UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

Facultad de Química.

División de Estudios de Posgrado.

"PROPIEDADES DE MOJADO DE LA MEZCLA BINARIA DE VAN DER WAALS"-

TESIS

que para obtener el grado de

MAESTRA EN CIENCIAS QUIMICAS (FISICOQUIMICA)

presenta

MARIA EUGENIA HERMINIA COSTAS BASIN. 1984

M-56662

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Jurado

PRESIDENTE 1er.VOCAL SECRETARIO SUPLENTE SUPLENTE DR.AUSTER VALDERRAMA CANO. DR.FRANCISCO RAMOS. DR. ANDONI GARRITZ RUIZ. DR. ENRIQUE BAZUA DRA. CARMEN VAREA GILABERT.

Asesor del tema: DR. ALBERTO ROBLEDO NIETO.

Lugar donde se desarrolló el tema:

Departamento de Fisicoquímica. 🛩

División de Estudios de Posgrado.

Facultad de Química.

Universidad Nacional Autónoma de México.

A mis padres de la forma que solo los tres sabemos.

A todos aquellos que me han dejado una huella más. Quiero agradecer profundamente a Alberto Robledo, Auster Valderrama y en forma muy especial a Carmen Varea sus enseñanzas, su paciencia y su invaluable amistad.

A mis compañeros del Departamento de Fisicoquímica.

A José Luis Morales y Sergio Castro por su valiosa ayuda en el trabajo de computación.

A todos los que me haya faltado agradecer algo.

INDICE.

Ι.	Introducción.	• • •	1
II.	Formalismo.	•••	3
III.	Propiedades de intercara. Mojado.	• • •	25
IV.	Diagramas de fases de la mezcla binaria de van der Waals.	•••	41
۷.	Cálculos.	•••	56
VI.	Resultados.		
	i) Propiedades de bulto. Diagramas de fases. ii) Propiedades de intercara. Tensión interfacial.	•••	63 94
VII.	Conclusiones.	1	104
VIII.	Bibliografía.	1	06
	Apéndice I. Programas de computadora.	1	08
	Apéndice II. Tablas.	1	43

I. INTRODUCCION.

La teoría de mezclas y capilaridad desarrollada por van der Waals ha sido sujeta a investigaciones mas allá de su propio tiempo. Los métodos de la mecánica estadística han probado ser un camino accesible para la obtención de los resultados de van der Waals y para la explicación de una gran variedad de fenómenos que presentan cierto tipo de mezclas.

Entre estos fenómenos se encuentran las propiedades de mojado de las cuales se ocupa este trabajo. En condiciones de coexistencia de tres fases es posible observar tres casos: uno de ellos es aquel en el que una capa delgada de una de las fases se encuentra colocada entre las otras dos fases. En este caso el ángulo de contacto que se observa es de cero grados y se dice que se presenta mojado total. Por otro lado si el ángulo toma valores en el intervalo entre cero y 180° el mojado es parcial y se puede observar una gota o lente de la fase que moja a las dos fases restantes. Por último si el ángulo es de 180° no existe mojado.

El problema ha sido estudiado extensamente desde los trabajos de Widom⁽¹⁾ y Cahn⁽²⁾ con base en distintas teorías y metodologías que, aún cuando han servido para esclarecer muchos de sus aspectos, han proporcionado en algunos casos resultados contradictorios con el experimento.

El objetivo del presente trabajo es el de estudiar las propiedades de mojado de la mezcla binaria de van der Waals utilizando un modelo mecánico estadístico obtenido de primeros principios⁽³⁾ y comparar nuestros resultados con los de otros autores. Nuestro interés en la descripción de la mezcla en general y de sus propiedades de intercara estriba en poder explicar a nivel fundamental este fenómeno y en la importancia que presentan estas propiedades en la tecnología química: es hasta muy recientemente que se han producido avances en la termodinámica de superficies lo suficientemente importantes como para develar las propiedades de sustancias como los tensoactivos y para apreciar los mecanismos por medio de los cuales intervienen en los procesos. Las implicaciones

tecnológicas son profundas pues tienden a eliminar el grado de empirismo y a establecer el poder de predicción y selección de sustancias y condiciones adecuadas para cada proceso. Es posible actualmente relacionar las mediciones de ángulo de contacto de una solución sobre una superficie sólida (o de un líquido suspendido en la superficie de otro) con la actividad superficial del soluto y con su funcionamiento en el proceso (lubricación, destintado, flotación, dispersión, etc.), también es posible determinar los límites de operabilidad del sistema a localizar en el diagrama de equilibrio de fases correspondiente, las transiciones de mojado total a parcial, de premojado y presecado. De iqual forma es posible predecir bajo que condiciones una espuma o microemulsión puede acrecentar su estabilidad o, por el contrario, inhibir su formación. Este fenómeno es importante entonces para estudiar tecnologías que incluyan separación de minerales por flotación, limpieza de superficies metálicas, destintado de papel, desplazamiento de aceites en recuparación secundaria de petróleo, transporte en membranas biológicas, etc.⁽⁴⁾

El formalismo utilizado para el cálculo de las propiedades de mojado se describe en el capítulo II, puntualizando los aspectos más importantes en la determinación de las propiedades de intercara. En el capítulo III se describen las propiedades de mojado y se presentan algunas de las teorías y resultados que se han desarrollado sobre el tema.

Las propiedades de las fases en coexistencia (de bulto) de la mezcla binaria de van der Waals han sido estudiadas extensamente por van Konynneburg y Scott⁽⁵⁾, cuyo trabajo es someramente presentado en el capítulo IV de esta tesis. La determinación de las propiedades de bulto y de intercara utilizando el formalismo mencionado requiere de una metodología que se basa en varios programas de computadora que han sido desarrollados por el grupo de mecánica estadística del Departamento de Fisicoquímica; esta metodología se explica en el capítulo V.

Finalmente se presentan los cálculos y resultados obtenidos para dos tipos de mezclas, para las cuales se observa que existe una transición de mojado total a mojado parcial, siendo ésta en estos casos de primer orden.

-2-

II. FORMALISMO.

Las investigaciones realizadas por van der Waals en el campo de las propiedades desistemas fluídos tales como gases, sustancias puras en estado líquido y sus mezclas, etc., además de jugar un papel importante en la física de su tiempo significaron un estímulo para la investigación sobre el tema hasta nuestros días⁽⁶⁾.

La obtención de los resultados del trabajo de van der Waals conmétodos de la mecánica estadística ha permitido un mejor entendimiento de la naturaleza y generalidad de sus métodos. La ecuación de estado que lleva su nombre se identifica con la aproximación de campo promedio, o , en forma equivalente, a la que corresponde a un modelo particular de potencial de interacción.

La teoría o método de distribución de potencial de la mecánica estadística⁽⁷⁾ ha probado ser muy útil en problemas de equilibrio: para el caso de fluídos uniformes proporciona relaciones entre la función de correlación de pares y las propiedades termodinámicas, mientras que para fluídos no uniformes significa la ruta mas directa hacía la teoría de campo promedio para los perfiles de densidad de las intercaras presentes en condiciones de coexistencia de fases.

Por esta teoría , el promedio canónico del potencial de interacción medido por una partícula de prueba es el cociente de la densidad y la actividad termodinámica. La función de partición configuracional $\mathbb{Z}_{\mathbb{N}}$ de un sistema de N partículas en un volumen V tiene la forma

$$Z_{N} = \frac{1}{N!} \bigvee \int \cdots \int \exp \left[-\beta (W_{N-1} + \Psi) \right] dZ_{1} \dots dZ_{N-1} \dots (1)$$

donde $\beta = 4/kT$, dZ_i son los elementos de volumen, W_{N-4} es la

energía de interacción de N-1 partículas como función de su configuración y Ψ es la energía de interacción adicional debida a la presencia de la N-ésima partícula en un punto arbitrario del fluído, la cual se puede escribir como

$$\Psi = W_N(Y_3, Y_2, \dots, Y_{N-1}, Y) - W_{N-1}(Y_3, Y_2, \dots, Y_{N-1}). \qquad (2)$$

La ecuación (1) tiene entonces la forma

$$Z_{N} = \frac{1}{N!} V(N-1)! Z_{N-1} \langle e^{-\beta \Psi} \rangle,$$
 (3)

donde $\langle e^{-\beta\Psi} \rangle$ es el promedio canónico en el sistema de N-1 partículas, para el que las configuraciones de las N-1 no están influenciadas por la presencia de la partícula de prueba. Si se define $\mathbb{Z}_{N-1}/\mathbb{Z}_N$ como la actividad termodinámica λ y N/V la densidad ρ , se tiene

$$\frac{P}{\lambda} = \left\langle e^{-\beta \Psi} \right\rangle. \tag{4}$$

La ecuación (4) es la forma básica de la teoría de distribución de potencial; el nombre de este método surge de considerar que si $P(\Psi)$ es la distribución de potencial, o de otra forma, si $P(\Psi) \downarrow \Psi$ es la probabilidad de que el potencial que experimenta una partícula de prueba tome valores entre $\Psi y \Psi \downarrow \downarrow \Psi$, entonces el promedio canónico de cualquier función de Ψ se puede evaluar como $\int \cdots P(\Psi) \downarrow \Psi$.

Este resultado de la teoría de distribución de potencial puede establecerse para el caso de un sistema de dos componentes. Considerando una mezcla fluída, uniforme o no, de N₁ y N_2 moléculas de especies 1 y 2 respectivamente en equilibrio en un volumen V y a la temperatura T, la función de distribución de una partícula $P_i(C)$ de las moléculas de la especie 1 en la posición <u>r</u> está dada por

$$P_{4}(\underline{r}) = \frac{N_{4}}{Z_{N_{1},N_{2}}} \int \cdots \int exp[-\beta W_{N_{4},N_{2}}(\underline{r}_{1},...,\underline{r}_{N_{5}1},\underline{r}_{1};\underline{s}_{4},...,\underline{s}_{N_{6}})] d\underline{r}_{4},...,d\underline{r}_{N_{5}-1},...,(5)$$

$$d\underline{s}_{4},...,d\underline{s}_{N_{6}}$$

donde W_{N_1,N_2} es la energía potencial del sistema de N_1 y N_2 partículas en la configuración $r_1 \dots r_{N_1}$, $s_1 \dots s_{N_2}$ y \mathbb{Z}_{N_1,N_2} es la integral de configuración

$$Z_{N_4,N_2} = \int_{V} \int_{V} \exp\left[-\beta W_{N_4,N_2}(r_4,...,r_{N_4},s_1,...,s_{N_2})\right] dr_4,..., dr_{N_4}, ds_4,..., ds_{N_2}..., (6)$$

Cuando se añade una partícula de la especie 1 en <u>r</u> al sistema de N₁+N₂-1 moléculas en la configuración <u>r</u>₁,...,<u>r</u>_N₁-1, <u>s</u>₁,...,<u>s</u>_{N₂}, la energía potencial del sistema cambia en

$$\Psi_{1}(\underline{r}) = W_{N_{1},N_{2}}(\underline{r}_{1},...,\underline{r}_{N_{2}},\underline{r}_{1},\underline{s}_{1},\underline{r}_{1},\underline{s}_{1},...,\underline{s}_{N_{2}}) - W_{N_{1}-1,N_{2}}(\underline{r}_{1},...,\underline{r}_{N_{2}-1},\underline{s}_{1},...,\underline{s}_{N_{2}}). \quad ... \quad (7)$$

En términos de esta diferencia, la función de distribución de una partícula puede reescribirse como

$$P_{4}(\mathbf{r}) = \frac{N_{4} Z_{N_{4},N_{2}}}{Z_{N_{4},N_{4}}} \left\langle \exp\left[-\beta \Psi_{4}(\mathbf{r})\right]\right\rangle , \qquad (8)$$

donde $\langle exp[-\beta \Psi_1(\underline{r})] \rangle$ representa el promedio canónico para el sistema de N₁+N₂-1 moléculas.

Para una mezcla binaria uniforme, el cociente $Z_{N_4-1/N_2} N_1/Z_{N_1N_2}$

se reconoce como la actividad λ_1 de la especie 1, definida como $\lambda_1 = \exp(\beta \mu_1)$ donde μ_4 es el potencial químico configuracional para ese componente. Entonces para el sistema de dos componentes tenemos

La teoría de distribución de potencial puede replantearse como un problema de eigenvalores en el espacio de funciones en el que la función de distribución de una partícula está definida. Los operadores asociados con tal eigenfunción son llamados operadores de inserción ⁽⁸⁾, $\hat{q}^{(t)}$. Para el caso de un fluído de esferas duras los operadores tienen el siguiente significado: $\hat{q}^{(t)}$ aplicado a la función de distribución de t partículas $g^{(t)}(\underline{r},...,\underline{r}_t)$ proporciona la probabilidad de añadir tpartículas de corazón duro (esferas duras) en la configuración $\underline{r}_1...., \underline{r}_k$ en un fluído de partículas idénticas sin traslaparse con los corazones de las otras N-t partículas del sistema.

Para el sistema de dos componentes se definen los operadores de inserción \hat{q}_{4} y \hat{q}_{2} , para las especies 1 y 2, como

у

 $\hat{q}_{1} p_{1}(\underline{c}) = \langle exp[-p^{W_{1}}(\underline{c})] \rangle$ $\hat{q}_{p}(c) = \langle exp[-p\Psi_{2}(c)] \rangle.$...(10)

La teoría de distribución de potencial se puede establecer entonces enunciando que los eigenvalores de los operadores de inserción son los inversos de las actividades termodinámicas, mientras que las eigenfunciones son las distribuciones de equilibrio apropiadas a las condiciones a la frontera impuestas. La solución del par de ecuaciones (10) proporciona las propiedades termodinámicas de la mezcla: los eigenvalores λ_1^{-1} y λ_2^{-1} , las propiedades de bulto y las de las intercaras presentes entre las fases en equilibrio se obtienen a partir de los perfiles $\rho(t)$ y $\rho_1(t)$. Para el caso de partículas en el **qu**e las interacciones entre las moléculas están dadas sólo por fuerzas de repulsión infinitas, como en una mezcla de esferas duras, $\hat{q}_{\mu}^{h}\rho_{i}(\underline{r})$ y $\hat{q}_{\mu}^{h}\rho_{i}(\underline{r})$ representan las probabilidades de añadir en <u>r</u> y sin traslape una molécula de tipo 1 ó 2 a un fluído con distribuciones de densidad $\rho_{i}(\underline{r})$ y $\rho_{i}(\underline{r})$. Si además de la interacción de esferas duras se consideran potenciales atractivos por pares, los operadores de inserción se pueden factorizar de la forma

$$\hat{q}_{1} = \hat{q}_{1} \hat{q}_{1}$$
 y $\hat{q}_{2} = \hat{q}_{2} \hat{q}_{2}$, ...(11)

donde \hat{q}^h_i corresponde a la interacción de esferas duras (en lo sucesivo el superíndice h se usará para indicar esferas duras), y

$$\hat{q}_{1}^{ar} P_{1}(\underline{c}) = \langle exp[-\beta \Psi_{1}^{at}] \rangle,$$

...(12)

$$\hat{q}_{2}^{at} P_{2}(\underline{r}) = \langle exp[-\beta \psi_{2}^{at}] \rangle,$$

donde $\Psi_{i}^{\alpha t}$ es la energía potencial de atracción entre la molécula i añadida y las demás moléculas del fluído.

En el caso del fluído de van der Waals, las interacciones atractivas se tratan en la aproximación de campo promedio, ya que bajo esta aproximación se ha probado⁽⁶⁾ que la teoría de distribución de potencial proporciona los resultados esenciales del modelo de van der Waals. Esta aproximación establece

$$\langle e^{-\rho \psi^{at}} \rangle = e^{-\rho \langle \psi^{at} \rangle}, \qquad \dots (13)$$

por lo que entonces las ecuaciones (12) pueden escribirse como

$$\widehat{q}_{1}^{at} p_{1}(\underline{r}) = \exp\left[-\beta \langle \Psi_{1}^{at}(\underline{r}) \rangle\right], \qquad \dots (14)$$

donde

$$\langle \mathcal{H}_{ot}^{1}(\vec{\iota}) \rangle = \int \varphi_{vt}^{vt}(|\vec{\iota}-\vec{\iota},l|) B^{1}(\vec{\iota},l) q\vec{\iota}, + \int \varphi_{ot}^{vT}(|\vec{\iota}-\vec{\iota},l|) b^{2}(\vec{\iota},l) q\vec{\iota},$$

y equivalentemente para $\hat{q}_{2}^{a\dagger}_{Aqui} \mathscr{O}_{44}^{a\dagger}$, $\mathscr{O}_{12}^{a\dagger}$ y $\mathscr{O}_{22}^{a\dagger}$ representan los potenciales de interacción por pares.

El operador de inserción para un sistema de un componente ha sido construído⁽⁸⁾ exactamente para una dimensión y en forma aproximada para más dimensiones. El resultado para un sistema de barras rígidas es

$$\hat{q}^{h} p(s) = [1 - t(y)] \exp \left\{ - \int_{r-\sigma}^{r} \frac{p(y)}{1 - p(y)} \right\} dy$$
 ...(15)

donde

 $t_{x}(y) = \int_{-\infty}^{x+\infty} P(y) \, dy$

y 🦵 la longitud de la barra rígida. Si la función de distribución de densidad ۶(۹) es una función de variación lenta en la escala de distancia del orden de ே , la ecuación (15) se puede aproximar de la forma

$$\hat{q}^{h} \rho(x) = \left[1 - \sigma \rho(x) \right] exp\left[- \frac{\sigma \rho(x)}{1 - \sigma \rho(x)} \right] \qquad \dots (16)$$

donde x es la variable distancia que reemplaza a r en la escala del orden de**G**Bajo las mismas condiciones de variación lenta, se puede escribir

 $\hat{q}_{4}^{h} P_{4}(x) = \left[1 - \sigma_{4} P_{4}(x) - \sigma_{2} P_{2}(x) \right] exp \left[- \frac{\sigma_{4}(P_{4}(x) + P_{2}(x))}{1 - \sigma_{4} Q_{4}(x) - \sigma_{5} Q_{4}(x)} \right]$

-9-

у

...(17)

 $\hat{q}_{1}^{h} P_{0}(x) = \left[1 - \Gamma_{4} P_{4}(x) - \sigma_{2} P_{2}(x) \right] \exp \left[- \frac{\sigma_{2} \left(P_{4}(x) + P_{2}(x) \right)}{1 - \sigma_{4} P_{0}(x) - \sigma_{2} P_{0}(x)} \right]$

para una mezcla binaria de barras rígidas.

El potencial de interacción atractivo $\mathcal{P}_{ij}(\underline{c})$ propuesto por Kac⁽⁹⁾ cuya forma es

 $\varphi^{at}(s) = -\alpha \gamma e^{-\gamma t r t}$, $|r| > \sigma$

en el límite $\overset{\bullet}{\partial} \rightarrow \overset{\bullet}{\partial}$ proporciona las expresiones tradicionales para el fluído de van der Waals. Los potenciales de interacción para una mezcla de dos componentes son, siguiendo el modelo de Kac,

Para que los perfiles g(r) y $g_2(r)$ no sean constantes para un sistema separado en dos fases, es necesario⁽³⁾ adoptar una escala de distancia apropiada, de tal forma que x = yr. En el límite $y \to 0$ y con x = yr, las ecuaciones de eigenvalores

$$\hat{q}_{1}\hat{p}_{1}(\underline{r}) = \hat{\lambda}_{1}\hat{p}_{1}(\underline{r})$$

 $\hat{q}_2 \hat{p}_2(\underline{r}) = \hat{\lambda}_2 \hat{p}_2(\underline{r})$

y

se expresan como

$$\exp\left\{\beta\left[\alpha_{AA}\int_{-\infty}^{\infty}e^{-|x-x'|}\beta_{4}(x)dx' + \alpha_{A2}\int_{-\infty}^{\infty}e^{-|x-x'|}\beta_{2}(x')dx'\right]\right\}\hat{q}_{A}^{h}\beta_{4}(x) = \lambda_{1}^{-4}\beta_{4}(x)$$

$$\exp\left\{\beta\left[\alpha_{12}\int_{-\infty}^{\infty}e^{-ix-x'!}\rho_{1}(x')dx'+\alpha_{22}\int_{-\infty}^{\infty}e^{-ix-x'!}\rho_{2}(x')dx'\right]\right\}\hat{q}_{12}^{h}\rho_{2}(x)=\lambda_{2}^{-1}\rho_{2}(x),$$

donde \hat{q}_1^h y \hat{q}_2^h están dados por las ecuaciones (17). Suponiendo que el sistema es uniforme, o sea $\hat{\gamma}_4(x) = \hat{\gamma}_4$ y $\hat{\gamma}_2(x) = \hat{\gamma}_2$, las actividades pueden escribirse como

$$\lambda_{1} = \frac{P_{4}}{1 - \sigma_{1}P_{4} - \sigma_{2}P_{2}} \exp\left\{\frac{\sigma_{1}(P_{4} + P_{2})}{1 - \sigma_{1}P_{4} - \sigma_{2}P_{2}}\right\} \exp\left(-2\beta(\alpha_{1}P_{4} + \alpha_{12}P_{2})\right)$$

...(20)

$$\lambda_{2} = \frac{P_{2}}{1 - \sigma_{1}P_{4} - \sigma_{2}P_{2}} \exp\left\{\frac{\sigma_{2}(P_{4} + P_{2})}{1 - \sigma_{4}P_{4} - \sigma_{2}P_{2}}\right\} \exp\left(-2\beta(d_{12}P_{4} + d_{22}P_{2})\right)$$

de las cuales se pueden obtener las demás propiedades termodinámicas de estados uniformes de la mezcla binaria de van der Waals, tales como la presión

$$\beta P = \frac{P}{1 - \sigma(\bar{x})\rho} - \beta a(\bar{x})\rho^2 \qquad \dots (21)$$

y la densidad de energía libre de Helmholtz, 🖞 ,

$$\beta p^{-1} f = \ln \frac{p}{1 - \sigma(\bar{x})p} - p a(\bar{x})p - 1 + \bar{x} \ln \bar{x} + (1 - \bar{x}) \ln(1 - \bar{x}) + \beta p^{-1} f^{0}(p) \dots (22)$$

para las cuales se han definido $\alpha(\bar{x}) = \alpha_{44}\bar{x}^2 + 2\alpha_{42}\bar{x}(4-\bar{x}) + \alpha_{22}(4-\bar{x})^2$, $\sigma(\bar{x}) = \sigma_4\bar{x} + \sigma_2(4-\bar{x})$, $\bar{x} = \beta_4/\beta$ y $\beta = \beta_4 + \beta_2$.

Los perfiles de densidad para las intercaras presentes entre las fases fluïdas en coexistencia están determinadas por las ecuaciones integrales (19) con las condiciones a la frontera apropiadas, es decir $f_i(x) \rightarrow f_i, x \rightarrow z \mod$ Para una mezcla binaria estas ecuaciones pueden reescribirse como

$$M_{4}^{h} [P_{4}(x), P_{2}(x)] - \alpha_{44} \int e^{-1x - x' l} P_{4}(x) dx' - \alpha_{42} \int e^{-1x - x' l} P_{2}(x') dx' = \mu_{4}$$

y ...(23)

$$M_{2}^{h} \left[P_{1}(x), P_{2}(x) \right] - d_{12} \int e^{-[x-x']} P_{4}(x') dx' - d_{22} \int e^{-[x-x']} P_{2}(x') dx' = \mu_{2},$$

donde $\mu_1 = \rho^{-1} \ell_{11} \lambda_1$ y $\mu_2 = \rho^{-1} \ell_{11} \lambda_2$ son los potenciales químicos del sistema uniforme y M_1^{N} y M_2^{N} son los potenciales químicos para la mezcla de barras rígidas dados por

$$\beta M_{1}^{h} \left[P_{4}(X), P_{2}(X) \right] = l_{M} \frac{P_{1}}{1 - \sigma_{4}P_{1} - \sigma_{2}P_{2}} + \frac{\sigma_{1}(P_{4} + P_{2})}{1 - \sigma_{1}P_{4} - \sigma_{2}P_{2}}$$

...(24)

$$\beta M_{2}^{h} \left[P_{1}(x), P_{2}(x) \right] = lm \frac{P_{2}}{1 - \sigma_{4} P_{1} - \sigma_{2} P_{2}} + \frac{\sigma_{2} (P_{1} + P_{2})}{1 - \sigma_{4} P_{1} - \sigma_{2} P_{2}}$$

donde para abreviar se ha escrito $S_1 = S_1(x)$ y $S_2 = S_2(x)$.

De las ecuaciones integrales (23) pueden obtenerse los perfiles de densidad $P_2(x)$ y $P_2(x)$.

La densidad de energía potencial Up(x) puede calcu-

larse a partir de estas expresiones, dando como resultado⁽³⁾

$$U_{p}(x) = -\frac{4}{2} \left[(M_{4}^{h} - \mu_{4}) P_{4}(x) + (M_{2}^{h} - \mu_{2}) P_{2}(x) \right]. \qquad (25)$$

La forma del potencial de Kac, permite transformar el par de.ecuaciones integrales (23) en el siguiente par de ecuaciones diferenciales de segundo orden

$$\frac{d^2}{dx^{2*}} M_1^h \left[P_a(x), P_2(x) \right] = M_a \left[P_a(x), P_e(x) \right] - \mu_a$$

у

...(26)

$$\frac{d^2}{dx^2} M_2^h \left[P_4(x), P_2(x) \right] = M_2 \left[P_4(x), P_2(x) \right] - M_2.$$

Esto se logra haciendo uso de la identidad $\frac{d^2}{dx^{2*}} \int e^{-|x-x'|} p(x')dx' = \int e^{-|x-x'|} p(x')dx' - 2p(x) \dots (27)$

donde M_1 y M_2 son los potenciales químicos \mathcal{M}_1 y \mathcal{M}_2 cuando $\mathcal{P}_1(x)$ y $\mathcal{P}_2(x)$ han sido reemplazadas por \mathcal{P}_4 y \mathcal{P}_2 .

El par de ecuaciones (26) posee una interpretación mecánica: la de una partícula de masa unitaria que se mueve en un espacio bidimensional de coordenadas $M^{h}_{-}\mu^{h}_{-}=(M^{h}_{4}-M_{4}, M^{h}_{2}-M_{2})$ al tiempo x y donde la fuerza presente es $M-\mu=(M_{4}-M_{4}, M_{2}-M_{2})$.

Las interpretaciones mecánicas de las expresiones pa-

ra los perfiles de intercara son convenientes para la determinación tanto de los perfiles como de los valores de las tensiones interfaciales. Estas interpretaciones se han realizado para la teoría fenomenológica de capilaridad de van der Waals⁽⁶⁾, el que consideró a la superficie como una región en donde la densidad varía en forma continua entre las dos fases y en la que la densidad de energía libre local, definida como una función de la coordenada z perpendicular a la superficie consiste de dos contribuciones: la densidad de energía libre definida para el sistema homogéneo en términos de la densidad local y la temperatura, y una contribución extra proporcional al cuadrado del gradiente de la densidad. La teoría fue redescubierta y extendida por Cahn y Hilliard(10), quienes obtuvieron una ecuación para la energía libre de una intercara plana entre dos fases en coexistencia, dependiente también del cuadrado del gradiente de la densidad.

Si las condiciones de variación lenta se incorporan a las ecuaciones (26), exactas para este modelo, se obtienen los resultados de la teoría de Cahn-Hilliard-van der Waals y las ecuaciones se reducen a

$$W_{44}\ddot{g}_1 + W_{42}\ddot{g}_2 = -\frac{\partial V}{\partial g_1}$$

...(28)

$$W_{12}\dot{P}_1 + W_{22}\dot{P}_2 = -\frac{\partial V}{\partial P_2}$$

y

donde $W_{14} = \frac{\partial \mu_1^h}{\partial P_4}$, $W_{42} = \frac{\partial \mu_1^h}{\partial P_2} = \frac{\partial \mu_2^h}{\partial P_4}$, $W_{22} = \frac{\partial \mu_2^h}{\partial P_2}$ y $V(P_4, P_4)$ está dado por

$$\beta V = -\beta \int (M - \mu) \cdot d\beta = \beta \left[-f + \mu_{4} p_{4} + \mu_{2} p_{2} - P \right]. \qquad (29)$$

Para la mezcla bicomponente, la ecuación de estado puede representarse por $\Lambda = \Lambda(g_A, g_B, W)$ donde Λ es la densidad de entropía, g_A , g_Z las densidades de masa de los componentes 1 y 2 respectivamente y W la densidad de energía. A partir de la teoría del conjunto gran canónico para un sistema a la temperatura T y potenciales químicos \mathcal{M}_A y \mathcal{M}_Z los valores de g_A , g_Z y Wde equilibrio son aquellos que maximizan la función ⁽¹¹⁾

$$\omega(\beta\mu_1, \beta\mu_2, -\beta; \beta_1, \beta_2, u) = \beta(\beta_1, \beta_2, u) - \beta u + \beta \mu_1 \beta_1 + \beta \mu_2 \beta_2 \dots (30)$$

donde

Entonces $V(\rho_1, \rho_2)$ puede escribirse como

$$V = \omega(\beta \mu_1, \beta \mu_2, -\beta; \beta_1, \beta_2) - \beta P. \qquad ...(31)$$

Para perfiles de variación lenta⁽³⁾ los coeficientes Wwij se pueden considerar constantes y satisfacen la condición de estabilidad WaaWazz) Wwiz.

Las ecuaciones (28) corresponden a las ecuaciones de movimiento en un análogo mecánico con energía cinética

$$K = \frac{\Lambda}{2} W_{44} \dot{P}_{4}^{2} + W_{42} \dot{P}_{4} \dot{P}_{2}^{+} \dot{P}_{2}^{-} W_{22} \dot{P}_{2}^{2}, \qquad \dots (32)$$

ý la primera integral de las mismas , V + K = 0 . Para este sistema conservativo, la tensión interfacial σ queda expresada como

$$\rho \sigma = \int \left[\rho P - \omega (\rho \mu_1, \rho \mu_2, -\rho; \rho(x), \rho_2(x)) + K \right] dx (33)$$

Para el sistema que describen las ecuaciones diferenciales (26), el rotacional de la fuerza $M - \mu$ es proporcional a

$$\chi_{44} \frac{\partial M_1^h}{\partial \rho_2} + \chi_{22} \frac{\partial M_2^h}{\partial \rho_4} + \chi_{42} \left[\frac{\partial M_1^h}{\partial \rho_4} + \frac{\partial M_{24}^h}{\partial \rho_2} \right]$$

siendo éste no nulo a menos que se reduzca al caso de un componente. Por lo tanto, la analogía mecánica no corresponde a un sistema conservativo para una mezcla. Sin embargo, se puede aplicar un principio variacional sobre un Lagrangiano bien definido \mathcal{L}_4 , del cual se derivan las ecuaciones de movimiento (26) a través de la variación $\int \mathcal{L}_4 dx$, y posteriormente obtener los perfiles de densidad. El funcional tiene la forma

$$\mathcal{I}_{i}(p, \dot{p}) = K^{*}(\dot{p}) - V(p)$$
 ...(34)

para el que $P = (P_1, P_2)$ se toma como la variable posición, V está dada por (29) y K* es la energía cinética para la que $W_{ij}(P_1, P_2)$ están evaluadas a lo largo de las soluciones de las ecuaciones (26), es decir a lo largo de los perfiles de densidad. Es pues necesario conocer de antemano la solución del problema para escribir a \mathcal{L}_1 y por lo tanto no tiene la misma utilidad que en el caso monocomponente.

Como se ha visto, la teoría de distribución de potencial proporciona una expresión que relaciona la actividad termodinámica del sistema con la densidad de equilibrio. Sin embargo, existe otro método, el formalismo de funcionales de la densidad, en el que un principio variacional⁽¹²⁾ determina la función de distribución de una partícula. Entonces, para este problema se define un funcional \mathcal{I}_2 ⁽³⁾, del cual se obtienen las ecuaciones integrales (23) a partir de la variación $\mathcal{S}/\mathcal{I}_2 \mathcal{C} \times$.

La forma del funcional definido es

-15-

$$\begin{aligned} \mathcal{I}_{2}\left[\rho(x)\right] &= -\left[V\left[\rho(x)\right] + \frac{1}{4} \int_{-\infty}^{\infty} e^{-|x-x'|} \left[\alpha_{11}\left[\rho_{1}(x') - P_{1}(x)\right]^{2} + 2\alpha_{12}\left[\left(\rho_{1}(x') - -\frac{1}{2}\alpha_{2}\right)\left(\rho_{2}(x') - P_{2}(x)\right)\right] + \alpha_{22}\left[\rho_{2}(x') - \rho_{2}(x)\right]^{2}\right] dx' \right]. \end{aligned}$$
(35)

El funcional de la densidad de energía libre de Helmholtz que corresponde a (35) es

$$f\left[P_{4}(x),P_{2}(x)\right] = f\left(P_{4}(x),P_{2}(x)\right) - \frac{4}{4} \int e^{-ix-x'i} \left\{ \alpha_{44} \left[P_{4}(x') - P_{4}(x)\right]^{2} + 2\alpha_{42} \left[\left(P_{4}(x') - P_{4}(x)\right) \left(P_{2}(x') - P_{2}(x)\right) \right] + \alpha_{22} \left[P_{2}(x') - P_{2}(x) \right]^{2} \right\} dx' \qquad \dots (36)$$

el cual posee carácter no local y no requiere del conocimiento previo de los perfiles de densidad de equilibrio; f [p] puede utilizarse para obtener perfiles a partir de un principio variacional. Evans⁽¹²⁾ ha demostrado que el funcional de energía libre

 $F[p(x)] = \int_{-\infty}^{\infty} f[p(x)] dx \qquad \dots (37)$

es único para un potencial de interacción dado y por lo tanto la expresión (36) es el funcional de la densidad de energía libre del modelo de mezcla. Procederemos ahora a describir brevemente⁽¹³⁾ el formalismo de funcionales de la densidad para el modelo de mezcla que se emplea en este trabajo. Primero se escribe el funcional de la energía libre de Helmholtz como el promedio

$$F[f_N] = t_r (f_N[H_N + \beta^{-1}l_M f_N]), \qquad \dots (38)$$

donde f_N es la densidad de probabilidad en el espacio de fase de un sistema de N partículas clásicas en un volumen V, t_V es la traza

$$tr = (h^{3N}N!)^{-1}\int dp^N dr^N$$

siendo p y r las variables momento y posición respectivamente.El Hamiltoniano del sistema HN está dado por

$$H_N = K_N + \omega_N = K_N + U_N + V_N \qquad \dots (40)$$

...(39)

donde K_N es la energía cinética y ω_N el término de interacción, el cual se puede expresar como la suma de dos contribuciones: el término de interacción entre las partículas U_N y la contribución por la presencia de campo externo V_N .

Si el funcional de la energía libre de Helmholtz se evalúa para la distribución de equilibrio,

$$f_N^{eq} = Q_N^{-1} \exp[-\beta H_N] \qquad \dots (41)$$

donde Q_N es la función de partición

$$Q_{N} = tr \left[exp \left(-\beta H_{N} \right) \right] \qquad \dots (42)$$

se obtiene la relación

$$F \left[f_N^{eq} \right] = -\beta^{-1} l_N Q_N, \qquad \dots (43)$$

...(44)

haciendo notar que el funcional tiene la propiedad minimal⁽¹³⁾

 $F[f_N] > F[f_N]$, $f_N \neq f_N^{eq}$.

Para el Hamiltoniano ec(40) con interacciones dadas, la densidad de probabilidad f_N es un funcional único de la función de distribución de una partícula g(x), y por lo tanto, $F[f_N]$ es funcional único de g(x), denotándose entonces $F[\rho(x)]$

En el caso en que la interacción u_N se haya fijado de antemano, existe un potencial externo v_N tal que f_N es la distribución de equilibrio para el sistema. Si f_N tiene la forma

 $f_N = (\Lambda^N Z_N)^{-1} \exp\left[-\beta(\kappa_N + u_N + V'_N)\right] \qquad \dots (45)$

donde Λ es la longitud de onda térmica de de Broglie y \mathbb{Z}_{N} la integral de configuración del sistema de N partículas, entonces el funcional de la energía libre de Helmholtz es $^{(13)}$

$$F[p] = \int dx p(x) \left[v(r) - v'(r) \right] - p' ln\left(\frac{\Lambda^{N} Z_{N}}{N!}\right), \dots (46)$$

para el que $\left[v(r) - v'(r) \right]$ es la diferencia entre el valor de energía potencial para el caso uniforme y su valor en el estado descrito por la g(x) en consideración.

El potencial gran canónico, definido como

$$\Omega = \overline{F} - \mu N , \qquad \dots (47)$$

cuando se considera la adición de una partícula a un sistema de N partículas idénticas, manteniendo fijo el valor del potencial químico μ , presenta la variación $\left(\delta\Omega = \Omega_{\rm NH} - \Omega_{\rm N}\right)$,

$$\delta \Omega = \int dx p(x) \left[v(x) - v'(x) \right] + \beta^{-1} l_{M} \left[\frac{(N+1)ZN}{\Lambda ZN+1} \right] - \mathcal{M}. \quad \dots (48)$$

En equilibrio $\delta\Omega$ = O ; se recupera la definición de la actividad termodinámica λ dada anteriomente, ya que

$$\beta \mu_{c} = \ln \frac{(N+1) ZN}{ZN+1} = \ln \lambda \qquad \dots (49)$$

donde μ_c es el potencial químico configuracional. La definición para el perfil de densidad

$$p(x) = N Z_N^{-1} \int dx^{N-1} exp[-p(u_N + V_N)]$$
 ...(50)

se puede reescribir para el caso de equilibrio como

0

$$\mathcal{P}^{eq}(x) = \frac{(N+1)Z_N^{eq}}{Z_{NM}^{eq}} \frac{\int dx^N e^{-\beta \Psi(x)} e^{-\beta (U_N + V_N)}}{\int dx^N e^{-\beta (U_N + V_N)}} \dots (51)$$

$$p^{eq}(x) = \frac{(N+1)Z_{N}^{eq}}{Z_{N+1}^{eq}} \left\langle e^{-\beta \Psi(x)} \right\rangle, \qquad \dots (52)$$

donde $\Psi(x)$ es la diferencia de energía potencial al añadir la (+1)-ésima partícula en x. Entonces, junto con la ecuación (49), se obtiene la forma básica de la teoría de distribución de potencial (7), (13)

$$g^{e_4}(x) = \lambda \left\langle e^{-\beta \Psi(x)} \right\rangle. \quad \dots (53)$$

Además, ya que en el equilibrio

$$\frac{\delta \Omega}{\delta P(x)} \bigg|_{eq} = \frac{\delta F}{\delta P(x)} \bigg|_{eq} - M = 0 \qquad \dots (54)$$

donde A representa al potencial químico generalizado,y considerando dos contribuciones al funcional de la energía libre de Helmholtz, a saber la parte cinética y la parte configuracional tal que,

 $F[g] = F_{k}[g] + F_{c}[g]$

donde

$$\begin{aligned} \overline{F_{\kappa}[S]} &= -\beta \ln \Lambda \\ \overline{F_{c}[S]} &= \int dx \, p(v(x) - v'(x)) - \beta^{-1} \ell_{M}\left(\frac{Z_{N}}{N!}\right), \end{aligned} \tag{56}$$

...(55)

podemos escribir

$$\frac{\delta F_c}{\delta g(x)} \Big|_{eq} = \ln \left[g^{eq}(x) \right] \left\langle e^{-\beta \Psi(x)} \right\rangle_{N}^{-1} \dots (57)$$

De esta expresión se puede observar que la teoría de distribución de potencial y la aplicación del principio variacional sobre el funcional del potencial gran canónico coinciden cuando la distribución de densidad de equilibrio de una partícula es aquella que asegura la uniformidad del potencial químico en un fluído no uniforme.

El funcional de la energía libre de Helmholtz ha sido construído para un sistema de segmentos duros $^{(13)}$ de longitud ${
m G}$, el cual está dado por la expresión

 $\beta \overline{T} \left[p(x) \right] = \int dx \, p(x) \left\{ l_{N} \Lambda^{-1} p(x) - 1 + \beta v(x) - l_{N} (1 - t(x)) \right\} \dots (58)$

para la que
$$t(x) = \int_{x-0}^{0} P(y) dy$$
.

Diferenciando funcionalmente (58) se obtiene

$$\beta \frac{\delta \Omega}{\delta p(x)} \Big|_{eq} = lm p(x) - \beta \Big[\mu_c - \nu(x) - lm (1 - t(x)) \Big] + \int_{x}^{x+0} \frac{p(y)}{1 - t(y)} = 0...(59)$$

expresión que proporciona el perfil de densidad para el caso de equilibrio.

Las propiedades mas importantes del funcional de la energía libre exacto es que es no lineal y no local con respecto a la distribución de densidad de una partícula. Estas propiedades relevantes ⁽¹³⁾ en situaciones alejadas del caso de variación lenta, son de suma importancia en la descripción de no uniformidades tales como las intercaras fluído-fluído lejos del punto crítico. Esta no localidad permite nuevas posibilidades para el estudio de sistemas no uniformes, ya que la expresión de gradiente cuadrado de van der Waals-Cahn-Hiliiard ⁽¹⁰⁾ se limita a situaciones de régimen de variación lenta para **\$**

Utilizando el modelo de interacción de Kac⁽⁹⁾ para el caso de un sistema de un componente,

$$\phi_{A}(r) = -\alpha \mathscr{Y} e^{-\mathscr{Y}(r)}$$

en el límite X→O y escalando de la forma X=XV , se obtiene el funcional de energía libre exacto para el fluído de van der Waals

$$\beta \overline{F} [p(r)] = \int dx p(r) \left\{ l_{M} \Lambda^{-1} p(r) - 1 - \beta v(r) \right\} - l_{M} (1 - \sigma p(r)) - \dots (60)$$

$$\beta \frac{\alpha}{2} \int dx' e^{-|x-x'|} p(x').$$

Derivando funcionalmente (47)se obtiene una expresión para el perfil de densidad $\rho(\mathbf{r})$ de la forma

$$\beta \frac{\delta \Omega}{\delta p(r)} \bigg|_{eq} = lm \frac{p(x)}{1 - \sigma p(x)} + \frac{\sigma p(x)}{1 - \sigma p(x)} - \beta \alpha \bigg[dx' e^{-lx - x'l} p(x') - \beta \bigg[\mu e^{-\nu(x)} \bigg] = 0 \cdots (61)$$

y en ausencia de campo externo (v(x)=o) se obtiene

$$lm \frac{P(x)}{1 - \sigma p(x)} + \frac{\sigma p(x)}{1 - \sigma p(x)} - \beta \alpha \int dx' e^{-1x - x'} p(x') = \mu c, \qquad \dots (62)$$

ecuación equivalente a las desarrolladas para un sistema de dos componentes (23) a partir del formalismo de operadores de inserción⁽⁸⁾.

Las ecuaciones integrales (23) establecidas para una mezcla binaria proporcionan, como ya se ha mencionado, los perfiles de densidad $\rho_4(x)$ y $\rho_2(x)$; para situaciones de coexistencia de fases estas ecuaciones presentan tres soluciones; dos de ellas correspondientes a las fases de bulto que coexisten para las cuales la densidad es uniforme, y la otra que corresponde al valor de $\rho(x)$ para la intercara presente. Con el conocimiento del perfil de densidad es posible calcular el valor de la tensión interfacial como la diferencia entre el valor de la energía libre de Helmholtz para el caso no uniforme y su valor en la situación uniforme. Por lo tanto se obtiene $\binom{(3)}{}$

$$\beta T = \int \left[\omega_{i}(p(x)) - \omega^{u} \right] dx + \frac{1}{2} \sum_{ij} \int \left[\mu_{j}^{u} - \mu_{j}(p_{i}(x)) \right] p_{j}(x) dx \quad \dots \quad (63)$$

para la que $\omega(\rho(x))$ es la densidad de potencial gran canónico

calculado como $\omega(\rho_i(x)) = \beta f(\rho_i(x)) - \beta \sum_i \mu_i \rho_i(x) y \mu_j(\rho_i(x)) el poten$ $cial químico, ambos para el caso no uniforme; <math>\omega^{\mu} y \mu_j^{\mu}$ son sus valores correspondientes a la situación uniforme. Esta expresión se puede escribir en forma equivalente

$$\beta \sigma = \int \left[\omega_{n}(p(\mathbf{x})) - \omega^{n} \right] d\mathbf{x} - \frac{1}{2} \sum_{ij} \alpha_{ij} \int \left[e^{-i\mathbf{x} \cdot \mathbf{x}' \mathbf{i}} p_{i}(\mathbf{x}') p_{j}(\mathbf{x}) d\mathbf{x} d\mathbf{x}', \dots (64) \right]$$

donde la densidad de potencial gran canónico es

$$\beta \omega (P(x)) = -(P_{4}(x) + P_{2}(x)) lw(1 - \sigma_{A} P_{4}(x) - \sigma_{2} P_{2}(x)) - P_{4}(x) lw(1 - P_{4}(x)) - P_{4}(x) lw(1 - P_{4}(x)) - P_{2}(x) lw(1 - P_{2}(x)) - \beta (\alpha_{44} P_{4}^{2}(x) + 2\alpha_{42} P_{4}(x)) P_{2}(x) + \alpha_{42} P_{2}^{2}(x)) - \dots (65)$$

$$\beta M_{4} P_{4}(x) - \beta M_{2} P_{2}(x).$$

Este formalismo, como ya se ha mencionado, permite entonces calcular las propiedades de bulto (fases en coexistencia) y de intercara (tensión interfacial) de la mezcla binaria de van der Waals; ya que el objetivo de este trabajo es estudiar las propiedades de mojado de la misma, procedemos ahora a describir tales propiedades así como a realizar una breve descripción de los resultados más importantes que se han obtenido a la fecha.

III. PROPIEDADES DE INTERCARA. MOJADO.

El formalismo descrito en el capítulo anterior permite calcular el valor de la tensión interfacial y por lo tanto estudiar las propiedades de mojado de la mezcla binaria de van der Waals, objetivo de esta tesis. En este capítulo haremos una breve descripción de algunos de los trabajos que se han realizado sobre el tema.

El fenómeno de mojado que se presenta en un sistema de tres fases ha sido estudiado extensamente⁽²⁾ en términos de la estructura y la termodinámica de las intercaras presentes. En el caso de una fase sólida s en contacto con dos fases fluídas d y ß el ángulo de contacto, definido (Figura 1) como el ángulo dihedral © que la intercara entre dos fases fluídas presenta con una tercera fase cualquiera, se puede calcular a

Figura 1. Definición del ángulo de contacto Θ cuando se presentan dos fases fluídas α y β en contacto con un sólido s.

partir de los valores de las energías libres superficiales σ sobre la superficie del sólido, de la forma

Tap COS @ = Tas - Tas

...(66)

donde los subindices indican las fases adyacentes. Ningún valor de 😝 satisface (66) a menos que

Jap > 1 Jas - Ops1. ...(67)

... (68)

Si la desigualdad no se satisface, una de las fases fluídas moja completamente al sólido y no existe contacto entre el sólido y la otra fase fluída. La superficie "prohibida" es reemplazada por una fase de la capa que moja y la energía libre superficial se convierte en la suma de las energías libres de las dos superficies de la capa, es decir

Jas = Jas + Jap,

lo que implica que el ángulo \varTheta ha disminuído hasta cero. Este fenómeno se conoce como mojado perfecto del sólido.

Cuando tres fases fluídas \land , 🔉 y 🎸 en equilibrio estáń en contacto (Fig.2.), los ángulos dihedrales satisfa-

Figura 2. Definición de los ángulos dihedrales cuando tres fases fluidas α , β y γ en equilibrio están en contacto.

cen la relación

$$\frac{\Box_{dB}}{\Delta en \Theta_{d}} = \frac{\Box_{ar}}{\Delta en \Theta_{B}} \dots (69)$$

Si ordenamos de mayor a menor las tensiones de intercara, por ejemplo $\sigma_{a} \approx 5 \sigma_{a} \approx 5 \sigma_{a}$ todas las desigualdades se cumplen excepto posiblemente una

0)

Como esta situación no es físicamente aceptable entonces se debe cumplir

$$\nabla_{ab} = \nabla_{aB} + \nabla_{Bb} \qquad \dots (71)$$

indicando la formación de una capa macroscópica de la fase β en la intercara entre las fases $d-\delta'$. Decimos entonces que la fase β moja perfectamente a la intercara $d\delta'$ y que se cumple la "regla de Antonoff". Tanto experimentalmente como por medio de cálculos teóricos se sabe que la regla se viola en algunos casos⁽¹⁾.

Para un sistema formado por tres fases fluídas, el comportamiento de las tensiones interfaciales se puede representar⁽²⁾ (Fig.3) en forma piramidal.

El espacio interior en la figura 3 representa los valores permitidos para las tensiones interfaciales. Los planos que encie-

rran tal espacio están dados por las igualdades posibles en este sistema y representan el caso de mojado perfecto. Esta condición y el hecho de que las S son positivas, definen el espacio de combinaciones observables de las mismas.

Figura 3.Gráfica de las energías libres superficiales de las fases \mathcal{A} , \mathcal{A} y \mathcal{Y} en contacto. Las condiciones de mojado perfecto describen tres superficies planas que forman un cono triangular.

La figura 4 presenta la amplificación de una sección de la pirámide, donde se muestra una trayectoria (abc) modificando la temperatura sobre estados de tres fases hacía un punto crítico terminal (c). La trayectoria indica: de a a b mojado perfecto; en b se observa una transición de mojado total a mojado parcial, conservándose éste último régimen hasta el punto crítico de la intercara $\varkappa/3$ representado por c.

Si las variables de estado se alteran de forma que β es una fase metaestable y \ll y % se encuentran en coexistencia, la intercara \ll puede seguir teniendo una capa de β como parte del equilibrio en el que el reemplazo de la superficie \ll % por dos superficies de baja energía debe ser favorecido; en este caso el ancho de la capa β es microscópico pero diverge logarítmicamente al acercarse al punto de coexistencia de tres fases. Este fenómeno es conocido como premojado.

Como ya se ha mencionado, la forma general de la regla de Antonoff, ec.(71) no siempre se cumple; en la mayoría de las situaciones se espera que se cumpla la desigualdad

Junax (Juned + Junin

...(72)

donde G_{MGX} es la mayor de las tensiones interfaciales, G_{MGA} la intermedia y G_{MA} la menor. Desviaciones a la igualdad significan que la coexistencia de tres fases no puede caracterizarse por un sólo parámetro de orden o que el valor de la tensión interfacial no puede escribirse de la forma integral

$$\mathcal{T}_{ij} = \int_{\Psi_j}^{\Psi_i} f(\Psi) d\Psi$$

...(73)

(14) es una función del parámetro de orden local Ψ donde 🗜 Siendo uno de los objetivos del trabajo comparar los resultados que obtenemos a partir del formalismo descrito en el capítulo II, procederemos, como ilustración y por conveniencia a describir algunos de los trabajos que sobre el tema se han realizado. Entre estos trabajos, uno de los mas importantes es el de Sullivan^{(15),(16)}, el cual desarrolla un modelo mecánico estadístico para describir la adsorción de un gas sobre un sustrato sólido. El modelo se desarrolla dividiendo al potencial de interacción por pares de las moléculas en dos términos: una parte repulsiva de esfera dura y una parte atractiva infinitamente débil y de largo alcance (a la manera de van der Waals). Por otro lado la interacción(15) entre el sólido y el fluído se modela de forma similar por medio de un potencial repulsivo de pared impenetrable con atracción a largo alcance. Al proponer una forma de potencial específica se obtiene una solución al modelo que muestra tres clases diferentes de isotermas de adsorción:

Clase I: la cantidad de material adsorbido es infinito en

el límite en el que la presión alcanza la presión de vapor saturada.

Clase II: la adsorción es finita en ese límite.

Clase III: no existe adsorción.

Estas tres clases fueron descritas^{(17),(18)} fenomenológicamente por medio de la ecuación de adsorción de Gibbs, la
cual permitió realizar un puente entre el comportamiento de la adsorción de gas sobre una superficie sólida y los tres tipos de comportamiento de una gota líquida sobre un sólido, es decir mojado total, mojado parcial y no mojado. El ángulo de contacto se puede obtener utilizando la ecuación de Young

$$\cos \Theta = \frac{\sigma_{sv} - \sigma_{sL}}{\sigma_{sv}} \qquad \dots (74)$$

donde los subindices s,l y v indican sólido, líquido y vapor respectivamente. Las tres clases de isotermas de adsorción descritas anteriormente pueden expresarse en términos del valor del ángulo de contacto, de la forma

> Clase I: mojado total ($\Theta = 0^{\circ}$) Clase II: mojado parcial ($0^{\circ} \triangleleft \Theta \triangleleft 180^{\circ}$) Clase III: no mojado ($\Theta = 180^{\circ}$)

El modelo desarrollado por Sullivan⁽¹⁶⁾ en el cual se basa la descripción de las propiedades de intercara fluído-sólido, proporciona una expresión para el perfil de densidad p(x) a partir de un balance local de fuerzas externas y termodinámicas, tal que

$$\mu - \text{per}(r) = \mu^{h}[p(r)] \qquad \dots (75)$$

donde \mathcal{M} es el potencial químico del fluído, $\mathcal{M}[\mathcal{P}(n)]$ es el potencial químico del sistema de esferas duras de densidad $\mathcal{P}(r)$, y $\mathcal{O}_{ef}(r)$ el potencial externo efectivo del fluído de esferas duras dado por

$$\varphi_{ef} = \varphi_{L}(r) + \Delta \varphi_{ef}(r), \qquad \dots (76)$$

donde $\mathscr{O}_{L}(\mathbf{r})$ es la parte atractiva del potencial de la pared. El potencial de campo promedio $\Delta \mathscr{O}_{\ell_{L}}(\mathbf{r})$ está dado por

$$\Delta \varphi_{ef}(r) = \int_{V} dr' \omega_2(1r-r'l) \rho(r') \qquad \dots (77)$$

para el que $\omega_2(\mathbf{r})$ representa la parte atractiva del potencial de interacción molecular.

Para resolver las ecuaciones que describen al perfil, se escoge el potencial externo de la forma

$$\phi_{L}(z) = -\varepsilon_{\omega}e^{-\vartheta z}, \qquad \dots (78)$$

donde \mathcal{F} es un parámetro de escalamiento y \mathcal{E}_{ω} la profundidad del pozo de potencial de las interacciones pared-fluído, y para la parte atractiva del potencial por pares, se tiene

$$\Phi(\gamma_z) = - \stackrel{\propto}{=} e^{-\gamma_r} \qquad \dots (79)$$

donde 🛠 representa la magnitud de la interacción entre las moléculas del fluído.

La forma del potencial efectivo es entonces

-32-

$$\Delta \phi_{ef}(x) = -\frac{\alpha}{2} \int_{0}^{\infty} dx' e^{-ix - x'i} \rho_{L}(x'), \quad x = \delta r, \quad \dots (80)$$

obteniéndose además la ecuación diferencial

$$\frac{d^{2}}{dx^{2}}(\mu^{h^{*}}-\mu) = \mu^{h^{*}}-\mu - \alpha \rho_{L}(x) \qquad \dots (81)$$

para la que μ^{h^*} es el potencial químico local de esferas duras $\mu^{h}[\rho(x)]$.

Es de hacer notar que las ecuaciones (23) descritas ⁽³⁾ en el capítulo anterior, se reducen para el caso de un componente a una expresión idéntica a la ecuación (80) obtenida por Sullivan. En este caso se observa que el potencial de Kac en el límite de van der Waals desacopla los efectos de las interacciones repulsivas y atractivas. Para la escala de distancias en la que la atracción varía, la contribución de esfera dura es aquella del sistema uniforme a la densidad $\rho(r)$. Este hecho ha sido utilizado por Sullivan para derivar la ecuación (80) en forma local⁽¹⁶⁾.

La ecuación (81) es equivalente a

$$\Psi(\mathbf{x}) = \left[\frac{d}{d\mathbf{x}} \,\mu^{h\mathbf{x}}\right]^2 \qquad \dots (82)$$

donde $\Psi(x) = (\mu^{h*} - \mu)^2 - 2d(P_h^* - P)$, para los que $P^{h*} y P$ son los valores de presión para el sistema de esferas duras y para el fluído respectivamente. Para este caso, se obtiene una solución implícita para el perfil de densidad de la forma

$$X = \int_{\mu^{h} \neq (0)}^{\mu^{h} \neq (x)} \frac{d\mu^{h}}{\pm [\Psi(\mu^{h})]^{4/2}} \dots (83)$$

donde el signo se escoge dependiendo si $\mathcal{P}(x)$ es función creciente o decreciente de x, y $\mathcal{A}^{h^*(o)}$ corresponde a $\mathcal{A}^{h^*(o)} = \mathcal{A}^{h^*}[\mathcal{G}(x=o)]$.

Para el caso de la intercara líquido-vapor, debe existir una solución tal que

$$\mu_{h}(p_{g}) = \mu_{h,g} \quad x \to 00,$$

 $\mu_{h}(p_{L}) = \mu_{h,L} \quad x \to -00.$
...(84)

La forma de $\Psi(\mu^{WW})$ se presenta en la figura 5, donde se observan dos mínimos ($\Psi=0$) cuando se cumple $\mu(g_9)=\mu(g_1)$ y $P(g_9)=P(g_1)$.

Figura 5. Comportamiento de la función $\Psi(\mu^{\mu\nu})$ en presencia de coexistencia de fases líquido-vapor.

-34-

Si se analiza la función para un valor de p ligeramente menor a β_{g} o β_{L} , ésta toma la forma que se presenta en la figura 6. En ella se observa un mínimo ($\Psi=0$) en $\mu_{h}^{*}=\mu_{L}$ donde la solución asintótica es $\beta_{L}(x) \rightarrow \beta_{uniforme}$ cuando $x \rightarrow \infty$.

Figura 6. Comportamiento de la función $\Psi(\mu^{h*})$ cuando la densidad asintótica p es ligeramente menor al valor ρ_g del vapor saturado.

Existe un segundo mínimo ($\Psi^{+}>0$) en $\mu^{\mu+}$, que cumple con $\Psi^{+}\to o$ y $\mu_{h}^{-}\to \mu_{h,h}$ en el límite $\rho \to \rho_{g}$.

En este límite $(\rho \rightarrow \rho_3)$, se obtienen tres distintos tipos de isotermas de adsorción:

 $-\mu_h^{\star}(o) \angle \mu_h(s)$: el perfil de densidad aumenta monótonamente de $\rho_1(o)$ a ρ en el origen cuando $\times -\infty \circ \circ$. Ya que $\rho_1(o) \measuredangle \rho$ para toda x, su contribución a la adsorción está dada por

$$\Theta = \int_{0}^{\infty} dx \left[P_{L}(x) - P \right],$$

donde Θ es el grado de recubrimiento, el cual en este caso resulta negativo y finito en el límite $\rho \rightarrow \rho_g$. Este comportamiento dá como resultado las isotermas de adsorción de la clase III (régimen de no mojado). $-Mn \langle Mn(0) \langle Mn' \rangle$: el perfil decrece monótonamente y el integrando es síngular para $Mn \rightarrow Mn$. El grado de recubrimiento Θ es positivo y finito en el límite $\rho \rightarrow \rho_{3}$, correspondiente a las isotermas de clase II (régimen de mojado parcial). $-Mn \langle Mn'(0) \rangle$: la trayectoria de la integral (83) pasa por el mínimo Ψ^{+} ; en este caso $\rho(x) \rightarrow \rho$ cuando $x \rightarrow \infty$, que corresponde a la condensación de una capa delgada de líquido sobre la pared. El valor de Θ es finito y se presenta comportamiento de clase I (mojado total).

24

Cuando el valor de $\mathcal{M}_{h}(o)$ corresponde exactamente a uno de los valores de cualquiera de los mínimos $\mathcal{M}_{h,G}$ o $\mathcal{M}_{h,L}$ en el límite $\rho \rightarrow \rho_{g}$, se presenta una transición entre las clases descritas. Las condiciones a las que se observan dichas transiciones son:

 $\frac{2\varepsilon_{w}}{\alpha} = \begin{cases} \rho_{g} , \text{transición II} \rightarrow \text{III} (\text{mojado parcial a no mojado}) \\ \rho_{L} , \text{transición II} \rightarrow \text{I} (\text{mojado parcial a total}) \dots (85) \end{cases}$

Ya que las densidades ρ_g y ρ_L varían con la temperatura de acuerdo a la curva de coexistencia líquido-vapor, las condiciones (85) pueden interpretarse expresando la dependencia de la temperatura de transición con el cociente $\mathcal{E}_{\omega}/\mathcal{A}$. Tal dependencia, tomando la temperatura como variable reducida (T*) se presenta en la figura 7.

Figura 7. Curva de transición esquemática dada por el modelo de Sullivan (15). La línea sólida representa la curva de transición, mientras que la línea punteada muestra posibles modificaciones a la frontera entre las clases II y I abajo de la temperatura reducida del punto triple $(T_{\xi}^{*} = k_{1}t/\epsilon)$. Esta curva de transición⁽¹⁶⁾ presenta una forma similar a la curva de coexistencia y es de naturaleza aproximadamente universal para la temperatura de transición como una función del cociente ϵ_{ω}/d . En la figura 7 se observa que en algún punto se presenta una transición de clase II a clase I ó III aumentando la temperatura.

La naturaleza de las transiciones de mojado han sido analizadas por diferentes autores; $Cahn^{(2)}$ utilizando la teoría de gradiente cuadrado para el fluído de van der Waals, obtiene que la naturaleza de la transición de mojado total a mojado parcial es de primer orden. Sullivan⁽¹⁶⁾ encuentra que las tres soluciones de las ecuaciones antes descritas para la densidad del fluído en contacto con un sólido pueden presentarse, y la solución físicamente correcta es aquella que minimiza a la energía libre. Bajo ciertas condiciones pueden coexistir dos soluciones en tal forma que la transición entre las distintas clases de mojado debe acompañarse de una variación continua en la naturaleza del perfil de densidad y por lo tanto en el espesor de la capa que cubre al sólido. A diferencia de los resultados obtenidos por Cahn, Sullivan encuentra que la transición de mojado es de segundo orden.

Los resultados obtenidos por Cahn han sido verificados experimentalmente⁽¹⁹⁾ para mezclas de metanol-ciclohexano, a las cuales se agregó un tercer componente (agua) para alejar a los fluídos de su punto crítico. Los resultados muestran discontinuidad en la derivada del ángulo de contacto respecto a la composición, lo cual muestra, dentro de la resolución de las mediciones, que la transición de mojado total a parcial es de primer orden.

Esta controversia ha despertado el interés de varios autores^{(20),(21),(22)} por dilucidar el orden de la transición de mojado. El análisis de la teoría integral y su equivalente

-37-

en la teoría de gradiente cuadrado en la densidad^{(20),(21)} permite determinar que ambas teorías predicen el mismo comportamiento cualitativo de mojado: transiciones de primer ó segundo orden dependiendo de los valores de los parámetros que caracterizan las interacciones fluído-sólido. El fenómeno puede analizarse en base a la contribución de tres términos a la energía libre de un fluído no homogéneo: la contribución debida a las interacciones fluído-sólido, la debida a las intercciones fluído-fluído de corto alcance y por último a las interacciones fluído-fluído de largo alcance. La forma en que cada uno de los tratamientos, teoría de gradiente con coeficientes constantes, con coeficientes variables y la teoría integral consideran tales contribuciones da lugar a los distintos comportamientos de mojado.

En el caso de la teoría de gradiente con coeficientes constantes, el tomar el parámetro de energía de van der Waals invariable es inconsistente con la presencia de la pared impenetrable que se utiliza en la teoría integral; es decir se desprecia el efecto del sólido sobre las interacciones fluído-fluído de largo alcance, y por ello no puede proporcionar más que transiciones de primer orden. La teoría integral de Sullivan⁽¹⁶⁾ predice solamente transiciones de segundo orden debido a que el alcance del potencial de interacción fluído-sólido se identifica con el de la interacción fluído-fluído. La teoría de gradiente con coeficientes variables incluye las interacciones fluídofluído lo que causa que la transición que se presenta sea de segundo orden para un intervalo dado de valores de los parámetros.

En resumen entonces tenemos que la teoría integral de van der Waals y la teoría de gradiente cuadrado con coeficientes variables predicen transiciones de primer y segundo orden, estando éste determinado por los alcances relativos y las magnitudes de las interacciones fluído-fluído de largo alcance y las interacciones sólido-fluído. La teoría de gradiente cuadrado con coeficientes constantes predice sólo transiciones de primer orden ya que omite el efecto del sólido sobre las interacciones fluído-fluído de largo alcance; esta teoría coincide con las otras dos sólo cuando las interacciones fluído-fluído son de mayor corto alcance que las fluído-sólido. La teoría de Sullivan predice segundo orden debido a la forma de potencial de interacción sólido-fluído que escoge.

Un estudio reciente sobre la naturaleza de las transiciones de mojado es el realizado por Evans y Telo da Gamma⁽²³⁾, quienes desarrollan un modelo mecánico estadístico para la adsorción de mezclas binarias fluídas en sustratos sólidos, siendo este modelo una generalización del desarrollado por Sullivan⁽¹⁶⁾. En este trabajo se analizan las propiedades de intercara para una mezcla para la que el potencial atractivo fluído-fluído obedece la regla del promedio geométrico $\alpha_{42} = (\alpha_{44} \alpha_{22})^{4/2}$, y el potencial sólido-fluído es de la forma $\mathcal{E}_{i} = (\ell_{44} \alpha_{22})^{4/2}$ donde \mathcal{E}_{45} es una constante característica del sólido. Los cálculos se realizaron para mezclas con componentes de igual tamaño $(\sigma_{i} = \sigma_{2})$ y la relación

 $d_{22}/d_{41} = 2$, obteniéndo las densidades de coexistencia de tres fases y con ellas las fronteras entre las distintas clases de mojado. En este modelo la transición de mojado es de segundo orden, tal que la capa que moja, y por lo tanto la estructura de la intercara que forma el sólido con la fase de bulto, crece continuamente en la transición. Por lo tanto la adsorción sobre la superficie del sólido diverge continuamente a medida que la temperatura se acerca a su valor en la transición. Se ha observado que en modelos para fluídos de un componente si el alcance del potencial fluído-sólido es mayor que el del potencial atractivo fluído-fluído, la transición puede ser de primer orden. Para modelos mas realistas, se espera que la adsorción relativa pueda diverger discontinuamente y la tensión interfacial presente un cambio en pendiente cuando ocurre la transición a mojado total.

La controversia que se ha generado sobre el orden de la transición de mojado a partir de los resultados descritos anteriormente, nos ha motivado a estudiar a la mezcla de van der Waals de una forma más general, es decir calcular las propiedades de intercara de mezclas binarias con parámetros alejados de los correspondientes a la media geométrica $\alpha_{42} = (\alpha_{4n}\alpha_{22})^{4/2}$, mezcla que ha sido estudiada extensamente por la mayoría de los autores citados en este trabajo. La generalidad de nuestro cálculo permite agregar un elemento importante al conocimiento de las propiedades de intercara de la mezcla binaria de van der Waals y a la dilucidación del orden de la transición de mojado que presenta.

IV. DIAGRAMAS DE FASES DE LA MEZCLA BINARIA DE VAN DER WAALS.

La determinación de los diagramas de fases ha sido una de las fuentes mas importantes acerca de las propiedades de sustancias puras (no electrolitos) y sus mezclas⁽⁶⁾.

El comportamiento de la coexistencia líquido-vapor y líquido-líquido ha sido caracterizado ampliamente en forma experimental; sin embargo la explicación teórica de estos fenómenos se encuentra rezagada con respecto al avance experimental en este campo.

Los diagramas de fases de la mezcla binaria de van der Waals han sido determinados teóricamente por van Konynenburg y Scott⁽⁵⁾, cuyos resultados muestran que a pesar de que la ecuación de estado de van der Waals proporciona solo una descripción cualitativa de las propiedades termodinámicas de mezclas fluídas, rara vez se obtienen resultados físicamente absurdos.

El estudio cualitativo⁽⁵⁾ se basa en los cambios que experimentan las propiedades termodinámicas de la mezcla en las cercanías de los puntos críticos. El comportamiento de coexistencia de fases para un sistema de un componente puede describirse en función de variables de estado como T (temperatura), P (presión) y Vm (volumen molar). Un diagrama P-T se puede dividir en regiones donde las fases líquido o vapor son estables, separadas por líneas de coexistencia de dos fases, también llamadas curvas de presión de vapor. Estas líneas terminan en un punto crítico líquido-vapor, arriba del cual no es posible encontrar coexistencia de dos fases.

Para decribir a un sistema binario se requieren al menos tres de las variables T,P,Vm y x (composición), siendo entre éstas las mas convenientes P,T y x. Cada componente puro (designados 1 y 2 en orden dependiendo del valor de la temperatura crítica líquido-vapor en su estado puro) se representa en un plano P-T por sus curvas de presión de vapor. La composición de la mezcla Añade una tercera dimensión al sistema (expresada como fracción mol del componente 2). Los puntos críticos de la mezcla, es decir los puntos donde las densidades y composiciones de dos fases coexistentes se vuelven idénticas se representan como una línea en el espacio P-T-x. En general la línea de puntos críticos se representa en una proyección P-T a composición constante.

Viajando sobre la línea de coexistencia de dos fases existe una temperatura a la cual el sistema heterogéneo se convierte en homogéneo (una fase); si este cambio ocurre al elevar la temperatura, el valor de esta variable que toma en este punto se conoce como temperatura crítica de disolución superior (UCST). Este es el valor máximo en la curva de coexistencia T-x para una presión determinada. De forma similar, la temperatura crítica de disolución inferior (LCST) es un mínimo en la curva T-x e implica la transformación del sistema heterogéneo a homogéneo al disminuir la temperatura. Por lo general los UCST ocurren en sistemas que presentan entalpías molares de exceso H_{WM}^{WM} muy positivas. Los LCST se presentan en sistemas con entalpías de exceso negativas y entropía de exceso suficientemente negativa para que la energía de Gibbs de exceso sea muy positiva.

Los diagramas de mezclas binarias fluídas se pueden clasificar⁽⁵⁾ en tres grandes grupos;

- Mezclas binarias cuyos componentes puros presentan puntos críticos líquido-vapor similares. En este caso los puntos críticos de los componentes puros están unidos por una línea continua de puntos críticos de la mezcla.
- 2. Mezclas binarias para las que las temperaturas críticas líquido-vapor de los componentes puros son muy diferentes. No existe una línea continua de puntos críticos de la mezcla que conecte tales puntos críticos de los componentes puros.
- Mezclas complejas que exhiben LCST a bajas temperaturas; este comportamiento es resultado de las fuertes interacciones entre los dos componentes.

La mayoría de los diagramas de fases determinados experimentalmente para mezclas binarias corresponden a las clases 1 y 2 y pueden ser calculados cualitativamente por medio de la ecuación de van der Waals. La forma de los diagramas de equilibrio depende de los valores que tomen los parámetros de interacción α_{44} , α_{42} y α_{42} introducidos en las ecuaciones (18) al definir la forma del potencial de interacción, para los que los subíndices indican la interacción entre moléculas del mismo tipo (1-1,2-2) y de diferente tipo (1-2), y del tamaño de las moléculas α_4 y α_2 .

Para reducir el número de parámetros que caracterizan a la mezcla, es conveniente definir⁽⁵⁾ las tres cantidades

...(86)

$$\begin{split} \mathbf{f} &= \left(\frac{d_{22}}{G_2^2} - \frac{d_{44}}{G_1^2} \right) / \left(\frac{d_{22}}{G_2^2} + \frac{d_{44}}{G_1^2} \right) \\ &= \left(\frac{d_{44}}{G_1^2} - \frac{2d_{42}}{G_1G_2} + \frac{d_{22}}{G_2^2} \right) / \left(\frac{d_{22}}{G_2^2} + \frac{d_{44}}{G_1^2} \right) \end{split}$$

Estos parámetros tienen un significado partícular: 🗲 mide la diferencia de tamaño de las moléculas; 💲 está relacionado con la diferencia en las temperaturas y presiones críticas de los componentes puros, cuyos valores se pueden calcular como

$$T_{i}^{e} = \frac{8}{24} \frac{d_{ii}}{\sigma_{i}^{e}} , \qquad P_{i}^{e} = \frac{4}{24} \frac{d_{ii}}{\sigma_{i}^{2}} (87)$$

El parámetro Λ se encuentra relacionado con el calor de mezclado (entalpía molar de exceso) calculada a baja temperatura y altas presiones, condiciones a las que se cumple $V_{in} \rightarrow G$, y

$$H_{W_{1}}^{E}(T=0) = \left(\frac{d_{14}}{\overline{U_{1}^{2}}} - \frac{2d_{42}}{\overline{U_{4}}}{\frac{1}{\overline{U_{2}}}} + \frac{d_{22}}{\overline{U_{2}^{2}}}\right) \frac{\chi(1-\chi)\overline{U_{4}}\overline{U_{2}}}{(1-\chi)\overline{U_{4}} + \chi\overline{U_{2}}} \dots (88)$$

Para determinar las características del diagrama P-T-x, es decir los puntos de coexistencia de fases es necesario imponer las condiciones aplicables a dos fases & y & en equilibrio

 $T^{d}=T^{\beta}$, $P^{d}=P^{\beta}$, $M^{\alpha}_{s}=M^{\beta}_{s}$, $M^{\alpha}_{2}=M^{\beta}_{2}$.

Los diagramas de fases de la mezcla binaria de van der Waals para el caso de tamaño de moléculas iguales , $\nabla_1 = \nabla_z$, se clasifican de acuerdo a la forma de sus proyecciones presión reducida ($P_r = P/R^\circ$) - temperatura reducida ($T_r = T/T_c^\circ$); los diagramas se distinguen: primero por la presencia o ausencia de líneas de coexistencia de tres fases (dos líquidos y un vapor, denotados L_1, L_2 y V); segundo por la presencia o ausencia de líneas de puntos azeótropos negativos o positivos (en un puntos azeótropo se cumplen las condiciones establecidas para el equilibrio de fases más una adicional que es $X^d = X^{fr}$, las composiciones de las fases coexistentes son idénticas) y tercero por la forma que presentan las líneas de puntos críticos de la mezcla.

Las líneas de puntos críticos pueden terminar de varias formas: en los puntos críticos líquido-vapor de los componentes puros $C_1(T_1, P_1, x=0)$ y $C_2(T_2, P_2, x=1)$ y en el punto crítico límite superior $C_m(T_m^{co}, co, x=1/2)$ del sistema líquido totalmente empacado (Vm=b). Las líneas también pueden terminar en el último punto de la línea de coexistencia de tres fases, llamado punto crítico terminal superior (UCEP) o terminal inferior (LCEP) dependiendo si el sistema se transforma de heterogéneo a homogéneo al elevar o disminuir la temperatura, respectivamente.

Los nueve tipos de diagramas para moléculas de igual tamaño (ξ =0), se representan en un diagrama ζ - Λ , como se muestra en la figura 8.

Los diagramas, como ya se ha dicho se clasifican dependiendo de su representación en el plano P_r -Tr . A continuación se describen los nueve tipos de mezclas, mostrando para valores

-44-

Figura 8. Diagrama del comportamiento de fases para moléculas de igual tamaño. Los nueve tipos de diagramas se muestran separados por las líneas continuas.

dados de ζ y Λ la proyección P_{r-Tr} que las caracteriza. Clase 1.

Tipo I: una línea de puntos críticos de C_1 a C_2 (L-V).

Figura 9. Proyección $\frac{Pr}{r}$ para una mezcla con parámetros $\frac{r}{r}$ =0.5, $\frac{r}{r}$ =-0.3

-45-

Los diagramas de este tipo representan el comportamiento mas sencillo de coexistencia líquido-vapor (Fig.9). Cuando la pendiente de la línea de puntos críticos es positiva representa el lugar geométrico de los LCST; la pendiente negativa corresponde a los UCST.

Tipo I-A: similar al tipo I con la presencia de azeotropía negativa.

Figura 10. Proyección $\mathbf{P}_r - \mathbf{T}_r$ del tipo I-A, ($\mathbf{\zeta}$ =0.10, $\mathbf{\Lambda}$ =-0.3) con la presencia de una línea de azeótropos negativos.

Para este tipo de mezcla se observa (Fig.10) un máximo en la línea de puntos críticos donde se une a la línea de azeótropos negativos. Las pendientes de las dos ramas de la línea crítica son positivas e implican la presencia de LCST.

Tipo II: dos líneas de puntos críticos: $C_1 = C_2 (L-V)$; $C_m = UCEP (L-L)$.

Una característica importante de las mezclas con valores de A positivos es que presentan coexistencia líquido-líquido a baja temperatura, fenómeno que es complicado observar experimentalmente, ya que la formación de fases sólidas pueden ocultar el mismo. Las características del diagrama Tipo II (Fig.11) son similares al Tipo I. Se presenta una segunda línea de puntos críticos que corresponde a la región geométrica de los UCST líquido-líquido. En el UCEP, a bajas presiones, aparece una tercera fase gaseosa. Una línea de tres fases (L_1L_2V) se extiende desde el UCEP hasta Tr=0, Pr=0. La línea de puntos críticos líquido-vapor se puede interpretar de la misma forma que en la región I.

Figura 11. Diagrama $P_r - T_r$ correspondiente al tipo II (C_s =0.473, Λ =0.105).

Tipo II-A: similar al tipo II con la adición de un azeótropo positivo.

Figura 12. Proyección P_r -Tr para un sistema tipo II-A ($-C_r$ =0.184, Λ =0.30), con la presencia de una línea de azeótropos positivos.

-47-

El comportamiento azeotrópico positivo verdadero existe solamente en esta región (Fig.12). Este fenómeno no es común ya que la línea de azeótropos debe desaparecer a bajas presiones donde intersecta a la línea de coexistencia de tres fases.

Clase 2.

Tipo III-HA: dos líneas de puntos críticos: C_1 a UCEP (L-V); C_m a C_2 (L-L a L-V). Una línea de puntos triples se encuentra desde el UCEP hasta $f_{r=0}$, $\tilde{r}_{r=0}$ a menor temperatura que la curva de presión de vapor del componente 1, produciendo comportamiento heteroazeotrópico.

Figura 13. Proyección fr - Tr para la mezcla con parámetros $f_{r} = 0.111$, $\Lambda_{r} = 0.444$. Presencia de heteroazeotropía.

En la frontera entre las regiones II-A y III-HA, la línea de puntos críticos líquido-líquido de baja temperatura (UCST) se mueve a mayor temperatura y se conecta con la línea crítica líquido-vapor al final de la curva de puntos azeótropos. Esto produce que en la región III-HA la línea crítica que empieza en C_2 se prolongue hasta C_m (Fig.13). La línea de puntos críticos que comienza en C_1 termina en el UCEP.

En esta región, la línea de coexistencia de tres fases se encuentra a menor temperatura que la curva de presión de vapor

-48-

del componente 1 puro y continúa hasta terminar en el UCEP. Existen ejemplos para este tipo de mezcla para los cuales la línea de puntos críticos que va de C₂ a C_m presenta mínimos y máximos en presión reducida (ζ =0.111, Λ =0.4). En este caso al tipo de diagramas que presenta se les denota III-HA_m.

Tipo III: similar al tipo III excepto que la línea de coexistencia de tres fases se encuentra localizada entre las curvas de presión de vapor de los componentes puros.

Figura 14. Diagrama $f_r - T_r$ para la mezcla de Tipo III (ζ = 0.428, Λ = 0.257).

Cuando la frontera $A_{41}=A_{44}$ $(A=\zeta)$, cruza de la región III-HA a la región III la línea de coexistencia de tres fases cambia su posición relativa a la curva de presión de vapor del componente 1 hacia temperaturas mayores hasta quedar colocada entre las curvas de presión de vapor de los dos componentes puros.(Fig.14). La línea de tres fases termina a temperaturas y presiones mayores que C₁, en el UCEP. A condiciones más allá del UCEP, la mezcla se comporta exactamente igual a las del tipo III-HA. También en este tipo de diagramas se encuentran ejemplos para los que la línea de puntos críticos C₂-C_m presenta máximos y mínimos (Tipo III_m). En las regiones III (III,III_m,III-HA,III-HA_m) la línea de coexistencia de tres fases es estable desde $\mathbf{F}_{r=0}$, $\mathbf{T}_{r=0}$ hasta la línea crítica líquido-yapor. Este tipo de comportamiento se conoce como inmiscibilidad absoluta. Los diagramas de fases en la región I, para los que no existen puntos triples, exhiben miscibilidad completa. Las regiones restantes IV y V son casos de miscibilidad limitada, para los que la linea de coexistencia de tres fases solo aparece en un intervalo limitado de temperaturas y presiones.

Tipo IV: tres lines de puntos críticos: C_1 a UCEP (L-V), LCEP a C_2 (L-L a L-V) y C_m a UCEP (L-L).

Figura 15. Proyección \mathbf{Pr} -Tr para la mezcla tipo IV (\mathbf{f}_{s} =0.5795, \mathbf{A}_{s} =0.0446). Se observan tres líneas de puntos críticos: C_{1} a UCEP, LCEP a C_{2} y C_{m} a UCEP.

Este tipo de diagramas (Fig.15) resulta cuando el mínimo de la línea de puntos críticos de C₂ a C_m que aparece en los diagramas del tipo III_m ha cruzado la línea de coexistencia de tres fases y la divide en dos partes; se observan entonces tres puntos críticos terminales, dos de ellos UCEP y uno LCEP.

Tipo V: dos líneas de puntos críticos: C_1 a UCEP (L-V), LCEP a C_2 (L-L a L-V).

Figura 16. Diagrama para el sistema con parámetros $\mathbf{L}_{\mathbf{J}}$ =0.5833, $\mathbf{\Lambda}_{\mathbf{V}}$ =0.0833,que corresponde al tipo V.

En la frontera que representa el valor de la media geométrica $\alpha_{12} = (\alpha_{14} \alpha_{22})^{1/2}$, la línea de UCST a bajas temperaturas desaparece en Tr=0, permaneciendo solo en la frontera entre las regiones IV y V la línea de tres fases cerca de C₁ (Fig.16).

Tipo V-A: similar al tipo V con la adición de un azeótropo negativo.

Figura 17. Proyección Pr-Tr para la mezcla tipo V-A (5 =0.20, A =-1.80). Presencia de una línea de azeótropos negativos.

Este tipo presenta azeotropía combinada con el comportamiento de

tres fases que exhibe el tipo V (Fig.17). Este fenómeno no se observa físicamente $^{(5)}$, ya que experimentalmente el máximo en la línea crítica cerca de C₂ no existe.

Mezcla simétrica $(f_{z}o, f_{z}=o)$: cuando la diferencia entre las temperaturas y presiones críticas líquido-vapor de los componentes puros es nula, $f_{z}=o$, existen soluciones especiales a la ecuación que describe la línea de puntos críticos en x=1/2. Las funciones termodinámicas en este caso son simétricas respecto al valor x=1/2. Los sistemas reales en los que esta simetría se presenta son, por ejemplo, mezclas de isómeros ópticos d-1.

El diagrama de fases para una mezcla simétrica perteneciente a la región adyacente III-HA, se muestra en la figura 18.

Figura 18. Proyección **Pr-Tr** para la mezcla simétrica con parámetros **C** =0.0, **A** =0.5. La composición crítica a lo largo de la línea de puntos críticos arriba del UCEP es de 1/2. (El UCEP es en realidad un punto tricrítico simétrico).

Las curvas de presión de vapor para los componentes 1 y 2 coinciden y la curva de puntos críticos es simétrica alrededor de x=1/2. La línea de tres fases (L_1L_2V) se extiende desde **fr=Tr=O** y termina en un UCEP en el punto donde comienza la línea de puntos críticos con x=1/2. Arriba del UCEP esta línea es estable y continúa hasta presión infinita. El punto donde las dos líneas de puntos críticos se intersectan y termina la línea de tres fases, es más que un UCEP, un punto tricrítico simétrico (se observa que las densidades de las tres fases se vuelven idénticas en este punto para una composición global de x=1/2).

El diagrama para una mezcla con f_{-0} perteneciente a la región adyacente a II-A se muestra en la figura 19.

Figura 19. Proyección \mathbb{P}_{r} - \mathbb{T}_{r} de un sistema simétrico con parámetros \mathcal{F}_{r} =0.0, \mathbb{A} =0.42.

En este tipo de diagrama se observa que la línea de puntos críticos líquido-yapor que comienza en C_1 o C_2 termina en la línea de azeótropos en x=1/2. Otra línea crítica empieza a esta composición y termina en la línea de coexistencia de tres fases. Una segunda línea de puntos triples intersecta a la primera y a la línea de azeótropos en un punto terminal poco común; esta línea de tres fases se extiende hasta R=Tr=0.

Para calcular los diagramas de fases mostrados, van Konynenburg y Scott⁽⁵⁾ se basaron, como ya se mencionó, en los cambios de las propiedades termodinámicas del sistema en la cercanía de los puntos críticos. En cualquier punto crítico se cumplen las condiciones

$$\left(\frac{\partial^2 G_{\rm inn}}{\partial x^2}\right)_{\rm P,T} = 0 \qquad , \qquad \left(\frac{\partial^2 G_{\rm inn}}{\partial x^2}\right)_{\rm P,T} = 0 \qquad ... (89)$$

donde G_{m} es la energía libre de Gibbs molar para la mezcla binaria; si se utiliza a la energía libre de Helmholtz molar, las condiciones son equivalentes. Para la mezcla, esta energía libre de Helmholtz, referida a un estado estándar denotado f_{m}^{*} (escogido como aquel que corresponde a los componentes puros con volumen molar V_{m}^{*}), está dada por

$$F_{m}(T, V_{m}) - F_{m}^{o}(T, V_{m}^{o}) = -\frac{\alpha}{V_{m}} - RT lm [(V_{m}-b)/V_{m}^{o}] + RT [(1-x)lm(1-x) + x lm x] ...(90)$$

Las condiciones para la existencia de un punto crítico expresadas en función de la energía libre de Helmholtz son

$$F_{2v}F_{2x} - F_{vx}^{2} = 0,$$

$$F_{3v}F_{2x}^{2} - 3F_{2vx}F_{vx}F_{2x} + 3F_{v2x}F_{vx}^{3} - F_{3x}F_{2v}F_{vx} = 0,$$

$$F_{3x}F_{2v}^{2} - 3F_{2vx}F_{vx}F_{2v} + 3F_{x2v}F_{vx}^{3} - F_{3v}F_{2x}F_{vx} = 0,$$

$$(91)$$

donde se ha empleado la notación $F_{NXMV} = (\partial^{N+M} F / \partial X^{M} \partial V_{M}^{M})_{T}$. Las ecuaciones (91) se resolvieron⁽⁵⁾ simultáneamente

para el caso $\xi = 0$, utilizando la expresión (90) para la energía libre de Helmholtz, obteniendo una ecuación de séptimo orden tanto en el volúmen Vr = Vw/b como en x. Se calcularon las raíces de la ecuación para valores fijos de Λ , ζ y x por medio de métodos numéricos. El lenguaje utilizado en la descripción del trabajo de van Konynenbrug y Scott⁽⁵⁾ obedece a que las expresiones presentadas fueron desarrolladas a partir de la ecuación de estado de van der Waals, escrita de la forma

$$P = \frac{RT}{V_{r}-b} - \frac{a}{V_{m}^{2}}$$

donde V_m es el volumen molar calculado como $V_m = V/N$.

El trabajo descrito en este capítulo significó un gran impacto en la descripción del comportamiento de fases en coexistencia de mezclas binarias, pues además de ser un estudio muy extenso se descubrieron los nueve tipos de mezclas mencionados; sin embargo el trabajo se concretó a la determinación de las propiedades de bulto de la mezcla binaria de van der Waals sin generar las propiedades de intercara que acompañan al trabajo.

Con la información que sobre el comportamiento de la mezcla binaria de van der Waals proporciona el trabajo de van Konynneburg y Scott⁽⁵⁾, podemos escoger los parámetros que la caracterizan de forma que se presente coexistencia de tres fases; aplicando entonces el formalismo⁽³⁾ descrito en el capítulo II de este trabajo, calculamos las propiedades de intercara y de ellas determinamos el comportamiento de mojado de la mezcla.

-55-

V. CALCULOS.

El formalismo⁽³⁾ descrito en el capítulo II de este trabajo permite determinar las propiedades de intercara de la mezcla binaria de van der Waals. El cálculo de éstas requiere del conocimiento de los diagramas de fases de las mezclas en estudio, para lo cual se ha desarrollado una metodología basada en programas de computadora con los cuales se determinan tanto las condiciones a las que el sistema presenta coexistencia de fases como el valor de la tensión interfacial de las intercaras presentes. Dicha metodología se describe a continuación.

Los diagramas de fases suelen representarse con base en cantidades que pueden determinarse experimentalmente con facilidad; esto es, diagramas P-T, T-x, P-x, etc. Sin embargo las variables naturales del formalismo que utilizamos en este trabajo son: las densidades de los componentes presentes en la fase en consideración g_{4} y g_{2} , los potenciales químicos de los mismos $\beta \mu_{4}$ y $\beta \mu_{2}$, y el valor de β proporcional al inverso de T. Es por ello que la representación que nosotros utilizamos para los diagramas de fases es (g_{4}, g_{5}) y $(\beta \mu_{4}, \beta \mu_{5})$. Cabe aclarar que la información que proporcionan estos diagramas es totalmente equivalente a la que contiene cualquier otro tipo de representación , en nuestro caso a los diagramas calculados por van Konynenburg y Scott⁽⁵⁾ presentados en el capítulo anterior.

Para calcular las parejas (ρ_i, ρ_i) de coexistencia de fases, se determina primero el intervalo de valores de las mismas para las cuales el sistema presenta estabilidad termodinámica. Esto se logra determinando los valores de las densidades para los que se cumple la condición

 $d^{2}f(p_{1},p_{1},p_{2}) = \left(\frac{\partial \mu_{1}}{\partial p_{4}}\right)\left(\frac{\partial p_{1}}{\partial p_{4}}\right)^{2} + 2\left(\frac{\partial \mu_{1}}{\partial p_{2}}\right)\partial p_{1}dp_{2} + \left(\frac{\partial \mu_{2}}{\partial p_{2}}\right)\left(dp_{1}\right)^{2} > 0, \qquad \dots (92)$

donde 🍂; son los potenciales químicos dados por

$$\begin{array}{l} \left(\frac{\partial \mu_{i}}{\partial r} = bn \; \frac{P_{i}}{1 - G_{4} \rho_{4} - G_{2} \rho_{2}} + \frac{G_{i}(\rho_{4} + \rho_{2})}{1 - G_{4} \rho_{4} - G_{2} \rho_{2}} - 2_{3} \rho_{3} \sum_{j=4}^{2} \alpha_{ij} \rho_{j}, \quad i=1,2 \quad \dots (93) \\ y \quad \left(\frac{\partial \mu_{4}}{\partial \rho_{j}} \right) \qquad \text{estan dadas por} \\ \end{array}$$

$$\begin{array}{l} \frac{\partial \mu_{4}}{\partial \rho_{4}} = \frac{1}{1 - G_{4} \rho_{a} - G_{2} \rho_{2}} \left[\frac{1 - G_{2} \rho_{2}}{\rho_{4}} + G_{4} \; \frac{1 + (G_{4} - G_{2}) \rho_{2}}{1 - G_{4} \rho_{4} - G_{2} \rho_{2}} \right] = f_{44} \; , \\ \end{array}$$

$$\begin{array}{l} \frac{\partial \mu_{4}}{\partial \rho_{2}} = \frac{\partial \mu_{2}}{\partial \rho_{4}} = \frac{1}{1 - G_{4} \rho_{4} - G_{2} \rho_{2}} \left[G_{2} + G_{4} \; \frac{1 + (G_{4} - G_{2}) \rho_{2}}{1 - G_{4} \rho_{4} - G_{2} \rho_{2}} \right] = f_{42} \; , \\ \end{array}$$

$$\begin{array}{l} \frac{\partial \mu_{4}}{\partial \rho_{2}} = \frac{\partial \mu_{2}}{\partial \rho_{4}} = \frac{1}{1 - G_{4} \rho_{4} - G_{2} \rho_{2}} \left[G_{2} + G_{4} \; \frac{1 + (G_{4} - G_{2}) \rho_{2}}{1 - G_{4} \rho_{4} - G_{2} \rho_{2}} \right] = f_{42} \; , \\ \end{array}$$

$$\begin{array}{l} \frac{\partial \mu_{4}}{\partial \rho_{2}} = \frac{1}{1 - G_{4} \rho_{4} - G_{2} \rho_{2}} \left[\frac{1 - G_{4} \rho_{4}}{\rho_{2}} + G_{2} \; \frac{1 + (G_{4} - G_{2}) \rho_{2}}{1 - G_{4} \rho_{4} - G_{2} \rho_{2}} \right] = f_{22} \; , \\ \end{array}$$

La ecuación (92) se reconoce como una forma cuadrática homogénea en las dos variables $d\rho_4$ y $d\rho_2$. Para que ésta sea positiva definida debemos expresarla en términos de nuevas variables, de tal forma que sea la suma de los cuadrados de las mismas; una forma cuadrática como $A\eta_4^2 + B\eta_2^2$ cumple con ser positiva definida si las constantes A y B son positivas y no nulas.

Definimos entonces una nueva variable dN_A tal que $dN_4 = f_{14}d\rho_4 + f_{12}d\rho_2$; sustituyendo $d\rho_4$ en función de dN_4 en la ecuación (92) se tiene

$$\left[f_{2,2} - \frac{f_{1,2}^2}{f_{4,4}}\right] \left(d\rho_2\right)^2 + \frac{4}{f_{4,4}} \left(d\eta_3\right)^2 > 0,$$

de donde se obtiene que

la cual representa de igual manera la condición de estabilidad termodinámica del sistema.

A los valores de (ρ_{4}, ρ_{2}) que satisfacen la igualdad en (94) se les denomina curva espinodal; esta curva entonces permite diferenciar las condiciones a las que el sistema presenta estabilidad termodinámica de las que presenta el mismo cuando es inestable; de esta forma se facilita la búsqueda de las condiciones de coexistencia de fases, ya que sabemos que éstas se encuentran en la región de estabilidad del sistema.

Calculamos primero la curva espinodal, es decir las parejas $(\rho_{11}\rho_{2})$ que satisfacen la igualdad en (94); para ello utilizamos un método numérico en un programa de computadora: al intervalo de valores que puede tomar la densidad ρ_{i} $(o \le \rho_{i} \le 4)$ se le subdivide en un cierto número de puntos. A una ρ_{i} dada se recorren todos los puntos ρ_{j} , y se calcula para cada uno de ellos el signo de la ecuación (94); cuando existe un cambio de signo en la misma, se efectúa el método de bipartición para encontrar la raíz correspondiente en una precisión de 10^{-6} . Con estas densidades de la curva espinodal se calculan los potenciales químicos correspondientes por medio de las expresiones (93). El programa para calcular la curva espinodal se presenta en el Apéndice I, al cual hemos llamado ESPINODAL.

Habiendo delimitado las regiones de estabilidad de sistema se procede a calcular las condiciones a las cuales presenta coexistencia de fases. Para ello se utiliza otro programa de computadora por medio del cual se resuelve el sistema de ecuaciones que proporciona las condiciones de equilibrio entre las fases α y γ a un valor de β fijo

-58-

...(94)

$$\mu_{1}^{\alpha}(\beta, \rho_{1}^{\alpha}, \rho_{2}^{\alpha}) = \mu_{1}^{\delta}(\beta, \rho_{1}^{\delta}, \rho_{2}^{\delta})$$

$$\mu_{2}^{\alpha}(\beta, \rho_{1}^{\alpha}, \rho_{2}^{\alpha}) = \mu_{2}^{\delta}(\beta, \rho_{1}^{\delta}, \rho_{2}^{\delta})$$

$$\cdots (96)$$

$$P^{\alpha}(\beta, \rho_{1}^{\alpha}, \rho_{2}^{\alpha}) = P^{\delta}(\beta, \rho_{1}^{\delta}, \rho_{2}^{\delta}),$$

en donde la presión está dada por la expresión

$$\beta P = \frac{p_4 + p_2}{1 - \sigma_4 \rho_4 - \sigma_2 \rho_2} - \rho \left(d_{44} \rho_4^2 + 2 d_{42} \rho_4 \rho_2 + d_{22} \rho_2^2 \right), \qquad \dots (97)$$

y los potenciales químicos por la ecuación (93).

Al programa de computadora llamado MEZCLAS, se le proporciona como datos iniciales un intervalo de potencial químico y las densidades que corresponden aproximadamente a las condiciones de coexistencia de dos fases (puntos dobles), tal que estas últimas se localicen en las regiones de estabilidad termodinámica determinadas por la curva espinodal. Se fija entonces un valor del potencial químico $\beta\mu_i$, y se resuelven las ecuaciones para $\beta\mu_j$ y βP con los valores de densidades proporcionados; las condiciones de coexistencia de fases se determinan con una precisión de 10^{-8} en potencial químico y presión. El programa proporciona además la fracción mol de los componentes $(\chi = \rho_4/\rho_1, \rho = \rho_4 + \rho_2)$ y el calor de cambio de fase dado por la expresión

$$\Delta H = \frac{1}{1 - (G_{4}(1 - X^{+}) + G_{2}X^{+})\rho_{2}^{+}} - \frac{1}{1 - (G_{4}(1 - X^{-}) + G_{2}X^{-})\rho_{2}^{-}} \dots (98)$$

$$2 \beta \left\{ (d_{44}(1 - X^{+}) + d_{42}X^{+}(1 - X^{+}) + d_{82}X^{+})\rho_{2}^{+} - (d_{44}(1 - X^{-}) + d_{42}X^{-}(1 - X^{-}) + d_{42}X^{-})\rho_{2}^{-} \right\}$$

donde los superíndices + y - se refieren a la fase de mayor y me-

-59-

nor densidad global respectivamente. Al programa lo denominamos MEZCLAS y se presenta en el apéndice I.

Si a la temperatura de trabajo (β fija) existe un punto triple, deben existir tres parejas de densidades (ρ_1, ρ_2) para las fases L₁ (fase rica en componente 1), L₂ (fase rica en componente 2) y V (fase con densidades bajas de los dos componentes), tales que proporcionen los mismos valores de potenciales químicos β_1 , y β_2 , y de presión; es decir que cumplen con las condiciones (96) para el caso de tres fases.

Ya que el programa de computadora MEZCLAS nos proporciona solamente las condiciones de coexistencia de dos fases, no es posible determinar con una sola ejecución los puntos triples. Para ello se procede de la siguiente manera: se calculan las líneas de puntos dobles correspondientes a L_1V , L_2V y L_1L_2 ; la existencia de un punto triple implica en este caso la intersección de tales líneas de puntos dobles en la representación (عبر); por lo tanto determinando este punto, se obtienen las condiciones de coexistencia de tres fases. Suponiendo que en un intervalo pequeño de potenciales químicos las líneas de puntos dobles se representan por una recta, se construyó un programa de computadora con el cual se calcula el punto de intersección de las tres líneas mencionadas; posteriormente se vuelve a utilizar el programa MEZCLAS para determinar con mayor precisión al punto triple, que denotaremos L_1L_2V . De esta forma es posible determinar la línea de puntos triples de la mezcla. El programa que calcula la intersección mencionada (TRIPLE) se presenta también en el apéndice I.

Las mezclas estudiadas en este trabajo presentan un punto crítico terminal superior (UCEP). Su determinación se realizó siguiendo la línea de puntos triples a diferentes valores de , hasta llegar a un valor de ésta tal que las líneas de puntos dobles no se intersectan en un punto.

La metodología hasta aquí descrita permite conocer las propiedades de las fases en coexistencia, sean puntos dobles o triples; con estos datos se procede a calcular el valor de la ten-

-60-

sión interfacial de las intercaras presentes. Para ello se requiere conocer los perfiles de densidad de los componentes de la mezcla, los cuales se calculan resolviendo las ecuaciones (23) por medio de un programa de computadora llamado SIGMA.

El cálculo requiere de una primera aproximación para los perfiles de densidad; para ello se propone una forma exponencial para la variación de la densidad con la posición, tal que i(x) = i(

Posteriormente se realiza la integral analítica que aparece en las ecuaciones (23), sustituyendo a las $P_{i}(x)$ por la forma exponencial propuesta. De esta manera se calculan dos primeras aproximaciones que se utilizan para iniciar el método de autoconsistencia que proporcionará finalmente el perfil correcto para las condiciones de coexistencia que se consideren. Para cada iteración se calculan los perfiles de densidad de los dos componentes y el valor de la tensión interfacial dada por la ecuación (64) ó en su forma análoga

 $\beta G = \int \beta (\omega [\rho(x)] - \omega^{u}) dx + \frac{1}{4} \beta \sum_{i,j=1}^{2} \int u_{ij} e^{-ix-x'l} (\rho_{i}(x) - \rho_{i}(x)) (\rho_{j}(x) - \rho_{j}(x)) dx dx', (99)$

en la que (3) es la densidad de potencial gran canónico dada por (65), y (3)^w su valor para el caso uniforme. La integración de las ecuaciones (23), como de la (99) se realiza por medio del método de Simpson. Para escoger el mejor perfil se tomó un criterio basado en el valor de la tensión interfacial calculada en cada iteración, es decir, la iteración que proporcionó el valor más pequeño de la tensión, aceptándola si el error número no excedía al 1%. De esta forma se calcularon las tensiones interfaciales de las tres intercaras presentes en coexistencia de tres fases, correspondientes a L_1V , L_2V y L_1L_2 . En el apéndice I se presenta el programa para este cálculo, SIGMA.

VI. RESULTADOS.

i) Propiedades de bulto. Diagramas de fases.

La determinación de las propiedades de intercara de la mezcla binaria de van der Waals en condiciones de coexistencia de tres fases, objetivo de este trabajo, requiere del conocimiento de las propiedades de las fases de la misma. Se escogieron mezclas con parámetros ζ y Λ que en el caso de diámetros iguales presentan una línea de puntos triples. Para ellas se calcularon los diagramas de fases mediante la metodología descrita en el capítulo anterior, resultados que se presentan a continuación.

Las mezclas escogidas (\mathcal{G} =0.1, \mathcal{A} =0.5 y \mathcal{G} =0.4, \mathcal{A} =0.5) pertenecientes al tipo III-HA de la clasificación de van Konynenburg y Scott⁽⁵⁾ presentan una línea de puntos triples que se localiza desde \mathcal{P} =Tr=O hasta un UCEP (punto crítico terminal superior) colocada a un lado de las curvas de presión de vapor de los componentes puros. Para determinar las condiciones de coexistencia de tres fases se procedió primero a calcular las curvas espinodales para las mezclas a distintos valores de temperatura.

Las figuras 20 a 31 muestran los diagramas de fases para la mezcla con parámetros $f_{\mu} = 0.1 \text{ y}$ $\Lambda = 0.5$; haremos el análisis detallado de los resultados obtenidos para ésta, a un valor determinado de temperatura ($\beta = 6.75$) considerando que los diagramas a diferentes valores de β pueden interpretarse de la misma forma. Sin embargo, se harán notar las modificaciones que sufren los mismos al variar la temperatura.

La figura 20 muestra el diagrama (P_1,P_2) para la mezcla con β =6.75; las líneas punteadas representan a la curva espinodal que en este caso está compuesta de cuatro ramas. Para conocer el significado de las regiones que quedan determinadas por la curva espinodal se realizó una prueba de curvatura sobre la función de energía libre de Helmholtz, verificando que las longitudes de correlación correspondan a números reales y se observó que para los valores de densidades en las regiones marcadas L_1 , L_2 y V, la curvatura de la función es correcta (cóncava hacia arriba, es decir, se cumple d^2 (>O) y por tanto en ella se encuentran los estados estables del sistema. La región marcada B presenta curvatura incorrecta (cóncava hacia abajo, con d^4 (> O) siendo los estados del sistema inestables y la región restante representa puntos de inflexión.

64-

La curva espinodal se puede representar también en un diagrama (β , β , β , β), calculando los valores de los potenciales químicos a partir de las densidades correspondientes a esta curva por medio de las ecuaciones (93). La figura 21 muestra el diagrama de fases a β =6.75 para la mezcla en esta representación; las ramas de la curva espinodal de interés son las marcadas L₁, L₂ y V ya que éstas delimitan los valores de potencial químico que puede tomar el sistema cuando se encuentra en un estado estable. Puede observarse que estas ramas definen intervalos donde traslapan (de dos en dos) las regiones de estabilidad mencionadas, es decir en las regiones marcadas L₁V, L₂V y L₁L₂ es posible encontrar estados estables de dos fases. La región marcada A es el resultado del traslape de las tres regiones y por tanto en ella puede existir un estado estable de tres fases (representado por un punto en este diagrama).

Se procede entonces a determinar las condiciones de coexistencia de dos fases. En la figura 20 se señalan (-----) las llamadas líneas de unión; los puntos donde terminan estas líneas son los valores de las densidades de las fases en coexistencia L_1V , L_2V ó L_1L_2 . A cada una de estas parejas de densidades les corresponde un punto en el diagrama (β_1M_4 , β_2M_2), de tal forma que constituyen las líneas continuas que se observan en la figura 21.

Para este valor de temperatura, existen tres líneas de unión que se intersectan formando un triángulo en el diagrama (P_1, P_2) , mostradas en la figura 20 con las líneas continuas, cuyos vértices son las densidades de las tres fases coexistentes L₁L₂V. El punto triple se observa en la representación (β_{1}, β_{2}) en la figura 21 como el punto de intersección de las líneas de dobles.

Para estudiar la precisión con que se calcularon las condiciones de coexistencia de dos o tres fases se determinó la densidad de potencial gran canónico 🍛 dada por la expresión (65) que no es mas que la energía libre del sistema. Para las fases coexistentes el valor de 🍛 debe ser el mismo; es decir se obtienen dos o tres mínimos de energía.

Con la determinación de 🐱 🛛 se pueden analizar los diagramas en forma más detallada. Se pueden encontrar estados con los mismos valores de potenciales químicos que los correspondientes a estados estables del sistema, pero con un valor distinto de energía, es decir, se encuentran estados metaestables del mismo. Viajando, por ejemplo, sobre la línea de dobles L₂V en la figura 21 hacia valores positivos de ദூル, , se observa que no es posible encontrar estados metaestables, es decir un mínimo con energía mayor que los mínimos que representan al punto doble. Cuando se cruza la rama de la curva espinodal marcada L₁ el sistema presenta tres mínimos de energía: dos de ellos con el mismo valor de ω que corresponde al punto doble L $_2$ V y el tercero a un estado metaestable de una fase L₁ a mayor energía que la del punto doble. En el punto triple los tres minimos coinciden en energía y mas allá de él se encuentran también tres mínimos, un estado estable de una fase L_1 con energía menor a los que corresponden al doble L_2v , es decir el estado de dos fases es metaestable. Las otras dos líneas de puntos dobles se analizan de la misma manera.

Las figuras 22 a 31 muestran los diagramas (p_1, p_2) y $(\beta_1\mu_1, \beta_1\mu_2)$ para la mezcla a valores menores de β_1 , los cuales se analizan de la misma forma. Se puede observar que a medida que aumenta la temperatura la forma de la curva espinodal se modifica; las ramas que corresponden a L_1 y V se acercan (figura 24) hasta que adquieren una nueva forma (figura26). La línea de unión L_1 V en el punto triple se acorta, lo que significa que las densi-

-65-

dades de estas dos fases se van haciendo similares; esto implica que la intercara que desaparece en el UCEP es la correspondiente a la coexistencia L_1V . La temperatura del UCEP se determinó siguiendo la línea de puntos triples hasta alcanzar un valor de β para el que no se encontró intersección de las líneas de puntos dobles en la representación (β_1A_1, β_2A_2). El último punto triple se localizó a β =3.92579 con una precisión de 10⁻⁷ en temperatura y de 10⁻³ en densidad; los diagramas a este valor de β se presentan en las figuras 28 y 29.

A temperaturas mayores al valor para el UCEP, las fases L_1 y V se convierten en una sola fase fluída marcada F, la cual presenta una amplia gama de valores de las densidades (figura 30); en estos casos sólo se presenta coexistencia de dos fases L_2 F, como se observa en la representación (ρ_4 , ρ_2) en la figura 31.

La figura 32 muestra algunos de los puntos triples calculados para esta mezcla en la representación (P_1, P_2) ; en ella se observa con claridad que la intercara que desaparece en el UCEP es la correspondiente a la coexistencia L₁V. La figura 33 muestra, a mayor escala, las líneas de unión entre estas fases pertenecientes a los puntos triples. Los resultados completos de los puntos de tres fases se presentan en la Tabla I del apéndice II.

Posteriormente se escogió una segunda mezcla con parámetros ζ =0.4 y Λ =0.5 y se calcularon las propiedades de bulto con el mismo procedimiento de la mezcla anterior.

Las figuras 34 a 43 muestran los diagramas de fases completos para diferentes valores de 降 . Las gráficas se analizan de la misma forma que las de la mezcla ya descrita.

Se observa que cuando el valor de \checkmark aumenta, es decir la diferencia entre los puntos críticos de los componentes puros es mayor a un valor de \land fija, el UCEP se localiza a mayor temperatura lo que implica que la línea de puntos triples crece. El último punto triple de esta mezcla se localizó a ρ =3.4615, con una precisión de 10⁻⁴. En este caso también la intercara que

-66-
desaparece en el punto crítico es la correspondiente a la coexistencia L_1V . Los diagramas de fases para esta temperatura β =3.4615 se presentan en las figuras 42 y 43.

La figura 44 muestra algunos de los puntos triples calculados para esta mezcla en la representación (ρ_1, ρ_2) ; las líneas de unión de la coexistencia L_1V pertenecientes a los puntos triples se presentan, a mayor escala, en la figura 45. Los resultados completos de los puntos triples se anexan en la Tabla II del apéndice II.

Con estos resultados para las mezclas en estudio, podemos ahora calcular los valores de las tensiones interfaciales de las intercaras presentes en condiciones de coexistencia de tres fases.

-71-

-73-

. ------

QUIMICA D.EPG

-79-

Figura 32. Puntos triples para la mezcla con parámetros & =0.1 y A =0.5 para diferentes valores de temperatura.

Figura 33. Lineas de unión correspondientes a la coexistencia L_1V pertenecientes a los puntos triples; los valores indican la temperatura.

-83-

Figura 37. Diagrama (Bu, Bb,)para la mezcla.

-85-

-89-

Figura 43. Diagrama (BMa, BMa) para la mezcla.

ļ

ii) Propiedades de intercara. Tensión interfacial.

Con la información que se obtiene de los diagramas de fases determinados para las mezclas descritas, y en particular las condiciones a las que se presentan puntos triples, calculamos los perfiles de densidad y las tensiones interfaciales de las intercaras presentes utilizando la metodología descrita en la sección V de esta tesis. Ello nos proporciona las propiedades de mojado de las mezclas estudiadas.

Las ecuaciones (23) proporcionan dos conjuntos de perfiles de densidad para cada una de las intercaras posibles en coexistencia de tres fases. Uno de ellos es la combinación de los perfiles de las otras dos intercaras que satisface las condiciones a la frontera de la intercara bajo consideración. Esta solución describe por tanto a una película que moja. La otra solución, los perfiles que llamaremos sencillos, permite la descripción del fenómeno de mojado parcial.

La figura 46 muestra las tres parejas de perfiles sencillos (L_1V , L_2V y L_1L_2) para la mezcla con parámetros r_2 =0.1 y Λ =0.5 para dos valores distintos de temperatura (ρ =4.82143 y ρ =4.01786). A medida que aumenta la temperatura y acercándose al UCEP los perfiles correspondientes a la intercara L_1V cambian; se ensanchan y alisan. En esta teoría de dos parámetros de orden hay dos longitudes de correlación; una de ellas diverge cerca del punto crítico terminal. Como el ancho de los perfiles es proporcional a esta longitud de correlación, aquellos se ensanchan notablemente en la fase que se hace crítica.

El mismo análisis se aplica a los perfiles de densidad que se muestran en la figura 47 para la mezcla con parámetros f_{s} =0.4 y Λ =0.5 ; en este caso se observa el mismo comportamiento de la intercara L₁V, que desaparece en el UCEP.

Los valores de las tensiones interfaciales para los puntos de coexistencia de tres fases se presentan en la Tabla III del apéndice II. Utilizando la relación (72) y definiendo a σ^* como la suma de las tensiones interfaciales más pequeñas que en nuestro caso son las correspondientes a las intercaras L_1V y L_1L_2 , tal que $\sigma^* = \sigma_{L,V} + \sigma_{L,L_2}$, podemos establecer relaciones del tipo

siendo por supuesto G_{L_2V} la mayor de las tres tensiones interfaciales.

El significado de las relaciones (100) es el siguiente: ya que calculamos la tensión interfacial como la diferencia de energía libre superficial entre el caso uniforme y el no uniforme,ello nos proporciona la posibilidad de determinar cual de las soluciones de las ecuaciones (23) es fisicamente correcta. Si para una mezcla se cumple la desigualdad en (100a) los perfiles de densidad posibles para la intercara en consideración serán aquellos que se calculen como la combinación de los otros perfiles sencillos, ya que ello implica que el sistema en esta situación presenta menor energía. En nuestro caso si $G^+ \downarrow G_{L_4} \lor f_{L_4} \lor f_{L_4}$ el perfil correspondiente a la intercara L_2 V será una combinación de los perfiles L_1 V y L_1L_2 , lo cual se muestra esquemáticamente en la figura 48. Ello significa que existe una película de L_1 que moja completamente a la intercara L_2 V, y por tanto se

X

Figura 48. Perfil de densidad para la intercara $L_2 V$ como combinación de los perfiles $L_1 V$ y $L_1 L_2$.

-95-

presenta el fenómeno de mojado total.

Por otro lado al cumplirse la desigualdad en (100b) el perfil de densidad L_2V es un perfil sencillo, es decir no existe una película de L_1 que moje a esta intercara. En este caso las desigualdades dihedrales de Cahn (ver capítulo III) se satisfacen y hay la posibilidad de tener las tres fases en contacto ; experimentalmente se ha observado la formación de una gota de la fase L_1 en la intercara L_2V . El sistema presenta mojado parcial. Para las mezclas estudiadas se graficaron las tensiones interfaciales correspondientes a los perfiles sencillos L_1V , L_2V y L_1L_2 así como \mathbf{v}^+ respecto al cociente de la temperatura reducida del punto triple y la temperatura del UCEP , tal que $T=T_r/T_{\rm HCEP}$. Las gráficas se presentan en la figura 49.

En ella se observa que para las dos mezclas la curva marcada \mathbf{G}^{+} cruza a la correspondiente a $\mathbf{G}_{\mathbf{L}_{2}\mathbf{V}}$; la temperatura a la que esto ocurre la llamaremos T_M. A temperaturas menores a T_M se cumple la desigualdad en (100b) por lo que la mezcla presenta mojado parcial; en el intervalo de temperaturas T_M $\boldsymbol{<}$ T $\boldsymbol{<}$ T_{UCEP} se satisface la desigualdad en (100a) y la mezcla presenta mojado total, es decir una película de L₁ moja completamente a la intercara L₂V.

A la temperatura T_M ocurre una transición de mojado parcial a mojado total; en nuestro caso la transición que se observa a T_M es de primer orden, ya que existe un cambio discontinuo en la tensión interfacial; es decir, a temperaturas menores a T_M la intercara L_2V presenta la estructura correspondiente a mojado parcial por lo que la curva correcta es la marcada L_2V y en el intervalo $T_M \prec T \lt T_{UCEP}$ presentará la estructura que determina el fenómeno de mojado total por lo que la curva correcta será la marcada \clubsuit . A la temperatura de transición las dos estructuras son igualmente posibles; coexisten en regiones separadas por un contorno que presenta tensión lineal y calor latente positivos.

Comparando las gráficas para las dos mezclas (figuras 49a y 49b) se observa que para mezclas que presentan una mayor diferencia en los puntos críticos de los componentes puros el intervalo de temperaturas a las que el sistema presenta mojado total es mayor; la temperatura de transición para la mezcla con parámetros ζ =0.1 y Λ =0.5 es aproximadamente de 0.82978, mientras que para la mezcla con ζ =0.4 y Λ =0.5 es de 0.5920.

Para temperaturas cercanas al valor T_{UCEP} no fue posible calcular las tensiones interfaciales de los puntos triples, aunque el error que se comete en la determinación de las condiciones de coexistencia de fases en muy pequeño, éste provoca que el método autoconsistente para calcular los perfiles de densidad no converja. La dificultad del cálculo en la cercanía de un punto crítico estriba en que la longitud de correlación diverge en ese punto.

Los cálculos realizados para las dos mezclas estudiadas correspondientes al tipo III-HA de la clasificación de van Konynenburg y Scott⁽⁵⁾ nos ha permitido analizar en forma cualitativa⁽²⁴⁾ las propiedades de mojado para mezclas con valores positivos de Λ . La figura 50 muestra las mezclas que se analizaron de esta forma, en el espacio (ζ , Λ).

Figura 50. Espacio de interacción (5, 1) para la mezcla de van der Waals con 1, positiva.

Para las mezclas señaladas en este diagrama se observan las siguientes propiedades de mojado:

(a) El comportamiento de las tensiones interfaciales de las intercaras presentes en coexistencia de tres fases para mezclas con f_{s} =0.0 y 0 $\langle A \rangle$ $\langle 0.43$ se muestra en la figura 51. En ella se observa

-97-

Figura 51. Tensiones interfaciales para mezclas con f =0.0 y 0 ζ Λ ζ 0.43

(b) Para la llamada media geométrica, en la que se cumple $\alpha_{42} = (\alpha_{44}\alpha_{42})^{1/2}$ se observa el comportamiento mostrado en la figura 52. La intercara α_{44}^{N} tiene sólo una posible estructura, que es la combinación

Figura 52. Tensiones interfaciales para mezclas con $\alpha_{42} = (\alpha_{44} \alpha_{42})^{4/2}$.

-98-

de los perfiles correspondientes a las intercaras $^{\alpha}\beta$ y $^{\beta}\beta$. El sistema presenta mojado perfecto para toda T < T_c. Esto ha sido probado también por Sullivan⁽²⁵⁾.

(c) Para estos sistemas el equilibrio de fases ocurre con segregación o inmiscibilidad total de los componentes. Esto significa que $\alpha_{2,2} \rightarrow \infty$ es decir $\beta_{c} = 1$ y $\mathcal{A}_{c} = 1$. Los otros dos parámetros o su cociente α_{44}/α_{44} permanece indeterminado. Este sistema es equivalente al modelo de Sullivan para la intercara fluído-sólido, en el cual α_{44} se identifica con la interacción fluído-pared \mathcal{E}_{c} y α_{44} con la interacción de partículas de un componente α . A bajas temperaturas existen dos estructuras (Figura 53) para la intercara α_{44} ,

Figura 53. Tensiones interfaciales para las mezclas con $f_{\rm c}$ =1 y Λ =1.

la que presenta una película siempre con mayor tensión interfacial. Las dos tensiones se unen tangencialmente a la temperatura de transición $T_M \leqslant T_c$; para temperaturas mayores a T_M solo se presenta mojado total. La transición es en este caso de segundo orden.

(d) La figura 54 presenta el comportamiento para mezclas en la región del espacio $(\mathcal{L}, \mathcal{A})$ delimitada por las mezclas simétricas y las mezclas de media geométrica, es decir $\mathcal{J}^2 + (\mathcal{A}-4)^2 \, \langle 4 \rangle \, y \, \mathcal{A} \, \langle 4 \rangle$. Las mezclas estudiadas en este trabajo pertenecen a este tipo. Para ellas, como ya se ha dicho, existen dos estructuras distintas para la intercara $\alpha \gamma$ para T \mathcal{L} T_c. A bajas temperaturas la mayor tensión

Figura 54. Tensiones interfaciales para las mezclas en la región d de la figura 50.

corresponde a la película y a temperaturas cercanas a T_c la situación se invierte y la película se convierte en el estado de equilibrio. La transición de mojado parcial a perfecto a T_M es de primer orden, existe un calor latente y las dos estructuras pueden coexistir a T_M en regiones separadas por contornos que presentan una tensión lineal positiva.

(e) Para las mezclas en esta región del espacio $(, , \Lambda)$ se presenta el comportamiento de las tensiones interfaciales en la figura 55. Se observa que para toda T \langle T la película presenta la menor de las ten-

Figura 55. Tensiones interfaciales para mezclas en la región e de la figura 50.

siones interfaciales, y por tanto este es el estado de equilibrio. En todo el intervalo de temperaturas el sistema presenta mojado perfecto.

-100-

-101-

.

El formalismo⁽³⁾ descrito en el capítulo II de esta tesis, permite calcular de forma directa las propiedades de bulto y de intercara de la mezcla binaria de van der Waals. Aún cuando la determinación de las condiciones de coexistencia de dos y tres fases por medio de los programas de computadora descritos implica un trabajo laborioso, la metodología desarrollada resulta una forma sencilla de determinar los diagramas de fases de cualesquiera de las mezclas caracterizadas por los parámetros y de la clasificación de van Konynenburg y Scott⁽⁵⁾. El estudio de las mezclas escogidas proporciona un camino para determinar el comportamiento de otras mezclas.

-104-

Las condiciones de coexistencia de tres fases, así como la temperatura del punto crítico terminal superior que presentan las mezclas estudiadas, se calcularon con una buena precisión dentro del error que significa utilizar métodos numéricos en estos cálculos.

Las tensiones de intercara calculadas para las mezclas nos permitieron determinar las propiedades de mojado de las mismas; se observó que para las mezclas de este tipo existe una transición del régimen de mojado parcial a mojado total, la cual es de primer orden. La temperatura de transición varía al aumentar la diferencia entre los puntos críticos de los componentes puros a un valor de entalpía de mezclado constante; es decir, el intervalo de temperaturas a las cuales la mezcla presenta régimen de mojado total es mayor cuando 5 crece, ya que la temperatura de transición de mojado disminuye.

El estudio cuantitativo de las mezclas de este tipo, nos permitió realizar un análisis cualitativo de mezclas con valores positivos de Λ . Observamos que para mezclas con $0 \leq \Lambda \leq 0.43$ el sistema presenta régimen de mojado parcial para todo el intervalo de temperaturas.

Las mezclas correspondientes a la llamada media geométrica, una de las intercaras tiene solo una estructura posible, que es la combinación de las otras dos intercaras; el sistema presenta mojado perfecto en todo el intervalo de temperaturas. Cuando el parámetro \$ es mayor que el correspondiente a la media geométrica, la mezcla presenta en el intervalo $02T2T_{c}$ mojado perfecto.

-105-

Para comprobar estos resultados cualitativos, los cálculos para estas mezclas se estan realizando actualmente. Igualmente interesante será el estudiar las propiedades de mojado de mezclas con valores de $\Lambda \ge 0$ y con la presencia de más de un punto crítico terminal.

Podemos afirmar entonces, que poseemos la metodología necesaria para enfrentar problemas de fluídos no uniformes tales como las propiedades de mojado estudiadas en este trabajo. VIII. BIBLIOGRAFIA.

- (1) Widom B. J.Chem.Phys. <u>62</u>, (4), 1332, (1975).
- (2) Cahn J.W. J.Chem.Phys. <u>66</u>, (8), 3667, (1977).
- (3) Varea C., Valderrama A., Robledo A. J.Chem.Phys. <u>73</u>, (12),
 6265, (1980).
- (4) Padday J.F. Wetting, Spreading and Adhesion. Academic Press. London, (1978).
- (5) van Konynenburg P.H., Scott R.L. Phylosophical Transactions of The Royal Society of London, 298, 495, (1980).
- (6) De Boer. Physica, <u>73</u>, 1, (1974).
- (7) Widom B. J.Phys.Chem. <u>86</u>, (6), 869, (1982).
- (8) Robledo A. J.Chem.Phys. <u>72</u>, (3), 1701, (1980).
- (9) Kac M., Uhlenbeck G., Hemmer P.C. J.Math.Phys. <u>4</u>, 216, (1963).
- (10) Cahn J., Hilliard J. J.Chem.Phys. <u>28</u>, (2), 258, (1958).
- (11) Widom B. U.Landman Ed. Statistical mechanics and Statistical methods in theory and applications. Plenum. N.Y. p33.(1977).
- (12) Evans R. Advances in Physics. 28, (2), 143, (1979).
- (13) Robledo A., Varea C. J.Stat.Phys. 26, (3), 513, (1981).
- (14) Widom B. Phys.Rev.Letters. 34, (16), 999, (1975).
- (15) Sullivan D.E. Phys.Rev.B 20, (10), 3991, (1979).
- (16) Sullivan D.E. J.Chem.Phys. <u>74</u>, (4), 2604, (1981).
- (17) Peierls R. Phys.Rev.B 18, (4), 2013, (1978).
- (18) Dash J.G. Phys.Rev.B 15, (6), 3136, (1977).
- (19) Moldover M.R., Cahn J.W. Science 207, (7), 1075, (1980).
- (20) Teletzke G.F., Scriven L.E., Davis H.T. J.Chem.Phys. <u>77</u>, (11), 5794, (1982).
- (21) Teletzke G.F., Scriven L.E., Davis H.T. (por publicarse Feb.1983).

-106-

- (22) Nakanishi H., Fisher M. Phys.Rev.Letters. <u>49</u>, (21), 1565, (1982).
- (23) Telo da Gamma M.M., Evans R. (por publicarse en Molecular Physics, 1983).
- (24) Costas M.E., Varea C., Robledo A. (por publicarse 1983).
- (25) Sullivan D.E. J.Chem.Phys. <u>77</u>, 2632, (1982).

APENDICE I.

Programa de computadora ESPINODAL. PERCEN PEAC 3.51 1) - EUSIGN X(BUC), T(BUC) DIVENSION REPRESENCES X1(COLE) 2.111 [14/// 41/1/ - 2012 514(24)] (2014) 1.11 DICENCIES (AUTOCKE), PAU25(AU), PAU32(AUC), PAU22(AUD), AMU17(AUC) 5 . 91 () VENSERM B(2), N2(2), 488(4), T2(58) TINESS (100 -2012+(200), 20014(201), 20024(80()) (JARSATCA X10(ACC) 21 . (CARDA/ISITA/REATELES, TES, WATE 8: 11 (C2+00//04/x+/\$1,\$5,4*1,412,422,857A 2004 AND1(01,02,30T3,51,52,411,412)=(1./00TA)+(ALGG(01/(1.-51*01-52*02) 12012 王)★((1 1 ★ × 2)→ 5 1)/(1 2 → 5 1 → 3 1 → 5 2 → 12))→ 2 。★(2 1 1 ★ 7 1 ★ 7 1 ★ 4 1 2 ★ 12 * 12 1101 Frue(11, He, He, He, C), S2, 422, He)=(1./HETE)*(ALOG(42/(1.-S1*K1-S2*F2) 11 . . うりゅくイレキャンショッション(ちょっとキャレキャンシンシンション(ホキシャルキャンジャル) F(K1,42,2)TA,S1,S2,K1),A12,A22)=(P1492)/(1.-S1*21-S2*82)-BFTA*(414 3+69+2472*4432=2442247224924422 RELOCE, /) CONT, ITEM 1 .: JICHENT, EL, DEC TO 240 ちともおもちょう) くちょどう。 のもりょうちき ゆうと ~ 66 10 250 · · · · RAL FIRE (S.,) STROM, THROM, FURDA 1726(5,7)01,614 **1** 59=51+61 + 34200)/(9, - 2420)) 5 - L . 74 . . b-1=:11:42*02*(10/1411,)/(51*S1*(1,-BVK)N)) 形式とす」(「「すくなり」も、シント(なちゃくら) 4 $\gamma_{\pm} \in I$ 25, 14406(5,/3)24,0000446,0014 ANTHEN, DELEN BE TO REL 7 1-212(1,1)と1-25-1.24 1... O(F,/)(T((1),1=4, N1(2P) 11 (AL (AL (AL (AL) 60 15 27. 1 - 2 -PER ERODELAT STRAFTERS 2 . . . 2200 FL25(*,/)~7(1),~7(2) ? 1

-108-

-109-

34.54	● (1) 没不打。 米田 (1) (4)	
1. Carto	1月月1月1日。 (1、2)11-11(1)#月1日)目11月4(11-3)	
8 1.71	NET ARE (27, ENT)/(E, EA) (E, FA) (E) .	
71.50	N21(C(5,72))	
F	しんりすくてん。2000年3月(ビリンスを、クシンなりす。スタランション2000年6月	
v ag [] :	WEITERALS, ANDERS, ATOLE, STOLEN	
te internet	₽NK(5 ± (\$2+ \$4) / (\$1+\$ ≥)	
10 -	FWCOLE((+, ?/(\$2*9?))~(411/(\$1*91)))/((111/(\$1*91))+(422/(\$2*92)))
21.00	(NKUN=((611/(01+81))+2,+()12/(S1+82))+(422/(S2+52)))/((A11/(S1+	- <u>\$</u> 1 1
3.51	<pre>(#2%/(#2**\$2));</pre>	
64) (ENTERS, SEDAVRON, AVRON, CARCH	
Ē.∰.	F(()=(_/(()+()+())+())	
6.00	F (2) = 1 = 1 = (2) + (2	
7.4.5	\$5111(5,81),(1),((),(B(()),(B(())))	
621.6	6 (1 T) (6, 17))	
0 (0) (
tile≉	$\mathbb{R} = \mathbb{I}$	
1.11		
27.55	L L # 1	
3 - 1 - 1	$\mathbf{b}(\mathbf{p}=1)$	
6 ($\lambda > \pm \gamma$	
5172	3.1 = 1	
e cue	$[(t_{1}) \times t_{2}] = T = 1 + 2$	
7001	$h = h \sum_{i \in I} \sum_{j \in I} f_{ij} \sum_{i \in I} f_{ij} \sum_{j \in I} f_{ij} \left(f_{ij} \right)$	
) راد ۶	$[f_{i}] = \{ \phi_{i}, \dots, \phi_{i} \neq i \} \in \{ \phi_{i} \neq i \}$	
ejj;	$F(-\pi^{-1}, \star :: (\lambda, C_{-}))$	
Cat :	$(FII = ISE(FF)(FO, FC, S_{1}, a + S, SOTE)$	
1221	$TF\left(f_{\mathbf{F}_{\mathbf{z}}} \otimes \mathfrak{S}_{\mathbf{u}} \in F(\mathcal{F}_{\mathbf{u}}) \in F(\mathcal{F}_{\mathbf{u}}) \in F(\mathcal{F}_{\mathbf{u}}) \right)$	
Ĉi L	JECHCREER TYPE TO TREE	
1	- CC (15) - T=4, 10	
alet in	$f(c, 1 = 0 \neq \beta, C(1, 2))$	
5.	テキング目的(1993年)、①デビアとよりた。多方、商手作、大手字)を除ってて	
E. 24	ちゅううね:(とう)、つひ、ひて、ちし、ちつ、カクラ、カイン)・ドレキカ	
7	ECHP(ED1, 20, PETA, 51, 92, 211, 22, 222)	
C = 1 = 1	χ 1 3 ± 4 (1 / (2) + 3 (1)	
91	F (F ⊂ F i (·) = (· C (i)	
n an frainn an frainn Tha tha tha tha tha tha tha tha tha tha t	$\mathbb{E}\left(f\left(\left \frac{1}{2}E \left(\left \frac{1}{2} \right E \right) \right) \right) \right) = \int_{\mathbb{R}^{n}} f\left(\left \frac{1}{2} \right E \left(\left \frac{1}{2} \right E \right) \right) \right) dt$	
	▶ 考 (·) = x 1 注	

72-04		JE CALLELT
73060		$f_{i}(t, f_{i}, s) \left(\left(J, J \right) \right) \equiv s \left(D \right)$
74.000		$\mathbf{X} \supset \mathbf{F} \left(\mathbf{A} \mid \mathbf{J} \right) = \mathbf{X} \left(1 \mid \mathbf{J} \right)$
7503		
76:00	125	(4.10年(※)まや)※84年(○)4-868-862(※)
		1 = 6 + 1
78100		18(7.61.) 100.0.G1.()60 TO 320
79101		1F(C, IT, , ,)00, 0, 07, 10, 330
新闻的		HOSALTA ASSOUND TABLE TABLE TABLE TO SOL
\$1		F 5 (1 3 4 CL) = 8
182030		Ex0354 (E)≈3
老 ろ行の(L = 1 + 1
81.15	• ·	LETTS (6, 141) 201, 20, 4, 2, 4P, 711
85,11		(C T () 15.
865-6	3.24.	1F(A,GT.2), ANDIF.GT.20.1)80 TO 155
87141		171+11(LL)=1
8 6 ° ú (F(1)21(1)= 3
<0		(+=1+1
Sf Life		\$9116(6,43,1001,20,2,0,80,80,X11
91:21		66 JO 15.
0.24 2.3	7,7,5	(*(14 5 (<i>E</i>))=7
52.25		
o / (各本部1本等
GST (I		(FITE(6,1°)>01, PO, 2, 5, RD, X11
9614		6.C. 1.C. 1.7:
97040	241	\$ F { (? \$ (~ ()) = ?
98, Č4		新新的复数 (495-) 来说:
${\bf Q} \in \{1, 0\}$		▲ 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「
10.007	Q4 []	\$1110(4,33,) PO1, RO, A, S, HP, X11
101.04	作 用的	((<u>}</u>]]]] . [] -
11,21101		$\mathbf{C} \mathbf{C} = \mathbf{T} \mathbf{C} + \mathbf{A}^{(2)}$
1(3) . (121	C.C. 13-1 月前年, 11年
1(4.16)		$\{\left(\frac{1}{2}+\frac{1}{2}\right),\left(\frac{1}{2}+\frac{1}{2}\right),\left(\frac{1}{2}\right),\left(\frac{1}{2}\right),\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right),\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right),\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right),\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right),\left(\frac{1}{2}+\frac$
11,5000		オニスクロキ(キャックタイ、ハニキン、ハキン、ハクシスティン、カキス)・パラ王氏
11.611.6		F#2112(F0,302,00T0,54,52,422,542)*PETA
117.501	•	11==(10,102,011,012,01,02,011,012,022)
1, 3, 3		Y13200/(114202)
110.00		F(F6D)(*)=10
11.1.6.4		F(15FS(2)≈3ES(1))
111.1		>↑(*)±×*1

;

112001		ILCEP, L1, C. 198, 38, 31, 10, 40, 60, 10, 275
1 1 × 1 × 1		6.01 / 2.00 · · · · · · · · · · · · · · · · · ·
114.200) 1 F (]]) = V (] .
11500		: • ال ال = ال ال
116	275	FATAT (A)=0)8883 (J)+808888 (Z)
1171 110		·黄田县 + 李
115.20		JE (0.6T., 480,0.0T. 1360 TO Shi
110)/(*,t),490.8.6F.C)60 TO 346
1266 1)F(2.17
121 19		停栏行在(1,)=3
122 001		F / U > 4 (L) = +
123-000		1 = 1 + 1
124: 4		NETTE (6.13.) 30, EC2, A. R. RP, X51
425£00		CC TO 12:
176.00	x 5:;	11(0.01.21.1. AND. C. GT. 20. 0)60 TO 380
127.14	*	$\Gamma > \Gamma \land \uparrow (L)) \land \land \land$
1280 01		
1200.4		11-11-1
131 200		61)7016,333)200,802,6,0,802,811
3 7 4		CONTRACTOR
132 :	27.3	E-115 (122) = 2
1221		●FFF22(M12)で 2
136 6		NE # 6 P 4 3
135		したまでもくなってき、うっていたいという。なった。ちからメラク
137-11		66 TC 11
37 11-2	4.24	▶○12代来(○2×)= A
1.840. ($+ (1) \frac{2}{2} \frac{2}{3} (-1) = 2$
$= \mathbf{\hat{z}} \cdot \mathbf{\hat{z}}_{E_{i},E_{i}} = \mathbf{\hat{z}}_{E_{i}}$		1 * # 36 4 1
. 6 (Ģ¢.j	k=) T((6, 17,) + 0, + 0, + 0, + 0, + 1
Z (j+1)(151	
42000		$\mathbf{C}\mathbf{C} = \mathbf{T}\mathbf{C} = \mathbb{R}^{n}$
$L \subset \{0\}$	1 f. j	11(((「二二〇」())21年1月(()、20)(1)
$EE^{(1)}_{i}(x)$		() わかくしゃかして) 24 (1) 年(2) 23 (2) 25
$L \stackrel{e}{\to} = \pm$	<i>C</i> +	化化合作为化物 化
41 Sec.		$C \oplus T $ $T \oplus P^*$
47		10-5610)=1,/31
43. x		(;;<())≠(,/S)
li i 👘		
E, State Sta		16(2,2), () 33 10 6 3

- 1.1 2 -	

530 \$6110(6,6.3)
FRITE(A,29.)(941143(E),341122(J),J=4,240)
A13 18(188,10,1)30 10 581
TENTSCOMPSCOMPSCOMPSCOMPSCOMPSCOMPSCOMPSCOMP
763 FORMATES (/), 10x, "LA GRAFICA ICECED CUADRANTE DE POTENCIAL QUIPIC"
6513F(6,703)
802 JF (54. MF. 1) 30 TG (1.7
(ALL CARTECIN, HOUR2, 194112, 1)
1(); FETASHI(), SETURIZE")
462 FERMATCARAL/_1.X.PGRAFTCA DA SEGUADA CHADRANTE DE RETARDA VA RETA
525 \$FT1F(6_22)
$b = \frac{1}{2} + $
632 TE(TES E0 1)50 10 52"
トレッドリアション (100) (10) (10) (10) (10) (10) (10) (10
YGZ PUPPPIUNINYJ, NUK, MURAFICA SEGURDO CUADRAMIE DE POLENCIAL OUITIE AR ANAZA NUZNA NE CE DUENE DEALITAEUN
$\mathbf{v} \in \mathbf{I} + \mathbf{v} \in \mathbf{V}$
ALT TINE ADD TO ADA
497 FORMATCHER, THEX, "GRAFICA DE FRIMER CUADRANTE DE RETAMUS VS PETAMU 412 MUSE AUSSIAN
299 F(RMAT(4(5X,614,7))
ματτέ(δ,293)(PFU11(J),3*U,(L))
601 JF(158,F0,3)60 TO 519
1, NU1>0, NU2>0, NO SE PUEDE REALIZAR")
761 FORMAT(10(7), 10X, "LA GRAFICA PRIMER CUADPANTE DE POTENCIAL QUISICO
WEITE(6,701)
SEC JF(LL.NE.1)GO TO 601
(ALL CARTE(1, ROESE2, ROESE3, 1)
ALC FORMATCORS,/, 40%, "GRAFTCA DE ROT VS RO?")
5日① 24月3日(6,46℃)
280 ((FR-AI(((SX_T10,5))
$\mathbf{v} \in [1 + (\mathbf{A}_{p} \times \mathbf{S}_{0}) (\mathbf{F} \oplus \mathbf{F} \oplus \mathbf{I} (\mathbf{J})_{p} + \mathbf{G} \oplus \mathbf{S} + \mathbb{P} (\mathbf{J})_{p} \mathbf{J} \oplus \mathbf{I} \oplus \mathbf{I} $
/() 11018.00 TO 5.0
SUD TELEVIT(1) 1. X HEY CEVELER OF BUT AN BOS FO SE HARDE BLEFISSEN)
$\{\gamma_{i}\}$ \uparrow \in $\{\gamma_{i}\}$ $\{\gamma_{i}\}$ $\{\gamma_{i}\}$ $\{\gamma_{i}\}$ $\{\gamma_{i}\}$

-113-

J:4.1

an la

f (.)	ATR FORMATCRES,/, FUX, MGRAFICS DE TERCER CUMDRANTE DE BETAMUR VS BETAMU
i i i	12:4417/0113 <10,112120112 <2013
-1 5 4,	6.6(1) (ANT)(AN, PAU23, ANH13, 1)
÷ St⊈	873 IF(L, 17, 1)30 IO 664
$e_{ij} \in \{$	6×112(1,704)
i an	7.4 ICFEAT(10(7), 107, "LA GRAFICE DE CUARTO CUADRANTE DE POTENCIAL QUIE
ST.(TICO, SUIDA, SUPAL, NO SE PURDE REALIZAR")
Ĉ Ĉ Ĉ	$\mathbf{C} \mathbf{C} = \mathbf{T} \mathbf{C} + \mathbf{R} \mathbf{C} \mathbf{A}$
* ,	694 IF (JES. 99, D90 TO 54)
€ ja(VEITE(A,297)(PMU14(J),28424(J),J=1,L)
990 1	540 681TE(6,404)
្នំភ្លេញ	404 FORMAT(1H1,/,10X,"GRAFICA DE CUARTO CUADRANTE DE BETAMUT VS BETAMU
նս(։	12; PETA (PATA 6, PETA
696	CALL CAFTE(L, REVU24, BRU14, 1)
10t	854 IF(JJ.0%.1)30 TO 605
UU	6+11+(6,7(5)
000	765 FERMAT(10(7),169,"LA GRIFICA DE PRESIÓN NO SE PHEDE REALIZAR")
())U	E0. T0 315
.)(ろむち WRITE(A),40%)
966	AGS FORMAT(191,/,10X,"GRAFICA DE PRERSION VS FRACCION MOL")
100	(ALL CARTE(JJ, REPE, X1P, 1)
1.01	895 JE(N. NE. 1)60 TO 6.6.
Gi B	KEJJE (6,7-6)
000	706 F(FAT(1)(/), 108, "LA GRAFICALDE DENSIDAD TOTAL NO SE PUEDE REALIZA
ենե	() () () () () () () () () () () () () (
e C C	CC TO S. O
€-£	ANA WAITE (A, 424)
UC.	ACA FORMAT(141,/,1,X,"GWAFICA DE DENSIDAD TOTAL (R01+R02) VS. FRACCION
000	1 ! C [4 }
95 V	CALL CONTROPORT, X1,1)
	FUE CONTINUE
CCC -	230 CONTINUE
e (ch	10 FOFMET(2F17,5)
5. <u>5</u> 1	15 F(RTAT(2F1), ~, 13)
<u>с.</u>	20 FOULST(1.X,"SF7CLA HINARIA DE VAN DER WEALST,//,10X,"DATOS:",/,15)
- -	1, HIRE T/TCC=H, FIC. >, ISY, HOIGMA1=H, F105, 5X, HOIGMA2=H, F105, /, 15X, HV
· 10-	ZUFA19=M.F30.5,5X,MAUFA12=M.F90.5,5X,MAUFA22=M.F10.5,5X,MAHFA=M.F10
	χ _ (,)

可行使	89 FOFWAT(1038)
1.11	LE TOPPAT(1,x,"TOLERANCIAS EN PRICES DE CHRVA ESPINODAL. PRESIONLY P
11	1 TENCTAL, QUISELCO: 11 + - ", 14, 2x, T6, 2x, 14)
1.1	SO FORMAT(SCX,"PARAMETROS OF SCOIT Y VAR KONYMERBURG:",/,20X,"CSI=",F
100f	11(25,7,20x,407)16=4,810,5,7,20x,4104=4,81(25)
121	AD FORMAT (BOX, PROVERO OF REATOS ER LA MALLA DE ROT=", IS, SX, PRASO=", FI
T j.C.	10.5//JUN PROPERO DE PUNTOS EN LA MALLA DE ROZEF,IS,5%,"PASCEP,F10
100	73 + (KERA) (181)
3.4	- 17G FORMAT(3(7),17%,"PRHO1",15%, PRHO2",15%,"MU1",17%,"MU2",20%,"P",20%,
37.1	(^R y ^H)
59f:	135 FORMAT(7, 128, F10, 5, 98, F10, 5, 78, E14, 7, 3(68, E14, 7))
-01	20) FORMAT(7, 12X, FIL S, SX, "NO HAY RATCES")
fúf.	210 FORRAT(7.31%, F10.5.5%, MAD HAY RAICES")
666	STOP
6-01	Q 4 J
100	SUPROUTIVE ESPINO(RO, NC, NR, RES, NDIE)
	DIMENSICY RES(4), M(2)
	(CATEON/PARAM/S1, S2, A11, A12, 522, RETA
C.G.C	CONFORT-SETATES. TES
. U	F11(F1,P2,3-TA,S1,S2,A31)=(1./(1S1*P1-S2*P2))*((1S2*P2)/R1+S1*
	1 ((1 (S2~ S1) + R 2) / (1 S1 + Q1- S2 + R 2))) - 2 + BETA + A 1 1
. ((F2?(R1,R?, XET0,S1,S2,42?)=(1,/(1,-S1**1-S2**2))*((1,-S1**1)/#2*S2*
J. C. C	1((1,+(S)-S1)*41)/(1,-S1*81*S2*P2)))-2.*35T4*622
_ GL	F12(E1,F2, 3-12, 51, 52, 612)=(51+52-51+81+R1-52+52*P2)/((1,-51*P1-52*
<u> </u>	162)*(12-51*21-52*FZ))-22*AFTA+A72-
_ 00	JE(IES. (E.)) # RITE(0,21)RO
C⊖€	**OLO=)
έţ,ŋ	· = 3 4
	IF(+C,=C,=)60 TO 1)
(\mathbb{R})	トト (二)
/i	$\mathbf{C} = \mathbf{C} - \mathbf{C} + \mathbf{C}$
6 7 F	$1 \left(\left -1 \right \right) = \mathbf{P} \left(2 \right)$
1	JFL/GF ¹
l Ctu	20 TECAC.+9, D60 TO 3.
LA.C	A=F31 (200, 20, 0. TA, \$1, 32, A11)
(\cdot, \cdot)	F=F22(R)0,20,0(TA,S1,S2,422)
tert .	(#\$62(\$\$4,40,3\$15,\$2,\$12)
: ;	16(138,50,23) METTE(6,5) A, 3, 0
212	

14 - 12 -	20	/==11(20,843,4014,81,81,82,411)
762.50		Ent55(b('540'6+15'81'25'755)
11000		(=f12(40, edu, 4F18, S1, S2, 612)
221 C C		11(105.N), DERTTY(0,5)A,8,0
13) É (JECTELAS. FO. 100 TO 70
14 1/24		FTLF=/****C*C
\$61.25	40	31(**,E8,3) 33 TO 50
16156		EF(===E()+H(1)
17:226		11(\$3*\$PHO+\$2*\$0,65,1,)RETHEN
3008		66 16 66
10096	£. ()	ТЕС#«FО+н(?)
1000		IF(JES, ME. T)WRITE(6,7)RHO
1000		IF (S1+9C+S2*9H0.GE.1.)RETURN
12506	65	JFLAG=1
:300C		CC TO 25
4200	70	+ 5 (1) = 5 * F ~ C * C
5000	\hat{r}_{ij}	J F (^G1=(
6114		IF(IES_KE,)) PRITE(6, A) HINE, HSUP
7000		IF (HINF*HS)P.LT.0.0)60 TO 160
$\mathcal{P} \in \mathbb{C}^{(p)}$		X 2=4F0
916(FINF=FSUP
CLEF		60 TO 91
1000	166-	X7=EH0
?!		16(NC. 20. 1)30 10 100
211		Y3=€H(m+(1)
67.00		((TO 11).
SCOL	1: 0	*1=546-4(2)
C.C.C.	110	$\mathbf{y} \mathbf{x} = (\mathbf{y} \mathbf{y} + \mathbf{y} \mathbf{z}) / \mathbf{z}_{\mathbf{z}}$
7 - C1		11(148.04.)%8118(6.4)x4.x2.x8
2600		11(50,28,1)60 10 120
5.00		J=F13(x7, P3, 6ET6, 51, S2, 411)
l ta H		F== {2(x1,50, 0116, 51, 52, 422)
1		(=112(/*, F3, FFT8, S1, S2, 612)
2.1		11(165,44,3)48174(4,5)4,8,6
X 1 M		6(TO 12.
1	120	f=F1*(F0, X*, 4, T4, S1, S2, 41*)
1. 1. <u>1</u> .		\$ = \$ 23 (\$ (, X), \$ 8 5 1 5, \$ 1, \$ 2, \$ 2 ?)
Cart		(#F12(R0,), PETE, S1, S2, A42)

		- 116 -
21470		JE (TES, CE, C) VELTE (E, S) & P. C
s di fot	12	the set of the test.
9400C		TE(TES, ME, C) JEDITE(A, V) 3K
Téen.		JELANS(AD)_UT_1(**(~~10U))60 TO 160
10.01		JE(1EL461.59.0)66 TO 170
2≑+€		1+(+++)++++++++++++++++++++++++++++++++
3(<u>(</u>)() F (ABS (F1), LT, ABS (BANT)) 60 TO 386
GUT U		*FCL0=1
5 / j. j.	17.)	FAFT= HIA
<;,q{.		141.86~二年
700	1 %()	JE (RESED)NE LT LOCE TO 150
机成		▶】》F→F→F的
2930 2930		X] = X M
li de] F (6PS (X1 - X2) . LT. 10 + + (- NDIF)) 60 TO 140
1001		CC TO 310
2000	150	▶ 2 = X 巻
z alijti		JF(ARS(X1-X2).LT.10**(-NDIF)) G0 T0 140
6000		CC TO 111
5566	146	\$ 5 = N R + 7
6661		JECIES. NE. D. ARTECO, 11) NR
2000		$\Gamma \in S(NE) = X \in \mathbb{R}$
800C		1F(1ES.WE.1)WRTTT(6,13)RES(NR)
2010		JE (NPOLC, 29, 1) ARTIE (A, 190) XV
		HIN F= hSlid
1000		CC 10 3:
č∖.;Ji	21	FCENAT(1, 13x, "FL VALOR DE RO1 ES =", F13,5)
Z€F€	5	FGE #AT (17: x, HA=H, F14, 7, 5x, HA=H, F14, 7, 5x, HC=H, E14, 7)
4(CL	٨	FORMAT(4)X,"LOS VALORES OF H INFERIOR Y H SUPERIOP SON:","X,E14.
51.34	•	15×, 214.7)
51. v ²	7	FORMATINE F. MALOR DA REAR ES. ", FIL. 5)
7000	8	TORMAT(1:X, "X1=", F10, ", 5X, "X2=", F10, 5, 5X, "X1=", F10, 5)
e a C fe	13	F(F) AT(1, X, HHA=1, F14, 7)
930 I	11	F () F ² (1 (1 (X , 1 5)
H H	17	FOR BAT (5 Y, HU) & A BATZ (S : H, FAS, 5)
h, (, t	100	FORDAT (1,100, MARTH, FIL,5, 5X, MCORRESPONDE A UN POLOM)
8-11-1		
3112		SUEPOUTINE CORTE(1,Y,T,V)
he at		DIFFUSION 2000),108 0), XPL081,), YPL0(80(),10(1,800)
		C15-2821(0) (((()), (()), (())), (()))
A E C		1/TE TS/1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

$\tilde{r}_{\infty} \in (-)$	24	年6月1日天平(2月1日,1月1日年4、19)
91.36	21	(())** (?*)
9 (22	FCKGAT(1HC)
(11) £	23	FCK#AT(15), HTP, 12Y, H1P, 12X, HTP, 12Y, HTP, 12X, HTP, 12X, HTP)
9 1	24	F(6-6)(1,X,F)(-X,5(2X,F),2))
2	2.6	FOLDAT(1H+, 14×, /5(*. +))
	3.0	FORDUI(144,148,1511)
4		\$\$11(0,22)
51.24		CALL MINAY (T, TL, TF, I)
6660		CC 1 K=1, N
7		D(2 J=1, I
8444 8444	2) L((]) =) (])
91 64 92 64		CALL MINAX(YPL, YPIN, XNAX, I)
មួយជាប្		$\mathbf{X} \mapsto \mathbf{\Gamma} (\mathbf{V}) = \mathbf{X} \times \mathbf{I} + \mathbf{V}$
1060 -		K K = K * 2
5140	1	$F_{\rm F}(C(KX) = XAAX$
2		k K = 2 , * 3
6. 3°		CALL MINAX (KPLD, XNIN, XNAX, KK)
5.J.J.		0.0 3 K=1, N
¥ 36€		00 3 1=1.1
2000	Z	JG(K, J)=5(J(Y(J)-X*JN)/(X*AX-XNJN))+1.5
5 ² £ . [7]		$10 4 \times 1.51$
29.21		$((1) = 1 \le (1)$
		₽0 5 J=2,65
1,29	5	l(1) = IS(2)
2001		C () (I = 1 , 1
21.1		CC 2 III=2")
4000		JF(16(1),111)+V)7,8,7
Son T.	2	$JJ = A_{a} + (T(TTT) - TC) / (TT - TE) + 1.5$
5 < 1		1(11)=1%(11+2)
A	7	(0+11+11F
21.20	37	W(JT)(4,30)(L(RK),KK=1,75)
1. 2. 4 1 		DC 6 KK=1,65
		$ (K \times) = \leq (\frac{1}{c})$
÷	ŧ	C (23 7 1 × 1) 7
		11 (2+51) 17, 18, 17
u u f	17	€J=(×+4)/5.
	-	J ≿ ≈ 3 J
		·

			-118-
1,1	51=x=xx=(x=1)=(x+++	• X :	T 13) / 5

87 606		Ve176(6,20)SI
8 8000	3	44)7((5,2))
8°0()(71 (8-56) 6, 96, 6
91.01.0	14	rc 11 Jo1, 55
91.5	11	[(])=1 S (1)
92£07		↓P)T((),25)
93674	1 2	WS 112 (6,21) XX 1N
94(⊶) €	4	(CNTJNUE
95000		6017815,23)
96804		DC 12 J=1,A
9700C	12	<pre>// (」)=T(i+(」→1) + (TF→T())/5.</pre>
981151		VEI15(6,26)(2(J),J=1,6)
୧୨୦୫୦	,	METTE(*,22)
CCECE		RETURN:
C1554		E.M. D.
(2ວິຍປີ		SUFRONTING (TMAX (V,VXIN,VMAX,N)
03061		DIRENSION V(250)
C4 600		/(x=y(1)
[50	·	$V \ge 1 N = V(1)$
CE 1900		CC 1 1=2,4
U7 668]F(V(1)-V*3X)2,2,3
ÛRUCIÚ	र	ゆる人米エザ(1)
(9.14		CO 10.1
16484	2] F (V = 1 = - V (T)) 1, 1, 4
11000	· 4	V *) * = V ())
12000	1	CO-TINUT
17		FFTURN
14000		FFD

Received a

5

Programa de computadora MEZCLAS.

100	FRESET	F F F F
264	FILF	A(KIND=1, BLOCKST7E=420, MAXRECSJ7E=14, TITLE="L1V")
305	FILE	S(KIRD=1, PLOCKSIZE=420, MAXRECSIZE=14, TITLE="L2V.")
40.	FILE	3(KIND=1, BLOCKSIZE=420, MAXRECSIZE=14, TITLE="L1L2.")
ini		VENT MUNIX(2), MUMIN(2), MUD, MU, MUFIX
201		CINENSION RO(2,2), RON(2,2), X(2,2), ROT(2), EOME(2)
300		CCNNON/FARAN/S1,S2,A11,A12,A22,BETA
566		FFAD(5,/) S1, S2, A11, A12, A22
50 (.		EEAD(5,/)TR
190		FFAD(5,/)NMU, NPRE, NITER
000		FEAD(5,/)MUMAX(1), MUMAX(2), MUMIN(1), MUMIN(2)
306		FTAD(5,/)IFJX,NF,IES
00		FEAD(5,/)RO(1,1),RO(2,1)
100		FEAD(5,/)RO(1,2),RO(2,2)
00		READ(5,/)MUI,DELMU
i (FFAD(S,/) = 0
:00		¥FITE(6,30)
100		WFITE(6,40)\$1,411,52,422,A12
90		$V = (s_2 - s_1) / (s_1 + s_2)$
- u G		FVKON=((A22/(S2*S2))~(A11/(S1*S1)))/((A11/(S1*S1))+(A22/(S2*S2)))
ЮI.		(VKON=((A11/(S1*S1))-2.*(A12/(S1*S2))+(A22/(S2*S2)))/((A11/(S1*S1)
n.	1)+(422/(82*82)))
0.		VEITE(6,5)) AVKON, BVKON, CVKON
0C		FETA=(27.*S1)/(8.*A1)*TR)
GC -		WRITE(6,6C)TR, EETA
90	:	WRITE(6,70)NMU, NPRE, MUMAX(1), MUNIN(1), NUMAX(2), MUMIN(2), IES
50		IFCIFIX, EQ. 3) GC TO 84
С.С		FRITE(6,9))JFIX, NP, RO(1,1), PO(2,1), PO(1,2), RO(2,2)
ÜĹ	:	C. TO 124
Э(.	83	<pre>krite(6,11;)@0(1,1),R0(1,2),R0(2,1),R0(2,2),R0(3,1),R0(3,2)</pre>
and for	100	▶RITE(8,124) MUC, DELMU
θŭ		JECIE0. (9. 1) 60 TO 951
al a		RECTER, R0, 1160 TO 955
16-		IF(IF0°E0'5)00 10 860
:t	ı	ARITE(3,1112) NP

6C TO 950 28500 28600 955 VRITE(1,1112)NP 28700 60 TO 951 966 VRITE(2,1112)NP 28856 1112 FORMAT(15) 28930 95i) $+F=(0 \oplus AX(1 FIX) \oplus V \oplus I) \oplus I) (IFIX))/(N F=1)$ 29000 36606 VRITE(6,130)4P, IFIX IF(IES,E0.2)WRITE(6,129) 31000 10LMU=1(**(-NMU) 32000 33000 CC 140 I=1,NP 34000 AIFIX = AINIM(LEIN) + (J-1) + AB356.01 * TCLPE=1.**(-NPRE) 36666 NU=NU1 DC 150 NC=1.NITER 37000 1F(NC.GT.1)G0 TO 160 38000 JF(IFIX.EQ.1)GO TO 176 39006 (ALL DELPRE(AU, FUFIX, RO, RON, DP1, P1, P2, IES, TOLMU) 41.501 41606 IF(IES.FQ.2)GC TO 171 WRITE(6,189)HU, PUFIX, P1, P2, DP1 42000 WFITE(6,190) PO(1,1), RO(2,1), RO(1,2), RO(2,2) 43000 VRITE(6,393)RON(1,1), PON(2,1), RON(1,2), RON(2,2) 44000 171 CC TO 160 150.34 46600 176. (ALL DELPRE(AUFIX, MU, RO, RON, DP1, P1, P2, IES, TOLMU) IF(IES. 60.2)60 TO 172 47000 VFITE(6,18))MUFIX,MU,P1,P2,DP1 481.00 49(0) \PITE(6,19))RO(1,1),RO(2,1),RO(1,2),RO(2,2) VEITE(6,390) RON(1,1), BON(2,1), RON(1,2), RON(2,2) 56800 51000 172 CONTINUE 160 NU=NU+DELAU 52606 JF(JF1X_FQ.1)G0 TO 200 53609 (ALL DELPRE(MU, AUFIX, PO, RON, DP2, P1, P2, IES, TOLMU) 54000 550HU-JF(1ES, F0, 2)GO TO 173 566.16 WFITE(A,180)MU, MUFIX, F1, P2, DP2 VEITE(6,19))RC(1,1),RC(2,1),RO(1,2),FO(2,2) 57636 VEITE(6,39) RON(1,1), RON(2,1), RON(1,2), RON(2,2) 58608 59606 173 66 10 210 61000 200 (ALL DELPRE(MUEIX,MU,RO,RON,DP2,P1,P2,ISS,TCUMU) JF(YES, F0, 2)60 TO 174 61000

		X	
62161		KRITE (6,18) MIETX, MH, PI, P2, DP2	
(63000		WRITE(6,190)RO(1,1),RO(2,1),RO(1,2),RO(2,2)	
64006		WEITE(6,39J)RON(1,1), KON(2,1), RON(1,2), FON(2,2)	
65060	174	(0 K] J K U E	
661 34	S 1 ()	(S=DP1+DP2	
67660		IF(CS_LT_D_A))GO TO 221	
68036		[1 = ABS(DF1)]	
69060		C2 = AFS(DP2)	
70660		JE(05"01"01) 00 10 537	
71130		Sadat 1	
7260C		C TO 240	
73000	239	DELAU=+DOLAU	
74000	· .	NU=NU+D(L61)	
75600	240	CC 251 K=1.2	
7600		CC 25: J=1,2	
77630	250	<pre>kC(J,k)=kON(J,K)</pre>	
78046	150	CCVITATE	
79696	550	A N U Z = N U	
868000		FNUJ=FU=DELNU	
81666	310	NL=(AMU1+AMU2)/2	
90053		IF(IFIX_EQ.1)GC TO 260	
83606		(ALL DELPRE(MU, NUFIX, FO, RON, DP, P1, P2, IES, TCLMU)	
84000		IF(IES_E0_2)60 10 175	
856 86		KRITE((,183))UEIX, MU, P1, P2, DP	•
10038	• •	KRITE(6,199)RD(1,1),00(2,1),RO(1,2),RO(2,2)	
87CCC		WEITE(6,397)RCN(1,1), RON(2,1), RON(1,2), RON(2,2)	
88600	175	ec 10 27¢	
896.11	260	(ALL DELPRE(MUFIX, NU, RO, RON, DP, P1, P2, IES, TOLNU)	
91101		JE(IES.EQ.2)GO TO 176	
91060		VRITE(6,180)MUFIX, HU, P1, P2, DP	
92001		VEITE(6,191)RO(1,1), PO(2,1), RO(1,2), RO(2,2)	
93600		WEITE(6,39 I)RON(1,1),RON(2,1),RON(1,2),RON(2,2)	
94 Guit	176	CCNTINUE	
95660	270	IF(ABS(LP).LT.TCLPE)GO TO 280	
\$6005		(S=DP+DP2	· · ·
97006		JF(CS_LT_L_))G0 TO 293	
98GUI		$t \in S = 0 E$	
99(11)		U 4=5 J 41	
100006		to 30. K=1,2	
101000		tc 30(J=1,2	
	· · · ·		

/ -122-

(2.06s)	300	F((],K)=F(N(],K)	
63000		6C TO 31:	•
04300	290	[F] ≠ D F	• .
05000		$F \in \{1, 1\} = K \cup \{1, \dots, N\}$	
06000		5. T=1.2	
C76 . L		5. J=1,2. J=1,2.	
(80a).	320	FC(J*K)=8CN(J*K)	
69646	321	CONTINUE.	
10.00		6C TO 31)	
11000	635	CC 371 1F=1.2 .	
12100		FOT(IF) = KON(1, IF) + ECN(2, IF)	
13008		>(1,IF)=# ON(1, IF)/ROT(IF)	
14600	370	x(2,IF) = ROA(2,IF)/ROT(IF)	
15160		FF=(27,*81*81)*(P1+P2)/(2,*411)	
16030		JF(ROT(1), GT, FOT(2))GO TO 371	
17000		FFASC=ROT(2)	
18606		$\{N \in NC = 20T(1)\}$	·
19002		λμψε(=x(5°5)	
20056) NENC=X(2,3)	
21100		CC 10 377	
52000	371	FNASC=RCT(T)	
236:01		FFFV(=SOL(5))	· · ·
24606		$() \land \land \land (2, 1)$	
25000) VEN(=X(5°5)	· ·
16135	372	CEF14H=1*1(1*~(S1*(1*~Xx98C)+85*Xx98C)*K&V8C)~1*'	(1 (S1*(1 XX-)
27006		2)+52*>452()*8*6666)-2**86TA*((A11*(1*****************************	(#ASC)+2,*A12*X*)
11389		5(*(1*~XL78C)+355*XK78(*X×98C)*KK78C~(*11*(1*~X46)	VC)×(1°×XXEVC)+5'
396CC		3#12*(1 *****ENC)*>45#C4 V55***ENC*X*ENC)****ENC)	
6606-		JECIES. CQ. 2366 10 179	
1010		VEITE (6,373)DELTAN	
2021	373	FORMAT(2(/),11X,"DELTA=",7X,214,7)	
3056	179	lF(IFS.i0.2)60 70 361	
4234		VRITE(6,3% I)X(1,1),X(2,1),X(1,2),X(2,2),PR,TR	
5661		VRITE(6,322)FON(1,1), PON(2,1), RON(1,2), RON(2,2)	
6500		4FITE(6,331)P3,F2,0P	
709a.		1 + (1 F) X . F Q . 1) G (T O 74)	
8000		KRITE(6,35-)KH, KHEIK	
91.01		CC TO 36 .	

.

•	
(())	340 VRJTE(6,3%)AUFJX,MU
1000	CC TO 360
2000	361 JE(IFIX_80_1)G0 T0 362
3496	VFITE(5,367)
4600	DC 401 1F=1,2
4160	FCME(IF)=-(RON(1,IF)+PON(2,IF))*ALGG(1,-S1*RON(1,IF)-S2*RON(2,IF)
4204	1)=RETA*(A11%RON(1,IF)*RON(1,IF)*?**A12*RON(1,IF)*RON(2,IF)*A22*RC
4301	25(2,JF)*RO4(2,TF))~FOP(1,1F)*(1_~ALCG(RON(1_TF)))~RON(2,1F)*(1_~A
4401	$3LCG(EON(2, TE))) \rightarrow UWRON(1, IE) \rightarrow NUEIX + RON(2, IE)$
5000	IF(IFIX_EG.2)WFITE(0,395)X(2,IF),FR,RON(1,IF),RCN(2,IF),MU,MUFIX,
6ូលព	1 DF, DELTAH, ROME(1F)
7006	401 CONTINUE
71.16	JECTED.ER. DEO TO 360
7266	11(1E0.F0.1)60 TO 910
730L	1F(1E0.E0.2)G0 T0 920
7400	WRITE(3,1111)MU,MUEIX
7500	CC TO 360
760C	910 WRITE(1,1111) MU, MUFIX
7766	6C 10 360
7806	920 WEITE(2,1111)MU, MUEIX
79UC	1111 FCRMAT(2E14.7)
3636	CC 10 360
9.60/2	362 WEITE(6,367)
rcot	00 402 IF=1,2
0100	ECME(IF) = -(PON(1, IF) + PON(2, IF)) * ALOG(1 - S1 * RON(1, IF) - S2 * PON(2, IF))
0200	1)+BETA*(A11*RON(1,IF)*RON(1,IF)+2_*A12*RON(1,IF)*RON(2,IF)+A22*R(
0300	<pre>SN(5'IE)*KON(5'IE))~KOK(1'IE)*(1"~YFOC(ECN(1'IE)))~BON(5'IE)*(1"~</pre>
9400	3LCG(RON(2,IF)))-YUFIX*RON(1,IF)-MU*RON(2,IF)
1600	VEITE(0,395)X(2,TE), PF,RON(1,IE),RON(2,IE),MUFIX,MU,DP,DELTAH,80
1100	1 E (I F)
1003	402 CONTINUE
2101	IF(IEG_EQ_D)GO TO 36)
5261	JE()E0.1060 TO 937
>326	H(JEC.F9.2)GC TO 940
240(WRITE(3,111) MUEIX, tu
2500	CC TO 360
<u> 16 11</u>	930 FFITE(1,1111)MUEIX, MU
2701	CC TO 360
1 RULL	943 BEITE(2,1111) MUEIX, MA

-123-

53911	ZEO DELAUEARS (DELAU)
54001	$\mathbb{P}\left\{\left(= N\right\}\right)$
55000	t C 4x06 K=1.2
56665	S = 1 = 1 = 2
57004	$\Delta \left(\left(\begin{array}{c} J \\ K \end{array} \right) = R \left(M \left(\begin{array}{c} J \\ K \end{array} \right) \right)$
58000	140 CONTINUE
58260	1F(1EQ.E0.1)GC TO 111
58500	tock (IFO)
586GL	111 CONTINUE
59565	10 FORMAT(8F13.8)
60000	20 FORMAT(1015)
61.001.	30 ICEPATION, DIAGRAMA DE FASES PARA LA MEZCLA PINARIA DE VAN DER W
62000	1/LS', 2(/), 38X, DEFARTAMENTO DE FISICOGUINICA', 2(/), 35X, DIVISION
\$3001	2E ESTUDIOS DE POSGRADO',2(/),42X,'FACULTAD DE QUINICA. UNAN',2(/)
400e	355X, (OCTUBRE 19811, 3(/))
5000	46 FORNAT(14X, "PARAMETROS DE LA MEZCLA:", 2(/), 35V, "SJGMA 1=", F9.5, 5X
6600	1*ALFA 11=*, F9.5,2(/),35x,*SIGMA 2=*,F9.5,5X,*ALFA 22=*,F9.5,2(/).
100	2 46×, *ALFA 12=*, F9, 5, 7(1))
8636	50 FCR#AT(1UX, 'PARAMETROS DE SCOTT Y VAN KONYNENBURG:',2(/),47X,'CSI
9000	1 = *,F0,5,2(/),47%, *D7ETA = *,F9,5,2(/),47%, *LANADA=*,F9,5,3(/))
0000	60 FORMAT(10x,"TEMPERATURAREDUCIDA(T/TC)=",F10,8,5%,"BETA(1/KT)=",F1
166t	1.5,3(/))
2000	70 FORMAT(10x, PARAMETROS DEL CALCULC:',2(/),33x, 'TOLERANCIAS',2(/),
13COn	13x, *FOT, QUINICO 10****(*, 13, *), PRESICN 10**(**, 13, *)*, 2(/), 33X, *PE
4060	2ION DE FUSQUEDA.*, F1V.5, *LE. MU1.GE*, F10.5,2(/), 52X, F10.5, *LE. MU2.
15 CC B	3E., F11.5,2(/),33X, OPCION DE ESCRITURA(C=CORTA,1=LAPGA,2=TABLA)=
6646	4,12,2(/))
7666	90 FORMAT(10X, 'SE RECORDE MU', J2, 5X, INUMERO DE PUNTOS', J4, 2(/), 1LX, '
180000	1/LCRES INICIALES PARA LA DENSIDAD',2(/),46%, FEGION 1:RO1=',F9.5,
9000	2x, *R02=*, F9, 5, 2(/), 46Y, *REGION 2:R01=*, F9, 5, 5X, *R02=*, F9, 5, 2(/))
C.50	110 FORMAT(1)X, TRES FASES, VALORES INICIALES PARA LA DENSIDAD', 56X, *
1666	1ECION 1:R01=*,F9_5,5X,*R02=*,F9.5,2(/),56X,*REGION 2:R01=*,F9.5,5
2001	2,'F02=*,F9.5,2(/),56x,'REGION_3:R01=*,F9.5,5X,'R02=*,F9.5,2(/))
3002	120 FORMATCIDX,"VALOR INICIAL DE POTENCIAL GLIMICO=",F10.5,5Y,"INTERV
4(5)(1LC=",F1L_8,5(/))
SCUL	130 FCRMAT(10X,*PASC=*,E14,7,5X,*MU(*,12,*)F1J0*)
eta.	180 ICENAT(1)X,**U1=*,1PE14.7.2X,**U2=*,1PE14.7.2X,*P1=*,1PE14.7.2X,*
7001	12=1,1PE14,7,2X,1061TA(PRESION)=1,1FE14,7)
2113	322 FORMAT(11X, TOENSIDADES DE COUILIPRIC, 1,2(/),29X,1FASE1:R01=1,F945
96.00	11 ROZ=1, F9,5,2(/),20X, FFASE2:RO1=1,F9,5,1 ROZ=1,F9,5)

-124-

.

entra Branderia

0000	330 FORMAT(10X, PRESIONES DE MONILIBRIO.1,2(/),29X,*FASE1:P=1,1FE14.7,
100¢	15x, 'FASE2, P=1', 1PE14, 7, 2(/), 4, x, 'DELTA(PRESION)=', 1PE14, 7)
2007 2007	350 FORNAT(1)X, POTENCIALES QUINICOS DE EQUILIBRIO.*,2(/),29Y,*MU1#*,*
31.11	1FE14.7,5X, * YH2=*, 1PE14.7)
4000	190 FORMAT(18X, 'DENSIDADES:',/,21X,'(INICIALES) FASE1:R01=',F9.5,' RC2
5 () ()	1=*_F9.5,5X,*FASE2:R01=*,F9.5,* F02=*,F9.5)
6 C C L	39() FORMAT(21X, *(FINALES)FASE1:R01=*,E9,5,* R02=*,E9,5,5X,*FASE2:R01=*
7001-	1, F9, 5, * R(?=*, F9, 5)
8666	38D FORMAT(2(/),15X, FRACCIONES MOL DE EQUILIBRIO, 2(/),29X, FASE1:X1
9006	1=+,F9.5,* X2=+,F9.5,2(/),29X,*FASE2:X1=*,F9.5,* X2=*,F9.5,/,10X,*P
0000	ZRESION REDUCIDA DE EQUILIBRIO=',1PP14,7,2(/),1UX,"TEMPERATURA REDU
1000	3(ID4 DE EQUILIBRIO=",F14.7)
2:00	129- FORMAT (5(7),7X,"Y2", 13X,"PP", 10X,"R01",9X,"R02", 12X,"MU1", 14X,"MU2
3600	1",12x,"DELTAP",9x,"DELTAH",9X,"BOMEGA")
4601.	395 FCREAT(2(/),2X,F10,8,2X,E14,7,2(2X,F10,8),4(2X,E14,7),2X,E14,7)
600e -	367 FORMAT(5(/))
7666	STCP
8f.uC	END
9606	SUFPOITTNE DELPHE (AMU1, AMU2, ROI, RO, DPFE, F1, P2, IES, TOL)
0000	CCNNON/FARAM/S1, S2, A11, A12, A22, BETA
1009	TIMENSTON ROI(2,2), RO(2,2)
2001	F(R1,R2,S1,S2,A11,A12,422,HETA)=(R1+R2)/(RETA*(1,-S1*R1-S2*R2))-(A
३८ ई.	(59*59*59*51****************************
4690	1F(JES_EQ.1)WRITE(6,10)AMU1,AMU2,ROI(1,1),ROI(2,1),ROI(1,2),ROI(2,
5690	1 2)
eeel.	F1 = ROI(1, 1)
7003	F2=R01(2,1)
ECOL.	CALL POTRUI (ANUI, ANUZ, R1, R2, R11, R12, TCL, 50, R05)
8 C C C	IF(IES_EQ.1)WRITE(6,2()AMU1,ANU2,R1,R2,R11,R12
10 D f	1=F01(1,2)
1064	F2=R01(2,2)
2001	CALL FOTOUI(AFU1, AFU2, F1, R2, R21, R22, TOL, 50, IES)
3036)F(185.EQ.1)@FITE(6,34)AMU1, AFU2, R1, R2, R21, R22
ieur	F1=F(F11, R12, S1, S2, A11, A12, A22, AETA)
Stor	F2=F(P21, P22, S1, S2, A11, A12, A22, BETA)
1000	2 G = 1 = 1 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2
1241	1F(TES_EQ_1)WRITE(6,4()P1,E2,DFRE
ិត្តជន	k((1,1)=R11

-125-

٥(IJ(F0(2,1)=P12				:
C.C.(+C	FC(1,2)=R21			• • •	1 1 1
1401	FC(2,2)=R22				
2600)F(TES.F0.1)WPITE(6.50)R	0(1,1),00(2,1	1),P0(1,2),RO(2,2)	
360.	10 FCRNAT(118,5(***), SUBR	UTINA DELFRE	1,5(1+1)	,/,10x,*DATG	S INICIAL
46.00	115: MU1=1,814.7,1 MU2=4	.F14.7,1,26×,	FASE1.R	1=+,F9.5,* R	2=1, 59.5,
5501	21,26x,*FASS2.R1=*,F9.5,*	R2=+,F9.5)			
et et	23 FORMATINA, FASE1:MU1=1,	E14.7, " MUZ="	1,614.7,1	INTCIAL.R1="	, F9.5, t R
7660	12=1, FS. 5./, 15X, 1SALIDA P	013U1.81=", F9	9.5, R2=	*_F9_5)	
3000	30 FORMAT(1419, FASE2: MUT= ,	14.7. + NU2=	,E14.7,1	INICIAL.P1="	, F9.5, + P
96.06	12=", F9.5, /, 15%, 'SALIDA P	OTQUI.R1=',FC	9.5, * R2=	*, F9.5)	
	40 FORMAT(111X, PRESIGN(FASE	1)=1, E14.7,5)	PRESIO	N(FASE2)=*,E	14.7,5×,1
1066	11flTA(PFESION)=1,714,7)				
2006	50 FCFMAT(17X, DENSIDADES E	NCONTRADAS E	POTQUI:	*,/,25×,*FAS	E1.R01=*,
3000	1 F9.5,5X, 1 R02=1, F9.5,/,25	X, FASEZ. RO1=	=1, F9, 5, 5	y, 1R02=1, F9.	5)
40:00	FETURN			. •	
5 (11):	ξ N D				
seur	SLEROUTINE POTODICAMUN,A	MU2, F011, FC2)	X,R01,R02	,TOL,MUMAX,I	ES)
7666	COTPON/PARAM/ S1, S2, A11,	A12, A22, BETA		· · ·	•
kone –	F1(S1, S2, A11, A12, R01, R02	, AMU1, RETA)=((1, - \$1*RC	1 <u>55*805)*</u> 41	06(R01/
) CUI	1 (151*R0152*R02))+(F0	1+P02)*S1-(88	FTA * 2 . * (A	11*801+412*6	(1UMA+(SO
1376	2 *(1.~S1*P01~S2*R02)		•		· · ·
1026	F11(\$1,\$2,411,412,P01,R0	2, AMU1, BETA)=	=(1.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	02)/801-81*0	LOG(P01/(
2000	11. ~ SI*R01-S2*P02))+4. *RE	TA*S1*A11*RC1	1+2. +BETA	*(\$1*415+\$2*	A11)*R02+
12.21	2 S1-2.*PETA+A11+S1*ANU1				
-C-61	F17(S1, S2, A11, A12, R01, R0	2,AFU1,BETA):	=2 . *RETA*	(\$2*411+51*)	12)*801-
100 J	1 S2*ALOG(001/(1S1*R01-	\$ 2 * P 0 2)) * 4 . * F	RETA*S2*A	12*RC2+S1+S2	? 2. * BETA*
Cui.	2 A12+52*4NU1				
'acc	F2(\$1,\$2,A12,A22,R01,R02	, APHZ, PETA)=	(1.=\$1*00	1- \$2*802) * AL	.06(802/(
Lit.	1 1	4 R() 2) * S 2 - (RE1	14)**2*41	2*801+455*80	×(∑N∀∀+(S)*
9630	2 (1S1*R01-S2*R02)				
(UD)()	F22(S1,S2,A12,A22,R01,R0	2.4MU2.BETA)=	=(1 e = S1 + A	01)/802-52+0	100008021
011	1 (1,	RET4*(S2*A12+	+ \$1 * \$ 5 5 1 *	RO1+4.*BETA*	*224*33
1.1.2	2102+82-6. *BETA*422+82*4#	0.5			
Cut	F21(S1, S2, A12, A22, P01, R0	2, ANU2, RETA):	=?.*BETA*	(\$1*A22+\$2*)	(12)*902-
C30	1 \$1*/LOG(F02/(1.~5)*RO]-	\$2+\$(2))+4**	FFTA*S1*A	12*R01+S1+S2	22 . *PETA*
trat.	2 A12+51+A+U2				
()(CC 13 J=1,*U#A>				

-126-

•

0.010	CET1=F12(S1,S2,A*1,A12,R01,R03,A04,004,F2(S1,S2,A12,A22,A22,A22,A22,A22,A22,A22,A22,A2
CBC -	1 ROZI, ANUZ, RETA)-F22(S1,S2,A12,A22,R011,R021,AMUZ,RETA)*F1(S1,S2,
Cáó	2A11, A12, RC11, RO21, ANH1, RETA)
000	DET2=F21(S1,S2,A12,A22,R01),R021,ANU2,HETA)*F1(S1,S2,A11,A12,R011,
DDC .	1KC21,A0U1,HETA)-F11(S1,S2,A11,A12,R011,R021,AU1)+F2(S1,S2,A1
C1(22,422,R031,R021,ANU2,PETA)
0 00	DFT=F11(S1,S2,A11,A12,P011,R02I,AMU1,FETA)*F22(S1,S2,A12,A22,R01I,
ូត(1F021,A#U2,B3TA)-F12(\$1,\$2,A11,A12,R011,R021,AMU1,BETA)#F21(\$1,\$2,
(đệ	2112, 422, ROTI, ROZI, ANU2, BETA)
de C	FET1=DET1/DET
co.	DET2=DET2/DET
601	FC1=R011+DET1
0.04	FCS=B0SI+DETS
C 0 (F1=F1(S1,S2,A11,A12,R01,R02,AMU1,BETA)
nur -	+2=F2(S1,S2,A12,A22,R01,R02,AMU2,FETA)
õot:	IF(IES.EQ.1)%RIT=(0,20)J,DET1,H1,P01,DET2,H2,P02
CCC	IF (ABS(DET1), LE, TOL, AND, ABS(DET2), LE, TOL) GO. TO 30
000	$\mathbf{FC1} = \mathbf{FO1}$
ccc.	EC51 = EO5
6/04	10 CONTINUE
600	WFITE(6,40)MUNAX, DET1, DET2, RO1, RO2
COC.	FETURN
t i i	30 JF(IES.FQ.1)#RITE(6,50)ANU1, ANU2, RO1, RO2
66 (FETLEN
POI	20 FORFAT(13X, "ITERACION", I3,/, 19X, "DELRO1=", F10.7, 5X, "H1=", F10.7, 10X
C.).	1,*R01=',F17=7,/,19X,'DELR02=',F13=7,5X,'H2=',F16=7,10X,'R02=',F14=
- 11 fr G & & 2	27,2(/))
Livi	40 FORMATCHIX, "NO CONVERGE EN", IS, "ITERACIONES", /, 40X, "DELPOI=", F13.7
101	1,5x, DELRCRET, F10.7, /, 10x, ULTIMAS APROXIFACIONES!, /, 15x, PO1=:, F1
Cat.	26.7.1(X, 1802=1, 810.7)
Cu(50 FORMATCIDX, PARA NUT=", FID.7, Y NUZ=", FID.7, /, TUX, 'LAS DENSIDADES
)UC	1 SCA: RO1=+,F11,7+ RO2=+,F12,7,5(/))
C. f. 4.	END .

-127-

Programa de computadora TRIPLE

161	4,975E	1. 专用资产				
7.(-(DIMENSION NUT1(100). YU12(100). PD	21(1.()	. MU220	(164)	
F, ((NIVEXSTON (01340000) 20182(0000)		·		
2(-()		DIMENSION SOLICE), SOLE(2)				
900		REAL 2011, 0112, 0121, 0122, 0111, 01	32			
1100		85AD(1,255)MP				
1210	66	f (F # # f (3 % , 1 2)				
1300		100 11 1=1,00		; \		
1511	111	FFAD(1,15+) 4011(J),8012(J)				
1565	67	FC++AT(5x,2(5x,F14.7))				
1750		\$1(A 1=C.)				
1900		SUF 25(. C				
2666	,	\$ (n + 2= 1, 1)				
21 111		50) C1 = 0.0				
23.56		CC 20 1=1, 3P		-		
2501		\$U^1=\$U^1+\$U111(J)	•			
27 (1)		8112=\$112+4112(J)				
2914		SH*(1=SH*C1+SU11(J)+(H11(J)				
210L	20	\$P>12=\$H*12++H*1(J)**(P12(J)				
2300		У¥с≠\$Ц№ 1 ЛюР				
3500		A E = 2 A E 5 \ A D			I	
3760		SXC=(SI)*C1+SU*1+S(++1/N+)/(*P+1,)			•	
39:55		SxX=(c)=12-c1-1+2142/11)/(10-4.)		•		
6321		F 4 = 9X Y / 5X C				
47		A1=YP-51xx0				
4490		W#116(8,44)				
4456	44	FCF24T(3(/))				
45 <u>0</u> í		KEJTE(6,67) M1,43				
47.1		KEAD(2, 255) (D				•
4750		WITTE(6,84)				
4964	•	66 (L=1++)				
51.01:	30	£140(2,157) (021(1),2012(1)	-			
5201		$S105.5 \pm C_{\rm eff}$ (
5525		\$6*2=(•	•
5700		5117 12=0,1				

.

$\mathbb{S} \oplus \{j\}$	Stat C1=	· · · · · · · · · · · · · · · · · · ·
610.t	te 25 .] = 1 , 10
6 3 (p)	SH: 1=SI	083+3021(1)
450C	SHX 2= 51	J/ 2+4H22(J)
6731	SU* C1=	\$40 ()+ (U2(())+ (U2(())
6990, 2	5 <u>\$U\$12=</u>	9(0.12+0.121(J)×1022(J)
7 1 44	XF = SUB	1/NP
7311	$A_{\rm D}=2{\rm H}{\rm s}$? / * } P
7501	5×C=(SI	J=(1-5151+5101+5P)/(5P-1.)
776(5 X Y = (5)	1312-81-81-81-12, 80)/(40-1,)
70.11	F∑≖SXY.	/ 5× (
另生门	\$?= YP=1	32+39
8200	(PITE ()	5,44)
8300	KEITEC	5,67)42,82
8504	TEAD(3	, 155) yo
8550	VEITE()	(, L h)
8560.	16 125	K=1, NP
\$576 1	25 READ(3	,157) 1031(K),70 ³ 2(K)
01.1	8101=0.	e •
G 3(1).	510 Z=C	. (
95) (.	507-12=;	ີ່ ຫ ີ ພ
97.00	St. Y (1=)	1.C
556 (s. j.	CC 56 .	1=1,40
1 1 1	\$110 1= \$1	131+3U ³ 1(J)
1:3:0	SIM 2= SI	15441188(1)
4,520	SUA (1=	\$HM (1+ YH31(J) * 4H31(J)
1(700 5	0 \$11×15=	\$10 12 EXU31(1) # 132(J)
16991	$\lambda t = \delta (1)$	1/KP
1110	YF=SUI	21.00
1171	syrals	1.(1-2144+2141/10)/(28-1.)
113.0	{ x y = (§)	1=12-39+1+01-2/20)/(10-1.)
11700	E3=SAA	/ sx c
1153.	43=YD-	2 (S & X D
12000	12 R J T [(6, a. (.)
121:1	r6116(4,67113,67
1 2300	, <u>\$6</u> [1(1)=(\?-41)/(81-32)
125.4	SCL 2(1)=^^++71+07((1(1))
127 1	SOL102)=(:\$+=:2)/(=2===3)
120 6	501202)======================================

-129-

	-130-	

13101	5011(3)=(-1-23)/() 3-21)
135(1)	5612(3)=A5+H3+S011(3)
1335(WRITE(7,83)SOL1(1),SOL1(2),SOL1(3)
12255	LEJTH(K, KR)SOL2(1), 80L2(2), SOL2(3)
13361	ERENTISY, SE14.7)
13566	AF01=(\$011(1)+\$011(2)+\$011(3))/3.
13760	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
13751	N11=ABS(ABU1+SQL1(1)).
1+761.	012=43S(AV01+S011(2))
17786	[/13=µ4≤(//m)/1-≤(((3)))
13200	D21=458()()2-S0[2(1))
13856	055=752(###5~2015(5))
13861	D23=APS(A3H2-SOL2(2))
13956	WRITE((, A))
14100	60 FORMAT(5(/))
14330	WEITE (F.F.Z) AMU1, AMU2
14350	WRITE (* . 5%)
16466	WETTE (7,55) 011,012,013,021,022,023
14450	55 . FORMAT(54,3(5X,)14.7),/,5x,3(5x,114.7))
14460	155 FORMAT(12)
14476	15A FORMAT (2814.7)
14526	END .

•

Programa de computadora SIGMA.

00	BRESET FREE
200	SSET LINETNED
\$00	DIMENSION TSHD(50), ERS(50)
100	DIMENSION AL(2,2), RR(2,900), ROME(900), FF(2,900), AT(204)
300	DIMENSION NC2,2),LA(2),L(2),AA(2,2),X(000),IUI(2),(4)
0.0	DINENSION RA1 (900), RA2 900), RP1 (900), RP2 (900)
00	DIMENSION R(900,2), RA(900,2)
00	DIMENSION Y (900), R1 (90 ⁰), R2 (900), RN1 (900), RN2 (900)
00	DIMENSION ER1 (900), ER2 9001, SUME (900), RAT (900)
00	REAL LANDAL, LAMDAS, I1, 42, II1, II2
00	REAL MILLANLE, WELLANERLANE, INT
200	RM11(S1,S2,R1,Q2)=(1./(1.~S1*R1~S2*R2))*((1.~S2*R2)/R1+51*(1.+(S1~
\$0.0	152)*R2)/(1,~S1*R1~S2*R4))
00	
500	$1_{S1} \times R_1 / (1_{S1} \times R_{1} - S_{2} \times R_{2}))$
00	$RM_12(S1,S2,R1,R2) = (1./(1.881*S2*R2)) * (S2+S1*((1.1(22S1)*R1)/(1.881))) * (S2+S1*((1.1(22S1)*R1))) * (S2+S1*((1.1(22S1)*R1)))) * (S2+S1*((1.1(22S1)*R1))) * (S2+S1*((1.1(22S1)))) * (S2+S1*((1.1(22S1)))) * (S2+S1*((1.1(22S1)))) * (S2+S1*((1.1(22S1)))) * (S2+S1*((1.1(22S1)))) * (S2+S1*((1.1(22S1))))) * (S2+S1*((1.1(22S1)))) * (S2+S1*((1.1(22S1))))) * (S2+S1*((1.1(22S1)))) * (S2+S1*((1.1(22S1))))) * (S2+S1*((1.1(22S1)))) * (S2+S1*((1.1(22S1))))) * (S2+S1*((1.1(22S1))))) * (S2+S1*((1.1(22S1))))) * (S2+S1*((1(1(1(1(1(1(1(1(1(1(1(1(1(1(1(1(1(1$
0 0	1,~S1*R1~S2*R?)))
00	BW51(81,85,81,85)=(1*/(1**81*85*85))*(21+85*((1**(51=85)*85)/(1
00	1 ~ S1*R1~S2*R>)))
00	READ(5,/)S1, S2, A11, A12/A22
0.0	AVKON=(S2=S1)/(S1+S2)
0.0	BVKON=((A22/(32*92))-(A11/(31*81)))/((A11/(S1*S1))+(A42/(S2*S2)))
00	CVKON=((A11/(S1*41))-2**(A12/(S1*32))+(A22/(S2*32))//(A11/(S1*51)
0.0	1)+(725)/25*25)))
00	READ(5,/)IES, ND, NIT
0.0	15 FORMA (CSIS)
00	READ(5./)CIN, FP
0.0	1070 READ(5,/)TR
0.0	BETA = (27.*51/(8.*A11*T'))
00	READ(5,/)RO(1,1),RO(1, ⁴),RO(2,1),RO(2,2)
0.0	READ (5, /) ANU1, ANU2
<u>10</u>	NRITE(6,31)
<u> </u>	31 FORMAT(1H1)
うこ	WRITE(6,16)
10	16 FORMAT(7, 20%, "PERFIL DE DENSIDAD PARA LA FEZCLA DE VAN DER MAALS")

	·
600	WRITE (6, 30) S1, S2, A11, A12, A22, TR, RETA
700	NRITE(6,32)
800	WRITE(6,5000)AVKOH, BVKUN, CVKON
3900	5000 FORMAT(10x, DARAMETROS DE SCOTT Y VAN KONYNENBURG: 1210,47x, CSI
000	1 =1, F9, 5, 2(1), 47x, 10ZETA =1, F9, 5, 2(1), 47x, 'LAMBDA", (9, 5, 3(1))
100	NRITE(6,5001)
500	5001 popMAT(3(/))
300	WRITE(6,40)Rn(1,1),Rn(1,2),Rn(2,1),Rn(2,2),AHU1,AHU4
400	WRITE(6,1122) NP
500	1122 FORMAT($/, 10_X$, "NUMERO DF PUNTOS", 2_X , 15)
600	3010 nO 60 I=1,2
700	A_RO(I.1)
800	B=BO(I,2)
900	43 MI1=BM11(S1, S2, A, B)/BETA
0.0.9	M12=AH12(S1,S2,A,B)/9E!A
100	M21=HM21(S1,S2,A,S)/9E1A
200	M22=A122(81,82,A,8)/AETA
300	p=(RO(1,1)*RO(1,2))/(1**S1*RO(1,1)*S2*RO(1,2))*BETA*(411*RO(1,1)*g
400	10(1,1)+2.*A12*R0(1,1)*K0(1,2)*A22*R0(1,2)*A22*R0(1,2))
500	44 AA=H1+32=H12+421
600	BB=2,*(A22*H11+A11*H22*A12*(M12+H21))
700	CC=4.*(A11*A22=A12*A12)
800	65 DIS=BB*3B=4.*AA*CC
900	800 TF (DIS.GT.0.0) GO TO 70
000	WR17E(6,80)DT3
100	STOP
,00	70 $LA(1)=1_{*}+((-qq*Soqt(nI>))/(2_{*}AA))$
;00	LA(2) = 1 + ((magasort(nI3))/(2*AA))
100	SIO ICOMPEO
00	0.90 1=1,2
0.0	$IF(IA(J) \bullet GT \bullet 0 \bullet 0) = 0 (1 A (J) \bullet GT \bullet 0 \bullet 0) = 0$
0.0	ICOMP=ICOMP+1
0.0	$\mathbf{I} = \mathbf{V} = \mathbf{I} = 0 = 0$
00	90 CONTINUE
0.0	JECICOMP.EQ.OIGD TO 104
0.0	IF (ICOMP.EQ. 1)GO TO 01
00	WRITE(6,110)
0.0	a078

7400	91	JF(LA(1), EQ.0,0) 40 TO 75
7500		1F(L4(2),EQ.0.0)G(70 26
7600	95	TECIES, EQ. TIGO TO 46
7700		WRITE(6,115)(A(1)
7800	46	$L(\gamma) = SOR \gamma (LA(p))$
7900		RU TO 60
8000	96	TECIES.EQ.1160 TO 47
a100		WRITE(6+115)+4(>)
8200	47	$L(1) = S_{QRT}(LA(1))$
8300		0.6 0 ⁽¹)
8400	100	00 120 J=1.2
8500	120	$LA(J) \cong SQRT(LA(T))$
8600	820	TF(LA(1).GT. LA(2))G0 TU 130
8700		L(T) = LA(1)
8800		GO ÇO 60
8900	130	L(T) = LA(2)
9000	60	CONTINUE
9100		WRITE(6, 150)(1, (1), 1=1, 4)
9200	- 48	$\Delta M(1, \frac{1}{2}) = = ((2n(1, 1) - Rn(4, 1)) / (L(1) + L(2))) + (2)$
300		AM(1,2)==((RO(1,2)=RO(4,2))/(L(1)+L(2)))*((2)
400	•	AM(2,1) = ((RO(1,1) - RO(2(1))) / (L(1) + L(2))) + (1)
)500		AM(2,2)=((R0(1,2)=R0(2/2))/(L(1)+L(2)))*L(1)
1600		WRITE(6,165) 411(1,1), 4.1(1,2), AM(2,1), A11(2,2)
1700	79	X1=CIM/L(1)
1800	•	XS=CIN/L(S)
000	81	DELX1=X1/NP
000		DEFXS=X5/NB
)100	3030	WRITE(6,2021)X1, Y2
1500	2021	FORMAT(S()),10%,"LOS VALURES DE "X1 Y XP SON",5%,F1V,2,5%,F10,5)
1300		90.2020 Jalen
1400	5050	x(J)==x1+(J=1)*oFLx1
1500		X(NP+1)=0.0
600		DO 2041 J=NP+2,2* JP+1
700	2041	$\chi(J) = \chi(J-1) + nELXP$
1800	I	MM=C+JD+1
900	2040	DO 171 J=1, "M
000		no 180 I=1.2
100		IF(X(J),LT,0,0)GOTO1 ⁴ 0
		·

-133-

•

.

R(J, I) = RO(P, T) + AM(P, T) * EXP(-1(2) * X(J))200 INT(I)=RO(2(T)*(P.~EXD}~X(I)))*AM(2,I)*FXL(~L(2)*X(2))/(1.+L(2))*A 800 1M(2,T)*(Exp(~L(2)*X(J))~Exp(~X(J)))/(1.L(2))*RO(1/1)*E*P(~X(J))+A 100 $2M(1,1) \times E_{XP}(\pi_{Y}(1)) / (1,+L(1))$ 500 GO TO 180 500 190 R(J, I)=RO(1, T) + AM(1, T) * EXP(L(1) * X(J)) 100 300 11, T) * (EXP(X(J)) = FXP(I(1) * X(J)))/(L(1) = 1, + RO(2, I) * EXP(X(J)) + AM(2, I) 006 S)*EXP(X(1))/(1_*((5)) 000 130 CONTINUE 00 Fx1=AMU1+RETA*(A11*INT(1)+A12*INT(2))-Si*(R(J+1)+R(J, 4))/(1.-S1*R(200 $1J.1) = S2 \times R(J.2)$ \$00 FX2=AMU2+BETA*(A12*IVIV1)+A22*IVI(2))=SP*(P(J/1)+R(4,5))/(1.=S1*P(0.0 0.0 11.11-82*0(1.2)} 00 DEN=1.+S1.FXP(FX1)+SP* CXP(FX2) 0.0 $RA(J_1) = E_YP(F_Y1)/DE_J$ 0.0 RA(J,2) = EXP(EXP) / 0 EU171 CONTINUE 00 M1.1=1 054 00 00 RP1(J) = R(J, 1)0.0 865(1)=5(1.5) 0.0 RA1(I) = RA(I,I)00 220 RA2(J)=RA(I,2) 00 150 LL CULT'03'13'231) JI 0.0 CALL CARTE (I'M, RAI, x, 1) 0.0 CALL CARTE("M, PAP, X, 1) 00 CALL CARTE (IN, RP1, X, 1) 0.0 00 CALL CARTE(11M, ROP, X.1) 0.0 11M.1=1 0011 00 155 $R1(_{1}) = FP * RA1(_{1}) + (1 ... FP) * KP1(_{1})$ 00 1100 R2(J)=FP*R&2(J)+(1, -FP)*RP2(J) θŬ 1110 AH(1,1) = (R1(1) - RO(1,1)) + EXO(-L(1) + X(1))00 $A_{H}(1,2) = (R2(1) - RO(1,2) + EXD(-1(1) + X(1)))$ 00 AM(2,1) = (R1(M4) = PD(2,1)) * EXP(L(2) * X(M1))0.0 1(11M) x * (2,2) J) q x 3* (12, 2) (9 ~ (1 M) 5 g) = (2, 5) MA n 0 AL(1,1) = A110.0 SIA=(5,1) 14 20 SIA=(1,5) IA 20

2*(1. 1*RR1 2.1)*
2*(1. 1*RR1 2:I)*
2*(1. 1*RR1 2,I)*
2*(1. 1*RR1 2,1)*
1*RR1 2,1)*
2,1)*
2,1)*
2,1)*
2,1,*
2,1)*

.

-135-

Ali=R1(K)*EXD(*ARG)		

8700		AI2=R2(K) *EXp(+APG)						
8800		SI1=SI1+AI1*nELX1*4./3*						
,8900	1101	SI2=SI2+AI2*nELx1+4./3*						
19000		D0 1102 K=3,NP,2						
9100		XP=X(K)					• •	
19200		ARG=AqS(XC=XP)						
9300	·	All=R1(K)*EXP(-APG)						
19400		VISESS(K) *EXD(*VAC)						
9500		SI1=SI1+AI1*DELX1*2./3.						
9600	1102	SI2=SI2+AI2*nELx1+2,/3*						
9700	t	00 110,3 K=NP+2, MM+1,2						
9800		хР _ж Ҳ(К)						
9900		ARG=ARS(XC=XP)						
20000 -		AII=R1(K)*Exp(*AQG)						
20100		VISES(K)*EXo(*VoC)						
20200		SD1=SD1+AI1*DELX2*4./3.		• '				
20300	1103	SD2=SD2+AI2*DELX2*4.13+						
20400		DO 1104 K=NP+3, MM, 2.						
20500		XP=X(K)						
20600		ARG=ABS(XC=XP)						
20700		AI1=R1(K) *EXP(~APG)	٠					
20800		AISERS(K)*EXD(*APG)						•
\$0900	•	SD1=SD1+AI1*nELx2*2./3.		-				
\$1000	1104	SD2=Sn2+AI2*nELx2*2./3*						
\$1100		F(1)=SI1+SD1						
\$1200		t (5)=215+2D5						
21300		FF(1,J)=F(1)						
21400		FF(2,J)=F(2)						
21500		RR(1,J)=R1(J)						
21600	-	(L) 58=(L,S) 88						
21700	`	BOME(])=-(RR(1,)+RR(2),	J))*AL()g(1,=S1	*RR(1, j)*	•S5*8K	(1))~f	BETA*()
21800		11*RR(1, J)*RP(1, J)*P,*A	2*RR(1,	J)*RR(2	+Jj+155*+	R(2, J)*	KR121	J))⇒RS(
21900		2,J)*(1.=ALOG(RR(1,J))"	RR(2,J)	* (1, - AL	0G(RE(2,5	()))~AMU	1*KR()	(, J) = 4.
15000	. •	32*RR(2,J)						
2100	1150	BOME(J)=BOME(J)=ROMUN						
;5500		STI=0.0						

15300 stn=0.0.

8600

STRIE0.0 12310

320		STRD=0.0
400		D ₍₎ 8886 K=1, M'1
500		ΔΙ=0.0
600		XC=^(K)
700		no 8887 T=1,2
800		DO 8887 1-1,2
900		$AI=^{A}I=AL(I,J)*(2,*F_{X}P(T_{X}^{1})*(RR(I,K)*RO(1,J)+RR(J,K)*R_{X}^{U}(1,I))*E_{X}P(-$
0.0.0	t	LXC)+2**EXP(=x2)*(QR(T**)*RO(2*1)*BB(1*Kj*FU(5*1))*FxBfXF)=4*BB(1*
100	ā	2Kj*RR(J,Kj*2.*RR(I,K)* ^F F(J,K))
200	3387	CONTINUE
300	•	$A \uparrow (K) = A I$
400	8386	CONTINUE
500		STISSTI+(AT(1)+AT(NP+1))*DFL×1/3.
600		STD=STD+(AT(NP+1)+AT(HP))* DELX2/3.
700		NO 6666 1=2,NP,2
800	6666	STI=S/I*AT(J)*DELx1*4. 3.
900		NO 6664 K=NP+2, HM, P
000	6664	STD=STD+AT(K)+DELXP+4./3.
100		no 6663 1=3, NP, 2
200	6663	STIESTI + AT (J) OFLY1 + 2 + 13 +
300		DO 6667 K=NP+3, MM, 2
400	6667	STD=SID+AT(K)*DELX2*2./3.
700		ST=(STI+STD)*BETA/4.
705		STRI=ST31+(R04F(1)+30MF(MP+1))*0FLX1/3.
710		STRD=STBD+(EnHF(NP+1)+00HE(HM))*DELX>/3
715		DO 5555 1=2,NP,2
720	5555	STRISTBI+ROME(J)*DELX1*4./3.
725		DO 5556 I=NP+2,4M,2
730	5556	STRD=STBD+ROME(J) * DELX2 * 4, 13,
735		DO 5557 J=3,NP,2
740	5557	STRISTGI+ROME(J)*DELX1*2,/3,
745		no 558 JauP+3,MM,2
750	5558	STRD=STAD_ROME(J) * DELX4*2, /3.
755		TSUP(A)=ST+STBT+STBD+C ^U A
800		TF(N.EQ.1)G0 TO 1183
900		ERS(N)=AAS(TSUP(N)-TSUP(N-1))/TSUP(N)
000		ERS(N) = ERS(4) * 100.
100		SS1=0.0
200	`	0.02522

25300	$S \cap M^{\frac{1}{2}} = 0 = 0$
25400	SUM2=0,0
25500	DO 9010 K=1, MM
25600	SS1=SS1+P1(K)
25700	\$\$2=\$52+ <u>82</u> (F)
25800	E1 = ABS(RN1(K) = p1(K))
25900	E2=ABS(RN2(K)_RP(K))
26000	SUM1=SU11+F1
26100	9010 SUNG=SU 12+E2
56500	ER1(N)=SUH1/SS1
26300	$ER2(N) = SU_M2/SS2$
26400	SUME(N) = ER1(N) + ER2(N)
26500	1183 IF(IES, EQ, 1) CO TO 1370
26600	$NN \approx 1$
26700	WRITE(6,13501NN, N
26800	1350 FORMAT(1H1,3(/),10X,"PERFIL PARA EL COMPONENTE ",13("EN LA ITERAC
26900	10N"+2X+I3)
27000	WRITE(6,1360)($P1(J)$, $X(4)$, $J=1$, MM)
27100	1360 FORMAT(3()),6(5x,F10.5/)
\$7500	CALL CARTE ("MARIAYAI)
27300	S=4N
27400	WRITE(6,13501 11, N
27500	WRITE(6, 1360)(R2(J), X(V), J=1, MM)
27600	CALL CARTE (IM, R2, x, 1)
27700	WRITE(6,1142)TSUP(N)
27800	1142 FORMAT (2(/), 10x, "VALOR DE LA TENSION SUPERFICIAL", 5x, 514,7)
17850	TF(N.ED.1)G(1 TO 1370
7900	WRITE (6, 1380, N, E21 (N), ER2 (N), SUAE (N), ER8 (L)
28000	1390 FORMAT(2(/),10%, "LOS EMRORES EN LA ITERAFION", IS, "SUN!",//10%, "CO
18100	1PONENTE 1", 5x, F10, 7, /, 10X, "COMPONENTE pi, 5x, F10, 7, /11 X, "SUMA PAR
18200	2 LOS DOS COMPONENTES", "XIF10.7./.10X, "ERROR EN LA TENSIUN SUPERFI
18300	31AL", 5X, E14.7)
'8400	1370 CONTINUE
8500	DO 1410 TE1, MI
8600	XC=X(J)
8700	no 1170 I=1,2
8800	F(T)=[F(I,J)+Exp(=xC)*\$QU(1,T)*Exp(=x1)+A+(1,I)*EyP{=\$1*+L(1)}**1
8900	1/(1:+L(1)))*FXP(XC)*(RV(2,1)*EXP(-X2)+AN(2)1)*EXP(-(1:+L(2))*X2)/
9000	21.+1(2)))
.

100	1170 CONTINUE
500	FX1=AMU1+BETA*(A11*F(1)+A12*F(2))*S1*(R1(1)+R2(J))/(1=01*R1(J)-S2
300	1*Rp(J))
400	FX2=AMU2+BEIV*(415*E(1)+A55*E(5))=S5*(B1(1)+B5(1))/{15=B1*B1(1)=S5
500	1*R2(J))
600	DEN=1.+31*EXP(FX1)+52*FXP(FX2)
700	RN1(J)=EXP(FY1)/OEN
800	BN5(1)=EXB(EX5)/DEN
900	$\alpha_1(1) = Eb + BNI(1) + (1 = Eb + KI(1))$
000	R2(J) = FP * RM2(J) * (1 FP) * R2(J)
050	1410 CONTINUE
100	$AM(1,1) = (R1(1) - RO(1,1) + E_{XD}(-L(1) \times (1))$
200	AH(1,2) = (R2(1) - RO(1,2) / XEX = (-L(1) X (1))
300	AM(2,1)=(R1(MM)=R0(2,1/)*EXP(L(2)*X(MH))
400	AM(2,2)=(R2(MM)=R0(2,2))*EXP(L(2)*X(MM))
500	1140 FONTINUE
600	N 255 N 47 1
700	32 FURMAT(3(1))
800	WRITE(6,921)(J, EP1(J), $^{\text{ER2}}$ (I), SUME(J), TSUP(J), $^{\text{ERS}}$ (J)(J=1,N)
900	921 FORMAT(3()),10x,"ERRORES EN LA ITERACION",15,/,10X,"C'ME1",5X,F10.
000	17,10X,"COMP2",5X,F10.7119X,"SUMA DE ERRORES",5X,F10271/10X,"TENSI
100	20N VE INTERCARAN, 5X, E14, /, 10x, "ERROR EN TENSION", 5X (E14.7)
200	302 WRITE(6,922)
300	922 FORMAT(1H1, 5x, "PERFIL PARA EL PRIMER COMPONENTE")
400	$WRITE(6,542)(R1(1),X(J^{1},J=1,M:1))$
500	CALL CARTE (MM, R1, X, 1)
600	WRITE(6,923)
700	923 FORMATCIH1,5x, "PERFIL PARA EL SEGUNDO COMLONENTE")
800	$WRITE(6, 547)(RP(1), X(J), J_{2}, MM)$
900	542 FORMAT(3()),5x,3(F10.8+3X,F10.5,7X))
000	CALL CARTE (MM. R2. X.1)
100	DU 911 J=1,0M
P00	911 ROT(J)=R1(J)+RP(T)
300	WRITE(6,912)
400	912 FORMATCIHI, 5%, "PERFIL VE DENSIDAD TOTAL")
500	WRITE (6, 542) (ROT(J), $x(4)$, $J=1, 314$)
5,00	CALL CARTE (MM, ROT, X, 1)
700	90TS

10 FORMAT (BE10.5)

2800

2900 30 FURMAT(2(/),10x,"DARAHETHOS DE LA HE7CLA:",/,33x,"S1GMA1=",F10,5,2 1X, "SIGMA2=", F10:5, /, 334, "ALFA11=", F10.5, "ALFA12=", F10.5, "ALFA22=", 3000 1F10 5, /, 20X, "T/T1C=", F10.5, 5X, "BETA=", F10.5/ 3100 40 FORMATCIOX, "CONDICIONES WE EQUILIBRID: "[P()], 55X, "FASE(1); RO1=",FI 3200 10,8,5x,"RO2=",F10,8,/, 5x,"FASE(2);RD1=", 10,8,5x,"NOF=",F10,8,/,3 3300 25x,"Mula",Flo.6,5x."Muda",Flo.6) 3400 BO FORMAT(10x, "DISCRIMINANTE,", E14.7, "ALTO") 3500 110 FORMAL(10y, "PATCES COMPLEJAS ALTO") 3600 115 FORMATCIOX, "HUA RAIZ ES COMPLEJA", E14.75 37:00 150 FORMAT(/,10X,"LANDA LIN:",E14,7,5X,"LAMDA VAP=",E1427/ 3800 165 FORMAT(2(/), 10X, "AMP11=", E14.7, 5X, "AMP12=", E14.7, 5X, "AMP21=", E14.7 3900 1, 5x, "AMP22=", E14.7) 4000 1000 FORMAT(10, 'AMPLITUDES PARA EL DECAIMIENTO A LOS VALOMES UNIFORMES 4100 1'./, 20X, 'FASE 1:'./, 25X, 'A(1,1)=', E14,7"5X, 'A(1,2)=', E14,7,/,20X, ' 4200 2FASE 2: 1, 1, 25x, 14(2, 1)= 1, E14, 7, 5x, 14(2, 2) 21, E14, 7) 4300 4400 ENn SUAROUTINE CARTE(I, K, T'N) 4500 DIMENSION XPI (900), XPLU(900), IG(4,900) 4600 4700 DIMENSION X(900), T(1) DIMENSION L(1011, A(6), 15(6) 4800 DATA IS/1,1 1,141,141,141,101/ 4900 999 FORMAT(13A6) 5000 5100 20 FORMAT(1H+, E14, 5) 5200 21 FORMAT(2X) 22 FORMAT(1H1) 5300 23 FORMAT(15x,5(1) 1), (11) 5400 24 FORMAT(6(10%, E10.3)) 5500 25 FORMAT(1H+, 14x, 101('.')) 5600 5700 30 FORMAT(1H+, 14x, 101A1) NRITE(6,22) 5800 5900 CALL MINAX(T, TO, TE, I) 6000 WRITE(6,31)1.1 31 FORMAT(215) 6100 DO 1 K=1.N 6200 6300 1012 J=1.1 6400 $S = X P \Gamma (T) = X (T)$ 6500 CALL HIMAX(XDL, XMIN, XMAX, I) 6600 XPLO(K)=XHIU

		-141-
36700		KK=K+N
36800	1	XDFU(KK)=XMVX
36900		KK#5°*20
37000		CALL MIMAX(XOLO,XMIN,XMAX,KK)
37100		$DO_3 \times 1 $
37200		no 3 J=1,I
37300	3	$fG(K,J)=50*(1,m(X(J)m^{ML}_{N})/(X^{M}_{A}Xm^{M}_{J}))+1,5$
37400		DO 4 K=1.51
37500		(1) = [S(1)]
37600		DO 5 J=2,101
37700	. 5	t(J) = IS(2)
37800		00 6 II=1,N
37900		n_0 7 III=1,I
38000		TF(IG(II,III)~K)7,8,7
38100	3	SJ=100.*(III-1)/(T-1)+1.5
38200		JJ=SJ
38300		+ (J ^J) = IS(II+>)
38400	7	CONTINUE
38500		WRITE(6,30)((KK), KK=1/101)
38600		DD 6 KK=1,101
38700		L(KK)=IS(2)
38800	6	CONTINUE
38900		TF(K=51)17,18,17
39000	17	sJ≈(K+4)/5,
39100		JK # SJ
39200		TF(JK=SJ19,10,9
39300	10	SJ=XMAX=(K=1)*(XMAX=X!111)/50.
39400		WRITE(6,20)ST
39500	9	WRITE(6,21)
39600		TF(K-30)4,14,4
39700	14	no 11 J=1,101
39800	11	I(1) = IS(1)
39900		WRT1E(6,25)
10000	13	VRITE (6, 20) XMIN
40100	4	CONTINUE
40200		WRITE(6,23)
40300		8.1#L 51 00
10400	12	A(1) = TO + (1 - 1) + (T - TO) / 2
10 <u></u> 00 10500	* im.	NDITE $(6, 24)$ $(A(J), J=1, 6)$
*0.340		- IX A 1 W FOR Y TO T FOR STOLE YOUR FULL
		· ·

		-142-	н 	
:				
40600	WRITE(6, 41)(1)	-2, IS(J), J=5, 6)		
40700 41	FORMAT(5 _X , 'CL	AVE' / , 5xe'x(', Ile'):	* + Al + ty	:
40800	1	11X(1,11,1);	1 + 41 + 1 X	;
40900	2	#*X(*,11,*);	1.41 .15	
41000	, 3	+ * X (* , 11, *) ;	* A1 3	
41100	RETURN			
41200	END			
41300	SUBROUTINE MT	MAX (VOVMINOVMAXOD)		
41400	DIMENSION V(1)	0001		
41500	VMAx = V(1)			
41600	VMIN=V(1)			
41700	n0 I=2.N			• •
41800	JF (V(I) -VMAX);	2,2,3		
41900	3 VMAX=V(I)			
42000	GO TO 1			
42100	2 IF(VHIN=V(I))	1.1.4		• .
42200	4 VMI = V(I)			
42300	1 CONTINUE			
42400	RETURN		•	
42500	FNn			•
		•		

APENDICE II.

TABLA I: Puntos triples para la mezcla con parámetros $\xi = 0.0$, $\zeta = 0.1$, A = 0.5

$T_{r} = 0.50$	S1	Pe	6P	em.	Po paz	AH
L ₁ V :	0.817418	0.001744	0.035785	-5.009846	-6.270849	-6.4087
.	0.007340	0.002027				
L_2V :	0.001358	0.857469	0.035785	-5.009842	-6.270878	-7.9674
	0.007340	0.002027				
L ₁ L ₂ :	0.817418	0.001744	0.035786	-5.009846	-6.270878	-1.5547
	0.001358	0.857469				

T_r=0.70

L ₁ V :	0.688268	0.018157	0.299199	-3.475801	-4.277929	-3.7910
*	0.046964	0.019520				
$L_2 V$:	0.012882	0.769620	0.299198	-3.475758	-4.278043	-4.9972
-	0.046966	0.019518				
L_1L_2 :	0.688273	0.018155	0.299199	-3.475798	-4.278042	-1.2061
	0.012882	0.769621				

 $T_{r} = 0.725$

L.V :	0.664779	0.022895	0.364290	-3.350556	-4.110414	-3.4776
Ţ	0.056778	0.024434				•
$L_{2}V$:	0.015858	0.755484	0.364290	-3.350556	-4.110417	-4.6689
-	0.056774	0.024433				
L_1L_2 :	0.664778	0.022895	0.364290	-3.350556	-4.110417	-1.1914
1 -	0.015858	0.755484				

-143-

L ₁ V : 0.638101	0.028776	0.439526	-3.234907	-3.954121	-3.1503
0.068613	0.030503				
L ₂ V : 0.019331	0.740350	0.439526	-3.23487+*	-3.954195	-4.3364
0.068616	0.030500				
L ₁ L ₂ : 0.638106	0.028773	0.439525	-3.234904	-3.954194	-1.1860
0.019330	0.740351				
				•	
$T_{r} = 0.775$					
L_1V : 0.607020	0.036193	0.526217	-3.127860	-3.807969	-2.7990
0.083263	0.038129				
L ₂ V : 0.023360	0.724108	0.526217	-3.127861	-3.807678	-3.9930

0.083263 0.038129 L₁L₂: 0.607019 0.036193 0.526214 -3.127861 -3.807969 -1.1939 0.023359 0.724108

 $T_{r} = 0.80$

L_1V :	0.569211	0.045877	0.626271	-3.028536	-3.670360	-2.4047
*	0.102263	0.048068				
L ₂ V :	0.028008	0.706650	0.626271	-3.028538	-3.670356	-3.6273
L	0.102262	0.048068				
L_1L_2 :	0.569209	0.045877	0.626264	-3.028538	-3.670357	-1.2225
* ~	0.028008	0.706647				

L,V :	0.551203	0.050685	0.670636	-2.990789	-3.617374	-2.2269
-	0.111768	0.053003				
L_2V :	0.030054	0.699310	0.670639	-2.990772	-3.617399	-3.4701
	0.111772	0.053001		-		
$L_{1}L_{2}$:	0.551209	0.050681	0.670639	-2.990786	-3.617399	-1.2432
1	0.030053	0.699311				

L_1V :	0.530721	0.056256	0.717826	-2.954102	-3.565495	-2.0308
μ.	0.122959	0.058726				
L_2V :	0.032207	0.691771	0.717826	-2.954106	-3.565486	-3.3031
۲	0.122958	0.058727				
L_1L_2 :	0.530719	0.056257	0.717828	-2.954102	-3.565486	-1.2722
1 4	0.032207	0.691770				

L ₁ V	:	0.509238	0.062182	0.763075	-2.921945	-3.519499	-1.8312
7		0.135163	0.064824				
L_2V	:	0.034238	0.684822	0.763075	-2.921926	-3.519540	-3.1401
		0.135169	0.064820				
L1L2	;:	0.509255	0.062175	0.763076	-2.921940	-3.519539	-1.3088
<u>4</u> , 6	-	0.034237	0.684823				

T_r=0.83

L_1V :	0.506634	0.062889	0.768250	-2.918421	-3.514497	-1.8074
	0.136680	0.065562				
$L_{2}V$:	0.034467	0.684042	0.768249	-2.918430	-3.514481	-3.1211
- La	0.133667	0.065563				
$L_{1}L_{2}$:	0.506627	0.062902	0.768250	-2.918423	-3.514481	-1.3137
* -	0.034468	0.684042				

L_1V :	0.503915	0.063661	0.773554	-2.914905	-3.509296	-1.7826
Ŧ	0.138265	0.066348				
L_2V :	0.034702	0.683258	0.773554	-2.914848	-3.509413	-3.1015
L	0.138285	0.066337		•		
$L_{1}L_{2}:$	0.503968	0.063640	0.773553	-2.914891	-3.509411	-1.3187
1 2	0.034699	0.683261				

L ₁	۷ :	0.476661	0.071184	0.822471	-2.883687	-3.464215	-1.5377
		0.154729	0.074111			. *	
L2	V :	0.036827	0.676154	0.822471	-2.883686	-3.464215	-2.9236
-		0.154730	0.074111				
L ₁	L2:	0.476660	0.071184	0.822469	-2.883687	-3.464214	-1.3759
-	L.	0.036827	0.676154				

 $T_{r} = 0.85$

L ₁ V :	0.434579	0.082488	0.881469	-2.849807	-3.414431	-1.1691
-	0.182432	0.085841			·	
$L_2 V$:	0.039267	0.668175	0.881469	-2.849807	-3.414432	-2.6515
	0.182432	0.085841				
L_1L_2 :	0.434579	0.082488	0.881470	-2.849807	-3.414432	-1.4823
1 4	0.039267	0.668175				•

 $T_{r} = 0.851$

L ₁ V :	0.429059	0.083912	0.887704	-2.846460	-3.409464	-1.1213
-	0.186325	0.087288				
$L_{2}V$:	0.039514	·0.667377	0.887701	-2.846460	-3.409462	-2.6192
ha.	0.186325	0.087288				
$L_{1}L_{2}$:	0.429058	0.083912	0.887701	-2.846460	-3.409463	-1.4979
J. 1-2	0.039514	0.667377				

	L_1V :	0.370101	0.097461	0.933750	-2.823140	-3.374570	-0.6079
	Ŧ	0.233350	0.100957				
•	L_2V :	0.041244	0.661838	0.933749	-2.823139	-3.374572	-2.2925
	-	0.233356	0.100958				
	L_1L_2 :	0.370121	0.097457	0.933750	-2.823139	-3.374570	-1.6846
		0.041244	0.661838				

L_1V :	0.353075	0.100538	0.940803	-2.819803	-3.369545	-0.4574
	0.249159	0.103683				
L_2V :	0.041489	0.661061	0.940802	-2.819804	-3.369545	-2.2031
4	0.249129	0.103680				
L_1L_2 :	0.353196	0.100521	0.940817	-2.819798	-3.369541	-1.7451
1 L	0.041490	0.661061				

 $T_{r} = 0.8595$

L ₁ V :	0.340988	0.102403	0.944405	-2.818127	-3.367020	-0.3497
-	0.261029	0.105098	,			
L_2V :	0.041612	0.660675	0.944409	-2.818125	-3.367019	-2.1401
<u>L.</u>	0.261097	0.105104				
L_1L_2 :	0.341001	0.102401	0.944407	-2.818126	-3.367019	-1.7906
	0.041612	0.660675		•		

 $T_{r} = 0.8596$

L ₁ V :	0.337963	0.102822	0.945133	-2.817791	-3.366514	-0.3229
.	0.264035	0.105373				
L2V :	0.041636	0.660598	0.945132	-2.817791	-3.366514	-2.1252
L	0.264036	0.105373				
$L_{1}L_{2}$:	0.337966	0.102822	0.945133	-2.817791	-3.366514	-1.8022
± L	0.041636	0.660598				

L_1V :	0.334657	0.103258	0.945858	-2.817455	-3.366016	-0.2935
т	0.267355	0.105637				
L_2V :	0.041661	0.660522	0.945858	-2.817457	-3.366008	-2.1090
E.	0.267264	0.105633				<i>,</i>
L_1L_2 :	0.334509	0.103275	0.945857	-2.817457	-3.366009	-1.8156
	0.041661	0.660522	-			

TABLA II: Puntos triples de la mezcla con parámetros $\xi = 0.0$, $\zeta = 0.4$, A = 0.5

T _r =0.50	R	Pa.	BP	(om a	BM2	ΔH
L_1V :	0.819451	0.000041	0.027796	-5.010233	-13.05372	-6.4324
2	0.007248	0.000002		•		
L ₂ V::	0.000018	0.931882	0.027796	-5.010237	-13.05372	-15.5790
	0.007248	0.000002				
L_1L_2 :	0.819451	0.000041	0.027794	-5.010233	-13.05372	-9.1465
<u>.</u> 6.	0.000018	0.931882				·

 $T_{r} = 0.60$

L ₁ V:	0.770212	0.000270	0.086975	-4.099759	-10.61369	-5.1059
-	0.019923	0.000028				
L_2V :	0.000117	0.916921	0.086975	-4.099758	-10.61371	-12.8103
· L	0.019923	0.000028				
L_1L_2 :	0.770212	0.000270	0.086976	-4.099759	-10.61371	-7.7044
-i. C	0.000117	0.916921				

 $T_{r} = 0.625$

L_1V :	0.756679	0.000393	0.109695	-3.923035	-10.12912	-4.8184
Ţ	0.024352	0.000047				
L_2V :	0.000170	0.913086	0.109695	-3.923035	-10.12912	-12.2401
L	0.024532	0.000047				
L_1L_2 :	0.756679	0.000393	0.109695	-3.923035	-10.12912	-7.4217
–	0.000170	0.913086				

-148-

L ₁ V :	0.742555	0.000555	0.136132	-3.761775	-9.682861	-4.5429
-	0.029813	0.000076				
L_2V :	0.000239	0.909208	0.136132	-3.761775	-9.682860	-11.7064
L	0.029818	0.000076				
$L_{1}L_{2}:$	0.742555	0.000555	0.136131	-3.761775	-9.682860	-7.1635
± 6-	0.000239	0.909208				

L ₁ V :	0.727772	0.000764	0.166538	-3.614184	-9.270569	-4.2772
Ŧ	0.035838	0.000118				
L_2V :	0.000328	0.905284	0.166538	-3.614184	-9.270568	-11.2046
£	0.035838	0.000118		•		
L_1L_2 :	0.727772	0.000764	0.166539	-3.614184	-9.270568	-6.9273
	0.000328	0.905284				

T_r=0.70

L ₁ V :	0.712253	0.001029	0.201156	-3.478733	-8.888462	-4.0192
ч.	0.042661	0.000178				
L ₂ V :	0.000439	0.901311	0.201157	-3.478729	-8.888502	-10.7307
Ľ	0.042661	0.000178				
L_1L_2 :	0.712253	0.001029	0.201157	-3.478733	-8.888502	-6.7114
* *	0.000439	0.901311				

L ₁ V :	0.678616	0.001754	0.283955	-3.239182	-8.202606	-3.5189
.	0.059053	0.000379				
L_2V :	0.000741	0.893206	0.283955	-3.239182	-8.202607	-9.8528
	0.059053	0.000379				
L_1L_2 :	0.678616	0.001754	0.283955	-3.239182	-8.202608	-6.3339
7 6	0.000741	0.893206				

L_1V :	0.660246	0.002231	0.332577	-3.132977	-7.893568	-3.2726
Υ.	0.068841	0.000537				•
L_2V :	0.000938	0.889070	0.332577	-3.132977	-7.893571	-9.4428
	0.068841	0.000537				
L_1L_2 :	0.660246	0.002231	0.332577	-3.132977	-7.893571	-6.1702
<u>т</u> С	0.000938	0.889070				

T_r=0.80

0.640619	0.002793	0.386294	-3.034646	-7.604222	-3.0260
0.079889	0.000746				
0.001170	0.884873	0.386294	-3.034646	-7.604219	-9.0483
0.079889	0.000746				
0.640619	0.002793	0.386296	-3.034646	-7.604218	-6.0223
0.001170	0.884873				
	0.640619 0.079889 0.001170 0.079889 0.640619 0.001170	0.640619 0.002793 0.079889 0.000746 0.001170 0.884873 0.079889 0.000746 0.640619 0.002793 0.001170 0.884873	0.640619 0.002793 0.386294 0.079889 0.000746 0.001170 0.884873 0.386294 0.079889 0.000746 0.640619 0.002793 0.386296 0.001170 0.884873	0.640619 0.002793 0.386294 -3.034646 0.079889 0.000746 -3.034646 0.001170 0.884873 0.386294 -3.034646 0.079889 0.000746 -3.034646 0.640619 0.002793 0.386296 -3.034646 0.001170 0.884873	0.640619 0.002793 0.386294 -3.034646 -7.604222 0.079889 0.000746 -3.034646 -7.604219 0.001170 0.884873 0.386294 -3.034646 -7.604219 0.640619 0.002793 0.386296 -3.034646 -7.604218 0.001170 0.884873

T_r=0.825

L ₁ V :	0.619505	0.003445	0.445311	-2.943451	-7.332698	-2.7768
-t	0.092405	0.001023				
L_2V :	0.001439	0.880614	0.445311	-2.943451	-7.332692	-8.6667
-	0.092405	0.001023		• •		
$L_{1}L_{2}$:	0.619505	0.003445	0.445312	-2.943450	-7.332691	-5.8898
* -	0.001439	0.880614				

L ₁ V :	0.596591	0.004190	0.509825	-2.858746	-7.077351	-2.5217
Ŧ	0.106677	0.001386				
$L_{2}V$:	0.001747	0.876291	0.509825	-2.858745	-7.077353	-8.2950
L.	0.106677	0.001386				
L1L2:	0.596591	0.004190	0.509824	-2.858746	-7.077353	-5.7732
1 4	0.001747	0.876291				

L ₁ V :	0.543335	0.005944	0.656105	-2.706617	-6.609589	-1.9752
-	0.142416	0.002473				
Ĺ ₂ V :	0.002491	0.867447	0.656105	-2.706616	-6.609610	-7.5676
-	0.142416	0.002473				
$L_{1}L_{2}$:	0.543335	0.005944	0.656105	-2.706616	-6.609610	-5.5923
	0.002491	0.867447		·		

T_r=0.91

L ₁ V :	0.531039	0.006329	0.688222	-2.678698	-6.522237	-1.8561
	0.151155	0.002769				
$L_{2}V$:	0.002661	0.865647	0.688222	-2.678698	-6.522258	-7.4221
L	0.151155	0.002769				
L_1L_2 :	0.531039	0.006329	0.688222	-2.678698	-6.522258	-5.5660
. .	0.002661	0.865647				

 $T_{r} = 0.92$

L ₁ V :	0.517985	0.006721	0.721320	-2.651552	-6.436779	-1.7317
-	0.160630	0.003100				
L_2V :	0.002838 *	0.863836	0.721320	-2.651552	-6.436806	-7.2756
	0.160630	0.003100				
$L_{1}L_{2}$:	0.517985	0.006721	0.721320	-2.651552	-6.436806	-5.5438
	0.002838	0.863836				

L ₁ V :	0.504024	0.007116	0.755410	-2.625155	-6.353155	-1.6009
.	0.170988	0.003471				
L_2V :	0.003022	0.862014	0.755410	-2.625155	-6.353189	-7.1273
E	0.170988	0.003471				
$L_{1}L_{2}$:	0.504024	0.007115	0.755410	~ 2.625155	-6.353189	-5.5263
-4. E-	0.003022	0.862014				

L ₁ V	: 0.488944	0.007508	0.790503	-2.599484	-6.271343	-1.4617
	0.182437	0.003888				·
L ₂ V	: 0.003214	0.860181	0.790503	-2.599484	-6.271346	-6.9762
	0.182438	0.003888				
L_1L_2	: 0.488944	0.007508	0.790503	-2.599484	-6.271346	-5.5144
	0.003214	0.860181				

T_r=0.95

L ₁ V :	0.472432	0.007891	0.826609	-2.574518	-6.191217	-1.3114
	0.195292	0.004362				
L_2V :	0.003413	0.858338	0.826609	-2.574518	-6.191217	-6.8210
-	0.195292	0.004362				
L_1L_2 :	0.472432	0.007891	0.826609	-2.574518	-6.191217	-5.5095
× -	0.003413	0.858338				

T_r=0.96

L_1V :	0.453978	0.008252	0.863741	-2.550236	-6.112738	-1.1454
-	0.210057	0.004905				
L_2V :	0.003619	0.856485	0.863741	-2.550236	-6.112745	-6.6592
	0.210057	0.004905	· · · ·			
L ₁ L ₂ :	0.453978	0.008252	0.863741	-2.550236	-6.112745	-5.5137
	0.003619	0.856485				

$L_1 V$	0.432656	0.008670	0.901907	-2.526618	、 6.035876	-0.9554
_	0.227656	0.005542				
L ₂ V	0.003833	0.854621	0.901907	-2.526618	- 6.035876	-6.4867
_	0.227655	0.005542		·		
L_1L_2	0.432656	0.008570	0.901907	-2.516618	-6:035876	-5.5312
	0.003833	0.854621				

T_r=0.973

L_1V :	0.425449	0.008652	0.913561	-2.519659	-6.013120	-0.8915
-	0.233740	0.005756				
L_2V :	0.003898	0.854060	0.913561	-2.519659	-6.013120	-6.4318
L	0.233740	0.005756				
$L_{1}L_{2}$:	0.425449	0.008652	0.913561	-2.519659	-6.013120	-5.5402
* +	0.003898	0.854060				

 $T_{r} = 0.974$

L ₁ V.:	0.422938	0.008677	0.917466	-2.517352	-6.005564	-0.8692
-	0.235877	0.005831				
L_2V :	0.003920	0.853873	0.917466	-2.517352	-6.005565	-6.4130
	0.235877	0.005831				
L1L2:	0.422938	0.008677	0.917466	-2.517352	-6.005565	-5.5437
	0.003920	0.853873				

L ₁ V :	0.420363	0.008701	0.921381	-2.515052	-5,998026	-0.8464
-	0.238074	0.005907				· .
L_2V :	0.003942	0.853685	0.921381	-2.515052	-5.998026	-6.3940
-	0.238074	0.005907				
$L_{1}L_{2}$:	0.420363	0.008701	0.921381	-2.515052	-5.998026	-5.5475
<u> </u>	0.003942	0.853685				

a) Mezcla	con parámetros	E =0.0,	Ç =0.1, A	=0.5 . ^T uc	EP 20.859
Tr	T=T _r /T _{UCEP}	JL.V	TLEV	OLAL-E	C *
0.500	0.5815	1.4308	2.1580	2.0277	3.4585
0.700	0.8142	0.4772	0.8943	0.8736	1.3508
0.725	0.8433	0.3782	0.7760	0.7178	1.0960
0.750	0.8724	0.2940	0.6735	0.6065	0.9591
0.775	0.9014	0.2117	0.5650	0.5068	0.7180
0.800	0.9305	0.1349	0.4546	0.3989	0.5338
0.810	0.9422	0.1095	0.4102	0.3584	0.4678
0.820	0.9538	0.0827	0.3729	0.3182	0.4009
0.829	0.9643	0.0593	0.3405	0.2845	0.3438
0.830	0.9654	0.0568	0.3379	0.2808	0.3376
0.831	0.9661	0.0542	0.3334	0.2772	0.3313
0.840	0.9770	0.0317	0.3023	0.2452	0.2769

b) Mezcla con parámetros $\xi = 0.0$, $\zeta = 0.4$, $\Lambda = 0.5$. TUCEP $\simeq 0.975$

T _r .	$T = T_r / T_{UCEP}$	GLAV	GL2V	GLL LZ	C *
0.500	0.5128	1.4758	5.5963	4.1892	5.6650
0.600	0.6154	0.9210	4.0950	3.1460	4.0870
0.625	0.9538	0.8098	3.9774	3.0651	3.8749
0.650	0.6666	0.7088	3.6257	2.8307	3.5396
0.675	0,6923	0.6159	3.3988	2.7356	3.3515
0.700	0.7179	0.5429	3.2145	2.6208	3.1637
0.750	0.7692	0,4058	2.8900	2.3589	2.7647
0.775	0.7948	0.3377	2.7189	2.2418	2.5795
0.800	0.8205	0.2538	2.5552	2.1327	2.3866
0.850	0.8718	0.1552	2.2569	1.9055	2.0608
0.900	0.9230	0.0658	1.9588	1.7389	1.8047

-154-