UNIVERSIDAD NACIONAL

91163 1es.4

AUTONOMA DE MEXICO

DIVISION DE ESTUDIOS SUPERIORES FACULTAD DE INGENIERIA DEPFI-UNAM

ESTUDIO DEL EFECTO DE HISTERESIS EN PRUEBAS DE CONSOLIDACION UNIDIMENSIONAL E ISOTROPICA EN UNA ARCILLA

Por: Jorge Alberto Raad Silva

TESIS

QUE PRESENTA COMO PARTE DE LOS REQUISITOS PARA OBTENER EL GRADO DE:

01163 1982

MAESTRO EN INGENIERIA

Mecánica de suelos

México, D.F.

Octubre de 1982

TEUIS CON FALLA LE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

1. INTRODUCCION	1
1.1 ANTECEDENTES 1.2 ALCANCE Y OBJETIVOS	1 7
2. MATERIAL Y TRABAJO DE LABORATORIO	9
 2.1 MATERIAL 2.2 EQUIPO 2.2.1 CONSOLIDACION UNIDIMENSIONAL 2.2.2 CONSOLIDACION ISOTROPICA 2.3 PREPARACION DE PROBETAS 2.4 PROCEDIMIENTO DE ENSAYO 	9 10 10 10 13 14
3. <u>RESULTADOS</u>	17
3.1 CURVAS DE CONSOLIDACION 3.2 CURVAS DE COMPRESIBILIDAD	17 19
4. INTERPRETACION DE RESULTADOS	37
4.1 INTRODUCCION4.2 PRUEBAS ISO'TROPICAS4.3 PRUEBAS UNIDIMENSIONALES	37 38 40
5. CONCLUSIONES Y RECOMENDACIONES	47
5.1 CONCLUSIONES 5.2 RECOMENDACIONES	47 48
APENDICE I. CALCULO DE VALORES EXPERIMEMTALES	49
APENDICE II. CALCULO DE LOS COEFICIENTES DE COMPRESIBILIDAD	6Ø
APENDICE III. CALCULO DE ESFUERZOS TRANSFORMADOS	63

REFERENCIAS

64

i

LISTA DE FIGURAS

Figura	1-1:	CURVAS DE COMPRESIBILIDAD	2
Figura	1-2:	ESFUERZOS ALMACENADOS	3
Figura	2-1:	EQUIPO DE CONSOLIDACION UNIDIMENSIONAL	11
Figura	2-2:	EQUIPO DE CONSOLIDACION ISOTROPICA	12
Figura	3-1:	CURVAS DE CONSOLIDACION	18
Figura	3-2:	CURVAS DE COMPRESIBILIDAD ISOTROPICA	25
		MATERIAL INALTERADO - MUESTRA II-1	
Figura	3-3:	CURVAS DE COMPRESIBILIDAD ISOTROPICA	26
		MATERIAL INALTERADO - MUESTRA II-2	
Figura	3-4:	CURVAS DE COMPRESIBILIDAD ISOTROPICA	27
-		MATERIAL REMOLDEADO - MUESTRA IR-1	
Figura	3-5:	CURVAS DE COMPRESIBILIDAD ISOTROPICA	2.8
		MATERIAL REMOLDEADO - MUESTRA IR-2	$(1,1,2,\dots,2^{n-1})$
Figura	3-6:	CURVAS DE COMPRESIBILIDAD ISOTROPICA	29
		Escala semilogarítmica	
Figura	3-7:	CURVAS DE COMPRESIBILIDAD UNIDIMENSIONAL	30
		MATERIAL INALTERADO - MUESTRA UI-1	
Figura	3-8:	CURVAS DE COMPRESIBILIDAD UNIDIMENSIONAL	31
	,	MATERIAL INALTERADO - MUESTRA UI-2	
Figura	3-9:	CURVAS DE COMPRESIBILIDAD UNIDIMENSIONAL	32
		MATERIAL REMOLDEADO - MUESTRA UR-1	
Figura	3-10:	CURVAS DE COMPRESIBILIDAD UNIDIMENSIONAL	33
		MATERIAL REMOLDEADO - MUESTRA UR-2	
Figura	3-11:	CURVAS DE COMPRESIBILIDAD UNIDIMENSIONAL	34
		MATERIAL REMOLDEADO - MUESTRA UR-3	
Figura	3-12:	CURVAS DE COMPRESIBILIDAD UNIDIMENSIONAL	35
		Escala semilogarítmica	
Figura	3-13:	CURVAS DE COMPRESIBILIDAD UNIDIMENSIONAL	. 36
ć		Escala semilogarítmica	
Figura	4-1:	EFECTO DE PERTURBACION	38
Figura	4-2:	TRAYECTORIA DE ESFUERZOS EN PRUEBA	42
		UNIDIMENSIONAL	•
Figura	4-3:	CURVA DE COMPRESIBILIDAD TRANSFORMADA	44
		Muestra UI-1	
Figura	4-4:	CURVA DE COMPRESIBILIDAD TRANSFORMADA	45
		Muestra UR-2	
Figura	4-5:	CURVA DE COMPRESIBILIDAD TRANSFORMADA	46
		Muestra UR-3	

ii.

SIMBOLOS

_____iii

	LETRAS LATINAS
е	Relación de vacíos
D	Diámetro de probeta
H	Altura de probeta
К	Constante de calibración
Ko	Relación entre esfuerzo horizontal a vertical
LL	Límite líquido
t	Tiempo
Vc	Volúmen consolidado a un esfuerzo isotrópico
Ve	Volúmen equivalente
Vs	Volúmen de sólidos en probeta
vt	Volúmen total de probeta
Vw .	Volúmen de agua en probeta
Ws	Peso de sólidos en probeta
Wt	Peso total de probeta
Ww	Peso de agua en probeta
У	Función de sensitividad
	LETRAS GRIEGAS
α	Coeficiente de presión de poro
β	Coeficiente de presión de poro
Y	Coeficiente de compresibilidad, prueba isotrópica
γ'	Coeficiente de compresibilidad, prueba unidimensional
Υm	Peso volumétrico
the second second	a an

and the state of the	그렇는 그렇게 물건에 가지 않는 것이 있는 것이 같은 것이 같은 것이 들어야 한 것이 없는 것이 같이 있다. 것이 같은 것이 없는 것이 없다. 것이 없는 것이 없다. 것이 없는 것이 없다. 것이 없는 것이 없다. 것이 없는 않는 것이 없는 것이 있는 것이 없는 것이 않이
γ' _p	Coeficiente de expansibilidad, prueba unidimensional, para esfuerzo vertical
Υr	Coeficiente de recompresibilidad, prueba isotrópica
γ'r	Coeficiente de recompresibilidad, prueba unidimensional, para esfuerzo transformado
Ύs	Coeficiente de expansibilidad, prueba isotrópica
Υ's	Coeficiente de expansibilidad, prueba unidimensional, para esfuerzo transformado
^ρ rs	Relación recompresibilidad - expansibilidad, en prueba isotrópica
ρ ' rs	Relación recompresibilidad - expansibilidad, en prueba unidimensional, para esfuerzo transformado
^ρ .:s	Relación compresibilidad - expansibilidad, en prueba isotrópica
σc	Esfuerzo isotrópico de consolidación ,
σe	Esfuerzo equivalente
^o h	Esfuerzo principal horizontal
° s	Esfuerzo almacenado
σt	Esfuerzo transformado
σv	Esfuerzo principal vertical
σ ₁	Esfuerzo principal mayor
^σ 3	Esfuerzo principal menor
w	Contenido natural de agua

iv

RESUMEN

En la Mecánica de Suelos es importante comprender ciertos fenómenos con base en la observación de éstos y posteriormente interpretarlos dentro del marco de una teoría. En el presente trabajo, el fenómeno que se estudia es el efecto de histéresis en pruebas de compresión, el cuel se produce al realizar cielos de carga y descarga, y la teoría que se utiliza en la interpretación es la de Compresibilidad de Arcillas, (Juárez-Badillo, 1965).

El problema consiste en investigar la causa que origina la presencia de los lazos histeréticos en las curvas de compresibilidad. Se ha escogido como hipótesis de partida el que el fenómeno de histéresis es producido por la aplicación de esfuerzos cortantes simultáneamente a los axiales.

En la bibliografía consultada, no se encontró información que permitiera realizar una predicción del comportamiento del suelo considerando el fenómeno señalado, por lo que en esta tesis se realizan pruebas de compresión efectuando ciclos de carga y descarga, a fin de estudiar el efecto de histéresis y se presentan los resultados con las conclusiones y recomendaciones correspondientes.

Al considerar como objetivo el estudio de la acción de los esfuerzos cortantes en las pruebas de compresión, se ha tomado

v

como primer paso la ejecución de pruchas de compresión anisotrópicas e isotrópicas, en las que se puede determinar la presencia o ausencia de dichos esfuerzos, para comparar los resultados y definir el efecto de los cortantes en el comportamiento de un suelo.

vi

De las pruebas anisotrópicas se han elegido las de consolidación unidimensional, por ser las más comunes en el campo de la ingeniería práctica y de las isotrópicas las confinadas realizadas en cámara triaxial.

En las curvas de compresibilidad tanto de las pruebas isotrópicas como anisotrópicas, se observó la presencia de lazos histeréticos, concluyéndose que los esfuerzos cortantes aplicados no son los responsables de dicho fenómeno, siendo atribuible quizás, a las fuerzas cortantes interparticulares.

Para cuantificar en las pruebas isotrópicas el fenómeno de histéresis, se utiliza la relación recompresibilidad expansibilidad de la teoría de Compresibilidad de Arcillas, y para realizar una evaluación similar en las anisotrópicas, se hace uso del concepto de esfuerzo transformado de la misma teoría.

CAPITULO 1 INTRODUCCION

1

1.1

1.2

1.1 ANTECEDENTES

Juárez Badillo [1] propuso, en su Teoría para Compresibilidad de Arcillas, la ecuación l.l, que indica que la deformación volumétrica instantánea $\frac{dy}{V}$, cuando el esfuerzo isotrópico σ_c aumenta un d_{σ_c} , es proporcional a la cantidad $\frac{d_{\sigma_c}}{\sigma_c}$, con un coeficiente de proporcionalidad

$$\frac{\mathrm{d}V}{\mathrm{v}} = -\Upsilon \frac{\mathrm{d}\sigma}{\sigma_{\mathrm{C}}}$$

Al integrarse la expressión l.l se obtiene la 1.2 donde V es el volúmen del suelo consolidado a un esfuerzo isotrópico $\sigma_{\rm C}$, el subíndice (o) indica que Vo y $\sigma_{\rm CO}$ representan el volúmen y el esfuerzo isotrópico inicial, y Y es el coeficiente de compresibilidad isotrópico que gobierna la rama virgen de la curva de compresibilidad, (figura 1-1).

$$\frac{\mathbf{v}}{\mathbf{v}\mathbf{o}} = \left(\frac{\sigma_{\mathbf{c}}}{\sigma_{\mathbf{c}\mathbf{o}}}\right)^{-1}$$

Si los cambios volumétricos se expresan en función de la

2

1.3

Figura 1-1: CURVAS DE COMPRESIBILIDAD

relación de vacíos, se tiene la expresión 1.3

$$\frac{1 + e}{1 + e_{o}} = \left(\frac{\sigma_{c}}{\sigma_{co}}\right)^{-\gamma}$$

La ecuación 1.4 relaciona el coeficiente de compresibilidad isotrópico, γ , con el coeficiente de expansibilidad isotrópico, γ_s , por medio del coeficiente ρ_{sc} que define la relación expansibilidad - compresibilidad del suelo. El coeficiente γ_s gobierna la rama de expansión de la curva de compresibilidad, (figura 1-1). La expansibilidad puede ser explicada simplemente por el coeficiente γ_{g} , sin embargo es conveniente no perder la idea original del autor consistente en que, en realidad, la expansibilidad ocurre con el mismo coeficiente γ , pero solo parte de $\frac{d\sigma_{C}}{\sigma_{C}}$, como está expresado en la ecuación 1.1, es usada por el suelo para expanderse y otra parte es almacenada, (figura 1-2).

ρ_{sc}

1.4

Según esta idea el suelo se expande por la misma curva de compresibilidad, tal que cuando el suelo tiene un volúmen Vc a una presión isotrópica σ_c en la curva de expansión, en realidad el esfuerzo que el suelo soporta es σ_e , definido como esfuerzo equivalente en la rama virgen, siendo el esfuerzo almacenado σ_g , la diferencia del esfuerzo equivalente menos el esfuerzo isotrópico, expresión 1.5.

La rama de recompresión está gobernada por el coeficiente de recompresibilidad isotrópico, γ_r , (figura 1-1). Siguiendo el criterio expuesto en la teoría al establecer la ecuación 1.4, se puede relacionar el coeficiente γ_r con el coeficiente γ_s por medio del coeficiente ρ_{rs} , definido en la ecuación 1.6 y al que se denominará relación recompresibilidad – expansibilidad.

 $\sigma_s = \sigma_e = \sigma_c$

$$\rho_{rs} = \frac{\gamma_{r}}{\gamma_{s}}$$

Juárez Badillo [2] aplica el concepto del coeficiente de compresibilidad isotrópico, γ , asociado a la rama virgen de una prueba isotrópica al de una prueba de consolidación

4

1.5

1.6

unidimensional, considerando a ésta como una prueba "cuasi isotrópica", tomando en cuenta que, en la rama virgen, la relación entre el esfuerzo vertical y el horizontal es constante. Esto permite concluir que en la rama virgen, el coeficiente de compresibilidad, es el mismo en una prueba isotrópica y en una unidimensional.

La presión isotrópica transformada, σ_t , se define como la presión isotrópica que produce el cambio volumétrico en una prueba de consolidación unidimensional al variar el esfuerzo vertical.

$$\sigma_{+} = \sigma_{-} (1 + \alpha y)$$

donđe

У

$$\sigma_{c} = \frac{1 + 2 \text{ Ko}}{3} \sigma_{V} \qquad 1.8$$

$$y = \left(\frac{\sigma_1 - \sigma_3}{(\sigma_1 - \sigma_3)_{f}}\right)^{\beta}$$

1.9

1.7

En estas expresiones:

- Ko es la relación entre el esfuerzo horizontal, σ_h , y el vertical, σ_v .
- α mide la disminución de soportar esfuerzos isotrópicos en la falla, por la acción de los esfuerzos cortantes.
- y es la función de sensitividad, que indica la forma en que se manifiesta la disminución de soportar esfuerzos isotrópicos antes de la falla.
- (^σ₁^{-σ}₃), (^σ₁^{-σ}₃) f representan la diferencia entre los esfuerzos principales máximo y mínimo, respectivamente.
- β coeficiente constante característico en cada material.

Juárez Badillo [3] ha expuesto que los esfuerzos cortantes provocan en los suelos una perturbación que se manifiesta en una pérdida de resistencia y en consecuencia en un aumento en la compresibilidad del mismo. Si el suelo es preconsolidado se suma otro efecto, que es una liberación de los esfuerzos almacenados.

En la rama virgen Ko y (y) son constantes, por tanto σ_t es proporcional a σ_v .

En la rama de expansión de la curva de compresibilidad en una prueba de consolidación unidimensional, el coeficiente de expansibilidad, en ésta, no es igual al coefieciente Y de una prueba isotrópica, por no ser constante la relación entre los esfuerzos vertical y horizontal. Para establecer una correspondencia entre dichos coeficientes se requiere de una teoría desviadora esfuerzo - deformación. Sin embargo se puede aproximar un valor γ'_p , en las curvas de compresibilidad unidimensional, para casos prácticos de cálculo de expansiones a largo plazo.

La ecuación 1.10 establece una correlación, dada por Juárez Badillo y Sierra Alvarado [4] entre el coeficiente de compresibilidad isotrópico, γ , y el límite, LL, basada en datos experimentales de diferentes tipos de suelos.

Y = 0.0016 (LL - 10%)

1.10

1.2 ALCANCE Y OBJETIVOS

En base a los conceptos definidos en el punto 1.1, se programó realizar cuatro pruebas de consolidación isotrópica y cinco pruebas de consolidación unidimensional, con ciclos de carga y descarga, en cada prueba, para observar la diferencia entre los lazos histeréticos, obtener resultados experimentales e interpretarlos con la "Teoría de Compresibilidad de Arcillas", estableciendo las relaciones entre los distintos coeficientes que gobiernan las curvas de compresibilidad, así como entre el valor Y obtenido experimentalmente y el definido por la ecuación 1.10, para la arcilla estudiada.

Inicialmente se consideró ensayar la arcilla en estado

remoldeado, Johnson y Whitman [5] expresan que para entender mejor un fenómeno, especialmente en los suelos, se debe tratar de eliminar el efecto de los factores que no son parte del estudio primario. En el presente trabajo la historia de formación y la herencia del estado de esfuerzos "in-situ", son factores que se han tratado de eliminar con el remoldeo del material. Sin embargo, por las características de homogeneidad que presentó el suelo estudiado, se estimó apropiado ensayarlo, además, en estado "inalterado".

El objetivo de este trabajo es observar si los lazos histeréticos de las curvas de compresibilidad son producidos por los esfuerzos cortantes. En las pruebas de compresibilidad isotrópicas no hay esfuerzos cortantes, por tanto el propósito es determinar si se presenta el fenómeno de histéresis en dichas pruebas y comparar los resultados obtenidos con los de pruebas unidimensionales, interpretando estas últimas de acuerdo a la teoría expuesta.

CAPITULO 2

MATERIAL Y TRABAJO DE LABORATORIO

2.1 MATERIAL

El suelo estudiado, procedió del rio Tamesí, Tamaulipas, del lugar donde la Secretaría de Recursos Hidrálicos proyecta construir la presa Tamesí. El sitio se encuentra ubicado a 5 Km. al Nor-oeste de la ciudad de Tampico.

La muestra fue obtenida con un tubo Shelby de 4 pulgadas, a una profundidad de 14.5 metros y el nivel freático se reportó a 0.5 metros.

El material fué una arcilla homogénea de 'consistencia media, color gris verdoso, con presencia de pequeñas conchillas. En los ensayos, para determinar las propiedades índices, se obtuvieron los siguientes resultados:

- Contenido natural de agua	. 57%
- Límite líquido	. 708
- Límite plástico	. 20%
- Densidad de sólidos	. 2.77
- Peso volumétrico	. 1.65 T/m3
- Relación de vacíos	. 1.64
- Grado de saturación	. 96%

El suelo se clasificó como un CH, según el Sistema de Clasificación Unificado.

2.2 EQUIPO

2.2.1 CONSOLIDACION UNIDIMENSIONAL

Para la realización de las pruebas de consolidación unidimensional, se utilizó un consolidómetro de anillo flotante. Los cambios volumétricos se midieron registrando el cambio de espesor de la muestra con un micrómetro de 0.01 mm de precisión, (figura 2-1).

Las dimensiones de las probetas fueron de 8 cm de diámetro y 1.27 cm de espesor.

2.2.2 CONSOLIDACION ISOTROPICA

Las pruebas de consolidación isotrópica se llevaron a cabo en una cámara triaxial que permitió ensayar probetas de 3.5 cm de diámetro y 8 cm de altura. Para medir los cambios volumétricos se utilizó una bureta de Ø.Ø45 cm3 de precisión conectada a las piedras porosas colocadas en la cabeza y base del especímen, (figura 2-2).

En este tipo de prueba se utilizó un sistema de contrapresión, con dos objetivos, el primero aumentar el grado de saturación de la muestra y el segundo, evitar errores en la medición de los cambios volumétricos. La presión requerida para obtener el 100% de saturación se estimó en 2 Kg/cm2, según el criterio de Black y Lee [6], y con esta presión se observó que no se formaron burbujas de aire, que provoquen en la bureta una medición errada.

Figura 2-2: EQUIPO DE CONSOLIDACION ISOTROPICA

El fluído empleado para dar presión externa, fue glicerina. La glicerina se comunicaba a un vaso con aire comprimido conectado a su vez a un compresor.

La contrapresión se aplicó a la bureta por medio de una interface de aceite de silicón (tipo AK-0.65), para evitar que el aire comprimido proveniente del compresor se disuelva en el agua de la muestra, al estar en contacto con ésta.

2.3 PREPARACION DE PROBETAS

Las probetas de material "inalterado", tanto para las pruebas de consolidación unidimensional como para las isotrópicas, se labraron de muestras extraídas del tubo Shelby.

Para la preparación de las probetas de material remoldeado se labraron especímenes de 12 cm de altura y 9 cm de diámetro que se forraron con una membrana de latex, cada uno, la cual se selló mientras se aplicaba vacío al interior, con el fin de garantizar que la membrana se adhiera a las paredes del suelo. Los especímenes, en esas condiciones, fueron sometidos a un amasado manual intenso, hasta que se consideró haber alterado la estructura del material completamente. Posteriormente al suelo dentro de la membrana, se le dió forma y tamaño similares a los que tenía previo al amasado y se lo dejó reposar durante 24 horas, al cabo de las cuales se quitó la membrana y se labraron las probetas con las dimensiones requeridas, para realizar los ensayos.

Se empleó el procedimiento descrito, con el fin de evitar la presencia de oquedades y que el contenido de agua no cambie durante el proceso de amasado, lo cual se pudo comprobar posteriormente.

2.4 PROCEDIMIENTO DE ENSAYO

El montaje de las probetas y la ejecución de los ensayos se llevó a cabo de acuerdo al Instructivo del Laboratorio de Mecánica de Suelos de la DEPFI, UNAM, [7], con algunas variantes referentes a los incrementos de carga y a la aplicación de contrapresión en la prueba isotrópica.

En los ensayos cada incremento de carga se mantuvo el tiempo necesario para que se completara el 100% de consolidación primaria.

La tabla 2.1 presenta una relación entre las pruebas, tipo de material utilizado, número de ciclos y esfuerzos de descarga.

En las pruebas se programaron dos ciclos de carga y descarga, cargando al suelo hasta 3 kg/cm2, descargando hasta 0.5 Kg/cm2, recargando hasta 5 Kg/cm2 y finalmente descargando y recargando hasta 0.5 Kg/cm2 y 5 Kg/cm2 respectivamente, excepto en las pruebas UI-2 y UR-1, en las que se realizó un solo ciclo, cargando, respectivamente hasta 3.2 Kg/cm2 y 5 Kg/cm2 para luego descargar hasta 0.1 Kg/cm2 y 0.5 Kg/cm2 y recargar hasta los mismos esfuerzos. Las etapas de descarga no se hicieron hasta un esfuerzo nulo (Ø.Ø Kg/cm2), debido a que en las pruebas isotrópicas se dificultó igualar la presión de la cámara y la de la bureta, tal que el esfuerzo efectivo en el especímen sea nulo. Para las pruebas de consolidación unidimensional se procedió similarmente para tener una referencia al comparar las curvas de compresibilidad de ambos tipos de pruebas.

TABLA	2.1	 CUADRO	DE	PRUEBAS

MUESTRA	PRUEBA	MATERIAL 	CICLOS	NIVEL DE DESCARGA
	Isotrópica	Inalterado 	1ro. 2do.	3 Kg/cm2 5 Kg/cm2
II-2	Isotrópica	Inalterado	1ro. 2do.	3 Kg/cm2 5 Kg/cm2
IR-1	Isotrópica	Remoldeado	1ro. 2do.	3 Kg/cm2 5 Kg/cm2
IR-2	Isotrópica	Remoldeado	1ro. 2do.	3 Kg/cm2 5 Kg/cm2
UI-1 	Unidimensional	Inalterado	1ro. 2do.	3 Kg/cm2 5 Kg/cm2
UI-2-	Unidimensional	Inalterado	lro.	3.2 Kg/cm2
UR-1	Unidimensional	Remoldeado	lro.	5 Kg/cm2
UR-2	Unidimensional	Remoldeado	1ro. 2do.	3 Kg/cm2 5 Kg/cm2
UR-3	Unidimensional	Remoldeado	1ro. 2do.	3 Kg/cm2 5 Kg/cm2

Tanto en las pruebas isotrópicas como en las unidimensionales, en el rango de esfuerzos de 1 Kg/cm2 a 5 Kg.cm2, los incrementos fueron de 1 Kg/cm2 para las etapas de carga y descarga, excepto en la prueba UI-2.

En las consolidaciones unidimensionales, en el rango de 0.0 Kg/cm2 a l Kg/cm2 se cargó, inicialmente, a 0.1 Kg/cm2 y 0.5 Kg/cm2, con el fin de lograr un ajuste apropiado del equipo de carga. En la prueba UI-2 los incrementos fueron doblados a partir de 0.1 Kg/cm2 en todo el rango.

En los ensayos de consolidación unidimensional la saturación total se realizó a 1 Kg/cm2 de esfuerzo.

En las pruebas de consolidación isotrópica, al aplicarse la contrapresión, se hizo la hipótesis de que el suelo mantenía un esfuerzo efectivo isotrópico de l Kg/cm2, correspondiente a la carga de campo en el momento de extraer la muestra, el cual no debía ser anulado, de tal manera que la presión de la cámara se elevó a 3 Kg/cm2 y la de la bureta a 2 Kg/cm2, para que el esfuerzo efectivo sea de l Kg/cm2 al inicio de la prueba.

La elevación de las presiones se hizo por etapas, con incrementos de 1/5 de la presión final, en un tiempo de 3 minutos, a fin de que los cambios de esfuerzos totales y de poro no perturben a la muestra.

CAPITULO 3 RESULTADOS

3.1 CURVAS DE CONSOLIDACION

Las curvas obtenidas en los ensayos de consolidación unidimensional en material "inalterado" y en remoldeado presentaron características similares, en forma y tamaño. Igual resultado se obtuvo en las pruebas isotrópicas en los dos tipos de material.

Sin embargo entre los dos tipos de pruebas existió una diferencia en el tiempo necesario para que se completara el 100 % de consolidación primaria (t₁₀₀). En las pruebas unidimensionales el t₁₀₀ fue de 26 minutos, mientras que en las pruebas isotrópicas fue de 1000 minutos. (figura 3-1)

La diferencia es explicable considerando que las fronteras de drenaje estaban a una distancia mayor en las pruebas isotrópicas (2H = 8 cm) que en las unidimensionales (2H = 1.27 cm).

Haciendo uso de la expresión que relaciona los tiempos de consolidación para estratos de distinto espesor, de un mismo suelo:

 $\frac{H_1^2}{t_1} = \frac{H_2^2}{t_2}$

3.1

se encuentra que el tiempo t $_{100}$ de las pruebas isotrópicas es 40 veces el t $_{100}$ de las pruebas unidimensionales, valor que coincide aproximadamente con el obtenido experimentalmente.

En la etapa de descarga, las curvas de consolidación manifestaron las mismas características de la etapa de carga.

Figura 3-1: CURVAS DE CONSOLIDACION

utilizada tuvo un grado de saturación menor al La arcilla 100 %, este hecho no se consideró importante debido a que el tiempo no se incluyó como una variable en el estudio, por tal razón no fue una condición para el uso de contrapresión en las pruebas isotrópicas, pues se empleó este sistema con el fin de disminuir en lo posible los errores de medición de los cambios volumétricos, producidos por las burbujas de aire que llegaban a la bureta desde la muestra. Esta finalidad se logró, si se toma los resultados no presentan desviaciones en cuenta que atribuibles a este efecto si no que más bien son normales en este tipo de pruebas.

3.2 CURVAS DE COMPRESIBILIDAD

Los resultados obtenidos de las pruebas isotrópicas correspondientes a las muestras II-1, II-2, IR-1 e IR-2 se presentan en escala natural y logarítmica en las figuras 3-2, 3-3, 3-4 y 3-5 para cada probeta respectivamente, en la figura 3-6 se han dibujado en escala semilogarítmica los de todas las probetas. Las relaciones de vacíos iniciales para cada uno de estos especímenes fueron de 1.75, 1.65, 1.55 y 1.63, y los contenidos naturales de agua al inicio de los ensayos fueron 69.40 %, 62.64 %, 58.56 % y 63.84 % respectivamente.

En la aplicación de contrapresión la muestra II-l (material "inalterado") se expandió 7.22 cm3, debido a que se anuló el esfuerzo efectivo que mantenía la muestra, esto es, se igualó las presiones de cámara y bureta, lo que obligó a tomar como

volúmen inicial el volúmen de la probeta en el momento del montaje mas el volúmen expandido, corrigiéndose también la relación de vacíos inicial.

La muestra II-2 tuvo un comportamiento diferente puesto que se mantuvo un esfuerzo efectivo de l Kg/cm2. Al estabilizarse las presiones de cámara y bureta no se observó cambio de volúmen.

Los especímenes IR-l e IR-2 (material remoldeado), tuvieron un comportamiento similar entre ellos. Al aplicarse la contrapresión las muestras se consolidaron a pesar de haberse mantenido un esfuerzo efectivo de 1 Kg/cm2.

Los resultados obtenidos de las pruebas unidimensionales realizadas en las muestras UI-1, UI-2, UR-1, UR-2 y UR-3 se dibujan en las figuras 3-7, 3-8, 3-9, 3-10 y 3-11 en escala natural y logarítmica, y en las figuras 3-12 y 3-13 en escala semilogarítmica. Los especímenes utilizados tuvieron una relación de vacíos inicial de 1.72, 1.77, 1.83, 1.78 y 1.75, y un contenido natural de agua inicial de 58.56 %, 63.84 %, 62.04 %, 62.37 %, y 60.61 % respectivamente.

En las pruebas de consolidación unidimensional la saturación se efectuó a l Kg/cm2 de esfuerzo efectivo en las muestras UI-1, UI-2 y UR-3, mientras que en las UR-1 y UR-2 se realizó al inicio de la prueba, no observándose cambios de volúmen.

Durante los ensayos no se notó ningún comportamiento anormal

en los equipos tanto de consolidación unidimensional como isotrópica. En los ensayos de consolidación unidimensional se realizó la corrección por deformación del aparato.

Tabla 3.1.a contiene un resúmen de los coeficientes de Lа compresibilidad, expansibilidad y recompresibilidad calculados la expresión 1.2 y que permiten ajustar una curva a los con valores experimentales obtenidos en las pruebas isotrópicas. La Tabla 3.1.b contiene un resúmen de los coeficientes de coeficientes compresibilidad y de los aproximados de expansibilidad para las pruebas unidimensionales.

TABLA 3.1 RESUMEN DE RESULTADOS

(a) PRUEBA ISOTROPICA

MATERIAL	Υ	ί	 s	γ _r
Inalterado	Ø.120	Ø.	Ø29	Ø.025
	Ø.123	Ø.	Ø32	Ø.029
Remoldeado	Ø.Ø82	Ø.	Ø3Ø	Ø.022
	Ø.Ø86	Ø.	Ø27	Ø.022

(b) PRUEBA UNIDIMENSIONAL

MATERIAL	γ, Ι Υ' _p Ι
Inalterado	0.138 0.015 0.149 0.015
Remoldeado	0.091 0.020 0.071 0.013 0.082 0.018

La Tabla 3.2 presenta los valores de las relaciones de expansibilidad - compresibilidad y recompresibilidad expansibilidad obtenidos de las pruebas isotrópicas.

TABLA 3.2 VALORES DE LAS RELACIONES PSC Y Prs

MATERIAL	ρ _{sc} ρ _{rs}
Inalterado	0.24 0.86 0.26 0.90
Remoldeado	Ø.36 Ø.73 Ø.31 Ø.81

Tanto en las pruebas isotrópicas como en las unidimensionales, en la rama virgen las muestras "inalteradas" presentan una compresibilidad mayor que las remoldeadas, las primeras tienen una rama de recompresión que permite definir un punto crítico, la carga "in-situ", donde el suelo debido а cambia de comportamiento, rama virgen, mientras que en el suelo remoldeado elimina el efecto de preconsolidación y la curva no presenta se dicho punto crítico. Terzaghi [8] menciona esta diferencia, indicando que la curva virgen de un suelo remoldeado se desplaza la izquierda del suelo "inalterado", que ese desplazamiento a será mayor cuanto mayor sea la sensitividad del suelo y que las dos curvas tienden a unirse a relaciones de vacíos muy bajas.

El que Y sea menor en el material remoldeado que en el "inalterado", lo que significa menor compresibilidad, se debe a que durante el remoldeo la estructura del material es alterada

haciendo que el suelo se comporte en forma regular en toda la rama virgen, no así en el material "inalterado" donde se manifiesta menor compresibilidad hasta el punto crítico, donde el suelo cambia de comportamiento haciéndose más compresible.

Este efecto no se manifiesta en las ramas de expansión y de recompresión, es decir la compresibilidad del suelo aparentemente es similar en el ciclo de carga y descarga en estado remoldeado e "inalterado".

En las pruebas de compresibilidad isotrópica y unidimensional, los coeficientes Y y Y' respectivamente, que en teoría son iguales, presentan una diferencia atribuible a la heterogeneidad del suelo y a la escacez de puntos para definir con exactitud las curvas de compresibiliadd en la rama virgen. En los dos tipos de pruebas la rama virgen definida antes y después del primer ciclo de carga y descarga presenta diferentes valores para el coeficiente de compresibildad isotrópico, en este trabajo se ha aceptado como el coeficiente del suelo, el determinado antes del primer ciclo de carga y descarga, considerando que después de éste no se define completamente la rama virgen.

En las curvas de compresibilidad isotrópica tanto en la rama de expansión como en la de recompresión fué posible determinar los valores de γ_s y γ_r , siendo mayor el primero. El coeficiente de expansibilidad, γ_s , tuvo un valor muy similar

tanto en material "inalterado" como en remoldeado, mientras que para el coeficiente de recompresibilidad, γ_r , el valor en material "inalterado" fue distinto que en material remoldeado. La difèrencia en este último coeficiente para los dos estados del material se atribuye a la heterogeneidad de la arcilla, pues en un suelo ideal, en el que se pudiera labrar probetas exactamente iquales, no debería existir diferencias en el lazo histéresis, entre el comportamiento de una de muestra "inalterada" y una remoldeada, considerando que si las dos se consolidaran hasta un mismo esfuerzo y que este fuera mayor que el crítico de la "inalterada", la herencia de preconsolidación "in situ" desaparecería.

En las curvas de compresibilidad unidimensional la determinación de Υ'_p en la rama de expansión fué aproximada, mientras que en la rama de recompresión no fué posible ajustar un valor.

Los valores experimentales del coeficiente de compresibilidad isotrópico, γ , se han comparado con el valor determinado por medio de la expresión 1.10, que es 0.096. Esta expresión tiene una dispersión de +/- 40 %, el valor calculado se encuentra cercano a los obtenidos experimentalmente.

Figura 3-2: CURVAS DE COMPRESIBILIDAD ISOTROPICA MATERIAL INALTERADO - MUESTRA II-1

Figura 3-3: CURVAS DE COMPRESIBILIDAD ISOTROPICA MATERIAL INALTERADO - MUESTRA II-2

Figura 3-4: CURVAS DE COMPRESIBILIDAD ISOTROPICA MATERIAL REMOLDEADO - MUESTRA IR-1

Figura 3-5: CURVAS DE COMPRESIBILIDAD ISOTROPICA MATERIAL REMOLDEADO - MUESTRA IR-2

Figura 3-6: CURVAS DE COMPRESIBILIDAD ISOTROPICA Escala semilogarítmica

29

Figura 3-7: CURVAS DE COMPRESIBILIDAD UNIDIMENSIONAL MATERIAL INALTERADO - MUESTRA UI-1

Figura 3-8: CURVAS DE COMPRESIBILIDAD UNIDIMENSIONAL MATERIAL INALTERADO - MUESTRA UI-2

Figura 3-9: CURVAS DE COMPRESIBILIDAD UNIDIMENSIONAL MATERIAL REMOLDEADO - MUESTRA UR-1

Figura 3-10: CURVAS DE COMPRESIBILIDAD UNIDIMENSIONAL MATERIAL REMOLDEADO - MUESTRA UR-2

Figura 3-11: CURVAS DE COMPRESIBILIDAD UNIDIMENSIONAL MATERIAL REMOLDEADO - MUESTRA UR-3

Figura 3-12: CURVAS DE COMPRESIBILIDAD UNIDIMENSIONAL Escala semilogarítmica

Figura 3-13: CURVAS DE COMPRESIBILIDAD UNIDIMENSIONAL Escala semilogarítmica

CAPITULO 4 INTERPRETACION <u>DE</u> <u>RESULTADOS</u>

4.1 INTRODUCCION

Los lazos histeréticos presentan una diferencia muy importante, que es la siguiente: en las curvas de compresibilidad isotrópica, la rama de recompresión tiene una curvatura semejante a la de la rama de expansión, mientras que en las curvas de compresibilidad unidimensional, la rama de recompresión tiene una curvatura distinta a la de la rama de expansión.

Es evidente que las condiciones de las pruebas son distintas, sin embargo el comportamiento del suelo debe atribuirse al estado de esfuerzos que se presenta en cada prueba.

Obsérvese la figura 4-l, si un suelo se consolida isotrópicamente desde un esfuerzo σ_{co} hasta un valor σ_{p} , su cambio de volúmen será de Vo a Vp , si posteriormente se descarga al suelo hasta el valor σ_{c} el volúmen será Vc, correspondiente a un esfuerzo σ_{e} en la rama virgen, significa entonces que el suelo almacena un esfuerzo σ_{c} .

Si al suelo se lo libera de este esfuerzo almacenado σ_s , por medio una perturbación, su volúmen tendería a ser Ve, que corresponde al esfuerzo σ_c en la curva virgen. Pero la perturbación que causó dicha liberación, ocasiona una pérdida de resistencia, haciendo que el volúmen disminuya a un valor V'e,

Figura 4-1: EFECTO DE PERTURBACION

aunque los esfuerzos isotrópicos no varien.

La perturbación solo puede ser provocada por la aplicación de un estado de esfuerzos cortantes, ya que no varían los esfuerzos isotrópicos. Por tanto la magnitud del cambio de volúmen estará gobernada por la magnitud de los esfuerzos cortantes que provocan la perturbación que libera al suelo de los esfuerzos almacenados y produce la pérdida de resistencia.

4.2 PRUEBAS ISOTROPICAS

En una prueba isotrópica, de acuerdo a lo anterior, si no se provocan esfuerzos cortantes la rama de recompresión coincidiría con la rama de expansión. Esto no sucede en la realidad, si no que existe un desfasamiento, esto es explicable ya que los suelos no son ni homogéneos ni isótropos, y a posar que el estado de esfuerzos exterior es isotrópico, intermamente hay fuerzas interparticulares que provocan una perturbación y en consecuencia una liberación de σ_s y un aumento de volúmen.

En la rama de recompresión la razón de la magnitud de los esfuernos liberados tenderá a disminuir, al acercarse el valor de los esfuerzos aplicados al de preconsolidación, con lo que el aumento de volúmen debido a este efecto irá disminuyendo; por el contrario, la pérdida de resistencia al cambio volumétrico y en consecuencia el aumento de compresibilidad será mayor, por el efecto de perturbación. Por tanto ahora la rapidez de cambio volumétrico respecto al cambio de esfuerzos será mayor, haciendo que la rama de recompresión cruce a la rama de expansión antes del punto correspondiente al esfuerzo de preconsolidación.

So debe hacer notar que el incremento de los esfuersos externos genera un incremento en la presión de poro, haciendo que el agua de la muestra salga con mayor o menor velocidad, depondiendo de la magnitud del incremento de esfuersos, esta salida de agua provocará esfuersos cortantes, debidos a las fuersas de filtración, cuyos efectos se sumarán a los producidos por los cortantes interparticulares.

4.3 PRUEBAS UNIDIMENSIONALES

Se indicó en el Capítulo 1 que, en una prueba de consolidación unidimensional, los cambios de volúmen ocurren al variar el esfuerzo isotrópico transformado, σ_t , definido en la expresión 1.7, por tanto un estudio comprensivo de la curva de compresibilidad obtenida de dicha prueba debe ser realizada en base a estos esfuerzos.

La curva de compresibilidad de una prueba unidimensional dibujada en esfuerzos verticales puede ser transformada en esfuerzos isotrópicos transformados, para lo que se requiere conocer en el ciclo de carga y descarga los estados de esfuerzos, que permitan determinar σ_t .

En el presente estudio se ha empleado una curva σ_v vs σ_h , (figura 4-2), diseñada por Juárez Badillo en base a los resultados reportados por Singh, Henkel y Sangrey [9].

En la rama virgen la transformación de la curva en esfuerzos verticales a esfuerzos isotrópicos es única en todo el rango, pues σ_v es proporcional a σ_h en consecuencia a σ_t , de tal manera que es válido hacer la siguiente relación:

$$\frac{v}{v_{0}} = \left(\frac{\sigma_{t}}{\sigma_{t0}}\right)^{-\gamma} \left(\frac{\sigma_{c}}{\sigma_{c0}(1+\alpha\gamma)}\right)^{-\gamma} = \left(\frac{\sigma_{c}}{\sigma_{c0}}\right)^{-\gamma} \left(\frac{\sigma_{v}}{\sigma_{v0}}\right)^{-\gamma}$$

40

4.1

en la que se hace notar que el cambio de volúmen en la rama virgen es proporcional tanto al cambio de σ_v como el de σ_t . En la ramo de expansión cada vez que disminuye σ_v , σ_h decrece una cantidad cada vez menor, heciendo que σ_t disminuya más lentamente que σ_v , por tanto el cambio de volúmen que manificate el suelo al disminuir σ_v una unidad es menor que el que manificata al disminuir σ_t una unidad. Al decrecer σ_v a 1.25 Kg/cm2 se tiene que $\sigma_v = \sigma_h$.

En la rama de recompresión cada vez que σ_v crece, σ_h crece una cantidad cada vez meyor, y cuando σ_v es igual a 0.75 Kg/cm2 $\sigma_v = \sigma_h$. Al acercarse el valor de σ_v al del esfuerzo móximo aplicado, la relación con σ_h tiende a ser similar a la de la rama virgen.

En las figuras 4-3, 4-4 y 4-5 se presentan las curvas transformadas correspondientes a las pruebas unidimensionales UI-1, UR-2 y UR-3. En la tranformación del esfuerzo vertical ce utilizó la expresión 4.2.

Esta expreción difiero de la 1.7 que define el esfuerzo istrópico transformado ^ot, en que en la expresión 4.2 se ha despreciado el término correspondiente a los esfuerzos cortantes

4.L

Figura 4-2: TRAYECTORIA DE ESFUERZOS EN PRUEBA UNIDIMENSIONAL

(α y), debido a que este valor no altera al de σ_t en más de 10 % en la rama virgen y más de 2 % en las ramas de expansión y recompresión. Lo que significaría que el cambio volúmetrico en una prueba de consolidación unidimensional es producido por los esfuerzos isotrópicos y que los cortantes no lo alteran en un valor considerable.

En las curvas transformadas la rama virgen se ha dibujado con el coeficiente γ de las curvas originales, por lo indicado en la expresión 4.1.

En las ramas de expansión y recompresión los puntos dibujados representan los valores de (1+e) experimentales correspondientes

a los esfuerzos verticales. A estos puntos se les ajustó curvas teóricas con valores de $\gamma_{S}^{!} = \emptyset.\emptyset24$ y $\gamma'_{r} = \emptyset.\emptyset19$. La relación recompresibilidad – expansibilidad (ρ'_{rs}), definida en la expresión 1.6, en las curvas transformadas es de 0.79 igual al de las curvas isotrópicas, lo que implicaría que la diferencia entre los coeficientes de las ramas de expansión y recompresión tiene la misma explicación que para las pruebas isotrópicas, es decir, que el desfasamiento entre las curvas podría ser debido a las fuerzas interparticulares.

Se debe aclarar que si bien la relación entre σ_h y σ_v adoptada en la figura 4-2, para las pruebas unidimensionales, puede diferir de la real, las curvas transformadas tienden a tener una forma similar a las de las isotrópicas, es decir, permiten ser interpretadas con la "Teoría de Compresibilidad de Arcillas".

Figura 4-5: CURVA DE COMPRESIBILIDAD TRANSFORMADA Muestra UR-3

CAPITULO 5

47

CONCLUSIONES Y RECOMENDACIONES

5.1 CONCLUSIONES

1.- En cada tipo de material, el coeficiente de compresibilidad γ tuvo aproximadamente el mismo valor en las pruebas isotrópicas y en las unidimensionales, debido a que en la rama virgen los esfuerzos isotrópicos son proporcionales a los verticales.

2.- La presencia de los lazos histeréticos en las curvas de compresibilidad en las pruebas isotrópicas, significa que el fenómeno de histéresis no es producido por la aplicación de un estado de esfuerzos cortantes, pudiendo ser por la acción de fuerzas interparticulares.

3.- En las curvas de compresiblidad de las pruebas isotrópicas se pudo definir los coeficientes γ_s y γ_r en las ramas de expansión y recompresión respectivamente, siendo mayor el primero.

4.- Las curvas de compresiblidad de pruebas unidimensionales, dibujadas en base a los esfuerzos transformados, permitieron determinar los coeficientes $\gamma'_{s} \gamma'_{r}$, en las ramas de expansión y recompresión, observándose que los valores de éstos son semejantes a los obtenidos en las pruebas isotrópicas.

5.2 RECOMENDACIONES

1.- Realizar pruebas en cámaras triaxiales variando el estado de esfuerzos principales pero manteniendo constante la componente isotrópica, aumentando, disminuyendo e invirtiendo los esfuerzos cortantes sin llegar a la falla, permitiría cuantificar el efecto de éstos en los cambios volumétricos.

2.- La ejecución de pruebas de consolidación anisotrópica en cámara triaxial, con lo constante o variable, posibilitaría la obtención de curvas transformadas y compararlas con curvas obtenidas en pruebas isotrópicas.

APENDICE I

CALCULO DE VALORES EXPERIMENTALES

Este apéndice contiene las tablas de los valores calculados de relaciones de vacíos en cada prueba, así como los datos iniciales y finales correspondientes a cada probeta.

Los valores de σ corresponden a los de σ_c en las pruebas isotrópicas y de σ_v en las pruebas unidimensional. La columna de valores Al contiene los valores de las lecturas de bureta en las pruebas isotrópicas y de micrómetro en las unidimensionales.

Para calcular el cambio de volúmen acumulado se utilizó la expresión I.l donde K en las pruebas isotrópicas correspondió a la calibración de la bureta y al área de la muestra en las unidimensionales.

$$\Delta \mathbf{V} = \mathbf{K} \Delta \mathbf{J}$$

El volúmen V correspondiente a cada esfuerzo se determinó en base a la expresión I.2

$$V = V_0 - \Delta V$$

I.2

I.1

El contenido de agua y la relación de vacíos se calcularon a partir del volúmen de agua correspondiente a cada nivel de esfuerzos.

 $\psi = \frac{V_w}{W_s}$ 100%

 $v_{w} = v_{wo} = v$

I.3

I.4

I.5

TABLA I.1 VALORES EXPERIMENTALES OBTENIDOS EN PRUEBA ISOTROPICA PARA MATERIAL "INALTERADO"

CONSOLIDACION:	ISOTROPICA			- مەكەر ئېلىكى قىلىشى 	
EQUIPO: C2-B1			MUESTR	\: <u> </u>	<u>l</u>
$W_{to} = 145.58 \text{ gr}$	$W_{s} = 89.44$	gr.	Vw	_o = 56.2	L4 cm3
$V_{to} = 88.19 \text{ cm}3$	V _s = 32.06	cm3	۲ _m	= 1.6	5 T/m3
e _o = 1.751	w _o = 62.77	8	• ^H o	= 8.90	51 cm
e _f = 1.250	$w_{f} = 45.08$	8	Do	= 3.54	40 cm
$\Delta V = \emptyset.45 \Delta l$					
σ . Δ1	Δνιν	1 w	e	1+e	log(l+e)
Kg/cm2 Cm	cm3 cm3	%	-		l
$ \begin{bmatrix} \emptyset & 0 & 0 & 0 & 0 \\ 0 & 5 & 12 & 0 \\ 1 & 0 & 18 & 5 \\ 2 & 0 & 29 & 5 \\ 3 & 0 & 40 & 0 \\ 2 & 0 & 38 & 8 \\ 1 & 0 & 35 & 1 \\ 0 & 5 & 31 & 3 \\ 0 & 25 & 27 & 8 \\ 0 & 5 & 81 & 1 \\ 1 & 0 & 33 & 1 \\ 2 & 0 & 37 & 6 \\ 3 & 0 & 42 & 4 \\ 4 & 0 & 47 & 10 \\ 5 & 0 & 50 & 20 \\ 4 & 0 & 49 & 62 \\ 3 & 0 & 48 & 35 \\ 2 & 0 & 46 & 60 \\ 1 & 0 & 42 & 20 \\ 0 & 5 & 38 & 40 \\ 1 & 0 & 41 & 90 \\ 2 & 0 & 44 & 91 \\ 3 & 0 & 47 & 62 \\ 4 & 0 & 49 & 89 \\ 1 & 0 & 40 & 49 & 89 \\ 5 & 0 & 52 & 45 \\ \end{bmatrix} $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	70.74 64.80 61.53 56.00 50.71 51.32 53.18 55.09 56.85 55.19 54.92 49.51 47.14 45.58 45.87 49.61 51.52 49.61 51.52 49.61 51.52 49.76 48.25 46.88 45.74 44.45	1.976 1.808 1.717 1.56 1.415 1.432 1.484 1.537 1.586 1.540 1.501 1.449 1.315 1.272 1.280 1.298 1.322 1.384 1.3384 1.340 1.318 1.276 1.240	2.976 2.808 2.717 2.562 2.415 2.432 2.484 2.537 2.586 2.540 2.501 2.449 2.381 2.315 2.272 2.280 2.298 2.322 2.288 2.322 2.384 2.322 2.384 2.322 2.384 2.322 2.384 2.322 2.384 2.318 2.276 2.240	0.474 0.434 0.434 0.383 0.386 0.395 0.404 0.413 0.405 0.398 0.398 0.398 0.398 0.377 0.365 0.356 0.358 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.358 0.358 0.358 0.358 0.358 0.358 0.358 0.358 0.358 0.358 0.358 0.358 0.359 0.350 0.350

Observacio

La contrapresión se aplicó anulando el esfuerzo efectivo, lo que provocó una expansión de 7.22 cm3. Por tal razón se corrigió el $V_{to} = 95.41$ cm3, el $V_{wo} = 63.36$ cm3, el $w_{o} = 70.84$ % y la $e_{o} = 1.976$

TABLA I.2 VALORES EXPERIMENTALES OBTENIDOS EN PRUEBA ISOTROPICA PARA MATERIAL "INALTERADO"

CONSOLIDACION: ISOTROPICA	
EQUIPO: C4-B2 MUEST	RA: <u>11-2</u>
$W_{to} = 132.88 \text{ gr} W_s = 81.36 \text{ gr} V_s$	/wo = 51.52 cm3
$v_{to} = 82.70 \text{ cm}3$ $v_s = 31.18 \text{ cm}3$	(m = 1.60 T/m3
$e_0 = 1.652$ $w_0 = 63.32$ %	H _o = 8.212 cm
$e_{f} = 1.330$ $\omega_{f} = 48.18$ %	o = 3.548 cm
$\Delta v = \emptyset.45 \Delta l$	
$ - \sigma - - \Delta - - \Delta v = - w - - e$	 1+e log(l+e)
Kg/cm2 cm cm3 cm3 8	-1
1.0 - - 82.70 63.32 1.65 1.5 2.6 1.17 81.53 61.88 1.61	2 2.652 Ø.424 5 2.615 Ø.417
2.0 8.3 3.73 78.96 58.73 1.53 3.0 17.6 7.92 74.78 53.58 1.39	3 2.533 Ø.404 8 2.398 Ø.380
2.0 16.6 7.47 75.23 54.14 1.41 1.0 13.0 5.85 76.85 56.13 1.46	3 2.413 Ø.383 5 2.465 Ø.392
0.5 9.0 4.05 78.65 58.34 1.52 1.0 12.45 5.60 77.09 56.43 1.47	2 2.522 0.402
2.0 16.00 7.20 75.50 54.47 1.42	1 2.421 0.384
	9 2.369 0.375
5.0 28.00 12.60 70.10 47.84 1.24	8 2.248 0.352
4.0 27.68 12.45 70.24 48.01 1.25	3 2.253 0.353
3.0 26.68 12.00 70.69 48.57 1.26	7 2.267 0.356
2.0 $ 24.58 $ $ 1.06 $ $/1.63 $ $ 49./3 $ $ 1.29 $	8 2.298 0.361 5 2.255 0.372
$1 \cdot 0 + 20 \cdot 03 + 9 \cdot 20 + 7 \cdot 42 + 91 \cdot 91 + 1 \cdot 35$ $1 \cdot 0 \cdot 5 + 16 \cdot 83 + 7 \cdot 57 + 75 \cdot 12 + 54 \cdot 01 + 1 \cdot 40$	9 2.409 0.382
1.0 20.04 9.02 73.68 52.24 1.36	3 2.363 0.373
2.0 23.74 10.68 72.01 50.19 1.31	0 2.310 0.364
3.0 26.03 11.71 70.99 48.92 1.27	7 2.277 0.357
4.0 27.78 12.50 70.20 47.96 1.25 5.0 29.33 13.20 69.50 47.10 1.22	1 2.251 0.352 9 2.229 0.348

Observaciones.-

La contrapresión se aplicó dejando 1 Kg/cm2 de esfuerzos efectivos. No existió cambio de volúmen.

TABLA 1.3 VALORES EXPERIMENTALES OBTENIDOS E PRUEBA ISOTROPICA PARA MATERIAL REMOLDEADO

CONSOLIDACION: ISOTROPICA	
EQUIPO: <u>C2-B1</u>	MUESTRA: IR-1
$W_{to} = 131.65 \text{ gr} W_s = 82.59 \text{ gr}$	$v_{wo} = 49.06$ cm3
V _{to} = 80.564 cm3 V _s = 31.50 cm3	γ _m = 1.63 T/m3
e _o = 1.550 <i>w</i> o = 59.40 %	$H_{o} = 8.112 \text{ cm}$
e _f = 0.984	$D_{0} = 3.556 \text{ cm}$
$\Delta V = \emptyset.45 \Delta 1$	

I	σ	Ι Δ	∆v	v	w	e l	1+e	log(l+e)
1	Kg/cm2	Cm	Cm3	cm3	8	- 1	- 1	-	l
	0.0 1.0 2.0 3.0 2.0 1.0 0.5 1.0 2.0 3.0 4.0 3.0 2.0 1.0 3.0 4.0 3.0 2.0 4.0 3.0 4.0 5.0 4.0 3.0 4.0 5.0 4.0 5.0 4.0 5.0 4.0 5.0 4.0 5.0 4.0 5.0 4.0 5.0 4.0 5.0 4.0 5.0 4.0 5.0 4.0 5.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	$\begin{array}{c} -\\ 23.0\\ 31.40\\ 36.40\\ 35.40\\ 32.75\\ 29.33\\ 31.74\\ 34.05\\ 36.90\\ 39.60\\ 42.15\\ 41.77\\ 40.80\\ 39.40\\ 39.40\\ 39.40\\ 36.71\\ 33.42\\ 35.80\\ 38.04\\ 39.34\\ 40.94\end{array}$	10.35 14.13 16.38 15.93 14.74 13.20 14.28 15.32 16.61 17.82 16.61 17.82 18.97 18.80 18.36 17.73 16.52 15.04 16.11 17.12 17.70 18.42	80.561 70.211 66.431 64.631 65.831 67.371 66.281 65.241 63.961 62.741 61.671 62.201 61.671 62.831 64.451 63.451 63.451 62.861 62.141	59.40 46.87 42.29 39.57 40.11 41.56 43.42 42.11 40.85 39.30 37.83 36.44 36.64 37.17 37.93 39.40 41.19 39.90 38.68 37.97 37.10	1.557 1.229 1.109 1.037 1.052 1.090 1.138 1.104 1.030 0.992 0.955 0.961 0.975 0.995 1.033 1.080 1.046 1.046 1.044 0.995 0.975 0.995 0.095 0.007 0.	2.557 2.229 2.109 2.037 2.052 2.090 2.139 2.104 2.071 2.030 1.955 1.961 1.975 1.995 2.033 2.080 2.046 2.014 1.995 1.973	0.408 0.348 0.324 0.309 0.312 0.320 0.320 0.323 0.316 0.308 0.299 0.291 0.292 0.292 0.300 0.308 0.308 0.318 0.318 0.311 0.304 0.309 0.295	
1	5.0	42.59	19.17	61.40	36.20	0.9491	1.949	0.290	1

Observaciones.-La contrapresión se aplicó dejando l Kg/cm2 de esfuerzos efectivos. Existió cambio de volúmen.

TABLA I.4 VALORES EXPERIMENTALES OBTENIDOS EN PRUEBA ISOTROPICA PARA MATERIAL REMOLDEADO

CONSOLIDACION: ISOTROPICA	
EQUIPO: C4-B2	MUESTRA: IR-2
$W_{to} = 115.48 \text{ gr}$ $W_{s} = 71.$	002 gr $V_{WO} = 44.478 \text{ cm}3$
$v_{to} = 71.728 \text{ cm} 3 v_s = 27.$	25 cm3 $Y_{m} = 1.61$ T/m3
$e_0 = 1.632$ $w_0 = 62.$	64 % $H_0 = 7.198$ cm
$e_{f} = 1.02$ $w_{f} = 39$.	15 % D _o = 3.562 cm
$\Delta V = \emptyset.45 \Delta l$	
Ι σ Ι Δ1 Ι ΔV Ι	V W e 1+e log(1+e)
' Kg/cm2 cm cm3 c	m3 8 - - -
$ \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $.73 62.64 1.632 2.632 0.420 .53 51.11 1.332 2.332 0.368 .07 46.23 1.205 2.205 0.343 .91 43.18 1.125 2.125 0.327 .26 43.67 1.138 2.138 0.330 .29 45.13 1.176 2.176 0.338 .63 47.03 1.225 2.225 0.347 .76 45.78 1.193 2.195 0.341 .77 44.39 1.157 2.157 0.334 .66 42.83 1.116 2.080 0.318 .65 39.99 1.042 2.042 0.310 .75 40.14 1.046 2.061 0.314 .79 41.60 1.084 2.084 0.319 .99 43.29 1.128 2.128 0.328 .08 44.83 1.168 2.168 0.336 .26 43.67 1.138 2.138 0.330 .33 42.37 1.064 2.084 0.319 .99 43.29 1.128 2.138 0.330 .33 42.37 1.064 2.084 0.319 .99 43.67 1.38 2.38 0.330 .33 42.37 1.064 2.084 0.319 .33 42.37 1.064 2.084 0.319 .33 40.53 1.056 2.056 0.313 .43 39.69 1.034 2.034 0.308

Observaciones.-La contrapresión se aplicó dejando 1 Kg/cm2 de esfuerzos efectivos. Existió cambio de volúmen.

CONSOLIDACION.						
EQUIPO: CS2	UNIDIM	IND LONKI		MUESTRA	: UI-1	
W _{to} = 109.96 gr	W _s =	69.35	gr	- v _{wo}	= 40.61	cm 3
v _{to} = 64.23 cm3	v =	23.62	cm3	۲ _m	= 1.71	T/m3
e _o = 1.719	ω ₀ =	58.56	8	Ho	= 1.270	cm
e _f = 1.124	w _f =	38.28	8	Do	= 8.027	CM
$\Delta v = 50.605 \Delta l$						
σ Δ <u>1</u>	Δν	v	w - 1		1+e	 log(l+e)
Kg/cm2 cm	cm 3	cm3	8			
$ \begin{vmatrix} 0 & 0 & 0 & - \\ 0 & 1 & 0 & 0 & 15 \\ 0 & 5 & 0 & 0 & 44 \\ 1 & 0 & 0 & 0 & 72 \\ 2 & 0 & 0 & 159 \\ 3 & 0 & 0 & 231 \\ 2 & 0 & 0 & 230 \\ 1 & 0 & 0 & 220 \\ 0 & 5 & 0 & 203 \\ 1 & 0 & 0 & 220 \\ 0 & 5 & 0 & 203 \\ 1 & 0 & 0 & 220 \\ 2 & 0 & 0 & 222 \\ 3 & 0 & 0 & 222 \\ 3 & 0 & 0 & 227 \\ 4 & 0 & 0 & 300 \\ 3 & 0 & 0 & 298 \\ 2 & 0 & 0 & 298 \\ 2 & 0 & 0 & 298 \\ 2 & 0 & 0 & 298 \\ 2 & 0 & 0 & 298 \\ 2 & 0 & 0 & 298 \\ 2 & 0 & 0 & 298 \\ 1 & 0 & 0 & 279 \\ 1 & 0 & 0 & 279 \\ 0 & 5 & 0 & 260 \\ 1 & 0 & 0 & 264 \\ 2 & 0 & 0 & 291 \\ 4 & 0 & 0 & 300 \\ 3 & 0 & 0 & 291 \\ 4 & 0 & 0 & 300 \\ 5 & 0 & 0 & 310 \\ \end{vmatrix} $	0.76 2.23 3.64 8.05 11.69 11.64 11.13 10.27 10.42 11.23 11.99 13.92 15.28 15.18 14.12 13.16 13.36 14.17 14.73 15.18 15.98	64.23 63.47 62.00 60.59 56.18 52.54 52.59 53.10 53.96 53.81 53.00 52.24 50.31 49.05 49.05 49.05 49.50 49.50 49.50 49.50 49.50 49.50 49.50 48.54	58.56 57.46 55.35 53.30 46.96 41.70 41.77 42.50 43.75 43.53 42.36 41.26 38.49 36.52 36.67 38.20 39.59 39.29 38.13 37.32 36.67 35.94	1.719 1.687 1.625 1.565 1.379 1.224 1.227 1.248 1.284 1.284 1.278 1.248 1.248 1.278 1.248 1.248 1.278 1.248 1.278 1.248 1.278 1.248 1.278 1.248 1.278 1.248 1.278 1.248 1.278 1.248 1.278 1.248 1.278 1.248 1.278 1.248 1.278 1.248 1.278 1.248 1.278 1.248 1.227 1.248 1.227 1.248 1.227 1.248 1.227 1.248 1.227 1.248 1.227 1.248 1.227 1.248 1.227 1.248 1.227 1.248 1.228 1.0077 1.0881 1.0628 1.154 1.199 1.0955 1.055	2.719 2.687 2.625 2.565 2.379 2.224 2.227 2.248 2.284 2.284 2.278 2.244 2.278 2.244 2.278 2.244 2.212 2.130 2.077 2.081 2.089 2.122 2.162 2.162 2.154 2.19 2.096 2.077 2.095	0.434 0.429 0.419 0.409 0.378 0.347 0.348 0.352 0.359 0.358 0.351 0.345 0.328 0.316 0.317 0.318 0.327 0.335 0.335 0.323 0.326 0.321 0.317 0.313
Descarga						
	14.32	49.91	37.91	1.113	2.113	0.325
Observaciones La satu efectivo	ración.	se real	izó a	l Kg//c	m2 de e	sfuerzo

TABLA I.5 VALORES EXPERIMENTALES OBTENIDOS EN PRUEBA UNIDIMENSIONAL PARA MATERIAL "INALTERADO"

TABLA I.6 VALORES EXPERIMENTALES OBTENIDOS EN PRUEBA UNIDIMENSIONAL PARA MATERIAL "INALTERADO"

CONSOLIDA	ACION: 1	JNIDIME	SIONAL	J	·····		
EQUIPO:	CS3				MUESTRA	<u>UI-2</u>	
$W_{to} = 103$	3.56 gr	W = (54.68	gr	V _{wo} =	•	. cm3
$v_{to} = 64$.	.64 cm3	v _s = 2	23.35	cm3	Υm =	= 1.601	T/m3
e _o = 1.7	768	w_ = (53.84	8	• н _о =	= 1.276	cm
e _f =		$w_{f} =$	€. .	Ş	D _o =	8.033	cm
$\Delta v = 50.$	681 <u>A</u> l						
Ισ	Δ1	ΔΫΙ	v	w	e [1+e	log(l+e)
Kg/cm2	cm	cm3	cm3	8	- 1	1	- 1
0.0 0.1 0.2 0.4 0.8 1.6 3.2 1.6 0.4 0.4 0.4 0.4 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.1 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.2 0.4 0.4 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.2 0.4 0.8 0.4 0.8 0.2 0.4 0.8 0.4 0.8 0.2 0.4 0.4 0.8 0.2 0.4 0.4 0.8 0.2 0.4 0.4 0.8 0.4 0.4 0.4 0.4 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	0.005 0.009 0.022 0.045 0.109 0.225 0.103 0.103 0.103 0.103 0.103 0.103 0.151 0.162 0.190 0.235 0.301	$\begin{array}{c c} - & \\ 0.25 \\ 0.46 \\ 1.11 \\ 2.28 \\ 5.52 \\ 11.40 \\ 10.95 \\ 10.29 \\ 9.78 \\ 8.77 \\ 7.35 \\ 7.65 \\ 8.21 \\ 9.63 \\ 11.91 \\ 15.25 \end{array}$	64.64 64.39 64.18 63.53 62.36 59.12 53.24 53.79 54.35 54.86 55.87 57.29 56.43 55.01 52.73 49.39	$\begin{array}{c} 63.84\\ 63.45\\ 63.13\\ 62.11\\ 60.31\\ 55.30\\ 46.21\\ 47.07\\ 47.93\\ 48.71\\ 50.28\\ 52.48\\ 52.48\\ 52.01\\ 51.14\\ 48.95\\ 45.42\\ 40.25\\ \end{array}$	1.768 1.757 1.749 1.721 1.671 1.532 1.280 1.304 1.328 1.349 1.393 1.454 1.454 1.441 1.417 1.356 1.258 1.115	2.768 2.757 2.749 2.721 2.671 2.532 2.280 2.304 2.328 2.349 2.393 2.349 2.393 2.454 2.441 2.417 2.356 2.258 2.115	0.442 0.441 0.439 0.435 0.427 0.403 0.358 0.362 0.367 0.371 0.379 0.379 0.383 0.383 0.383 0.383 0.383 0.385 0.354 0.325 0.3
Observaci	iones		elle son set av Sondar variations	de la composition	an a		

La saturación se realizó a Ø.8 Kg/cm2 de esfuerzo efectivo.

TABLA I.7 VALORES EXPERIM	1ENTALES	OBTENIDOS	ΕN
PRUEBA UNIDIMENSIONAL PARA	MATERIAL	REMOLDEAI	00

CONSOLID	DACION:	UNIDIME	NSIONAL	1		· · · · · · · · · · · · · · · · · · ·	
EQUIPO:_	_CS1				MUESTRA:	<u>UR-1</u>	
$W_{to} = 10$	9.17 gr	W =	67.37	gr	V _{wo} =	41.790	5 cm3
$V_{to} = 64$	1.63 cm3	V =	22.83	cm3	Υ _m =	1.69	T/m3
e _o = 1.	831	₩=	62.04	8	. _H o =	1.270	cm
e _f = 1.	125	<i>w</i> f =	38.12	8	D _o =	8.050	cm
Δv = 50	J.900_A1						
	Δ۱ا	Δν	v		el	1+e 1	og(1+e)
Kg/cm2	cm	cm3	cm3		[
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 2.95\\ 7.33\\ 9.77\\ 13.13\\ 15.52\\ 16.39\\ 17.30\\ 17.05\\ 16.85\\ 16.54\\ 15.73\\ 14.91\\ 15.27\\ 16.19\\ 15.27\\ 16.19\\ 16.69\\ 17.51\\ 18.27\\ \end{array}$	$\begin{array}{c} 64.63 \\ 61.67 \\ 7.30 \\ 57.30 \\ 54.85 \\ 51.49 \\ 49.10 \\ 48.24 \\ 47.32 \\ 47.57 \\ 47.78 \\ 48.08 \\ 48.90 \\ 48.90 \\ 49.71 \\ 49.36 \\ 48.44 \\ 47.93 \\ 47.12 \\ 46.36 \\ \end{array}$	62.04 57.65 51.16 47.53 42.55 38.99 37.71 36.35 36.73 37.03 37.48 38.69 39.90 39.37 38.01 37.25 36.05 34.18	1.831 1.702 1.510 1.403 1.256 1.151 1.113 1.073 1.083 1.093 1.106 1.146 1.178 1.162 1.122 1.122 1.099 1.064 1.030	2.831 2.702 2.510 2.403 2.256 2.151 2.113 2.073 2.084 2.093 2.106 2.146 2.178 2.162 2.122 2.099 2.064 2.031	Ø.452 Ø.432 Ø.432 Ø.432 Ø.333 Ø.353 Ø.353 Ø.333 Ø.325 Ø.317 Ø.319 Ø.321 Ø.324 Ø.338 Ø.335 Ø.327 Ø.322 Ø.315 Ø.308
Descarga	1						
0.0	0.333	16.95	47.68	36.88	1.088	2.088	Ø.320
Observac	ciones	ación s	e reali	≂ó al i	nicio de	la pri	ieha

			en son seiter in Anton Antonio (Maria (Maria)) Maria (Maria) (Maria)			
TABLA	I.8 BA UNIDI	VALORES	EXPERIM	ENTALES MATERIAL	OBTENIDOS REMOLDEAD	EN O
						, ,

7.71 gr .55 cm3 785 1Ø4 .83ØΔ1 	$W_{s} = V_{s} = \omega_{o} = \omega_{f} = \frac{\omega_{f}}{\omega_{f}}$	66.33 23.18 62.37 35.58	gr cm3 8 8	- V _{wo} Y _m H _o D _o	= 41.37 = 1.67 = 1.270 = 8.045	cm3 T/m: cm cm
.55 cm3 785 104 .830Δ1 	$\nabla_{s} =$ $\omega_{o} =$ $\omega_{f} =$	23.18 62.37 35.58	cm3 8 8	Υ _m Η _ö ^D ö	= 1.67 = 1.270 = 8.045	T/m: cm cm
785 104 •830Δ1 —	w _o = w _f =	62.37 35.58	8	H _o D _o	= 1.270 = 8.045	cm cm
104 •830Δ1 	ω _f =	35.58	8 	D _o	= 8.045	cm
•830Δ1 						Sector Sector
		网络拉拉拉拉	and a second second for the second			
			ω	e	1+e :	 log (1+
cm	cm3	cm 3	8			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- 2.948 7.879 10.67 13.37 15.20 14.89 14.59 14.59 14.59 14.64 15.66 16.57 17.03 16.93 16.72 16.35 15.76 15.05 15.10 15.76 15.76 15.76 15.76 15.76 15.76 15.76 15.76	64.55 61.60 56.67 53.87 51.18 49.35 49.66 49.96 50.62 50.52 50.52 49.91 48.89 47.52 47.52 47.52 47.62 47.62 47.83 48.20 48.79 48.79 48.79 48.79 49.45 48.13 47.47 46.66	62.37 57.92 50.49 46.27 42.21 39.45 39.92 40.38 41.37 41.22 40.30 38.77 37.99 36.70 36.85 37.16 37.72 38.61 39.69 39.61 38.61 37.62 35.39	$\left \begin{array}{c} 1.785 \\ 1.658 \\ 1.445 \\ 1.324 \\ 1.208 \\ 1.129 \\ 1.129 \\ 1.142 \\ 1.155 \\ 1.184 \\ 1.180 \\ 1.150 \\ 1.169 \\ 1.070 \\ 1.050 \\ 1.055 \\ 1.063 \\ 1.055 \\ 1.063 \\ 1.079 \\ 1.105 \\ 1.063 \\ 1.079 \\ 1.105 \\ 1.076 \\ 1.076 \\ 1.048 \\ 1.013$	2.785 2.658 2.445 2.324 2.208 2.129 2.142 2.155 2.184 2.150 2.109 2.050 2.055 2.063 2.063 2.0079 2.105 2.136 2.133 2.105 2.136 2.133 2.105 2.076 2.048 2.013	0.445 0.424 0.388 0.366 0.344 0.328 0.331 0.334 0.339 0.338 0.333 0.333 0.315 0.316 0.312 0.315 0.318 0.323 0.320 0.329 0.329 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.323
0.326		47 991	37.40	1.0701	2.0701	 0.316
,一下了一下,这个人的,这个人的,我们就是这些人,这个人的,我们就是这些人的,我们就是一些我们的,我们就是一个你,我们就是一个你,我们就是不能是一个你,我们就是你	0.155 0.210 0.263 0.299 0.293 0.287 0.274 0.276 0.276 0.288 0.308 0.326 0.335 0.322 0.310 0.297 0.322 0.310 0.297 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.324 0.326 0.352 0.326 0.352 0.326 0.352 0.	0.155 7.879 0.210 10.67 0.263 13.37 0.299 15.20 0.293 14.89 0.287 14.59 0.274 13.93 0.276 14.03 0.288 14.64 0.308 15.66 0.326 16.57 0.335 17.03 0.329 16.72 0.322 16.35 0.310 15.76 0.296 15.05 0.297 15.10 0.323 16.42 0.326 17.08 0.352 17.08 0.352 17.89 0.326 16.56	0.155 7.879 50.07 0.210 10.67 53.87 0.263 13.37 51.18 0.299 15.20 49.35 0.293 14.89 49.66 0.287 14.59 49.96 0.287 14.59 49.96 0.274 13.93 50.62 0.276 14.03 50.52 0.288 14.64 49.91 0.308 15.66 48.89 0.326 16.57 47.98 0.335 17.03 47.52 0.333 16.93 47.62 0.322 16.35 48.20 0.310 15.76 48.79 0.296 15.05 49.50 0.297 15.10 49.45 0.310 15.76 48.79 0.323 16.42 48.13 0.323 16.42 48.13 0.323 16.42 48.13 0.326 17.08 47.47 0.326 16.56 47.99	0.155 7.879 50.67 50.49 0.210 10.67 53.87 46.27 0.263 13.37 51.18 42.21 0.299 15.20 49.35 39.45 0.293 14.89 49.66 39.92 0.287 14.59 49.96 40.38 0.274 13.93 50.62 41.37 0.276 14.03 50.52 41.22 0.288 14.64 49.91 40.30 0.308 15.66 48.89 38.77 0.308 15.66 48.89 38.79 0.308 15.66 48.89 38.79 0.303 16.57 47.98 37.99 0.335 17.03 47.52 36.70 0.333 16.93 47.62 36.85 0.322 16.72 47.83 37.16 0.322 16.55 49.50 39.61 0.296 15.05 49.50 39.61 0.297 15.10 49.45 39.61 0.323 16.42 48.79	0.155 7.879 56.67 50.49 1.445 0.263 13.37 51.18 42.21 1.208 0.299 15.20 49.35 39.45 1.129 0.293 14.89 49.66 39.92 1.142 0.287 14.59 49.96 40.38 1.155 0.274 13.93 50.62 41.37 1.184 0.288 14.64 49.91 40.30 1.155 0.288 14.64 49.91 40.30 1.150 0.308 15.66 48.89 38.77 1.109 0.326 16.57 47.98 37.99 1.070 0.335 17.03 47.52 36.70 1.050 0.333 16.93 47.62 36.85 1.055 0.322 16.72 47.83 37.16 1.063 0.322 16.55 48.20 37.72 1.079 0.310 15.76 48.79 38.61 1.105 0.296 15.05 49.50 39.61 1.133 0.323 16.42	0.155 7.879 50.67 50.49 1.445 2.445 0.263 13.37 51.18 42.21 1.208 2.208 0.299 15.20 49.35 39.45 1.129 2.129 0.293 14.89 49.66 39.92 1.142 2.142 0.287 14.59 49.96 40.38 1.155 2.155 0.274 13.93 50.62 41.37 1.184 2.184 0.288 14.64 49.91 40.30 1.150 2.150 0.288 14.64 49.91 40.30 1.150 2.150 0.308 15.66 48.89 38.77 1.109 2.109 0.326 16.57 47.98 37.99 1.070 2.070 0.335 17.03 47.52 36.70 1.050 2.055 0.322 16.72 47.83 37.16 1.063 2.063 0.322 16.72 47.83 37.72 1.079 2.079 0.310 15.76 48.79 38.61 1.1055 2.105

TABLA I.9 VALORES EXPERIMENTALES OBTENIDOS EN PRUEBA UNIDIMENSIONAL PARA MATERIAL REMOLDEADO

CONSOLI	DACION:	UNIDIME	NSIONAL				
EQUIPO:	CS1				MUESTRA	: <u>UR-3</u>	
$W_{to} = 10$	08.91 gr	W _s =	67.77	gr	v _{wo}	= 41.14	cm3
$v_{to} = 64$	1.61 cm3	V _s =	23.47	cm3	Ϋ́m	= 1.68	T/m3
e _o = 1.	.750	ω ₀ =	60.705	8	Ho	= 1.270	Cm
e _f = 1.	.Ø72	₩f =	37.Ø2	8	Do	= 8.048	Cm
$\Delta \mathbf{V} = 5\mathbf{i}$	3.87Ø∆1						
1 σ Ι	11	ΔVΙ	V	w	e	1+e	Log(l+e)
Kg/cm2	cm	cm3	cm3	8	- 1	- 1	- 1
$ \begin{array}{c} 0.0\\ 0.1\\ 0.5\\ 1.0\\ 2.0\\ 3.0\\ 1.0\\ 0.5\\ 1.0\\ 2.0\\ 3.0\\ 4.0\\ 5.0\\ 1.0\\ 2.0\\ 1.0\\ 3.0\\ 4.0\\ 5.0\\ 4.0\\ 5.0\\ 1.0\\ 2.0\\ 1.0\\ 0.5\\ 1.0\\ 2.0\\ 3.0\\ 4.0\\ 5.0\\ 1.0\\ 5.0\\ 1.0\\ 5.0\\ 1.0\\ 5.0\\ 1.0\\ 5.0\\ 1.0\\ 5.0\\ 1.0\\ 5.0\\ 1.0\\ 5.0\\ 1.0\\ 5.0\\ 1.0\\ 5.0\\ 1.0\\ 1.0\\ 5.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1$	$\begin{array}{c} -\\ 0.033\\ 0.124\\ 0.176\\ 0.235\\ 0.269\\ 0.265\\ 0.253\\ 0.240\\ 0.244\\ 0.240\\ 0.244\\ 0.260\\ 0.276\\ 0.273\\ 0.312\\ 0.310\\ 0.301\\ 0.301\\ 0.301\\ 0.284\\ 0.270\\ 0.301\\ 0.284\\ 0.270\\ 0.301\\ 0.284\\ 0.275\\ 0.290\\ 0.309\\ 0.309\\ 0.317\\ \end{array}$	1.68 6.31 8.95 11.95 13.68 13.48 12.87 12.21 12.41 13.23 14.04 15.87 15.62 15.62 15.31 14.45 13.73 13.99 14.75 15.26 15.72 16.13 1	64.61 62.93 55.66 52.66 50.93 51.13 51.74 52.40 52.50 51.38 50.57 49.71 48.74 48.99 49.30 50.62 49.35 49.35 48.89	60.71 58.23 51.40 47.49 47.49 40.51 40.51 40.81 41.71 42.69 42.39 41.19 39.99 38.71 37.29 37.44 37.66 38.11 39.39 40.44 40.06 38.94 38.19 37.51 36.91	1.753 1.681 1.484 1.371 1.244 1.170 1.205 1.233 1.224 1.189 1.155 1.113 1.0077 1.081 1.0087 1.100 1.137 1.0087 1.100 1.137 1.168 1.157 1.168 1.157 1.124 1.003 1.0066	2.753 2.681 2.484 2.371 2.244 2.170 2.205 2.233 2.224 2.155 2.113 2.087 2.081 2.087 2.100 2.137 2.081 2.168 2.157 2.124 2.103 2.083 2.066	
Descarga	1						
0.0	0.286	14.55	50.06	39.24	1.133	2.133	Ø.329
Observad	ciones La satur efectivo	ación s	e reali	zó a l	Kg/cm2	de esfu	lerzo

ESTA TESIS NO NEBE SALIR DE LA BIBLIOTECA

APENDICE II

6Ø

CALCULO DE LOS COEFICIENTES DE COMPRESIBILIDAD

El cálculo de los coeficientes de compresibilidad, expansibilidad y recompresibilidad se realizó ajustando rectas en las gráficas que contenían las curvas de compresibildad en escala logarítmica. De éstas se obtuvo dos puntos que se reemplazaron en la expresión l.1, de la cual despejando se determinó los valores de γ , γ_s , γ_r y γ'_p .

$$\gamma = -\frac{\log \frac{1+e}{1+e_{o}}}{\log \frac{\sigma_{c}}{\sigma_{co}}}$$
 II.1

En las tablas II.1 e II.2 se presentan los valores respectivos para las ramas virgen, expansión y recompresión.

TABLA II.1

CALCULO DE LOS COEFICIENTES Y , Y $_{\rm S}$ Y Y $_{\rm Y}$, PARA PRUEBAS DE CONSOLIDACION ISOTROPICA

MUESTRA	RAMA	Ι ^σ co	(1+e)	Ι <u>Υ</u> Ι
 II-1	Recompresión 1 Virgen Expansión 1 Recompresión 2 Virgen Expansión 2 Recompresión 3	1 3 2 5 5 4	2.724 2.427 2.404 2.454 2.270 2.258 2.293	0.042 0.120 0.029 0.025 0.101 0.033 0.029
II-2	Recompresión 1 Virgen Expansión 1 Recompresión 2 Virgen Expansión 2 Recompresión 3	1.5 3 2 5 5 4	2.611 2.412 2.382 2.423 2.25Ø 2.236 2.262	0.038 0.123 0.032 0.029 0.102 0.032 0.030
IR-1	Virgen Expansión 1 Recompresión 1 Virgen Expansión 2 Recompresión 2	3 3 2 5 5 4	2.037 2.028 2.073 1.954 1.945 1.982	Ø.082 Ø.030 Ø.022 Ø.082 Ø.028 Ø.023
IR-2	Virgen Expansión 1 Recompresión 1 Virgen Expansión 2 Recompresión 2	3 3 2 5 5 4	2.123 2.118 2.158 2.042 2.037 2.077	0.086 0.027 0.022 0.072 0.027 0.021

TABLA II.2

CALCULO DE LOS COEFICIENTES γ γ γ , PARA PRUEBAS DE CONSOLIDACION UNIDIMENSIONAL

MUESTRA	I RAMA		l∵ ^σ co	(1+e) 1	γI
UI-1	Recompresión Virgen Expansión Virgen Expansión	1 1 2	1 3 3 5 5	2.6 2.22 2.2 2.0 2.0	30 28 13 70 65	0.014 0.138 0.015 0.131 0.014
UI-2	Recompresión Virgen Expansión	1 1	1 3 3	2.6	98 12 30	0.010 0.149 0.015
UR-1	Virgen Expansión	1	5 5	2.0 2.0	75 75	0.091 0.020
UR-2	Virgen Expansión Virgen Expansión	1	3 3 5 5	2.1 2.1 2.0 2.0	37 28 46 46	Ø.071 Ø.013 Ø.059 Ø.018
UR-3	Virgen Expansión Virgen Expansión	1 2	3 3 5,,,		58 53 75 70	Ø.Ø82 Ø.Ø18 Ø.077, Ø.020

1.1.1.1

APENDICE III

63

CALCULO DE ESFUERZOS TRANSFORMADOS

La Tabla III.l contiene los valores de los esfuerzos transformados σ_t y sus correspondientes volúmenes específicos. Los valores de σ_t fueron calculados con la expresión 4.2 a partir de los esfuerzos verticales.

TABLA III.1

CALCULO DE ESFUERZOS TRANSFORMADOS

 	¢ _v	σ _h	 t	 	1 + e UR-2	 UR-3
	Kg/cm2	Kg/cm2	Kg/cm2		I	
	5.0 3.0 2.0 1.0 0.5 1.0 2.0 3.0 4.0 5.0	3.0 2.55 2.10 1.60 1.10 0.70 0.90 1.32 1.85 2.40 3.00	3.67 3.03 2.40 1.73 1.07 0.63 0.93 1.55 2.23 2.93 3.67	2.072 2.077 2.081 2.089 2.122 2.162 2.154 2.119 2.096 2.077 2.055	2.050 2.055 2.063 2.105 2.105 2.136 2.133 2.105 2.076 2.048 2.013	2.077 2.081,5 2.087 2.100 2.137 2.168 2.157 2.124 2.103 2.083 2.066

REFERENCIAS

Juárez Badillo, E. [1] Compressibility of Soils. In Fifth Symposium of the Civil and Hydraulic Engineering Department on Behaviour of Soil Under Stress. Indian Institute of Science, Bangalore, India, 1965. Juárez Badillo, E. [2] Constitutive Relationships for Soils. In Symposium on Recent Developments in the Analysis of Soil Behaviour and their Aplication to Geotechnical Structures. University of New South Wales, Sidney, Australia, 1975. Juárez Badillo, E. y Rico Rodríguez. [3] Mecánica de Suelos. Editorial LIMUSA, 3.Ed., 1975. Fundamentos de la Mecánica de Suelos. Juárez Badillo, E. y M. Sierra Alvarado. [4] Compressibility and Index Properties Relationships in Soils. In V Congreso Panamericano de Mecánica de Suelos e Ingenieria de Cimentaciones. Argentina, 1975. [5] Johnson, S.J. y R.V. Whitman. Session 3.- Shear Strength of Saturated, Remolded Clays. In Research Conference on Shear Strength of Cohesive ASCE, Boulder, Colorado, 1960. Soils. The second second strategies of the second [6] Black, D.K. y K.L. Lee. Saturating Laboratory Samples by Back Pressure. In Journal of Soil Mechanics and Foundation Division. ASCE, SM-1, 1973. Instructivo de Prácticas de Mecánica de Suelos-[7] División de Estudios de Posgrado, Facultad de Ingenieria, UNAM, México, 1975. Terzaghi, K. y R. Peck. [8] Mecánica de Suelos en la Ingeniería Práctica. Editorial El Ateneo, 3 Ed., 1971. [9] Singh, R., Henkel, D.J. y Sangrey, D.A. Shear and Ko Swelling of Overconsolidated Clay. In Eight Int. Conf. en Soil Mechanic and Foundation Engineering. Moscú-URSS, 1973.