

TESIS DE MAESTRIA EN CIENCIAS (FISICA)

FACULTAD DE CIENCIAS

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

TITULO: Un cálculo de la energía superficial y la función de trabajo de metales.

AUFOR: Niguel Angel Ocampo Mortera

DIRECTOR: Dr. Fernando Magaña Solís

México, D.F., octubre de 1980.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Agradecimientos RESUMEN INTRODUCCION Capítulo I.- EL GAS DE ELECTRONES 5 1.1 El modelo de Sommerfeld 5 1.2 La aproximación de Hartree-Fock 12 1.3 El formalismo de H.K.S. 16 Capitulo II. - ENERGIA SUPERFICIAL Y FUNCION DE TRABAJO 22 11.A ENERGIA SUPERFICIAL 11.1 El modelo de H.B. Huntington 22 11.2 El modelo de N.D. Lang'y W. Kohn 29 11.3 La aplicación del Teorema de Hellmann-Feynman ·vial cálculo, de la energía de superficie de mewitales (.... II.B FUNCION DE TRABAJO 17.4 La teoría de Bardeen 39 11.5 La teoría de Lang y Kohn 42 Capitulo 111.- RESULTADOS Y DISCUSION 45 III.I Energía superficial 111.2 Función de trabajo de Hidrógeno metálico 55 Apéndice A 58 Apéndice B 60 Apéndice C 6.4 supplies and the Referencias 77

INDICE

RESUMEN

Se presenta un estudio somero de los esquemas de Sommerfeld, --Hartree-Fock y Hohenberg, Kohn y Sham para el tratamiento del gas de electrones de un metal.

Se reproducen los modelos propuestos por H.B. Huntigton y por -N.D. Lang y W. Kohn para el cálculo de la energía de superficie de metales y se propone además un nuevo método para el cálculo de esta_ energía superficial. Dicho método se basa en la utilización del Teorema de Hellmann-Feynman. Los cálculos realizados con este nuevo esquema arrojan resultados que presentan una buena concordancia con -los datos experimentales para metales de baja densidad electrónica y muestran un comportamiento cualitativo correcto a densidades altas.

Se presentan las teorías de J. Bardeen y de N.D. Lang y W. Kohn para la función de trabajo. Se plantean las ecuaciones autoconsisten tes correspondientes y se desarrolla una metodología para la solu--ción de las ecuaciones que resultan de la teoría de Lang y Kohn. Se calcula con ésto la estructura electrónica en la vecindad de una superficie y la función de trabajo. Se reproducen los cálculos de Lang y Kohn para valores de r_s=2,4,6 y se extienden estos para considerar el caso de Hidrógeno metálico (r_s=1). El valor obtenido para la función de trabajo de Hicrógeno metálico es de

INTRODUCCION

La física de superficies ha sido tradicionalmente uno de los campos que han recibido relativamente poce atención, no porque el es tudio de las superficies no tenga ningún interés sino porque el desa reollo de la tecnología necesaria tanto para los estudios teóricos como para los experimentales se ha dado sólo en fechas relativamente recientes. Actualmente el desarrollo de la tecnología ha permitido realizar estudios cada vez más profundos sobre las diversas propieda des de las superficies. Se ha logrado de esta manera obtener un panorama que, aunque incipiente, abarca ya una diversidad de temas que cubren la mayoría de los problemas que plantea el estudio de las superficies.

El presente trabajo constituye un esfuerzo para estudiar algunas de las características superficiales de los metales. Nos proponemos como meta principal el cálculo de la energía de superficie y la función de trabajo para diferentes metariales. En especial, reportamos el cálculo de la función de trabajo y la estructura electrónica super ficial para el caso de Hidrógeno metálico.

El enfoque que proponemos para el cálculo de la energía superficial se basa en la aplicación de el Teorema de Helimann-Feynman al cálculo del cambio de energía de un espécimen metálico en el proceso de ser fraccionado... El modelo empleado para representar el metal es el de Sommerfeld, en consecuencia no se consideran las contribuciones de correlación e intercambio ni las complicaciones que introduce

La obtención de la función de trabaja para Hillagero metálico constituye una extensión de los cálculos realizados por N.D. Lang y W. Kohn^{11,33} al considerar el caso rs=1.

Hemos dividiso, este trabajo en tres capítulos. En el primer ca pítulo se presentan las descripciones de los esqueos de Sommerfeld,

Hartree-Fock y Hohenberg, Kohn y Sham para el cálculo de las propi<u>e</u> dades de los electrones en un metal.

El segundo capítulo consiste en la exposición de los eninques propuestos por H.B. Huntington⁽³⁾, y Lang-Kohn⁽⁴⁾ para el c.lculo de la energía superficial de metales. Desarrollamos tambiér⁴ un conjun to de expresiones que dan la energía de superficie de un metal m<u>e</u> diante la aplicación del Teorema de Hellmann-Feynman. Exponemos -asímismo, dos teorías sobre la función de trabajo; una desarrollada por Bardeen⁽⁴⁾ que considera el espectro de energías de los electrones en un metal basado en el esquema de Hartree-Fock. La otra; desarrollada por Lang y Kohn, considera la extensión del formalismo Je Hohenberg, Kohn y Sham a sistemas con un número variable de partículas y se obtiene una expresión para la función de trabajo que considera todos los efectos de muchos cuerpos.

El capítulo final está dedicado a la exposición y discusión de nuestros resultados.

Como complemento al cuerpo principal de este trabajo se incluyen al final tres apéndices en los que se presentan algunos desarro llos necesarios.

Las unidades utilizadas en todos los desarrollos teóricos son unidades atómicas, ésto es, se toman la masa y la carga electrónicas, así como la constante de Planck, unitarias.

CAPITULO 1. EL GAS DE ELECTRONES

Durante los últimos cien años las gentes dedicadas a estudiar las propiedades de los metales han intentado construir modelos senci llos que describan en forma adecuada las propiedades del estado metá lico. En el curso de esta búsqueda se han obtenido valiosos éxitos parciales en lo que se refiere a la explicación tanto cualitativa co mo cuantitativa de las propiedades más importantes de los metales. Aún los modelos más "primitivos", a pesar de sus errores sebresalien tes, resultan realmente útiles cuando se emplean apropiadamente. En este capítulo describiremos en forma resumida tres enfoques del problema de determinar la conducta del gas de electrones en un metal: El modelo de Sommerfelo^{16,6,71}, la aproximación de Hartree-Fock^{16,71} y el formalismo de la funcional de la densidad desarrollado por Hohen berg, Kohn y Sham (H.K.S.)^{[8,91}

1.1 EL MODELO DE SOMMERFELD

El modelo de Sommerfeld constituye la primera aplicación del formalismo de la mecánica cuántica al estudio de la dinámica de los electrones en un metal. Este modelo supone como una buena aproximación que el patencial neto producido por iones y electrones se puede tomar igual a cero en el interior del metal y constante fuera de él. Aunque tal suposición parece idealizar excesivamente la situación real ha probado ser valiosa para describir en forma aceptable un buen número de propiedades de los metales.

Consideremos un espécimen metálico en forma de cubo y supongamos como infinito el potencial constante fuera del metal. Se obtiene en Lonces que las funciones de onda correspondientes a los estados esta cionarios de las partículas del sistema, despreciando el spín, son:

Ψn, ny, nz = (2/L)^{3/2} Sen(^{n, πx/L})Sen(^{ny, πy/L}) Sen(^{nzπ2/L}) en el interior del metal O fueva del metal

donde $n_{k_1}n_{k_2}n_{k_3}$ son enteros positivos y L es la longitud de la arista del cubo.

Aquí hemos supuesto que el cubo se encuentra en el primer octan re del sistema de coordenadas estando uno de sus vértices en el origen. Fig. 1.1

Fig. 1.1

En el modelo de Sommerfeld se considera como nulo el potencial visto por los electrones en el interior de un metal. En el exterior observan un potencial infinito.

(1.1)

Los niveles de energía correspondientes a las funciones de onda obtenidas son:

$$\xi_{\mathbf{k}_{*},\mathbf{k}_{*},\mathbf{k}_{*}} = \frac{1}{2} (\mathbf{k}^{1} \cdot \mathbf{k}^{2} + \mathbf{k}^{2})$$
 (1.2)

donde las la representán las componentes del vector de onda asociado coa el estado en consideración y están dados por: En el espacio de vectores de onda los estados electrónicos se pueden representar por los puntos de una red cúbica simple que quedan en el primer octante sin incluir su frontera. Considerando que el parámetro de esta red es π/L se obtiene una densidad promedio de puntos de $(L/\pi)^3$. Además como a cada uno de estos puntos corresponden dos estados, uno por cada orientación del spín, se tiene que la densidad promedio de estados en tal espacio es:

2V/113

con V [gual al volumen del espécimen metálico.

A partir de esta expresión se puede obtener fácilmente la dens<u>i</u> dad de estados en la energía, g(E), que se define como el número de estados por intervalo unitario de energía:

$$g(z) = \frac{2^{1/2} V}{\Pi^4} E^{1/2}$$
(1.4)

Para calcular las cantidades físicas de interés del gas de ele<u>c</u> trones con base en el modelo de Sommerfeld-se emplea, y ésto es de importancia fundamental en el modelo, la estadística de Fermi-Dirac. Tenemos en esta forma que la probabilidad de encontrar a un electrón en un estado de energía & está dada por:

$$f(z) = \frac{1}{e^{(z-A)/hT} + 1}$$
(1.5)

donde μ = μ(τ) se denomina el potencial químico del sistema y está d<u>e</u> terminado por la condición de que el número de partículas, N, sea fijo a cada temperatura:

$$N = \int g(\varepsilon) f(\varepsilon) d\varepsilon$$
(1.6)

A TOK to distribución de Fermi-Dirac toma la forma:

$$f(\varepsilon) = \begin{cases} 1 & -; & \varepsilon < \varepsilon_F \\ 0 & ; & \varepsilon > \varepsilon_F \end{cases}$$
(1..7)

donde $\mathcal{E}_{F} \stackrel{=}{=} \mathcal{A}(\tau = 0)$ se denomina energía de Fermi del gas de electrones. Empleando (1.4), (1.6) y (1.7) se tiene que la energía de Fermi de un sistema de electrones de densidad n=N/y, está dada por:

$$\mathcal{E}_{F} = \frac{1}{2} \left(3\pi^{2} n \right)^{2/3}$$
(1.8)

ó, usando el parámetro r., que da el radio de la esfera que en prom<u>e</u> dio ocupa un electrón;

$$\frac{4}{3}\pi^{-r_{*}3} = \frac{1}{n} \quad . \tag{1.9}$$

se tiene:

$$E_{F} = \frac{1}{2} \left(\frac{q}{q} \pi \right)^{\frac{2}{3}} \frac{1}{r_{s}^{1}}$$
(1.10)

Como un ejemplo de la aplicación del modelo de Sommerfeld al cálculo de las propiedades de un metal obtendremos la contribución del gas de electrones al calor específico de un metal a bajas temp<u>e</u> raturas. Para ésto, consideremos primero el cálculo de integrales de la forma:

$$I = \int_{a}^{\infty} h(\varepsilon) f(\varepsilon) d\varepsilon$$
(1.11)

donde h es una función tal que h(0)=0 y f(t) es la distribución de Fermi-Dirac.

La figura 1.2 muestra f(E) y su derivada, f'(E), como función de E para µ/h1=c.10. Se observa que para estos valores de T, que corresponden a temperaturas para las cuales la mayoría de los meta-les se encuentran ya en estado líquido, f'(E), es una función que va

8 -

le cero (aproximadamente) en casi todos los puntos excepto una peque na región alrededor de $E=\mu$. Esto sugiere realizar una integración por partes para expresar (1.11) en términos de una integral de f¹(E):

$$I = - \int_{0}^{\infty} H(\varepsilon) f'(\varepsilon) d\varepsilon \qquad (h. 12)$$

con:

$$H(\varepsilon) = \int_{0}^{\varepsilon} h(x) dx \qquad (1.13)$$

icoarrollando H(E) en serie de potencias alrededor $\mathcal{E}=\mathcal{H}$ y sustituyendo en (1.12) el resultado, se tiene:

$$I = H(\mu)L_{\varepsilon} + \left(\frac{dH}{d\varepsilon}\right)_{\varepsilon = \mu} L_{1} + \left(\frac{d^{2}H}{d\varepsilon^{2}}\right)_{\varepsilon = \mu} L_{\varepsilon} + \cdots \qquad (1.14)$$

e: $L_{1} = -\int_{0}^{\infty} (e - \mu)^{3} f'(\varepsilon) d\varepsilon$ (1.15)

La primera de estas integrales, L σ , es simplemente la unidad pues es igual a f(o)-f(ω). En el resto de ellas podemos sustituir el límite infarlor por - ∞ sin incurrir en un error apreciable ya que f'(E) es casi nula entre -∞ y O. Obtenemos así, que:

$$L_{j} \approx \int_{-\infty}^{\infty} (E - \mu)^{j} f'(\varepsilon) d\varepsilon = (hT)^{j} \int_{-\infty}^{\infty} \frac{x^{j} e^{x}}{(e^{x} + 1)^{2}} dx \qquad (1.16)$$

La expresión (1.14) resulta ventajosa cuando, como és en la ma yoría de los casos importantes, la función H(E) se puede aproximar razonablemente por los primeros términos de su expansión en serie de potencias de $(E - \mu)$.

Para el problema que nos incumbe resulta de importancia el cál culo de la expresión (1.11) en dos casos; aquel en que I es el núme ro de electrones del gas, N, que corresponde a tomar h(E) como la densidad de estados del sistema, g(E), y el caso en que I es la ener gía total del sistema, V, en el que h(E): teg(E).

En el primer caso $H(\epsilon) = \frac{2^{3/2} V}{3 \pi^2} \tilde{\epsilon}^{3/2}$. Utilizando entonces que La = $(\pi k \bar{\tau})^2/3$ se obtiene de (1, 14) que:

$$N = \frac{2^{3/2} V}{3 \pi^2} \mu^{3/2} \left[1 + \frac{\pi^2}{8} \left(\frac{i \pi}{\mu} \right)^2, \cdots \right]$$
(1.17)

Empleando (1.8) esta expresión se puede escribir como:

$$E_{\rm F} = \mu \left[1 + \frac{\pi^3}{8} \left(\frac{{\rm k}T}{\mu} \right)^2 + \cdots \right]^{1/3}$$
$$= \mu \left[1 + \frac{\pi^3}{12} \left(\frac{{\rm k}T}{\mu} \right)^2 + \cdots \right] \qquad (1.18)$$

La inversión de esta serie da el potencial químico en términos de ξ_F y T:

$$\mu = \epsilon_{\rm F} \left[\left[1 - \frac{\Pi^2}{12} \left(\frac{k \Pi}{\epsilon_{\rm f}} \right)^2 + \cdots \right] \right]$$
(1.19)

Para obtener la energía del sístema utilizamos $H(z) = \frac{2^{3/2}V}{5\pi^2} e^{-3/2}$ en (1.14), ésto da:

$$U = \frac{2^{3/2} V}{5 \pi^2} \left| \mu^{5/2} \left[1 + \frac{5 \pi^2}{8} \left(\frac{\kappa^2}{\mu} \right)^2 + \dots \right]$$
(1.20)

Esta extresión se puede reescribir en términos de la energía -del sistema a T=O K, U₀;

$$U = U_c \left(\frac{\mu}{\epsilon_s}\right)^{5/2} \left[1 + \frac{5\pi^2}{8} \left(\frac{kT}{\mu}\right)^2 + \cdots\right]$$
(1.21)

donde, de (1.19) y (1.20);

$$U_{o} = U(T = 0) = -\frac{2^{3/2} V}{5\pi^{2}} \xi_{f}^{3/2} = -\frac{3}{5} N \xi_{f}$$
(1.22)

La sustitución de (1.19) en (1.21) da finalmente la expresión <u>pa</u> ra U como función de la temperatura:

$$U = V_0 \left[1 + \frac{5 \pi^2}{12} \left(\frac{kT}{k_F} \right)^2 + \cdots \right]$$
(1.23)

de ésta se sigue que la contribución del gas de electrones al calor específico de un metal está dada por:

$$c_{v} = \frac{1}{N} \frac{dU}{d^{T}} = \frac{\Pi^{2}}{2} h\left(\frac{hT}{E_{c}}\right)$$
(1.24)

Con la definición de temperatura de fermi:

$$T_{\rm F} \equiv E_{\rm F} / R \qquad (1.25)$$

(1.24) se puede reescribir como:

$$c_{\star} = \frac{\Pi^{2}}{2} h\left(\frac{T}{T_{\rm F}}\right) \tag{1.26}$$

Se puede ver que el comportamiento lineal del calor específico a bajas temperaturas es una característica distintiva del gas de elec-trones, válida independientemente de su dimensionalidad^{(SI}, la predic ción de esta linealidad constituyó un gran éxito de la toría de Som-merfeid.

Los éxitos de la teoría se extendieron posteriormente cuando el

modelo se aplicó al cálculo de diversas propiedades de los metales. Para metales simples se lograron predecir, en forma razonaule, las conductividades eléctrica y térmica, la contribución paramagnética a la susceptibilidad y las distribuciones espectrales en el dominio de los rayos x, entre otras propiedades.

Actualmente sabemos que el éxito del modelo de Sommerfeld se de be fundamentalmente al empleo de la estadística de Fermi-Dirac para calcular las diversas propiedades del gas de electrones. También se ha visto, a la luz de aproximaciones como las de Hartree y Hartree--Fock, que la suposición de que el potencial visto por los electrones dentro de un metal es constante queda justificada al considerar mode los que sustituyen la red de iones de un metal por una densidad uniforme de carga positiva y consideran la interacción promedio de los electrones con la nube electrónica^{16,71}.

El modelo de Sommerfeld también enfrenta, como es natural, algunos problemas en la predicción de propiedades para las que resultan_ relevantes las interacciones electrón-electrón y electrón-red. La na_ turaleza misma de un metal sólo puede ser entendida cuando se considera la influencia que la estructura de la red de iones ejerce sobre la dinámica del gas de electrones.

1.2 LA APROXIMACION DE HARTREE-FOCK

La teoría de Hartree-Fock constituye uno de los primeros intentos para resolver el problema de las interacciones electrón-electrón y electrón-red en un gas de electrones inhomogéneo. Se parte er ésta del Hamiltoniano exacto para un metal y se obtiene mediante la aplicación del principio variacional de la mecánica cuántica un conjunto de ecuaciones cuya solución da la estructura dinámica del gas de e-lectrones:

Como sabemos, el Hamiltoniano para el conjunto de electrones de-

un sólido cristalino con núcleos fijos tiene la forma:

$$\mathcal{H} = \sum_{i} \left(-\frac{1}{2} \nabla_{i}^{2} + v(\bar{r}_{i}) \right) + \frac{1}{2} \sum_{i,j} \frac{1}{r_{ij}}$$
(1.27)

donde $\mathfrak{V}(\overline{r})$ es el potencial producido por la red de iones «n el punto \overline{r} . La comilla en la doble suma indica que se excluyen términos con i=j.

En la aproximación de Hartree-Fock el problema de eigenvalores_ para el Hamiltoniano (1.27) se resuelve aproximando sus elgenfunciones por un producto antisimetrizado de funciones de onda de una partícula:

$$\Psi = \mathcal{A}\left[\left[\varphi_{i}\left(\bar{\tau}_{i}, \varsigma_{i}\right)\varphi_{i}\left(\bar{\tau}_{i}, \varsigma_{i}\right)\cdots\varphi_{u}\left(\bar{\tau}_{u}, \varsigma_{u}\right)\right]\right]$$
(1.28)

Aquí s es la variable de spin del estado en consideración.

La forma para las funciones de onda @((F,s) se obtiene minimi-zando el valor de (Ψ]Դ႞Ψ) imponiendo las condiciones de ortonormalidad:

$$\langle \varphi_i | \varphi_j \rangle = \delta_{ij}$$
 (1.29)

La expresión matemática de este problema toma la siguiente forma:

donde las λ_{ij} son los N^a multiplicadores de Lagrange asociados con las condiciones (1.29) y S implica un proceso de variación en el que $\xi \varphi_i$ y S φ_i^* se toman como independientes.

La ecuación (1.30) es equivalente a las llamadas ecuaciones de_ Hartree-Fock:

$$\left(-\frac{1}{2}\nabla^{2}+\nabla(\bar{\tau})+\sum_{i}\left[\frac{|\psi_{i}(\bar{\tau})|^{2}}{|\bar{\tau}-\bar{\tau}'|}d\bar{\tau}'\right]\psi_{l}(\bar{\tau})+\right.$$

$$r \sum_{j} \psi_{j}(\bar{r}) \int \frac{\varphi_{j}^{*}(\bar{r}) \psi_{i}(\bar{r})}{|\bar{r}-\bar{r}'|} d\bar{r}' \delta_{si,sj} = \varepsilon_{i} \varphi_{i}(\bar{r})$$
(1.31)

En estas ecuaciones los parámetros \mathcal{E} i están implicitamente reluciona dos con los multiplicadores de Lagrange λ_{ij} y las funcionas de unda $\Psi_i(\vec{r},s)$ se reducen a su parte orbital, $\Psi_i(\vec{r})$.

Una vez resueltas las ccuaciones (1.31) para un conjunto de N - funciones $\phi_i(F)$ se obtiene la energía del sistema mediante la expresión:

$$\begin{split} \mathbf{E} &= \sum_{i} \int d\vec{r} \cdot \boldsymbol{\varphi}_{i}^{*}(\vec{r}) \Big[-\frac{1}{2} \nabla^{2} + \mathcal{V}(\vec{r}) \Big] \boldsymbol{\varphi}_{i}(\vec{r}) + \frac{1}{2} \sum_{ij} \int \frac{I(\vec{r}_{i}(\vec{r}))^{2} \hat{\boldsymbol{\varphi}}_{j}(\vec{r}) \mathbf{r}^{*}}{|\vec{r} - \vec{r}^{*}|} d\vec{r} d\vec{r} \\ &- \frac{1}{2} \sum_{ij} \int \frac{\boldsymbol{\varphi}_{i}^{*}(\vec{r}) \boldsymbol{\varphi}_{i}(\vec{r}) \boldsymbol{\varphi}_{j}^{*}(\vec{r}) \boldsymbol{\varphi}_{j}(\vec{r})}{|\vec{r} - \vec{r}^{*}|} d\vec{r} d\vec{r} \cdot \vec{S}_{s_{i},s_{j}} \end{split}$$
(1.32)

Se observa que el tercer término de la ecuación (1.31) representa la interacción electrostática que en promedio tiene cada electrón con la nube electrónica. Por otro lado, se puede ver que el último _______ término representa el efecto que ejerce sobre la dinámica del sistema el fenómeno de exclusión^{16,91}. Frecuentemente se representa dicho <u>e</u> fecto en términos de un potencial de correlación en consideración a______ que su comportamiento refleja la influencia que tiene la antisime---tría de las funciones de onda sobre las propiedades del sistema. (---Véase la sección 11.4)

La derivación de las ecuaciones (1,31) no provee de significado físico directo a los parámetros \mathcal{E}_i que, como dijimos, están implicitamente relacionados con los multiplicadores de Lagrange λ_{ij} . Sin em bargo, considerando los valores esperados del Hamiltoniano en un es-

tado de il partículas y en el estado en que se ha removido un elec--trón del estado de una partícula φ_L , Koopmans^[10] demonstró que den-tro del formalismo de Hartree-Fock el parámetro ε_L se puede considerar como el negativo de la energía de ionización para el estado co-rrespondiente siempre que la extracción de dicho electrón/no cambie_ la función de onda del resto de los electrones (lo cual es una aproximación válida para el caso de electrones libres en un cristal).

La aplicación de la teoría presentada a un gas de electrones h<u>o</u> mogéneo resulta en un espectro de energías⁽⁶⁾, dado por:

$$\xi_{fi} = \frac{k^4}{2} - \frac{2}{11} k_F F\left(\frac{k}{k_F}\right)$$
(1.33)

(1.34)

donde:

$$F(x) = \frac{1}{2} + \frac{1 - x^2}{4x} \ln \left| \frac{1 + x}{1 - x} \right|$$

Esto da una energía total del sistema:

 $E = N \left[\frac{3}{5} E_1 - \frac{3}{4\pi} k_F \right]$ (1.35)

Se observa de esta última expresión que la energía de intercambio, que es el último término en (1.32) y (1.35), es comparable a la energía total del sistema. En consecuencia, podría que modelos que se basan en un esquema de partículas independiences resultaran compa rativamente inexactos. Lo que se ha encontrado, sin embargo, es que la comparación de las predicciones teóricas con los resultados experimentales no favorecon, en un buen número de casos, a la teoría de Hartree-Fock sobre otros modelos que, como el de Semmerfeld, hacen caso omiso de la interacción entre electrones. Esto se debe, según se ha visto a la luz de teorías más completas, a que las funciones de onda del tipo (1.23) no pueden considerar la correlación que como consecuencia de su mutua repulsión coulombiana se da entre electro-nes. Dicha correlación compensa en cierta medida el efecto introduci do por intercambio, aún más, se ha visto que su consideración lleva_ a mejorías notables en la potencia predictiva del esquema.

La teoría de Hartree-Fock ha sido fundamental en la comprensión de los fenómenos que rigen la dinámica de sistemas de partículas que interaccionan entre sí. En la práctica ha resultado útil en el cálcu lo y la comprensión de la energía cohesiva de diversos sistemas mole culares.

1.3 EL FORMALISMO DE H.K.S.

El formalismo de H.K.S., desarrollado por Hohenberg, Kohn y ---Sham, surge como una herramienta poderosa para el estudio de un gas_ de electrones inhomogéneo dentro de la corriente que considera a la_ densidad electrónica como pieza central en el problema de obtener -las propiedades de un sistema de muchos electrones. Partiendo de la_ justificación formal de dicha consideración se desarrollan un conjun to de ecuaciones que permiten, en principio, obtener la energía to-tal exerta y la densidad premedio de un gas de electrones en su esta do base bajo la influencia de un campo externo.

Las proposiciones fundamentales de la teoría son dos:

1. Que la energía del estado base de un ças de electrones sujeto a la acción de un potencial externo, $\sqrt{(\vec{r})}$, se puede expresar como:

 $E = \left[U(\tau)n(\tau)d\tau + F(n(\tau)) \right]$ (1.36)

donde $F[n(\vec{r})]$ es una funcional universal de la densidad electrónica, $n(\vec{r})$; y

II: Que la energía del sistema, tomada como la funcional de la densidad (1.36), toma su valor mínimo para la densidad correspondiente al estado base siempre que el número total de partículas se mantenga constante. Consideremos un conjunto de electrones encerrados en una caja suficientemente grande bajo la influencia de un potencial externo, v(F), y sujetos a su interacción electrostática mutua. El Hamiltonia no de este sistema tiene la forma:

$$H = T + V + U$$
 (1.37)

donde, introduciendo el operador de campo $\Psi(\vec{r})$, se tiene:

$$T = \frac{1}{2} \int \nabla \Psi^*(\vec{r}) \nabla \Psi^*(\vec{r}) d\vec{r}$$
 (1.38)

$$\mathbf{v} = \int \mathbf{v}(\mathbf{r}) \Psi'(\mathbf{r}) \Psi(\mathbf{r}) d\mathbf{\bar{r}}$$
(1.39)

$$U \equiv \frac{1}{2} \left\{ \frac{1}{|\vec{\tau} - \vec{\tau}|} \Psi^{*}(\vec{\tau}) \overline{\Psi}^{*}(\vec{\tau}') \Psi(\vec{\tau}') \overline{\Psi}(\vec{\tau}) d\vec{\tau} d\vec{\tau}' \right\}$$
(1.40)

Aquí T. V y U representan los operadores de energía cinética, de interacción de los electrones con el campo externo y de interacción electrostática entre los electrones, respectivamente.

La prueba de la proposición I es por reducción al absurdo: Sean Ψ y Ψ' las funciones de onda asociadas con el estado base de los Hamiltonianos ℋ y ℋ' caracterizados, respectivamente, por los potenciales v(F) y 𝔅'(F). Si se supone que tanto Ψ como Ψ' dan lugar a la misma densidad electrónica, n(F), se tendría:

$$E_{3} = \langle \Lambda_{3}, \Lambda_{1} | \Lambda_{3} \rangle < \langle \Lambda_{1} | \Lambda_{1} | \Lambda_{3} \rangle = \langle \Lambda_{1} | \Lambda_{1} + \Lambda_{3} - \Lambda_{1} | \Lambda_{3} \rangle$$
 (1.41)

de donde; $E^{2}-E < \int [V^{2}(\bar{\tau}) - V(\bar{\tau})] n(\bar{\tau}) d\bar{\tau} \qquad (1.42)$

Por otro lado, se obtendría, en forma completamente análoga:

Las expresiones (1.42) y (1.43) son contradictorias. Le cuvi se sigue que existé una correspondencia biunívoca entre la dynsidad de un sistema de electrones en su estado base y el potencial externo, - $V(\vec{r})$, que lo define.

Por lo anterior, se puède considerar a V(F) como una funcional única de n(F) y, por extensión, tanto el Hamiltoniano como la fun--ción de onda del estado base de un sistema resultan ser también funcionales únicas de la densidad. Una consecuencia de ésto es que la <u>e</u> nergía del estado base del sistema se puede expresar como:

$$\Xi = \mathbb{E}\left[n(\tau)\right] \equiv \left[\Psi(\tau)n(\tau)d\tau + \mathbb{E}[n(\tau)] \right]$$
(1.44)

donde:

$$F[n(\tau)] = \langle \Psi | T + U | \Psi \rangle$$
 (1.45)

resulta ser una funcional universal de la densidad, independiente -del número de partículas y del potencial externo.

La proposición || es una consecuencia directa de que la función de onda para el estado base de un sistema es una funcional de la de<u>n</u> sidad y de que, para un número fijo de partículas, la energía del -sistema, considerada como funcional, toma su valor mínimo para la -función de onda correspondiente al estado base.

Los resultados obtenidos constituyen en sí un esquema que permi te obtener, en principio, tanto la energía como la densidad electrónica de un gas de electrones en su estado base. A continuación desarrollaremos este esquema para llevarlo a una forma de mayor utilidad práctica; consideremos para ello la definición:

$$F[n_{1}(\bar{\tau})] = G[n(\bar{\tau})] + \frac{1}{2} \int \frac{n(\bar{\tau}) n(\bar{\tau})}{|\bar{\tau} \cdot \bar{\tau}|} d\bar{\tau} d\bar{\tau} d\bar{\tau}$$
(1.46)

que permite tratar en forma separada la Interacción coulombiana promedio entre los electrones en la expresión (1.45) para F[n]. La funcional G[n] hereda el carácter de universal de F[n] y puede ser tratada en la misma forma que ésta para especificar la contribución de la energía cinética a la energía del sistema;

$$G[n(\bar{\tau})] \equiv \int T[n(\bar{\tau})] d\bar{\tau} + E_{\infty}[n(\bar{\tau})]$$
(1.47)

Aquí el primer término corresponde a la energía cinética del sistema y la funcional E., [n] incluye lo que se ha dado en llamar energías - de intercambio y correlación.

En el artículo de Hohenberg y Kohn^[23] se muestra que, para una densidad con gradientes pequeños, la energía de intercambio y correlación se puede aproximar por la expresión:

$$\mathbb{E}_{\kappa}[n(\tau)] \approx \int \mathbb{E}_{\kappa}(n(\tau)) n(\tau) d\tau \qquad (1.48)$$

donde $E_{xc}(n)$ es la energía de intercambio y correlación por partícula en un gas de electrones de densidad uniforme n. El error en la approximación (1.43) es proporcional al cuadrado del gradiente de la - densidad.

Debe notarse que el desarrollo presentado hasta ahora sólo se introducen aproximaciones a través de la expresión (1.48). En todo lo que sigue ésta será la única fuente de inexactitud.

Empleando las expresiones (1.44)-(1.48) se puede escribir la energía.en la siguiente forma:

$$E[n] = \int \varphi(\tilde{r}) n(\tilde{r}) d\tilde{r} - \frac{1}{2} \int \frac{n(\tilde{r}) n(\tilde{r}')}{|\tilde{r} - \tilde{r}'|} d\tilde{r} d\tilde{r}' + \int T[n(\tilde{r})] d\tilde{r}' + \int E_{rc}(n(\tilde{r})) n(\tilde{r}) d\tilde{r}'(1, 49)$$

donde:

$$(\hat{r}(\bar{r}) = \vec{v}(\bar{r}) + \int \frac{n(\bar{r})}{|\bar{r}-\bar{r}|} d\bar{r}$$
(1.50)

es el potencial electrostático promedio del sistema.

Dc (1.49) se sigue que la expresión matemática de la proposición 11 se puede escribir como:

$$\int \left[\phi(\bar{\tau}) + \frac{\delta T[n(\bar{\tau})]}{\delta n(\bar{\tau})} + \mu_{\lambda c}(n(\bar{\tau})) \right] \delta n(\bar{\tau}) d\bar{\tau} = 0 \quad , \quad (1.51a)$$

con:

$$\mu_{xc}(n(\bar{\tau})) = \frac{\delta(\varepsilon_{xc}(n(\bar{\tau})) n(\bar{\tau}))}{(1+\delta n(\bar{\tau}))}, \qquad (1.52)$$

Las ecuaciones (1.51) son las mismas que se obtendrían para un sistema de electrones independientes en un potencial:

$$\mathcal{V}_{ef}(\mathbf{n}(\mathbf{r})) \equiv \varphi(\mathbf{r}) + \mu_{\mathbf{k}e}(\mathbf{n}(\mathbf{r})) \tag{1.53}$$

En consecuencia, se puede obtener la solución al problema definido -por (1.51) resolviendo en forma autoconsistente las siguientes ecua-ciones:

$$\left[-\frac{1}{2}\nabla^{2}+\operatorname{Ves}\left(\mathsf{n}(\mathcal{F})\right)\right]\Psi_{*}=\mathsf{E}_{*}\Psi_{*}$$
(1.54)

$$n(\bar{\tau}) = \sum_{i=1}^{N} |\Psi_i(\bar{\tau})|^2 \qquad (1.55)$$

donde, en (1.55), se toman las N primeras soluciones de la ecuación (1.54) en orden creciente del eigenvalor & correspondiente. La energía cinética del sistema se puede expresar como:

$$T[n] = \sum_{i=1}^{n} E_i = \int V_{e_i} (n(\hat{\tau})) n(\hat{\tau}) d\hat{\tau}$$
(1.56)

Como en el caso de las ecuaciones de Hartree-Fock, los paráme-tros ξ_i de la ecuación (1.54) resultan estar directamente relacionados con multiplicadores de Lagrange involucrados en la solución del problema (1.51). Sin embargo, en este caso, no existe aún in enflogo del Teorema de Koopmans que indique una significación fís, ca de di-chas cantidades. Inclusive, las funciones $\Psi_i(F)$ que resultan de re-solver (1.54) no se pueden interpretar fisicamente de una manera cl<u>a</u> ra.

CAPITULO 11. ENERGIA SUPERFICIAL Y FUNCION DE TRABAJO

II.A ENERGIA SUPERFICIAL

En las siguientes tres secciones exhibimos las aproximaciones seguidas por N.B. Huntington⁽¹⁾, y por N.D. Lang y W. Kohn⁽¹⁾ para el cálculo de la energía superficial de metales. Además, proponemos un nuevo enfoque para el cálculo de dicho parámetro, que se base enel empleo del Teorema de Hellmann-Feynman.

En los tres casos tratados se emplean modelos que no consideran la estructura iónica del metal.

11.1 EL MODELO DE H.B. HUNTINGTON

Los cálculos de la energía superficial de metales realizados -por II.B. Huntington (1951)^[31] representan adecuadamente los intentos hechos para obtener este parámetro utilizando el modelo de electro-nes libres. Huntington obtiene dos expresiones para la energía de su perficie; una utilizando el esquema de Sommerfeld y la otra, reali-zando un cálculo autoconsistente de las funciones de onda electrónicas mediante el formalismo de Hartree-Fock para un modelo en que los iones de un metal son sustituídos por una densidad uniforme de carga positiva ("modelo de gelatina").

En esta sección presentamos los resultados de Huntington pero realizamos el cálculo autoconsistente utilizando el formalismo de --H.K.S. en sustitución del de Hartree-Fock. Esto ro cambia fundamen-

talmente la deducción original y nos permite utilizar este resultado en la siguiente sección.

En el primer modelo se supone, bajo la aproximación de Sommerfeld, que la superficie de un metal con un plano geométrico en x=0se puede representar por una barrera de altura P²/2 en x/40.

Si el espécimen considerado es un paralelepípedo rectangular y los valores negativos de x corresponden al interior del metal, la parte orbital de las funciones de onda toma la forma de ondas estacionarias:

$$\Psi = \frac{2}{(L_{y}L_{z})^{\prime/2}} \operatorname{Sen}(k_{y}\vartheta) \operatorname{Sen}(k_{z}z) \Psi(x) \qquad (11.1).$$

donde:

$$\Psi(\mathbf{x}) = \begin{cases} (2/L)^{1/2} \operatorname{Sem}(h\xi + \vartheta^{1}) & ; \quad \mathbf{x} \leq a \\ \\ \\ -(2/L)^{1/2} \operatorname{Sem}^{2} \vartheta^{1} \exp[-(P^{2} - \mathbf{x}^{2})^{1/2} \xi] & ; \quad \mathbf{x} > a \end{cases}$$
(11.2)

aquí L,L₃,L₂ son las dimensiones del espécimen metálico en las dire<u>c</u> ciones x,y,z, respectivamente, $\xi = x - \alpha y \operatorname{Sen}^{y} = k/P$.

Los valores permitidos para las componentes $k_y y k_z$ del momento son miltiplos positivos de $\Pi/L_y y \pi/L_z$, respectivamente. En tanto, por virtud de los corrimientos de fase de la función de onda en la superficie, Υ , los valores para la componente x del momento están dados por:

$$k = (n_{\rm H} - r)/(L + a)$$
 (11.3)

con n entero positivo.

En el presente modelo, los parámetros Q y P se consideran rel<u>a</u> cionados por la condición de neutralidad de carga:

$$\int_{-L}^{\infty} n(x) dx = \bar{n} L$$
 (11.4)

aqui n(x) es la densidad electrónica en x y ñ la densidad en el in-

terior del metal. Esta expresión conduce a la siguiente relación -entre a y P:

$$\frac{2}{3}k_{p}{}^{i}a = \frac{\pi}{4}k_{p}{}^{2} + \left(\frac{1}{2}p^{2} - k_{p}{}^{2}\right)Sen^{i}\left(k_{p}/p\right) - \frac{1}{2}k_{p}\left(p^{2} - k_{p}{}^{2}\right)^{i/2}$$
(1.3.5)

en la que k_m es el momento de Fermi:

La energía de superficie del metal se obtiene de la diferencia entre el doble de la energía total de los electrones en el espéci-men considerado;

$$E_{f} \stackrel{2}{=} 2 \sum_{\text{spin}} \sum_{N_{1}, n_{1}, n_{2}} \frac{1}{2} \left[\left(\frac{N \pi - N}{L + \alpha} \right)^{2} + \left(\frac{n_{1} \pi}{L_{3}} \right)^{2} + \left(\frac{N_{1} \pi}{L_{3}} \right)^{2} \right]$$
(11.6)

(11.7)

y la energie total de los electrones en una≀caja de dimensiones 2L, Ly,Lz:

 $= E_{1} = \sum_{s_{f} \in \mathbf{n}} \sum_{\substack{n_{f} \in \mathbf{j}, n_{f} \\ T \in \mathbf{J}}} \frac{1}{2} \left[\left(\frac{n \pi}{2L} \right)^{2} + \left(\frac{n_{s} \pi}{L_{s}} \right)^{2} + \left(\frac{n_{f} \pi}{L_{s}} \right)^{2} \right] \dots$

Ambas sumas, (11.6) y (11.7), se realizan sobre los valores positivos de las n's para las cuales el sumando no excede la energía de -Fermi, $k_{\rm F}^{\rm a}/2$.

Realizando la supa sobre los valores del spín e integrando sobre k, y k, se obtiene el incremento de energía por unidad de superficie formada que involucra la partición del metal en dos frag-mentos iguales, i.e., la energía de superficie: $k_{r} = \frac{1}{2} \left(2 \sum_{n=1}^{k_{r}} \left(\frac{n\pi}{n} \right)^{2} \left(1 + \frac{(n\pi)^{2}}{2} \right) - \sum_{n=1}^{\infty} \left(\frac{n\pi}{n} \right)^{2} \left(\frac{n\pi}{n} \right)^{2} \right)$

$$= \frac{1}{2L_{u}L_{e}} = \frac{1}{2L_{u}L_{e}} \left[\frac{2}{2} \frac{2\pi i}{2} \left(\frac{1}{2} - \frac{1}{2} \frac{1}{k_{e}} \left(\frac{1}{k_{e}} - \frac{1}{k_{e}} \right) - \frac{1}{k_{e}} \left(\frac{2\pi i}{2} - \frac{1}{2} \frac{1}{k_{e}} - \frac{1}{2} \frac{1}{k_{e}} \right) - \frac{1}{2k_{e}} \left(\frac{1}{2} - \frac{1}{2} \frac{1}{k_{e}} - \frac{1}{2k_{e}} \right) \left(\frac{1}{k_{e}} - \frac{1}{k_{e}} \right) \right) \right) = \frac{3}{2} \left(\frac{1}{k_{e}} \left(\frac{1}{k_{e}} - \frac{1}{k_{e}} \right) \right) \left(\frac{1}{k_{e}} - \frac{1}{k_{e}} \right) \left(\frac{1}{k_{e}} - \frac{1}{k_{e}} \right) \right) = \frac{3}{2} \left(\frac{1}{k_{e}} \left(\frac{1}{k_{e}} - \frac{1}{k_{e}} \right) \right) \left(\frac{1}{k_{e}} - \frac{1}{k_{e}} \right) \right)$$

Sustituyendo, de (11.5), el valor de en esta expresión se obtie-

nc finalmente:

$$\mathcal{E}_{S} = \frac{3\tilde{n}}{4} \left[\frac{\pi}{40} - \frac{4\pi}{10} \left(1 - 3\left(\frac{P}{k_{F}}\right)^{2} + \frac{15}{8}\left(\frac{P}{k_{F}}\right)^{4} \right) 5en^{2}\left(k_{F}/F\right) - \frac{kr}{4}\left(P^{2} - k_{F}^{2}\right)^{1/2} \left(\frac{7}{k_{F}} - \frac{P^{2}}{2k_{F}^{2}}\right) \right]$$
(11.9)

La expresión (11.9) para la energía de superficie muestra unadependencia en la posición de la barrera, G, a través de P. Sin em bargo, Huntington encontró que la variación de esta cantidad era de aproximadamente el 10 por ciento para el intervalo completo de valo res de G y P dados por (11.5)

El segundo modelo de Huntington parte de considerar un cristal macroscópico que consiste de N electrones inmersos en un paralelepí pedo rectangular de lados 2L,Ly,Lz con una densidad uniforme de car ga positiva n=N/2LLyL, Este cristal se representa en la fig.(11.1a).

Fig. [].1 Configuraciones de carga positiva en la derivación de una expresión general para la ener--gía de superficie &, en el modelo de "gelatina". -(a) Espécimen metálico considerado. (b) Fragmentodel cristal después de la partición.

Supondremos aquí que $L_y, L_b \gg L$ y, por conveniencia, impondremos condiciones periódicas en la frontera para las funciones de onda so bre las caras del cristal normales a los ejes y,z. Las condiciones en la frontera para las caras normales al eje x son que la, funciones de onda Ψ_t y sus derivadas normales se anulen lejos de dichas - caras.

Para estudiar la energía de superficie de este cristal, cuya densidad electrónica denotaremos por n'(x), fragmentaremos éste endos porciones iguales, Fig. (11.1b): Las condiciones en la frontera sobre las funciones de onda electrónicas asociadas con los nuevos fragmentos se consideran como en el caso del cristal aún no fracci<u>o</u> nado, su densidad electrónica la denotaremos como n(x).

El cambio de energía cinética de los electrones, por unidad -de área formada al fragmentar el cristal estará dado por:

$$E_{5} = \frac{1}{2L_{4}L_{4}} \left(2T_{5}[n] - T_{5}[n] \right) \qquad (||, 10)$$

donue, de. (1,56):

$$T_{s}[n'] = \sum_{i=1}^{n} \mathcal{E}_{i} - 2 L_{s} L_{s} \int_{-L}^{\infty} ver(n'; x] n'(x) dx \qquad (11.11)$$

in esta expresión se ha empleado la simetría de Ver y de nº -respecto del plano x=-1.

Los eigenfunciones de la ecuación (1.54) se parecen, cerca del plano de simetría del cristal, a las funciones de onda asociadas con partículas libres:

$$\psi_{R} \propto \begin{cases} \frac{5en k(x+L) e^{Lk_{3}y} e^{ikz^{2}}}{\int c \cdot b \cdot b \cdot b \cdot b \cdot b} e^{ikz^{2}} & (11.12) \end{cases}$$

donde:

$$\mathbf{h} = \frac{\mathbf{n}\pi}{2\mathbf{L}} \left[-\frac{\mathbf{Y}_{\mathbf{n}}}{\mathbf{L}} \right]$$
(11.13)

Aquí n es un entero positivo (par para senos e impar para cosenos) y γ_n es el corrimiento de fase de la función de onda. Los números deonda ky y ka tienen las formas $2\pi n_y/L_y$ y $2\pi n_z/L_z$ respectivamente; -con ny y na enteros.

El potencial efectivo de la ecuación (1.54) tiende al valor constante $V_{ef}[n';-L]$ dentro del metal, en consecuencia, la sustitución de (11.12) en (1.54) da:

$$\sum_{i=1}^{n} E_{i} = 2 \sum_{k_{i}, k_{i}, k_{i}} \left\{ \frac{1}{2} \left(k^{2} + k_{i}^{-1} + k_{i}^{-1} \right) + U_{ef} \left[n^{1}; -L \right] \right\}$$
(11.14)

donde el factor 2 frente a la suma, que se realiza sobre estados ocu pados, se debe a la degeneración de spín.

De (11.14) se tiene que la expresión (11.11) se puede escribircomo:

$$T_{5}[m] = \sum_{k_{1}k_{3},k_{4}} (k^{2} + k_{3}^{*} + k_{5}^{*}) - 2L_{3}L_{4} \int_{-L}^{\infty} (y_{1}(n^{2}; \lambda) - y_{2}((n^{1}; -L)) N^{3}(x) dx - (11.15)$$

En el espacio de vectores de onda los estados se encuentran con centrados en planos normales al eje k con una densidad superficial de LyLz/4 Π^{A} . Los estados ocupados se encuentran, adicionalmente, den tro de un hemisferio de radio ky, en el semiespacio k>0, que corta al eje k entre el M-ésimo y el (N+1)-ésimo planos:

En consecuencia, los estados ocupados con k=k_n cubren en el n-ésimo plano una región circular, R_n, de radio $(k_{\mu}^{-1} - (\frac{n\pi}{2L} - \frac{3k}{L})^{2})^{1/2}$ centrada sobre el eje k.

So tiene as joue podemos escribir:

$$\sum_{h_1,h_2,h_3} (k^2 + h_0^2 + h_2^2) = \frac{L_0 L}{\ell(f)^2} \sum_{n=1}^{2N} \left(\frac{\lambda_0}{R_0} dk_2 \left[\left(\frac{nfl}{2L} - \frac{k_0}{L} \right)^2 + h_0^2 + h_2^2 \right] \right]$$
(11.17)

y empleando la fórmula para suma de Euler-Maclaurin^{C01} , obtenemos:

$$\sum_{\mathbf{k},\mathbf{h}_{1},\mathbf{r}_{2}} \left(k^{2} + k_{2}^{2} + k_{1}^{2} \right) = LL_{2}L_{2} \left\{ \frac{k_{y}}{5\pi^{2}} - \frac{1}{\pi^{2}L} \int_{0}^{R_{y}} d\mathbf{k} \, k^{3} \left(\frac{\pi}{4} - \gamma(\mathbf{r}) \right) \right\} \quad (11.18)$$

donde hemos despreciado los términos de orden L^{-1} . En la misma forma se obtiene nue:

$$N = 2 \sum_{k_1 k_2 k_1} 1 = \frac{L_y L_z}{2\pi^2} \sum_{n=1}^{\infty} \int_{R_n}^{J} k_y dk_z$$

= LLyLz $\left\{ \frac{2ky^2}{3\pi^2} - \frac{2}{\pi^2 L} \int_{0}^{k_y} dk \left(\frac{\pi}{4} - x^{\prime}(k) \right) k$ (11.19)

De aquí y de la relación $n = \frac{1}{3\pi^2} k_F^3$ se obtiene:

$$k_{\nu} = k_{\mu} + \left(k_{\mu}^{2}L\right)^{-1} \int_{0}^{k_{\mu}} d\pi \left(\frac{\pi}{4} - f(\mu)\right)k \qquad (||.20)$$

lo que da el vilor de ky en términos de kr.

Combinando las ecuaciones (11.15), (11.18) y (11.20) se obtiene finalmente:

$$T_{5}[n^{1}] = \frac{3}{10} N R_{F}^{2} + 2 L_{y} L_{z} S_{L} \qquad (11.21)$$

donde:

$$5_{L} = \frac{1}{2!!!} \int_{0}^{k_{f}} dk \left(\frac{\pi}{4!} - \gamma^{*}(k) \right) \left(k_{F}^{2} - k^{2} \right) k_{i} - \int_{-L}^{\infty} \left\{ V_{ef} \left[n^{*}; x \right] - V_{ef} \left[n^{*}; -L \right] \right\} n^{*} \omega_{i}^{2} \left(1 - 22 \right)$$

En la misma forma se obtiene que:

$$T_{5}[n] = \frac{3}{20} N Rr^{2} + 2 LyL + 5 L/2 \qquad (11.23)$$

.Sustituyendo ([[[21]], ([[22]]y ([[23]] en ([[10]) se llega, - en el fímite en que $L^{i_{\phi}\infty}$, a la expresión :

$$\mathsf{E}_{\mathsf{s}} = \frac{1}{4\pi^{*}} \int_{0}^{\mathbf{k}} \frac{\mathrm{d}\mathbf{k} \left(\frac{\pi}{4} - \mathbf{Y}(\mathbf{k})\right) (\mathbf{k} \mathbf{s}^{2} - \mathbf{k}^{2}) \mathbf{k}}{(\mathbf{k} \mathbf{s}^{2} - \mathbf{k}^{2}) \mathbf{k}} = \int_{-\infty}^{\infty} \frac{\mathrm{d}\mathbf{k}}{\mathrm{d}\mathbf{k} \left[\mathcal{U}_{ef}(\mathbf{n}, 1) - \mathcal{U}_{ef}(\mathbf{n}; -\infty) \right] \mathbf{n}(\mathbf{k})} \quad (11.24)^{*}$$

Huntington utilizó la expresión (11.9) para obtener las tensio

nes superficiales del Cobre y del Sodio obteniendo valores de aproximadamente el 46 por ciento de los valores experimentales medidos. El valor obtenido mediante su cálculo autoconsistente daba para el So-dio un valor de la tensión superficial aún menor; aproximadumente la mitad del obtenido con el primer modelo.

11.2 EL MODELO DE N.D. LANG Y W. KOHN

El objetivo de Lang y Kohn^[1] es el de aplicar el formalismo ---H.K.S. al problema de obtener la estructura electrónica de la superficie de un metal mediante el modelo de "gelatina" mencionado en lasección anterior. Una vez dilucidada la estructura electrónica supe<u>r</u> ficial se puede obtener la diferencia de energías de un metal antesy después de fraccionado.

A continuación se presenta la forma que toman las ecuaciones --H.K.S. en el módelo considerado. Para ello desarrollaremos primero algunas expresiones que serán de utilidad.

Consideremos un nas de electrones inmerso en una región semi-i<u>n</u> finita de carga positiva n₊(x):

$$\mathbf{n}_{\mathbf{i}}(\mathbf{x}) = \begin{cases} \mathbf{\tilde{p}} \quad \mathbf{i} \quad \mathbf{x} \leq \mathbf{0} \\ \mathbf{c} \quad \mathbf{i} \quad \mathbf{x} > \mathbf{0} \end{cases}$$
(11.25)

Si la densidad electrónica asociada con este sistema es n(x) tendremos que la diferencia de energía potencial electrostática --entre $x + +\infty \cdot y = x + -\infty$ (la barrera dipolar electrostática) estará dada (véase apéndice A), por :

$$\Delta \varphi = \varphi(+\infty) - \varphi(-\infty) \qquad (11.26a)$$
$$= i \Pi \int_{-\infty}^{\infty} dx \left[\int_{x}^{\infty} dx^{*} [n(x^{*}) - \eta, (x^{*})] \right]$$

Imponiendo la condición de neutralidad de carga:

$$\int_{-\infty}^{\infty} dx [n(x) - n_1(x)] = 0$$
 (11.27)

se obtiene, integrando por partes la ecuación (11.26a), que:

$$\Delta \varphi = 4\pi \int_{-\infty}^{\infty} d_{X} \times [\eta(x) - \eta_{+}(x)] \qquad (11.26b)$$

El potencial químico del sistema de electrones, definido comola diferencia de energía de los sistemas con N+1 y N electrones ---(manteniendo invariantes la carga positiva) está dado por:

$$\mu = \varphi(-\infty) + \bar{\mu}$$
 (11.28)

donde:

$$\tilde{\mu} = \frac{1}{2} k_F^2 + \left(\frac{\delta E_{sc}[n]}{\delta n}\right)_{n=\tilde{n}} \equiv \frac{1}{2} k_F^2 + \mu_{sc}(\tilde{n}) \qquad (11.29)$$

es el potencial químico intrínseco del sistema infinito. Aquí $\mu_{xc}(n)$ es la contribución al potencial químico de un gas de electrones un<u>i</u> forme de densidad n. (Obsérvese que el potencial químico mantiene una dependencia respecto del valor de referencia del potencial ele<u>c</u> trostático).

La función de trabajo del metal, definida como la energía mín<u>i</u> ma necesaria para sacar un electrón de éste, es:

$$\Phi = \varphi(+\infty) - \mu = \Delta \varphi - \mu \tag{11.30}$$

En la quinta sección de este capítulo demostramos que esta definición de la función de trabajo considera todos los efectos de mu chos cuerpos.

Consideremos, ahora, la forma que tomarán las ecuaciones autoconsistentes de H.K.S.. Sabemos que en el interior del metal el potencial efectivo, $V_{ef}(x)$, visto por los electrones tendrá un valor constante dado, según (1.53), por:

$$\mathcal{V}_{e_1}(-\infty) = \varphi(-\infty) + \mu_{kc}(\tilde{m}) \qquad (11.31)$$

Se sigue de aquí que las eigenfunciones de (1.54) toman la fo<u>r</u> ma de ondas estacionarias:

$$\Psi_{n_1,n_3,n_4} = \Psi_{\mu}(x) \exp[i(h_3 y + h_1 z)]$$
 (11.32)

donde, para x->-m:

Aquí los corrimientos de fase, Υ(k), están univocamente determinados por las condiciones Υ(0)≠0 γ Υ(k) continua.

Los eigenvalores de (1.54) toman consecuentemente la forma:

$$\mathcal{E}_{R,n_{4},n_{7}} = \varphi(-\infty) + \mu_{xc}(R) + \frac{1}{2}(k^{2} + k_{5}^{4} + k_{2}^{2}) \qquad (11.34)$$

6, escogiendo $\mu=0$, i.e. $\varphi(-\infty) + \mu_{x}(\bar{n}) = -k_{F}^{2}/2$;

$$E_{\mathbf{x}_{1}\mathbf{u}_{3},\mathbf{x}_{1}} = \frac{1}{2} \left(\left[k_{1}^{2} + k_{3}^{2} + k_{2}^{2} - k_{5}^{2} \right] \right)$$
(11.35)

Utilizando las expresiones desarrolladas se puede reescribir el problema de autoconsistencia como se indica a continuación:

De_(11.31), (11.32), (11:35) y (1:54) se obtiene la siguienteecuación para 光晓

$$\left(-\frac{1}{2}\frac{d^{2}}{dx^{2}}+V_{ef}[n;x]\right)\Psi_{R}(x)=\frac{1}{2}(k^{2}-k_{e}^{2})\Psi_{R}(x) \qquad (11.36)$$

Considerando la condición µ≡0 para establecer el valor de ref<u>e</u> rencia del potencial electrostático se tiene, de (1.53) que el po-- tencial efectivo está dado por:

$$\operatorname{Ver}[n; x] = \Phi - 4\pi \int_{x_{-}}^{\infty} dx' \int_{x'}^{\infty} dx'' [n(x'') - n_{+}(x'')] + \mu_{+c}(n(x)) \quad (11.37)$$

con Φ definido por (11.30).

La expresión (1.55) para la densidad electrónica toma en estecaso la forma particular:

$$\Pi(\mathbf{x}) = \frac{1}{\pi^2} \int d\mathbf{k} \left(k_F^2 - k_T^2 \right) |\Psi_{\mathbf{k}}(\mathbf{x})|^2 \qquad (|1.38)$$

en la que se debe considerar la forma asintótica (11.33) de $\Psi_{\mathbf{k}}$.

Las ccuaciones (11.36)-(11.38) nos dan un esquema para el cálculo de la estructura electrónica de una superficie metálica con el modelo considerado. Si empleamos ahora la expresión (1.49) para la energía total del sistema podemos obtener la energía de superficiede un metal.

Escribiendo la energía total del gas electrónico como la sumade tres términos:

$$E = E_{rs}[n] + E_{xc}[n] + T[n]$$
 (11.39)

donde los términos del segundo miembro dan, respectivamente, la --energía electrostática del sistema, las energías de correlación e intercambio y la energía cinética. Tenemos que la energía de superficie se puede escribir como:

$$E_{5} = E_{es} + E_{xc} + E_{T}$$
 (11.40)

Los primeros dos términos son, en el presente modelo:

$$E_{es} = \frac{1}{2} \int \varphi(n; x) (n(x) - n_{*}(x)) dx$$
 (11.41)

$$\mathcal{E}_{\mathrm{Ac}} = \int_{-\infty}^{\infty} \left[\mathcal{E}_{\mathrm{Ac}}(\mathrm{n}(\mathrm{x})) - \mathcal{E}_{\mathrm{Ac}}(\mathrm{\bar{n}}) \right] \mathrm{n}(\mathrm{x}) \mathrm{d}\mathrm{x}$$
(11.42)

donde $E_{xc}(n)$ es la energía de correlación e intercambio por particula para un gas de electrones de densidad n.

La expresión para \mathcal{E}_{7} está dada por (11.24).

Los valores obtenidos por Lang y Kohn con este modelo se comparan bien con los resultados experimentales solo a bajas densidades, sin embargo, para densidades altas obtienen valores negativos de la energía de superficie (Fig.[[1,2]).

11.3 LA APLICACION DEL TEOREMA DE HELLMANN-FEYNMAN AL CALCULO DE LA ENERGIA DE SUPERFICIE DE METALES.

La idea que a continuación presentamos la hemos formulado conla intención de proveer un método independiente de los comentados anteriormente para el cálculo de la energía de superficie.

Como se sabe, el Teorema de Hellmann-Feynman proporciona la manera de obtener el cambio de energía del estado base de un sistemabajo la acción de una perturbación dada. En su forma más general el teorema afirma que el cambio de energía del estado base de un sistema ma está dado por:

$$\Delta E = \int_{0}^{1} d\lambda \langle \Psi_{\lambda} | \frac{d\Psi}{d\lambda} | \Psi_{\lambda} \rangle \qquad (11.43)$$

donde $\chi = \Re(\lambda)$ es el Hamiltoniano del sistema parametrizado de tal -forma que para $\lambda=0$ coincide con el Hamiltoniano inicial y para $\lambda=1$ toma la forma del Hamiltoniano final. Ψ_{λ} es aquí eigenfunción normalizada de $\Re(\lambda)$, esto es:

$$\Re(\lambda)\Psi_{\lambda} = E_{\lambda}\Psi_{\lambda} \qquad ; \qquad \langle\Psi_{\lambda}|\Psi_{\lambda}\rangle = 1 \qquad (11.44)$$

En la práctica es común la parametrización:

$$\mathfrak{H}(\lambda) = \mathfrak{H}(0) + \lambda [\mathfrak{H}(1) - \mathfrak{H}(0)]$$
 (11.45)

de aquí se tiene que (11.43) se puede reescribir·como:

$$\Delta \mathbf{E} = \int_{\mathbf{0}}^{1} \frac{d\lambda}{\lambda^{2}} \langle \Psi_{\lambda} | \lambda \mathfrak{N}^{\dagger} | \Psi_{\lambda} \rangle \qquad (11.46)$$

con l'igual al Hamiltoniano de perturbación: H(1)-H(0).

Para obtener la energía de superficie de un metal a partir dela expresión (411.46) se puede pensar en la situación física obtenida cuando tenemos dos fragmentos metálicos uno frente al otro, y la situación que se tiene cuando dichos fragmentos aún constituyen untodo homogéneo. En el primer caso, Fig. (11.2b), tenemos un gas deelectrones en el que una barrera de potencial establecida entre las superficies de cada fragmento metálico evita el paso de los electro nes a través de ella. En la situación inicial el potencial es constante, Fig. (11.2a).

Empleando el modelo de Sommerfeid para metales las situaciones físicas consideradas se pueden representar por los siguientes Hamil fontance

$$\Re(\lambda=0) = \frac{1}{2} \int \nabla \Psi'(\bar{\tau}) \nabla \Psi(\bar{\tau}) d\bar{\tau} \qquad (11.47)$$

 $\gamma_{i}(\lambda = i) = \left| \frac{1}{2} \int \nabla \Psi^{*}(\bar{\tau}) \nabla \Psi(\bar{\tau}) d\bar{\tau} \right| + \int \Psi^{*}(\bar{\tau}) V(\bar{\tau}) \Psi(\bar{\tau}) d\bar{\tau} \quad (11.48)$

donde $\frac{V}{V}$ es un operador de campo y $V_i(\tilde{r})$ representa la barrera de potencial establecida al formarse las superfícies metálicas. La ex-presión para $V(\tilde{r})$ es tal que su valor dentro del metal es nulo.

Fig. 11.2 Esquema de la formación de dos superficies metálicas. (a) inicialmente los electrones están bajo el efecto de un potencial constante dentro del metal. (b) Al partirse el metal y separarse los fragmentos formados se establece una barrera de potencial entrelas nuevas superficies que evita el paso de los electrones.

De (11.47) y (11.48) se tiene que el Hamiltoniano de perturba-ción para lograr la partición de un metal tiene la forma:

La sustitución de esta expresión en (11.46) da:

$$\Delta \mathbf{E} = \int_{-1}^{1} d\lambda \left\langle \Psi_{\mathbf{x}} \right| \left\{ \Psi_{\mathbf{x}}^{*}(\tau) \Psi(\tau) \Psi(\tau) d\tau \right\} \Psi_{\mathbf{x}} \right\rangle$$
(11.50)

ó, en términos de la densidad electrónica del sístema; $n_{\lambda}(\vec{r}) = \langle \Psi_{\lambda} | \Psi'(\vec{r}) \Psi(\vec{r}) \rangle$:

$$\Delta \mathbf{E} = \int_{0}^{1} d\lambda \int \mathcal{V}(\mathbf{f}) \mathbf{H}^{1}(\mathbf{f}) d\mathbf{f}$$

Para el caso de una barrera cuadrada de espesor 20 y de litura V. esta expresión toma la forma:

$$\Delta E = \int_{0}^{1} d\lambda \int_{-a}^{a} V_{o} n_{\lambda}(x) A dx \qquad (11.52)$$

(11.51)

donde A es el área de la sección transversal del espécimen consider<u>a</u> do.

El teorema de Hellmann-Feynman, ec. (11.43), puede ser utilizado para calcular la energía involucrada en el establecimiento de una barrera de potencial en el seno de un gas de electrones considerando diferentes procesos. Por ejemplo, la parametrización $V_{\lambda}(x)=V_{0}u(\lambda \alpha-IxI)$ de la barrera cuadrada considerada anteriormente da la siguiente expresión para el cambio de energía en el proceso:

$$\Delta E = 2V_{c} \alpha A \int_{0}^{1} d\lambda n \lambda'(\lambda \alpha) \qquad (11.53)$$

Aquí hemos empleado n_{λ}' en vez de n_{λ} para establecer, explicitamente, que la parametrización della Hamiltoniano de perturbación empleada en la ob-la deducción de esta ecuación es diferente de la empleada en la ob-tención de la expresión (11.52).

En vista de que las expresiones (11:52) y (11:53) representan el mismo cambio del sistema los resultados que se obtienen con cadauna de éstas deben ser los mismos. En el caso considerado la igual-dad de dichas expresiones se ha verificado numéricamente obtenindose una diferencia de una parte en 10? al menos.

Es necesario nodar que las ecuaciones (11.52) y (11.53) involucran, adicionalmente de energía que necesitamos para fragmentar el metal, un trabajo que se emplea para concentrar a los electrones enun volumen más pequeño que el inicialmente ocupado. Estamos así calculando una energía ma or a la que se necesita para formar la superficie. Para obtener la energía de superficie debemos restar esta e-nergía extra a la dada por las ecuaciones (11.52) y (11.53).

Consideremos el cambio de energía de un gas de electrone: de -densidad N/LL_yL₂ al ser comprimido desde un volumen inicia' LL_yL₂ -hasta un volumen final (L-a)L_yL₂. SI Ei representa la energía del -gas con su volumen inicial y E₄ representa la energía del mismo al ser comprimido entonces el cambio de energía buscado estará dado, s<u>e</u> gún (1.8) y (1.22), por:

$$E_{f} - E_{i} = \frac{2}{5} N E_{p}^{i} \left(1 - \frac{E_{p}^{i}}{E_{p}} \right)$$
$$= \frac{3}{5} N E_{p}^{i} \left(1 - \left(\frac{1}{1 - \alpha f_{i}} \right)^{2/3} \right) \qquad (11.54)$$

ó, considerando sólo el término lineal en α/L en una expansión en s<u>e</u> rie de potencias;

$$E_{\mathbf{f}} - E_{\mathbf{i}} = \frac{2}{5} N \hat{\mathbf{e}}_{\mathbf{f}}^{\mathbf{i}} \frac{\Delta}{L}$$
(11.55)

Esta expresión da la correción a las expresiones (11.52) y (11.53) para obtener el cambio de energía de un metal al ser fraccionado. La energía de superficie de un metal se obtiene, alternativamente, meusante cualquiera de las siguientes expresiones: $E_{5} = \lim_{n \to \infty} \left\{ \frac{1}{2} \int_{0}^{\infty} \left[\frac{V_{0}A}{V_{0}A} \int_{0}^{1} \frac{d\lambda}{d\lambda} \int_{0}^{\infty} n_{\lambda}(x_{0}) dx_{\lambda} - 2 \frac{2}{5} N \xi_{F} \frac{\alpha}{L} \right] \right\}$

$$=\lim_{a\to\infty} \left\{ \frac{1}{2} V_{e} \int_{a}^{l} d\lambda \int_{-a}^{a} \eta_{\lambda}(x) dx - \frac{2}{5} \vec{n} E_{F} \vec{a} \right\}$$
(11.56)

 $\mathcal{E}_{s} = \lim_{a \neq s^{s}} \left\{ V_{s} a \int_{0}^{1} d\lambda \, \dot{\eta}_{\lambda}^{2}(\lambda a) - \frac{2}{5} \, \bar{\eta} \, \bar{\epsilon}_{F} a \right\} \qquad (11.57)^{\frac{1}{2}}$

donde ñ=N/LLyLy es la densidad electrónica en el interior del metal. A continuación se considera el desarrollo de la expresión (11.56) para la energía de superficie. Unicamente estacos interesados en el desarrollo del primer término de esta expresión, pues el segundo término tiene una forma cerrada. Escribiendo $n_\lambda(x)$ como la superposición de la densidad electrónica de cada uno de los estados ocupados del sistema;

$$m_{\lambda}(x) = \sum_{\text{spin}} \sum_{\mathbf{k}, \mathbf{k}_{1}, \mathbf{r}} m_{\mathbf{k}, \lambda}(x) \qquad (11.58)$$

se puede reescribir la expresión (11.52) como:

$$E = \frac{\Delta E}{2\Lambda} = V_{e} \int_{0}^{1} d\lambda \sum_{\mathbf{k}, \mathbf{k}, \mathbf{k}, \mathbf{k}} \int_{-\alpha}^{\alpha} M_{\mathbf{x}, \lambda}(\mathbf{x}) d\mathbf{x}$$

= $V_{e} \int_{0}^{1} d\lambda \int_{0}^{\mathbf{k}_{p}} f(\mathbf{k}; \lambda) d\mathbf{k}$ (11.59)

donde:

$$f(k;\lambda) \equiv \pi \Omega \left(k \epsilon^2 - k^2 \right) \int_{-\alpha}^{\alpha} n_{h,\lambda}(x) dx \qquad (11.60)$$

Aquí Ω es la densidad de estados del gas de electrones en el espacio de vectores de onda. Además, hemos exhibido explicitamente que la de<u>n</u> sidad electrónica (11.58) no depende ni del spin ni de las componen-tes k_u, k_a del vector de onda.

Observamos que la función $f(k;\lambda)$ definida en (11.60) da, para -- λ =1, la carga electrónica dentro de la barrera (i.e. fuera de la su-perficie de un metal) debida a todos los estados ocupados que tienen una componente k del vector de onda en la dirección normal a la super ficie; x. El valor de esta función tiende a un límite fijo cuando α tiende a infinito. Creemos que dicho valor puede ser indicativo de la posible influencia que pueden tener los estados que tienen una componente dada del vector de onda en la determinación de algunas propieda des superficiales.

Para el caso considerado de la barrera de potencial entre dos su perficies metálicas se puede ver (Apéndice B) que la expresión (11.59) toma la forma:

$$E = \frac{V_{\star}}{a\pi^{2}} \int_{a}^{1} d\lambda \left\{ \int_{0}^{h_{f}} dk \left(k_{s}^{2} - k^{2}\right) \left[\frac{1}{\lambda} \cos^{2}\left(ha - N_{p}\right) T_{0}h\left(\lambda a\right) + \frac{1}{\lambda} \cos^{2}\left(ha - N_{h}\right) C_{0}h\left(\lambda a\right) + \frac{1}{\lambda} \cos^{2}\left(ha - N_{h}\right) \cos^{2}\left(ha - N_{h}\right) C_{0}h\left(\lambda a\right) + \frac{1}{\lambda} \cos^{2}\left(ha - N_{h}\right) \cos^{2}\left(ha - N_{h}\right) + \frac{1}{\lambda} \cos^{2}\left(ha - N_{$$

dondet

das por:

$M = (\lambda P^2 - k^2)^{1/2}$; $P = (2y_c)^{1/2}$

 $Y_{\mu} = Tg^{-1} \left\{ \frac{M_{0}}{M_{2}} Tgh(Ma) \right\} + ka$; $Y_{1} = Tg^{-1} \left\{ \frac{Y_{0}}{k} Ctgh(Ma) \right\} + I_{1}a$

II.B FUNCION DE TRABAJO

En las siguientes dos secciones se presenta una revisión resumi da de dos artículos, uno publicado por Bardeen^[43] en el que se hace un cálculo de la densidad electrónica superficial y la función de -trabajo utilizando el esquema de Hartree-Fock, y el otro, publicado por Lang y Kohn^[2], en el que se formaliza la expresión (11.30) para la función de trabajo considerando la extensión de la teoría de Ho-henberg, Kohn y Sham al caso de sistemas con un número variable de partículas.

11.4 LA TEORIA DE BARDEEN

El objetivo principal de la teoría de Bardeen es la realización del cálculo de la estructura electrónica de un metal ideal con una superficie para obtener, con base en el esquema de Hartree-Fock, lafunción de trabajo como la mínima energía de ionización del metal. Como hemos visto, las ecuaciones de Hartree-Fock para un gas de N electrones que ocupan N/2 estados doblemente degenerados están da-

$$\left(-\frac{1}{2}\nabla^{2}+\mathcal{O}(\bar{\tau})+A_{j}\right)\Psi_{j}(\bar{\tau})=\xi_{j}\Psi_{j}(\bar{\tau}) \qquad (11.62)$$

donde U(r) es el potencial de Coulomb del sistema y .

$$A_{j}^{*}\Psi_{j}(\bar{\tau}) = \frac{1}{2} \int \frac{\sum_{i} \Psi_{i}^{*}(\bar{\tau}) \Psi_{i}(\bar{\tau}) \Psi_{j}(\bar{\tau})}{|\bar{\tau} - \bar{\tau}|} d\bar{\tau}$$
(11.63)

Aquí la suma es sobre las partes orbitales de las funciones de onda, $\Psi_i(\vec{r})$, y en consecuencia el factor de 1/2 en la expresión (11.63) aparece porque el operador de intercambio es efectivo únicamente para electrones de spines paralelos.

En vez de utilizar la definición (11.63) del operador de intercambio en las ecuaciones (11.62) se utiliza un potencial de intercam bio definido por:

$$A_{j}(\bar{\tau}) = \frac{1}{2} \sum_{i} \int \frac{\Psi_{i}^{*}(\bar{\tau}) \Psi_{i}(\bar{\tau}) \Psi_{j}(\bar{\tau})}{|\tau - \bar{\tau}| \Psi_{j}(\bar{\tau})} d\bar{\tau}, \qquad (11.64)$$

Conjesto, las ecuaciones a resolver toman la forma:

$$\left(-\frac{1}{2}\nabla^{2}+\nabla(\tau)-\hat{H}_{j}(\tau)\right)\Psi_{j}(\tau)=\hat{E}_{j}\Psi_{j}(\tau) \qquad (11.65)$$

donde se observa que el potencial a que está sujeta cada partícula - / depende del estado en que se encuentra.

Considerando a continuación la forma asintótica de las funciones de onda Ψ_i dentro del metal, dada por (11.31), se obtiene que el espectro de energías de los electrones del gas está dado por:

$$E_{\hat{h}} = \frac{h^2}{2} + v^{\circ} - A_{\hat{h}}^{\circ}$$
(11.66)

donde σ_{\bullet} y $A_{\hat{\kappa}}^{\circ}$ son, respectivamente, el potencial electrostático y el potencial de intercambio en el interior del metal.

El valor minimo de los negativos de las energías (11.66) da en tonces la función de trabajo: El problema práctico fundamental en la teoría expuesta es el -cálculo del potencial de intercambio (11.64) ya que las equaciones -(11.65) se deben resolver autoconsistentemente y por lo tanto involu cran cierto número de interaciones. Este problema es resuelto por -Bardeen manteniendo la forma de dicho potencial invariante a lo largo de todo el proceso iterativo, en el que sólo varía el potencial electrostático. Como el potencial de intercambio obtenido con las últimas funciones de onda resulta similar al propuesto, su procedi miento se justifica.

Adicionalmente a los cálculos involucrados en la teoría desarro llada, Bardeen intenia considerar el efecto que la no inclusión de la correlación electrónica introduce en sus cálculos. Para ello resuelve las ecuacione: (11.65) sustituyendo A_k(x) por un potencial -B_k(x) dado por (1+c A_k(x) dentro del metal y en las inmediaciones de la superficie, y por el potencial imagen, 1/4x, lejos de la superficie. El valor de compleado se toma como la razón de la energía de correlación a la de intercambio en un gás homogéneo de electrones libres. Esta cruda anroximación del potencial de correlación le produce buenos resultados ya que el valor calculado de la función de trabajo utilizando el potencial G_k(x).

A continuación se reproducen los resultados obtenidos por Bardeen en forma de tabla.

> Tabla 1.2 Comparáción delicálculo teorico de Bardeen para la función de trabajo de Sodio con los valores ex perimentales.

> > fuerzas de correlación omitidas.

fuerzas de correlación incluídas.

2.35

experimento.

función de trabajo 2.0

2.46 2.25 (11.67)

11.5 LA TEORIA DE LANG Y KOHN

En la presente seccción se reproduce la expresión para la función de trabajo dada por Lang y Kohn en su artículo de 1971. Dicha expresión se basa en una extensión de la teoría de Hehenberg y Kohn ^[8] que introduce la posibilidad de considerar un número variable de electrones. La teoría así desarrollada se emplea entonces para ver<u>i</u> ficar la validez de la ecuación (11.30).

Como vimos en la Sección 1.3, la energía de un gas de N electrones sujeto a un potencial externo, $v(\bar{r})$, está dada por:

$$E_{\tau}[n] = \left[\varphi(\tau) n(\tau) J \bar{\tau} + G[n] \right]$$
 (11.68)

donde G(n) es la funcional de la densidad (11.46) y φ es el pote<u>n</u> - cial electrostático neto del sistema.

Consideremos ahora un conjunto de sistemas electrónicos macro<u>s</u> cópicos a temperatura de cero absoluto y definidos por potenciales externos, V(F), y potenciales químicos μ , y supongamos que la re<u>s</u> tricción:

$$\delta N = \left(\delta n(\bar{r}) d\bar{r} = 0 \right)$$
 (11.69)

sobre las posibles densidades del sistema se deja de imponer. Definamos:

$$d_{n,\mu}(n) = \mathbb{E}_{\sigma}[n] = \mu \int n(\tau) d\tau \qquad (11.70)$$

Entonces, para una variación δ_1 , de la densidad, que satisface -- (11.69), se tiene:

Supongamos ahora que $n_{v_i\mu}(\vec{r})$ y $n_{v_i\mu,s\mu}(\vec{r})$ representan las dentidades electrónicas correspondientes al potencial $\mathcal{V}(\vec{r})$ con p¢tenciales químicos μ y $\mu+s\mu$ respectivamente. Los dos potenciales químicos describen dos sistemas que difieren en el número total de partículas -por δN :

$$\delta N = \int (n_{\sigma,\mu+\delta\mu}(\bar{\tau}) - n_{\sigma,\mu}(\bar{\tau})) d\bar{\tau} = \int \delta_{2} n(\bar{\tau}) d\bar{\tau} \qquad (11.72)$$

(11.71)

Se tiene que el cambio de $\Omega_{\nu,\mu}$ bajo la variación δ_2 está dado, a primer orden, por:

$$δ_2 \Omega_{v,\mu}[n] = E_v [n_{v,\mu+5\mu}] - E_v [n_{v,\mu}]^2 - \mu \delta N = 0$$
 (11.73)

donde la igualdad con cero se sigue de la definición termodinámica de potencial químico a T=O K.

Dado que una variación pequeña y arbitrarla de la densidad, δ ,es una suma única de variaciones de los tipos δ_1 y δ_2 se sigue que en general:

$$\delta \Omega_{u,\mu}[n] = 0 \qquad (11.74)$$

Consideranos una placa matálica neutra de dimensiones macroscópicas. Si n(7) es la densidad electrónica correspondiente al poten-cial de los núcleos, al potencial químico μ y al número total de e-lectrones de la placa, se tiene, de (11.68), (11.70) y (11.74) que para una variación pequeña de la densidad, Sn(7):

$$\int \left(\varphi(\tilde{\tau}) \frac{\delta G(n)}{\delta n(\tilde{\tau})} \right) \delta n(\tilde{\tau}) d\tilde{\tau} - \mu \delta N = 0 \qquad (11.75)$$

de donde se sigue, considerando variaciones arbitrarias que conser--

ven el número de partículas, que:

$$\varphi(\bar{\tau}) + \frac{\delta G(n)}{\delta n(\bar{\tau})} = \mu'$$

con μ^1 constante.

Por otro lado, considerando en (11.75) una variación arbitraria del tipo $\delta_{1},$ se obtiene:

$$\mu = \mu' = \varphi(\tau) + \frac{\delta G(n)}{\delta n(\tau)}$$
(11.77)

(11.76)

La función de trabajo es, por definición:

$$\dot{\Phi} = \left[\varphi(\infty) + E_{N-1} \right] = E_N$$
(11.78)

donde $\varphi(\omega)$ es el potencial electrostático lejos de la placa considera da y E_M es la energía del estado base de la placa con M electrones ycon N unidades de carga positiva. De (11.77) y de la definición de potencial químico se sigue que (11.78) se puede escribir como:

$$\Phi = \psi(m) - \mu = [\psi(m) - \bar{\psi}] - \mu \qquad (11.79)$$

donde:

$$\vec{\varphi} = \langle \varphi(\vec{\tau}) \rangle$$
$$\vec{\mu} \equiv \mu - \vec{\varphi} = \langle \ddot{\sigma} \mathcal{G}[n] / \dot{\sigma} n(\vec{\tau}) \rangle. \qquad (11.80)$$

Aquí () demota el promodio de la cantidad encerrada en el interior del metal.

La ecuación (11.79) es equivalente a la (11.30). Haciendo, pues, referencia a la deducción, se observa que la definición (11.30) cons<u>i</u> dera todos los efectos de muchos cuerpos.

CAPITULO 111 RESULTADOS Y DISCUSION

· III.1 ENERGIA SUPERFICIAL

Tomando el valor de V_o como la suma de la energía de Fermi y la función de trabajo se ha calculado para algunos metales el valor dela expresión (11.56) tomando la diferencia entre las expresiones ---(11.52) y (11.55). Los resultados así obtenidos se han comparado -con los que se obtienen al calcular la diferencia de las expresiones (11.53) y (11.55), observándose que ambos resultados son iguales para el mismo espesor de la barrera. Las gráficas de los valores obt<u>e</u> nidos para Aluminio y Potasio se muestran en la Fig. 111.1.

Como era de esperarse, se observó que después de un cierto espe sor de la barrera ya no era necesario seguir invirtiendo energía para separar más las superficies metálicas. Esto proporcionó un criterio para establecer en que circunstancias se puede considerar que se han formado dos superficies independientes.

En la tabla II reportamos los resultados obtenidos para la ener gia de superficie de cada uno de los metales considerados. En todos los casos el valor reportado es aquel obtenido mediante (11.56) y --(11.57) para un espesor de la barrera de potencial de una longitud de onda de Fermi. También reportamos en la tabla II los cambios porunidad de superficie formada de las energías potencial y cinética -del gas de electrones del metal.

En la Fig. III.2 damos una gráfica de la energía de superficiecontra el parámetro r, del gas de electrones para una función de tr<u>a</u> bajo fija de 3 eV. En la misma figura mostramos los resultados re-portados por Lang y Kohn, y los valores obtenidos experimentalmente-

Fig. 111,1 Epergía necesarla para establecer una ba rrera de potencial de espesor 2ª entre dos superficies metálicas. La altura de la barrera se toma en umbos casos como la suma de la energía de Fermi y la función de trabajo. El eje horizontal está graduadoen longitudes de onda de Fermi. (a) Aluminio; (b) Po tasio. Resultados obtenidos para la energía de superficie de algunos metales. La notación empleada es como sigue: EF energía de Fermi (en eV); FT-función de trabajo (en eV); RS-parámetro r₂ (en radios de Bohr); ES-energía de'su-perficie (en ergs/cm²); EP-cambio en la energía poten-cial del sistema (en ergs/cm²); EC-contribución cinética a ES (en ergs/cm²).

ELEMENTO	EF	FT	RS	ES	EP	EC	EC/ES
	1. ••1.				(10	100	A 11.7
LI	4./4	2.30	3,25	/30	, 620	100	0.14/
вe	14.3	3.92	1.0/	5099	0535	-030	-0.147
Na	3.24	2.35	3.93	304	205	119	0.310
Ng	/.08	3.64	2.60	1055	1393	201	0.150
AL	11.7	4.25	2.0/	4097	4132	- 35.	-0.009
ĸ	2.12	2.22	4.86	185	101	03	0.452
Ca	4.69	2.80	3.2/	759	588	1/2	0.226
. Mn	10.9	3.83	2.14	3525	3612	-8/	-0.025
Fe	11.1	4.31	2.12	3755	3664	90	0.024
Cu	7.00	4.40	2.68	1718	1291	428	0,249
Zn	9.47	4.24	2.30	2844	2580	263	0.093
Ga	10.4	3.96	2.20	3276	3232	45	0.014
Rb	1.85	2.16	5.20	145	- 74	71	0.488
Sr	3.93	2.35	3.57	533	413	120	0.227
Nb	5.32	3.99	3.07	1048	708	340	0.324
Δg	5.49	4.30	3.02	1131	744	387	0.342
Cd	7.47	4.10	2.59	1877	1525	352	0.188
In	8.63	3.80	2.41	2349	2151	197	0.084
. Sb	10.9	4.08	2.14	2585	3563	22	0.006
Ce	1.59	1.81	5.61	106	. 55	51	0,481
Ba	3.64	2.49	3.71	477	-541	136	0.286
Au	5.53	4.30	3.01	1145	757	388	0.339
Та	8.15	3.70	2.48	2114	1905	210	0.099
RS2	12.53	3.00	2.00	4245	5140	-895	-0.311
R53	5.57	3.00	3.00	1038	852	186	0.180
RS4	3.13	3:00.2	4.00	392	(S. 227. (164	0.420
RSS	2:00	3:00	5.00	183	80 💔	104	0.564
RS6	1 39	3.00	6:00	98	33	64	0.657
FT1	7 00	1 00	2.68	1202	1732	-530	-0.441
FT2	7 00	2.00	2.68	1380	1554	-174	-0.126
FT3	7.00	3 00	2.68	1535	1/125	110	0.072
ET b	7 00	4 00	2 68	1696	1325	372	0.219
стр стр	7.00	E 00	2 68	1787	1244	543	0.304
r 1 5	1.00	5.00	2.00				

Fig. 111.2 Comparación de los resultados teóricos para la energía de superficie obtenidos en este trabajo conlos valores obienidos por Lang y Kohn y los valores experimentales. La función de trabajo utilizada en nuestros cálculos fué de 3 eV.

-1000

de mediciones de la tensión superficial de los metales fundidos en equilibrio con su fase sólida.

Se observa que tanto nuestros resultados como los de Lang y ----Kohn predicen razonablemente bien los valores experimentales en la -región de bajas densidades. Para densidades intermedias/y altas ---nuestros resultados se comparan cualitativamente bien con el experimento mientras que los de Lang y Kohn muestran un comportamiento que se aleja de lo esperado.

Para obtener una idea de la influencia que ejerce la función de trabajo sobre el valor de la energía superficial hemos realizado elcálculo de este último parámetro como función del primero para una densidad electrónica fija ($E_r=7$ eV). Los resultados, mostrados en la Fig. 111.3 indican que las variaciones en la función de trabajo ejer cen una influencia comparativamente menor sobre la energía de superficie que la ejercida por variaciones en el parámetro r.

Los comportamientos generales de la energía de superficie mostrados en las figuras (iII.2) y (III.3) se reflejan en los valores de dicho parámetro reportados en la table (I. Así, mientras los --cambios importantes de la energía de superficie se deben fundamental mente a variaciones del parámetro r, hay casos, v.gr. Magnesio y Co bre, en los que una variación comparativamente elevada de la función de trabajo explica porqué un material con un valor de r ligeramente menor que el de otro material tiene una energía de superficie mayor.

Un análisis más completo de la tabla II indica otros aspectos sobre la naturaleza de la energía de superficie. Se observa que lacontribución cinética a la energía de superficie es relativamente importante para metales de baja densidad electrónica. Al aumentar lajensidad la contribución cinética pierde importancia y para metalesmuy densos alcanza incluso valores negativos. Se observa también -que el efecto de incrementar la función de trabajo para metales de densidad fija es el de aumentar el peso de la contribución de la --energía cinética a la energía de superficie: Este hecho se relaciona con el mayor confinamiento electrónico en los bloques metálicos -

Fig. 111.3 Variación de la energía de superficie con la función de trabajo para una serie de metales ficticioscaracterizados por una energía de Fermi de 7 eV. formados conforme aumenta la altura de la barrera de potencial.

La densidad electrónica como función del espesor de la barrerade potencial se ha calculado para algunos materiales desarrollando la expresión (11.58). En la Fig. 111.4 se muestra la evolución de la densidad electrónica en la vecindad de la barrera de pótencial -conforme ésta se ensancha. Se observa que dicha densidad presenta variaciones apreciables sólo para espesores de la barrera de 0.4 ---Longitudes de onda de Fermi o menores. Para barreras más anchas se puede considerar que se han formado dos superficies metálicas inde-pendientes pues el perfil de densidad asociado con cada una de ellas ya no varía apreciablemente.

A pesar de la aproximación relativamente simple empleada para obtener las funciones de onda y la densidad electrónica hemos obteni do resultados que difieren por un factor pequeño de los resultados experimentales (este factor varia entre 1 y 4 en todos los casos con siderados). Créenos que ésto se debe esencialmente a que una barrera de potencial cuadrada y su densidad electrónica asociada no presenta rán formas fundamentalmente diferentes a las involucradas en modelos más completos y, como se indica por la expresión (11.51), son estascantidades fundamentales para el cálculo de la energía de superficie. Créemos que la discrepancia entre los resultados teóricos obtenidos y los valores experimentales se vería disminuída si se conside rara la contribución de la red a la energía de superficie y se utili zaran modelos más realistas de la estructura de una superficie. Con sideremos, por ejemplo, lo que podría ser la contribución a la enerqía de superficie del relajamiento de los átomos superficiales de un metal.

Se sabe que los átomos superficiales en un metal no guardan --entre sí el mismo espaciamiento que los átomos del interior. Dichoespaciamiento es menor en la superficie como consecuencia del desbalance de fuerzas que sufren los átomos de la superficie al formarseésta. En nuestro modelo podemos considerar esta situación introdu--ciendo pozos de potencial ensial región superficial que representen -

Fig. 111.4 Evolución de la densidad electrónica cerca de la superficie de un metal al aumentar el espesor. 2a, dela barrera de potencial. Se presenta el caso r,=4.0, conuna función de trabajo de 3 eV. Los casos esquematizadosson: (a) $2\alpha=0.02\lambda_{\rm F}$; (b) $2\alpha=0.08\lambda_{\rm F}$; (c) $2\alpha=0.4\lambda_{\rm F}$; (d) $2\alpha=$ $0.6\lambda_{\rm F}$; (e) $2\alpha=\lambda_{\rm F}$. la mayor alracción que sienten los electrones por los iones más concentrados en la superficie, Fig. 111,5

Fig. 111.5 En un metal real la mayor densidad de iones en la superficie tenderá a formar pozos de potencial pa ra los electrones en las regiones de mayor densidad.

El hecho mismo de la relajación de los átomos superficiales --habla ya de una disminución de la energía de superficie, sin embargo, se puede ver en forma sencilla que la forma del potencial dada en la Fig. 111.5 llevará a una caída de la energía superficial si observamos que los pozos de potencial introducidos a los lados de la barrera harán bájar el valor de la expresión (11.51). Considerando adicio nalmente que la forma de los pozos introducidos puede depender del plano cristalino que constituya la superficie se puede intuir una d<u>e</u> pendencia de la energía superficial con la orientación de la superfi<u>c</u> cie.

La contribución a la energía de superficie debida a la interacción de los iones entre sí y con la nube electrónica no se puede visualizar con base a las expresiones desarrolladas. Lang y Kohn hanobtenido esta contribución a la energía superficial y han mejorado.

notablemente sus resultados. Se observa en sus cálculos que la forma de la densidad electrónica es importante y en consecuencia sus correcciones no son fácilmente aplicables a nuestros resultados.

Para concluir esta sección se presenta la gráfica de la función $f(k;\lambda)$ para $\lambda=1$, ec. (11.60). Como habíamos comentado, d'cha función daha el peso del total de estados con una componente; k; dada del -- vector de onda a la carga neta fuera de la superfície. Acompañamos-la gráfica de f(k; $\lambda=1$) con la de la contribución a la corriente de--tunelaje de los estados con una componente k del vector de onda ^{C121}, Fig. 111.6.

Fig.111.6 Gráfica de $f(k;\lambda=1)$ y gráfica de la contribución a la corriente de tunelaje por los estados con una componente k del vector de onda normal a la junta (J(k)).

La similitud cualitativa de las curvas de la Fig. 111.6 hace -pensar en la utilidad que puede tener la forma de $f(k;\lambda)$ para obte-ner ideas acerca de la importancia que tienen los diversos estados electrónicos de un metal en la interacción de diversos sistemas conuna superfície. Por ejemplo, en el caso ilustrado se puede observar que el Hamiltoniano de perturbación sobre los electrones en la barre ra actúa de tal forma que aumenta la probabilidad de tunelaje de los electrones con valores grandes de k. Este hecho no resulta, sin em-bargo, suficiente para que haya una contribución diferent, de cero de los electrones con $k=k_{F}$.

111.2 FUNCION DE TRABAJO DE HIDROGENO METALICO

En la presente sección se reportan los resultados para Hidrógeno metálico de la solución de las ecuaciones ([1.36)-(11.38) del modelo_ de Lang y Kohn. Los valores obtenidos para la densidad electrónica, el potencial efectivo y el potencial electrostático se dan en la ta-bla III. El grado de autoconsistencia logrado para el potencial efectivo fué menor del 12 en el interior del metal y fuera de él. En la región de mayor variación del potencial la autoconsistencia fué menor, sobre todo en las regiones en que el potencial era pequeño. Aún así,_ la autoconsistencia en dichas regiones se puede considerar menor que el 5: en promodio.

La función de trabajo obtenida fué de 4.77 eV.

TABLA III

Valores del potencial electrostático, $\varphi(x)$, del potencial efectivo, Vef (x), y de la densidad electrónica, n(x), para el caso de hidróg<u>e</u> no metálico. Los potenciales se miden en energías de Fermi (\mathcal{E}_{F} =50.1eV) y las densidades se dan en términos de ñ. La posición, x, se nide en longitudes de onda de Fermi; λ_{F} =1.67Å.

x	n(x)	Ner(×)	φ(x)
-1.20	1.0005	-0.9975	0.7306
-1.15	1.0004	-0.9971	0.7289
-1.10	0.9995	-0.9971	0.7271
-1.05	0,9980	-0.9963	0.7250
-1.00	0.9962	-0.9958	0.7225
-0,95	0.9944	-0.9953	0.7194
-0.90	0.9931	-0.9947	0.7159
-0.85	0.9926	-0.9941	0.7117
-0.80	0.9927	-0.9934	0.7071
-0.75	0.9930	-0.9912	0.7018
-0.70	0.9930	-0.9883	0.6958
-0.65	0.9921	-0.9847	0.6892
-0.60	0.9901	-0.9803	0.6821
-0.55	0.9864	-0.9749	0.6743
-0.50	0.9807	-0.9653	0.6655
-0.45	0.9805	-0.9552	0.6556
-0.40	0.9715	-0.9339	0.6441
-0.35	0.9577	-0.9090	0.6306
~0.00	0.9357	-0.8793	0.6141
-0,25	0.5046	-0.8454	0.5930
-0.20	0.6077	-0.8079	0.5657
-0.15	0.7415	-0,7601	0.5298
-0.10	0.6638	-0.7021	0.4825
-0.05	0.5746	-0.6272	0.4206
0.00	0.4924	-0.5316	0.3398
0.05	0.3065	-0.4339	0.2506
0.10	0.3274	-0.3534	0.1976
0.15	0.2591	-0.2872	0.14/0
0.20	0. 026	-0.2330	0.1090
0.25	0.1570	-0.1883	0.0014
0.30	0.1207	-0.1215	0.0599
0.35	0.0924	-0.0945	0.0150
0.40	0.0705	-0.0733	0.0315
0.15	0.1535	-0.0549	0.0225
0.50	0.0405	-0.0390	0.0150
0.55	0.0505	-0.0253	0.0109
0.60	0.0230	-0.0133	0.00/2
0.65	0.0172	-0.0029	0.0047

:.

			한편이 나라 좋아요.	
	n(v)	ard(x)		(v)
^		Otton		ψι~/
0.70	0.0128	0.0063	a harright starting a	6.0030
0.75	0.0095	0.0147		0.0017
0.80	0.0051	0.0221		0.0018
0 90	0 0038	0 0349		1 000%
1 00	0.0000	0.0103		10 0000
1.00	0.0020	0.0400		10.0000

APENDICE A

En el presente apéndice consideramos la deducción de una expresión para el potencial electrostático producido por una distribución de carga que sólo presenta variaciones en la dirección del eje x.

Representaremos la densidad de carga considerada como la superposición debida a una distribución de carga positiva, $n_+(x)$, y una distribución de carga negativa de magnitud n(x). La densidad totalde carga queda dada así por $n_+(x)-n(x)$. Supondremos adicionalmenteque la distribución de carga en consideración satisface la condición de neutralidad:

El campo eléctrico producido en un punto dado, x, por un plano de cargo de espesor dx' en la posición x' a la derecha de x está d<u>a</u> do, véase Fig. Al, por:

$$dE^{dr'}(x) = -2\pi [n_{1}(x) - n_{1}(x)] dx'$$
(A2)

x

Fig. Al.

El campo eléctrico producido en el punto x por un plano de carga de espesor dx' en x' está dado por: $2\pi(n_+(x^+)-n(x^+)) dx'$.

(A1)

Integrando la expresión dE^{der}(x) entre x e infinito se obtiene el campo eléctrico en x debido a la distribución total de carga a la derecha de x;

$$E^{der}(x) = 2\pi \int_{-\infty}^{\infty} [n(x)] - n_{+}(x)] dx^{-1}$$
 (A3)

En la misma forma se obtiene el campo producido por la carga neta a la izquierda de x;

$$E^{1/2}(x) = 2\pi \left[\int_{-\infty}^{x} [n_{1}(x) - n(x_{1})] dx_{1} \right]$$
(A4)

Utilizando la condición de neutralidad (Al) se observa que ---E^{der}(x)=E^{ra}(x), Esto da el campo total en el punto x como:

$$E(x) = 4\pi \int_{x}^{\infty} \frac{1}{(n(x)) - n(x')} dx'$$
(A5)

La integral de E(x) dá inmediatamente el potencial electrostático de la distribución de carga:

$$D(\mathbf{x}) = \varphi(\mathbf{\omega}) - \int_{\mathbf{\omega}}^{\mathbf{x}} \mathbb{E}(\mathbf{x}) d\mathbf{x}'$$

= $\varphi(\mathbf{\omega}) + 4\pi \int_{\mathbf{x}}^{\mathbf{\omega}} d\mathbf{x}' \int_{\mathbf{x}'}^{\mathbf{\omega}} [n(\mathbf{x}'') - n_i(\mathbf{x}'')] d\mathbf{x}''$ (A6)

Se puede ver que la sustitución de esta expresión en (1.53) da, utilizando las definiciones (11.26a)-(11.30), la ecuación (11.37) bàjo la condición de que μ =0.

学生 计本系

APENDICEB

En el presente apéndice consideramos el desarrollo de la expresión (11.60) para la función $f(k;\lambda)$.

Como habíamos visto, la expresión para $f(k;\lambda)$ está dada por:

$$f(h; \lambda) = Tr \Omega \left(|h_{F}^{2} - |h^{2}| \right) \int_{-\Omega}^{\Omega} \beta_{h, \lambda}(x) dx$$
(B1)

donde Ω es la densidad de estados en el espacio de vectores de onda.

El problema a resolver es en esencia el de obtener las N primeras funciones de onda, en el límite en que L→∞, de un conjunto de partículas cuyo Hamiltoniano está dado por:---

$$\mathcal{H} = -\frac{1}{2}\nabla^{2} + \lambda V_{0} u(a - |x|) + \frac{1}{u(l+x)} + \frac{1}{u(l-x)} - 2 \qquad (B2)$$

El potencial a que están sujetas las partículas representa la barrora que se establece entre dos superficies metálicas y su pageles el de mantener a los electrones confinados en los fragmentos metá licos, Su forma se esqueratiza en la Fig. Bl.-

En la solución del problema planteado se deben considerar en -forma separada las soluciones de simetria par e impar.

Tomemos $V_{a} = P^2/2$ y consideremos las soluciones de energía $k^2/2$ -(se emplean unidades atómicas). Las funciones de onda para las partículas, tomando condiciones periódicas en la frontera en las direccionas y,z, son:

(B3a)

 $\Psi_{p}(x) = \begin{cases} B & (\lambda x) e^{i (P_{x} + Y_{z} + k_{z} + k_{z})} & ; en \ \Pi \\ A & (i \in (k - Y_{p}) \in i(k, y) : z + k_{z} + k_{z}) & ; en \ \Pi \end{cases}$

$$\Psi_{I}(x) = \begin{cases} -A \cos(kx \cdot Y_{x}) e^{i(kyy + k_{x}z)} \\ B \ 5enh(yx) e^{i(kyy + k_{x}z)} \\ A \ cop(kx - Y_{x}) e^{i(kyy + k_{x}z)} \end{cases}$$

donde' $\chi^2 = \lambda P^2 - k^2$,

Los parámetros A,B y ^{*} se obtienen de las condiciones de continuidad d<u>e las funciones de onda y de</u>su normalización. La continuidad de la derivada logaritmica de la función de onda en x=±ª da las relaciones:

(B3b)

Por otro lado, la condición de normalización de la función de onda se puede escribir, para L≫a, como: donde Ly, Lz son las dimensiones de la caja que contiene a las partículas en las direcciones y,z respectivamente. En la dejucción de esta expresión se han despreciado tárminos del orden de Δ/L . Esto se justificará rigurosamente al tomar el límite L+ ∞ .

Considerando que la densidad de estados en el espacio de vecto res de onda está dada en este caso como:

$$\Omega = 2 (L/\pi) (L_2/2\pi) (L_2/2\pi)$$

$$= L L_2 L_2 / 2\pi^2$$
(B6)

se puede reescribir (B5) como:

 $B = \frac{\cos(hc - H_1)}{Senh(ha)} A$

$$A = (1/2\pi^{3}\Omega)^{1/2}$$
(B7)

El valor de B se obtiene imponiendo la continuidad de la fun-ción de onda en x=±a;

$$B = \frac{Cos(ka - Yr)}{Cosh(Ma)} A \qquad solutiones games (B8a)$$

Empleando las-expresiones (B1),(B3) y (B5)-(B8) se obtiene, to mando el límite L∞∞, que la contribución a f(k;λ) por los estados pares está dada por:

$$f_{p}(k; \lambda) = \frac{1}{2} \left\{ \frac{(1)}{2\pi i} (k_{f}^{2} - k^{2}) \frac{C_{os}(k_{a} - \gamma_{p})}{C_{os}h^{2}(\lambda_{a})} \right\}^{a} \frac{C_{os}h^{2}(\lambda_{x}) dx}{C_{os}h^{2}(\lambda_{a})}$$

$$= \frac{1}{4\pi^{2}} (k_{f}^{2} - k^{2}) \operatorname{Gos}^{2}(k_{a} - \gamma_{p}) \left[\frac{1}{\kappa} \operatorname{Tgh}(\lambda_{a}) + a \operatorname{Sech}(\lambda_{a}) \right]$$
(69a)

Aquí el factor de 1/2 en la expresión con corchetes se introduce --porque la densidad de estados pares es sólo la mitad de la densidad total de estados.

La contribución a f(k;λ) debida a estados impares se obtiene en forma análoga a la expresión (B9a);

$$f_{1}(h;\lambda) = \frac{1}{t_{1}\pi^{2}} \left(h_{e}^{2} - h^{2}\right) \cos^{2}\left(h_{0} - \lambda'_{1}\right) \left(\frac{1}{n} \operatorname{Cigh}(hu) - \alpha \operatorname{Csch}(hu)\right)$$
(B9b)

La suma de las expresiones (89) da finalmente el valor de ---- $f(k;\lambda);$

$$f(k_{1},\lambda) = \frac{1}{1+r^{2}} (|t_{p}|^{2} - |t^{2}) \left(\frac{1}{16} \cos^{2}(k_{a} - r_{p}) \operatorname{Tgh}(Ma) \right)$$

 $+ \frac{1}{36} \cos^{2}(ha - 3^{4}a) \operatorname{Ctgh}(ha) + a \frac{\cos^{2}(ha - 3^{4}p)}{\operatorname{Ccsh}^{2}(ha)}$ (B10)

$$\frac{\cos^2(ka-\delta'_1)}{\operatorname{Sen}h^2(ka)}$$

La sustitución de esta expresión en (11.59) da directamente la expresión (11.61).

APENDICE C

En este apéndice se presenta el programa (escrito en FORTRAN IV) desarrollado para resolver las ecuaciones (11.36)-(11.38) en forma -autoconsistente. Sólo se presenta el programa principal. El resto del programa consiste de la subrutina de integración AINOS(A,B,YY,Q,EPSA, EPSR,KEY,MAX,KOUNT,EST,IER,RC,RS), cuyo algoritmo ha sido publicado en:

M. Braders, J. COMP. APPL. MATH. 1,153(1975)

Los parámetros relevantes de AINOS son:

A - límite inferior de integración.

B - límite superior de integración.

YY - función que se desea integrar.

RC - integral de YY*Cos(Q*X), si KEY=0.

RS - integral de YY*Sen(Q*X), si KEY=1.

EPSA - exactitud absoluta requerida.

EPSR - exectitud relativa requerida.

SAX - número máximo de evaluaciones de YY que hage la subrutina al realizar la integración. Estas eva luaciones son realizadas mediante una subrutina de interporación.

KOLMT - parámerro de selida que da el número de evaluaciones de YY realizados durante la integración. EST - estimación de la exactitud absoluta del resulta

do.

IER - paránetro que indica si el resultado está den--tro de la exactitud requerida (IER=0) ó, la posible causa de inexactitud del resultado en caso contrario (IER=1,2).

El método empleado en la integración numérica de la ecuación diferencial (11.36) es el de Numerov⁽¹³³. Dicho método fué probado comp<u>a</u> rando las solucionos numérica y analítica de la ecuación de Schrödinger para una partícula en un escalón de potencial. La exactitud obtenida fué al menos de una parte en 10⁴.

100 SRESET FREE 200 FILE 5=VEFT1/UNIT=DISK/RECORD=14/BLOCKING=2 300 FILE ABETLESVUNTT=PRINTER 400 FT(F 2.95FFC1+UNTT=D19K;95FC0K()=14+R10CKTW6=21+9669F=30+6RF6=21*1 500 . TITHENSTON VEFF (450) and a second second second COMMOR/UND/Q, EPSEVEPSR, KEY, MAX, IP, SKUA, SX 600 COMMON/DOS/RX(650);RXI(650),XHIN,XHAX;IMX 200 600 CONTON/TREE/RK(GO)) INK / NODA COMMON/CUATRO/H2+FRUP/DIETA 50. /GAR(507,VEF(850)) 900 1000 COMMUN/CINCO/NNSI(50,300) COMMON/SETS/PI2, PIP4, FKUA DU SP · DENS(650), DSN(650), DENST(650) 1100 1200 COMMON/ONCE/FF4(600) COMMON/NUEVE/NCERO,E(650),EI(650) 1300 1400 COMMON/DIEZ/POTEL(650) DIMENSION PXC(650), DCJ(650), FF(650), DN(650), DV(650), EFV(650) 1500 DIMENSION DNI(650), VEFFN(650), VEFN(650) 1600 1700 EXTERNAL YY 1800 PIEZ-ORANSIN(1.0) V PIZEPIAPI V PITPIEAPI 1900 C* DATOS DE ENTRADA PARAMETROS DE AINOS (SUBRUTINA DE INTEGRACION) 2000 0% 0=0.0 \$ EPSA=1.0E.5 } EPSR=1.0E-6 \$ KEY=0 # MAX=1000 2100 PARAMETRO QUE DECIVE LA APROXIMACION USAVA PARA CALCULAR LA 2200 C# CONTRIBUCION & VEF POR CORRELACION E INTERCAMBIO 2300 0% 2400 MU=0 2500 1.# ENERGIA DE FERNI (EN ELECTRUN-VOLIS) 2000 EF=50-11254 2700 MR115(6,100) 2800 **BRITE(6,200)** 紀存 2900 C* TRATUCCION & UNDERDES ADDRESS EFUA=EF/27.19330 ; FNUA=(2.0*EFUA)**0.5 3000 3100 . FK2UA=FKUA*FKUA ; FWLUA=2.0%FT/FKUA RSUA=(9.0*PI/4.0)**(1.0/3.0)/FRUA 3200 3300 WRITE(6,300) WRITE(6,200) EFUA, FULUA, RSUA 3400 DENSYDAD DE CARGA EN CL. 10ULTO/ 3500 0.8

	王 子子	
		그는 것 그 물건 비행 것 같은 것 같
		이 같은 것 같은 바람이 있는 것 같은 것 같
	3600	HENSP 41:07 ((PTP 4/3.0) * RSUA * * 3.0)
	370052	URITE(65,400)
n an the second s	3800	URITE(6:200) DENSE
• [•••] • • • •	U 00 C%	BENJIDAD DE EMERGIA DE IMPERCAMPIO Y CORRELACION EN EL "BULTO".
	1000	IF (HU, EQ. 1) GU TO 1 CONTRACT OF A CONTRACT
	1100	RHUP1====================================
	4200	RMUP2==(0,453/R3UM**2+0-44/(RSUA*7-8)**2)/(PIF4*(RSUA*DERSP)**2)
		T RHUP-ARTUP1 FDEWSPWRNUP2
	1400	
	450001	RMUP1==0.02909#(21.0/RSUA+0.7734*ALD6(1.0+21.0/RSUA))
	4600.02	1、CONTINUES 1、CLAL LARGE 网络教育的网络教育教育和学校的最优教育教育教育教育和主义
ter 1865 -	4700	1、WRITE(2,500) TTTELLELEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
	4:300-5	WRITE(6)200) Rhup
g_{0}	4900 C*	POTENCIAL DUIMICO INTRINSECO
H.	5000	- CPRI=EFUA+RHUP
· · · · · ·	51005	URTTE(6):550) 11111111111111111111111111111111111
6	5200	WRITE(6,200) FUI
	5300, C*	DEFINICION DE VALORES PARA X
	S400 C#	ESCOGER XMIN, XHAX, SX DE TAL FORMA QUE INX SEA DE LA FORMA
	5500-C*	ENTERO*ISAVE+1
	-J600, -	XMIN-3.0#F0EU6 / XMAX-1.0#FWEU6 / SX-0.025
	5/00	SX=SX#FWLUA J H2=SX*SX J CNCERO=XNAX/SX+1.000001
ann tha th	0800 0800	10X= (X00X-X010)/22/81.000001
Sec. Sec. 1	GYC0 -	
网络马克马克马克马克	4000	NX(1X) #XNAX (1X-1)#5X
	. 6 1 0 0 	※2.1・1.17米(*1.1×1.1)等ける(1.4.2)。 しんどうしょうしょうしょうが、たまし、しょうしょうがいていた。 しんしょう ひょうしょう ひょう ひょうしょう ひょう ひょうしょう ひょう ひょうしょう ひょうしょう ひょう ひょうしょう ひょうしょう ひょうしょう ひょうしょう ひょうしょう ひょうしょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひ
	G200 19	LURITING.
	0000 64	LECTURE DEL FOIENCIME FRODUESTU PERSONAL AND
	0400. 7.400	REAU(3/%)/ (VEF(1X))1X*IVIAX)
		WILLEROT/07 Hottp://www.internet.com/uniternet.co
	1700	WALLENGZY// YEETALA// LATIFULA/ STANA/
	6700264	DENSIDED DE GEROFF FUSITIVE X DELETINE DEPITIRETETE)
	0000	UU TAINAMATINA ANDRON ON TO
• • • • •	0700	TEXTAXELETRONO UT DE TELEVISION DE LE CONTRACTOR DE LA CONTRACTÓRIA DE LA CONTRACTÓRIA DE LA CONTRACTÓRIA DE LA
get in the second		DUDATA / # Market
1. 1.		그는 그는 방법에서 이렇는 것이 있는 것을 하는 것을 것을 것을 수 없는 것을 것을 것 같아. 것을
		에는 것은 것을 가지 않는 것을 하는 것을 하는 것을 하는 것을 가지 않는 것을 가지 않는 것을 하는 것을 하는 같은 것은 것은 것을 하는 것은 것을 하는 것을 하는 것을 하는 것을 수 있는 것을 수 있는 것을 하는 것
· .		그는 이제 가슴 그는 것이 가지 않는 것을 것을 가지 않는 것을 가지 않는 것이 없다. 가지 않는 것이 없는 것이 없 않는 것이 없는 것이 않는 것이 없는 것이 않이
		에는 것은 바랍에 있는 것은 것을 통하는 것은 것을 가지 않는 것을 가지 않는 것을 가지 않는 것을 수 있다. 이 가지 않는 것은 것을 가지 않는 것을 가지 않는 것을 하는 것을 하는 것을 하는 것을
•		- 2019년 - 1919년 - 1919년 - 1919년 - 1919년 - 1919년 1919년 -

GO TO 13 DCJ(IX)=0.0 7300 13 CONTINUE * 7400 11 COSTINUE 7500 C.S. DEFINICION DE VALORES PARA KOS 7300 THEFT F. SELLARPELLAR THE -1 F 2700 STADU 14 INHI, INK STATUTE 7800 RECINGE (11. - 1) ASKUS 7900 114 CONTINUE 8000 01 CALCULD DE LA SOLUCION A LA ECUACIÓN DE SCHRODINGER 1,3100 TOL=0.000001 F IRMINAR SETEMAX INK 1 8200 LALL SCHROD(TOLYIKMINAIKMAX) 8300. DO 16 IX=1, IMX 8400 RKSI(1,IX)=0.0 NKSI(1)1X)=0.0 CONTINUE GAM(1)=0.0 8500 CONTINUE 16 8400 .8700 00 777 IK=1, TAK CONTINUE 8800 777 WRITE (6, 825) 8900 9000 WRITE(6,700) (IR.RK(IR), GAM(IR)) IN=EVIRMAX) 9100 C: CALCULO DE LA DENSIDAD ELECTRONICA 9200 1SAVE-1 9306 CALL DENCISAVES 2400 - URTYE(6,900) 9500 WRITE(6,200) (1X, RX(IX), DSN(IX), IX=1, IMX) 9300 Cx CALCULO DE LA DIFERENCIA DE FUTENCIAL/ENTRECATNE Y - INF 9/00 CX DENSIDAD DETA DE CARDA DE GALLYA. 9805 DO US IX=1. IMX 9900 DN(IX)=DENS(LX)=DCJ(IX) 10000 ---TADNI(INX-IX+1)=DN(IX) 10100 FF(IX)=RX(IX)+DN(IX) 10200 FFI(IMX-IX+1)=FF(IX) CONTINUE 10300 55 10400 TA=XNIN (B=XHAX) IP=2 16200 - CALL AINUS (A, B, Y7, Q, EFGATEPSR, KEY, MAX KOUAT, EST, TER, RC, RS)

DELTA=EIP4*RC 10600 10700 WRITE(6,1000) 10800 WRITE (6,200) DELTA 10900 Ck CALCULD DE LA FINDTON DE TRADAJO 11000 FT=DELTA-PDT 11100 WRITE(6)1100> 11200 URITE(6,200) FT 11300 TTEV=FT#27,19530 1400° GRITE(65:14150) 11500 WRITE(6)200) FTEV CALCULD DE LA CONTRIDUCION DE CORRELACION E INTERCAMBIO A VEF 11600 C* 11700-ELTE(MU.EQ.1) COUTO SO T1800 DO STATISTANTAL -11900 C* RS LOCAL 12000 RSLUA=(3.0/(P1P4*DENS(IX)))**(1.0/3.0) 12100 C* 'POTENCIAL DE CORRELACION E INTERCAMBIO' 12200 FXC1=+(0.455/RSEUA(0.44/(RSEUA+7.0)) 12300 PXC21==-0.458/RSLUA##2+0.44/(RSLUA+7.8)##2 12400 PXC22=PIP4*(RSLUA*DENS(IX))**2-12500 PXC2=PXC21/PXC22 12600 PXC(IX)=PXC1+DENS(IX)*PYC2 12200 CONTINUE 51 12800 CO TO 52 15500 50 · 00 93 IX=1, INX-13000. RSLUA=(3.0/(PIP4*DENS((X)))**(1.0/3.0) 13100 PXC(IX)=+0,02407*(21,0/RSLUA+0,2734*AL0G(1,0+21,0/RSLUA)) 13200 53 CONTINUE 13300 CONTINUE 50 CALCULD DEL CAMPO ELECTRICO 13400 0% 13500 1SI=1 CALL CAMPO(ISI, ISAVE) 13300 13700 WRITE(SV1200) URITE(6,700) (IX, RX(IX), E(IX), IX=1, INX) 13800 CALCULO DEL POTENCIAL ELECTROSTATICO 13900 0* 14000 . CALL POT(ISI, ISAVE)

14100 WRITE(6+1300) 14200 WRITE(6,700) (IX, RX(IX), POTEL(IX), IX=1, INX) CONSTRUCTION DE VEFF(1X) 14300 0% DO 15 INSIATHY 14400 VEFF(IX)=FT-POTEL(1x)+PXO(IX) 14500 +4600 TO VEREN (TX) - VERE (TX) ZEEDA CONSTR 14200 ····VEFR(IX)=VEF(IX)/EEDA DU(IX)=UEFFN(IX)-VEFN(IX). : 14000...... CEEV(1X) = DV(TX) / VEEFEN(TX) COL 14900 15000 15 CONTINUE 15100 URITE(6)1400) 15300 * (IX=1 • IMX) --15400 15500 98 FORMAT(//* VALORES DEL FOTENCIAL PROPUESTU") 15600 '99 FORMAT(" ",5E15.8) 15700 100 FORMAT(/" VALOR DE LA FNEROIA DE FERMI EN E.V.'S") 15800 200 FURMAT(SF14.6) 15900 300 FORMAT(/" ENERGIA DE FERMI,LONGITUD DE ONDA DE FERMI,RS (U.A.)") FORMAT(/" VALOR DE LA DENSIDAD EL, EN EL BULTO (U.A.)") 16000 400 FORMAT(Z" DENS, DE EMEROIA DE INT, Y CORR, EN EL BULTO (U.A.)") 16100 500 16200 550 FURMAT(//" FUTENCIAL QUINICO INTRINSECO") -13300 FORMAT(115,2E16.6) 700 15400 750 - FORMAT(15,5F8,4) 16500 825 FORMAT(//// VALORES DE LOS CORR, DE FASE: IK,RK(IK),GAM(IK)*) 16600 FORMAT(/// VALOR DE LA DENSE DE CARGA-NES, NORA-, IX, X, D") 900 16700 1000 FORGAT(272" DELA DE FOTA ENTRE ATEM Y HINGE(USAS)") 14800 -1100 FORMAT(////// FUNCION DE (RANGJO (U.m.))/ 16900 1150 FORMAT(ZZZ* FUNCTON DE TRABAJO EN E.V.*). 17000 1200 -FORMAT(////// VALS, DEL CAMPO ELECTRICO (U,A,), IX,X,F") 17100 1300 FORMAT(///" VALS. BEL POT.ELECTROSTATICJ (U.A.), IX:X, POT") FORMAT(/// POT. EF., IX,X:VEFL.VEFF, ERR., ERR., FRACC. NORM.") 17200 1400 17300 LOCK 7 STOP 17400 47500 LIND

STA TESIS NO DEDE IR de la biblioteg

		사람이 있는 것은 것은 것은 것은 것은 것은 것은 것은 것을 하는 것은 것을 가장하는 것을 가장하는 것은 것을 가장하는 것은 것을 가장하는 것은 것을 가장하는 것을 가장하는 것을 가장하는 것을 가장하는		
		이 전화 있다. 이 같은 것은 것이 나는 것이 같이 해야 하는 것이 것 같은 것을 하는 것이라. 것이 가지 않는 것이 없는 것이 같이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 있다. 것이 있는 것이 없는 것이 없 않는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 않는 것이 없는 것이 없 않은 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 않은 것이 없는 것이 없는 것이 없는 것이 않은 것이 없는 것이 않은 것이 없는 것이 않은 것이 않은 것이 않은 것이 없는 것이 없는 것이 없는 것이 않은 것이 없는 것이 않은 것이 않은 것이 없는 것이 없는 것이 없는 것이 않은 것이 없는 것이 않은 것 않 않은 않은 것이 않이		
	17600	SURGULTIVE SCHROU		
	17700	* (TOL .TKMIN,TKMAX)		
	17800	CCMMON/D05/RX(\$50), RXI(\$50), XMIN, XMAX, INX		
	12900	COMMON/TREC/RK(50), 1MC, FN2UA		
供給にかけ、日本	13000	COMMON/CUATRO/H2, RNUP, DZETA(50), DAM(50), VEF(650)		
	16100	COMMON/CINCO/ENSI(50,000)		
	18200	CONTRACTOR OF A CONTRACT OF		
	18300	- J. J. DINENSION F(450)」に、A. A. C. P.		
	13-400	UND TO DETENDION DE LA SOLUCION EN LOS PRIMEROS DOS PUNTOS des provincies de la solución de la solución de la s		
	18300	C* / ST(ESTA DEBE SER DADA FOR LAS CONDICIONES HARTICULARES DEL PRODLEMA)		
	18300	11日本語語 DO 20 IK=IKNIN+IKNAX 目前的語言語語語語語語語語語語語語語語語語語語語語語語語語語語語語語語語語語語語		
	13700	\sim RK2=RK(IK) *KN(IK) / U=FK2UA-RK2		
	18800	PD 21 IX=1+2		
	18900	(CIX)=U+2:0*VEF(IX)		
	19000	RRS1(1R,1X) = EXP(-R(1X) * F(1X)		
	19100	21 CONTINUE		
- 2	10200	20 UUNTINUE		
and the second s	10100	LA BULGLION FOR MUNICIPAL RESIDUE LOS FUNCTO		
	10500	DU GO GETANINA TANINA		
	17300	LING ALMERATOTIANDAL AND		
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	19200	ON 14 TYER, THE STORE ST		
	19860	E(f(X), d(X), d(X)) = f(f(X))		
	19900	31 CONTINUE		
	20006	M1 32 TX=3+IMX		
	20100	FC=10.0#7(1X-1)3KR81(1K-1)4F(IX-2)4RK5((IK-2)		
	20200	CRST#2.94BKSI(IN, THE 1) BRSI(IN, IX-2) C (201 C C C C C C C C C C C C C C C C C C C		
	20300	○ CKS10=CK91+H2*FC/12.0		
	20400	■ A RKS10+CKS10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
a se a l'énere de la	20500	C* PROCESO DE ITERACION PARA LA SOLUCION CONSTRUCTOR CONSTRUCTOR AND CONSTRUCTOR		
	20300	34 RKS11+CKST04H2*F(TX)*RK5T0412,000,000,000,000,000,000,000,000,000,0		
	20700	DIFTARS(RKSI1-RKSIO)		
	20800	- 「「「「IF(DIF+LI+T06」) (D TU 33) (1993) (19		
	20900	(4) A REVIO (REVII) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		
	21000	$GO_{-} = 10^{-3} GO_{-} = 10^{-3} GO_{$		
		人名法尔德尔 化丁基苯基 化二乙基 化过度化过度化过度化过度 计数据 建物合物 医白色 网络小麦属 化分析 医牙外外骨 网络小麦根 法公司 网络小麦根 网络小麦根 网络小麦根 网络小麦根		
(el				
--	---	----------------------	---	----------
		د این در مستقدر ا		
- <u>-</u>	21100 21200	33	CONTINUE	
	21300		A=0.0 ; B=0.0 ; S1=0.0 ; S2=0.0	
	21400	••••	PIF4=8.0*ARSIN(1.0)	
مو د د	21200 ·		RENE=RK(IK)+RK(IDE) ; C=RDDPZ(RRKE#FIPA##2)	
	21600		RK1=RKSI(IKYIMX-10) / RK2=RKSI(IKYIMX)	
	21700		RX1=RX(INX-10) # RX2=RX(INX)	
14	p21000.		SEMI=SIM(RN(IR)%[X1) F SEME=SIM(RK(IR)#RX2)	7
	222200 100000	··· / \	UUL +UUL (HEAR) - HEAR / UUL (NKCAN) #HEAR	
	22000	- C C	(A) FARALLY DIFFUSION CONTRACTOR CONTRACT	
	2100		- 自己学校教育学校会に代表でもいいたではならかないがす。 - 19月1日には、19月1日には、19月1日には、19月1日には、19月1日には、19月1日には、19月1日には、19月1日には、19月1日には、19月1日には、19月1日には、19月1日には、19月1日には、19月1日	
ret de M	007760	····	(DATXATTA) = 0.74 CODE (TATATA) + 0.001	
	222000		AR1 #RK(TK) 52.02RK(THC) ↓ CCT#GAM(TK)+2.0*GAM(TK)	
an a	-22500		AR2=RK(TK)-2.04RK(TNK) ; CO2+GAM(TK)-2.04GAM(TMK)	1.5
	22600		ARG11=AR1*RX1-C01 / ARU21=AR2*RX1-C02	
	22700	•••	ARG12=AR1*RX2-CO1 / ARG22=AR2*RX2+CO2	7 F.
· · · · · · · · · · · · · · · · · · ·	-22800		SS1=SIN(RK(IK)*RX1-GAM(IK)) 7 US2=SIN(RK(IK)*RX2+GAM(IK))	
	-22900		S1=C*(SIN(ARG11)-SIN(ARG21))/RX1**2	
	23000		S2=C*(SIN(ARG12)_SIN(ARG22))/RX2**2	
	23100		DET=RK1#S2-RK2#S1	
	23200		DLTA=SS1*S2~S52*S1 / DETB=KK1*SS2~KK2*S51_27%	
	1 23000 1 23000		19年10日(1771年) - 「ビーロビーリアロビ」 「ベームカウィームームキンプへ)	
	23400		EH-HBS(AH-H1/H)	
	23400		DZETA(III) *B	
	23700		100 35 IX=1, INX	
	23800		RKSI(IL, IX) - ABRKSI(IK, IX)	
	23900	35	CONTINUE	
	24000	30	CONTINUE A CONTINUE AND A CONTINUE A	5. S.
	24100		"RETURN"用"你们们的情绪的关键,你们最高兴了这些你的。"他们是不是有些人们的问题,我们不是不是	
	24200		는 END 이렇게 하는 것은 것은 <u>이 같은 것을 하고, 이 것은 것은 것은 것은 것은 것을 하는 것</u> 이 있는 것이 같이 있는 것이 같이 있는 것이 같이 있다.	
	24300	·	SUBROUTINE DEN	•
	24400	×.	A DOAVE 7 FOR FOR FOR SAM TO CHIA ON SAME	
	24000		CONTURY UNDARAGED STATE CALLAND TE AND A STREET STORE STATE	
	e de la composición d			•

역할 수 있는 것이 있는 것이 있다. 전체 이상은 이상은 것이 있는 것이 있는 것이 있다. 같은 것이 있는 것이 없다. 것이 있는 것이 있는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는

COMMON/DOS/RX(350), RXI(350), XMIN, XMAX, IMX-24600. COMMON/TRES/RK(50),IMK,FK2UA 24700 COMMON/CINCO/RKSI(50,500) 24800 COMMON/SEIS/FI2, 1P4, FKUA, DENSF, DENS(450), DSN(450), DENGI(440) COMMON/DCHO/CDEL.(50) 24900 25000 25100 EXTERNAL YY ISAVE=INX/ (PUNTUS EN QUE SE CALCULA LA DENSIDAU CON ATNOS) 25200 CX 25300 C* CALCULD DE LA DENSIDAD ELECTRONICA 25400 A=0.0 治血肝医用膏 11-1 25500 TF(ISAVE, E0.1) 60 TO 45 TIMX=IMX/ISAVE+1.000001 25600 25700 GO TO 46 25800 TTMX=THX 45 25900 CONTINUE 44 26000 00 40 IX=1,IINX 26100 1X=(IX-1)*ISAVE+1 26200 DO 41 IK=1, THK . 26300 RK2=RK(IK)*RK(IK) CDEKX(IK)=(FK2UA-RK2)*RKSI(IK,IX)**2,0 26400 26500 CONTINUE 41 28600 CALL AINOS(A, B, YY, Q, EPSA, EPSR, KEY, MAX, KOUNT, EST, IER, RC, RS) 26700 DENS(IX)=RC/PI2 DENSICIMX-IX-1)=DENS(IX) 26800 26200 CONTINUE 40 27000 A=XMIN # D=XMAX # IF-3 27100 CALL AINOS(A, B, YY, Q, EPSA, EPSR, KEY, MAX, KOUNT, EST, IER, RC, RS) 27200 CARGAMERU J CARGAPE-XN1R\$DENSP 27300 10 47 IX=1, IMX DEMS(IX)=DEMS(IX)*CARGAP/CARGAN 27400 27500 27600 CONTINUE 47 27700 10 42 IX=1, INX . Å. CONTINUE 27800 .42 27900 RETURN 28000 END

	29100	SUBROUTINE CAMPO		
	28200	。這些迷惑(ISI,ISAVE))在在國家的建築學家的目的中華的自己的自己的主義的感染。中華的		
	58300	COMMON/UND/O, EPSA, EPSR, KEY, MAX, IP, SKUA, SX		
観察会社会会会	28400	COMMON/DUS/RX(65/)/RX(650)/RIN/AMIN/AMIN/AMIN/		
	20000 20000	COMMONABLIDY LTM: LC4FOL ET (250)	1 an	
	29700	THENRICH ENGLASSING FEGSES		
엄마 그 그 것	29800	EXTERNAL YY		
	28900	C* CALCULO DEL CAMPO ELECTRICO		
	27000	Te (ISAVE, EQ. 1) 60 10 65		9 a
	- 29100	トル語語(JimtTHX#THX/ISAUEF1+000001創作的語言,由此中的目示的主要,在中国的目标,如此		
	29200			
	29300	45 IINX=INX		
	29400	66 CONTINUE		
	29500	la vijedi 115∓15AVEXIST1 – La zakara ka ka se	en e	
tan protection of the second	- 29600	1F(115,L]+6)115-10 学校学校学校、教学学校、学校学校の学校、学校、学校、学校、学校、学校、学校、学校、学校、学校、学校、学校、学校、学		
w. W	00X782**	RU GO $(X + y) + 100$ and		i i en el
		TE CTY (CE S) GOITO AT		
na fila Maria	30000	TE(TX) (E TTS) ON TO A?		$\mathbf{A}^{\mathbf{A}}$
	30100	$A = R \times (1 \times) i B = R \times (1 \times - 11 S) i 1 = 3$		in the state in Anna
	30200	CALL AINOS (A, B, YY, Q, EPSA) EPSR, KEY, MAX, KOUNT, EST, TER, RC, RS)		
	30300	EN(IX)=EN(IX-IIS)+RC*PIP4	. 1940 - ¹	
zeran son son son son son son son son son so	.30400			· · · · · · ·
	30500	6. 41 EN(IX)=0.0		
jita i i i	30600	60 TU 43	1 · · · ·	
	30700	62 APRX(1X) F BEXMAX F LETS A PROVIDE TO THE PROPERTY AND		
	30800	LALL ALRUS (F. BY TTYUZETSAZETSKYKETYTAX KUUNTYESTYÄKKÖYKSZ		
	-30900	にNVTA/1-000年1月3日 にNVTA/1-000年1月3日 		
	21190	20 LUNITINΠ 202. CONTINUE	- 199 1	
	31200	C=PTP4%DFNSP		4
	31300	00 69 IX=1,IMX	jan ya	
	31400	IF(IX.LE.NCERO) GO TO 67		
	31500	EP(IX)=-RX(IX)*C		•
				•
		방송에 이 나는 것 것을 많아요? 영상 않는 것을 것 같아. 이 방송 감독을 알았다. 같아?		

	이 같은 것은 것 이 바람들은 것은 국가에서 가장 것이 가지 않는 것은 것을 해야 할 수 없는 것 같이 있는 것 이 것을 수 없는 것 같이 있다. 이 가슴 귀엽 감독을 가지 않는 것 같이 있는 것 같이 있는 것 같이 있는 것 같이 있는 것 같이 있다. 이 가슴 귀엽 감독을 가지 않는 것 같이 있는 것 같이 없다. 이 가슴 귀엽 감독을 가지 않는 것 같이 있는 것 같이 있는 것 같이 없는 것 같이 않는 것 같이 없는 것 같이 않는 것 같이 없는 것 같이 없 않는 것 같이 없는 것 같이 없는 것 같이 없는 것 같이 없는 것 같이 않는 것 같이 없는 것 같이 않는 것 않는 것 같이 않는 것 같이 않는 않는 것 같이 않는 것 같이 않는 것 같이 않는 않는 것 같이 않는 것 않는 것 같이 않는 것 같이 않는 것 같이 않는 것 같이 않	
	그는 그는 그 그는 것 그렇게 눈 눈 가장님께서 한 것 같아. 가장 동물을 가장 눈물을 모들을 했는 것 같아. 귀엽을 다 못 물을 들었다.	e faith
and the state	31400 GO TO 58 CO TO	a na ana ang ang ang ang ang ang ang ang
	131700 37 · · · EP(IX)=0+0 · · · · · · · · · · · · · · · · · ·	・連続時代にいた。
1 A. W	31800 68 STACONTINUE A SAME SAME SAME SAME AND A SAME SAME SAME SAME SAME SAME SAME SA	
	31920 SP CONTINUE CONTINUE	
	. 32000	
	- 32100 ···································	
	-32200	
	32300 70 CONTINUE refer the second entropy of the second second second second second second second second second	
a contraction of the second	. 32466	
	32500 647 F. CONTINUE	
	322000 金田市市市 RETURN 的第三人称单数 新闻的现在分词 计正式 网络马尔特 法行行的 化二乙烯	
	32703-Communication END for the second state of the second state of the second state of the second state of the	
Sec. 1	32800 SUBROUTINE POT	100 C
	- 32900 (二) (151, 15AVE) (171, 26, 27, 26, 27, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27	1 Jan Sugar
	33000 might be a standard the standard set of	
24	33100	4-147 - 179 - 1.4 147 - 17
	_33200 COMMON/NUEVE/NCERO,E(650),ET(650)	
- 7	33300 COHMON/DIEZ/POTEL(650)	and a second
	33400 (1) 11 16 EXTERNAL YY CONTINUE (1) 20 20 20 20 20 20 20 20 20 20 20 20 20	
and the second	33500 C# CALCULO DEL POTENCIAL ELECTROSTATICO	an a
and the second	-33600 IF (ISAVE.EQ.1) 60 TO 75 Provide the Distance of the second	1. S. A.
	33700 IInX=INX/ISAVE+1.000001	
	33600 00 TO 76 0 TO 10 plant the static large state of the state of t	
	33900 75 TINX=INX	
	34000 76 CONTINUE CONTINUE .	
constants -	- 34100 IIIS=ISAVE*ISI+1	
	34200 IFCIIS.LT.3) IIS=10	
	$34300 \qquad \qquad 10 70 13 \times 10 100 $	
	34400 IX=(IX=1)*ISAVE+1 set to be a provide the set of	47
· · · · · · · · · · · · · · · · · · ·	34500 IF(IX.LE.5) 00 T0 71	the fill and the
	34600 IF(IX.LE.IIS) G0 T0 ?2	
ا ۱۹۶۰ و تاریخی اور فرهمه کار است و از میکند.	J34700 A=RX(IX)→ B=RX(IX→IIS) → P=4 Normal Structure (Structure Structure S	an a
	34800 CALL AINO3(A, B, YY, Q, EPSA, EPSR, KEY, MAX, KOUNT, EST, IER, RC, KS/	
	34200 PG71L(1X)=RC+POTEL(1X-115)	
	35000 60 10 73 (1) (1) (1) (1) (1) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	1997 (1997) 1997 - 1997 (1997) 1997 - 1997 (1997)
	에는 사람들은 사람들은 것 같아. 바라에서 가장 것 같아. 중요한 방법을 가지 않고 있는 것을 가 있다.	
	그는 가슴에 가지 않는 것 같은 것 같아요. 그렇는 것 가슴 가슴에 나는 것은 가슴을 가지 않는 것이 가슴을 가슴다. 가	and the second
記載		194 - 194 194 - 194

POTEL (IX)=0.0 35100 71 35300 72 CONTINUE RETURN ENU FUNCTION YY(X) DYMENSION Z(1),W(100),RT(9),D2(8) COMMON/UNO/Q+EPSA,EPSR,REY,MA,,IF,SKUA,SX COMMON/UNOS/RX(650),RX1(650),XMIN,XMAX,IMX 34200-COMMON/TRES/RK(50), INK, FK2UA COMMON/SEIS/PI2/PIF4/FKUA, DENSP/DENS(450)/DEN(650)/DENSI(450) COMMON/OCHO/CDEKX(50) COMMON/NUEVE/NCERG,E(450)/EI(350) COMMON/DIEZ/POTEL(450) COMMON/DNEE/FFI(\$50) MQ=6 (Z(1)=X XX=Z(1) IIF=IP-2 IF(11P.LT.0) GU TO 10 H=SX MRN=INX-3 GO TO 20 H=SKHA H-5KUA NRM=INK-3 CONTINUE IF(IIP.LT.0) GO TO 30 Q1=(X--XNIN)/H+1.000001 GO TO 40 : 38000 Q1=(X-XMIN)/H+1.000001 G0 TO 40 Q1=X/H+1.000001 30 - Q1=X/H+1.000001 38400 40 H01=01) M03=H01-3

	· · · · · ·	الركيوا المربيب فكالكلاب بيواريك بمرغو والمراشقة كمراضي فسيكر مربعوكم كقتوبيون محروقتان معن المحمولا فالمراجع المراجع المراجع المراجع
2	38400	IF(GUL.GE.GRM) 1003=HRM-3
1	38700	ITT(MQ1.LE.3) MQ3=0 Provide States of the second states of the second states and the second states of the second s
í ·	38800	IF(I1P) 50,60,70
	00200 · 150	. 1 (10,55 I=1,MQ) ,
	39000	RT(I)=RK(MQ3+1)
1	39100	02(1)=00EKX(M05F()
١.	37200 55	CONTINUE : CONTINUE
te 1	39300	60 TO 80
	39400 60	- 3 μ. μ θ 65 Τ≈1,4 Ω (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
	39500 34 24	※J,RT(1)=RX1(HQ3+1)、「「「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、
	39600 3000	第四 日2(1)中FF1(MO3 41)「「「「」」」」」「「「」」」「「」」「「」」」」」」」」」」」」」」」
Ľ	39700	STATE CONTINUE - A CARACTERISTIC AND A CARACTERISTIC AND A CARACTERISTIC
	37800	· [9] GO TO BO : 「
	39900 - 70	
	.40000	RT(I)=RXI(MQ3+I)
	40100	act IF(IIP+EQ+2), CO, TO, 71, Co, F, Entry, F, F, C, A, C, F, F, C, A, C,
	40200	D2(I)=DENSI(MQ3+1)
	40300	, <mark>60 10 75</mark>
	40400 71	WED2(I)=EI(MO3+I)): Weight And
	40500 75	CONTINUE
	40600	S. GO TO 80
	40700 80	I CONTINUE DE 2000 DE DESERVICE DE LA CONTINUE DE 2000
	40800	CALL ICSIVU(D2,RT,MQ,1,Z,W,IER)
	40900	ana YY≕Z(l) na sana sana sa
	41000	RETURN
	41190	

REFERENCIAS

- 1.- N.D. Lang y W. Kohn, Phys. Rev. B 1, 4555 (1970).
- 2.- N.D. Lang y W. Kohn, Phys. Rev. B 3, 1215 (1971).
- 3.- 'H.B. Huntington, Phys. Rev. 81, 1035 (1951).
- 4.- J. Bardeen, Phys. Rev. 49, 653 (1936).
- E. Cotina, F. Magaña y A.A. Valladares, Am. J. of Phys. <u>45</u>, 960 (1977).
- 6.- N.W. Ashcroft y N.D. Mermin, Solid State Physics (Holt Rine hart and Winston, New York, 1976):
- 7.- S. Raimes, The Wave Mechanics of Electrons in Metals (North Holland Publishing Co., Amsterdam, 1961).
- 8.- P. Hohenberg y W. Kohn, Phys. Rev. 136, B364 (1964).
- 9.- W. Kohn y L.J. Sham, Phys. Rev. 140, A1133 (1965).
- 10.- T. Koopmans, Physica 1, 104 (1933).
- T11 المراجع M. Abramowitzzy At Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).
 - 12.- C.A. Mead, J. of Appl. Phys. 32, 646 (1961).
- 13.- F. Scheid, Numerical Methods (Mac Graw Hill Co., New York,-1968).