

Universidad Nacional Autónoma de México

Facultad de Química División de Estudios de Posgrado

ESTUDIOS CUANTITATIVOS POR ESPEC-TROMETRIA DE MASAS DE ELEMENTOS DE LA SERIE DE LOS LANTANIDOS

TESIS

Que para obtener el Grado de: MAESTRO EN CIENCIAS (Qímica Analítica) Presenta:

María Aurora Armienta Hernández

México, D. F. TESIS CON A DE ORIGEN

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

ESTUDIOS CUANTITATIVOS POR ESPECTROMETRIA DE MASAS DE ELEMENTOS DE LA SERIE DE LOS LANTANIDOS

Resumen:

Se describe el desarrollo de un método analítico para la de terminación de Tierras Raras en muestras geológicas mediante espectrometría de masas con fuente de impacto electrónico. Con este objeto se efectuó la síntesis de los acetilace tonatos de los lantánidos, se elaboraron y se estudiaron -los diagramas logarítmicos de concentración de especies con lo cual se pudo concluir sobre la eficiencia máxima de la reacción. Se obtuvieron los espectros de masas de cada unode ellos mediante introducción directa de las muestras sóli das. Se realizaron estudios cuantitativos empleando la técnica de monitoreo selectivo de iones (SIM), con lo que se logró evitar las interferencias de las TR entre sí y se dig minuyó la cantidad mínima detectable.

Abstract:

A method for the chemical analysis of Rare Earths in geologic samples by means of electron impact source mass spectro metry has been developed. In order to use this kind of --equipment lanthanide acetylacetonates have been obtained. - Logarithmic diagrams of species predominance have been -prepared and applied to find the reaction maximum efficien cy. Mass spectra of each lanthanide acetylacetonate have been obtained by means of direct insertion of the solid samples. Quantitative studies using selective ion monito-ring (SIM) avoids interferences between the Rare Earths -and permited lower the minimum detectable amount.

CONTENIDO

	•			
1	INTRODUCCION	1		
2	FUNDAMENTAC ION			
	2.1. Generalidades	10		
	2.2. Derivados Orgánicos	10		
	2.3. Espectrometría de Masas	11		
	2.4. Análisis Cuantitativo de Mezclas	13		
	2.5. Cuantificación de Quelatos Metálicos	14		
3	PARTE EXPERIMENTAL			
	3.1. Preparación de los Acetilacetonatos	17		
	3.2. Obtención de los Espectros de Masas	23		
	3.3. Establecimiento del Intervalo Lineal de Concentraciones para un solo Compuesto	24		
	3.4. Establecimiento del Intervalo Lineal para una Mezcla de Cuatro Compuestos	30		
·	3.5. Cuantificación de una Mezcla de 13 Acetilacetonatos	33		
4	RESULTADOS Y DISCUSION			
	4.1. Discusión de la Preparación de los Acetilacetonatos	36		
	4.2. Espectros de Masas de los Acetilacetonatos de Lantánidos	44		

Pág.

4.3. Intervalo Lineal para un solo Compuesto	Pág. 80		
4.4. Intervalo Lineal para una Mezcla de Cuatro Compuestos	85		
4.5. Resultados Cuantitativos para la Mezcla de 13 Acetilacetonatos	89		
5 CONCLUSIONES			
6 LITERATURA CONSULTADA			

1.- INTRODUCCION.

La necesidad de la determinación cuantitativa de Tierras Raras en rocas y minerales para su aplicación en el área de Ciencias de la Tierra, motivó el desarrollo dela investigación que se presenta en esta tesis.

Debido a las bajas concentraciones en que se encuentran los lantánidos en los materiales citados, a su similar naturaleza química, y a las características de la matriz de las rocas; para su cuantificación se requieren técnicas analíticas complejas. Los métodos más utilizados con este objeto han sido el análisis por activación con neutrones y la espectrometría de masas con fuente de chispa. Am-bos presentan dificultades para su aplicación en México, -mismas que se señalarán posteriormente.

Resulta entonces necesario el desarrollo de una técnica de análisis que permita la cuantificación de las --Tierras Raras (TR) en rocas y minerales, considerando las condiciones existentes y el tipo de equipos accesibles en el país.

En Ciencias de la Tierra es importante conocer la concentración de la totalidad o de la mayor parte de los -miembros de la serie de las TR en una muestra de roca; es además muy útil la determinación de sus isótopos. ¹ La espectrometría de masas es una técnica analítica que posibilita lograr estos objetivos. De aquí la con veniencia de desarrollar un método analítico por espectrometría de masas, que utilice equipos con fuente de impacto electrónico que son los más comunes en el país. Para ello, es indispensable contar con derivados volátiles de las TR que se ionicen en las condiciones de operación de la fuente de ese tipo de equipo.

Los acetilacetonatos de los lantánidos son complejos que presentan una presión de vapor alta y no requieren condiciones muy complicadas para su síntesis; por ello y con objeto de registrar los espectros de este tipo de derivados en toda la serie de lantánidos y observar el compor tamiento de sus mezclas , se procedió a sintetizarlos. Se partió del óxido de lantánido y se siguió el método publica do por Stites (Stites et al.,1948), y por Lyle (Lyle y Witts, 1970), sin obtener los resultados esperados. Esto originó -que la determinación de las condiciones para el éxito de la reacción se convirtiera en uno de los objetivos de la tesis. Para ello, se efectuaron experimentos y se prepararon dia-gramas logarítmicos de predominancia de especies.

Una vez lograda la síntesis de los acetilacetonatos de toda la serie, se registraron los espectros de masas para cada lantánido, utilizando un espectrómetro HP5988A -

con analizador de cuadrupolo y fuente de impacto electrónico.

Para el registro individual de cada TR en una -mezcla de los mismos se utilizó el sistema de adquisición de datos por monitoreo selectivo de iones (SIM). De esta manera se evitaron las interferencias y se logró aumentar la sensibilidad del método.

El estudio cuantitativo permitió determinar el intervalo lineal y la cantidad mínima detectable. De los resultados obtenidos se concluye que con esta metodología es posible cuantificar las concentraciones de TR comunes en rocas.

A fin de tener un panorama más amplio de los problemas que presenta y las técnicas que se han utilizado para el análisis de los lantánidos, a continuación se explicarán brevemente los métodos que se han aplicado con este objeto.

Su determinación por vía húmeda es un procedi-miento sumamente laborioso y largo, ya que se requieren múltiples precipitaciones o cristalizaciones fraccionadas (Hillebrand,1953; Schoeller y Powell,1955; Zabre y Andrade,1981), por lo que no es posible separar cuantitativa-mente en forma rutinaria los lantánidos entre sí a estas concentraciones tan bajas.

El desarrollo de las técnicas de intercambio iónico y de extracción líquido-líquido, ha posibilitado la separación de las TR para su análisis posterior por méto-dos tales como la espectrofotometría y la volumetría. La determinación se efectúa entonces en forma individual e in dependiente (Strelow et al.,1965; Hulet y Bode,1972; Cheng et al.,1982a; Cheng et al.,1982b; Laufer,1986; Navarro et al.,1986), sin embargo el procedimiento se complica cuando las concentraciones son bajas.

Otra de las técnicas analíticas cuya aplicación en este aspecto se encuentra en desarrollo, es la electroquímica, orientada hacia la determinación de una sola TR en disolución (Suzuki et al.,1982; Cervantes,1983).

Entre los métodos más utilizados se encuentra la espectrometría de fluorescencia de Rayos X, aunque presenta el inconveniente de requerir una calibración complicada y específica para cada tipo de roca (Adler y Rose,1967; Ver-ma,1985).

Un procedimiento analítico que ha sido aplicado con frecuencia en el campo de la geofísica y la geoquímica ha sido el análisis por activación con neutrones (Terrell, 1976; Terrell y Pal,1978; Savoyant et al.,1984; Mora y Jimenez,1985). Mediante esta técnica es posible cuantificar prácticamente toda la serie de los lantánidos aún en bajas

concentraciones. Cabe señalar que la irradiación de la mues tra debe efectuarse con neutrones térmicos, los cuales son producidos en un reactor nuclear. En México existen limitaciones para el empleo de esta metodología, debido a que la irradiación sólo puede efectuarse en el reactor Triga Mark III del Centro Nuclear de México, en Salazar, Edo. de México, y el acceso a su utilización, para este fin, es restrin gido.

Otra de las técnicas más utilizadas ha sido la eg pectrometría de masas con fuente de chispa , ya que permite el análisis casi directo de la muestra sólida (Taylor,1965a; Nicholls et al.,1967; Taylor,1971; Taylor y Gorton,1977). Sus desventajas principales radican en el tiempo de ionización (alrededor de 5 horas por muestra), en el procedimiento de interpretación cuantitativa que es largo y complicado, así como en la acumulación de errores por las varias etapas del análisis. En México sólo se tiene uno de estos equipos, con numerosos problemas de operación.

Dentro de la espectrometría de masas, se ha aplicado también la técnica de dilución isotópica, aunque pre-senta varios inconvenientes. Este procedimiento no permite la cuantificación de toda la serie de los lantánidos, se re quieren equipos poco comunes (con fuente de ionización térmica), además debe contarse con patrones enriquecidos que

no se producen en el país (Schnetzler et al.,1967; Verma, 1985).

Cabe señalar que la determinación analítica de TR en rocas y minerales debido a la problemática que presenta, conitúa siendo objeto de investigación, principalmente ha-cia la utilización de equipos e instrumental muy sofisticados (Moore et al.,1984; Date y Gray,1985; Roelandts y Michel, 1986).

Como el método de análisis que se desarrolla en 4 esta tesis tiene por objeto posibilitar la determinación de TR para su aplicación en investigaciones del área de Cien-cias de la Tierra, se considera conveniente dar un panorama general de su utilización.

Debido a su naturaleza química tan similar, las -TR son de mucha utilidad en estudios de petrología, así como de procesos magmáticos y tectónicos (Terrell,1976).

Al transcurrir los procesos geoquímicos de la litósfera los elementos que se encuentran en bajas concentraciones, sufren fenómenos tales como fraccionamiento o dis-persión (Allegre y Michard,1974; Drake y Weill,1975). Debido a la "Contracción Lantánida", característica de sus iones (Moeller,1970), en los procesos de fraccionación magmática, se produce la entrada preferencial de los cationes pequeños y el enriquecimiento en el líquido residual de los elementos

con mayor radio iónico (Taylor, 1965b).

En los estudios de petrogénesis y fenómenos asociados se acostumbra utilizar los patrones que resultan de la relación "concentración de TR en la muestra/concentra-ción de TR en condritas" vs. radio iónico o número atómico, se considera también de utilidad la proporción entre las TR ligeras (La-Sm) y las pesadas (Gd-Lu), así como la relación La/Yb (Schmitt et al.,1960; Coryell et al.,1963; Haskin y -Frey,1966).

Distintos grupos de investigación realizan estudios de su comportamiento geoquímico, con objeto de ampliar su utilización y de aplicar de manera más adecuada los pa-trones y relaciones antes citados. En este sentido se han e fectuado experimentos para determinar variables tales como coeficientes de partición en magmas (Henderson y Williams, 1979; Nash y Crecraft, 1985; McKay, 1986), variación de éstos con la temperatura (Drake, 1975), y diferenciación de los -lantánidos en relación a procesos magmáticos (Cameron, 1986), por mencionar algunos.

Las rocas ígneas de diferentes ambientes tectónicos y series magmáticas presentan patrones de concentración de TR característicos (Girod,1978; Haskin,1979), evidenciando diversos procesos de formación de magmas (Hawkesworth,--1982; Baker, 1982; Chauvel y Jahn,1984). Por ejemplo las --

toleítas oceánicas muestran patrones de concentración muy similares a los de las condritas, característica que los distingue en este aspecto de otros tipos de basaltos (Haskin y Frey, 1966).

Debido a que se encuentran en la naturaleza en dos estados de oxidación, el Eu y el Ce tienen utilidad adicional. Su concentración con respecto a las de las otras TR permite evidenciar ambientes más o menos oxidantes, así como la formación de ciertos minerales (Taylor,1965b; Jakes y Taylor,1974; Drake y Weill,1975; Morteani et al.,1986).

En México existen regiones de gran interés geofísico y geológico, como son la Faja Volcánica Trans-Mexicana y la Península de Baja California entre otras. En diversos estudios de petrogénesis, geofísica, geoquímica y tectónica de estas zonas se han utilizado las relaciones de concep traciones de TR como un aspecto de los mismos (Pal y Urrutia,1977; Terrell et al.,1978; Terrell et al.,1979; Robin, 1982; Rogers et al.,1985; Verma et al.,1985; Negendank et al.,1985).

Otra relación interesante y de relativamente reciente aplicación, es la existente entre ¹⁴³Nd/¹⁴⁴Nd (DePaolo y Wasserburg, 1976; O'nions et al., 1977; White y Hoffman, 1982), que ha sido también utilizada para estudios de rocas volcánicas mexicanas (Verma, 1983a; Verma, 1983b; Verma, 1984).

Por último, otro aspecto de mucha importancia es el conocimiento de las concentraciones de lantánidos pre-sentes en minerales susceptibles de ser explotados, ya que estos elementos adquieren cada día mayores aplicaciones industriales (Flahaut, 1969; Trífonov, 1981; Zabre y Andrade, --1981; Wallace et al., 1982; Jackman y Trethewey, 1982; Munz y Bucher, 1982; Morrice y Wong, 1982).

En México existen algunas zonas con cantidades importantes de TR, tales como la parte Norte de la Sierra de Tamaulipas, donde se han encontrado vetas con apatita-(mineral en general accesorio en las rocas pero rico en TR), carbonatos de TR y monacita (mena de TR), dentro de rocas alcalinas. Su concentración llega a ser del 1.1% en peso de lantánidos. En la zona de Telixtlahuaca, Oax., se presentan varios minerales de TR siendo el más abundante la alanita-(silicato de composición variable que contiene Ce y La) --(Schoeller,1955; González,1956; Zabre,1981; Herrera,1985).

Es interesante señalar que la mejor opción para su aprovechamiento, puede estar en su obtención como sub--producto del procesamiento de fosforitas marinas que se realiza en Baja California Sur para la producción de fertilizantes (Herrera, 1985).

2.- FUNDAMENTACION.

2.1. Generalidades.

La determinación cuantitativa mediante espectrometría de masas de derivados orgánicos de metales, ha sido publicada como un procedimiento alternativo de análisis de estos elementos, principalmente frente a la espectrometría de masas con fuente de chispa (Jenkins y Majer, 1967; Booker e Isenhour, 1969).

Al formar estos compuestos orgánicos se logran temperaturas de evaporación adecuadas para utilizar espectrómetros convencionales con fuentes que operen entre 200 y 500 $^{\circ}$ C (Jenkins y Majer,1967). En particular los lantánidos pueden formar diversos complejos, algunos de ellos con características convenientes para su análisis con este tipo de equipos.

2.2. Derivados Orgánicos.

Las tierras raras tienen la capacidad de formar complejos de coordinación mono y multidentados. En medio acuoso la reacción con ligandos bidentados sólo es exitosa si éstos forman quelatos a través de átomos de oxígeno; tal es el caso de los beta-dicetonatos (RC-CH=C-R').

más sencillo de este tipo de ligandos (Karraker,1970; Co-tton y Wilkinson,1980), con el cual se han obtenido comple jos de lantánidos utilizando diferentes procesos de síntesis más o menos complejos (Stites et al.,1948; Kohehler y Bos,1968; Lyle y Witts,1970; Belcher et al.,1969). Aunque otros compuestos presentan mayores ventajas en cuanto a su volatilidad, la acetilacetona tiene los convenientes de su fácil adquisición y de que la síntesis de los quelatos de -TR resulta aparentemente sencilla.

2.3. Espectrometría de Masas.

La espectrometría de masas es un método analítico que a través de la formación de iones en fase gaseosa per-mite la separación de elementos, isótopos, compuestos, o -sus fragmentos, de acuerdo a su relación masa/carga.

Mediante este procedimiento es posible la obtención de pesos moleculares, la determinación de abundancias isotópicas, fórmulas mínimas, la identificación de los fragmentos resultantes al ionizarse la muestra, así como el análisis cualitativo y la determinación cuantitativa, con una cantidad mínima de muestra (del orden de 1 microgramo) ---

(Litzow y Spalding, 1973; Skoog y West, 1975; Pecsok et al., 1976).

El equipo está integrado básicamente por las siguientes partes :

1) Sistema de introducción de muestras, que puede ser di-recto o indirecto.

2) Fuente de producción de iones, que opera mediante diver sos procedimientos tales como descargas eléctricas, partículas energéticas, calor, ionización química y otros.

3) Analizador, en el que se efectúa la separación de los ig nes. El sistema más común consiste de un campo eléctrico y otro magnético en los cuales los iones son acelerados y colocados en diferentes trayectorias siguiendo la ecuación -básica :

$\frac{m}{r} \frac{H^2 r^2}{2V}$	donde	r = radio de deflexión
4		m = masa
		v = velocidad
		z = carga
		H = intensidad del cam po magnético

De acuerdo al tipo de analizador (manera de separar a losiones), existen instrumentos de un foco, doble foco, cuadry polos y de tiempo de vuelo (Pecsok et al.,1976).

4) Detector, multiplicador de iones o placa fotográfica.
5) Registrador, que es el sistema de salida donde se obtig nen los resultados de todo el proceso. Puede consistir des de un oscilógrafo, una placa o papel fotográfico, hasta una computadora.

6) Sistema de vacío, el cual es indispensable para garantizar la trayectoria libre media, necesaria para que los iones producidos en la fuente lleguen al detector sin sufrir una colisión (Roboz, 1967; Seibl, 1973).

2.4. Análisis Cuantitativo de Mezclas.

En un espectro de masas se tiene el registro de abundancias relativas de las señales correspondientes a cada una de las relaciones masa/carga presentes en la mueg tra. Para el análisis cuantitativo se parte de que las con tribuciones a cada señal son aditivas, de manera que las corrientes iónicas totales para cada registro son el resul tado de las aportaciones de las corrientes del compuesto correspondiente.

Para la realización de la cuantificación deben tomarse en cuenta las siguientes consideraciones : a) En el caso de compuestos con presión de vapor similar, cada componente debe tener al menos una señal característica y diferenciada.

b) Las alturas de las señales deben ser reproducibles.

c) Es necesario tener estándares adecuados para la calibra ción.

 d) En caso de que cada componente posea diferente presión de vapor, es posible utilizar los mismos picos para dife-rentes compuestos mediante el sistema de monitoreo select<u>i</u> vo de iones.

e) Es conveniente seleccionar para la cuantificación una señal de las más intensas para lograr mayor sensibilidad.
f) Los compuestos deben ser térmicamente estables en las condiciones del equipo (Skoog y West, 1975).

2.5. Cuantificación de Quelatos Metálicos.

La espectrometría de masas ha sido utilizada con éxito para la determinación cuantitativa de metales previa formación de sus quelatos.

Jenkins y Majer estudiaron el análisis cuantitativo de quelatos de níquel, detectando hasta 10^{-12} g a través del registro continuo de la corriente iónica en cier-tas masas (Jenkins y Majer, 1967).

Considerando las ventajas de la utilización de este procedimiento analítico para la determinación de trazas de cromo, Booker e Isenhour investigaron su cuantifica ción mediante la formación del hexafluoroacetil-acetonato

y su disolución posterior en benceno y éter (Booker e Isenhour,1969).

Específicamente sobre tierras raras, Belcher y sus colaboradores sintetizaron diversos quelatos de holmio y re lacionaron la corriente iónica integrada contra la cantidad de muestra, para aquellos térmicamente estables entre los que se encontraba el acetilacetonato (Belcher et al.,1968).

2.6. Espectros de Masas y Señales Características.

Los espectros de masas publicados para algunos -lantánidos presentan como señales características al ión mo lecular (que no es el pico base), a los fragmentos que re-sultan de la eliminación de los ligandos, y a otras especies producto de pérdidas de 82 ($CH_2=C=CH=COCH_3$) y de 18 (H_2O) unidades de masa (MacDonald y Shannon,1966;Livingstone y Zi mnermann,1976; Gerbeleu e Indrichan,1981).

El patrón de fragmentación que se ha sugerido para el La(Acac)₃ se muestra en la figura 1 .

į

Me=Metal

Acac=Acetilacetonato

(MacDonald y Shannon, 1966)

3.- PARTE EXPERIMENTAL.

3.1. Preparación de los Acetilacetonatos.

Para la obtención de los acetilacetonatos de lantánidos se partió del método publicado por Stites (Stites et al.,1948), en el cual se describen en lo general las cop diciones para la reacción y se informan buenos rendimientos.

Fue necesario efectuar una serie de pruebas para determinar en forma precisa las condiciones para el éxito de la reacción, ya que en el procedimiento citado no se especifican, dando la apariencia de no ser críticas. El hecho de que en varias publicaciones posteriores (Moeller y Ul-rich,1956; Bauer et al.,1964; Lyle y Witts,1970; Livings-tone y Zimmermann,1976), se cite la aplicación de este método como base para la obtención de éstos y otros comple-jos del mismo tipo, reafirmaba la idea de ser muy directo y sin complicaciones.

Considerando lo antes señalado, se procedió a se guir el método una y otra vez sin lograr los resultados eg perados, ya que, o bien no se obtenía precipitado, o no se lograba producir una cantidad considerable.

Para comprobar la formación del acetilacetonato, después de cada síntesis se obtenía su espectro de masas,y al no registrarse las scñales esperadas, se procedió a correr algunos espectros de Infrarrojo (Anexo I). Para el -

producto considerado como Sm(Acac)₃ se efectuó un análisis cualitativo por difracción de Rayos X (Anexo II), asimismo utilizando el microscopio de luz polarizante se advirtió la presencia de dos tipos de cristales.

Debido a estas síntesis fallidas se procedió a variar las condiciones de la reacción, probando diferentes volúmenes de HCl para la disolución del óxido de lantánido, diversas concentraciones de ácido y amoniaco, y observando cuidadosamente el pH en el transcurso de la reacción.

El hecho de trabajar inicialmente con electrodos de vidrio y calomel comunes, impedía disminuir el volumen de la reacción, lo cual se consideraba importante por tratarse de una precipitación. Cabe señalar la limitación en la cantidad de óxido a tratar, debido a la dificultad de su adquisición y al precio de este tipo de compuestos.

Otro aspecto en el que hubo de ponerse mucha atención fue la concentración del ácido y la del amoniaco agregados para ajustar el pH, ya que se tenían que combi-nar las condiciones necesarias para evitar un aumento considerable del volumen, así como los cambios bruscos en el pH que ocasionaban la formación del hidróxido.

El hecho de que Stites no enfatice acerca de estos problemas o especifique claramente las condiciones de la síntesis, da una idea falsa de que pueden variarse en-

un amplio intervalo.

Después de varias pruebas se llegó a establecer un procedimiento de síntesis con el cual se lograron obtener los acetilacetonatos de La, Ce, Pr, Nd, Sm, Yb, Er, Tb, Lu, Gd, Nd, Eu, Ho, Tm.

A continuación se describe el procedimiento para # la obtención de estos complejos :

Se pesaron 0.22 gramos del óxido de lantánido. Se colocaron en un recipiente en forma de copa con capacidad de 25 ml y se añadieron aproximadamente 4 ml de HCl 1N. Para lograr una mejor y más rápida disolución se calentó suavemente sobre una parrilla.

Se preparó una disolución de acetilacetonato de amonio, pesando alrededor de 0.6g de acetilacetona recién destilada (4.5 moles por cada mol de lantánido), y añadien do la cantidad mínima de amoniaco 1N necesaria para reac-cionar.

Utilizando un microelectrodo combinado se midió el pH de la disolución de cloruro de lantánido ya fría, y mediante la adición de amoniaco concentrado se elevó su vg lor a 3. Enseguida con NH_3 1N se llevó el pH a 6.2 y se añadió el acetilacetonato poco a poco utilizando una pipeta Pasteur y agitando continuamente. El pH se mantuvo en este

* Este procedimiento fue desarrollado específicamente en este trabajo experimental.

valor utilizando NH_3 1N o HCl 1N, y al final se elevó hasta 6.5 con la disolución de amoniaco 1N.

Al añadir el ligante y elevar el pH se evitó so-brepasar el valor de 6.5, para evitar la formación del hi-dróxido. Asimismo, como ya se ha señalado, se tuvo mucho -cuidado en no incrementar el volumen a más de 15 ml totales.

La disolución con el precipitado se dejó agitando por 24 horas. Después de este tiempo se filtró utilizando un filtro de vidrio sinterizado. El filtro con el precipita do se colocó en un desecador con sílica gel al vacío, y se mantuvo en estas condiciones por lo menos un día.

Material y Equipo Utilizados.

Balanza Analítica

Potenciómetro

Microelectrodo de Vidrio Combinado

Pipetas Volumétricas

Pipetas Pasteur

Vasos de Precipitados

Microjeringa

Matraces Volumétricos

Espectrofotómetro Infrarrojo

Espectrómetro de Difracción de Rayos X

Microscopio de Luz Polarizada

Parrilla de Calentamiento

Desecador

Filtro de Vidrio con Fondo Poroso

Matraz Kitasato

Agitador Magnético

Barra Magnética

Espectrómetro de Masas HP5988A

Celda Especial Según Figura

Celda Especial de Reacción

d_i=diámetro interior. 3.2. Obtención de los Espectros de Masas.

Una vez sintetizados los acetilacetonatos se pro cedió a la obtención de sus espectros de masas individua-les, utilizando el sistema de introducción directa de la muestra sólida.

Se empleó un espectrómetro de masas con analizador de cuadrupolo HP5988A.

Se efectuaron varias pruebas respecto a las condiciones de calentamiento de la sonda (probe), hasta en-contrar una respuesta adecuada al efectuar el calentamiento en forma balística de 25 a 350 ^OC.

Las condiciones de operación del equipo fueron las siguientes :

Energía de Ionización de 70 eV.

Temperatura de la Cámara de Ionización : 300 ^oC. Calentamiento balístico de la sonda de introducción de 25 a 350 ^oC.

Tiempo de análisis : 25 minutos.

Sistema de adquisición de datos por SCAN de 150 a 550 uma.

Exactitud de ± 0.13 uma.

Para el registro de los espectros, se colocaron unos cuantos cristales del complejo en un capilar, que se introdujo en la punta de la sonda y ésta en el equipo hasta -

la cámara de ionización.

3.3. Establecimiento del Intervalo Lineal de Cop centraciones para un solo compuesto.

Considerando las pequeñas cantidades de muestra que debían manejarse, para establecer el rango lineal enlas concentraciones en que se encuentran comúnmente las TR en las rocas, fue necesario buscar una forma de introducir un mínimo de errores en la experimentación.

Tomando en cuenta que para lograr un experimento reproducible se necesita tener una mezcla homogénea de la muestra, se procedió a efectuar disoluciones de uno de los acetilacetonatos.

Continuando con el procedimiento de introducción de las muestras utilizado para la obtención de los espec-tros de masas de cada complejo, se hizo una disolución mez clando una pequeña cantidad del acetilacetonato de tulio con NaCl previamente secado y molido, para tener una con-centración de ppm del complejo. Una porción de esta mezcla se introdujo en el capilar, y éste en el equipo calentando de igual manera que para los compuestos puros, sin regis-trar ningún espectro. Al sacar el capilar del equipo se -observó que la mezcla no se había fundido en ningún punto, por lo que se concluyó que al elevarse la temperatura de -

fusión por la presencia del NaCl, se había impedido la vaporización del acetilacetonato.

Se consideró entonces la conveniencia de efectuar una disolución líquida. Para ello se probaron diferentes disolventes con baja temperatura de evaporación, con objeto de que al colocar las disoluciones en el portamuestras quedara el depósito sólido del complejo sin necesidad de calen tamiento.

Debido a las pequeñas cantidades de acetilacetona tos con que se contaba para todos los experimentos, se fueron probando los disolventes con una poca cantidad de cada complejo de lantánido. Se eligió el acetilacetonato de una TR ligera y el de una pesada en forma alternativa, de manera que al encontrar uno que no se disolviera visiblemente, se cambiaba de disolvente. De esta forma se encontró el com portamiento que se presenta en la Tabla 1.

Como se desprende de esta Tabla, el propanol es el disolvente con mayor capacidad de disolución de los complejos, por lo que se le eligió para efectuar las pruebas cuantitativas a pesar de no ser demasiado volátil.

Se prepararon disoluciones con diferentes concentraciones de acetilacetonato de Tulio , para probar la respuesta del espectrómetro con relación a la concentración.

Para efectuar estos experimentos se fabricaron 4 portamuestras cilíndricos de latón, con un cuenco en la punta y con capacidad de 25 microlitros.

Con objeto de tener un total de 50 microlitros de positados en el portamuestras se fueron tomando alícuotas de 10 l con una microjeringa, esperando a que se evapora-ran antes de depositar los siguientes 10 l, a fin de evi-tar el depósito del sólido fuera del portamuestras. Esto se efectuó con las disoluciones de diferente concentración de- $Tm(Acac)_3$ en propanol. Para acelerar la evaporación, los -portamuestras se calentaron con una fuente de calor (lámpara).

Se prepararon las siguientes disoluciones de --Tm(Acac)₃ : 10.00, 3.70, 3.00 y 1.85 mg en 1 ml de propa-nol. Se practicaron 3 experimentos independientes para la misma disolución.

Las condiciones de operación del equipo fueron iguales que las establecidas para la obtención de los espectros de los compuestos sólidos puros, utilizando también el sistema de adquisición de datos por SCAN.

Para las disoluciones de 10.00, 3.00 y 3.70 mg por ml de propanol se registraron fragmentogramas iónicos con una señal por encima del nivel de ruido, que corres-pondían al compuesto. Para la disolución de 1.85 mg por ml

no se distinguió ninguna señal.

Se integraron las señales registradas y se corre lacionaron las correspondientes a los los., 2os., y 3os. experimentos de cada concentración independientemente.

Con objeto de registrar concentraciones más ba-jas, se cambió el sistema de adquisición de datos a Monitoreo Selectivo de Iones (SIM), eligiendo las señales correg pondientes al 100% de abundancia relativa (m/z = 367) y al ión molecular (m/z = 466).

De igual manera que en el experimento anterior se colocaron 50 microlitros de disoluciones con diferente concentración en los portamuestras.

Se prepararon disoluciones con 1.850, 0.925, --0.4625, 0.2312 y 0.1156 mg de Tm(Acac)₃ por ml de propanol.

Para las cuatro concentraciones primeras, se obtu vieron señales significativas, sin obtenerse registro para la más diluída.

Se integraron las señales de cada ión monitorea-do y se correlacionaron los resultados de las integraciones con las concentraciones.

Cabe destacar la necesidad de trabajar las diso-luciones frescas, ya que en una que se guardó por una somana se observó la formación de un precipitado y la descomposición de la disolución (fenómenos aún no explicados). Se

recomienda por lo tanto no tardar más de tres días para in troducir la muestra en el espectrómetro después de su preparación.

TABLA 1

SOLUBILIDADES

Complejo	Hexano	Benceno	Propa- nol	Cloro- formo	Cicloh e - xano
La(Acac) ₃	NO	NO	SI	NO	NO
Lu(Acac) ₃	NO	SI	SI	[`]	
Er(Acac) ₃	•=•• '	SI	SI	++ * =	
Pr(Acac) ₃			SI		
Eu(Acac) ₃			SI		
Sm(Acac) ₃			SI		 -
Ho(Acac) ₃			SI		·
Tb(Acac) ₃			SI		بد .
Tm(Acac) ₃			SI	NO	
Gd(Acac) ₃	~~~		SI	~ -	
Ce(Acac) ₃			SI		
Nd(Acac) ₃			SI		
YD(Acac)3			SI		

3.4. Establecimiento del Intervalo Lineal para una Mezcla de Cuatro Compuestos.

Con objeto de observar si la señal iónica de acetilacetonatos de diferentes lantánidos se separaba en el tiempo, así como para determinar el rango lineal para una mezcla, se prepararon disoluciones de diferente concen tración de los complejos de Ho, Tb, Pr y Lu.

Los espectros se registraron utilizando el método SIM de adquisición de datos, con las mismas condiciones de operación del equipo ya señaladas. Se realizó el moni-montoreo de los iones que se indican a continuación :

TABLA 2

Acetilacetonato de	m/z
Но	363
	462
тъ	. 357
	456
Pr	339
	438
Lu	373
	374
	472
i i	473
Estos lantánidos se eligieron considerando su iso topía, señales características, así como la ausencia de interferencias entre ellos. En el caso del lutecio, la elec-ción se basó en considerar la posibilidad de utilizarlo como estándar interno, debido a que cumple esta función en el análisis por espectrometría de masas con fuente de chispa (Taylor, 1965a; Taylor y Gorton, 1977).

Se prepararon disoluciones de los acetilacetonatos conteniendo las cantidades que se indican a continua-ción :

TABLA 3

Disolución	Acetilacetonato de	Cantidad/ml	propanol
1	Но	1.570 mg	
	ть	1.840 mg	
	Pr	1.635 mg	
	Lu	0.695 mg	
2	Но	0.785 mg	
	ть	0.920 mg	
	Pr	0.818 mg	
-	Lu .	0.695 mg	
3	Но	0.976 mg	
	ть	1.232 mg	
	Pr	1.244 mg	
	Lu	0.695 mg	

Solución	Acetilacetonato de	Cantidad/m1 propanol
4	Но	0.976 mg
	Tb	0.986 mg
	Pr	0.995 mg
	Lu	0.695 mg

Se efectuaron 3 experimentos independientes con . cada una de las disoluciones colocando 50 microlitros en cada portamuestras, y una vez evaporado el solvente se obtuvieron los espectros respectivos. Enseguida se integra-ron las señales de los iones monitoreados y se correlacionaron los 10s.,20s., y 30s. experimentos de cada concentración. 3.5. Cuantificación de una Mezcla de 13 Acetilacetonatos.

Se preparó una disolución conteniendo aproximadamente 10 mg de cada complejo de lantánido en un volumen total de 10 ml de propanol.

Utilizando el sistema de monitoreo selectivo de iones se registraron las siguientes señales :

TABLA 4

Acetilacetonato de	m/z
La	436
	337
Nd	343
Pr	339
•	438
Се	338
	437
ТЪ	357
Уb	370
Eu	349
Lu	373
Sm	347

de	m/z
Tm	367
Но	363
Gd	354
Er	365

Estos iones se eligieron considerando tanto la intensidad relativa de sus señales, como en lo posible la ausencia de interferencias.

Se depositaron 50 microlitros de una solución con la siguientes cantidades de acetilacetonato por mililitro de propanol :

TABLA 5

de		• • •
Но	1.037 mg	
Eu	0.972 mg	
Tm	1.02 mg	
ТЪ	1.096 mg	
Sm	0.977 mg	
Gd	0.977 mg	
Pr	0.944 mg	
Yb	0.937 mg	
La	0.991 mg	

Ace	etilacetonato de	Cantidad/ml propanol
	Nd	1.003 mg
	Ce	1.001 mg
-	Er	1.031 mg
	Lu	0.695 mg

Se obtuvo el registro de 50 microlitros de esta solución, se integraron las señales monitoreadas , y se -preparó una tabla de calibración considerando como están-dar interno al Lu(Acac)₃.

Para comprobar la exactitud de los resultados se corrió otra alícuota de la misma solución, y mediante la tabla de calibración se determinaron las concentraciones co rrespondientes a cada complejo. de la reacción de formación de los acetilacetonatos, se elaboraron varios diagramas logarítmicos de predominio de especies para los diferentes equilibrios que se presentan en el medio, para ello se siguió el procedimiento desarrollado por S.Vicente Pérez (Vicente-Pérez, 1979).

Según el diagrama de HAcac(Acetilacetona), para las condiciones de inicio de la reacción a un pH=6.2, se tiene una concentración de acetilacetonato pAcac=3 (punto a, diagrama 1). Del diagrama de predominancia de especies para los complejos de Sm-Acac, se aprecia que para este valor de pAcac la especie que predomina es Sm(Acac)₂ (punto a, diagrama 2), aunque ya se tiene la formación de Sm(Acac)₃; además debido a la disposición de la curva correspondiente a la especie con dos ligantes, al ir aña-diendo más acetilacetona el equilibrio se desplaza hacia la formación de Lu(Acac)₃que precipita, lo cual favorece aún más el desplazamiento.

En estas condiciones de reacción según el diagrama 3, se tendría el inicio de precipitación del hidróxido (Punto a, diagrama 3), pero al tener menos Sm libre disponible debido a la formación del complejo con acetilacetona, se incrementa el valor de pH requerido. Así para el 99.9% de formación de Sm(Acac)₃, pSm=4.1, y según el diagrama 3 punto b, el pH que corresponde pa-

4.- RESULTADOS Y DISCUSION.

4.1. Discusión de la Preparación de los Acetila-cetonatos.

Debido a las dificultades encontradas en el proce so de síntesis de los acetilacetonatos, fue necesario auxiliarse con otras técnicas analíticas como las espectrofotometría de Infrarrojo y la espectrometría de Difracción de -Rayos X.

En el espectro de infrarrojo para el producto de una de las síntesis fallidas de Nd(Acac)₃, se observaron bandas que corresponden a los grupos OH (3400 cm⁻¹) y C=O (1600 cm⁻¹), bandas a y b respectivamente del espectro 1, Anexo I. Estas señales se repitieron con otros productos de síntesis que tampoco proporcionaban el espectro de masas correspondiente al acetilacetonato (espectros 2 y 3, Anexo I).

El difractograma obtenido para el mismo producto del espectro 2 de infrarrojo, se interpretó midiendo los ángulos 29 y las alturas de los picos principales. La comparación con los datos de "d" y abundancias relativas reportados en los manuales de compuestos orgánicos e inorgánicos, indicó una mezcla de hidróxido y de acetilacetonato de Neodimio (Anexo II).

Con objeto de entender más claramente y determinar con mayor precisión las condiciones y características

ra iniciar la precipitación de $Sm(OH)_3$ es de 7.4. Esto indica que no debe superarse bajo ninguna circunstancia este valor de pH si se quiere evitar la formación del hidróxido. Es necesario señalar que la cinética de redisolución de - $Sm(OH)_3$ es lenta, lo cual ocasiona que si éste se produce sea sumamente difícil desplazar el equilibrio hacia la formación del complejo con acetilacetona.

Considerando el diagrama para la precipitación de Sm(Acac)₃, el inicio de la misma se tendría a un pH=7.65, (punto a, diagrama 4), pero este valor disminuye debido a la formación de los complejos ya señalada.

La condición final de la reacción se tendrá en el punto de intersección de las curvas correspondientes a -- $Sm(Acac)_2^+$ y pAcac, para el cual -log C=2.05 (punto b, dia-grama 2), de donde se desprende que el rendimiento de la -formación de Sm(Acac)₃ sería del 87.98%.

Considerando el pH inicial de la disolución Ace-tilacetona en amoniaco, la concentración local en el punto de adición para Acac⁻ es de $10^{-0.65}$ (punto b, diagrama 1), para la cual según el diagrama 2 se tiene una prodominancia total de Sm(Acac)₃ (punto c). Aunque de acuerdo al diagrama 3 a este pH ya se tendría una precipitación importante del hidróxido, el hecho de que el medio permanezca a ---pH= 6.2-6.5, evita que ésta se dé.

Sin embargo, debe aclararse que el valor de pK_s para la precipitación de $Sm(Acac)_3$ es sólo aproximado, debido a que por dificultades experimentales para la cuantificación del catión, su valor se determinó de manera indirecta. A una cantidad de $Sm(Acac)_3$ se le añadió agua destilada y se dejó en agitación durante 2 horas con objeto de lograr el equilibrio de disolución. La disolución se filtró y se le ajustó el pH a 1 con HCl para que la acetilacetona se encontrara en su forma ácida HAcac, finalmente se le añadió propanol como estándar interno.

Utilizando el sistema de análisis C.G.-E.M. se obtuvo la relación de áreas de una disolución con cantidades conocidas de propanol y de HAcac, para con esta calibración calcular la concentración de HAcac en la disolución de --Sm(Acac)₃ que se inyectó al mismo sistema, y con ello calcular el valor de pK_e .

Ψ,

Diagrama 2

(Voleres de pR temados de Granthe y fiernalius,1969)

41

Diegrama Logaritmico pera la precipitación de Sm(OH)₃

Diegrama Logaritmico pera la precipitación de Sm(OH) 3

рК, 2208

22 20

- Fij Think 11111 **. Loss**titmiös, par paris la ... 1 nii ii 10#E4. r.1. i juli. ÷... 1 . 1.2 цй, I . r. 11.51-1 i i z , ir iin. ¢. 11 1 зif in.†‡ 1.11 († 1731) 1 ... يز 1. 1. . ÷. ł., . . . 2. ÷., . # p :1: zia. . 1 1945 9 . (1975) . i. . . E j; 1 -----ļļi <u>.</u> ÷ . a • •• Ŀŕ 1.1.1 1 i: 2 .i 1 Ξ, ÷ . .18 2 •• 111 12 ÷ ۰. . i 4.95 . 112 : . 1 Ч..... 1 į 5. L • • i 7 . • ì. • 5 ÷.-. t dinfe ... Цų, ı. ł, 2 • 3 8 Ż ŧ ic 🔝 .1 ÷ ÷ . · • . ्ती. सम् 11.11 est 🖅 . ı. ÷. (1.4 - . . **-**т 1 6.5 2.25 7.3 6.3 4:25 125 : . .l. -. . . 1 * **.** ÷ 1 Diagrama 1: 1 . . .11. .

4.2. Espectros de Masas de los Acetilacetonatos de Lantánidos.

A continuación se presentan los espectros obtenidos para cada acetilacetonato puro, en forma tabular normalizados al 100% de abundancia relativa, y en forma de ba-rras para su mejor visualización (Tablas 6 a 19; figuras 2 a 15).

Los espectros obtenidos concuerdan con lo informado de manera general en la literatura, y presentan en todos los casos al ión molecular y como pico más intenso a la señal que corresponde a la pérdida de un ligando. En la Tabla 20 se presenta la identificación de las señales principales para cada complejo.

Tabla de Abundancias Relativas

Tm(Acac)₃

m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
38.90	1	133.95	١	248,90	1	326.90	1
39.75	2	168,95	ł	249.90	3	337.90	1
41.00	1	175,95	. 2	251.75	1	349.00	10
42,90	55	183.80	1	266,90	11	350.15	1
43.90	2	184,90	1	267,90	17	350.90	2
52,90	1	185,80	3	268.90	1	367.00	100
54.90	1	202,60	1	282.90	3	368.00	11
66.90	1	209.80	1	284,90	8	369.00	1
68.90	1	224.95	2	306,90	1	451.05	2
84.95	2	226,80	1	308.75	3	466.05	28
99.95	I	242,90	1	324,90	1	467.05	. 4

Tabla de Abundancias Relativas

Er(Acac)₃

m/z	abund.	m/z	abund.	m/z	abund,	m/z	abund.
33.90	1	70.90	t	201.80	I.	203.90	2
36.00	1	76.95	1	221.00	1	285.90	1
36,90	2	84,80	4	222.95	1	305.90	I.
37.90	2	94.70	1	223.80	1	307.90	i -
39.00	7	95,95	1	224.80	1	334,90	I
39.90	20	99,80	2	225.80	. 1	345.90	2
40.90	4	106.95	1	239,90	2	347,00	2
42.00	8	122.05	1	240.90	1	347,90	3
42.90	100	123,95	1	241.90	2	349.90	1
43.75	6	132.45	1	243.90	I	364.00	30
44.90	1	133.30	1	245.90	1	365.00	23
49.90	1	134,45	1	263.90	3	366.00	22
50.90	1	174.55	1	264.90	4	367.00	4
51.90	1	175.05	1	265.90	4	368.00	10
53.00	3	181.80	1	266.90	I	369.00	1
53,90	I	182.80	1	267.90	1	463.05	6
54,90	3	183.95	2	279.90	1	464.05	5
59,00	5	199.95	1	281.90	3	465.05	5
67.00	2	200.95	1	282.90	2	467.05	2
68.90	1						

Tabla de Abundancias Relativas

Pr(Acac)₃

m/z	abund.	m/z	abund.	m/z	abund,	m/ =	abund.
33.90	. 2	60.25	1	89.55	t	148,05	I
34.65	1	61.00	1	90.80	1	149.05	1
35.00	1	61.75	1	92.55	1	153.20	1
35.40	1	62.75	2	93.55	1 *	156.80	23
35,65	· 2	63.90	1	94.05	1	157.95	1
36.90	4	65.15	2	94.80	3	161.95	2
38.00	7	66,00	1	95.95	6	174.80	1
38,90	10	66.25	1	98,95	1	196.95	1
39,90	22	67,00	4	98.05	1	199.80	1
40,90	5	67,90	1	99.80	3	203.95	1
42.00	12	69.00	2	101.20	1	205,20	1
42,90	100	71.00	1	102.80	1	208.55	1
43,90	9	71.75	1	103.45	1	211,20	1
44.75	1.	72,40	1	103.70	1	214.95	1
45,65	1	72,90	I	105.70	1	237.90	1
46,00	1	75.25		106.95	2	238.90	8
47.50	1	75.90	1	108.05	1	239.75	3
48.65	1	76.80	1	108,95	2	240.65	1
49,25	1.	78,05	1	113.20	1	256.75	16
50.00	3	78.80	1	119.95	4	281.00	I
50.90	3	80.95	2	120.70	ŧ	296.65	t
51.75	2	82.05	1	121.95	3	320.90	2
52.15	2	82,30	1	122.80	1	338.90	72
53.00	12	92.80	1	123.05	1	339.90	8
63.90	1	83.55	· 1	123.95	3	341,00	1
54,90	3	84,95	6	124.70	I	412.70	1
56.00	1	86.45	1	127.30	1	437,95	10
57,15	1	87.95	1	130.05	1	430.95	1
58.00	10	88,55	1	143.95	1	494.95	1
CO 1C	2						

٠

Tabla de Abundancias Relativas

Ho(Acac)₃

51.00	17	91.00	9	131.00	5	171.00	3
52.00	16	92.00	8	132.00	8	172,00	5
53.00	28	93.00	5	133.00	6	173.00	2
54.00	16	94.00	9	134,00	6	174.00	?
55.00	37	95.00	4	135,00	6	175,00	7
56.00	20	96.00	8	136.00	5	176.00	7
57.00	10	97.00	5	137.00	Ĝ	177.00	3
58.00	17	98.00	ŝ	138.00	4	178.00	4
59.00	ii	99.00	13	139.00	6	179.00	3
60.00	8	100.00	46	140.00	6	180.00	5
61.00	15	101.00	A	141.00	5	181.00	18
62.00	12	102.00	ĥ	142.00	5	182.00	6
63 00		103 00	ä	143.00	3	183.00	3
54 00	10	104.00	57	144.00	š	184.00	
CE 00	12	105 00	Å	145.00	8	185.00	Ę
03.00	16	103.00		143100	Ū	100,00	3
65.00	7	106.00	8	146.00	2	186.00	5
67.00	23	107.00	4	147.00	3	187.00	6
68.00	12	108.00	7	148.00	8	108.00	2
69.00	23	109.00	- 11	149.00	3	189.00	3
70.00	8	110.00	5	150.00	6	190.00	4
71.00	11	111.00	6	151.00	5	191.00	3
72.00	15	112.00	6	152.00	4	192.00	4
73.00	10	113.00	4	153.00	3	193.00	5
74.00	8	114.00	7	154,00	6	194,00	3
75.00	11	115.00	9	155,00	6	195.00	2
76.00	8	115.00	5	156.00	3	196.00	4
77.00	7	117.00	7	157.00	S	197.00	4
78.00	10	118.00	ġ	158.00	4	198.00	2
79.00	7	119.00	Ś	159.00	5	199.00	10
80.00	8	120.00	4	160.00	5	200,00	2
R1.00	q	121,00	4	161.00	3	201.00	4
82.80	Ĕ	122.00	6	162.00	4	202.00	3
93 98	ŝ	123.00	ā	163.00	3	203.00	5
84 00	વાં	124 00	5	164.00	5	204.00	2
85.00	100	125.00	S	165.00	6	205.00	2
00 00	10	126 00	7	166 00	,	206 00	7
00.00	10	127 00	(F	167 00	1	200.00	اد .
07.00	1 7	120.00	a c	160 00	3	208 00	
00.00	10	170.00	с 9	169 00	4	209.00	4 7
00.00	0	123.00	9 C	170 00	7	210.00	. J
ວບຸປປ	0	120100	3		-	210100	

•••

211.00	2	245.00	5	280.00	1	321,00	3
212.00	2	245.00	4	281.00	17	322,00	I I
213.00	ī	247.00	4	282.00	2	323.00	2
214.00	· 3	248.00	3	283.00		324.00	Ť.
215.00	3	249.00	2	284.00	1	325.00	1
	-		-				
216,00	6	250.00	2	285.00	I	327.00	2
217.00	2	251.00	2	286.00	1	328.00	1
218.00	3	252.00	3	287.00	1	333.00	1
219.00	2	253,00	2	288.00	I I	334.00	2
220.00	2	254.00	2	289.00	· 2	335.00	1
221.00	12	255.00	2	290.00	3	342.00	1
222.00	5	256.00	- 3	291.00	i	343.00	1
223.00	5	257.00	ī	292.00	i	344.00	2
224.00	Š	258.00	2	293.00	i	345.00	10
225.00	4	255.00	3	294.00	2	347.00	4
110100	-	200100	•		-		-
226.00	2	260.00	2	296.00	1	355.00	t
227.00	4	261.00	2	297.00	1	352,00	13
228,00	3	262.00	5	298.00	2	363.00	98
229.00	1	263.00	23	299.00	2	364.00	10
230.00	3	264.00	18	301.00	1	365.00	1
231.00	4	265.00	4	302.00	2	368.00	ł
232.00	3	266.00	i	303.00	4	375.00	1
234.00	3	268.00	2	305.00	5	393.00	Í
235.00	4	269.00	ž	306.00	Ĩ	394,00	t
236.00	3	270,00	ī	307.00	2	397.00	1
			-	700 00			
237.00	4	271.00	د	209.00	1	402.00	1
239.00	12	272.00	1	310.00		419.00	(
240.00	2	274.00	1	315.00	!	447.00	2
241.00	1	275.00	1	315.00		462,00	0C.
242.00	2	276,00	2	317.00	1	463,90	5
243.00	3	277,00	3	319,00	1	464.00	1
244.00	2	279.00	6	320.00	2		

Tabla de Abundancias Relativas

Tb(Acac)3

m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund,
53.00	2	174.80	11	256.90	16	339.00	10
54,90	1	175,80	1	257.90	5	340.00	1
57.90	1	192.80	4	258.90	۱.	341.00	1
67.00	1	212.95	1	272.90	2	356.00	15
69.00	1	214,95	5	274.90	14	357.00	100
84.95	4	216.80	́ т.	296.90	1	358.00	11
99.95	1	217.80	1	298.90	3	359.00	1
28,95	5	232.90	6	314,90	1	456.05	17
46.95	1	238.90	2	316.90	1	457.05	3
70.95	4	254.90	1	327.90	2		

Tabla de Abundancias Relativas

Lu(Acac)3

				1			•	
m/z	abund.	m/z	abund.	m/z	abund,	m/z	abund.	
52.90	1	191.95	2	272.90	10	344.00	3.	
55.00	2	206:95	1	273.90	7	354.90	9	
66.90	3	208.95	2	274,90	2	356.90	2	
68.90	1	217.05	1	288.90	5	372.00	15	
84.95	3	221.05	2	290.90	8	373,00	100	
99.95	1	230.90	5	313.00	1	374.00	14	
136.95	3	231.90	1	314,90	4	375.00	1	
171.95	1	232.90	1	330.90	1	456.95	2	
178.95	4	248.90	6	332,90	1	472.05	18	
190.95	1	254.75	1	343.00	1	473.20	4	

Tabla de Abundancias Relativas

10 1

La(Acac)₃

m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
51.00	1	105.95	z	212,95	3	294.90	I
52.90	3	110,95	8	218,95	1	307.90	2
54.90	2	120.95	t	234.90	1	318,90	3
58.00	1	122.05	2	236,90	. 18	336.90	100
66.90	2	154.80	45	237.90	4	337.90	10
69.00	2	160.95	7	250.90	I.	338,90	1
76.80	1	172.80	3	254,90	24	367.00	1
84.95	10	194.95	3	255.90	1	436.05	13
95.95	1	202.95	1	278,90	2	437.05	2
20 00	4						

Tabla de Abundancias Relativas

Eu(Acac)₃

m/z	abund.	m/z	abund.	m/z	abund.	m/ 2	abund.
33,90	I.	69.00	2	152.80	2	249.90	59
35.90	1	71.00	1	159.30	2	250.90	6
35.90	2	72.00	1	160.45	2	251.90	63
37.90	2	76.95	1	165.95	L.	252.90	5
38.90	6	80,95	1	166.70	1	263.90	2
39.90	7	81.80	1	167.80	10	265,90	1
40.90	5	82.95	1	168.95	1	266.90	1
41.90	11	83.95	5	169.80	9	305.90	1
42 90	100	84.95	7	191.80	6	308.00	1
43.90	4	94,95	t	193.80	5	330.90	1
44.90	1	95.95	1	206.95	1	333.00	1
50.00	i	90.95	3	207.95	ł.	348.00	14
50.90	i	99.95	3	208.80	1	349.00	69
52.00	i	108.95	1	209.80	2	350.00	23
53.00	2	117.30	2	211.80	1	351.00	77
54.00	. 1	118.30	3	222.95	1	352.00	
55.00	3	120.05	1	231.90	11	389.95	1
58.00	2	120.95	1	232,90	1	449.05	10
60.50	ī	122.05	1	233,90	13	449.05	2
62.90	i	124.20	t	234.90	1	450.05	12
67.00	1	150.80	2	235.90	z	451.05	2
68.00	1						

Tabla de Abundancias Relativas

Sm(Acac)₃

m/z	abund.	m/z	abund.	m/2	abund.	m/ 2	apundi
	_						
50.90	9	88.55		131.70	!	176.80	
52.00	5	89.30	1	132.80	1	178.20	1
53.00	33	90.95	6	134.70	1	191.05	•
54.00	6	92.30	2	137.55	1	184.55	1
55.00	10	93.80	2	137.00	1	164.80	1
	• -						
55 00	3	94.95	11	140.45	•	157.90	3
EE 00	7	96 96	29	140.70	,	186.95	4
50,50		06.05	7	140110	-	100 35	2
58.00	4 (30.33		143,03		100.00	
59,00	4	97.80	4	144,45	'	130.52	
59.90	4	98.45	2	144.95	i	192.40	3
	-			145 30		101 05	E
61.15	2	98.60	2	145.70	1	194.75	
61.90	3	99.05	2	148.55	2	196.95	é.
62,65	2	99.95	14	148.55	1	200.80	1
63.00	2	101.05	3	149.30	1	201,05	1
63.25	2	102.05	1	150.55	2	203.05	2
00120	-						
63 65	2	104.05	1	152.05	1	203.95	1
CA DO	-	104 95	ġ	154.20	i.	204.95	1
04.30	* *	105 70	1	154 90	, i	205.95	7
69,90	3	105.70		134.00	-	203.35	ž
67.00	15	106.95	9	158.70		207.05	5
68,00	4	108.80	6	157.05	1	207.95	ن ب
	-		-	167 04		700 70	2
68.40	2	111.00	<u> </u>	137.00		200,10	
69,00	6	111.95	1	150.20	ć	208.99	ź
69,90	1	112.20	1	158.55	د	209.45	4
71.15	4	114.05	2	159.55	2	210.70	3
71,50	4	114.45	2	160.70	1	211.05	3
					2	517 OF	•
73.00	1	115.05	£	161.80	4	212,33	
73.75	3	115.95	. 5	162.80	5	219,80	1
75,00	3	116.00	3	163.80		221.20	·· 1
75.50	2	117.95	4	164.95	12	221.00	1
75,90	1	118.95	3	165.95	10	222.95	1
76.95	4	120.05	4	166.80	6	224.80	1
77.80	3	120.95	4	167.55	6	225.45	2
78.95	5	122.05	10	167.95	6	225.80	2
70 90	1	123.30	6	168.20	5	227.05	1
08 00	Å	123.95	19	168.80	15	227.90	6
00.33	4	120103					-
81.95	4	124.70	3	169.95	4	228,90	5
83.05	5	125.20	3	170.95	10	229.75	4
07 00		126.45	3	173.55	1.	230.90	3
00.00	3	177 20.	· · · · ·	174 00	.,	231 60	1
84.95	ູ່ລະ	127.00	a	174100		575 00	۰ ۵
87.45	· 1 .	154*10	1	112.76	<u> </u>	696.90	0

m/z	abund.	. m/z	abund.	m/z	abund.	m/z	abund.
234,90	8	282.50	1	331.90	9	424.80	1
236.90	1	284.75	1	334.00	6	427.20	1
241.90	2	285.15	1	340.90	1	429.05	1
242.90	4	286.90	1	342.00	10	429.80	2
245.00	6	287,75	1	343.15	2	431.70	1
245.90	22	290.25	2	345.00	53	435.30	1
246.90	17	293.90	1	346.00	56	436.70	1
247.90	20	301.25	1	346.90	60	440.95	2
248.90	11	301.50	1	348,00	38	441,20	2
249.90	10	302.90	1	350.00	100	444.05	8
250.90	37	304,90	2	351.00	. 20	445.05	6
251.90	9	306.15	2	352,00	91	446.05	9
252.90	27	306.90	1	353,00	12	447.05	4
254.00	1	307.90	2	354.00	1	449.05	12
260.00	2	309.90	3	357.90	1	449.95	1
262.75	12	310,90	1	358.90	1	451.05	11
263.90	10	312,00	2	359.90	1	452.05	1
264.90	13	323.00	1	365.40	1	454.70	1
265.90	5	326.90	5	371.00	1	456.20	1
266.75	2	328.00	4	375.15	1	480.80	١
267.90	19	328.90	5	392.20	. 1	482.30	1
269.90	18	329.90	3	411.80	1	511.05	1
271.00	1	330.75	1	414.95	1	513.55	1
276.75	i						

Tabla de Abundancias Relativas

Nd(Acac) 3

•						•	
51.00	3	91.00	2	135.00	1	187.00	1
52.00	3	92.00	t	137.00	1	189.00	1
53.00	5	93.00	1	138.00	1	197.00	ł
54.00	2	94.00	1	141.00	1	198.00	3
55.00	3	95.00	1	142.00	1	199.00	2
FD 44	-	00 00	,	147.00		200 00	7
56.00	4	30,00	-	143.00		200,00	۰ ب
57.00		97.00	1	144.00		201.00	
58,00	5	38.00	1	145.00		202.00	۲. ۱
59.00		99.00	4	147.00		203.00	1
50.00	1	100.00	4	148.00	1	204.00	2
61,00	I	101.00	1	149.00	1	205.00	1
6Z.00	1	102.00	1	151.00	1	206.00	1
63.00	2	103.00	1	153.00	1	214.00	1
64.00	1	104.00	1	154.00	1	215.00	1
65.00	2	105.00	1	155.00	1	216.00	2
65.00	2	105.00	1	156.00	1	217.00	1
67.00	- 3	107.00	3	158.00	10	218.00	2
69 00	2	109.00	ī	159.00	3	219.00	1
69 00	2	110.00	i	160.00	9	220.00	1
70.00	ī	111.00	i	161.00	3	222.00	Í.
		112 00		107 00	6	222 00	
71.00		112.00		162,00	2	223,00	
72.00	2	114.00		153.00	<u> </u>	224.00	<u>د</u>
73.00	1	115.00		164.00	נ. ד	225.00	
74.00	1	116.00		165.00	2	228.00	
75.00	1	117.00	I	167.00	I	221.00	1
75.00	1	118.00	1	169.00	L.	229.00	1
77.00	2	119.00	1	173.00	1	230.00	1
78.00	. 1	120.00	1	174.00	1	237.00	1
79.00	2	121.00	. 2	175.00	1	238.00	2
80.00	١	122.00	4	176.00	I	239.00	1
91.00	2	124.00	3	177.00	i	240.00	· 11
82.00	1	125.00	Ī	178.00	1	241.00	13
83.00	1	126.00	1	179.00	\$	242.00	11
R4.00	Ś	128.00	1	180.00	1	243.00	10
85.00	ē	129.00	ł	181.00	i.	244.00	G
00 00	-	170.00		187 88	•	245.00	•
00.00	4	121 00	1	102.00	1	245.00	2
01.00	1	122 00	1	103.00	, i	247.00	
00.00		122.00	1	104.00 105 00	1	248.00	5
03,00	1	134 00	1	185.00		254.00	1
30.00		1.77.00		100+00			

255.00	1	300.00	3	345.00	11	417.00	t
256.00	1	301.00	2	346.00	9	419.00	1
257.00	1	302.00	3	347.00	16	419.00	1
258.00	16	303.00	1	348.00	12	423.00	1
259.00	11	304,00	I	352.00	1	425.00	1
260.00	10	305.00	1	353.00	1	426.00	1
261.00	8	305.00	L L	354.00	1	427.00	1
262.00	3	307.00	1	355.00	1	439.00	11
263.00	3	306.00	1	356.00	2	440.00	30
264.00	2	311,00	1	357.00	1	441.00	26
265.00	2	312.00	1	358.00	L.	442.00	16
255.00	3	313.00	i	359.00	i i	443.00	8
267.00	1	321.00	i	360.00	1	444.00	3
280.00	i	322.00	Å	361.00	1	445.00	4
281.00	1	323.00	4	362.00	1	445.00	6
282.00	5	324.00	4	363.00	1	447.00	4
283.00	4	325.00	4	364.00	3	448.00	1
284.00	3	326.00	3	365.00	2	462.00	1
285.00	3	327.00	ï	366.00	1	463.00	1
296.00	2	328,00	1	367.00	1	454.00	1
287.00	1	329.00	1	368.00	1	465.00	I
288.00	i	330.00	1	396.00	1	471.00	1
289.00	1	340.00	100	397.00	1	499.00	1
290.00	i	341.00	95	398.00	1	500.00	1
296.00	i	342,00	82	399.00	1	501.00	1
297.00	1	343.00	69	400.00	1	502.00	I
298.00	2	344.00	8	416.00	1	503.00	1
200.00	7		•				

Tabla de Abundancias Relativas

Yb(Acac)₃

m/z	abund.	m/z	abund,	m/ 2	abund.	m/z	abund.
52.90	1	186.95	3	252.90	7	351.90	5
54.90	2	187.95	4	253.90	. 7	353,00	4
66.90	3	188.95	7	254.90	12	353.90	9
68.90	' Ž	189.80	3	255.90	2	355.00	1
71.00	1	190.95	7	256.90	7	355.90	4
83.95	1	192.80	2	258.90	1	368,00	14
84.95	4	210.55	1	268.90	5	369,00	53
98.95	1	211.95	1	269.90	19	370.00	75
99.95	1	212.95	3	270.90	30	371.00	70
121.20	1	213.80	I.	271.90	23	372.00	100
121.95	1	214.80	4	272.90	41	373.00	16
27.80	1	216.95	1	273.90	3	374.00	37
128.05	1	219.45	1	274.90	16	375.00	4
128.80	2	220.45	1	285.90	1	383.00	1
136.05	1	227.90	١	286.90	3	454.05	1
136.45	1	228.90	2	287.90	4	455.05	1
69.60	1	229.90	2	208.90	3	456.05	1
170.80	3	230.90	2	289.90	5	467.05	2
171.95	3 ·	231.90	1	291.90	2	468.05	g
172.80	2	232.90	I	328.00	1	469,05	16
173.80	4	240.75	1	329,00	I	470.05	13
175.95	1	241.90	1	329.90	1	471.05	21
177.45	3	242.90	. 1	330.90	1	472,05	4
178.30	4	243.90	î 1	331.90	1	473,05	8
179.30	1	250.90	1	350.90	3	474.05	ł
185.95	1	251.90	4				

Tabla de Abundancias Relativas

Ce(Acac)₃

m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
110.00	2	129.00	2	152.00	1	160.00	1
111.00	3	130.00	2	153.00	2	185.00	1
112.00	. 2	132.00	2	154.00	1	188.00	1
113.00	2	133.00	1	155.00	1	196.00	1
114.00	2	134.00	1	156.00	49	197.00	I.
115.00	4	135.00	2	157.00	2	200.00	1
116.00	2	136.00	1	158,00	7	230.00	9
117.00	4	138.00	2	161.00	5	255.00	5
118.00	3	139.00	1	162,00	2	256.00	20
119.00	9	140.00	1	163.00	1	258.00	1
120.00	6	141.00	2	164.00	I	280.00	10
121.00	11	142.00	· 1	165.00	i	337.00	1
122.00	16	143.00	2	168.00	1	330.00	100
123.00	4	145.00	1	169.00	1	339.00	14
124.00	6	146.00	I	171.00	I	340.00	15
125.00	2	147.00	I.	172.00	I.	437.00	25
126.00	2	149.00	2	173.00	4	438.00	1
127.00	2	151.00	Ĩ	174.00	3	439.00	1
128.00	3						

Tabla de Abundancias Relativas

Gd(Acac)₃

m/2	abund.	m/z	abund.	m/z	abund.	m/z	abund.
51.00	3	98.00	1	214.00	6	287.00	1
5Z.00	1	100.00	3	215.00	2	293.00	1
53,00	7	105.00	1	216.00	5	294.00	1
54.00	1	107.00	2	217.00	1	295.00	2
55,00	5	109.00	I	218.00	L	296.00	3
56.00	2	120.00	1	228.00	t	297.00	2
57.00	1	121.00	1	229.00	3	298.00	4
58.00	6	122.00	2	230.00	4	300.00	2
59.00	1	123.00	1	231.00	3	311.00	1
60.00	1	124.00	2	232.00	5	312.00	1
62.00	1	127.00	3	234,00	4	313.00	2
63.00	2	128.00	4	235,00	2	314.00	3
64.00	I	129.00	2	236.00	2	315,00	1
65.00	1	147.00	· 1	237.00	1	316.00	2
66.00	1	148.00	1	238.00	3	318.00	2
67.00	5	149.00	I	239.00	1	320.00	I.
68.00	1	162.00	I	240.00	3	322,00	1
69.00	3	163.00	I	241.00	1	324.00	2
70.00	1	164.00	1	242,00	1	325.00	2
71.00	2	169.00	3	244.00	1	326.00	2
72.00	1	170.00	3	251.00	1	327.00	3
73.00	1	171.00	5	252.00	2	329.00	2
74.00	1	172.00	7	253.00	9	334.00	1
75.00	1	173.00	5	254.00	15	335.00	6
77.00	2	174.00	9	255,00	13	336.00	8
78.00	1	175.00	I	256.00	17	337.00	7
79.00	2	176.00	6	257,00	6	338.00	11
81.00	1	177.00	1	258.00	12	339,00	2
82.00	1	187.00	1	259.00	4	340.00	10
83.00	I	188.00	1	260.00	1	341.00	1
84.00	1	189.00	. 2	268.00	1	342.00	1
85.00	7	190.00	3	269.00	1	350.00	1
86.00	1	191.00	2	270.00	3	351.00	1
88.00	1	192.00	3	271.00	10	352.00	16
91.00	I	194.00	2	272,00	15	353,00	66
92.00	1	198.00	Į.	273.00	10	354.00	89
93.00	1	200.00	1	Z74.00	17	355.00	79
95.00	1	211.00	3	275.00	1	356.00	100
96.00	3	212.00	4	276.00	12	357.00	22
97.00	1	213.00	4	277.00	1	358.00	81

M/ 2	abund,	m/z	abund.	m/z	abund.	n/z	abund.	
359.00	9	440.00	1	453.00	16	455,00	2	
360.00	1	442.00	1	454.00	14	457.00	15	
430.00	1	452.00	11	455.00	19	458.00	2	
439.00	1						•	

.

.

Elemento	Isótopos N a turales	Abundancia Isotópica	Valencia	Señales Características (isótopos)	Fragmentos
Tm	169	100	+3	466	$Tm(Acac)_3^+$
			* .	367	Tm(Acac) ₂
				285	+ Acac-Tm-OH
				268	+ Tm (Acac)
				267	+ Acac-Tm-OH -18
Pr	141	100	+3	438	+ Pr(Acac) ₃
	· · · ·			339	Pr(Acac) ₂
				257	Acac-Pr-OH
· · ·	:		•	240	+ Pr(Acac)
				239	+ Acac-Pr-OH -18
	•	• .	`	157	+ Pr=0

TABLA 20

۰,

.

۰.

. .

,

	Elemento	Teótonos	Abundancia	Valencia	Señales	Framentos	
• • •	HICHCISCO .	Naturales	Isotópica	VEICHCIU	Características (isótopos)	r ragmencos	
•	Br	162	0.13	+3			
•		164	1.55			,	
		166	33.22		166463	Er(Acac) ₃	•
·		167	23.39		167464		
6 G		168	27.00		168465		
		170	14.71		170467		
					¹⁶⁸ 364	+ Er(Acac) ₂	• .
				•	167365	— ,	· · · ·
					168366		
н С				· · ·	¹⁷⁰ 368		
		•			166282	+ Acac-Er-OH	
				-	¹⁶⁷ 283	•	
	· · · ·						
	*						

•				•			
	Elemento	Isótopos Naturales	Abundancia Isotópica	Valencia	Señales Características (isótopos)	Fragmentos	· ·
					¹⁶⁸ 284		
					170 286		
	Но	165	100.0	+3	456	Ho(Acac) ₃	
					363	+ Ho(A cac) ₂	
່ດ •		٠			362	+ Ho(Aca c) ₂ -1	
					281	+ Acac-Ho-OH	
	· · ·				264	Ho(Acac)	
			•		263	+ Acac-Ho-OH -18	
. • .	x				181	+ Ho=O	
:	Tb	159	100.0	+3	456	Tb(Acac) ₃	
				+4	357	Tb(Acac) ₂	

• •	Elemento	Isótopos Naturales	Abundancia Isotópica	Valencia	Señales Características	Fragmentos
		•	•		356	+ Tb(Acac) ₂ -1
					339	+ Tb(Acac) ₂ -18
					275	+ Acac-Tb-OH
					257	Tb(Acac) ⁺ -1
0 5		•			175	Tb ≈0
· ·	Lu	175	97,43	+3	¹⁷⁵ 472	$Lu(Acac)_3^+$
		176	2.59		373	Lu(Acac) ⁺
	• • •	· .			372	+ Lu(Acac) ₂ -1
,					355	+ Lu(Acac) ₂ -18
					291	+ Acac-Lu-OH
					274	+ Lu(Acac)

.

:	Elemento	Isótopos Naturales	Abundancia Isotópica	Valencia	Señales Características (isótopos)	Fragmentos
	,				273	+ Acac-Lu-OH -18
	La	1.38	0.089	+3		
		139	99.91	· .	139436	La(Acac) ₃
·			•		337	La(Acac) ₂
ת ה					336	$La(Acac)_2^{+}$
		r.			255	+ Acac-La-OH
					238	+ La(Acac)
• • •			•		237	+ Acac-La-OH -18
			•		155	La=0
	Eu	151	47.79	+3	¹⁵¹ 448	Eu(Acac) ₃
		153	52.21	+2	153450	-

Elemento	Isótopos Naturales	Abundancia Isotópica	Valencia	Señales Características (isótopos)	Fragmentos
		. ••		¹⁵¹ 349	Eu(Acac) ₂
				¹⁵³ 351	
				¹⁵¹ 348	Eu(Acac) ⁺ -1
				153350	
	•			151250	Eu(Acac) +
				¹⁵³ 252	
				151232	Eu(Acac) +-18
				¹⁵³ 234	
Sm	144	3.03	+3	4. 8	
	147	14.92		147444	+ Sm(Acac) ₃
	148	11.21		¹⁴⁸ 445	

67

· •

. .

.

	Riemento	Tentonos	Abundancia	Valencia Señales	Fragmentos
·	BIEWELLO	Naturales	Isotópica	Características (isótopos)	T T ABILETICOD
		149	13.81	. ¹⁴⁹ 446	
		150	7.39	¹⁵⁰ 447	•
		152	26.84	152449	
		154	22.97	154451	
5 6				147 345	$Sm(Acac)_2^+$
				¹⁴⁸ 346	
				¹⁴⁹ 347	
				¹⁵⁰ 348	
				¹⁵² 350	
		· .		¹⁵⁴ 352	
			· .	147263	+ Acac-Sm-OH

. .

				• • •					
		Elemento	Isótopos Naturales	Abundancia Isotópica	Valencia	Señales Características (isótopos)	Fragmentos		
						¹⁴⁸ 264			
						¹⁴⁹ 265			
						¹⁵⁰ 266			
						¹⁸² 268			
æ						¹⁵⁴ 270			
Ö			· · ·			147 245	+ Sm(Acac)		
		•				¹⁴⁸ 246			
		۰.	÷			149 247			· · · · · · · · · · · · · · · · · · ·
			· · · ·			150 248			n North
	· · · ·	. • • • •				¹⁵² 250	4 .	•	
						¹⁵⁴ 252		:	• •
		· .·							

	Elemento	Isótopos Naturales	Abundancia Isotópica	Valencia	Señales Características (isótopos)	Fragmentos
· .			·		147 228	+ Sm(Acac) -18
,					148 229	
					¹⁴⁹ 230	
					¹⁵⁰ 231	
•					152 2 3 3	
7		•			¹⁵⁴ 235	
-					¹⁴⁷ 164	+ Sm-OH
			•		¹⁴⁸ 165	
			•		¹⁴⁹ 166	
		·. ·	· .		150 167	
					¹⁵² 169	
					¹⁵⁴ 171	
					¹⁴⁷ 163	+ Sm≂O
		•				
		· · · · ·	•			

•** · · · ·

Elemento	Isótopos Naturales	Abundancia Isotópica	Valencia	Señales Características (isótopos)	Fragmentos		
÷				¹⁴⁸ 164	•		1
				¹⁴⁹ 165			
				¹⁵⁰ 166		·	-
				ⁱ⁵² 168			
				¹⁵⁴ 170		·	
Nd	142	27.11	+3	¹⁴² 439	Nd(Acac) ₃		
	143	12.21		¹⁴³ 440	•		
	144	23.88		144441			
`	145	8.29		145442		r	
	146	17,19		¹⁴⁸ 443			
	148	5.71		148445		•	
	150	5.60		¹⁵⁰ 447			
				¹⁴² 340	+ Nd(Acac) ₂		

•

	Elemento	Isótopos N a turales	Abundancia Isotópica	Valencia	Señales Características (isótopos)	Fragmentos		· · · · ·
					¹⁴³ 341		4	
•					¹⁴⁴ 342		•	
				•	¹⁴⁵ 343			··· ··
					146 344			
					¹⁴⁸ 346		:	· · ·
12					¹⁵⁰ 348			
					¹⁴² 258	+ Acac-Nd-OH		
	· · ·				¹⁴³ 259			
•	· •				¹⁴⁴ 260			
			•		¹⁴⁵ 261		•	•
					¹⁴⁸ 262			
		n an			¹⁴⁸ 264			
			•		150 266		· .	
· ·		• •						· · ·

۰.										
	•	•	Elemento	Isótopos Naturales	Abundancia Isotópica	Valencia	Señales Características (isótopos)	Fragmentos		۰ ۱
							¹⁴² 241	+ Nd(Acac)		
							¹⁴³ 242			
					N .		144243			
							¹⁴⁵ 244			
		·					¹⁴⁶ 245			
	7						¹⁴⁸ 247			· · ·
	ω	* .					150 249			· · ·
		· -		•			142 ₁₅₈	Nd=0		
						,	143159	10-0		· · · · ·
							144160			
				· · · ·			145161			- •.
					· · ·		148 ₁₆₂		•	
					*		148164			
				· · · ·			150166			
				·	. •		100		· · · · ·	
			•	• *						

:		· · · · · · · · · · · · · · · · · · ·			•••	· .			بر ۲۰۰۱ ۱۹۰۰ - ۱۹۰۱ ۱۹۰۰ - ۱۹۰۱ - ۱۹۰۱
	3		Elemento	Isótopos Naturales	Abundancia Isotópica	Valencia	Señales Características (isótopos)	Fragmentos	· .
t		•	Yb	168	0.116	+3			
				170	3.35				
				171	14.32		¹⁷¹ 468	$Yb(Acac)_3^+$	
				172	21.76		172 469		
ł				173	16.37		173 470		
	1			174	31.22		174 471		
				176	12.86		176 473		
	,				• <u>-</u> *		¹⁷¹ 369	Yb(Acac)	
							¹⁷² 370	2	
							¹⁷³ 371		
					•		174372		
							176 374		
							¹⁷¹ 368	Υb(Acac) ₂ -1 δ	

	Fragmentos	Señales Carácterísticas (isótopos)	Valencia	Abundancia Isotópica	Isótopos Naturales	Elemento	•
	+ Acac-Yb-OH -18						
		¹⁷² 369	×.				
		¹⁷³ 370					
		174 371					
		¹⁷⁶ 373					
	+ Yh(Acac) -19	171 252					
	ID(MCaC) -10	172 05 0					75
		173 of 4					
		113 254			· .		
		14 255		· .			
		¹⁷⁸ 257					
. •	+ Yb(Acac)	171 270					
· .	\	172 271			1.		
	· ·	173 070				•	
						•	

•.	Elemento	Isótopos Naturales	Abundancia Isotópica	Valencia Señales Características	Fragmentos
. •				174 273	
				178 275	
				¹⁷¹ 188	+ ҮЪ-ОН
		•		¹⁷² 189	
	·			173190	
				174191	
				176 193	
	Ce	136	0.194		
	·	138	0.258		
		140	88.46	¹⁴⁰ 437	Ce(Acac) ₃
·		142	11.08	142439	
				¹⁴⁰ 338	Ce(Acac) ₂
• .				¹⁴² 340	-

•

÷

.

.

.

76

.

	Elemento	Isótopos Naturales	Abundancia Isotópica	Valencia	Señales Características (isótopos)	Fragmentos
•				•	¹⁴⁰ 256	+ Acac-Ce-OH
					142258	
					140 238	Ce(Acac) ⁺ -1
					140 156	+ Ce-OH
	Gđ	152	0.20	+3		
		154	2.16			
		155	14.87		¹⁵⁵ 452	Gd(Acac) ₃
		156	20.56		¹⁵⁶ 453	
		157	15.70		¹⁵⁷ 454	
		158	24.77		158455	
		160	21.79		¹⁶⁰ 457	
-			•		¹⁵⁵ 35 3	Gd(Acac) ₂
					158 354	_

Ľ

			- 1	ter en se se	•		
	Elemento	Isótopos	Abundancia	Valencia	Señ a les	Fragmentos	, ,
	· .	Naturales	Isotópica	• •	Características (isótopos)	-	
					157 355		•
				• •	¹⁵⁸ 356		
					160 35 8		
					¹⁵⁵ 352	Gd(Acac)2-1	
7		· · ·			158 353		
∞ .			• .	•	157 354 158 acc		
				:	¹⁶⁰ 357		
					155 271	+ Acac-Gd-OH	
			•		¹⁵⁶ 272	· · · ·	·· .
	•				157 273		
			· · ·		158 274		•
		•	• • •.	· ·	⁵¹⁶⁰ 276	-	
			· ·		•		
	· · · · ·						

	•	Elemento	Isótopos Naturales	Abundancia Isotópica	Valencia	Señales Características (isótopos)	Fragmentos
	. •		,			¹⁵⁵ 254	Gd(Acac) +
•						¹⁵⁶ 255	
						¹⁵⁷ 256	
						¹⁵⁸ 257	•
						160 259	
79			-		•	¹⁵⁵ 253	+ Acac-Gd-OH -18
			·			¹⁵⁶ 254	
		*				157 255	
	•	•				158 256	
		an a				¹⁶⁰ 258	
	· .				ı	155 171	+ Gd=0
·					1	¹⁵⁶ 172	
	· .				<u>':</u>	¹⁵⁷ 173	
				•			

SALESTI TESIS NO DEBE BIBLIOTECA

4.3. Intervalo Lineal para un solo Compuesto.

Se prepararon tablas y gráficas de concentración de acetilacetonato de Tulio contra área de la señal, utilizando el sistema de adquisición de datos por SCAN y por SIM (m/z = 367, m/z = 466) (Tablas 21 y 22; figuras 16.17 y 18).

Se obtuvo una buena correlación de los datos por SCAN, aunque el número de puntos registrados es limitado y presenta una deficiente distribución. Para el caso de SIM se lorró una mejor distribución de los puntos, asi mismo se obtuvo un coeficiente de correlación mejor para el pico de mayor intensidad relativa (m/z = 367) que para el menor (m/z = 466).

TABLA 21

*** Calibration Table ***

TABLA DE CALIBRACION DE TULIO POR SCAN (3)

Last Update: 22 Jan 97 12:21 pm Referance Peak Window: 50.00 % of Retention Time Non-Reference Peak Window: 50.00 % of Retention Time Sample Amount: 0.000 Uncalibrated Peak RF: 0.000 Hultiplier: 1.000

Rat Time 4.080	Pk\$ I	Signal Descr Total Ion	Amt mg/ml 3.000 3.700	Lvi 2 3	[Area] 3319316 3673937	Pk-Type 1	Partial Name
			10.00	1	23912201		

TABLA 22

Tabla de Calibracion por SIM para Tm(Acac)3

*** Calibration Table ***

i.ast Update: 8 Jan 87 7:36 pm Reference Peak Window: 75.00 % of Retention Time Non-Reference Peak Window: 75.00 % of Retention Time Sample Amount: 0.000 Uncalibrated Peak RF: 0.000 Hultiplier: 1.000

Ret Time	Pk#	Signa	1 Descr	A	nt mg/ml	Lv1	[Area]	PL-Type	Partial Name	6
6.401	1	Mass	367.00	amu	0.2300	4	1602221	1		
					0.4600	3	2921242			
					0.9250	2	5237063			
					1.859	1	29350093			
6.404	2	Mass	466.00	amu	0.2300	4	333643	· •		
					0.4500	3	641955			
					0.9250	2	884646			
					1.859	1	4760290			

Rango Lineal para Tm(Acac)⁺₂

m/z = 367

Figura 17

Rango Lineal para $Tm(Acac)_3^+$

Figura 18

4.4 Intervalo Lineal para una Mezcla de Cuatro Compuestos.

En la Tabla 23 y figura 19 se presentan los resultados del registro de las señales correspondientes al ión molecular y al pico base de los acetilacetonatos de Ho, Tb, Pr y Lu.

El promedio que se obtiene para esta disolución con relación a la cantidad mínima detectable es de 0.648 \pm 0.037 mg de acetilacetonato/ml de propanol con 50 microlitros de muestra. El coeficiente de correlación es mayor de 0.95 para todas las señales excepto para m/z = 357 que es de 0.912. La localización de los puntos registrados se distribuyó a lo largo de las rectas correspondientes.

Al efectuar la prueba de hipótesis para demostrar la correlación entre cantidad de muestra y área de la señal, se encontró que sí existe correlación con un intervalo de -confianza del 95 %.

••• Calibration Table •••

.23

TABLA

TABLA DE CALIBRACION POR SIN (1),MEZCLA DE 4 TR

•	Cannia A	N	Rafer on-Refer	Las anca Pes ance Pes Uncalit	ik W ik W	odate: 22 Indou: 5 Indou: 5 Indou: 5 Indou: 5	Jan (9,09 (9,09 (9,00	87 12:55 X of Rete X of Rete 900 Multi	pm Intion Tim Intion Tim Discr: 1.0	- -
	Dat Time	DLE	Siona	1 Descr		Set so/sl	f.v1	[Area]	∵Pk-Tvpe	Partial Nemo
۰.	4.765	1 1	Hass	373.00	anu	0.6950	11	5358252	1	LUTECIO
	47105		1164.9.9	010100		0.6950	31	9792621	• •	
÷.						0.6950	1	21209807		
÷						0.6950	21	21518725		
•	· A.778	2	Mass	374.00	anu	0.6950	- 11	773478	1	LUTECIO
•••						0.6950	31	1387983		
			•			0.6950	21	2950130		
	· · · ·	•				0.6950	1	2984418	•	
	A.77?	5 3	Nasa	473.00	anu	0.6950	- 11	415095	1	LUTECIO
1					,	0.6950	31	782141		
						0.6950	ţ	1152011		
						0,6950	21	1204629		. ,
۰.	4.774	4	Kass	472.00	anu	0,6950	11	2181256	1	LUTECIO
		•				0,6950	31	4022897		
•						0.6950	1	5715919		
						0.6950	21	6229060		
	4.788	: 5	Hass	339,00	amu	0,8175	~ 11	239932	1	PRASECUINIO
						0.9952	31	330234		
						1,244	21	724285		
	·,					1,635	1	1153530		
	4.791	6	Mass	357,00	品料以	0,9200	- 11	1179622	. 1	TERBIO
						0,9856	31	1970696		
						1.232	21	4886193		
						1,840	1	7078880		
••••	4.792	27	Mass	363.00	amu	0.7850	11	1312463	1	HOLMIO
	1.1					0.9760	31	2341360		
						1.220	21	6199955		
	5					1,570	1	9395627		
	4.799	58	Марь	456.00	āmu	0,9200	- 13	310036	_ 1	TERBIO
	·					0,9856	31	501760		
						1.232	21	997654		
•						1.840	1	1634601		
	4.800	9	Mass	462,00	amu	0.7850	11	536555	1	HOLMID
						0.9760	31	953888		
						1.220	21	1791729		
	·					1.570	1	2654973		
	4.821	10	Mass	430.00	anu	0.8175	- 11	22139	1	PRASEOUINIO
						0.9952	31	25031		
						1.244	21	52730		
						1 676				

Rango Lineal para una Mezcla de Cuatro Compuestos

4.5. Resultados Cuantitativos para la Mezcla de 13 Acetilacetonatos .

Se elaboró una tabla de calibración tomando como estándar interno al Lu(Acac)₃. Utilizando esta tabla se obtuvieron las concentraciones de los acetilacetonatos en una muestra problema, los resultados se muestran en la Tabla 24.

Aunque para 3 valores de m/z (436,437 y 433), el sistema de la computadora no encontró las señales , ésto no constituye un problema grave ya que corresponden a elementos para los cuales se monitoreó simultáneamente otra señal mayor que sí fue detectada.
TABLA 24

*** Internal Standard ***

14 Jan 87 7:00 pm

Operator: MA.AURORA Sample Info : IGUAL QUE M42 Misc Info: IGUAL QUE M42 Integration File Name : M42CI.I

MEZCLA TOTAL CON ESTANDAR INTERNO LUTECIO

Last Update: 22 Jan 87 2:19 an Reference Peak Window: 20.00 X of Retention Time Non-Reference Peak Window: 20.00 X of Retention Time Sample Amount: 0.000 Uncelibrated Peak RF: 0.000 Multiplier: 1.000

Peak		Int	Ret	Signal			Compound		
Num	Туре	Туре	Time	Description			Name	Area	Anount
1		1		Mass	436.00	amu		*** No	t Found •••
2		188	4.485	Наве	343.00	anu	ND	215826	1.003 mg/ml
3		1 88	4.553	336.70-	337.50	anu	LA	405386	0.6448 mg/ml
4		1 88	4.624	338.70-	339.50	anu	PR	624717	0.5864 mg/ml
5		1 88	4.678	337.70-	338.50	anu	CE	407094	0.6538 mg/ml
6		1		Мавв	438.00	anu	PR	*** No	t Found ***
.7		1 88	4.670	Hass	357.00	anu	TO	3003638	1.060 mg/ml
8		1 88	4.589	Мавь	454.00	650	60	203447	1.072 mg/ml
: 9		1 88	4.679	Mass	370.00	anu	YB	2759529	1.093 mg/ml
10		1 66	4.637	Mase	349,00	anu	EU	1277952	0.9613 mg/ml
ίΓ.	ISTD	1 BB	4.701	Mass	373.00	anu	LUTECIO	10099319	0.6950 mg/ml
12		1		Maas	437.00	amu	CE	*** No	t Found ***
13		I B0	4.600	Maes	347.00	enu.	SM	397673	0.7991 Mg/m1
14		1 88	4.673	Nass	367.00	anu	TM	6233087	1.226 mg/ml
15		1 88	4.675	Mass	363.00	6RU	HO	3990976	1.028 mg/ml
16		1 88	4.591	Hass	354,00	anu	60	695659	0.9836 mg/ml
17	•	1 88	4.677	Mass	365.00	8MU	ER	1912405	1.260 mg/ml
Error	: COL	ild no	t find C	alibratio	on Peak				

No Peak of Calibration Peak \$1's Description at 4.337 +/- 0.434 min. Error : Could not find Calibration Peak No Peak of Calibration Peak \$6's Description at 4.520 +/- 0.452 min.

Error : Could not find Calibration Peak

No Peak of Calibration Peak \$12's Description at 4.687 +/- 0.459 min. Error: Could not find all Calibration Peaks 5. CONCLUSIONES.

5.1. Este procedimiento analítico permite determinar en forma diferenciada los lantánidos en una mezcla de los mismos, utilizando un espectrómetro de masas con -fuente de impacto electrónico.

5.2. Con base en las cantidades detectadas se -considera que el método es adecuado para la determinación de lantánidos en rocas y minerales.

5.3. El sistema de monitoreo selectivo de iones SIM posibilita la determinación individual de cada TR y aumenta la sensibilidad del método.

5.4. Partiendo de 10 g de muestra de roca y concentrando a 0.1 ml la disolución de los acetilacetonatos en propanol, el nivel de ruido del equipo permite detectar hasta 1 ppm por SCAN y hasta 0.325 ppm por SIM.

5.5. De acuerdo al intervalo lineal determinado, se considera adecuado registrar cantidades comprendidas entre 0.325 y 9.2 ppm.

5.6. Con un intervalo de confianza del 95 % sepuede afirmar, que sí existe correlación entre las intensi dades relativas de las señales monitoreadas y las concen-traciones en los niveles estudiados.

5.7. La cantidad mínima detectable está en fup ción de las intensidades relativas de las señales monito

readas, ya que para que se detecten (considerando una altu ra del valle entre las mismas del 10%), sus intensidades relativas deben ser mayores al 20%.

5.8. En caso de que las intensidades relativas sean inferiores al 20%,los errores pueden elevarse hasta el 30%, lo cual se observó para Pr, La y Ce, cuyas señales llegan a traslaparse.

5.9. Si se concentra la muestra se logran elevar las intensidades relativas, ya que se ioniza una mayor cantidad de materia, con lo que se puede conseguir disminuir el error hasta aproximadamente el 1%.

5.10. Se determinó una reproducibilidad del mé-todo del 95%.

5.11. La elaboración y aplicación de los diagramas logarítmicos de predominancia de especies ha permitido determinar las condiciones precisas y explicar la síntesis de los acetilacetonatos. En la revisión bibliográfica se encontraron pocas descripciones del método de preparación, en las cuales no se especifica con detalle y se reportan importantes diferencias en los rendimientos.

5.12. Cada especimen mineralógico debe analizarse casuísticamente. En caso de esperar una concentración eleva da de alguna TR, su concentración puede determinarse por otro procedimiento analítico (Titulación, absorción atómica)

y al efectuar el monitoreo eliminar la señal que le corres ponda. De esta manera se evita su interferencia en otras señales vecinas. Otra posibilidad consiste en determinar al lantánido mayoritario por SCAN y al resto por SIM.

5.13. En el análisis de una roca puede partirse de 1 g de la misma, o bien en caso de que la cantidad de Tierras Raras fuera muy baja, tratar de igual forma 10 g de muestra.

5.14. El tratamiento simultáneo de varias mues-tras reduce los tiempos de análisis, ya que la determina-ción en el espectrómetro es de alrededor de 15 minutos,incluyendo la integración de las señales y la obtención de los resultados cuantitativos.

5.15. Con este procedimiento analítico se eliminan los problemas de interpretación, tiempo de análisis, y falta de equipos,que se presentan en la espectrometría demasas con fuente de chispa. Cabe señalar que en laborato-rios con mucha experiencia se han logrado precisiones con este último método de ± 3 %, aunque es común tener rutinariamente valores de \pm 30% (Roboz,1967;Ahearn,1966;Taylor y Gorton,1977).

5.16. Para los estudios geoquímicos el número de TR determinadas y la exactitud obtenida,se consideran aceptables y permiten la utilización de los resultados.

PROPUESTA DE METODOLOGIA PARA EL ANALISIS DE UNA ROCA

Preparar la disolución de la roca como se detalla a continuación.

Pesar 1 gramo de la muestra molida(a -180 mallas), colocarlos en un vaso de teflón, añadir 10 ml de $HClO_4$ y 30 ml de HF, y calentar hasta llevar a sequedad sobre una parrilla, continuar el calentamiento hasta observar la emisión de vapores blancos de $HClO_4$. El residuo se disuelve en 10 ml de $HClO_4$ y 200 ml de agua destilada y se afora a 250 ml. Esta es la disolución "B".

De la disolución "B" se toma una alícuota de 100 ml y se cambia el medio perclórico por clorhídrico evaporando a se quedad y añadiendo HCl 1N. Realizar este procedimiento 3 veces y evaporar hasta que restan 5 ml.de solución en HCl, filtrar y recibir el filtrado en la celda de reacción. Aña dir solución de NaOH 1N hasta elevar el pH a 3, efectuar esto con agitación y agregar NH₃ 1N hasta alcanzar un valor de pH = 6.2.

Se prepara una disolución de acetilacetonato de amonio, pe sando 3.0 g de acetilacetona recién destilada y añadiendo 3.0 ml de NH₃ 1N(Observar la desaparición de las gotitas de acetilacetona).

Agregar a la disolución de la muestra que se encuentra en la celda de reacción 0.5 ml de una disolución acuosa al 10 %p/v de LuCl₃. Enseguida añadir con una pipeta Pasteur poco a poco y con agitación la solución de acetilacetonato de amonio, cuidando de que el pH no suba de 6.5, añadir si es necesario HCl 1N; cuidar que el volumen de reacción no exceda de 15 ml. Dejar en agitación la disolución con el precipitado por 24 ho ras, manteniendo tapada la celda de reacción. Filtrar a través de un filtro de vidrio sinterizado. Colocar el filtro -con el precipitado en un desecador con sílica-gel al vacío, dejarlo por 24 horas.

Disolver el precipitado del filtro en la mínima cantidad de propanol y aforar a 1 ml (0.5,0.1ml).

Analizar esta disolución por Espectrometría de masas lo más pronto posible. (antes de 3 días).

Procedimiento de Análisis por Espectrometría de Masas. Colocar 50 microlitros de la solución anterior en un portamuestras con capacidad de 25 microlitros, tomando porciones de 10 microlitros con una microjeringa y dejándolos evapo-rar. Introducir el portamuestras en el espectrómetro de masas (de fuente de impacto electrónico y sistema de intro-ducción directa). Calentar la sonda de introducción (probe) en forma balística de 25 a 350 °C, manteniendo la temperatura de la cámara de ionización a 300 °C.

Mediante el sistema de adquisición de datos por SIM monitorear las siguientes señales : 343 (Nd), 337 (La), 338 (Ce), 339 (Pr), 357 (Tb), 454 (Gd), 370 (Yb), 349 (Eu), 373 (Lu), 347 (Sm), 367 (Tm), 363 (Ho), 354 (Gd), 365 (Er). Integrar las señales monitoreadas, y obtener las concentraciones de cada una de las tierras raras, utilizando una tabla de calibración preparada previamente con una mezcla de concentraciones conocidas, y considerando como estándar interno al lutecio.

ANEXO I

. . .

.

ANEXO II

Interpretación del Difractograma

2	٠	sen	1/10	đ	No.
7.5	3.75	0.065	1.000	11.850	1
18.8	9.40	0.163	0.186	4.720	2
14.7	7.35	0.128	0.160	6.020	3
21.9	10.95	0.189	0.070	4.075	4
29.3	14.65	0.253	0.130	3.045	5
40.6	20.30	0.347	0.078	2.220	6

Datos reportados en el Indice de Compuestos Inorgánicos (Hanawalt,1984).

Nd(OH) 3 2.22 1.84 3.089

Datos Reportados en el Indice de Compuestos Orgánicos (Hanawalt,1981)

 $Nd(Acac)_{3} \cdot 2H_{2}O = 11.1_{x} = 8.15_{8} = 7.43_{6}$

6.- LITERATURA CONSULTADA.

Adler I. y Rose H.J.Jr., 1967. "X-Ray Emission Spectrography" En: Morrison (Ed.), Trace Analysis Physical Methods. Interscience Publ., N.Y.m p.271-324.

Ahearn A.J. (Ed.),1966. Mass Spectrometric Analysis of So-lids. Elsevier,Holanda, 175 p.

Allegre C.J. y Michard G., 1974. Introduction to Geochemis-try. D.Reidel Publishing Co., Holanda, p.59-78.

Baker P.E., 1982. "Evolution and Clasification of Orogenic -Volcanic Rocks". En: R.S.Thorpe (Ed.), Andesites :Orogenic Andesites and Related Rocks. John Wiley and Sons, p.11-22.

Bauer H., Bland J., Ross D.L., 1964. "Octacoordinate Chelates of Lanthanides. Two Series of Compounds". J.Am. Chem. Soc., -86, p.5125-5131.

Belcher R., Majer J.R., Perry R. y Stephen W.I., 1968. "Application of the Integrated Ion Current Technique to the Study of Rare-Earth Chelates". Ana. Chim. Acta, 43, p.451-458.

Belcher R., Majer J., Perry R. y Stephen I., 1969. "Volatile Complex Chelates of Rare Earth and Alkali Metals". J. Inorg. Nucl. Chem., 31, p.471-478. Booker J.L. e Isenhour T.L., 1969. "Rapid Mass Spectrometric Determination of Chromium as Chromium (III) Hexafluoroacetyl-acetonate" Analytical Chemistry, 41 (12), p.1705-1707.

Cameron K.L. y Cameron M., 1986. "Whole-rock/groundmass Differentiation Trends of Rare Earth Elements in High-Silica--Rhyolites". Geochim.Cosmochim.Acta, 50, p.759-769.

Cervantes Toledo F., 1983. Problemática de las Tierras Raras Voltamperometría por Redisolución Catódica del Cerio. Tesis, Químico, UNAM.

Coryell Ch.D., Chase J.D. y Winchester J.W., 1963. "A Procedure for Geochemical Interpretation of Terrestrial Rare-Earth Abundance Patterns". J.Geophys.Research, 68 (2), p.559-566.

Cotton A.F.y Wilkinson G., 1980. Química Inorgánica Básica. Limusa S.A., México, p.143-184.

Chauvel C. y Jahn B.M., 1984. "Nd-Sr Isotope and REE Geochemistry of Alkali Basalts from the Massif Central, France". -Geochim.Cosmochim.Acta, 48, p. 102-109.

Cheng J.,Luo Q., Li X. y Tseng Y.,1982a. "Spectrophotometric Determination of Rare Earths in Ligand Buffer Masking Sys-tems". En: McCarthy G.J., Silber H.B. y Rhyne J.J.,The Rare Earths in Modern Science and Technology. Plenum Press, -- N.Y.,p. 513-516.

Cheng J., Yang K. y Chang Q., 1982b. "Spectrophotometric Determination of Trace Amounts of Copper in High-Purity Rare Earths with $\prec, \beta, \prime, \delta$ -Tetra-(4-trimethylammonium-phenyl)Porphine. En: McCarthy G.J., Silber H.B. y Rhyne J.J., The --Rare Earths in Modern Science and Technology .Plenum Press, N.Y., p.517-520.

Date A.R., Gray A.L., 1985. "Determination of Trace Elements in Geological Samples by Inductively Coupled Plasma Source Mass Spectrometry". Spectrochimica Acta, 40 B(1/2), p.115-122.

DePaolo D.J., Wasserburg G.J., 1976. "Inferences About Magma Sources and Mantle Structure From Variations of ¹⁴³Nd/¹⁴⁴Nd" Geophys.Res.Lett., 3 (12), p. 743-746.

Drake M.J. y Weill D.F., 1975. "Partition of Sr,Ba,Ca,Y,Eu², Eu³⁺, and other REE Between Plagioclase Feldspar and Magmatic Liquid: an Experimental Study". Geochim.Cosmochim.Acta, 89, p.689-712.

Flahaut,1969. Les Elements des Terres Rares. Mason & Cie Editeurs, Paris, 165 p.

Gerbeleu N.V. e Indrichan K.M., 1981, "The Use of Mass Spec-

trometry to Study Coordination Compounds". Russian Journal of Inorganic Chemistry, 26 (2), p.157-163.

Girod M. y Bailey D.K., Baker P.E., Fischer R.V., Maury -R., Rocci M., Schmincke H., Upton B.G., 1978. Les Roches Volcaniques Petrologie et Cadre Structural. Doin Ed., Paris, p.7-29, 75-93.

Gonzáles R.J.,1956. Congreso Geológico Internacional XX Sesión Riqueza Minera y Yacimientos Minerales de México.Banco de México S.A., México, p. 327-328.

Grenthe I. y Fernelius C.W., 1960. "Stability Relationships Among the Rare Eart Acetylacetonates". J.Am.Chem.Soc., 82, p.6258-6260.

Hanawalt,1981. Powder Diffraction File. Organic and Organometallic Phases Search Manual. Alphabetical and Formulae Indexes. JCPDS, E.U.A.

Hanawalt,1984. Powder Diffraction File Inorganic Phases. Alphabetical Index. Chemical and Mineral Name. JCPDS, E.U.A.

Haskin L.A., Frey F.A., 1966. "Meteoritic Solar and Terrestial Rare-Earth Distributions". Physics and Chemistry of the Earth, 7, p.167-316. Haskin L.A., 1979. "On Rare-Earth Element Behaviour in Ig-neous Rocks".En: Ahrens L.H. (Ed.), Physics and Chemistry of the Earth, Vol.11. Proceedings of the Second Symposium, Paris, Mayo 1977. Pergamon Press, Londres, p.175-189.

Hawkesworth C.J., 1982. "Isotope Characteristics of Magmas Erupted Along Destructive Plate Margins". En: R.S.Thorpe -(Ed.), Andesites: Orogenic Andesites and Related Rocks. -John Wiley and Sons, N.Y., p.549-571.

Henderson P., Williams C.T., 1979. "Variation in Trace Element Partition (Crystal/Magma) as a Function of Crystal Growth -Rate". En:Ahrens L.H. (Ed.), Physics and Chemistry of The Earth, Vol.11. Proceedings of the Second Symposium, Paris, Mayo 1977. Pergamon Press, Londres, p.175-189.

Herrera E.,1985. "Las Tierras Raras y sus Ambientes Geológicos con Referencia a México". Ier. Simposium Nacional Sobre la Química de las Tierras Raras y su Desarrollo en México. México (Resumen).

Hillebrand W.F. et al., 1953. Applied Inorganic Analysis. -John Wiley, N.Y., 1034 p.

Hulet E.K. y Bodé D.D., 1972. "Separation Chemistry of the -Lanthanides and Transplutonium Actinides". En: Bangnall K.

W. (Ed.), Lanthanides and Actinides. Butterworths, Londres, p.2-41.

Jackman J.R. y Trethewey W.H., 1982. "Trends in Rare Earth Metal Consumption for Steel Applications in the 1980's. -En: McCarthy G.J., Silber H.B. y Rhyne J.J. (Ed.). The Rare Earths in Modern Science and Technology. Plenum Press, N.Y., p.537-546.

Jakes P., Taylor S.R., 1974. "Excess Europium Content in Precambrian Sedimentary Rocks and Continental Evolution". --Geochim.Cosmochim.Acta, 38, p.739-745.

Jenkins A.E. y Majer J.R.,1967. "Mass Spectrometry of Metal Chelates-I.Detection in the Picogram Scale". Talanta,14, p.777-783.

Karraker D.G.,1970."Coordination of Trivalent Lanthanide -Ions". Journal of Chemical Education. 47(6),p:424-430.

Koehler J.M. y Bos W.G.,1968. "A Novel Synthesis of Some -Anhydrous Rare Earth Acetylacetonates". Chem.Abstr.68, ---45680s. Inorg.Nucl.Chem.Lett., 3(12), p.545-548 (1967).

Laufer F.P.,1986. "El Empleo de Surfactantes en la Determinación Espectrofotométrica de Tierras Raras.II Simposium Na cional Sobre la Química de las Tierras Raras y su Desarrollo

105 ~~

en México. México. (Resumen).

Litzow M.R. y Spalding T.R., 1973. "Mass Spectrometry of Inorganic and Organometallic Compounds" En: Lapper M.F. (Ed.), Physical Inorganic Chemistry. Monograph 2. Elsevier Scienti fic Publ. Co., Amsterdan, ~p.563-580.

Livingstone S.E. y Zimmermann W.A., 1976."Mass Spectral Studies of Lanthanide Chelates.II. Lanthanide Chelates of ---Three Fluorinated -Diketonates" Aust.J.Chem., 29, p.1845-1850.

Lyle S.J. y Witts A.D.,1970. " A Critical Examination of -Some Methods for the Preparation of Tris and Tetrakis Diketonates of Europium (III)". Inorganica Chimica Acta,5 (3), p.481-484.

MacDonald C.G. y Shannon J.S., 1966. "Mass Spectrometry and Structures of Metal Acetylacetonate Vapours". Aust.J.Chem., 19, p.1545-1566.

McKay G.A., 1986. "Crystal/Liquid Partitioning of REE in Basaltic Systems : Extreme Fractionation of REE in Olivine. Geochim.Cosmochim.Acta, 50, p.69-79.

Moeller T. y Ulrich W.F.,1956. "Observations on the Rare -Earths -LXVII.Some Observations on the Absorption Spectra

of Non-Aqueous Solutions of Some Acetylacetone Chelates". J.Inorganic and Nuclear Chemistry, 2, p.164-175.

Moeller T., 1970. "Periodicity and the Lanthanides and Actinides". J.Chem.Ed., 47 (6), p.417-423.

Mora M.J., Jiménez-Reyes M.,1985. "Determinación de Elementos de las Tierras Raras por Análisis por Activación Neutró nica". I. Simposium Nacional Sobre la Química de las Tie-rras Raras y su Desarrollo en México. México.(Resumen).

MoorgL.J., Fassett J.D. y Travis J.C., 1984. "Systematics -of Multielement Determination with Resonance Ionization --Mass Spectrometry and Thermal Atomization". Anal.Chem. 56, p.2770-2775.

Morrice E. y Wong M.M., 1982. "Preparing Rare Earth Silicon Iron Alloys".En: McCarthy G.J., Silber H.B. y Rhyne J.J. (Ed.). The Rare Earths in Modern Science and Technology. Plenum --Press, N.Y., p.557-560.

Morteani G., Möller P. y Hoefs J., 1986. "Rare Earth Elementand Oxygen Isotope Studies of Altered Variscan Granites: The Wstern Harz(Germany) and Southern Sardinia (italy)". Chemical Geology, 54, p.53-68.

Munz P. y Bucher E., 1982. "The Use of Rare Earths in Photo-

voltaics".En: McCarthy G.J., Silber H.B. y Rhyne J.J.(Ed.), The Rare Earths in Modern Science and Technology. Plenum Press, N.Y., p.547-556.

Nash W.P., Crecraft H.R., 1985. "Partition Coefficients for Trace Elements in Silicic Magmas". Geochim.Cosmochim.Acta, 49, p.2309-2322.

Navarro M.R., Avila R.M., Jiménez F.J. y Contreras Z.R., 1986. "Determinación de Constantes de Distribución de Lantánidos en la Resina IR-210 en Presencia de Acido Cítrico". II Simposium Nacional Sobre la Química de las Tierras Raras y su Desarrollo en México. México. (Resumen).

Negendank J.F.W., Emmermann R., Krawczyk R., Mooser F., Tobschall H. y Welw D.,1985. "Geological and Geochemical Investigations on the Eastern Trans-Mexican Volcanic Belt".Geoffsica Internacional., 24 (4), p.477-576.

Nicholls G.D., Graham A.L., Williams E. y Wood M., 1967."Presicion and Accuracy in Trace Element Analysis of Geological Materials Using Solid Source Spark Mass Spectrography". Analytical Chemistry , 39 (6), p.584-590.

O'Nions R.K., Hamilton P:J. y Evensen N.M., 1977. "Variations in ¹⁴³Nd/¹⁴⁴Nd and ⁸⁷Sr/⁸⁶Sr Ratios in Oceanic Basalts! --Earth and Planetary Science Letters, 34, p.13-22.

Ortega T.E., Pérez C.G., Laufer D.F.P., Cassir K.M., 1986."A-·plicación del Naranja de Xilenol en la Determinación Espec trofotométrica de Tierras Raras" II Simposium Nacional So-·bre la Química de las Tierras Raras y su Desarrollo en México". México. (resumen).

Pal S. y Urrutia F.,1977. "Paleomagnetism ,geochronology and geochemistry of some igneous rocks from Mexico and their -tectonic implications". Proc.LV, Int.Symp.Calcutta, p.814-931.

Pecsok R.L.; Shields L.D., Cairns T., McWilliam I.G., 1976. -Modern Methods of Chemical Analysis, 2nd.Ed. John Wiley & Sons , N.Y., p.316-360.

Ringbom A., 1979. Formación de Complejos en Química Analítica. Alhambra, España, p.345.

Robin C.,1982. "Mexico". En: R.S.Thorpe (Ed.), Andesites: Orogenic Andesites and Related Rocks. John Wiley & Sons, p.137-147.

Roboz J.,1967. "Mass Spectrometry". En: Morrison (Ed.), Trace Analysis Physical Methods. Interscience Publ.,N.Y., p.435--504.

Roelandts I., Michel G., 1986. "Sequential Inductively Coupled

Plasma Determination of Some Rare-Earths Elements in Five French Geostandards". Geost.Newslett., 10 (2), p.135-154.

Rogers G., Saunders A.D., Terrell D.J., Verma S.P. & Marriner G.F., 1985. "Geochemistry of Holocene Volcanic Rocks Asso-ciated with Ridge Subduction in Baja California , Mexico". Nature, 315(6018), p.389-392.

Savoyant L., Persin F., y Dupuy C., 1984. "Determination des-Terres Rares dans Certaines Roches Basiques et Ultrabasiques" Geostand.Newslett., 8 (2), p. 159-161.

Schmitt R.A., Mosen A.W., Suffredini C.S., Lasch J.E., Sharp R.A., Olehy D.A., 1960. "Abundances of the Rare-Earth Ele-ments Lanthanum to Lutetium in Chondritic Meteorite". ---Nature, 186, p.863-866.

Schnetzler Ch.C., Thomas H.H., Philpotts J.A.,1967. "Determination of Rare Earth Elements in Rocks and Minerals by Mass Spectrometric, Stable Isotope Dilution Technique". Anal. Chem., 39, p.1888-1890.

Schoeller W.R., Powell A.R., 1955. Analysis of Minerals & Ores of the Rarer Elements. Hafner Publ.Co., EUA, p.94-112.

Seibl J.,1973. Espectrometría de Masas. Ed. Alhambra, Madrid, 228 p.

Skoog D.A., West D.M., 1975. Análisis Intrumental. Ed. Interamericana, México, p.366-386.

Stites J.G., McCarthy C.N. y Quill L.L., 1948. "The Rare --Earth Metals and Their Compounds. VIII. An Improved Method for the Synthesis of Some Rare Earth Acetylacetonates". J. AM.Chem.Soc., 70, p.3142-3143.

Strelow F.W.E., Rethemeyer R. and Bothmn C.J.C., 1965"Ion --Exchange Selectivity Scales for Cations in Nitric Acid and Sulfuric Acid Media with a Sulfonated Polystyrene Resin".-Anal.Chem., 37 (1), p.106-111.

Suzuki Y., Ioth H. y Nakano T., 1982.Rare Earth Ion Selective Electrodes: II.Europium and Praseodymium Compound Membranes. En: McCarthy G.J., Silber H.B. y Rhyne J.J. (Ed.). The Rare Earths in Modern Science and Technology. Plenum Press, N.Y., p.521-524.

Taylor S.R., 1965a. "Geochemical Analysis by Spark Source --Mass Spectrography". Geochim.Cosmochim.Acta, 29, p.1243-1261.

Taylor S.R.,1965 b. "The Application of Trace Element Data to Problems in Petrology". Physics and Chemistry of the --Earth, 6, p.133-200.

Taylor S.R., 1971. "Geochemical Application of Spark Source Mass Spectrography-II.Photoplate Data Processing:Geochim.-

Cosmochim.Acta, 35, p.1187-1196.

Taylor S.R. and Gorton M.P.,1977. "Geochemical Application of Spark Source Mass Spectrography-III.Element Sensitivity, Precision and Accuracy". Geochim.Cosmochim.Acta, 4, p.1375-1380.

Terrell D.J.,1976. Determinación de Elementos Trazas en --Ciencias de la Tierra Usando el Método Instrumental de Activación por Neutrones. Tesis, M.C.,esp.Geofísica,UNAM.

Terrell D.J., Pal S. y López M.M., 1978. "Geochemistry of -Some Metamorphic and Sedimentary Rocks from the Mineral --District of Zacatecas, Zac., Mexico".Geofís.Int., 17, -p.151-166.

Terrell D.J., Pal S., López M.M. y Pérez R.J., 1979. "Rare---Earth Elements in Basalt Samples; Gulf of California". Chem. Geol., 26, p.267-275.

Trífonov D.N.,1981. El Precio de la Verdad. Ed. Mir, Moscú, 148 p.

Verma S.P., 1983a. "Magma Genesis and Chamber Processes at Los Humeros Caldera, Puebla, Mexico -Nd and Sr Isotope Data". Nature, 301, p.52-55.

Verma S.P., 1983b. "Strontium and Neodymium isotope geochemistry of igneous rocks from NE Pacific and Gulf of California".Isot.Geosci., 1, p.339-356.

Verma S.P., 1984. "Sr and Nd Isotopic Evidence for Petrogenesis of Mid-Tertiary Felsic Volcanism in the Mineral District of Zacatecas, Zac. (Sierra Madre Occidental), Mexico". Isot.Geosci., 2, p.37-53.

Verma S.P.,1985. "Las Tierras Raras y su Utilidad en el Estudio de la Petrogénesis de Rocas Volcánicas de México". Ier. Simposium Nacional Sobre la Química de las Tierras Raras y su Desarrollo en México".México.(Resumen).

Verma S.P., López M.M., Terrell D.J., 1985. "Geochemistry of Tertiary Igneous Rocks form Arandas-Atotonilco Area, Northeast Jalisco, Mexico". Geofís. Int., 24 (1), p.31-45.

Vicente-Pérez S., 1979. Química de las Disoluciones: diagramas y cálculos gráficos. Alhambra, España, 394 p.

Wallace W.E., France J. y Shamsi A.,1982. "Catalysis Using Rare Earth and Actinide Intermetallics Conatining Fe,Co,Ni, and Cu".En: McCarthy G.J.,Silber H.B. y Rhyne J.J.,The Rare Earths in Modern Science and Technology. Plenum Press, N.Y. p.561-568.

White W.M. & Hofmann A.W.,1982. "Sr and Nd Isotope Geochemistry of Oceanic Basalts and Mantle Evolution". Nature,296, p.821-825.

Zabre R.H., Andrade R., 1981. Química del Cerio. LANFI, Monografía II, México, 75 p.