

FACULTAD DE QUIMICA

ESTUDIO DE LA OPERACION DE UN Sedimentador de alta tasa piloto

Ly', 15

EXAMENES PROFESIONALES

T E S I S

QUE PARA OBTENER EL TITULO DE INGENIERO OUIMICO PRESENTA: GERMAN BUITRON MENDEZ

México, D. F.

1987

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

CONTENIDO

Pág.

I

VII

VIII

1

3

6

6

7

8

12

LISTA DE FIGURAS

LISTA DE TABLAS

NOMENCLATURA

- 1. RESUMEN
- 2. INTRODUCCION
- 3. EL TRATAMIENTO DE LAS AGUAS RESIDUALES DOMESTICAS
- 3.1 Objetivos del tratamiento de las aguas residuales
- 3.2 Evaluación de la contaminación
- 3.3 Principios generales de la depuración de las aguas residuales domésticas

4. SEDIMENTACION

4.1 Teoría de la sedimentación
4.1.1 Definiciones generales
4.1.2 Sedimentación tipo I
4.1.3 Sedimentación tipo II
4.1.4 Sedimentación tipo III

	에는 사람이 가지 않는 것이 가지 않는 것이 있는 것이 가지 않는 것이 있는 것이 가지 않는 것이 가지 않는 것이 있다. 가지 않는 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이 가지 않는 가 같은 것이 같은 것 같은 것이 같은 것 같은 것이 같은 것	
		Pár
		ray
4.1.5	Sedimentación tipo IV	19
2 Sedime	entación de alta tasa	20
4.2.1	Fundamentos	22
4.2.2	Modelo de Yao	24
4.2.3	Parámetros de diseño	31
4.2.4	Optimización en el diseño de los	
	sedimentadores de alta tasa	40
3 Caraca	terísticas hidráulicas en los sedimentadores	49
4.3.1	Importancia de la descripción del compor- taiento hidráulico	49
4.3.2	Tipos de flujo en los sedimentadores	49
4.3.3	Técnicas de trazado	50
4 Tipos	de sedimentadores	53
4.4.1	Sedimentadores estáticos	53
4.4.2	Sedimentadores por contacto de lodos	59
4.4.3	Dispositivos de extracción de lodos	62
DESARF	ROLLO EXPERIMENTAL	64
1 Descri	ipción del sedimentador piloto	64
2 Descri	pción de los estudios y métodos de	
analis	,is	68
5.2.1	Estudios preliminares de sedimentación	68
5.2.2	Pruebas de campo	70
	 4.1.5 2 Sedima 4.2.1 4.2.2 4.2.3 4.2.4 3 Caraca 4.3.1 4.3.2 4.3.3 4 Tipos 4.4.1 4.4.2 4.4.3 DESARF 1 Descratoria 2 Descratoria anális 5.2.1 5.2.2 	 4.1.5 Sedimentación tipo IV 2 Sedimentación de alta tasa 4.2.1 Fundamentos 4.2.2 Modelo de Yao 4.2.3 Parámetros de diseño 4.2.4 Optimización en el diseño de los sedimentadores de alta tasa 3 Canactenisticas hidráulicas en los sedimentadores 4.3.1 Importancia de la descripción del comportaiento hidráulico 4.3.2 Tipos de flujo en los sedimentadores 4.3.3 Técnicas de trazado 4 Tipos de sedimentadores 4.4.1 Sedimentadores estáticos 4.4.2 Sedimentadores por contacto de lodos 4.4.3 Dispositivos de extracción de lodos DESARROLLO EXPERIMENTAL 1 Descripción del sedimentador piloto 2 Descripción de los estudios y métodos de análisis 5.2.1 Estudios preliminares de sedimentación 5.2.2 Pruebas de campo

6.	RESU	LTADOS Y ANALISIS DE RESULTADOS	83
6.1	Estu	lios preliminares	83
6.2	Pruel	pas de campo	89
	6.2.1	Influencia del módulo de alta tasa	90
	6.2.2	l Influencia de coagulantes en la operación del sedimentador	101
6.3	Evalı	ación del parámetro S para el sedimentador	103
6.4	Analı	sis general de resultados	105
7.	INFLU	ENCIA DEL ANGULO DE INCLINACION EN LA	
	EFICI	ENCIA DE REMOCION DE SOLIDOS	110
7.1	Desar	rollo experimental	110
7.2	Resul	tados y análisis de resultados	112
8.	CONCL	USIONES Y RECOMENDACIONES	119
9.	BIBLI	OGRAFIA	122
ANEXO	1	- DESARROLLO DE LA ECUACION DEL MODELO DE YAO PARA FLUJO LAMINAR EN UN TUBO CIRCULAR.	131
ANEXO	2	- RESULTADOS DE LAS PRUEBAS DE CAMPO	134
ANEXO	3 ·	- OPERACION DEL SEDIMENTADOR DE ALTA TASA	141
ANEXO	4 -	- RESULTADOS DE LOS ESTUDIOS DE INFLUENCIA DEL ANGULO DE INCLINACION EN LA REMOCION DE TURBIDEZ	152
ANEXO	5 -	- DISEÑO DE SEDIMENTADORES SECUNDARIOS	154

LISTA DE FIGURAS

1. T.		Pág
1.	Coeficientes de resistencia C _p	16
2.	Columna de sedimentación	18
3.	Diagrama de sedimentación para sedimentación tipo II	18
4.	Curva típica de sedimentación	20
5.	Módulos de alta tasa	21
	a) módulo de tubos cuadrados	
	b) módulo de placas inclinadas	
6.	Trayectoria idealizada para partículas discretas	•
	(modelo de Camp)	22
7.	Sistema de coordenadas	25
8.	Sistema de coordenadas para un sedimentador de alta	
	tasa tubular	27
9.	Trayectorias en diferentes tipos de sedimentadores	31
10.	Influencia de la longitud L en el funcionamiento	
	del sedimentador: $\theta = 20 \text{ y } 40^{\circ}$	33
11.	Influencia de la longitud l en el funcionamiento	
	del sedimentador: $\theta = 0^{\circ}$	33
12.	Efecto del ángulo de inclinación en la eficiencia	
	de remoción	35

Páq. 13. Esquema para estudiar la eficiencia de remoción 36 en placas paralelas 14. Eficiencias de remoción en función del valor 39 de S para $\theta = 0$ Sedimentador de placas paralelas dentro de un 15. 42 tanque cilíndrico 16. Valores optimos de β , γ y ϵ en función de α para sedimentadores cilíndricos verticales con 45 flujo ascendente Valores optimos de α , β y ε en función de γ pa-17. ra tanques cilíndrico verticales con flujo 45 ascendente 18. Valores optimos de β , γ y ϵ en función de α para tanques cilíndrico horizontales con flujo 46 descendente Velocidad crftica de sedimentación (adimensional) 19. ϵ en función de la separación de placas δ para un ángulo y longitud fijas en un tanque cilín-46 drico vertical 20. Sedimentador de placas paralelas dentro de un 47 tanque rectangular 21. Valores optimos de ε y γ en función de α para flujo ascendente y descendente en tanques verti 48 cales rectangulares 22. Curvas de dispersión para diferentes tipos de

.

flujo

52

П

23.	Sedimentador cilíndrico-cónico	Pág. 54
24.	Decantador estático laminar	54
25.	Sedimentador circular con rastras	57
26.	Sedimentador longitudinal con sistema de cadenas	58
27.	Clarificador con succión de lodos	59
28.	Sedimentador laminar con recirculación de lodos	60
29.	Sedimentador de recirculación de lodos	61
30.	Sedimentador laminar por lecho de lodos	63
31.	Sedimentador piloto de alta tasa	66
32.	Canaletas de recolección	67
33.	Equipo instalado durante los estudios premiminares	69
34.	Instalación del sedimentador piloto en la Planta	
	de Tratamiento de Aguas Residuales de C.U.	71
35.	Adaptación efectuada a la entrada cuadrada para	73
	ios estudios de sedimentación	
36.	Puntos de muestreo durante las pruebas de campo	
	dentro del sedimentador	73
37.	Posición "alta y baja" de las canaletas de reco-	
	lección	75

ш

Pág. 38. Nivel de lodos mantenido durante los experimentos dentro del sedimentador 75 Trayectoria de los flóculos en el sedimentador de 39. alta tasa 84 40. Trayectoria de las partículas dentro del módulo de alta tasa 85 41. Localización de zonas muertas. Vista de planta 86 del sedimentador 42. Vista de perfil de la trayectoria de las corrien-86 tes de flujo dentro del sedimentador 43. Zonas con mayor cantidad de sedimentos al usar 87 la entrada cuadrada 44. Zonas con mayor cantidad de sedimentos al usar la entrada con reducción atolvada 88 45. Eficiencias de remoción de sólidos en el sedimentador. Módulo de tubos cuadrados 92 46. Eficiencias de remoción de sólidos en el sedimentador. Módulo de placas paralelas 93 47. Eficiencias de remoción de sólidos en el sedimentador. Sin módulo de alta tasa 93 48. Influencia del tipo de módulo en la operación del 95 sedimentador 49. Influencia de la carga másica en la operación del 97 sedimentador. Módulo de tubos cuadrados

M

- 50. Influencia de la carga másica en la operación del sedimentador. Módulo de placas paralelas
- 51. Eficiencias de remoción de sólidos en la zona de agua clarificada. Módulo de tubos cuadrados, canaletas en posición baja
- 52. Eficiencias de remoción de sólidos en la zona de agua clarificada. Módulo de tubos cuadrados, canaletas en posición alta
- 53. Eficiencias de remoción de sólidos en la zona de agua clarificada. Módulo de placas paralelas, c<u>a</u> naletas en posición baja
- 54. Eficiencias de remoción de sólidos en la zona de agua clarificada. Módulo de placas paralelas, canaletas en posición alta
- 55. Eficiencias de remoción de sólidos en la zona de agua clarificada. Sin módulo de alta tasa
- 56. Influencia de coagulantes en la operación del sedimentador. Módulo de tubos cuadrados
- 57. Eficiencias de remoción de sólidos en la zona de agua clarificada. Adición de sulfato de aluminio como coagulante
- 58. Valores de S en función de la velocidad de flujo
- 59. Funcionamiento del sedimentador bajo diferentes condiciones de operación

Pāg. 97

又

98

98

99

٧.

99

100

101

102

104

107

- 60. Equipo utilizado para determinar la influencia del ángulo de inclinación
- 61. Influencia del ángulo de inclinación en la remoción de turbidez. Lodos activados
- 62. Influencia del ángulo de inclinación en la remoción de turbidez. Lodos provenientes de biodisco
- 63. Influencia del ángulo de inclinación en la remoción de turbidez. Lodos provenientes de filtro percolador.

Pág.

111

113

114

115

M

LISTA DE TABLAS

		Pág.
1.	Condiciones de operación para los estudios prelimi-	
	nares	70
2.	Condiciones de operación utilizados para el módulo	
	de tubos cuadrados, posición alta	76
3.	Condiciones de operación utilizadas para el módulo	an an an Anna Anna An Anna Anna Anna Anna Anna
	de tubos cuadrados, posición baja	77
4.	Condiciones de operación utilizadas para el módulo	.
	de placas paralelas, posición alta	78
5.	Condiciones de operación utilizadas para el módulo	
	de placas paralelas, posición baja	78
6.	Condiciones de operación para los estudios sin mó	
	dulos. Canaletas en posición baja	79
7.	Resultados de las pruebas de jarras	81
8.	Condiciones de operación para el módulo de tubos	
	cuadrados en posición alta con coagulante	82
9.	Porcentajes de zonas muertas	85
10. [.]	Equivalencias entre gasto y carga hidráulica para	
	el sedimentador utilizado	91
11	Condiciones de operación utilizadas en el estudio	
** •	de la influencia del ángulo de inclinación	112

NOMENCLATURA

- A_p : Area transversal o proyectada de la partícula en ángulo recto a $v_{,}(L^2)$
- $C_{A_{\rho}}$: Concentración de sulfato de aluminio alimentado $(M \cdot L^{-3})$

C_n : Coeficiente de resistencia

- C_{i} : Concentración de sólidos suspendidos en el influente $(M \cdot L^{-3})$
- C_m Concentración de sólidos suspendidos en el punto de mues treo $(M \cdot L^{-3})$
- d : Diámetro de tubos o distancia entre placas (L)

 d_n : Diámetro de partículas (L)

 F_b : Fuerza de resistencia del fluido ($M \cdot L \cdot T^{-2}$)

g : Aceleración de la gravedad $(L \cdot T^{-2})$

H : Altura de la columna de sedimentación (L)

 h_{o} : Altura total de un sedimentador de alta tasa $(L)^{1/2}$

K : Constante de la ecuación de Yao

 ℓ : Longitud del sedimentador (L)

 ℓ_A : Altura del módulo de placas paralelas (L)

L : Longitud relativa del sedimentador $(L = \ell/d)$

L' : Longitud relativa para la región de transición

m : Masa de la partícula (M)

M : Concentración de sulfato de aluminio en el tanque $(M \cdot L^{-3})$

 Q_{i} : Gasto de influente $(L^{3} \cdot T^{-1})$

 Q_{o} : Gasto de coagulante alimentado $(L^{3} \cdot T^{-1})$

 Q_n : Gasto de purga $(L^3 \cdot T^{-1})$ S : Parámetro que caracteriza el funcionamiento de un sedimentador de alta tasa S : Valor crítico de S t : Tiempo (T)u : Velocidad local del fluido en dirección X $(L \cdot T^{-1})$ v. : Velocidad promedio del fluido a través del sedimentador de alta tasa $(L \cdot T^{-1})$ v_a : Velocidad ascendente en fondo del tanque $(L \cdot T^{-1})$ v_h : Velocidad ascendente en el área ocupada por el módulo $(1 \cdot \tau^{-1})$ v_c : Velocidad ascendente en la entrada de las placas $(L \cdot T^{-1})$ v_p : Velocidad de la partícula (L· T^{-1}) v_{A} : Velocidad de sedimentación (L·T⁻¹) Ψ : Volumen de partícula (L^3) : Profundidad relativa del sedimentador (y=y/d)y . : Angulo de inclinación con respecto a la vertical α : Cantidad proporcional a la cantidad de partículas suspenε didas $(=v_{\delta_0}/v_{\sigma})$: Porcentaje de remoción de sólidos n : Angulo de inclinación con respecto a la horizontal θ : Viscosidad dinámica del fluido $(M \cdot L^{-1} \cdot T^{-1})$ μ v : Viscosidad cinemática del fluido $(L^2 \cdot T^{-1})$: Densidad del fluido $(M \cdot L^{-3})$ ρ

78

 ρ_{A} : Densidad de la partícula (M·L⁻³)

1. RESUMEN

El objetivo de este trabajo fue determinar las condiciones de operación de un sedimentador de alta tasa piloto.

La parte experimental se dividió en dos etapas: a) estudios preliminares y b) estudios de campo. En la primera fase se estudió el comportamiento de los flóculos al pasar por el módu lo de alta tasa. Las pruebas de campo se efectuaron en una planta de tratamiento de aguas residuales usando como material sedimentable lodos activados. El sedimentador se operó bajo las siguientes condiciones; con módulo de tubos cuadrados, con módulos de placas paralelas (ambos en dos posiciones dentro del tanque), con módulo de tubos cuadrados más sulfato de aluminio -como coagulante- y, sin módulo de alta tasa. La carga hidráulica empleada varió desde 27.3 hasta 108.0 m^3/m^2d . La concentración promedio del licor mezclado fue de 666 mg/l. Además, se llevaron a cabo pruebas para determinar el ángulo optimo de sedimentación para los efluentes de lodos activados, sistema por biodisco y filtro percolador.

2

Con los resultados de los estudios preliminares se determinó _ la trayectoria de los flóculos a través del sedimentador y del módulo de alta tasa. Las pruebas de campo mostraron que el _ funcionamiento del sedimentador se ve afectado favorablemente por el módulo de alta tasa (el tiempo de retención disminuye de 3.5 a 6 veces); sin embargo,no se encontraron diferencias significativas por la posición o tipo de módulo.

Las mejores condiciones se encontraron al trabajar el sedimentador con el módulo de tubos cuadrados y adición de coagulante.

Por último, se determinó que el ángulo óptimo para los efluentes estudiados se encuentra entre 35 y 45°.

2. INTRODUCCION

Durante los últimos años el crecimiento de la población ha sido tal que la necesidad de abastecimiento de agua para usos do mésticos, industriales y agrícolas se ha incrementado considerablemente. El agua después de cumplir su propósito es desechada y si esta agua residual se vierte directamente al medio ambiente es muy probable que ocurran daños ecológicos. Por lo anterior surge la necesidad de llevar a cabo el tratamiento de las aguas residuales, el cual tiene como finalidad evitar la contaminación de los medios acuático y terrestre, así como pro porcionar una agua tratada susceptible de volver a ser utiliza da.

En el proceso de la depuración de las aguas residuales se lleva a cabo una operación unitaria de gran importancia: la sed<u>i</u> mentación. Esta operación ha sido utilizada por generaciones para clarificar líquidos y concentrar sólidos. Es por esto que se han llevado a cabo una gran cantidad de investigaciones acerca del tema. En los últimos años la sedimentación de alta tasa ha cobrado gran relevancia debido a sus características.

El presente estudio se realizó en un sedimentador de alta tasa piloto y su principal objetivo fué determinar las condiciones óptimas de operación al utilizarse en el proceso de tratamiento de las aguas residuales domésticas. Otros objetivos fueron: presentar los resultados de una investigación bibliográfica so-, bre el tema y evaluar la teoría de la sedimentación de alta tasa con los resultados experimentales.

El proyecto se realizó en el Instituto de Ingeniería de la UNAM bajo el patrocinio de la Secretaría de Agricultura y Recursos Hidráulicos.

En los capítulos 3 y 4 se presentan la revisión bibliográfica efectuada sobre la sedimentación -particularmente sobre la sedimentación de alta tasa-, se hace especial hincapié sobre las teorías que prevalecen, un estudio teórico hecho por Yao en 1970 y, la optimización de los sedimentadores de alta tasa (Verhoff, 1979).

En el capítulo 5 se presenta la descripción de los métodos empleados, así como los análisis efectuados y condiciones de

operación.

En el capítulo 6 se encuentran los resultados y el análisis de los mismos por medio de los cuales se llegó a determinar las condiciones que favorecen el funcionamiento del sedimentador de alta tasa, así como la influencia del módulo y de la adición de coagulantes.

Por último, en el capítulo 7 se encuentra el estudio realizado para determinar el ángulo de inclinación óptimo para tres sistemas de tratamiento biológico: lodos activados, biodisco y filtro percolador. EL TRATAMIENTO DE LAS AGUAS RESIDUALES DOMESTICAS

3.1 Objetivos del tratamiento de las aguas residuales

3.

Las aguas residuales que se captan de las conducciones de desagúe (provenientes de lluvia, residuos domésticos e industriales) deben desembocar en una corriente de agua o cauce de evacuación. Si se quiere evitar el deterioro ecológico, o dar alguna utilidad a estas aguas residuales -por ejemplo para riego- deben someterse previamente a una depuración; sin embargo, la depuración no es forzosamente indispensable: todo depende de la importancia relativa del medio receptor de los desechos, así como del efluente evacuado.

3.2 Evaluación de la contaminación

Se denomina polución del agua a todo factor físico, químico o biológico vertido a un cauce o reserva de agua natural, supe<u>r</u> ficial o profunda, con riesgo de perturbar el equilibrio biológico y susceptible de causar daño (Ministere de l'environnement et du cadre de vie, 1979).

La mayoría de las impurezas del agua residual se transforman; pero sólo una pequeña parte de éstas transformaciones son de naturaleza química, estando las demás relacionadas con procesos biológicos. En estos últimos, la relación entre las sustancias contenidas en el agua residual y el oxígeno es fundamental. Una parte considerable de las impurezas en las aguas residuales urbanas es de naturaleza orgánica y sólo una pequ<u>e</u> ña cantidad es de naturaleza inorgánica.

Los factores que pueden modificar la composición y el estado de las aguas se clasifican de acuerdo con sus características en:

I. FISICOS: a) Partículas en suspensión, b) temperatura, c) conductividad, d) color, e) radioactiv<u>i</u> dad, etc.;

II. QUIMICOS: Aportes de materias solubles minerales u orgá-

III. BIOLOGICOS: a) Modificación de la flora y la fauna,b) aporte de cérmenes patógenos;

IV. ORGANOLEPTICOS: Sabor, color, olor.

nicos:

De acuerdo con su estado las sustancias presentes en las aguas residuales se clasifican en:

- I. Partículas en suspensión: a) Sedimentables, flotables (> 50 micras), b) No sedimentables o coloidales (0.1 a 10 micras);
- II. Part1culas disueltas: Soluciones verdaderas (< 0.1 micras).</pre>
- 3.3 Principios generales de la depuración de las aguas residuales domésticas

La depuración de las aguas residuales se lleva a cabo por medio de: a) La separación y eliminación de las partículas en suspensión y, b) La eliminación de las partículas en solución (donde una parte de éstas se convierte en partículas en suspensió. para removerse posteriormente). Los pasos anterio res se efectúan a través de los siguientes procesos y opera-

ciones:

- Pretratamiento;
- Tratamiento primario;
- Tratamiento secundario;
- Tratamiento y disposición de lodos;
- Y en ocasiones, tratamientos terciarios.

Pretratamiento

Tiene como objetivo separar los sólidos más grandes (arena, grava, etc.), elementos susceptibles de dañar las etapas posteriores del tratamiento; en especial el equipo de bombeo. Esta etapa comprende las rejillas, tamices, desmenuzadores, desarenadores y separadores de grasas.

Tratamiento primario

Es una separación física sólido-líquido cuyo objetivo es ret<u>e</u> ner la mayoría de las partículas en suspensión presentes en el agua. Generalmente se efectúa por sedimentación, pero ta<u>m</u> bién se puede realizar por flotación.

En especial durante la sedimentación se consigue que se depositen las partículas que se encuentran en suspensión en el agua, tanto si se trata de partículas presentes en el agua bruta, como si se deben a la acción de un reactivo químico añadido en el tratamiento (coagulación, eliminación de hierro, depuración química, etc.) e incluso de las que resultan de una floculación física ligada a una acción biológica (tratamiento de aguas residuales). Este tema será tratado ampliamente en el capítulo 4.

Tratamiento secundario

Este tratamiento se efectúa mediante procesos físico-químicos o biológicos. En estos últimos, se consume la mayor parte de materia orgánica presente en las aguas residuales, por medio de microorganismos. Estos procesos llevan consigo un crecimiento de la masa bacteriana o biomasa, la cual se comporta c<u>o</u> mo material en suspensión y se separa del agua mediante un sedimentador secundario o clarificador.

Tratamientos terciarios

Este término indica un tratamiento complementario que permite obtener una calidad de efluente superior al obtenido en el tr<u>a</u> tamiento secundario. Puede tener dos objetivos: a) disminución de los sólidos suspendidos y materia orgánica residual y, b) eliminación de algún parámetro específico que no es afect<u>a</u> do por los tratamientos clásicos. Para la disminución de sól<u>i</u> dos se utiliza el microtamizado, filtración, adsorción con car bón activado, etc. Entre los otros tratamientos se encuentran la desnitrificación, la desfosfatación, la decoloración, etc.

11

Tratamiento y disposición de lodos

Los procesos de depuración -tanto biológicos como fisicoquímicos- generan lodos provenientes de las partículas en suspensión preexistentes, así como los producidos por la depuración misma. Estos lodos contienen una gran cantidad de materia orgánica, son fermentables y susceptibles de causar daño a los ecosistemas. Los medios clásicos de disposición y tratamiento son: a) digestión, b) acondicionamiento, c) deshidratación, c) incineración y; d) compostage. 4. SEDIMENTACION

4.1 Teoría de la sedimentación

4.1.1 Definiciones generales

La sedimentación es una operación unitaria de separación sól<u>i</u> do-líquido utilizada para remover sólidos suspendidos por asentamiento gravitacional. En Ingeniería Química se utilizan otros términos para denominar ciertos problemas particul<u>a</u> res:

- Clarificación: obtención de un líquido completamente -o casi completamente- libre de partículas sólidas.
- Espesamiento: obtención de un lodo con la mínima canti dad posible de líquido (la clarificación y el espesamien)

to ocurren simultáneamente, en la práctica el término que se emplea es función del producto deseado).

Clasificación: separación de una parte de los sólidos de una suspensión para obtener dos o más categorías de sólidos de densidad diferentes.

Kynch (1952) propuso una teoría basada en la concentración y la tendencia de las partículas a interactuar; así, pueden oc<u>u</u> rrir cuatro tipos de sedimentación:

- a) Tipo I o de partículas discretas;
- b) Tipo II o de partículas floculantes;
- c) Tipo III o de partículas que se obstruyen y;
- d) Tipo IV o de partículas en compresión.

Los anteriores tipos de sedimentación pueden ocurrir en la práctica simultáneamente. A continuación se discute el análisis de cada una de ellas.

4.1.2 Sedimentación tipo I

La sedimentación del tipo I es la sedimentación de partículas

discretas y no floculantes en una suspensión diluida. Las partículas sedimentan como unidades independientes y no hay interacción entre ellas. Ejemplos de este tipo son la sedimentación de arena y arcilla en los desarenadores.

14

(1)

La sedimentación tipo I se puede analizar a través de las leyes de Newton y Stokes. Cuando una partícula se libera en un fluido estático, y si su densidad es mayor que la del fluido, ésta se moverá en línea recta hacia el fondo debido a la atrac ción de la fuerza de gravedad. La partícula se acelerará hasta que la resistencia debida a la fricción tienda al valor de la fuerza impulsora, después, la velocidad de caída de la partícula será constante. A esta velocidad terminal se le conoce como velocidad de sedimentación.

La fuerza gravitacional que actúa sobre la partícula está dada por:

$$Fg = (\rho_A - \rho) g \forall$$

donde

 ρ_{s} : densidad de la partícula ρ : densidad del fluido g: aceleración debida a la gravedad4: volumen de la partícula

Por otro lado, se tiene que la fuerza de resistencia por fricción (ley de Newton) es:

$$F_{D} = C_{D} A_{p} \frac{\rho v_{p}^{2}}{2}$$

donde

 C_p : coeficiente de resistencia A_p : área transversal o proyectada de la partícula en ángulo recto a v_p v_p : velocidad de la partícula

Al igualar las ecuaciones 1 y 2 se obtiene la velocidad term<u>i</u> nal de la partícula o sea la velocidad de sedimentación, v_{λ} .

$$v_{p} = v_{\delta} = \sqrt{\frac{2g}{c_{p}}} \left(\frac{\rho_{\delta} - \rho}{\rho}\right) \frac{\psi}{A_{p}}$$
(3)

Para esferas de diámetro d_p y volumen 4, v_s está dado por:

$$v_{s} = \int \frac{4g}{3c_{p}} \left(\frac{\rho_{s} - \rho}{\rho}\right) d_{p} \qquad (4)$$

El valor numérico del coeficiente de resistencia depende del régimen de flujo en el que se encuentra la partícula. Este se puede obtener a partir de la figura 1.

(2)

Figura 1. Coeficientes de resistencia C_n , (Reynolds, 1982)

Para condiciones de flujo laminar, Stokes encontró que la fue<u>r</u> za de resistencia está dada por:

$$F_{D} = 3 \pi \mu d_{D} v_{s}$$
 (5)

donde, µ es la viscosidad dinámica del fluido.

En estas condiciones v_{δ} se obtiene de las ecuaciones 5 y 1:

$$v_{s} = \frac{g(\rho_{s} - \rho) \Psi}{3 \pi d_{p} \Psi}$$
(6)

4.1.3 Sedimentación tipo II

La sedimentación tipo II es la sedimentación de partículas flo culantes en una suspensión diluída. Las partículas floculan durante la sedimentación incrementando su tamaño y velocidad. Ejemplos de este tipo de sedimentación se presentan en los sedimentadores primarios, así como en la sedimentación de aguas coaguladas químicamente.

Para evaluar las características de sedimentación de una suspensión floculante, se llevan a cabo pruebas en columnas como la mostrada en la figura 2. La columna debe tener un diámetro superior a 15 cm para minimizar los efectos de pared y, la altura debe ser al menos igual que la del sedimentador propuesto. Durante los ensayos se toman muestras a diferentes alturas e intervalos de tiempo y, posteriormente, se calcula el porcent<u>a</u> je de remoción de sólidos (n). Este porcentaje se traza en un diagrama altura-tiempo como en la figura 3.

La velocidad de sedimentación, v_{δ} , para un porcentaje n_A de remoción de sólidos, se calcula a partir de:

 $v_A = H/t_A$

(7)

donde, H es la altura de la columna y t_A es la intersección de la curva A con el eje X.

17

Figura 2. Columna de sedimentación

Figura 3. Diagrama de sedimentación para la sedimentación tipo II.

4.1.4 Sedimentación tipo III

La sedimentación tipo III o zona de sedimentación obstruida, es la sedimentación de partículas de una concentración intermedia. En este caso, las partículas están tan próximas que las fuerzas de cohesión obstaculizan la sedimentación, de tal forma que permanecen en una posición fija relativa a las otras y todas sedimentan a una velocidad constante. Físicamente se distingue una interfase sólido-líquido entre la masa de partículas y el líquido clarificado. Un ejemplo de la sedimentación tipo III es la que ocurre a profundidades interm<u>e</u> dias en un clarificador secundario para el proceso por lodos activados.

4.1.5 Sedimentación tipo IV

En la sedimentación por compresión o tipo IV la concentración de las partículas es tan alta que estas se tocan entre sí y, la sedimentación ocurre por compresión o compactación de la masa. Un ejemplo de este tipo de sedimentación es la que ocurre en el fondo de los clarificadores usados en el proceso por lodos activados para tratamiento de aguas residuales. Tanto las partículas floculantes como las discretas pueden sedimentar por compresión; sin embargo, es un proceso más común para las primeras. Los tipos de sedimentación antes mencionados se pueden observar si se coloca en una probeta de vidrio una suspensión (por ejemplo lodos activados). Al cabo de cierto tiempo aparece una interfase, de tal manera que se puede medir la altura de ésta a intervalos de tiempo y después construir un diagrama como el de la figura 4.

Figura 4. Curva típica de sedimentación

4.2 Sedimentación de alta tasa

El término sedimentación de alta tasa se utiliza para designar los sedimentadores poco profundos en los cuales se disminuye el tiempo de retención debido a una reducción de la distancia

20

necesaria para que la partícula floculada caiga al fondo, así como a un incremento del área de sedimentación. Las eficiencias de remoción obtenidas son similares o mejores a las de un sedimentador convencional, en el cual, el tiempo de retención es hasta cuatro veces mayor.

Los sedimentadores de alta tasa están constituidos esencialmente por módulos de tubos -circulares, cuadrados, hexagonales- o por lámins planas o corrugadas. Estos se colocan en determinado ángulo de inclinación dentro de un tanque que permite una adecuada entrada y salida del flujo, al mismo tiempo que una buena extracción y recolección de lodos (figura 5).

b)

Figura 5. Módulos de alta tasa a) Módulo de tubos cuadrados b) Módulo de placas inclinadas 21

4.2.1 Fundamentos

En 1904 Hazen demostró que la cantidad de sedimentos removidos en un sedimentador es independiente de la profundidad del tanque, además, propuso que se introdujeran placas al tanque pa ra mejorar la capacidad de sedimentación. Camp (1945) exploró estas ideas e introdujo el concepto de sedimentador ideal. En este modelo las partículas son discretas, su trayectoria es en línea recta y, todas tienen la misma velocidad de sedimentación. En la figura 6 se muestra un ejemplo de la traye<u>c</u> toria de las partículas para este modelo.

Figura 6. Trayectoria idealizada para partículas discretas (Modelo de Camp).

Todas las partículas que tengan velocidades de sedimentación v_{δ} mayores que $v_{\delta c}$, velocidad crítica de sedimentación, caerán a través de la profundidad total h_{α} y, serán removidas.
Como se puede observar en la figura 6, las partículas con v_{δ} menor que v_{δ} c, se eliminarán si se colocan placas a intervalos h. También se deduce que si el intervalo h se reduce, el tamaño del tanque requerido para remover un porcentaje dado de sedimentos, decrece. De acuerdo con Camp, la carga hidrá<u>u</u> lica -que para un sedimentador se expresa en gasto volumétrico por unidad de área de tanque- representa la velocidad crítica de sedimentación de las partículas suspendidas. Teóric<u>a</u> mente, las partículas con velocidades de sedimentación mayores o iguales a este valor crítico sedimentan completamente en el tanque.

En la práctica, para evitar que se arrastren los sedimentos es conveniente mantener un régimen laminar. De tal forma que la distribución de velocidades en los sedimentadores de alta tasa no corresponde con la supuesta en el modelo de Camp. La presencia de un flujo laminar provoca que las trayectorias de las partículas no sean líneas rectas y, en consecuencia la carga hidráulica no corresponde con la velocidad crítica de sedimentación. Estos hechos llevaron a Yao (1970) a formular una relación para calcular los parámetros de diseño en los s<u>e</u> dimentadores de alta tasa.

4.2.2 Modelo de Yao

4.2.2.1 Ecuación general

El desarrollo de la ecuación general para sedimentadores de alta tasa hecho por Yao, está basado en la relación que proporciona la velocidad de sedimentación para flujo laminar y partículas discretas (ecuación 6). Así, se tiene que:

$$\vec{v}_p - \vec{u} = \frac{(\rho_p - \rho) \psi g}{3 \pi \mu d_p} = \vec{v}_s$$

donde

 \vec{v}_p : velocidad de la partícula \vec{u} : velocidad local del fluido ρ_p y ρ : densidades de la partícula y el fluido μ viscosidad dinámica del fluido \vec{v} : volumen de la partícula g : aceleración gravitacional d_p : diámetro de partículas \vec{v}_{δ} : velocidad de sedimentación de la partícula (con dirección

vertical hacia abajo).

La figura 7 representa el sistema de coordenadas usado. El eje X es paralelo a la dirección del flujo y el eje Y es normal al flujo y θ es el ángulo de inclinación entre el eje X y la horizontal.

24

(8)

Figura 7. Sistema de coordenadas

Por definición:

$$\nabla_{px} = \frac{dx}{dt}.$$

$$\nabla_{py} = \frac{dy}{dt}$$

у,

(11)

Al combinar 9, 10, 11 y 12 se tiene que:

(9)

(10)

$$\frac{dy}{dx} = \frac{-v_s \cos \theta}{u - v_s \sin \theta}$$
(13)

La ecuación 13 es la ecuación diferencial de la trayectoria de una partícula afectada por los efectos de la resistencia del fluido y por la sedimentación, su integración conduce a:

$$\int udy - v_{s} y \, sen \, \theta + v_{s} \, X \, cos \, \theta = C_{0} \tag{14}$$

donde C_{α} es la constante de integración.

Al dividir la ecuación 14 entre V_o , la velocidad promedio del fluido, y d, la profundidad del fluido normal a su dirección, se obtiene:

$$\int \frac{u}{v_0} dY - \frac{v_s}{v_0} Y \sin \theta + \frac{v_s}{v_0} X \cos \theta = C_1$$
(15)

donde Y = y/d y X = x/d

 C_1 y $\int u/v_0 dY$ se evalúan para una trayectoria y un sedimentador de alta tasa particulares.

4.2.2.2. Sedimentadores de tubos circulares

En la figura 8 se representa un sistema de sedimentación de alta tasa con tubos circulares. El eje X coincide con el fo<u>n</u> do del tubo y d y ℓ son, respectivamente, el diámetro y la

Figura 8. Sistema de coordenadas para un sedimentador de alta tasa tubular

longitud del sedimentador. Para flujo laminar dentro de un tubo circular se tiene que:

$$\frac{u}{v_0} = \delta \left[Y - Y^2 \right] \tag{16}$$

El desarrollo de esta ecuación se presenta en el anexo 1.

Al sustituir la ecuación 16 en la 15 e integrar se obtiene:

$$\delta \left[\frac{y^2}{2} - \frac{y^3}{3} \right] - \frac{v_s}{v_o} y \, sen \, \theta + \frac{v_s}{v_o} X \, cos \, \theta = C_1 \quad (17)$$

La ecuación 17 representa la trayectoria de partículas suspen didas a través de un tubo circular con flujo laminar. La constante C_1 se evalúa si se conocen las coordenadas de cualquier punto en una trayectoria dada. Se observa en la figura 8 que el conjunto de trayectorias F_1 , F_2 y F_3 pasa por el punto 8, en la orilla final del tubo y que,las coordenadas de este punto son:

$$X = L \quad \mathbf{y} \quad \mathbf{y} = \mathbf{0} \tag{18}$$

donde

L : es la longitud relativa del sedimentador 1/d

Al sustituir las condiciones 18 en la ecuación 17 se establece que:

$$C_{1} = \frac{v_{s}}{v_{o}} L \cos \theta \qquad (19)$$

Al combinar las ecuaciones 19 y 17:

$$s\left(\frac{y^2}{2}-\frac{y^3}{3}\right) - \frac{v_s}{v_o} y \, sen \, \theta + \frac{v_s}{v_o} \left(X-L\right) \cos \theta = 0 \quad (20)$$

La inspección de la figura 8 indica que existe una trayectoria límite la cual empieza en B' y que define la velocidad crítica de sedimentación v_{sc} ; al usar las coordenadas de B':

$$X = 0$$
, $Y = 1$ (21)

Y sustituir en la ecuación 20 se obtiene

$$\frac{v_{sc}}{v_o} (sen \theta + L \cos \theta) = \frac{4}{3}$$
 (22)

La ecuación 22 indica que el funcionamiento de un sistema de sedimentación de alta tasa se puede caracterizar por el par<u>á</u> metro S definido como:

$$S = \frac{v_s}{v_o} (sen \theta + L \cos \theta)$$
 (23)

El valor crítico de S, S_c , para tubos circulares es 4/3. En teoría, cualquier partícula suspendida en tal sistema con un valor de S mayor o igual a 4/3 será removida completamente.

4.2.2.3 Otros tipos de sedimentadores

Con el propósito de comparar, a continuación se muestran los valores de S_c (obtenidos de una manera similar a la de los t<u>u</u> bos circulares) para diferentes geometrías:

a) Flujo entre placas paralelas

$$\frac{u}{v_{o}} = 6 (y - y^{2})$$
(
S_o = 1) (

1.1

24)

25)

b)

Tubos cuadrados

$$\frac{U}{v_0} = \frac{-1/8-\sum_{n=1}^{\infty} \frac{2}{n^3 \pi^3} (\cos n\pi - 1) \sin \frac{n\pi}{2} (\cosh n\pi y - \frac{\cos hn\pi - 1}{\sin n\pi} \sinh n\pi y)}{-\frac{1}{12} + \sum_{n=1}^{\infty} \frac{2}{n^5 \pi^5} (\cos n\pi - 1)^2 \left[\sinh n\pi - \frac{(\cosh n\pi - 1)^2}{\sinh n\pi} \right]}$$
(26)

 $S_{c} = 11/8$

(27)

c) Charolas abiertas

$$\frac{u}{v_0} = \frac{3}{2} (2y - y^2)$$
(28)
$$S_0 = 1$$
(29)

d) Flujo uniforme

$$\frac{u}{v_o} = 1$$
 (30)
 $S_c = 1$ (31)

Es importante mencionar que valores iguales de S_c no significan comportamientos idénticos del sistema, ya que la trayect<u>o</u> ria de las partículas difiere. Esto se puede observar en la figura 9.

Figura 9. Trayectorias en diferentes tipos de sedimentadores

4.2.3 Parámetros de diseño

Usualmente,el diseño de sedimentadores para potabilización y tratamiento de aguas residuales se basa en el concepto de car ga hidráulica. Este mismo concepto se puede adaptar a sistemas de sedimentación de alta tasa, puesto que la velocidad de sedimentación crítica puede ser estimada a partir del valor de S_c . Yao (1970) propone la siguiente ecuación para el cálculo de la carga hidráulica:

Carga hidraulica ($\simeq v_{AC}$) = K v_{AC}

(32)

donde

$$\frac{S_{c}}{sen \theta + L \cos \theta}$$

K

Con la ecuación 32 se puede diseñar un sistema de sedimentación de alta tasa a partir de la selección de una velocidad de sedimentación apropiada (carga hidráulica).

4.2.3.1 Influencia de L en el funcionamiento del sedimentador

La velocidad crítica de sedimentación para un sistema de alta tasa determinado se puede expresar como:

$$\frac{v_{sc}}{v_{o}} = \frac{S_{c}}{sen \theta + L \cos \theta}$$
(34)

Para un valor fijo de v_0 , $v_{\delta C}$ decrece rápidamente al aumentar la longitud relativa, L, (como se puede observar en las figuras 10 y 11), lo que indica que partículas suspendidas con v<u>e</u> locidades de sedimentación muy pequeñas, sólo serán removidas si se incrementa L. También se puede observar en las mismas figuras que $v_{\delta C}$ decrece considerablemente después de que Lllega a 20 y su valor es despreciable para valores de mayores a 40. Por lo anterior es recomendable mantener L debajo de 40 y preferiblemente alrededor de 20.

(33)

Figura 10. Influencia de la longitud L en el funcionamiento del sedimentador: $\theta = 20$ y 40° (Yao, 1970)

Figura

11. Influencia de la longítud L en el funcionamiento del sedimentador: $\theta = 0$ (Yao, 1970).

4.2.3.2 Influencia de 8 en el funcionamiento del sedimentador

Al diferenciar la ecuación 34 con respecto a θ e igualar a cero, se obtiene:

$$\theta = \tan^{-1} \frac{1}{L}$$
(35)

La segunda derivada de la ecuación 34 con respecto a θ es

$$\frac{d^2 v_s / v_o}{d\theta^2} = \frac{2S_c (\cos \theta - L \sin \theta)^2}{(\sin \theta + L \cos \theta)^3} + \frac{S_c}{(\sin \theta + L \cos \theta)}$$
(36)

Puesto que el ángulo de inclinación, θ , no puede ser mayor de 90°, el lado derecho de la ecuación 36 es siempre positivo; por lo tanto, la relación expresada en la ecuación 35 dá un mínimo para v_{AC} .

La figura 12 representa el funcionamiento del sedimentador en función de 0. Se puede notar que la eficiencia disminuye rápidamente después de que 0 alcanza los 40°, $v_{\delta c}^{0=0}/v_{\delta c}^{0=0}$ mayores. Asimismo, Culp et al (1968) al trabajar con un sedimentador de tubos circulares, encontraron que con una inclin<u>a</u> ción de 40 a 60° se presenta la autolimpieza de los tubos, f<u>e</u> nómeno que no existe y que ocasiona obstrucciones al trabajar con ángulos de inclinación menores.

Figura 12. Efecto del ángulo de inclinación en la eficiencia de remoción. (Yao, 1970).

4.2.3.3 Eficiencia de remoción

En un sistema de sedimentación de alta tasa con partículas suspendidas con valores de S menores al valor crítico S_c , solamente se remueve una fracción de sólidos del sistema. A es to se le conoce como eficiencia de remoción.

La figura 13 muestra un sistema de placas paralelas utilizadas como dispositivo de sedimentación. Se asume que todas las partículas suspendidas tienen la misma velocidad de sedimentación y el valor correspondiente de S es menor que el valor para el sistema S_c . Se considerará la trayectoria de la partícula J, la cual inicia su recorrido en el sistema en E_0 , a la entrada, y termina en E_2 , al final del dispositivo. La porción del flujo total, Q, que entra al dispositivo abajo de E_0 , es q_1 y, q_2 es la porción remanente (figura 13). Las partículas suspendidas en q_1 serán removidas completamente en el sedimentador ya que sus trayectorias terminan entre E_1 y E_2 ; pero, las partículas suspendidas en q_2 permanecerán suspendidas en el flujo. La eficiencia de remoción (n) es:

$$n = \frac{\int_{0}^{y} u \, dy}{v_{o} \, d} = \int_{0}^{y} \frac{u}{v_{o}} \, dy$$

y,Y(=y/d)

Figura 13. Esquema para estudiar la eficiencia de remoción en placas paralelas.

(37)

Al combinar la ecuación 24 con la ecuación 37 e integrar se obtiene:

$$\eta = 3 y^2 - 2 y^3$$
 (38)

Al sustituir las siguientes condiciones límites para la trayectoria J (figura 13) en la ecuación 15:

$$X = 0$$
, $Y = y$ (39)

se obtiene:

$$3 y^2 - 2 y^3 = \frac{v_s}{v_o} L$$
 (41)

Por lo tanto, para placas paralelas horizontales:

X = L

$$n = \frac{v_{\Delta}}{v_{c}} L = S \tag{42}$$

La ecuación 42 indica que la fracción removida es igual al valor de S de la partícula suspendida.

El valor de la eficiencia de remoción para tubos circulares horizontales se puede encontrar mediante la siguiente relación:

(40)

$$n = \frac{\int_{0}^{\pi} u \, dA}{v_{0} A_{1}} = \int_{0}^{\pi} \frac{u}{v_{0}} \, d\pi$$

donde

A : es el área transversal del tubo sedimentador (es proporcional a Y, la altura de la entrada de la partícula límite de la cual se guiere saber su eficiencia de remoción)

38

(43)

(44)

A, : área transversal total del tubo

A : está dada por la relación A/A,

Yao (1970) presenta el resultado de este desarrollo matemático:

 $n = 1 + \frac{2}{2} \left(2\alpha^{3}\beta - \alpha\beta - \beta en^{-1} \beta \right)$

donde

$$\alpha = (3/4 S)^{1/3}$$

$$\beta = \sqrt{1 - \alpha^2}$$

$$S = \frac{v_{\delta}}{v_{\rho}} L \quad (\text{puesto que } \theta = 0)$$

En la figura 14 se encuentran graficadas las ecuaciones 42 y 44. En esta figura se observa que los sedimentadores con tubos circulares tienen -teóricamente- mejor eficiencia de rem<u>o</u> ción que las placas paralelas para partículas suspendidas pequeñas y ligeras; sin embargo, se puede apreciar que las dif<u>e</u> rencias no son muy importantes.

Figura 14. Eficiencia de remoción en función del valor de S para $\theta = 0$ (Yao, 1970)

4.2.3.4 Establecimiento del flujo laminar

En la discusión anterior se asumió que el flujo era laminar en todo el sedimentador; sin embargo, en la práctica no siempre es el caso ya que por lo regular a la entrada del sedime<u>n</u> tador existe una región de transición. Para un tubo circular, en esta región, la longitud relativa L' se puede estimar con

la siguiente ecuación:

$$L' = 0.058 \frac{v_o d}{v}$$

donde

v : es la viscosidad cinemática del fluido

4.2.4 Optimización en el diseño de los sedimentadores de alta tasa

En 1979 Verhoff desarrolló las ecuaciones para optimizar el diseño de los sedimentadores de alta tasa con placas paralelas en tanques cilíndricos y rectangulares. En el desarrollo se asumieron las siguientes condiciones:

- a) El flujo del fluido es laminar y unidimensional
- b) No ocurre agregación de las partículas;
- c) La velocidad de sedimentación permanece constante;
- d) No se consideran los efectos de entrada de tubo y;
- e) La concentración de los sólidos suspendidos es pequeña de tal forma que, los efectos de pared se pueden despreciar.

De acuerdo con lo anterior y si se considera α como el ángulo de inclinación de la placa con respecto a la vertical ($\theta = 90^\circ - \alpha$), la ecuación 33 se transforma en:

40

(45)

$$\frac{v_{sc}}{v_0} = \frac{1}{\cos \alpha + (\frac{\ell}{d}) \sin \alpha}$$

donde

l : longitud de la placa

d : separación entre placa y placa

Los parámetros de diseño a optimizar para sedimentadores de placas paralelas son: la distancia entre placas, d; la longitud de la placa, l; el ángulo de inclinación, α y; la velocidad promedio entre placas, v_{α} .

El ángulo óptimo está dado por la ecuación 35, la cual también se puede escribir como:

$$\tan \alpha = \frac{\ell}{d} \tag{47}$$

41

(46)

Al colocar un módulo de alta tasa dentro de un tanque circular o rectangular la velocidad promedio (v_0) que pasa por éste depende del ángulo de inclinación, así como de la longitud de las placas (ecuación 45). A continuación se presenta el desarrollo para el cálculo de estas velocidades.

4.2.4.1 Tangues cilíndricos

En la figura 15 se muestran las dimensiones principales para el diseño de un módulo de placas paralelas que se insertará en un tanque circular. Las condiciones geométricas son independientes de sí el tanque es horizontal o vertical, o si el flujo es ascendente o descendente.

Figura 15. Sedimentador de placas paralelas dentro de un tanque cilíndrico.

La velocidad ascendente, v_b , en el área rectangular ocupada por el módulo se relaciona con la velocidad ascendente del fondo del tanque circular, v_a , por medio de:

$$v_{b} = \left(\frac{\pi R^{2}}{a \left(4R^{2} - a^{2}\right)^{1/2}}\right) v_{a} \qquad (48)$$

La velocidad ascendente que penetra por el área libre entre placa y placa, v_c , se relaciona con v_b por medio de:

$$v_{c} = \left(\frac{a}{a - \ell_{A}} \tan \alpha\right) v_{b}$$
 (49)

donde

 ℓ_{A} : es la altura del módulo de placas paralelas.

Finalmente, la velocidad promedio paralela a las placas, v_o , se relaciona con v_o por la ecuación:

$$v_o = \frac{v_c}{\cos \alpha}$$
(50)

Al combinar las ecuaciones 47, 48 y 49 se encuentra la relación entre la velocidad ascendente del fondo del tanque circ<u>u</u> lar y la velocidad promedio paralela a las placas:

$$e^{-\frac{\pi v_a}{(4 - (\frac{a}{R})^2)^{1/2} (\frac{a}{R} - \frac{\ell_A}{R} \tan \alpha) \cos \alpha}}$$
(51)

A partir de la ecuación 50 se puede determinar la dependencia de la velocidad crítica de sedimentación sobre otros parámetros. Este hecho matemático se representa al combinar la ecuación 46 con la ecuación 51:

$$\frac{\ell_A}{\cos \alpha} = \frac{\pi v_a d}{v_{sc} \left(4 - \left(\frac{a}{R}\right)\right)^{1/2} \left(\frac{a}{R} - \frac{\ell_A}{R} \tan \alpha\right) \cos \alpha \sin \alpha} - \frac{d}{\tan \alpha}$$
(52)

Si se definen las siguientes variables adimensionales:

$$\beta = \frac{a}{R}$$
; $\delta = \frac{d}{R}$, $\gamma = \frac{\ell_A}{R}$

y sustituyen en la ecuación 52, se obtiene:

$$\varepsilon = \frac{v_{sc}}{v_a} = \frac{\pi\delta}{(4-\beta^2)^{1/2}(\beta-\gamma \tan \alpha) (\gamma \sin \alpha + \delta \cos^2 \alpha)}$$

(53)

(54)

La variable ε es proporcional a la cantidad de partículas sug pendidas; la minimización de ε con respecto a α , β , y γ para obtener la optimización del diseño resulta al derivar ε con respecto a esas variables. Nótese que no se incluye la separación entre las placas ya que, al derivar la ecuación 54 con respecto a δ , se encuentra que no depende de ella. La diferenciación dá los siguientes resultados:

 $\frac{d\epsilon}{d\beta} = 0 \quad \text{implica:} \quad 2\beta^2 - (\beta\gamma \cdot \tan \alpha) - 4 = 0 \quad (55)$ $\frac{d\epsilon}{d\gamma} = 0 \quad \text{implica:} \quad \beta \, sen \, \alpha - \delta \, sen \, \alpha \, cos \, \alpha - \frac{2\gamma sen^2 \alpha}{cos \, \alpha} = 0 \quad (56)$ $\frac{d\epsilon}{d\alpha} = 0 \quad \text{implica:}$

By
$$\cos \alpha - 2\beta \delta \cos \alpha \sin \alpha - \gamma^2 \sin \alpha + 2\gamma \delta \sin^2 \alpha - \gamma^2 \tan \alpha$$

 $\gamma \delta = 0$ (57)

La solución de las ecuaciones 54, 55, 56 proporciona los valores de los parámetros α , β 'y γ para un diseño óptimo. Verhoff (1979) desarrolló gráficamente la solución de estas ecuaciones (figuras 16,17,18 y 19).

Figura 16.

Figura 17.

. Valores óptimos de α , β y ε en función de γ para tangues cilíndrico-verticales con flujo ascendente (Verhoff, 1979).

45

Figura 18. Valores óptimos de β , γ y ϵ en función de α para tanques cilíndrico-horizontales con flujo descendente. (Verhoff, 1979).

Figura

19. Velocidad crítica de sedimentación adimensional ε en función de la separación de placas δ para un ángulo y longitud fijas en un tanque cilíndrico-vertical (Verhoff, 1979).

4.2.4.2. Tanques rectangulares

La figura 20 muestra las dimensiones para el diseño de placas paralelas en tanques rectangulares

Figura 20. Sedimentador de placas paralelas dentro de un tanque rectangular.

Al igual que en el caso anterior, la minimización de la velocidad crítica de sedimentación se lleva a cabo para un valor fijo de $\mathcal{D}(\text{largo del módulo de placas})$ y con el ángulo de inclinación y la longitud de la placa como variables. En esta ocasión se definen las siguientes variables adimensionales:

La velocidad de sedimentación crítica adimensional, ε , para

tanques verticales con flujo ascendente y descendente es:

Flujo ascendente

$$\varepsilon = \frac{\delta}{(\cos \alpha - \gamma \, sen \, \alpha)(\gamma \, tan \, \alpha + \delta \, cos \, \alpha)}$$
(59)

48

Flujo descendente

$$e = \frac{\delta}{(\cos \alpha - \gamma \ sen \ \alpha)(\gamma \ tan \ \alpha - \delta \ \cos \alpha)}$$
(60)

4.3 Características hidráulicas en los sedimentadores

4.3.1 Importancia de la descripción del comportamiento hidráulico

La eficiencia de la mayoría de los procesos y operaciones un<u>i</u> tarias llevados a cabo en Ingeniería Química, es función de las características hidráulicas del sistema.

La sedimentación es un ejemplo típico en el cual, la eficiencia hidráulica ejerce una influencia considerable en la eficiencia de la operación.

Para caracterizar hidráulicamente un tanque se deberían conocer las trayectorias de velocidad y su magnitud en todo el r<u>e</u> cipiente; pero, el cálculo preciso de las velocidades locales del flujo, necesarias para formar el flujo neto, no sólo es impráctico, sino casi siempre imposible. Por ello se han desarrollado técnicas de trazado que proporcionan información sobre la cinemática del tanque. Estas técnicas permiten el desarrollo de curvas de dispersión, a partir de las cuales se pueden evaluar las características hidráulicas.

4.3.2 Tipos de flujo en los sedimentadores

Existen dos tipos de flujo que deben ser considerados: el , flujo pistón y el perfectamente mezclado. Se llama flujo pis

49

tón cuando cada parte del fluido permanece en el sistema por un periodo igual al tiempo teórico de retención - volumen del tanque dividido por el gasto. Dentro de un reactor perfectamente mezclado, la composición interna se mantiene uniforme en todo el volumen por una agitación intensa. Existe una di<u>s</u> tribución de tiempo de retención desde cero hasta infinito.

En un sedimentador el flujo deseado es el pistón, pero en la práctica esto no ocurre ya que existe cierto grado de mezclado e incidencia de zonas muertas. En un tanque real el tiempo de retención de los elementos del flujo se distribuye sobre un amplio intervalo. Las perturbaciones del flujo en las zonas de entrada y salida, corrientes de densidad y convección y la existencia de zonas muertas, determinan la distribución del tiempo de retención y así, la eficiencia hidráulica de la unidad. Como consecuencia de lo anterior, en un sedimentador real existe una mezcla entre flujo pistón y perfectamente me<u>z</u> clado.

4.3.3 Técnicas de trazado

En estas técnicas se emplea un trazador (el cual puede ser un colorante, electrolito, isótopo radioactivo, etc.) que tiene como características fundamentales la de no perturbar al sistema y no aportar modificación alguna a las propiedades químicas y físicas de los fluídos presentes (Pineault, 1972).

Para realizar los ensayos se inyecta el trazador en el influen te del tanque y su concentración se determina en el efluente como función del tiempo. Los resultados de las pruebas de tr<u>a</u> zado se grafican como valores adimensionales de concentración contra tiempo, a saber: $C/C_0 vs t/T$, donde C es la concentración del trazador a la salida al tiempo t; C_0 es la concentración inicial del tanque y; T es el tiempo teórico de retención.

La curva obtenida al graficar los valores anteriores se puede ver como una curva de distribución del tiempo de retención del flujo en el tanque, en el cual los valores C/C_0 representan frecuencias relativas. Una curva típica de dispersión para un sedimentador real se observa en la figura 22, curva C. Para un sedimentador ideal (con flujo pistón) la curva de dispersión es una línea recta representada por t/T = 1 (figura 22, curva B). Por el contrario un tanque perfectamente mezclado se puede describir por la curva A de la figura 22, representado por:

 $C/C_o = e^{-t/T}$

(61)

51

Villemonte (1966) expuso que las curvas reales de dispersión se ven afectadas por las siguientes condiciones:

Figura 22. Curva de dispersión para diferentes tipos de flujo.

- Zonas muertas. Si un tanque tiene regiones en las cuales no hay movimiento del fluido el volumen efectivo y el tiempo de retención decrecen. Por lo tanto una curva de dispersión ideal se desvía hacia el tiempo cero, puesto que el trazador sale en el efluente prematuramente.
- 2. Remolinos. Como resultado de los remolinos existe una contínua dilución del trazador y la curva se ensancha.
- 3. Corto circuitos. Se definen como cortos circuitos aquella parte del flujo con velocidad infinita y tiempo de retención igual a cero (Rebhun 1965). Los cortos circui

tos producen efectos similares a los de la condición 1 y además, producen asimetría en la curva.

Como ya se mencionó anteriormente en un tanque real se va a presentar una mezcla de flujo pistón y perfectamente mezclado, además de las condiciones 1, 2 y 3.

4.4 Tipos de sedimentadores

Básicamente existen dos tipos de sedimentadores usados en potabilización y tratamiento de aguas: estáticos y por contacto de lodos. La diferencia estriba en el hecho de que en los estáticos se lleva a cabo la sedimentación de una manera simple, mientras que en los de contacto de lodos existe una recirculación de las partículas floculadas hacia el agua bruta.

4.4.1 Sedimentadores estáticos

Los sedimentadores estáticos se clasifican de acuerdo con la manera en que se colectan los lodos en: sistemas sin rastras, con rastras y por succión de lodos.

4.4.1.1 Sedimentadores estáticos sin sistemas de rastras

Dentro de este tipo de sedimentadores se encuentran los cilíndricos-cónicos normales, los estáticos de flujo horizontal y los estáticos laminares (o de alta tasa).

Decantadores cilindro-cónicos normales

Este sedimentador de flujo vertical (figura 23), se utiliza especialmente en el caso de la depuración por vía química para instalaciones pequeñas de hasta 6 l/s. Para el tratamiento de aguas residuales se utiliza en poblaciones inferiores 1000 6 2000 habitantes. La pendiente de la parte cónica varía de 45 a 65° dependiendo de la naturaleza del agua tratada.

Figura 23. Sedimentador cilíndrico-cónico

Sedimentadores estáticos de flujo horizontal

Este tipo de sedimentadores exige grandes superficies y por otra parte, cuando se requieren evacuar los lodos, debe procederse al vaciado total. Fué usado ampliamente en estaciones de potabilización de agua.

Sedimentadores estáticos laminares

Existen diversos tipos de sedimentadores estáticos laminares los cuales están provistos de placas paralelas o tubos. En la figura 24 se representa un ejemplo. En este sedimentador

Figura 24. Decantador estático laminar

se encuentra dentro del mismo tanque la zona de mezcla del agua y los reactivos de tratamiento, el floculador y el dispo sitivo de sedimentación de placas paralelas. Los lodos produ cidos pasan por gravedad al fondo y se concentran en la tolva del aparato.

4.4.1.2 Sedimentadores estáticos equipados con rastras

Las rastras son dispositivos que llevan a cabo un barrido mecánico de los lodos con velocidades de desplazamiento del orden de 1 a 5 cm/s. Los sedimentadores con rastras se util<u>i</u> zan en tratamientos primarios, clarificación, depuración química y biológica de aguas residuales y, en general, en cualquier tipo de agua que contenga materias pesadas que puedan sedimentar espontáneamente. Existen dos tipos: los circulares y los rectangulares.

Sedimentadores circulares

En los sedimentadores circulares (figura 25) el sistema de rastras va sujeto a una estructura que gira alrededor del eje del depósito. Puede llevar una sola lámina o bien una serie de rastras montadas en "celosía" y puede contar con un sistema de eliminación de espumas en la superficie. Un motoreductor, montado sobre el puente, acciona una rueda matriz que se desplaza sobre el muro de coronación del sedimentador. La pendiente del fondo, en la que se efectúa el barrido de los lodos, es del 4 al 10% (Degremont 1979). Los lodos concentrados en una fosa central, son evacuados por un sistema automático de extracción.

- Llegada de agua bruta
- Puente de rastras
- Zona de floculación
- Salida de agua decantada
- 5 Evacuación de lodos

Figura 25. Sedimentador circular con rastras

Sedimentadores longitudinales rectangulares

Los sedimentadores rectangulares (figura 26) presentan la ven taja con respecto a las circulares, de que permiten una insta lación más compacta de los diferentes equipos en la planta, pero su costo es más elevado. Normalmente se adopta una rela ción longitud-ancho, comprendida entre 3 y 6. Tienen una pen diente en el fondo del 1%. El sistema de rastras puede ser accionado mediante cadenas sín fin sumergidas.

58

1. Llegada de agua bruta 4. Recolección de flotantes

2. Cadena sin fin 5. Evacuación de lodos

3. Salida de agua decantada

Figura 26. Sedimentador longitudinal con sistema de cadenas

4.4.1.3 Sedimentadores estáticos con succión de lodos

Este tipo de sedimentadores (figura 27) se utilizan principalmente, en el tratamiento de aguas residuales mediante el proceso de lodos activados, en el que es importante que se reduzca el tiempo de permanencia de los lodos, con el fin de evitar su biodegradación. Generalmente, se utiliza un puente de rastras periférico. El efecto de succión se consigue por diferen cias de presión hidrostática (sifones). La evacuación de los lodos, recogidos en una canaleta móvil, se efectúa por el centro del aparato mediante un sifón.

7.

8.

9.

1. Alimentación

- 2. Deflector
- з. Vertedero
- 4. Rastras
- 5.

Sifón Indos 10. Vaciado

Tubos de succión 11. Cabeza de arrastre

Alimentación de aire a presión

Figura 27. Clarificador con succión de lodos

4.4.2 Sedimentadores por contacto de lodos

La finalidad de estos sedimentadores es conseguir que se mejo ren los fenómenos de floculación y obtener un rendimiento máximo de la cantidad de reactivo introducida al floculador. Se utilizan en todos los procesos de depuración fisicoquímica como por ejemplo: coagulación de materias coloidales, decolo ración, precipitación de sales alcalinotérreas (descarbonatación, ablandamiento), eliminación de hierro y manganeso, tratamiento de aguas residuales por vía guímica, etc. Existen dos tipos: sedimentadores con circulación de lodos y de lecho de lodos.

4.4.2.1 Sedimentadores gon circulación de lodos

Los lodos se separan del agua clara en una zona de sediment<u>a</u> ción y se recirculan haciéndoles pasar por una zona de mezcla donde llega el agua bruta, a la cual se añadió los reactivos. De esta forma se recuperan los reactivos que no se consumieron (figura 29).

Existen también sedimentadores de alta tasa por recirculación de lodos como el mostrado en la figura 28.

Figura 28. Sedimentador laminar con recirculación de lodos

61

29Ъ

Figura 29. Sedimentadores de recirculación de lodos

- a) Turbocirculator
- b) Accelerator

4.4.2.2 Sedimentadores con formación de lecho de lodos

En estos equipos, se trata de mantener al lodo en forma de una masa en expansión al hacer circular agua de abajo hacia arriba de una manera regular y uniforme. Existe una agitación muy lenta en el punto de introducción del agua (figura 30).

4.4.3 Dispositivos de extracción de lodos

La extracción de lodos de los sedimentadores puede hacerse me diante un dispositivo de purga contínua o de manera intermitente. La frecuencia y duración de las purgas se regula mediante aparatos de relojería. Los accesorios de extracción pueden ser válvulas automáticas, sifones o incluso bombas. Las válvulas automáticas, generalmente son válvulas de membr<u>a</u> na,cuyo cierre se consigue aplicando una presión de agua o aire al exterior de la membrana. Por otro lado, cuando los lodos son muy concentrados, su extracción se realiza por medio de bombas de desplazamiento positivo.

Figura 30. Sedimentador laminar por lecho de lodos.

5. DESARROLLO EXPERIMENTAL

El objetivo de los estudios que a continuación se describen fué determinar las condiciones de operación de un sedimentador de alta tasa. Para ello se llevaron a cabo estudios preliminares en laboratorio y, posteriormente, pruebas de campo en una planta de tratamiento de aguas residuales.

5.1 Descripción del sedimentador piloto

El sedimentador piloto con el cual se trabajó es un diseño a escala de un sedimentador que opera normalmente con un flujo de 1 m³/s. El escalamiento se realizó con base en los princ<u>i</u> pios de similitud -geométrica, cinemática y dinámica- (Ríos et al, 1984) y dió como resultado el sedimentador que a cont<u>i</u> nuación se describe. El sedimentador piloto está construido con placas de acrílico transparente de un centímetro de espesor. Se encuentra colocado sobre un soporte hecho con ángulos y soleras de acero (figura 31).

El piloto consiste en un tanque de fondo atolvado en el que se pueden distinguir tres partes: la superior tiene una sección cuadrada de 94 x 94 centímetros y 64 centímetros de alt<u>u</u> ra; la media que es una pirámide truncada invertida de 62 ce<u>n</u> tímetros de altura y, la inferior consistente en un cubo de 10 cm por lado. En la figura 31 se indican las zonas de entrada, salida, y de acumulación de lodos para el decantador. Como se puede observar, el módulo de alta tasa y las canaletas de recolección se encuentran situados en la parte superior del modelo.

El sedimentador cuenta con dos módulos intercambiables: uno construido a base de tubos cuadrados y otro con placas paralelas. El de tubos cuadrados está formado por hileras de tubos de 5 x 5 centímetros de sección transversal y 27.7 cm de profundidad, éstos tubos se encuentran inclinados 60° con respecto a la horizontal. La inclinación de las hileras de tubos es alternada: hacia la izquierda y luego a la derecha. El módulo cuenta con un área superficial de 2.78 m². El otro módulo está formado por placas paralelas separadas 5 cm entre una y otra y, consta de dos secciones, cada una de 42.5 cm de largo

Figura 31. Sedimentador piloto de alta tasa a) entrada; b) canaletas; c) módulo de alta tasa; d) soporte; e) salida de agua clarificada; f) zona de acumulación de lodos.

66

por 27.7 cm de profundidad. Las placas estan inclinadas 60° con respecto a la horizontal y, al igual que el módulo de tubos cuadrados, tienen 3 mm de espesor.

El sistema de recolección del efluente clarificado está forma do por seis canaletas de lámina de acero, dobladas y unidas entre sí. Todas tienen 5.0 cm de ancho y 5.0 cm de altura. Cinco de ellas tienen 88.0 cm de largo y la sexta 74.0 centímetros (figura 32). La descarga de las canaletas se efectúa a una tubería común. El volumen útil del tanque, medido con las canaletas en la posición baja es de 660 1, 746 1 con la posición alta y 700 1 sin módulo.

Figura 32. Canaletas de recolección: a) canaletas; b) entrada; c) tubería de descarga.

Es interesante hacer notar que tanto los módulos de alta tasa como las canaletas, se pueden subir y bajar dentro del piloto para trabajar a diferentes condiciones de operación.

En el fondo de la sección atolvada se encuentra instalada una tubería para la extracción de lodos. El control del gasto de purga se hace por medio de una válvula de compuerta.

El sedimentador cuenta con cuatro entradas intercambiables para la alimentación: a) canal de sección cuadrada; b) canal con reducción atolvada; c) canal con deflector paralelo a las paredes de la tolva y; d) canal de sección triangular.

5.2 Descripción de los estudios y métodos de análisis

5.2.1 Estudios preliminares de sedimentación

Estos estudios se llevaron a cabo en los laboratorios del Instituto de Ingeniería de la UNAM, introduciendo al sedimentador flóculos con objeto de tener una idea del funcionamiento del piloto.

El equipo se instaló como se observa en la figura 33. Como partículas sedimentables se emplearon lodos secundarios provenientes de un sistema de biodiscos alimentado con un efluente industrial. Los lodos fueron introducidos en el influente del sedimentador al mismo tiempo que agua potable con ayuda de una bomba dosificadora.

Figura 33. Equipo instalado durante los estudios preliminares.

La toma de agua se hizo de un tanque de carga constante de 1.5 m³ situado a 10 m sobre el nivel del piso. El gasto de agua manejada se calculó mediante aforos volumétricos. La m<u>e</u> dición de éste se efectuó en la tubería de descarga.

Jiménez et al (1986) encontraron, a partir de estudios de trazado, que la entrada cuadrada presentó el mejor funcionamiento hidráulico, mientras que la entrada con reducción atolvada pro dujo los peores resultados. Con base en esos resultados los estudios preliminares de sedimentación se efectuaron con las entradas cuadrada y con reducción atolvada, y, usando el módulo de tubos cuadrados en posición baja. Se variaron los gastos de alimentación usando 0.12, 0.26 y 1.02 l/s. En la Tabla 1 se pueden apreciar las condiciones de operación. En todas las corridas el gasto de purga fué cero.

TABLA 1. CONDICIONES DE OPERACION PARA LOS ESTUDIOS PRELIMI-NARES

Entrada cuadrada	Entrada con reducción atolvada
Q = 0.26 l/s	$Q = 0.12 \ L/s$
$Q = 1.02 \ l/s$	$Q = 1.02 \ \ell/s$

El análisis experimental consistió en observar el comportamien to de los flóculos dentro del tanque, en general, y del módulo de alta tasa, en particular.

5.2.2 Pruebas de campo

Como se pudo constatar, a partir de la investigación bibliogr<u>á</u> fica (capítulo 4), existen pocas referencias sobre el uso de sedimentadores de alta tasa para el tratamiento de las aguas residuales -no así, para plantas potabilizadoras- por lo cual

70

se concluy6 que sería de sumo interés instalar el piloto en una planta de tratamiento de aguas residuales.

Así, el sedimentador piloto fue trasladado a la Planta de Tr<u>a</u> tamiento de Aguas Residuales de Ciudad Universitaria (PTCU). En los experimentos de sedimentación se utilizó, como material sedimentable, licor mezclado proveniente del proceso de lodos activados perfectamente mezclado. La alimentación de los lodos al piloto se realizó mediante un sifón para evitar el ro<u>m</u> pimiento de los flóculos que puede ocurrir al pasar esta mezcla a través de una bomba. El gasto de alimentación se controló por medio de una válvula y su medición se hizo en forma volumétrica (figura 34).

Figura 34. Instalación del sedimentador piloto en la Planta de Tratamiento de Aguas Residuales de C.U.

Los estudios se programaron de tal forma que se pudiera analizar la influencia y tipo del módulo de alta tasa sobre la operación del sedimentador. Además, también se hicieron pruebas para estudiar la influencia del sulfato de aluminio (coagulante) en la sedimentación.

En todos los casos se utilizó la entrada cuadrada para la alimentación ya que, ésta fué la que presentó el mejor comportamiento hidráulico (Jiménez et al, 1986).

Para reducir la turbulencia y evitar al máximo el rompimiento de flóculos se adaptó un dispositivo a la entrada cuadrada como se muestra en la figura 35. De esta forma la alimentación de lodos se hizo en forma sumergida.

Para cada corrida se tomaron seis muestras dentro del sedimentador con el objeto de determinar la concentración de los sól<u>i</u> dos suspendidos totales, éstas fueron:

- influente
- efluente
- cuatro puntos en la zona de recolección de agua clarifica da (figura 36).

Figura 35. Adaptación efectuada a la entrada cuadrada para los estudios de sedimentación.

Figura 36. Puntos de muestreo durante las pruebas de campo dentro del sedimentador.

73

El objetivo de tomar cuatro muestras en la parte superior fué el de comprobar si existe o no distribución uniforme de los sólidos suspendidos a la salida.

El muestreo se realizó después de haber transcurrido tres veces el tiempo teórico de retención, ya que se encontró a partir de los estudios de trazado que éste periodo de tiempo es suficiente para llegar al régimen estacionario (Jiménez et al, 1986).

5.2.2.1 Estudios con módulo de tubos cuadrados

En este estudio se observó la influencia del módulo de tubos cuadrados sobre la operación del sedimentador. Se estudiaron dos condiciones: canaletas en posición alta y canaletas en posición baja (figura 37).

Para cada condición de operación se estudiaron cinco gastos de alimentación de licor mezclado: 0.26, 0.47, 0.72, 0.92 y 1.03 l/s. Cada corrida se efectuó tres veces y con el objeto de tener un valor representativo se calculó el promedio aritmético. El nivel de lodos dentro de la tolva se mantuvo a la altura mostrada en la figura 38. Para ello se necesitó un ga<u>s</u> to de purga del 20% de la alimentación para gastos del influe<u>n</u> te de 0.26 y 0.47 l/s, y de 25% para los demás.

[']Figura 37. Posición baja y alta de las canaletas de recolección.

Figura 38. Nivel de lodos mantenido durante los experimentos dentro del sedimentador.

50 cm

En las Tablas 2 y 3 se encuentran resumidas las condiciones de operación estudiadas para el módulo de tubos cuadrados.

TABLA	2.	CONDICIONES DE OPERACION UTILIZADAS	PARA	EL	MODULO
		DE TUBOS CUADRADOS, POSICION ALTA			

Gasto de influente	Gasto de	Puntos de	
Q _i (1/s)	Como & de Q _i	Q _p (1/s)	muestreo
0.26	20%	0.05	influente, efluente y 4 puntos en la parte superior
0.47	20%	0.09	influente, efluente y 4 puntos en la parte superior
0.72	25%	0.18	influente, efluente y 4 puntos en la parte superior
0.92	25%	0.23	influente, efluente y 4 puntos en la parte superior
1.03	25%	0.25	influente, efluente y 4 puntos en la parte superior

Gasto de influente	Gasto de	Purga	Puntos de
Q _i (1/s)	Como & de Q _i	Q _p (1/s)	muestreo
0.26	20	0.05	influente, efluente y 4 puntos en la parte superior
0.47	20	0.09	influente, efluente y 4 puntos en la parte superior
0.72	25	0.18	influente, efluente y 4 puntos en la parte superior
0.92	25	0.23	influente, efluente y 4 puntos en la parte superior
1.03	25	0.25	influente, efluente y 4 puntos en la parte superior

TABLA3. CONDICIONES DE OPERACION UTILIZADAS PARA EL MODULODE TUBOS CUADRADOS, POSICION BAJA

5.2.2.2 Estudios con módulo de placas paralelas

Estos estudios se realizaron bajo las mismas condiciones que el anterior únicamente se cambió el módulo de tubos cuadrados por el de placas paralelas. Las condiciones se encuentran resumidas en las Tablas 4 y 5.

TABLA 4. CONDICIONES DE OPERACION UTILIZADAS PARA EL MODULO DE PLACAS PARALELAS, POSICION ALTA

Gasto influente	Gasto de Purga		Puntos de muestreo
Q _i (1/s)	Como & de 2	2_{p} (1/s)	
0.26	20	0.05	influente, efluente y 4 pun tos en la parte superior
0.47	20	0.09	influente, efluente y 4 pun tos en la parte superior
0.72	25	0.18	influente, efluente y 4 pun tos en la parte superior
0.92	25	0.23	influente, efluente y 4 pun tos en la parte superior
1.03	25	0.25	influente, efluente y 4 pun tos en la parte superior
1.03	25	0.25	influente, efluente y 4 pun tos en la parte superior

TABLA 5. CONDICIONES DE OPERACION UTILIZADAS PARA EL MODULO DE PLACAS PARALELAS, POSICION BAJA

Gasto influente	Gasto de Purga		Puntos de muestreo
Q _i (1/s)	Como & de Q _i	2_p (1/s)	
0.26	20	0.05	influente, efluente y 4 pun tos en la parte superior
0.47	20 _	0.09	influente, efluente y 4 pun tos en la parte superior
0.72	25	0.18	influente, efluente y 4 pun tos en la parte superior
0.92	25	0.23	influente, efluente y 4 pun tos en la parte superior
1.03	25	0.25	influente, efluente y 4 pun tos en la parte superior

5.2.2.3 Estudios sin módulo

Con el objeto de comparar el funcionamiento del sedimentador con uno convencional se llevaron a cabo pruebas sin el módulo de alta tasa. Estos estudios se hicieron con las canaletas en posición baja (Figura 37).Se estudiaron cinco gastos, a sa ber: 0.26, 0.47, 0.72, 0.92 y 1.03 l/s. Los gastos de purga fueron iguales a los de las corridas anteriores y cada prueba se realizó también por triplicado. Las condiciones de operación se encuentran resumidas en la Tabla 6.

TABLA 6. CONDICIONES DE OPERACION PARA LOS ESTUDIOS SIN MO-DULOS. CANALETAS EN POSICION BAJA

Gasto influente	Gasto de P	urga	Puntos de muestreo
Q. (1/s)	Como & de Q _i	2 _p (1/s)	
0.26	20	0.05	influente, efluente y 4 pun tos en la parte superior
0.47	20	0.09	influente, efluente y 4 pun tos en la parte superior
0.72	25	0.18	influente, efluente y 4 pun tos en la parte superior
0.92	25	0.23	influente, efluente y 4 pun tos en la parte superior
1.03	25	0.25	influente, efluente y 4 pun tos en la parte superior

5.2.2.4 Influencia del sulfato de aluminio como coagulante en la operación del sedimentador

Estos estudios se llevaron a cabo con objeto de comprobar si la adición de un coagulante al licor mezclado mejora su sedimentabilidad y, por lo tanto, la eficiencia de remoción de sólidos dentro del sedimentador de alta tasa. En este caso se empleó el módulo de tubos cuadrados en la posición alta y cinco gastos de influente diferentes (0.26, 0.47, 0.72, 0.92 y 1.03 l/s).

Como coagulante se usó sulfato de aluminio (grado industrial). La cantidad necesaria de sulfato de aluminio se determinó mediante una serie de pruebas de jarras. Estas se llevaron a c<u>a</u> bo en un aparato marca Phipps and Bird.

El procedimiento seguido se explica a continuación. Se coloca ron seis muestras de licor mezclado (1 litro) y a cinco de ellas se añadieron cantidades diferentes de sulfato de aluminio (a la sexta no se agregó). Durante 1 minuto se agitaron a una velocidad de 100 revol·uciones por minuto, y después, por 15 minutos, a 20 rpm. Al cabo de 30 minutos de reposo se toma ron muestras del líquido sobrenadante y se midió la turbidez .mediante un Nefelómetro Turner. En la Tabla 7 se muestran los resultados. Estos demuestran que se obtuvo una menor turbidez para 40 mg/l de sulfato de aluminio. Con este dato se calculó la dosis de coagulante para el sedimentador, tomando en cuenta que una corrida dura tres veces el tiempo de retención. De tal modo que la solución de coag<u>u</u> lante que se preparó tenía una concentración de 20.6 g/l.

vaso *	$\frac{AL_2(SU_4)_3 \cdot 14H_2U}{mg/l}$	Turbidez UTN
1	Ο	2.7
2	20	2.4
3	30	1.75
4	40	1.4
5	50	1.5
6	60	1.6

TABLA 7. RESULTADOS DE LA PRUEBA DE JARRAS

La alimentación de la solución del coagulante se realizó en el influente del sedimentador de una manera contínua (el gasto se midió volumétricamente).

Para cada corrida y gasto se efectuaron seis muestreos dentro del sedimentador: influente, efluente y cuatro puntos en la superficie. En la Tabla 8 se encuentran resumidas las condiciones de operación.

TABLA	8.	CONDICION	es de (OPERACIO	N PAR	A MODULO	DE	TUBOS	CUA-
		DRADOS EN	POSIC	ION ALTA	CON	COAGULANI	"E	(SULFAT	O DE
		ALUMINIO)							

		The second se			الاشالة فلتحص والمسابية الملكان والكري مستنا معاصي والمستنفاني ورمسان ويرما فالمراجع والمتاري
و _ز (1/s)	Ω _ρ (1/s)	Q _c (ml∕s)	C _{Al} g/1	M mg/l	Puntos de muestreo
0.26	0.05	0.50	20.6	40	influente, efluente y 4 pun tos en la parte superior
0.47	0.09	0.91	20.6	40	influente, efluente y 4 pun tos en la parte superior
0.72	0.18	1.40	20.6	40	influente, efluente y 4 pun tos en la parte superior
0.92	0.23	1.79	20.6	40	influente, efluente y 4 pun tos en la parte superior
1.03	0.25	2.00	20.6	40	influente, efluente y 4 pun tos en la parte superior
	1 /	. ,	1 7	1 7	

 Q_i : gasto de influente

2_p: gasto de purga

 $\boldsymbol{\varrho}_{\rm c}$: gasto de coagulante alimentado

 C_{Al} : concentración de $Al_2(SO_4)_3 \cdot 14H_2O$ alimentado

M : concentración de $A\ell_2(SO_4)_3 \cdot 14H_2O$ en el tanque

6. RESULTADOS Y ANALISIS DE RESULTADOS

6.1 Estudios preliminares

En las figuras 39 y 40 se muestra la trayectoria que siguieron los flóculos dentro del sedimentador y específicamente en el módulo de alta tasa.

Como se puede observar la suspensión entra al módulo de una ma nera ascendente. Las partículas que tuvieron una velocidad de sedimentación mayor o igual a su velocidad crítica se deposita ron en los tubos cuadrados. Después de cierto tiempo, cuando había suficiente material acumulado, éste resbaló y cayó al fondo del sedimentador.

84

Figura 39. Trayectoria de los flóculos en el sedimentador de alta tasa.

Por otra parte, se observó que en la región atolvada también se depositaron sedimentos. Para el caso de la entrada cuadrada, se observó que éstos se depositaron en mayor proporción en la esquina adyacente y en la opuesta a la entrada. Jiménez et al, (1986) localizaron y cuantificaron las zonas muertas dentro del sedimentador producidas al usar la entrada cuadrada y con reducción atolvada. Estos resultados se presentan en las figuras 41 y 42 así como en la Tabla 9.

Figura 40. Trayectoria de las partículas dentro del módulo de alta tasa. a) Entrada al módulo; b) Trayectoria; c) Acu mulación; d) Limpieza.

TABLA 9. PORCENTAJE DE ZONAS MUERTAS (JIMENEZ ET AL, 1986).

Q	Entrada	cuadrada	Entrada con		
(1/s)	módulo bajo	módulo alto	reducción atolvada		
0.26	23.6	22.2	26.0		
0.47	26.7	45.4	64.1		
0.72	16.4	15.4	7.2		
0.92	16.7	14.8	7.5		
1.01	16.0	15.2	7.5		
Promedio	19.9	12.5	22.5		

(a)

Figura 42. Vista de perfil de la trayectoria de las corrientes de flujo dentro del sedimentador. a) Entrada cuadrada; b) Entrada con reducción atolvada. (Jiménez et al, 1986). Con base en los resultados anteriores se observa que los sedi mentos se acumulan en los lugares donde no había zonas muertas puesto que en estos no pasaba agua con flóculos (figura 43).

Figura 43. Zonas con mayor cantidad de sedimentos al usar la entrada cuadrada.

Al usar la entrada con reducción atolvada, los sedimentos se depositaron en mayor proporción en la esquina donde se encuentra la alimentación. De acuerdo con los estudios hechos por Jiménez et al, (1986), lo anterior fué debido a que esta región es considerada como una zona donde hay suficiente calma para que los lodos sedimenten mientras que, en el resto del tanque, existe turbulencia. En la figura 44 se muestra esque máticamente lo anterior.

Vista BB'

Figura 44. Zonas con mayor cantidad de sedimentos al usar la entrada con reducción atolvada.

Los resultados antes expuestos -aparentemente contradictoriosse explican de la siguiente manera:

 La turbulencia existente al usar la entrada cuadrada no es tan alta ya que permite que los lodos se depositen en las zonas muertas y; 2) La entrada con reducción atolvada produce tal turbulencia que el único lugar donde se pueden depositar los lodos es en la zona estancada.

6.2 Pruebas de campo

Se llevaron a cabo un total de 82 corridas para los cinco gastos estudiados (0.26, 0.47, 0.72, 0.92 y 1.03 l/s) y seis condiciones de operación (módulo de tubos cuadrados y módulo de placas paralelas, ambos con las canaletas en posición baja y alta, sin módulo de alta tasa y, con módulo y adición de coag<u>u</u> lante). En total se muestrearon 492 puntos.

La concentración de lodos del influente, durante todos los ensayos, varío desde 450 hasta 1020 mg/l* por lo que el promedio de las 82 corridas para la concentración del influente fué de 666 mg/l con una desviación estándar de 124 mg/l. El índice volumétrico de lodos (IVL) -el cual está relacionado con la densidad de los sólidos sedimentados- varió de 148 a 254 ml/g con una media de 199 ml/g y 40 ml/g de desviación estándar (T<u>a</u> bla 3.6, Anexo 3).

Con la purga aplicada (20 & 25%, según el gasto) se obtuvieron concentraciones de sólidos suspendidos de alrededor de 3500 mg/l.

^{*} Esta variación en la concentración del licor mezclado se debió a la política de operación de la Planta de Tratamiento de Aguas de C.U.

6.2.1 Influencia del módulo de alta tasa

En las Tablas 2.1 y 2.2 (Anexo 2) se encuentran los resultados de los estudios de sedimentación para el módulo de tubos cuadrados y de placas paralelas con las canaletas en posición alta y baja y para los estudios sin módulo de alta tasa.

La eficiencia del sedimentador se calculó mediante la siguien te relación:

$$c_{1} = (1 - \frac{c_{m}}{c_{i}}) * 100$$
 (62)

donde,

- η : % de remoción de sólidos suspendidos
- C_m : concentración de sólidos suspendidos en el punto de mues treo (mg/l)
- C_i: concentración de sólidos suspendidos en el influente (mg/l)

Con objeto de tener estandarizados los resultados, los gastos fueron transformados en cargas hidráulicas. Se tomó como área transversal del tanque 0.8239 m², (0.92 x 0.92 m - 0.15 x 0.15 m), así la carga hidráulica se calculó con la siguiente relación:

carga hidraulica = Q/A

91

(63)

donde

Q : gasto volumétrico

A : area transversal del tanque

En la Tabla 10 se muestran los resultados de estas conversiones.

Q _{influente} (1/s)	Carga hidráulica (m ³ /m ² d)
0.26	27.3
0.47	49.3
0.72	75.5
0.92	96.5
1.03	108.0

TABLA 10. EQUIVALENCIAS ENTRE GASTO Y CARGA HIDRAULICA PARA EL SEDIMENTADOR UTILIZADO

Los cálculos de eficiencias de sedimentación se realizaron con la ecuación 62 (para los promedios de las tres corridas de cada gasto) y se presentan en las Tablas 3.1 y 3.2 del Anexo 3.

Como era de esperarse, para todos los casos estudiados, la ef<u>i</u> ciencia de remoción de sólidos en el efluente decrece a medida que aumenta la carga hidráulica aplicada (figuras 45,46 y 47). No se encontraron diferencias significativas entre las posiciones alta y baja de las canaletas, ya que al calcular la desviación estándar para la eficiencia de las dos posiciones (Tabla 3.3, Anexo 3) se encontró que la máxima fué de 1.9% pa ra módulo de tubos cuadrados, y de 3.7% para el módulo de pla cas paralelas. Lo anterior concuerda con la teoría de Hazen (1904), quien demostró matemáticamente que la cantidad de sedimentos removidos es independiente de la profundidad del ta<u>n</u> que. Por este motivo en las figuras 45 y 46 sólo se presenta una curva para ambas posiciones.

Figura 45. Eficiencias de remoción de sólidos en el sedimentador. Módulo de tubos cuadrados.

Figura 46. Eficiencias de remoción de sólidos en el sedimen tador. Módulo de placas paralelas.

Figura 47. Eficiencias de remoción de sólidos en el sedimentador. Sin módulo de alta tasa.

93

Al usar el módulo de tubos cuadrados se encontró que para una carga hidráulica de 27.3 m³/m². d la eficiencia de remoción de sólidos es alrededor de 95%, mientras que para una carga hidráulica de 108 m³/m². d tiene un valor de 85%; esto es, al aumentar casi cuatro veces la carga hidráulica, la eficiencia decrece en sólo un 10% (figura 45).

De manera similar al usar el módulo de placas paralelas se ob servó que para 27.3 m³/m² d la eficiencia de remoción de sól<u>i</u> dos es de 95% y para 108.0 m³/m² d de 81%. En este caso, al cuadruplicarse la carga hidráulica la eficiencia de remoción de sólidos decrece en 15% (figura 46).

Cuando se removió el módulo de alta tasa y se operó el sedimentador sin él, se encontró lo siguiente: para una carga hi dráulica de hasta 50 m³/m² d la eficiencia de remoción de sólidos decrece suavemente (figura 47), pero al rebasar éste valor la eficiencia disminuye en forma considerable. Así, pa ra una carga hidráulica aplicada de 27.3 m³/m² d se remueve el 88% de los sólidos suspendidos en tanto que para 108 m³/ m² d la remoción es del 42%. Es decir, al aumentar 4 veces la carga hidráulica la eficiencia decrece en 46%.

Si se compara la operación del sedimentador al usar el módulo de tubos cuadrados y el de placas paralelas se encuentra que el primero es ligeramente más eficiente que el de placas para-
lelas (como se aprecia en la figura 48). Además se nota que la máxima diferencia en las eficiencias de remoción se encue<u>n</u> tra en la carga hidráulica más alta, o sea 108.0 m³/m² d. Sin embargo, ésta es de únicamente el 5%. De acuerdo con Yao (1970) el orden teórico de preferencia, para un mejor funcio-

Figura 48. Influencia del tipo de módulo en la operación del sedimentador.

namiento del sedimentador es: placas paralelas y después tubos cuadrados lo cual no concuerda con los resultados obtenidos en la práctica. Lo anterior puede ser debido a que, hidráulicamente, el módulo de tubos cuadrados es mejor que el de placas paralelas, ya que, en la corta longitud de las placas el efecto de pared ocasionado en dos planos para el caso de los tubos es comparable con el producido por las placas (Di Bernardo, 1987).

En las figuras 49 y 50 se pueden apreciar la influencia de la carga másica en la operación del sedimentador para el módulo de tubos cuadrados y el módulo de placas paralelas (Tabla 3.5, Anexo 3). En estas figuras se observa que al aumentar la carga másica (por el aumento correspondiente de la carga hidrául<u>i</u> ca) la remoción de sólidos suspendidos decrece. Para el módulo de tubos cuadrados se obtiene una eficiencia de 96% para la carga másica de 15 kg/m².d y de 87% para la carga másica de 63 kg/m².d (figura 49). De una manera similar, para el módulo de placas paralelas la eficiencia es de 95% para la carga de 20 $kg/m^2.d$ y de 80% para 82 $kg/m^2.d$.

Por otro lado, en las figuras 51 y 52 se muestran los resultados obtenidos en la remoción de sólidos. Los datos corresponden a la zona superior del sedimentador, es decir, la zona de recolección de agua clarificada (módulo de tubos cuadrados, Tabla 3.2, Anexo 3). Existe uniformidad en la cantidad remov<u>i</u> da de sólidos suspendidos; así, para la posición baja del mód<u>u</u> lo el coeficiente de variación es menor a 2.1% y al 3.7% para la posición alta.

Figura 50. Influencia de la carga másica en la operación del sedimentador. Módulo de placas paralelas.

Figura 51. Eficiencias de remoción de sólidos en la zona de agua clarificada. Módulo de tubos cuadrados, ca naletas en posición baja.

Figura

52. Eficiencias de remoción de sólidos en la zona de agua clarificada. Módulo de tubos cuadrados, canaletas en posición alta.

Figura 53. Eficiencias de remoción de sólidos en la zona de agua clarificada. Módulo de placas paralelas, ca neltas en posición baja.

Figura

54. Eficiencias de remoción de sólidos en la zona de agua clarificada. Módulo de placas paralelas, ca naletas en posíción alta.

Figura 55. Eficiencias de remoción de sólidos en la zona de agua clarificada. Sin módulo de alta tasa.

De manera similar, para el módulo de placas paralelas se encontró uniformidad en la concentración de sólidos en la zona de r<u>e</u> colección de agua clarificada (Figuras 53 y 54). El máximo co<u>e</u> ficiente de variación entre los cuatro puntos fue de 4.3%, para la posición baja y 3.5% para la posición alta.

En la figura 55 se encuentran los resultados obtenidos al traba jar sin módulo de alta tasa. Se remarca que no existe la uniformidad encontrada en los casos anteriores (cuando se usó el módulo de alta tasa). Por el contrario, se obtuvo mayor disper sión de las eficiencias de sedimentación, en tal forma que el coeficiente de variación fue de 7.8%. Lo anterior indica que el módulo de alta tasa uniformiza la distribución de flujo y en consecuencia la de los sólidos dentro del sedimentador.

6.2.2 Influencia de coagulantes en la operación del sedimentador

Los resultados de estas pruebas se muestran graficados en la figura 56. Al igual que en el inciso anterior, al aumentar la carga hidráulica la eficiencia de remoción decrece; sin embargo, en éste caso la disminución en la remoción de sólidos suspendidos es mucho menos pronunciado ya que, por ejemplo, al aumentar 4 veces la carga hidráulica (de 25 a 100 m³/ m^2 . d), la eficiencia únicamente disminuye en 2% (de 97 a 95%).

Figura 56. Influencia de coagulantes en la operación del se dimentador. Módulo de tubos cuadrados.

Diferencia que no puede ser considerada significativa. Esto se debe a que la adición de sulfato de aluminio ayuda a la aglomeración de los sólidos suspendidos más pequeños, ya que floculan más fácilmente con lo que se remueve una mayor cantidad de sólidos suspendidos y en una forma más constante. Es interesante hacer notar que, al agregar el coagulante, la velo cidad de sedimentación se incrementó en 56% con respecto a la determinada sin coagulante. De la misma manera, el índice volumétrico de lodos aumentó 37% al agregar coagulante.

Figura 57. Eficiencias de remoción de sólidos en la zona de agua clarificada. Adición de sulfato de aluminio como coagulante.

Se puede observar en la figura 57 que existe una distribución

uniforme de sólidos en la parte superior del sedimentador, es decir en la zona de recolección de agua clarificada. El máxi mo coeficiente de variación para las eficiencias de remoción en una de las pruebas fué de 1.1% (Tabla 3.2, Anexo 3).

6.3 Evaluación del parámetro S para el sedimentador

Como se discutió en la sección 4.2.2.2, Yao (1979) propuso el parámetro para caracterizar teóricamente el funcionamiento de un sedimentador de alta tasa. De esta forma cualquier partícula suspendida se removerá completamente si su valor de S es mayor o igual al valor de S_c para ese tipo de sistema. Con este fin se calcularon los valores de S para diferentes condiciones. Estos se resumen en la figura 58.

Los valores de S se obtuvieron a partir de la ecuación 23, con un ángulo de inclinación de 60° y una longitud relativa de 27.7 cm/5 cm. La velocidad de sedimentación v_{δ} se calculó con base en las características de los lodos usados (Koopman y Cadee, 1982) y resultó de 80 m/d. Se varió la velocidad de flujo, v_{o} , para obtener diferentes valores de S (Tabla 3.7, Anexo 3).

De esta forma al usar el módulo de tubos cuadrados, teóricamen te, se deben eliminar todas las partículas para cuando las con diciones de operación proporcionan un valor de S de 11/8=(1.375).

La velocidad de flujo, v_o , para S = 11/8 es de 212 m/d (figu ra 58) (carga hidráulica de 212 m³/m².d). De igual manera pa ra placas paralelas (S = 1) la carga hidráulica límite es de 300 m³/m².d. Se obtiene un resultado similar para el caso de placas paralelas, si se utiliza la figura 10 para calcular la carga hidráulica límite, esto es con L = 5.54 (27.7/5) resulta $v_{sc}/v_o = 0.28$. Ahora si v_{sc} se toma como 80 m/d, la carga hidráulica es 285 m³/m².d.

Figura 58. Valores de S en función de la velocidad de flujo

En la práctica, aunque no se trabajó con esas cargas hidráulicas, es de suponerse que las eficiencias de remoción sean bajas. Las diferencias encontradas entre la teoría y la práctica se deben a que Yao consideró en su desarrollo matemático,

condiciones ideales en el comportamiento de las partículas, ésto es: flujo laminar y partículas no floculantes. En la práctica el sedimentador no operó idealmente ya que, existen regiones con alta turbulencia dentro del tanque y el comportamiento hidráulico tiende al reactor mezclado con zonas mue<u>r</u> tas (Jímenez et al, 1986). Además, el licor mezclado no se comporta como partículas discretas de tamaño y densidad uniformes.

6.4 Análisis general de los resultados

Como se discutió en el capítulo 4, el funcionamiento del sedi mentador depende de las características hidráulicas del tanque. Así, es deseable que dentro de los sedimentadores exista flujo pistón para que cada elemento del fluido permanezca el tiempo necesario para que los sólidos decanten. De esta manera los fenómenos que determinan la eficiencia de un sedimentador son: las características del flujo y las caracterís ticas de los sólidos.

Jiménez et al, (1986) encontraron que el sedimentador no se comporta de una manera ideal (es decir, flujo pistón), sino que presenta algunas características de un tanque perfectamen te mezclado, con zonas muertas (20%), y cortos circuitos (1%).

Estos resultados y el hecho de que los sólidos con los que se trabajaron (lodos activados) presenten baja densidad y una amplia distribución en peso y talla de las partículas -condiciones no tomadas en cuenta por estudio teórico hecho por Yao-, ayudan a explicar por que la teoría de Yao no se ajustó a lo encontrado.

Por otra parte, es indudable el hecho de que al usar el módulo de alta tasa se disminuye el tiempo de retención necesario (o si se prefiere, aumenta la carga hidráulica admitida) para remover un porcentaje dado de sólidos. En la figura 59 se comparan los resultados obtenidos al usar el sedimentador con módulo de alta tasa, sin módulo y al usar el módulo y coagulante (Tabla 3.4, Anexo 3). En este caso se tiene que las m<u>e</u> jores eficiencias de remoción de sólidos, para las condiciones estudiadas, se obtienen en presencia del módulo de alta tasa y con adición de coagulante.

Es interesante mencionar que el área de sedimentación del tan que es de 0.824 m² sin módulos y que al introducir el módulo ésta se incrementa hasta 2.78 m^2 , lo que favorece la remoción de sólidos suspendidos.

Existen en la literatura criterios de diseño para sedimentadores secundarios que operan en plantas que funcionan por el proceso de lodos activados, así por ejemplo el IWPC* (1973)

* IWPC: Institute of Water Pollution Control

Figura 59. Funcionamiento del sedimentador bajo diferentes condiciones de operación.

recomienda una carga hidráulica máxima de 24 $m^3/m^2 \cdot d$ y un tiempo máximo de retención de 1.5 h, para un buen funcionamiento del sedimentador, de manera análoga la EPA⁺ (1975) r<u>e</u> comienda, con los mismos propósitos, una carga hidráulica e<u>n</u> tre 16 y 32 $m^3/m^2 \cdot d$ y cargas másicas entre 90 y 145 kg/m² · d. Como se puede observar las cargas hidráulicas utilizadas en

+ EPA: United States Environmental Protection Agency

el presente estudio fueron de hasta 108 $m^3/m^2 \cdot d$, con una ef<u>i</u> ciencia de remoción de sólidos de 83%. Esto indica que se puede aumentar hasta 4 veces la carga hidráulica recomendada en la literatura al usar el módulo de alta tasa con buenas eficiencias de remoción.

Otra manera de comparar el funcionamiento del sedimentador es la siguiente: la concentración de sólidos suspendidos totales admisibles en el efluente de un sedimentador secundario está en función del medio receptor. Si se toma, por ejemplo, lo establecido por la Dirección General de Uso del Agua y Pr<u>e</u> vención de la Contaminación de la S.A.R.H., (1975) el conten<u>i</u> do de sólidos suspendidos totales en el efluente de un sedimentador secundario debe ser de 50 mg/l. Así, de acuerdo con la concentración promedio del influente, se establece que la eficiencia de remoción deseada es de alrededor de 90%.

Al analizar la figura 59 se observa que para una eficiencia de remoción de sólidos del 90%, se puede aplicar una carga h<u>i</u> dráulica hasta de 70 m³/m² d al usar el módulo de alta tasa, mientras que sin el módulo se obtienen estas eficiencias con cargas hidráulicas inferiores a 20 m³/m² d.

Por otra parte, la adición de coagulantes permite operar el sedimentador con cargas hidráulicas de hasta $120 \text{ m}^3/\text{m}^2 \cdot d(\text{valo} \text{ res extrapolados})$, y obtener la misma eficiencia.

Con estos resultados se puede afirmar que un sedimentador equipado con un módulo de alta tasa opera con una carga hidráulica de tres y media veces más que uno sin módulo. Esta relación aumenta hasta siete veces si además se agrega un coagulante a los lodos.

Para estudiar la influencia del gasto de purga en la remoción de sólidos se efectuaron pruebas bajo las mismas condiciones, pero a dos gastos de purga diferentes (25 y 40%). Los resultados de estas pruebas se encuentran en la Tabla 3.1, Anexo 3 (Estudios con adición de coagulante). Como se puede observar, el aumento de 15% en la purga, con la consiguiente dism<u>i</u> nución de la altura de la cama de lodos prácticamente no influye en la remoción de sólidos.

El funcionamiento de sedimentador no se ve afectado signific<u>a</u> tivamente por el tipo de módulo empleado. En cambio, el costo de fabricación del módulo de tubos cuadrados es alrededor de tres veces mayor que el de placas paralelas, debido a lo complicado de su manufactura. Por lo anterior es recomendable el uso de un módulo de placas paralelas.

Para finalizar es interesante señalar que la posición del modulo dentro del tanque no resultó un factor relevante; sin embargo, se recomienda la posición alta para aumentar la trayectoria que deban recorrer las partículas.

7. INFLUENCIA DEL ANGULO DE INCLINACION EN LA EFICIENCIA DE REMOCION DE SOLIDOS

7.1 Desarrollo experimental

Puesto que, al parecer no existen en la literatura especificaciones precisas de diseño para efluentes secundarios biológicos, se realizaron los presentes estudios con objeto de determinar el ángulo de inclinación óptimo para la remoción de sóli dos suspendidos. Para ello se usaron efluentes provenientes de tres sistemas de tratamiento de aguas residuales a saber: lodos activados, biodisco y filtro percolador.

El equipo utilizado para tales estudios fue un tubo circular de 3.8 cm de diámetro y 50.0 cm de longitud. La suspensión se pasó del tanque receptor -que se encontraba perfectamente agitado-, al tubo mediante una bomba dosificadora. El gasto alimentado se controló mediante una válvula y se midió volumétr<u>i</u> camente a la salida del tubo (figura 60).

Se llevaron a cabo tres conjuntos de corridas, esto es, un conjunto para cada tipo de efluente. El ángulo de inclinación se varió, con respecto a la horizontal, de 10 a 80°. Se traba

Figura 60. Equipo utilizado para determinar la influencia del ángulo de inclinación.

jó con una carga hidráulica de 70 $m^3/m^2 \cdot d$. Para cada corrida se midió la turbidez del influente mediante un nefelómetro Turner. Después de haber transcurrido tres veces el tiempo teórico de retención (31 minutos) se tomó una muestra del efluente y se midió la turbidez. En la Tabla 11 se encuentran resumidas las condiciones de operación.

Carga Hidráulica	Angulos de inclinación (grados)		
$m^3/m^2 \cdot d$	Lodos Activados	Biodisco	Filtro Percolador
70	10	10	10
70	20	20	20
70	30	30	30
70	40	40	40
70	45		
70	50	50	50
70	55		
70	60	60	60
70	70	70	70
70	80	80	80

TABLA 11. CONDICIONES DE OPERACION UTILIZADAS EN EL ESTUDIO DE LA INFLUENCIA DEL ANGULO DE INCLINACION

7.2 Resultados y análisis de los resultados

Los resultados de estos estudios se presentan en el Anexo 4, Tabla 4.1. Se calculó para cada caso la eficiencia de remoción mediante la ecuación 62* y los resultados se presentan en las figuras 61, 62 y 63 (Tabla 4.2, Anexo 4).

* Sólo que para este caso se usó turbidez en lugar de concencentraciones. La figura 61 representa la variación de la remoción de sólidos en función del ángulo de inclinación para cuando se usaron lodos activados como material sedimentable. Se observa que para ángulos de inclinación bajos (hasta 20°), la remoción de turb<u>i</u> dez es prácticamente constante y alrededor de 90%. Al inclinarse más el tubo, la calidad del efluente mejora, ya que aumenta la eficiencia de remoción. Se encuentra un máximo alrededor de los 45°, donde se remueve hasta el 95% de la turbidez, después de lo cual la eficiencia comienza a disminuir.

Figura 61. Influencia del ángulo de inclinación en la remoción de turbidez. Lodos activados.

Lo anterior indica que el mejor ángulo de inclinación, se encuentra a los 45°, además de que a este ángulo los lodos res-

balan fácilmente hacia el fondo del tubo (Culp et al, 1968).

Figura 62. Influencia del ángulo de inclinación en la remoción de turbidez. Lodos provenientes de biodisco.

La figura 62 muestra los resultados para lodos provenientes del sistema de biodisco. Al igual que en el caso anterior, en ángulos de inclinación pequeños se obtienen eficiencias de remoción bajas y a medida que aumenta la inclinación ésta mejora. El máximo se obtiene aproximadamente a los 42°(56% de remoción). Después, la eficiencia de remoción comienza a descender. Los resultados del análisis de lodos de filtro percolador mue<u>s</u> tran que, también en este caso, se obtiene una curva en forma de campana con un máximo de remoción a los 35° (54% de eficie<u>n</u> cia). Esto se puede observar en la figura 63.

Figura 63. Influencia del ángulo de inclinación en la remoción de turbidez. Lodos provenientes de filtro percolador.

Como se observó en las figuras 61, 62 y 63 para los tres sist<u>e</u> mas se obtienen curvas similares al variar el ángulo de inclinación. Sólo que para los sólidos provenientes del sistema de

lodos activados la variación de la eficiencia de remoción con respecto al ángulo de inclinación no es tan marcada como en los otros dos casos. Lo anterior se pudo deber a que la turbidez en los lodos activados fué mucho mayor que la de los otros sistemas, esto es: lodos activados tuvo alrededor de 65 UTN, biodisco 12 UTN y filtro percolador 15 UTN. Esto favorece que al haber una mayor cantidad de sólidos sedimentables floculen y sean más fácilmente removidos.

8. CONCLUSIONES Y RECOMENDACIONES

Estudios preliminares

Los estudios preliminares de sedimentación permitieron determinar la trayectoria de los flóculos dentro del tanque sedimenta dor, así como del módulo de alta tasa.

Estudios de campo

Se obtuvieron las siguientes conclusiones en cuanto a la operación del sedimentador:

- La eficiencia de remoción de sólidos, en el sedimentador,
 decrece a medida que aumenta la carga hidráulica aplicada.
- Las eficiencias de remoción para las cargas hidráulicas

aplicadas (27 a 108 $m^3/m^2 \cdot d$) fueron de: 95 a 85% al usar el módulo de tubos cuadrados y de 95 a 81% al usar el módulo de placas paralelas.

Las eficiencias de remoción de sólidos decrecen drásticamente (de 88 a 42%) al aumentar la carga hidráulica (27-108 $m^3/m^2 \cdot d$), cuando el sedimentador funcionó sin módulo de alta tasa.

El uso de sulfato de aluminio como coagulante produce que la eficiencia de remoción de sólidos permanezca prácticamente constante (99 a 95%) al aumentar la carga hidráulica (27 a 108 $m^3/m^2 \cdot d$).

- El módulo de alta tasa favorece una distribución uniforme de los sólidos suspendidos en la zona de recolección de agua clarificada. Esta uniformidad en la distribución aumenta al usar sulfato de aluminio como coagulante.
- El aumento de la carga másica (debido al aumento de carga hidráulica) produce que la eficiencia de remoción de sól<u>i</u> dos decrezca.
- El gasto de purga adecuado, para las condiciones estudiadas, se sitúa entre 20 y 25% del gasto del influente.

Por otro lado, en cuanto a diseño se concluye lo siguiente:

- La introducción del módulo de alta tasa, al sedimentador, aumenta el área de sedimentación.
 - El uso del módulo de alta tasa permite disminuir el tiempo de retención necesario para remover un porcentaje dado de sólidos.

El módulo de tubos cuadrados es ligeramente más eficiente que el de placas paralelas; a pesar de ello se recomienda el módulo de placas debido a el costo de fabricación.

No existen diferencias significativas entre las posiciones alta y baja de las canaletas; sin embargo, se recomie<u>n</u> da el uso de la posición alta debido a las mejores caract<u>e</u> rísticas hidráulicas.

Por filtimo, las conclusiones respecto a la teoría son las siquientes:

 El uso del módulo de alta tasa permite aumentar de 3.5 a
 4 veces la carga hidráulica recomendada en la literatura (EPA, IWPC, SARH) para sedimentadores secundarios convencionales que operan con lodos activados. La teoría expuesta por Yao para sedimentadores ideales, no es satisfactoria al aplicarla a los resultados obten<u>i</u> dos en los experimentos debido a que se trabajó bajo co<u>n</u> diciones no ideales.

De esta forma, con base en los resultados obtenidos se recomienda la operación del sedimentador bajo las condiciones siquientes:

- Entrada: de tipo cuadrada con introducción sumergida de lodos.
- Módulo: de placas paralelas colocado en la primera terce ra parte del sedimentador;

Y específicamente, para efluentes de tratamiento por el proceso de lodos activados:

Carga hidráulica: 70 m³/m²·d, para 90% de remoción, de sólidos (si se quiere aumentar la carga hidráulica o la eficiencia de remoción, se recomienda el uso de sulfato de aluminio como coagulante. Si se usa coagulante se recomienda una carga hidráulica de 120 m³/m²·d, y;

- Gasto de purga: 25% del gasto de influente (para cargas másicas de 15 a 100 kg/m²·d).

Por último, se observa que existe variación de la eficiencia de remoción de turbidez al variar el ángulo de inclinación del sedimentador y además, que esta variación es característi ca del tipo de efluente (lodos activados, biodisco o filtro percolador).

La máxima remoción de turbidez en el efluente se encuentra al trabajar el sedimentador con ángulos de inclinación de 35 a 45° (35° para filtro percolador, 42° biodisco y 45° para lodos activados).

9. BIBLIOGRAFIA

- Blaine, Severin, Poduska, R., (1986), "Floculant settling dynamics under constant load", J. of the Env. Eng. Div. Vol. 112, No. 1, p. 171.
- Bramer, H.C., Hoak, (1966), "Measuring sedimentation floculation efficiencies", Ind. Eng. Chem. Proc. Des. Dev. Vol. 5, pp. 316.
- Bergman, B. S., (1985), "An improved circular sedimentation Design". Journal and Proceedings, Inst. of Sewage. Purification, South African Branch, Part. 1. pp. 50-67.
- Bond, A.W. (1960), "Behavior of Suspensions". J. San.
 Eng. Div. Vol. 86, No. SA3, pp. 57-85.

- 5. Camp, T.R. (1936), "On grit chamber model test", Transactions ASCE, Vol. 101, p. 344.
- Camp, T.R. (1945), "Sedimentation and the Design of Settling Tanks", Transactions ASCE. Vol. 3, No. 2285, pp. 445-486.
- Culp, L.G., Hansen, S., (1967), "Applying shallow depth sedimentation theory", J.A.W.W.A., Vol. 59, pp. 1135-1148.
- Culp, G., Hansen S. y Richardson G. (1968), "High-Rate Sedimentation in water treatment works", Journal AWWA, Vol. 60, pp. 681-698.
- 9. Culp, G., Kou-Ying Hsiung y Conley W. (1969), "Tube clarification process, operation experiences", Journal of the Sanitary Engineering Division, Vol. 95, No. SA5, pp. 829-846.
- Degrémont (1979), "Manual Técnico del Agua", 4a. ed.,
 Bilbao, Cap. 7, pp. 159-188.

11. Di Bernardo, Luiz, (1987), Comunicación directa.

- 12. Dick, R., Ewing B. (1967), "Evaluation of activated slud ge thickening theories". J. San. Eng. Div., Vol. 93, No. SA4, pp. 9-29.
- 13. Ekama, G.A., Marais, R., (1986), "Sludge settleability and Secondary Settling Tank design Procedures". Water Pollution Control, Vol. 85, parte 1, No. 101.
- 14. Entat Marcel, "Décantation, séparation". Techniques de l'Ingénieur, Service Commercial, 18 Place de l'Odéon 7506, " París.
- 15. Feuerstein, D., Selleck, R., (1963), "Fluorescent tracers for dispersion measurements". J. San. Eng. Div. Vo. 89, No. SA4, pp. 1-21.
- 16. Fischerström, C., Isgård, E., Larsen, I., (1967), "Settling of Activated sludge in horizontal tanks", J. San. Eng. Div., Vol. 93, No. SA3, pp. 73-83.
- 17. Fitch, Bryan (1966), "Current theory and thickner design". Ind. Eng. Chem. Vol. 58, No. 10, pp. 18-28.
- 18. Hansen, S.P. y Culp G. (1967). "Applying Shallow depth Sedimentation Theory", Journal AWWA, Vol. 59, pp. 1134-1148.

- 19. Hazen, A. (1904), "On Sedimentation", Transactions ASCE, Vol. 53, pp. 45-71.
- 20. Ingersoll, A.C. Mc Kee J.E., Brooks, N.H., (1955), "Fundamental concepts of rectangular settling tanks", Proce<u>e</u> dings, ASCE., Vol. 81, No. 590, pp. 1-28.
- 21. Institute of Water Pollution Control (1973), "A guide to the design of Sewage purification works", IWPC, P.O. Box 81249, Parkhurst 2120.
- 22. Jiménez C.B., Espinoza A.J., Buitrón M.G., Trujillo M.J. D., "Fabricación y pruebas en un modelo físico de un sedimentador hidráulico de lodos" (Informe final del proyecto 5311). Elaborado para la SARH por el Instituto de Ingeniería, UNAM, Diciembre de 1986. pp. 197.
- 23. Koopman, B. y Cadee, K. (1983), "Prediction of thickening Capacity using diluted sludge volume index", Water Research, Vol. 17, pp. 1427-1431.
- 24. Levenspiel O. (1972), "Chemical Reaction Engineering", Ed. John Wiley and Sons, USA.

- 25. Márquez Buitrón J. Miguel. "Diseño de una planta para tratamiento de aguas negras", Tesis, ESIME, IPN, México 1985.
- 26. Metcalf and Eddy (1979), Inc. "Wastewater engineering", Treatment, Disposal & Reuse, 2a. ed., Ed. Mc Graw-Hill, USA.
- 27. Mau, G.E. (1959), "A study of Vertical-slutted inlet Baffles". Sewage and Industrial wastes, Vol. 31, No. 12, " pp. 1349.
- 28. Pineault, G. y Cloutier, L. (1972), "Fonction de transfert d'un réservoir agité en systeme continu: I. Détermination a l'aide d'un traceur fluorescent", Canadian Journal of Chem. Eng., Vol. 50, pp. 736-742.
- 29. Pineault, G. y Cloutier, L. (1973), "Fonctin de transfert d'un réservoir agité en systeme continu: II. Variation des constant de temps avecet sans differenie de densité initiale", Canadian Journal of Chem. Eng., Vol. 51, pp. 55-59.
- 30. Pürschell, W. (1982), "El tratamiento de las aguas residua les domésticas", Tratado general del agua y su distribución. Técnicas de depuración, Tomo 6, Ed. Urmo, España.

- 31. Rebhun, M., Argaman, Y. (1965), "Evaluation of hydraulic efficiency of sedimentation basin", J. San. Eng. Div., ASCE, Vol. 91, No. SA5, pp. 37-45.
- 32. Reynolds, T. (1982), "Unit Operations and processes in environmental engineering", Wadsworth, Inc., Belmont, California, pp. 69-129.
- 33. Rich L.G. (1961), "Unit Operations in Sanitary Engineering", John Willey, New York, pp. 81-109.
- 34. Ríos, Ch. Enrique y Fernández Z.J. Luis., "Diseño de un modelo físico de un sistema sedimentador con extracción hidráulica de lodos", Informe del proyecto 3336. Elaborado para la SARH por el Instituto de Ingeniería, UNAM. 100 pp, septiembre 1984.
- 35. Roustan, M. (1982), Apuntes del curso "Modeles d'écoulement hydraulique dans les réacteurs". INSA-Toulouse, Francia.
- 36. Roy, P. y Choquette P. (1974), "The Gaussian Distribution of $\theta^{1/3}$ - A two Parameter Statistical Model for approximating. RTD's in CSTR's", Canadian Journal of Chem. Eng., Vol. 52, pp. 492-495.

- 37. Streeter, U.L. y Wylie, E.B. (1979), "Mecánica de los Fluídos", 6a. ed., Ed. McGraw-Hill, México.
- 38. Talmage, W. y Fitch B. (1955), "Determining thickener unit areas", Ind. Eng. Chem., Vol. 47, No. 1, pp. 38-41.
- 39. Tekippe, R. y Cleasby J. (1968), "Model studies of a peripheral feed settling tank", Journal Sanitary Engineering Division, Vol. 94, No. SA1, pp. 85-102.
- 40. "Techniques et économie de l'épuration des eaux résiduaries", Ministere de l'envionnement et du cadre de vie.
 Cahiers techniques de la Direction de la Prévention des Pollutions, No. 2, París.
- 41. United States Environmental Protection Agency, (1975).
 "Process design manual for suspended solids removal, EPA 62511-75-003a, Office of Technology transfer, USEPA, Washington, D.C.
- 42. Verhoff, F.H. (1979), "Optimal design of high-rate sedimentation devices", Journal of the environmental engine<u>e</u> ring division, Vol. 105, No. EE2, pp. 199-215.

- 43. Vo Van Bang y Cholette, A. (1973), "Comparaison du modèle des reservoirs imparfaitement agités en série avec le modele de dispersion axiale", Canadian Journal of Chem. Eng., Vol. 51, pp. 149-155.
- Yao, K.M. (1970), "Theoretical study of High-Rate Sedimentation", Journal Water Pollution Control Federation, Vol. 42,, No. 2, Part. 1, pp. 218-228.
- 45. Yao, K.M. (1973), "Design of High-Rate Settlers", Journal of the Environmental Engineering Division, Vol. 99, No. EE5, pp. 621-637.
- 46. Yee, L., Babb, A. (1985), "Inlet design for rectangular settling tanks by physical modeling", J.W.P.C.F. Vol. 57, No. 12, pp. 1168-1177.

ANEXOS
ANEXO 1. OBTENCION DE LA ECUACION DEL MODELO DE YAO PARA FLUJO LAMINAR EN UN TUBO CIRCULAR

A continuación se describe el desarrollo de la ecuación 16 del capítulo 4.

La ecuación que describe la velocidad puntual para flujo lami nar en tubos circulares se expresa como (Streeter, 1979):

$$\frac{U}{v_o} = 2 \left[1 - \left(\frac{n}{n_1}\right)^2 \right]$$
 (1.1)

donde

 n_1 : radio del tubo

n : distancia del centro al punto donde se calcula la veloci dad puntual.

Para llegar a la ecuación 16 se tiene que efectuar un cambio de coordenadas como se indica en la figura 1.1.

Figura 1.1. Sistema de coordenadas para la obtención de la ecuación 16 del modelo de Yao.

Se observa de la figura 1.1 que

$$r_1 = d/2 \qquad y$$
$$r = d/2 - y$$

al sustituir las ecuaciones 1.2 y 1.3 en la 1.1 se obtiene:

(1.2)

(1.3)

$$\frac{u}{v_{o}} = 2 \left[1 - \left(\frac{d/2 - y}{d/2}\right)^{2} \right]$$
(1.4)
$$\frac{u}{v_{o}} = 2 \left[1 - \frac{\left[\left(\frac{d}{2} \right)^{2} - \frac{dy + y^{2}}{d} \right]}{\left(\frac{d}{2} \right)^{2}} \right]$$
(1.5)
$$\frac{u}{v_{o}} = 8 \left[\frac{y}{d} - \left(\frac{y}{d} \right)^{2} \right]$$
(1.6)

133

La ecuación 1.6 es igual a la 16, ya que y = y/d.

ANEXO 2. RESULTADOS DE LAS PRUEBAS DE CAMPO

٩.

TABLA 2.1. RESULTADOS PARA LOS ENSAYOS CON EL MODULO DE TUBOS CUADRADOS Y LAS CANALETAS EN POSICION BAJA

							الخبيانية المراكل وتحصيك المراجع
		C C	CONCEN	TRAC	ION	ES	
2,	2	Influente	Efluente	1	2	3	4
1/s	1/s	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
0.26 0.26 0.26	0.05 0.05 0.05	573 620 700	30 43	83 13 22	20 33 74	27 70 58	23 93 52
Prom	edio	597	37	39	42	51	56
0.47 0.47 0.47	0.09 0.09 0.09	700 687 587	 34 32	40 28 74	36 28 70	 64 48	30 64 84
Prom	edio	637	33	47	45	56	59
0.72 0.72 0.72	0.18 0.18 0.18	703 647 567	66 70	80 68 62	78 42 36	90 52 68	112 86 46
Prom	edio	639	68	70	52	70	81
0.92 0.92 0.92	0.23 0.23 0.23	710 687 613	70 38 80	22 40 46	26 22 86	76 28 34	48 26 112
Prom	edio	670	63	36	45	46	62
1.03 0.25 1.03 0.25 1.03 0.25		600 637 500	86 74 86	112 34 	40 100 94	100 66 82	104 38 120
Prom	edio	579	- 82	73	78	83	94

 Q_i : gasto de influente

 Q_p : gasto de purga

1,2,3 y 4: puntos de muestreo

Puntos de muestreo en la superficie del sedimentador

TABLA 2.2.

RESULTADOS PARA LOS ENSAYOS EN EL MODULO DE TU-BOS CUADRADOS Y LAS CANALETAS EN POSICION ALTA.

			CONCEN	TRAC	ION	ES	
٤;	2	Influente	Efluente	1	2	3	4
1/s	1/s	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
0.27 0.27 0.26	0.06 0.06 0.06	577 576 563	17 7 36	12 6 17	17 6 36	23 12 50	12 36 17
Prom	edio	572	20	12	20	28	22
0.47 0.47 0.47	0.09 0.09 0.09	657 666 660	30 17 20	67 17 40	33 10 50	83 20 80	77 23 33
Prom	edio	661	22	41	31	61	44
0.72 0.72 0.72	0.17 0.16 0.16	470 500 450	53 47 48	50 100 	65 30 40	75 -45 	
Prome	edio	473	49	75	45	60	
0.92 0.92 0.92	0.18 0.18 0.18	513 536 525	70 70 64	30 70 87	20 176 33	90 97 50	 70 33
Prome	edio	525	68	62	76	79	52
1.03 1.03 1.03	0.2 0.2 0.2	583 600 620	100 83 103	103 63 83	80 80 100	80 76 63	53 50 66
Prome	edio	601	- 95	83	87	73	56

 Q_i : gasto de influente

 Q_p^2 : gasto de purga 1,2,3 y 4: puntos de muestreo

CONCENTRACIONES 2p Q_i Efluente Influente 1/s 1/s mq/1mq/lmq/lma/l mq/1mq/10.26 0.05 0.26 0.05 0.05 0.26 Promedio 0.47 0.09 0.47 0.09 0.47 0.09 Promedio 0.72 0.18 0.72 0.18 0.72 0.18 Promedio 0.92 0.23 0.92 0.23 0.92 0.23 Promedio 1.03 0.25 1.03 0.25 ---1.03 0.25 Promedio

TABLA2.3.RESULTADOS PARA LOS ENSAYOS CON MODULO DE PLACAS
PARALELAS Y LAS CANALETAS EN POSICION BAJA.

 Q_i : gasto de influente

 Q_{p} : gasto de purga

1,2,3 y 4: puntos de muestreo

TABLA 2.4. RESULTADOS PARA LOS ENSAYOS CON EL MODULO DE PLA CAS PARALELAS Y LAS CANALETAS EN POSICION ALTA.

			CONCEN	TRAC	ION	ES	· · · · · · · · · · · · · · · · · · ·
2:	2	Influente	Efluente	1	2	3	4
1/s	1/s	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
0.26 0.26 0.26	0.05 0.05 0.05	700 864 1020	60 31 54	56 60 51	51 16 44	74 43 48	49 43 51
Prom	edio	861	48	56	37	55	48
0.47 0.47 0.47	0.09 0.09 0.09	668 945 952	94 58 36	83 58 40	63 28 100	77 40 16	46 26
Prom	edio	855	63	60	63	44	36
0.72 0.72 0.72	0.18 0.18 0.18	816 884 820	80 114 114	86 83 74	105 105 100	83 66 63	80 91 94
Prom	edio	840	103	81	103	71	88
0.92 0.92 0.92	0.23 0.23 0.23	908 924 	83 100 126	73 84 69	68 81 54	77 118 177	80 96 174
Prom	edio	916	103	75	67	124	116
1.03 1.03 1.03	0.25 0.25 0.25	704 756 680 713	200 150 116	116 88 160 121	132 127 90 116	104 97 108 103	168 112 96 125
FION	euro	120	1				

 Q_i : gasto de influente

 Q_p : gasto de purga

1,2,3 y 4: puntos de muestreo

TABLA 2.5. RESULTADOS PARA LOS ENSAYOS SIN MODULO Y LAS CANA LETAS EN POSICION BAJA.

			CONCEN	TRAC	ION	ES	
2;	2	Influente	Efluente	1	2	3	4
1/s	1/s	mg/l	mg/l	mg/l	mg/1	mg/l	mg/1
0.26 0.26 0.26	0.05	503 546 603	48 90 58	32 78 90	28 48 28	50 70 44	46 72 30
Prom	edio	551	65	67	35	55	49
0.47 0.47 0.47	0.09 0.09 0.09	557 560 600	66 78 72	64 68 66	38 62 51	48 68 72	* 60 70
Prom	edio	572	72	66	51	72	70
0.72 0.72 0.72	0.18 0.18 0.18	608 616 500	78 126 150	82 137 140	69 83 160	15 49 	80 97 57
Prom	edio	575	121	120	104	32	78
0.92 0.92 0.92	0.23 0.23 0.23	640 584	192 324 	124 184 128	148 172 56	176 148 52	60 196 20
Prom	edio	612	258	145	125	125	92
1.03 1.03 1.03 0.25 0.25		512 536 548	188 388 352	100 316	98 208 112	80 196 228	216
Prome	edio	532	• 309	208	139	108	210

 Q_i : gasto de influente

 Q_p : gasto de purga

1,2,3 y 4: puntos de muestreo

TABLA 2.6. RESULTADOS PARA LOS ENSAYOS CON EL MODULO DE TU-BOS CUADRADOS Y LAS CANALETAS EN POSICION ALTA

Coagulante: Sulfato de aluminio (solución: 20.6 g/l) pH en el tanque:7.23

	CONCENTRACIONES													
Q _i 1/s	2 _p 1/s	Q _c ml/s	C _c mg/l	Inf. mg/l	Ef T	. 1 mg/l	2 mg/1	3 mg/l	4 mg/1					
0.26	0.05	0.50	40	800	8	6	8	10	7					
0.47	0.09	0.91	40	832	64	56	64	62	48					
0.72	0.28 0.18	1.40 1.40	40 40	800 850	44 40	46 62	4 4 56	64 56	48 58					
0.92	0.37	1.79	40	780	18	14	12	12	18					
1.03 1.03	0.25 0.41	2.0 2.00	40 40	820 848	20 14	12 	22 18	20 20	18 18					

 Q_{i} : gasto influente

 Q_p^{\sim} : gasto efluente

 Q_c : gasto coagulante

 C_{2} : concentración de coagulante en el tanque

Inf.: influente

Ef.: efluente

¥.

ANEXO 3. OPERACION DEL SEDIMENTADOR DE ALTA TASA

Carga Hidráulica			8 DE REMOCION	DE SOLIDOS			
m^3/m^2 d	% de Purga	Módulo de t Posición de	ubos cuadrados las canaletas:	Módulo de p Posición de	Módulo de placas paralelas Posición de las canaletas:		
		Baja	Alta	Baja	Alta		
27.3	20	93.8	96.5	95.2	94.4		
49.3	20	94.8	96.6	93.2	92.6		
75.5	25	90.6	89.6	84.6	87.7		
96.5	25	88.6	87.0	84.0 .	87.0		
108.0	25	85.8	84.1	83.5	78.3		

TABLA 3.1. EFICIENCIA DE REMOCION DE SOLIDOS

NOTA: Los porcentajes presentados para cada carga hidráulica y condición del módulo son los valores promedio.

		& DE REMOCION DE	SOLIDOS
Carga Hidráulica			Módulo de tubos cuadrados
$m^3/m^2 \cdot d$	ቄ de Purga	Sin módulo de tubos Canaletas en posición baja	Canaletas en posición alta con adición de coagulante
27.3	20	88.2	99.0
49.3	20	87.4	92.3
75.5	25	78.9	95.3
75.5	40		94.5
96.5	25	57.8	
108.0	25	41.9	97.5
108.0	40		98.3

TABLA 3.1. EFICIENCIA DE REMOCION DE SOLIDOS (CONTINUACION)

TABLA 3.2. EFICIENCIA DE REMOCION DE SOLIDOS EN LA ZONA DE COLECCION DEL AGUA CLARIFICADA

1.

144

Carga Hidráulica	% de			8 DE	REMOCI	ION DE SOLID	os ⁺				
m ⁻ /m ⁻ d	Purga	k		Modulos	de t	ubos cuadrad	os				
		Canale	etas en	posicio	Sn baja		Canale	etas en	posicio	n alta	
		1	2	3	4	Promedio	1	2	3	4	Promedio
27.3	20	93.5	93.0	91.5	90.6	92.1 <u>+</u> 1.3	97.9	96.5	95.1	96.2	96.4 <u>+</u> 1.2
49.3	20	92.6	92.6	91.2	90.7	91.9 <u>+</u> 1.1	93.8	95.3	90.8	93.3	93.3 <u>+</u> 1.9
75.5	25	89.0	91.9	89.0	87.3	89.3 + 1.9	84.1	90.5	87.3		87.3 <u>+</u> 3.2
96.5	25	94.6	93.3	93.1	90.7	92.9 <u>+</u> 1.6	81.2	85.5	·85.0	90.1	87.2 + 2.4
108.0	25	87.4	86.5	85.7	83.8	85.8 <u>+</u> 1.6	86.2	85.5	87.9	90.7	87.6 + 2.3

+ Los porcentajes presentados para cada punto son los valores promedio de las corridas presentadas en el anexo.

Carga Hidráulica	°r de			81	DE REM	DCION DE SOL	IDOS ⁺						
m^3/m^2 d	Purga		Módulo de Placas Paralelas										
		Canale	etas en	posici	ón baja		Cana	letas e	n posic	ion alta	3		
		1	2	3	4	Promedio	1	2	3	4	Promedio		
27.3	20	92.5	91.7	89.3	98.0	91.1 <u>+</u> 1.4	93.5	95.7	93.6	94.4	94.3 <u>+</u> 1.0		
49.3	20	91.1	94.0	90.0	91.2	91.6 <u>+</u> 1.7	93.0	92.6	94.9	95.8	94.1 <u>+</u> 1.5		
75.5	25	90.0	89.6	87.7	89.5	89.2 <u>+</u> 1.0	90.4	87.7	91.5	89.5	89.9 <u>+</u> 1.7		
96.5	25	79.9	86.6	83.0	87.1	84.2 + 3.4	91.8	92.7	86.5	87.3	89.6 <u>+</u> 3.1		
108.0	25	89.5	85.6	85.3	93.4	88.4 <u>+</u> 3.8	23.0	83.7	85.6	82.5	83.7 <u>+</u> 1.3		

TABLA 3.2. EFICIENCIA DE REMOCION DE SOLIDOS EN LA ZONA DE COLECCION DEL AGUA CLARIFICADA (CONTINUACION)

+ Los porcentajes presentados para cada punto son los valores promedio de las corridas presentadas en el anexo.

(CON	TINUACION)	•			
		· · · · ·			
 			·	 	

TABLA 3.2. EFICIENCIA DE REMOCION DE SOLIDOS EN LA ZONA DE COLECCION DE AGUA CLARIFICADA.

Carga Hidráulica	% de		8 DE REMOCION DE SOLIDOS										
m^3/m^2 d	Purga	Sin m	dulo de	e tubos			Modulo	de tub					
		Canale 1	etas en 2	posició 3	ón baja 4	Promedio	Conad 1	lición o 2	đe coagi 3	ulante 4	Promedio		
27.3	20	87.8	93.6	90.0	91.1	90.6 <u>+</u> 2.4	99.2	99.0	98.8	99.1	99.0 <u>+</u> 0.2		
49.3	20	88.5	91.1	87.4	87.8	88.7 <u>+</u> 1.7	93.3	92.3	92.5	94.2	93.1 <u>+</u> 0.8		
75.5	25	79.1	81.9	94.4	86.4	85.5 <u>+</u> 6.7	92.7	93.4	93.4	93.2	93.2 <u>+</u> 0.3		
75.5	40						94.3	94.5	92.0	94.0	93.7 <u>+</u> 1.1		
96.5	25	76.3	79.6	79.6	85.0	80.1 <u>+</u> 3.6			·				
96.5	40					·	98.2	98.5	98.5	97.7	98.2 <u>+</u> 0.4		
108.5	25	60.9	73.8	68.4	59.9	65.6 ± 6.7	98.5	97.3	97.6	97.8	97.8 <u>+</u> 0.5		
108.0	40	-			-			97.9	97.6	97.9	97.8 <u>+</u> 0.1		

. e

TABLA	3.3.	INFLUENCIA DEL TIPO DE MODULO.	EFICIENCIA	DE	RE
		MOCION DE SOLIDOS			-

Carga Hidr á ulica	<pre>% DE REMOCION DE SOLIDOS⁺ Tipo de módulo</pre>			
m^3/m^2 . d	Tubos cuadrados	Placas paralelas		
27.3	95.2 <u>+</u> 1.9	94.8 <u>+</u> 0.6		
49.3	95.7 <u>+</u> 1.3	92.9 <u>+</u> 0.4		
75.5	90.1 <u>+</u> 0.7	86.2 <u>+</u> 2.2		
96.5	87.8 <u>+</u> 1.1	85.5 <u>+</u> 2.1		
108.0	85.0 <u>+</u> 1.2	80.9 <u>+</u> 3.7		

+: Los porcentajes de remoción para cada tipo de módulos son promedios de la posición alta y baja <u>+</u> la desviación están dar.

TABLA 3.4. COMPARACION ENTRE LAS DIFERENTES CONDICIONES DE OPERACION DEL SEDIMENTADOR PARA EL EFLUENTE

Carga Hidraulica	& DE REMO	& DE REMOCION DE SOLIDOS				
$m^3/m^2 d$	Con módulo ⁺⁺	Sin mõdulo	Con módulo y coagulante			
27.3	95.0 <u>+</u> 1.6	88.2	99.0			
49.3	94.3 <u>+</u> 1.8	87.4	92.3			
75.3	88.1 ± 2.6	78.9	95.3			
96.5	86.7 <u>+</u> 1.9	57.8	97.6			
.108.0	82.9 <u>+</u> 3.2	41.9	97.5			

++: Los porcentajes de remoción son el promedio del módulo de tubos cuadrados y el de placas paralelas.

TABLA 3.5. INFLUENCIA DE LA CARGA MASICA

	Carga hidráulica(m /m ·d)				
MODULO TUBOS CUADRADOS	27.3	49.8	75.5	96.5	108.0
Canaletas en Posición Baja					
Carga másica kg/m ² d	16.3	31.4	48.2	64.6	62.5
% remoción en el efluente	93.8	94.8	90.6	88.6	85.8
Canaletas en Posición Alta					
Carga másica kg/m² d	15.6	32.6	35.7	50.7	65.0
% remoción en el efluente	96.5	96.6	89.6	87.0	84.1
MODULO DE PLACAS PARALELAS				<u>``</u>	
Canaletas en Posición Baja					
Carga másica kg/m ² d	18.1	35.4	51.7	66.4	66.8
% remoción en el efluente	95.2	93.2	84.6	84.0	83.5
Canaletas en Posición Alta					
Carga másica kg/m ² d	23.1	42.1	63.4	88.4	77.0
% remoción en el efluente	24.4	92.6	87.7	87.0	78.3

SIN MODULO DE ALTA TASA	27.3	Carga Hid 19.3	ráulica 75.5	$m^{3}/m^{2} \cdot d)$ 96.5	108.0		
Canaletas en Posición Baja			a se an se				
Carga másica kg/m ² d	15.0	28.2	43.4	59.0	57.5		
% remoción en el efluente	88.0	87.4	78.9	57.8	41.9		
MODULO DE TUBOS CUADRADOS. CON ADICION DE COAGULANTE							
Canaletas en Posición Alta			· · · · · · · · · · · · · · · · · · ·		•		
Carga máxima kg/m ² d	21.8	41.0	64.1	75.3	88.6		
% remoción en el efluente	99.0	92.3	95.3	97.6	97.5		

TABLA 3,5. INFLUENCIA DE LA CARGA MASICA (CONTINUACION)

TABLA 3.6. INDICES VOLUMETRICOS DE LODOS (1VL)

Carga Hidráulica m ³ /m ² d	INDICE VOLUMETRICO DE LODOS (IVL) Tubos cuadrados Placas Paralelas Posición de las canaletas			ml/g Sin Módulo	
ана на селото на село Селото на селото на с Селото на селото на с	Baja	Alta	Baja	Alta	Baja
27.7	251	122	195	186	254
49.3	235	166	229	187	250
75.5	188	148	241	155	208
96.5	204	190	189	175	196
108.0	193	166	202	224	226

vo	vs	S
m/d	m/d	
20	80	14.6
40	80	7.3
60	80	4.9
80	80	3.6
100	80	2.9
150	80	1.9
200	80.	1.5
250	80	1.2
300	80	1.0
350	80	0.8

ANEXO 4. RESULTADOS DE LOS ESTUDIOS DE INFLUENCIA DEL ANGULO DE INCLINACION EN LA REMOCION DE TURBIDEZ

Angulo de			TURBIDEZ	(UTN)		
inclinación	LODOS A	CTIVADOS	BIOD	ISCO	FILTRO P	ERCOLADOR
(grados) Ø	Influente	Efluente	Influente	Efluente	Influente	Efluente
10 20 30 40 45 50 55 60 70 80	65.5 67.5 66.8 108 71.0 71.0 64.5 64.5	6.5 6.6 5.1 - 3.6 4.2 4.1 - 7.7 9.3	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	6.8 6.5 5.8 5.3 - 5.4 - 5.7 6.2 6.5	15.3 15.3 15.3 16.5 15.3 15.3 15.3	8.4 7.8 7.1 - 8.4 - 8.7 9.2 9.9

TABLA 4.1. TURBIDEZ MEDIDA EN EL INFLUENTE Y EFLUENTE EN FUNCION DEL ANGULO DE INCLINACION

TABLA 4.2. EFICIENCIAS DE REMOCION EN FUNCION DEL ANGULO DE INCLINACION

Angulo de inclinación Lodos activados θ		Biodisco	Filtro Percolador
10 20 30 40 45 50 55 60 70 80	90 90.2 92.3 96.6 94.1 93.1 88.1 85.6	43.3 45.8 51.6 55.8 55.0 52.5 48.3 45.8	45.1 49.0 53.6 49.1 43.1 39.9 35.3

ANEXO 5. DISEÑO DE SEDIMENTADORES

ANEXO 5. DISEÑO DE SEDIMENTADORES SECUNDARIOS

A.5.1 Sedimentadores convencionales

Básicamente existen dos métodos para el diseño de sedimentadores secundarios convencionales: a) el presentado por Talmage y Fitch (1955) y, b) el método basado en el concepto del Flux de sólidos (Dick, 1970).

Método de Talmage y Fitch

El método de Talmage y Fitch se basa en la teoría de Kynch don de se asume que la velocidad de sedimentación de las partículas es solamente función de la concentración local. Esta velo cidad se relaciona con el gasto de lodos a tratar y la concentración de purga deseada. Para ello, se llevan a cabo pruebas de sedimentación como a continuación se describe: en una probeta de vidrio de un litro se colocan los lodos con una concentración similar a la que tendrá el influente del sedimentador. Estos son agitados lentamente a razón de cuatro a seis revoluciones por hora (para simular el efecto de las rastras del sedimentador). Se mide la altura de la interfase sólido -líquido a diferentes tiempos y se grafican los resultados como se muestra en la figura 5.1.

Figura 5.1. Curva para el análisis de velocidad de sedimentación.

El procedimiento para obtener el área de un clarificador final es el siguiente:

- 1. Determinar la pendiente de la región de sedimentación obs truída, v_{δ} . Esta es la velocidad de sedimentación requerida para la clarificación (ver capítulo 4).
- 2. Extender tangentes de la zona de sedimentación obstruída y la región de compresión y bisectar el ángulo formado para localizar el punto 1 (figura 5.1).
- 3. Dibujar una tangente a la curva en el punto 1.
- 4. Conociendo la concentración inicial del lodo, C_o , y la al tura inicial del lodo, H_o , seleccionar una concentración de purga, C_u , y determinar la altura interfacial, H_u .

Puesto que:

$$C_u H_u = C_o H_o$$

entonces

$$H_{u} = \frac{\frac{c_{o} H_{o}}{c_{u}}}{c_{u}}$$
(5.2)

5. Dibujar una línea horizontal de H_u hasta la intersección de la tangente a la curva y determinar el tiempo, t_u .(Figura 5.1). Este es el tiempo requerido para alcanzar la concentración de purga C_u , deseada.

(5.1)

6. Determinar el área requerida para el espesamiento, A_a , a partir de:

$$A_{e} = 1.5 (Q + Q_{R}) \frac{t_{u}}{H_{o}}$$
 (5.3)

donde:

Q : gasto del influente antes de unirse a la recircul<u>a</u> ción

 Q_p : gasto de recirculación

1.5: factor de seguridad (Eckenfelder, 1980)

7. Determinar el área requerida para la clarificación, A_c:

$$A_{c} = 2.0 \frac{\Omega}{v_{A}}$$
(5.4)

donde:

Q: gasto del efluente del sedimentador (o del influente del sedimentador (o del influente de recirculación)

2.0: factor de sobrediseño.

Un área A_e o A_c será mayor y por lo tanto se usará en el diseño del clarificador final.

Método del flux de sólidos

Debido a su simplicidad -se requiere solo una prueba de sedimentación- el método propuesto por Talmage y Fitch ha tenido gran aceptación. Sin embargo, como lo han notado varios investigadores, incluso Fitch (1962), se obtienen mejores resultados si se llevan a cabo varias pruebas de sedimentación.

159

Este método se basa en el concepto del flux de sólidos (Dick 1970). Este flux es el flujo de sólidos espesados por unidad de área transversal (en otras palabras la carga másica en $kg/m^2 \cdot h$).

Los sólidos que entran a los sedimentadores deben ser espesados de una concentración inicial C_o , a la concentración de pu<u>r</u> ga, C_u . Como los sólidos se mueven hacia el fondo, en algún nivel del tanque ocurre un flux de sólidos límite, G_L . Este flux no debe excederse o los sólidos ascenderán y comenzarán a salir por el efluente. El movimiento de las partículas hacia el fondo sucede por sedimentación obstruida, así como por el desplazamiento del volumen hacia abajo, debido al gasto de pu<u>r</u> ga.

Los datos requeridos para el diseño de sedimentadores por este método se obtienen a través de una serie de pruebas de sedimen tación donde se estudian varias concentraciones de lodos, y así obtener sus respectivas velocidades de sedimentación. Una vez calculadas estas velocidades se construye una gráfica de velocidad de sedimentación, v_{δ} , en función de la concentración de los sólidos, c, como se muestra en la figura 5.2.

Figura 5.2. Velocidades de sedimentación en función de la concentración de sólidos.

A continuación se calcula el flux de sólidos al multiplicar la velocidad de sedimentación por la concentración de los sólidos y se grafican los resultados como se muestra en la figura 5.3.

Figura 5.3. Flux de sólidos en función de la concentración.

A cualquier nivel en el sedimentador, el movimiento de sólidos por asentamiento es:

$$G_s = C_t V_t \tag{5.5}$$

donde:

 G_{s} : flux de sólidos por gravedad C_{t} : concentración de sólidos V_{t} : velocidad de sedimentación obstruida

El movimiento de sólidos debido al desplazamiento del volumen está dado por:

donde

 G_b : flux del volumen

 v_b : velocidad de desplazamiento del volumen

El flux de sólidos total, G_f , es:

 $G_t = G_s + G_b = C_t V_t + C_t V_b$

La velocidad del volumen está dada por:

$$V_b = \frac{Q_u}{A}$$
(5.8)

162

(5.6)

(5.7)

(5.9)

donde:

 Q_{μ} : gasto de purga

A : área transversal del tanque

El gasto másico de sólidos que sedimentan, esto es el peso de sólidos por unidad de tiempo es:

 $M_t = Q_0 C_0 = Q_u C_u$

donde:

 M_{t} : gasto másico de sólidos que sedimentan Q_{o} : gasto de influente

 C_{α} : concentración del influente

El área transversal límite, A, requerida está dada por:

$$A = \frac{M_{t}}{G_{L}} = \frac{Q_{o} C_{o}}{G_{L}}$$
(5.10)

163

(5.11)

(5.13)

Al rearreglar la ecuación 5.9 se obtiene

$$Q_u = \frac{M_t}{C_u}$$

Al combinar 5.11 con 5.8 y 5.10 se obtiene:

$$v_b = \frac{Q_u}{A} = \frac{M_t}{C_u A} = \frac{G_L}{C_u}$$
 (5.12)

Estas relaciones se muestran en la figura 5.4. Para obtener el valor de G_L primero se selecciona una concentración de purga, C_u , y posteriormente se dibuja una tangente a la curva del flux. El valor de G_1 es la intercepción del eje y (figura 5.4).

El área requerida se obtiene con:

$$A = 1.5 \frac{M_{t}}{G_{L}}$$

Figura 5.4. Cálculo del flux de sólidos límite

donde 1.5 es un factor de sobrediseño.

Volumen requerido

El volumen requerido para los lodos en la región de compresión se determina por medio de pruebas de sedimentación. La veloci dad de compactación en esta región es proporcionarl a la diferencia de altura al tiempo t y la altura a la cual el lodo sedimentará después de un periodo grande de tiempo. Esto se representa por la ecuación 5.14:

$$H_{t} - H_{\infty} = (H_{2} - H_{\infty})e \qquad (5.14)$$

donde:

 H_{+} : altura de lodo al tiempo t

- H_{∞} : altura de lodo después de un periodo grande de tiempo (p. ej. 24 h)
- H_q : altura de lodo al tiempo t_q
- i : constante para una suspensión dada

Otra manera de determinar la altura requerida es usar los criterios de diseño incluidos en la literatura técnica. Por ejem plo el Institute for Water Pollution Control (IWPC, 1973) reco mienda un tiempo mínimo de retención de 1.5 horas para sedimen tadores que operan con lodos activados. Así la altura requeri da se obtiene con la ecuación 5.15

$$H = \underbrace{Q \cdot t}{A}$$

(5.15)

donde:

H : altura

Q : gasto volumétrico

A : área

t : tiempo de retención

A.5.2 Sedimentación de alta tasa

Como se discutió en el capítulo 4 un módulo de sedimentación de alta tasa puede tener diferentes arreglos: tubos cuadrados o

hexagonales, placas paralelas, etc. Estos módulos se construyen con materiales como el PVC ó el asbesto-cemento (para el caso de placas). Para prevenir que se formen corrientes de flujo es recomendable que una hilera o conjunto de tubos se in cline hacia un lado y la siguiente hacia el otro.

Con respecto al ángulo de inclinación se recomienda que éste oscile entre 45 y 60°, ya que si es menor deberá proveerse de un sistema que remueva los lodos acumulados. El espaciamiento entre placas o diámetro de los tubos varía entre 2.5 y 5 cent<u>í</u> metros.

De esta manera, una vez seleccionado el tipo de módulo, el ángulo de inclinación y el espaciamiento entre placas o tubos, se procede a calcular la longitud de estos. Para ello se utiliza la ecuación del modelo de Yao, es decir:

$$L = \frac{\ell}{d} = \frac{S_c}{\cos\theta} \cdot \frac{v_o}{v_{AC}} - \tan\theta \qquad (5.15)$$

donde:

- L : longitud relativa
- ℓ : longitud de las placas o tubos
- d : espaciamiento 6 diámetro
- S_c : parámetro que depende de la forma del módulo (ver sección 4.2)
- v_{α} velocidad promedio de flujo (carga hidráulica a tratar)
v :velocidad de sedimentación de las partículas θ : ángulo de inclinación

A esta longitud L se adiciona la longitud relativa L' debida a la región de transición del flujo (ecuación 45, sección 4.2).

El área requerida para la sedimentación se calcula a partir de la carga hidráulica recomendada- por ejemplo 70 m^3/m^2 .d para suspensiones de lodos activados- y, el gasto que es n<u>e</u> cesario tratar. De esta manera:

$$\operatorname{farea} \left(L^{2} \right) = \frac{\operatorname{Gasto, Q} \left(L^{3} \cdot T^{-1} \right)}{\operatorname{Carga hidráulica} \left(L \cdot T^{-1} \right)}$$
(5.16)

El número de tubos o placas necesarias para el sedimentador de alta tasa es:

(5.17)

Se debe mencionar que para el caso de tratamiento de aguas residuales, el número de tubos o placas se debe aumentar , ya que como se demostró , la teoría no se ajusta totalmente a la práctica. Por lo tanto, es conveniente multiplicar la ecuación 5.17 por 1.2 , como factor de seguridad. El módulo de alta tasa se coloca en la primera tercera par te del tanque, cuidando que la altura h_e sea igual o mayor al tamaño l del módulo (ver figura 5.5). Este diseño se puede optimizar utilizando los diagramas propuestos por -Verhoff (ver sección 4.2.4).

Figura 5.5 Esquema de un sedimentador de alta tasa.