

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

Escuela Nacional de Estudios Profesionales

EXPERIENCIAS NUMERICAS EN LA SIMULACION DE EQUIPOS DE SEPARACION LIQUIDO-VAPOR

QUE PARA OBTENER EL TITULO DE INGENIERO QUIMICO P R E S E N T A EDGAR TORRES RAMOS

S

F

l

S

MEXICO, D. F.

1985

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

INTRODUCCION

CAPITULO 1

- Etapa de equilibrio
- Métodos de solución

CAPITULO 2

"Solución de Sistemas de Ecuaciones no lineales "22

PAG.

1

3

59

- Método de Newton Raphson
- Método de Broyden
- Método de Bernet

- Algoritmo de solución
- CAPITULO 5
- "Método de Ishii-Otto "
- Metodología de solución
- Algoritmo de Montalvo Kaufmann
- Un procedimiento alternativo de cálculo

CAPITULO 6

- " Método de Naphtali Sandholm " · · · · · · · 97 - Algoritmo de cálculo
- Algoritmo de Fredenslund y coautores
- Esquema de solución

PAG. "Resultados " ••••• 121 CAPITULO 7 179 CONCLUSIONES 183 APENDICE " A " . . . 218 APENDICE " B " 7 APENDICE " C " 270 • • • • and the second second

282 BIBLIOGRAFIA • •

à

Soñemos quisá entonces hallaremos la verdad ..., pero abstengámonos de publicar nuestros sueños anates de haberlos puesto a prueba con la mente despierta.

그는 사람들은 물건을 하는 것이 없다.

-72

FRIEDRICH AUGUST KEKULE (1829-1896)

INTRODUCCION

La separación de mezclas en componentes esencialmente puros, es un requerimiento importante en casi todos los procesos químicos existentes. 1.-

Antes del desarrollo de las computadoras el esfuerzo para dar sol<u>u</u> ción a esta problemática, se encamino por efectuar métodos analíticos cortos llamados Métodos Cortos ("Short-Cuts ") y Métodos Empíricos. Estos métodos se caracterizan por ser rápidos y simples, empleándose en cálculos manuales; siendo de utilidad limitada, por ejemplo para sist<u>e</u> mas específicos realizando simplificaciones; las cuales restringen al método.

Debido a que estos algorítmos no son la solución a las necesidades imperantes, planteó Sorel(1), alrededor del año de 1863, el describir a estos procesos de separación, por medio de un sistema de ecuaciones que describieran su comportamiento; dando así el primer paso para la creación de los métodos denominados "RIGUROSOS".

Aunque puediera pensarse que estas ecuaciones parecen ser simples, en realidad son altamente no líneales e interdependientes; por lo que los cálculos necesarios para su solución son intrínsecamente iterativos, complejos y numerosos.

Con el desarrollo y disponibilidad de grandes computadoras, el in terés se ha enfocado a los métodos rigurosos; entendiéndose por és-tos, la solución del sistema de ecuaciones que descri------ be al sistema de separación, introduciendo solumente la simplificación de la etapa ideal y realizando los cálculos etapa por etapa; además otro enfoque es el de verificar su simulación; ya que ésta permite estudiar diferentes condiciones de operación obteniendo los resultados correspondien tes en corto tiempo. De esta maxera, se pueden definir las condiciones más apropiadas para efectuar la separación requerida, en caso contrario da a conocer la imposibilidad de llegar a ésta.

Sin embargo, se presentan ciertas deficiencias asociadas con los algoritmos desarrollados; ya que algunos de ellos se enfocan a problemas particulares y no toman en cuenta que el modelo matemático debería ser general, dando solución a los más diversos procesos de separación.

A pesar del progreso llevado a cabo hasta la fecha en la simulación de estos procesos, mucho falta todavía por efectuarse; ya que es necesario contar con modelos confiables.

En respuesta a lo anterior, se realizó esta Tesis, fijándose los si-guientes objetivos:

 Resolver problemas de separación líquido-vapor, en equipos con varios componentes y con múltiples etapas con métodos bien conocidos y representativos.

2.- Realizar un análisis de la convergencia de los métodos probados.

Tan razonable es representar una especie de prisión por otra, como representar cualquier cosa que realmente existe por otra que no e-xiste.

DANIEL DEFOE

3

<u>CAPITULO</u> 1 GENERALIDADES

3. -

A).- LA ETAPA DE EQUILIBRIO

EQUILIBRIO

Equilibrio es un vocablo que denota una condición estática o ausen cia, inclusive también de cualquier tendencia hacia evitar un cambio en escala macroscópica.

El equilibrio implica un estado en el que no existen cambios ma--croscópicos en un sistema con respecto al tiempo, termodinámicamente es to significa que no existen cambios en las propiedades y requiere que todos los potenciales que puedan causar un cambio se contrarresten.

En la práctica se considera que se ha llegado al equilibrio, cuando los cambios de las propiedades no pueden ser detectados. A nivel microscópico, el equilibrio no es estático; por ejemplo, en el equilibrio lí-quido-vapor existe un cambio continuo de moléculas que pasan del líquido al vapor y viceversa, pero la velocidad de paso de moléculas en un senti do es igual que en el otro y la velocidad neta de transferencia de masa es cero.

Cuando dos o más fases se encuentran en equilibrio su temperatura y presión son iguales en todo el sistema; sin embargo, no son éstas las únicas restricciones termodinómicas adicionales que fueron dadas por Gibbs.(1)

DEFINICION DE ETAPA DE EQUILIBRIO

Por convención, las corrientes que dejan la etapa son identificadas con el número de la etapa. Las corrientes líquida L_j y vapor V_j se en-cuentran en equilibrio. La presión P_j se considera conctante. Las corrientes de alimentación F_j , líquida L_{j-1} y la de vapor V_{j+1} entran a la etapa. Las corrientes - tienen usualmente dimensiones de moles por unidad de tiempo.

 Q_j es el calor suministrado o extraido (positivo, cuindo es suministrado y negativo cuando es extraido). Hv_j es la entalpla total de la corriente vapor; así como h_i, lo es para la del líquido. (Ver figura 1.1.).

También en esta misma figura se puede observar que existen salidas laterales en ambas fases, SL_j para la líquida y SV_j para la del vapor; c<u>a</u> da componente tiene una composición mol en el líquido X_{ij} y una de vapor Y_{ij} por etapa.

B).- EXTENSION DE LA ETAPA DE EQUILIBRIO

El uso de múltiples etapas de equilibrio para efectuar una sep<u>a</u> ración deseada es obviamente una extensión de la definición de etapa de equilibrio. El arreglo de éstas puede resultar en paralelo o a contraco-rriente.

Para procesos tales como destilación, absorción, agotamiento, etc., la configuración más eficiente es la del arreglo a contracorriente(flujo de vapor y líquido en direcciones opuestas). Una representación esquemát<u>i</u> ca de esta extensión se presenta en la figura 1.2.

Las etapas se numeran del domo al fondo del equipo. Si se trata de destilación, la primera etapa será el condensador y la etapa N será el rehervidor (reboiler).

Este modelo se puede usar pura equipos de separación con configuración compleja; donde existan varias alimentaciones, salidas laterales de ombas fases;así como intercambiadores de calor.

Inda etapa de equilibrio en esta columna se considera ideal, es decir, el varor que deja la etapa está en equilibrio con el llquido que sale de la misro.

Una vez fija la configuración de la torre, las ecuaciones que repre-sentar en estado estacionario al modelo de la figura 1.2 son:

BALANCE GLOBAL DE MATERIA

$$\underline{F}_{j} = L_{j-1} - (L_{j} + SL_{j}) - (V_{j} + SV_{j}) + V_{j+1} + F_{j} + R_{j}$$
(1.1)
para $j = 1, 2, ..., N$

BALANCE DE MATERIA POR COMPONENTE

$$C_{ij} = L_{j-1} \quad x_{ij-1} - (L_j + SL_j) \quad x_{ij} - (V_j + SV_j) \quad y_{ij} + V_{j+1} \quad y_{ij+1} + F_j \quad z_{ij} + r_{ij}$$

$$para \quad j = 1, 2, \dots N$$

$$para \quad i = 1, 2, \dots C$$

c iden como:

 $C_{ij} = l_{ij-1} - l_{ij} - sl_{ij} - v_{ij} - sv_{ij} + v_{ij+1} + f_{ij} + r_{ij}$

(1.3)

RELACION DE EQUILIBRIO

 $\overline{z}_{ij} = y_{ij} - K_{ij} x_{ij}$

para i = 1,2, ... C

para j = 1,2, ... N

(1.4)

SUMATORIAS DE LAS FRACCIONES MOL

SALANCE DE ENERGIA

$$\frac{H_{j} = L_{j-1} h_{j-1} - (L_{j} + SL_{j}) h_{j} - (V_{j} + SV_{j}) Hv_{j} + V_{j+1} Hv_{j+1}}{+ F_{j} H_{Fj} + Q_{j} + R_{j} Hr_{j}} \qquad para \ j = 1, 2, \dots N$$
(1.6)

formando así el conjunto de epuaciones que describer al sistema conccido como ecuaciones MESH, que proviene de la primera letra de cada una de las epuaciones descritas (1.1), (1.4), (1.5) y (1.6); o sea:

N = maea E = equilibrium S = Surmatory E = SCribolo uzilizado para entalplae

Generalmente las esuaciones del Salance de Masa por Componente se com tinan con las relaciones de equilibrio para producir:

$$C_{ij} = L_{j-1} x_{ij-1} + V_{j+1} x_{ij+1} x_{ij+1} - (L_j + SL_j) x_{ij} - (V_j + SV_j)$$

$$- \frac{K_{ij} x_{ij} + F_j x_{ij} + r_{ij}}{(1.7)}$$

: la ecuación general del Balance de Masa se suede expresar como:

;

$$\begin{split} z_{j} &= V_{j+1} + \sum_{m=1}^{C} (z_{m} + F_{m} - SL_{m} - SV_{m}) - V_{1} \\ m = 1 \end{split}$$
 (1.5)

3.-

C) .- ANALISIS DE GRADOS DE LIBERTAD

Además de las ecuaciones MESH, se necesitan predecir las relaciones de equilibrio K_{ij}'s, las entalpías de vapor y de líquido---Hv's y h's, así como la rapidez de reacción r's.

En la mayoría de los casos se aplican correlaciones muy complejas donde se relacionan propiedades termodinámicas y **variables esp<u>e</u>** cíficas.

Las funciones se expresan como:

$$K_{ij} = K_{ij} (P_j, T_j, x_{ij}, y_{ij})$$

$$h_j = -h_j (P_j, T_j, x_{ij})$$

$$Hv_j = Hv_j (P_j, T_j, y_{ij})$$

$$r_{ij} = r_{ij} (P_j, T_j, x_{ij}, y_{ij})$$

En la descripción de cualquier operación o problema de diseño en procesos de separación de múltiples etapas se requiere que algunas variables independientes sean especificadas. El número de variables que deber ser especificadas, depende del tipo de proceso de que se hable, y su determinación consiste en escribir todas las ecuaciones indepen-dientes que describen el proceso y luego contar el número de variables y ecuaciones.

Con el fin de resolver las couaciones se deben fijar ciertas variables para que el número de variables restantes sea igual al núm<u>e</u> ro de ecuaciones, que es simplemente el realizar un análisis de gra-don de libertad. Haciendo ese análisis del número de ecuaciones y del número de variables se tiene:

Fluia de Alimertaciones	P	Ŋ
I LAJO DE AUGMENTACIÓNES	1j	
Presión y Temperatura de alim.	$Pf_j, Tf_j = \dots$	2N
Presión por etapa	₽ _j	N
Temperatura por etapa	<u> </u>	N
Llquido	L _j	N
Vapor	v _j	
Salida lateral Líq.	SL _j	··. *N
Salida lateral vapor	svj	N
Cargas de calor	<i>9</i> j	
Composiciones de alim.	<u> </u>	NC
Composiciones en la fase llq.	^x ij	NC
Composiciones en la fase vapor	V _{ij}	NC
Número de etapas	N	1
Iasa de reacción (reaccion rate)	r _{ij}	<u>NC</u>

N (4C + 10) + 1

Balance global de materia por compo- C_{ij} NC nente E_{ij} NC Sumatoria de x's o de y's S_j 2NBalance de Energía H_j NN (2C + 3) aplicando la ecuación de grados de libertad

gl = No. de variables - No. de ecuaciones.

gl = N (4C + 10) + 1 - N (2C + 3) = 2NC + 7N + 1

por tanto, tenemos que fijar 2NC + 7N + 1 variables

Aquí no existe restricción alguna para fijarlas; pero dependiendo de éstas se tendrá que desarrollar un algoritmo para el cálculo de las que no se han especificado.

En la mayoría de los sistemas se fijan las siguientes variables (variables independientes).

$$F_{j}, Q_{j}, SL_{j}, SV_{j}, P_{j}, 5N$$

$$\frac{P_{fj}}{P_{fj}}, \frac{T_{fj}}{P_{j}}, 2N$$

$$\frac{P_{ij}}{P_{ij}}, \frac{T_{ij}}{P_{ij}}, 2NC$$

$$N$$

$$1$$

Quedando las variables de corte:

N (2C + 3)

D).- METODOS DE SOLUCION

+

Se puede realizar una primera clasificación de los métodos existentes para la resolución de separación líquido-vapor; sien do ésta (2):

I.- METODOS CORTOS ("SHORT-CUTS")

II.- METODOS RIGUROSOS.

I.- METODOS CORTOS

Los métodos contos se utilizan solamente para estudiar y realizar diseños preliminares; aunque siguen siendo una herramienta muy conveniente para determinar condiciones de operación límites como son: el número mínimo de etapas y la relación de reflujo mínimo.

E continuación se enlistan varios de los métodos cortos más conoc<u>i</u> dos : representativos:

- Fenske (3), y Underwood (4), obtienen el número mínimo de etapas a reflujo total.

- Underwoci (5) y Colburn (6), calculan la relación de refl<u>u</u> jo minimo.

- Gillilard (7), calcula el número de etapas vs. las rela-ciones de reflujo.

- Sugie : Lu (8), efectúan el cálculo del reflujo mínimo con cualquier número de salidas laterales.

 Featherstone(9,10), evalua los requerimientos de reflujo para sistemas no ideales; incluyendo destilaciones azeotr<u>ó</u> picas.

- Madsen(11), determina la relación de reflujo óptimo con la ayuda de eficiencias de plato, calor latente del destilado, costos de operación, de materiales y costos de inversión.

- Van Winkle y Todd (12,13), analizan los efectos cuantitativos de las variables de diseño en el costo total de las colurmas de destilación.

- Barnés (14), extiende la ecuación de Underwood para calcular el reflujo mínimo en las columnas con varias alimentaciones.

- Hanson y Neuman (15), emplean la ecuación de Un derwood para la localización de la etapa óptima de alimentación.

II). - Métodos Rigurosos

El diseño final de equipos con múltiples etapas para llevar a cabo separaciones de varios compuestos en una mezcla, requiere una determinación rigurosa de temperaturas, flujos, presiones y composiciones en ambas fases, además de calcular la transferencia de calcr en cada etapa.

Estos métodos resuelven básicamente las equaciones NESH, previamen te descritas; aunque su simulación es difícil debido a la no-linealidad de éstas y tienen como características primordiales:

- Son procesos iterativos.

- Requieren resclver un gran número de ecuaciones no lineales.

La convergencia depende del tipo de problema.
Los errores de redondeo pueden ser importantes y por tanto la convergencia no siempre se alcanza.

La mayoría de los algoritmos publicados se pueden clasificar en tres categorías:

i).- Métodos de Corte o de descomposición.
ii).- Métodos de Solución Simultánea.
iii).- Métodos de Relajación.

i).- Métodos de Corte o de descomposición.

En estos métodos las ecuaciones MESH se agrupan ya sea por stapa o por tipo; siendo su principal dificultad el dar buenos estimados para las variables de iteración.

Estos grupos de ecuaciones se resuelven en un orden prescrito, uno a la vez, para un conjunto correspondiente de variables smientras las ctras se mantienen fijas. Los estimados se actualizan por sustitución directa o por un critero ya establecido.

Dependiendo en como se agrupan las ecuaciones, estos métodos se sub dividen en dos categorías:

- Procedimientos de Etapa - Etapa.

- Procedimientos de Tipo.

Dentro de los primeros se encuentran:

- Lewis - Matheson (16).

- Thiele - Ceddes (17).

- Método Theta de Holland (18)

Los métodos de corte por etapa tienen muchas dificultades debido a la expansión de los errores de truncación y frecuentemente fallan para - mezclas no ideales o para mezclas con rangos amplios de puntos de ebullición; los iniciadores de estos procedimientos son Amundson y Pontinen (19) y después los más representativos son:

> - Sujata (20) y Friday (21), que resuelve la ecu<u>a</u> ción (1.6), para dar el perfil de temperatura y la ecuación:

> > $v_j^{k+1} = v_j^k \sum_{ij} X = No.de iteración:$

(1.9)

para proporcionar el flujo de vapor V;

-Wang y Henke (22), proponen resolver la ecuación (1.2), en forma de matriz tridiagonal por el método de Thomas y resolver la ecuación:

$$\Sigma K_{ii} x_{ii} - 1.0 = 0 \tag{1.10}$$

apliçando el Método de Müller (23) y (24) y así obtener el perfil de temperatura a lo largo de la columna.

-Tierney y Yanosik (25), Tomich (26) y Billingsley-Boynton(27) y (28), proponen resolver las ecuaciones S y H en forma simultánea.

Friday y Smith (29), realizaron un análisis de los métodos tradicionales de corte y puntualizaron que para efectuarlos se necesi-tan tomar seis decisiones básicas: Primera: Esta consiste en decidir como agrupar las ecuaciones; ya sea satisfacer las ecua--ciones por etapa todas al mismo tiempo o satisfacer todas las etapas a la vez ecu<u>a</u> ción por ecuación.

Segunda: Esta consiste en determinar el orden para resolver las ecuaciones, el más común es el de (1.1), (1.2), (1.4) y (1.5), pero también el de (1.1.), (1.2); (1.5) y (1.4).

ń

Tercera: Esta se debe tomar con el objeto de seleceichar el tipo adecuado de ecuación para dar el perfil de una variable determinada. Si se trata primeramente el Balance de --Emergía para producir el flujo de vapor y la ecuación (1.10), para proveer las temperaturas se estará hablando de los métodos de burbuja, en cambio si las temperaturas se obtienen del balance de entalpías y los flujos a partir de las composiciones no normalizadas;se estará refiriendo a los métodos de Sama de Flujos.

Cuarta: Consiste en elegir el método de solución de las ecuaciones para el balance de materia. Esto es importante para evitar la expansión de errores de redondeo. Quinta: Se refiere a la elección del método para el cálculo de las nuevas temperaturas; ya sea por medio de los cálculos del punto de burbuja o del punto de rocio, usando los métodos de Regula-Falsi, Newton-Raphvon o Mü--ller, en el caso que el método sea de Punto de burbuja.Si el método es de Suma de ilujos se utiliza una expansión de series de Taylor de primer orden junto con el método de Thomas.

17.-

Esta última se refiere a la manera de obt<u>e</u> ner los nuevos flujos de vapor y líquido. Con el algoritmo de Sum-Rates se calculan una vez que se tienen las composiciones en ambas fases y con el algoritmo de punto de Burbuja se utilizan las ecuaciones del balance de energía y el balance global de m<u>a</u> teria.

ii).- Métodos de Solución Simultánea

En estos métodos las ecuaciones MESH se linealizan y se resuelven en forma simultánea; usando generalmente la técnica de Newton-Raphson.

Una vez que se ha definido el sistema, el modelo matemático se puede ex presar en forma matricial de la siguiente manera:

 $G(\omega) = 0$

Sexta:

(1.11)

Una expansión de series de Taylor de primer orden de esta ecuación producirá:

$$\left(\begin{array}{c} \partial & C \\ \partial & \omega \end{array}\right) \quad \omega = - C \quad (\omega)$$

que es lineal y se puede resolver para Δ w a partir de cualquier conjunto de valores estimados de w. Los nuevos valores de w se obtienen por medio de:

$$w^{k+1} = w^k + t \Delta w^k$$
 $k = No.$ de la iteración

donde t es un factor escalar de amortiguamiento, que generalmente se encuentra acotado en el intervalo cerrado de -1 a 1. Este procedimiento se repite hasta que la ecuación (1.11) se cumpla.

La eficiencia de cualquier método de solución simultánea depende directa-mente de la manera en que genere el Jacobiano y la manera que utilice para invertirlo; donde este Jacobiano está integrado por las derivadas parciales de las n funciones existentes con respecto o las n variables independientes.

Los métodos más conocidos en esta clasificación son:

Wang-Oleson (30), propusieron el primer método de esta clase en el año de 1964 y un año después lo realizó Naphtali(31).

Goldstein y Stanfield (32), extendió el método an terior incluyendo especificaciones de diseño.

Ohmura y Kasahara (33), en 1978 consideraron ci número de etapas en cualquier sección del equipio como una variable de iteración; utilizando ademís su algoritmo al diseño de estos equipos.

Gentry (34), Roche (35), Gallun-Holland(36),Kubicek (37), Hess(38), son otros de los métodos de esta cla-

sificación.

Para columnas interconectadas (Harclerode-Gentry (39), Browne-Otto-Ishii (40), Hofeling-Seader(41) son de los autores más importantes.

Naphtali y Sandholm (42), extiende el método original del primero e incluyen eficiencias de plato de Murphree.

Kaibel (43) y Carra (44), toman en cuenta el término de reacción química en sus modelos.

 Ishii-Otto (45), incluyen la evaluación de propie dades dentro del Jacobiano; usando para su cálculo la correlación de Chao-Seader.

- Shah y Bishnoi (46), usan el procedimiento de Ishii-Otto; pero con la utilización de las ecuaciones de estado Soave-Redlich-Kwong o la de Peng-Robinson, además proponen un procedimiento para mejorar los estimados iniciales de temperatura.

Fredenslud (47), combina el algoritmo de Naphtali-Sandholm con el método de grupo de UNIFAC para la predicción de los coficientes de actividad.

· Y de recien publicación los de Buzzi Ferraris (48), Fitzmorris-Mah(49), Li y Frost (50), _ Ferraris-Morbidelli (51). iii).- Método de Relajación

Difiere de los otros métodos (de corte y solución simultánea); ya que las ecuaciones MESH se resuelven en estado no estacionario; es decir, en estado transiente.

El iniciador de estos métodos fue Arthur Rose (52), con la ayuda de Sweeny y Schrodt.

El concepto básico del método es el planteamiento de la ecuación diferencial para un balance de masa del componente "i", de la manera siguiente:

$$\frac{A \quad d \quad (y_i)_j}{d^{\diamond}} + \frac{a \quad d \quad (x_i)_j}{d^{\diamond}} = L_{j-1} \quad x_{ij-1} + V_{j+1} \quad y_{ij+1} - (L_j + SL_j)$$

$$x_{ij} - (V_j + SV_j) \quad y_{ij} + F_j \quad B_{ij}$$
(1.12)

donde A y a son las acumulaciones en el plato "j" del vapor y del líqui do respectivamente y Φ es el tiempo.

Este tipo de métodos tienen el inconveniente de que presentan W1A Bolución asintótica; por lo cual no son muy aceptados.

Una característica más de estos métodos es que el valor de las composiciones en ambas fases después de un intervalo de tiempo se obti<u>e</u> ne usando el Kétodo de Euler:

$$\begin{array}{ccc} t + \Delta t & t \\ x \\ ij & ij \end{array} = x \\ t + L t \left(-\frac{dx_{ij}}{dt} \right) \\ dt \end{array} \tag{1.13}$$

LOS algoritmos probablemente más importantes dentro de esta cla-Bificación se muestran a continuación: Ball (53), emplea un método de integración modifi cado y formula en estado transiente la ecuación M
 en forma de matriz tridiagonal.

- Verneuil Oleson (54) y posteriormente Economopo<u>u</u> los (55), proponen calcular en estado no estacion<u>a</u> rio las ecuaciones M y H e incluyen la eficiencia por etapa de Murphree.
- Ishikawa y Hirata (56), aplican el método de relajación a columnas con varias alimentaciones; principalmente a casos de destilación extractiva.
- Jelinek (57), utiliza una formula de integración de segundo orden para crear una matriz pentadiagonal.
- Blavacek (58), aplica el método de Jelinek a destilaciones azeotrópicas.
- Huber (59), incluye la eficiencia por etapa de Murphree.
- Ketchum (60), propone un método que combina el estado no estacionario y el método de Newton-Raphson.
- Morris y Svrcek (61), desarrollan un modelo en el cual no se requiere la suposición de etapas en equi librio, ni el cálculo de derivadas en forma númerica; pero si incluye el cálculo de la ecuación de es tado de Peng-Robison para las propiedades.

La paradoja está ahora totalmente establecida, que las mayores abstracciones son las verdaderas armas con las cuales se controla nuestro concepto de los hechos concretos.

ار المحمد المراجع المراجع المحمد المراجع المحمد المراجع المحمد المراجع المحمد المراجع المحمد المراجع المحمد ال محمد المحمد ال

لتهذرهنوه

ang ng Parisi

i yana kata ana ana

CAPITULO 2

22. -

SOLUCION DE SISTEMAS DE ECUACIONES NO LINEALES

El modelo general analizado en el capítulo anterior, está formado por numerosas ecuaciones no lineales; para darle solución a este sis tema se han desarrollado un gran número de algoritmos numéricos, siendo los más comúnmente utilizados:

a).- Sustitución Directa:

- Wegstein.
- Wegstein Acotado.
- Método de valores propios dominantes.
- Método generalizado de los valores propios.

b). - Newton - Raphson:

- Newton Raphson modificado.
- Secante.
- Secante generalizado.
- Broyden.
- Broyden Schubert.
- Bennett.

c).- Gradiente:

- Marguardt.

A continuación se describen los métodos de:

- Newton-Raphson
- Broyden
- Bennett

METODO DE NEWTON-RAPHSON

Sea el sistema de ecuaciones no lineales:

$$f_{1} (x_{1}, x_{2}, \dots, x_{n}) = 0$$

$$f_{2} (x_{1}, x_{2}, \dots, x_{n}) = 0$$

$$\vdots$$

$$f_{n} (x_{1}, x_{2}, \dots, x_{n}) = 0$$
(2.1)

23. -

(2.2)

En forma matricial:

 $\overline{F}(\overline{x}) = \overline{0}$

Expandiendo a F (x) en series de Taylor alrededor del punto

$$F(x) = F(x^{k}) + (x - x^{k}) F'(x^{k}) + \frac{(x - x^{k})^{2}}{2!} F''(x^{k}) + ...$$
$$+ (x - x^{k})^{n} F^{(n)}(x^{k})$$
(2.3)

 $p^k = x - x^k$

Sea p^k el vector desplazamiento de las variables indepen--

dientes:

x .

Sustituyendo la definición anterior en (2.3), esta se transforma en :

24.-

$$F(x^{k} + p^{k}) = F(x^{k}) + p^{k} F'(x^{k}) + (p^{k})^{2} F''(x^{k})$$

$$2 I$$

$$+ \dots + (p^{k})^{n} F^{(n)}(x^{k}) \qquad (2.4)$$

$$n I$$

Considerando solamente los términos hasta la primera derivada se tiene que:

$$F(x^{k} + p^{k}) = F(x^{k}) + p^{k} F'(x^{k})$$
(2.5)

Suponiendo que $F(x^k + p^k)$, es la mejor aproximación a la sol<u>u</u> ción de la ecuación (2.2), es decir:

$$F(x^k + p^k) = 0$$

La ecuación (2.4) se simplifica:

$$F(x^k) + p^k F'(x^k) = 0$$
 (2.6)

donde F'(x^k) es la matriz de derivadas parciales de las n fu<u>n</u> ciones existentes respecto a las n variables independientes. A esta matriz se le denomina Jacobiano, J(x^k).

Por tanto:

$$\frac{\begin{vmatrix} \frac{\partial f_1(x^k)}{\partial x_1} & \frac{\partial f_1(x^k)}{\partial x_2} & \dots & \frac{\partial f_1(x^k)}{\partial x_n} \\
\frac{\partial f_2(x^k)}{\partial x_1} & \frac{\partial f_2(x^k)}{\partial x_2} & \dots & \frac{\partial f_2(x^k)}{\partial x_n} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial f_n(x^k)}{\partial x_1} & \frac{\partial f_n(x^k)}{\partial x_2} & \dots & \frac{\partial f_n(x^k)}{\partial x_n} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial f_n(x^k)}{\partial x_1} & \frac{\partial f_n(x^k)}{\partial x_2} & \dots & \frac{\partial f_n(x^k)}{\partial x_n} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial f_n(x^k)}{\partial x_1} & \frac{\partial f_n(x^k)}{\partial x_2} & \dots & \frac{\partial f_n(x^k)}{\partial x_n} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial f_n(x^k)}{\partial x_1} & \frac{\partial f_n(x^k)}{\partial x_2} & \dots & \frac{\partial f_n(x^k)}{\partial x_n} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial f_n(x^k)}{\partial x_1} & \frac{\partial f_n(x^k)}{\partial x_2} & \dots & \frac{\partial f_n(x^k)}{\partial x_n} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial f_n(x^k)}{\partial x_1} & \frac{\partial f_n(x^k)}{\partial x_2} & \dots & \frac{\partial f_n(x^k)}{\partial x_n} \\
\vdots & \vdots & \vdots & \vdots \\
\end{bmatrix}$$

25. -

Reescribiendo la ecuación (2.6)

 $J(x^k)$

$$F(x^{k}) + p^{k} J(x^{k}) = 0$$
(2.7)

despejando al vector de desplazamiento p^k , y respetando las reglas en las operaciones matriciales se obtiene:

$$p^k = -J^{-1}(x^k) \cdot F(x^k)$$
 (2.8)

Esta última ecuación se conoce como la fórmula de recurre<u>n</u> cia o fórmula recursiva de Newton - Raphson.

Algunos autores han demostrado (1) que la velocidad de co<u>n</u> vergencia del método es de segundo ordon pero con el objeto de aumentar la confiabilidad de éste se ha sugerido (2) emplear el desplazamiento, p^k; solo como una dirección de búsqueda y ajustar su tamaño con un factor de amortiguamiento t, es decir:

$$x^{k+1} = x^k + t p^k$$

Para conocer el valor de t óptimo se han sugerido varias té<u>c</u> nicas para su evalución como son:

1).- Método de Montalvo - Kaufmann (3).

2).- Método de optimización de la sección dorada (4).

El método es convergente siempre que la aproximación inicial esté suficientemente cerca de la solución del sistema (2.1).

METODO DE BROYDEN

Al utilizar el Método Newton - Raphson se requiere evaluar el Jacobiano numéricamente en cada iteración, lo que implica un gran co<u>n</u> sumo de tiempo de cálculo; además la inversión del Jacobiano requiere de un gran esfuerzo computacional. Para evitar lo anterior, se propone utilizar el procedimiento de Broyden (2), que reduce el número de funciones a evaluar y en la actualización del inverso del Jacobiano.

En el Método de Newton - Raphson, el siguiente vector x^{k+1} de variables en el proceso iterativo resulta de la ecuación:

 $x^{k+1} = x^k - J^{-1}(x^k) \cdot F(x^k)$

Siendo x^k la aproximación anterior, F (x^k) el vector de fun--

(2.0)

ciones por resolver evaluado en x^k:

$$f_{1} (x_{1}^{k}, x_{2}^{k}, x_{3}^{k}, \dots, x_{n}^{k})$$

$$f_{2} (x_{1}^{k}, x_{2}^{k}, x_{3}^{k}, \dots, x_{n}^{k})$$

$$\vdots$$

$$f_{n} (x_{1}^{k}, x_{2}^{k}, x_{3}^{k}, \dots, x_{n}^{k})$$

 $F(x^k) =$

y $J(x^k)$ el Jacobiano del sistema de funciones $F(x^k)$.

En la modificación de Broyden se define al vector p^k por la ecuación:

$$p^{k} = -B_{k}^{-1}$$
. $F(x^{k})$ (2.11)

27. -

(2.10)

Siendo B_k alguna aproximación al Jacobiano de las funciones (2.10), evaluado en x^k. La siguiente aproximación x^{k+1} resulta de la ecuación:

$$x^{k+1} = x^k + t p^k$$
(2.12)

Las funciones $f_j(x^k)$; $j \ge 1, 2 \dots n$ son ahora funciones de t y las derivadas df $(x^k)/dt$, $j=1,2, \dots n$ se usan para mejorar la m<u>a</u> tris B_k , que aproxima el Jacobiano del sistema de ecuaciones siguie<u>n</u> tes:

$$\frac{df_j}{dt} = \sum_{i=1}^{\infty} \frac{\partial f_j}{\partial x_i} \qquad \frac{dx_i}{dt} \qquad j=1,2,\ldots,n \quad (2.13)$$

sea:

$$\begin{array}{ccc} \underline{df} & el \ vector \ (\frac{df_1}{dt}, \frac{df_2}{dt}, \cdots, \frac{df_n}{dt}) \\ dt & dt \ dt \ dt \ dt \end{array}$$

por tanto, (2.13) se reescribe como:

$$\frac{df}{dt} = A p^k \tag{2.14}$$

28.-

siendo A el Jacobiano del sistema. Para tener una aproximación a df/dt en el punto x^{k+1} , se expande F, considerado como función de t, es decir, alrededor de x^{k+1} .

Entonces:

$$F(x^{k+1}) - F(t^k - s^k) \stackrel{\sim}{=} s^k A p^k$$
 (2.16)

En el Método de C.G.Broyden la matriz B_{k+1}, la aproximación al Jacobiano; se selecciona de manera que satisfaga la siguiente r<u>e</u> lación:

$$F(x^{k+1}) - F(t^{k} - s^{k}) = s^{k} B_{k+1} p^{k}$$
(2.17)

Si en (8.17), se tiene que s^k = t^k resulta:

$$F(x^{k+1}) - F(x^{k}) = t^{k} B_{k+1} p^{k}$$
(2.18)

definiendo:

y:

$$B_{k} = -B_{k}^{-1}$$
 (2.19)

$$x^{k} = F(x^{k+1}) - F(t^{k} - s^{k})$$
 (2.20)

las ecuaciones (2.11) y (2.17), se convierten en:

$$p^{k} = -B_{k}^{-1} F(x^{k}) = H_{k} F(x^{k})$$
(2.21)

$$H_{k+1} Y^k = -s^k p^k$$
 (2.22)

Las ecuaciones (2.12), (2.20), (2.21) y (2.22) definen una clase de métodos basados en el algoritmo de Newton - Raphson y considerando otras propiedades de las matrices B_{k+1} o H_{k+1} se construyen métodos particulares.

METODO I

Por este método B_{k+1} , se selecciona de manera que el combio en $F(x^k)$ predicho por B_{k+1} en una dirección q^k , ortogonal a p^k sea el mismo que el supuesto por B_k , es decir:

$$B_{k+1} q^k = B_k q^k$$

 $q_{1}^{T} p^{k}$

(2.23)
$$H_{k+1} = H_{k} - \frac{(H_{k} \quad Y^{k} - t \quad p^{k}) \quad p_{k}^{T} \quad H_{k}}{p_{k}^{T} \quad H_{k} \quad Y^{k}}$$
(2.24)

y la nueva x se calcula como:

$$x^{k+1} = x^k + t H_k F(x^k)$$

METODO II

Utiliza la aproximación siguiente:

$$H_{k+1} = H_k - \frac{(s^k p^k + H_k y^k) y_k^T}{y_1^T y_k^k}$$
(2.26)

Siendo esta fórmula un complemento que proporciona Broyden al Método I.

NETODO III

Se requiere que la matriz H_{k+1} Bea simétrica y positiva definida, entonces:

$$\frac{H_{k+1} = H_k}{r_k^T + H_k \, y^k} - \frac{s^k \, p^k \, p_k^T}{p_k^T + y^k}$$
(2.27)

Si s^k asume el valor de t^k este método será el de Davidon. El método se puede resumir en los siguientes pasos (1):

A).- Dar un estimado inicial xº.

B).- Obtener la matrix
$$H_o$$
 invirtiendo el Jacobiano $J(x^k)$, evaluado en $x^k = x^o$.

(2.25)

C). - Calcular $F(x) = F(x^k)$.

D).- Calcular :

 $p^k = H_k F(x^k).$

E). - Seleccionar el valor de t^k tal que la norma $F(x^k + t^k p^k)$ sea menor que la norma de $F(x^k)$, con lo que se debe calcular:

 $x^{k+1} = x^k + t p^k$

F).- Probar la convergencia:

 $|F(x^{k+1})| < \varepsilon$

G).- Si el criterio es mayor que \in entonces evaluar:

 $Y^{k} = F(x^{k+1}) - F(x^{k})$

y H_{k+1} por el Método I.

Si el criterio es menor que c el proceso finaliza.

H).- Si el proceso todavía no ha finalizado regresar al paso "D".

METODO DE BENNET.

En el método propuesto por Broyden, se debe utilizar la fórmula de Householder para la inversión del Jacobiano del sistema; ecuación (2.24). En lugar de aplicar la fórmula de Householder, el cálculo de la inversa se puede llevar a cabo utilizando el algoritmo propuesto por J.M. Be-nnett en el año de 1965 (5), que utiliza la técnica de los factores L U, para invertir matrices (6) y (7).

El algoritmo de Broyden previamente descrito consiste de sucesivas a<u>c</u> tualizaciones del Jacobiano con el uso de una matriz de corrección, es d<u>e</u> cir:

$$J_{k+1} = J_k + x_k C Y_k^T$$

donde :

$$C = \frac{1}{s_k p_k^T p_k}$$

$$x_{k} = f(x_{k+1}) - (1 - s_{k}) F(x_{k})$$
$$\cdot$$
$$Y_{k} = p_{k} = H_{k} F(x_{k})$$

dado que el Jacobiano, J, se puede establecer en términos de los factores L y U la ecuación:

$$J(x_k)$$
, $(x_{k+1} - x_k) = -F(x_k)$

se transforma en:

$$L_k U_k \cdot (x_{k+1} - x_k) = -F(x_k)$$
 (2.29)

(2.28)

, la ecuación (2.28) en:

8e:

$$L_{k+1} U_{k+1} = L_k U_k + x_k C Y_k^T$$
(2.30)

Bennett propuec el algoritmo para la actualización de las matrices L_k y U_k y a partir de estas las L_{k+1} y U_{k+1} .

El procedimiento detallado es el siguiente:

FASO 1: Supéngase una valor inicial para las variables x° y calcule

$$F(x) = F(x_0)$$

PASO 2: Aproxímese los elementos de Jo mediante la fórmula:

$$\frac{\partial f_i}{\partial x_j} \stackrel{\sim}{=} \frac{f_i (x_j + h_j) - f_i (x_j)}{h_j}$$

donde h_j generalmente se toma como 0.001 x_j

Habiendo hecho lo anterior. Encuéntrese los factores L_o U_o de J_o tal que:

 $J_o = L_o U_o$

Como lo describen Conte y de Boor (6).

PASO 5: Basándose en L_k , U_k ! F_k (que son los valores más recientes de L, U !! F respectivamente), calcúlese p_k de la manera siguie<u>n</u> te:

$$L_k U_k p_k = -E_k$$

PASO 4: Encuentrese el tamaño de paso adecuado s_k de forma que la norma Euclidiana de $F(x_k + s_k p_k)$ sea menor que la de $F(x_k)$.

Pruébese primero con s_{k+1} = 1 y la siguiente desigualdad:

$$\frac{n}{\sum_{i \in I} f_i^2 (x_k + s_k p_k)} \frac{1}{\sum_{i \in I} f_i^2 (x_k)} \frac{1}{\sum_{i \in I} f_i^2 (x_k)} \frac{1}{\sum_{i \in I} f_i^2 (x_k)}$$

Si la desigualdad se verifica continuese con el paso 5, de lo contrario; calcúlese un nuevo valor para s_k por medio de la fórmula desarrollada por Broyden (2).

donde:

$$\theta = \frac{\sum_{i=1}^{n} f_{i}^{\ell} (x_{k} + s_{k} p_{k})}{\sum_{i=1}^{n} f_{i}^{\ell} (x_{k})}$$

Si la norma no se reduce por medio de $s_{k,2}$, debe regresarse al paso 2 y revaluar las derivadas parciales del Jacobiano en base a x_k .

PASO 5: Pruébese ahora $F(x_{k+1})$, para la convergencia con un criterio pr<u>e</u> establecido. Si no se logra la convergencia calcúlese:

 $= \frac{1}{s_{k} p_{k}^{T} p_{k}}$

 $x_{k} = \frac{F(x_{k+1}) - (1 - s_{k}) F(x_{k})}{s_{k} p_{k}^{T} p_{k}}$

 $Y_k^T = p_k^T$

PASO 8: Utilizar ahora el algoritmo propuesto por Bennett (figura 2.1), con objeto de actualizar las matrices $L_{k+1} y U_{k+1}$ a partir de las $L_k y U_k$ donde; se debe aplicar la ecuación (2.30).

PASO 7: Regresar al paso 3.

Estos métodos surgen por la necesidad de dar solución a probl<u>e</u> mas prácticos en las diferentes ramas de la ciencia y que se pueden representar por medio de un conjunto de ecuaciones no líneales en fo<u>r</u> ma simultánea.

Si las ecuaciones forman una buena descripción de esta problemá tica, las ecuaciones tendrán una solución que corresponderá a un esta do real del sistema; aunque puede ser muy difícil probar solamente por medio de las matemáticas que una solución existe, ésta se puede inferir con las analogías físicas.

Similarmente aunque la solución puede no ser única, se espera crear un buen estimado inicial para que la solución que se encuentre, mediante cualquier proceso iterativo; sea en realidad una solución físicamente significante.

1

Sec.

220.20

计专家 机弹动机

1.23

÷.,

1

1

Na Balan

÷ •••

 $\mathbb{P}_{\mathcal{R}}$

S. J.

CIERTIES DARNIN

1

CAPITULO 3

METODO DEL PUNTO DE BURBUJA.

El método de punto de ebullición o de burbuja que utiliza el algoritmo de la matriz tridiagonal fue propuesto y desarrollado por J.C. Wang y

39.-

G.E. Henke en el año de 1966 y se clasifica como un método de corte con agrupación de ecuaciones por tipo (1).

Este algoritmo se utiliza principalmente para resolver problemas de de<u>s</u> tilación, en donde los componentes tienen rangos de volatilidad cercanos.

Este método requiere además del algoritmo de Thomas para la resolución de la matriz tridiagonal y el método de Müller para la convergencia del perfil de temperaturas dentro de la columna.

Siguiendo el análisis de grados de libertad efectuado en el capítulo 1 se tiene:

VARIABLES DE CORTE

- Temperatura.
- Flujos de vapor.
- Flujos de l'Equido.
- Composiciones mol en la fase vapor.
- Composiciones mol en la fase líquida.

VARIABLES DE ESPECIFICACION

- Flujos de alimentaciones.
- Presión de cada alimentación.
- Salidas laterales de líquido (número y flujo).
- Salidae laterales de vapor (número y flujo).

- Temperatura de cada alimentación.

- Presión de cada etapa de equilibrio.

- Composiciones de sada una de las alimentaciones.

- Relación de reflujo externo.

- Destilado (cantidad y fase).

- Cargas térmicas en cada etapa de equilibrio a excepción de G₁ (conieneador) y G₂ (rehervidor).

- El número total de etapas de equilibrio.

El algoritmo de Wang y Herke consiste en forma detallada de las si--guierizas fises:

- 1).- Somo rodo método de solución, "el paso inicial es de conceptualizar y especificar el problema al que se desea dar solución.
- 2).- Fara iniciar las iteraciones, hay que suponer un perfil de valores para las dos variables de corte utilizadas con mayor frecuencia que son: la comperatura y el flujo de vapor en cada etapa de que consta la Corre de Destilación.

La suposición del perfil de temperaturas se realiza por medio de una variación lineal; teniendo como límites la temperatura de burbuja : la temperatura de rocio y además utilizando el número total de etapas.

Para el flicio de vapor, casta con establecer un perfil constante a lo largo del equipo con la ayuda de las alimentaciones y salidas lacerales de esta fase.

5).- Esta fase consiste en calcular las composiciones de cada compuesto en la fase líquida, por medio del algoritmo de Thomas y con el cá<u>l</u> culo de las relaciones de equilibrio correspondientes. Esto se logra de la siguiente manera:

La relación de equilibrio ec.(1.4) y el Balance General de Masa ec.(1.8), deben sustituirse en la ecuación del Balance de Masa por Componente ec. (1.2); con el objeto de eliminar los términos de las composiciones en la fase vapor y_{ij} y flujo de líquido (L_j) ; suponiendo además que no existe reacción química y así se obtiene: j=1

$$M_{ij} = [V_j + \sum_{m=1}^{\infty} (F_m - U_m - W_m) - V_1] x_{ij-1}$$

$$+ v_{j+1} K_{ij+1} x_{ij+1} + F_j x_{ij} - (v_{j+1})$$

$$+ \frac{j}{\Sigma} (F_m - U_m - W_m) - v_1 + U_j x_{ij} - (v_j + W_j) K_{ij} x_{ij}$$

$$m=1$$

$$(3.1)$$

crdenando:

1

j-1

$$+ v_{j+1} K_{ij+1} X_{ij+1} = - F_j B_{ij}$$
(3.2)

donde:

Definiendo A, B, C, D de la siguiente manera:

+
$$v_j$$
 + $(v_j + w_j) x_{ij}$

 $1 \leq j \leq N$

42. -

 $C_{j} = V_{j+1} K_{ij+1}$

 $1 \leq j \leq N-1$

 $D_j = -F_j z_{ij}$

 $1 \leq j \leq N$

entonces:

1

$$A_{j}X_{ij-1} + B_{j}X_{ij} + C_{j}X_{ij+1} = D_{j}$$
(3.3)

suponiendo cinco etapas se puede obtener la siguiente matriz:

y resolviendo por el algoritmo de Thomas para las fracciones mol del 16quido, se obtienen las ecuaciones generales:

$$p_{j} = \frac{C_{j}}{B_{j} - A_{j} p_{j-1}}, \qquad q_{j} = \frac{D_{j} - A_{j} q_{j-1}}{B_{j} - A_{j} p_{j-1}}$$
(3.5)

De esta manera se logra la transformación de la ecuación (3.3), en la ecuación (3.6).

$$\begin{vmatrix} 1 & p_1 & 0 & 0 & 0 \\ 0 & 1 & p_2 & 0 & 0 \\ 0 & 0 & 1 & p_3 & 0 \\ 0 & 0 & 0 & 1 & p_4 \\ 0 & 0 & 0 & 0 & 1 \\ \end{vmatrix} \begin{vmatrix} x_{i1} \\ x_{i2} \\ x_{i3} \\ x_{i4} \\ x_{i5} \end{vmatrix} = \begin{vmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \\ q_5 \end{vmatrix}$$

(3.6)

como se puede observar:

$$X_{i5} = q_5$$
, es deoir $X_{iN} = q_N$ (3.?)

haciendo sustituciones regresivas y generalizando se tiene:

$$x_{ij-1} = q_{j-1} - p_{j-1} x_{ij} = r_{j-1} \quad 1 \le j \le N-1$$
 (3.8)

Si se desea se puede utilizar en lugar del algoritmo de Thomas, el algoritmo de Thomas modificado llamado de Boston y Sullivan (que se explica con deta-lle en el apéndice "A"; así como más detalles del algoritmo de Thomas).

Si las relaciones de equilibrio son dependientes además de la composición; se supone entonces un perfil de X_{ij} y otro de Y_{ij} ; calculando dichas relaciones para ser sustituidas en la ecuación (3.4) y obtener así un nuevo estimado de las composiciones en la fase líquida.

4).- En este momento el paso a realizar es el de normalizar las composiciones anteriores mediante la ecuación:

 $X_{ij} = \frac{X_{ij}}{\sigma}$ $\Sigma \quad X_{ij}$ 1 ≤ j ≤ N (3.9)

5).- Con las composiciones normalizadas a continuación se puede calcular el nuevo perfil de temperaturas en la columna, m<u>e</u> diante la ecuación del punto de burbuja (de ahí que se derive el nombre del método):

 $K_{ij} \quad X_{ij} - 1 = 0$

K_{ij} se supone en función de la temperatura y se resuelve la ecuación por un método iterativo.

1=1

Wang y Henke proponen utilizar para este propósito el Método de Müller (2) (ver apéndice "A"), pero también se puede utilizar derivas y el método de Newton-Rapshon.

6).- Una vez que se tiene el perfil de temperaturas se calculan las composiciones mol de la fase vapor mediante la ecuación:

 $Y_{ij} = K_{ij} \quad X_{ij} \tag{3.11}$

7).- A continuación se calculan las entalplas de las corrientes internas de líquido y de vapor.-Se pueden utilizar para es te cálculo ecuaciones de estado o polinomios como los si-guientes:

 $h_{j} = \sum_{i=1}^{C} X_{ij} \left(C_{1i} + C_{2i} T_{j} + C_{3i} T_{j}^{2} + C_{4i} T_{j}^{3} \right)$ (3.12) $H_{vj} = \sum_{j=1}^{C} Y_{ij} \left(b_{1i} + b_{2i} T_{j} + b_{3i} T_{j}^{2} + b_{4i} T_{j}^{3} \right)$

(3.10)

8).- Dado que se tienen como datos a V₁ y V₂ se pueden obtener las cargas térmicas,tanto del condensador como la del re-hervidor mediante las ecuaciones:

$$Q_{c} = V_{2} H_{v2} + F_{1} H_{f1} - (L_{1} + U_{1})h_{1} - (V_{1} + W_{1}) H_{v1} \quad (3.14)$$

$$N$$

$$Q_{R} = L_{N-1} h_{N-1} - V_{N} H_{vN} - [\Sigma (F_{m} - U_{m} - W_{m}) - V_{1}] h_{N}$$

$$m=1 \quad (3.15)$$

Combinando la ecuación del balance de entalpías ec.(1.6) y el balance global de materia ec. (1.8), con el objeto de el<u>i</u> minar los términos que representan el flujo de llquido se o<u>b</u> tiene; suponiendo que no existe reacción química:

$$H_{j} = [V_{j} + \sum_{j=1}^{j-1} (F_{m} - U_{m} - W_{m}) - V_{1}]h_{j-1} + V_{j+1}H_{v,j+1} + F_{j}H_{f,j} - Q_{j}$$

$$m=1$$

$$j$$

$$- (V_{j+1} + \sum_{m=1}^{j} (F_{m} - U_{m} - W_{m}) - V_{1} + U_{j}]h_{j} - (V_{j} + W_{j})H_{v,j}$$

$$m=1$$

rearreglando:

jinalmente: $a_{j} V_{j} + \beta_{j} V_{j+1} = \gamma_{j} \qquad (3.16)$ donde: $a_{j} = h_{j-1} - H_{vj}$ $\beta_{j} = H_{vj+1} - h_{j}$ $Y_{j} = Q_{j} - F_{j} B_{fj} + V_{1} (h_{j-1} - h_{j}) + V_{j} h_{j} + W_{j} B_{vj}$ $\int_{j-1}^{j-1} (F_{m} - U_{m} - W_{m}) h_{j-1} + (-\Sigma (F_{m} - U_{m} - W_{m})) h_{j}$ $H_{vj} = V_{m} - V_{m} - W_{m} (h_{j-1} - h_{j}) + V_{m} H_{m} + H_{m} H_{m} H_{m}$

o bien:

 $a_{j} v_{j} + B_{j} v_{j+1} = \delta_{j}$ (3.17)

donde:

 $\delta_{j} = Q_{j} + F_{j} (h_{j} - H_{j}) + W_{j} (H_{vj} - h_{j}) + \frac{1}{2} (f_{m} - U_{m} - W_{m}) - V_{1} (h_{j} - h_{j-1})$ $(f_{\Sigma} (F_{m} - U_{m} - W_{m}) - V_{1}) - (h_{j} - h_{j-1})$ m=1

 10).- Siguiendo con este método de corte, se está en la posibilidad de recalcular el perfil para el flujo de líquido utilizando el balan ce global de materia. ec.(1.8), sin reacción química;

 $L_{j} = V_{j+1} + \sum_{m=1}^{j} (F_{m} - U_{m} - W_{m}) - V_{1}$

(1.8)

48.-

11).- Una vez que se han generado todos los perfiles de las variables de iteración se puede verificar el criterio de convergencia:

Si el criterio no se satisface se debe regresar al punto número 3 de esta descripción, e iniciar una nueva iteración hasta el cum-plimiento de la ecuación anterior.

A los ojos del hombre de imaginación, la naturaleza es la imaginación misma.

WILLIAM BLAKE

1

<u>.</u>

METODO DE SUMA DE FLUJOS

Como se había visto con anterioridad, este método también pertenece a los métodos de corte, pero su enfoque va dirigido principalmente a la separación de componentes cuyos rangos de volatilidad son amplios y requi<u>c</u> ren por esta condición utilizar la técnica de separación conocida como: A<u>b</u> sorción y en algunos casos la de agotamiento.

A diferencia del Método de Wang-Henke, en el que se utiliza la técni ca del punto de burbuja en este algoritmo se utiliza la técnica conocida como "SUM-RATES" y que se presentará en su momento.

Basándose en el análisis de grados de libertad realizado, en este momento se tiene la posibilidad de especificar las variables de iteración o de corte; así como las variables independientes.

VARIABLES DE CORTE SELECCIONADAS

- Temperaturas
- Flujos de vapor.
- Flujos de líquido
- Composiciones de cada fase en cada etapa de equilibrio.

VARIABLES INDEPENDIENTES O ESPECIFICACIONES DEL PROBLEMA

- Flujos de las alimentaciones.
- Composiciones de cada uno de las especies químicas en cada una de las alimentaciones.
- Temperaturas de las corrientes de alimentación.

Presión de las corrientes de alimentación.
Presión en cada etapa de equilibrio.
Flujos de las salidas laterales de vapor.
Flujos de las salidas laterales de líquido.
Cargas térmicas a lo largo de la columna.

- Número total de etapas de equilibrio.

El desarrollo de este algoritmo de solución fue propuesto por D.W. Burningham y Fred. D. Otto. (1) y en el cual se utilizan las ecuaciones MESH., previamente descritas.

51. -

A continuación se presenta en forma detallada el Método:

- Definir el problema que se dessa resolver; es decir, especificar las variables independientes.
- 2.- Para iniciar los cálculos es necesario suponer el conjunto inicial de valores para las siguientes variables de corte, temperatura y flujo de vapor a lo largo del equipo.

En cuanto a las temperaturas se supone un perfil lineal a lo largo de la columna, ayudándose con la especificación de la temperatura en el – Domo, con la temperatura del fondo y con el número total de etapas; o bien si no se desamlos pérfiles de esta manera se pueden fijar canti-dades para estas variables en cada etapa.

3.- Con lo anterior se cuenta con dos variables de corte y se tiene la posibilidad de calcular otra que será la composición en la fase líquida.
Esto se puede hacer de la misma manera que con el Método del Punto de Burbuja; es decir: Se custituye la ecuación (1.4), en la ecuación del Balance de materia por componente (ec. 1.2); con objeto de eliminar las frac--ciones mol de la fase vapor obteniéndose:

$$C_{ij} = L_{j-1} X_{ij-1} + V_{j+1} K_{ij+1} X_{ij+1} + F_j Z_{ij} - \frac{(L_j + U_j) X_{ij} - (V_j + W_j) K_{ij} X_{ij} + F_{ij}}{(L_j + U_j) X_{ij} - (V_j + W_j) K_{ij} X_{ij} + F_{ij}}$$
(4.1)

El paso siguiente es sustituir el Balance Global de Materia ecuación (1.8), en la ecuación (4.1), con el propósito de eliminar el término que representa el Flujo de Llquido L_j: suponiendo que no exi<u>s</u> te reacción química:

$$C_{ij} = [V_{j} + \sum_{m=1}^{j-1} (F_{m} - U_{m} - V_{m}) - V_{1}]X_{ij-1} + V_{j+1}X_{ij+1}$$

$$X_{ij+1} + F_{j}Z_{ij} - [V_{j+1} + \sum (F_{m} - U_{m} - V_{m}) - V_{1}]$$

$$m=1$$

$$X_{ij} - (V_{j} + W_{j})X_{ij}X_{ij} - V_{j}X_{ij} \qquad (4.2)$$

Agrupando los términos en función de las fracciones mol del líquido X's por elapa se obtiene la ecuación:

$$A_j X_{ij-1} + B_j X_{ij} + C_j X_{ij+1} = D_j$$
 (4.3)

donde:

$$A_{j} = V_{j} + \sum_{m=1}^{j-1} (F_{m} - U_{m} - W_{m}) - V_{j}$$

$$= 1$$

$$B_{j} = -[V_{j+1} + \sum_{m=1}^{j} (F_{m} - U_{m} - W_{m}) - V_{1} + U_{j} + (V_{j} + W_{j})]$$

$$= 1$$

$$W_{j} \cdot K_{ij}$$

$$D_{j} = -F_{j} \cdot Z_{ij}$$

53. -

1<1<0

y con esto se puede construir una matriz tridiagonal con $X_{io} = 0, U_N = 0$ y $V_{N+1} = 0$; teniendo la siguiente estructura:

A continuación se utiliza el algoritmo de Thomas (descrito en el capítulo anterior), se resuelve para las X_{ij} , previo cálculo de las correspondientes relaciones de equilibrio.

Si las relaciones de equilibrio son dependientes de la composición, se puede suponer un perfil inicial de X_{ij} ; otro de Y_{ij} y después se calculan las relaciones de equilibrio para utilizarse en la Matriz Tr<u>i</u> diagonal previamente descrita.

 4.- Con la información generada con anterioridad, se obtiene el perfil del flujo de llquido a partir de las ecuaciones (1.8) y (1.8a), sin reac-ción química:

$$L_{j} = V_{j+1} + \Sigma (F_{m} - U_{m} - W_{m}) - V_{1} \qquad 1 \le j \le N-1$$

$$N \qquad (1.8)$$

$$L_{N} = \Sigma (F_{m} - U_{m} - W_{m}) - V_{1} \qquad j = N$$

$$(1.8a)$$

5.- A diferencia del Método de Punto de Burbuja, no se normalizan los valo res de X_{ij}, pero se utilizan para producir las correcciones del perfil del flujo de líquido; mediante la ecuación de Suma de Flujos (Técnica de Sum-Fates):

- donde k = No. de iteración
- 6.- El paso siguiente es obtener nuevos valores para las V_j 's, utilizando el Balance Total de Materia ec.(1.1), despejando a V_j se tiene, supo-niendo que no existe reacción química:

54.-

 $v_{1} = L_{1} + F_{1} - U_{1} - W_{1} + V_{2} \qquad j=1 \qquad (4.5)$ $v_{j} = L_{j-1} - L_{j} + F_{j} - U_{j} - W_{j} + V_{j+1} \qquad \frac{2 \le j \le N-1}{(4.6)}$ $v_{N} = L_{N-1} - L_{N} - U_{N} - W_{N} \qquad j=N \qquad (4.7)$

55. -

o usando:

$$V_{j} = L_{j-1} - L_{N}' + \sum_{m=i}^{N} (F_{m} - W_{m} - U_{m}')$$
(4.8)

La deducción de esta fórmula se encuentra en el apéndice "A". 7).- A continuación se normalizan las fracciones de la fase líquida en cada etapa, para calcular las fracciones en la fase vapor con la ec.(1.4)

Con la información anterior, se puede recalcular las temperaturas en cada plato; ayudándose del Balance de Energía ec. (1.6), para cada etapa. Formando un conjunto de ecuaciones "líneales " y resolviéndolas en forma simultánea de la siguiente manera:

Si el perfil de temperaturas existente fuera el correcto, H_j definido en la ec. (1.6), debería ser cero para toda "j"; en el caso contrario se utiliza una serie de Taylor Truncada para obtener el nuevo pe<u>r</u> fil de la siguiente manera:

$$(H_{j})^{k-1} = (H_{j})^{k} + dH_{j}^{k}$$
(4.9)

donde:

$$dH_{1} = (\partial H_{1} / \partial T_{1}) dT_{1} + (\partial H_{1} / \partial T_{2}) dT_{2} \qquad (4.10)$$

$$dH_{j} = (\partial H_{j} / \partial T_{j-1}) dT_{j-1} + (\partial H_{j} / \partial T_{j}) dT_{j} + (\partial H_{j} / \partial T_{j}) dT_{j+1} \qquad (4.11)$$

$$dH_{N} = (\partial H_{N} / \partial T_{N-1}) dT_{N-1} + (\partial H_{N} / \partial T_{N}) dT_{N} \qquad (4.12)$$

Las derivadas parciales dependen de las correlaciones o ecuaciones para predecir la entalpla.

Desarrollando los términos se tiene:

$$A_{j} = \frac{\partial H_{j}}{\partial T_{j-1}} = -L_{j-1}\left(\frac{\partial H_{j-1}}{\partial T_{j-1}}\right) \qquad (4.13)$$

$$B_{j} = \frac{\partial H_{j}}{\partial T_{j}} = -(L_{j} + U_{j})(\frac{\partial H_{j}}{\partial T_{j}}) - (V_{j} + W_{j})$$

$$(\frac{\partial H_{U_{j}}}{\partial T_{j}}) = (4.14)$$

$$C_{j} = \frac{\partial H_{j}}{\partial T_{j+1}} = V_{j+1}(\frac{\partial H_{V_{j+1}}}{\partial T_{j+1}}) = (4.15)$$

Los términos $\partial H_j / \partial T_j \neq \partial h / \partial T$, son en realidad la capacidad calorifica de las corrientes de vapor y líquido a la temperatura "T" y éstas se pueden evaluar numéricamente o analíticamente; por lo que el valor deseado de (H_j) k+1 de cero se puede escribir como:

$$A_{j} \Delta T_{j-1} + B_{j} \Delta T_{j} + C_{j} \Delta T_{j+1} = D_{j} \qquad 2 \le j \le N-1$$

$$(4.16)$$

$$donde:$$

$$D_{j} = -R_{j}$$

La ecuación (4.16), forma un conjunto de ecuaciones líneales agrupadas en una matriz tridiagonal, que se pueden resolver para las ΔT_j 's; utilizando nuevamente el algoritmo de Thomas.

Las ΔI_j 's, representan las correcciones a las temperaturas existentes y se aplican a éstas últimas de la siguiente forma:

o utilizando:

donde "w" es un escalar llamado factor de atenuación o de peso o de amortiguariento que se utiliza para asegurar la convergencia; ya que ésta depende en gran medida de las suposiciones iniciales de temperatura y fluios de vapor. 8.- Una vez que se genera el perfil de temperaturas se verifica el criterio de convergencia (propuesto por Seader (2)).

donde E es una tolerancia previamente establecida o fija como 0.001 N

Si no se cumple se debe realizar una nueva iteración y así hasta obtener la solución (regresar al paso #3). Es recomendable según Seader ajustar los valores de las variables de corte para iniciar una nueva iteración; por ejemplo: cambiar valores negativos a cifras cercanas a cero, pero positivas mediante:

$$\begin{array}{c} k+1 & k \\ X &= X & exp & \underbrace{\nu \ \Delta X}_{x^k} \end{array}$$
(4.21)

Por otra parte, para evitar oscilaciones se establecen límites para los valores, tanto para V_j 's como para T_j 's; que pueden ser entre un diez y un quince por ciento.

... las vendas cayeron de mis ojos, las dudas se desvanecieron y una sensación de tranquila certidumbre ocupó su lugar.

and a start of the second s A start second second

LOTHAR MEYER AL LEER LA EXPLICACION DE CANIZZARO SOBRE LA HIPOTESIS DE AVOGADRO

CAPITULO

METODO DE ISHII - OTTO

A continuación se presenta el Método creado por Yoshikazu Ishii y Fred D.Otto (1), que emplea un procedimiento multivariable de Newton para resolver en forma simultánea todas las ecuaciones que constituyen al modelo generalizado visto con anterioridad.

En este método todas las ecuaciones del modelo, los balances de masa, el balance de energía y la sumatoria de las composiciones se apr<u>o</u> ximan en forma linealizada. Las ecuaciones linealizadas entonces se resuelven todas al mismo tiempo, para obtener los flujos de temperatura, composiciones y los perfiles tanto de líquido como de vapor.

5.1 LINEALIZACION DE LAS ECUACIONES

Una función no lineal multivariable, f(x), se aproxima frecuentemente de la manera siguiente:

$$f(x_1 + \Delta x_1, x_2 + \Delta x_2, \ldots, x_n + \Delta x_n)$$

$$= f(x_1, x_2, \ldots, x_n) + \sum_{i=1}^n \frac{\partial f}{\partial x_i} \Delta x_i$$

(5.1)

59.-

y fijando:

 $f(x_1 + \Delta x_1, x_2 + \Delta x_2, \ldots, x_n + \Delta x_n) = 0$

Sin embargo, ligeras modificaciones de los procedimientos estándares de linealización se utilizaron en el trabajo realizado por Ishii y Otto; pa ra obtener una estructura matricial conveniente para su mejor manipulación.

Las ecuaciones que serán linealizadas son:

- Balance General de Materia

 $M_{j} = F_{d} + L_{j-1} + V_{j+1} - (L_{j} + SL_{j}) - (V_{j} + SV_{j}) = 0^{-1} \le j \le N$

- Balance de Materia por componente:

 $C_{ij} = F_{j} z_{ij} + L_{j-1} z_{j-1} + V_{j+1} K_{ij+1} z_{ij+1} - (L_{j} + SL_{j}) z_{ij}$ - $(V_j + SV_j) K_{ij} x_{ij}^{*=0}$ para i = 1, 2, ..., c_para j= 1,2,... N

- Balance de entalplas:

 $E_{j} = F_{j} H_{F_{j}} - Q_{j} + L_{j-1} h_{j-1} + V_{j+1} H_{j+1} - (L_{j} + SL_{j}) h_{j}$

 $-(V_j + SV_j) H_j = 0$ para j = 1, 2, ... N

- Ecuación de equilibrio:

6

 $S_j = \sum_{i=1}^{N} x_{ij} - 1.0 = 0$,

 $S_{j} = \sum_{i=1}^{\Sigma} y_{ij} - 1.0 = 0$

 $para \ j=1, 2, \dots N$

60.-

(5.2)

las ecuaciones ya linealizadas quedos de la forma

j

A).- Balance Global de Materia:

$$-M_{j} = \Delta L_{j-1} + \Delta V_{j+1} - \Delta L_{j} - \Delta V_{j} \qquad \text{para } j=2,3,\ldots, N-1$$

de aquí se deduce:

$$\Delta L_{j} = \sum_{k=1}^{\Sigma} N_{k} + \Delta V_{j+1} - \Delta V_{1} \qquad \text{para-} j=1,2,\ldots, N-1.$$

La deducción de la fórmula anterior se encuentra en el apéndice "A".

B).- Balance de Materia por Componente:

$$L_{j-1} \Delta X_{ij-1} - I(L_{j} + SL_{i}) + (V_{j} + SV_{j}) (X_{ij} + X_{ij}) = \frac{\partial K_{ij}}{\partial X_{i}} J \Delta X_{i}$$

+
$$v_{j+1}(x_{ij+1} + x_{ij+1} - \frac{3x_{ij+1}}{3x_{ij+1}}) \Delta x_{ij+1}$$

$$+ X_{ij-j} \Delta L_{j-1} - X_{ij} \Delta L_j - (V_j + SV_j) X_{ij} - \frac{\partial K_{ij}}{\partial T_j} \Delta T_j$$

$$+ v_{j+1} x_{ij+1} \frac{\partial x_{i,j+1}}{\partial T_{j+1}} \frac{\Delta T_{j+1}}{\Delta T_{j+1}} - x_{ij} x_{ij} \frac{\Delta V_j + x_{ij+1} x_{i,j+1}}{\Delta V_{j+1}}$$

(5.3)

C).- Balance de Energla:

$$L_{j-1} \xrightarrow{\partial h_{j-1}} \Delta T_{j-1} \xrightarrow{\Delta T_{j-1}} - \begin{pmatrix} (V_j + SV) \\ j \end{pmatrix} \frac{\partial H_j}{\partial T_j} + \begin{pmatrix} (L_j + SL) \\ j \end{pmatrix} \frac{\partial h_j}{\partial T_j}$$

$$\Delta T_{j} + V_{j+1} = \frac{\partial H_{j+1}}{\partial T_{j+1}} \Delta T_{j+1} + \Delta L_{j-1} = h_{j-1} - \Delta V_{j} H_{j} - \frac{\partial T_{j+1}}{\partial T_{j+1}}$$

 $\Delta L_j k_j + \Delta V_{j+1} H_{j+1} = -E_j \quad para \ j=2,3,\ldots N$

Para realizar la linealización anterior se suposo que:

$$K_{ij} = K_{ij} (P_j, T_j, X_{ij})$$

$$H_j = H_j (P_j, T_j)$$

$$h_j = h_j (P_j, T_j)$$
CONSTRUCCION DE LAS MATRICES

Se sustituye la ecuación (5.2), en la ecuación (5.3) con el objeto de eliminar los términos de ΔL_j :

 $L_{j-1} \Delta X_{ij-1} - \left[\left(L_{j} + SL_{j} \right) + \left(V_{j} + SV_{j} \right) \right] \left(X_{ij} + X_{ij} \frac{\partial K_{ij}}{\partial X_{ij}} \right]$ $\Delta X_{ij} + V_{j+1} (K_{ij+1} + X_{ij+1} - \frac{\partial K_{ij+1}}{2}) \Delta X_{ij+1} - (V_j + V_{ij+1} - V_{ij})$ Ә Х i.j+1

 $SV_{j} = X_{ij} \frac{\partial K_{ij}}{\partial T_{i}} \Delta T_{j} + V_{j+1} X_{ij+1} \frac{\partial K_{ij+1}}{T_{j+1}} \Delta T_{j+1} +$ $(X_{ij} - X_{ij-1}) \land V_1 + (X_{ij-1} - K_{ij} X_{ij}) \land V_j + (K_{ij+1} X_{ij+1})$ $j \qquad j-1$ $-X_{ij} \land V_{j+1} = -C_{ij} + \sum_{k=2}^{N} M_k X_{ij} - X_{ij-1} \sum_{k=2}^{N} K_{k-2}$ Mz

 $-M_1 (X_{ij-1} - X_{ij})$

formando la siguiente ecuación:

 $a_j \quad \Delta X_{ij-1} + b_j \quad \Delta X_{ij} + c_j \quad \Delta X_{ij+1} + d_{ij} \quad \Delta T_j$

 $+ e_j \Delta T_{j+1} + \alpha_j \Delta V_j + f_j \Delta V_j + g_j \Delta V_{j+1} = m_{ij}$

(5.6)

63. -

donde: $a_j = L_{j-1}$ $b_{j} = -\left((L_{j} + SL_{j}) + (V_{j} + SV_{j}) (K_{ij} + X_{ij} - \frac{\partial K_{ij}}{\partial X_{ij}})\right)$ $c_{j} = V_{j+1} (K_{ij+1} + X_{ij+1} - \frac{\partial K_{ij+1}}{\partial K_{ij+1}})$ $d_j = - (V_j + SV_j) X_{ij} - \frac{\partial X_{ij+1}}{\partial T_j}$ $= v_{j+1} x_{ij+1} \frac{\partial x_{ij+1}}{\partial T_{j+1}}$ $\alpha_j = \chi_{ij} - \kappa_{ij-1} \chi_{ij-1}$ $f_j = X_{ij-1} - K_{ij} X_{ij}$ $g_{j} = - (X_{ij} - K_{ij+1} X_{ij+1})$ $m_{j} = X_{ij} \frac{\sum_{k=2}^{j} M_{k} - X_{ij-1}}{k=2} \frac{j-1}{\sum_{k=2}^{j} M_{k-} C_{ij} - M_{1} (X_{ij-1} - X_{ij})}$

64.

en forma matricial se tiene (eliminando por comodidad el subíndice "i").

(5.7)

Haciendo algo similar para el Balance de Energla, la ecuación (5.2) en la ecuación (5.4) se sustituye:

$$\frac{L_{j-1}}{\partial T_{j-1}} \xrightarrow{\Delta T_{j-1}} (V_{j} + SV_{j}) \xrightarrow{\partial H_{j}} (L_{j} + SL_{j}) \xrightarrow{\partial h_{j}} (\Delta T_{j})$$

$$+ V_{j+1} (\partial H_{j+1} / \partial T_{j+1}) \xrightarrow{\Delta T_{j+1}} (h_{j} - h_{j-1}) \xrightarrow{\Delta V_{1}} (h_{j-1} - H_{j}) \xrightarrow{\Delta V_{j}}$$

$$+ (H_{j+1} - h_{j}) \xrightarrow{\Delta V_{j+1}} = -E_{j} + h_{j} \sum_{k=2} M_{k} - h_{j-1} \sum_{k=2} M_{k} - M_{1}$$

$$k=2 \qquad k=2$$

$$(h_{d-1} - h_{j}) \qquad (5.8)$$

formando la ecuación:

$$P_{j} \stackrel{\Delta T_{j-1}}{\longrightarrow} q_{j} \stackrel{\Delta T_{j}}{\longrightarrow} r_{j} \stackrel{\Delta T_{j+1}}{\longrightarrow} + \beta_{j} \stackrel{\Delta V_{1}}{\xrightarrow} q_{j} \stackrel{\Delta T_{j}}{\longrightarrow} q_{j+1} = u_{j}$$

$$(5.9 a)$$

donde:

$$p_{j} = L_{j-1} - \frac{\partial h_{j-1}}{\partial T_{j-1}}$$

 $q_{j} = - \frac{I(V_{j} + SV_{j})}{\frac{\partial H_{j}}{\partial T_{j}}} + \frac{(L_{j} + SL_{j})}{\frac{\partial H_{j}}{\partial T_{j}}}$

$$r_{j} = V_{j+1} - \frac{\partial H_{j+1}}{\partial T_{j+1}}$$

$$B_{j} = h_{j} - h_{j-1}$$

$$B_{j} = h_{j-1} - H_{j}$$

$$t_j = H_{j+1} - h_j$$

$$u_{j} = -E_{j} + h_{j} \qquad \sum_{k=2}^{\Sigma} M_{k} - h_{j-1} \sum_{k=2}^{\Sigma} M_{k} - (h_{j-1} - h_{j}) M_{1}$$

en forma matricial se tiene;

(5.9 2)

El algoritmo de Ishii-Otto consiste de las siguientes partes:

- 1).- Conceptualizar el tipo de problema a resolver, destilación, absorción con rehervidor o agotamiento.
- 2).- Las variables independientes son temperatura (T), flujo de Vapor (V), flujo de líquido (L) y composiciones en las dos fases (x,y). Fara iniciar las iteraciones en la columna, es necesario suponer tres variables de corte: un perfil de temperaturas, un perfil de flujo de vapor y una estimación de las composiciones mol en la fase líquida (estimación que se puede realizar mediante pol<u>i</u> nomios para el calculo de K's y la ecuación del Balance de Materia por componente sin linealizar y el Algoritmo de Thomas).

Con los valores para el vapor en cada etapa y con ayuda del Bala<u>n</u> ce Global de Materia ec. (5.2), se obtiene el perfil inicial para para el flujo de llquido.

Fara obtener las composiciones en la fase vapor simplemente éstas se calculan por medio de la relación de equilibrio siguiente:

 $X_{ij} = K_{ij} X_{ij}$ (5.10)

3).- El paso siguiente es normalisar las composiciones en cada fase:

4).- Evaluar las propiedades físicas y sus derivadas correspondientes, es decir,calcular:

 $K, H, h, \frac{\partial K}{\partial T}, \frac{\partial K}{\partial X}, \frac{\partial H}{\partial T}, \frac{\partial h}{\partial T}$

ya sea por medio de la correlación de Chao-Seader (2), propuesta por los autores, o por medio de una ecuación de estado (Feng-Robinson,So<u>a</u> ve-Reilich-Kuong), que se proponen en el artículo de Bisknoi-Shah (3).

5).- Habiendo calculado los perfiles de temperatura, líquido, vapor y las composiciones en ambas fasse, además de las propiedades físicas y sus respectivas derivadas; se calcular todos y cada uno de los elementos que constituyen a las matrices previamente descritas.

Estas ecuaciones matriciales se aplican estrictamente para el caso de absorción, pero deben sufrir ligeras modificaciones si se trata de otra técnica de separación.

Para el saso de destilación se deben especificar los valores para V,

70.-

y para V_2 , lo que implica que $\Delta V_1 = \Delta V_2 = \Delta L_1 = 0$, quedando la ecuación 5.7 b de la siguiente forma:

y la ecuación (6.9 b), de esta otra forma:

para el Balance de Energla:

l.

Э.

5).- E: este momento se han construido matrices de este tipo:

Para los balances de masa por componente:

$$\overline{A}_{i} \wedge \overline{X}_{ij} + \overline{B}_{i} \wedge \overline{T} + \overline{C}_{i} \wedge \overline{V} = \overline{D}_{i}$$
(5.11)

Para el Balance de energla:

$$\overline{O} \quad \Delta \overline{T} \quad + \ \overline{P} \quad \Delta \overline{V} = Q \tag{5.12}$$

Conviértase las primeras matrices de las ecuaciones (5.11) y (5.12), en matrices unitarias y obtener las siguientes ecuaciones matriciales: (utilizando las matrices inversas de A_i y de C).

$$I \Delta X_{i;} + (A_i)^{-1} (B_i) \Delta T + (A_i)^{-2} (C_i) \Delta V = (A_i)^{-1} (D_i)$$

que dando:

$$I \ \Delta X_{ij} + E_i \ \Delta T + F_i \ \Delta V = G_i$$
 (5.13)

en forma similar para la ecuación (5.12)

$$I \ \Delta T \ + \ [0] \ (P) \ \Delta V \ = \ [0] \ (Q)$$

o bien:

$$I \subseteq \mathcal{I} + R \quad \Delta V = S \tag{5.14}$$

 Sumar desde el componente uno hasta el componente o en la ecuación (5.13);

$$c \qquad c \qquad c \qquad c$$

$$I \quad \sum \Delta X_{ij} + \sum E_i \Delta T + \sum F_i \Delta i = \sum G_i$$

$$t=1 \qquad i=1 \qquad i=1 \qquad i=1$$

o bien

$$I \quad \sum_{i=1}^{C} \Delta X_{ij} + E_T \quad \Delta T + F_T \quad \Delta V = G_T$$

$$(5.16)$$

8).- Eliminar el termino de ΔX_{ij} , sustituyendo la condición establecida en la ecuación linealizada:

$$\sum_{i=1}^{\Delta} X_{ij} = -S_j$$

$$i=1 \qquad \qquad \text{con } S_j = 0$$

с -

obteriendo:

$$\vec{z}_T \Delta T + F_T \Delta V = G_T$$
 (5.17)

(5.15)

9).- Se tiener ahora un sistema de dos ecuaciones (5.27) y (5.14) y dos inségnitas; resolvienio por el Método de Sustitución:

Despejar $\geq I$ de la ecuación (5.14):

$$\Delta T = Q - P \Delta V \qquad (5.18)$$

sustituyendo el valor de Δ T en la ecuación (5.17), se tiene:

$$-(\overline{z}_T) (Q) - (\overline{z}_T) (P)^{-\Delta} V + F_T \Delta V = G_T$$

$$(\overline{z}_T) (Q) + (F_T - \overline{z}_T P) \Delta V = G_T$$

despejando a 17:

Primero se calcula ΔV y posteriormente ΔT con la ecuación (5.18).

- 10).-Habiendo calculado los valores tanto para ΔV como para ΔT, éstos se sustituyen; ya sea en la ecuación (5.11) o en la ecuación (5.13) y se obtienen los valores para las ΔX_{ij}, utilizando el algoritmo de Thomas.
- 11).-A continuación se calculan los nuevos valores para las variables de iteración, T_j, V_j y X_{ij} como:

$$v_{j}^{k+1} = v_{j}^{k} + t \Delta v_{j}$$

$$T_{j}^{k+1} = T_{j}^{k} + t \Delta T_{j}$$

$$k+1 = k$$

$$x_{ij} = x_{ij} + t \Delta x_{ij} \qquad k = No. iteración$$

(5.20)

donde t, es un factor de amortiguamiento que se encuentra en el intervalo de -1 a 1 y se escoge para satisfacer el siguiente criterio:

donde CRIT se define como:

eiendo CRII el criterio de convergencia utilizado por los autores, Cr<u>i</u> zerio propuesto por Iomich (10).

El partimetro t se puede calcular utilizando el algoritmo propuesto por Montalvo y $Xax_mann(4)$, que se explica más adelante o bien el de Broyden (5), especificado por los autores.

12).-Los cálculos continuan hasta que el criterio de convergencia visto con anterioridai satisfaga la siguiente relación:

$$\frac{(CRIT)}{2} < 10^{-1}$$

(5.22)

donie li= limero total de etapas.

Si la relación interior no se cumple se debe realizar una rueva iteración, calculario primero las fracciones rol de la fase vapor; utilizar io la ecuación (5.1)) y descués regresar al punto 3.

5.2). - ALGORITMO DE MONTALVO-KAUFMANN

Los modelos descritos se pueden representar por medio de la ecuación siguiente:

$$E(x) = 0$$
 (function error)

Fara resolver esta ecuación se presenta el algoritmo de Montalvo-Kaufmann.

sea:

$$\begin{array}{c}T\\P(x) = E \quad (x) \quad E \quad (x)\end{array}$$

Que es simplemente encontrar la norma de la matriz E (x), es decir $||a||^2 = P(x)$, que dá el valor absoluto de la magnitud del valor

del vector E(x).

Esto se utiliza como una medida de la exactitud de una aproximación para la solución de:

$$E(x)=0$$

ahora sí:

P(x) > 0 x no es la solución.

 $P^{i}(x) = 0$ x es la solución.

Sea:

 x_k para $k \ge 0$ es una aproximación a la solución de E (x).

P (x_k) > 0 entonces, es la aproximación a la solución generada como:

$$x_{k+1} = x_k + \Delta x_k$$

donde:

$$\Delta x_k = t_k J^{-1} (x_k) E (x_k)$$

 $t_k = tamaño de paso o factor de amortiguamiento.$ $<math>J(x_k) = Jacobiano en la iteración k.$ $E(x_k) = vector error.$ considérese la ecuación de un parametro:

$$G(t_{k}) = P(x_{k+1}) = E^{1}(x_{k} + \Delta x_{k}) - E(x_{k} + \Delta x_{k})$$

78. -

En el Método de Ishii y Otto, ya se ha calculado el inverso del Jacobiano y el vector error (cálculo de los incrementos ΔT , $\Delta V y - \Delta X_{i,i}$); faltando el valor del factor de desplazamiento (t).

El algoritmo consiste:

PASO 0: Seleccione una \overline{t} y un t_{ref} como un tamaño de paso máximo y otro de paso mínimo respectivamente.

Donde \overline{t} es el paso máximo para el cálculo de P (x), de la ite-ración k a la k+1 y se recomienda que sea 0.25, 0.5 δ 1.0.

 t_{ref} , es el paso mínimo para decidir si se detiene la búsqueda y el autor recomienda que sea: $t_{ref} = \overline{t} / 2^{10}$

PASO 1: Sea $t^{\dagger} = \overline{t}$ y calcule G (t^{\dagger}) .

PASO 2: Si G $(t^+) \leq P(x_k) = G(0)$. Sea $t^* = t^+ y$ continue con el paso once si no es así continue con el paso tres.

PASO 3: Sea $t = -\overline{t}$ y calcule G (t)

PASO 4: Si G $(t^{-}) < P(x_{\nu}) = G(0)$

sea t^{*} = t⁻ y continue con el paso once, si no se verifica la

condición anterior continue en cinco.

PASO 5: Se tiene la siguiente información:

$$en t^{\circ} = 0 ; G (0) = P(x_{k})$$
$$t^{+} = \overline{t} ; G (t^{+})$$
$$t^{-} = -\overline{t} ; G(t^{-})$$

Hacer una interpolación cuadrática, calculándose un valor de t* que minimize $G(t_1)$, (ver figuras 5.1 y 5.2).

79.

Pero puede ocurrir que $G(t^{\dagger}) = G(t^{-})$ y por tanto $t_{k} = 0$ que es el punto inicial de las iteraciones, es decir no existe desplazamiento y deben iniciarse las iteraciones con un nuevo estimado x_{o} (figu ra 5.3).

PASO 8: Calcule G (t*).

PASO 2: Si $G(t^*) < G(0) = P(x_p)$.

continue con el paso once de otra manera siga con el ocho.

PASO 8: Si t^{* <} t_{ref} no se ha generado un desplazamiento adecuado. Se usará un criterio especial en estos momentos para detener la búsqueda o pr<u>o</u> vocar un desplazamiento que minimice la función.

PASO 9: Si t* > 0

realice las siguientes sustituciones:

 $t^{\dagger} = t^{\dagger} - y \qquad t^{\ast} = t^{\dagger}$

EL FACTOR 1ª CUANDO G(1-) > G(1+)

- 89 -

$$G(t^{+}) = G(t^{+})$$
 $y \quad G(t^{+}) = G(t^{+})$

83. -

si t* < 0 entonces:

$$t^{-} = t^{-}; \qquad t^{*} = t^{-}$$

$$G(t^{-}) = G(t^{*})$$
; $G(t^{*}) = G(t^{-})$

Con lo anterior se garantiza que: El mínimo de G(t), esté siempre delimitado entre t^- y t^+ (figuras 5.4 y 5.5).

PASO 10;Repetir el procedimiento desde el paso número 5 hasta que las condi-ciones en siete u ocho se satisfagan.

PASO 11:Sea $t_{b} = t^{*}$

posteriormente actualice la estimación hacia la solución x_{k+1} . Continuando con la aplicación de la fórmula recursiva (5.20), hasta que se cumpla posteriormente la ecuación (5.22).

5.3) .- UN PROCEDIMIENTO ALTERNATIVO DE SOLUCION

A continuación se presenta una nueva forma de resolver el sistema de ecuaciones matriciales que plantean Ishii y Otto:

 1).- Realizar de la misma forma los pasos uno, dos, tres y cuatro del algoritmo previamente descrito.

2).- A continuación formar las matrices que representen a los Balances de Mate-

- 85 -

ria por componente y al Balance de Energía de la forma siguiente:

Balances de masa por componente:

$$a_{j} \wedge X_{ij-1} + b_{j} \wedge X_{ij} + c_{j} \wedge X_{ij+1} + d_{j} \wedge T_{j} + e_{j} \wedge T_{j+1}$$
$$+ f_{j} \wedge V_{j} + g_{j} \wedge V_{j+1} + a_{j} \wedge L_{j-1} + \beta_{j} \wedge L_{j} = m_{ij}$$

En esta etapa no se sustituyen los valores de ΔL_j en la ecuación linealizada del Balance de Masa por Componente, quedando las matrices de la siguiente forma:

donde: a_j , b_j , c_j , d_j y e_j son las mismas utilizadas en el método anterior.

$$f_{j} = -K_{ij} X_{ij}$$

$$g_{j} = K_{ij+1} X_{ij+2}$$

$$\alpha_{j} = X_{ij-1}$$

$$\beta_{j} = -X_{ij}$$

$$m_{j} = -C_{ij}$$

Para el Balance Global de materia se tiene:

 $k_j \Delta L_{j-1} + \gamma_j L_j + \delta_j \Delta V_j + \omega_j \Delta V_{j+1} = n_j$

en forma matricial:

En forma similar para el Balance de Energía se obtiene:

90.-

 $p_{j} \Delta T_{j-1} + q_{j} \Delta T_{j} + r_{j} \Delta T_{j+1} + e_{j} \Delta V_{j}$ $t_{j} \Delta V_{j+1} + \phi_{j} \Delta L_{j-1} + \Psi_{j} \Delta L_{j} = u_{j}$

Matricialmente se tiene:

donde p_j , $q_j y r_j$, tienen el mismo significado que en el algoritmo anterior:

$$s_{j} = -H_{j}$$

$$t_{j} = H_{j+1}$$

$$\phi_{j} = h_{j-1}$$

$$\Psi_{j} = -h_{j}$$

$$u_{j} = -E_{j}$$

Estas ecuaciones matriciales aplican nuevamente en forma estricta al caso de absorción y se pueden hacer modificaciones adecuadas para poder manejar casos de agotamiento, destilación (con condensador total y parcial); así como para el caso de absorción con rehervidor.

3).- Se han construido matrices de este tipo:

$$A_{i} \Delta X_{ij} + B_{i} \Delta T + C_{i} \Delta V + D_{i} \Delta L = E_{i}$$
(5.23)

para el Balance de Masa por Componente,

$$Z \ \Delta T + P \ \Delta V + R \ \Delta L = Q \tag{5}$$

para el Balance de Energía y finalmente:

$$F \quad \Delta L + G \quad \Delta V = H \tag{5.25}$$

.24)

que se refiere al Balance de Materia Global.

4).- Despejese de la ecuación (5.25) a Δ L quedando:

$$\Delta L = F H - (F G \Delta V)$$
 (5.26)

5).- Subtituyabe el valor de AL de la ecuación (5.26), en la ecuación (5.23) para obtener:

$$E_i = A_i \Delta X_{ij} + B_i \Delta T + C_i \Delta V + D_i (F^{-1} H - F^{-1} G \Delta V)$$

$$A_i \triangle X_{ij} + B_i \triangle T + (C_i - D_i F^{-1} G) \triangle V = E_i - D_i F^{-1} H$$

o bien :

$$A_i \Delta X_{ij} + B_i \Delta T + K_i \Delta V = M_i$$
 (5.27)

de forma similar para el Balance de Energla, ec.(5.24):

$$Z \quad \Delta T + P \Delta V + R \quad (F \quad H - F \quad G \Delta \tilde{V}) = Q$$

obteniéndose:

$$Z \Delta T + (P - RF^{-2} G) \Delta V = Q - RF^{-1} H$$

o bien:

$$Z \quad \Delta T + U \quad \Delta V = W$$

(5.28)

- 6).- Conviértanse las primeras matrices de las ecuaciones (5.27) y (5.28) en matrices unitarias; aplicando eliminación de Gauss, utilizando el algoritmo de Ishii-Otto para la inversión de matrices tridiagonales (ver sección 5.4 de este capítulo), o utilizar la técnica L U (6), con la fórmula de Doolittle o bien la de Crout y obténganse sistemas similares a las ecuaciones (5.13) y (5.14).
- 7).- Hacer la sumatoria de la ecuación para los Balances de Materia por Com ponente, desde el componente uno hasta el componente c, obteniendo:

$$I \sum_{i=1}^{C} X_{ij} + J_T \Delta T + N_T \Delta V = N_T$$

$$(5.29)$$

8).- Sustituyase la ecuación (5.16), en la ecuación (5.29) y obténgase:

$$-S_{j} + J_{T} \Delta T + N_{T} \Delta V = N_{T}$$

$$J_{T} \Delta T + N_{T} \Delta V = N_{T} + S_{j} \qquad (5.30)$$

9).- Se tiene nuevamente un sistema de dos ecuaciones con dos incógnitas; encuéntrese los valores para ΔT y para ΔV de la misma manera que se realizó en el algoritmo de Ishii y Otto.

10).- Calcule los nuevos valores de T; y V; utilizando:

$$V_{j} = V_{j} + t \Delta V_{j}$$

y de L, como j k+1

L

$$= L_{i} + t \Delta L_{j}$$

11).- Para acelerar la convergencia en lugar de calcular las ΔX_{ij} , resuélvase el Balance de Masa por Componente sin linealizar para las fracciones mol en la fase líquida directamente.

12).- Calcule la siguiente relación:

< (CRIT) (CRIT)

donde CRIT se dá en la ecuación (5.21), si no se cumple con el pr<u>i</u> mer factor de amortiguamiento seleccionado; utilice el algoritmo de Montalvo-Kauffmann y regrese al paso 10,con un nuevo valor de "t".

13).- Una vez que se haya cumplido la desigualdad (5.31), verifique el criterio de convergencia; ecuación (5.22), para detener el proceso de cálculo o iniciar una nueva iteración.

Como se mencionó con anterioridad, este procedimiento es una forma al ternativa para la resolución del sistema de ecuaciones matriciales presen tado originalmente por Ishii y Otto. Con ello se utiliza una variable de corte más que es: el flujo de líquido (L_j) , sustituyendo además la ecua-ción (5.16), en forma completa:

 $\Sigma \Delta X_{ij} = -S_{ji}$

 $S_j = \sum_{i=1}^{\Sigma} X_{ij} - 1$

donde S₁ es:

Presentando esta forma de solución una mayor facilidad para crear un programa de cómputo.

(5.31)

ISHII - OTTO

Denôtese la inversa de la matriz tridiagonal de la manera siguiente:

 $\begin{bmatrix} G_{11} & G_{12} & \cdots & G_{1}, & N \\ G_{21} & G_{22} & \cdots & G_{2}, & N \end{bmatrix}$ A₂ B₂ C₂ A_j B_j C_j Gj1 $\begin{array}{c|c} \cdot & & \\ A_{N-1} & B_{N-1} & C_{N-1} \\ & A_N & B_n \end{array} \begin{array}{c} \cdot \\ G_{N-1,1} & \cdots & \ddots \\ G_{N-1} & \cdots & G_{N,N} \end{array}$

donde:

$$\begin{split} & \varepsilon_{1} = B_{1} \\ & \varepsilon_{j} = B_{j} - A_{j} C_{j-1} / \varepsilon_{j-1} \\ & f = 2, 3 \dots N \\ & G_{NN} = 1 / \varepsilon_{N} \\ & G_{N,j} = G_{N,j+1} - A_{j+1} / \varepsilon_{j} \\ & f = N-1, N-2, \dots 1 \\ & G_{k,j} = -G_{k+1} - C_{k} / \varepsilon_{k} \\ & f = N-1, N-2, \dots 1 \\ & f = N, \dots k+1 \\ & f = N-1, N-2, \dots 1 \\ & f = N, \dots k+1 \\ & f = N-1, N-2, \dots 1 \\ & f = N, \dots 1 \\ & f = N-1, N-2, \dots N \end{split}$$

De esta forma se puede obtener la inversa de una matriz tridiagona: de manera rápida y eficiente. No se muestra la grandeza por estar en un extremo, sino tocando los dos a la vez.

27 - 27 - 14 - 27 - 14

- E.C

PASCAL

CAPITULO

METODO DE NAPHTALI - SANDHOLM

Dentro de los métodos de solución simultánea, se puede clasificar al algoritmo desarrollado por Leonard D. Naphtali y Donald P.Sandholm (1), cuyas principales características son:

- Las ecuaciones para los balances de masa, de energía; así como las relaciones de equilibrio se agrupan por etapa y posteriormente se linealizan.
- 2).- El conjunto de ecuaciones resultantes forman un bloque tridiagonal que permite una solución rápida a través de la técnica de Newton-Raphson.
- 3).- Se utiliza la eficiencia de Murphree por plato en forma rigur<u>o</u> Ba.
- 4).- El algoritmo es flexible, ya que se utiliza para diferentes tipos de destilación, absorción, agotamiento y rectificación con cualquier número de alimentaciones y salidas laterales.

Las ecuaciones que describen el proceso de separación, ya se especificaron en el capítulo 1 bajo el nombre de ecuaciones MESH; pero para poder aplicar el método de linealización utilizado por Naphtali y Sand-holm, las ecuaciones se escriben como funciones de discrepancias; es decir, como una medida de la falla de las variables involucradas para sa-tisfacer dichas ecuaciones.

97.-
El algoritmo consiste en combinar primeramente las dos ecuaciones de las sumatorias de las fracciones mol, ecuaciones (1.5), con las otras ecuaciones MESH; produciendo un sistema a resolver en forma simultánea de N (2 C + 1), ecuaciones no lineales:

Por tanto sea:

$$\frac{V_j = \sum_{i=1}^{c} V_{ij} \qquad (6.1)}{L_j = \sum_{i=1}^{c} l_{ij} \qquad (6.2)}$$

Sustituyendo las ecuaciones (6.1) y (6.2), en las ecuaciones (1.2), (1.4) y (1.6) se obtiene:

$$M_{ij} = l_{ij-1} + v_{ij+1} + f_{ij} - l_{ij} - SL_j x_{ij} - SV_j y_{ij}$$

multiplicando al término $SL_j x_{ij}$ por uno en la forma L_j/L_j y a $SV_j y_{ij}$ por V_j/V_j se tiene:

$$M_{ij} = l_{ij-1} + v_{ij+1} + f_{ij} - l_{ij} - \frac{SL_j}{L_j} \quad l_{ij} - v_{ij}$$
$$-\frac{SV_j}{J} \quad v_{ij}$$

agrupando términos y definiendo:

$$s_j = SL_j / L_j$$
$$s_j = SV_j / V_j$$

V;

98.-

Se establece la ecuación:

$$M_{ij} = l_{ij} (1 + s_j) + v_{ij} (1 + S_j) - l_{ij-1} - v_{ij+1} - f_{ij}$$

(6.3)

aplicando un procedimiento similar al Balance de Energla se tiene:

$$H_{j} = (1 + S_{j}) H_{v_{j}} + (1 + S_{j}) h_{j} - H_{v_{j+1}} - h_{j-1} - H_{F_{j}}, Q_{j}$$
(6.4)

Si la eficiencia de Murphree en la etapa "j" está definida por:

$$n_{j} = \frac{y_{ij} - y_{ij+1}}{K_{ij} x_{ij} - y_{ij+1}}$$

o bien como:

$${}^{n}_{j} K_{ij} x_{ij} - y_{ij} + (1 - {}^{n}_{j}) y_{ij+1} = 0$$
(6.5)

En términos de los flujos por componente la ecuación (6.5), se tran<u>s</u> forma en:

$$E_{ij} = \frac{n_{j} K_{ij} V_{j} L_{ij}}{L_{j}} - v_{ij} + \frac{(1 - n_{j}) v_{ij+1} V_{j}}{V_{j+1}}$$
(6.6)

Entonces las ecuaciones (6.3), (6.4) y (6.6), se resuelven en forma nimultánea; usando la técnica de Newton-Raphson. Durante las iteraciones

se obtienen valores siempre diferentes a cero para estas ecuaciones y por tanto, se les asigna el nombre de "DISCREPANCIAS DEL ERROR", como se ha-bla establecido con anterioridad.

Para la linealización y solución del sistema se definen los vectores:

$$\overline{X} = [X_1, X_2, \dots, X_j, \dots, X_N]^T$$
$$\overline{F} = [F_1, F_2, \dots, F_j, \dots, F_N]^T$$

donde:

 \overline{x}_j = es el vector de variables de salida para la etapa "j", ordenado de la manera siguiente:

$$\overline{X} = (v_{1j}, \overline{v}_{2j}, \dots, v_{ij}, v_{oj}, T_j, L_{1j}, \dots, L_{ij}, \dots, L_{cj}]^T$$
$$= (X_{1j}, X_{2j}, \dots, X_{ij}, X_{aj}, X_{c+1j}, X_{c+2j}, \dots, X_{2c+1j}]^T$$

además:

 \overline{F} = es el vector de funciones por etapa ordenandos como:

 $\overline{F} = [H_j, M_{1j}, M_{2j}, \cdots, M_{cj}, E_{1j}, \cdots, E_{cj}]^T$

 $\overline{F}_{j} = (F_{1j}, F_{2j}, F_{3j}, \dots, F_{c+1j}, F_{c+2j}, \dots, F_{2c+1,j})^{T}$

donde :

j = número de la etapa.

N = número total de etapas.

c = número total de componentes

Puede observarse que \overline{X} , contiene a las variables que intervienen en la columna, cada X_j agrupa a las variables de corte establecidas para cada – etapa "j". Análogamente F contiene a las funciones que describen el compo<u>r</u> tamiento del equipo y cada F_i a las funciones del plato "j".

Las iteraciones se llevan a cabo resolviendo las correcciones ΔX por medio de la ecuación (6.7):

$$\Delta x_k = -\left[\left(\frac{\partial F}{\partial x}\right)\right]^{-1} k \overline{F}_k$$

y obteniendo los nuevos valpres para dichas variables, haciendo uso de la siguiente ecuación:

$$\overline{X}_{k+1} = \overline{X}_k + t \, \Delta \overline{X}_k$$

(6.8)

(6.7)

101 .--

donde:

k = número de la iteración.

- t = factor de amortiguamiento.

 $\partial F/\partial X = Jacobiano de F.$

La linealización de las funciones de discrepancias propuestas requieren que los flujos por componente en ambas fases y las temperaturas se inicialicen.

Las ecuaciones linealizadas son:

a).- Balance de materia por componente:

$$-\Delta l_{i,n-1} + l \frac{1 + \frac{SL_j}{L_j}}{L_j} \frac{J^{\Delta l}_{ij}}{\frac{L_j^2}{L_j^2}} \frac{SL_j}{L_j^2} \frac{l_{ij}}{k} - \frac{\Sigma \Delta l_{kj}}{k} + \frac{SL_j}{k}$$

$$[^{1} + \frac{sv_{j}}{v_{j}}]^{\Delta v}ij - \frac{sv_{j}}{v_{j}^{2}} \quad v_{ij} \qquad \sum \Delta v_{kj} - \Delta v_{i,j+1} = -M(i,j)$$

b).- Relaciones de equilibrio, incluyendo la eficiencia de Murphree:

$$^{n_{j}} \frac{v_{j}}{L_{j}} \kappa_{ij} \Delta l_{ij} - n_{j} \frac{v_{j}}{L_{j}^{2}} \kappa_{ij} l_{ij} \sum_{k} \sum_{k} k_{j} + n_{j} \frac{v_{j}}{L_{j}} l_{ij}$$

 $\sum_{k} \frac{\partial K_{ij}}{\partial l_{kj}} \Delta l_{kj} + n_{j} \frac{v_{j}}{L_{j}} l_{ij} \frac{\partial K_{ij}}{\partial T_{j}} \Delta T_{j} + n_{j} \frac{1}{L_{j}} \frac{K_{ij}}{L_{j}} \frac{L_{j}}{L_{j}} \frac{\Sigma \Delta v}{k}_{kj}$

 $+ n_j \underbrace{\frac{v_j}{L_j}}_{k,j} \underbrace{\frac{1}{ij}}_{k} \underbrace{\frac{\partial K_{ij}}{\partial v_{kj}}}_{kj} \underbrace{\frac{\partial v_j}{\partial v_{kj}}}_{kj} - \underbrace{\frac{\partial v_j}{\partial v_{ij}}}_{kj} \underbrace{\frac{1}{v_{ij+1}}}_{kj+1} \underbrace{\frac{1}{v_{ij+1}}}_{kj} \underbrace{\frac{\partial v_j}{\partial v_{kj}}}_{kj} \underbrace{\frac$

 $\sum_{k} \Delta v_{kj} + (1 - \eta_j) \frac{v_j}{v_{j+1}} \Delta v_{ij+2} - \frac{(1 - \eta_j)}{v_j} \frac{v_j}{v_{j+1}^2} v_{ij+1} - \sum_{k} \Delta v_{k,j+2}$

= - ^E (i,j)

donde:

 $\frac{\partial X_{ij}}{\partial l_{kj}} = \sum_{p=1}^{c} \left(\frac{\partial X_{ij}}{\partial x_{pj}} \right) \left(\frac{\partial x_{pj}}{\partial l_{kj}} \right)$

y

 $\frac{\partial x_{pj}}{\partial l_{kj}} = \frac{1}{L_j} \left(\frac{\delta}{kp} - \frac{l_{pj}}{L_j} \right)$

donde :

 $\delta_{kp} = \begin{cases} 0 \text{ si } k \neq p \\ 1 \text{ si } k = p \end{cases}$

c).- Balance de Energía

$$-h_{j-1} \quad \frac{\Sigma}{k} \quad \frac{\Delta l}{kj-1} \quad -L_{j-1} \quad \frac{\Sigma}{k} \quad \frac{\partial h_{j-1}}{\partial l_{kj-1}} \quad \Delta l_{kj-1}$$

$$\begin{array}{c} - L_{j-1} & \frac{\partial h_{j-1}}{\partial T_{j-1}} & \Delta T_{j-1} + h_j & \Sigma & \Delta L_{kj} + (L_j + SL_j) & \Sigma & \frac{\partial h_j}{\partial I_k} & \Delta L_{kj} \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & &$$

+
$$(L_j+SL_j)$$
 $\frac{\partial h_j}{\partial T_j}$ ΔT_j + $(V_j + SV_j)$ $\frac{\partial H_v}{\partial T_j} \Delta T_j + \frac{H_v}{v_j} \sum_{k} \Delta v_{kj}$

$$\frac{+(v_j + sv_j)}{k} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{kj}}} \frac{\partial H_{v_j}}{\Delta v_{kj}} \sum_{\substack{\lambda \neq j \\ \lambda \neq v_{kj}}} \frac{\partial H_{v_{j+1}}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{kj}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{kj}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{kj}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{kj}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{kj}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{kj}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}}{\partial v_{j+1}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}}{\partial v_{j+1}}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \frac{\partial H_{v_j}}}{\partial v_{j+1}}} \sum_{\substack{\lambda = 0 \\ \lambda \neq v_{j+1}}} \sum_{\substack{\lambda = 0 \\ \lambda \neq$$

$$- v_{j+1} = \frac{\partial H_{v_{j+1}}}{\partial T_{j+1}} \Delta T_{j+1} - H_{v_{j+1}} = \sum_{k=0}^{\infty} \Delta v_{kj+1} - v_{j+1} = \sum_{k=0}^{\infty} \frac{\partial H_{v_{j+1}}}{\partial v_{kj+1}}$$

$$\Delta v_{kj+1} = - H_{(h)} + F_n h_{F_j} + Q_j$$

r a di kana di sana di

El Jacobiano $\partial F / \partial X$ es la matriz de (N X N), de derivadas parciales de todas las funciones respecto a todas las variables, evaluadas en la iteración actual (k), Expreséndose como:

 $\cdots \quad i \frac{\partial F_1}{\partial x_N}$ $\begin{vmatrix} i & \frac{\partial F_1}{\partial x_1} & j & \frac{\partial F_2}{\partial x_2} \\ i & \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} \\ j & \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} \\ \vdots & \vdots \\ \vdots & \vdots$ I $\frac{\partial F_2}{\partial x_N}$ J $\left(\begin{array}{c} \frac{\partial F}{\partial X} \end{array} \right) =$ $\begin{bmatrix} \frac{\partial F_N}{\partial x_1} & \begin{bmatrix} \frac{\partial F_N}{\partial x_2} \end{bmatrix} & \cdots & \begin{bmatrix} \frac{\partial F_N}{\partial x_N} \end{bmatrix}$

105.-

Donde cada uno de los elementos indicados corresponde al grupo de derivadas parciales de las funciones de una etapa con respecto a las variables de cualquier etapa en el equipo.

Es decir: $I = \begin{cases} \frac{\partial F_{i1}}{\partial X_{j1}} & \frac{\partial F_{i1}}{\partial X_{j2}} & \cdots & \frac{\partial F_{i1}}{\partial X_{j,2o+1}} \\ \frac{\partial F_{i2}}{\partial X_{j1}} & \frac{\partial F_{i2}}{\partial X_{j2}} & \frac{\partial F_{i2}}{\partial X_{j,2o+1}} \\ \frac{\partial F_{i,2}}{\partial X_{j1}} & \frac{\partial F_{i,2}}{\partial X_{j,2o+1}} \\ \frac{\partial F_{i,2o+1}}{\partial X_{j1}} & \frac{\partial F_{i,2o+1}}{\partial X_{j,2o+1}} \\ \frac{\partial F_{i,2o+1}}{\partial X_{j,2o+1}} & \frac{\partial F_{i,2o+1}}{\partial X_{j,2o+1}} \\ \frac{\partial F_{i,2o+1}}{\partial X_{j,2o+1}}$

Pero el Jacobiano debe tener una forma tridiagonal por bloques, debido a que las funciones para la etapa "j" (M_{ij} , E_j , H_j), dependen solamente de las variables para la etapa j-1, j y j+1.

Así se obtiene:

 $l = \begin{bmatrix} B_1 & C_1 & 0 & 0 & \cdots & 0 \\ A_2 & B_2 & C_2 & 0 & \cdots & 0 \\ 0 & A_3 & B_3 & C_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & 0 & A_{N-2} & B_{N-2} & C_{N-2} & 0 \\ \vdots & \vdots & \vdots & 0 & A_{N-1} & B_{N-1} & C_{N-1} \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & A_N & B_N \end{bmatrix}$

Cada A_j , B_j , C_j representa una submatriz de (2C+1)² derivadas par-ciales y éstas se forman de la siguiente manera:

I).- MATRIZ A;

Esta es la matriz de derivadas parciales de las funciones del pla to "j", con respecto a las variables del plato "j-1".

 $A_{j=\left(\frac{\partial F_{j}}{\partial X_{j-1}}\right)}$ a).- Balance de Energla = F_{1j} i = 1,8... c

 $\frac{\partial F_{ij}}{\partial v_{ij-1}} = \frac{\partial F_{1j}}{\partial X_{ij-1}} = 0$

106.-

ә h_{j-1} Э. Е_{1.}ј ∂ F_{1j} $\frac{1}{\partial T_{j-1}} = \frac{1}{\partial X_{c+1,j-1}}$ ^{а т}j-1 θ F_{1j} θ h_{j-1} i= 1,2...c ə F_{1j__} ^{θ X}c+1+i,j-1 ^{θ Z}ij-1 ∂Z_{ij-1}

b).- Balance de Materia = F_{i+1} , j

 $\frac{\partial F_{i+1,j}}{\partial L_{k,j-1}} = - \frac{\delta_{ik}}{ik} ; \qquad \frac{\delta_{ik}}{\delta_{ik}} \begin{bmatrix} 1 & \text{si } i = k \\ 0 & \text{si } i \neq k \end{bmatrix}$

c).- Relaciones de caullibrio= F_{c+1+i,j}

 $\frac{\partial F_{c+1+i,j}}{\partial T_{j-1}} =$ $\frac{\partial F_{c+1+i,j}}{\partial l_{k,j-1}} = 0$ $\frac{\partial F_{o+1+i,j}}{\partial v_{k,j-1}} =$

Por tanto, su estructura es:

× j-1

 F_{j}

1<u>cj-1</u> v_{ij-1} v_{cj-1} T_{j-1} l₁₁₋₁ . . .

100 . --

II).- Matriz Bj

Esta es la matriz de derivadas parciales de las funciones del plato "j", con respecto a las variables en este plato.

$$B_j = \left(\frac{\partial F_j}{\partial x_j}\right)$$

a).- Balance de Energla = F_{1j}

$$\frac{\partial F_{1j}}{\partial v_{ij}} := (1 + S_j) \quad \frac{\partial H_{vj}}{\partial v_{ij}} \qquad i = 1, 2 \dots c$$

$$\frac{\partial F_{1j}}{\partial T_j} = (1 + S_j) \frac{\partial H_{vj}}{\partial T_j} + (1 + S_j) \frac{\partial h_j}{\partial T_j}$$

$$\frac{\partial F_{1j}}{\partial l_{ij}} = (1 + s_j) \frac{\partial h_j}{\partial l_{ij}} \qquad i = 1, 2... c$$

b).- Balance de Materia = $F_{i+1,j}$

$$\frac{\partial F_{i+1,j}}{\partial v_{kj}} = (1+S_j) \qquad \delta_{ki} \qquad k = 1, 2, \dots c$$

 $\frac{\partial F_{i+1,j}}{\partial T_{j}} = 0$ $\frac{\partial F_{i+1,j}}{\partial l_{kj}} = (1 + s_j) \qquad \delta_{ki}$ k = 1,2,...c

110.-

c).- Relaciones de equilibrio = F_{e+1+i}.j.

 $\frac{\partial E_{c+1+i,j}}{\partial v_{kj}} = \frac{n_j l_{ij}}{L_j} (X_{ij} + V_j (\frac{\partial X_{ij}}{\partial v_{kj}})) - \delta_{ki}$

+ (1 + n_j) $\frac{v_{ij+1}}{v_{j+1}}$

 $\frac{\frac{\partial F_{c+1+i,j}}{\partial T_i} = \frac{n_j l_{ij} V_j}{L_i} \left(\frac{\partial K_{ij}}{\partial T_i} \right)$

 $\frac{\partial F_{c+1+i,j}}{\partial l_{kj}} = \frac{n_j v_j}{L_j} (K_{ij} - \delta_{ki} + l_{ij} (\frac{\partial K_{ij}}{\partial l_{kj}}) - \frac{l_{ij}}{L_j} K_{ij})$

III). - Matriz Cj

Esta es la matriz de derivadas parciales de las funciones en el plato "j" con respecto a las variables en el siguiente plato:

$$C_{j} = \begin{bmatrix} \frac{\partial F_{j}}{\partial X_{j+1}} \end{bmatrix}$$

a).- Balance de energía: F_{1j}

$$\frac{\partial F_{1j}}{\partial v_{ij+1}} = -\frac{\partial H v_{j+1}}{\partial v_{ij+1}}$$
$$\frac{\partial F_{1j}}{\partial T_{j+1}} = -\frac{\partial H v_{j+1}}{\partial T_{j+1}}$$

$$\frac{\partial F_{1j}}{\partial l_{ij+1}} = 0$$

b).- Balance de materia = $F_{i+1,j}$

$$\frac{\partial F_{i+1,j}}{\partial v_{k,j+1}} = -\delta_{ki}$$

$$\frac{\partial F_{i+1,j}}{\partial T_{j+1}} = 0$$

$$\frac{\partial F_{i+1,j}}{\partial l_{k,j+1}} = 0 \qquad \qquad k = 1, 2, \dots c$$

i = 1,2,... c

c).- Relaciones de equilibrio = $F_{c+1+i,j}$

$$\frac{\partial F_{c+1+i,j}}{\partial v_{k,j+1}} = \frac{(1 - n_j)^N j}{v_{j+1}} (\delta_{kj} - \frac{v_{i,j+1}}{v_{j+1}})$$

$$k = 1, 2, \dots c$$

k = 1,2,...c

113.-

$$\frac{\partial^{2} c+1+i, j}{\partial^{2} k, j+1} = 0$$

 $\frac{\partial F_{c+1+i,j}}{\partial T} = 0$

teniendo la siguiente representación:

$$\frac{f_{j}}{F_{j}} = \frac{v_{ij+1} \cdots v_{c,jj+1} \cdots v_{c,jj+1} \cdots v_{c,jj+1}}{N_{ij+1} \cdots v_{c,j+1}}$$

El asterisco en las matrices representa valores existentes y diferentes de cero, para las derivadas correspondientes.

Dado que el Jacobiano tiene la forma de bloques tridiagonales se puede apli car el Algoritmo de Thomas (para sistemas matriciales), que se describe en el apéndice "A". Y de esta forma obtener los incrementos correspondientes $\Delta \overline{X}_{j}$.

A continuación se presenta la metodología de solución de forma detallada:

 A).- Especificar la clase de problema a resolver; así como las variables independientes y las variables de corte.

Para el caso de destilación es opcional fijar los valores, para el reflujo o la relación en el rehervidor, destilado o fondos, fracciones mol en los productos; flujo en los productos, número de etapas, etc.

- B).- Como en los métodos de corte, es necesario fijar un perfil inicial para la temperatura, flujo de vapor y flujo de líquido.
- C).- Se calculan las relaciones de equilibrio X_{ij} en forma independiente de las composiciones de tal manera de obtener un estimado inicial para las fracciones mol en ambas fases. Y de esta manera poder calcular los flujos por componente v_{ij} y además l_{ij}.
- D).- Basándose en los nuevos valores para estas variables se debe cal-cular la suma de cuadrados de las discrepancias funcionales; es de cir:

 $\sum_{\substack{j=1\\j=1}}^{\infty} \{(H_j)^2 + \sum_{i=1}^{\infty} ((M_{ij})^2 + (E_{ij})^2)\}$ (6.9)

E).- Se compara el resultado obtenido en la ecuación (6.9), con un criterio de convergencia establecido, por ejemplo:

$$z = N (2C + 1) (\Sigma F_j^2) \frac{-10}{10}$$

donde N= No. total de etapas. C= No. total de componentes

j=1

Si el criterio de la ecuación (6.10), es menor que el de la ecuación (6.9), debe procederse con el paso (I), de lo contrario con (F).

F).- Calcular los flujos totales en ambas fasés a partir de las ecuaciones (6.1) y (6.2):

$$V_{j} = \sum_{i=1}^{c} v_{i},$$

(6.1)

115. -

(6.10)

C Σ l_{ij} i=1 L_{j}

(6.2)

G).- Calcular, si es necesario las cargas en el condensador y en el rehervidor; haciendo uso de un Balance de Energía alrededor de dichas etapav.

- I).- En este paso todavía no existe la convergencia y por tanto se inicia una nueva iteración de cálculo. Esto se lleva a cabo aplicando primeramente la ecuación (6.7).
- J).- Celcular el tamaño de paso o factor de amortiguamiento, t, para minimizar a ϵ_1 , de la ecuación (6.9) y de esa forma calcular los nuevos valores tanto para v_{ij} , l_{ij} como para T_j .

Si en la aplicación de la ecuación (6.7), se obtuvieran cifras negativas para alguna variable, se recomienda usar la siguic<u>n</u> te ecuación (2).

$$x^{k+1} = x^k \quad exp \quad \left(\frac{t \Delta x^k}{x^k}\right) \tag{6.11}$$

K).- Paru las siguientes iteraciones, calcular las entalplas en ambas fases y las relaciones de equilibrio con los nuevos estim<u>a</u> dos de v_{ij}, l_{ij} y T_j; utilizando para ello polinomios o ecua-ciones de estado. Regresar posteriormente al paso (D).

METODO DE FREDENSLUND Y COAUTORES

Se presenta a continuación el procedimiento usado por Fredenslund et all (2,3), basado en el método descrito por Naphtali y Sandholm. La configuración de la columna se muestra en la figura 6.1.

El esquema de cálculo es el siguiente:

- PASO 1).- Identificación de las especies químicas a separar y la obtención de las constantes de Antoine (A_i, B_i, C_i), para cada compo-nente; con objeto de calcular sus presiones de vapor como comp<u>o</u> nentes puros.
- PASO 2).- Cálculo de los coeficientes de actividad a solución infinita, a dos diferentes temperaturas; usando la Técnica de UNIFAC(5).0btención también de los parámetros de interacción de grupo para cada componente (r_i , q_i , l_i).
- PASO 3).- Cálculo de los coeficientes de fugacidad para la fase vapor.Los autores proponen utilizar para ello los segundos coeficientes viriales para todas las posibles interacciones binarias a dos temperaturas diferentes (generalmente las temperaturas de saturación del componente más volátil y la del componente menos volátil). Para la obtención de estos coeficientes utilizan el Método de Hayden y O'Connell(6), calcular además las entalpías en ambas faves ya sea por polinomios o por algún otro método.

FIS. 6.1 CONFIGURACION DE UNA COLUMNA DE DESTILACION - 118 -

PASO 4). - Especificación del problema de separación.

- Se debará especificar el número de etapas de equilibrio.
- Eficiencias por etapa.
- Localización de alimentaciones (flujo).
- Localización de salidas laterales (fase y flujo).
- Presión de la columna.
- Relación de reflujo.
- Composiciones de alimentación.
- Condiciones térmicas.
- Destilado.
- PASO 5).- Se realiza un estimado inicial del perfil de temperaturas (generalmente lineal) y perfiles para el flujo de líquido y para el flujo de vapor.
- PASO 6).- Calcular para cada etapa y para cada componente su relación de equi librio; basándose en el último estimado de temperaturas y concentra ciones junto con los parámetros de UNIQUAC; así como las entalpías para cada fase.
- PASO 7).- Determinar las derivadas de las relaciones de equilibrio, con respecto a las temperaturas; realizar las mismas determinaciones para las entalplas en la fase líquida y en la fase vapor.
- PASO 8).- Formar las matrices como especifica Naphtali; rar la técnica de Newton - Raphson y resolver los balances de materia por componente para cada etapa con los nuevos valores de los factores de separación;

 $S_{j,i} = V_j K_{j,i} / L_j$

PASO 9).- Preguntar si los nuevos flujos están lo suficientemente conca de los flujos previos, ayudándose de una toleraneia especifica ; con objeto de determinar la volución del problema de separación que se está tratando. Si el criterio calculado es menor a la tolerancia especificada entonces el Método ha concluido de otra forma se procede a iniciar una nueva iter<u>a</u> ción regresando al paso número 6.

· . 130. -

In order to use a computer properly, it is important to adquire a good understanding of the structural relationship present within data, and of the techniques for representing and manipulating such struture within a computer.

그는 문화한

22 (19) 2013 - 2013 - 2019 (19) 2019 - 2019 (19) 2019 (19) 2019 (19) 2019 (19) 2019 (19) 2019 (19) 2019 (19) 2019 (19) 2019 (19) 2019 (19) 2019

1.1.1

DONALD E KNUTH

CAPITULO 7

RESULTADOS

Los métodos descritos con anterioridad se usaron para preparar y adaptar programas de cómputo capaces de resolver problemas en equipos de sepa-ración líquido-vapor con configuración compleja.

En este capítulo se incluyen diferentes problemas propuestos con el obj jetivo de probar los programas y por consecuencia los algoritmos analizados. Si se desea conocer el manejo de dichos sistemas; consultar el apéndice "B".

Todos los sistemas se adaptaron a una computadora Bourroughs Modelo – B-7800 en lenguaje FORTRAN IV con versión 3.1, en el Programa Universita-rio de Cómputo; perteneciente a la Universidad Nacional Autónomo de México.

A continuación se muestra la descripción de los problemas utilizados en la evaluación de los diferentes métodos; así como los resultados fina-les obtenidos con ellos.

7.1 PROBLEMA: Destilación con condensador total.

METODO: Punto de burbuja.

CONVERGENCIA: Suma de cuadrados residuales en temperatura.

(valor de tolerancia: = 0.01 N).

Esta columna fue descrita por Johanson y Seader (1), así como también el programa de cómputo fue desarrollado por dichos autores.

121.-

ESPECIFICACIONES:

ESPECIE	ALIMENTACION 1	ALIMENTACION 8
<u>QUIMICA</u>	(FRACCION MOL)	(FRACCION MOL)
Etano	0.03	0.03
Propano	0.20	0.20
N-Butano	0.37	0.37
N-Pentano	0.35	0.35
N-llexano	0.05	0.05
		· · · · · · · · · · · · · · · · · · ·

NUMERO DE ETAPAS: 16, incluyendo condensador y rehervidor.

ALIMENTACIONES:

Localizad	rión	Etapa	B	n	Eti	хра 9
		경험에서				
rase	a da ante a como a A se como a co	Liquia	la		LU	quida
Flujo(Lbr	wi/hr)	50.0)			50.0
Temperati	ara (°F)	213.9	13		2	13.93

PRESION DE LA COLUMNA: 250.00 Psia.

TEMPERATURAS INICIALES:

The second se	
A set of the set of	An Annal Contra
	the second second second second
이 그렇게 나는 것 같아요. 그는 것 같아요. 이 가지 않는 것 같아요.	Contraction of the second second
- N.L	
	and the second second
	Contraction of the second
	5 S S S S S S S S
A set of the set of	 I. and I. M. P.
- 「「「」」「「」」」「」」」「」」」」」」」」」」」」」」」」」」」」」」	C 22 C 2 C 2 M
- 「「「「」」「「」」「「」」」「「」」」「「」」」「「」」」「「」」」「「	 J. S. S.
ことがない かいしん しょうしん かいがく しんしょう ひょうかん しんかい しゅうかい ひかいしょう かいない 日本 かいない かん がん かんかん かん かん かんかい ひょうかん ひょうかい ひょうかい	6. C. C. C. K. C. K.
A set of the set of	
こうしょう しんし しんし しょうしん しんしょう しんない しんしんせい ひんしんせい 人気 ひんがく しゃ	
(1) 「「「」」」」」」「「」」「」」「」」「」」「」」「」「」「」」「」」「」」「	
- Community of the set of the community of the community of the set of the	10 A 8 3 19 4 4 5
	100 C 100 C 10 C 10 C 10 C 10 C 10 C 10
	from the ball of the second
	A Contractions of
	 A 1 1 1 1 1 1 1 1 1 1 1 1
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
コント シート・アイト アイ・ション しんてい しょうない かいしょう かさいがたれる ながない おもの おもの おもの アンガール	China See 14 14

DESTILAL	DO VAPOR:	20.0 Lbmol/ha	ĝ
		다는 것이 모든 방법 사람은 영화한 것 같아. 감독한 것 같아.	6
REFLUJO	EXTERNO	7.5	

4

MALIDA LATERAL DEL LIQUIDO EU EL PLATO 3

3 Lbmol/hr

SALTDA LATERAL DEL VAPOR EN EL PLATO 13

37 Lbmol/hr ·

PROPIEDADES TERMODINAMICAS: Polinomios en función de la temperatura.

120.-

Para obtener solución a este problema fueron necesarios diecinueve iteraciones, con un valor de suma de cuadrados de 1.40401E-01. Los resul tados se muestran de la tabla 7.1.1 a la tabla 7.1.5.

3

RESULTADOS FINALES

124. -

SALIDAS DE PRODUCTOS Y CARGAS EN LOS INTERCANBIADORES

	CCRRIENTE 24144	FASL	(GDS. T	(LANOL	Унк)	LOS COMPO	S HOL PARA	a da anterio de la composición de la c La composición de la c
	revitla o	V/.P	1:04		0.14 00	Y U+82318	U.U2011	0.0000
	SALIDA 17	VAP	203.95	37.0	1013 D. 4164	5 0	u. 71145	U. 24127 D. UI31J
	SALIDA ?	L10	145.19		ulta li.J121	7 11.755.15	U. 2231 9	J. 4:126 U. 40090
·	row 64		rn7 e4	4		fo 11. (110.1R 3	1. 7349 4	n. 45351

TABLA 7.1.1 RESULTADOS DEL PROBLEMA 7.1

125.-

RE⁹ultados finales

 ND	1¢	IONES	INTER	NAS	للبيع

		FLUJOS POR	ETALON FRACIONES MOL DEL LIQUIDO	FRACCIONES NOL DEL VAPOR
TAPA	(GDS. F)	(LE HOL/HR)	(LBROL/HR) COMPONENTES 1 AL 5	COMPONENTE 1 AL 5
1	120.04		15"- "ULUU 0-05581 U.87461 U.46579 0-00006 U.4014	
2	134.28	176-03000	요즘 같은 것이 같은 것이 같은 것을 많을 수 없다.	0-00092 0.87167 3.06136 0.00006 0.00003
2	134.28		1 51: 26731 0. UZSI-2 0. 84233 0-13122 0.00330 U. HJUW	0
3	145+19	170.26721		0.03783 0.84262 0.11928 0.00027 0.00000
3	145+19		177.17639 0. u1217 1.75635 0.22819 0. UU126 0. UUJU	0
4	157.34	2.3.17589		0.02581 0.76449 J. 20357 U.Oatts J.ucous
4 -	157. 34		176.251 87 0.44771 1.63015 0.35619 U-U0459 0.0000	
5 5	170.55	193.251.87		0.02233 U.65296 0.32361 U.00448 6.00402
5	170.55		162.18095 U.DI615 D.49016 U.48384 0-01431 0.0011	r
٤	184.37	1E d. 13695		0.02151 0.53047 0.43530 0.01258 0.0015
6	184.37	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	156.48260 11.LU545 11.341.98 4.59450 J.13842 4.0010	1921년 2월 2011년 - 1911년 - 1911년 1911년 - 1911년 - 1911년 - 1911년 -
7	198.83	179 - 42 260	1	0.62146 0.41901 0.52514 0.03355 0.00087
7	198.83		148.06898 11.00499 11.25756 U.64395 11.08947 J+J147	(홍승) 전 10년 - 20년 - 20년 10년 - 20년 10년 - 20년 10년 10년 10년 10년 10년 10년 10년 10년 10년 1
2 1	215.31	171.96898		1-1-2175 U-33186 J-56477 0-07753 J.00438
8	21 5. 31		199.46032 U.CI459 1-18235 U.61695 U.17912 U-0180	
9	226.97	172.42632		0.01400 0.26101 J.61310 0.10553 J.00656
9	226.97	le e de la companya de la companya Na companya de la com	255.83307 P.L. 1276 U.13241 U.61970 0.22118 U. 1245	
10	236.25	173. 5321 7	호텔 드레이스 이제는 것 그 사람이는 것을 생각했다.	U.DU394 U.18211 U.68615 U.12065 G.J9716
16	236.25		259+87305 P.LIUTA U.D8694 0.65343 U. 23473 U. 1249	생활을 즐고 있는 것이 같은 것을 알았다.
11	244 .42	132.873[5	TABLA 7.1.2	0.04164 0+11639 0.73237 0.14207 0.10912
1.1.1.1.1.			RESULTADOS DEL PROBLEMA 7.1	

1-4 26

RESULTADOS FINALES (CONTINUNCION)

				CONT 11	UACION)	4						4	
LTAFA	(GDS. 1)	LUJUS FOR	ETAPAS I ICUIDC (LaHOL/HR)	FRACIONES COMPONENTE	NOL DEL	LIQUIDO		F R A	CC IONES	OL DEL	VA POR		anta Antaria Angel Sagaria
- 11	244.43		251.71456	Falbu19 (1-15273	u.66264	U-25941	4.112596					1	
12	253.61	164.714-5	김 유민이는				en e	u_J0025	J.06764	3.74449	U-17792	1.30970	
12	253.11		26:184018	1.110.14 11-129 13	1.65912	1.3444	u. 123 42				an an the state of		
12	263.95	153. 31 31 8						0. UUUU	Li.03411	0.71145	0-24127	0.01510	-
12	263.93		257.1.54119	1.1.0001 0.01369	U.57210	U-38.79	0.03452						
14	276.82	- 217	ی کے بیری کے تصلح مشتر میں ہے۔ یہ کے باری کے تصلح مشتر میں ہے	n an an Anna a Anna an Anna an	e de la composition En la composition de			0.03001	11.01005	0.63556	0.53055	0.02005	
14	276.82		257 .29745	0. PULIDE 0. 005 97	1++47253	U. 47"78	0.145 91						
15	291 . 77	2. 2. 20745						U. 00.16.	11. UD693	J.51647	4.44215	J-13444	
15	291-77		248.001 82	1. LUNA 1. JU2 37	6.25410	U. 174- 5	J_J7177						
16	21.7. 34	2 3.6 4.12	전 중 41 시 (소음) 1991년 - 1991년 - 1991년 1991년 - 1991년 -					11.00.181	0.00260	3.37623	U.5584 ⁸	20200.0	

TARLA 7.1.3 RESULTADOS DEL PROBLEMA 7.1

8

127.

SE PREEFNTA A CONTINUACION UNA GRAFICA DE TEMPERATURA (A^{SI}GHADOLE EL #1), flujo de vapor ([#]2) y flujo de Liguidg (F3) como ordenadas en contra del numero de Etapas como abscisas

FLUJOS 2-6001+(1 4.8786+-1 7.7576+01 1.1646++(2 1.3516+12 1.6396+02 1.9276+12 2.3156+02 2.5036+02 2.7016+02 3.40786+02 1.CEDE+GE TALEPE+LL 3 2 3.CEGE+LC 2 ۲ 4.01012+00 1 7 2 S.CLOE+NO 4 C.TLAE+LU 3 7,110840 3 2 E.116E+61 9-11-2+11 2 1.11+2+61 2 1 1.1.UE+U1 13 1.7106+01 2 1 1-1102+61 1 121 2 1.4(1) 2+64 1.554.8+61 2 1 1-6108+11 2

IJUPERO :

DE LTAPA

TABLA 7.1.4 RESULTADOS DEL PROBLEMA 7.1

COMPOSICION

12

ŝ

7.2 PROBLEMA: Resolución del problema 7.1
 CONVERGENCIA: Critero de Tomich (2)
 PROFIEDADES: Polinomios en función de la temperatura.
 METODO: Punto de burbuja.

En este caso después de treinta iteraciones el método no converge teniendo una tolerancia de 1.6E-05 y un criterio de 2.5E-01. Los resultados obtenidos en esta última iteración se muestran en las tablas 7.2.1, -7.2.2. y 7.2.3.

7.3	PROBLEM	A:	Absorbedor		
	METODO:		Suma de fl	ијов	
	CONVERGE	ENCIA:	a)Suma d	e cuadrados r	esiduales en temp <u>e</u>
			ratura	• •	
			hl Cmita	nio do Tomioh	

Esta columna fue descrita también por Seader (idem), al igual que el programa de cómputo fue desarrollado por el autor.

.

		130
ESPECIE QUIMICA	ALIMENTACION 1 (FRACCION MOL)	ALIMENTACION 2 (FRACCION MOL)
Me tano	0.00	0.830
Etano	0.00	0.084
Fropano	0.00	0.048
N-Butano	0.00	0.026
N-Pentano	0.00	0.012
Aceite-Absor.	1.00	0.000
NUMERO DE ETAPAS:	seis	
ALIMENTACIONES:		
Localización	Etapa 1	Etapa 6
Fase	Llquida	Vapor
Flujo (Lbmol/hr)	533	1978.45
Temperatura(°F)	90	60
PRESION DE LA COLUMNA:	75 Psia.	
TEMPERATURAS INICIALES:		
Etapa 1	80 °F	
Etapa 6	150 °F	

PROPIEDADES TERMODINAMICAS Polinomios en función de temperaturas.

La solución se consiguió en cuatro iteraciones para cada criterio de convergencia utilizado; siendo Estos:

SUMA DE CUADRADOS:	0.02330 TOLERANCIA:0.060
CRIT.DE TOMICH:	1.3223E-0? TOLERANCIA:0.6. E-00
Los resultados finales	se muestran en las tablas 7.3.1 a 7.3.4.

131.-

RESULTADOS FINALES Sai inas, es protuctos y cargas en los inter^cambianob^es

DC 12	MP el ++ in		FRACCIONSS	NOL PARA	any and an angle of The second se	
CORPIENTE LTIPA FASE (GPS	F) (LBHOL/HP)	!	OS COMPONEN	TES I A	5	
DESTILADO 1 VI.P 120	.35 20. Clubn	u.14810	U+82 397	0.02734	0.00001	0,01005
SALIDA II VAP 264.	-ne 37.Ecoro	0.00005	U=03 345	0.71167	0-24187	0,01313
S/L10Å	.79 3.Ltin.n	1. 112"9	0.75455	4.23568	11- 00131	U. 03003
		han ng hang hang sa ba	ala da serie de la serie	a se a fe	a sub-sub-sub-	한 아파 한 한 한 한 한

FONDOS 1C LEA ZUT.91 40. Finitus a. a suas a. 23539 9. 63197 4. 19263

в.

TABLA 7.2.1 RESULTADOS DEL PROBLEMA 7.2

	1	1	H	÷	ł	1		÷		Л		1	z	ł		:			:	2		£		11	J.	2	u				
	:	i	•	1	ł	ł			ï			۰.		7	2	ï	÷		•	•	1	2	.,	r		•					
	٠	•			ţ	ŧ			é						٠	٠	•				2	t		1							
	:	2			1	1			2			t	2			2			!	:		1			2				1	• •	
	ï	ì			÷	ī			1			1	1			1				۰.		ł			1		2				
	ė	i			9	Û			é			÷	i,			ŧ.						j,			÷		ē				
	1	2			•	•			1			1			1				1			ż			*		1			11	
	i	1	i,				٠	i.	÷.			i.	,		1	,			ŧ,	i.		ł			7		2				
	1	ŀ	1	1	1	1		•	11	•	٠	1	1	1		1		٠	•	I.		1			÷	•			ų į	.,	
									٠						•			٠	•						۰.	•		••		18	

. I.

.

				RESULTADOS FINALES		
				CONDICIONES INTERNAS		
<u>, , , , , , , , , , , , , , , , , , , </u>	CGDS. F>	FLUJUS FO VAFOR (LCHOL/HF)	R LTAPAS LIQUIDO (LEHOL/HR)	CRAFFORESEESOL DEL FLANIDO	FRACCIDNES MOL DEL VAPOR	
1	121.33		156	1.5540 D 27/3F 0		
<u>.</u>	124.72	175,000 (· · · · · · · · · · · · · · · · · · ·		
- 1913 - 1	124.7?		151 .15266 1.	1 2291 4. 23" 31 4. 13645 1. 191032 4 March	u-06657 ".86895 0.96391 n.30.06 3.00393	
	145.79	172.15366	같은 것을 위한 것			
	145.79		176.91807 1	111209 0.75.155 0.23568 0.00131 U.DU.OF	0.03/03 0.8350/ 0.12364 8.00023 0.00033	
s į	158-111	197.7681 -			11. 11.2570 0 7	
	158.1'2		170, rusha P	LU765 1.62236 U.36562 U.CU473 D.U900		
	171.22	152.1651 8			11-72228 A 44674 2 47488 A	
	171.32		167.1 511)7 C.	11 615 1 .4 81 71 0.6 97 16 11-11-1458		
1	1 . 5. 11	1: 6. 1:1,7	an a		4.6.2147 U. 52310 1 64257 A	
	155.10		156.51141.00	L [1341 P. 354-11 0. 411 179 11.1.3844 11.314101		
	177.4	177.3114.			1044143 1.61344 + 13446] arres + 10019	
	100.41		147.12771 8.	LL 496 1.2577.1 1.64782 1.1 3949 .1.11476	······································	
	415.71	172+1297+			0. C2172 0.32775 0. SARSO 0 07701 1 10411	
	-1- (1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		190.17275	11457 1.17022 ". C101 8 1.17919 U.HANA		
		1. 4. 67 2.77			J+1 1396 11-25783 0.61604 0-14589 3 J0616	
	54'545 57/ Fl		754.16619 0.	11 275 1-13:45 0.62111 J.22124 0.02454		
	6-0." 774 ri	·			0.003 92 0.17944 J.68857 0.12103 0.00715	
er je je	144 4.	4. 7. 7. 7. 7.		11: 73 11-118546 1.65479 0.23434 11.02495		
				TABLA 7.2.2 RESULTANOS DEL PROBLEMA 7.2	U.UUILS U-11445 U.734:15 U.14245 0.00814	
5 CVI

		(CONTINUACION)	
T TAPA	TEMP- (GDSF) (L9HOL/HR)	R CT AP AS LIQUIDO (LONOL/HR) COMPONENTES ALL STUDIO	FRACCIONES NOL DEL VAPOR
11	246 - 67	262-04116 0-00018 0-05174 0-66276 0-25953 0-02595	
12	252.12 125.14116		1. CO125 11.06640 0.74539 0.17840 0.00972
12	253.15	761.00820 0.00004 0.02845 0.63969 0.30458 0.02841	사람이는 것이 있는 것이 있는 것이 있다. 것은 것이 같은 것이 있다. 같은 것은 것은 것이 있는 것이 있는 것이 있는 것이 있는 것이 없는 것
13	264.06 184.08829		0.00005 0.03345 0.71167 0.24187 0.01313
13	264.06	257.75 75 1.10001 1.01340 0-57126 0.5 8099 0.03452	
14	276 • 92 217. 25075		0.0000 0.01572 0.63311 0.33125 0.92010
44	276.92	252.52801 0.00000 0.00584 0.47151 0.47592 0.046 93	
15	291.86 212.52801		U.00000 U.00678 U.515 96 0.44294 0.03452
15	291.86	248.83265 P. CCUUC U.UR231 P. 35312 U.57399 U.D7379	
16	317.91 2; 7.83265		0.000111 0.107260 0.37567 0.55922 0.06273
		그는 그는 것 같은 것 같	としかい とししがく とうし じょうぶん ひとうせい ちゅう たいがく ほうしんせい 気化学 かくなな 気気の (気化) しみ 深いなからない

TABLA 7.2.3 Resultados del problema 7.2

134.

1 (A) -

SALIDAS DE PRODUCTOS Y CARGAS EN LOS INTERCAMBIADORES

à						E L	٨	-			TEM	٩.		FLU	JQ.					FRA	cci	NES	HOL	PA	RA						
1		<u> </u>	AIE	NTE		TAP	<u>^</u>		A51	(6	D3.			HHO	L/H	*)					CON!	ONE	NTES		A		خا دو خار	-			
9										0 									ar an	an (si					1 - 1 - 1 - 1 - 1 - 1 - 1						
Ż	6		SAL	TEN	TE	1			AP		95.	32	18	189.	479	35	0.	8595	7	0.	083	15	0.0	430	3	0.0	133	9	0.0	004	4
																	0.	0000	9												
	1	1 9	SAL	TEN	TE	6					85.	48		21.	970	65	0.	0288	3	0.	013(57	0.0	219	7	0.0	420	5	0.0	368	6
N.											પ્રથ લ્વા						0.	8567	3			çə. Ç	l de la companya				10255		e to s		t,

TÀBLA 7.3.1 RESULTADOS DEL PROBLEMA 7.3

a da balan kasar kas

C-1 c.

CONDICIONES INTERNAS

*{ <u>tapa</u>	CGDS. F)	(LEMOL/HR)	LIQUIDO (LEMOL/HR)	COL	ACIONES	MOL DEL 5 1 AL	LIQUIDO		F R A	CCIONES COMPONEN	MOL DEL	VAPOR	
1	95.32		580.47255	0.02827	0.01279	0.01885	0.01986	0.00199					
2	96.87 96.87	1936.95190	587.83844	0.02767	0.01294	0-02071	0-02745	0.00447	8:00000	0.08524	0-04762	0.01901	0.00102
3 	97.42	1944.31780		0.90641		•			0.84361	0.08500	0.04807	0.02131	0.00178
	96.90	1948.32062	371.04120	0:06668	0.01287	0.02084	0.03047	0.00768	9-84183	0.08483	0.04806	0.02224	0.00276
4	96.90 94.09	1952-31711	\$95.83775	0.02750 0.89396	0_01288	0.02089	0.03509	0.01205	0.00009				
5	94.09		602.66271	0.02778	0.01306	0.02116	0.03447	0.01913	0:00003	U.U	0.04802	0.02275	0.00410
•	87-48				a da Barada -				0.83744	0.08449	0.04800	0.02352	0.00631

TABLE 7.3.2. TABLE 7.3,2; RESULTADOS DEL PROBLEMA 7.3

SE PRESENTA-A CONTINUACION UNA GRAFICA DE COMPOSICIONES En la fase liquida y vapor para los siguientes componentes 3 (41 y 2), 4 (#3 y 4) y finalmente el 5 (#5 y 6) como ordenadas en . Contra el numero de etapas como abscisas

COMPOSICION

2 =

137.-

E.T.R.

4.388 -04 5.202 -03 9.966 -03 1.473 -02 1.949 -02 2.426 -02 2.902 -02 3.378 -02 3.855 -02 4.331 -02 4.807 -02

1.000E+00 6 5		. 1.3	•		2:
		••••			•
2.0006+00 •6 5		4: 1		· · · · · · · · · · · · · · · · · · ·	
	•	1 :			•
3.000E+00 . 6		: 14	:		•
	•			¢•	
4.000E+00 . 6	: 5				
		•			
5.000E+00 . 6	•	5: 1 4		.3	

1 6

6.000E+00 ·

: 6

NUMERO

TABLA 7.3.4 RESULTADOS DEL PROBLEMA 7.3 : 5

3:

DE ETAPA

7.4 PROBLEMA: Absorción (Resolución del Problema 7.3).
 METODO: Ishii/Otto (método alternativo).
 CONVERGENCIA: Criterio de Tomich.
 PROPIEDADES TERMODINAMICAS: Polinomios en función de la temperatura.

Para obtener la solución a este problema se necesitaron seis itera-ciones con un criterio de convergencia de 5.8868E-06 y con una tolerancia de 6.0E-06. A continuación se presentan los resultados obtenidos para este problema (Tablas 7.4.1 a 7.4.4).

7.5 PROBLEMA: METODO: CONVERGENCIA: Destilación con condensador parcial. Método alternativo de Ishii-Otto. Suma de cuadrados.

ESPECIFICACIONES:

Las mismas que en el problema 7.1 a excep ción de:

DESTILADO FASE VAPOR: 20.00 Lbmol/hr DESTILADO FASE LIQUIDA: 0.01 Lbmol/hr PROPIEDADES TERMODINAMICAS: Polinomios en función de la temperatura. La convergencia de este problema; así como sus resultados se muestran en las Tablas 7.5.1 a 7.5.5.

138. -

140

40 1.1

				RESULTADOS FANALES Condiciones internas				
ETAPA	(165:1)	VAPOL VAPOL/HR)	ETAPAS LIQUIDO (LBHOL/HR)	COMPONENTE POL AL LIQUEDO	7R 4	CCIDNES NOL DI	L VAPOR	ار در ایک ۱۹۹۵ - ۲۰ ۱۹۹۵ - ۲۰
•	95.61	1333,91443		가 있는 것은 것을 가지 않는 것은 것을 통해야 한다. 같은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것을 했다.	0.85984	U_08346 Q_043	02 9.01318	0.00041
2	95.61	1933.72205	577.96731	1 1.62315 C.01272 J.J1876 8.01939 D.00192	0.84743	6 0.08525 0.041	59 0.01867	0.00394
2	97.04		584.62596	- 1.02759 L.01293 P.02362 P.02682 R.JU609	0.00000	,		
3	96.93	1746.54329			8:04309	5 3.08504 0.041	05 0.02092	0.00163
3	96.93 95.43	1944. \$1651	599.90201	" (2.94250	2 U.QE468 0.041	106 0.02193	0.00255
	95.48		575.P7845	5 0-02768 F.U1209 U.O2104 0.03244 D.01152	0.0000	,		
5	92.69	1036.99234		A SANG CARTS A MANTE A MESE A ANNA	0.0000	5 9_98474 0.940 3	0.02266	0.00391
2 5	14.96	1759.11718	-113 . 9747	1. 1321	3.93737	3.03453 0.04	45 0.12357	0.00421
	34.06		~ A22.53557	* 1. 12802 C.01372 3.02203 0.04244 U.J3690				

TABLA 7.4.2 RESIL TADOS DEL PROBLEMA 7.4

"SF PRESENTA A CONTINUACION UNA GRAFICA DE TEMPERATURA

(ASJI, WADULT FL #1), FLUJO DF VAPOR (#2) Y FLUJU DE

LIQUIDO (W3). COMO ORDENADAS EN CONTRA DEL NUMERO DE Etapas como adscisas

						• 	a balan dan Renda		
ta and a second seco								FLUJU	
A. 486CO 1 2.776C	1-2-4-5-27++2	A. 1741+02 1.34	7F + 1 - 1 - 1 - 2	26+13 1-5	101+05 1.5	976+05 1.5	45E+05 1.7	726+05 1.	260 E +D 5
r+11 1		· :	•				•	: 2	
E + 1: ¹⁷ • 1		· • •							2.
••• î •1									
•:4: 1	•	· :			•				
••••		•			•			•	2
r.•146 🕴 📫		· · · ·		•	•	• • • • • • • • • • • • • • • • • • •		•	2

NUMCRO

DETTAPA

LANEA 7,4,3 RESULTAINES IN F. PROBLEMA 7,4 4001.....

10

-

COMPOSICION 1.2771-1-4-2.1451-13 2.7.01-12 3.4341-12 4.1401-72 4.9361-22 5.6311-92 6.3352-02 7.0732-02 7.1782-02 8.5342-02 . . 1.0100+010 16 35. 4 .3 2.07 DE +00 1 : 1 3.1138.400.4 5 2 36-S. 6 1. 1. 1. 4.1 501+26 1 5.0000+000-1 . 1 6 **1**43 (# 6.1.01+50.01 41141 813 DE ETAPA TANA 7.4.4 RUSHLADOS DELS PROBLEMA 7.4 나는 말에서 나와서? 214 - 42 10 10 202

(1) 14 (17) •1

E . T . A.

4

CHATRA DEL NUMERO DE LTAPAS COMO AUSCISAS

IN LA FASE LIQUIDA Y VAPOR PAPA LOS SIGUIENTES COMPONENTES 2 (0) Y 22,

3 (43 Y 4) / [] HALMENTE FL. 4 (45 Y 6) CONO ORDENADAS EN.

SE PRESENTA A CONTINUACION UNA GRAFICA DE COMPOSICIUNES

SA' INAS DE PROCUCIOS Y CARGAS EN LOS INTERCAPBIADORES

C0 P	FIENTE DE LA	TASE (COS	FLUJO F) (LUPCL/HP)	Ľ	FRACCIONES OS COPPONES	POL PARA	i Anno Anno Aligo Anno 2010 - Anno 2010 A g hada an ang aligo	serre de la comunicación Comunicación de la comunicación de
DES	11LADO 1	VAP 136	.41 20.CUQJB	0,14727	0.88022	9.95248	V.10203	0.66000
DES	13LADO 1	LI:9 126	.41 C.e1000	0.05369	0.82241	0.12370	9.00020	0.0000
· SAL	11. 17	VAP 254	2e 37 1 17+1)	n.00/012	0,05341	0.681 ef	0,24582	0.09485
SAL	JCA	L19 136	.24 3.00000	3.91094	0+62991	8.35595	4.06318	8.08501
FCN	tas 16	LI9 376	.71 39.59000	0.00001	0.00148	0,24278	13-64440	0.11135

CIRGA EN EL CORDENSADOR . -- 879848+06 BTU/NB

143

TARLA 7.5.1 Resultados del problema 7.5

CONDICIONES INTERNAS

•

 $\prod_{\substack{i=1\\i=1\\j \in [i], i \in [i$

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -4 1

				CONDICIONES INTERMAS	
<u>51454</u>	(GDS. 1)	LUJJS P VAPOA (LUNOL/HR)	TAPAS LIQUIDO (LEMCL/HR)	FRACIONES POL DEL LIQUIDC COPPONENTES T AL S	FRACCIONES POL CEL VAPOR Componente 1 al 3
1	126.41	ccace.cs			a. ¹⁴ 727 0.88022 0.95248 0.06003 0.88000
1	126.41		159,0791 11	1 5369 1 - 92241 No 12370 10 - 1 10 20 10 - 000000	ΰ
5	142.01	173.33537		n de la constante de la constan El constante de la constante de	0.0(476 ⁰ .81978 0.1152 ⁸ 0.08018 0.08080
2	\$42. 61		147.96217 1.	02123 0.75059 0.22590 M.uones 0.0030	0
2	156.24	167.37217			0.03633 0.75685 0.20600 0.00077 0.00000
2	\$56.24		107.46445 71	1-1 94 1 .62991 10-35595 0.01 318 0.0000C	1
4	162.38	133.47415			0.01155 0.65615 0.30919 0.00270 0.0001
4	161.31	요즘 같은 것 가 가 있었다. 같은 것 같은 것 같은 것 같은 것 같은 것 같이 있다.	103.57209 9.	C2193 0.50077 0+48954 0.00969 0.0000	6
5	180.02	126.53237			0.61022 0.52126 0.40962 0.00861 0.00005
5	180.0:		107.12296 11	TT 815 11-3 714 10-57993 1:402553 0-0003	4
٤.	1 51 • 17	123.13295			0.01085 0.44744 0.48758 0.02083 0.00028
e	191-17-		\$5.43979].	C\$751 0.29866 0.63259 0.05965 0.0016	8
7	232-57	117.44375			0.02112 0.35134 0.52798 0.04421 0.00136
7	202-57		\$1.45553 7.1	[7 6 11.23367 0.62838 U.12391 U.0065	
2	217.57	114.43553			0.03179 0.34348 0.52012 0.09903 0.00518
E	217.57		142.73329 7.	GC 662 0.12555 0.55°53 0-22431 0.0235	9 ·
\$	227.22	113.74329			0.02186 0.25752 9.54800 0.12543 0.88798
5	227.12		193.10746 1.	306415 1.1 50 55 1.5 5256 0- 26207 A.O 30 6	6
10	226.11	121.11746			0.01676 9.22937 9.61531 0.13978 8.08847
16	236.11	Private States and States an	231.65456 0.	5127 0.10955 0.58625 U-27201 C.0345	3
	二、 "你们,你们不知道,你听了你,真好了啊啊?"	医水白 化甲基苯基 计正式分子 医子宫 医子宫 计算法 计算法	이 것이다. 이상이는 것 것 같아요. 이상 것 같이 있는 것 같아. 한 것	an warmen fan de ferferen sjoef ferende en ferende ferende ferende ferende ferende ferende ferende ferende fer	

TABLA 7.5.2

RESULTADOS DEL PROBLEMA 7.5

and the second second

(CONTINUACION)

 $A = \{a_i\}_{i \in \mathcal{I}} \in \mathcal{I}_{\mathcal{I}}$

1.11

ETAFA	(GDS. /)	LUJOS POR	ELAPAS (LIGNIDC (LIGNIDC) (COPPONENTES 4 AL	FRAGE PORE TEOL BEL	1400 - 10000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -
11	244.35	134.65456		0.0C202 0.16084 0.668*0	0.15923 8.88991
11	244,3!		203.99072 1.60036 0.07286 0.60434 7.25275 0.03169		
· •2.5	253,16	127-01333		0.00055 0.10058 0.45555	. D.11140 0.01153
12	253.10		214.76904 0. CC019 0.4327 11.59617 0.32684 0.03369		
12	264.28	. 137.77934		0.00012 0.05341 0.68181	0.24982 8.81485
12	264.22		203,51667 1.00832 0.02138 0.54668 0.35296 0.03457		
14	276.66	1:3.52667		0.00002 0.02624 9.62997	0.33749 0.02128
14	276.66	2	201. 17166 0. G: 000 0.00976 0.46323 9.47721 N.04981	•	
15	29.53	151.07356		0-UCOQD U.01121 8.53794	0.43571 0.43455
15	255-53	2012년 11월 12일 - 12일 12일 - 12일 - 12 12일 - 12일 - 12g	199.76735).6:000 0.00405 0.33634 1.56824 0.07138	· .	
16	306.7	151.77733		0.00000 0.00470 0.32454	0.54905 0.4(131
16	26.21		39.997 JE 0.6.000 3.00148 0.24278 0.4440 0.11135		
			TABLA 7.5.3 DESULTADOS DEL DROALEMA 7.5	≁ (41) ↔	

.

145.-

TABLA 7.5.3 RESULTADOS DEL PROBLEMA 7.5

. . . AN

SC PEISENTA & CONTINUACION UNA GRAITCA DO SEPPERATIONA TASTUTADOLE EL RIJ, ILLIO DE VAPOR (42) Y FEUJO CE LIQUIDG CATI COPO CREENADAS EN CONTRA LEL AUPENO DE ETAPAS COPO AHSCISAS

ſţIJJOS

100 C			and the second sec	 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.				
		12						
		1	4		•			
	2		1.00	•	•			
	1			•	•	:		
	1997 - 1997 -			<u> </u>				
	- 1 -			: n :	•			
	2, 2	1 2				:		
	2			•	:			net a seneral de la Receberación de la composición de la composición de la composición de la composición de la
•	2.			: .	• • •			
en der dat er som Sonder der	1				•	:1	energia de la composición de la compos La composición de la c	
• 2000 2000 2000 • 2000 2000 2000 • 2000 2000	<u>ع</u>			• • •		•		
						•		
		2		: :	•	•		
		2002		••••••••••	•	• • • • • • • • • • • • • •		

4

RESULTADOS DEL PROBLEMA 7.5

JE PREJENTA A CONTINUACION UNA GRAFICA DE COPPOSECIONES En la fase liguida y vapor fara los siguien⁷es copponentes 2 (#1 y 2), 3 (#3 y 4) y finalmente el ⁴ (#⁵ y 6) como grafmaças en Contpa del numero de etapas como abscisas

£01+00		: 3									56-
COEACO										1	56-
2016-463											56-
CUE+LO 2	•			4		1. 1. 1. 1. 1. 1. 1.					
LOE+0J	6:				- 1. C.		2				
101+303						1. 1.					an an ann an Anna Anna An Anna Anna Anna
CC0E+C0	د ا	: 5	1				4.00				
CO E + 60							4 3				
CCOE+LO		6 1		5 2			1				31-
COE+61		16	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	5.5 S				1			
12+303	1	. 4									
201+11	1										
	1 2										
1101411	11					3 5					
::)[+61	2					6	4 5				
	2 3 2		All Contracts					5	•		

TABLA 7.5.5 RESULTADOS DEL PROBLEMA 7.5

Estal.

7.6 PROBLEMA: Destilación con condensador total. METODO: Propuesto por Fredenslund y coautores.

CONVERGENCIA:

Criterio de Discrepancias.

Esta columna fue descrita por Fredenslund (3), el programa también fue desarrollado por él y colaboradores.

ESPECIE	ALIMENTACION 1	ALIMENTACION 2
QUIMICA	(MOL/HR)	(MOL/HR)
Etanol	0.00	25.00
N-Propanol	12.50	12.50
Agua Acido Acético	12.50 25.00	12.50 0.00

NUMERO DE ETAPAS: Treinta, incluyendo condensador y rehervidor (las etapas se numeran de abajo a arriba).

ų,

ALIMENTACIONES:

같은 것은 것을 가지 않는 것을 하는 것은 것을 가지 않는 것을 가지 않는 것을 가지 않는 것을 하는 것을 수 있다. 것을 하는 것을 수 있다. 것을 하는 것을 하는 것을 수 있는 것을 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있는 것을 것을 수 있는 것을 것을 것을 것을 것을 것을 것 같이 않는 것을 것을 것을 것 같이 않는 것을 것 같이 않는 것을 것 같이 않는 것을 것 같이 않는 것을 것 않는 것 같이 않는 것 않는 것 같이 않는 것 같이 않는 것 같이 않는 것 않는 것 같이 않는 것 않는 것 않는 것 같이 않는 것 않는	
같은 가장 방법에 있는 것을 많은 것이라. 말 것 같은 것을 많을까?	
Fase Llquida	Vapor
Fluio (Mol/hr) 50.0	50 N
Temperatura (°C) 85	110

PRESION DE LA COLUMNA: 1 ATM.

TEMPERATURAS INICIALES:

	Etapa	1	100	°C
i.	Etapa	30	80	°C

DESCILADO VAPCE

REFLUJO EXTERNO

2.0

40 Mol/hr

SALIDA LATERAL DEL LIQUIDO EN EL PLATO 10 20 Mol/hr

PROPIEDADES:

Entalplas por medio de polinomios en función de la temperatura. Relaciones de equilibrio con paróme---tros de UNIFAC.

El método converge én tan sólo cinco iteraciones con una tolerancia de 0.01 y un criterio de 3.4518E-02. Ver tablas 7.6.1 a 7.6.6.

R E S RESULTADOS FINALES

0.06387E+115 CAL /HR

ininii: contrainii:

cn i 0.

SALIDAS DE PRODUCTOS

c 0	RF	1 E)	ITE	C,	TAP.	٨	ſ	A SI		(0	TE	KP -)		(M	LU	}0 / H R)				LO	F R S C	ACC	I ^O NE	e S Nte		PA AL	RA	.	8 - 47 - 47			
																															<u>ن</u> مو :		کی کہ د	1.89
ÞE	51	11/	DÖ		:r			VA(8;	2.1	្រុ			40	bu.	J:10	l		163	9 	n.	158 	9U 75	. U	- 3 3	47a		J .(1000			
5 A 5 A	LI.	07. 0 S			н •			. 10	4		80 111	· • 4	ء ان			20	. (1	600 6400		-111	28	, ,	U	361	R2			(~) L 7 L		р., () () ()	202	,		
										(j.).				ः मृष्ट्र											- -	. 7								

TABLA 7.6.1. RESULTADOS UEL PROBLEMA 7.6

LARGA DEL REHERVIDOR .

******	1.1111	. :!!	****		0.23		•
				••••			• . •
	;		***	-			· · · ·
			•		¥	۰.	• •
11 11		*:	2.1			5.3	
					1		
				4.4	1		: :
	- 14				÷.	: ;	
44.9	11 B		٠	**		۰.	
		- 1943	****		•	A	

Ś 1-1 ٠.

RESULTADOS FINALES

CUNDICIONES INTERMAS

ETAPA	(GDS. 2)	FLUJOS P VAPOR (HOL/IIP.)	CHOLTH APAC	PRACETONES HOL PEL VAPOR	FRACCIONES MOL DEL LIQUIDO COMPORENTES 1 AL 4
1	107.51	81.917	4U_(H .)	1.Li 621 1.28586 1 8928 D. 01865	u.,11282 u.36182 u.20474 0.42363
•	102.14	77.577	121.917	1.2.1.65 11.336911 L.16685 U.48561	U-11759 11-38300 0-29293 0-30948
	99.17	74•3(2	117.527	1 .L 1372 U. 34796 U. 22363 U. 41476	4.02204 0.38450 J.37128 D.22222
	97.LU	72.270	11 4, 31 2	L.1648 4.34998 4.27266 4.36695	U.U2582 U.58161 0.43495 U.16162
5	95.6(71.360	11 2.270	: . (11884 11-34731 0.34922 1.32443	U.D2947 11.37642 J.47137 0.12314
4	94.75	70.262		(. 6)21.84 U.243a (3337530161	80.0003189.0.37144.0.49657.0.10009.0000
7	74.26	68.419	111,362	.1:2259 1:34.142 U.34895 J.269114	A.U3443 4.56743 4.51136 0.08676
8	88.19	67.669	: 3.619	1.14458 1.41209 0.44607 0.19727	J=05044 N=38043 0=53175 0=03738
9	86.98	67•270	57.67.3	1.06349 L.427911 L.46914 H.03946	J-36869 U.38213 0.53469 0.91458
u	86.22	47.119	57.271	1.1.850242024 0.47204 0.01269	1.49939 4.37671 3.52764 0.40527

TABLA 7.6.2 Resultados del problema 7.6

NI SULLADOS "LIVALI-(CONTINUACION)

14 51

A.S.

63

LTAPA	(605. 2)	(1017)41:)		FRACCIONTS POL PLL VAPON	INACCIONES POL DEL LIQUIDO
- 11	- 15.24	61.: 19	77.119	1.11 294 0.42202 1.46586 0.11458	u.11206 u.36866 u.31762 u.au187
12	35.77	6762	77.169	1.12281 0.41863 0.45692 1.40163	J.13420 U.35932 J.3USR1 U.JU066
17	85.14	c1, 172	:7.042	1 .14263 11.411.55 1.44682 ".ita158	u.1371:) f. 14927 u.4934j u.00023
14	85,51	67.[37		(.16211 ^{1.} .40177 0.43602 0.Junzo	1.16092 0.11865 0.68735 0.00008
15	85.12	67.111	77.017	1 .12775 U.39251 U.42464 U.UV.147	J.24580 N.12751 V.46066 0.40303
16	35.23	67.1:0	77.111	1 .21 436 1.3828141274 1	U.23185 11.19589 U.45230 U.40001
17 ,	85.L î	67.1(3	77.126	1.227112 1.37268 0.40030 0.00001	J.25895 U.JUJAD J.43725 D.00000
11	64.89	67.104	77.163	L: 25065 0.36713 0.38722 0.10000	n.28723 N.29127 9.42151 V.JUDJD
19	54.71	67.223	77.11.4	1.27526 (1.35126 J.37353 J.JUNUN	0.31633 0.27836 0.40510 0.00000
દા	54.51	67.:14	77.278	1.31478 0.32994 0.35928 0.104101	4.34672 U.28518 J.34111 U.3030D

TAULA 7.6.3 HESULTANOS DEL: PROBLEMA 7,6

(CONTINUACION)

ĽTAPJ	COLET CO	רנטורג פ אנגיאיר	FRASCIONES MOL DEL VAPOR	F#ACCIONES MOL DEL LIQUEDO COMPONENTES 1 AL
21	84.22	67.267	1.32717 1.32844 0-34450 H.ONJUN	4.37735 0.25184 0.37661 U.JUJOD
22	34.16	57.245	(-35792 U.31679 U.32929 O.JUILU	U. AUG 74 0. 23851 U. 15275 U. Unanu
2:	83.8:	110.863	7-145 1.38109 0.30535 0.31376 0.00000	4.43994 h.22535 J.33671 H. UNDUD
24	83.75	110.706	To nit "	U.44701 U.23314 B.34505 U.40000
21	- 83.64	110, 31'?	To TA 1. 3761 5 11.25781 11.36614 1. 14100	B.44451 0 2023 1 34027 B 40304
21	87.54	11.1.0:8	70 01 0 1 - 38447 1 - 24147 (1.37411 ¹ .01440)	A ARENT IN LOASE IN ERIAG IN JUNN
27	·[:.::	117.351	(.39#77 11,22534 P.375#9 H.INHIUN	
21	83.1 7	11 0. 9(6	7-2 0 	
29	82.71	120,170	1.45600 0.1.4622 0.35771 0.90000	n'eath n'isat n'isat n'annad
1	AZ,1;	4 1. 7 1 1	17-710 1.51 (39 1-15891 0.33474 0.001400	0.5/628 0.12402 0.29978 0.0000

1ABLA 7.6.4 RESULTADOS DEL PROBLEMA 7.6

SI FRESENTA A CONTINUACION UNA GRAFICA DE TEMPERATURA (ISIGIANOLE EL "1), FLUJO DE VAPOR (#2) Y FLUJO DE LIQUINC (#3) COMO OPDINADAS EN ETAPAS COMO ABSC LIQUINO (#3) CONO OPPINADAS EN CONTRA DEL MURERO DE ETAPAS COND ABSCISAS

ru^jos

*•F(1) E++ C						1		The second s
7-11: 1-11: •			, :					
2. 1 1 E+14								
44F11:E+L1: +		::::::::::::::::::::::::::::::::::::::			- F			
f , () (C+ ()) +		· · · · · · · · · · · · · · · · · · ·						
(• () C ++) •								
7.171 6+61		: ? :						
C. [E+]		: : :		1:		A MARINE TRAV		
ALTICOUP + TOTALS		: 2		10:00	Sector and the sector	•		
1.111L+L1						- 		
1.11PC+/1				••••				
•2(+E+I1. •		: 2 :		• :				
.7/of+c1 + 200 - 20		and the second second second		1				
.411-E+11 .		: .	3			•		
.Sti E+H1		: 2 :	S : 1	9. .	ne og gester om Restanter	•		
• Cf (T + U1 •	•	ter in ender der	3 1			• • •		i se i <u>de sono</u> de la composición de la Composición de la composición de la comp
.711E+L1 •			- S - S 1					na di seri di seri da s Seri da seri da
• 1 HE+1 1 •	•	: : :	3 : 1					
.9fr:E+L1 +		- : 2 - :	J : 1					
aree part 🕴 👘 🗄 🖓		: : : : :	3 . 1				9	
.1006+01		: 2 :	3. : 1					
21112+111		: 2 :			er angenerationen er i Statue	e et destruit.	•	
•201 L+01		•	·) : 1					
4111401 .			5: 1					영양방송 등을 가격에 가지 않는다. 영양방송 등을 가격하는 것이다. 영양방송 등을 가격하는 것이다.
MILENIA 1			3: 1	• • • • • •			· · · · · · · · · ·	
. EL T E+1+1	• 1997 • 1997 • 1997 • 1997 • 1997 • 1997 • 1997 • 1997 • 1997 • 1997 • 1997 • 1997 • 1997 • 1997 • 1997 • 1997		3: 1	<u>a Auropean ann an Auropean</u> Rainn an Auropean ann an Auropean an Aur		<u></u>	, .	
71 PE+01			3: 1				· · · · · · · · · · · · · · · · · · ·	
.erue+01	• ***		s: 1			•		
\$1+E+U1 •	- A		3: 1	ter en				
.CLIFE+111 2	•		3:1			<u>n an Mineria (</u> Sing ang ang ang ang ang ang ang ang ang a	· · · · · · · · · · ·	Administration of the
()			• • • • • • • • • • • • • • • • • • •		- * * .			a transformer and a
UPI #0		an an Argan Araba an Argan	and the second					
L TTACA								1

RESULTADOS DEL PROBLEMA 7.6

CE FRESHITA A CONTINUACIUM UNA GRAFICA DE CO^mposiciones LN LA FACE LIQUIDA Y VAFOR PARA LOS SIGUIENTES COMPONENTES 3 (#1 Y 2), C (#" Y 4) Y FINALHENTE EL 4 (#5 Y ⁶) COMO ORDENADAS ^{EN} C(NTRA DEL NUMEPO DE ETAPAS COMO AMSCISAS

COMPOSICION

2.7411-11 6-1676-2 1.2276-11 1-8-61-11 2.4754-11 3.093E-11 3.7121-01 4-331E-11 4.949E-01 5.568E-01 6.187E-01 1 . FTI E+040 +1 2 s 2. CT1+E4141 + 12 5 36-7-11-1+14+ 1 2 4 111-L+14 11 1 4 5-11+52+611 1.2 6 TTI C+111 1 2 6 1 7.0111124114 1.1 - 61: ESTOPEAUL • 3 02611-E+C++ 12 1.00 1411 12 . +6.5 6 1.1.11.E+L.1 - 65 1. . 56-1 1.200541 2 56 1.211+8+64 172 56-2. 1 4160+19 56-2 56-1.611.8+11 56-1 .7114415 56-1.5(0 0+1 1 56-1.9101411 56-2.3 2.(117404 56-3 2.1106411 14-56-2.211.0403 56. 2.211+0401 43 2.4101411 3.1 2.511 E+11 3 1 2 2.6106+11 1 :3 1 2. "11 0401 56-2.51417401 2 56-2 . 111 E+L1 155 NUFERO 1 LE ITAPA TABLA 7.6.6

RESULTADOS DEL PROBLEMA 7.6

7.7	PROBLEMA Resolución del problema 7.5	
	Takid Otto amining!	
	MELODO ISKU-OTIO original.	
	CONVERCENCIA Suma de cuadrados	
	FRUPIEDAUES: FOURIOMIOS en funcion de la temperatur	·a

Para obtener la solución a este problema se requirieron siete iteraciones, con un criterio de convergencia de 4.352-07 y una tolérancia de 1.602-05. Los resultados se observan en las tablas 7.7.1 a la 7.7.3.

156.-

	FRCBLEMA	on con	condens	ador to	otal
•		~ 7			
	MEIUUU Naphtali	- Sanan	io lm		
	CONVERGENCIA Funciones	de dis	crepanc	ia.	
>-	PROPIEDADES: Entalplas	por co	rrelaci	on de c	Thao-Seader

Essa columna fue descrita por Perry y Chilton (10)

⁻.3

ESPECIE	ALIMENTACION
<u>QUIMICA</u>	(FRACCION MOL)
Propano	0.05
i-Butano	0.15
n-Butano	0.25
i-Pentano	0.20
n-Pentano	0.35

Número de etapas

Alimentación

Localiz	ación:		Ø	tapa 6
Fase:			2	lquida
Flujo (lbmol-hr)	1	00
Tempera	tura		1	83 ° F
Presión de	la colum	na	1	20 Peia

TEMPERATURAS INICIALES:

그는 것이 같은 것이 같이	
ΕΤΆΡΑ 1	165 ° F
ETAPA 12	236.2 ° I
	그 생각 사람이 있는 것이 아니는 것이 가지 않는 것을 알았는 것을 물었다.
PEFFLITO FYTERNO.	2 58
REFEDEDO EXIENNO.	
	사람은 일을 만들었다. 그는 것 같은 것 같은 것 같은 것을 많은 것을 물질을 했다.
FONDOS:	51.10 Lbmol/hr
그는 그는 이는 것 같은 사람들을 벗겨 중감 뿌려는 것.	의 방법 이 것이 가지 않는 것이 가지 않는 것을 가 없다. 것을 많은 것을 했다.
DEADTEDADES TERMODINAMICAS.	Convelación de Chao-Seader y entalplas por
TULIEDUND IBINODIANITONO.	
그는 그는 것이 같아요. 김 가슴을 물었다. 말에 가 많은 것이 같아요.	2011년 - 1948년 - 1948년 1948년 1947년 - 1949년 1948년 1 1949년 - 1948년 1
그는 그는 것을 수 있는 것을 하는 것을 하는 것을 수 있는 것을 것을 수 있는 것을 것을 수 있다. 것을 것 같이 것 같이 같이 않는 것 않는 것 같이 않는 것 않는 것 않는 것 같이 않는 것 같이 않는 것 않는 것 같이 않는 것 같이 않는 것 같이 않는 것 같이 않는 것 않는	ecuación de estado.

doce

Después de ocho iteraciones se encontró la solución con una tolerancia de 1.32E-04 y un criterio de convergencia de 1.06E-04. Los resultados obtenidos se encuentran en las Tablas 7.8.1 a la 7.8.5

SALIDAS DE PRODUCTOS Y CARGAS EN LOS INTERCAMBIADORES

1	COR	RIE	NTE	Ê	FA F	Â.	ŗ	ASE	(GDS.	1P 7)		(1	FLUJO AMOL/HR)	 L	FRACE	TONES	S MÓL Entes	PARA	5				
1) E 5	Ţ1L	ADO		1		- ۲	۸P		126.	36			23.05660	 J.14732	U_1	37634	υ.	0 52 3 0		0.3303		1. 1873	4
1	DES	TIL	AD D		1		L	19		126.	39	r . Sant		0.01000	0.05372	0.1	82270	ι.	1 25 5 5	٥.	00050		0.00ú3	3
	5 AL	104			13		۷	AP		264.	27			37.66000	1.00115	3.1	15342	u ₊	651 84		24977	_	0.0145	\$
	AL	101			3		Ľ	:4		156.	13			3.000000	3+.11.195	. 0.	5049	ů.	355 37	υ.	00317		u.u0a3	i,
1	אני ז	00 S			16		L	10		31.6.	70			39.99000	2.00303	U.,	13148	Ņ.,	24252		644 57		4.1113	6

CARGA EN EL CONDENSADOR . -. 9511 SELUS OTU/HR

CARGA DEL REHERVIDON - .122928+07 BTU/HR

158.-

TABLA 7,7.1 RESULTADOS DEL PROBLEMA 7,7

CONDICIONES INTERNAS

ETAPA	(GDS. F)	LUJOS PO	R ETAPAS LIQUIDO FRACIONES NOL DEL LIQUIDO FRACCIONES NOL DEL VAPOR (LINOLTHR) COMPONENTES AL S COMPONENTES AL S
	126.3L	21-09073	J.14732 0.49934 0.U5230 0.00003 0.00000
•	126.31		154.47506 4.05372 (.82270 0.12333 0.30020 0.40300
	142.55	170.019505	J.06478 0.82336 U.11498 0.4348 8.0000
2	142.55		147.01177 0.02125 F.75147 J.22841 0.00037 D.UNJJU
3	154-13	167.931.7	C.63434 U.75732 0.20557 0.00077 0.0000
3	156.18		147.51221 (2.01095 (.63049 3.35537 0.43317 0.4CUJ1
•	103-35	130. 53221	C.D3194 J.65664 U.30872 J.JJ269 D.00031
	168.32	a da ante da compositiva de la composit Compositiva de la compositiva de la comp	103.61216 0.30.893 0.50133 3.44333 (.00967 0.003)6
5	179.97	126.63215	3.03394 3.55182 0.40920 0.03799 0.03035
5	179.97		161.15616.0.01305 (.18757 4.57856 0.02550 0.00334
6	191.13	123,17616	U.33814 D.466779 D.46779 J.42050 0.00328
0	191.13		96,48854 J. 11775 (.29995
	2.12.95	11 7.4 3654	0.03111 0.39134 0.32782 0.04817 0.00136
1	242.95		91267036 1226746 1.23381 2.52422 3.12385 0.2608
4	217.55	114.47954	L.V3178 J. 34358 D. 52008 J.D9899 0.00535
-	217.55		142 75343 1. 11 662 1. 18562 1. 55951 C. 22425 D. J2398
9	227.31	115.77343	0.02107 J.29757 0.54798 A.12540 0.00795
9	2-7-31		199112648 U.UN413 C.ISPSV J.SS233 D.26222 N.UJJ60
16	236.11	121.14643	L_JJ673 J_22941 U_61531 J_13966 Q_63836
13	236.10		- 211.67269 A.V(127 6.11958 J.51628 0.27196 D.03342
an and every side	میں جونڈ کا میں ایک ایک		TADLA 7.7.2
			ALCHI LADOC ULI UDINI KHA V V
en an an the state of the state		이 이 것은 것을 같아.	사람이 가장 같다. 이는 이는 이는 이는 이는 이는 것을 다 가슴을 다 물건을 받았다. 물건을 받았다. 말을 가 있다. 말을 받았는 것을 다 나라 말을 받았는 것을 다 나라 가 있다. 나라 가 있는 것을 다 나라 가 있다. 나라 가 있는 것을 다 나라 가 있는 것을 하는 것을 수 있다. 나라 가 있는 것을 다 나라 가 있는 것을 수 있다. 나라 가 있는 것을 다 나라 가 있는 것을 수 있다. 나라는 것을 수 있다. 나라 가 있는 것을 수 있다. 아니는 아니는 것을 수 있다. 아니는 아니는 것을 수 있다. 아니는

TABLA 7.7.2

BESHI TADAS ALL PRIME CHA. 3 2 And the second sec

*ه*ر ۱

	1		11 N. A. 1999			
		and the second second	and the state of			
				والأحجاز والعارين والمتعاوي أنكر والرو	물을 물을 가 가지?	
			성상 위험 가지 않는 것이다. 이상 위험 것이 같이	KESULTADUS FINALIA		
- 42. A				[2019년 - 1999년 1919년 1919년 1919년 - 1919년 1919 1919년 - 1919년 19	있는 것은 말한 말한 것을 하는 것이다. 같은 것은 말한 말한 것은 것은 것은 것은 것은 것이다.	
		연습률이 같은 것을 받는다. 사람들이 있는 것을 많이 있는		CONTINUICIDAT		
an degeneration.	YEMP.	YAPU	LIQUIDO	FRACIONES TOL DEL LIBUIDO	FRACEFONES HOL DEL VAPOR	
			([]=01784)		EUGPONENTE I AL S	
	• • • • • •	174 49747			11 7.3134 13 84387 11 44368 A 45	010 A 15361
	744 14		244 61744	11 1 114 1 1 7382 1 AVAR 7 309778 11 13144		
	2 244.74	127 12744			0 00355 0 10105 a 40557 0 1a	176 A A1152
a - giada	• • •		3 4 71474	5 1- FLID # 1.4178 1. 53515		130 0201122
	3 366 27	172 9 4.21		STOLED CONTRACTOR STOLE	A 101377 (0 1814) A 44144 A 34	
	3 204,17	14140 2044	217 0146	D 1.12 1.2118	U-U-U-U-U-U-U-U-U-U-U-U-U-I-U-I-U-I-U	··· 4.01433
	1 274.44	143 14384	C 3, 3(3 m			121 A 49697 -
	1 174 44	0.000	211 00701	1	APROPE 1985053 8:05101 4:33	1
والم المعطور الم	• • • • • • • • • • • • • • • • • • • •	144 (1994) 1441 (1994)	*1 14 7671			
	5 24 . 13 6 307 03	101411471	104 7475X	A REPART & MARK A SEALO & CARSA & BARA		200 0-13412
1	· · · · · · · ·	463 37773	177470733	111 - C - A - A - A - A - A - A - A - A - A	· · · · · · · · · · · · · · · · · · ·	
	a	1234(3/23	1.0 001	* * * *		7J1 0.J4133
- 1 4	5. 5. 7.	~	3 Y & Y Y, 11.	* +1+ "WW.+ Frat #1+ # #+ C+ C+ C+ C+ C+ C+ S/ D. 19336		

780.-

TAGLA 7.7.3 RESULTADOS DEL PROBLIMA 7.7

د.

TABLA 7.8.1 RESULTADOS DEL PROBLEMA 7.8

Ċ.

÷.

	DESTILAS PROBLINA 7,3 DE	IGH DE HULTIGH Geltilacion	PONENTES	PAGI 1. A	7
PLATE 4 PFES	1Ci, 12:	TLYPERATURA	195.821 EF1	CI ^{ln} cia 1.,	' vu 1
	, the dust and d	FRACEION HOL	MOLES	GUIDO FRACCION MGL	
PRCF/ 20 2-967480 N-967480 1-9687480 N-9687480	7.4144	44379755-1	1 1 728574 18.22951 4026974 78.71172 31.13646	1496875E- 1395984 1-2491975 1-2296066 1-2677691	•• 1
ENTALPIOTALES	1831-243		116.2536	•	
FLATO 5 PRES	1°6 12.42	TENPERATURA	173.401 EF1	CIENCIA 1.	s-lint
	UDL15	APOR FRACCION NCL	POLES	QUIDO FRACCIDN PDL	e a se
FROFAFC 1-3UTANC 		4.7:512E-1 1377.001 1512522 0.212650	1 1 471465 1 1 4651 3 8 48 18 1 8 48 19 1 9 1 8 19 1 9 1 9 1 9 1 9	1280668E- 1133065 1-2538282 1-2538282 1-3329733	11
CLIE TOTALES	13531734	•	114.82c5 394.8616		
PLATO 6 PRLS	161, 12.,	TENPERATURA	195-859 EF1	CIENCIA 1.	1 ممان
	NJLIS V	FRACCION PCL	FOLES LT	QUIDO FRACCION MOL	

		HULLS	FRACCION PCL	FOLES	FRACCION MOL	
FRO 1-0 1-0 1-7	(A''C (+ ' A') (+	4444		571575 777575 79757575 79757575 7975775775 7975775775775 7975775775775775775775775775775775775775	-11051756 1 97033688-11 1.222073 1.2224737	
P SL E M T	AC PIATALES	1411.24		\$62:37:3	• 	

TABLA 7.8.2

RESULTADOS DEL PROBLEMA 7.8

																							 								 ••
				~ .																	-		 								 -
						_																	-								
							- * *							1.00									-								
									~				S	- mar.						••					•						
																							•				-	•••	-		
						· • •	12.04																								
		_																	_												
																							-								
																														_	
							· · · ·																•				•••				
				100.00																											
												_																			
					10.00			- 1 C							•							2.7	-	_	-						
									× .																						
																							 -								
							· •																								••
	S	2.25							-																						
	- 60.5	0 G G G					- 67.6																								••
	- NR					1.00			- 1 A S														 •			-					
				1.4						· · ·																•					••
			1.1.1							- N - S													 - 41								
				· · ·						14.1	**			 × .									 								
					- 3.4																		 								
~																															

162. -

3 7

DESTILATION DE HULTICOPPONENTES PROCLEM TIN DE DECTILACIÓN

PRESICH 321 TENPERATURA 2"7.391 EFICIENCIA 1. 1. 1. 1.1 FLATU

	V. P	FRACCION NUL	POLLS LI	ANT BALCION HOL
PROFUSE 1-SUTANE N-SUTANE 1-PLLTAN N-PENTAN	8	1 296 7341-1 1 1 27 1 4-1 1 21 10 64. 3 152 168	1 10 107 20 1 17 11 15 2 1 17 11 17 2 1 17 17 17 17 2 1 17 17 17 17 2 1 17 17 17 17 17 2 1 17 17 17 17 17 17 2 1 17 17 17 17 17 17 17 17 17 17 17 17 1	.461930 E-12 .0829469 E-11 1.2027386 1.2041715 0.4313343
POLES TO ENTALPIA	TALES 104 11. 112	n de la composition de	315:2177	
PLATO	a PRESICH 121.1	TEMPERATURA	215.113 EFI	CLENCIA touili

HOLES V. PUP	Folls	ELIGUIDO FRANCION MOL		
PRCF416 1-017400 1-017400 2-4135 -914276 -914276 -914276 -914276 -914276 -17 -914276 -17 -914276 -17 -17 -17 -17 -17 -17 -17 -17	(341130) 74223669 34.90970 69.11193 112.3559	128,49,2217 C1571,44 C1571,44 C1571,44	n an	
PCLIE ICTAL IS 19391171	215-8473			

TEMPLEATURA 221.463 EFICIENCIA 1.14.09 PPES 1 4 12. VALOF FRACCION POL FIGNIDO. FRACCION HOL MOLES POLL 3 51542916-1-3 1577175-1 17470876-11 106-

RESULTADOS DEL PROBLEMA 7.8

	DESTINACI PR ^C ULUM T.T. De	ON DE MULTICOMPO DESTILACIÓN	DIENTIS	PAGINJ 9
PLATU 111 PRC	site 11., 1	TEMPERATURA	224+642 EF1	CIENCIA 1. LAA
	OLES V.	TUP TRACCION NOL	POLLS L1	entersecton Hor
PBCIANO 1-71 TANC L-PLTINO J-PLNTINO L-PGITANO		- 42 5442 1[=]] - 12 5000 4==]] - 121 1756 - 124 2173	121-2321 121-2321	1 -175,12485-1.3 -16,74075-1.1 -7796,1311E-1.1 -7796,1311E-1.1 -1445,1 1.561,3817
ISTALP IA	1830.1357		21752.101	
FLATU 11 PPE	ticn 12	TEMPERATURA	2211-614 EFT	CIENCIA I.L. III
	MOLI, C	FRACEION HOL	POLES L1	QUIDO FFACCION-MOL
PACFALO 1-LT/LO 1-FLT/LO 1-FLT/LO N-FLT/LO	-719264(1 42355 		1,919131 7,919131 74,3%337	1
TATLE TOTALES	1411.5-		1122.298	
ILATU 12 PI E	:: 1eu 12 . l	TE-IPERATURA	273.557 EF1	CIENCIA 1.1000)

		10LI.5	TRACCTON HOL	POLLS	FRACCIUN HOL
FACFANG 1-50745C N-51745C 1-9447440		1.407.141-	· · · · · · · · · · · · · · · · · · ·	311 H979L	3 · Ail/ S4 IF-1.4 + 74 3341 IF-1.2 29 3361 4E - 1.1 1.324 - 751 1.574 184
TSTATETA	ALES	12-36222	مى يىلى بىر بىرىنى بىلى بىلى بىلى بىلى بىلى بىلى بىلى ب	3751723	

TABLA 7.8.4

RESULTADOS DEL PROBLEMA 7.8

10

+

TABLA 7.8.5. TABLA 7:8:5. RESULTADOS DEL PROBLEMA 7.8

DICTILACION DL MULTICOMPONENTES NA T.C. DE_DESTILACION PAGIPA 10 PROBLEMA T.C. DE_DESTILACION

-1443.523

1477.521

ى يەخمە **بىر** بەر مەخمەر بەر تىمىيە ، ئىسىدە ئە

6 5 Ĩ.

연습장하다

CALCE ANADIDO AL CONDENSADOR CALCT ANADIDO AL PEHEFVIDOR

PROBLEMA: Resolución del Problema #.1
 METODO: Naphtali - Sandholm
 CONVERGENCIA: Funciones de discrepancia
 PROPIEDADES TERMODINAMICAS: Polinomios en función de la temperatura.

Se requierieron sesenta y ocho iteraciones para lograr la convergencia de este problema; teniendo una tolerancia de 7.0 E -01 y un criterio de 6.7 E-01. Los resultados se encuentran reportados en las Tablas 7.9.1 a la 7.9.6.

7.10 PROBLEMA:

METODO :

Resolución del Problema 7.3 Naphtali - Sandholm

CONVERGENCIA:

Funciones de discrepancia.

Polinomios en función de la temperatura.

PROPIEDADES TERMODINÁMICAS:

La solución se consiguió con un criterio de convergencia de 0.76366 después de diecinueve iteraciones,(utilizando una tolerancia de 1.0); los resultados pueden ser observados en las Tablas 7.10.1 a la 7.10.3.

El problema que se presenta en la Tabla 7.11; dentro de un cierto – nango de especificaciones presenta problemas de convergencia; como lo puntualiza Magnussen (11). Se encuentra que con idénticas especificaciones para la columna y utilizando un mismo modelo matemático para el cálculo de las propiedades físicas se pueden determinar tres diferentes conjuntos de variables independientes (temperaturas y composiciones); las cuales además satisfacen los balances de masa y relaciones de equilibrio. Es decir, sais ten multiples soluciones para un mismo problema.

166.-

16

V

t :

Pagina 12

5 00

PLATC 6 F	PRESICE 23%	TEMPERATURA	169.55	EFICIENCIA	34 4040
	MOLLS	VI. POP FRI. CCION HOL	POLES	LIQUIDO FRACCION	6 MCL .
EYA +1 FµC F1 LG K→ EL TA" C K→ PE LTA" C K→ PE LTA \0 N→ FE XALG			201-419 201-419 51-65597	2143 2143 4424	128 128 128 128 128 128 128 128 128 128
HOLES TOTALES	11110.1		1161255		

TABLA 7.9.2

RESULTADOS DEL PROBLEMA 7.9
11111

16

6

an an a bha an tean a tha an an tean te

PROBLEMA HUPLED T.C. PARA DESTINCION

PLATL 7 PRCSIC	v 25 ', 'l	TE 1 PERATURA 211.422	EFICILNCIA . Samuela	and an
14 50 40 4-2 474 0 4-2 474 0 4-2 474 0 4-2 474 0 4-2 474 0 MCLES_TCTALES	10.25 10.25 110.25 117.47 117.47 174.455	POP FRACCION NCL POLES 7797746-11 1753291 7191765 72 1233 71117537-13 123397 1234397 12345397 123454	L: QUI DO FRALCION MOL 3	
ENTALFIA PLATE & PEESIG	14141274 N 2514	TEIPERATURA 215-947	EFICILNCIA Junutia	
FTA-0 PROF-140 M-EL-7,AKO N-24,TA-0 N-24,TA-0 N-24,TA-0 N-24,TA-0 M-24,TA-0 FA-12,TCTALES ENTA-14	HOLLS V	APOII FRACCION MCL POLLS 	LIQUIDO FRACCIÚN MOL 2 - 5613619E-112 5 - 371842 4 - 375411 4 - 375411 2 - 375411 2 - 375411 2 - 37556-11	
FLATO 9 PHESIC	n - 25 s.	TEIPERATURA 227.72	EFICILNCIA T. HUU	
ETAIC PADEALC h-Stric h-Stric h-LIXANO h-LIXANO CLISISTALES intigrales	1311 3 V 21 4282 27 1 7 22 28 1 7 22 28 1 7 28 28 1 7	APOF HIACCION IGL MOLES 1007210-11 72002 1107210-11 72002 1107210-12 71571 10071720-12 71571 11571 120856	L14U, DO #PACCIUM MOL 2	

TADLA 7.9.3 RESULTADOS DEL PROBLEMA 7.9

DESTILATION OF INELIGENEMENTES PECTILACION DE INLEXICEPENENTES PAGINA 14 PREMIENA NUMERO DE PARA DESTILACEON

PLATO IN PRES	ICN 77	TEIPERATURA	217+115 EF1	LIENCIA	1.000
	MULIS	APON FRACCION HEL	POLES LIG	ut Baceron	MOL
1 TAIC PECFALC N-DITIKC N-DITIKC N-DITIKC	1.2034562	1 662 1 12 2 2 - 1 2 1 662 4 1 0 1 9534 9E - 1 2	21: 979. 143.11145 17. 57.2 6. 275274	2454	42E-1-3 74E-1-1 59 42 16E-111
HOLLS TOTALES	127-6532	an an an an Albana An Albana	244.9255	•	
PLATO IT PREE	1°h 25°.	TEIPEFATURA	245.259 EFT	IENCIA	لالدمادا . 1
	HOLLS V	APOP FRACELON MOL	POLES LIG	NI PRACCION	MOL
1745C FLOFANO 	121 477217	124-4051-12 H 743-602 1295-1295 H 743-602 H 743-602	6366238E-; 1 128 94228 65 96912 65 96912	24 57 9 61 370 6 450 87 9 25 3 15 9 25 3 21	125-113 115-01 78 78 885-11
MOLLS TOTALES	197, 225,	•• • • • •	257,5255	•	
					•

	roles	FRACCION MCL	MOLLS	FRACCION HOL
LTALO	6. 745 292-11	32/43-12-12	16111 36 1	- 121 5860E -14
PACF/1.C N-At TILC	14-1-14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		170 2533	1-5473429
2-61 21410		4161717-62	7.1543.2	22322646-01
HGLES TCTALES	1001007.		2 78342	

RESULTADOS DEL PROBLEMA 7.9

g dage de la come

H 20. 1.

DECTILACION DE MULTICEPPONENTES PREBLEMA NUMERU 7.5 P/R. DESTILACION

PAGINA 15

•

.

RESULTADOS DEL PROBLEMA 7.10

175

TABLA 7.11

1

	승규는 소장	2 - 2 - C - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	1 11 12 12 12 12 12 12 12 12 12 12 12 12	24 M M M M M M M M M M M M M M M M M M M		- 10 A A A A A A A A A A A A A A A A A A	A DEPART OF THE ACCURATE	
1010	2 103 000	00.0						
лэмг	116.51	u_{2}	2010-008 N.C.N.		- 	anoi	김 씨는 영화 방송 가지 않는 것이다.	
			1.1.1.1.1.1.1.1	10 State 14		Constant Co	ありぶ かりみ	
1.1				120110203		いたいがく		1
	1일 문화 영화 문		이 같은 것이 같이 같이 같이 같이 같이 같이 말했다.	1	and the second second		없어요. 그런지 않자	
	As in the second	2214-211	1.1.1.1.1.1.1.1	이 영화 영화 영화				
Sec. 2.1	111111-000	66 7 9	Geo. 2011 (A)	100 A.	·			
		1.0	810.0	지지 않는 것 같아요.	Аа	ш	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Y		1997 HH S			-	1.1.2.2.2.2.2.		
1.101		승규가 있는 것이	さいだいがくちゃ	7.5.249.63	een 134 m.	1. C.		
			안 29분 5 21 -	a faircarí		영양 입장 같은 요리	이 같이 같이 많았다.	
	10 M 80	H. S. Corte	ar tateda	이 아이지?	 A. M. M.	90.00 m (S 12		
1. 1. 1. 1. 1. 1.	いいしきぶ		나는 사람이 잘 가지?					
	2 C	- 16 al 16 al 16 al 16				111000000000000000000000000000000000000	A. A. A. M.	
	 Max Max	- C. C. A.				*******		
1.9186	4-1-1-1				06	1100110		
					<i>D</i> 6	1100/10		
					De			
					νe			
					<i>D</i> 6			
					<i>D</i> 6			
					08			
					08			
					υe			
					μe			
8777		nr r	MIA DA (<i>μ</i> ε 	2		

ALIMENTACIONES Localización

Flujo (Moles)

		한 문법을 얻		ha an	
Etapa 6	;		Eta	pa 1	
Etmol	89		Eta	nol:	9.8
			6255		
Amin:	71		Am	a :	1.8
Rencenc	.33.9		Ren	ceno:	33.62
			्रिक्ट्		
T.founda	antima	do.			en Status e seu
пичищ	, sarana	uu			27 - E

176.-

DESTILADO):	63	.1 m	les/h	n
REFLUJO:		5.	47		
PRESION :		un	a atr	nosfere	z - 1995 - 1905 - 190

Los perfiles que se obtenen se muestran en las figuras 7.1.

La figura 7.1.a corresponde al caso de una destilación azeotrópica normal. En el caso "c", la concentración de benceno baja rápidame<u>r</u> te y de ahí una gran cantidad de agua se encuentra en el fondo. La figura "b", es un resultado intermedio de las dos anteriores.

Para obtener cada una de estas soluciones se deben realizar diferentes estimados iniciales de temperaturas y flujos de llquido y vapor. La solución "a". se obtiene con el siguiente estimado inicial: a).- El flujo de agua debe ser cero.

 b).- El flujo de benceno y etanol son constantes a través de la columna correspondiendo a la suma de sus alimentaciones.

c).- Se requiere de un perfil lineal de temperaturas.

La solución "c", se obtiene con el siguiente estimado:

a).- El flujo de benceno es cero.

 b).- El flujo de etanol y el de agua son constantes a lo largo del equipo.

c).- Perfil lineal de temperaturas.

En el apéndice "C", se pretende explicar el por que de la existencia de varias soluciones para un sistema de ecuaciones no lineales y en caso específico para problemas de equilibrio líquido y vapor.

También existe una multiplicidad de soluciones para el sistema Eta-nol - pentano - agua, con las siguientes especificaciones:

NUMERO DE ETAPAS DE EQUILIBRIO: ALIMENTACIONES

Localizació	^s n	Eta	apa	4	B	zapa 1	
Flujos (mol)	Agr	ua:	40.6	Ag	nua: l	8.9
		Eta	anol:2	42.0	El	anol:130	0.7
		LĹ	q.Satu	rado	Pe	entano:7	50.3

19

DESTILADO: 758.2 mol/hr Presión 3.5 atm.

-- 178 -

El erudito aspira a saber todas las respuestas. El sabio intenta comprender todas las preguntas. El hombre culto ni aspira ni intenta; s<u>o</u> siega, vive,concilia. estos dos extremados esmeros.

ALFONSO RAMIREZ POZO

والمتحدية والمتحدية والمتحدية والمتحدية

gra di seriera da

Con los resultados obtenidos en el presente trabajo, se puede concluir que los Métodos Rigurosos de Solución Simultánea son capaces de resolver una gran variedad de problemas de separación de multicomponentes, donde coexistan una fase líquida y otra vapor, en cambio los Métodos de Corte (o descomposición), no son capaces de realizar lo anterior; por que tienen la desventaja de promover la propagación del error de redondeo.

" CONCLUSIONES

179. -

Una dificultad que se presenta en la comparación de los métodos surge en el momento de evaluar el criterio de convergencia utilizado por cada uno de ellos; ya que se utiliza el criterio de Tomich, el de las funciones de discrepancia y también el criterio de la sumatoria de cuadrados de las diferen cias de dos conjuntos sucesivos de temperaturas (llamado simplemente suma de cuadrados).

Se procuró correr los mismos problemas bajo el mismo criterio de conve<u>r</u> gencia y se puede demostrar que el último criterio mencionado es totalmente inadecuado para ser utilizado. El problema 7.1 se probó con el Método de Wang-Henke sin obtener una solución adecuada después de 30 iteraciones bajo un criterio de convergencia diferente al propuesto por los autores -(ver problema 7.2). Este mismo problema se resolvió con el Método de Naphtali (problema 7.7), convergiendo en 68 iteraciones utilizando el criterio riguroso de funciones de discrepancia; oteniéndose un perfil de temperaturas diferente al reportado por Nang-Henke y Seader-Johanson. Por lo anterior, se concluye que el Criterio de Suma de Cuadrados es inoperante; ya que si el método en un momento determinado no es capas de crear un desplazamiento adecuado hacia la solución, el criterio de convergencia se verifica deteniendo consecuentemente la búsqueda; dando por tanto, resultados equívocos. Además se puede decir que el resultado reportado por Seader-Johanson para el problema 7.1 no dá solución a éste.

Se propuso un método alternativo de solución al Método de Ishii-Otto, sim plemente con el objeto de mostrar que un procedimiento de cálculo bien definido puede enfocarse de una manera diferente; tratanto de no efectuar la simplificación de igualar S; con cero, incorporando a su vez nuevos algoritmos que faciliten su aplicabilidad como pueden ser el Método de Montalvo-Kaufmann y la inversión de matrices con la técnica LU, manejando también las ecuaciones en un momento determinado con el objeto de acelerar la convergencia.

Esta forma alternativa de cálculo es de aplicabilidad general a separa-ciones de llquido-vapor como lo es el método original.

Si se analizan las ecuaciones que presentan los balances de Masa y Ener-gla; se observa que son relaciones no lineales; que al combinarse con las ecua-ciones de equilibrio generan sistemas de mayor complejidad con un comportamiento no predecible.

Por lo anterior, es de esperarse que tengan varias soluciones, probable-mente la presencia de una multiplicidad de soluciones se debe al cálculo de propiedades y a la constante de equilibrio (k). Fredenslund, Michelsen y Magnussen proponen que estas regiones pueden encontrarse debido a péculiaridades en los modelos de evaluación de las -K'e, tanto en el Método de NRTL, como en el de UNIQUAC.

En este trabajo se establece que observando dichas ecuaciones se presentan las siguientes características:

- a).- Son funciones continuas y definidas en un intervalo cerrado (acotado por las específicaciones del problema).
- b).- Al evaluar estas funciones, sus elementos se encuentran siempre entre los límites de este mismo intervalo, garantizando con ésto que la sucesión de puntos generada por el Método Iterativo está definida en estos mismos límites. (Ver postulados en el Apéndice "C").
- c).- En ciertas regiones se verifica el Criterio de Cauchy y la con-dición de Lipschitz. Implicando consecuentemente que la sucesión generada por el método llega siempre a un límite que es simple-mente el vector solución.

Con las características anteriores se confirma que los Métodos Riguro Bos en la simulación de equipos de separación líquido-vapor convergen a di ferentes soluciones, algunas con significado físico, para un mismo problema; dependiendo en alto grado del estimado inicial de las variables de cor te (temperatura y flujo de líquido y de vapor) y de la evaluación de las constantes de equilibrio. Con lo anterior, surge la problemática de interpretar y elegir lan soluciones obtenidas; pudiendo eliminar con relativa facilidad aque--llas que no tengan un verdadero significado físico.

......

182.-

ALFONSO RAMIREZ POZO

APENDICE

En este apéndice se presentar los métodos más utilizados para la resolución de las ecuaciones que conforman la matriz tridiagonal M_j (algoritmo de Thomas y el de Bosza: y Sullivan), así como el método de Mü-ller utilizado para resolver la función del punto de burbuja.

I).- Solución de sistemas de ecuzciones en forma de matriz tridiagonal, usando el Método de Thomas:

Se tienen las ecuaciones:

$$M_{ij} = L_{j-1} x_{ij-1} + V_{j+1} K_{ij+1} x_{ij+1} + F_j x_{ij} - (L_j + SL_j) x_{ij}$$

$$- (V_j + SV_j) K_{ij} \tilde{x}_{ij}$$
(A.1)

$$L_{j} = V_{j+1} + \sum_{m=1}^{J} (F_{m} - SL_{m} - SV_{m}) - V_{1}$$
 (A.2)

sustituyendo (A.2) en (A.1) se obtiene:

$$\frac{j-1}{ij = (V_j + \sum_{m=1}^{j-1} (F_m - SL_m - SV_m) - V_1/x_{ij-1} + V_{j+1} K_{ij+1} x_{ij+1}}{\frac{j}{1 + F_j R_{ij} - (V_{j+1} + \sum_{m=1}^{j} (F_m - SL_m - SV_m) - V_1 + SL_j/x_{ij}}{- (V_j + SV_j) K_{ij} x_{ij}}}$$
(A.3)

or levando:

$$j = \frac{j}{-(V_{j+1} + \sum_{m=1}^{\infty} (F_m - SL_m - SV_m) - V_1 + SL_j + (V_j + SV_j) K_{ij} + x_{ij}}$$

184...

(A.4)

$$\int_{\substack{+[V_j] \\ m=1}}^{J} \Sigma (F_m - SL_m - SV_m) - V_1 x_{ij-1} + V_{j+1} X_{ij+1} x_{ij+1} = -F_j z_{ij}$$

definiendo:

$$A_{j} = V_{j} \sum_{m=1}^{5} (F_{m} - SL_{m} - SV_{m}) - V_{1}$$

$$B_{j} = -V_{j+1} + \sum_{m=1}^{j} (F_{m} - SL_{m} - SV_{m}) - V_{1} + SL_{j} + (V_{j} + SV_{j}) K_{ij}$$

$$c_j = V_{j+1} k_{ij+1}$$

 $D_j = -F_j z_{ij}$

entonces se tiene que:

$$A_{j} x_{ij-1} + B_{j} x_{ij} + C_{j} x_{ij+1} = D_{j}$$
 (A.5a)

por lo tanto, escribiendo las ecuaciones para toda la columna se te<u>n</u>

1 x_{i1} + C₁ x_{i2}

A₂ x_{i1} + B₂ x_{i2} + C₂ x_{i3}

 $A_3 x_{i2} + B_3 x_{i3} + C_3 x_{i4}$

 $A_{j} x_{ij-1} + B_{j} x_{ij} + C_{j} x_{ij+1}$

 $A_{N-1} X_{iN-2} + B_{N-1} x_{iN-1} + C_{N-1} X_{iN} = D_{N-1}$

 $A_N \quad x_{iN-1} + B_N \quad x_{iN} = D_N$

135.-

 $= .p_1$

 $= D_{2}$

= D₃

 $= D_j$

en forma matricial:

D₁ D₂ Xil Ci B_1 X_{i2} A₂ B₂ C₂ X i.3 D₃ A₃ B₃ C₃ (A.5b) = P_{j} x_{ij} $A_{\mathcal{J}} = B_{\mathcal{J}} = C_{\mathcal{J}}$ D_{N-1} $A_{N-1} = B_{N-1} C_{N-1} \left| X_{iN-1} \right|$ A_N B_N DN x_{iN}

Nótese que se tendrán que resolver tantos sistemas como componentes existan en el caso de estudio.

Para ejemplificar la solución de un sistema tridiagonal escalar de este tipo, se hará a continuación la deducción del algoritmo de Thomas.

Se tiene:

$$B_1 x_{i1} + C_1 x_{i2} = D_1$$

resolviendo para x_{i1}:

$$x_{i1} = \frac{D_1 - C_1 x_{i2}}{B_1}$$

entonces:

$$x_{i1} = q_1 - p_1 x_{i2}$$

siendo:

$$q_1 = \frac{D_1}{B_1} \qquad ; \qquad p_1 = \frac{C_1}{B_1}$$

para la segunda etapa:

$$A_2 x_{i1} + B_2 x_{i2} + C_2 x_{i3} = D_2$$

sustituyendo el valor de x_{i1} :

$$A_2 (q_1 - p_1 x_{i2}) + B_2 x_{i2} + C_2 x_{i3} = D_2$$

 $A_2q_1 + (B_2 - A_2 p_1) x_{i2} + C_2 x_{i3} = D_2$

despejando x_{i2} :

$$x_{i2} = \frac{D_2 - A_2 q_1}{B_2 - A_2 p_1} - \frac{C_2}{B_2 - A_2 p_1} x_{i3}$$

definiendo:

$$q_2 = \frac{D_2 - A_2 q_1}{B_2 - A_2 p_1}$$
 $p_2 = \frac{C_2}{B_2 - A_2 p_1}$

obteniéndose:

$$x_{i2} = q_2 - p_2 x_{i3}$$

y así sucesivamente, teniéndose en general:

 $x_{iN} = q_N$

$$x_{ij} = q_j - p_j x_{ij+1}$$

para j=1,2...N-1

para J = N

donde:

$$j = \frac{D_{j} - A_{j} q_{j-1}}{B_{j} - A_{j} P_{j-1}} ; P_{j} = \frac{C_{j}}{B_{j} - A_{j} P_{j-1}}$$

lo que se ha hecho es la transformación de la matriz tridiagonal en la for-

ma siguiente:

q

$$B_1 \quad C_1 \quad 0 \quad 0 \quad x_{i1} \quad D_1$$
 (4.6)

$$A_2 \quad B_2 \quad C_2 \quad 0 \quad 0 \quad x_{i2} \quad D_2$$
 (A.7)

diviendo (A.6), entre B₁ se obtiene:

$$C_{1}^{B_{1}} 0 0 0 x_{i1} D_{1}^{B_{1}}$$

o sea:

1

i

$$1 p_1 0 0 0 x_{i1} q_1$$

miltiplicando (A.8) por Ag se tiene:

$$x_{2} \Lambda_{2} p_{1} \quad 0 \quad 0 \quad 0 \quad x_{i1} \quad \Lambda_{2} q_{1} \tag{A-2}$$

ventando (A.7) de (A.9), se obtiene:

$$0 \qquad B_2 - A_2 P_1 \qquad C_2 \quad 0 \qquad 0 \qquad x_{i2} \qquad D_2 - A_2 q_1 \qquad (A.10)$$

dividiendo (A.10), entre $B_2 - A_2 P_1$:

о веа:

$$0 \quad 1 \quad P_2 \quad 0 \quad 0 \quad x_{i2} \quad q_2$$

se divide (A.9), entre A2 para obtener:

$$1 \quad p_1 \qquad 0 \qquad 0 \qquad 0 \qquad x_{i1} \quad q_1$$

Resumiendo se han obtenido dos ecuaciones que son:

$$1 \quad p_1 \quad 0 \quad 0 \quad 0 \quad x_{i1} \quad q_1$$

 $0 \qquad 1 \qquad p_2 \qquad 0 \qquad 0 \qquad x_{i2} \qquad q_2$

trabajando de la misma forma en todo el sistema, la matriz originalmente tridiagonal se ha transformado en:

ве орвета que:

$$x_{iN} = q_N$$

Haciendo sustituciones regresivas se llegará a la ecuación general:

$$x_{ij-1} = q_{j-1} - p_{j-1} x_{ij} = r_{j-1}$$

ya que:

$$\frac{x_{iN} = q_N - p_N x_{N+1} = q_N = r_N}{x_{iN-1} = q_{N-1} - p_{N-1} x_{iN} = q_{N-1} - p_{N-1} r_N = r_{N-1}}$$

$$\vdots$$

$$x_{i2} = q_2 - p_2 x_{i3} = q_2 - p_2 r_3 = r_2$$

$$x_{i1} = q_1 - p_1 x_{i2} = q_1 - p_1 r_2 = r_1$$

1 0 \boldsymbol{r}_1 1 0 0 X 11 0 1 0 0 X,2 . 0 X₁₃ 0 0 0 . 0 r_3 X_{ij} 0 0 0 1 0 0 X_{iN-1} 0 0 1 r_{N-1} 0 0 XiN 1 rN

y de esta forma se obtienen los valores de las composiciones mol de la fase llquida.

II).-Algoritmo de Thomas para la solución de sistemas matriciales tridiagonales.

El algoritmo es similar al usado en un sistema escalar, pero conservando las reglas de Algebra Matricial (omitiendo el subíndice "i", por com<u>o</u> didad), sea:

Transformando la ecuación (A.11), en la ecuación (A.12):

 $\overline{B}_{1} \overline{X}_{1} + \overline{C}_{1} \overline{X}_{2}$ $\overline{A}_{2} \ \overline{X}_{1} + \overline{B}_{2} \ \overline{X}_{2} + \overline{C}_{2} \ \overline{X}_{3}$ $\overline{A}_3 \, \overline{X}_2 + \overline{B}_3 \, \overline{X}_3 + \overline{C}_3 \, \overline{X}_4$

$\overline{A}_{j} \, \overline{X}_{j-1} + \overline{B}_{j} \, \overline{X}_{j} + \overline{C}_{j} \, \overline{X}_{j+1}$

 $\overline{A}_{N-1} \, \overline{X}_{N-2} + \overline{B}_{N-1} \, \overline{X}_{N-1} + \overline{C}_{N-1} \, \overline{X}_{N}$ D_{N-1} = $\overline{A}_N \overline{X}_{N-1} + \overline{B}_N \overline{X}_N =$ \overline{D}_N

192.-

D₁

 \overline{D}_{2}

= <u>,</u>

D;

7

Despejando \overline{X}_1 de la primera ecuación:

$$\overline{X}_1 = \overline{B}_1^{-1} \quad (\overline{D}_1 - \overline{C}_1 \quad \overline{X}_2)$$

sustituyendo en la segunda ecuación:

$$\overline{A}_{2}\left(\overline{B}_{1}^{-1} \left(\overline{D}_{1}-\overline{C}_{1}\overline{X}_{2}\right)\right)+\overline{B}_{2}\overline{X}_{2}+\overline{C}_{2}\overline{X}_{3}=\overline{D}_{2}$$

rearreglando:

$$(\overline{B}_2 - \overline{A}_2 \ \overline{B}_1 \ \overline{C}_1) \ \overline{X}_2 + \overline{C}_2 \ \overline{X}_3 = \overline{D}_2 - \overline{A}_2 \ \overline{B}_1 \ \overline{D}_1$$

definiendo:

$$\alpha_2 = \overline{B}_2 - \overline{A}_2 \overline{B}_1^T \overline{C}_1$$

$$\boldsymbol{\beta}_2 = \overline{\boldsymbol{D}}_2 - \overline{\boldsymbol{A}}_2 \quad \overline{\boldsymbol{B}}_1 \quad \overline{\boldsymbol{D}}_1$$

se tendrá:

$$\alpha_{2} \overline{X}_{2} + \overline{C}_{2} \overline{X}_{3} = -\beta_{2}$$

despejando \overline{X}_2

$$\overline{X}_{2} = \alpha_{2}^{-1} (\beta_{2} - \overline{C}_{2} \overline{X}_{3})$$

sustituyendo en la tercera ecuación:

$$\overline{A}_3 \ (\ \alpha_2^{-1} \ (\ \beta_2 - \overline{C}_2 \ \overline{X}_3 \)] + \overline{B}_3 \ \overline{X}_3 + \overline{C}_3 \ \overline{X}_4 = \overline{D}_3$$

rearreglando:

$$(\overline{B}_3 - \overline{A}_3 - \alpha_2^{-1} - \overline{C}_2) \overline{X}_3 + \overline{C}_3 \overline{X}_4 = \overline{D}_3 - \overline{A}_3 - \alpha_2^{-1} - \beta_2.$$

definiendo:

$$\alpha_{3} = \overline{B}_{3} - \overline{A}_{3} \quad \alpha_{2} \quad \overline{C}_{2}$$
$$\beta_{3} = \overline{D}_{3} - \overline{A}_{3} \quad \alpha_{2}^{-1} \quad \beta_{2}$$

y así sucesivamente, tomando la penúltima ecuación:

. Gal

$$\overline{X}_{N-1} = \alpha_{N-1} \quad (\beta_{N-1} = \overline{C}_{N-1} \quad \overline{X}_{N}$$

sustituyerlo en la última ecuación:

$$\overline{A}_{N} \quad (\alpha \qquad -\frac{1}{N-1} \quad (\beta \qquad -\overline{C}_{N-1} \quad \overline{X}_{N})) + \overline{B}_{N} \quad \overline{X}_{N} = \overline{D}_{N}$$

rearreglando:

$$(\overline{B}_{N} - \overline{A}_{N} \ \alpha_{N-1} \ C_{N-1}) \ \overline{X}_{N} = \overline{D}_{N} - \overline{A}_{N} \ \alpha_{N-1} \ \beta_{N-1}$$

' Definiendo:

$$\alpha_{N} = \overline{B}_{N} - \overline{A}_{N} \qquad \alpha_{N-1}^{-1} \quad \overline{C}_{N-1}$$

$$\beta_{N} = \overline{D}_{N} - \overline{A}_{N} \qquad \alpha_{N-1}^{-1} \qquad \beta_{N-2}$$

$$\beta_{N} = \alpha_{N} \quad \overline{X}_{N}$$

y despejando X_N :

$$\overline{X}_N = \alpha \frac{-2}{N} \frac{\beta}{N}$$

por lo tanto, el procedimiento se puede resumir como sigue:

1.- Calcular:

$$\alpha_1 = B_1$$

$$\beta_1 = D_1$$

194 --

$$\alpha_j = E_j - A_j \quad \alpha_{j-1} \quad C_{j-1}$$

$$\beta_j = D_j - A_j \qquad \alpha_{j-1} \qquad \beta_{j-1} \qquad para \ j=2, 3... N$$

195.-

3).- Calcular:

$$x_{j} = \alpha_{j}^{-1} (\beta_{j} - C_{j} x_{j+1}) \quad \text{para } j = N-1, N-2, \dots 1$$

$$x_{N} = \alpha_{N}^{-1} \beta_{N} \quad \text{para } j = N$$

III). - Método de Müller

El método de Müller se utiliza para encontrar todas las raices reales o complejas de una función arbitraria y como caso específico de estudio la función del punto de curbuja.

$$s_j = \sum_{i=1}^{L} \kappa_{ij} x_{ij} - 1 \qquad \text{para } j=1,2,\ldots,N$$

donde:

$$K_{ij} = f(T_j)$$

Este algoritmo no es más que una extensión del Método de la Secante. Se fijan tres puntos y se traza una ecuación cuadrática (parábola), sobre la cuava de la función a la que se desea encontrar una de sus raices (en este cano particular la función S_j) (ver fig.A.1).

Entonces la raíz de esta parábola servirá como una primera aproximación de la raíz de $S_j(T_j) = 0$, evaluando posteriormente esta función; si el va lor de la raíz es el buscado el proceso finaliza. Si no lo es se realiza una nueva iteración acotando la función.

A continuación se presenta el Método en forma detallada:

 Sean x_k, x_{k-1}, x_{k-2} tres aproximaciones al cero de la función f(x) y además sea k=3:

Calcular f_k , f_{k-1} , f_{k-2}

2).- Calcular la diferencia o paso:

$$h_k = x_k - x_{k-1}$$

3). - Calcular el incremento o delta:

donde:

$$b = (f_{k-3}) (d_{k-1})^2 - (f_{k-2}) (1 + d_{k-1})^2 + (f_{k-1}) (1 + 2d_{k-1})$$

199.-

$$c = f_{k-3} d_{k-1} - f_{k-2} (1 + d_{k-1}) + f_{k-1}$$

4).- Calcular:

$$x_{k+1} = x_k + h_k d_{k+1} - y = f_{k+1}$$

5).- Calcular los criterios I y II:

$$k = k + 1$$

I).-
$$f_k < \varepsilon_2$$

$$\frac{|x_k - x_{k-1}|}{x_k} < \epsilon_1$$

si II) es mayor que E₁ entonces calcular:

$$a' = x_k - x_{k-3}$$
$$b' = x_k - x_{k-1}$$

 $c' = x_k - x_{k-2}$

si
$$a' > b'$$
 y $a' < c'$ entonces $x_{k-2} = x_{k-3}$

si c'< b' y a' < b' entonces
$$x_{k-1} = x_{k-3}$$

ropetir deode el punto dos hasta el punto eíneo hasta satisfacenelguno de los dos asitentos especificados. IV).- Método de Boston y Sullivan (Thomas modificado).

La ecuación (A.1), se puede escribir de la forma:

$$M_{ij} = l_{ij-1} + \frac{v_{ij+1}}{i_{j+1}} + f_{ij} - (l_j + Sl_j) - \frac{l_{ij}}{l_j}$$

$$= (v_j + Sv_j) - \frac{v_{ij}}{v_j}$$

o bien:

$$M_{ij} = l_{ij-1} + v_{ij+1} + f_j - (1 + SL_j/L_j) l_{ij}$$

$$-(1+sv_{j}/v_{j})v_{ij}$$

siendo por definición:

$$v_{ij} = v_j y_{ij}$$

sustituyendo la relación de equilibrio se obtiene:

$$M_{ij} = l_{ij-1} + V_{j+1} K_{ij+1} x_{ij+1} + f_{ij} - (1 - SL_j/L_j) l_j$$

- (1 + sv_j / v_j) $v_j \kappa_{ij} x_{ij}$

sustituyendo $x_{ij} = \frac{l}{ij} / \frac{L_j}{j}$

 $M_{ij} = \frac{l_{ij-1} + v_{j+1} + i_{j+1}}{L_{j+1}} \frac{\frac{l_{ij+1}}{L_{j+1}} + f_{ij} - (1 - \frac{Sv_j}{L_j}) + v_j + \frac{l_{ij}}{L_j}}{v_j} \frac{\frac{l_{ij}}{L_j}}{L_j}$

201 .-

 $-(1-\frac{SL_j}{L_j})$ l_j

agrupando términos:

$M_{ij} = l_{ij-1} - l_{1} + \frac{SV_{j}}{L_{j}} + \frac{(1 + \frac{SV_{j}}{V_{j}})}{L_{j}} \frac{(V_{j}/L_{j})}{L_{j}} \frac{K_{ij}}{L_{j}} ij$

+ $(V_{j+1}/L_{j+1}) K_{ij+1} l_{ij+1} + f_{ij}$ (A.14).

se define:

$$Q_{L_j} = SL_j / L_j$$
 $Q_{v_j} = SV_j / V_j$ $S_j = (V_j / L_j) K_{ij}$

$$R_{L_j} = 1 + Q_{L_j} \qquad j \qquad R_{v_j} = 1 + Q_{v_j}$$

obteniéndose:

$$M_{ij} = l_{ij-1} - l_{ij} (1 + Q_{L_j} + (1 + Q_{v_j}) s_j) + s_{j+1} - l_{ij+1} + f_{ij}$$

o bien:

 $f_{ij} = - \frac{l_{ij-1}}{l_{ij-1}} + \frac{l_{ij}(R_{L_j} + R_{v_j} S_j) - S_{j+1}}{l_{ij+1}}$

se define ahora:

$$b_j = R_{L_j} + R_{v_j} S_j$$
$$c_j = S_{j+1}$$

y finalmente se tiene:

$$f_{ji} = - l_{ij-1} + b_j l_{ij} - c_j l_{ij+1}$$
(A.15)

Aplicando la técnica de Thomas se obtiene un sistema como el siguiente:

202. -

aplicando el procedimiento de sustituciones progresivas la matriz se trans-

forma en:

siendo las ecuaciones generales:

$$g_{j} = \frac{c_{j}}{b_{j} - g_{j-1}}$$
 $z_{j} \neq \frac{f_{j} + z_{j+1}}{b_{j} - g_{j-1}}$ (A.18 a)
(A.18 b)

se hacen sustituciones regresivas obteniéndose:

$$l_{iN} = z_N$$

$$a_{N-1} = l_{iN-1} - g_{N-1} l_{iN}$$
$$a_{N-1} = l_{iN-1} - g_{N-1} a_{iN}$$

 $l_{iN-1} = z_{n-1} + g_{N-1} z_N$
en general:

$$l_{ij} = a_j + g_j a_{j+1} \tag{A.19}$$

Nasta el momento el algoritmo de Thomas no ha sufrido modificación alguna, pero Boston y Sullivan desarrollaron un nuevo algoritmo basándose en el anterior, con el objeto de evitar la propagación del error de redondeo que se tiene en el denominador de las ecuaciones (A.18).

Las modificaciones realizadas son:

$$g_j = c_j / (b_j - g_{j-1}) = c_j / b_j'$$

siendo:

$$b'_{j} = b_{j} - g_{j-1}$$

$$g_{j-1} = \frac{c_{j-1}}{b'_{j-1}}$$

(A.21)

(A.20)

sustituendo (A.21), en (A.20) se obtiene:

$$b'_{j} = b_{j} - \frac{o_{j-1}}{b'_{j-1}}$$

sc tiene:

$$b_j = R_{L_j} + R_{v_j} S_j$$

204 -

 $c_{j-1} = s_j$

entonces:

y:

$$b'_{j} = R_{L_{j}} + R_{v_{j}} S_{j} - S_{j}/b'_{j-1}$$

siendo:

$$R_{v_j} \neq (-Q_{v_j}) = 1$$

teniendo:

$$b'_{j} = 1 + Q_{L_{j}} + S_{j} + S_{j}Q_{v_{j}} - S_{j}/b'_{j-1}$$

factorizando a Sj/b' j j-1 Be obtiene:

 ${}^{b'}{}_{j} = 1 + {}^{Q}{}_{L_{j}} + ({}^{S}{}_{j}{}^{/b'}{}_{j-1}) ({}^{b'}{}_{j-1} + {}^{Q}{}_{v_{j}}{}^{b'}{}_{j-1} - 1)$

(A.24)

sustituyendo (A.23) en (A.24) dá lugar a:

 ${}^{b'_{j}=1+q_{L_{j}}+(S_{j}/b'_{j-1})}(b'_{j-1}(1+q_{v_{j}})-R_{v_{j}}+q_{v_{j}})$

o bien:

 $b_{j} = 1 + q_{L_{j}} + (s_{j}/b'_{j-1}) (b'_{j-1} - \frac{R_{v_{j}}}{v_{j}} - \frac{R_{v_{j}}}{v_{j}} + q_{v_{j}})$

205.-

(A.22)

(A.23)

jartorinando a R_y : j

$$h'_{j} = 1 + (S_{j}/b'_{j-1}) (R_{v_{j}}(b'_{j-1} - 1) + Q_{v_{j}}) + Q_{L_{j}}$$

se define:

$$b''_{j} = b'_{j} - 1$$

entonces:

$$b'_{j} = 1 + (s_{j}/b'_{j-1}) (R_{v_{j}} b''_{j-1} + Q_{v_{j}}) + Q_{L_{j}}$$

definiendo:

$$b''_{j} = (S_{j}/b'_{j-1}) (R_{v_{j}} b''_{j-1} + Q_{v_{j}}) + Q_{L_{j}}$$

para j = 2,3,.... N

206.-

finalmente se tiene:

$$b'_{j} = b''_{j} + 1$$
 para $j = 2, 3... N$ (A.25)
 $b''_{1} = S_{1} + Q_{L_{1}}$
 $b'_{1} = 1 + b''_{1} = 1 + S_{1} + Q_{L}$

y la ecuación (A.25) es la que se utiliza en las ecuaciones (A.18)

En el algoritmo de Thomas la única fuente de error de redondeo excesivo se encuentra en el siguiente paso:

$$b'_n = b_n - c'_{n-1}$$
 (A.26)

Ya que se trata de una substracción de dos cantidades que siempre son positivas.

Sustituyendo:

$$b_1 = R_{l_1} + S_1$$
$$b_n = R_{l_n} + R_{v_n} S_n$$
$$b_N = 1 + R_{v_N} S_N$$

 $c_n = S_{n+1}$

en:

$$c'_{n-1} = c_{n-1}/b'_{n-1}$$

 $b'_n = b_n - c'_{n-1}$

(A.27)

y suponiendo por conveniencia que no existen salidas laterales, a excepción de una de vapor en el domo y de una líquida en el fondo.

Se tiene:

 $b'_{1} = 1 + S_{1}$

 $b'_{n} = b_{n} - c'_{n-1} = b_{n} - \frac{c_{n-1}}{b'_{n-1}}$

Sustituyendo los valores de b $_n$ y c $_{n-1}$

sea

$$b'_n = 1 + s_n - \frac{s_n}{b'_{n-1}}$$

Bea n = 2

$$b'_{2} = 1 + s_{2} - s_{2}/b'_{2} = 1 + s_{2} - s_{2}/(1 + s_{1})$$

$$= \frac{(1 + s_{1}) + (s_{2}) \cdot (1 + s_{1}) - s_{2}}{1 + s_{1}} = \frac{(1 + s_{1}) + s_{1}s_{2}}{(1 + s_{1})}$$
Bea n = 3

$$b'_{3} = \cdot 1 + s_{3} - \frac{s_{3}}{b'_{2}} = \frac{1 + s_{3}}{(1 + s_{1}) + s_{1}s_{2}}$$

$$= \frac{(1 + s_{3}) \cdot ((1 + s_{1}) + s_{1}s_{2}) - s_{3} \cdot (1 + s_{1})}{(1 + s_{1}) + s_{1}s_{2}}$$

$$= \frac{(1 + s_{1} + s_{1}s_{2} + s_{1}s_{2}s_{3}}{(1 + s_{1}) + s_{1}s_{2}}$$

Generalizando: $b'_1 = 1 + S_1$

$$b'_{n} = \frac{1 + S_{1} + S_{1} S_{2} + \dots + S_{1} S_{2} \dots S_{n}}{1 + S_{1} + S_{1} S_{2} + \dots + S_{1} S_{2} \dots S_{n-1}}$$

÷

dado que por definición $S_n > 0$, para toda n, por tanto $b'_n > 0$ para toda n., de aquí se deduce que para el cálculo de b'_n en la ecuación -(A.27), se requerirá la substracción de una cantidad positiva c'_{n-1} de una cantidad mayor b_n . Dado que cualquier operación aritmética diferen te de la substracción no provee errores acumulados de gran importancia, parece ser razonable esperar que la ecuación (A.26), sea una fuente potencial de error excesivo.

En el artículo de Boston y Sullivan se realiza un análisis detallado de la propagación del error en ambos métodos; siendo la siguiente d<u>e</u> ducción necesaria para encontrar las fórmulas recursivas que describen la propagación de errores relativos.

Para expresar la propagación de errores en una secuencia de una o más operaciones aritméticas, se emplean series de Taylor de primer orden. Por ejemplo, para la suma de dos cantidades A y B, la fórmula que proporciona el error total en dicha operación es:

 $\delta(A + B) = \frac{\partial(A + B)}{\partial A} \quad \delta A + \frac{\partial(A + B)}{\partial B} \quad B + (A + B) \in$

donde $\delta z \in \mathcal{B}$ el error en la contidad z y $\varepsilon \in \mathcal{B}$ el error de redondeo com<u>e</u>tido durante la operación.

Definiendo a az como el error relativo en z.

 $\alpha z = \delta z/z$

I utilisándola para encontrar la fórmula de propagación del error pura las cuatro peraciones básicas se tiene:

$$I) = \delta (A + B) = \frac{\partial (A + B)}{\partial A} \delta A + \frac{\partial (A + B)}{\partial B} \delta B + (A + B) \epsilon$$
$$= \delta A + \delta B + (A + B) \epsilon \qquad (A.28)$$
Sea:
$$\alpha A = \delta A / A$$

$$\delta_A = (A) \quad \alpha_A \qquad (A.29)$$

$$\delta B = (B) \quad \alpha B \qquad (A.30)$$

Sustituyendo (A.29) y (A.30), en (A.28) se obtiene:

$$\delta (A + B) = A \alpha A + B \alpha B + (A + B) \varepsilon$$

(A.31)

210. -

además:

$$\delta(A + B) = (A + B) \alpha (A + B)$$
 (A.32)

sustituyendo (A.32) en (A.31) se tiene:

$$\alpha (A+B) = \frac{A}{(A+B)} \alpha A + \frac{B}{(A+B)} \alpha B + \varepsilon$$

(A.33)

y para las demás operaciones:

II).-
$$\alpha (A - B) = \frac{A}{A - B} \alpha A - \frac{B}{A - B} \alpha B + C$$

211 .-

.

III). -
$$\alpha(AB) = \alpha A + \alpha B + \epsilon$$

$$IV) = \alpha (A/B) = \alpha A - \alpha B + \epsilon$$

 $b'_1 = 1 + s_1$

 $a b' = \varepsilon a_a$

 $b'_{n} = 1 + s_{n} - s_{n} / b'_{n-1}$

aplicando estas fórmulas a:

se obtienen las fórmulas recursivas que describen la propagación de errores en el algoritmo de Thomas; siendo éstas:

$$a b' n = \frac{1 + S_n}{b' n} = an - \frac{S_n / b' n - 1}{b' n} (-a b' n - 1 + c_n) + c_n$$

donde:

^E al = error de redondeo relativa de adición.
^E 8n = error de redondeo relativo de substracción.
^E dn = error de redondeo relativo de división.

De manera similar con el algoritmo de Boston y Sullivan las fórmulas recursivas de la propagación de errores son:

$$a b_1 = \epsilon_{a1}$$

$$a b''_{1} = 0$$

 $a b''_{n} = \frac{1}{1 + b''_{n-1}} b''_{n-1} + c an-1 + c m + c dn$

$$a b'_{n} = \frac{b''_{n}}{1+b''_{n}} b''_{n} + \varepsilon_{a}$$

donde:

^c dn = error de redondeo de división.

e dn = error de redondeo de adición.

V).- Deducción de la ecuación (4.8)

Se tiene que:

$$V_{j} = L_{j-1} - L_{j} + F_{j} - U_{j} - W_{j} + V_{j+1}$$
(A.34)

 $V_{j+1} = L_j - L_{j+1} + F_{j+1} - U_{j+2} - W_{j+1} + V_{j+2}$

$$v_{j+2} = L_{j+1} - L_{j+2} + F_{j+2} - U_{j+2} - W_{j+2} + V_{j+3}$$
 (A.36)

(A.35)

213.-

$$V_{j+3} = L_{j+2} - L_{j+3} + F_{j+3} - U_{j+3} - W_{j+3} + V_{j+4}$$
(A. 3?)

Suponiendo que V_{j+4} = V_N se tiene:

$$V_N = L_{N-1} - L_N + F_N - U_N - W_N$$
 (A.38)

Sustituyendo (A.35) en (A.34):

$$v_{j} = L_{j-1} + F_{j} - u_{j} - W_{j} - L_{j+1} + F_{j+1} - u_{j+1} - W_{j+1}$$
$$+ v_{j+2} - L_{j} + L_{j}$$

ordenando:

$$V_{j} = L_{j-1} - L_{j+1} + F_{j} + F_{j+1} - U_{j} - V_{j+1} - W_{j+1} + V_{j+2}$$
(A.39)

sustituyendo (A.36) en (A.39):

$$V_j = L_{j-1} - L_{j+1} + F_j + F_{j+1} - U_j - V_{j+1} - W_j - W_{j+1}$$

$$+ L_{j+1} - L_{j+2} + F_{j+2} - U_{j+2} - W_{j+2} + V_{j+3}$$
 (A.40)

б:

Sustituyendo (A.37) en (A.40):

$$V_{j} = L_{j-1} - L_{j+2} + \sum_{\substack{m=j \\ m=j}} (F_{m} - U_{m} - W_{m}) + L_{j+2} - L_{j+3}$$

214 . -

5:

 $V_{j} = L_{j-1} - L_{j+3} + \sum_{m=j} (F_{m} - U_{m} - W_{m}) + V_{j+4}$ (A.41)

Suponiendo que $V'_{i+4} = V_N$, la ecuación (A.41) queda:

$$V_{j} = L_{j-1} - L_{N-1} + \sum_{m=j}^{N-1} (F_{m} - U_{m} - W_{m})$$

j+3

Sustituyendo (A.38) en la ecuación anterior se obtiene:

$$N=1$$

$$V_{j} = L_{j-1} - L_{N-1} + \sum_{m=j}^{\infty} (F_{m} - U_{m} - W_{m}) + L_{N-1}$$

$$- L_{N-1} - L_{N} + F_{N} - U_{N} - W_{N}$$

Simplificando se obtiene la ecuación (4.6):

$$V_{j} = L_{j-1} - L_{N} + \sum_{\substack{m=j}}^{N} (F_{m} - U_{m} - W_{m})$$

VI).-Deducción del la férmula 5.2:

$$-M_j = \Delta L_{j-1} + \Delta V_{j+1} - \Delta L_j - \Delta V_j$$
(A.42)

despejando ΔL_j :

$$\Delta L_j = \Delta L_{j-1} + \Delta V_{j+1} - \Delta V_j + M_j$$
(4.43)

se tiene para ΔL_{j-1} , ΔL_{j-2} y ΔL_{j-3} :

$$\Delta L_{j-1} = \Delta L_{j-2} + \Delta V_j - \Delta V_{j-1} + M_{j-1}$$
(A.44)

$$\Delta L_{j-2} = \Delta L_{j-3} + \Delta V_{j+1} - \Delta V_{j-2} + M_{j-2}$$
(A.45)

$$\Delta L_{j-3} = \Delta L_{j-4} + \Delta V_{j+2} - \Delta V_{j-3} + M_{j-3}$$
 (A.46)

suponiendo que $\Delta L_{j-4} = \Delta L_1$ se tiene:

$$\Delta L_1 = \Delta V_2 - \Delta V_1 + M_1, \qquad (A.47)$$

sustituyendo (A.44) en (A.43):

$$\Delta L_{j} = \Delta L_{j-2} + \Delta V_{j} - \Delta V_{j-1} + M_{j-1} + \Delta V_{j+1} - \Delta V_{j} + M_{j}$$

$$\Delta L_{j} = \Delta L_{j-2} - \Delta V_{j-1} + \Delta V_{j+1} + N_{j} + N_{j-1}$$
(A.48)

$$\Delta L_{j} = \Delta L_{j-3} + \Delta V_{j-1} - \Delta V_{j-2} + M_{j-2} - \Delta V_{j-1}$$

$$+ \Delta \dot{V}_{j+1} + M_j + M_{j-1}$$

$$\Delta L_{j} = \Delta L_{j-3} - \Delta V_{j-2} + \Delta V_{j+1} + M_{j} + M_{j-1} + M_{j-2}$$
(A.49)

sustituyendo (A.46) en (A.49):

$$\Delta L_{j} = \Delta L_{j-d} + \Delta V_{j-2} - \Delta V_{j-3} + M_{j-3} + \Delta V_{j-2} + \Delta V_{j+1}$$
$$+ M_{j} + M_{j-1} + M_{j-2} \qquad \qquad j$$
$$\Delta L_{j} = \Delta L_{j-4} - \Delta V_{j-3} + \Delta V_{j+1} + \sum_{k=j-3}^{j} M_{k} \qquad (A.50)$$

suponiendo que ΔL_{j-4} es · ΔL_1 , la ecuación (A.50), queda como:

$$\Delta L_{j} = \Delta L_{1} - \Delta V_{2} + \Delta V_{j+1} + \Sigma M_{k}$$

$$k=2$$

sustituyendo (A.47) en (A.52):

$$\Delta L_{j} = \Delta V_{2} - \Delta V_{1} + M_{1} - \Delta V_{2} + \Delta V_{j+1} + \sum_{k=2}^{5} M_{k}$$

5.**.** I os

obteniendo la ecuación 5.2:

217.-್ರ $\Delta L_{j} = \Delta V_{j+1} - \Delta V_{2} + \sum_{k=1}^{J} M_{k}$ *j=*1,...№-1 $\begin{array}{c}
N \\
\Sigma \\
k=1, \\
\end{array}$ $\Delta L_{M} =$

APENDICE "B"

En este ápendice se presentan los manuales de usuarios de los diferentes programas de simulación utilizados; así como sus archivos de datos co-rrespondientes; siendo éstos:

- Métodos de Corte o de descomposición:

- Método del punto de burbuja (Wang-Henke).

- Método de Suma de Flujos (Burningham-Otto).

- Métodos de solución simultánea:

- Método de Ishii-Otto

(original y método alternativo).

- Método de linealización de Naphtali-Sandholm con las sugerencias realizadas por Aage Fred enslund, Jurgen Gmehling et all.

- Método de Linealización de Naphtali-Sandholm (método original).

I) .- MODELO DEL "PUNTO DE BURBUJA"

A continuación se muestra el manual de usuario del sistema del Punto de burbuja que tiene la finalidad de simular equipos de destilación; utilizando para ello el procedimiento de cálculo propuesto por Wang y Henke.

Este sistema se encuentra desarrollado en Fortran IV (versión 3.1), en una computadora Burroughs Modelo B-7800.

A).- INSTRUCCIONES PARA EL USO DEL SISTEMA

El usuario debe proporcionar la siguiente información:

a). - Número de especies químicas a separar.

b).- Presión de la columna.

c).- Rango de validez para las propiedades físicas.

d).- Coeficientes de las ecuaciones polinomiales que predicen los

219. -

valores de entalplas y constantes de equilibrio.

e).- Configuración del equipo:

- Número de etapas de equilibrio.

- Número de alimentaciones.

- Número de salidas laterales en ambas fases.

- Número de etapas en donde existe un intercambiador de calor.

f).- Alimentaciones:

- Etapa.
- Flujo molar.
- Fase.
- Temperatura.
- Composiciones mol de alimentación para cada componente.

g).- Salidas laterales (si existen):

- Etapa.
- Fase.
- Flujo.

n).- Intercambiadores de calor (si existen):

- Etapa y flujo de calor que se transmite.

El sistema utiliza el algoritmo de Thomas o el de Boston-Sullivar caro

solver la matriz tridiagonal creada para la obtención de las fracciones
en la fase líquida. Tiene así mismo la posibilidad de escoger el métoo deseado para resolver la ecuación del punto de burbuja; ya sea por me-lio de derivadas o por el método de Müller.

Finalmente el sistema otorga la opción de escoger el criterio de conovrgencia, ya sea suma de cuadrados residuales:

$$\gamma = \sum_{j=1}^{N} \frac{k+1}{(T_j)} - \frac{k}{T_j}^2$$

k= No. de la iteración.

el propuesto por Tomich:

$$\varepsilon = \sum_{j=1}^{N} \left(\left(\sum_{i=1}^{2} y_{ij} - 1 \right)^{2} + \left(\frac{F_{j}H_{Fj} + Q_{j} + L_{j-1}h_{j-1} + V_{j+1}H_{j+1}}{F_{j}H_{Fj} + Q_{j} + L_{j-1}h_{j-1}} \right)$$

$$\cdots - \frac{(L_j + SL_j) h_j - (V_j + SV_j) Hv_j}{(V_{j+1} + V_{j+1} + V_{j+1})^2}$$

.- CARGA DE DATOS PARA EL METODO DEL PUNTO DE BURBUJA

Los datos se introducen de la siguiente forma:

10.- Perforar una tarjeta con la siguiente información, formato (IIC, 3F10.2, 3I19,I2):

a).- Número total de especies químicas (min=2, max=20) a separar. b).- Temperatura mínima válida para la evaluación de propiedades

c).- Temperatura máxima válida para la ev<u>a</u> luación de propiedades.

d).- Perfil inicial de presión

e).- Número máximo de iteraciones permitidas para la columna (valor de omisión = 15).

f).- Método de resolución para la matriz tridiagonal:

1 = Método de Thomas

2 = Método de Boston - Sullivan

g).- Método de resolución de la ecuación del punto de burbuja:

1 = Método de Müller

2 = Derivadas

h).- Criterio de convergencia a seleccionar:

0 = Suma de cuadrados residuales.

1 = Criterio de Tomich

(valor de omisión = 0)

20.- Perforar una tarjeta por cada componente, indicando su nombre (máximo doce caracteres).

30.- Perforar una tanjeta por cada componente, proporcionando los coefi-cientes del polinomio oúbico para evaluar las constantes de equilibrio. (a., i = 1,4), tal que:

(psia).

(max = 99)

(°F)

(°F)

(T en °F)

222. -

Con formato (3E15.5)

40.- Perforar una tarjeta por cada componente, indicando los coeficientes del polinomio cuadrático para calcular las entalplas en la fase vapor (b;; i=1,3), tal que:

$$H_{v} = b_1 + b_2 T + b_3 T$$

(adimensionales)

(T en °F)

con formato (3E15.5)

- 50.- Realizar el mismo procedimiento que se efectuó para la 4a.tarjeta, pero evaluando la entalpla en la fase líquida.
- 60.- Perforar una tarjeta conteniendo los siguientes datos; con forma_ to (7110):
 - a).- Número del problema a resolver.
 - b). Número de etapas de equilibrio (min=3, max=100)
 - c).- Número de alimentaciones.

(max = 100)

- d).- Número existente de salidas laterales de vapor (sin tomar nu<u>n</u>
 - ca en cuenta las etapas 1 y/o N).
- e).- Exactamente lo mismo que el inciso anterior, pero para las sali-das laterales de líquido.
- f). Número de otapas en donde oxisten () intercambiadores de calor (excepto las 1 µ/o N).

(rear = 38)

70. - Perforar una tarjeta con formato (2F10.2), indicando:

- a).- Temperatura del fondo de la Torre
- b).- Temperatura del domo de la torre

80.- Perforar dos tarjetas por cada alimentación existente:
<u>PRIMERA TARJETA</u> formato (2110, 2F10.2)
a).- Número de la etapa de alimentación.
b).- Fase de alimentación (1=vapor, 2=líquido).
c).- Temperatura ie alimentación. (°F)
d).- Flujo. (LBMOL/HR)

SEGUNDA TARJETA formato (5F10.5)

Fracciones mol de alimentación para cada componente.Utilizar una tarjeta por cada cinco componentes.

30.- Perforar una tarjeta por cada salida lateral de vapor (si existen), con la siguiente información: a).- Etapa. b).- Flujo (LEMOL/HR)

con formato (113, F10.2).

100.- Realizar el mismo procedimiento que en la tarjeta 9, pero en esta ocasión para las salidas laterales de líquido.

110.- Con formato (11), F15.5), perforar una tarjeta por cada etapa en donde exista un intercambiador de calor; indicando:
a).- Etapa en donde se encuentra dicho cambiador.
b).- Flujo de calor (con signo positivo, si proviene de la etapa y con signo negativo si va a ésta). (BTU/HR)

(°F)

(°F)

120.- Perforar una tarjeta indicando el número del componente (en el orden introducido en la segunda tarjeta), cuyas composiciones en ambas fases se deseer graficar. Siendo forzosamente tres com ponentes a graficar. Formato (3110).

Nota: Si sólo se desean dos componentes; repetir entonces uno de ellos hasta completar los tres.

INDICACION:

Si el usuario desea efectuar la resolución de un nuevo problema utilizando para ello los mismos componentes y los mismos rangos de validez para la evaluación de propiedades; sólo tendrá que perforar de la tarjeta número seis en adelante y agregar éstas al final de las tarjetas del problema anterior y así sucesivamente con los pro-blemas que desee resolver.

En la tabla B.1 se encuentra el archivo de datos utilizando en la resolución del Problema ?.1.

II) .- MODELO DE SUMA DE FLUJOS ("SUM-RATES)

Este sistema tiene la finalidad de simular equipos de absorción y agotamiento utilizando para ello la técnica propuesta por Sujata, Burningham y Otto. El modelo también se encuentra desarrollado en el lenguaje de Fortran IV (v.3.1), en la Burroughs B-7800.

226. -

A). - INSTRUCCIONES PARA EL USO DEL SISTEMA

- El usuario debe proporcionar la siguiente información:
- a).- Número de componentes a separar.
- b).- Rango de validez de las propiedades físicas.
- c).- Presión de la columna.
- d).- Coeficientes de los polinomios para evaluar las constantes de equilibrio y las entalplas en ambas fases.
- e).- Configuración de la torre:
 - Número de etapas de equilibrio.
 - Número de alimentaciones.
 - Número de salidas laterales de vapor.
 - Número de salidas laterales de líquido.
 - Número de etapas de transferencias de calor.
- f). Alimentaciones:
 - Etapa de alimentación.
 - Fase de la alimentación.
 - Flujo de alimentación.
 - Composiciones de alimentación.
- g). Salidas laterales (si existen):
 - Etapa de la salida lateral.
 - Flujo.

h).- Especificaciones para las transferencias de calor (si existen):

- Etapa.

87

- Flujo de calor

i).- Especificar el criterio de convergencia.

El sistema utiliza el algoritmo de Thomas para resolver la matriz tridiagonal, creada para la obtención de las fracciones mol en la fase líquida. También tiene la posibilidad de escoger el crite-rio de convergencia; ya sea el propuesto por Tomich:

$$\varepsilon = \sum_{j=1}^{\Sigma} \left(\left(\sum_{i=1}^{\Sigma} Y_{ij} - 1 \right)^2 + \left(\frac{F_j^H f_j + Q_j + L_{j-1} h_{j-1} V_{j+1} H_{j+1}}{F_j^H F_j + Q_j + L_{j-1} h_{j-1}} \right)$$

$$\frac{(L_j + SL_j) h_j - (V_j + SV_j) H_j}{(L_j + SL_j) (L_j - (V_j + SV_j) H_j)}$$

+ V_{j+1} ^Hj+1

o la suma de cuadrados residuales:

$$\delta = \sum_{j=1}^{N} (T_j - T_j)^2 \qquad k = No. \ iteración.$$

B). - CARGA DE DATOS PARA EL MODELO DE SUMA DE FLUJOS ("SUM-RATES")

Los datos se introducen de la manera siguiente:

1a.- Perforar una tarjeta con la siguiente información, formato (110, 3F10.2, 2110):

- a).- Número total de especies químicas (min=2, max=20) a separar.
- b).- Temperatura mínima válida para la (°P) evaluación de propiedades.
- c).- Temperatura máxima válida para la (°F) evaluación de propiedades. d).- Perfil inicial de presión. (PSIA)
- e).- Número máximo de iteraciones permitidas (max=99) para la columna (valor de omisión=15).
- f).- Criterio de convergencia: 0 = suma de cuadrados residuales. 1 = criterio de Tomich.
- 2a. Perforar una tanjeta por cada componente, indicando su nombre (máximo doce caracteres).
- 3a.- Perforar una tarjeta por cada componente, dando los coeficientes del polinomio cúbico para evaluar las constantes de equilibrio (a, ; i=1,4), tal que:

$$\begin{array}{c}
2 & 3\\
K_{ij} = a_1 + a_2 T + a_3 T + a_4 T & (adimensional)\\
\hline
con formato (4 E 15.5) & (T en °F)
\end{array}$$

4a. - Perforar una tarjeta por cada componente, indicando los coeficien
 tes del polinomio cuadrático para calcular las entalpías en la fa
 se vapor (b;; i=1,3), tal que:

 $H_v = b_1 + b_2 T + b_3 T$ 2011 formatio (3E15.5)

 $(T er, {}^{o}F)$

(adimensional)

229.-

- Sa. Exactamente el mismo procedimiento que para la cuarta tarjeta, pero evaluando la entalpla en la fase llavida.
- 6a .- Perforar una tarjeta conteniendo la siguiente información, formato (7110):
 - a). Mimero del problema a resolver.
 - b).- Número de etapas de equilibrio
 - c):- Número de alimentaciones
 - d). Número de salidas laterales de vapor (excepto las etapas 1 y/o N).
 - e).- Número de salidas laterales de líquido (excepto las etapas 1 y/o N).
 - f).- Número de etapas donde hay intercambia-(max = 98) dores de calor (excepto 1 y N).
 - g). Precuencia de impresión de resultados intermedios (valor de omisión=10)
- 7a. Perforar una tarjeta con formato (2F10.2), indicando: a).- Temperatura del fondo de la torre.b). - Temperatura del domo de la torre.
- 8a. Perforar dos tarjetas por cada alimentación:
 - PRIMERA TARJETA formato (2119, 2F10.2):
 - a).- Número de la etapa de alimentación.
 - b).- Fase de alimentación (1=vapor, 2=líquida).
 - a). Temperatura de alimentación.
 - d).- Flujo de alimentación.

(min=3, max=100) (max = 100)(max = 98)

(°F) (°F)

(LBMOL/HR)

(°F)

SEGUNDA TARJETA formato (SF10.5).

Fracciones mol de alimentación para cada componente. Utilizar una tarjeta por cada cinco componentes.

9a. - Perforar una tarjeta por cada salida lateral de vapor (si existen), con la siguiente información: formato (III, F10.2):

a).- Etapa.

b).- Flujo

(LBMOL/HR)

(adimen.)

10a. - El mismo procedimiento expuesto en la 9a.tarjeta, pero para las salidas laterales de líquido.

11a.- Perforar una tarjeta por cada etapa donde exista un intercambiador de calor, formato (110, F15.5):

a).- Etapa donde exista un intercambiador.

b).- Flujo de calor (con signo regativo si va (BTU/HR) a la etapa, positivo si proviene de Esta).

12a.- Perforar una tarjeta, indicando el número del componente (en el orden introducido en la 2a.tarjeta), cuyas composiciones en ambas f<u>a</u> ses se deseen graficar. (mínimo y máximo tres componentes, con for mato 3 112).

NOTA: Si solo se desean dos componentes; repetir entonces uno de ellos dos veces hasta completar los tres.

INDICACION:

Si el usuario requiere resolver un mayor número de problemas, utilizando los mismos compuestos y en los mismos rangos de validez de las propiedades fí

230.-

nicas, entonces el programa le otorga[®]la facilidad de hacerlo; simplemente introduciendo desde la tarjeta número seis hasta la doce para cada nuevo pr<u>o</u> blema siempre agregándolas al final del problema anterior.

El archivo de datos, utilizado en la resolución del problema 7.3 se presenta en la tabla B.2.

i de la compañía de l Compañía de la compañía

CTR/TESIS	FABSORCION (11/1/2/35)				5:55 PM TUESDAY, JANUARY 1	5, 1985
110		• 151 •	75.	30	n services and the services of	
11(HETAKO			이상 전에 가장 전에 가지 않는다. 이 바람이 많은 것 같아요. 이 것 같아?	ULLUUIIL	
201	ETANO				u0+50208	
3.1	PRO PI. NO				6. JII00300	
	BUTANO				L J: UU4UD	
sec	PENTANO				しいいい いし	
700	ACE IT E-AE SON	한 같은 동안 문		화관한 것이 많은 것이	1)Bit0 17a u	
۲. ع	1.22: 1+11	2.5011-01	-0.251	U.COVE-JU	D.kIGU80C	
916	4.751 E (".	-4.27UE-114	2.1181 E-04	-5, 550E-108	60000900	
1440	2.25(C-1	-1-2108-02	1. 381 E-114	-5. 47UE-38	0001000	
1100	-4,7400-01	1.211-0-0-2	-1.121 8-05	5. 44UE-08	0 UDU 110 u	
1 251	-2.1 7(6-(1)	4.161 E-113	4.771 E-07	3.080E-++B	• ⁰ 0001290	
1 37 6	-5,11112-65	2-12-12-110	u.tiOt-E=of-	N. VUL E-UD	06061300	
\$ 411	4-0110+13	9-LCCE IL	U_Paire-ou		60001400	
1110	.2 ³ 101 L 14	13200E D2	. 61 2UUE-02		DOUU15DD	
:44	•11950E_05	123500 1-2	22100E-01		00001600	
4766	.16551 L US	.9610LC 01	- 3780LE-U1	가 바람이 있는 것이 있는 것이 있다. 1995년 1997년 - 1997년 1	606-01700	
1 84.0	_192(LE 1)5	_29500E 02	.7200L E-02		00001800	
1950	3.740E 04	4.400E C1	0_00LE=66		00001900	
2100	3,200 E 67	1.100E 01	0.UNUE-00		00002000	
2115	. 3620.1E (14	405(-1C D2	132UL E-U1		00/102100	
23.0	-628UUE 04	250000 02	-4650LE-IN		01602200	
2300	.68411 E 114	JETCHE (2	25200E+U1		08602300	
:401	.7920LE 114	4350GE 1-2	.3h20uE-rit		00002400	
2500	1.2BLE 04	7.30UL 01	C.COUE-OD		Vv002500	에 있는 것은 이번에 관계에 가지 않는 것은 것에서 가지 않는다. 이번에 가지 않는 것은 것은 것은 것이 있는 것이 같은 것이 있는 것이 같은 것이 있는 것
2000		6 2	U	0	3 60002600	
:701	15L. 8	L.		이는 것은 것을 가지 않는다. 이는 것은 것을 가지 않는다.	03002706	
2866	4	2 21 .	532,		UUL 02 AUD	그는 것 같은 것을 가장을 가지 않는 것이다.
: 97.7	L.10 F.	JL	¢.00		U0UU2900	그는 그는 말씀 그릇 것 것을 가장하는 것이다.
31490	1. A.				40003000	
7100	6	1 61.	1978-45	한 관광 관계 관계	Aat 03140	
10.22		ičá I)_li43	11.1126 0	u1 2	JJU0320Q	Representation and a second seco
1151	()				6C003300	
24.90	지, 아이는 것은 집 관광관 수 있다.	4 5			U01103400	
	e o antar llan d'h					
			TÁBLA	8.2		1

.

.

TABLA 8.2 ARCHIVO DE DATOS DEL PROBLEMA 7.3

111).- MODELO DE ISHII-OTTO (Método Alternativo)

Se muestra a continuación el manual de usuario del programa de s<u>i</u> mulación del Método de Ishii-Otto (versión alternativo), que tiene la <u>fi</u> nalidad de resolver problemas de destilación, absorción y agotamiento.

Este sistema se encuentra desarrollado en Fortran IV (versión 3.1), en una computador Burroughs Modelo B-7800 en el Programa Universitario de Cómputo de la U.N.A.M.

A).- INSTRUCCIONES PARA EL USO DEL SISTEMA

El usuario debe proporcionar la siguiente información:

a).- Tipo de problema a resolver (absorción, destilación, etc.).

b). - Presión de la columna.

c).- Número de especies química a separar.

d).- Polinomio para evaluar las propiedades físicas.

e).- Temperaturas en la parte superior e inferior de la torre.

f).- Configuración del equipo:

- Número de etapas de equilibrio.

- Número de alimentaciones.

- Número de salidas laterales en ambas fases.

- Intercambiadores de calor.

g). - Alimentaciones:

- Etapa.

- Flujo molar.

- Fasc.

- Temperatura.

- Composiciones not de alimentación.

h).- Salidas laterales (si existen y en ambas fases). - Etapa. - Fase. - Flujo. 234. -

i).- Intercambiadores de calor (si existen).

- Etapa.

- Flujo de calor que se transmite

El sistema utiliza el algoritmo de Thomas para resolver matrices tridiagonales; así como también utiliza la técnica de LU para la inver sión de matrices, con la fórmula de Crout. Cuando se requiere invertir matrices tridiagonales se utiliza el algoritmo creado por Ishii y Otto.

Finalmente el sistema aplica el criterio propuesto por Tomich para obtener la convergencia.

B).- CARGA DE DATOS PARA EL METODO DE ISHII-OTTO (ALTERNO)

Los datos se introducen en el siguiente orden:

10.- Perforar una tarjeta con la siguiente información: Formato (IIC, 3F10.2, 3I10, I2):

a).- Número total de especies químicas a (min=3,max=20) separar.

b):- Temperatura mínima válida para la evaluación de propiedades.

c).- Temperatura máxima válida para la evaluación de propiedades.

d) .- Perfil inicial de presión.

(Psia)

e).- Número márimo de iteraciones permitidas (max=99) para la columna (valor de omisión=15).

20.- Perforar una tarjeta con formato (IIO),indicando el tipo de separación deseado; a escoger entre:

1).- Destilación con condensador parcial.

2).- Destilación con condensador total:

3). - Absorbedor.

4).- Absorción con rehervidor.

5).- Agotamiento.

30. – Perforar una tarjeta por cada componente, proporcionando el nombre del compuesto (máximo 12 caracteres).

(°F)

(°F)

40.- Perforar una tarjeta por cada componente, proporcionando los coeficientes del polinomio cúbico para evaluar las constan-tes de equilibrio (a, ; i=1,4), tal que:

$$K_{ij} = a_1 + a_2 T + a_3 T + a_4 T$$

con formato (4E15.5).

50.- Perforar una tarjeta por cada componente, indicando los coeficientes del polinomio cuadrático para calcular las ental-plas en la fase vapor (b; ; i=1,3), tal que:

$$H_v = b_1 + b_2 T + b_3 T$$

(b = adimensionales)

(a; = adimen.)

60.- Con el mismo formato, realizar el procedimiento anterior, ev<u>a</u> luando en esta ocasión la entalpla en la fase líquida.

70. - Introducir la siguiente información en una tarjeta:

- a).- Número del problema a resolver.
- b). Número de etapas de equilibrio
- (min=3; max=50)

- c).- Número de alimentaciones
- d).- Número de salidas laterales de vapor (excepto las etapas 1 y/o N):

(max = 48)

(max = 50)

e).- Número de salidas laterales de Mauido (excepto las etapas 1 y/o N).

- f).- Número de etapas donde hay intercambiadores de calor (excepto 1 y/o N).
- a).- Frecuencia de impresión de resultados intermedios (valor de omisión = 5).

80. - Perforar una tarjeta indicando:

Si el tipo de separación es Destilación, con formato (5F10.2):

a). - Relación de reflujc. (°F) b). - Temperatura del fondo de la torre (°F) c). - Temperatura del dono de la torre (Lbmol/hr) d).- Destilado en la fase vapor (Lbmol/hr) e).- Destilado en la fase líquida

Si el tipo de separación es absorbedor, con formato (2F10.2): (°P) a).- Temperatura en el fondo del equipo

(°F) b).- Temperatura en la parte superior del equipo

Si el tipo de separación es absorción con rehervidor y con formato (3F10.2), introducir:

(°F) a). - Temperatura en la parte inferior de la torre (°F) b). - Temperatura en el domo del equipo.

c). - Flujo de vapor en la ctapa 1

(Lbmol/hr)

(max = 48)

(max = 48)

237 -

90.- Perforar dos tarjetas por cada alimentación.

PRIMERA TARJETA

formato (2110, 2F10.2):

a). - Número de la etapa de alimentación.

b).- Fase de alimentación

(1=vapor, 2=llquido)

(Lbmol/hr)

c).- Temperatura de alimentación (°F)

d). - Flujo de alimentación

SEGUNDA TARJETA

formato (5F10.5)

Fracciones mol de alimentación para cada componente. Utilizar una tarjeta por cada cinco especies químicas.

100.- Perforar una tarjeta por cada salida lateral de vapor (si exis-ten), con la siguiente información: formato (IIO, FIO.2):

a).- Etapa.

b).- Flujo

(Lbmol/hr)

110.- Perforar una tarjeta con el procedimiento seguido en la tarjeta 10a.; refiriéndose ahora a las salidas laterales de líquido.

120.- Perforar una tarjeta por cada etapa donde exista un intercambia dor de calor, formato (110, F15.5):

a).- Etapa donde existe el intercambiador.

b).- Flujo de calor (con signo negativo si va (BTU/HR) a la etapa, positivo si proviene de Esta).
130. - Perforar una tarjeta con formato (110), si se desea que el sistema calcule los perfiles iniciales de temperatura y de vapor:

0 = El sistema lo realizará.

1 = El usuario los proporcionará.

(valor de omisión = 0)

140.- Si la opción elegida en la tarjeta 130. fue igual a 1, perfore tantas tarjetas como etapas de equilibrio existan; conteniendo la siguiente información por tarjeta:

a).- Temperatura de la etapa

b).- Flujo de vapor de la etapa

(Lbmol/hr)

(°F)

Lo anterior con formato (2F10.2).

150.- Perforar una tarjeta, indicando el número del componente (en el orden introducido en la 3a.tarjeta); cuyas composiciones en am bas fases se deseen graficar (forzosamente tres componentes, con formato 3I10).

NOTA: Si sólo se desean dos componente; repetir entonces uno de ellos dos veces hasta completar los tres.

INDICACION:

Si el usuario requiere un mayor número de problemas a resolver utilizando los mismos compuestos y en los mismos rangos de validez de las propiedades físicas. Solamente deberá introducir nuevamente desde la tarjeta número 7 hasta la 15 al final del archivo anterior y así suc<u>e</u> sivamente para problemas subsecuentes con los mismos componente y el mi<u>s</u> mo tipo de separación.

Si no se alcanzará la convergencia en el número máximo de itera--ciones especificado, no se graficarán los flujos de temperatura, vapor y líquido a lo largo del equipo; ni tampoco las composiciones en ambas fases.

En la tabla B.3 se presenta el archivo de datos correspondiente al problema ?.4; así como en la tabla B.4 está el del ejercicio ?.5.

Este mismo manual se utiliza para correr el Método de Ishii-Otto criginal. ETB/TES15/0/TITES +6:1/JE/8/)

100	ć	17.			
161				61-00,101	
1.2	AETANO				
1:1	ETARC				
1.4	PROPANC			GLJLLIU:	
1:7	BUTANC			16060107	
1,• 5	PENTANC			JEJLIUV	
111	ACEIT B-ADSOR	ي موجود الحادثينية (المحمد الحادثينية العربية). المحمد الحادثينية (المحمد الحادثينية المحمد المحمد العربية).			
206	1.215E+JI ?.41	(*))	دهه ۳۵ د دوراه ب		
303	4.75]E]] -4.27]	12-34	-5.3206-12	UEJEL JUE	
124	i-353E-37 -1.310	1.3802-04	-8.470E-08	DEULUAJE	
500	-4,2436-01 1.213	12-32 -10 3202-05	3.440E-118	56766568	
666	-:.:7)2-:1 4.150	2-113 4.776E-u/	3.686E-08		
76:	-5-12.72-75 2-730	10-36 (.9634-68	6.6406-40	U which	
- 41	4.211E+113 9.14A	E 11 0.9661-06		DEDEt das	
\$7,1	.E31.JE 34 .13233				
1200	.11553E J5 .12353	1C-12 .22169E=01		LEUEIGUE	
110:	J12553E 37 .53133	1E 01 .37966E+31			
1201	.152CJE 37 .295J3	1E 12 .720601-02			
126:	2.7436.34 4.43		이 이 집 같은 것을 같았다.	3021300 M	
141	1.1018 15 1.110			incog i nus	
1555	.162636.34 .435.6	E)2 - 13446 E - 31	가 가 있는 것을 알려야 한다. 같은 것은 것은 것은 것은 것은 것은 것을 같이		
143:	2(1313E 34 _ 23333	12 112 .46560 8-01			
1700	.(2463£ J+ .13533	12 .252001-01		otogine a	
100:	.151.JE 14 .435.JJ	E 12 . 142001-11			
1 54	1.2936 (14 7.31	.5 .1 041 574	사람은 상태에 관		
3100	4			e 00002000	
2100	,	120.		0.002100	
2200		9].		ittus 5 lut	
2300				111744	
2400	1. J.			M 14 + 445	
58(0 /. TY/2+4 J		h1.134.4	
2430	!!].]] .	• de: _1•15€ -+		6606 ± 808	
276:	ċ. C0	승규는 영화 관련을 받는		161(236)	
2756	0				
2100			1998년 1월 1994년 1월 19 1월 1994년 1월 1994년 1월 1월 1994년 1월 1	U.U.C. (10 •	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TABLA 8. 3 ARCHIYO DE DATOS DEL PROBLEMA 7.4

 *******	[]] A 7 1 C K	

C1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		15.1.	2:1.	30			BLULCIUL		
1::	e en la évale en l'étais es	ير الد شوال						UC ILL IU!	i de la constante de la constante de la constante La constante de la constante de	
1.7	CTANG							5.0(:107		
125	PROFATC							4111145		
111	N-CUT FAC	са. с. С.								
112	N-PENIJAC							36 AL 112	가 있는 것은 것은 것을 가 있는 것을 가 있다. 같은 것은 것은 것을 가 있는 것을 가 있는 것을 가 있는 것을 가 있는 것을 가 있다. 같은 것은 것은 것을 가 있는 것을 가 있는 것을 가 있는 것을 가 있는 것을 것을 수 있다. 같은 것을 가 있	
11:	H-HEXALC							46466115		
270	.1445)(+11	1	50102-13	.735.21-64	I.I.,	5-17		vie sec zut		
101	.14.();))	4	51-12	.4946ut-04		L-J7		M . 4 . 300		
41	در، عاد، 1771ء -	.4	954 2-12	415061-45	. 22600	E=u7		ULUULLUL		
SCC	= , E75¢) E-u1	۰ . ۱	77132-12	- 203161-40	. 13100	L- 17		ULULOSJE		
123	.\$12:1L-J;	1	5 37 36- 32	1-3768-04	÷.15563	2-15		Univer COC		Server States
736	£21;JE+34	1	35105+35	.202661-02				DEUENTUE		
101	.,115176 37		23532-12	.221661-11				CIAN BUIL		
A.I	1.03 1 13	. 5	telast and	. 279001-01				JUROSUL		
200	,1 sz:De 31	.2	2513E .32	.723168-32		Pakaré né téréné Takaré né téréné Takaré né téréné		OLULIUOL		
115	.223236 15	د.	73362 12	. CUDAVE 80				64361106		
1200	. \$ 12:36+34	. 9	35)00+11	.150CCE-u1				0001201		
1261	.26203E 3%	4	35330 32	132561-01				La id: 1 Jun		
41	.422 DE (14	.2	50.5 (0.2	. 465601-01		고양관장관		06301400		
1566	. 2 2 4 5 7 2 34		35332 .12	.252668-31				0600150c		
1651	.752238 34		35332 12	.34240E-01				BLJUTEUL		
75:		16	2	1 1 1	1	1	:	PCH61706		
ED(26 1.1	333.	117.	21.	이 아이들 것을 같다.			6.3.180.		
\$26	1. 	2	212.72	د اي				UCJE190E		
11		.12	.37	.35	. 15			06365000		
100	,	2	213.73	51.				JLJL21UL		
226		. :0	.37	• 39	• • • •			0002200		
2200	12	. 17.						06362300		
4::		3.						which 24mp		
: 50 🔄		. 1 .,15	•ابه:					JCJC7SUC		<u>internationalista</u> Alternationalista
:s:c	n e						n an shintan shintan Talaharar gana ang an si b Gana ang ang ang ang ang ang	J. J. 1556		
100		1					an a	ULUL TEUL		

TABLA B.4 ARCHIVO DE DATOS DEL PROBLEMA 7.5

IV).- METODO DE SOLUCION SIMULTANEA PROPUESTO POR FREDENSLUND, GMEHLING MICHELSEN, RASMUSŠEN Y PRAUSNITZ.

El modelo simula equipos de destilación con condensador total, utilizando el algoritmo original de Naphtali y Sandholm pero con las modifica--ciones propuestas por Aage Fredenslund y colaboradores que con básicamente la utilización de coeficientes de actividad calculados por medio del Método de contribución de grupos de UNIFAC; así como una simplificación del m<u>é</u> todo original.

Así mismo, como los demás sistemas que se han presentado éste también se encuentra en un máquina Burroghs B-7800 y en Fortran IV (v.3.1).

Para la resolución del problema ⁷.6 el archivo de datos correspondie<u>n</u> te se encuentra en la tabla B.5.

A).- INSTRUCCIONES PARA EL USO DEL SISTEMA

El usuario debe proporcionar la siguiente información al sistema: a).- Número de especies químicas a separar.

 b).- Presión a la que se encuentra operando la torre de destila-ción.

c).- Coeficientes de las ecuaciones que predicen las propiedades físicas de los compuestos; como son:

- Constantes de Antoine para las presiones de vapor.

Coeficientes para el cálculo de entalplas en ambas fases.
Según los coeficientes viriales para el cálculo de coeficientes de actividad y entalpla en exceso.

d). - Configuración del equipo:

- Número de etapas de equilibrio.

- Número de alimentaciones. .

- Número de salidas laterales en cada fase.

e).- Para cada alimentación existente:

- Etapa.

- Flujo molar.
- Temperatura.
 - Fracción de vaporización.
 - Flujo molar para cada una de las especies químicas alimentadas.

j).- Salidas laterales (si existen):

- Etapa.
- Fase.
- Flujo total.

El sistema utiliza el mismo oriterio de convergencia, indicado en los trabajos realizados por Naphtali - Sandholm.

B).- CARGA DE DATOS PARA EL METODO DE FREDENSLUND ET ALL

Los davos se introducen de la manera siguiente:

- 10.- Perforar una tarjeta indicando el número de especies químicas a separar con formato (IS) (max = 10)
- 20.- Perforar una tarjeta por cada componente, indicando su nombre (máximo dove caracteres).
- 30.- Perforar una tarjeta con la siguiente información y con formato (515):

a),- Inclusión de oceficientes de actividad por medio de los par<u>á</u> metros de UNIFAC: 0 = calculados en forma ideal.

1 = deben incluirse en base a estos parametros.

b). - Opción de coeficientes de fugacidad:

0 = calculados en forma ideal.

1 = usando coeficientes viriales.

c).- Opción de Dimerización:

0 = no se debe incluir la opción.

1 = habrá dimerización en la fase vapor.

d).- Inclusión de Entalpía en exceso:

0 = no debe incluirse esta opción.

 1 = debe proceder el cálculo con la ayuda de los parámetros de UNIQUAC.

e).- Si existe dimerización indicar el número del compuesto que dimeriza. Su número de identificación será el mismo en el orden en que se introdujo su nombre.

40.- Si se escogió la opción de utilizar coeficientes de actividad en base a los parámetros UNIFAC, perforar esta tarjeta la 5a. y 6a.; de lo contrario pasar a la 7a. tarjeta.

> Perforar una tarjeta por cada componente, proporcionando con formato (3F15.5), la siguiente información:

a).- Parámetro de área, q_k .

b).- Parémetro de volumen, r_k .

c). - Parámetro de definición 1.

So.- Perforar una tanjeta por cada componente indicando las constantes A°_{ji} de la ecuación polinomial siguiente: (auxiliares en el cálcula del parámetro UNIQUAC τ_{ji})

$$\tau_{ji} = A_{ji} + A_{ji}^{I} I$$

con formato (5E15.5)

- 6c.- Son el mismo formato, perforar una tarjeta por cada componente; ind<u>i</u> canão los parámetros A_{ji}^{1} de la ecuación anterior.
- 7c.- Si se escogió la opción de coeficientes de fugacidad = 1, perforar esta tarjeta la 8a. y finalmente la novena; de lo contrario pasar a la décima tarjeta.

Perforar una tarjeta por componente, indicando los segundos coeficientes viriales $(B_{1,2})$, calculados en base a T_1 con formato (F10.3).

- 80.- Perforar una tarjeta por componente, indicando el segundo coeficiente virial evaluado a una temperatura T_{2} con formato (F10.3).
- 90.- Perforar una tarjeta indicando las temperaturas $T_1 y T_2$ a las cuales se evaluaron $B_{i,j}(T_1) y B_{i,j}(T_2)$, con formato (2F10.3).
- 100.- Si existe dimerización en la fase vapor perforar una tarjeta, indican do Loz coeficientes de la ecuación para la dimerización en esta fase; sierdo la ecuación:

$$\cdot \log_{10} K_{a} = A - B/T$$

y los coeficientes (A) y (B), introducirlos con formato (2F10.3).

- 110.- Perforar una tarjeta por cada componente, proporcionando con formato
 (3F10.5), las tres constantes de Antoine para el cálculo de las presiones de vapor por componente puro.
- 120.- Con formato (4F10.3), perforar una tarjeta por componente, indicando los coeficientes apropiados para el cálculo de sus entalplas; ta<u>n</u> to en la fase vapor como en la líquida (enp₁; k=1,4), tal que:

$$h_1 = h_0 + cp, T$$
 (liquido)

$$H_{ij} = H_0 + cp_{ij}$$
 T (vapor)

donde:

- 130.- Perforar una tarjeta conteniendo la siguiente información con formato (£15):
 - a).- Número de etapas de equilibrio (min=3, max=30)
 incluyendo condensador y rehervidor.
 b).- Número de alimentaciones (max = 28)
 - c).- Número de salidan laterales de ll- (max = 28) quido (excepto las etapas uno y/o N)

- •
- d).- Número de salidas laterales de vapor
 - (no introducir la etapa uno y/o N)
- e).- Número del problema a resolver.
- f).- Frecuencia de impresión de resultados intermedios (valor por omisión = 4)
- 140. Perforar una tarjeta con formato (5F10.5), indicando los parometros:

			i la chaolachta			
a)	Flujo de de	estilado				(MOL/HR)
		والمراجع والمتعادية				
		e a ser en				
b)	Relación de	e refluio	externo	•		(Adimensional)
- (2	Prosilin on	La column	α.			(ATM)
		00 00 000 D				
A1 -	Tomonatura	dal doma	de la Ton	mo		(00)
	remperatura	a uso uono	uc /u 1/1			
an an tradition an an tradition		1				
1	Tormanatura	dot fond	la da la	tomo	en e	1 00 1
e/	remperatura	i we i jona	<i>v</i> ue <i>v</i> u i			
6/	remperatoria	ເພຍຍັງປາເພ	<i>ue p</i> u i			

- 150.- Perforar una tarjeta, indicando si se desean eficiencias de Murphree etapa por etapa, con formato (15).
 - 0 = Se leerán eficiencias de Murphree etapa por etapa.
 - 1 = Se leerá una eficiencia para toda la columna.
- 160.- Si la opción en la tarjeta 15 fue de uno, perforar una sola tarjeta indicando la eficiencia de Murphree para toda la columna con formato (F 10.5).
- 170.- Si por el contrario, la opción en la tarjeta 15 fue de cero; entorces perforar una tarjeta por cada etapa de equilibrio, indicando ex eficiencia con formato (F10.5).

(max = 28)

180. - Perforar dos tarjetas por cada alimentación existente:

PRIMERA TARJETA formato (15)

Indicar el plato de alimentación.

SEGUNDA TARJETA formato (7F10.5)

a). - Temperatura.

b). - Fracción de vaporización de la alimentación. (min=0.0, max=1.00)

c).- Flujo molar de alimentación para cada compo- (MOL/HR) nente, cinco por tarjeta.

190. - Perforar dos tarjetas por cada salida lateral de líquido:

PRIMERA TARJETA formato (15)

Indicar el número de la etapa en donde existe esta salida lateral.

SEGUNDA TARJETA j'ormato (F10.5)

Indicar el flujo total de líquido a

extraer en esta salida lateral (MOL/HR)

- 200.- Realizar el mismo procedimiento que en la tarjeta 19, tratándose ahora de salidas laterales de vapor.
- 210.- Perforar una tarjeta con formato (315), indicando los tres componen-teo que se desean graficar. Completar exactamente los tres, si se desean dos; se deberá repetir el número de uno de ellos.

(° C)

NOTA: Si el usuario desea efectuar la resolución de un nuevo problema,utilizando los mismos compuestos; sólo tendrá que perforar de la tarjeta número trece en adelante y agregarlas al final de las tarjetas – del problema anterior y así sucesivamente como problema desec resolver.

250.-

251.-ETE/TL::5/EAHO/JU!! (; 1/ 8/:2)

				化氯化物化氯化物 机合成 化碱酸盐 网络马克拉马马属海豚马克拉马拉瓦马根 医子宫颈部的 机热力 医生
4				
ETANCL				
H-FRC PASEL				
AGUA				
AC: - J CLTICO				
2 2	2 2		이 아이 지역 수 있	
1.9	71 97	2.10250	-3-4379	9
	· • •	2.770011	-(441 7	
4 24	10		_7 73	
	11°C.	2 2 3/ 5		
		2. 21. 2-11	-1-, 3 303	
f • 100 4.4	.+J1:	122/32+-1	1 -192 8: E+u	-U.21691E+··W
0.77140	C. <u>1</u>	1 a 60£ - 11	1.37712E	· ''. 33463E- 11
C.10123	E JT C	205938 10	C.1000CE 0	1 -U.67430E-)1
C .×1135)	est u	27263E 01	(.2911CE)	I U.1.JVJIE J1
0.00000	: C. 190	2,73266-03	C.94927E-4	3 139506- 12
5.1-1471	-01 C.	CLUCE 10	L. 24 44E-1	3 (J. 1124]E=J2
-C+11735	:-7: L.	767165-1 3	C.JUPPEL	1 U. 13032E- 12
-5- 4763	e-12 -C.	2513927. 2		2
- 071 1 87	+177 755	-255-862	-116-148	
-727 -1 2	-411. 0.7	-194.1'41	-170.9/3	
-/33 966 -	-4.4.2.0**	- 17- 17-		
			-1634126	
-413-917			100.3.273	
-223,104	-2-2-5-6	-052.200	-125.959	
-174-141	-219.371	-477.629	-614,094	
-326.115	-174, 354	-132.339	-116). 955	
-225_(7)	-344,778	-157.753	-921.554	
252.J(.)	373.350			
10.110	2012.020			
8,14494	1074.330	222.651		
7.99723	1519.726	269.513		
7.92681	1668.200	228.14 3		
7.1:017	1416.710	211,000		
-2022.320	17.934	7913.72.1	18.676	
-2312.50	77.141	7722 4 10	24 77 0	
-1/10 7 1	4 - 670	07711 47.1	3 705	
-1441-2-20	10.0.0	440100000	· · /U)	
-2240,411	28.091	4074e751	17.926	• •
36 2	Q ≥ Q	· 2, · ·		
4(.	2.	1.	107.	t).
5				
7		이 같은 것을		
1				
254			12.5	12.5 25.
21				
111 -	1-	25.	12.5	12.5
10				
21				
· 가지 않고 있다. 				
				TABLA B.S
				ARCHIVO DE DATOS DEL PROBLEMA 7.6
				The second of the second s
				영상 관계적 전 전화가 전 전 가지 않는다. 이 가지 않는다. 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전

V). - METODO DE SOLUCION SIMULTANEA DE NAPHTALI-SANDHOLM

Se presenta el manual de usario del programa de Simulación que utiliza la técnica propuesta por Naphtali y Sandholm, con el objetivo de dar solución a las más variadas técnicas de separación líquido-vapor.

El programa fue adaptado a una máquina Burroughs B-7800, en FORTRAN IV versión 3.1.

A). - INSTRUCCIONES PARA EL USO DEL SISTEMA

El usuario deberá proporcionar la siguiente información:

a).- Escogerá de que manera se evaluarán las propiedades físi-cas, ya sean por datos termodirámicos o mediante correla-ciones (Chao-Seader, Margules, etc.).

 b).- Proporcionará el número de especies químicas a separar (así como su nombre).

c).- Configuración del equipo:

- Número de etapas del equipo.
- Número de alimentaciones (flujo, número y localización).
 - Salidas laterales (número, localización y flujo).
 - Intercambiadores de calor.

d).- Especificaciones en el Domo:

- Tipo de Condensador (parcial o total)

253.-

- Relación de reflujo.

- Temperatura.

- Flujo de destilado.

- Carga en el condensador.

e). - Especificaciones en el Fondo (opcionales):

- Relación en el rehervidor.

- Carga en el mismo.

- Flujo.

- Temperatura, etc.

f). - Perfil inicial de presión.

g).- Eficiencias de Murphree.

El sistema determinará por la condición térmica de la alimentación, si esta es de una fase o de dos fases; mediante el cálculo de un Flash. Los latos termodinámicos se pueden obtener mediante:

a).- Correlación de Chap-Seader.

b). - Tablas de propiedades vs. Temperatura.

c). - Polinamios.

d).- La ecuación de tres sufijos de Margules para el cálculo de coeficientes de actividad.

Si se elige la opción de Chao-Seader,el sistema contiene un pequeño banco de datos de sesenta compuestos con sus más importantes propieda-des; los compuestos son parafinas, cicloparafinas, arómaticos y nohidr<u>o</u> carburos.

B). - CARGA DE DATOS PARA EL METODO DE NAPHTALI-SANDHOLM

- Perforar una tarjeta proporcionando un título a la corrida con un máximo de ochenta caracteres.
- 2.- En la columna número tres perfore una X, si se usarán datos termodinámicos previamente calculados por el sistema e indique el número de especies químicas a separar con formado I10 de las columnas once a la veinte.
- 3.- Perfore una X en la opción deseada para la evaluación de las propiedades físicas:

<u>COLUMNA</u>	OPCION
3	Polinomios
8	Tablas
13	Chao - Seader (ideal)
18	Chao - Seader (no-ideal)
23	Entalplas por polinomios en
	funció: se la temperatura y
	relaciones de equilibrio por
	la correlación de Chao-Seader.

4.- Perfore una tarjeta por cada componente con formato (3A6,I4), indicando su nombre y su número de identificación según la t<u>a</u> bla B.6. Para componentes hipotéticos se deberá utilizar la opción de Chao - Seader ideal o no-ideal (Ver tarjeta 7 y 8).

NOTA: Si sólo se dan los nombres de los compuestos, el progr<u>a</u> ma les asignará un número; en este caso deben escribirse correctamente incluyendo blancos, números y guiones cuando así se requiera. Si sólo se utiliza el número de identificación según la tabla B.6, el programa asignará los nombres.

5.- Si se escogió la opción de evaluar propiedades por medio de p<u>o</u> linomios perforar dos tarjetas:

PRIMER TARJETA (FORMATO 2F10.0)

- Indicar temperatura minima de evaluación del polinomio.

- Indicar temperaruta máxima de evaluación del polinomio.

<u>SEGUNDA TARJETA</u> (una por cada componente con formato 7F10.0) - Coeficiente A del polinomio de las constantes de equilibrio. - Coeficiente B del mismo polinomio.

- Coeficientes C del mismo polinomio.

CONSTANTES DE EQUILIBRIO

 $ln k = \frac{A}{T + 459.6} + B + C (T + 459.6)$

(T en °F)

Coeficiente X del polinomio de la entalpla molar del Uquido.
Coeficiente L del mismo polinomio.

ENTALPIA MOLAR DE LIQUIDO

 $H_{T} = K T + L$

(T en °F)

256.-

Coeficiente U del polinomio de entalpía molar de vapor,
Coeficiente W del mismo polinomio.

ENTALPIA MOLAR DE VAPOR

 $H_{\eta} = U F + W \qquad (T en {}^{o}F)$

6.- Si se escogió la opció: de evaluar las propiedades por medio de tablas (propiedad vs. temperatura), perforar las siguientes si<u>e</u> te tarjetas:

TARJETA 1 Formato (E15.6,315)

- Presión absoluta a la que se evaluaron las propiedades.

- Número de temperaturas que se proporcionarán en la Tabla de constantes de ecuilibrio.

- Número de comperaturas que se proporcionarán en la tabla de entalpla de líquido.

 - Питего de temperatura que se proporcionarán en la tabla de entalpla de vavor.

TARJETA 2 FORMATO (5E15.6)

- Temperaturas a las cuales se evaluaron las constantes de equilibrio (cinco temperaturas por tarjeta).

그는 그는 것이 같아요. 가슴을 가슴을 가슴다.

TARJETA 3 FORMATO (5E15.6)

- Perforar una tarjeta por componente, indicando los valores de las constantes de equilibrio evaluadas a las temperaturas introducidas en la tarjeta anterior (cinco evaluaciones por tarjeta).

TARJETA 4 FORMATO (5E15.6)

- Introducir las temperaturas a las cuales fueron evaluadas las entalplas de líquido.

TARJETA 5 FORMATO (5E15.6)

- Introducir una tarjeta por cada componente, indicando el valor de la entalpla del l'aquido evaluada a la temperatura correspon diente introducida en la tarjeta anterior.

TARJETA 6 FORMATO (5E15.6)

- El mismo procedimiento que la tarjeta cuatro, pero para entalplas de vapor.

TARJETA ? FORMATO (5E15.6)

- Mismo procedimiento que la tarjeta cinco, pero para entalplas de vapor.

- 7.- Si la opción elegida fue la de Chao-Seader (ya sea ideal o no-ideal), introducir con formato I5;el número de componentes hipotéticos a ut<u>i</u> lizar.
- 8.- Si existen componentes hipotéticos, introducir una tarjeta por cada uno de ellos con la siguiente información. FORMATO (3A6,I4, 7F8.1):
 - Nombre

- Núriero de	identificación (usar iel ni	mero 61 al	100).
– Purto de	ebullición (°F	·) · · · · · · · · ·	pcional	(a)
– Funto de e	ebullición molar	(°F) c	pcional	(a)
- Fw:50 de .	etullición meito	(°F) c	prcional	(Ъ)
- Temperatus Provién ov	ra crítica (°R)			(c)
- rreston cl	ricica (181a)			(0)

- Fesc molecular

XIIA: Se puede escoger o la opción (a) o la (b), forzosamente una de ellas.; (c), es completamente opcional, es decir se puede proporcionar o suprimir.

9.- Si la opción para evaluar propiedades fue la de entalplas por medic de polinomios y constantes de equilibric por la correlación de Chac-Sealer, perforar una tarjeta por componente; indicando los coeficien tes los polinomios para calcular la entalpla del líquido (coeficience (X', y (L) y la entalpla de vapor (coeficientes (U) y (N' com formato 4F10.0. Se utilizarán las fórmulas:

$$H_{L} = K T + L \qquad (T en {}^{o}F)$$

$$H_{V} = U T + W \qquad (T en {}^{o}F)$$

259. -

10.- Especificaciones del problema:

Perforar una tar:	ieta con la sig	uiente infor	mación:	esta en 1971 en Novembro
				FORMATO
- Número de etapo	as de equilibri	o.		
- Número de alime	entaciones + in	tercambia-		
dores de calor.				I 5
- Número de salic	las laterales t	otales		I5

Escoger una de estas dos opciones:

1).- Marque una X para condensador total columna 18

- Grados de subenfriamiento col 26 - 40

2).- Marque una X para condensador parcial columna 43.

NOTA: Las etapas de equilibrio incluyen condensador y rehervidor, si no se requiere condensador, marcar condensador parcial y especificar $Q_n = 0.0$ en la siguiente tarjeta.

11.- Especificaciones en el domo:

COLUMNA

3

10

Marque cor una X una de las siguiente opciones, e introdusca el valor apropiado de su elección.

OPCION

L/D reflujo externo Q_A carga en el condensador

	<u>.:DLUMNA</u>	<u>OPCION</u>
	15	I _D temperatura en el condensador.
	21	D destilado total
	27	$\mathtt{d}_i^{}$ flujo del componente i en el de <u>s</u>
		tilado.
	33	x _{D.} Fracción mol del componente i
		en el destilado.
	41 - ,60	Valor de la opción elegida.
4	61 - 65	Número del componente si se esco
		gió la opción d_i o x_{D_i}

12. - Especificaciones en el Fondo del equipo.

Marque cor una X una de las opciones:

<u>COLUMIA</u>	<u>OPCION</u>
3	V/B relación de rehervidor externo.
10	${\it Q}_{{\it B}}$ carga en el rehervidor (posit ${\underline i}$
	vo si se añade).
15	T _B temperatura en el rehervidor.
21	B producto del fondo.
27	b _i flujo del componente i en el
	fordo.
33	x_{B_i} fracción mol del componente i
	en el fondo.
41 - 60	valor de la opción.
61 - 65	número del compuesto si se eg
	cogib la opción b_i o la s_{B_i} .

Perforar dos tarjetas por cada alimentación existente o una por cada intercambiador, con la siguiente información (iniciando con la alimentación o el intercambiador de calor que se encuentre localizado más cerca del domo).

262.-

Presión de la alimentación o del intercambiador.

Si se diseña un plato con ambas fases.

NOTA: Si se desea alimentación en dos fases marque las columnas 33 y 38 con una X.

TARJETA 2 (SOLO ALIMENTACIONES) FORMATO (5GI5.6)

- Perforar una tarjeta por cada cinco componentes, indicando las moles totales de climentación de cada componente.

14.-Si existen salidas laterales perforar una tarjeta por cada salida indicardo:

<u>COLUMNA</u>	<u>FORMATO</u>	CONCEPTO
.1 - 5	I5	No. de la salida lateral a tratar.
6 - 10	I5	Localización de Esta.
13	Marcar con una X	Salida Uquida.
18	Marcar con una X	Salida vapor.

Zecoger una de estas tres opciones:

56 - 71

23 Si se cara la relación de la salida	Laterai
of populate do la considute	
ab sourance de la corrience.	
· 영상은 방법에 가장 방법에 가장 수 있는 것이 있는 것이 같은 것이 같은 것이 같은 것이 있는 것	
지방 영화 방법 방법 방법 방법 방법 방법 방법 방법 이 가지 않는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다.	
2. 2월 2월 1일, 2월	
28 Moles totales de la salida.	
经济地理 医脊髓管膜 化磷酸化 网络拉斯特 网络斯特特 化乙酰胺 化乙酰胺 化乙烯乙烯 计分子 医子宫 医子宫 化分子 化分子	
비행 방법 방법 방법을 통해 가슴다. 것은	
같이 많은 것입니다. 한 방법에 관계하는 것이다. 이렇게 한 것이다. 이렇게 한 것은 것이라는 것은 것이다. 이는 것이다. 이는 것은 것이다. 것이 아는 것이 하는 것이다.	
33 Volos totales int amongsta i an 1	a nation
Love hourse are componence t en t	والمدسا والعلا لأراريه الايلان
1 바이 2 방법 방법 문제에 전 전 방법 등 2 바이지 이 문제가 있었다. 이 가지 않는 것이 있는 것이 있는 것이 가지 않는 것이 가지 않는 것이 있다.	

Especificar de la columna 36 - 50 el valor de la opción elegida. De la columna 51 - 55 con formato 15 proporcionar el número del componente si se eligió la última opción.

(omisión = 8)

(omisión = 5)

(omision = 20)

15. - Parámetros del sistema con formato (415, EI5.0)

- Indice de salidas (ver tabla B II)
- Máximo No. de puntos de búsqueda
- Mínimo No. de puntos de búsqueda
- Máximo No. de iteraciones
- Tolerancia para detener el sistema

Marque una X para una de las dos opciones siguientes:

-	En	la	colum	na 39		Para	imprim	ir res	ultad	os en	disc	0.
-	En	la	colum	na 45		Para	estima	r fluj	os to	tales	de	vapor y
						llqu	ido en	lugar	de fli	ujos p	r :01	mponer
						te.						

16.- Parámetros dentro del sistema Formato (4F10.5, I10, F10.5):

- Minimo factor escalar en la fórmula de recurrencia de Newton-Rapin-

- Máximo número de iteraciones con una mayor suma de cuadrados.

- Máxima delta para la evalucción de temperaturas.

17. - Estimados iniciales:

Perforar dos tarjetas para estos estimados.

TARJETA 1 FORMATO (4E15.8)

- Número del plato estimado.

- Presión existente en el plato.

- Eficiencia del plato.

- Temperatura del plato estimado.

<u>TARJETA 2 a</u> (Si se escogió la opción de flujos por componente en la tarjeta No.15).

- Indicar los flujos de vapor para los componentes 1,2,3,...n, se guidos por los del líquido, cinco por tarjeta (formato 5E15.8).

<u>TARJETA 2 b</u> (Si la opción elegida en la tarjeta 15 fue de flujos totatles).

- Flujo total d	le	vapor	formato	E15.8.
, 영화, 영화, 영화, 영화, 영화, 영화, 영화, 영화, 영화, 영화				
- Flujo total d	le	líquido	formato	E15.8.

NOTA: Como minimo deben darse los estimados del domo y del fondo de la columna; aunque se recomienda proporcionar un mayor número de estimados iniciales.

INDICACIONES:

El archivo de datos para el problema 7.8 se presenta en la tabla B.7.

En las tablas B.8 y B.9 se presentan los archivos para los problemas 7.9 y 7.10 respectivamente.

		n Elizabeth ann an Anna Anna Anna Anna Anna Anna A	265
	TABLA B.	6	
PARAFINAS Y OLEFINAS:			
999 - 1997 -			
Componente	<u></u>	Componente	<u></u>
Netano	2	2-Metilpentano	52
Etano	3	3-Metilpentano	53
Propano	4	2,2-Dimetilbutano	54
i-Butano	5	2,3-Dimetilbutano	55
n-Butano	6	Etileno	22
i-Pentano	7	Propileno	23
n-Pentano	8	1-Butano	24
n-llexano	10	cis-2-Buteno	25
n-lleptano	11	trans-2-Buteno	26
n-Octano	12	i-Butano	87
n-Noveno	13	1-Penteno	29
n-Decano	14	cis-2-Penteno	30
1-Undecano	15	trans-2-Penteno	31
n-Dodecano	16	2-Metil-1-Buteno	32
1-Tridecano	17	3-Metil-1-Buteno	33
1eo-Pentano	g	1-llexeno	35
1-Tetradecano	18	2-Metil-2-Buteno	34
n-Pentadecano	19	1-Hepteno	56
n-Hexadecano	20	Propadieno	57
n-Heptadecano	21	1,2-Butadieno	58
	1,3-Butadier	10	
CICLOPARAFINAS:			
Ciclopentano	36	Ciolohexano	38
Metilciclopentano	37	Metilciclohexano	<i>39</i>
Etilciclopentano	59	Etilciclohexano	60
AROMATICOS:			
Benceno	40	m-Xileno	43
Tolueno	41	p-Xileno	14
o-Xileno	42	Etil benceno	45

Componente	#	Componente	_#
lidrőgeno	1	Dióxido de carbono	49
litr§geno	46	Sulfuro de hidrógeno	50
Dxlgeno	47	Dióxido de sulfuro	51
lonóxido de carbono	·····		
		11월 28일 1일 전 1일	
	2017년 2018년 1918년 19		

ETR/TESIS/TESIS (G1/28/85)

5154 PM HONDAY, JANUARY 28, 1985

44								
							•	
		- 1						
					••			
			••	•	••			
.,		•	••			•	•	
	44	•	**					
	**				44	÷.	- i - i	
								: ::
					••			

_ 100 j		PRCOLE	A 7.8 DE DES	STILACION				litti		
261	e de la constante de la consta La constante de la constante de					anal (Information) (Informa- Barristan (Information) (Information)	a na sina ang sina. Tanàna aona aona			
300		. X								
47C	ETANO	. 4								
SUC	PROPANO							like said a baile.		
0.0	H-DUTANO	6								
700	N-PENTANO	7								
3.15	N-HEXANO	8								
900	C									
1005	12 1)	X		가 가 있다.						
1102	X				2.58				아이는 것을 물었는	
1 260		Χ.			51.1					
1300	1 6	X			L.I.	. 1 ZU.				
1 4CT	والمتعادية والمتعادية والمتعادين		15.	25	20.	35.				
1 500	4.			x	X					
1 600	C.SC	5 (14)	25.0							
17(2	1.0		121 .	1.	165.					
1800	48.2		126.1							
1 9;(12.1		121).	1.	236.1					
ZICC	175.		51,1	\mathcal{L}						
	心,我是我们是自己的问题。"我们是我的感觉的事	18 M 19 P P S		- 승규는 것은 것은 것을 것을 했다.	요즘 아파는 아파 방송을 한 것이라.	승규님의 방법에 관심하는 것이다.	에는 아파 아파 있는 것 않는	동 지수는 것 같은 것 같아요.	영화 이상에 관계하는 것이다.	- 18 C.

TAULA 8.7 Archivo de Datos del proglema 7.8

NORM 11 EIR/18(11//CF (01/23/85)

##F126.E1	E 18 / TEL 1 1 / F CF (141 /	29/85)				SES4 PH MONDAY, JANUARY	28, 194
101	PR	ODLEPA NUMERC 7	FARA DESTILACIÓN				-
21		5					
200	1						
171	ET AKC	2					
\$C C	PROPANC	4	양감 한 바람이 않는				
670	N-BUT ALO	6					
715	H-PEKTINO	e e e e e e e e e e e e e e e e e e e					
2î (N-HEXA ho	1 Γ					
5.1	:3)	5 5 5			한 같은 것		
Hour :	\$)•]	75.6	103.0	210.0			
11:1	1.3175	2.(.545	2,3557	4.5970	7.708		
1:00	£.726°	¢.,755.6	U-8377	1.7591	.239	2	
1366	(0.1872	6.2935	P. 5852	1,614	1	
1455	۲، ۲۵۵۲	D. 051 5	0.1042	9.6161	6.874	6	
1201	C• 2415	0.2352	0.[412	D. 2124	w. 565	1	
16'1	5 "••	75.0	100.0	1.015	310.1	•	
1.4	0023	69[5.63	72[5.0.	8745.00	10461.0	N	
10-1	30120	0332,25	7538.00	11542.88	14946.4	5 ···)	
NCC	1046423	3410.20	9245.00	13510.65	18498+6	5	
2100	952263J 4247(5'	9509.23	1042.00	16536.32	21196.7	Provide States and the second seco	
12 1	57.7	7e 6	12572-50	18330 .82	24397.22	2	
2277	Fors.r.S	0117 64	100.0	21010	314.1	• • • • • • •	
2400	12622.75	1304.0.14	13404 10.	11347.48	14980.52		
25-4	17:5:	\$7438.75	17126 (1)	73210.11	17902.31	أنجر عرسي الأحادي ال	
2677	1122.000	91 69.15	10027061	20109409 14/14 15	2 29 / 5.03		
17-5	10173.53	11352.78	12572.00	100:0.32	71190+72		
25/17	16 2 2	x		10200000	24367.22		
25:1	7			7.5			
211- P		X		4.1.1	in por la livit des		
\$17C	1 1 1		2005.10.14	250.0	9		
2 .	1 1	X Y	212.03	25	J. 40 x	e de la compañía de Compañía de la compañía de la compañí	
11((10.00	18.55	17.55	2.57		
34 16		x x	213.93.	25	0.0C x		
217.0	1.5	11.Lr	18.50	17.5u	2.5.		
36-6	10 - 1 - 1	X	3.0:				
1/90		(37.01				
2612		8(⁷ , ¹ 'E-U1	, , , , , , , , , , , , , , , , , , ,				
~656		5 25.N					
41.44 4177		2. JE+1 2	1•1	120.00			
4.25 5		5 3.7 a.J					
410 7	47/ ···		1.0	134.90			
4475	1.11.4	9 CEANS					
4:20		240 0	1.0	291.00			
465	1.((+.1	2# \$F4F 2	•				
470	2.1		1.01	3. 1. np			
		이 같은 것은 것 같은 것	TASLA B.8				
		에 가장을 가지 않는다. 이번 것은 가지 않는다.	ARCHIVO DE DAT	OS DEL PROBLE	MA 7.9		
		고 문화가 같은 네네.	학습관 같은 것				
					아이는 2013년 년 일 이 1913년		

228. -

	PROFILIA HUMITE	**** PAPA +1 LOP			
	6				
y					
PETAL C					
ETANC		an an the second se Second second		alayan kutang sang sang sang sang sang sang sang s	
R-PROPAL			ر با المراجع مي المراجع المراجع المراجع المراجع		
R-10, AND					
ACTIT ACTORNES	r. 61		· · · · · · · · · · · · · · · · · · ·		
71.2					
	75	100.1	125.1	150.0	
22.1072	27.4944	31.(04)	33.7344	35.6975	
5.2332	5.3519	6.71 18	7.7796	9.0774	
:• :04	2.1.3.	2.7553	2,711		
1.522		1.7284	1.0234	1.2.27	AELOGU UU MURU
1 4' 16.1	Sec. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	U.2440	0.35%	······································	
	77.1	51 w - C	(1)/3) Simulatin 25-16-3	15	
	4125. 1	4411.11	4675.14	4951.12	
1 :4:20	6511.25	7518.1"	8476.25	\$393	
76, 1, 25	:4:6."5	?245 .I	10131.56	1 1. 76.25	
??35	9567.75	1" 942.41	12046.25	131 52.11:	
1.47.51	11351.29	12572.01	13829.35	15124.5	
16451	13175.14	27 1L1 .UL	21925. TH	23750.01	
	75.4	16	125.	15 (•	
- 55 - s.e.	3475.1	576	5925.	121.00	
	533	47414.15	10'-24.10	1142:040	
1.5.1.5. 	(-1-2 -2 121 (• 0	17926	18266.88	1 7752	
7 407	21457.7	22222 . pl	23 2 3. 11	23747.	
296. 4.		41 601	429	44.1	
ć 2 i)		이는 것이 같아요.	
		•	. 		
			621.97		
1 1	• • •	8	9: •''	75,J X	
100.00					
7				75.9 X	
1742311	166.10	94.97	51.441.	23.74	
: :	5C	-[1 x	, y		
1. 1	27 25.				
1.	7:.'	1.6	8 1-32.		511 S. H.
1071.7					
6.		۱۰۲ -	1-0.50		
15-2•A					
		TABLA B. 9			
		ARCHIVO DE DATOS	DEL PROBLEMA 7.10	$\Gamma_{\rm eff}$ is a state of the second	
					د پردینون کنید در است. در است.
			428년 1월 19일 - 1월 19일 - 1일 19일 - 1일 19일 1995년 1월 19일 - 1일 19일 19일 - 1일 19일 19일 - 1일 19일 19일 19일 19일 19일 1999년 1997년 19		이 가슴다 아니아
	a an ann an tarth ann a' bhailtean an tarth an t Tarth an tarth an tart			na Engla El Carlo de Carlos. Contratos en contratos en carlos	상 11 분위 역사

En este apéndice se pretende demostrar matemáticamente que los algominus probados pueden converger a diferentes soluciones para un mismo problema (bajo las mismas condiciones).

Haciendo un análisis para ecuaciones no lineales primeramente y extr<u>a</u> polando para un sistema de ecuaciones de este tipo posteriormente, se o<u>b</u> serva que:

Se tiener, que resolver ecuaciones de la forma

$$x = f(x) \qquad (C.1)$$

Consista el método de iteración correspondiente en escoger un x_o arbitrario y generar la sucesión $\{x_n\}$ recursivamente mediante:

 $x_{n} = f(x_{n-1})$ (C.2)

donde f es una función dada definida en el intervalo cerrado I = [a,b] y cuyos valores se encuentran en el mismo intervalo.

Lo anterior implica que si $x_0 \in I$, todos los elementos de $\{x_n\}$, también se encuentran en I. Si algún $x_n \in I$ con $n \ge 0 \in I$; entonces también $x_{n+1} = f(x_n) \in I$; puesto que f tiene su valor en I. (ver figura C.1).

Cabe aclarar que estas hipótesis no eliminan la posibilidad de la existencia de varias soluciones (llamadas puntos fijos), en el intervalo [a,b]. (ver.figura C.2).

FIG, C,1 EXISTENCIA DE UNA SOLUCION PARA F(x)

Si se quiere asegurar la existencia de una solución se debe desarrollar alguna hipótesis, garantizando que la función f no varie demasiado rópida.

Supóngase que f es diferenciable y que su derivada f' satisface:

$$|f'(x)| \leq L \qquad a \leq x \leq b \qquad (C.3)$$

donde L es la constante de Lipschitz y L< 1. Además se verifica la desigual dad de Lipschitz para garantizar la unicidad de la solución; siendo ésta:

$$|f(x_1) - f(x_2)| \leq L |x_1 - x_2|$$
 (C.4)

donde $x_1, x_2 \in I$, concluyéndose que la relación (C.3), implica la condición (C.4), con un mismo valor de L, ésto se demuestra por medio del Teorema del valor medio.

La condición L< 1, implica que la ecuación x = f(x), tiene cuando más una solución. Supóngase que hubiera dos soluciones s_1 , s_2 . Esto significa que las siguientes relaciones son ciertas.

$$s_1 = f(s_1)$$
 $s_2 = f(s_2)$

restando:

$$s_1 - s_2 = f(s_1) - f(s_2)$$

tomando valor absoluto:

$$|s_1 - s_2| = |f(s_1) - f(s_2)|$$

aplicando (C.4):

$$|s_1 - s_2| = |f(s_1) - f(s_2)| \le L |s_1 - s_2|$$

si $s_1 \neq s_2$ se puede dividir entre $s_1 - s_2$ y obtener:

1 <u>≤</u> L

en contradicción con la hipótesis de que $L \leq 1$. Por tanto, si $L \geq 1$ no existe una solución única.

Si se cumple que:

a).- f sea una función continua en el intervalo cerrado finito I.

b). - $f(x) \in I$ para todo $x \in I$.

c).- f satisface la condición de Lipschitz, con una constante L < 1.

Se puede concluir que la sucesión $\{x_n\}$ generada por (C.2), converge a la solución s.

Para probar lo anterior se estimará la diferencia $x_n - s$. For definición:

 $x_n - s = f(x_{n-1}) - s$

 $= f(x_{n-1}) - f(s)$

(C.5)

274.-
apiiozzio (2.4):

$$| f(x_{n-1}) - f(s) | \le L | x_{n-1} - s |$$

 $| x_n - s | \le L | x_{n-1} - s |$

275.-

aplicardo la misma desigualdad repetidamente se encuentra que:

$$\begin{array}{c|c} & | & x_n - s & | \leq -L & | & x_{n+2} - s \\ & \vdots \\ & \vdots \\ & | & x_n - s \mid \leq L^n \mid x_n - s \mid \end{array}$$

como 0 <u><</u> L < 1

$$\lim_{\eta \to \infty} L^n = 0$$

y de ello se sigue que:

$$\lim_{n \to \infty} |x_n - s| = 0$$

que es:

$$\lim_{n \to \infty} |x_n| - s = 0$$

lo que significa:

$$\lim x_{i} = s$$
 con lo que la prueba concluye.

$$|x_n - s| \leq \frac{L^n}{1-L} |x_n - x_n|$$

que da una estimación útil del erroe n la n-ésima aproximación en términos de la diferencia entre esta aproximación y la precedente e indica cuando se debe detener el cálculo.

Supóngase ahora un sistema de dos ecuaciones no lienales con dos incóg nitas; escribiéndolas con notación vectorial:

$$F = \begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}$$

y las coordenadas del punto (x,y), por el vector columna:

$$x = \left(\begin{array}{c} x \\ y \end{array} \right)$$

Sntonces el sistema de ecuaciones no lineales se puede escribir como:

$$X = F(X)$$

Sea la norma euclidiada del vector x:

$$|| x || = \sqrt{x^2 + b^2}$$
 (C.7)

que no es negativa o cero si y sólo si x es el vector cero 0=(0;0). Teniendo las siguinetes propiedades:

$$|| c x|| = | c || X ||$$
(C.8)

y la desigualdad del Triángulo:

$$||x_1 + x_2|| \le ||x_1|| + ||x_2||$$
 (C.9)

277.-

Si $X_1 y X_2$ son dos vectores, entonces $X_1 - X_2$ es la distancia de los puntos cuyas coordenadas son los componentes de $X_1 y X_2$.

Se dice que una sucesión de vectores $\{x_n\}$ converga a un vector V si:

$$\lim_{n \to \infty} || x_n - V || = 0$$

y cumple el criterio de Cauchy, dado un ≥ 0 , existe un entero N tal que para todo $n \geq N$ y m > N:

$$|| x_m - x_n|| < \varepsilon$$

Como en el caso de ecuaciones no lineales se utiliza el mismo método de iteración es decir:

Escoger un vector X_0 arbitrario y generar la sucesión de vectores $\{X_n\}$ recursivamente mediante:

 $X_n = F(X_{n-1})$ (C.10)

Como en la situación escalar, surgen los problemas de si la sucesión $\{X_n\}$ está bien definida, si converge y si su límite es necesariamente una de las soluciones de la ecuación (C.6).

Todas esas preguntas se contestan por el siguiente resultado:

i).- f y g son continuas y definidas en R.

- ii).- Para todo X ^ε R, el punto [f (X), g (X)], se encuentra también en R.
- iii).- Existe una constante L <1 tal que se cumple la condición de Lipschitz.

$$||F_{1}(X_{1}) - F_{1}(X_{2})|| \leq L ||X_{1} - X_{2}||$$

Si la función cumple esta condición se dice que la función es una contracción de R.

Entonces son ciertas las siguientes proposiciones:

- a).- La ecuación (C.6), tiene precisamente una solución 5 en R.
- b).- Cualquiera que sea la elección de un X_o en R, la sucesión $\{X_n\}$ dada por (C.10), está definida y converge a S.
- c). Para cualquier n = 1, 2, 3... la siguiente desigualdad se verifica:

$$|| x_n - s|| \le \frac{L^n}{1 - L} || x_1 - x_s ||$$

que cumple el criterio de Cauchy ya que $0 \le L \le 1$

Prueba:

- Por la condisión ii), es evidente que la sucesión (X_n) está definida y que sus elementos están en R.
- Por iii), se tiene:

$$|| X_{n+1} - X_n || \le L^n || X_1 - X_0 || n = 0, 1, 2... (C.11)$$

279.-

Sea n un entero positivo fijo y m>n. Aplicando el criterio de Cauchy, se hallará una cota para $||X_m - X_n||$. Escribiendo:

$$X_m - X_n = (X_{n+1} - X_n) + (X_{n+2} - X_{n+1}) + \ldots + (X_m - X_{m-1})$$

Aplicando la desigualdad del triángulo:

$$|| x_m - x_n || = || x_{n+1} - x_n || + || x_{n+2} - x_{n+1} || + \dots + || x_m - x_{m-1} ||$$

usando (C.11), para estimar cada uno de los términos del segundo miembro:

$$|| x_{m} - x_{n} || \leq (L^{n} \neq L^{n+1} \neq \dots + L^{m-1}) || x_{1} - x_{o} ||$$

$$\leq \frac{L^{n}}{1 - L} || x_{1} - x_{o} || \qquad (C.12)$$

La ecuación (C.12), no depende de m y tiende a cero cuando $n \rightarrow \infty$, por ser $0 \le L \le 1$, oe establece que la sucesión $\{X_n\}$ satisface el criterio de Cauchy. Tine un límite S y como R es compacto, SE R.

Sea $\lim_{n \to \infty} F(X_n) = F(S)$

280.-

por tanto:

$$S = \lim_{n \to \infty} X_n = \lim_{n \to \infty} X_{n+1} = \lim_{n \to \infty} F(X_n) = F(S)$$

probando que S es una solución de (C.6)

Ejemplo:

Para verificar que un sistema de ecuaciones no lineales puede tener más de una solución, se resolverá el siguiente sistema por medio de New-ton-Raphson:

 $x^2 + y^2 - x = 0$ (define un circulo con centro (1/2,0).

 $x^2 - y^2 - y = 0$ (define una hipérbola con centro (0.-1/2).

Con estimado inicial de $x_0 = -2$, $y_0 = -3$, la convergencia se ilustra en la tabla C.A:

<u>TABLA C.A</u>		
n	x _n	y _n
0	-2	-3
. 2	-0.63265	-0.959184
 	-0.11143	-0.348879
3	-0.01416	0.219229
4	0.051109	0.053446
5	-0.005877	-0.000563
6	-0.000040	0.000028
2	1.4502-9	4.762E-9
8	6.766E-18	1.097E-17
9	0.0000000	0.0000000

Teniendo solución en $x_g = 0$ y $y_g = 0$

Sea el iniciado inicial $x_0 = 3$, $y_0 = 4$; la convergencia se ilustra en la tabla C.B.

TABLA C.B.		
n	z _n	⁹ n
	a a the second secon	
0	3	· 4
1 1 1 1 1 1	1.580645	1.516129
and the second secon	and the second second second second second	
2	1.099342	0.827737
3	0.888250	0.582532
4	0.812280	0.480250
		그는 그는 것은 같아요.
71	0 271944506	5 - 0 4196433276
10	0.1/1044000	

teniendo solución en x_{31} y en y_{31} .

" Cuidaos del hombre de un solo libro ".

•

CITA DE ISSAC D'ISRAELI

BIBLIOGRAFIA

- INTRODUCCION:
 - (1) SOREL, " La Rectification de L'Alcool", Paris (1863).
- CAPITULO 1
 - GIBBS, J.W., "The Scientific Papers of J.M. Gibbs" pag. 55-340, Dover, Nueva York, 1961.
 - WANG, Jui C. y Wang Yui L. " A Review on the modeling & Simulation of Multistage Separation processes ", Si mulation Sciences Inc., 1400 N. Barbor Blvd. Fullerton, CA 92635, USA.(1981).
 - (3) FENSKE, M.R., Ind. Eng. Chem., Vol.24, 482 (1932).
 - (4) UNDERWOOD, A.J., Trans. Inst. Chem.Engr. (London), Vol.
 10, 112 (1932).
 - (5) UNDERWOOD, A. J., "Fractional Distillation of Multicomponente Mixture ", Chem. Eng. Prog., Vol. 44, No. 2, 603 (1948).
 - (6) COLBURN, A.P., Trans. AICHE, Vol. 37, 805 (1941).
 - (7) GILLILAND, E.R., Ind. Eng. Chem., Vol. 32, 1101-1220 (1940).
 - (8) SUCIE, H. and B.C. Lu, " On The Determination of Minimum -Reflux ratio for multicomponent distillation of column with any number of sidecut streams ", Chem. Eng. Sci., Vol. 25, 1837 (1970).
 - (9) FEATHERSTONE, W., "Azectropic Systems, a Rapid Method of Still Design ", Brit. Chem. Eng. & Proc. Tech. Vol. 16 (12), 121 (1971).

Ą

- (10) FEATHERSTONS, N., "Non-ideal Systems A Rapid Method of Estimating Still Requirements ", Process Technology International, Vol. 18 (4/5), 185 (1973).
- MADSEN, N., "Find the Right Reflux Ratio ", Che. Eng.Vol. 73, Nov.1, 1971.
- (12) VAN WINKLE, M. y G. Todd, "Optimum Fractions Design by Simple Graphical Methods ", Chem. Eng., 136, Sep.20 1971.
- (13) VAN WINKLE, M. y W.G. Todd, "Minimizing Distillation
 Costs Via Graphical Techniques ", Chem. Eng. 105, March
 6, 1972.
- (14) BARNES, F.J., y Hanson, y King, "Calculation of Minimum Reflux for Distillation Columns with Multiple Feed", Ind. Eng. Chem. Process Des. & Dev., Vol. 11 (1), 136 (1972).
- (15) HANSON, D.N. y J. Newman, "Calculation of Distillation
 Columns at the Optimum Fedd Plate Location ", Ind. Eng.
 Chem. Process Des. Dev., Vol (16) (2), 223 (1977).
- (16) LEWIS, W.K., and G.L. Matheson, "Studies in Distilla-tion Design of Rectifying Column for Natural and Refinery Gasoline ", Ind. Eng. Chem., Vol. 24 (5),496 (1932).
- (17) TRIELE, E.W. and R.L. Geddes, "Computation of Distillation apparatus for Hydrocarbon Mixtures ", Ind. Eng. Chem. Vol. 25 (3), 269 (1933).
- (18) HOLLAND, C.D., " Multicomponent Distillation ", Prentice Hall Inc., Englewood Cliff, 1963.
- (13) AMUNDSON, N.R., and A.J. Pontinen, "Multicomponent Dig tillation Calculation on a Large Digital Computer ", Ind. Eng. Chem., Vol. 50, 730 (1958).

- (20) SUJATA, A.D., "Absorber-Stripper Calculation Made Easier " Hydrs. Proc. & Pet. Refiner, Vol. 40(12), 137 (1961).
- (21) FRIDAY, J.R., "An analysis of the Equilibrium Stage Separation Problems - Clasification' and Convergence ", Ph.
 D. Thesis, Purdue University (1963).
- (22) WANG, J.C. y G.E. Henke, " Tridiagonal Matrix for Disti--Ilation ", Hydrocarbon Processing, Vol.45(8), 155(1966).
- (23) MÜLLER, D.E., " A Method for solving Algebraic Equations Using an Automatic Computer ", Math. Table Aids Comp. -Vol. 10, 208 (1956).
- (24) LAPIDUS, L., " Digital Computation For Chemical Enginee-ring ", McGraw Hill Book Co., New York, 1962.
- (25) TIERNEY, J.W. and J.L. Yanosik, "Simulation Flow and -Temperature Corrections in Equilibrium Stage Problem ", AIChE J., Vol 15(6), 897 (1969).
- (26) TOMICH, T.F., " A New Simulation Method for Equilibrium Stage Process', AIChE J., Vol 16(2), 229 (1970).
- (27) BILLINGSLEY, D.S., "On the Numerical Solution of Problems in Multicomponent Distillation at Steady State II ", AICHE J., Vol 16 (3), 441 (1970).
- (28) BILLINGSLEY, D.S., y G.N. Boynton, "Interactive Methods for Solving Problems in Multicomponent Distillation at the Steady State ", AIChE J., Vol 17(1), 65 (1971).
- (29) FRIDAY, J.R. and B.D. Smith " An Analysis of the Equilibrium Stage Separation Problem-Formulation in Convergence ", AICHE J., Vol 10(5), 698 (1964).
- (30) WANG, Y.L. y A.P. Oleson, "Distillation Calculations for Complex Towers ", Private comunication with Wang Jui. 1964.

- (31) NAPHTALI, L.M., "The Distillation Column as a Large System ", Paper presented at AIChE 56 Th National Mee ting, San Francisco, May 16 1965.
- (32) GOLDSTEIN, R.P. and R.B. Stanfield, "Flexible Method for the Solution of Distillation Design: Problems Using the Newton-Raphson Technique ", Ind. Eng. Chem. Pro--cess Des. Dev., Vol 9 (1), 78 (1970).
- (33) OHMURA, S. y S. Kasahara, "New Distillation Calcula-tion Method Utilizing Salient Features of Both Short--Cut and Tray-by-Tray Method. Semi-tray-by-Tray Method", J. Chem. Eng. Japan, Vol 11 (13), 185 (1978).
- (34) GENTRY, J.W., "An Improved Method for Numerical Solution of Distillation Processes ", Can J. Chem. Eng., -Vol 48, 451 (1970).
- (35) ROCHE, E.C., Jr., "General Design Algorithm for Multis tage Contercurrent Equilibrium Processes ", BCE & Pro-cess Tech. Vol 16 (9), 821 (1971).
- (36) GALLUN, S.E. and C.D. Holland, "Solve More Distillation Problems Part 5, for Highly Non-ideal Mixtures ", Hidrocarbon Processing, Vol 55 (1), 137 (1976).
- (37) Kubicek, M. and V. Hlavacek, y F. Prochaska "Global Modular Newton-Raphson Technique for Simulation of an In-terconnected Plant applied to complex Rectificaction Columns ", Chem. Eng. Sci., Vol 31, 277 (1976).
- (38) HESS, F.E y C.D. Holland, McDaniel, Tetlow, "Solve More Distillation Problems - Part 7, Absorber-type Pipestills" Hydrocarbon Processing, Vol 56 (5), 241 (1977).
- (30) HARCLERODE, H. y J.W. Gentry, "A General Matrix Method for the Steady State Solution of Complex Distillation -Auuemblizer " Can. J. Chem., Eng., Vol 50, 253 (1972).

- (40) BROWNE, D.W., ISHII & F.D. Otto, "Solving Multicolumn Equilibrium Stage Operation by Total Linearization ", Can J. Chem. Eng., Vol 55, 307 (1977).
- (41) HOFELING, B.S. y J.D. Seader, " A Modefied Naphtali-Sand holm Method for General Systems of Interlinked Multista ge Separators ", AIChE J., Vol 24 (6), 1131 (1978).
- (42) NAPHTALI, L.M. y D.P. Sandholm, "Multicomponent Separation Calculations by Linearization", AIChE J., Vol 17
 (1), 148 (1971).
- (43) KAIBEL, G. y H. Mayer, y B. Seid, "Reaktion in Distilla tions Kolonnen ", Chem. Eng. Tech., Vol 50 (8), 586 (1978).
- (44) CARRA, S.M., Morbidelli, Santacesaria, Buzzi, "Synthesis of Propylene Oxide from Propylene Chlorohidrins II Mode-ling of Distillation with Chemical Reaction Unit ", Chem. Eng. Sci., Vol 34, 1133 (197?).
- (45) ISHII, Y. y F.D. Otto, "A General Algorithm Multistage Multicomponent Separation Calculations ", Can. J. Chem. Eng., Vol 51, •601 (1973).
- (46) SHAH, M.K. y P.R. Bishnoi, "Multistage Multicomponent –
 Separation Calculations Using Thermodynamic Properties Eva luated by the SRK/PR Equation of State ", Can. J. Chem.Eng., Vol 56, 478 (1978).
- (47) FREDENSLUND, A., J. Gmehling, Michelson, Ramussen, Prausnitz " Computerized Design of Multicomponent Distillation Columns Using the UNIFAC Group Contribution Method for Calculation of Activity Coefficients ", Ind. Eng. Chem. Process Des. Dev, Vol 16 (4), 450 (1977).

(48) BUZZI Ferraris G. " Interlinked, Multistaged Separators
 With nostandard specifications solved by the Newton-Raph
 son Method ", AICHE J., Vol 27 (1), 163 (1981).

 (49) FITZMORRIS, R.E. y R.S. Mah," Improving Distillation Columm Design using Thermodynamic Availability Analysis ", AIChE J., Vol 26 (2), 265 (1980).

 (50) LI, M.C. y R. J. Frost , "A flexible Solution Method for generalized Equilibrium Stage Columns ", The Canadian J. of Chemical Engineering, Vol 59, junio, 388 (1981).

 (51) BUZZI, Ferraris Guido y Massimo Morbidelli, "Distilla-tion Models for Two Partially Immiscible Liquids", AIChE
 J., Vol 27 (6), 881 (1981).

- (52) ROSE, A. y R.F. Sweeny V.N. Schrodt, "Continuos Distillation Calculations by Relaxation Method ", Ind. Eng. -Chem., Vol 50 (5), 737 (1958).
- (53) BALL, W.E., " Computer Programs for Distillation ", paper presented at the AIChE 44 th National Meeting, New Orleans feb.1961.
- (54) VERNEUIL, V.S. y A.P. Oleson, "Stedy-state Distillation
 via Transient-state Calculation ", paper presented at 161st. ACS National Meeting, Los Angeles, March, 1971.

- (55) ECONOMOPOULOS, A.P., " A fast computer Method for Distillation Calculations ", Chem. Eng., 91, April 24, 1978.
- (56) ISHIKAWA, T. y N. Hirata "Extractive Distillation Calculations by Modified Relaxation Method ", J. Chem. Eng. Japan Vol 5 (2), 125-131 (1972).
- (57) JELINEK, J. V., HLAVACEK, M. Kubicek, " Calculation of Multistage Contencurrent Separation Processes"
 PARTE I Chem. Eng. Sci., Vol 28, 155 (1973).
 PARTE II idem, Vol 28, 1825 (1973).
 PARTE III idem, Vol 28, 1833 (1973).
- (58) HLAVACEK, Jelinek, "Mathematical Modeling of the Rectification Process ", International Chem. Eng., Vol (15 (3)
 488 (1975).
 HLAVACEK, V., y Jelinek, "Calculation of Multistage Mul--

ticomponent Liquid-Liquid Extraction by Relaxation Method " Ind. Eng. Chem. Process Des. Dev.', Vol 15(4), 481 (1976).

- (59) HUBER, W.F. Jr., "Figure Stages Process by Matrix ", Hydrocarbon Processing, 121 August, 1977.
- (60) KETCHUM, R.G., " A Combined Relaxation-Newton Method as a New Global Approach to the Computation of Thermal Sep<u>a</u> ration Processes ", Chem. Eng. Sci., Vol 34, 387 (1979).

 (61) MORRIS, C.G. y W.Y. Svreck, "Dynamic Simulation of Multicomponent Distillation ", The Can, J. of Chem. Eng. -Vol 59, junio 382 (1981).

CAPITULO 2

 AUDRY, Sánchez Javier. Nétodos Numéricos aplicados a la Ingeniería Química. Educación Continua y Cursos Especi<u>a</u> les Coordinación de Extensión Académica. Facultad de Qu<u>í</u> mica UNAM, 1984.

(2) BROYDEN, C.G., " A Class Of Methods for Solving Nonli-near Simultaneous Equations ", Mathematics of Computa-tion, Vol 19 pag 577 (1965).

(3) MONTALVO Antonio y Susana Kaufmann, "The aplication of a modified damped newton method for the simulation of vapor-liquid stages-wise processes ". I.I.M.A.S., UNAM, México, 1982.

 BOAS, Arnold. " How Search Methods Locate Optimum in Univariable Problems ", Part. 3 Chem. Eng., Febrero 4, 1963.

(5) BENNETT, J.M., " Triangular Factors of Modified Matrices" Numerische Matematik, Vol.1,1965, p 217.

(5') Hess E., Gallun S.E., Bentzen y Holland." Solve more dee-

- (5') tillation problems, Part 8. wich Method to use ", Hydrocarbon Processing, Vol. 56 No. 6, june 1977, pp 181-188.
- (6) CONTE, S.D. y Carl de Boor. "Análisis Numérico elemental ",
 Editorial Mc.Graw Hill, New York, 2a. ed., 1972.
- (7) "Solve More Destillation Problems, Part 7, Absorber-type pipestills ", Hydrocarbon Processing, Vol. 58, No. 5, May 1977 pp 241-248.
 - CAPITULO 3
- WANG, J.C. y G.E.Henke, "Tridiagonal Matrix for Distillation " Hydrocarbon Processing, Vol 45(8), 155 (1966).
- (2) MÜLLER, D.E., " A Method for Solving Albebraic Equations using an Automatic Computer ", Math Table Aids.Comp., Vol. 10, 208(1956).
- (3) HENLEY, Ernest and J.D.Seader
 Equilibrium-Stage Separation Operations in Chemical Engineering
 ED.John Wiley & Sons. (1981).

CAPITULO 4

 BURNINGHAM, D.W. y Fred Otto., "Which Computer Design for Absorbers?", Hydrocarbon Processing, Vol 46, No. 10, 163 (1967). (2) HENLEY, Ernest and J.D.Seader

Equilibrium-Stage Separation Operations in Chemical Enginnering ED.John Wiley & Sons. (1981).

CAPITULO 5

(1) ISHII, Yoshikazu y Fred Otto., " A General Algorithm for Multistage Multicomponent Separation Calculations ". The Canadian Chemical Engineering Vol 51, October ,601 (1973).

(2) CHAO, K.C. and J.D. Seader, AIChE Journal, Vol.7, 598 (1961).

(3) BISHNOI, PR. and M.K.Shah, "Multistage Multicomponent Separation Calculations using Thermodynamic Propierties Evaluated by the SRK/PR Equation of State ", Can. Chem. Eng., Vol 56 August, 178 (1978).

 MONTALVO, Antonio, " The application of a modified Damped Newton for the simulation of vapor-liquid stages-wise processes ", IIMAS. UNAM. (1982).

 (5) BROYDEN, C.G., " A class of Methods for Solving Nolineal Simul taneous Equations ", Mahtematicas of Computation, Vol 19, 577 (1965).

(6) SOLVE MORE DESTILLATION PROBLEMS, PART 7, Absorber-type pipestills. Hydrocarbon Processing, Vol 56, No.5, 241 (1977).

- (7) SOAVE, Giorgio, " Equilibrium constants from modified Redlist-Axong equation of State ", Chem. Eng. Science, Vol. 27 pp 1197-1203 (1972).
- BROWNE, D.W., Ishii Y and Otto F., "Solving Multicolumn Equilibrium Stage Operation by Total Linearization ", Can J., Chem. Eng., Vol 55, 307 (1977).
- (9) Comunicación privada con Yoshikazu Ishii y munuscrito de Tesis desarrollada en Canada, (1984).
- (10) TOMICH, John F., " A New Simulation Method for Equilibrium Stage Process, AIChE Journal, Vol 16, No. 2, 229 (1970).

CAPITULO # 6

- NAPHTALI, Leonard y Sandholm Donald, "Multicomponent Separation Calculations by Linearization", AIChE Journal, Vol. 17, No. 1, 148 (1971).
- (2) FREDENSLUND, A. Gmehling, J. Rasmussen
 Vapor Liquid Equilibria Using UNIFAC
 Elsevier Scientific Publishing Co., New York (1977).
- (3) FREDENSLUND, Gmehling, Michelsen, Rasmussen, Prausnitz
 "Computarized Design of Multicomponente Destillation Co-lumn Using the UNIFAC Group Contribution Method for Calculation of Activity Coefficients", I & EC PROCESS DES.DEV., Vol. 18 No. 4, 450 (1977).

HOFELING, B.S. Y J.D. Seader " A Modefied Naphtali-Sandholm Method for General Systems of Interlinked Multistage Separtors", AIChE J., Vol. 24 (6), 1131 (1978).

HENLEY Ermest and J.D. Seader
 Equilibrium - Stage Separation Operations in Chemical Engineering Ed, John Wiley & Sons. (1981).

(6) HAYDEN, J.G. y O'Connell, J.P. Industrial Engineering -Chemical Process Des. Dev. Vol. 14, 200 (1975).

CAPITULO # 7

(4)

(1) JOHANSON, P.J. and J.D. Seader

Stagewise Computations - Computer Programs for Chemical Engineering Education, Ed. J. Christensen Aztec Publishing Co. Austin Texas (1972).

 (2) TOMICH, John F., " A New Simulation Method for Equilibri um Stage Process", AIChE, J., Vol. 16 No. 22, 229 (1970).

(3) — FREDENSLUND A.,Gmehling, Rasmusser. Vapor - Liquid Equilibria Using UNIFAC Elsevier Scientific Publishing Co. New York (1977)

- (4) ISHII Yoshikazu, Otto Fred, "A General Algorithm for Multistage Multicomponent Separation Calculations", The Canadian Chemical Eng., Vol. 51,October, 601 (1973).
- WANG, J.C. y G.E Henke, "Tridiagonal Matrix for Disti-Ilation Hydrocarbon Processing, Vol. 45 (8), 155 (1966).
- (6) BURNINGHAM, D.W. y Otto Fred, "Which Computer Design for Absorbers?", Hydrocarbon Processing, Vol. 46, No. 10, 163 (1967)
- (7) SOAVE Giorgio, "Equilibrium Constants from a modified Redlich-Kwong equation of Satate", Chemical Engineering Sciencie, Vol. 27, 1197-1203 (1972).
- (8) HENLEY Ernest & J.D. Seader.
 Equilibrium Stage Separations Operations in Chemical Engineering Ed. John Wiley & Sons (1981).
- (9) Chao, K.C. and J. D. Seader, AIChE Journal, Vol 7, 598 (1961)
- (10) PERRY John, Chilton
 CHEMICAL ENGINEER'S HANDBOOK
 Tomo II, Wiley, 5a.Ed., Cap.13
- (11) Frendenslund, Magnussen. Azeotropic Distillation using Unifac
 I. Chem E Symposium series # 56 (1980).

(1) HENLEY, Ernest and J.D. Seader

Equilibrium - Stage Separation Operations in Chemical Engineering.Ed. John Wiley and Sons(1981).

(2) MULLER, D.E.

A Method for Solving Algebraic Equations using an automatic Computer Math. Table Aids Comp., Vol 10,208 (1956)

(3) BOSTON, J.F. y Sullivan S.L. Jr.

An improved algorithm for solving the mass balance equations in multistage separation processes.

The Canadian Journal of Chemical Engineering, Vol 150, October 1972.

APENDICE "C"

(1) HOUSEHOLDER, A.S.

Principles of numerical analysis Mc Graw Hill (1953) Nueva York, Londrés.

(2) HILDERBRAND, F.B.
 Introduction to numerical analysis
 Mc Graw Hill (1959)
 Nueva York, Toronto, Londrés

(3) KAPLAN, W Advanced Calculus Addison-Wsley (1953) Cambridge

(4) LIUSTERNIK,L.A.y E.I. Sobolev
 Elemente der Funktional analysis
 Akademierverlag (1960).
 Berlin

(5) MULLER, D.E.

A method for solving algebraic equations using an automatic computer Math. Table Aids Comp., 10, 208-215

296.-

(6) OSTROWSKI,A.

Solution of equations and systems of equations Academic Press(1960).

Nueva York

(7) HENRICI, Peter

Elements of Numerical Analysis John Wiley and Sons, Inc. (1977). Nueva York