

SOLUCION DE PROBLEMAS DE DESTILACION DE MEZCLAS ALTAMENTE NO-IDEALES Y/O DE CONVERGENCIA DIFICIL, APLICANDO EL METODO DE BROYDEN-SCHUBERT

> ORTENER FΪ EN ESPECIALIDAD: INGENIERIA QUIMICA (PROCESOS) R E s E N A HUMBERTO CORTEZ CASILLAS 1984 MEXICO, D. F.:

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

RESUMEN

Se establece el modelo matemático para columnas de separación de etapas de equilibrio vapor-líquido al estado estacionario, en función de NP(2NC+1) ecuaciones independientes. Los balances se hacen alrededor de cada plato, y las ecuaciones se -agrupan por etapa. El sistema no-lineal resultante se resue<u>l</u> ve por aplicación del Método de Broyden-Schubert.

La solución de los sistemas lineales que se tienen entre iteraciones, se obtiene aplicando eliminación Gaussiana con pivoteo parcial por tamaño. El manejo de las matrices jaco-biano, se hace utilizando técnicas adecuadas para matrices dispersas.

Esta formulación se aplicó a 24 problemas típicos selectos, de donde se obtienen conclusiones importantes sobre la aplicabilidad, estabilidad y convergencia del método. En todos los casos se presentan los enunciados de los problemas y los resultados obtenidos.

-iv-

CONTENIDO

CAPÍTULO 1. INTRODUCCIÓN.	1
I.1. Objetivo	1
1.2. Significado.	3
1.3. Nomenclatura del Capitulo I.	3
CAPÍTULO II. ESTUDIO DE LA LITERATURA.	4
II.1. Algoritmos que Usan Convergencia Secuencial.	6
II.2. Algoritmos que Resuelven 2NP Ecuaciones Simultáneamente.	13
II.3. Algoritmos que Resuelven NP(2NC+1) Ecuaciones Simultáneamente y Modificaciones.	17
II.4. El Algonitmo de Boston-Sullivan.	22
11.5. Nomenclatura del Capítulo II.	24
CAPÍTULO III, MODELADO MATEMATICO,	26
111.1. Modelado	28
111.2. Casos Especiales.	33
III.3. Estructura del Jacobiano.	39
III.4. Protección Contra Flujos Negativos, Escalamiento de Variables y Funciones	40
III.5. Nomenclatura del Capitulo III	44

CAPÍTULO IV. SOLUCIÓN DE ECUACION	NES NO-LINEALES, 47
IV.1. Nétodo de Broyden	
IV.2. Modificación de Schubert	t
IV.3. Aproximación al Jacobian IV.4. Selección de a ^{K}	nø
IV.5. Nomenclatura del Capitul	eo IV
CAPÍTULO V, SOLUCIÓN DE ECUACION V.1. Eliminación Gaussiana.	ES LINEALES57
V.2. Pivoteo Parcial por Tamaj V.3. Escalamiento de Columnas	ño59 y Renglones
V.4. Descomposición Triangula. V.5. La Variante de Crout.	π
V.6. La Variante de Cholesky. V.7. Procedimiento Iterativo.	65
V.8. Nomenclatura del Capitul	.o V
CAPÍTULO VI, TECNICAS PARA MANEJ VI.1. Almacenamiento Estático	JAR MATRICES DISPERSAS. 6

VI.3. Algoritmo para Obtener la Transpuesta Permutada de una Matriz Dispersa.

VI.2. Almacenamiento Dinámico,

 A state of the sta	그는 것 같은 것은 물건을 받았다. 신문 문제품을 받았다.
CAPÍTULO VII. PROBLEMAS RESUELTOS.	
VII.1. Comentarios Adicionales.	• • • • • • • • • • • • • • • • • • •
VII.2. Ejemplos 1-11. Problemas de Destilación, Hidrocarburos	, Soluciones de
VII.3. Ejemplos 12-17. Problemas de Destilación, Altamente No-ideales.	, Soluciones
VII.4. Ejemplos 18-24. Problemas de Absorción y	Agotamiento. 134
CAPÍTULO VIII, CONCLUSIONES, VIII.1. Recomendaciones	
REFERENCIAS	
APÉNDICE A. Inicialización de Variables, ME	todo I 167
APÉNDICE B. Inicialización de Variables, Mé	£odo 11 169
APÉNDICE C.	

Método Modificado de Thomas.

-vi

CAPÍTULO I INTRODUCCIÓN

1.1. Objetivo.

El desarrollo de este trabajo tiene como objetivo la -programación y análisis del comportamiento del algoritmo --"Almost-Band", con aplicación del método de Broyden-Schubert (Schubert, 1971), para resolver las NP(2NC+1) ecuaciones simultáneas que resultan del modelado de columnas de separación vapor-líquido, cuando se aplican en forma exacta méto-dos del tipo Newton-Raphson a problemas cuyas relaciones te<u>r</u> modinámicas dependen de las composiciones.

Se hace una descripción y análisis breve de los métodos propuestos hasta la fecha. Se desarrollan las ecuaciones -del modelo general de columna y se reportan los valores de referencia utilizados para escalar variables y funciones, -así como el criterio de convergencia utilizado.

Se incluye un capítulo donde se muestra el planteamiento del Método de Broyden (1965) para resolver sistemas de -ecuaciones no-lineales, y la modificación de Schubert (1971) en la aplicación de este método cuando se obtienen jacobia-nos de estructura dispersa. Se presenta también la técnica utilizada para evaluar el jacobiano y el criterio para selec cionar un tamaño de paso adecuado para prevenir la divergencia.

El sistema de ecuaciones lineales que resulta a cada -iteración, se resuelve por eliminación Gaussiana usando la variante de Cholesky (Stewart, 1973) con pivoteo parcial por tamaño, como lo recomienda Wilkinson (1965). Previamente se escalan los renglones para reducir los errores de redon-deo. Adicionalmente se reportan las técnicas de almacenamiento usadas, así como un algoritmo para obtener la trans-puesta permutada de matrices dispersas almacenadas en forma empacada.

Finalmente se presentan 24 problemas resueltos con este método. Estas pruebas se seleccionaron de dos fuentes: a) de la literatura, y b) de una colección de problemas de apl<u>i</u> cación industrial difíciles. Estos problemas incluyen colum nas de destilación con condensador parcial o total, sin condensador, con o sin rehervidor, con alimentaciones múltiples y extracciones laterales; columnas de absorción y agotamiento, con o sin rehervidor, con intercambios térmicos y extracciones laterales, y con presaturador. También se probaron problemas con soluciones altamente no ideales como son los de destilación extractiva.

En los apéndices se muestra la forma de inicializar las variables de iteración.

-2-

1.2. Significado.

En este trabajo se muestra la aplicación satisfactoria de métodos del tipo cuasi-Newton, para resolver problemas de destilación, cuyas relaciones termodinámicas dependen -fuertemente de composiciones, evitándose el cálculo analít<u>i</u> co de las derivadas parciales y la evaluación del jacobiano a cada iteración. Este algoritmo, como otros que aplican el Método de Newton-Raphson a las formulaciones NP(2NC+1), requiere un gasto excesivo de memoria, sobre todo en casos que se tiene un gran número de componentes. Encuentra su mayor aplicación en problemas de convergencia difícil, como son los de destilación azeotrópica y extractiva, manejo de soluciones cerca del punto crítico como son las separacio-nes criogénicas en columnas desmetanizadoras y desetanizad<u>o</u> ras, y cierto tipo de columnas agotadoras.

Por otra parte, estos esquemas son competitivos con otros planteamientos, cuando se tienen columnas con muchos platos y pocos componentes, debido a la forma de agrupar -las ecuaciones del modelo matemático.

1.3. Nomenclatura.

- NC Número de componentes.
- NP Número total de etapas de equilibrio, incluyendo condensador y rehervidor.

CAPÍTULO II ESTUDIO DE LA LITERATURA

Las columnas de separación de etapas de equilibrio son los equipos empleados más frecuentemente en plantas de refina-ción y petroquímica, ya sean de destilación, absorción, extracción u otras operaciones similares. Para su diseño ad<u>e</u> cuado es de gran importancia poder evaluar varias alternat<u>i</u> vas en forma rápida y precisa, requiriéndose entonces de m<u>é</u> todos de cálculo rigurosos y confiables. Esto presenta un problema de cierta complejidad, ya que las ecuaciones que constituyen el modelo de una columna de separación son de naturaleza no-lineal, siendo entonces necesaria la aplica-ción de técnicas numéricas de tipo iterativo.

Gracias al gran desarrollo que se ha tenido en el campo de las computadoras en los últimos años, y a su extensa aplicación como herramienta de cálculo, ha sido posible la aparición de una variedad de métodos, capaces de simular -las columnas o arreglos de columnas más sofisticadas. Esto se ha logrado también gracias al progreso obtenido en la -predicción de propiedades termofísicas, empleándose actualmente correlaciones rigurosas y complejas.

Los procesos de separación vapor-líquido al estado es-

tacionario, están descritos por cinco conjuntos básicos de ecuaciones algebraicas independientes, las que deben satisfacerse simultáneamente para cada etapa. Estas son: ecua-ciones de equilibrio (EQ), restricciones de suma de las fracciones molares, para las corrientes de líquido y vapor (<u>FML y FMV</u>), balances de material por componente (<u>BMC</u>) y ba lances de energía (<u>BE</u>). Frecuentemente se utilizan otros conjuntos de ecuaciones en combinación, o en lugar de algunos de los anteriores, como son: balances totales de mate-rial (<u>BM</u>), y restricciones de temperatura de burbuja (<u>TB</u>) y de rocío (<u>TR</u>). Como variables independientes se manejan -los flujos totales de líquido y vapor; para ambos conjuntos, sus composiciones respectivas, y las temperaturas. También se utilizan ampliamente los flujos individuales por compo-nente en lugar de las composiciones.

Los algoritmos para resolver problemas de separación de mezclas multicomponentes en columnas de múltiples etapas, varían en los métodos aplicados para resolver las ecuacio-nes de modelado. Los planteamientos más simples usan con-vergencia del tipo secuencial, es decir, las ecuaciones se van satisfaciendo por grupos. Se suponen temperaturas y -flujos de vapor para toda la columna, y se calculan las -constantes de equilibrio en cada etapa. Con esta informa-ción se resuelven las matrices tridiagonales que resultan -- de los <u>BMC</u>, para encontrar un conjunto de composiciones. --Con éstas se corrige el perfil de temperaturas. Finalmente se calcula el nuevo perfil de flujos de vapor por medio de los <u>BE</u>.

Si las relaciones termodinámicas son independientes, o aproximadamente independientes de composiciones, las ecua-ciones se reducen rigurosamente a 2NP ecuaciones simultá-neas no-lineales, resolviéndose alguna función modificada de <u>TB</u> y los <u>BE</u>, para corregir al mismo tiempo un conjunto de los flujos totales o su relación, y temperaturas. Estos planteamientos aplican también los <u>BMC</u> para encontrar nue--vos conjuntos de composiciones, resultando un esquema de --cálculo muy similar al anterior.

El planteamiento más general resulta cuando se elimi-nan de la formulación los flujos totales, obteniéndose un sistema de NP(2NC+1) ecuaciones no-lineales y lineales. Si los balances se hacen por etapa y las ecuaciones se agrupan también por etapa, al aplicar el Método de Newton-Raphson, se obtiene un jacobiano con una estructura fácil de resol-ver.

II.1. Algoritmos que Usan Convergencia Secuencial.

En la década de los treinta aparecieron los primeros métodos sistemáticos para el cálculo de columnas de destila

ción. Lewis y Matheson (1932) propusieron un método para resolver el problema de diseño. Posteriormente Thiele y --Geddes (1933) hicleron ver la necesidad de disponer de méto dos de cálculo que permitieran evaluar el comportamiento de una columna dada. Con este enfoque, propusieron un método que difiere del primero en variables de iteración seleccionadas. En el primer caso, las variables a converger son -las contaminaciones permitidas en los productos, y en el se gundo el perfil de temperaturas de la columna. Ambos métodos hacen los cálculos plato a plato, desde los dos extre-mos de la columna hasta el punto de alimentación. Su imple mentación en computadora los hace susceptibles a problemas de tipo numérico, haciéndolos inestables. Holland (1963) propuso la aplicación de un multiplicador, 0, seleccionado de forma tal que se cumpla el balance global por componente a cada iteración, además de otras técnicas numéricas adecua das para estabilizar ambos métodos. Con esto se obtuvieron métodos adecuados para resolver problemas de destilación. -Sin embargo, presentan los siguientes problemas: al manejar varias alimentaciones deben seleccionarse los puntos donde se van a juntar los balances de material, hechos desde am-bos extremos de la columna, que normalmente se hacen en los platos de alimentación. Si se desea reducir los problemas de redondeo, no se deben usar el mismo punto para todos los

-7-

componentes. Las extracciones laterales ocasionan problemas similares, así como los componentes no distribuidos. Finalmente, para problemas del tipo absorción se observa que co<u>n</u> vergen lentamente, o no lo hacen en muchos casos.

Amundson y Pontinen (1958) sugieren que el problema se reduce a resolver un conjunto de ecuaciones algebraicas, -las cuales se pueden expresar en forma matricial. Las ecua ciones que hay que resolver en forma secuencial son los BMC y los BE para corregir X y V, conteniendo T como parámetro. En el cálculo de X se invierten las matrices que resultan de los <u>BMC</u>, y para <u>y</u> se invierte la matriz de <u>BE</u>. Para ca<u>l</u> cular las T se aplica el Método de Newton-Raphson a las --ecuaciones TB. Estos autores al invertir las matrices ex~~ plicitamente no aprovechan sus estructuras tridiagonal y b<u>i</u> diagonal para resolverlas. Esto los lleva a requerir una gran cantidad de memoria, un alto consumo de tiempo de cálculo y problemas de redondeo, lo que en ocasiones conduce a predecir composiciones negativas. Por otra parte, esta for mulación permite manejar fácilmente varias alimentaciones y extracciones laterales.

Friday y Smith (1964) establecen que la solución se en contrará de la toma de seis decisiones principales. La primera y segunda se refieren a la forma de agrupar las ecua-ciones y la secuencia de solución de éstas. La tercera con

-8-

siste en definir qué conjunto de ecuaciones se va a aplicar para determinar cada conjunto de variables. En esta parte se hace ver que para problemas de destilación las ecuacio-nes adecuadas para calcular T y V son TB y BE, respectiva-mente. Este arreglo recibe el nombre de método BP (cálculo de temperaturas por puntos de burbuja). Para problemas de absorción es más conveniente calcular V por suma de los flu jos individuales y T con los BE. Este esquema lo propusieron independientemente el primero de los autores, y Sujata (1962), recibiendo el nombre de Método SR (cálculo de los flujos totales por suma de los flujos individuales). La -cuarta decisión se refiere al método numérico aplicado para resolver las matrices resultantes de los BMC y obtener X o L. En esta parte se sugiere un método que involucra una se rie de productos de los factores de agotamiento para cada etapa, donde no se efectúa ninguna resta en todo el plantea miento, elimiándose los problemas de redondeo, y donde no hay ninguna deficultad al manejar varias alimentaciones y extracciones laterales. Las decisiones quinta y sexta son la selección de los métodos numéricos necesarios para resol ver las ecuaciones seleccionadas en los arreglos BP o SR, y encontrar los nuevos perfiles de <u>V</u> y T. Finalmente presentan un estudio de la región de convergencia de ambos méto-dos, observando que el método BP es estable y convergente -

-9-

cuando se manejan soluciones con una $\Delta_{DB}^{<150\,\circ}$ F ($\Delta_{DB}^{}$ es la diferencia entre las temperaturas de rocío y de burbuja de las alimentaciones). El método SR es estable cuando el número de etapas es menor a 9. Además se dan argumentos de tipo físico, explicando por qué el método BP no funciona pa ra absorción y el método SR para destilación.

Wang y Henke (1966) plantearon un algoritmo en que las matrices tridiagonales que se obtienen en los <u>BMC</u>, se re-suelven aplicando fórmulas recursivas que resultan al util<u>i</u> zar eliminación Gaussiana. De esta forma se aprovecha la estructura de las matrices tridiagonales, reduciéndose el tiempo de cálculo, el gasto de memoria y eliminando los pro blemas de redondeo. Las ecuaciones de <u>TB</u> se resuelven utilizando el método de Muller para evitar el cálculo de las derivadas necesarias en el algoritmo de Newton-Raphson ya que la solución se obtiene ajustando una serie de ecuacio-nes cuadráticas para cada temperatura.

Billingsley (1966) propuso un método donde los $\underline{\text{BMC}}$ se plantean en la forma propuesta por Ball (1961), en la que se calcula y, aplicando también eliminación Gaussiana. De un análisis de la exactitud numérica de este cálculo, basado en los órdenes de magnitud de las cantidades involucra-das, este autor concluyó que el error de cálculo computacio nal no es significante, obteniéndose un algoritmo estable y muy preciso. Los dos métodos anteriores se aplicaron al arreglo BP. Burningham y Otto (1967) aplicaron el mismo algoritmo para las matrices tridiagonales que resultan del arreglo SR, ac<u>e</u> lerando el cálculo.

La parte esencial de estos esquemas es el cálculo de las composiciones (o flujos individuales) a partir de las matrices tridiagonales resultantes de los <u>BMC</u>. Cuando se aplica eliminación Gaussiana a matrices tridiagonales, se obtienen fórmulas recursivas, necesitando sólo dos vectores del tamaño del orden de la matriz, para almacenar la información. Estas fórmulas se conocen como algoritmo de Thomas. Este algoritmo, generalmente evita errores de redondeo, ya que en ninguno de los pasos se restan cantidades práctica-mente iquales.

Boston y Sullivan (1972) demostraron que la única pos<u>i</u> bilidad de error en el cálculo anterior surge cuando se manejan columnas con un gran número de etapas, con componen-tes cuyos factores de absorción son menores a la unidad en una sección de la columna, y mayores que uno en otra sección. Cuando se presentan estos casos difíciles, los mis-mos autores proponen un nuevo arreglo del algoritmo de Thomas, donde no se hace ninguna resta en todo el proceso, ni se tienen que calcular productos del tipo propuesto por --Friday y Smith.

-11-

Billingsley (1970a) aplica el concepto de volatilida-des relativas para evitar el proceso iterativo en el cálculo de <u>T</u> (Método Kb) y usa el multiplicador 0 propuesto por Holland (1963) para poner en balance por componente la co-lumna entre iteraciones. Este mismo autor (1970b) estableció matemáticamente las propiedades de convergencia del mu<u>l</u> tiplicador 0. Reporta haber resuelto problemas con soluci<u>o</u> nes moderadamente no-ideales, y otros con una Δ_{DB} hasta de 300°F. Para problemas muy difíciles aplica el Método de ---Newman (1963) para calcular <u>T</u>, aclarando que éstos represen tan sólo el 2% de los casos probados, lo que demuestra la efectividad del método Kb.

El algoritmo de Newman para el cálculo de <u>T</u>, es una -aplicación del Método de Newton-Raphson a una función modificada de <u>TB</u>, en el cual el nuevo perfil cumple con las siguiente condiciones: a) se satisfacen los balances de material por componente y las relaciones de equilibrio, y b) la suma de los flujos por componente en cada etapa es igual a los flujos totales supuestos.

Holland y Pendon (1974) propusieron una técnica muy si milar al planteamiento de Billingsley.

Estos algoritmos obtienen una convergencia rápida y es table para problemas cuyo comportamiento de las soluciones es aproximadamente ideal. El arreglo BP resuelve satisfacto riamente problemas de destilación. Sin embargo, requiere un número excesivo de iteraciones para problemas con mezclas altamente no-ideales, o con muy amplios rangos de ebullición (Δ_{DB} >300°F), así como absorbedores y agotadores. El -arreglo SR se aplica a problemas de absorción que no conte<u>n</u> gan ni condensador ni rehervidor. Por otra parte, estos -planteamientos se restringen a un limitado número de espec<u>i</u> ficaciones para la columna, como lo hacen notar Henley y --Seader (1981). Otra característica de estos planteamientos es el bajo consumo de memoria de computadora.

II.2. Algoritmos que Resuelven 2NP Ecuaciones Simultâneamente.

Debido a que los métodos de solución eran distintos para resolver problemas de destilación y de absorción, surgió la necesidad de desarrollar nuevos planteamientos que pudieran manejar indistintamente ambos casos, así como co-lumnas con rehervidor solamente. Friday y Smith sugirieron en su artículo corregir simultáneamente <u>T</u> y <u>V</u>, resolviendo TB y BE por el Método de Newton-Raphson.

Tierney, Bruno y Yanosik (1967, 1969) reportan la apl<u>i</u> cación del Método de Newton-Raphson para corregir simultá-neamente <u>T</u> y <u>V</u>, usando cálculo de matrices para evaluar las derivadas parciales. La matriz resultante de tamaño 2NP se considera que está formada por cuatro submatrices, cada una de las cuales representa procesos límites. Por ejemplo, la primera submatriz representa la variación de una función --del balance de material con respecto a temperatura, a flu--jos constantes, lo que físicamente sería un problema con --flujos molares constantes. Esta parte es prácticamente --igual al método de Newman para calcular temperaturas. La --submatriz (1,2) representa la variación de la función de ba lance de material con respecto a flujo, a temperatura constante, lo que físicamente se aproxima al problema de extrac ción líquido-líquido. Las otras submatrices son variacio-nes de los balances de entalpia con respecto a <u>T</u> y <u>V</u>. En to dos los casos estos autores observaron convergencia cuadrática cerca de la solución. Reportan haber resuelto satis-factoriamente problemas de destilación, extracción líquidolíquido, absorción y agotamiento.

Tomich (1970) basado en el esquema de cálculo de Wang y Henke, propuso un algoritmo para corregir simultâneamente <u>T</u> y <u>V</u> en base a las ecuaciones <u>TB</u> y <u>BE</u>. Sugiere que para mejorar el comportamiento del Método de Newton-Raphson se aplique el Método de Broyden. Esto permite tener las siguientes ventajas: no se necesitan las expresiones analíticas de las derivadas parciales, no es necesario resolver a cada iteración un sistema de ecuaciones lineales, y lejos de la solución se puede evitar la divergencia del método.

Otra variación de estos métodos es el algoritmo propuesto por Orbach, Crowe y Johnson (1972), en el que se -aplica el método modificado de Newton-Raphson para resolver las 2NP ecuaciones que se obtienen en el Método de Tomich. Los autores reportan que la selección de este método de con vergencia se basa en el hecho de que Tierney y Yanosik ob-servaron que en la región de convergencia, el jacobiano casi no cambia. Aproximan el jacobiano numéricamente y definen un Indice de comportamiento para detectar si un jacobia no está prediciendo una buena dirección de búsqueda. Además, acotan el cambio de las variables entre iteraciones, permi-tiendo una variación máxima de 10%. Reportan también la -aplicación satisfactoria de este algoritmo a un problema de destilación, que obtiene un producto de pureza alta, en el cual el Método de Tomich falla.

Boynton (1970) resuelve las 2NP ecuaciones resultantes de la siguiente manera: se hace <u>T</u> dependiente de <u>L</u> y se resuelve <u>TB</u> primeramente, por aplicación del Método de Newton-Raphson. Esto resulta igual al Método de Newman. Enseguida se corrige <u>L</u> utilizando <u>BE</u>, también por el Método de Newton-Raphson, tomando en cuenta la dependencia implícita de <u>T</u>. -En ambas etapas se aplica cálculo de matrices para evaluar las derivadas parciales.

Billingsley y Boynton (1971) plantean, en forma general,

-15-

una serie de métodos que son aplicaciones del Método de ----Newton-Raphson para resolver 2NP ecuaciones, dentro de los cuales el Método de Boynton es un caso particular. Sugieren que para mejorar este método se usen derivadas aproximadas numéricamente, y utilizar L/V en lugar de L.

Holland, Pendon y Gallun (1975) aplican una técnica si milar a la de Boynton, pero para satisfacer los <u>BMC</u> definen un multiplicador Θ para cada etapa (método multiteta). Sus variables de iteración son $\underline{\Theta}$ y T. En la primera parte se calcula $\underline{\Theta}$ y en la segunda T. Este planteamiento cae también dentro de los propuestos por Billingsley y Boynton, r<u>e</u> comendándolo para problemas de absorción.

Estos dos últimos métodos resuelven matrices de tamaño NP. Ambos trabajos reportan su aplicación a todo tipo de problemas de absorción, demostrando estabilidad y convergen cia.

Hess y colaboradores (1977 a,b) propusieron resolver la matriz completa de tamaño 2NP que resulta de la formulación del método multiteta. Estos autores aplicaron tres -técnicas numéricas distintas para resolver las 2NP ecuaciones, que son: el Método de Newton-Raphson con expresiones analíticas de las derivadas parciales, el Método de Broyden, y la implementación del Método de Bennett (1965) para actua lizar las matrices triangulares que se obtienen en la inver

-16-

sión del jacobiano en el Método de Broyden. Presentan re-sultados que demuestran su estabilidad y rapidez, en particular cuando se aplica el tercer método.

La aplicación de este esquema de cálculo es la formul<u>a</u> ción exacta del Método de Newton-Raphson para el caso en -que las constantes de equilibrio no dependen de composición (Holland, 1981). Cuando éstas dependen fuertemente de composiciones es necesario introducir otro ciclo interno para irlas actualizando, lo que en ocasiones hace lenta la con-vergencia del método.

Estas formulaciones que manejan matrices de tamaño 2NP, Be recomiendan para resolver problemas de columnas que no tengan ambos, condensador y rehervidor, como son absorbedores, absorbedores con rehervidor, agotadores, etc. (Holland, 1981). También se recomiendan para problemas de destilación con muy amplio rango de temperaturas de ebullición --(King, 1981). Estos planteamientos requieren un área de al macenamiento mayor que los métodos BP y SR.

11.3. Algoritmos que Resuelven NP(2NC+1) Ecuaciones Simultáneamente, y Modificaciones.

١.

Los dos planteamientos anteriores tienen el inconve-niente de no tener las composiciones de las corrientes en el punto en que se hace necesario calcular las constantes -

-17-

de equilibrio. Cuando éstas dependen fuertemente de las -composiciones, como en el caso de destilación azeotrópica y extractiva, ambas formulaciones convergen lentamente o no convergen (Holland, 1981).

Los métodos más generales son los algoritmos conocidos como "Almost-Band", los cuales resuelven rigurosamente las ecuaciones de modelado, y aumentan la velocidad de conver--gencia de problemas difíciles. En seguida se describen los métodos más importantes de este tipo.

Naphtali y Sandholm (1971) propusieron el siguiente es quema de cálculo: por sustitución adecuada de las restric-ciones de suma, se eliminan de la formulación los flujos to tales (L y V), reduciendo el sistema a NP(2NC+1) ecuaciones simultaneas (BMC, EQ, BE) con las variables independientes L, Y, Y T. Este sistema se resuelve por aplicación del Método de Newton-Raphson, empleando expresiones analíticas pa ra el cálculo de las derivadas parciales. Las ecuaciones del modelo se agrupan por etapa, de donde al hacer los ba-lances para cada plato, resulta un jacobiano de estructura tridiagonal a bloques. Esto permite aplicar un algoritmo análogo al método de Thomas, pero donde los elementos de la matriz son submatrices. Con este planteamiento se maneja la eficiencia de plato en forma rigurosa, y las constantes de equilibrio se calculan con las composiciones de la itera ción actual. Su desventaja es el gasto de memoria de computadora, y lo complejo de las derivadas parciales, particu-larmente las que se hacen con respecto a composición. Pero se ha demostrado ampliamente la convergencia del método en todo tipo de problemas.

Gallun (1979) aplica el planteamiento anterior, pero in troduce una variación en la forma de manejar los balances, haciéndolos desde el fondo de la columna. Por una partición de matrices reduce el tamaño de la matriz a NP(NC+1). Para resolver estas matrices usa técnicas para matrices disper-sas.

Otra variante a la formulación propuesta por Naphtali y Sandholm, es la aplicación del método de Broyden-Schubert (Schubert, 1971) para resolver el sistema de ecuaciones (Ga llun, 1979). Además se propone otra modificación al método de Broyden para aplicarlo al mismo caso (Gallun y Holland, 1980). Estas técnicas evitan evaluar analíticamente las d<u>e</u> rivadas parciales. El manejo de las matrices se hace en la misma forma que el caso anterior.

Bruno, Yanosik y Tierney (1972) aplicaron el Método de Newton-Raphson con expresiones analíticas, a un sistema de ecuaciones de tamaño NP(NC+2), (<u>BMC</u>, <u>FML</u>, <u>BM</u>), con las va-riables independientes X, <u>T</u> y <u>V</u>. Reportan su aplicación a un problema de destilación extractiva, mostrando convergencia en pocas iteraciones.

-19-

Gallun y Holland (1976) propusieron resolver simultá-neamente <u>EQ</u>, <u>FML</u> y <u>BE</u>, con $\underline{\ell}$, <u>L</u> y <u>T</u> como variables independientes. En este caso también plantean los balances desde el fondo de la columna, y aplican el Método de Newton-Rap<u>h</u> son. Para las ecuaciones lineales se aplican técnicas para matrices dispersas. Esta forma de plantear los balances pierde su atractivo cuando se tienen extracciones laterales, apareciendo bandas en el jacobiano.

Christiansen y colaboradores (1979) plantean los bala<u>n</u> ces plato a plato, y resolviendo <u>BMC</u>, <u>TB</u> y <u>BE</u> en función de $\underline{\underline{L}}$, <u>T</u> y <u>V</u> simultáneamente, resulta un sistema de ecuaciones cuya matriz es tridiagonal a bloques al hacer los balances por plato.

Las formulaciones que manejan matrices de tamaño -NP(NC+2), son rigurosas cuando el comportamiento de las corrientes en fase vapor es ideal o aproximadamente ideal. El tiempo de cómputo se reduce a 1/4, en relación a la formul<u>a</u> ción exacta de NP(2NC+1) ecuaciones. Sin embargo, cuando la fase vapor presenta un comportamiento no-ideal, o cuando se manejan eficiencias de plato, la convergencia se ve afe<u>c</u> tada adversamente, por lo que se hace necesario resolver --las NP(2NC+1) ecuaciones simultáneamente (Christiansen, ---1979).

Un planteamiento muy interesante es el propuesto por -

-20-

Ishi y Otto (1973), el cual resuelve simultáneamente -NP(NC+2) ecuaciones (BMC, TB, BE) por aplicación del Método de Newton-Raphson, para corregir X, T y V. En el plantea-miento de las ecuaciones se toma en forma rigurosa la depen dencia de composiciones de constantes de equilibrio y ental pias, pero en el cálculo de las derivadas parciales, supo-nen que la composición de la fase vapor no afecta las constantes de equilibrio, y que las entalpias son sólo función de temperatura y presión. Esto permite tener un jacobiano con una estructura adecuada para resolverse por eliminación en bloques, de una serie de matrices diagonales, bi- y tridiagonales, con lo que se reduce el tamaño de la matriz has ta 2NP. Presentan resultados donde se observa que es muy rapido y estable para columnas de destilación, absorción -con y sin rehervidor. Sin embargo, se espera que este méto do falle cuando se aplique a soluciones altamente no idea-les, debido a las simplificaciones introducidas en las deri vadas parciales (Gallun y Holland, 1976).

Goldstein y Stanfield (1970) proponen una técnica muy similar a la anterior, y la recomiendan para resolver pro-blemas con muchos componentes y pocos platos, como son los problemas de tipo absorción.

Estas formulaciones pueden resolver cualquier problema de separación vapor-líquido, sin importar el comportamiento

-21-

no-ideal de las soluciones, o el rango de temperaturas de ebullición. Su gran desventaja es que no obstante la aplicación de técnicas que han permitido reducir el consumo de memoria, sus requerimientos siguen siendo grandes.

II.4. El Algoritmo de Boston-Sullivan (1974).

Este planteamiento usa una serie de variables definidas por los autores como parámetros de volatilidad y ener-gía (parámetros EVP). Estos parámetros se usan como variables de iteración. Una característica importante es su fun cionalidad poco dependiente de otras variables, para las -que las suposiciones iniciales pueden ser muy alejadas de la solución, como son temperaturas de etapa, flujos y compo siciones de líquido y vapor. Los EVP son realmente varia-bles independientes, en el sentido de que sus valores actua les dependen solamente de los valores supuestos en la itera ción anterior, aún para sistemas no-ideales.

El algoritmo consta de dos ciclos principales. En el ciclo más interno se manejan como variables de iteración -unas variables denominadas parámetros S relativos (S_R) , que son factores de agotamiento normalizados por otro parámetro, S_b . Este último se selecciona de forma tal que entre itera ciones siempre se tenga la columna en balance de material.-Los parámetros S_p pueden visualizarse como combinaciones --

-22-

únicas de temperaturas y flujos totales de vapor y líquido, lo que en esencia elimina las interacciones entre estas variables. Cuando se manejan condensadores parciales se defi ne otra variable adicional con el mismo objetivo que S_b. --Dentro de este ciclo se calculan los & usando el método modificado de Thomas (Boston-Sullivan, 1972). Las composicio nes X se obtienen por normalización aplicando L. Por la -restricción de punto de burbuja se calculan las \underline{T} , aplicando las volatilidades relativas que se usan como parámetros de iteración. Para esto se usa un modelo para la K_b (compo nente base), parecido a la ecuación de Antoine, cuyos coefi cientes se van actualizando junto con los parámetros EVP. -Con BE se corrige L y con BM se calcula V. En este punto se calculan nuevamente los parámetros S_R, si su diferencia con los valores supuestos es menor que una tolerancia, se obtuvo la convergencia en este cíclo. De no ser así se -aplica un método modificado de Broyden para corregirlos.

En el ciclo externo se calcula \underline{Y} aplicando los valores de $\underline{\ell}$ y las volatilidades relativas. Se evalúan las constan tes de equilibrio y entalpias. Se calculan los nuevos par<u>á</u> metros EVP, y si no están dentro de una tolerancia dada, se usa el método de sustituciones sucesivas con un coeficiente de relajación seleccionado entre 0.5 y 1. Con este esquema se obtiene convergencia en forma rápida, ya que se minimiza el tiempo total de computo, debido a que las constantes de equilibrio y entalpias se evalúan sólo una vez por cada it<u>e</u> ración externa.

Este algoritmo está planteado en base al arreglo BP, pero se puede establecer un arreglo similar al SR, utilizan do los mismos criterios (Boston, 1970).

Este método es estable, convergente y muy rápido para todo tipo de problemas de separación vapor-líquido, inclu-yendo soluciones altamente no ideales y absorción (Gupta y Gallier, 1979). Boston y Sullivan reportan también que es posible utilizar estas mismas variables para problemas de extracción líquido-líquido y equilibrio en tres fases (liquido-líquido-vapor).

II.5. Nomenclatura.

- K_b Constante de equilibrio del componente base, p<u>a</u> ra obtener volatilidades relativas.

 $\underline{L} = {L_j}_{j=1,NP}$ Flujos totales de líquido.

- NC Número de componentes.
- NP Número total de etapas, incluyendo condensador y rehervidor.

-24-

Temperaturas de etapa.

 $\underline{\mathbf{y}} = \{\mathbf{v}_{ij}\}_{\substack{i=1,NC\\ j=1,NP}}$

 $\underline{\mathbf{T}} = \{\mathbf{T}_j\}_{j=1,NP}$

Flujos individuales por componente para las corrientes vapor.

 $\underline{v} = \{v_j\}_{j=1, NP}$

Flujos totales de vapor.

 $X = \{x_{ij}\}_{i=1,NC}$ Composiciones en fracciones molares j=1,NP para las corrientes líquido.

 $\underline{Y} = \{Y_{ij}\}_{i=1,NC}$ Composiciones en fracciones molares j=1,NP para las corrientes vapor.

Δ_{DB} - Diferencia entre las temperaturas de burbuja y de rocío de las alimentaciones combinadas.

 $\underline{\Theta} = \{\Theta_j\}_{j=1,NP}$ Multiplicadores seleccionados de manera que se cumpla el balance de material para cada etapa.

-25-

CAPÍTULO III MODELADO MATEMÁTICO

En esta parte se presenta el modelado de columnas de separ<u>a</u> ción, haciéndose hincapié en las etapas que tienen alguna modificación como son, condensadores parciales y totales, y rehervidores, en los que se hace un intercambio de variables, para calcular otras que tradicionalmente se tienen f<u>i</u> jas en etapas intermedias.

Las ecuaciones de modelado de columnas de etapas de equilibrio al estado estacionario son los balances de material y de energía, así como las relaciones de equilibrio va por-líquido planteados para cada etapa.

El modelo general de columna se muestra en la figura -3.1 Una columna tiene NP etapas de equilibrio incluyendo un condensador, ya sea parcial o total, y un rehervidor. --Las etapas se numeran de arriba hacia abajo, siendo el condensador la número 1, y el rehervidor la NP.

Cada etapa puede tener una alimentación, ya sea líquido, vapor, o mezcla de ambos. Se considera que las extrac-ciones laterales tienen la misma composición y condiciones térmicas que las corrientes de donde se extraen. Las corrientes de líquido y vapor que salen lo hacen en equilibrio. F<u>i</u>

-26-

Figura 3.1. Modelo General de Columna.

nalmente, se considera mezclado perfecto en la fase l1-quida.

Los casos particulares de columnas se consiguen hacien do cero las corrientes o cantidades que no existen.

III.1. Modelado.

La columna mostrada en la figura 3.1, queda especificada por las siguientes ecuaciones:

Relaciones de Equilibrio.

 $Y_{ij} = K_{ij} X_{ij}$ donde $K_{ij} = K_{ij} (T_{j}, P_{j}, X_{ij}, Y_{ij})$ j=1,2,--,NCj=1,2,--,NC(3.1)

NC

$$\Sigma X_{ij} = 1$$
 $j=1,2,--,NP$ (3.2)
 $i=1$

NC

$$\Sigma Y_{ij}=1$$
 $j=1,2,--,NP$ (3.3)
 $i=1$ $j=1,2,--,NP$ (3.3)

Balances de Material por Componente. $FA_{j} Z_{ij}^{+} V_{j+1} Y_{i,j+1}^{+} L_{j-1} X_{i,j-1}^{-} = 1,2,--,NC$ $(V_{j}^{+}WV_{j}) Y_{ij}^{-} (L_{j}^{+} WL_{j}) X_{ij}^{-} = 0 \qquad j=1,2,--,NP$ (3.4)

Balances de Energía. FA_j HF_j + V_{j+1} H_{j+1} + L_{j-1} h_{j-1} $(V_j + WV_j)H_j$ j=1,2,--,NP - (L_j + WL_j) h_j + Q_j = 0 (3.5) donde h_j = h_j(T_j, P_j, X_{ij}), H_j = H_j (T_j, P_j, Y_{ij}) En total se tienen NP(2NC+3) ecuaciones independientes. Fijando las siguientes variables:

Alimentaciones, FA_j: Flujo, composición y condiciones térmicas.

Extracciones laterales, WL_j, WV_j: Flujo.

Intercambios térmicos, Q_j: Carga.

Presión de la columna, P_i

Número de etapas, NP

se obtiene un sistema de ecuaciones consistente con las siguientes variables independientes:

Total	NP(2NC+3)	(3.6)
^T j	j=1,NP	_
vj	j=1,NP	
^L j	j=1,NP	
Y _{ij}	i=1,NC; j=1,NP	
x _{ij}	i=1,NC, j=1,NP	

Escribiendo ahora las ecuaciones en función de flujos individuales por componente, y sustituyendo las ecuaciones (3.2) y (3.3) en el resto del sistema con el fin de elimi-nar del planteamiento los flujos totales, se obtiene:

$$\frac{\mathbf{v}_{ij}}{\mathbf{NC}} - \mathbf{K}_{ij} \frac{\ell_{ij}}{\mathbf{NC}} = 0 \qquad i=1, \mathbf{NC}; \ j=1, \mathbf{NP} \qquad (3.7)$$

$$\sum_{i=1}^{\Sigma} \mathbf{v}_{ij} \qquad \sum_{i=1}^{L} \ell_{ij}$$

De esta forma se obtienen NP(2NC+1) ecuaciones en función de NP(2NC+1) variables independientes:

$$v_{ij}, \ell_{ij}, T_j$$
 i=1,NC; j=1,NP (3.10)

Las 2NP ecuaciones restantes permiten calcular los fl<u>u</u> jos totales una vez conocidos los flujos individuales por componente:

$$L_{j} = \sum_{i=1}^{NC} \ell_{j=1,NP} \qquad (3.11)$$

$$V_{j} = \sum_{i=1}^{NC} V_{ij} \qquad j=1, NP \qquad (3.12)$$

Si se escriben las ecuaciones en forma de funciones de discrepancia se obtiene:
$$f_{ij} = \frac{v_{ij}}{\frac{NC}{NC}} - K_{ij} \frac{\ell_{ij}}{\frac{NC}{NC}} = 1, NC; j=1, NP \quad (3.13)$$

$$\sum_{i=1}^{L} v_{ij} \sum_{i=1}^{L} \ell_{ij}$$

$${}^{m}_{ij} = fa_{ij} + v_{i,j+1} + \ell_{i,j-1} - (1 + \frac{1}{NC})v_{ij} - \frac{1}{i = 1}v_{ij}$$

 $(1+\frac{WL_{j}}{NC}) \ell_{ij} \qquad i=1, NC; j=1, NP \qquad (3.14)$ $\sum_{i=1}^{L} \ell_{ij}$

$$G_{j} = FA_{j}HF_{j} + (\sum_{i=1}^{NC} v_{i,j+1})H_{j+1} + (\sum_{i=1}^{NC} \ell_{i,j-1})h_{j-1} - (1 + \frac{WV_{j}}{NC})$$

 $(\sum_{i=1}^{NC} \mathbf{v}_{ij}) H_{j} - (1 + \frac{WL_{j}}{NC}) (\sum_{\Sigma}^{NC} \ell_{ij}) h_{j} + Q_{j} \qquad j=1, NP \qquad (3.15)$ $\sum_{i=1}^{\Sigma} \ell_{ij} \qquad i=1$

La solución de este sistema de ecuaciones se encuentra por aplicación del Método de Newton-Raphson, o por un Método cuasi-Newton como en este trabajo. Ordenando adecuadame<u>n</u> te las variables y funciones, se obtiene una matriz jacobi<u>a</u> no de estructura dispersa y tridiagonal a bloques. Este orden es la secuencia en que se tomarán las derivadas parciales en el método de convergencia seleccionado, y es el si-guiente:

$$\underline{X} = \{ (v_{1j} \ v_{2j} \dots \ v_{NCj} \ T_j \ \ell_{1j} \ \ell_{2j} \dots \ \ell_{NCj} \}_{j=1, NP} \}^T$$

$$(3.16)$$

$$\underline{F} = \{ (f_{1j} \ f_{2j} \dots \ f_{NCj} \ G_j \ m_{1j} \ m_{2j} \dots \ m_{NCj} \}_{j=1, NP} \}^T$$
donde el subíndice j=1, NP, quiere decir que el argumento ---

dentro del paréntesis se repite para j=1,2,...,NP.

En el cálculo de las constantes de equilibrio y las en talpias, las fracciones mol. deben sumar la unidad, esta -condición se satisface usando las siguientes expresiones en tre iteración e iteración:

$$X_{ij} = \frac{\ell_{ij}}{NC} \qquad Y_{ij} = \frac{V_{ij}}{NC} \qquad (3.17)$$
$$\sum_{i=1}^{\Sigma} \ell_{ij} \qquad \sum_{i=1}^{\Sigma} V_{ij}$$

Para las etapas en que se tienen extracciones latera-les, es conveniente introducir una nueva variable y una nu<u>e</u> va función de discrepancia:

$$F\phi_{j} = \frac{\phi_{j} \sum_{i=1}^{\ell_{ij}} 1}{WL_{j}} -1$$

y/o

(3.18)

$$F^{\Psi}_{j} = \frac{\Psi_{j} \sum_{i=1}^{N_{c}} V_{ij}}{W_{c}} - 1$$

Esto hace que las ecuaciones de balance de material y

energía sean más lineales al no aparecer los flujos individuales en el denominador. Cuando este es el caso, el orden de las variables y funciones para el plato p en que se hace la extracción es:

$$----\ell_{NC-1p} \ell_{NCp} \phi_{p} v_{1,p+1} ----$$
(3.19)
$$----m_{NC-1p} m_{NCp} F \phi_{p} f_{1,p+1} -----$$

En algunos casos es conveniente intercambiar variables no especificadas por el mismo número de variables especificadas. Por ejemplo, fijar el reflujo en el caso de destil<u>a</u> ción, permite usar la carga térmica como variable indepen-diente, y el mismo caso se tiene para el rehervidor cuando se fija el producto de fondos. En seguida se plantean las funciones de discrepancia para los condensadores parcial y total, rehervidores, y el caso de presaturadores en el caso de absorción.

111.2. Casos Especiales.

Condensador parcial.

a) Especificaciones: Q_1 , FA_1 , WL_1 Variables: ϕ_1 (6 L_1 si $WL_1=0$), ℓ_{11} , v_{11} , T_1

Total: 2NC+2

$$\epsilon_{i1} = \frac{V_{i1}}{NC} - K_{i1} \frac{L_{i1}}{NC}$$
$$\sum_{i=1}^{L} V_{i1} \frac{L_{i1}}{i=1}$$

$$m_{11} = fa_{11} + v_{12} - v_{11} - (1 + \phi_1)^{\ell}$$

$$G_{1} = FA_{1}HF_{1} + \left(\sum_{i=1}^{NC} v_{i2}\right)H_{2} - \left(\sum_{i=1}^{V} v_{i1}\right)H_{1} - (1+\phi_{1})\left(\sum_{i=1}^{NC} \ell_{i1}\right)h_{1} - Q_{1} \quad (3.22)$$

$$F\phi_{1} = \frac{\phi_{1} \sum_{i=1}^{\mathcal{L}} i_{i1}}{WL_{1}} - 1$$

(3.23)

(3.25)

(3.20)

(3.21)

Total: 2NC+2

NC

-- , NC

. **=**=

1=1.2.

Si WL₁ = 0, se introduce
$$S_1 = \frac{\frac{1}{2} \frac{1}{2}}{L_1} = -1$$
 (3.24)

El orden de las variables y funciones es:

$$\underline{X} = \{\phi_1 \ \delta \ L_1 \ V_{11} \ V_{21} \ \cdots \ V_{NC1} \ T_1 \ \ell_{11} \ \ell_{21} \ \cdots \ \ell_{NC1} \ \cdots \}^T$$

$$\underline{F} = \{F\phi_1 \ \delta \ S_1 \ F_{11} \ F_{21} \ \cdots \ F_{NC1} \ G_1 \ m_{11} \ m_{21} \ \cdots \ m_{NC1} \ \cdots \}^T$$

b) Especificaciones: L₁, FA₁, WL₁
Variables: Q₁, l_{i1}, v_{i1}, T₁
Total : 2NC+2

En este caso $\phi_1 = L_1 / WL_1$ está especificada, por tanto -F ϕ_1 nunca existirá, en su lugar estará siempre S₁. Las fun ciones son las mismas que en el caso anterior, con S₁ en el primer lugar, y Q₁ tomará el lugar de L₁.

Condensador Total.

a) Especificaciones: Q₁, FA₁ y WL₁ por balance total de la columna.

Variables: L_1/WL_1 , ℓ_{11} , Y_{11} , T_1 Total : 2NC + 2

El modelo de condensador total impone la restricción de que el destilado se obtenga en su punto de burbuja.

$$f_{i1} = \frac{Y_{i1}}{NC} - K_{i1} \frac{\ell_{i1}}{NC} = i=1,2,--,NC \quad (3.26)$$
$$\sum_{i=1}^{L} Y_{i1} \sum_{i=1}^{L} \ell_{i1}$$

$$m_{i1} = fa_{i1} + v_{i2} - (1 + \frac{WL_1}{L_1}) \ell_{i1} \qquad i = 1, 2, --, NC \qquad (3.27)$$

$$G_{1} = FA_{1}HF_{1} + \left(\sum_{i=1}^{NC} v_{i2}\right)H_{2} - \left(1 + \frac{1}{L_{1}}\right) \left(\sum_{i=1}^{NC} \ell_{i1}\right)h_{1} - Q_{1}$$
(3.28)

-35-

(3.29

El orden de las variables y funciones es: $\underline{\mathbf{X}} = \{\mathbf{L}_{1} / \mathbf{W} \mathbf{L}_{1} \quad \mathbf{Y}_{11} \quad \mathbf{Y}_{21} \cdots \mathbf{Y}_{NC1} \quad \mathbf{T}_{1} \quad \ell_{11} \quad \ell_{21} \cdots \ell_{NC1} \cdots \}^{\mathrm{T}}$ (3.30) $\underline{\mathbf{F}} = \{\mathbf{S}_{1} \quad \mathbf{f}_{11} \quad \mathbf{f}_{21} \cdots \mathbf{f}_{NC1} \quad \mathbf{G}_{1} \quad \mathbf{m}_{11} \quad \mathbf{m}_{21} \cdots \mathbf{m}_{NC1} \cdots \}^{\mathrm{T}}$

b) Especificaciones: L_1/WL_1 , FA_1 y WL_1 por balance global de la columna.

Variables: $Q_1, \ell_{i1}, Y_{i1}, T_1$ Total: 2NC+2

Las funciones de discrepancia son las mismas que en el caso anterior, sólo el vector de variables se ve afectado por el cambio de L_1/WL_1 por Q₁.

c) Reflujo subenfriado.

Cuando se tiene este caso se restan los grados de subenfriamiento a la temperatura de saturación, y la entalpia del reflujo se calcula con la temperatura resultante.

d) Reflujo con temperatura fija.

Si se fija la temperatura del reflujo, se eliminan de la formulación las relaciones de equilibrio, y se introduce la función de discrepancia.

-36-

$$S_1 = T_1 - T_{refluid}$$

(3.31)

(3.32)

El orden de las variables y funciones es: $\underline{X} = \{Q_1 \ \ell_{11} \ \ell_{21} \ -- \ \ell_{NC1} \ T_1 \ v_{12} \ --- \ \}^T$ $\underline{F} = \{S_1 \ m_{11} \ m_{21} \ -- \ m_{NC1} \ G_1 \ f_{12} \ --- \ \}^T$

Si se fija la carga térmica, se reemplaza ésta con el reflujo en el vector de variables.

Presaturador.

a) Especificaciones: T_{fija} , FA_1 , WL_1 Variables: ℓ_{i1} , v_{i1} , T_1 , Q_1 (ϕ_1 si $WL_1 \neq 0$). Total: 2NC+2

(si $WL_1 \neq 0$, se tienen 2NC+3 variables).

Este caso se modela como una etapa de equilibrio con un intercambio térmico, por lo que las funciones de discrepancia son iguales a las de un condensador parcial, con la excepción de S_1 , que en este caso se reemplaza por la ecuación (3.31).

b) Especificaciones: Q₁, FA₁, WL₁

Variables: l_{i1} , v_{i1} , T_1 , Q_1 (ϕ_1 si $WL_1 \neq 0$). Total: 2NC+2

Este es el caso de una etapa normal, por lo que no se repetirán las ecuaciones.

Rehervidor.

a) Especificaciones: Q_{NP} , FA_{NP} , WV_{NP} Variables: L_{NP} , ℓ_{1NP} , v_{1NP} , T_{NP} , Ψ_{NP}

Total: 2NC+3 (2NC+2 si $WV_{NP} = 0$)

$$m_{iNP} = fa_{iNP} + \ell_{iNP-1} - \ell_{iNP} - (1 + \Psi_{NP}) v_{iNP} = 1, 2, -, NC$$
 (3.34)

$$G_{NP} = FA_{NP} HF_{NP} + (\sum_{i=1}^{NC} \ell_{iNP-1}) h_{NP-1} - (\sum_{i=1}^{NC} \ell_{iNP}) h_{NP}$$

$$-(1+\Psi_{NP})\left(\sum_{i=1}^{NC} v_{iNP}\right)H_{NP} + Q_{NP}$$
(3.35)

$$F\Psi_{NP} = \frac{\Psi_{NP} \stackrel{\Sigma \quad V \text{ inp}}{i=1}}{WV_{NP}} - 1$$
 (3.36)

$$S_{NP} = \frac{\sum_{i=1}^{NC} L_{iNP}}{L_{NP}} -1$$
(3.37)

Total: 2NC+3 (6 2NC+2 si $WV_{NP} = 0$)

el orden de las variables y funciones es $\underline{\mathbf{x}} = \{--\mathbf{v}_{1NP} \ \mathbf{v}_{2NP}^{--} \ \mathbf{v}_{NCNP} \ \mathbf{T}_{NP} \ \ell_{1NP} \ \ell_{2NP}^{--\ell} \ \mathbf{n}_{NCNP} \ \mathbf{v}_{NP} \ \mathbf{L}_{NP}\}^{T}$ $\underline{\mathbf{F}} = \{--\mathbf{f}_{1NP} \ \mathbf{f}_{2NP}^{--F} \ \mathbf{n}_{CNP} \ \mathbf{G}_{NP} \ \mathbf{m}_{1NP} \ \mathbf{m}_{2NP}^{--m} \ \mathbf{n}_{NCNP} \ \mathbf{f}_{NP} \ \mathbf{s}_{NP}\}^{T}$ (3.38)

b) Especificaciones: L_{NP} , FA_{NP} , WV_{NP} Variables: Q_{NP} , L_{iNP} , v_{iNP} , T_{NP} , Ψ_{NP} Total: 2NC+3 (6 2NC+2 si $WV_{NP} = 0$)

Este caso se cubre reemplazando L_{NP} por Q_{NP} en el vector de variables independientes.

III.3. Estructura del Jacobiano.

El Método de Newton-Raphson está dado por $\underline{J}^{(K)} \Delta \underline{X}^{(K)} = -\underline{F}^{(K)}$

(3.39

 $\underline{x}^{(K+1)} = \underline{x}^{(K)} + \alpha^{(K)} \Delta \underline{x}^{(K)}$

-39-

donde J está dado por

$$\underline{J} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_N} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_N} \\ \frac{\partial f_N}{\partial x_1} & \frac{\partial f_N}{\partial x_2} & \frac{\partial f_N}{\partial x_N} \end{bmatrix}$$

Para el caso particular en que X y <u>F</u> están dados por las ex presiones en (3.16), la estructura que toma el jacobiano se muestra en las figuras 3.2 y 3.3.

III.4. Protección Contra Flujos Negativos Escalamiento de Variables y Funciones.

Algunas veces cuando la suposición inicial de las va riables se encuentra lejos de la solución, el procedimiento (3.39) predice flujos negativos, lo que no tiene significado físico, entonces se usa la siguiente técnica para delimi tar la región factible. Se selecciona $\alpha^{(K)}=1$, si la condi-ción anterior no se cumple, entonces $\alpha^{(K)}$ se va reduciendo sucesivamente por un factor de 1/2, hasta que todos los flu jos son positivos. Es decir, $\alpha^{(K)}=1$, 1/2, 1/4, 1/8, ---.

Los errores de redondeo ocasionados por el manejo de las matrices se mantienen a un nivel bajo usando escalamien to de variables y funciones. Para esto es conveniente utili

Figura 3.2. Matriz Jacobiano para una columna que tiene condensador, rehervidor y una extracción lateral en el plato p.

zar potencias de dos, con lo que se elimina el redondeo durante el proceso de escalar y des-escalar (Forsythe y Moler, 1967).

La idea para el escalamiento es manejar cantidades de forma tal que se alimentara un mol. a la columna. Además, los términos que aparecen en los balances de entalpia deben ser de orden 1. Las variables se escalan dividiendo entre un valor de referencia.

Los factores de esc	calamiento utilizados son:
Entalpias	8192 BTU/lbmol.
Temperaturas	256°F
Cargas térmicas	(8192)(Esc. de Flujos) BTU/h
Flujos	Alimentación mayor, 1bmol/h

Un flujo se considera negativo si el valor absoluto de la variable escalada es mayor de 0.01. De otra manera se h<u>a</u> ce igual a cero.

El criterio de convergencia seleccionado es:

$$\varepsilon = \sqrt{\frac{\sum_{n=1}^{N} (f_n^{(K)})^2}{\frac{n=1}{N}}} < 10^{-5}$$

donde N es el número total de ecuaciones, y $f_n^{(K)}$ es el -n-ésimo componente del vector $\underline{F}^{(K)}$, definido por (3.16), es calado. III.5. Nomenclatura.

- F Vector de funciones de discrepancia.
- f_{ij} Función derivada de las relaciones de equili-brio para el componente i en la etapa j.
- fa_{ij} Flujo del componente i en la alimentación a la etapa j.
- FA. Flujo de alimentación a la etapa j.
- $F\phi_j$ Función para la extracción lateral de líquido a la etapa j.
- FW_j Función para la extracción lateral de vapor a la etapa j.
- Gj Función derivada del balance de energía en la etapa j.
- h_j Entalpia de la corriente líquido de la etapa j.
 H_j Entalpia de la corriente vapor de la etapa j.
 HF₄ Entalpia de la alimentación al plato j.
- J Matriz jacobiano.
- K_{ij} Constante de equilibrio vapor-líquido para el componente i en la etapa j.
- L_{ij} Flujo del componente i en la corriente de lf-quido en la etapa j.
- L. Flujo de líquido en la etapa j.
- m_{ij} Función derivada del balance de material por componente para el componente i en la etapa j.

- N Número total de funciones de discrepancia. NC · Número total de componentes. NP Número total de etapas de equilibrio incluyendo condensador y rehervidor. P₁ Presión en la etapa j. Carga térmica intercambiada en la etapa j. Q S1, SND Funciones de suma en las etapas 1 y NP. Temperatura de la etapa j. т Flujo del componente i en la corriente de va--Vii por en la etapa j. v_i Flujo de vapor en la etapa j. WL. Extracción lateral de líquido en la etapa j. wv., Extracción lateral de vapor en la etapa j. Vector de variables independientes. X ×_{ij} Composición en fracción mol, del componente i en la etapa j. Y_{ij} Composición en fracción mol, del componente i en la etapa j. Composición en fracción mol, del componente
- Z_{ij} Composición en fracción mol, del componence i en la alimentación a la etapa j.
- $\alpha^{(K)}$ Tamaño de paso en la iteración K del Método de Newton-Raphson.
- $\Delta \underline{X}^{(K)}$ Incremento de las variables \underline{X} en la iteración K del Método de Newton-Raphson.

Variable asociada con la extracción lateral de líquido de la etapa j.

Variable asociada con la extracción lateral de vapor de la etapa j.

¢.

Ψj

CAPITULO IV

SOLUCIÓN DE ECUACIONES NO-LINEALES

La solución de las ecuaciones de modelado de columnas de -destilación al estado estacionario, se obtiene resolviendo finalmente el sistema de ecuaciones simultáneas no-lineales y lineales. Para el esquema propuesto se ha aplicado el Mé todo de Newton-Raphson con muy buenos resultados (Gallun, -1979). Este método requiere de las expresiones analíticas para las distintas derivadas parciales, lo que es un proble ma serio debido a la complejidad de las funciones termodiná micas, requeridas en las relaciones de equilibrio y las ecuaciones de balance de energía, además, su evaluación pue de consumir una gran cantidad de tiempo de máquina. Este -problema se puede evitar aproximando numéricamente las deri vadas parciales requeridas en el Método de Newton-Raphson, o usando un método cuasi-Newton. Una técnica de este tipo se debe a Broyden (1965), en donde se usa una aproximación al jacobiano o a su inversa. En las iteraciones subsecuentes se va revisando esta aproximación en base a la información generada durante la iteración en la dirección de la co rrección.

Cuando el jacobiano es una matriz dispersa, su actuali

-47-

zación se hace en forma más eficiente usando la modificación de Schubert (1971), el Método de Broyden. La principal desventaja de estos métodos con respecto al de Newton-Raphson es una reducción en la velocidad de convergencia cerca de la solución.

En esta parte se presenta el planteamiento del Método de Broyden y la modificación de Schubert, para la solución de las ecuaciones del modelo planteado en el Capítulo III.

1V. 1. Método de Broyden.

El problema de resolver un sistema de ecuaciones no-li neales es encontrar una solución a

$$\underline{\mathbf{F}} (\underline{\mathbf{X}}) = \underline{\mathbf{0}} \tag{4.1}$$

Sea $\underline{x}^{(K)}$ la K-Ésima aproximación a la solución de (4.1), y $\underline{p}^{(K)}$ definido por

$$\underline{p}^{(K)} = - \{\underline{G}^{(K)}\}^{-1} \underline{F}^{(K)}$$
(4.2)

Entonces una modificación simple al método de Newton-Raphson para obtener $\underline{x}^{(K)}$ es:

$$\underline{x}^{(K+1)} = \underline{x}^{(K)} + \alpha^{(K)} \underline{p}^{(K)}$$
(4.3)

El escalar $\alpha^{(K)}$ se selecciona de manera que se reduzca alguna norma a cada iteración.

 $\underline{G}^{(K+1)}$ se selecciona de manera que se satisfaga la ecu<u>a</u>

$$\underline{Y}^{(K)} = \underline{F}^{(K+1)} - \underline{F}^{(K)} = \alpha^{(K)} \underline{G}^{(K+1)} \underline{p}^{(K)}$$
(4.4)

y además se requiere que $\underline{G}^{(K+1)}$ prediga el mismo cambio en <u>F</u>, en una dirección $\underline{q}^{(K)}$ ortogonal a $\underline{p}^{(K)}$, que el jacobiano $\underline{G}^{(K)}$. Simbólicamente esto es

$$\underline{g}^{(K+1)} \underline{q}^{(K)} = \underline{G}^{(K)} \underline{q}^{(K)} \underline{q}^{(K)^{T}} \underline{p}^{(K)} = 0$$
 (4.5)

Estas dos condiciones son suficientes para definir – $\underline{G}^{(K+1)}$ en forma única de la siguiente manera:

$$\underline{G}^{(K+1)} = \underline{G}^{(K)} + \frac{\{\underline{Y}^{(K)} - \alpha^{(K)} \ \underline{G}^{(K)} \underline{p}^{(K)}\} \ \underline{p}^{(K)^{T}}}{\alpha^{(K)} \ \underline{p}^{(K)^{T}} \underline{p}^{(K)}}$$
(4.6)

Si se almacena la matriz $\underline{G}^{(K)}$, es necesario resolver un sistema de ecuaciones lineales para calcular $\underline{p}^{(K+1)}$ en -(4.2), pero si se almacena la inversa de la matriz, esta -operación se reduce a una multiplicación matriz-vector. Por esta razón es más conveniente ir actualizando la inversa de $\underline{G}^{(K+1)}$ a partir de la inversa de $\underline{G}^{(K)}$. Para obtener la expresión que permita actualizar la inversa, se aplica la fór mula de Householder (Broyden, 1965). Esta establece que si \underline{A} es una matriz no-singular y \underline{Z} y \underline{W} son vectores de orden -N, y si (\underline{A} + 2 \underline{W}^{T}) es no singular, luego

$$(\underline{A} + \underline{Z} \underline{W}^{\mathrm{T}}) = \underline{A}^{-1} - \frac{\underline{A}^{-1} \underline{Z} \underline{W}^{\mathrm{T}} \underline{A}^{-1}}{1 + \underline{W}^{\mathrm{T}} \underline{A}^{-1} \underline{Z}}$$
(4.7)

Aplicándola a (4.6), y definiendo

$$\underline{H}^{(K)} = - {\underline{G}^{(K)}}^{-1}$$

se obtiene

$$\underline{\underline{H}}^{(K+1)} = \underline{\underline{H}}^{(K)} - \frac{\{\alpha^{(K)}\underline{\underline{P}}^{(K)} + \underline{\underline{\underline{H}}}^{(K)}\underline{\underline{Y}}^{(K)}\}\underline{\underline{P}}^{(K)}\underline{\underline{\underline{H}}}^{(K)}}{\underline{\underline{p}}^{(K)^{\mathrm{T}}} \underline{\underline{\underline{H}}}^{(K)} \underline{\underline{Y}}^{(K)}}$$
(4.9)

IV.2. Modificación de Schubert.

Cuando $\underline{G}^{(K)}$ es una matriz dispersa, es más conveniente actualizar $\underline{G}^{(K+1)}$ que $\underline{H}^{(K+1)}$, debido a que generalmente la inversa de una matriz dispersa es una matriz llena. Esto hace necesario resolver a cada iteración el sistema lineal (4.2), aunque cuando se tiene un jacobiano bandeado, como es el caso de torres de etapas de equilibrio, esto no cons<u>u</u> me mucho más tiempo que la multiplicación

$$\mathbf{p}^{(K)} = \underline{\mathbf{H}}^{(K)} \underline{\mathbf{F}}^{(K)}$$
(4.10)

Por otra parte Schubert propone además que $\underline{G}^{(K+1)}$ tenga el mismo esquema disperso que $\underline{G}^{(K)}$, manteniendo la disper sidad del jacobiano original. De esta forma se obtiene una actualización análoga a (4.6), pero renglón por renglón.

$$\underline{\mathbf{g}_{i}^{(K+1)}} = \underline{\mathbf{g}_{i}^{(K)}} + \frac{(\underline{\mathbf{f}_{i}^{(K+1)}} - (1 - \alpha^{(K)}) \underline{\mathbf{f}_{i}^{(K)}}] \underline{\hat{\mathbf{p}}^{(K)^{T}}}}{\alpha^{(K)} \underline{\hat{\mathbf{p}}^{(K)^{T}}} \underline{\hat{\mathbf{p}}^{(K)}}}$$
(4.11)

donde $\underline{g_i}^{(K+1)}$ es el renglón i de $\underline{g}^{(K)}$, $\underline{\hat{p}}^{(K)}$ es un vector columna derivado de $\underline{p}^{(K)}$, pero en el que se hacen cero los -elementos de $\underline{p}^{(K)}$ que correspondan a un elemento de $\underline{g_i}^{(K)}$ -que sea una constante conocida, y $f_i^{(K)}$ es el i-ésimo componente del vector $\underline{F}^{(K)}$. Nótese que si $\underline{\hat{p}}^{(K)}$ es el vector cero, el renglón $\underline{q}_i^{(K)}$ no se corrige.

IV.3. Aproximación al Jacobiano.

Para el estimado inicial del jacobiano se hace uso de la expresión

$$\frac{\partial f_i}{\partial x_j} = \frac{f_i (\underline{X} + \underline{he}_j) - f_i (\underline{X})}{h}$$
(4.12)

para aproximar los elementos $\partial f_i / \partial X_j$ de la matriz. La selección de h se tomó en este caso como 0.001 x_i +0.001.

Claramente de (4.12) se ve que para evaluar el jacobi<u>a</u> no es necesario evaluar N+1 veces las funciones. Pero cuando se conoce la forma de la matriz, como en este caso, en que se sabe que el jacobiano es bandeado, se puede economizar el número de llamadas a <u>F</u>, como lo sugieren Curtis, Powell y Reid (1974). "Si \underline{J} es una matriz bandeada con un ancho de banda --m=2p-1, luego la diferencia (4.12) es cero si $|i-j| \ge p$; de esto se sigue que podemos encontrar simultáneamente aproximaciones a las columnas j+Km, K=0,1,2,--, de \underline{J} , usando la diferencia $\underline{F}(\underline{X} + \underline{\Gamma}h \ \underline{e}_{j+Km}) - F(\underline{X})$. De esta manera el número to tal de llamadas a la subrutina que calcula \underline{F} , se reduce de N+1 a m+1". Esta estrategia se muestra gráficamente en la figura 4.1.

IV.4. Selección de $\alpha^{(K)}$.

Para la selección de este escalar se sigue básicamente la estrategia propuesta por Broyden.

Sea $\phi(o)$ el cuadrado de la norma euclideana de $\underline{F}^{(K)}$, o sea el error en el punto inicial de la iteración, y $\phi(1)$ el cuadrado de la norma euclideana de $\underline{F}^{(K+1)}$, o sea el error predicho con $\alpha^{(K)}=1$, que es el valor tomado en forma natural en el Método de Newton-Raphson. Si se tiene $\phi(1) < \phi(o)$, el error disminuye, y de esta forma se procede a actualizar el jacobiano $\underline{G}^{(K+1)}$ para predecir un nuevo paso.

Si se tiene $\phi(1) > \phi(0)$, entonces se ajusta el valor de $\alpha^{(K)}$ de acuerdo con el siguiente criterio. Si el error presentara un mínimo en $\alpha^{(K)}=1$, se puede suponer que tuviera - una funcionalidad cuadrática en $\alpha^{(K)}$, teniendo el valor de cero en $\alpha^{(K)}=1$. Y como esta función no puede ser negativa,

2 - Las columnas correspondientes a las zonas sombreadas se evalúan simultáneamente.

Figura 4.1. Evaluación numérica del jacobiano.

debe tener pendiente cero en $\alpha^{(K)}=1$. Denotando esta funcionalidad cuadrática ideal por $\phi_q(\alpha^{(K)})$ se tiene para el caso que se cumplan las condiciones anteriores:

$$\phi_{q}(\alpha^{(K)}) = \{1-2\alpha^{(K)} + (\alpha^{(K)})^{2}\}\phi(0)$$
 (4.13)

En la práctica por supuesto, el cuadrado de la norma euclideana en $\alpha^{(K)}=1$ casi nunca es cero. Se supone ahora que es to se debe a la presencia de un término cúbico adicional. -De esto se propone ahora que la función ϕ se aproximará con la siguiente expresión:

$$\phi_{c} \equiv \phi_{q} + C \{\alpha^{(K)}\}^{3} \qquad (4.14)$$

si $\alpha^{(K)} = 1$, entonces $C = \phi(1)$ y de aquí

$$\phi_{c} = \{1-2\alpha^{(K)} + (\alpha^{(K)})^{2}\} \phi(0) + (\alpha^{(K)})^{3}\phi(1)$$
 (4.15)

y ahora se tomará para $\alpha^{(K)}$ el valor que minimice ϕ_c . Diferenciando (4.15), igualando a cero y seleccionando la raíz que cae entre cero y uno se obtiene

$$\alpha_{c}^{(K)} = \frac{(1+6\eta)^{\frac{1}{2}} - 1}{3\eta}$$
 (4.16)

donde

$$\eta = \phi(1) / \phi(0)$$
 (4.17)

Es necesario hacer notar que la segunda derivada de --

(4.15) es positiva, con lo que se predice un mínimo en el error.

Si el nuevo error predicho con $\alpha_c^{(K)}$ resulta mayor o -igual que $\phi(o)$, se aproximará ahora una función cuadrática con los puntos $(0, \phi(o))$, $(1, \phi(1))$, $(\alpha_c^{(K)}, \phi(\alpha_c^{(K)}))$:

$$\phi(\alpha_q^{(K)}) = a (\alpha_q^{(K)})^2 + b \alpha_q^{(K)} + c \qquad (4.18)$$

Si a>o, se calcula el mínimo de (4.18). Si a≼o 6 a>o, pero el error no disminuye, entonces se evaluará nuevamente el jacobiano en el punto con el menor error.

Aquí es necesario aclarar que, como la estrategia sequida cuando en alguna iteración se presentaron flujos nega tivos, es reducir el tamaño de paso a la mitad en forma sucesiva hasta que todos los flujos sean positivos, entonces es necesario escalar el valor de $\alpha_c^{(K)}$, cuando no se obtuvo disminución en el error. Es decir, el valor obtenido por -(4.16) se debe multiplicar por el primer valor obtenido para $\alpha^{(K)}$ ($\alpha^{(K)} = 1$, 1/2, 1/4, --, etc.).

IV.5. Nomenclatura.

<u>-</u> j	Columna j de la matriz identidad.
fi	i-ésimo elemento del vector <u>F</u> .
F	Vector de funciones de discrepancia.

-55-

- -56-
- g, i-ésimo renglón de la matriz G.
- G Aproximación al jacobiano.
- h Perturbación para las variables.
- H Inversa negativa de la matriz G, ecuación (4.8)
- J Matriz jacobiano.
- N Número de variables independientes.
 - p Vector de incrementos de las variables, ecuación (4.2).
 - <u>p</u> Vector derivado de <u>p</u>, en la modificación de Schubert.
 - X Vector de variables independientes.
 - Y Ecuación (4.4)
 - $\alpha^{(K)}$ Tamaño de paso en la iteración K
 - $\phi \quad \text{Error} = \sum_{i=1}^{N} f_{i}^{2}$

CAPITULO V

SOLUCIÓN DE ECUACIONES LINEALES

Cuando se aplican métodos del tipo Newton-Raphson a la solu ción de sistemas de ecuaciones no-lineales, es necesario <u>ge</u> neralmente, resolver el sistema de ecuaciones lineales que se obtiene a cada iteración.

En este trabajo, la técnica utilizada para resolver -los sistemas lineales es, eliminación Gaussiana usando la variante de Cholesky con pivoteo parcial por tamaño (Wilkin son, 1965). Previamente a la eliminación Gaussiana, se escalan los renglones. Finalmente, se aplica un procedimiento iterativo para obtener mayor precisión en el cálculo.

Estas técnicas son útiles cuando se manejan matrices llenas; sin embargo, por su exactitud y rapidez se recomien dan ampliamente para manejar matrices dispersas (Tewarson, 1973).

Los métodos aplicados, así como otros también importantes, están contenidos totalmente en dos textos excelentes que cubren ampliamente las técnicas de eliminación Gaussiana (Wilkinson, 1965; Forsythe y Moler, 1967).

Unicamente para claridad de esta parte se describe a continuación el planteamiento utilizado.

-57-

V.1. Eliminación Gaussiana.

La solución al sistema de ecuaciones lineales

$$\underline{A} \underline{X} = \underline{b} \tag{5.1}$$

se encuentra en forma rápida y precisa, por aplicación de las técnicas de eliminación de Gauss. La idea básica de es tos métodos es encontrar dos matrices, una triangular inferior, $\underline{L} = \{ \substack{m \\ ij} \}$ con $\{ \substack{m_{ij} \\ j=1}, y \text{ otra triangular superior } -- \underbrace{U} = \{ \underbrace{U}_{ij} \}$, tales que $\underline{L} \underbrace{U} = \underline{A}$.

Entonces el sistema (5.1) se puede reescribir

$$\underline{L} \underline{U} \underline{X} = \underline{b} \tag{5.2}$$

y de esta manera la solución se obtiene resolviendo los dos sistemas triangulares

$$\underline{\mathbf{L}} \underline{\mathbf{Y}} = \underline{\mathbf{b}} \quad \mathbf{Y} \quad \underline{\mathbf{Y}} \underline{\mathbf{X}} = \underline{\mathbf{Y}} \tag{5.3}$$

Los elementos de la solución intermedia \underline{Y} , pueden obt<u>e</u> nerse directamente del primer sistema, ya que la primera -ecuación involucra sólo Y_1 , la segunda Y_1 e Y_2 , y así sucesivamente. En forma similar se obtienen los componentes de \underline{X} del segundo sistema, en el orden X_N , X_{N-1} , ----, X_1 .

El cálculo de L y U junto con la solución del primer sistema se llama eliminación hacia adelante. La solución -del segundo sistema recibe el nombre de sustitución hacia atrás. Por último, la obtención de L y U es lo que se llama descomposición triangular.

La matriz U se obtiene por triangulación de la matriz

 \underline{A} , es decir, resulta de hacer cero los elementos bajo la -diagonal de la matriz. Para esto se usan operaciones elementales de hilera. La matriz \underline{L} , resulta de almacenar los multiplicadores $\{m_{ij}\}$ necesarios para hacer cero los elemen tos bajo la diagonal de \underline{A} . Conforme se avanza en la eliminación, los elementos bajo la diagonal $\{m_{ij}\}$ de \underline{L} , se almacenan en el lugar de los elementos bajo la diagonal de \underline{A} , y los elementos m_{ij} de \underline{V} se almacenan en el lugar de los elementos de la diagonal y arriba de la diagonal de \underline{A} . Finalmente se tienen las matrices \underline{L} y \underline{V} almacenadas en el lugar de \underline{A} . La solución intermedia \underline{Y} , es simplemente la actualización de los lados derechos, al aplicarles las mismas transformaciones que se hicieron sobre \underline{A} , para obtener \underline{V} .

V.2. Pivoteo Parcial por Tamaño.

Para estabilidad del cálculo se deben evitar pivotes – $a_{rr}^{(r)}$, que sean pequeños en valor absoluto. Es por esto que se seleccionan como pivotes, el mayor en valor absoluto de los números $a_{ir}^{(r)}$ ($i \ge r$), o uno de los mayores si hay varios. Entonces, a cada etapa de la eliminación se determina el -elemento $a_{ir}^{(r)}$ que sea mayor en valor absoluto, y se intercam bian los renglones r e i.

En una computadora no es necesario intercambiar los -renglones de <u>A</u> y <u>b</u>. En su lugar se crea un arreglo de enteros IP₁ (i=1,--,N), y se llama por $a_{IP_{1,j}}$ en lugar de a_{ij} . Por tanto, estos valores del arreglo IP_i reemplazan el in-tercambio real.

V.3. Escalamiento de Columnas y Renglones.

El manejar cantidades del mismo orden de magnitud du-rante el proceso de eliminación, permite reducir los erro-res de redondeo. Se ha demostrado que los mejores resultados se obtienen cuando a cada etapa, el elemento de mayor valor absoluto simpre está acotado por la unidad (Wilkinson, 1965).

El procedimiento aplicado, aunque no es el óptimo, es el siguiente: se escalan las columnas y renglones de forma tal que el elemento de mayor valor absoluto en cada columna y cada renglón sea uno.

V.4. Descomposición Triangular.

En general no existe una factorización LU única de una matriz. Si $\underline{A} = \underline{L}\underline{V}$ es una factorización de \underline{A} , y \underline{D} es una matriz diagonal no singular, luego $\underline{L}^{*} = \underline{L}\underline{D}$ es triangular inferior y $\underline{V}^{*} = \underline{D}^{-1}\underline{V}$ es triangular superior. De aquí

 $\underline{A} = \underline{L}\underline{U} = \underline{L} \underline{P} \underline{P}^{-1} \underline{U} = \underline{L}' \underline{U}'$ (5.4) Y $\underline{L}' \underline{U}'$ es también una descomposición LU de A. Esto sugiere la posibilidad de normalizar las descomposiciones LU de una matriz, insertando una matriz diagonal. Es decir

-60-

$$\underline{\mathbf{A}} = \underline{\mathbf{L}} \underline{\mathbf{D}} \underline{\mathbf{U}} \tag{5.5}$$

es una descomposición LDU de A, puesto que L es triangular inferior unitaria, D es diagonal y U es triangular superior unitaria.

Si se maneja la matriz diagonal en distintas formas en la descomposición LDU, se obtienen también diferentes composiciones. Hay tres variantes importantes. La primera asocia <u>D</u> con la parte triangular inferior de la factorización.

$$\Delta = \underline{L}, \ \underline{D} = (\underline{L}, \underline{D}) \ \underline{D}$$
 (5.6)

Esta se conoce como descomposición de Crout. La segunda se llama descomposición de Doolittle, y asocia <u>p</u> con la parte triangular superior

$$\underline{A} = \underline{L} \underline{U}' = \underline{L} (\underline{D} \underline{U})$$
(5.7)

Cuando A es simétrica y tiene una descomposición LDU única, la descomposición debe tener la forma

Si los elementos de la diagonal de <u>D</u> son positivos, -luego se forma la matriz $\underline{p}^{1/2} = \text{diag} \left(\delta_{11}^{1/2}, \dots, \delta_{NN}^{1/2} \right)$.

Entonces A puede escribirse como

$$\underline{\underline{\mathbf{P}}} = \underline{\underline{\mathbf{P}}}, \ \underline{\underline{\mathbf{P}}}, \underline{\underline{\mathbf{L}}} = (\underline{\underline{\mathbf{P}}}_{\mathbf{T}}, \mathbf{b}) (\underline{\underline{\mathbf{D}}}_{\mathbf{T}}, \underline{\underline{\mathbf{P}}}_{\mathbf{T}})$$
(2.9)

Esta variante se conoce como descomposición de Cholesky de <u>A</u> (Stewart, 1973).

Cuando A no es simétrica, se puede obtener una descomposición análoga en la forma:

-61-

$$\underline{A} = \underline{L}' \underline{D}' = (\underline{L} \underline{D}^{4'}) (\underline{D}^{4''} \underline{U})$$
(5.10)
y donde $\underline{D}^{4''}$ y $\underline{D}^{4'''}$ difieren en que si algún elemento de \underline{D}^{--}
tiene signo negativo, la raíz cuadrada se efectúa sobre el
valor absoluto, pero el signo negativo se asocia al elemen-
to correspondiente de $\underline{D}^{4'''}$.

V.5. La Variante de Crout.

Una forma eficiente de efectuar la descomposición --triangular es usando la variante de Crout (Forsythe y Moler, 1967). La única diferencia con eliminación Gaussiana es el orden en que se hacen las operaciones, ya que finalmente -son las mismas en ambos casos. Se tiene la ventaje de que nunca se tienen las matrices intermedias, y cuando se pue-den acumular los productos internos, este método es bastante preciso (Wilkinson, 1965).

A continuación se describe el Método de Crout. La matriz \underline{U} que se forma en este caso tiene sus elementos $u_{rr}^{=1}$, r=1,2,--,N. Si suponemos que se tienen ya los primeros r-1 renglones y columnas de \underline{L} y \underline{U} respectivamente, luego en vis ta de que $\underline{A} = \underline{L}$ \underline{U} , y el hecho que $m_{1p}=0$ para p>i, $u_{pr}=0$ para p>r y $u_{rr}=1$, tenemos

$$a_{ir} = m_{ir} + \sum_{p=1}^{r-1} m_{ip} u_{pr} \quad i > r \quad (5.11)$$

-62-

de donde se obtiene

$$m_{ir} = a_{ir} - \sum_{p=1}^{r-1} m_{ip} u_{pr} \qquad i \ge r \qquad (5.12)$$

Entonces se conoce ahora la columna r de L. Similarmente para u_{rj} , partiendo del hecho que $m_{rp}=0$ para p>r, tenemos:

$$a_{rj} = m_{rr} u_{rj} + \sum_{p=1}^{r-1} m_{rp} u_{pj} j^{k}$$
(5.13)

de donde se obtiene la expresión deseada:

$$u_{rj} = (a_{rj} - \sum_{p=1}^{r-1} m_{rp} u_{pj})/m_{rr} j > k$$
 (5.14)

La primera columna de <u>L</u> está dada por $m_{11} = a_{11}$, i = 1, --, N. El primer renglón de <u>U</u>, es también fácil de calcu-lar:

 $u_{1i} = a_{1i}/m_{11}$ j>1 (5.15)

Es necesario aclarar que con este método los elementos de L son (ordinariamente) diferentes de 1.

En la figura 5.1 se muestra cómo se almacenan las ma-trices al inicio de la etapa r. Nótese que no se almacena la diagonal de <u>U</u>. En síntesis, para determinar <u>L</u> y <u>U</u> com-pletamente el orden de cálculo es como sigue: primera colu<u>m</u>

na de \underline{L} , primer renglón de \underline{U} , segunda columna de \underline{L} , segundo renglón de \underline{U} , y así sucesivamente.

V.6 La Variante de Cholesky.

La variante de Cholesky para el caso en que la matriz no es simétrica se obtiene en forma análoga al Método de -Crout. Se tienen las siguientes diferencias.

- 1. Es necesario almacenar los elementos de la diago-nal de \underline{U}^{*} .
- A cada etapa de eliminación, los elementos de la columna de L' correspondiente, se obtiene dividien do por la raíz cuadrada del pivote seleccionado p<u>a</u> ra esa etapa.
- 3. Los elementos de la matriz \underline{U}^{i} se obtienen en forma análoga al Método de Crout, pero con el elemento m_{rr} modificado en la forma descrita en el punto 2.

V.7. Procedimiento Iterativo.

No obstante que los errores de redondeo en los méto-dos de eliminación con intercambios para una matriz bien escalada son pequeños, algunas veces se desea una precisión mayor en la solución, particularmente cuando la matriz A es mal condicionada. Se pueden tener tales solucio nes para la mayoría de los sistemas lineales con sólo un - modesto incremento en el tiempo (alrededor de 25%), después de haber encontrado la primera solución para <u>X</u> (Forsythe, - 1967).

Esta técnica se aplica de la siguiente manera:

$$\underline{x}^{(o)} = 0 \quad \underline{r}^{(o)} = \underline{b}$$
 (5.16)

 $\underline{\underline{L}\underline{\underline{V}}\underline{d}}^{(K-1)} = \underline{\underline{r}}^{(K-1)}, \ \underline{\underline{x}}^{(K)} = \underline{\underline{x}}^{(K-1)} + \underline{\underline{d}}^{(K-1)}, \ \underline{\underline{r}}^{(K)} = \underline{\underline{b}} - \underline{\underline{b}} \ \underline{\underline{X}}^{(K)}$

El procedimiento termina cuando se ha alcanzado la pre cisión deseada.

V.8. Nomenclatura.

- A Matriz de coeficientes del sistema de ecuaciones li neales 5.1
- b Vector de lados derechos del sistema 5.1
- d Vector de residuos, procedimiento 5.9
- L Matriz triangular inferior.
- N Número de variables independientes.
- r Vector de errores, procedimiento 5.9
- U Matriz triangular superior
- X Vector de variables independientes
- Y Solución intermedia, procedimiento 5.3
CAPÍTULO VI

TÉCNICAS PARA MANEJAR MATRICES DISPERSAS

Las matrices jacobiano resultantes se resuelven aplicando algoritmos adecuados para matrices dispersas (Holland, --1981). La literatura sobre este tema es abundante; sin em bargo, las técnicas aplicadas aquí se tomaron de dos traba jos que cubren ampliamente el área de aplicación para Ing<u>e</u> niería Química (Tewarson, 1973; Gustavson, 1980).

Los dos puntos principales sobre los que se enfocan estos algoritmos son: a) almacenar solamente los elementos diferentes de cero, y exclusivamente hacer operaciones con éstos, ahorrando de esta manera memoria de computadora y tiempo de ejecución; b) minimizar el llenado de las matrices durante el proceso de eliminación de los elementos bajo la diagonal. Esto filtimo se puede hacer antes de la -eliminación, simulando el proceso con matrices Booleanas,lo que permite usar almacenamiento con localidades fijas, llamado estático, minimizándose el almacenamiento requerido (Gustavson, 1980). La otra forma de hacerlo es a cada etapa de la eliminación, seleccionando como pivote aquel elemento que permita un llenado mínimo. Esto filtimo re-quiere un esquema de almacenamiento que permita adicionar

-67-

elementos que van apareciendo como consecuencia de opera-ciones con elementos diferentes de cero, sobre la misma co lumna y sobre el mismo renglón del elemento en cuestión. -Un esquema de este tipo se conoce como dinámico.

En este trabajo se usan ambos esquemas de almacenamiento, estático y dinámico, pero no se controla en forma alguna el llenado de las matrices, como consecuencia de la elección de pivoteo por tamaño.

Como los métodos directos de solución de ecuaciones lineales destruyen la matriz original, en la aplicación -del Método de Schubert es necesario guardar una copia del jacobiano que se va actualizando. Para esto se usa almac<u>e</u> namiento estático. Durante el proceso de eliminación Gaussiana se usa un esquema dinámico.

La forma de evaluar el jacobiano, descrita en el Cap<u>í</u> tulo IV, obliga a guardarlo por columnas en forma permutada, ya que se evalúan varias columnas al mismo tiempo. Como es más útil en este caso tener la información almacenada por renglones, se aplica un algoritmo para obtener la transpuesta permutada de la matriz en forma óptima (Gustav son, 1980).

En seguida se presentan estas técnicas, usando una ma triz de 4x4 tomada del texto de Holland (1981).

-68-

VI. 1. Almacenamiento Estático.

La información se puede guardar por renglones o por columnas. En este caso se hará por renglones. Toda la in formación se tiene almacenada en tres arreglos. Renglón a renglón se van colocando los valores de los elementos dife rentes de cero en el arreglo <u>A</u>. Los índices de las columnas correspondientes a cada elemento se van almacenando en el vector <u>JA</u>. En el tercer arreglo se tiene un conjunto de señaladores de renglones (<u>IA</u>), donde el i-ésimo elemento de <u>IA</u> es la dirección en ambos, <u>JA</u> y <u>A</u>, del primer elemento diferente de cero del i-ésimo renglón de la matriz.

Si denotamos por N el número de renglones y por NA el número de elementos diferentes de cero, las dimensiones de <u>IA, JA y A</u>, son N+1, NA y NA, respectivamente. En total se requieren 2NA+N+1 localidades. Como ejemplo se almacenará la matriz <u>MA</u> en forma compacta.

$$\underline{MA} = \begin{bmatrix} 1 & 3 & 1 & 0 \\ 6 & 2 & 0 & 0 \\ 0 & 5 & 0 & 3 \\ 4 & 0 & 2 & 9 \end{bmatrix}$$

La representación dispersa por renglones de MA es:

-69-

<u>IA</u>	=	1		۰.	4	. '	6		- 8			11
		+	.'	-1	+,		+		+ .			+
AL	=	1	2	3	1	2	2	4	. 1	3	4	
A	=	1	3	1	6	2	- 5	3	4	2	9	

El cuarto renglón de MA comienza en la posición IA(4)=8 y termina en la posición IA(4+1)-1=10 de los arreglos JA y A. Por tanto el cuarto renglón de MA tiene tres elementos diferentes de cero en las posiciones (4,1), (4,3) y (4,4).

VI.2. Almacenamiento Dinámico.

Para ilustrar este esquema se almacenará la matriz MA. y se mostrará la forma en que se modifica al ir haciendo su factorización LU.

Definiendo los siguientes arreglos:

- IA: vector que señala las localidades de los primeros elementos de cada rengión.
- <u>JA</u>: vector que contiene los índices de las columnas en que se encuentran los elementos de <u>MA</u>.
- A: vector que contiene los valores de los elementos diferentes de cero en MA.
- NSL: vector que contiene las direcciones de los siguien tes elementos diferentes de cero en cada renglón. Para significar que es el último elemento de cada

renglôn, se almacena en ese lugar el valor de cero.

NASL: indica la siguiente localidad vacía en A.

Los arreglos <u>A</u>, <u>JA</u> y <u>NSL</u> deben tener localidades dispo nibles para almacenar los elementos, producto del llenado por las operaciones de hilera.

						<u>IA</u>										
						3										
•						1										
						8										
						7										
Localidad	1	2	3	4	5	6	7	8	9	10	11	1.2	13	14	15	16
JA	1		1	4		2	1	2		3		2			4	3
<u>A</u>	6		1	9		3	4	5		1		2			3	2
NSL	12	11	6	ø	ø	10	16	15	2	ø	14	ø	5	13	ø	4
NASL	= 9)														

El segundo renglón de <u>MA</u> comienza en la localidad 1, el primer elemento se encuentra en la columna 1(JA(1)=1) y su valor es 6(A(1)=6), el siguiente elemento se encuentra en la localidad 12(NSL(1)=12), se encuentra en la columna -2(JA(12)=2) y su valor es 2(A(12)=2), y es el filtimo elemen to de este renglón. El renglón 3 comienza en la localidad 7, y en la forma descrita anteriormente se localizan los --

-71-

elementos de ese renglón. Una vez que se han llenado las localidades necesarias para almacenar la matriz MA el pri-mer elemento que resulte como llenado se almacenará en la localidad NASL = 9, y a esta variable se le asigna el valor NSL(NASL)=2. En esa misma forma se van guardando todos los elementos adicionales.

Este esquema necesita 3NA+N+1 localidades de memoria.

Para efectuar la factorización Ly se define el siguien te arreglo adicional:

IPV: vector que almacena el orden de pivoteo durante -

la factorización.

Para encontrar los factores LU se aplicará el algoritmo de Crout, descrito en el Capítulo anterior.

En primer lugar se muestra la matriz original MA con su correspondiente vector <u>IPV</u>:

IPV				-	
1	[1	3	1	ø	
2	6	2	ø	ø	
3	ø	5	ø	3	= <u>M</u> A
4	4	ø	2	9	}
	L			~	}

Se selecciona el renglón 2 como primer pivote, y se de terminan la primera columna de L y el primer renglón de U. Enseguida se muestra la matriz resultante. Los números en-- tre paréntesis, son los multiplicadores necesarios para hacer ceros los elementos que se encontraban en esas posiciones, y que son elementos de L.

IPV	•									
2	[(1)	3	1	ø		6	1/3	ø	ø	
1	6	1/3	ø	ø	_	(1)	3	1	ø	ĺ
3	(Ø)	5	ø	3	=>	(Ø)	5	ø	3	Į
4	(4)	ø	2	9		(4)	ø	2	9	ł
	L				I	L			_	J

Los elementos de <u>IFV</u> denotan el reordenamiento de los renglones de MA en la matriz transformada. A la derecha se muestra cómo sería la matriz si se hubieran hecho realmente los intercambios.

Se actualiza la segunda columna de L y se selecciona el renglón 3 como segundo pivote para determinar la segunda columna de L y el segundo renglón de U.

IPV										
2	(1)	(8/3)	1	ø		6	1/3	ø	ø	
3	6	1/3	ø	ø	_	(Ø)	5	ø	3/5	
1	(Ø)	5	ø	3/5	~	(1)	(8/3)	1	ø	
4	(4)	(-4/3)	2	9	}	(4)	(-4/3)	. 2	9	ł
	L			-)	L				1

Nótese que apareció un elemento diferente de cero en la posición (4,2).

-73-

Se actualiza la tercera columna de \underline{L} y se selecciona el renglón 4 como tercer pivote para encontrar la tercera columna de \underline{L} y el tercer renglón de <u>U</u>.

IFV	.									
2	(1)	(8/3)	(1)	ø		6	1/3	ø	ø	
3	6	1/3	ø	ø		(Ø)	5	ø	3/5	
4	(Ø)	5	ø	3/5		(4)	(-4/3)	2	49/10	
1.	(4)	(-4/3)	2	49/10]	(1)	(8/3)	(1)	.ø	ĺ

Por Gltimo se actualiza el elemento (4,4) para termi-nar la triangulación, obteniéndose:

IPV										
2	[1]	(8/3)	(1)	-13/2		6	1/3	ø	·ø	
3	6	1/3	ø	ø		(ø)	5	ø	3/5	
4	(ø)	5	ø	3/5		(4)	(-4/3)	2	49/10	
1	(4)	(-4/3)	2	49/10		(1)	(8/3)	(1)	-13/2	
	L				ļ	<u> </u>				ļ

Notese que apareció otro elemento diferente de cero en la posición (1,4).

A continuación se muestra cómo se van almacenando es-tos matrices en forma empacada, y cómo se acomodan los elementos que aparecieron: IA IPV Localidad 9 10 11 12 13 14 15 16 1 2 з 5 6 7 8 4 3 2 JA 1 1 ۸ 2 1 2 2. з 2: 4 . 3 1/3 1 3 A 6 1 9 8/3 4 5-4/3 1 3/5 2 12 11 6 Ø Ø 10 9 15 16 Ø 14 ø 5 13 8 1 NSL 2 7 NASL = IA JPV Localidad 1 23 4 5 9 10 11 12 13 14 15 16 6 ß 3 2 JA 1 1 2 1 2 2 3 2 4 3 1 з A 6 1 49/10 8/3 4 5 -4/3 1/3 1 3/5 2 8 1 NSL 12 11 6 ø ø 10 9 15 16 Ø 14 ø 5 13 Ø 7 NASL = 2 A

<u>IA</u>	<u>vqr</u>	Iocalidad	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
3	2	AL	1	4	1	4		2	1	2	2	3		2			4	3
1	3	A	6	-13/2	1	49/10		8/3	4	5	-4/3	1		1/3			3/5	2
8	1	NSL	12	ø	6	ø	ø	10	9	15	16	2	14	ø	5	13	ø	4
7	4	NASL =	11															

VI.3. Algoritmo Para Obtener la Transpuesta Permutada de una Matriz Dispersa.

Una representación de \underline{A} por renglones es igual a una representación de \underline{A}^{T} por columnas. En seguida se describe brevemente el algoritmo, en términos de calcular una representación ordenada de \underline{A}^{T} a partir de una representación noordenada de \underline{A} .

-75-

Primero se reserva espacio para cada columna de A (ren glón de A^T) en un arreglo de tamaño NA, definiendo para esto un arreglo de m señaladores (m es el número de columnas de la matriz A). Este arreglo se denomina IAT, y se obtiene de contar los índices de las columnas de <u>A</u> que aparecen en cada renglón y convertir la información en señaladores por renglones de \underline{A}^{T} . El arreglo <u>IAT</u> sirve para partir el espacio de NA localidades en espacio para m listas; cada -lista tiene espacio para una columna de A. En seguida, para 1=1,N se pasa sobre los renglones de A en orden secuen Justamente antes de procesar el renglón i de A, cada cial. lista contiene un subconjunto ordenado de los enteros de 1 a i-1, y cada señalador tiene la información del próximo -elemento libre en el arreglo de tamaño NA. La j-ésima lista, lajam contiene los Indices de los renglones de la colum na j de A hasta i-1. Cuando se procesa el renglón i, cada elemento a_{ii} diferente de cero hace que i se sume a la lista j, y el señalador de la lista j se incremente. Cada una de las m listas recibe los índices en forma ordenada y se-cuencial, independientemente del orden original de los indi ces de las columnas de A. Lo importante es que se recupe-ran los indices de los renglones de <u>A</u> en grupos ordenados. Por áltimo, es tan fácil calcular $(\underline{P} \underline{A})^T$ como lo es \underline{A}^T : simple mente se accesa el renglón $\underline{P}(i)$ en lugar del renglón i de <u>A</u> en la etapa i.

En seguida se presenta la codificación en FORTRAN del algoritmo, donde se usa la siguiente nomenclatura:

- IC Vector de permutaciones, de tamaño N
- IA Vector de direcciones del primer elemento de cada renglón en A.
- JA Vector de Índices de columnas de A.
- <u>A</u> Vector de valores de los elementos diferentes de cero en la matriz <u>A</u>.

<u>IAT</u>, <u>JAT</u>, <u>AT</u>, contiene información análoga a <u>IA</u>, <u>JA</u> y <u>A</u> respectivamente, para la matriz transpuesta.

IP, IA1, IA2, JPT, son variables enteras auxiliares.

DO 1 I=1, M

1 IAT (I) = 0

DO 2 JP=1,NA

J = JA(JP)

- 2 IAT(J) = IAT(J)+1 IAT(M+1) = NA+1-IAT(M) DO 3 I=M,2,-1
- 3 IAT(I) = IAT(I+1) IAT(I-1)

DO 4 I=1,N IP = IC(I)

IA1 = IA(IP)

IA2 = IA (IP+1) - 1

DO 4 JP = IA1, IA2 J = JA(JP)JPT = IAT(J+1) JAT (JPT) = I AT (JPT) = A(JP) IAT(J+1) = JPT+1 IAT(1) = 1 END

4

Al aplicar el algoritmo anterior a la matriz \underline{MA} con -<u>IC</u> = <u>I</u> (matriz identidad), se obtiene:

IAT	1			4			7		9		11
	+			ŧ			ł		ŧ		ŧ
JAT	1	2	4	1	2	3	1	4	3	1	
<u>TA</u>	1	6	4	3	2	5	1	2	3	9	

-78-

CAPÍTULO VII PROBLEMAS RESUELTOS

-79-

TESIS NO DEBE

DE LA BIBLIOTECA

ESTA

SALIR

En esta parte se presenta el conjunto de problemas resuel --tos. La Tabla 7.1 muestra información con el nombre del -problema, el número de componentes y de etapas, así como --las características de las columnas en lo que se refiere a existencia y tipo de condensador, existencia de rehervidor. extracciones laterales e intercambios térmicos, así como el número de alimentaciones. En seguida se presenta el plantea miento de los problemas y los resultados obtenidos en cada caso, reportándose los perfiles de líquido, vapor y tempera turas de la columna, así como las composiciones de los productos. También se reportan las cargas térmicas de condensa dores y rehervidores en los casos en que se calculan. Adicionalmente se presentan los perfiles iniciales y los métodos de cálculo de propiedades utilizados. En los casos en que se tomó el problema de alguna referencia, se indica la fuente.

La Tabla 7.2 muestra el número de iteraciones requeridas, para el grupo selecto de problemas, el error final alcanzado y el tiempo de CPU en segundos.

Todos los problemas se corrieron en una computadora --UNIVAC 1100/82. Finalmente la Tabla 7.3 presenta información concer-niente al manejo de las matrices, para el conjunto de pro-blemas anterior. Se muestra el número de ecuaciones resuel tas, el número de elementos diferentes de cero, el llenado ocasionado por el proceso de triangulación, reportado como veces el número de elementos diferentes de cero originalmen te. Adicionalmente, el número de veces que se evaluó el jacobiano y el número de iteraciones que se mantuvo constante cerca de la solución. Finalmente, se reporta el número máximo de iteraciones requeridas en cada caso, para afinar la precisión de las variables obtenidas en el proceso de elimi nación Gaussiana, hasta que el valor de cada uno de los residuos sea menor que (10)⁻⁹ por el valor de la variable.

Para el cálculo de propiedades termofísicas se utilizó el paquete de cálculo de propiedades del simulador de proce sos SIMPROC, del Instituto Mexicano del Petróleo.

La inicialización de las variables de iteración, se h<u>i</u> zo en todos los casos usando la técnica descrita en el Apén dice A, excepto para el problema 16, que se utilizó la forma del Apéndice B.

-80-

VII.1. Comentarios Adicionales.

El escalamiento de renglones durante el proceso de solución de ecuaciones lineales se implementó en la siguien te forma. Antes del proceso de eliminación se escalaron -los renglones entre 0 y 1/8.

En el esquema de almacenamiento compacto usado se guar dó en una misma palabra, información para dos elementos de los vectores JA y NSL, para ahorrar memoria.

Una vez que se resolvió en la primera iteración el primer sistema de ecuaciones se ha almacenado suficiente infor mación para resolver en forma más rápida los sistemas de -ecuaciones lineales de las siguientes iteraciones. Es decir, si se utilizan los mismos pivotes que en la primera itera-ción, se sabe donde van a aparecer elementos diferentes de cero durante el proceso de eliminación.

Si cerca de la solución el jacobiano no cambia, esto permite acelerar el cálculo, ya que se tienen almacenados los factores LU y el problema se reduce a hacer la sustitución hacia atrás con el nuevo vector de lados derechos. Esto se detecta fácilmente, ya que al actualizar la matriz ja cobiano se observa si no cambió ningún elemento.

-81-

TABLA 7.1 EJEMPLOS RESUELTOS.

No.	Descripción del Problema Título	NC	NP	Tipo de Conden- sador.	Reher- vidor.	No. Ali- menta- ciones.	Inter- cambio Térmi- co.	Extrac- ción Lateral
1	Amplio rango de T, de Eb. con un comp. intermedio	3	20	Total	s٢	1	-	-
2	Amplio rango de T. de Eb. con comps. intermedios	5	20	Total	Sĩ	1	-	-
3	Columna desmetanizadora I	8	15	-	S⊈	2	- ·	
4	Columna desmetanizadora II	11	11	-	sí	2		-
5	Columna desmetanizadora III	11	21	-	SÍ	2	-	-
6	Desetanizadora I	ø	22	Parcial	sí	1		-
7	Desetanizadora II	10	18	Total	sí	1	-	-
8	Separación etano-etileno	5	50	Total	SÍ	1	-	· _
9	Despropanizadora	4	31	Total	sí	1	-	-
10	Desbutanizadora	8	31	Total	Sí	1	-	
11	Estabilización de gasolinas	11	13	Parcial	Sí	1	-	sí
12	Separación acetona-agua	2	38	Total	-	2	· -	-
13	Metanol puro.	3	15	Total	នវ	1	-	
14	Destilación altamente no-ideal	4	10	Total	ទវ	1	-	-
15	Separación metanol-agua	2	49	Total	Sí	. 1		-
16	Destilación extractiva.	4	50	Total	SÍ	3		-
17	Destilación extractiva con furfural	8	15	-	Sĩ	2	- 1	-
18	Absorbedor I	14	8			2 -	-	·
19	Absorbedor II	20	8	-		2	· · .	-
20	Absorción de propano	21	6	-		2	-	-
21	Absorción con intercambio térmico	12	7	-		2	នា	-
22	Absorbedor con presaturador	15	6	-		2	sí	-
23	Absorbedor con rehervidor	6	11	-	Sí	2		-
24	Columna agotadora	13	14	-	51	2	-	-

-82-

VII.2. Ejemplos 1-11. Problemas de Destilación, Soluciones de Hidrocarburos.

 Mezcla de amplio rango de temperaturas de ebullición con un componente intermedio.

Fuente: Gupta y Gallier (1979). Número total de etapas: 20 Condensador: S1, etapa 1, total. Sí, etapa 20. Rehervidor: Intercambio térmico: NO. Relación de reflujo: 200:31, líquido saturado. Presión de la columna: 100 psia Alimentaciones: Presión, psia: 100 Líquido saturado Temperatura, °F: 100.0 Flujo, 1b-mol/h: Etapa: 10 (fracción mol) Composición: 0.30 C2H6 0.30 CAHR 0.40 n-C₁₂H₂₆ 69.0 lb-mol/h Producto de fondos:

-83-

Perfiles finales de temperatura y flujos de vapor y líquido.

Etapa	·Temperatura (°F)	Vapor (lb-mol/h)	Líquido (lb-mol/h)
1	-45.379	-	200.000
2	-38.433	231.000	185.029
3	-17,936	216.029	165.324
4	11.143	196.324	157.911
5	30.279	188.911	158.581
6	38.122	189.581	159.682
7	40.792	190.682	160.153
8	41.649	191.153	160.314
9	41.919	191.314	155.017
10	53.493	186.016	268.286
11	61.708	199.286	274.584
12	64,752	205.584	277.098
13	65.805	208.098	277.991
14	66.162	208.991	278.295
15	66.281	209.295	278.398
16	66.321	209.398	278.431
17	66.335	209.431	278.421
18	66.380	209.421	277.573
19	67.970	208.573	248.047
20	130.464	179.047	69.000

Destilado líquido: 31.00 lb-mol/h

Productos

Composición	Destilado líquido (fracción mol)	Prod. de Fondos (fracción mol)
C2 ^H 6	0.96774	-
с _з н _в	0.03226	0.42029
^{n-C} 12 ^H 26	-	0.57971

Carga	termica	del	condensador:	-1,304,394.9	BTU/h
Carga	térmica	del	rehervidor:	1,710,447.8	BTU/h

Comentarios:

Perfiles iniciales.

Temperatura: $T_1 = -45.4$; $T_{20} = 130.5$; perfil lineal entre éstas.

Vapor: $V_j = 231; j = 2,20$ Líquido: $L_j = 200; j = 1, 9; L_j = 300; j = 10,19;$ $L_{20} = 69.$

Métodos de cálculo de propiedades.

Entalpia Ecuación de Soave Constantes de equilibrio Ecuación de Soave

-85-

 Mezcla de amplio rango de temperaturas de ebullición con componentes intermedios.

Fuente: Gupta y Gallier (1979)Número total de etapas:20Condensador:S1, etapa 1, totalRehervidor:S1, etapa 20Intercambio térmico:NoRelación de reflujo:4, líquido saturadoPresión de la columna:14.7 psia

Alimentaciones:

Presión, psia 14.7 Temperatura, °F Vapor saturado Flujo lb-mol/h 100 9 Etapa Composición (Fracción mol) 0.300 n-CAH10 n-C5H12 0.100 n-C7H16 0.200 0.100 n-C9H20 0.300 n-C10H22

Producto de fondos:

50. lb-mol/h

-86-

Etapa	Temperatura (°F)	Vapor (1b-mol/h)	Liquido (lb-mol/h)
1	53.220	_	200.00
2	135,126	250.000	166.427
3	186.575	216.427	183.029
4	196.252	233.029	187.746
5	197.822	237.745	188.481
6	158.147	238.481	188.299
· 7	198.579	238.299	186.165
8	201.267	236,165	173.434
9	217.591	223,434	145.364
10	227.652	95,364	151.043
11	229.113	101.043	151.894
1.2	229.347	101.894	152.026
13	229.393	102.026	152.040
14	229.424	102.040	152.019
15	. 229.511	102.019	151.917
16	229.845	101.917	151.499
17	231.181	101.499	149.901
18	236.352	99.901	144.984
19	253.318	94.984	137.029
20	288 540	87 029	50 000

Perfiles finales de temperatura y flujos de vapor y líquido.

-87-

Destilado líquido: 50.000 lb-mol/h

Productos

Composición	Destilado líquido (fracción-mol)	Prod. de Fondos (fracción-mol)
n-C4H10	0.60000	-
^{n-C} 5 ^H 12	0.20000	- 1
^{n-C} 7 ^H 16	0.2000	0.20000
^{n-C} 9 ^H 20	-	0.20000
^{n-C} 10 ^H 22	-	0.60000

Carga térmica del condensador: -3,416,810.0 BTU/h Carga térmica del rehervidor: 1,662,721.6 BTU/h

Comentarios

Perfiles iniciales

Temperatura: $T_1 = 50$, $T_3 = 190$, $T_{18} = 240$, $T_{20} = 290$,

perfil lineal entre éstas.

Vapor: $V_j = 250; j = 2,8; V_j = 150; j = 9, 20.$ Liquido: $L_j = 200; j = 1,19; L_{20} = 50.0$

Métodos de cálculo de propiedades.

Entalpia Ecuación de Soave Constantes de equilibrio Ecuación de Soave 3. Columna desmetanizadora. Número total de etapas: 15 Condensador: No S1, etapa 15 Rehervidor: Intercambio térmico: No Relación de reflujo: Presión de la columna: 469.7 psia en el domo, con --una caída de 0.2 psi por etapa. Alimentaciones: 1 2 Presion, psia 469.7 471.3 Temperatura, °F -77.69 -54.40 Flujo, lb-mol/h 16,864.537 6121.773 4 Etapa 1 Composición (Fracción mol) (Fracción mol) 0.92915 0.42859 CHA 0.05830 0.24231 C2H6 C3HB 0.01124 0.20968 1-C4H10 0.00051 0.02750 n-C4H10 0.00071 0.05821 1-C5H12 0.00005 0.01221 n-C5H12 0.00004 0.01340 n-C₆H₁₄ 0.00001 0.00809

Destilado vapor:

19509.0 lb-mol/h

-89-

Perfiles finales de temperatura y flujos de vapor y líquido.

Etapa	Temperatura (°F)	Vapor (1b-mol/h)	L f quido (1b-mol/h)
1	-74.848	19509.0	174.418
2	-58,503	2818.881	159.656
3	-56.253	2804.119	145.759
4	-54.513	2790.222	5360.284
5	-54.494	1882.973	5361.228
6	-54.467	1883.918	5362.143
7	-54.413	1884.832	5362.952
8	-54.265	1885.642	5363.404
9	-53.788	1886.094	5362.744
10	-52.187	1885.431	5359.617
11	-46.916	1882.307	5359.930
12	-31,379	1882.620	5429.667
13	3.300	1952.357	5767.381
14	53.252	2290.071	6391.313
15	109.204	2914.003	3477.310

Composición	Destilado vapor (fracción-mol)	Prod. de Fondos (fracción-mol)
CH4	0.92946	0-04617
^С 2 ^Н 6	0.05999	0.37275
с ₃ н ₈	0.00990	0.36812
1-C4H10	0.00031	0.04918
n-C4 ^H 10	0.00033	0.10407
1-C5H12	0.00001	0.02168
n-C ₅ H ₁₂	0.00001	0.02375
n-c ₆ ^H 14	-	0,01429

Carga térmica de rehervidor: 19,293,009. BTU/h

Comentarios Perfiles iniciales: Temperatura: $T_1 = -75$; $T_{15} = -5$; perfil lineal entre – éstas. Vapor: $V_1 = 19509.0$, $V_j = 2814.437$, j = 2,4; $V_j = 1912.898$, j = 5, 15. Líquido: $L_j = 169.974$, j = 1,3; $L_j = 5390.208$, j = 4, 14; $L_{15} = 3477.310$. Métodos de cálculo de propiedades Entalpia Ecuación de Soave Constantes de equilibrio Ecuación de Soave

-91-

4. Columna desmetanizadora. Número total de etapas: 11 Condensador: No Rehervidor: S1, etapa 11 Intercambio térmico: No Relación de reflujo: Presión de la columna: 414.7 psia en el domo, con una caída de 0.2 psi por etapa. Alimentaciones: 1 2 Presión, psia 414.7 415.1 -84.29 Temperatura, °F -130.04 Flujo, 1b-mol/h 7400.7 7080.8 Etapa 3 1 Composición (Fracción mol) (Fracción mol) 0.00030 N., 0.00187 0.00111 0.00442 co, 0.95701 0.70027 CH, 0.03266 0.15070 C2H6 C₃H₈ 0.00580 0.07643 i-C4H10 0.00082 0.02246 n-C4H10 0.00055 0.01984 0.00010 0.00779 1-C5H12 n-C5H12 0.00005 0.00439 n-C₆H₁₄ 0.00002 0.00492 0.00001 0.00850 n-C7H16

Producto de fondos: 2300.0 lb-mol/h

-92-

Etapa	Temperatura (°F)	Vapor (1b-mol/h)	Líquido (lb-mol/h)
1	-119.508	12181.500	845.925
2	-100.059	5626.725	542.955
3	-86.211	5323.755	3693.974
· 4	-86.167	1393.974	3694.979
5	-86.107	1394.978	3695.365
6	-85.932	1395.365	3694.184
7	-85.239	1394.184	3686.746
8	-82.323	1386.746	3658.382
9	-70.722	1358.382	3601.769
10	-34.151	1301.768	3628.005
11	41.191	1328.006	2300.000

Perfiles finales de temperatura y flujos de vapor y líquido.

Productos

Composición	Destilado vapor (fracción mol)	Producto de Fondos (fracción mol)
N ₂	0.00131	-
co ₂	0.00106	0.01159
CHA	0.96840	0.10626
C2H6	0.02818	0.41978
С ₃ н _я	0.00101	0.24861
I-CAH10	0.00004	0.07160
n-C4H10	0.00001	0.06277
1-C5H12	-	0.02430
n-C_H ₁₂	-	0.01367
n-C6H14		0.01521
n-C7H16	-	0.02620

Carga térmica del rehervidor: 10,148,195, BTU/h

Comentarios:

Perfiles iniciales

Temperatura:	$T_1 = -1207 T_9 = -70; T_{11} = 41,$		
1	perfil lineal entre éstas.		
Vapor:	$v_1 = 12181., v_j = 5865.79, j = 2,3;$		
	$v_j = 1976.569, j = 4,11$		
Líquido:	$L_{j} = 1084.99, j = 1,2; L_{j} = 4276.569,$		
	$j = 3,10, L_{11} = 2300.$		

Métodos de cálculo de propiedades...

Entalpia Ecuación de Soave Constantes de equilibrio Ecuación de Soave

1. K

5. Columna desmetanizadora. Número total de etapas: 21 Condensador: No Rehervidor: Sí, etapa 21 Intercambio térmico: No Relación de refluio: 284.7 psia en el domo, con una Presión de la columna: caída de 0.2 psi por etapa. Alimentaciones: 1 2 284.7 Presión, psia 285.7 Temperatura, °F -127.45 -67.6 Flujo, 1b-mol/h 1006.8 2600.3 1 5 Etapa (Fracción mol) (Fracción mol) Composición 0.00102 0.00051 N₂ co_2 0.00855 0.00686 0.052024 0.41195 CHA 0.36632 0.31692 C,H₆ 0.09720 0.19811 C₂H₈ 0.02347 1-C4H10 0.00360 n-C4H10 0.00293 0.03192 1-C5H12 0.00009 0.00436 n-C5H12 0.00005 0.00405 0.00129 n-C6^H14 0.00056 n-C7H16

Producto de fondos: 1906.8 lb-mol/h

Perfiles finales de temperatura y flujos de vapor y líquido.

Etapa	Temperatura (°F)	Vapor (lb-mol/h)	Líquido (lb-mol/h)
1	-114.097	1700.300	932.042
2	-99.714	1625.543	892.743
3	-88.954	1586.243	876.477
4	-82.006	1569.977	840.228
5	-70.620	1533.728	2680.945
6	-65.534	774.145	2690.575
7	-52.653	783.775	2732.603
8	-28.362	825.803	2862.309
9	0.199	955.509	3084.368
1.0	20.675	1177.568	3294.100
11	31.178	1387.301	3421.188
12	35.798	1516.388	3482.088
13	37.731	1575.288	3508.770
14	38.545	1601.970	3520.441
15	38.914	1613.641	3525.957
16	39.117	1619.157	3528.969
17	39.289	1622.170	3530.571
18	39.573	1623.771	3529.511
19	40.384	1622.711	3518.085
20	43.378	1611.285	3461.542
21	55.798	1554.742	1906.800

Productos

Composición	Prod. Vapor (fracción mol)	Prod. de Fondos (fracción mol)
N ₂	0.00138	-
co ₂	0.00177	0.01229
CH	0.93805	-
C2H6	0.05713	0.57466
C ₃ H ₈	0.00165	0.32001
1-C4H10	0.00001	0.03390
n-C4H10	0.00001	0.04507
1-C5H12	-	0.00599
n-C ₅ H ₁₂	-	0.00555
n-C ₆ H ₁₄	-	0,00176
n-C7H16	-	0.00076

Carga térmica del rehervidor: 7,887,154.8 BTU/h

Comentarios.

Perfiles iniciales

Temperatura:	$T_1 = -117.646;$	$T_{21} = 69.523$, perfil lineal
	entre éstas.	Posteriormente se afinó por
	cálculo de la	temperatura de ebullición -
	del líquido en	n cada etapa.
Vapor:	· V. = 1700.3;	j = 1,5; V ₄ = 955.3944;

j = 6, 21. Líquido: $L_j = 1006.8; j = 1,4; L_j = 2862.1944;$ j = 5, 20; $L_{21} = 1906.8.$

Métodos de cálculo de propiedades Entalpia Ecuación de Soave Constantes de equilibrio Ecuación de Soave

6. Columna desetanizadora. Número total de etapas: 22 Condensador: Sí, etapa 1, parcial. Rehervidor: S1, etapa 22 Intercambio térmico: No Relación de reflujo: 2.07 Presión de la columna: 414.7 psia en el domo, con una caída de 0.2 psi por etapa y 5 psi en el condensador. Alimentaciones: Presión, psia 414.7 Temperatura, °F 113. Flujo lb-mol/h 2363.4 Etapa 10

(Fracción mol)

Composición

^C 2 ^H 6	0,49545
с ₃ н ₈	0.27114
1-C4H10	0.07804
n-C4 ^H 10	0.06846
^{1-C} 5 ^H 12	0.02659
^{n-C} 5 ^H 12	0.01494
^{n-C} 6 ^H 14	0.01665
^{n-C} 7 ^H 16	0.02873

Destilado vapor: 1183.2 lb-mol/h

Etapa	Temperatura (°F)	Vapor (lb-mol/h)	Líquido (lb-mol/h)
1	47.489	1183.200	2449.224
2	52.044	3632.424	2383.556
3	57.211	3566.756	2284.470
4	63.836	3467.670	2186.037
5	71.342	3369.237	2101.531
6	78.878	3284.731	2034.048
7	85.849	3217.248	1974.310
8	92.335	3157.510	1899.471
9	99.472	3082.670	1737.310
10	112.036	2920.910	3891.576
11	119.056	2711.376	3906.323
12	127.885	2726.123	3945.342
13	137.933	2765.143	4015.222
14	148.225	2835.022	4113.680
15	157.805	2933.480	4229.132
16	166.089	3048.933	4345.588
17	172.986	3165.389	4448.380
	178.822	3268.180	4525.843
19	184.264	3345.643	4564.539
20	190.484	3384.339	4529.433
21	200.058	3349.233	4291.509
22	221.127	3111.309	1180.200

Productos.	
------------	--

Composición	Destilado Vapor (fracción mol)	Prod. de Fondos (fracción mol)
C2H6	0.98081	0.00885
с _з н ₈	0.01917	0.52375
1-C4H10	0.00001	0.15627
^{n-C} 4 ^H 10	-	0.13709
1-C5 ^H 12	-	0.05325
^{n-C} 5 ^H 12	-	0.02992
^{n-C} 6 ^H 14	-	0.03334
^{n-C} 7 ^H 16	-	0.05753

Carga térmica del condensador: -8,964,887.8 BTU/h Carga térmica del rehervidor: 15,887,791. BTU/h

Comentarios.

Perfiles iniciales.

Temperatura: $T_1 = 47.50$, $T_{22} = 220.70$, perfil lineal entre éstas.

Vapor: $V_1 = 1183.2; V_j = 3632.424, j = 2, 10;$ $V_j = 3443.524, j = 11, 22.$ Líquido: $L_j = 2449.224, j = 1, 9; L_j = 4623.724,$

 $j = 10, 21; L_{22} = 1180.2$

Métodos de cálculo de propiedades Entalpia Ecuación de Soave Constantes de equilibrio Ecuación de Soave 7. Desetanizadora.

Fuente: Shah y Bishnoi (1978)	
Número total de etapas:	18	
Condensador:	S1, etapa 1, total.	
Rehervidor:	S1, etapa 18	
Intercambio térmico:	No	
Relación de reflujo:	1.6, líquido saturado.	
Presión de la columna:	460.06 psia en el domo con una	
	caída de 0.3336 psi por etapa.	
Alimentaciones:		
Presión, psia	460.06	
Temperatura, °F	Líquido saturado	
Flujo, 1b-mol/h	4450.6203	
Etapa	7	
Composición	(lb-mol/h)	
N ₂	0.0003	
co ₂	78.31	
CH4	56.37	
C2 ^H 6	3576.20	
с ₃ н _в	604.74	
i-C4H10	32.00	
n-C4 ^H 10	52.00	
^{1-C} 5 ^H 12	13.00	
n-C ₅ H ₁₂	14.00	
^{n-C} 7 ^H 16	24.00	

Producto de fondos: 779.07 lb-mol/h

-101-

Etapa	Temperatura (°F)	Vapor (1b-mol/h)	Líquido (lb-mol/h)
1	47.608	-	5874.480
2	51.766	9546.030	5934.936
3	53.620	9606.486	5891.361
4	55.290	9562.911	5802.812
5	57.336	9474.362	5674.348
6	60.067	9345.898	5463.278
7	64.318	9134.829	9991.999
8	65.814	9212.929	9976.454
9	67.694	9197.384	9885.416
10	70.842	9106.346	9704.102
11	76.364	8925.032	9424.448
12	85.537	8645.378	9091,968
13	99.077	8312.898	8824.496
.14	116.011	8045.426	8739.632
15	133.762	7960.563	8842.701
16	150.121	8063.632	8987.476
17	165.196	8208.406	8764.105
10	104 146	7005 035	770 070

Perfiles finales de temperatura y flujos de vapor y líquido.

Destilado líquido: 3671.550 lb-mol/h
Productos

	Composición	Destilado (1b-mol/	líquido h)	Prod. de Fom (lb-mol/h	ndos)
	N2	0.0003		-	
	co2	78.208		0.102	n sheri Listan
	CH4	56.370		-	
	с ₂ н ₆	3513.285	· · ·	62.915	
	с ₃ н8	23.635	<i>4</i> .	581.105	- ¹
	1-C4H10	0.035		31.965	•
	n-C4H10	0.016		51.984	
-	1-C ₅ H ₁₂	-		13.000	
	n-C5 ^H 12	-		14.000	
	^{n-C} 7 ^H 16	-		24.000	
Carga	térmica del	condensador:	-31,537.526	BTU/h	
Carga	térmica del	rehervidor:	33,604,347	BTU/h	

Comentarios:

Perfiles iniciales

Temperatura: T_1 =47.61, T_{18} =184.17, perfil lineal entre éstas. Posteriormente se modificó por cálc<u>u</u> lo de la temperatura de burbuja en cada et<u>a</u> pa, utilizando las composiciones obtenidas con el método del Apéndice A.

Vapor:

Líquido:

 $V_j = 9546.031, j = 2, 18.$ $L_j = 5874.481, j = 1,6; L_j = 10325.101;$ $j = 7, 17; L_{18} = 779.07.$

Métodos de cálculo de propiedades

Entalpia Ecuación de Soave Constantes de equilibrio Ecuación de Soave

8. Separador etano-etileno Fuente: Gupta y Gallier (1979) Número total de etapas: 50 S1, etapa 1, total Condensador: Rehervidor: S1, etapa 50 Intercambio térmico: NO Relación de reflujo: 3.0, líquido saturado Presión de la columna: 150.0 psia Alimentaciones: Presión, psia 150.0 Temperatura, °F Líquido saturado Flujo, lb-mol/h 25.0 Etapa 25 Composición (lb-mol/h) CH4 0.5 C₂H₄ 10.0 11.0 C2H6 3.0 C₃H₈ C4H10 0.5

Producto de fondos: 14.5 lb-mol/h

Etapa	Temperatura	Vapor	Líquido
	(°F)	(lb-mol/h)	(lb-mol/h)
1 2 3 4 5 6	-75.326 -61.127 -58.763 -57.780 -56.839 -55.784	42.000 42.676 42.686 42.586 42.458	31.500 32.176 32.186 32.086 31.958 31.817
7	-54.615	42.317	31.669
8	-53.368	42.169	31.521
9	-52.091	42.021	31.379
10	-50.838	41.879	31.249
11	-49.656	41.749	31.134
12	-48.584	41.634	31.036
13	-47.643	41.536	30.954
14	-46.841	41.454	30.888
15	-46.175	41.388	30.835
16	-45.633	41.335	30.793
17	-45.198	41.293	30.761
18	-44.855	41.261	30.736
19	-44.587	41.236	30.717
20	-44.378	41.217	30.702
21	-44.213	41.202	30.688
22	-44.069	41.188	30.665
23	-43.861	41.165	30.585
24	-43.181	41.085	30.163
25	-39.650	40.663	55.663
26	-38.881	41.163	55.747
27	-38.633	41.247	55.752
28	-38.451	41.252	55.740
29	-38.244	41.240	55.722
30	-37.989	41.222	55.699
31	-37.670	41.199	55.670
32	-37.272	41.170	55.634
33	-36.780	41.134	55.592
34	-36.185	41.092	55.544
35	-35.478	41.044	55.488
36	-34.645	40.988	55.427
37	-33.693	40.927	55.362
38	-32.627	40.862	55.295
39	-31.467	40.795	55.229
40	-30.241	40.729	55.167
41	-28.985	40.667	55.111
42	-27.738	40.611	55.064
43	-26.536	40.564	55.025
44	-25.412	40.525	54.994
45	-24.386	40.494	54.969
46	-23.466	40.469	54.945
47	-22.618	40.445	54.893
48	-21.626	40.393	54.661
49	-19.322	40.161	53.457
50	- 9.403	38.957	14.500

.

Destilado líquido: 10.5 1b-mol/h

Productos:

Composici	6n Destilado líquido (lb-mol/h)	Prod. de Fondos (lb-mol/h)		
CH4	0.500	-		
C2 ^H 4	9.733	0.267		
^C 2 ^H 6	0.267	10.733		
с ₃ н ₈	-	3.000		
^C 4 ^H 10	-	0.500		
Carga térmica	del condensador: -206,035.9	7 BTU/h		
Carga térmica	del rehervidor: 211,464.3	2 BTU/h		
Comentarios:				
Perfiles inici	ales.	•.		
Temperatura:	$T_1 = -43.85, T_{50} = 9.56, perturbative$	erfil lineal entre		
	éstas.			
Vapor:	V _j = 42.0, j = 2, 50.			
Líquido:	$L_{j} = 31.5, j = 1, 24; L_{j} =$	56.5, j = 25, 49;		
	$L_{50} = 14.5.$			
Métodos de cálculo de propiedades				
Entalpia	Ecuaci	lón de Soave		
Constantes de	equilibrio Ecuac:	ión de Soave		

9. Despropanizadora. Fuente: Orbach (1969) Número total de etapas: 31 Condensador: S1, etapa 1, total Rehervidor: S1, etapa 31 Intercambio térmico: No Relación de reflujo: 6.0, $T = 75.0^{\circ}F$ Presión de la columna: 290 psia Alimentaciones: Presión, psia 290 Temperatura, °F 195. Flujo, 1b-mol/h 200. 14 Etapa (lb-mol/h) Composición 50. C3Hg i-C4H10 50. n-C4H10 50. 50. n-C5H12

Producto de fondos: 150. lb-mol/h

Perfiles	finales de temperatu	ra y flujos de	vapor y líquido.
Etar	oa Temperatura (°F)	Vapor (lb-mol/h)	Líquido (lb-mol/h)
1	75.000	-	300.000
2	134.644	350.000	415.633
3	135.308	465.633	414.098
4	136.366	464.098	411.719
5	138.024	461.719	408.168
6	140.555	458.168	403.152
7	144.271	453.142	396.667
8	149.401	446.667	389.067
 9 .	155.985	439.067	381.183
10	163.747	431.183	373.742
11	172.223	423.742	366.597
12	181.148	416.597	358.382
13	190.689	408.382	347.090
14	201.795	397.090	575.767
15	205.578	425.767	578.968
16	209.349	428.968	582.703
17	212.962	432.703	586.778
18	216.299	436.778	590.960
19	219.262	440.960	595.020
20	221-883	445.020	598.771
21	224.104	448.771	602.084
22	225.981	452.084	604.880
23	227.568	454.880	607.115
24	228.936	457.115	608.749
25	230.174	458.749	609.697
26	231.409	459.697	609.765
27	232.835	459.765	608.540
28	234.785	458.540	605.268
29	237.848	455.268	598.820
30	243.020	448.820	588.218
31	251.756	438.218	150.000

Destilado líquido: 50.0 lb-mol/h

Productos:

Composición	Destilado Líquido (fracción mol)	Prod. de Fondos (fracción mol)
с _{зн} 8	0.99176	0.00275
1-C4H10	0.00776	0.33075
1-C4 ^H 10	0.00048	0.33317
1-C5H12	-	0.33333

Carga térmica del condensador: -2,466,887.6 BTU/h Carga térmica del rehervidor: 2,683,658.1 BTU/h

Comentarios:

Perfiles iniciales

Temperatura: $T_1 = 75.$, $T_{14} = 215.4$, $T_{31} = 251.7$, perfil lineal entre éstas.

Vapor: $V_j = 350.0, j = 2, 31$ Líquido: $L_j = 300.0, j = 1, 13; L_j = 500, j = 14, 30;$ $L_{31} = 50.0$

Métodos de cálculo de propiedades: Entalpia Ecuación de Soave Constantes de equilibrio Ecuación de Soave 10. Desbutanizadora.
Fuente: Shah y Bishnoi (1978)
Número total de etapas: 31
Condensador: S1, etapa 1, total
Rehervidor: S1, etapa 31
Intercambio térmico: No
Relación de reflujo: 1.7235, T = 82.04 °F
Presión de la columna: 103.47 psia en el domo con una

caída de 0.49313 psi por etapa.

Alimentaciones:

Presión, psia	110.
Temperatura, °F	150.8
Flujo, lb-mol/h	6657.
Etapa	15
Composición	(1b-mol/h)

C2 ^H 6	8.
с _з н ₈	45.
i-C4 ^H 10	1603.
n-C4 ^H 10	2098.
1-C5H12	810.
n-C ₅ H ₁₂	682.
n-C ₆ H ₁₄	876.
TBP241 (TBP=240.8,API=70.6)	535.

Producto de fondos:

2925. lb-mol/h

-110-

Etapa	Temperatura (°F)	Vapor (lb-mol/h)	Líquido (lb-mol/h)
1	82.040	-	6432.101
2	137.490	10164.100	7973.522
3	139.148	11705.521	7963.528
- 4 - 2	140.226	11695.528	7955.202
5	141.045	11687.201	7948.717
6	141.746	11680.716	7942.289
7	142.414	11674.288	7933.815
8	143.121	11665.814	7920.790
9	143.941	11652.789	7899.935
10	144.966	· 11631.934	7866.590
11	146.324	11598.589	7813.500
12	148.211	11545.499	7726.645
13	150.990	11458.644	7566.393
14	155.648	11298.393	7163.219
15	166.422	10895.218	14639.776
16	168.488	11714.776	14645.700
17	170.564	11720.699	14637.432
18	172.916	11712.432	14613.442
19	175.842	11688.442	14569.856
20	179.706	11644.856	14506.396
21	184.861	11581.396	14433.064
22	191.469	11508.064	14373.566
23	199.268	11448.566	14356.586
24	207.530	11431.586	14395.770
25	215.367	11470.769	14476.996
26	222.180	11551.996	14565.689
27	227.918	11640.689	14620.592
28	233.115	11695.592	14590.403
29	239.033	11665.403	14369.493
30	248.576	11444.493	13701.235
31	268,999	10776.235	2925.000

Destilado líquido: 3732.0 lb-mol/h

Productos:

Composición	Destilado líquido (lb-mol/h)	Prod. de Fondos (lb-mol/h)
^C 2 ^H 6	8.000	-
с _з н _в	45.000	-
1-C4 ^H 10	1602.642	0.358
n-C4 ^H 10	2075.212	22.788
^{1-C} 5 ^H 12	1.087	808.913
^{n-C} 5 ^H 12	0.059	681.941
^{n-C} 6 ^H 14	-	876.000
TBP 241	-	585.00

Carga térmica del condensador: -99,870,589. BTU/h Carga térmica del rehervidor: 109,506,920. BTU/h

Comentarios:

Perfiles iniciales

Temperatura: $T_1 = 82.04$, $T_{31} = 257$ perfil lineal entre éstas.

Vapor:	$v_j = 10164.102, j = 2, 31$
Líquido:	$L_j = 6432.102, j = 1, 14; L_j = 13089.102,$
	$j = 15, 30; L_{31} = 2925.$

Métodos de cálculo de propiedades Entalpia Ecuación de Soave Constantes de equilibrio Ecuación de Soave

11. Estabilización de Gasolinas Fuente: Holland (1981) Número total de etapas: 13 Condensador: S1, etapa 1, parcial Rehervidor: S1, etapa 13 Intercambio térmico: No Extracción lateral: Sí, etapa 10, líquido Flujo = 25.0 lb-mol/hRelación de reflujo: 2.25 Presión de la columna: 300 psia Alimentaciones: Presión, psia 300 Temperatura, °F Líquido saturado Flujo, lb-mol/h 100 Etapa 6 (1b-mol/h)Composición 2.0 CH₄ 10.0 C₂H₆ 6.0 C₃H₆ 12.5 C₃H₈ 1-C4H10 3.5 n-C4H10 15.0 15.2 $n-C_5H_{12}$ n-C6H14 11.3 9.0 n-C7H16 8.5 n-CgH18

TBP400 7.0 (TBP≈400,API=56.5,PM⇒175.008) Producto de fondos: 42.702 lb-mol/h

Etapa	Temperatura (°F)	Vapor (1b-mol/h	Líquido (lb-mol/h)
1	118.070	32.298	72.670
2	145.994	104.969	71.821
3	163.309	104.119	69.604
· 4	177.140	101.902	65.562
5	192.439	97.860	54.531
6	224.480	86.830	179.047
··. 7	245.852	111.345	193.470
8	262.447	125.768	202.636
9	278.238	134.934	207.816
10	296.693	140.114	183.950
11	322.269	141.248	180.213
12	357.576	137.511	167.556
13	413.524	124.854	42.702

Extracción líquida, etapa 10: 25.0 lb-mol/h

Productos:

Composición	Prod. Vapor	Prod. de Fondos	Ext. Lateral
	(lb-mol/h)	(lb-mol/h)	(lb-mol/h)
CHA	2.000	-	-
C ₂ H ₆	9.970	0.001	0.029
C ₃ H ₆	5.703	0.037	0.260
C ₃ H _R	11.547	0.135	0.818
1-C4H10	1.206	0.643	1.651
n-C ₄ H ₁₀	1.856	4.469	8.675
$n - C_5 H_{12}$	0.017	8.632	6.552
n-C _c H ₁	-	8.218	3.082
n-C ₇ H ₁	-	7.273	1.727
n-C _o H _{1o}	-	7.172	1.328
TBP400	-	6.122	0.878

Carga térmica del condensador: -452,558.24 BTU/h Carga térmica del rehervidor: 1,368,898.0 BTU/h

Comentarios:

Perfiles iniciales

Temperatura:	$T_1 = 120, T_{13} = 420, \text{ posteriormente se} -$
	afinó por cálculo de la T de eb. del lí-
	quido en cada etapa.

Vapor: $V_1 = 32.298$, $V_j = 104.9685$, j = 2, 13. Liquido: $L_j = 72.670$, j = 1,5; $L_j = 172.670$, j = 6,12, $L_{13} = 42.702$

Métodos de cálculo de propiedades.

Entalpía			Ecuación	de	Soave
Constantes	de	equilibrio	Ecuación	de	Soave

-115-

VII.3. Ejemplos 12-17. Problemas de destilación, soluciones altamente noideales.

12. Separador acetona-agua. Fuente: Gupta y Gallier (1979). Número total de etapas: 38 Condensador: S1, etapa 1, total Rehervidor: No Intercambio térmico: No Relación de reflujo: 1.3, líquido saturado Presión de la columna: 16 psia Alimentaciones: 1 2 Presión, psia 16 80 Temperatura, °F Liquido 315.3 saturado 77.025 Fluio, 1b-mol/h 35.0 27 38 Etapa Composición (lb-mol/h) (lb-mol/h)Acetona 21.159 55.866 35.0 Agua

	is ac comperatora	y trajos de	vapor y ridura
Etapa	Temperatura	Vapor	Líquido
	(°F)	(lb-mol/h)	(lb-mol/h)
Etapa 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	Temperatura (°F) 137.543 137.548 137.554 137.554 137.575 137.618 137.655 137.708 137.708 137.708 137.783 137.899 138.039 138.248 138.538 138.937 139.475 140.187 141.103 142.244 143.616 145.207 146.990 148.935 151.031 153.303 155.875 159.172 159.172	Vapor (1b-mol/h) - 46.545 46.543 46.540 46.536 46.531 46.522 46.510 46.493 46.469 46.435 46.320 46.320 46.227 46.100 45.928 45.702 45.928 45.702 45.412 45.054 44.629 14.147 43.622 43.073 42.513 41.949 41.371 40.734 40.684 40.684	Líquido (lb-mol/h) 26.308 26.303 26.299 26.294 26.285 26.273 26.256 26.256 26.256 26.150 26.150 26.083 25.990 25.863 25.691 25.465 25.175 24.817 24.392 23.910 23.385 22.276 21.712 21.134 20.497 97.472 97.472
30	159.172	40.684	97.472
31	159.172	40.684	97.472
32	159.172	40.684	97.472
33	159.172	40.684	97.472
34	159.173	40.683	97.471
35	159.182	40.683	97.457
36	159.272	40.669	97.303
37	160.292	40.515	93.983
38	188.200	37.195	91.788

Destilado líquido: 20.237 lb-mol/h

-117-

Productos:

Composición	Destilado Líquido (lb-mol/h)	Prod. de Fondos (lb-mol/h)
Acetona	20.235	0.924
Agua	0.002	90.864

Carga térmica del condensador: -614,057.73 BTU/h

Comentarios:

Perfiles iniciales

Temperatura: $T_{i} = 140., j = 1, 25; T_{i} = 149,$ $j = 26, 35; T_{38} = 188.6, perfil lineal$ entre T₃₅ y T₃₈. $v_{j} = 46., j = 2, 38$ Vapor: $L_{ij} = 26., j = 1, 26; L_{ij} = 103.025,$ Liquido: $j = 27, 37, L_{38} = 92.025.$ Destilado líquido: 20. lb-mol/h Métodos de cálculo de propiedades.

Entalpia UNIFAC

Constantes de equilibrio UNIFAC

13. Metanol puro.

Número total de etapas: Condensador: Rehervidor: Intercambio térmico: Relación de reflujo: Presión de la columna:

Sí, etapa 1, total Sí, etapa 15 No

2.06, líquido saturado

17.42 psia en el domo con una caída de 0.1422 psi en el con densador y de 0.0976 psi por etapa.

Alimentaciones

Presión, psia	17.42		
Temperatura, °F	166.67		
Flujo, 1b-mol/h	1613.064		
Etapa	12		
Composición	(Fracción mol)		
Metanol	0.80396		
Etanol	0.00051		
Agua	0.19553		

Destilado líquido:

1289.561 lb-mol/h

15

tile :	s finales	de	temperatura	У	fiujos	de	vapor y	/ 110	quido
Eta	ара Т	empe °)	ratura F}	C	Vapor Lb-mol/N	a)	Líqu (lb-1	11do no1/1	n)
:	1	155	644		-		265	5.49	6
:	2	156	.067	:	3946.05	7	265	5.20	5
:	3	156	. 388	:	3945.76	7	265	5.21	0
	4	156	5.741	:	3944.77	1.	265	3.62	3
	5	157	1.145	:	3943.18	4	265	1.08	9
	6	157	.635		3940.65	0	264	7.04	2
	7	156	3.264		3936.60	3	264	0.60	1
	8	159	9.114		3930.16	3	263	0.44	4
	9	160	0.321		3920.00	5	261	4.68	3
: 1	0	162	2.085		3904.24	4	259	0.89	8
1	1	164	4.705		3880.45	9	255	6.59	7
1	2	16	8.586		3846.15	8	289	7,64	8
1	3	17	5.217		3574.14	5	281	7.97	2
1	4	19	3.081		2494.46	9	274	8.28	1
1	.5	21	4.802		2424.77	7	32	3.50	3
stila	do líquid	io:	1289.561 lb-	mo	1/h				
oduct	08:								
Co	mposición	n	Destilado (fracció	Lí n	quido mol)		Prod. d (fracc	e Fo ión	ndos mol)
	Metanol		0.998	71			0.0	2766	i

Per

1

Des

Pro

Composición	Destilado Líquido (fracción mol)	Prod. de Fondos (fracción mol)
Metanol	0.99871	0.02766
Etanol	0.00060	0.00014
Agua	0.00069	0.97219

Carga térmica del condensador: -63,160,703. BTU/h Carga térmica del rehervidor: 43,207,891. BTU/h

Comentarios:

Perfiles iniciales

Temperatura: $T_1 = 156$, $T_{12} = 169$, $T_{15} = 215$, perfil lineal entre éstas.

Vapor:

 $v_{ij} = 3946.057, j = 2, 12; v_{ij} = 2715.591,$ j = 13, 15. Líquido: $L_{i} = 2656.496$, j = 1, 11; $L_{i} = 3039.095$, $j = 12, 14; L_{15} = 323.503.$

Métodos de cálculo de propiedades.

Entalpia			τ	JNIFAC
Constantes	de	equilibrio	Ţ	JNIFAC

-121-

14. Mezcla altamente no-ideal.

Fuente: Boston (1970)Número total de etapas:10Condensador:Sí, etapa 1, totalRehervidor:Sí, etapa 10Intercambio térmico:NoRelación de reflujo:2.0, líquido saturadoPresión de la columna:15.0 psiaAlimentaciones

Presión, psia 15.0 Temperatura, °F Líquido saturado Flujo, lb-mol/h 100.0 Etapa 5 Composición (Fracción mol) 0.30 n-Hexano 0.10 Etanol Metilciclopentano 0.30 0.30 Benceno

Destilado líquido:

50.0 lb-mol/h

-122-

Etapa	Temperatura (°F)	Vapor (1b-mol/h)	Líquido (1b-mol/h)
1	141.556	-	100.000
2	147.956	150.00	112.941
3	153.831	162.941	117.807
4	155.232	167.807	118.656
5	155,551	168.656	229.201
6	158,408	179.201	233.450
7	159.074	183.450	234.649
8	159,325	184.649	234.720
9	159.581	184.720	233.543
10	159,977	183.543	50.000

Destilado líquido: 50.00 lb-mol/h

Productos:

Composición	Destilado Líquido (fracción mol)	Prod. de Fondos '(fracción mol)
n-Hexano	0.34156	0.25844
Etanol	0.20000	-
Metilciclope	entano 0.26551	0.33449
Benceno	0.19294	0.40706

Carga térmica del condensador: -1,586,257.5 BTU/h Carga térmica del rehervidor: 1,599,453.6 BTU/h

Comentarios:

Perfiles iniciales.

Temperatura: $T_1 = 140$, $T_{10} = 156.2$; perfil lineal entre éstas.

Vapor: $V_j = 150.0, j = 2, 10$ Líquido: $L_j = 100., j = 1.4; L_j = 200., j = 5.9;$ $L_{10} = 50.$

Métodos de	cálculo	de prop	iedades
Entalpia			UNIFAC
Constantes	de equil	librio	UNIFAC

15. Separación metanol-agua.

Número total de etapas:	49
Condensador:	S1, etapa 1, total
Rehervidor:	S1, etapa 49
Intercambio térmico:	No
Relación de reflujo:	4.9583, líquido saturado
Presión de la columna:	22.21134 psia en el domo con una
	caída de 0.45329 psi por etapa.
Alimentaciones:	
Presión, psia	29.0107
Temperatura, °F	102.7382
Flujo, lb-mol/h	15300.081
Etapa	10

Etapa

Composición

Metanol

Agua

Destilado líquido

(Fracción mol) 0.62529

0.37471

9566.9894 lb-mol/h

Etapa	Temperatura (°F)	Vapor (lb-mol/h)	Liquido (lb-mol/h)
1 2	166.659 167.679	57002.965	47435.981
· 3	168.693	57012.699	47451.861
4	169.711	57018.845	47451.306
5	170.754	57018.290	47438.089
6	171.860	57005.073	47400.890
7	173.100	56967.875	47318.536
. 8	174.612	56885.521	47152.442
9	176.655	56719.427	46835.526
10	179.716	56402.510	63510.661
11	180.604	57777.564	63534.232
12	181.480	57801.136	63557.444
13	182.344	57824,348	63580.309
1.4	183.195	57847.212	63602.836
15	184.036	57869.741	63625.039
16	184.865	57891.943	63646.927
17	185.684	57913.832	63668.507
18	186.492	57935.411	69689.794
19	187.290	57956.699	63710.796
20	188.078	57977.701	63731.517
21	188.857	57998.422	63751.970
22	189.626	58018.875	63772.157
23	190.386	58039.062	63792.093
24	191.137	58058.999	63811.780
25	191.880	58078.686	63831.229
26	192.614	58098.135	63850.443
27	193.340	58117.350	63869.426
28	194.058	58136.333	63888.190
29	194.769	58155.096	63906.733
20	195.4/1	58173.638	63925.061
27	196.167	58191.967	63943.172
32	190.835	58210.077	63961.043
33	197.530	58227.950	63978.639
24	197.211	58245.546	63995.857
22	100 547	58262.765	64012.462
20	122.047	58279.369	64027.897
20	200.213	58294.805	64040.909
30	200.667	58307.817	64048.633
39	201.350	28312.541	64044.567
40	202.300	58311.4/5	64014.053
42	203.314	58280.961	63978.639
47	204.005	57070 044	63995.857
43	200.947	5/9/0.844	63204.046
45	221 020	5/4/0.956	62159.684
46	240 730	J0420.391	60411.012
47	240.730	54577.920	59223.544
48	202.449	53490.453	59465.848
49	270.250	53/32.756	59665.374
	212.IU4	53932.283	5733.0917

Destilado líquido: 9566.9894 lb-mol/h

Productos:

Composición	Destilado Líquido (fracción mol)	Prod. de Fondos (fracción mol)	
Metanol	0.99972	0.00047	
Agua	0.00028	0.99953	

Carga térmica del condensador: -908,622,620. BTU/h Carga térmica del rehervidor: 937,322,060. BTU/h

Comentarios:

Perfiles iniciales.

Temperatura: $T_1 = 166.94$, $T_{49} = 265.92$, perfil lineal entre éstas.

Vapor: $V_j = 57002.992$, j = 2, 49Liquido: $L_j = 47436.003$, j = 1, 9; $L_j = 62736.084$; j = 10, 48; $L_{AQ} = 5733.0917$

Métodos de cálculo de propiedades. Entalpias UNIFAC Constantes de equilibrio UNIFAC 16. Destilación extractiva.

Fuente: Gallun (1979) Número total de etapas: 50 Condensador: S1, etapa 1, total Rehervidor: S1, etapa 50 Intercambio térmico: NO Relación de reflujo: 2.5, líquido saturado Presión de la columna: 14.7 psia Alimentaciones: 2 1 3 Presión, psia 14.7 14.7 14.7 Temperatura, °F 100. 170. 100. Flujo, lb-mol/h 203.25 5. 100. 21 Etapa 4 6 Composición (lb-mol/h) (lb-mol/h) (lb-mol/h)0.25 Metanol 65. Acetona 0.5 25. 5.0 5. Etanol 5. 197.5 Aqua 5.

Producto de fondos:

285. 1b-mol/h

. 1	Etapa	Temperatura (°F)	Vapor (lb-mol/h)	Líquido (lb-mol/h)
	1	134.371	_	58,126
•	2	136.969	81.376	56 123
	3	140.705	79.373	53 315
·	-4	146.221	76.565	56 195
	5	151,166	74.445	53 191
	6	160.140	71.431	253 825
	7	160,149	68.825	253 817
	8	160.170	68,817	253.817
	9	160.193	68,817	253,810
	10	160.230	68.810	253,801
	11	160.284	68.801	253.709
	12	160.360	68.789	253.768
	13	160.476	68.768	253.740
	14	160.645	68.740	253,703
	15	160.887	68.703	253.652
	16	161.237	68.652	253.591
	17	161.733	68.591	253,539
	18	162.379	68.539	253.570
	19	162.842	68.570	253.885
	20	161.401	68.885	255,183
	21	150.455	70.183	355.437
	22	150.455	70.437	355.437
	23	150.455	70.437	355.437
	24	150.455	70.437	355.437
	25	150.455	70.437	355.437
	26	150.455	70.437	355.437
	27	150.455	70.437	355.437
	28	150.455	70.437	355.437
	29	150.455	70.437	355.437
	30	150.455	70.437	355.437
	31	150.455	70.437	355.437
	32	150.455	70.437	355,437
	33	150.455	70.437	355.437
	34	150.455	70.437	355.437
	35	150.455	70.437	355,437
	36	150.455	70.437	355.437
	37	150.455	70.437	355.437
	38	150.455	70.437	355.437
	39	150.455	70.437	355.437
	40	150.455	70.437	355.437
	41	150.456	70.437	355.436
	42	150.457	70.436	355.435
	43	150.403	70.435	355.431
	44	150.480	70.431 70.417	355.417
	40	150 514	70.417	355.3/4
	40	151 202	70.374	352.438
	47	153 061	10.230	333.844 252 025
	40	167 017	07.044 60 076	252.732
	417 50	160 241	67 513	374.014
		T00.54T	01.012	285.000

× 4.

Destilado líquido: 23.25 lb-mol/h

Productos:

Composición	Destilado Líquido (lb-mol/h)	Prod. de Fondos (1b-mol/h)
Metanol	0.140	65.110
Acetona	21.421	4.079
Etanol	0.782	9.218
Agua	0.906	206.594
_		

Carga térmica del condensador: -1,113,177.5 BTU/h Carga térmica del rehervidor. 1,179.368.4 BTU/h

Comentarios:

Perfiles iniciales

Temperatura: $T_1 = 130$, $T_{50} = 170$, perfil lineal entre éstas.

Vapor	$v_j = 81.375, j = 2, 50.$
L i quido :	$L_j = 58.125, j = 1,3; L_j = 63.125, j = 4,5;$ $L_j = 266.375, j = 6, 20; L_j = 366.375,$ $j = 21, 49, L_{50} = 285.0$

Se supuso la siguiente distribución en el fondo

Composición (lb-mol/h)

Metanol	65.	
Acetona	6.	
Etanol	8.	
Agua	206.	
Se usó la inicialización del	Apéndice	в.
Métodos de cálculo de propied	lades.	
Entalpia		UNIFAC

UNIFAC

Constantes de equilibrio

17. Destilación extractiva con furfural.

Fuente: Gupta y Gallier (1979) Número total de etapas: 15 Condensador: NO Rehervidor: S1, etapa 15 Intercambio térmico: No Relación de reflujo: Presión de la columna: 64.977 psia en el domo con una caída de 0.3626 psi por etapa. Alimentaciones: 1 2 64.977 67.5 Presión, psia Temperatura, °F 122. 149. Flujo, 1b-mol/h 100. 10. Etapa 1 8 Composición (Fracción mol) (Fracción mol) 1,3 Butadieno 0.35 0.03 n-Butano i-Buteno 0.03 0.07 Trans 2 Buteno 0-07 Cis 2 Buteno 0.45 1-Buteno 0.1 Agua 0.9 Furfural

Producto de fondos: 104. lb-mol/h

Etapa	Temperatura (°F)	Vapor (lb-mol/h)	Líquido (lb-mol/h)
1.	148.966	6.000	110.621
2	150.377	16.621	111.178
3	150.854	17.178	111.363
4	151.203	17.363	111.491
5	151.583	17.491	111.616
6	152.182	17.616	111.784
· 7	153.448	17.784	112.159
8	155.618	18.159	113.414
9	156.558	9.414	113.793
10	157.034	9.793	113.985
11	157.465	9.985	114.147
12	158.154	10.147	114.315
13	161.915	10.315	114.551
14	191.340	10.551	117.664
15	302-840	13.664	104.000

Productos:

Composición	Vapor (1b-mol/h)	Líquido (lb-mol/h)
1,3 Butadieno	-	3.500
n-Butano	0.300	-
i-Buteno	0.299	0.001
Trans-2-Buteno	0.692	0.008
Cis-2-Buteno	0.688	0.012
1-Buteno	3.839	0.661
Agua	0.144	9.856
Furfural	0.039	89.961

Carga térmica del rehervidor: 604,294.10 BTU/h

Comentarios:

Perfiles iniciales

Temperatura: $T_1 = 149$, $T_{14} = 162$, $T_{15} = 262$, perfil lineal entre $T_1 ext{ y } T_{14}$ Vapor $V_1 = 6$, $V_j = 20$, j = 2, 8; $V_j = 10$, j = 9, 15

Líquido: $L_i = 114, j = 1, 14; L_{15} = 104.$

Métodos de cálculo de propiedades.

Entalpia			UNIFAC
Constantes	de	equilibrio	UNIFAC

18. Absorbedor. Fuente: Holland (1981) Número total de etapas: 8 Condensador: No Rehervidor: NO Intercambio térmico: NO Relación de reflujo: Presión de la columna: 800. psia Alimentaciones: 1 2 Presión, psia 800. 800. Temperatura, °F 2.9 Ο. Flujo, 1b-mol/h 6.3092 100. 1 8 Etapa Composición (1b-mol/h) (lb-mol/h)CO2 0.4703 N2 0.1822 88.7000 CH4 6.6747 C2 H6 0.0015 2.7786 C3H8 i-C4H10 0.0006 0.6375 0.0013 0.3655 n-C4H10 0.0067 0.1158 1-C5H12 0.0061 0.0505 n-C5H12

0.1495

0.5736

1.8214

1.6866

2.061

0.0146

0.0081

0.0020

V11.4.

Eiemplos 18-24.

n-C6H14

n-C7H16

n-C8H18

n-C9H20 n-C₁₀H₂₂

Problemas de absorción y agotamiento.

Perfiles	finales de temperatu	ra y flujos de	vapor y líquido	••
Etar	oa Temperatura (°F)	Vapor (1b-mol/h)	Líquido (lb-mol/h)	
1	28.350	88.111	10.825	
2	27.135	92.626	11.358	
3	24.880	93.159	11.771	
4	22.640	93.573	12.175	
5	20.461	93.976	12.630	
6	18.144	94.437	13.273	
7	15.247	95.076	14.447	
8	10.577	96.247	18.198	

Productos

Composición	Vapor (lb-mol/h)	Líquido (lb-mol/h)
co ₂	0.376	0.095
N ₂	0.179	0.003
CH4	82.343	6.357
с ₂ н _б	4.643	2.032
с ₃ н ₈	0.518	2.262
1-C4H10	0.003	0.635
$n-C_{4}H_{10}$	0.001	0.366
1-C5H12	0.002	0.121
n-C5H12	0.001	0.056
^{n-C} 6 ^H 14	0.009	0.156
n-C7H16	0.013	0.569
n-C _B H ₁₈	0.015	1.808
n-C9H20	0.006	1.681
n-C10H22	0.003	2.059

-135-

Comentarios

Perfiles iniciales

Temperatura: $T_j = 25.$, j = 1, 8Vapor: $V_j = 99.548$, j = 1,8Liquido: $L_j = 6.3092$, j = 1,7; $L_8 = 6.761$

Métodos de cálculo de propiedades.

Entalpia

Ecuación de Soave

Constantes de equilibrio Grayson-Streed

19. Columna absorbedora.

Número total de etapas:	8	
Condensador:	No.	
Rehervidor:	No	· · ·
Intercambio térmico:	No	
Relación de reflujo:	-	
Presión de la columna:	254.7 psia con a 0.2 psi por eta	una caída de pa.
Alimentaciones:	1	2
Presión, psia	254.7	254.7
Temperatura, °F	H=-8882.5 BTU 1b-mol	H=4434.15 BTU 1b-mol
Flujo, lb-mol/h	3141.497	76000.02
Etapa	1	8
Composición	(fracción mol)	(fracción mol)
H2	-	0.69728
CH4	-	0.09720
C ₂ H ₄	-	0.09482
C ₃ H ₈	-	0.05739
n-C4H10	0.00004	0.03381
1-C5H12	0.00275	0.00680
n-C5H12	0.00504	0.00339
Benceno	0.17712	0.00266
Metilciclopentano	0.01666	0.00026
1-C6H14	0.09527	0.00291
n-C6H14	0.04731	0.00091
Tolueno	0.33830	0.00175
n-C7H16	0.00591	0.00004
Etilbenceno	0.04805	0.00010
para-Xileno	0.04492	0.00009
meta-Xileno	0.10425	0.00020
orto-Xileno	0.05738	0.00010
TBP 112 (TBP=112.6,API=54.9,PM=99.668)	0.00131	0.00001
2-metil-Hexano	0.02094	0.00025
Aromáticos (TBP=314., API=31.8,PM=120.19)	0.03475	0.00003

Etapa	Temperatura (°F)	Vapor (1b-mol/h)	Liquido (lb-mol/h)
1	125.797	7101.734	3408.187
2	131.371	7368.423	3476.970
3	134.327	7437.206	3511.928
4	135.865	7472.164	3534.968
5	136.210	7495.204	3552.407
6	135.189	7512.644	3568.326
7	132.141	7528.563	3590.817
8	125.173	7551.054	3639.783

Productos:

Composición	Producto vapor (fracción-mol)	Producto Líquido (fracción-mol)
H ₂	0.74247	0.00729
CHA	0.100702	0.00648
C2H6	0.08944	0.02349
с ₃ н ₈	0.04087	0.04009
n-C4H10	0.00462	0.06162
1-C5H12	0.00053	0.01554
$n-C_5H_{12}$	0.00076	0.00996
Benceno	0.00517	0.14833
Metilciclopentanc	0.00060	0.01375
1-C6H14	0.00689	0.07487
n-C6H14	0.00232	0.03821
Tolueno	0.00369	0,28845
n-C7 ^H 16	0.00011	0.00498
Etilbenceno	0.00022	0.04124
para-xileno	0.00020	0.03857
meta-Xileno	0.00044	0.08954
orto-Xileno	0.00022	0.04931
TBP 112	0.00018	0.00081
2-metil-Hexano	0.00054	0.01755
Aromáticos	0.00006	0.02994
Comentarios:

Perfiles iniciales Temperatura: T = 85., 94., 101., 107., 112., 116., 118., 117. Vapor: $V_j = 7596.0121$, j = 1,8Líquido $L_i = 3141.497$, j = 1,8

Métodos de cálculo de propiedades.

Entalpia			Ecuación	de	Soave
Constantes	de	equilibrio	Gayson-St	tree	ed

20. Absorción de propano.

Fuente: Diab y Maddox (1	982)	
Número total de etapas:	6	
Condensador:	No	2
Rehervidor:	NO	e i e e
Intercambio térmico:	NO	
Relación de reflujo:	-	
Presión de la columna:	1000. psia	
Alimentaciones:	1	2
Presión, psia	1000.	1000.
Temperatura, °F	0	0
Flujo, 1b-mol/h	128	1846.12
Etapa	1	6
Composición	(lb-mol/h)	(1b-mo1/h)
N ₂	-	23.020
CH4	-	1435.970
co ₂	-	125.590
с ₂ н _б	-	183.730
с _з н ₈	-	60.490
1-C4 H10	-	5.930
^{n-C} 4 ^H 10	-	8.400
i-C5H12	-	1.480
^{n-C} 5 ^H 12	-	1.020
n-C6 ^H 14	-	0.420
^{n-C} 7 ^H 16	-	0.070
Corte 0-10%	18.710	-
Corte 10-20%	15.020	-
Corte 20-30%	13.330	-
Corte 30-40%	12.480	-
Corte 40-50%	12.140	-
Corte 50-60%	11.940	-
Corte 60-70%	11.690	-
Corte 70-80%	11.370	-
Corte 80-90%	11.060	-
Corte 90-100%	10.260	-

Caracterización para el aceite absorbedor.

Datos por Fracciones

Rango, %	Rango de Ebull. °F	Punto de Ebull. Prom., °F	API	PM
0-10	163-290	231.5	59.53	99.91
10-20	290-376	338.0	50.62	132.11
20-30	376-420	400.3	46.11	153.13
30-40	420-447	435.8	43.73	166.06
40-50	447-455	450.4	42,79	171.60
50-60	455-465	459.7	42.20	175.19
60-70	465-478	471.1	41.49	179.69
70-80	478-495	486.2	40.56	185.76
80-90	495-517	501.4	39.65	192.01
90-100	517-578	542.7	37.27	209.72

Perfiles finales de temperatura y flujos de vapor y líquido

Etapa	Temperatura (°F)	Vapor (lb-mol/h)	Líquido (lb-mol/h)
1	27.300	1502.045	245.163
2	25.972	1619.207	263.681
3	22.891	1637.725	280.449
4	19.348	1654.494	302.224
5	15.213	1676.269	340.810
6	9.491	1714.854	472.075

Productos

Composición	Producto Vapor (lb-mol/h)	Producto Líquido (1b-mol/h)
N ₂	22.355	0.665
CH4	1270.608	165.362
co ₂	89.398	36.192
C2H6	110.544	73.186
C ₃ H ₈	8.734	51.756
i-C4H10	0.050	5.880
n-C4H10	0.013	8.387
1-C5H12	-	1.480
n-C ₅ H ₁₂	-	1,020
n-C6H14	. –	0.420
n-C7H16	-	0.070
Corte 0-10%	0.293	18.417
Corte 10-20%	0.029	14.991
Corte 20-30%	0.008	13.322
Corte 30-40%	0.004	12.476
Corte 40-50%	0.003	12.137
Corte 50-60%	0.002	11.938
Corte 60-70%	0.002	11.688
Corte 70-80%	0.001	11.369
Corte 80-90%	0.001	11.059
Corte 90-100%	-	10.260

Comentarios

Perfiles iniciales			
Temperatura: $T_1 = 12.44$, $T_6 = tre$ éstas.	38.77, perfil lineal en-		
Vapor: $V_j = 1812.2775$, Líquido: $L_j = 128., j = 1$ Métodos de cálculo de propieda	j = 1,6 ,5; L ₆ = 161.84241 ades		
Entalpia	Ecuación de Soave		
Constantes de equilibrio	Grayson-Streed		

21. Absorbedor con intercambio térmico.

Fuente: Gupta y Gallier (1979) Número total de etapas: 7 Condensador: No Rehervidor: NO Intercambio térmico: -99803 BTU/h en el plato 4 Relación de reflujo: Presión de la columna: 91.37 psia 1 Alimentaciones: 2 Presión, psia 91.37 91.37 Temperatura, °F 56.282 55.796 Flujo, lb-mol/h 107.5 84.5 7 1 Etapa (fracción mol) (fracción mol) Composición 0.0369 H,S СН4 0.3587 N2 0.0707 н, 0.019 0.0423 C2H4 0.2112 C2H6 0.0652 C3^H6 0.1072 C3H8 1-Buteno 0.0292 n-C4H10 0.0349 n-C5H12 0.0247 1.0 n-C₁₂H₂₆

Etapa	Temperatura (°F)	Vapor (lb-mol/h)	Líquido (lb-mol/h)
1	65.277	77.150	96.395
2	67.958	89.045	99.192
3	68.118	91.842	100.772
4	58.222	93.421	104.345
5	60.767	96.995	106.202
6	64.375	98.851	108.384
7	70.218	101.033	114.851

Perfiles finales de temperatura y flujos de vapor y líquido'

Productos

Composición	Vapor (lb-mol/h)	Líquido (lb-mol/h)
H ₂ S	2.628	1.339
CH4	36.928	1.632
^N 2	7.530	0.070
^H 2	2.033	0.010
с ₂ н ₄	3.892	0.655
^C 2 ^H 6	18.244	4.460
^С з ^н б	2.599	4.410
с _з н ₈	3.284	8.240
1-Buteno	0.003	3,136
n-C4 ^H 10	0.002	3.750
^{n-C} 5 ^H 12	-	2.655
^{n-C} 12 ^H 26	0.006	84.494

-144-

Perfiles inicialesTemperatura: $T_1 = 55.796$, $T_7 = 56.282$, perfil lineal –
entre éstas.Vapor: $V_j = 99.038$, j = 1.4; $V_j = 107.5$, j = 5.7Líquido: $L_j = 84.5$, j = 1.4; $L_j = 92.962$, j = 5.7Métodos de cálculo de propiedades.
EntalpiaEntalpia

Constantes de equilibrio Grayson-Streed

Comentarios:

22. Columna de absorción con presaturador.

Fuente: Burningham y Otto	o (1967)	
Número total de etapas:	6	
Condensador:	Presaturador	, etapa 1, T=20°F
Rehervidor:	No	
Intercambio térmico:	s1, -5.8(10) [€]	BTU/h, etapa 6
Relación de reflujo:	-	
Presión de la columna:	1310.0 psia	
Alimentaciones:	1	2
Presión, psia	1310.0	1310.0
Temperatura, °F	-5.	45.
Flujo, lb-mol/h	362.5	11808.7
Etapa	1 '	6
Composición	(lb-mol/h)	(lb-mol/h)
N ₂	-	206.7
co ₂	-	152.5
CHA	-	8721.5
C ₂ H ₆	-	1767.8
C ₃ H ₈	-	686.8
1-C4H10	-	72.8
n-C4H10	-	136.7
i-C5H12	-	19.7
n-C5H12	-	19.5
n-C6H14	-	13.1
TBP 200	0.7	8.4
(TBP=200, API=63, 2, PM=89.6)		
TBP 265 (TBP=265,API=57.3,FM=103.6)	2.9	2.5
TBP 325 (TBP=325,API=52.8,PM=127.)	129.9	0.5
TBP 380 (TBP=380,API=47.3,PM≈145.)	204.3	0.1
TBP 425 (TBP=425_APT=44.5.PM=166.)	24.7	0.1

	-		
Etapa	Temperatura (°F)	Vapor (lb-mol/h)	Líquido (lb-mol/h)
1	20.000	8866.323	1139.133
2	29.926	9642.956	1237.465
3	31.157	9741.286	1346.938
4	30.487	9850.762	1513.491
5	29.050	10,017.314	1859.623
6	26.619	10,363.446	3304.876

Perfiles finales de temperatura y flujos de vapor y líquido.

Productos:

Composición	Vapor (lb-mol/h)	Liquido (lb-mol/h)	
N ₂	195.144	11.556	
co ₂	104.667	47.833	
Сн4	7325.721	1395,798	
С ₂ н ₆	1055.156	712.644	
с ₃ н ₈	175.911	510.889	
1-C4H10	4.596	68.204	
n-C4 ^H 10	2.831	133.860	
1-C5H12	0.034	19.666	
n-C ₅ H ₁₂	0.008	19.492	
n-C ₆ H ₁₄	0.000	13.100	••••
TBP 200	0.058	9.042	
TBP 265	0.087	5,313	
твр 325	1.285	129.115	
TBP 380	0.802	203,597	
TBP 425	0.043	24.757	

Carga térmica del presaturadro: -2,297,515.4 BTU/h

Comentarios:

Perfiles inio	ciale	28	
Temperatura:	T =	20., 29., 25., 25., 25., 20.	가지 (1998년) 1993년 - 1983년 - 1983 1983년 - 1983년 -
Vapor:	V =	9398.6, 9500., 9750., 10	.000.,
80		10,500., 11,000.	
Liquido:	L=	500., 1000., 1500., 2000)., 2500.,
		7 906 7	

Métodos de cálculo de propiedades.

Entalpia			Ecuación	de	Soave
Constantes	de	equilibrio	Grayson-	Stre	ed

23. Absorbedor con rehervidor.

Fuente: Holland (1981) Número total de etapas: 11 Condensador: No Rehervidor: 51, etapa 11 Intercambio térmico: No Relación de Reflujo: Presión de la columna: 300 psia Alimentaciones: 1 2 300 300 Presión, psia Temperatura, °F 50.36 Vapor Saturado Flujo, lb-mol/h 100 100 Etapa 4 1 (lb-mol/h) (lb-mol/h)Composición 65.0 CHA 13.0 C₂H₆ 1.0 C₃H_R 1-C4H10 1.0 n-C5H12 20.0 n-C_{gH18} 100.0

Carga térmica del rehervidor: 3.0 (10)⁶ BTU/h

-149-

Etapa	Temperatura (°F)	Vapor (lb-mol/h)	Líquido (lb-mol/h)
1	63.993	75.735	123.312
2	69.677	99.047	127.362
3	81.551	103.097	130.455
4	120.726	106.189	148.700
5	129.851	24.435	161.716
6	139.484	37.451	175.964
7	147.982	51.699	184.979
8	168.778	60.714	192.412
9	241.771	68.147	216.290
10	364.920	92.025	292.367
11	453.261	168.101	124.265

Perfiles finales de temperatura y flujos de vapor y líquido.

Productos

Composición	Producto Vapor (lb-mol/h)	Prod. de Fondos (lb-mol/h)
CH4	64.998	0.002
^с 2 ^н б	10.597	2.403
C3H8	0.032	0.968
i-C4 ^H 10	0.001	0.999
n-C5 ^H 12	-	20.000
^{n-C} 8 ^H 18	0.007	99.893

-150-

Comentarios:

Perfiles iniciales

Temperatura: $T_1 = 50.$, $T_9 = 200.$, $T_{11} = 450.$, perfil lineal entre éstas. Vapor: $V_1 = 75.$, $V_j = 150.$, $j = 2, 4; V_j = 50,$ $j = 5, 10, V_{11} = 77.925$ Líquido: $L_j = 175.$, $j = 1, 9, L_{10} = 202.93,$ $L_{11} = 125.$

Métodos de cálculo de propiedades Entalpia Ecuación de Soave Constantes de equilibrio Grayson-Streed

24. Columna agotadora.		· · ·
Número total de etapas:	14	
Condensador:	No	
Rehervidor:	SI, etapa 14	· .
Intercambio térmico:	No	
Relación de reflujo:	-	
Presión de la columna:	314.7 psia, c 0.2 psi por e	con una caída de stapa.
Alimentaciones:	1	2
Presión, psía	314.7	315.3
Temperatura, °F	88.45	124.5
Flujo, 1b-mol/h	667.557	2002.671
Etapa	1	4
Composición	(fracción mol	l)(fracción mol)
H ₂ O	0.00073	0.00073
co2	0.00034	0.00034
CHA	0.11147	0.11147
C, H,	0.10473	0.10473
C _a H _a	0.14613	0.14613
1-CAH	0.04068	0.04068
n-C ₄ H ₄	0.12128	0.12128
4 10 1-C_H	0.06575	0.06575
5 12 n-C_H	0.07524	0.07524
5 12 n-C-H	0.11971	0.11971
6 14 n-C_H_	0.06474	0.06474
7 16 n-C_H_	0.04852	0.04852
n-CoHoo	0.10068	0.10068
9 20		

Producto de fondos: 2285.0 lb-mol/h

Etapa	Temperatura (°F)	Vapor (1b-mol/h)	Liquido (lb-mol/h)
1	91.906	385.228	654.119
2	96,240	371.790	665.267
· 3	103.020	382.938	675.003
4	119,099	392.674	2499.308
5	119.098	214.308	2499.979
6	119.099	214.979	2500.525
7	119.102	215.525	2501.001
- B	119.111	216.001	2501.495
9	119.141	216.495	2502.276
10	119.256	217.276	2504.366
11	119.753	219.366	2512.083
12	122.220	227.083	2544.816
13	136.182	259.816	2677.342
14	202.735	392.342	2285.000

Perfiles finales de temperatura y flujos de vapor y líquido.

Productos:

Composición	Producto Vapor (fracción mol)	Prod. de Fondos (fracción mol)
н ₂ 0	0.00506	-
co ₂	0.00108	0.00022
СНД	0.63469	0.02326
C2H6	0.21067	0.08687
с ₃ н ₈	0.09561	0.15465
1-C4H10	0.01145	0.04561
n-C ₄ H ₁₀	0.02528	0.13747
1-C_H12	0.00625	0.07578
$n-C_5H_{12}$	0.00559	0.08698
n-C6H14	0.00323	0.13935
$n-C_7H_{16}$	0.00070	0.07554
n-C ₈ H ₁₈	0.00021	0.05667
	0.00019	0.11762

-153-

Carga térmica del rehervidor: 9,313,121.8 BTU/h

Comentarios:

Perfiles iniciales

Este perfil fue el que se logró obtener con el error menor, usando la técnica de matriz tridiagonal (arreglo BP).

Vapor:	$v_1 = 385.228; v_j = 360.794, j = 2, 4;$
	V _j = 182.475, j = 5, 14
Líquido:	L _j = 643.123, j = 1,3; L _j = 2467.476,
	$j = 4, 13; L_{14} = 2285.0$

Métodos de cálculo de propiedades. Entalpia Ecuación de Soave Constantes de equilibrio Grayson-Streed

No.	Descripción del Problema Título	Número de Iteraciones	Error x 10 ⁵	CPU seg.
1	Amplio rango de T. de Eb. con un comp. intermedio	16	0.03436	14.277
2	Amplio rango de T. de Eb. con comps. intermedios	11	0.62264	-
3	Columna desmetanizadora I	15	1.02785	228.019
4	Columna desmetanizadora II	11	0.28001	147.586
5	Columna desmetanizadora III	11	0.55860	-
6	Desetanizadora I	5	0.54223	60.386
7	Desetanizadora II	9	0.28985	122.074
8	Separación etano-etileno	18	0.51801	322.87
9	Despropanizadora	7	0.65239	-
10	Desbutanizadora	8	0.02588	103.131
11	Estabilización de gasolinas	5	0.12243	42.170
12	Separación acetona-agua	8	0.76603	13.407
13	Metanol puro	· 8	0.51053	14.354
14	Destilación altamente no-ideal	14	0.56425	15.434
15	Separación metanol-agua	15	0.94764	32.358
16	Destilación extractiva	14	0.94413	109.283
17	Destilación extractiva con furfural	11	0.17607	212.202
18	Absorbedor I	11	0.76433	56.978
19	Absorbedor II	7	0.49481	136.377
20	Absorción de propano	10	0.47864	175.682
21	Absorción con intercambio térmico	3	0.24801	-
22	Absorbedor con presaturador	6	0.74510	57.710
23	Absorbedor con rehervidor	7	0.14072	-
24	Columna agotadora	5	0.85536	97.397

TABLA 7.2 COMPARACION DE RESULTADOS.

-155-

No.	Descripción del Problema Título	NEC	NA	Densidad (%)	Llenado (veces NA)	NJAC	JCTE	ITPI
1	Amplio rango de T. de Eb con un comp. intermedio	142	933	4.63	1.6849	2	_	3
2	Amplio rango de T. de Eb. con comps. intermedios	222	1940	3.94	1.9144	1	2	3
3	Columna desmetanizadora I.	256	3020	4.61	2.0245	1	4	3
4	Columna desmetanizadora II.	254	3750	5.61	2,1229	1	4	3
5	Columna desmetanizadora III	484	7190	3.07	2.3658	1		4
6	Desetanizadora I	376	4450	3,15	1.9238	1	-	4
7	Desetanizadora II	380	5234	3.62	2.0210	1	-	4
8	Separación etano-etileno	552	4880	1.60	1.9174	1	· -	4
9	Despropanizadora	277	2146	2.60	1.7805	1	-	3
10	Desbutanizadora	521	6118	2.25	2.1436	1	1	3
11	Estabilización de gasolinas	301	4474	4.94	2.159	1	1	3
12	Separación acetona-agua	191	1091	2.99	1.5655	1	-	2
13	Metanol puro	107	708	6.18	1.7429	2	-	2
14	Destilación altamente no-ideal	92	694	8,20	1.8012	1	3	2
15	Separación metanol-agua	247	1413	2.32	1.5725	3	· –	3
16	Destilación extractiva	452	3534	1.73	1.8090	1	5	3
17	Destilación extractiva con furfural	256	3020	4.61	2.4646	2	-	3
18	Absorbedor I	232	4110	7.64	2.1377	1	4	2
19	Absorbedor II	328	7782	7.23	2.2345	1	2	2
20	Absorción de propano.	258	6358	9.55	2.1876	2	1	3
21	Absorción con intercambio térmico	175	2743	8,96	2.0678	1		2
22	Absorbedor con presaturador	187	3468	9.92	2.1860	1	1	2
23	Absorbedor con rehervidor	144	1400	6.75	1.9786	1	-	3
24	Columna agotadora	379	6372	4.44	2.5038	1	1	2

!

TABLA 7.3 INFORMACION SOBRE EL MANEJO DE LAS MATRICES.

NEC = No. de Ecuaciones.

NA = No. de elementos diferentes de cero.

NJAC = No. de evaluaciones del jacobiano

JCTE = No. de iteraciones que se mantuvo constante el jacobiano.

ITPI = No. de iteraciones requeridas en el procedimiento iterativo.

CAPÍTULO VIII CONCLUSIONES

Se ha demostrado satisfactoriamente la aplicación del planteamiento de un algoritmo "Almost-Band", con la aplicación del Método de Broyden-Schubert, propuesto originalmente por Gallun (1979). De su aplicación a 24 problemas típicos de separación multicomponente en columnas de etapas de equilibrio, se concluye lo siguiente:

- Este método es capaz de resolver una gama amplia de sistemas y tipos de problemas, entre los que se incluyen: destilación, absorción, absorción con rehervidor, destilación extractiva, varias alimentaciones y extracciones, condensadores parciales y totales, soluciones que tienen un comportamiento altamente no-ideal, y sin importar el rango de volatilidades de los componentes.
- Cuando se manejan muchos componentes (>20), combinado con muchas etapas (>20), el tiempo de cómputo es excesivo.
- 3. Requiere un área de almacenamiento muy grande.

-157-

- 4. Es muy sensible a la suposición inicial del perfil de <u>T</u>, observándose que en aquellos casos en que el perfil inicial está demasiado lejos de la solución, se requiere un gran número de iteraciones, o en muchos casos se obtiene divergencia. Sin embargo, en la mayoría de los casos es relativamente fácil seleccionar suposiciones iniciales, para las que se obtenga convergencia.
- 5. Las técnicas aplicadas para manejar las matrices demuestran una eficiencia alta en cuanto a precisión y estabilidad, como se observa en el número de iteraciones erequeridas en el procedimiento iterativo. Pero, en cuanto al llenado de las matrices en el proceso de descomposición triangular, el número de elementos diferentes de cero que aparecen es excesivo.

VIII.1. Recomendaciones.

Sobre la aplicabilidad de este procedimiento se recomienda lo siguiente:

 Cuando se manejan soluciones altamente no-idea les este método es superior a otros planteamientos, dada la característica de estos pro-

-158-

blemas de poseer pocos componentes, sin importar el número de etapas, por lo que debe usarse en estos casos.

- 2. Para aquellos problemas en que se tengan muchos componentes, usarlo sólo en los casos que no se obtenga convergencia con otros métodos, y en esta situación, utilizar el mejor perfil de <u>T</u> obtenido con éstos, con lo que se minimiza el número de iteraciones y el tiempo de cóm puto.
- 3. Se recomienda aplicar este método para el número de ecuaciones (NEC) menor o igual que 700 (NEC = (2NC+1) NP+2), o que el número de elementos diferentes de cero en la matriz original (NA) sea menor o igual que 10,000 (NA = 2.NP.NC² + (9.NP-2).NC + 3NP), con lo que el requerimiento de memoria es aproximadamente de 75 K palabras. El tiempo de cómputo es del orden reportado en el Capítulo VII.
- 4. Dado que el consumo de tiempo por iteración es alto, es conveniente saber si con una suposición inicial va a converger un problema o no. Esto se hace fácilmente de la observación del error en cada iteración y del tamaño de $\alpha^{(K)}$.

-159-

Si el problema va a converger, el error disminuye entre iteraciones y el tamaño de $\alpha^{(K)}$ va aumentando hasta que cerca de la solución su valor siempre es 1. Si el error y/o $\alpha^{(K)}$ oscilan, no se obtendrá convergencia. En problemas fáciles $\alpha^{(K)}$ siempre es 1, y se obtiene convergencia en cinco iteraciones o menos. En problemas difíciles $\alpha^{(K)}$ puede llegar a valer hasta 0.78125 (10)⁻² y requerir hasta 20 iteraciones.

-160-

REFERENCIAS

- Amundson, N.R., and A.J. Pontinen, Multicomponent Distillation Calculations on a Large Digital Computer, Industrial and Engineering Chemistry, 50 (5), 730 (1958).
- Ball, W.E., en Billingsley, D.S., AIChE J., <u>12</u> (6), 1134 (1966).
- Bennett, J.M., Triangular Factors of Modified Matrices, Numerische Mathematik, 7, 217 (1965).
- Billingsley, D.S., On the Numerical Solution of Problems in Multicomponent Distillation at the Steady State, AIChE Journal, 12 (6), 1134 (1966).
- Billingsley, D.S., On the Equations of Holland in the Solution of Problems in Multicomponent Distillation, IBM J. Res. Develop., 14 (1), 33 (1970b).
- Billingsley, D.S., On the Numerical Solution of Problems in Multicomponent Distillation at the Steady State II, AIChE Journal, 16 (3), 441 (1970a).
- Billingsley, D.S., and G.W. Boynton, Iterative Methods for Solving Problems in Multicomponent Distillation at the Steady State, AIChE Journal, 17 (1), 65 (1971)
- Boston, J.F., A New Class of Quasi-Newton Solution Methods for Multicomponent, Multistage Separation Processes, Ph. D. Dissertation, Tulane University, New Orleans (1970).

-161-

- Boston, J.F., and S.L. Sullivan, Jr., An Improved Algorithm for Solving the Mass Balance Equations in Multistage Separation Processes, the Canadian Journal of Chem. Eng., 50, 663 (1972).
- Boston, J.F., and S.L. Sullivan, Jr., A New Class of Solution Methods for Multicomponent, Multistage Separation Processes, the Canadian Journal of Chem. Eng., <u>52</u>, 52 (1974).
- Boynton, G.W., Iteration Solves Distillation, Hydrocarbon Processing, 49 (1), 153 (1970).
- Broyden, C.G., A Class of Methods for Solving Nonlinear Simultaneous Equations, Mathematics of Computation, <u>19</u>, 577 (1965).
- Bruno, J.A., J.L. Yanosik, and J.W. Tierney, Distillation Calculations with Nonideal Mixtures, Extractive and Azeotropic Calculations, Advances in Chemistry Series 115, ACS, Washington D.C. (1972).
- Burningham, D.W., and F.D. Otto, Which Computer Design for Absorbers, Hydrocarbon Processing, 46 (10), 163 (1967).
- Christiansen, L.J., M.L. Michelsen, and Aage Fredenslund, Naphtali-Sandholm Distillation Calculations for NGL Mixtures Near the Critical Region, Computers and Chem. Eng., 3, 535 (1979).
- Curtis, A.R., M.J.D. Powell, and J.K. Reid, On the Estimation of Sparse Jacobian Matrices, J. Inst. Maths. Applics., 13, 117 (1974).

- Diab, S., and R.N. Maddox, Absorption, Chem. Eng., <u>89</u> (26), 38 (1982).
- Forsythe, G.E., and C.B. Moler, Computer Solution of Linear Algebraic Systems, Prentice-Hall, Englewood Cliffs, New Jersey (1967).
- Friday, J.R., and B.D. Smith, An Analysis of the Equilibrium Stage Separations Problem-Formulation and Convergence, AIChE Journal, 10 (5), 698 (1964).
- Gallun, S.E., Solution Procedures for Nonideal Equilibrium Stage Processes at Steady and Unsteady State Described by Algebraic or Differential-Algebraic Systems, Ph.D. Dissertation, Texas A & M University (1979)
- Gallun, S.E., and C.D. Holland, A Modification of Broyden's Method for the Solution of Sparse Systems with Application to distillation Problems Described by Nonideal Thermodynamic Functions, Computers and Chem. Eng., <u>4</u>, 93 (1980).
- Gallun, S.E., and C.D. Holland, Solve More Distillation Problems. 5-For Highly Nonideal Mixtures, Hydrocarbon Processing, 55 (1), 137 (1976).
- Goldstein, R.P., and R.B. Stanfield, Flexible Method for the Solution of Distillation Design Problems Using the Newton-Raphson Technique, Ind. Eng. Chem. Process Des. Develop., 9 (1), 78 (1970).
- Gupta, P.W., and P.K., Gallier, Distillation Programs in the ASPEN Simulator, Paper 28a, Presented at the Sym-

posium on Stage Mass/Energy Balances in Multicomponent Distillation, 86th Natl. Meet. of the AIChE, Houston, Texas, April 3 (1979).

- Gustavson, F.G., Sparse Matrix Methods, IBM Research Report RC-8330 (1980).
- Henley, E.J., and J.D. Seader, Equilibrium-Stage Separation Operations in Chemical Engineering, John Wiley & Sons, Inc., New York (1981).
- Hess, F.E., C.D. Holland, R. McDaniel, and N.J. Tetlow, Solve More Distillation Problems. 7-Absorber-Type Pipestills, Hydrocarbon Processing, <u>56</u> (5), 241 (1977).
- Hess, F.E., S.E. Gallun, G.W. Bentzen, C.D. Holland, R. McDaniel, and N.J. Tetlow, Solve More Distillation Problems. 8- Which Method to Use, Hydrocarbon Processing, 56 (6), 181 (1977).
- Holland, C.D., Multicomponent Distillation, Prentice-Hall, Englewood Cliffs, New Jersey (1963).
- Holland, C.D., Fundamentals of Multicomponent Distillation, McGraw-Hill Book Co., New York (1981).
- Holland, C.D., and G.P. Pendon, Solve More Distillation Problems. 1-Improvement Give Exact Answers, Hydrocarbon Processing, <u>53</u> (7), 148 (1974).
- Holland, C.D., G.P. Pendon, and S.E. Gallun, Solve More Distillation Problems. 3-Application to Absorbers, Hydrocarbon Processing, 54 (1), 101 (1975).

- Ishi, Y., and F.D. Otto, A General Algorithm for Multistage Multicomponent Separation Calculations, The Canadian Journal of Chem. Eng., 51, 601 (1973)
- King, J.C., Separation Processes, McGraw-Hill Book Co., New York (1981).
- Lewis, W.K., and G.L. Matheson., Studies in Distillation-Design of Rectifying Columns for Natural and Refinery Gasoline, Industrial and Engineering Chemistry, <u>25</u> (5), 494 (1932).
- Naphtali, L.M., and D.P. Sandholm, Multicomponent Separation Calculations by Linearization, AIChE Journal, <u>17</u> (1), 148 (1971).
- Newman, J.S., Temperature Computed for Distillation, Hydrocarbon Processing and Petroleum Refiner, <u>42</u> (4), 141 (1963).
- Orbach, O., A Study of the Promotion of Convergence in the Calculation of Complex Chemical Plants, Ph.D. Dissertation, McMaster University (1969).
- Orbach, O., C.M. Crowe, and A.I. Johnson, Multicomponent Separation Calculations by the Modified Form of Newton's Method, Chemical Engineering Journal, <u>3</u>, 176 (1972).
- Schubert, L.K., Modification of a Quasi-Newton Method for Nonlinear Equations with a Sparse Jacobian, Mathematics of Computation, 25, 27 (1970).

- Shah, M.K., and P.R. Bishnoi, Multistage Multicomponent Separation Calculations Using Thermodynamic Properties Eva luated by the SRK/PR Equation of State, The Canadian Journal of Chem. Eng., 56, 478 (1978).
- Stewart, G.W., Introduction to Matrix Computations, Academic Press: New York (1973).
- Sujata, A.D., Absorber-Stripper Calculations Made Easier, Hydrocarbon Processing and Petroleum Refiner, <u>40</u> (12), 137 (1961).
- Tewarson, R.P., Sparse Matrices, Academic Press, New York (1973).
- Thiele, E.W., and R.L. Geddes, Computation of Distillation Apparatus for Hydrocarbon Mixtures, Industrial and Engineering Chemistry, 25 (3), 289 (1933).
- Tierney, J.W., and J.A. Bruno, Equilibrium Stage Calculations, AIChE Journal, 13 (3), 556 (1967).
- Tierney, J.W., and J.L. Yanosik, Simultaneous Flow and Temperature Correction in the Equilibrium Stage Problem, AIChE Journal, 15 (6), 897 (1969).
- Tomich, J.F., A New Simulation Method for Equilibrium Stage Processes, AIChE Journal, 16 (2), 229 (1970).
- Wang, J.C., and G.E. Henke, Tridiagonal Matrix for Distillation, Hydrocarbon Processing, 45 (8), 155 (1966).
- Wilkinson, J.H., The Algebraic Eigenvalue Problem, Oxford: Clarendon Press (1965).

APÉNDICE A

Inicialización de las variables de iteración ξ , \underline{y} y \underline{T} , como una modificación del método propuesto por Boston y Sullivan (1974).

Se suponen las temperaturas del domo y del fondo. Si no se tiene un estimado de éstas, se aplica la siguiente técnica:

Se obtiene una alimentación compuesta, adicionando todas las corrientes de alimentación. Se determinan sus temperaturas de burbuja y de rocio a la presión del plato medio. Estos valores se asignan al domo y el fondo, respectivamente.

El perfil inicial de temperaturas se obtiene interpolando linealmente entre ambas.

2. Se calculan las condiciones de equilibrio de la al<u>i</u> mentación compuesta a T_1 y T_{NP} y a las presiones co rrespondientes, con objeto de obtener valores de -las constantes de equilibrio a dos temperaturas. Si se usó la opción de estimar <u>T</u> por puntos de burbuja y de rocío, se ahorra este paso y directamente se toman las constantes obtenidas en estos cálculos. 3. Se obtienen las constantes de equilibrio para toda la columna y todos los componentes interpolándolas directamente con los valores obtenidos a las dos -temperaturas conocidas, y aplicando el perfil de <u>T</u> supuesto. Para esto se supone una funcionalidad de la forma

$$\ln K = a + \frac{b}{T}$$

- 4. Se suponen flujos molares constantes para obtener - $\underline{L} y \underline{V}$.
- 5. Se aplica el algoritmo modificado de Thomas para -- calcular £.
- 6. Se utilizan las ecuaciones de equilibrio para obtener \underline{v} .

7. Se calculan las constantes de equilibrio como

v _v	/	v v v	1=1,NC
[^] ij [−] [•] ij	`` j ′ [*] j	'^ij' ⁱ ij'	′ j=1,NP

utilizando las composiciones calculadas en (5) y (6). Si el cambio entre dos iteraciones sucesivas es menor que una tolerancia, se obtuvieron las composi-ciones deseadas; de no ser así, se utiliza sustitución directa y se va a (5).

APÉNDICE B

Inicialización de las variables de iteración $\frac{1}{2}$, \underline{y} y T, para el caso que se tenga un condensador total, propuesta por -- Gallun (1979).

1. Se suponen flujos molares constantes.

2. Se suponen las temperaturas del domo y del fondo.

3. $T_j = T_1 + \frac{(T_{NP} - T_1)(J - 1)}{(NP - 1)}$ j=2,3,--,NP-1

 $FT = \sum_{n=1}^{NP} FA_n$

5. $v_{12} = (1 + \frac{L_1}{WL_1}) \cdot desl_i$

i=1,2,---,NC

i=1,2,--,NC

8. $\ell_{i,j-1} = L_j \cdot \{Y_{i1} + DEL_i \cdot \{j-1\}\}$ $j=2,3, \dots, NP-1$

-170-

i=1,2,--,NC 9. $v_{ij} = v_j \cdot (x_{i1} + DEL_i \cdot (j-1))$ j=3,4,--,NP

ang pinané

APÉNDICE C

Algoritmo modificado de Thomas (Boston y Sullivan, 1972).

Para un componente particular, los <u>BMC</u>, en forma general, para el modelo de columna presentado en la figura 3.1, son:

$$b_1 l_1 - c_1 l_2 = fa_1$$

- $l_{j-1} + b_j l_j - c_j l_{j+1} = fa_j$ (j=2,3,...,NP-1)
- $l_{NP-1} + b_{NP} l_{NP} = fa_{NP}$

donde

$$b_1 = R_{L1} + S_1$$

 $b_j = RL_j + R_{Vj} S_j$ (j=2,3,--,NP-1)
 $b_{NP} = 1 + R_{VNP} S_{NP}$
 $C_j = S_{j+1}$ (j=1,2,--,NP-1)

Las cantidades R_{Lj} y R_{Vj} se definen en función de las extracciones laterales.

 $R_{Lj} = 1 + Q_{Lj} \qquad (j=1,2,...,NP-1)$ $R_{Vj} = 1 + Q_{Vj} \qquad (j=2,3,...,NP)$ $Q_{Lj} = WL_{j}/L_{j}$ $Q_{Vj} = WV_{j}/V_{j}$

 s_j se define como $s_j = \kappa_j v_j / L_j$

Eliminación hacia adelante.

$$b_{1}^{"} = S_{1} + Q_{L1}$$

$$b_{1}^{i} = 1 + b_{1}^{"}$$

$$f_{1}^{i} = fa_{1}/b_{1}^{i}$$

$$C_{j-1}^{i} = C_{j-1}/b_{n-1}^{i}$$

$$b_{j}^{"} = S_{j}(R_{Vj}b_{j-1}^{"} + Q_{Vj})/b_{j-1}^{i} + Q_{Lj}$$

$$b_{j}^{i} = 1 + b_{j}^{"}$$

$$f_{j}^{i} = (fa_{j} + f_{j-1}^{i})/b_{j}^{i}$$

Sustitución hacia atrás.

$$l_{NP} = f'_{NP}$$

 $l_{j} = f'_{j} + C'_{j} l_{j+1}$ (j=NP-1, NP-2, ---, 1)

Nota:

Sólo es necesario almacenar los vectores C' y f'.