

Universidad Nacional Autónoma de México.

FACULTAD DE MEDICINA VETERINARIA Y ZOOTECNIA

RENDIMIENTO DE GALLINAS PONEDORAS DE RAZAS SEMIPESADAS Y LIGERAS ALOJADAS A RAZON DE 3 Y 4 AVES POR JAULA DE 40 POR 45 Cm. EN UN SEGUNDO CICLO DE PRODUCCION.

TESIS

Que para obtener el Título de

MEDICO VETERINARIO Y ZOOTECNISTA

presenta:

Luis Alejandro Rojas Olaiz

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

CONTENIDO

	<u>Página</u>
RESUMEN.	1
INTRODUCCION	3. • 3
MATERIAL Y METODO	
RESULTADOS Y DISCUSIONES	9
CONCLUSIONES	.12
LITERATURA CITADA	13
CUADROS	. 15
GRAFICAS	. 27
APENDICE	ું 36

RESUMEN:

ROJAS OLAIZ LUIS ALEJANDRO, RENDIMIENTO DE GALLINAS PONEDORAS DE RAZAS SEMIPESADAS Y LIGERAS ALOJADAS A - RAZON DE 3 Y 4 AVES POR JAULA DE 40 POR 45 cm EN UN SEGUNDO CICLO DE PRODUCCION. (bajo la dirección de JOSE ANTONIO QUINTANA LOPEZ Y RICARDO NAVARRO FIERRO.)

Con el propósito de valorar el comportamiento productivo después de la pelecha, se utilizaron 224 gallinas semipesadas y 224 gallinas ligeras, de 71 semanas de edad. a las cuales se les practicó la pelecha forzada. Se alojaron en dos diferentes densidades: 3 y 4 aves por jaula de 40 por 45 cm, esto es 600 y 450 cm cuadrados por ave respectivamente. todas en una caseta de ambiente natural. Se registró el número y peso del huevo producido, la cantidad de huevos rotos y blandos, la mortalidad y el triaje, el consumo de alimento, el color de la yema (medida en la escala de Roche) y la calidad interna del huevo (en unidades Haugh). El trabajo duró 25 semanas, hasta las 101 semanas de edad de las aves. En la den sidad de 3 aves por jaula, hubo menor número de huevos rotos, mortalidad y triaje, mayor porcentaje de postura y número de huevos por gallina encasetada, mejor indice de conversión, pe so corporal y unidades Haugh; sin embargo a una densidad de 4 aves por jaula se obtuvieron más huevos y más kilos de huevo por jaula, con menor número de huevos blandos. No se encontra ron diferencias entre el peso del huevo, consumo de alimento y color de la yema. Las gallinas se vieron afectadas por un brote de coriza infecciosa y dermatitis gangrenosa, que duró de la semana 82 a la semana 85 del experimento, resultando --nás afectadas las aves ligeras. Las aves semipesadas tuvieron

mayor número de huevos por jaula y por ave encasetada, mayor peso promedio y total, mejor peso corporal, menor número de - huevos blandos, mortalidad y triaje, pero con mayor número de huevos rotos, mayor consumo de alimento y conversión, que las ligeras.

TOWNRODUCCTON:

La explotación de gallinas ponedoras en jaula constituye el método de producción más difundido en el merca do comercial y contribuye de manera relevante a la alta producción (5).

El éxito de las jaulas es debido a la habilidad de adaptación del eve al espacio reducido. Las inovaciones hechas son para que las aves esten rás confortables y se
reduzca mano de obra (14). De tal forma que un 25% de aumento en el espacio mínimo por gallina puede traducirse en un aumento de 4% del costo de producción como mínimo, puesto -que se ha tenido en cuenta solamente la construcción y el equipo (5).

En los años veintes se empezaron a utilizar - las jaulas o baterías, pero fué hasta los cuarentas cuando - se incrementó su uso (3). Al principio se tenía un ave por - jaula (13), siendo la inversión inicial muy alta, por lo que se empezaron a agrupar desde 5 hasta 50 gallinas por jaula, incrementándose la mortalidad (3). Siempre hubo la tendencia de agregar el ave extra, sin esperar consecuencias adversas, (13).

Actualmente se estima que el 70% de las poredoras comerciales en el mundo son alojadas en jeula (14).

Mientras que para algunos investigadores las altas densidades de población en gallinas de postura, han da do como resultado una baja en la producción de huevo y un incremento en la mortalidad, (7,10,13,22) otros han concluido que el incremento en la densidad de población, no produce bajas en la producción de huevo (11,12,16,19).

Ravindra Et.Al, menciona que en 1977 Ruggles, observó la densidad con 1,2,3 y 4 aves por jaula, encontrando un aumento progresivo en el número de huevos producidos por -

jaula y un incremento en la mortalidad, sin embargo al citar los trabajos de Wogman y colaboradores en 1969 menciona que ellos no encontraron efectos significativos con respecto a la producción de huevo, peso del huevo, con 2,3 y 4 aves por jaula (21). En 1975 Ramakrishnaiah, encontró resultados similares a los de Wogman (20).

North describe que en 1977 Bell comparó 1,2,3 y 4 aves por jaula de 30 cm de frente por 45 cm de profundidad, concluyendo que el incremento en la densidad de aves disminuye la producción de huevo, aumentando el tamaño del huevo y la mortalidad, cuando disminuye el espacio de piso por ave. (14).

Algunos investigadores informan que el peso del huevo no guarda relación con la densidad de población (14,17, 21). Pero otros afirman que el peso del huevo disminuye al au mentar la densidad de población (7,17).

Cunningham menciona que Hill en 1977 y Hunter en 1980, establecieron que a menor densidad, mayor es la producción (7).

Los expertos sostienen que el requerimiento de espacio por ave es de aproximadamente 400 cm cuadrados para — las razas ligeras y de 450 cm cuadrados para las razas semipe sadas (5). Castelló y Cid afirman que 440 cm cuadrados por ave semipesada y 380 cm cuadrados por ave ligera es lo ideal — para una buena producción (4). El consejo de Bienestar de los animales de Granja del Reino Unido establece una área mínima de 600 cm cuadrados por ave (9). Sin aclarar el tipo de ave.

La Legislación de Bienestar para los animales de diferentes países europeos han determinado el espacio por ave, de tal forma que, en Bélgica se dan 360 cm cuadrados por ave mínimo con 5 gallinas por jaula máximo, en Francia 400 cm

cuadrados por ave al igual que en Noruega, pero en este último con 5-7 aves por jaula, Holanda da 425 cm cuadrados por ave con 9.6 cm de comedero por ave, Dinamarca 600 cm cuadrados por ave, Suecia y Suiza dan 500 cm cuadrados por ave (2).

En 1981 Cunningham y Ostrander compararon la - densidad de población utilizando jaulas tradicionales e invertidas, con 484 cm cuadrados por ave en la densidad de 4 gallinas por jaula y 387 cm cuadrados por ave en la densidad de 5 gallinas por jaula. Proporcionando 9.5 y 7.6 cm de comedero - por ave en jaula tradicional y 15.2 y 12.2 en jaula invertida, segun la densidad de aves por jaula, siendo mejores resultados en la jaula invertida en cuanto a producción, tamaño del huevo, peso corporal, consumo de alimento, kilogramos producidos y menor el número de huevos rotos (7).

Hunton en 1983, recomendó un mínimo de 10 cm - de comedero por ave con un espacio de piso de 452 cm cuadra-- dos por ave y grupos de 3 aves por jaula (13).

En 1984 Albañez y Quintana al comparar el segundo ciclo productivo en gallinas semipesadas y ligeras a razón de 4 aves por jaula, observaron una mayor producción de huevos en gallinas ligeras, pero un mayor tamaño del huevo en las semipesadas (1), dando 450 cm cuadrados por ave en ambas estirpes.

En 1985, Quintana y Gómez no encontraron diferencias significativas al evaluar rendimiento de gallinas ponedoras a razón de 3 y 4 aves ligeras por jaula y 450 cm cuadrados y 337.5 cm cuadrados por ave respectivamente, pero reportan un 28% más de huevo producido y un 33% más de capacidad por metro cuadrado de jaula a una mayor densidad (19).

La avicultura en México se ha visto afectada - por la crisis económica por la que atraviesa el país (1,23).

Por lo tento el avicultor ha procurado disminuir los costos de producción, utilizando las aves durante un segundo ciclo, para volver a tener producción en más corto tiempo (14,15 y 18).

Aunque existe mucha información acerca de densidad de población en gallinas de postura en un primer ciclo, no se encontró el efecto de la densidad de población en gallinas de postura para un segundo ciclo de producción de aves se mipesadas y ligeras, en ninguna de las publicaciones revisadas.

MATERIAL Y METODO:

Este trabajo se realizó en la Granja Experimen tal Avícola y Bioterio de la Facultad de Medicina Veterinaria y Zootecnia de la Universidad Nacional Autónoma de México, la cual tiene una caseta de postura con ambiente natural. Se localiza en Zapotitlán D.F. Delegación de Tlahuac, altitud promedio 2,250 M.S.N.M. clima templado húmedo, siendo enero el mes más frío y mayo el mes más caluroso, precipitación pluvial promedio anual 747mm (8).

Material: una bateria de 128 jaulas de 40 cm - de frente por 45 cm de profundidad, con comedero manual tipo convencional al frente de la jaula, un bebedero automático de copa por cada dos jaulas, 224 gallinas semipesadas y 224 gallinas ligeras, todas de 71 semanas de edad. Alimento para gallina de postura fase II, con 17% de proteína, 4.1% de calcio y 1.0% de fósforo. Se administraron 115 gramos de alimento -- por día para las aves semipesadas y 105 gramos para las ligeras.

Método: Las aves fueron agrupadas en jaulas — con dos diferentes densidades: 3 y 4 aves por jaula, dando — 600 cm cuadrados y 450 cm cuadrados de piso por ave respectivamente.

TRATAMIENTO	AVES/Jaula	cm/ave	TOTAL DE AVES	ESTIRPE
I	3	600	96	Semipesada
II	4	450	128	Semipesada
III	3	600	96	Ligera
IV	4	450	128	Ligera

Cada tratamiento se aplicó en 4 repeticiones - con 8 jaulas cada uno, se pelecharon según el método desarro-llado por Cubria (6). Las aves se pesaron al llegar al 5% de postura, 50% y al finalizar el ciclo, la recolección de huevo fué una vez al día y se dió un fotoperiodo de 17 horas. Se hi

zo un triaje al llegar al máximo de postura y posteriormente cada 15 días. Se registró diariamente: la mortalidad y - el triaje, el huevo roto y blando y número de huevos, semanalmente se obtuvo el procentaje de las variables mencionadas, además el peso promedio del huevo e índice de conversión. Mensualmente se determinó el color de la yema y las - unidades Haugh (13), con 5 huevos de cada lote.

La evaluación de los resultados se hizo mediante un análisis se varianza con un modelo factorial donde se consideraron como factores la densidad de población, la estirpe de gallinas y el efecto de semanas así como las interacciones entre ellas, usando como variable de respuesta cada uno de los datos registrados.

Pera las variables expresadas en porcentajes se efectuó la transformación de Blisa Y transformada=arcoseno (raiz cuadrada (Y/100) donde Y es el porcentaje de interés. Para los efectos significativos se usó la prueba de Tukey para las comparaciones de medias.

RESULTADOS Y DISCUSION:

Los promedios generales por estirpe, densidad y las combinaciones estirpe-densidad, se muestran en los cuadros 1,2 y 3.

Las gallinas alojadas a razón de 4 aves por - jaula, semipesadas y ligeras, tuvieron mayor número de huevos por lote, que las alojadas en un densidad de 3 aves por jaula, con una diferencia altamente significativa, (P<0.01) cuadro 2 3 y 4 al igual que lo encontraron Quintana y Gómez (19) Las - gallinas semipesadas tuvieron mayor número de huevos que las ligeras a la misma densidad, con una diferencia significativa, (P<0.05), cuadro 1,3,4 gráfica 1, contrario a lo que mencio—nan Albañez y Quintana (1). En todos los casos el número de - huevos, fué mayor para las gallinas semipesadas de 4 aves por jaula, en donde la interacción estirpe-semana fué altamente - significativa (P<0.01) cuadro 2,3,4.

En ambas estirpes el número de huevos rotos, fué mayor en las aves alojadas a mayor densidad, con una dife
rencia altamente significativa, (P<0.01) cuadro 2,3,5 gráfica
2. Las gallinas semipesadas tuvieron mayor número de huevos rotos que las ligeras, con una diferencia significativa --(P<0.05) cuadro 1,3,5 gráfica 3.

No hubo diferencia significativa (P>0.05) en - cuanto al número de huevos blandos, comparando 3 y 4 aves por jaula, cuadro 2,3,6. Fué mayor el número de huevos blandos en las gallinas ligeras que en las semipesadas con una diferencia altamente significativa, (P<0.01) cuadro 1,3,6.

El porcentaje de postura de las gallinas aloja das a menor densidad, superó al de las de mayor densidad, con una diferencia altamente significativa, (P<0.01) cuadro 2,3,7 gráfica 4, como lo encontraron Bell, Cunningham, Gill y otros

investigadores (7,10,13,14,22). No hubo diferencia significativa (P>0.05) en el porcentaje de postura de las gallinas se mipesadas y ligeras, cuadro 1,3,7 gráfica 5, contrario a lo que mencionan Albañez y Quintana (1).

Las aves semipesedas, alojadas a razón de 3 - por jaula, tuvieron mayor número de huevos por ave encasetada, que 4 aves por jaula y las ligeras, con una diferencia significativa, (P<0.05) cuadro 2,3,8 gráfica 6 y 7.

Al comparar el peso del huevo, no hubo diferencia significativa (P>0.05) entre densidad, cuadro 2,3,9 - como lo han encontrado algunos investigadores (14,17,20,21). Aunque el peso del huevo de las gallinas semiposadas fué más alto que el de las ligeras, como lo reportan Albañez y Quintana (1) la diferencia no fué significativa (P>0.05) cuadro 1,3,9.

La densidad de 4 aves por jaula y la estirpe - semipeseda, produjeron mayor número de kilogramos de huevo, - la diferencia fué significativa (P<0.05) cuadro 1,2,3,10 gráfica 8 y 9.

La mortalidad fué más alta con una significancia estadística (P<0.05) en la estirpe ligera, debido quiza a que se presentó un brote de coriza infecciosa y una dermatitis gangrenosa a las 82 semanas, resultando más afectadas las gellinas ligeras que las semipesadas, cuadro 1,3,11. No hubo efecto significativo en cuanto a densidad de población, cuadro 1,2,3, contrario a lo que mencionan algunos investigadores (7,10,13,14,22).

Con respecto al triaje la diferencia por densidad no fué significativa, (P>0.05) cuadro 2,3,12. En las gallinas de estirpe ligera hubo mayor triaje, dando una diferencia significativa, (P<0.05) cuadro 1,3,12.

Las gallinas semipesadas consumieron más alimento que las ligeras, cuadro 1,2,3. No hubo diferencia en las gallinas alojadas en 3 ó 4 aves por jaula.

El índice de conversión fué superior en las - gallinas alojadas a mayor densidad, cuadro 2 y el de las gallinas semipesadas, cuadro 1,3.

Las unidades Haugh fueron 1.7 y 1.8 más altas en las gallinas alojadas a menor densidad y en las ligeras — que en 4 aves por jaula y en las semipesadas, cuadro 1,2,3.

La pigmentación de la yema, fué mejor en las - avec semipesadas. No hubo diferencia en las distintas densida des, cuadro 1,2,3.

Las gallinas alojadas a menor densidad, tanto las semipesadas como las ligeras, tuvieron mejor peso corporal que las alojadas a mayor densidad, durante todo el ciclo, cuadro 1.2.3.

Los resultados de cada una de las variables analizadas por semana, se muestran en los apéndices A,B,C y D.

CONCLUSION:

La producción es mejor a una menor densidad de población, en lo que se refiere a ave encasetada, sin embargo se obtiene mayor número de huevos y más kilogramos de huevo - producido por jaula a una mayor densidad de población, en un segundo ciclo productivo.

Las gallinas semipesadas tienen mayor produc-ción que las gallinas ligeras, durante un segundo ciclo de -producción, pero mayor consumo de alimento y peor conversión
alimenticia.

TITERATURA CITADA.

- 1.- Albañez J.M. y Quintana J.A.: Rendimiento de gallinas ponedoras de huevo blanco y café durante un segundo ciclo productivo. VIII Cóngreso Centroamericano y del Caribe de Avicultura, San José Costa Rica. 102-108 (1985).
- 2.- Andersen A.: It's Free trade, but is it fair play? Poultry 1: 62-63 (1985).
- 3.- Bell D.: Consideraciones sobre la forma de la jaula y la dersidad de gallinas por jaula para maximizar ganancias. Avirama 1: (7): 5-14 (1979).
- 4.- Castelló J.A. y Cid J.M.: Situación actual de ponedoras en batería en España y en la C.E.E. repercusión de la legislación sobre el bienestar de las aves en batería.

 Selec. Avic. 25: 55-71 (1983).
- 5.- Comunidad Económica Europea: Propuesta de la comunidad económica europea para las ponedoras en batería. Selec. Avic 24: (4) 141-150 (1982).
- 6.- Cubria M.J.M.: Comparación de cinco métodos de pelecha -forzada en gallinas ligeras. Tesis de Licenciatura, Facultad de Medicina Veterinaria y Zootecnia. U.N.A.M. (1985).
- 7.- Cunningham D.L. and Ostrander C.E.: An evaluation of layer performance in deep and shallow cages at different densities. Poult. Sci. 60: 2010-2016 (1981).
- 8.- Enciclopedia de México 3er. ed. Impresora y Editora Mexicana S.A. de C.V. México (1978).
- 9.- Farm animal welfare council: Draft revised code of recomendations for the welfare of domestic fowls. Block B. Government Buildings, 18 (1982).
- 10.- Gill L.: Design and analysis of experiments in the animal and medical Sciences. The Iowa State University Press. -- Ames, Iowa, U.S.A. (1978).
- Pl.- Gutjer W.: The use of specifield amounts of protein in -feed for laying hens at different stocking densities. <u>Tierernahrung und Futterung 10</u>: 163-171 (1977).
- 12.- Hill A.T. and Hunt J.R.: Effects of cage floor shape on Layers performance. Can. Jour. Anim. Sci. 61: 817-825 (1980).
- 13.- Hunton P.: El tamaño de las jaulas y el número de aves. Selec. Avic. 27: 116-135 (1985)

- 14.- North M.O.: Commercial chicken production manual. The A. Publishing Co. 3th. ed. Iowa U.S.A. 1984.
- 15.- Ortiz M.P. y Olguin F.J.: Algunas consideraciones económicas sobre la pelecha forzada. Avirana 3: (35); 13-14 (1983).
- 16. Overt M.D. and Adams A.W.: Effects of cage design and bird density on layers 1, Bird movement and feeding behavior. Poult. Sci. 61: 1606-1613 (1952).
- 17.- Overt M.D. and Adams A.W.: Effects of cage design and bird density on layers 2, Bird movement and feeding behavior. Poult. Sci. 61: 1614-1620 (1982).
- 18. Quintana L.J.A.: Pelecha forzada. Las aves manejo y medio ambiente, Tomo II. Universidad Nacional Autónoma de México. 1981.
- 19.- Quintana L.J.A. y Gómez P.L.: Rendimiento de gallinas penedoras alogadas a razón de 3 ó 4 aves por jaula de 45 por 30 em <u>Avirama 5</u>: 4-17 (1985).
- 20.- Ramakrishnaiah T.M.: Effect of stocking density on the performance of caged layers. <u>Thesis Abs</u>. Haryana Agricultural University 3: 192 (1977).
- 21.- Ravindra R.V. Varandarajulu P. Subba Rao V. Appa Rao and Chandra R.: Effects of density in cages on egg production feed for dozen eggs and egg quality studies. <u>Indian Vet. Jour.</u> 56: 49-52 (1979).
- 22.- Robinson D.: Effects of cage shape, colony siza floor area and cannibalism preventatives on laying performance.

 British Poult.Sci. 20: 345-356 (1979).
- 23. Yañez M.A.: Análisis retrospectivo situación actual y futuro de la avicultura en México. Avirana 4:(40) 8-28 __- (1984).

CUADRO 1 PROMRDIO POR ESTIRPE DE LAS VARIABLES REGISTRADAS

VARIABLES	SEMIPESADAS	%	LIGERAS	%
Total de huevos	24,253 a		22,879 1	5
Huevos rotos	264 д	1.08	193 1	.84
Huevos blandos	24 a	.09	35-1	.15
Porcentaje de postura		64.37	а	64.52 a
Peso del huevo (gramos)	68 a		66 s	L
Kilogramos de huevo	1,653.8 a		1,521.4 t)
Huevo ave/enca- setada.	108 ਤ		103 b	
Mortalidad	15 a	14.06	26 b	23.69
Triaje	l a	1.04] l2 b	10.15
Consumo de alimento semanal (kilos)	.805		.732	
Indice de conver- sión	2•67		2.49	
Unidades Haugh	93.14		94.85	
Color de la yema	⊥ა.56		10.21	
Peso corporal	2.05		1.49	

En cada renglón letras diferentes indican una diferencia significativa, ver cuadros 4-12 de analisis de varianza.

CUADRO 2
PROMEDIO POR DENSIDAD DE LAS VARIABLES REGISTRADAS

VARIABLES	3 AVES/JAU	TLA %	4 AVES/JAULA	. %
Total de huevos	20,567	a	26,565 b	**************************************
Huevos rotos	176	a .85	281 a	1.05
Huevos blandos	31	a .15	28 a	.10
Porcentaje de postura		65 . 66	2	63.23 b
Peso del huevo (gramos)	67	a	67 a	
Kilogramos de huevo	1,383,6	8.	1,791.5 b	
Huevos/ave/enca- setada.	107	a	103.6 b	
Mortalidad	13	a 19.79	123 a	17.96
Triaje	4 :	a 4.16	9 a	7.03
Consumo de alimen- to semanal (kilos)	.767		. 769	
Indice de conver- sión	2.52		2.64	
Unidades Haugh	94.92		93.06	
Color de la yema	10.28		10.49	
Peso corporal	1.805		1.739	

En cada renglón letras diferentes indican una diferencia significativa, ver cuadros 4-12 de analisis de varianza.

CUADRO 3
PROMEDIO POR ESTIRPE Y POR DENSIDAD DE LAS VARIABLES.

	SEN	IIPESADAS	LIG	ERAS:
VARIABLES	3 AVES	4 AVES	3 AVES	4 AVES
Total de huevos	10,264	13,629	9,943	12,936
Huevos rotos	111	153	65	128
Huevos blandos	15	9	16	19
Porcentaje de postura	66.76	61.98	64.56	64.48
Peso del huevo (gramos)	68	68	66-	- 66
Kilogramos de huevo	721.3	932.4	662.2	859.1
Huevos/ave/enca- setada	109.48	106.36	104.57	100.95
Mortalidad	9	, ≇ ⊣6.	9 (17
Triaje	1	0	, 3	. 9
Consumo de alimento semanal (kilos		.805	-729	•730
Indice de conver- sión.	2.54	2.80	2.50	2.49
Unidades Haugh	94.57	91.71	95.28	94.42
Color de la yema	10.42	10.71	::10.14	10.28
Peso corporal	2.08	2.02	1.53	1.45

FUENTE DE VARIACION	GL	SUMA DE CUADRADOS	CUADRADO MEDIO	F	SIGNIFICANCIA
B	1	1650.85	1650.85	6.33	(P<0.05)
D	ĺ	87738.21	87738.21	336.34	(P< 0.01)
S	24	71515.97	2879.83	-ii.42	(P >0.05)
ED	1	539.78	539.78	2.07	(P > 0.05)
ES	24	26555 • 27	1106.47	4.24	(P<0.01)
DS	24	8071-37	336.38	1.29	(₽ <i>></i> ¦0.05)
EDS	24	3522.80	,146 . 78	.56	(P>0.05)
ERROR	301	78517.55	260.86		
TOTAL	400	278006.10	695.02		

⁽P<0.01) Altamente signifi cativo. (P<0.05) Significativo. (P>0.05) No significativo.

CUADRO 5 ANALISIS DE VARIANZA DEL HUEVO ROTO.

FUENTE DE VARIACION	GL	SUMA DE CUADRADOS	CUADRADO MEDIO	F	SIGNIFICANCIA
E	1	716. 99	716:99	3.58	(P<0.05)
D	1	3771.37	3771.37	18.81	(P < 0.01)
8	24	12579.65	524.16	2.61	== (F==0.01-)
ED	1	469.66	469.66	2.34	(P > C.O5)
ES .	24	3030.19	163.76	.82	(P > 0.05)
DS	24	6114.74.	204.78	1.27	(P > 0.05)
EDS.	24	4280	178.36	.89	(P >0.05)
ERROR	301	60350.75	200.50		
TOTAL	400	42267.10	230.67		

⁽P<0.01) Altamente signifi-cativo. (P<0.05) Significativo. (P>0.05) No significati o.

CUADRO 6 ANALISIS DE VARIANZA DEL HUEVO BLANDO.

FUENTE DE VARIACION	GL	SUMA DE CUADRADOS	CUADRADO MEDIO	. F	SIGNIFICANCIA.
B	1	556.19	566.19	15.69	(P<0.01)
D	1 , %	13.42	13.42	.37	(P>0.05)
55	24	1341.38	55.90	1.574	(P>0.05)
æp	1	113.44	113-49	3.19	(P > 0:05)
ES	24	1156.84	48.20	1.35	(P _{C>} 0.05)
DS	24	702.50	29.27	.82	(P>0.05)
EDS.	24	687.60	.28.65	.80	(P >0.05)
ERROR	301	10714.30	:35.60		
TOTAL	400	15342.43	34.48		

(P<0.01) Altamente significativo. (P<0.05) Significativo. (P>0.05) No significativo.

CUADRO 7
ANALISIS DE VARIANZA DEL PORCENTAJE DE POSTURA.

FUENTE DE VARIACION	GL	SUMA DE CUADRADOS	CUADRADO MEDIO	F	SIGNIFICANCIA
3	1 *	31.21	31.21	.15	(P > 0.05)
D	1	13376.44	13376.44	62.59	(P<0.01)
s	24,**,-	28855.49	1202.10	5.62	==(P<0.01)
æÐ	1 .	169.95	169.95	1.99	(P > 0.05)
ES	24:	15088.49	628.69	80	(P<0.01)
DS	24	5637.26	2341.89	2.94	(P>0.05)
EDS	24	4202 . 05-	175.09	1.10	(P>0.05)
ERROR	301	64333.96	213.73	1007 (1941) A. 1717 (1941) A. 1944 (1941)	
TOTAL	400	131823.56	324.56		

⁽P<0.01) Altamente significativa. (P<0.05) Significativo. (P>0.05) No significativo.

CUADRO 8
ANALISIS DE VARIANZA DEL HUEVO POR AVE ENCASE

FUENTE DE VARIACION	GT	SUMA DE CUADRADOS	CUADRADO MEDIO	r	SIGNIFICANCIA
E	.	.83	.83	2.21	(₽∠0.05)
D	1	.4.41	4.41	11:69	—(F<0.05)
S	24	36.61	3.53	9.34	(P<0.01)
ED	1	.94	.94	-2.48	(P >0.05)
ES	24	31.03	1.29	3:43	(P<0.01)
DS.	24	-8.87c	: 37	.98	(乎>0.05)
EDS;	24	5.08	*.21	.56	(P >0.05)
ERROR	301	.113.58	.38		
TOTAL	400	249.38	.62		

⁽P<0.01) Altamente signifi cativo. (P<0.05) Significativo. (P>0.05) No significativo.

CUADRO 9 ANALISIS DE VARIANZA DEL PESO DEL HUEVO.

FUENTE DE VARIACION	GL	SUMA; DE CUADRADOS	CJADRADO MEDIO	F	SIGNIFICANCIA
B	1	.16	.16	25	(P > 0.05)
D	T	1.21	1.21	1.91	(P>0.05)
S	24.	40.6L	1.69-	2.67	(F_0.01)
ED	1	.16	.16	.25	(F>0.05)
35.	24	8.84	.37	.58	(P>0.05)
ĎS	24	8.79	•37	.58	(Pa 0.05)
EDS	24	10.84	.45	.71	(P>0.05)
ERROR	301	191.00	•64		
TOTAL	400	261.61	.65		

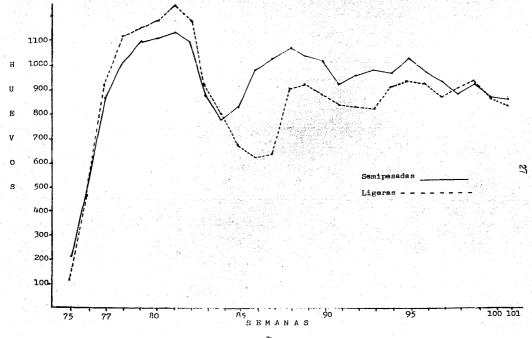
⁽P<0.01) Altamente significativo. (P<0:05) Significativo. (P>0.05) No significativo.

CUADRO 10 ANALISIS DE VARIANZA DE KILOGRAMOS DE HUEVO.

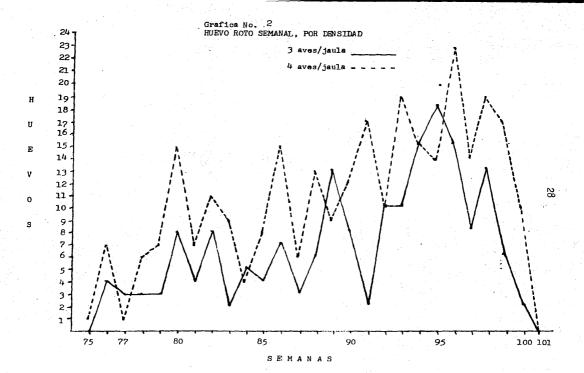
FUENTE DE VARIACION	GI.	SUMA DE CUADRADOS	CUADRADO MEDIO	F	Significancia
B	l	9263.35	9263.35	.85	(P < 0:05)
D	1	25731.53	3 74731.53	2.37	(P < 0.05)
S	24	495210.21	20633.76	1.9	(P<-0.05)
ED	1	4558.62	4558.62	.42	(P > 0.05)
ES	24	161096.04	5712 . 34	.62	(P >0.05)
DS	24	198839.58	8284.98	.77	(P>0.05)
eds	24	21125.74	8755.24	.81	(P>0.05)
ERROR	301	3277443.15	10881.87		
TATO	400	4380146.60	10950.37		

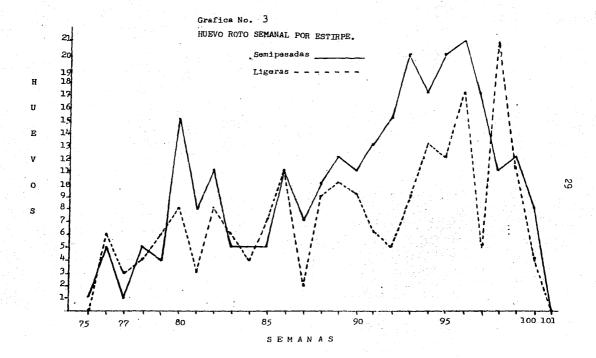
(P<0.01) Altamente significativo. (P<0.05) Significativo. (P>0.05) No signficativo.

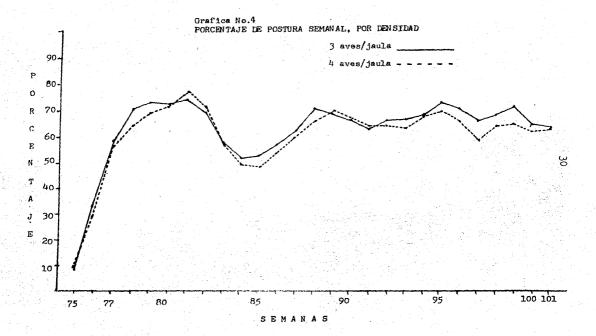
CUADRO 11 ANALISIS DE VARIANZA DE MORTALIDAD.

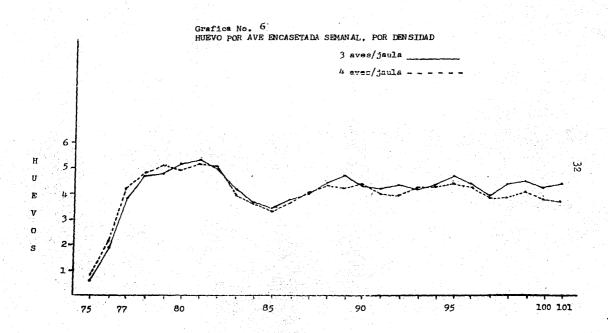

FUENTE DE VARIACION	GT.	SUMA DE CUADRADOS	GUADRADO MEDIO	F	SIGNIFÍCANCIA
. .	1	5.22	5•22	.02	(P<0.05)
D	1	.88	. 88	-33 -33	(P>0.05)
S.	24	37.89	1.58	.02	(P<0.05)
BD.	1.4	≟-89	1.89	15.	(P > 0.05)
BS	24	35-32	1.47	.04	(P=0.05)
DS	24	2814	.1.17	.17:	(F > 0.05)
eds	24	22.42	1.03	.43	(F > 0.05)
ERROR	301	273.97	.91		
TOTAL	400	405.72	1.01		

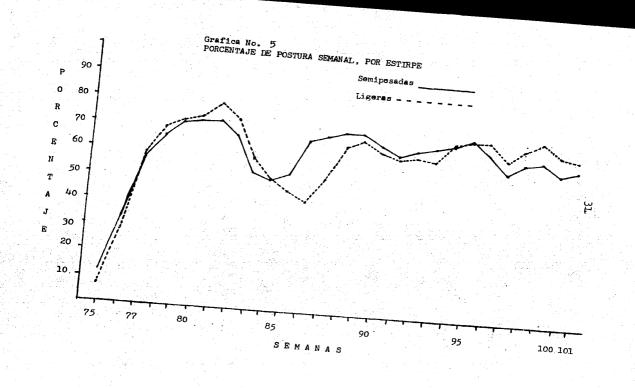
⁽P<0.01) Altamente significativo. (P<0.05) Significativo. (P>0.05) No significativo.

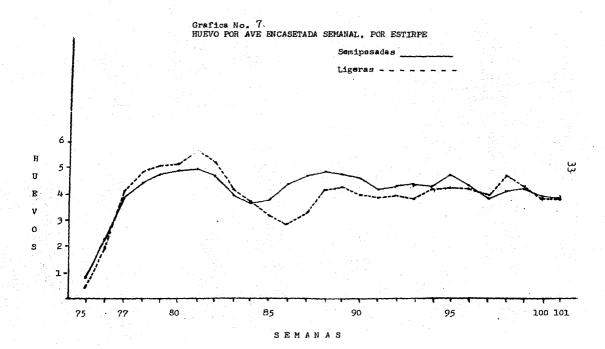

CUADRO 12 ANALISIS DE VARIANZA DEL TRIAJE.

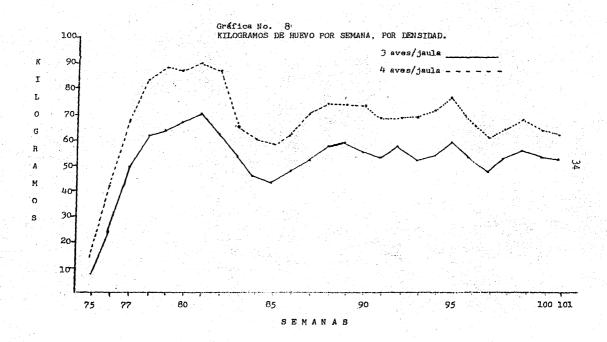

FUENTE DE VARIACION	GT	SUMA DE CUADRADOS	CUADRADO MEDIO	F	SIGNIFICANCIA			
E	.1	5.22	1.69	5•74	(P<0.05)			
D	1	•88	5 - 22	•97	(P >0.05)			
s	24	37.89	.88	1.73	(P<0.05)			
ED	1	1.89	j.58	2.07	(P ا 0.05)			
ES	24	35•32	1.89	1.62	(P<0.05)			
DS.	24	:28:14	1.47	1.29	(P > 0.05)			
EDS	24	22.42	1.73	1.02	(P > 0.05)			
ERROR	301	273•97	.91					
TOTAL	400	405.72	1.01					

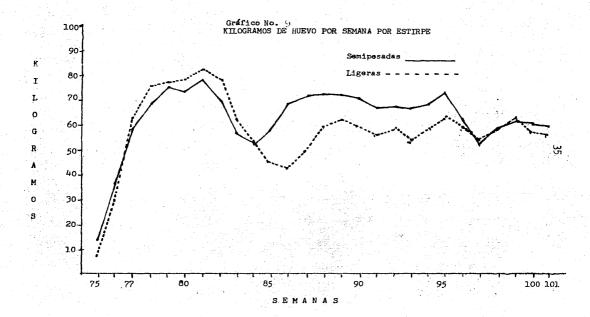

⁽P<0.01) Altemente signfi-cativo. (P<0.05) Significativo. (P>0.05) No significativo.




Grafica No. I HUEVOS POR SEMANA, POR ESTIRPE







A P E M B I C E A) RESULTADOS DE LAS VARIABLES ANGLIZADAS POR SEMAMA, EN BALLIMAS DENIPESADAS ALGJADAS A RAIOM DE 3 AVES POR JAULA.

SENAN	Q. W e YDS	Huevo roto	Huava al ando	Porc. Post.	Huevo	Peso del huevo	Kilos de huevo	Hort./ triaje	Indice cover.	Consuso	Unidades Haugh	Color de year	Paso corporal
				10.81	0.73	65	4.64	-/-	20.68	805			1.805
75	71	-		10.56	2.76	65	14.075	-/-	5.41	805			
76	217	1	2	32.38 56.07	3.92	68	25.564	1/-	3.05	905	93	10	2.30E
77	317		•		4.67	70	31.292	-/-	2.46	805			
78	449	2	,	67.03	4.95	AB.	37.760	-/-	2.33	905			
79	476	ı	-	71.74	5.07	69	33.202	-/-	2.32	605			
60	487	5	-	73.10		70	33.408	-/-	2.32	805	72	. 10	
91	474	3	-	71.73	4.93	70	29.067	1/-	2.64	805			
82	434	4	-	65.78	4.52		25.442	-/-	3.01	805			
83	 381	2	3	56.89	3.96	67		-/-	3.30	B03			
84	344	. 4	. 3	51.68	3,58	67	23.075	3/1	2.88	905		10	
- 65	378	2		55.08	3,93	67	25.510	-/-	2.35	805			
86	442	4	í	70.13	4.60	68	- 30.872	-/-	2.36	605			
87	445	3	2	70.64		69	30,701	-/-	2.23	905		0.00	
80	470	2	* · · · · ·	74.63	4.89	69	32,430		2.30	905		11	
97	456		-	72.70	4.75	69	31.182	1/-	2.47	805		- 7774	
90	426	5	• •	67.75	4,43	68	29,954	1/-	2.49	805			
91	378	2	4	64.71	4,14	69	30.462	-/-		805			
72	422		2	70.22	4.39	71	29.762	2/-	2.31	805		10	
93	407		.	69.73	4.73	69	28,395	-/-	2.45	605			4
74	413	10	· -	68.59	4.30	69	28.178	-/-	2.45				
95	446	- 15	_	74.19	4.64	71	31.666	-/-	2.19	905			
76	433	7		70.08	4.39	67	28.274	-/-	2.44	905		11	
97	478	,	-	62.80	3,93	63	32.814	-/-	2.91	805		11	
79	307	1		67.53	4.23	45	26.455	-/-	2.62	905			
	424	1		70.31	4.45	56	27.974	-/-	2.48	905			
. 77	31	•		43.24	3.76	71	27.051	-/-	2.56	905			
100	301	<u> </u>		44.31	4,05	49	26.703	-/-	2.67	905	73	10	2.2

Ş

A P E N D I C E D) RESULTADOS DE LAS VARIABLES ANALIZADAS POR SENAMA, EN GALLIMAS SENIPESADAS ALOJADAS A RAZON DE 4 AVES POR JAULA.

SENANA	No. hurvos	Hueva	Huevo èl ando	Port.	Huevo	Peso del huevo	Kilos de Buevo	Hort./ triaje	Indice cover.	Consueo (graeos)	Unidades Haugh	Color de yoos	Peso corporal
- 75	140	1	-	15.74	1.09	67	9.512	1/-	11.92	905			1.738
76	325	4	-	36.65	2.53	68	22,205	-/-	4.5	905			
77	506		1	56.96	3.95	68	34.356	/-	3.08	. 805	91	10	2.041
78	553	3	-	63.22	4.32	- 68	30.567	-/-	2.48	905			
79	613	3	-	69.94	4.7B	69	42.920	-/-	2.38	905			
80	612	10	4 .	69.24	4.78	69	42.433	-/-	2.41	805			
91	634	5	-	72.02	4.95	70	44.762	-/-	2.29	805	92	10	
82	627	7	1	48.54	4.89	- 48	41,767	-/-	2.49	905			
83	494	3	-	51.53	3.65	67	31.144	-/-	3.41	905			**
84	445	1		48.97	3.47	84	27.804	-/-	3.49	805			
85	458	3	-	52.98	3.57	68	32.267	1/-	3.25	905	87	17	
86	548	7	1	43.07	4.28	48	38.433	-/-	2.72	805			
97	597	4		67.44	4.58	69	41.055	-/-	2.48	805			
M .	592		- '	66.56	4.62	69	40.503	-/-	2.51	805			
97	589	4		67.66	4.60	69	41.643	-/-	2.49	805	75	11	
70	594	•		66.14	4.64	48	40.444	-/-	2.52	805	• 1		
91	538	. 11	•	62.73	4.20	69	37.950	1/-	2.68	805			
72	535	7		40.43	4.17	71	37.275	1/	2.74	805			
93	581	12	-	64.68	4.53	69	38.778	-/-	2.61	895	86	10	
94	564	7	-	66.25	4.40	68	39.168	-/-	2.57	805			
95	592	7		60.34	4.62	71	41.812	1/-	2.37	805			
76	555	14	-	61.02	4.33	67	35,242	-/-	2.84	805	1.5		
97	467	10		53.71	3.44	43	29,232	-/-	3.45	805	- 79	12	
98	483	7	-	57.94	3.77	45	32.815	-/-	3.22	805			
99	498		2	50.49	3.87	66	33.396	-/-	3.19	805			
100	488			55.78	3.01	71	33.938	-/-	3.07	805	100		
101	474		-	55.70	3.70	69	\$2.706	2/-	3,12	805	91	, 10	2.215

3

A P E N D 1 C E

C) RESULTADOS DE LAS VARIABLES AMALIZADAS POR GENAMA, EN
GALLINAS LIGERAS ALDJADAS A PAZON DE 3 AYES POR JAULA.

SENANA	No. huevos	Hueva roto	Husvo 63 ando	Porc. Post.	ava ava Hineka	Peso del Avevo	Kilos áe huevo	Hort./ triaje	Indice cover.	Consumo (graecs)	Unidades Maugh	Color de yesa	Peso corporal
100						67	1.692	-/-	18,78	0.735			1.350
75	27	-	-	4.01	,28	65	10.104	-/-	7,23	0.735			
76	159	3	-	23.21	1,45	66 66	23,665	-1-	3.03	0.705	77	9	1.627
77	363	2	-	53,10	3,78		30,332	-1-	2.32	0.735			
78	444	1	-	65.71	4,62	88	31,390	-1-	2,24	0.735			
79	461	2	1	68,15	4.80	68		-1-	2.09	0.735			
80	503	3	-	74,40	5.23	67	33.744	-/-	1.91	0.735		10	-1
81	554	1	-	82.28	5.77	66	36.764	-1-	1.96	0.735			
82	508	4	2	74.84	5.29	68	34.355	-/-	2,62	0.735			46.5
83	410	_	. 1	60.91	4.27	67	27.884	5/1	3.20	0.735			
84	336	1	•	49.B4	3.57	67	22.355		3.47	0.735		11	
82	286	2	1	44,50	2.97	67	19,103	2/2	3.37	186,0			
86	288	3	3	43.53	2.79	67	17,704	1/-	3.09	0.735			
87	205	Ž	-	51.54	3.17	66	20,435	-/-		0,735			
88	381		_	63.69	3.76	44	24.882	-1-	2,52	0.659		11	
	430		_	72.19	4.47	67	28.110	1/-	2,00	0.735		•••	
87	390		_	65,27	4.06	66	75.970	-1-	2.42				
90	382	•	_	64.95	3.97	69	25.706	-/-	2.51	0.742			
91				67.08	1.12	66	27,181	-1-	2.27	0.735		10	
92	376		1 - I	62.01	3.61	69	73.770	-1-	2.67	0.735		10	
93	366	. 2	-	49.18	4.79	64	76.048	-1-	2.37	0.735			100
74	412	3		70.92	4.41	6.7	27.877	-1-	2.19	0.735			
95	424			69,26	1.33	63	25.704	-1-	2.41	0,735		10	
76	414			61.43	3.81	63	23,077	-/-	2,72	0.735		10	
97	366		3	69,10	4,34	65	26.390	-1-	2.34	0.735			
78	417	•	3	72.08	4.40	66	27.704	-1-	2.2t	0.735			
- 99	423	· ·	•		4,11	67	26.456	-1-	2.34	0.735			
100	395 607	•		69,19 69,16	4.23	63	76.065	-1-	2.33	0.724	95	10	1.615

A P E N 9 I C E B) RESULTADOS DE LAS VARIADLES ANALIZADAS POR SEMANA , EN GALLINAS LIGERAS ALDJADAS A RAZON DE 4 AVES POR JAULA.

SEMMA	No. huevos	Huevo roto	Hugyo b) ando	Porc. Post.	Hunyo ave encas.	Peso del huevo	Kilos de huevo	Hort./ triaje	Indica cover.	(grasos)	Unidades Kaugh	Color de yess	Peso corporal
75	78	-	-	6.9Ó	.60	66	5.052	-/-	12.64	0.735			1.238
3 9	27 8 547	3	-	33.25	2.32	65	19.528	-/-	5.25	0.735			
77	567	1		63.16	4.42	68	38.491	-1-	2.46	0.705	71	10	1.547
78	463	3	1	73.90	5.17	69	45.563	-/-	2.08	0.735			
79	674	4	2	75.10	5.26	67	45.214	-/-	2.09	0.735	-		
80	458	5	-	72.98	5.14	68	44.588	-/-	2.11	0.735	•		
19	. 470	2	2	76.78	5.39	67	45.881	-/-	2.05	0.735	73	11	
82	655	4	3	72.99	5.11	84	44.541	-/-	2.11	0.735			
83	520	6	2	57.80	4.06	67	34.725	-/-	2.78	0.735			
84	468	3	ī	52.00	3.65	66	30.875	6/-	3.05	0.735			
85	398	5	i	49.61	3.10	67	36.633	4/2	3.23	0.722	96	11	
64	356		_	43.74	2.78	69	24.564	1/-	3.49	0.735		•••	
87	437	2	-	54.15	3.41	67	29.375	-/2	2.89	0.735			
88	522	5	1	66.58	4.07	66	34.438	-1-	2.55	0.770			
87	502	5	1	63.85	3.92	66	33,190	-/-	2.16	0.630	76	19	
90	502	6	1	63.38	3.92	67	33.423	-/-	2.47	0.735			
91	466	•	1	59.47	3.64	66	30.690	-/4	2.70	0.735			
92	448	3	3	60.38	3.50	69	30,912	2/-	2.54	0.747			
93	465	ī	-	62.71	3.63	45	30.695	-/1	2.60	0.735	95	10	
94	504		-	69.78	3.93	- 64	32.064	1/-	2.40	0.741			
95	521	5	-	71.21	4.07	66	34.706	-/-	2.20	0.735			
76	518	•	-	70.82	4.04	64	32.571	-/-	2.36	0.735			
97	498	4	-	68.44	3.89	63	31.311	-1-	2.44	0.735	96	10	
78	485	12	- 1	67.44	3.78	65	31.850	-1-	2.39	0.735			
99	518	11	· _	70.77	4.04	66	34.122	-/-	2.25	0.742			
100	465	4	-	65.32	3.63	65	30.095	3/-	2.50	0.745			
101	436		· <u>-</u>	61.65	3.40	67	29.272	-/-	2.54	0.735	74	10 .	1.590

u