724
	10.00.00.00	I-R-3	4 70	20.00	0 765	0.0174	0 0000	4 45 4
D	18.30-23.00	(20.10)	4.70	20.65	0.765	0.0174	0.0026	4,404
-		I-V-1	2 50	04 60	0.007	0.001.0	0.0000	E 500
- E	23.00-20.50	(24.40)	3.50	24.00	0.867	0.0210	0.0028	5. 580
	and the second second	1-X-9						
F	26.50-30.00	(29.05)	3.50	28.65	0.906	0.0275	0.0028	7.700
	A strange the second	I-M-4						
G	30.00-35.50	(23, 50)	5.50	32.75	0.965	0.0260	0.0028	7.200
			ТА	BLA (5)				

• Para los estratos F y Q no se tienen gráficas para conocer el valor del coeficiente de consolidación que le corresponde, por lo tanto, el valor de Cv para estos estratos es el mismo que para el estrato E. Para calcular el valor del coeficiente de permeabilidad (k), se utilizó la siguiente expresión, obtenida a partir de la teoria de la consolidación.

3.3.4.2 Cálculo de los abatimientos piezométricos

Para el cálculo de los abatimientos plezométricos se utilizará la siguiente formula(*):

$$K_{i}\lambda_{i-1} = \left(K_{i} + K_{i+1}\right)\lambda_{i} + K_{i+1}\lambda_{i+1} = K_{i}A_{i} - K_{i+1}A_{i+1}$$

Donde:

$$A_{i} = h_{i-1} - h_{i} + \delta_{i} \qquad ; \qquad K_{i} = \frac{\kappa_{i}}{\delta_{i}}$$

$$A_{i+1} = h_i - h_{i+1} + \delta_{i+1}$$
; $K_{i+1} = \frac{\kappa_{i+1}}{\delta_{i+1}}$

Si endo:

* La deducción de esta fórmula se encuentra en el anexo 1

1	ď	h _i	A	k j	Ki	Ki Ai
	(m)	(m)	(m)	(m/seg) x 10 ⁻¹⁰	(seg ⁻¹) x 10 ⁻¹⁰	
0	5.45	5.45				
1	2.45	7.90	0.00	4.628	1.889	0.000
2	4.65	12.55	0.00	2.371	0.510	0,000
Э.	4.20	16.75	0.00	8.724	2.077	0.000
. 4	4.70	21.45	0.00	4.454	0,948	0.000
5	3.55	25.00	0.00	5,580	1.572	0.000
6	8.95	33.95	0.00	7.437	0.831	0.000
				TABLA (7)		

Debido a que los niveles piezométricos originales corresponden a la condición hidrostática, es decir entre dos fronteras no existe perdida de carga ($A_i = 0$)

Con la expresión (15), se planteará el sistema de ecuaciones que se muestra a continuación para el cálculo de los abatimientos.

-2.3989	0.5099	0,0000	0.0000	0.0000	٨,		-10.295	
0.5099	-2.5870	2.0771	0.0000	0.0000	λ,		0.000	
0.0000	2.0771	3.0248	0.9477	0.0000	λ,	- 10	0.000	~10
0.0000	0.0000	0.9477	~2.5191	1.5718		x10 =	0.000	x10
0.0000	0.0000	0.0000	1.5718	-2.4322	λ.		0.000	
0.0000	0.0000	0.0000	1.5718	-2.4322	گ		-0.831	

Resolviendo el sistema de ecuaciones planteado anteriormente, obtenemos la solución siguiente:

> 5.0432 3.5361 $\lambda_i = 3.1667 \text{ m}$ 2.3561 1.8643

i

Tomando en cuenta los abatimientos iniciales ($\lambda_0 = 5.45 \text{ m y } \lambda_y = 1.0 \text{ m}$) y los calculados anteriormente, tenemos:

Z _i Cm)	λ _i CmD
7.00	5.4500
9.45	5.0432
14.10	5. 5361
18.30	3.1667
23,00	2.3561
26.55	1.8643
35.50	1.0000
TABLA (8)	

En la figura (8), se muestra en forma gráfica, la distribución de los abatimientos consignados en la tabla (8).

Si se supone que el abatimiento piezometrico al centro de cada estrato, es constante en toda el area excavada, se tiene que la matriz de abatimientos queda de la forma siguiente. Estos valores se interpolan de la figura (8).

•											ſ	MINU
	Estrato											
	Α	5.45	5.45	5.45	5.45	5.45	5.45	5.45	5.45	5.45	5.45	
•	В	4.05	4.05	4.05	4.05	4.05	4.05	4.05	4.05	4.05	4.05	
	C	3.40	3.40	3.40	3.40	3.40	3.40	3.40	3.40	3.40	3.40	
	D	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	-
	E	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	
	F	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	
	G	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	

3.3.4.3 Cálculo de los incrementos de esfuerzos por excavación y bombeo.

Condiciones iniciales: $\sigma_{2} = \sigma_{2}^{N}$ **Condiciones finales:** $\sigma_{f} = \sigma_{0,j}^{N} + \lambda_{j}^{N}\lambda_{j} - \sum_{j=1}^{N} I_{j,j}^{N} q_{j,j} \dots (17)$

Incremento de esfuerzos: A $\sigma = \lambda_{j}^{N} \gamma_{v} - \sum I_{jv}^{N} q_{vd}$

$$= \lambda^{N} x = \nabla T^{N} q \qquad (18)$$

Siendo el valor de q_{od} (esfuerzo efectivo a la profundidad de desplante) de:

 $q_{od} = 9.2 T/m^2$

Considerando la matriz de influencias total \sum_{j_1} , la matriz de abatimientos y solo la parte simétrica de ambas tenemos que:

S

0.545 0.545 0.545 0.545 0.545 I 0.405 0.405 0.405 0.405 0.405 M 0.340 0.340 0.340 0.340 0.340 E 0.210 0.210 0.210 0.210 0.210 R 0.170 0.170 0.170 0.170 0.170 I 0.125 0.125 0.125 0.125 0.125 C

 $\left[r_{j} \lambda_{v} \right]$

0.823 0.953 0.969 0.974 0.975 I 0 522 0.682 0.752 0.779 0.769 M 0.349 0.437 0.497 0.530 0.544 E 0.270 0.270 0.270 0.270 0.270 T - 0.257 0.309 0.349 0.375 0.387 T (.92) 0.199 0.231 0.258 0.276 0.285 R 0.163 0.165 0.204 0.217 0.224 1 0.129 0.144 0.156 0.164 0.168 C А

s

56

S

(Kg/cm²)

(Ka/cm²)

 $\left[\begin{array}{c} q_{od} \\ \end{array} \right]^{10} I_{ji}^{N}$

Realizando operaciones se tiene:

	- 1					
	-0.212	-0,332	-0.346	-0.351	-0.352	I
	-0. 075	-0.222	-0.287	-0.312	-0.321	. Þ
-	-0.019	-0.062	-0.117	-0.148	-0.160	E
Ao ^N _{ij} =	0. 034	-0.014	-0.051	-0.075	-0.086	. 1
L J	0.027	-0.002	-0.027	-0.044	-0.052	F
	0.020	0.000	-0.018	-0.030	-0.036	3
	0.006	-0.007	-0.019	-0.026	-0.030	C

En la figura (9), se presenta la variación del alivio de esfuerzos, al centro de la excavación, con respecto a la profundidad

3.3.4.4 Corrección del factor de expansión.

De la ecuación (10):

 $a_{e}^{-N} = \rho_{e}a_{e}^{N}$

Donde:

 $P_{e} = \sqrt{\frac{A\sigma_{1}^{N}}{\sigma_{o}^{N}}}$

Para este caso cuando c=1.

 $\alpha_{\phi}^{N} = M_{\phi}^{N} \delta^{N}$

Tomando los valores de $A\sigma_j^N$ correspondientes a la faja central:

Est.	0	λγ.	″exc	Aσ	an	P	a
	(Kg∕cm²)	(Kg/cm ²)	(Kg∕cm ²)	(Kg∕cm ²)	Ccm ³ ∕Kg)		(cm ³ /Kg)
A	0.502	0.535	0.897	0.352	9.57	0.701	6,709
B	0.598	0.460	0.726	0. 321	13.53	0.537	7.266
С	0.682	0.375	0.500	0.160	12.16	0,235	2.858
D	0.765	0.330	0.356	0.086	18.80	0.112	2.106
E	0,827	0.280	0.296	0.052	15.05	0.063	0.948
F	0,906	0.203	0.206	0.036	11.20	0,040	0,448
G	0,965	0.150	0.152	0. 030	16.50	0.031	0.512
sta a c				BT A (0)			

3.3.4.5 Cálculo de las expansiones a) Término correspondiente a la excavación

De I obtenemos :

 $\begin{bmatrix} I \end{bmatrix}_{ja}^{T}$

0.870	0.233	0.104	0.060	0.039	0.027	0.014	6.709	6,668
0.129	0.161	0.090	0.055	0.037	0.027	0.013	7.266	2.462
0.017	0.071	0.063	0.045	0.032	0.024	0.013	2.858	0.953
0.004	0. 029	0.038	0.033	0.026	0.021	0.012	2.106	. 456
0.002	0.013	0.023	0. 023	0.020	0.017	0.011	0.948	0.254
0.001	0.006	0.013	0.016	0.015	0.014	0.009	0.448	0.146
0,000	0.003	0.008	0.011	0.011	0.011	0.008	0, 512	0.087
0.000	0.002	0.005	0.007	0.007	0.008	0.007		0,058
0.000	0.001	0.003	0.005	0.006	0.006	0.006		0.038
0.000	0.001	0.002	0.004	0.004	0,005	0.005		0.030
							(cm ⁹ /Ka)	(cm ³ /Kq)

Generando a partir de δ_{ia} la matriz de desplazamientos verticales:

[8] 9.0 6.668 2.462 0.953 0.456 0.254 0.146 0.087 0.058 0.038 0.030 0.92 2,462 6,668 2,462 0,953 0,456 0,254 0,146 0,087 0,058 0,038 0.92 0.92 0,953 2,462 6,668 2,462 0,953 0,456 0,254 0,146 0,087 0,058 0.456 0.953 2.462 6.668 2.462 0.953 0.456 0.254 0.146 0.087 0.92 0.254 0.456 0.953 2.462 6.668 2.462 0.953 0.456 0.254 0.146 0.92 0,146 0,254 0.456 0.953 2.462 6.668 2.462 0.953 0.456 0.254 0.92 0.087 0.146 0.254 0.456 0.953 2.462 6.668 2.462 0.953 0.456 0.92 0.92 0.058 0.087 0.146 0.254 0.458 0.953 2.462 6.668 2.462 0.953 0.92 0,038 0,058 0.087 0.146 0.254 0.456 0.953 2.462 6.668 2.462 0.030 0.038 0.058 0.087 0.146 0.254 0.456 0.953 2.462 6.668 0.92 (Kg/cm²)

58

a.^N éja

Al realizar el producto matricial anterior, encontramos las deformaciones correspondientes solamente a la excavación:

	10.260
	12.497
	13.339
.]	13.705
6] =	13.859
<u></u>	13.859
	13.705
	13,339
	13.497
	13 260

b) Términos correspondientes a los abatimientos piezométricos

0.170

0.170

0.170

0.170

0.170

0.170

0.170

0.210 0.170

0.170 0.125

0.170 0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

2

o

0

0

De 3.3.4.3 obtenemos $\left[\lambda_{ji}^{N}r_{v}\right]$:

0.340

0.340

0.340

0.340

0.340

0.340

0,340

0.340 0.270

0.545 0.405

0.545 0.405

0.545 0.405

0, 545 0, 405

0,545 0,405

0.405

0.545 0,405 0.340

0.405

0.405

0.405

0.545

0. 545

0.545

0.545

 $\left[\lambda_{ji}^{N}r_{v}\right] \ .$

0.270 0.210

0.270 0.210

0.340 0.270 0.210

0.270

0.270

0.270

0.270

0.270

0.270

0.210

0.210

0.210

0.210

0.210

0.210

aⁿo δ^Nj 6.709 8.479

7.266		8.479
2.858		8.479
2.106	**	8,479
0.948		8.479
0.448		8.479
0.512		8.479
		8.479
		8, 479
		0 470

c) Cálculo de la expansión debido a los dos efectos combinados:
 Sumando algebraicamente el término correspondiente a la excavación
 y el debido a los abatimientos piezométricos, se tiene:

δq		s_i^{λ}		6
10.260		8.479		1.781
12.497		8.479		4.018
13.339		8.479		4.860
13,705		8.479		5.226
13.859	-	8.479	= .	5.380
13,859		8.479		5,380
13.705		8.479		5.226
13.339		8.479		4.860
12.497		8.479		4.01B
10.260		8.479		1.781

En la figura (10), se presenta en forma esquemática la configuración de las expansiones (δ_{a})

3.3.4.6 Procedimiento alterno para verificar la magnitud de las expansiones obtenidas.

 $\delta_{\phi} = \left[\Delta \sigma_{ji}^{N} \right]^{T} \tilde{\alpha}_{\phi i}^{N} \qquad \dots \dots \dots (19)$

De (3.4.3), la tabla (9) y sustituyendo valores en (19):

			[20'	$\begin{bmatrix} \mathbf{v} \\ \mathbf{i} \end{bmatrix}^{\mathbf{T}}$			a e	් e
-0.212	-0.075	-0.019	0.034	0.027	0.020	0.006	6,709	1.912
-0.332	-0.222	-0.062	-0.014	-0.002	0.000	-0.007	7.266	4.053
-0.346	-0.287	-0.117	-0.051	-0.027	-0.018	-0.019	2.858	4.892
-0.351	-0.312	-0.148	-0.075	-0.044	-0.030	-0.026	2.106	5.271
-0.352	-0.321	-0.160	-0.086	-0.052	-0.036	-0.030	0.948 =	5.413
-0.352	-0.321	-0.160	-0.086	-0.052	-0.036	-0.030	0.948	5.413
-0.351	-0.312	-0.148	-0.075	-0.044	-0.030	-0.026	2.106	5.271
-0.346	-0.287	-0.117	-0.051	-0.027	-0.018	-0.019	2.858	4.892
-0.332	-0.222	-0.062	-0.014	-0.002	0.000	-0.007	7.266	4.053
-0.212	-0.075	-0.019	0.034	0.027	0.020	0.006	6.709	1.912

3.3.5.1 Seleccion de parametros para una primera interaccion. Cimentacion 100% flexible.

Para una cimentación 100% flexible $q_i = q_i$, por le tanto:

$$\Delta \sigma = \sum_{i}^{10} I_{ji}^{N} q \qquad \dots (24)$$
$$\Delta \sigma_{exc} = \sum_{i}^{10} I_{ji}^{N} q_{od} \qquad \dots (25)$$

62

Siendo en este caso $q_{od} = 0.092 \text{ Kg/cm}^2$ Y sustituyendo la matriz $\sum I_{ji}^N$ (Sección 3.3.3.1.) y el valor de q_{od} en (25) se tiene:

$$\begin{bmatrix} \Delta \sigma_{0 \times c} \\ M \end{bmatrix} = \begin{bmatrix} \Delta \sigma_{0 \times c} \\ M \end{bmatrix} = \begin{bmatrix} \Delta \sigma_{0 \times c} \\ M \end{bmatrix} = \begin{bmatrix} \Delta \sigma_{0 \times c} \\ M \end{bmatrix}$$

$$\begin{bmatrix} \Delta \sigma_{0 \times c} \\ M \end{bmatrix} = \begin{bmatrix} \Delta \sigma_{0 \times c} \\ M \end{bmatrix} = \begin{bmatrix} \Delta \sigma_{0 \times c} \\ M \end{bmatrix}$$

$$\begin{bmatrix} \Delta \sigma_{0 \times c} \\ M \end{bmatrix} = \begin{bmatrix} \Delta \sigma_{0 \times c} \\ M \end{bmatrix} = \begin{bmatrix} \Delta \sigma_{0 \times c} \\ M \end{bmatrix} = \begin{bmatrix} \Delta \sigma_{0 \times c} \\ M \end{bmatrix}$$

$$\begin{bmatrix} \Delta \sigma_{0 \times c} \\ M \end{bmatrix} = \begin{bmatrix} \Delta \sigma_{0 \times c} \\ M \end{bmatrix} = \begin{bmatrix} \Delta \sigma_{0 \times c} \\ M \end{bmatrix}$$

$$\begin{bmatrix} \Delta \sigma_{0 \times c} \\ M \end{bmatrix} = \begin{bmatrix} \Delta \sigma_{0 \times c} \\ M \end{bmatrix}$$

$$\begin{bmatrix} \Delta \sigma_{0 \times c} \\ M \end{bmatrix}$$

Con base en la matriz de abatimentos λ obtenida en 3.3.4.2 , se puede obtener la matriz de esfuerzos de recompresión de la siguiente manera:

 $\left[\Delta \sigma_{\mathbf{r}} \right] = \left[\Delta \sigma_{\mathbf{e} \times \mathbf{c}} \right] - \left[\lambda \gamma_{\mathbf{v}} \right] \qquad \dots \dots (28)$

		[_Δ°e	кс]		~				[^ _Y w]		c
0.757	0.877	0.891	0.896	0.897	I		0.545	0.545	0.545	0.545	0.545	I
0.480	0.627	0.692	0.717	0.726	м		0.405	0.405	0.405	0.405	0.405	М
0.321	0.402	0.457	0.488	0.500	Е		0.340	0.340	0.340	0.340	0.340	E
0.236	0.284	0.321	0.345	0.356	Т	-	0.270	0.270	0.270	0.270	0.270	T
0.183	0.213	0.237	0.254	0.262	R		0.210	0.210	0.210	0.210	0.210	R
0.150	0.170	0.188	0.200	0.206	I		0.170	0.170	0.170	0.170	0.170	I
0.119	0.132	0.144	0.151	0.155	С		0.125	0.125	0.125	0.125	0.125	С
	()	(g/cm ²))		Α				(Kg/ci	a²)		A

63

Siendo por tanto la matriz de esfuerzos por recompresion:

			Δσ	_] = [∆o exc y	bombeo]		
0.212	0.322	0.346	0.351	0.352	0.352	0.351	0.346	0.322	0.212
0.075	0.222	0.287	0.312	0.321	0.321	0.312	0.287	0.222	0.075
-0.019	0.062	0.117	0.148	0.160	0.160	0.148	0.117	0.062	-0.019
-0.034	0.014	0.051	0.075	0.086	0.086	0.075	0.051	0.014	-0.034
-0.027	0.003	0.027	0.044	0.052	0.052	0.044	0.027	0.003	-0.027
-0.020	0,000	0.018	0.030	0.036	0.036	0.030	0.018	0.000	-0.020
-0.006	0.007	0.019	0.026	0.030	0.030	0.026	0.019	0.007	-0.006

El esfuerzo (σ_m) se obtendrá como ya se vió con la expresión (23)

 $\sigma_{\rm m} = \sigma_{\rm ol} - \left(\frac{1}{2}\right) \Delta \sigma_{\rm exc} y$ bembee

N	z	0 0i					
	(m)	(Kg/cm ²)					s
A	7.65	0.502	0.396	0.336	0.329	0.327	0.326 1
B	11.65	0.598	0.561	0.487	0.454	0.442	0.438 M
C	16.40	0.682	0.692	0.651	0.624	0.608	0.602 E
D	20.65	0.765	0.782	0.758	0.740	0.728	0.722 T
E	24.65	0.827	0,841	0.826	0.814	0.805	0.775 R
7	28.65	0.906	0.916	0.906	0.897	0.891	0.888 I
G	32.75	0.965	0.968	0.962	0,956	0.952	0.950 C
	TABLA (10)			-		14 A.	A

3.3.5.1.a Cálculo de la compresión volumétrica corregida ($\overline{\alpha}_{c}^{N}$), cada estrato.

$$\rho_{c} = \rho_{0} \qquad \frac{1 + K_{vpo} \left(-\frac{\sigma_{r}}{\sigma_{oi}} \right)}{1 + K_{vpo}} \qquad \dots \dots (28)$$

 $\nu_{c} = \frac{(1 + \nu)(1 - 2\nu)}{(1 - \nu)}$

Para este trabajo y de acuerdo con la experiencia se propuso:

 $K_{\nu 00} = 1.0 \text{ y} \nu = 0.4$

1

Tomando como representativos para cada estrato, los valores de σ_r , obtenidos para la franja central, se tiene:

•	d,	Z _m	oi oi	o'r	ρ °	ρ _c	а. С	
	· (m)	(m)	(Kg/cm ²)	(Kg/cm ²)			(cm ⁷ Kg)	(cm ⁷ Kg)
N	3.30	7.65	0.502	0.352	0.701	0.596	16.50	9.834
8	4.10	11.65	0.598	0.321	0.537	0.413	21.80	9.003
3	3.80	16.40	0.682	0.160	0.235	0.145	33.80	4.901
)	4.70	20.65	0.765	0.086	0.112	0.062	18.50	1.147
Ľ	3.50	24.65	0.827	0.052	0.063	0.033	17.40	0.574
	3.50	28.65	0.906	0.036	0.040	0.021	16.40	0.344
3	5.50	32.75	0.965	0.030	0.031	0.016	19.50	0.312

FARLA (11)

64

.....(29)

• P = 1 = 1							
N	2	5	10	15	20	25	35
A	7.30	11.00	14.30	16.50	17.80	18.40	18.80
B	8.80	16.60	20.10	21.80	22.70	23.40	24.10
C	16,60	26.00	31.80	33.80	34.80	35.30	35.70
D	9,40	14.20	17.20	18.50	19.20	19.40	19.60
E	8.50	13.40	16.00	17.40	18.40	19.00	19.40
F	10.20	12.50	15.00	16.40	17.80	19.00	20.20
3	14.20	16.40	18.20	19.50	20.30	20.80	21.20
			т	ABLA (12)			

(Tiempo en años)

aN

Los valores de la tabla 12, se encuentran graficados en la Fig. 11 Por lo tanto, los coeficientes de compresión volumétrica $(\overline{\alpha_c}^{N})$ seran:

$\alpha_{c} = F$ (Tiempo en años)

N	2	5	10	15	20	25	35
2.1.							
A	4.351	6.556	8.523	9.834	10.609	10.966	11.205
B	3.634	6.856	8.301	9.003	9.375	9.664	9.953
C	2.407	3.770	4.611	4.901	5.046	5.119	5.177
D	0.583	0.880	1.066	1.147	1.190	1.203	1.215
ß	0.281	0.442	0.528	0.574	0.607	0.627	0.640
P	0.214	0.263	0.315	0.344	0.374	0.399	0.424
G	0.227	0.262	0.291	0.312	0.325	0.333	0.33 9
			TA	BLA (19)			

3.3.5.2 Calculo de esfuerzos y deformaciones para t(tiempo)=15 años

a) Deformación por recompresión.

a.1) Deformación por carga (o)

			- δ _ι =	[1,] ^T _d ^N _c				
		ι	1.] ^T				āN]5
0.670	0.233	0.104	0.060	0.039	0.027	0.014	9.834		9.301
0.129	0.161	0.090	0.055	0.037	0.027	0.013	9.003		3.257
0.017	0.071	0.063	0.045	0.032	0.024	0.013	4.901		1.197
0.004	0.029	0.038	0.033	0.026	0.021	0.012	1.147		0.550
0 .002	0.013	0.023	0.023	0.020	0.017	0.011	0.574	=	0.297
0.001	0.006	0.013	0.016	0.015	0.014	0.009	0.344		0.162
0.000	0.003	0.008	0.011	0.011	0.011	0.008	0.312		0.091
0.000	0.002	0.005	0.007	0.008	0.008	Ð.007			0.060
0.000	0.001	0.003	0.005	0.006	0.006	0.006			0.037
0.000	0.001	0.002	0.004	0.004	0.005	0.005			0.029

Por lo tanto:

0. 0. 0. 0. 0. 0. 0. 0.

					[5]	1				a a	6
9.301	3,257	1.197	0.550	0.297	0.162	0.091	0,060	0.037	0.029	. 92	13.78
3.257	9.301	3.257	1.197	0.550	0.297	0.162	0.091	0.060	0.037	. 92	16.75
1.197	3.257	9.301	3.257	1.197	0.550	0.297	0.162	0.091	0.060	.92	17.81
0.550	1.197	3.257	9.301	3.257	1.197	0.550	0.297	0.162	0.091	.92	18.27
0.297	0.550	1,197	3.257	9.301	3.257	1.197	0.550	0.297	0.162	. 92	18.46
0.162	0.297	0,550	1.197	3.257	9.301	3.257	1.197	0.550	0.297	.92	18.46
0.091	0.162	0.297	0.550	1.197	3.257	9.301	3.257	1.197	0.550	. 92	18.27
0.060	0.091	0.162	0.297	0.550	1.197	3.257	9.301	3.257	1.197	. 92	17.81
0.037	0.060	0.091	0.162	0.297	0.550	1.197	3.257	9.301	3.257	. 92	16.75
0.029	0.037	0.060	0.091	0.162	0.297	0.550	1.197	3.257	9.301	.92	13.78
				(cm ³	/Kg)					(Kg/cm ²	²)(cm)

a.2) Deformacion por bombeo (ϕ_c^{λ})

De 3.3.4.2 se obtiene [$\lambda \gamma_{ij}$] y mediante la siguiente multiplicación matricial tenemos:

			ا	່າູ]			0 N		6
0.545	0.405	0.340	0.270	0.210	0.170	0.125	9.834		11.20
0.545	0.405	0.340	0.270	0.210	0.170	0.125	9.003		11.20
0.545	0.405	0.340	0.270	0.210	0.170	0.125	4.901		11.20
0.545	0.405	0.340	0.270	0.210	0.170	0.125	1.147	3	11.20
0.545	0.405	0.340	0.270	0.210	0.170	0.125	0.574		11.20
0.545	0.405	0.340	0.270	0.210	0.170	0.125	0.344		11.20
0.545	0.405	0.340	0.270	0.210	0.170	0.125	0.312		11.20
0.545	0.405	0.340	0.270	0.210	0.170	0.125			11.20
0.545	0.405	0.340	0.270	0.210	0.170	0.125			11.20
0.545	0.405	0.340	0.270	0.210	0.170	0.125			11.20
			(Kg/cm ²)			(cm ³ /Kg)		(cm.)

Deformaciónes por efectos combinados:

$\left \begin{array}{c} \delta_{c}^{\lambda} \\ 11 \\ 20 \end{array} \right $		ο 2.58
11.20		5.55
11.20		6.61
11.20		7.07
11.20		7.26
11.20		7.26
11.20		7.07
11.20		6.61
11.20		5.55
11.20		2.58
(cm)		(CH)
	$\begin{vmatrix} \delta_{c} \\ 11.20 \\ 11.20 \\ 11.20 \\ 11.20 \\ 11.20 \\ 11.20 \\ 11.20 \\ 11.20 \\ 11.20 \\ 11.20 \\ 11.20 \\ 11.20 \\ (cm) \end{vmatrix}$	$\begin{vmatrix} \delta_{c}^{\lambda} \\ 11.20 \\ 11.20 \\ 11.20 \\ 11.20 \\ 11.20 \\ 11.20 \\ 11.20 \\ 11.20 \\ 11.20 \\ 11.20 \\ 11.20 \\ 11.20 \\ (cm) \end{vmatrix}$

(*) Estos resultados se encuentran graficados en la Figura (12).

b) Metodo alternativo para el calculo de los asentamientos

$$\Delta \sigma_{j}^{N} = q_{\sigma d} \sum_{i}^{10} \mathbf{I}_{ji}^{N} - \lambda_{j} \gamma_{v} \qquad \dots \dots \dots (30)$$

68

. ...

De 3.3.5.1 y sustituyendo en (31):

			[Δ0	и]			and a state of the	5.
0.212	0.075	-0.01	ə ~0.034	-0.027	-0.020	~0.006	9.834	2.62
0.332	0.222	0.06	2 0.014	0.003	0.000	0.007	9.003	5.59
0.346	0.287	0.11	7 0.051	0.027	0.018	0.019	4.901	6.65
0.351	0.312	0.14	8 0.075	0.044	0.030	0.026	1.147 =	7.12
0.352	0.321	0.16	0.086	0.052	0.036	0.030	0.574	7.29
							0.344	7.29
		S I	ME	TRI	C A		0.312	7.12
								6.65
an an taon an Taonaiste								5.59
					•			2.62
			(Kg/cm ²)				(cm ⁹ /Kg)	(cm)

De esta manera se puede comprobar que los abatimientos calculados con $\delta_{\rm c}$, son correctos.

3.3.5.3 Calculo de deformaciones y distribución de reacciones considerando cimentación rígida.

Las reacciones finales (q_i) en la estructura, deben ser tales que $d_i = d_a \quad \text{con } \tilde{a} \sum q_i = W_{real}$

Siendo a = area de cada dovela

Donde:

$$q_{i} = \sigma_{i} + u_{od} \qquad \dots \dots (32)$$

$$\sigma_{i} = \sigma_{i}^{*} + f\sigma_{i}^{*} \qquad \dots \dots (33)$$

$$\delta_{a} = \delta_{a}^{*} + f\delta_{a} \qquad \dots \dots (34)$$

$$\delta_{a} = \delta_{a}^{'} + f(1) \qquad \dots \dots (35)$$

$$q_i = \sigma_i' + f \tilde{\sigma}_i + u_{od} \qquad \dots \dots \dots (36)$$

 $q_{t}' = \sigma_{t}' + u_{od}$ (37)

Para el área total:

$$\tilde{a} \sum q_i = \tilde{a} \sum q'_i + \tilde{a} f \sum_{i}^{N} \tilde{\sigma}_i \qquad \dots \dots (39)$$
$$W_r = W_r^i + \tilde{a} f \sum_{i}^{N} \tilde{\sigma}_i \qquad \dots \dots (40)$$

De donde:

$$= \frac{W_r - W'_r}{a \sum_{i}^{N} \overline{\sigma}_i}$$

f

Siendo:

- δ'a = desplazamiento uniforme arbitrario de la cimentacion.
 En este caso se tomará el promedio de los asentamientos resultantes del análisis de cimentación flexible.
- $\sigma_i' = \text{esfuerzo en la dovela "i-esima", correspondiente al desplazamiento <math>\delta'_i = \delta'_a$.
- $\tilde{\sigma}_{i}$ = reacción correspondiente al desplazamiento unitario $\delta_{i} = \delta_{a}$, siendo $\delta_{a} = 1$

 δ_{\perp} = asentamiento final de la cimentación.

70

.... (41)
Si se tiene el bombeo, como es el caso debe cumplirse:

$$\left[\delta_{i}^{q}\right] - \left[\delta_{i}^{\lambda}\right] = \left[\delta_{\alpha}\right] \qquad \dots \dots \dots (42)$$

Por otra parte:

$$\begin{bmatrix} \vec{\delta}_{ij} \end{bmatrix}^{T} \mathbf{q}_{i} - \begin{bmatrix} \delta_{i}^{\lambda} \end{bmatrix} = \begin{bmatrix} \delta_{\alpha} \end{bmatrix} = \begin{bmatrix} \delta_{\alpha}^{i} + \mathbf{f}(\mathbf{1}) \end{bmatrix}$$
$$\sigma_{i}^{*} + \mathbf{f} \vec{\sigma}_{i}^{*} \mathbf{u}_{od} \end{bmatrix} \begin{bmatrix} \vec{\delta}_{ij} \end{bmatrix}^{T} - \begin{bmatrix} \delta_{i}^{\lambda} \end{bmatrix} = \begin{bmatrix} \delta_{\alpha}^{*} + \mathbf{f}(\mathbf{1}) \end{bmatrix}$$
$$q_{i}^{*} + \mathbf{f} \vec{\sigma}_{i}^{*} \begin{bmatrix} \delta_{ij} \end{bmatrix}^{T} - \begin{bmatrix} \delta_{i}^{\lambda} \end{bmatrix} = \begin{bmatrix} \delta_{\alpha}^{*} + \mathbf{f}(\mathbf{1}) \end{bmatrix}$$

1). $\left[\mathbf{q}_{i} \right] \left[\overline{\delta}_{ij} \right]^{\mathsf{T}} - \left[\delta_{i}^{\lambda} \right] = \left[\delta_{a}^{*} \right]$

 $\begin{bmatrix} \mathbf{q}_{i}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \bar{\delta}_{ij} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} \delta_{\alpha}^{\mathsf{T}} \end{bmatrix} + \begin{bmatrix} \delta_{\alpha}^{\mathsf{X}} \end{bmatrix}$ (43)

O bien:

2). $\begin{bmatrix} \mathbf{f} \overline{\sigma}_i \end{bmatrix} \begin{bmatrix} \overline{\delta}_{ij} \end{bmatrix}^T = \begin{bmatrix} \mathbf{f}(1) \end{bmatrix}$ $\begin{bmatrix} \overline{\sigma}_i \end{bmatrix} \begin{bmatrix} \overline{\delta}_{ij} \end{bmatrix}^T = \begin{bmatrix} 1 \end{bmatrix}$ 71

(44)

 $\delta_a^{\prime} = (1/10) (2) (2.62 + 5.59 + 6.65 + 7.12 + 7.29)$

Primer tanteo:

A partir de δ_{o} :

Sustituyendo (3.3.5.2.a.2) y (45) en (46):

 $\left[\begin{array}{c} \delta_{\alpha}^{\dagger} \\ \end{array} \right] + \left[\begin{array}{c} \delta_{c} \\ \end{array} \right] =$

17.054		
17.054		
17.054		
17.054		
17.054	(cm)	(48)
17.054		
17.054		
17.054		
17.054		
17.054		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

De (52), reduciendo $\begin{bmatrix} \phi_{ij} \end{bmatrix}$ por simetria :

9.330	3.294	1.257	0.641	0.459	
3.294	9.361	3.348	1.359	0.847	
1.257	3.348	9.463	3.554	1.747	
0.641	1.359	3.554	9.851	4.454	
0.459	0.847	1.747	4.454	12.558	

Sustituyendo (48) y (49) en (47) se tiene:

9.330	3.294	1.257	0.641	0.459	q į	17.054
3.294	9.361	3.348	1.359	0.847	g,	17.054
1.257	3.348	9.463	3.554	1.747	q	17.054
0.641	1.359	3:554	9.851	4.454	q	17.054
0.459	0.847	1.747	4.454	12.558	q '	17.054

Resolviendo el sistema de ecuaciones:

 $q'_{1} = q'_{10} \approx 1.311 \text{ Kg/cm}^{2}$ $q'_{2} = q'_{10} = 0.857 \text{ Kg/cm}^{2}$ $q'_{3} = q'_{8} = 0.855 \text{ Kg/cm}^{2}$ $q'_{4} = q'_{7} = 0.842 \text{ Kg/cm}^{2}$ $q'_{5} = q'_{6} = 0.835 \text{ Kg/cm}^{2}$ 73

...(49)

Por otra parte de (44):

$$\left[\delta_{i,j}\right]^{T}\left[\bar{\sigma}_{i}\right] = \left[1\right]$$

9.330	3.294	1.257	0.641	0.459
3.294	9.361	3.348	1.359	0.847
1.257	3.348	9.463	3.554	1.747
0.641	1.359	3.554	9.851	4.454
0.459	0.847	1.747	4.454	12.558

Resolviendo el sistema de ecuaciones:

2		ō,	, =	0.077
ð,	=	ð	=	0.050
ວັ	-	õ	=	0.050
۵,	=	ō,	H	0.049
8	=	ō	#	0.049

74

1.0

1.0 1.0 1.0 1.0

De esta manera:

 $W_r = (0.92)(1600)(3000) = 4'416,000$

 $W_{r}^{i} = (1600)(300) \sum_{i}^{10} q_{i}^{i} = 480,000 (9.40) = 4'512,000$

Sustituyendo valores en (41):

$$\mathbf{f} = \frac{4'416,000-4'512,000}{(1600)(300)(0.55)} = \frac{-96,000}{264,000} = -0.364$$

$$f = -0.364$$

 $\mathbf{q}_{i} = \mathbf{q}_{i}^{*} + \mathbf{f}\overline{\sigma}_{i}$

AB1:

Por lo tanto:

	(Kg/cm²)			(Kg/cm ²)		(Kg/cm²)
	0.835			0.049		0.817
	0.842			0.049		0.824
q i =	0.855	+	(-0.364)	0.050	*	0.837
	0.857			0.050		0.839
	1.311			0.077		1.283

 $\tilde{a} = (1600)(300) = 480,000 \text{ cm}^2$; R_i = \tilde{a} q_i

615.840 402.720 R_i = 401.760 (Ton) 395.520 392.160

$$b_a = b_a' + f(1)$$

5.490
5.490

δ

5.490 (cm) 5.490 5.490 5.490

Verificando el equilibrio:

 $\sum_{i=1}^{10} R_i = W_R$

 $\sum_{i=1}^{10} R_{i} = 2 (615.840 + 402.720 + 401.760 + 395.520 + 392.160)$

$$\sum_{i=1}^{10} 4,416.00 \text{ Tn} = W = 4,416.00 \text{ Tn}$$

Como en el primer tanteo se obtuvo la igualdad, el asentamiento será:

$$\delta_{a} = \delta_{a}' + f(1) = 5.854 + (-0.364)$$
5.490
5.490
$$\delta_{a} = 5.490$$
5.490
5.490

Los resultados finales de la interacción se presentan en la figura (13).

5.490

3.3.5.4 Determinación de los elementos mecánicos en la cimentación

3.3.5.4.1 Cálculo de la carga longitudinal, uniformemente repartida, W en la dovela "i-ésima".

 $W_1 = (16)(12.830) = 205.276 \text{ Ton/m}$ $W_2 = (16)(8.388) = 134.208 \text{ Ton/m}$ $W_3 = (16)(8.368) = 133.888 \text{ Ton/m}$ $W_4 = (16)(8.242) = 131.866 \text{ Ton/m}$ $W_5 = (16)(8.172) = 130.746 \text{ Ton/m}$

En el siguiente esquema, se presentan las reacciones obtenidas en el inciso anterior y el sistema de cargas a que esta sujeta la cimentación.

(Tn/m)

3.3.5.4.2. Determinación de las fuerzas cortantes. (Figura 14).

3.3.5.4.3. Determinación de los momentos flexionantes.

$$M = -205.276 - \frac{x^2}{2} + 441.6 (x)$$

Calculando el momento flexionante máximo:

 $\frac{\partial}{\partial x} = -205.276 \times + 441.6 = 0$

 $\times = \frac{441.6}{205.276} = 2.15 \text{ m}$

x = 2.15 m

 $M = -134.208 \frac{(x-3)^2}{2} - 205.276(3)(x-1.5) + 441.6 (X)$

$$M = -134.208 \frac{(x-3)^{-}}{2} - 615.828 (x-1.5) + 441.6 (x)$$

$$f = -133.88 \frac{(X-6)^2}{2} - 134.208(3)(X-4.5) - (205.276)(3)(X-1.5)$$

+ 441.6(X) + 883.2 (X-6)

$$M = -133.88 - \frac{(X-6)^2}{2} - 402.24(x-4.5) - 615.828(x-1.5) + 1324.8 x - 5299.2$$

6 (= x (= 9

Calculo de la posición del momento flexionante máximo:

$$\frac{\partial M}{\partial x} = -133.888(x-6) - 402.624 - 615.828 - 1324.8 = 0$$

 $\mathbf{x} = \frac{1109.676}{133.888} = 8.29 \text{ m}$

 $M = -131.866 \frac{(x-9)^2}{2} - 133.888(3)(x-7.5) - 134.208(3)(x-4.5) - 2$

-205.276(3)(x-1.5) + 883.2(x-6) + 441.

$$M = -131.866 \frac{(x-9)^2}{2} - 401.664(x-7.5) - 402.624(x-4.5)$$

-615.828(x-1.5) + 883.2(x-6) + 441.6 x

$$M = -130.746 \frac{(x-12)^2}{2} - 395.598(x-10.5) - 401.664 (x-7.5) - -402.624(x-4.5) - 615.828(x-1.5) + 883.2(x-12) + -402.624(x-6.5) + 641.6 x$$

Reduciendo términos :

$$M = -130.746 \frac{(x-12)^2}{2} + 392.286 \times -5995.791$$

En la tabla (14), se presentan los valores de los momentos flexionantes calculados, y en la figura 15 se encuentran graficados.

0.00	0.00
0.50	195.14
1.00	338.96
1.50	431.46
2.00	472.65
2.15	475.00
2.50	462.51
3.00	401.06
3.50	297.17
4.00	159.69
4.50	-11.27
5.00	-215.81
5.50	-453.91
6.00	-725.56
6.50	-589.12
7.00	-486.16
7.50	-416.66
8.00	-416.66
8.50	-378.09
9.00	-409.01
9.50	-473.16
10.00	-570.26
10.50	-700.34
11.00	-863.38
11.50	-1059.39
12.00	-1288.36
12.50	-1108.56
13.00	-961.45
13.50	-847.02
14.00	-765.28
14.50	-716.23
15.00	-699.86

x (m) M (Tn-m)

3.3.5.5 Determinación de las presiones de contacto en el sentido corto de la cimentación

Se realiza de una manera similar a como se hizo en el sentido largo. por lo tanto primeramente se calculará la matriz de influencias en el sentido corto.

Para obtener la matriz de influencias se utilizara el metodo analítico propuesto por el Dr. Zeevaert, que se uso en el capitulo 3.2 de este trabajo.

En el sentido corto de la cimentación se tomará una λ = 2.00 m

De esta manera calculando la matriz de influencias para la dovela 1 se tiene:

I JI CENTRO

0.518	0.179	0.036	0.012	0.005	0.002	0.001	0.001
0.171	0.144	0.094	0.055	0.032	0.019	0.012	0.008
0.087	0.082	0.070	0.055	0.041	0.030	0.022	0.016
0.056	0.055	0.050	0.043	0.036	0.029	0.023	0.018
0.039	0.039	0.037	0.033	0.029	0.025	0.021	0.018
0.030	0.030	0.029	0.027	0.024	0.022	0.019	0.017
0.022	0.022	0.021	0.020	0.019	0.018	0.016	0.014

Ahora multiplicando por el coeficiente de compresión corregida (ac):

		$\begin{bmatrix} \mathbf{I}_{ji} \end{bmatrix}^{\mathrm{T}}$					ā	σ _{ji}	
0.518	0.171	0.087	0.056	0.039	0.030	0.022	9.834	7.164	
0.179	0.144	0.082	0.055	0.039	0.030	0.022	9.003	3.561	
0.036	0.094	0.070	0.050	0.037	0.029	0.021	4.901	1.639	
0.012	0.055	0.055	0.043	0.033	0.027	0.020	1.147	0.967	
0.005	0.032	0.041	0.036	0.029	0.024	0.019	0.574	0.610	
0.002	0.019	0.030	0.029	0.022	0.022	0.018	0.344	0.400	
0.001	0.012	0.022	0.023	0.019	0.019	0.016	0.312	0.274	
0.001	0.008	0.016	0.018	0.017	0.017	0.014	(cm ³ /Kg)	0.119 (cm ⁹ /kg)	

Generando la matriz de desplazamientos verticales:

			[5,1]			
7.164	3.561	1.639	0.967	0.610	0.400	0.274	0.119
3.561	7.164	3.561	1.639	0.967	0.610	0.400	0.274
1.639	3.561	7.164	3.561	1.639	0.967	0.610	0.400
0.967	1.639	3.561	7.164	3.561	1.639	0.967	0.610
0.610	0.967	1.639	3.561	7.164	3.561	1.639	0.967
0.400	0.610	0.967	1.639	3.561	7.164	3.561	1.639
0.274	0.400	0.610	0.967	1.639	3.561	7.164	3.561
0.119	0.274	0.400	0.610	0.967	1.639	3,561	7,164
			_				

(cm⁸/Kg)

Haciendo la reducción de $\left[\delta_{ji}\right]^{T}$ en el sentido corto:

	ن ک	434	
7.283	3.835	2.039	1,577
3.835	7.564	4.171	2.606
2.039	4.171	8.131	5.200
1.577	2.606	5.200	10.725

84

Calculando q para una deformación vertical $\delta_i = 1$

	[δ _{ji}] ^T		q	6
7.283	3.835	2.039	1.577	qi	1.0
3.835	7.564	4.171	2.606	qi	1.0
2.039	4.171	8.131	5.200	qi	1.0
1.577	2.606	5.200	10.725	qi	1.0
	(Cm	³/Kg)		(Kg/cm ²)	(cm)

Resolviendo el sistema de ecuaciones:

 $\vec{\mathbf{q}}_{1} = \vec{\mathbf{q}}_{0} = 0.0915 \text{ Kg/cm}^{2}$ $\vec{\mathbf{q}}_{2} = \vec{\mathbf{q}}_{7} = 0.0433 \text{ Kg/cm}^{2}$ $\vec{\mathbf{q}}_{9} = \vec{\mathbf{q}}_{0} = 0.0486 \text{ Kg/cm}^{2}$ $\vec{\mathbf{q}}_{4} = \vec{\mathbf{q}}_{5} = 0.0457 \text{ Kg/cm}^{2}$

Calculando la reacción media (q_m) :

 $q_{m} = (1/4) (0.0915 + 0.0433 + 0.0486 + 0.0457)$

 $q_m = 0.0573 \text{ Kg/cm}^2 = 0.573 \text{ Ton/m}^2$

Cálculo en el sentido transversal de las bandas

SENTIDO CORTO A= 2.0 m

FACTOR = 9,79

1.597 0.756 0.848 0.798 0.798 0.848 0.756 1.597

85

S.L	. a _m	1	2	3	4.	5	6	7	8
1	1.283	2.049	0.970	1.088	1.024	1.024	1.088	0.970	2.049
2	0.839	1.340	0.634	0.711	0.670	0.670	0.711	0.634	1.340
3	0.837	1.337	0.633	0.710	0.670	0.670	0.710	0.633	1.337
om 4	0.824	1.316	0.623	0.699	0.658	0.658	0.699	0.623	1.316
5	0.817	1.305	0.618	0.693	0.652	0.652	0.693	0.618	1.305
6	0.817	1.305	0.618	0.693	0.652	0.652	0.693	0.618	1.305
.7	0.824	1.316	0.623	0.699	0.658	0.658	0.699	0.623	1.316
8	0.837	1.337	0.633	0.710	0.670	0.670	0.710	0.633	1.337
9.1	0.839	1.340	0.634	0.711	0.670	0.670	0.711	0.634	1.340
10	1.283	2.049	0.970	1.088	1.024	1.024	1.088	0.970	2.048

Esfuerzos de contacto en la cimentación (Kg/cm²):

3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 2.049 1.340 1.337 1.316 1.305 1.305 1.316 1.337 1.340 2.049 2.0 0.970 0.634 0.633 0.623 0.618 0.618 0.623 0.633 0.634 0.970 2.0 1.088 0.711 0.710 0.699 0.693 0.693 0.699 0.710 0.711 1.088 1.024 0.670 0.670 0.693 0.652 0.652 0.693 0.670 0.670 1.024 2.0 1.024 0.670 0.670 0.693 0.652 0.652 0.693 0.670 0.670 1.024 2.0 1.088 0.711 0.710 0.699 0.693 0.693 0.699 0.710 0.711 1.088 2.0 2.0 0.970 0.634 0.633 0.623 0.618 0.618 0.623 0.633 0.634 0.970 2.0 2.049 1.340 1.337 1.316 1.305 1.305 1.316 1.337 1.340 2.049

REACCIONES MEDIDAS POR BANDA

Equilibrio de cada una de las bandas, de 3.00 m de ancho en el mentido corto de la cimentación, con las reacciones que estas ejercen mobre las vigas en mentido largo.

3.4 ESTUDIO DE POZOS DE BOMBEO. ESTUDIO DE LAS CONDICIONES HIDRODINAMICAS.

Abatimiento del nivel del agua en la excavación. Sistema de pozos de bombeo. Cambios en las condiciones hidráulicas en la masa de suelo.

Para efectuar en seco la excavación de la cimentación (Se pretende que no entre agua al interior de la excavación, sino que esta se abata a un nivel determinado), se proyecta un sistema de pozos de bombeo dispuestos en la periféria de la excavación; con esto se logra además, disminuir la magnitud de las expansiones por el consecuente alivio de esfuerzos.

Con el objeto de disminuir el efecto del bombeo en los lotes circundantes, así como mantener estables las paredes de la excavación, restringiendo al mínimo las deformaciones laterales, se colocará perimetralmente una ataguía impermeable.

Como el flujo ocurre principalmente en los estratos permeables, y en este caso el estrato drenante se encuentra situado entre -13.70 m y -14.50 m , los pozos de bombeo se colocarán a la profundidad de -14.50 m. Se pretende que el abatimiento del nivel de agua en el fondo y al centro de la excavación sea de 1.00 m. Para lograr esto, se tratará de que el abatimiento en los pozos sea de 1.75 m , bajo el fondo de la excavación, es decir, el abatimiento piezométrico en el estrato de arena en el punto del pozo será:

So = (6 + 1.75) - 1.55 = 6.20 m

La ataguía que se colocará en la periféria del área, será del tipo impermeable (por lo tanto se consideraron empujes hidráulicos en el análisis correspondiente), y se desplantará a una profundidad de -10.00 m . Con esto se logrará que corte el estrato drenante (Situado entre -9.30 m y -9.60 m).

La distribución de los elementos mencionados se muestra esquemáticamente en la figura (16).

For otra parte, con la red para flujo horizontal de los pozos en el estrato de arena, se puede calcular el gasto de filtración para cada pozo "i-osimo", con la siguiente expresión (Ref. 1, Pag. 200):

$$q_i = k_h DS_0 \frac{N_f}{N_p}$$
(50)

En la cual:

 $k_{h} = coeficiente de permeabilidad promedio en la dirección horizontal = <math>10^{-9} cm/seg$.

D = espesor del estrato drenante = 80 cm.

So = abatimiento en el pozo = 6.20 m.

 $N_i = n$ imero de canales de flujo que concurren al pozo "i-ésimo".

 $N_P = n \omega$ mero de caídas de potencial =12

Además la distancia Rs, del pozo, se puede calcular mediante la siguiente formula empírica de Sichardt :

$$R_s = C_s S_o \sqrt{k_h}$$

Donde:

Rs = numero de Sichardt

 $Cs = 300 (seg/cm)^{1/2}$

$$R_{\rm S} = 300(620)\sqrt{10^{-3}} = 5900 \,\,{\rm cm}$$

De la red de flujo horizontal:

$$R_{ci} = \frac{N_{fi}}{N_{pi}} = \frac{4}{12} = 0.33$$

$$R_{c2} = \frac{N_{f2}}{N_{p2}} = \frac{4}{12} = 0.33$$

POZO 2 :

P020 1 ;

$$R_{c9} = \frac{N_{f9}}{N} = \frac{3}{12} = 0.25$$

POZO 9 ;

POZO 4 ;

$$\frac{N_{14}}{N} = \frac{2}{12} = 0$$

R_{C4} =

.17

Sustituyendo valores en (50):

$$\mathbf{q_1} = 10^{-3}(80)(620)(0.33) = 16.37 \text{ cm}^3/\text{seg}$$

 $\mathbf{q_2} = 10^{-3}(80)(620)(0.33) = 16.37 \text{ cm}^3/\text{seg}$
 $\mathbf{q_3} = 10^{-3}(80)(620)(0.25) = 12.40 \text{ cm}^3/\text{seg}$
 $\mathbf{q_4} = 10^{-3}(80)(620)(0.25) = 8.43 \text{ cm}^3/\text{seg}$

 $q_1 = q_2 = 16.37 \text{ cm}^3/\text{seg}$ $q_3 = 12.40 \text{ cm}^3/\text{seg}$ $q_4 = 8.43 \text{ cm}^3/\text{seg}$

Con el número de caidas de equipotencial, se pasa un plano vertical en un eje cualquiera, en este caso se toma el eje A-A', que pasa por el pozo 4 y se dibuja el perfil de abatimientos piezométricos del estrato de arena (Fig. 18). A continuación en dicho plano se traza la red de flujo vertical.

En el trazo de esta red se considera que hasta la elevación -2.9 m no ocurre abatimiento ya que el material es de alta permeabilidad, y se puede suponer que abastecerá el sistema, es decir, el abastecimiento ocurrirá en el estrato de arcillas limosas, con lo cual el nivel -2.9 m será una superficie equipotencial.

Una vez trazada la red de flujo, se calcula la distribución de presiones hidraúlicas, para la condición dinámica en la tablestaca.

En las figuras 17 y 17' se presentan las redes de flujo horizontal y vertical, respectivamente.

Para determinar las nuevas condiciones hidraúlicas, se hará uso de las redes de flujo, analizandose el problema tridimensionalmente. En el acuífero el flujo ocurre horizontalmente, por lo que una red de flujo analizará tal condición, obteniendose gastos de filtración para los pozos y los abatimientos piezométricos en el acuífero en función de la distancia del pozo (o sistema de pozos) al punto de interés. En el segundo análisis se estudia la condición de flujo en un plano vertical, partiendo de los resultados obtenidos en la red de flujo horizontal.

Primero se estudiará el flujo horizontal que se encuentra en el estrato de arena situado entre las elevaciones -13.70 m y -14.50 m, la red de flujo, en este caso en planta para el sistema de pozos, nos dará los gastos de filtración en cada pozo y el perfil de abatimientos plezométricos en el estrato drenante en función del alejamiento a la excavación.

Un segundo análisis se realiza, haciendo pasar en un plano vertical por un eje cualquiera (en este caso se ha escogido un plano o eje que pasa por el centro de la excavación, según el corte A-A' de la Fig.17) y en el que se indíque, el perfil de abatimientos piezométricos del estrato de arena, permitiendo con esto, determinar el cambio de presiones en los estratos de suelo que sobreyascan a la capa dremante.

Por simetria, la red de flujo, se puede trazar por la cuarta parte del área de cimentación (como se muestra en la figura 17). En una primera aproximación se traza la red considerando que todo el sistema constituye un solo pozo, cuyo abatimiento es el correspondiente al promedio de los pozos en este caso So = 6.20 m; así la red de flujo a gran escala estará formada por arcos de circulo y radios, sin embargo a medida que las líneas de flujo o tubos de corriente se aproximan a los pozos se van distorcionando para desembocar en ellos , siendo entonces necesario dibujar la red de flujo a una escala mayor, para que nos permita el trazo más preciso.

3.5 ESTRUCTURA DE RETENCION. EMPUJES EN TABLESTACAS Y DEFORMACIONES.

La función de un elemento de retención es proporcionar estabilidad a las paredes de una excavación, disminuyendo al mínimo sus deformaciones a fin de no alterar a las estructuras vecinas, y al mismo tiempo mantener las dimensiones del área excavada, por lo tanto se debe analizar la estabilidad y deformación de las paredes.

Para resolver el problema planteado en este trabajo, se propone utilizar una tablestaca machimbrada y de concreto, de 20 cms de espesor y empotrada 4 mts bajo la cota del fondo de la excavación y apuntalada.

Primeramente se hara el analisis de estabilidad, en el cual se distinguiran 2 tipos de fuerzas: las actuantes y las resistentes. Dentro de la primeras se considerarán el empuje del suelo y del agua solamente, ya que la sobrecarga se tomará como nula. En el segundo tipo se incluirán las fuerzas actuantes en puntales o troqueles, cuya distribución se presenta en la figura 19, así como la resistencia pasiva del suelo, situado bajo el nivel de desplante de la excavación.

Para el diseño de la tablestaca se deberá conocer la distribución probable de las fuerzas actuantes.

En el suelo que se encuentra tras la tablestaca, se puede presentar una condición de empuje activo si la tablestaca cede lo suficiente. de no ser asi el empuje sera mayor y su distribución aleatoria, aunque se puede manejar con la envolvente de distribuciones probables según el criterio expuesto por Terzaghi-Peck. Dado que no es posible predecir el comportamiento que se presentará, se trabajará con la envolvente de la distribución resultante de ambos conceptos.

Al empuje de tierras resultante se le agregara el del agua en la condición dinámica (Fig. 19).

3.5.1 Distribución del empuje de tierras, en el respaldo de la tablestaca. Empuje del agua en condiciones dinámicas.

En la distribución de presiones de tierra sobre la tablestaca, se supondrá que esta cede y ocurre la condición de Rankine para estado activo. Si en el diagrama de presiones resultantes:

$$P_{z} = \frac{\sigma_{b_{1}}}{M_{\phi_{1}}} - \frac{2c}{\sqrt{M_{\phi_{1}}}}$$

Aparecen zonas de esfuerzos de tensión, debera hacerse la corrección al esfuerzo:

$$\sigma_{H1} = \frac{\sigma_{V1}}{M_{\phi i}} - \frac{2c}{M_{\phi i}}$$

De tal manera que la presión resultante sea solamente de compresión. En cada estrato en el que ocurra Pz < 0 se obtiene un factor de

correction $f = (-P_z)_{max}$, para obtener:

$$\sigma_{Hi} = \frac{\sigma_{vi}}{M_{\phi i}} - \frac{2c_i}{\sqrt{M_{\phi i}}} + f$$

De tal manera que:

$$P_{z} = \sigma_{Hi} \rightarrow 0 \quad \forall i$$

La anterior corrección obedece a que en el trabajo no se permitira que el suelo desarrolle tensión, ya que esta condición es poco favorable para la unión del suelo con la estructura de cimentación, además de que el concreto no trabaja a la tensión.

3.5.2 Calculo de la distribuciones de presiones de tierra activas.

Se sabe que cuando la tablestaca gira, de tal manera que se moviliza la resistencia al cortante de la masa de suelo encontrada atrás del muro (estado activo de Rankine), la distribución de de presiones de tierras activas puede ser calculada mediante la la expresión siguiente (Ecuación 1-XI-3, Pag. 473, Ref. 1)

$$\sigma_{\rm h} = P_{\rm Z} = - \frac{2c_{\rm Z}}{\sqrt{M_{\phi_{\rm Z}}}} + \frac{1}{M_{\phi_{\rm Z}}} \left(\sum_{i=1}^{Z} \gamma_i \Delta z_i + q - u_{\rm Z} \right) \dots (52)$$

Donde:

q = Sobrecarga aplicada en la superficie del terreno

 γ_i = Promedio pesado del total de pesos volumétricos, de cada estrato de espesor Δz_i , localizado a la profundidad Z.

.... (53)

- Uz = Presión hidráulica actuante a la profundidad Z.
- Cz = Cohesión del material a la profundidad Z.

Para el caso de empuje activo:

$$M_{\phi} = tg^2 (45 + \phi / 2)$$

Para el caso de empuje pasivo:

$$M_{\phi} = tg^2 (45 - \phi/2)$$
(54)

El valor de la cohesión se determinará a partir de los resultados de resistencia a la compresión no confinada (q_) y de rebote elástico (M_),los cuales se obtienen en el laboratorio.

$$\begin{array}{c} \mathbf{q}_{\mathbf{u}} \\ \mathbf{C} = \frac{\mathbf{q}_{\mathbf{u}}}{2}; \quad \mathbf{q}_{\mathbf{u}} = 2\mathbf{c} \\ \mathbf{2} \end{array}$$

En este trabajo no se tomará en cuenta la sobrecarga en la corona del relleno de la tablestaca, por tanto la expresión (1) quedará de la siguiente manera:

$$\sigma_{\mathbf{h}} = \mathbf{P}_{\mathbf{z}} = -\frac{2c_{\mathbf{z}}}{\sqrt{M_{\phi_{\mathbf{z}}}}} + \frac{1}{M_{\phi_{\mathbf{z}}}} \left(\sum_{i=1}^{\mathbf{z}} \gamma_{i} \Delta z_{i} - \mathbf{u}_{\mathbf{z}}\right) \dots (55)$$

Donde:

$$\gamma_i \Delta \mathbf{z}_i - \mathbf{u}_{\mathbf{z}} = \sigma_{\mathbf{v}} \quad \quad (56)$$

Resulta importante aclarar que u_z corresponde a la presión hidráulica **que resulta** de considerar el flujo de agua en el relleno, al realizar el **bombe**o. Por lo tanto, los esfuerzos efectivos hidrodinámicos (σ_{v_i}), **serán mayores** que los esfuerzos efectivos iniciales (σ_{v_i}), en la misma **proporción en que disminuya** la presión hidráulica inicial, que en este **caso es hidrostática**. En la figura 20 se puede consultar las distribuciones de presiones verticales e hidráulicas, mencionadas anteriormente.

Para los estratos hasta la profundidad de 3 metros no se reportan los datos de la resistencia no confinada, por lo tanto de acuerdo a la descripción del material en el laboratorio, se le asignará un valor a la cohesión de cada estrato, hasta dicha profundidad. El valor del ángulo de fricción se correlacionará del número de golpes, obtenidos con la prueba de penetración estandar.

Cálculo de presiones horizontales.

i	z	ϕ_{i}	M _¢	M.	C,	2C	~vi	о _н
	(m)	(g)		. Č	Tn/n²)	(Tn/m²) (Tn/m	²) (Tn/m ²)
1	0.00	25	2.464	1.570	1.00	2.00	0.00	-1.274
2	1.50	25	2.464	1.570	1.00	2.00	2.55	-0.239
3	1.50	35	3.690	1.921	0.00	0.00	2.55	0.691
4	3.00	35	3.690	1.921	0.00	0.00	4.40	1.192
5	3.00	0	1.000	1.000	1.95	3.90	4.40	0.500
6	3.85	0	1.000	1.000	1.95	3.90	5.20	1.300
7	3.85	0	1.000	1.000	2.60	5.20	5.20	0.000
8	5.15	0	1.000	1.000	2.60	5.20	6.10	0.900
9	5.15	0.	1.000	1.000	2.50	5.00	6.10	1.100
10	5.80	0	1.000	1.000	2.50	5.00	6.50	1.500
11	5.60	0	1.000	1.000	3.70	7.40	6,50	-0.900
12	6.65	0	1.000	1.000	3.70	7.40	7.00	-0.400
13	6.65	, 0	1.000	1.000	4.10	8.20	7.00	-1.200
14	9.90	• 0	1.000	1.000	4.10	8,20	10.40	2.200

TABLA (10)

3.5.3 Cálculo de la magnitud del empuje activo total.

Como se puede observar la distribución de presiones horizontales (Figura 20), se descompuso en figuras geométricas regulares (trapecios). Como se necesita conocer el punto de aplicación del empuje en cada una de estas áreas, se procederá a deducir la expresión para calcular el centroide de un trapecio.

Por lo tanto, sustituyendo valores en (57):

$$\overline{Y} = \frac{-\frac{1}{2} - d^2 \left(-\frac{2}{3} - b' + -\frac{1}{3} - b\right)}{-\frac{1}{2} - d \left(b - b'\right)} = \frac{-\frac{1}{3} - (2b' + b)d}{b + b'}$$

$$\overline{\overline{Y}} = \frac{d(2b'+b)}{3(b+b')}$$

Las fuerzas que estan actuando sobre la tablestaca, son provocadas por el relleno localizado hasta el nivel de desplante. Por lo tanto, el empuje activo (E'A) se calculará con las áreas del diagrama de presiones horizontales, que se localizan de 0.0 mts a 6.0 m. ; incrementando este valor 10%.

Lo mencionado anteriormente equivale a calcular el empuje activo (E'a), sin sobrecarga. Esto se obtiene con la siguiente expresión (Ref 1):

$$E' = 1.1 \sum_{o}^{D=O} (Areas)$$
(58)

O sea:

$$\mathbf{E}_{\mathbf{A}}^{*} = 1.1 \sum_{\mathbf{O}}^{\mathbf{D}} \left[-\frac{2c_{z}}{\sqrt{M_{\phi}}} + \frac{1}{M_{\phi}} \left(\sum_{\mathbf{O}}^{z} \gamma_{i} \Delta z_{i} - u_{z} \right) \Delta_{z} \dots (59) \right]$$

)

Empuje activo total E'a (ver Fig 20)

1	PROF	Δz,	P_	P_z^{l+1}	A; =E';	Z, *
	(=)	(=)	(T/m^2)	(T/m²)	(T/m ²)	(m)
1	0.00-1.50	1.50	-1.27	-0.24	-1.13	0.58
2	1.50-3.00	1.50	0.69	1.19	1.41	2.32
3	3.00-3.85	0.85	0.50	1.30	0.77	3.49
4	3.85-5.15	1.30	0.00	0.90	0.59	4.72
5	5.15-5.80	0.65	1.10	1.50	0.85	5.49
6	5.80-6.00	0.20	-0.90	-0,80	-0.17	5.90
7	6.00-6.65	0.65	-0.80	-0.40	-0.39	6.29
8	6.65-7.75	1.10	-1.20	0.00	-0.66	7.02
9	7.75-9.90	2.15	0.00	2.20	2.26	9.18
		TABLA (17)	Σ	= 3.53	

99

 $\sum = 2.322 \text{ T/m}$

 $E_{\star}^{*} = 1.1 (2.322) = 2.554 \text{ T/m}$

 $E'_{A} = 2.554 \text{ T/m}$

3.5.4 Cálculo del empuje hidrodinámico atrás de la ataguía (Ver Fig. 20)

PROF.	∆z _i	u	u _z i+1	A _i =u	z ,*
(=)	(=)	(T/m^2)	(T/m^2)	(T/m)	(m)
1.50- 2.50	1.00	0.00	0.60	0.300	2.167
2.50- 3.00	0.50	0.60	1.00	0.400	2.771
3.00- 4.25	1.25	1.00	1.60	1.625	3.673
4.25- 5.25	1.00	1.60	2.10	1.850	4.773
5.25- 6.00	0.75	2.10	2.50	1.725	5.636
6.00- 6.75	0.75	2.50	3.00	2.063	6.386
6.75- 7.50	0.75	3.00	3.30	2.363	7.131
7.50- 8.25	0.75	3.30	3.50	2.550	7.879
8.25- 9.00	0.75	3.50	3.60	2.663	8.627
9.00-10.00	1.00	3.60	3,80	3.700	9.505
	PROF. (m) 1.50- 2.50 2.50- 3.00 3.00- 4.25 4.25- 5.25 5.25- 6.00 6.00- 6.75 6.75- 7.50 7.50- 8.25 8.25- 9.00 9.00-10.00	PROF. Δ_{Z_1} (m)1.50-2.501.002.50-3.000.503.00-4.251.254.25-5.251.005.25-6.000.756.00-6.750.756.75-7.500.757.50-8.250.758.25-9.000.759.00-10.001.00	PROF. Δ_{z_i} u_z^i (m) (m) (T/m^2) 1.50-2.501.000.002.50-3.000.500.603.00-4.251.251.004.25-5.251.001.605.25-6.000.752.106.00-6.750.752.506.75-7.500.753.007.50-8.250.753.308.25-9.000.753.509.00-10.001.003.60	PROF. $\Delta_{Z_{L}}$ u_{z}^{L} u_{z}^{L+1} (m)(m)(T/m²) $(T/m²)$ 1.50-2.501.000.000.602.50-3.000.500.601.003.00-4.251.251.001.604.25-5.251.001.602.105.25-6.000.752.102.506.00-6.750.752.503.006.75-7.500.753.003.307.50-8.250.753.503.609.00-10.001.003.603.80	PROF. $\Delta_{Z_{1}}$ u_{z}^{i} u_{z}^{i+1} $A_{1} = u_{1}^{-}$ (m)(m)(T/m ²)(T/m ²)(T/m ²)(T/m)1.50-2.501.000.000.600.3002.50-3.000.500.601.000.4003.00-4.251.251.001.601.6254.25-5.251.001.602.101.8505.25-6.000.752.102.501.7256.00-6.750.752.503.002.0636.75-7.500.753.303.502.5508.25-9.000.753.503.602.6639.00-10.001.003.603.803.700

TABLA (10)

Por lo tanto:

ĩ,

De 0.0 m. a 6.0 m. x=0.0m $U_{i} = \sum_{z=i.5m}^{z=0.3} U_{z} = (0.3 + 0.4 + 1.625 + 1.850 + 1.725)$

U=5.900Tn/#

 z_i = Distancia de la superficie del terreno al centroide del área en cuestión.

De 6.0 m. a 10.0 m. z=10m $U_2 = \sum_{z=6m}^{2} U_z = (2.063 + 2.363 + 2.550 + 2.663 + 3.700)$

$$U_{3} = 13.339 \text{ Tn/m}$$

Cálculo de la distribución de presiones de tierra para el diseño del sistema de puntales.

Si se utiliza un elemento de contensión muy rígido, se puede determinar la distribución de presiones de tierra usando el concepto de Terzaghi-Feck, para un diseño seguro del sistema de troqueles en la parte superior de la tablestaca.

Por lo tanto, la presión de tierra promedio, puede ser calculada por medio de la siguiente expresión (Pag. 474 Ref. 1).

$$P_d = 1.14 \frac{E'}{D}$$

D = Profundidad de excavación

Donde:

$$P_{j} = 1.14 (2.554)(1/6) = 0.485$$

Cálculo del empuje hidrodinàmico total (U_d) :

$$U_d = U_1 + U_2 = 5.9 + 13.339 = 19.239$$

 $U_{d} = 19.239 \text{ T/m}$

Calculo del punto de aplicación del empuje hidrodinamico (\vec{Y}_{\perp}) Se sabe que para calcular el centroide (\vec{Y}_{\perp}) de una area irregular:

 $\frac{1}{\mathbf{Y}_{u}} = \frac{\sum \mathbf{u}_{v} \mathbf{z}_{v}}{\mathbf{U}}$

.....(61)

Pero hay que tener presente que con la expresión (10), se calcula el centroide con respecto al nivel superficial del terreno.

Utilizando la expresión (61) y la tabla (18):

 $U_{1}\tilde{Z}_{1} = (0.3)(2.167) + (0.40)(2.771) + (1.625)(3.673) +$ (1.850)(4.773) + (1.725)(5.636) + (2.063)(6.386) + (2.363)(7.131) + (2.550)(7.879) + (2.663)(8.627) + (3.700)(9.505)

 $\tilde{Y}_{u} = \frac{134.538}{19.239} = 6.993 \text{ m}$ $\tilde{Y}_{u} = 6.993 \text{ m}$

$$U_p = (1/2)(3.0)(3.0) = 4.5 \text{ T/m}$$
 $U_p = 4.5 \text{ T/m}$

Calculo del punto de aplicación del empuje de Rankine (E_{A}^{*})

$$E_{A}^{*}Y_{e} = \sum E_{1}^{*}Z_{1} \qquad (62)$$

Por lo tanto de la tabla 17 :

 $\mathbf{E}_{i} \overline{\mathbf{Z}}_{i} = (-1.13)(0.579) + (1.412)(2.32) + (0.77)(3.49) + (0.59)(4.72) + (0.85)(5.49) + (-0.17)(5.90) + (-0.39)(6.29) + (-0.66)(7.02) + (2.26)(9.18)$

E Z = 25.42 m

$$E'_{A} = \sum_{i=1}^{2} A_{i} = 3.532 \text{ Tn/m}$$

$$=\frac{25.42}{3.53}=7.2$$
 m

Y = 7.2 m

.0 m

De esta manera, se puede dibujar el diagrama de cuerpo libre de las fuerzas que actuan en la tablaestaca.

De la fórmula de la escuadría:

$$M_{p} = \frac{f I_{r}}{y}$$

-----(64)

Para una sección rectangular:

$$I_r = \frac{1}{12} bh^3 = (1/12)(100)(20)^3 = 66,666.67 cm^4$$

Sustituyendo valores en (64):

$$M_{p} = \frac{200 \ (66, 666, 67)}{(1/2) \ (20)} = 1,333,333.4 \ \text{kg-cm} = 13.33 \ \text{Tn-m}$$

Sustituyendo valores en (63):

 $\mathbf{E}_{\mathbf{p}}' = \frac{(3.532)(4.7) + (19.239)(4.493) - (4.5)(6.5) - 13.33}{5.50}$

 $E'_{m} = 10.99 \text{ T/m}$

Obtención del valor de la resistencia E'p del suelo bajo el fondo de la excavación, utilizando el mecanismo de falla de la figura siguiente:

Tomando momentos con respecto a "0".

 $E_{P_1} = \frac{L_2}{2} + E_{P_2} = \frac{2}{3} L_2 + CR^2 = \frac{R}{4} = E_{P_1} - \frac{L_1}{4} \dots (65)$

 $E_{P_1} = 2cL_2 = 2(4.1)(4) \cos 45^\circ = 23.19$ Tn

De los resultados de resistencia a la compresión no confinada (q_u) y de rebote elástico (M_g), proporcionados en pruebas de laboratorio y para una profundidad de 9.9 m :

$$E_{P_2} = (\gamma L_2 - U)(1/2)(L_2)$$
; $L_2 = R \cos 45^\circ = \frac{4}{\sqrt{2}} = 2.83 m$
Donde U se calcula de la siguiente manera:

h =
$$\frac{1}{-1}$$
-(3.0) = 1.0 m → U = (3 - 1) γ_v = 2.0 Tn/m²
3
∴ U = 2.0 T/m²

$$\mathbf{E}_{\mathbf{P}} = \left[\left(1.14 \right) \left(2.83 \right) - 2 \right] \left(1/2 \right) \left(2.83 \right) = 1.74 \text{ Tr}$$

Sustituyendo valores en 65 :

$$\left(23.19 \right) \left(\frac{2.83}{2} \right) + \left(1.74 \right) \left(-\frac{2}{3} \right) \left(2.63 \right) + 4.1 \left(4 \right)^2 \left(-\frac{\pi}{4} \right) = E_p \left(-\frac{4}{2} \right)$$

 $E_p = -\frac{87.62}{2.00} = 43.81 \text{ Tn}$

3.5.5 Determinación del factor de seguridad para el puntal A .

Se tiene que:

$$G_{B} = -\frac{43.81}{10.99} \Rightarrow 2.00 \text{ (OK)}$$

Gs debe ser mayor que 2, para evitar un esfuerzo plástico local abajo de la excavación.

3.5.6 Cálculo del factor de seguridad para los dos puntales.

El empuje E, y U deberán calcularse para la sección \overline{BC} de la tabla 17

 $E_{A} = E_{t} + E_{2} + E_{3} = (-0.39) + (-0.66) + (2.26) = 1.21 \text{ Tn/m}$

$$\mathbf{Y} = \frac{(-0.39)(0.79) + (-0.66)(1.52) + (2.26)(3.68)}{1.21} = 5.79 \text{ m}$$

U = (1.193+2.063+2.363+2.550+2.663+3.700)= 14.532 Tn

 $Y_{U} = \frac{1,19(0.25)+2.06(0.89)+2.36(1.63)+2.55(2.38)+2.63(3.13)+3.70(4.01)}{14.532}$

Yu = 2.421 m

Obteniendo momentos con respecto al punto B :

 $\sum M_{B} = 0 = U Y_{U} + E_{A} Y_{e} - U_{p} Y_{up} - M_{p} = E_{p} Y_{p}$ $Y_{p} = (2.0 + 0.5) = 2.5 m$ $Y_{p} = 2.5 m$

$$\mathbf{E}_{\mathbf{p}} = \frac{14.532(2.421) + 1.21(5.79) - 2.00(3.50) - 13.33}{2.5}$$

$$E_{1} = 8.74 \, \text{Tn}$$

$$G_{B} = \frac{43.81}{8.74} = 5.01 \implies 2.0 \text{ O.K.}$$

3.6 DETERMINACION DE LA CEDENCIA DE LA TABLESTACA EN EL FONDO DE LA EXCAVACION.

El cálculo de la cedencia de la tablestaca, en el fondo de la excavación, se hará utilizando el método descrito en el artículo 3.5.6 Pag. 312 Ref. 1 .

El problema se resolverá considerándolo como un problema plano de deformaciones, es decir, se supone que para todos los puntos del medio puede determinarse un plano en el cual las deformaciones angulares amociadas a él, sean nulas, y cuando simultáneamente, existan otros dos planos normales al primero y normales entre sí, en los que las deformaciones angulares asociadas sean también nulas. Por lo tanto se puede calcular el alivio de esfuerzos verticales y horizontales, aplicando la teoría de la elasticidad, para lo cual se utilizarán las siguientes expresiones:

Para el cálculo de alivio de esfuerzos verticales:

$$\Delta \sigma_{z} = -\frac{\Delta \sigma_{exc}}{\pi} \left(\psi + \operatorname{sen} \psi \cos \psi \right) \frac{\psi_{z}}{\psi_{1}}$$
$$\Delta \sigma_{z} = -\Delta \sigma_{exc} \mathbf{I}_{z}$$

En el cálculo de alivio de esfuerzos horizontales, se usará la siguiente fórmula:

$$\Delta \sigma_{h} = - \frac{\Delta \sigma_{\bullet \times c}}{\pi} \left(\psi - \operatorname{sen} \psi \cos \psi \right)_{\psi_{i}}^{\psi_{2}}$$

$$\Delta \sigma_{\rm exc} = -\Delta \sigma_{\rm exc}$$

. . . . (68)

....(67)

El alivio de esfuerzos horizontales promedio ($\Delta \sigma_{ha}$) a cualquier **profundidad, puede ser** calculado con la siguiente expresión:

$$\Delta \sigma_{ha} = \left(\frac{1}{3}\right) \left(\Delta \sigma_{ho} + 2\Delta \sigma_{hc}\right) \qquad hz$$

Donde:

Δσ_{hc} = Alivio de esfuerzos horizontales en el centro de la excavacion y a una profundidad "Z".

 $\Delta \sigma_{he}$ = Alivio de esfuerzos horizontales en la orilla de la excavación y a una profundidad "Z".

Y el desplazamiento horizontal (c_{μ_z}), a cada lado del area excavada de ancho 2B, y a cualquier profundidad "Z" del nivel de desplante, puede ser calculada con la siguiente expresion:

Siendo:

 $\rho_{\rm res}$ = Factor de expansion promedio.

M_{ba} = Modulo de deformacion lineal horizontal promedio.

Para estimar el desplazamiento horizontal promedio de la tablestaca en el fondo de la excavación, se calcula el alivio de esfuerzos horizontales promedio a una profundidad correspondiente a la mitad de la profundidad de anclaje de la tablestaca.

De acuerdo a la experiencia se considerará que:

$$M_{ha} = 75\% M_{a}$$
 (71)

En las pruebas realizadas en laboratorio para la determinación de la deformación volumétrica de cada estrato, se obtuvieron los siguientes resultados:

i	Z	ď	Pat	Mai	Mer
	(m)	(m)		(cm²/Kg)	(m²/T)
1	6.00 - 9.30	3,30	0.865	0.030	0.0030
2	9.60 - 13.70	4.10	0.719	0.033	0.0033
		TABLA(19)			

Se puede determinar un promedio del módulo de deformacion horizontal de los valores determinados en el laboratorio para cada uno de los estratos; si llamamos M_{μ_1} a el módulo de deformacion lineal horizontal de un estrato de espesor δ_{1} , entonces el modulo de deformación horizontal promedio esta dado por:

De la expresión (71):

$$M_{h_{1}} = 0.75 \ (0.003) = 2.250 \ \text{x} \ 10^{-3} \ \text{m}^{2}/\text{Tr}$$
$$M_{h_{2}} = 0.75 \ (0.0033) = 2.475 \ \text{x} \ 10^{-9} \ \text{m} /\text{Tr}$$

Sustituyendo los valores anteriores y los espesores de cada estrato en (72):

$$M_{ha} = \frac{3.3 + 4.1}{\begin{pmatrix} -\frac{3.3}{2.25} + -\frac{4.10}{2.475} \end{pmatrix} \times 10^{-3}} = 2.369 \times 10^{-3} \mathbb{R}^2 / Tn$$

$$M_{ha} = 2.369 \times 10^{-3} m^2/Tn$$

Así mismo, el factor de expansión promedio se puede calcular de la siguiente manera:

$$\rho_{ec} = \frac{\sum_{i=1}^{2} \delta_{i}}{\sum_{i=1}^{2} - \frac{\delta_{i}}{\rho_{ei}}}$$
(73)

Sustituyendo valores en (73):

$$\rho_{ec} = \frac{(3.3 + 4.1)}{\left(\frac{3.3}{0.865} + \frac{4.1}{0.719}\right)} = 0.778$$

Calculo del alivio de esfuerzos horizontales promedio ($\Delta \sigma_{ha}$):

Si se tiene como dato que el semiancho de la excavación (B) es igual 8.00 m., y la profundidad de anclaje (d_P) igual a 4.00 m., entonces:

 \therefore Z = (1/2)(dp) = 2.00 m

Por lo tanto:

$$\frac{Z}{B} = \frac{2.00}{8.00} = 0.25$$

Para el cálculo de los valores de influencia horizontales en el centro (I_{hc}) y en la orilla (I_{ho}), se utilizará la figura 2-VII.6, **Pag. 314**, Ref. 1 .

$$I_{hc} = 0.90$$

 $I_{he} = 0.45$

Además se tiene que:

$$\Delta \sigma_{\rm exc} = 4.75 \, {\rm Tn/m^2}$$

Sustituyendo la cantidad anterior en (68) y utilizando el valor de influencia correspondiente:

$$\Delta \sigma_{\rm he} = - (0.90)(4.75) = - 4.275 \, \mathrm{T/m}^2$$

 $\Delta \sigma_{\rm he} = -(0.45)(4.75) = -2.138 \text{ T/m}^2$

Asignando los valores anteriores a (69):

$$\Delta \sigma_{ha} = -(1/3)[2.138 + 2(4.275)] = -3.563 \text{ T/m}^2$$

Por lo tanto sustituyendo valores en (70):

$$\delta_{ha} = \left(0.778\right) \left(2.369 \times 10^{-9}\right) \left(-3.563\right) \left(8.00\right)$$

 $\delta_{\rm ha} = -0.0525 \, {\rm m}$

 $\delta_{ha} = -5.25$ cm

3.7 ANALISIS DE LA FALLA DE FONDO

Haciendo un análisis simple como si se tratase de un problema de capacidad de carga (esto se puede lograr considerando que el depósito de suelo donde se desarrolla la superficie potencial de deslizamiento no es estratificado) se tiene:

116

Donde Scu, es el promedio de la resistencia al corte de la superficie potencial de deslizamiento, y es igual a :

Pero en este caso como se trata de arcillas se anula el segundo término y por lo tanto:

De esta manera el factor de seguridad (Gs) es:

Siendo del esfuerzo actuante a la profundidad de excavación:

q = sobrecarga en la superficie

Suponiendo que la superficie de falla actúa dentro del estrato A (en el que se encuentra la cota de excavación y el empotramiento de la tablestaca) tenemos:

 $c = 0.32 \text{ Kg/cm}^2$

(Pruebas de laboratorio)

 $\sigma_{\rm od} = 0.475 \ {\rm Kg/cm^2}$ (Capitulo 3.2.3)

Si se supone que:

 $q = 2.00 T/m^2$

 $G_{0} = \frac{5.7 (0.32)}{5.7 (0.32)}$ = 2.7 > 2.0 O.K. 0.475+0.2

Bajo esta hipótesis el factor de seguridad contra la falla de fondo es Ge = 2.7, por lo tanto podría hacerse la excavación en una etapa.

3.8. PROCEDI MI ENTO CONSTRUCTI VO

El objetivo primordial del proceso constructivo debera ser siempre el de minimizar los cambios en los esfuerzos efectivos de la masa de suelo. Para lograr esto se describe el siguiente procedimiento:

 Hincar tablestacas de concreto de 20 cm., de espesor, machimbradas.

Las tablestacas se colocan en el perímetro de la excavación y se incan hasta la elevación -10.00 m.Csegún las condiciones propuestas en el estudio, de tal manera que corten el primer estrato drenante).

2. - Realizar el sistema de pozos según la disposición mostrada en el capítulo 3.4 separados eje a eje, a 2.0 m., de la ataguía. Los pozos deben ser de un metro de diámetro, y se llevan a la cota -10.00 m. La perforación para el pozo, se hace sin lodos y de 1.50 m., de diámetro, siendo el espacio entre perforación y tubo del pozo, rellenado con material de filtro de 1/4 "" de diámetro máximo. La separación de pozos en el lado largo sera de 6.50 m., centro a centro, y de 6.00 m., centro a centro en el lado corto.

3. – Iniciar el bombeo y simultaneamente proceder a excavar hasta -2.00 m.

4. - Colocar la primera serie de puntales a -2.50 m.

Los puntales deberán colocarse a presión, acuñandose perfectamente contra la tablestaca.

- 5.- Continuar con el bombeo sin permitir que el nivel de agua en el pozo exceda la elevación -7.00 m., y continuar con la excavación en una etapa.
- 6.- Alcanzar el nivel -5.50 m., colocar el segundo nivel de puntales, acuñandolos perfectamente contra la tablestaca.
- 7.- Como en este caso no hay peligro de falla de fondo, se puede realizar el bombeo manteniendo constante el nivel de agua en los pozos, a la elevación de -7.00 m., y trabajar en toda el área excavada en el armado y colado de los pontones (losa y vigas de cimentación). Aunque es mas recomendable proceder por etapas excavando en trincheras, armando y colando primeramente las vigas de cimentación, dejando las preparaciones en el acero para ligar las vigas con la losa, en este caso, los bloques aislados de suelo entre las trincheras se removerán alternadamente.
- 8.- Para alterar al mínimo los esfuerzos efectivos en la masa de suelo, se debe hacer la excavación y colado de elementos estructurales, a la máxima rapidez sin permitír la presencia de equipo pesado en el interior de la excavación, a menos que este haya sido considerado en el análisis.
- 9.- A medida que se construyen los elementos (paneles de la cimentación), se lastrarán después de que se retire la cimbra, para ello puede utilizarse agua o el mismo material de construcción, repartiendo la carga uniformemente.

10.- Construir las paredes (muros de retención) y retirar puntales.

11.- El proceso de avance de obra, deberá programarse a fin de ir distribuyendo uniformente la carga. Simultáneamente al proceso constructivo de la superestructura, se puede permitir que los niveles piezométricos se vayan recuperando, por lo que en función del programa de obra, puede establecerse una relación carga de edificio-tiempo-nivel del agua en pozos, de tal manera que a un incremento de carga en el edificio (Δ_{v}), corresponda un incremento en el nivel del agua en el pozo ($\Delta H = \Delta_{v} r_{v}$)

El bombeo se suspenderá cuando se tenga en la cimentación la carga correspondiente a la estructura total.

12.- Paralelamente a lo anterior, deberá tenerse un programa de observación, tanto en nivelación del terreno, como en niveles piezométricos, con el objeto de verificar que se cumplan las condiciones con las que se ha elaborado el análisis.

FIGURA. A

			• .				an a			
•	-	2	r)	4	ŝ	9	~	80	م	
/ELA	VELA	TELA	ELA	ELA	FLA	ELA	/ELA	Æ	/ELA	
â	00	8	8	20d	Ŕ	Do Do	à	òq	Ó	
L	l				· · · · · ·					-

. 3.00 . 3.00 . 3.00 . 3.00 . 3.00 . 3.00 . 3.00 . 3.00 . 3.00 . 3.00 .

(Fig.2)

30.00 m

FIG. 2 DIVISION DEL AREA DE CIMENTACION POR EL ANALISIS DE INTERACCION

		+ 2 +	t λ	+ 入 +	+ 2	₊ 入.	+ [\] \.	+ X	₊ ス.	+ ^λ	+ λ.
	1 1		2	3	4	5	6	7 T	8 T	9	1 10
A	Ī	I,	I ^A	I 4	I 41	I ^A ₅₁	I A I si	Ι Ι ₇₁	1 *	T A	1 A 1,0,1
•	Ā	\mathbb{I}_{0}^{r}	I.	I 31	I	I s	I	\mathbf{I}_n^*	I.,	Ι,	I 10,1
C	7.	I	I _{z1}	I	I ^c	I 51	I ^c	I ^c	I	In	I ,, i
D	Ż,	I,	I.	I si	$\mathbf{I}_{4i}^{\mathbf{D}}$	I 54	I ^D ₆₁	I,	I	I 91	I 10,1
8	7 .	$\mathbf{I}_{\mathbf{n}}^{\mathbf{r}}$	I	$\mathbf{I}_{3\mathbf{i}}^{\mathbf{E}}$		I	I	Ι ^ε	Ι ^ε	I,	IE
F	7,	I,	$\mathbf{I}_{\mathbf{z}\mathbf{t}}^{\mathbf{r}}$	\mathbf{I}_{3i}^{F}	I.		\mathbf{I}_{61}^{F}	$\mathbf{I}_{n}^{\mathbf{F}}$	I Bi	I,H	I, 10, 1
6	ĪŽ,	I.	$I_{z_1}^{\bullet}$	I s	I 41	1 ⁶	Ie	I ^{,6}	I a	$I_{\mathfrak{g}_1}^{\mathfrak{g}_1}$	I,

FIG. 3 INFLUENCIA DE LA DOVELA I EN LOS ESTRATOS DEL SUELO

DETERMINACION DEL MODULO DE DEFORMACION ELASTICA Ma(cm/kg)

Fig. 5

(Fig.6)

FIG. 6 CONFIGURACION DE EXPANSIONES EN EL FONDO DE LA EXCAVACION

CURVAS DE ABATIMIENTO DEBIDAS A BOMBEO

T; (TON)	SET.024	401.856	398.976	392.256	387.936	387.936	302.256	396.976	401. 856	627.024
5	5.509	3.009	5.609	1.609	5.609	5009	5.609	5.609	5.609	5.609
-	. 308 3	0.8372	0.8312	0.6472	0.8090	0.6090	0.6172	0.#312	0.8372	L 3065

RESULTADOS FINALES DE LA

INTERACCION.

4.5

8.0

AN-NOTA

TEG

NANOHX

NOMENTOB

NO

VALORE

0.0

1.5

3.0

7.5 SEMI-ANCHO DE LA LOBA DE CIMENTACION, SENTIDO LANGO «MTS»

9.0

10.5

12.0

13.5

15.0

FIG. 16

DISTRIBUCION DE POZOS DE BOMBEO

المراجع محمد المراجع ال

E a = Resultante de empuje de tierras U = Resultante de empuje hidrodinamico Ep = Resultante de empuje pasivo PA, Pe=Fuerzas actuantes en los puntales

Fig. 19 Distribución de Fuerzas Actuantes y Resistentes

4. CONCLUSIONES.

- Se ha presentado, de manera práctica, un método analítico, que permite calcular las presiones de contacto bajo una cimentación tomando en cuenta la interacción suelo-estructura. Este análisis solo contempla condiciones estáticas.

- Los factores que más influyen en un comportamiento adecuado de una cimentación son:

- # Asentamientos totales y diferenciales admisibles.
- * Estabilidad de la estructura ante solicitaciones estáticas y sísmicas.
- * Influencia de la estructura en el comportamiento de las construcciones vecinas y servicios públicos.

- Se revisó que los asentamientos máximos inducidos al suelo, considerando solo solicitaciones estáticas, no excedan el esfuerzo límite del suelo para condición de flujo plástico.

- El análisis permite garantizar que la estructura seguirá el hundimiento regional.

- Del análisis de cimentación compensada se tiene que el esfuerzo límite en la orilla de la cimentación para flujo plástico es de 2.049 Kg/cm².

- Finalmente se puede concluir, que el conocimiento de las presiones de contacto bajo la cimentación mediante el método de interacción suelo-estructura, nos permite tener una idea real de los esfuerzos a que estarán sometidos tanto el suelo como la cimentación, y por lo tanto el diseño y construcción de la estructura de cimentación dará como resultado una sección más económica y segura.

BIBLIOGRAFIA

- 1. FOUNDATION FOR DIFFICULT CONDITIONS. Zeevaert Leonardo. Ed. Van Nostrand Reinhold. 1983.
- 2. ISE INTERACCION SUELO-ESTRUCTURA DE CIMENTACIONES SUPERFICIALES Y PROFUNDAS. Zeevaert Leonardo. Ed. Limusa, 1980.

- 3. FOUNDATION ENGINEERING. Leonards G. A. Ed. Mc Graw Hill Book Co. 1962.
- 4. SOIL MECHANICS FOUNDATIONS AND EARTH STRUCTURES. Tschebotariof G. P. Ed. Mc. Graw Hill Book Co. 1957
- 5. ANALISIS ESTRUCTURAL. Beaufait W. Fred. Ed. Prentice Hall, 1977
- 6. ESPECIFICACIONES GENERALES PARA PROYECTOS DE OBRAS. **PEMEX. 1974**
- 7. APUNTES DE MECANICA DE SUELOS. F.I., U.N.A.M.
- 7. APUNTES DE LOS CURSOS DE CIMENTACIONES I Y II . D.E.P.F.I., U.N.A.M.

ANEXOA

ANEXO A

A-1 ALGORITMO PARA EL CALCULO DE ABATIMIENTOS EN LA MASA DE SUELO, DEBIDOS A BOMBEO.

A continuación se presenta la justificación analítica de las correcciones que se tienen que realizar a los abatimientos cuando se considera una condición hidrostática; esto es debido a que al realizar el bombeo en el fondo de la excavación se produce un flujo de agua Condición hidrodinàmica), en la masa de suelo.

A.1.1 FLUJO VERTICAL EN DEPOSITOS ESTRATIFICADOS.

Existen situaciones prácticas en las que es necesario estimor la reducción de las presiónes piezométricas en depósitos estratificados, cuando solo son conocidos los niveles piezométricos del agua en las fronteras de los estratos.

Considerese un depòsito estratificado limitado por estrates permeables (fig. 21). Los nuveles prezometricos son concidos por medio de prezometros, localizados en las fronteras inferiores y superiores y en la interfase de cada estrato de suelo, considerando que tienen aproximadamente las mismas características de permeabilidad. Las condiciones implican un flujo vertical descendente del agua, de la frontera superior hacia el estrato de arena. Se supone que no existen variaciones en los niveles prezometricos que se registran en el primer y ultimo prezometro. La y 1

respectivamente. Estos cambios producen variaciones en las elevaciones corresponedientes al centro e interfase de cada estrato. Los cambios en los niveles piezométricos incrementarán los estuerzos en el subsuelo y provocarán la compresión de los estratos. Si llamanos $a_i = C_m d_i^2$ a la compresión del estrato N, el cambio de espesor será:

$$\Delta \delta_{i}^{\mathsf{N}} = \alpha_{i}^{\mathsf{N}} \gamma_{v} \frac{\lambda_{i-1} + \lambda_{i}}{2}$$

Es decir, la compresión para el espesor total del depósito puede ser calculada si los valores de λ son conocidos para todas las

interfases, o sea:

$$S_{1} = \gamma_{v} \sum_{k=1}^{N} \alpha_{v} \frac{\lambda_{v-1} + \lambda_{v}}{2}$$

) Del razonamiento anterior, se muestra la importancia del desarrollo de un metodo de calculo para determinar los cambios de $\lambda_{\rm c}$,

cuando se rexistran cambios en las elevaciones piezonetricas que tienen luyar en las condiciones de frontera, a partir de la ecuación de continuidad se puede establecer el gasto unitario:

$$k_1 = \frac{\Delta h_1}{d_1} = k_2 - \frac{\Delta h_2}{d_2} = \dots \text{ constante}$$

De la Figura 21 podemos escribir:

$$\Delta \mathbf{h}_{\chi_{1}} = (\mathbf{h}_{\chi_{1}+1} + \mathbf{d}_{\chi_{1}} - \lambda_{\chi_{1}+1}) - (\mathbf{h}_{\chi_{1}+1} - \lambda_{\chi_{1}})$$

$$\Delta \mathbf{h}_{1+1} = (\mathbf{h}_1 + \mathbf{d}_{1+1} - \lambda_1) - (\mathbf{h}_{1+1} - \lambda_{1+1})$$

Acomodando (érminos:

$$\Delta \mathbf{h}_{i} = (\mathbf{h}_{i-1} - \mathbf{h}_{i} + \mathbf{d}_{i}) - (\lambda_{i-1} - \lambda_{i})$$

$$\Delta \mathbf{h}_{i+1} = (\mathbf{h}_i - \mathbf{h}_{i+1} + \mathbf{d}_{i+1}) - (\lambda_i - \lambda_{i+1})$$

Considerando lo unterior se tiene:

$$k_{1} - \frac{\Delta h_{1}}{d_{1}} = k_{1+1} - \frac{\Delta h_{1+1}}{d_{1+1}}$$

Con esta se obtiene:

$$\frac{k}{d_{1}} = (h_{1-1} - h_{1} + d_{1}) - \frac{k_{1}}{d_{1}} = (\lambda_{1-1} - \lambda_{1}) = \frac{k_{1+1}}{d_{1+1}} (h_{1} - h_{1+1} + d_{1+1})$$

$$-\frac{k_{i+1}}{d_{i+1}} \quad (\lambda - \lambda_{i+1})$$

Si llamamos a:

$$\Delta_{i} = (h_{i-i} - h_{i} + d_{i})$$

$$\Delta_{i+1} = (h_i - h_{i+1} + d_i)$$

$$K_{i+1} = \frac{k_{i+1}}{d_{i+1}}$$

d,

K. =

Sustituyendo estos valores y acomodando terminos:

5

;

$$\mathbf{k}_{i}\lambda_{i-1} - (\mathbf{K}_{i} + \mathbf{K}_{i+1})\lambda_{i} + \mathbf{K}_{i+1}\lambda_{i+1} = \mathbf{K}_{i}\Delta_{i} - \mathbf{K}_{i+1}\Delta_{i+1}$$

La anterior es la Ecuación 15 utilizada en el cálculo de los abatimientos piezométricos del capitulo 3.3.4.2

Fig. 21 CORRECCIONES DE LOS ABATIMIENTOS EN EL SUBSUELO (COMPONENTE VERTICAL)