

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

Escuela Nacional de Estudios Profesionales Acatlán

Estudio para determinar el hundimiento de las pistas del Aeropuerto Internacional de la Ciudad de México

> T E S I S Que para Obtener el Título de: Ingeniero Civil PRESENTA

Oscar Velasco Tiscareño

Acailán Edo. de Méx.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

INDICE	VI
LISTADO DE TERMINOS	IX
INTRODUCCION	X .
GENERALIDADES	1
II ESTUDIO BIBLIOGRAFICO	
II.1 Teoría de Consolidación	14
II.1.1 Consolidación Unidimensional	15
II.1.2 Consolidación primaria y consolidación secundaria	16
II.1.3 Analogía Mecánica de Terzaghi	20
II.2 Otros modelos teóricos.	
II.2.1 Modelos Viscoplásticos	23
II.2.1.1 Componente volumétrico	24
II.2.1.2 Componente desviadora	-28
II.2.2 Modelos reológicos	29
II.3 Resultados Experimentales de algunos Investigadores	31
III RESULTADOS EXPERIMENTALES	
III.1 Descripción del equipo a utilizar	44
III.1.1 Consolidometro	44
III.1.2 Camara triaxial	47
III.2 Descripción del suelo a estudiar	49

Pag

	III,2,1,-	Evolución histórica de las pistas del Aeropuerto	49
	III.2.2	Localización y profundidad del sondeo	50
	111.2.3	Estratigrafía y características gene- rales	50
	III.3 Resul	tados	55
IV	PREDICCION DE	L COMPORTAMIENTO	
	IV.1 Descri	pción de los modelos considerados	81
	IV.1.1 Mo	delo de Singh y Mitchell	81
	IV.1.2 Mo	delo reológico de Murayama y Shibata.	85
	IV.2 Cálcul	o de parámetros	91
	IV.2.1 Pr m,	ocedimiento para medir los parámetros α y A	91
	IV.2.2 Ob me	tención de É y É teóricos y experi- tales	109
	IV.3 Predic	ción del comportamiento	112
	IV.3.1 Pr el	edicción del comportamiento mediante modelo de "creep" de Singh y Mitchell	112
	IV.3.1 Pr el	edicción del comportamiento mediante método de Terzagui	114
	IV.3.2.1	Cálculo de la distribución de esfuer zos por el método de Newmark	115
	IV.3.2.2	Deformación de cada estrato bajo la pista y deformación total	121
	IV.3.3 Comp	aración de ambos métodos	128
	IV.4 Soluci por su	Ón constructiva utilizando material stitución	130

 $\sim p$

÷

VII

Pag

Pag

CONCLUSIONES					133
ANEXO I Infor	me de la	s Pistas	051-23D y	05D-23I	
ANEXO II La Ca	rta de N	ewmark	•••••	•••••	144
ANEXO III Infor	me No. 5	525 del	Instituto	de Ingen:	ler 1 a. 156

Listado de Términos.

e....relación de vacíos

w....contenido de humedad

9....resistencia a la compresión sin confinar

LL....limite liquido

LP....limite plastico

Cr....consistencia relativa

O.....esfuerzo principal mayor

Ca....esfuerzo principal menor

u....presión en exceso de la hidrostática

p....presión efectiva

E....deformación

E....velocidad de deformación

D....esfuerzo desviador

N.A.F....nivel de aguas freáticas

B....lectura en la bureta

ÀB....incremento en la bureta

L....longitud de la muestra

AL...disminución (o incremento) de la longitud

V....volúmen de la muestra

∆V....incremento del volumen

c....carga

∆c....incremento de carga

A....área

 $\epsilon_{L...deformación axial}$

Ev....deformación volumétrica

INTRODUCCION

INTRODUCCION

La Mecánica de Suelos ha tenido un desarrollo importante durante el presente siglo. Aunque desde la antiguedad el hombre ha edificado grandes monumentos, los cuales pueden ser com parados con las actuales obras de Ingeniería, es sin embargo en la actualidad que la preocupación por desarrollar bases teó ricas que expliquen los fenómenos relacionados con el suelo -nos ha permitido contar con la herramienta adecuada para tra-tarlo de una manera más consciente, olvidando viejas recetas em píricas. Sin embargo falta mucho por descubrir, por lo que la Mecánica de Suelos, parte importante de la Ingeniería Civil de ja un amplio horizonte para estudiosos e investigadores.

La Mecânica de Suelos es una materia muy vasta, la cual abarca todas las obras realizadas por el Ingeniero, debido a que las mismas deben tener un punto de apoyo, el cual lo pro-porciona el suelo mismo, por tal motivo es tarea del Ingeniero conocer las propiedades del suelo. Por lo anterior, en el presente trabajo es importante conocer el suelo que sirve de apoyo a las obras en estudio, ya que su comportamiento mecânico influirá en el buen o mal funcionamiento de las mismas.

El objetivo del presente trabajo es estudiar y proponer una o más soluciones al problema del hundimiento de las pistas del Aeropuerto Internacional de la Ciudad de México, para lo cual se ha dividido en tres grandes partes; Estudio Bibliográfico, Resultados Experimentales y Predicción del Comportamiento mediante un modelo constitutivo desarrollado recientemente.

En el primer capítulo, el cual corresponde a las generalidades, se hace una descripción somera de la formación de la Cuenca de México, lugar donde se ubica el Aeropuerto Interna-cional de la Ciudad de México, tema del presente estudio.

En el segundo capítulo se tratan aspectos fundamentales de la Mecánica de Suelos en lo relativo a consolidación, en ba se a la teoría desarrollada por Terzaghi. De igual manera se hace una descripción de dos modelos teóricos, desarrollados pa ra explicar el fenómeno de consolidación en los suelos. En es te capítulo también se presentan algunas gráficas obtenidas -por diversos investigadores, las cuales sirven de ejemplo para entender de una manera más eficaz los modelos considerados.

Los resultados obtenidos en las tres pruebas realizadas se presentan en el capítulo III, estas pruebas se efectuaron en cámaras triaxiales y fueron del tipo drenado. Cabe mencionar que las muestras utilizadas para los ensayes se selecciona ron del mismo estrato, los resultados de estas pruebas se presentan en este capítulo, mediante tablas y gráficas, para su posterior aplicación en la predicción del comportamiento.

En el IV y último capítulo se hace una descripción de -los modelos considerados, los cuales fueron uno reológico de -Murayama y Shibata y un teórico de Singh y Mitchell. El modelo reológico no pudo utilizarse al presentar un comportamiento no compatible con el suelo en estudio. Este modelo, consisten te de un resorte y un elemento modificado, el cual contiene un pistón, un elemento que proporciona fricción y un resorte. En este caso únicamente se presenta la parte teórica para dar una idea de este tipo de modelos.

El modelo de comportamiento de fluencia (creep) de Singh y Mitchell, considera un comportamiento semejante al del suelo en estudio, como puede apreciarse en las gráficas del análisis de resultados de este mismo capítulo y es el utilizado para --predecir el comportamiento bajo las pistas del Aeropuerto. Así mismo se hace una comparación con los resultados obtenidos por el método de Terzaghi.

Como puede verse, para la realización del presente trab<u>a</u> jo se hace necesaria la utilización de un laboratorio para ensaye de las probetas (ensayes triaxiales), así como la obten-ción previa de las muestras, las cuales se realizaron en el --Instituto de Ingeniería de la Universidad Nacional Autónoma de México, por lo cual quiero agradecer al propio Instituto, quien por conducto del Dr. en Ingeniería Eduardo Rojas González brin dó todas las facilidades para la utilización de sus instalacio nes e información disponibles, de igual manera quiero agradecer a la Srita. María Jiménez García, quien realizó la parte mecano gráfica de esta tesis.

I GENERALIDADES

I.- GENERALIDADES

Para resolver cualquier problema de Ingeniería es necesa rio conocerlo tan ampliamente como sea posible, para lograr esto es necesario llevar a cabo una investigación preliminar que puede constar de:

1) Información topográfica

a).- Levantamiento topográfico.

- 2) Reconocimiento geotécnico
 - a).- Recopilación de información disponible (cartas geológicas, fotografías aéreas, etc.)
 - b).- Recorrido de campo.
- 3) Estudios Geológicos

a).- Litología y estratigrafía.

En lo que se refiere a la geología de la Cuenca de México, el presente trabajo se basa en los estudios realizados -por Federico Mooser (1), quien considera que la formación de la cuenca se divide en siete fases diferentes:

PRIMERA FASE: A fines del Eoceno da comienzo el tecto-nismo, sin embargo los depósitos de este periódo no afloran en la Cuenca, encontrándose actualmente cerca de los 2,065 m<u>e</u> tros de profundidad.

SEGUNDA FASE: Esta fase tiene su origen hace aproximada mente treinta y dos millones de años (Oligoceno medio), las rocas más antiguas afloran al noreste de la Cuenca, lo que -ahora es la Sierra de Tezontlalpan. (FIG. I.1.).

TERCERA FASE: Durante esta fase aparecen las andesitas del Peñón de los Baños, aparece también el cerro de Chapultepec y el cerro del Tigre, además en esta fase se desarrolla un avanzado estado de erosión, esta fase tiene lugar durante el Oligoceno superior y el Mioceno, veinte-treinta millones de años, (FIG. 1.2)

CUARTA FASE: Aparecen las sierras de Tepoztlán, Pita--llos, Platachique y Pachuca, a estas sierras se les da el nom bre de sierras menores. También aparece la sierra de Guadalu pe, que se caracteriza por sus lavas medias y ácidas, (FIG. -I.3).

QUINTA FASE: Es en esta fase donde aparecen las sierras mayores, además de efusiones andesíticas y desíticas que cre<u>a</u> ron extensos abanicos que dan origen a la formación denominada "Tarango", (FIG. I.4).

SEXTA FASE: Es aquí donde ocurre la formación de andési tas basálticas de los cerros de Chimalhuacan, la Estrella y -Ajusco, (FIG. I.5).

SEPTIMA FASE: Ultima fase del vulcanismo, y que forma la sierra de Chichinautzin, (FIG. I.6), cerrando así la Cuenca y provocando el origen de un gran lago de poca profundidad. A través del tiempo dicho lago se fue secando para formar lagos separados más pequeños, (FIG. I.7).

Las cenizas producto de la actividad volcánica se fueron depositando y sedimentando de forma floculenta, constituyendo así un suelo arcilloso de poca resistencia y alta compresibilidad.

A este primer período según Bryan (2), se le denominó -formación Tacubaya, después de esta sigue la formación Bece-rra, constituída por estratos de aluvión y polvo volcánico -con alto contenido de fósiles y finalmente la formación totol singo, integrada por arcillas de color café y negro con material orgánico en cantidad apreciable. A estas formaciones se les da el nombre de arcillas del Valle de México, las cuales comenzaron a formarse hace aproximadamente diez millones de años. La Fig. I.8. muestra un perfil con las diferentes fa-ses del tectonismo descritas por Mooser (1). Las Figs. I.9, I.10 y I.11.muestran los resultados de las perforaciones realizadas en la zona de lago en agosto de 1951 por Marsal y Maziri (3). La Fig. I.12. muestra una vista general de la Cue<u>n</u> ca de México.

P411	ones de anos	LIP TOVOIDO		
	°	11111		
Pleistoceno			1111	Anillas Lacustres
				Depósitos aluviales
	3			Travernos
				Conglomerado callas
Mioceno			444	A dama dan u Toh
			2000	Agiomerados y lobo
Oligoceno	242424		Colados de Iava	
Esceno	40			Anhidrita
200010	90			

FIG. I.8.- Corte estratigráfico.

FIG. I.9

- 8

.

PIG. 1.10

PIG. 1.11

Referencias:

1.- Federico Mooser.

"Los ciclos del vulcanismo que formaron la cuenca de México", XX Congreso Geológico Internacional, México, 1956.

2.- K Bryan.

"Los suelos complejos y fósiles de la altiplanicie de México en relación a los cambios climáticos", boletín de la Sociedad Geológica Mexicana, Tomo 13, 1948.

3.- Raúl J. Marsal y Marcos Mazari.

"El Subsuelo de la Ciudad de México". 2a. edición, México, Facultad de Ingeniería, UNAM, 1969, Tomos I y II.

II. ESTUDIO BIBLIOGRAFICO

II.1.- TEORIA DE CONSOLIDACION

Si tenemos un depósito de material, en nuestro caso mate rial arcilloso, y le aplicamos una carga "P", después de un cierto tiempo "t", el material se deformará presentando una disminución en su volúmen. A este fenómero se le denomina: Proceso de Consolidación. (FIG. II.1)

El fenómeno anterior es debido a un acomodo de las part<u>í</u> culas del suelo, causado por el incremento de presión y dren<u>a</u> je del agua hacia el exterior, esto puede ocurrir tanto en a<u>r</u> cillas como en arenas.

En los materiales arcillosos y finos en general, el proceso de consolidación es muy lento, debido a que el agua que contiene drena con lentitud hacia el exterior o a algún estra to permeable, de tal forma que mientras el suelo contenga ---agua, esta soportará en gran parte el incremento de presión causada por la carga "P". Como definición de consolidación se puede tomar la que a continuación se presenta:

" A medida que el agua drena por los poros del sue lo, el incremento de carga es alternado a la estruc tura del suelo. La transferencia de carga es acompañada por un cambio en el volúmen del suelo igual al volumen del agua drenada. Este proceso es conocido como consolidación "(1)

II.1.1.- Consolidación Unidimensional.

Durante el proceso de consolidación, se observa que la posición relativa de las partículas que forman el suelo no va ría, únicamente ocurre una disminución en cuanto a su volúmen, condición que se reproduce en la prueba de consolidación unidimensional, basada en la teoría de Terzaghí, (FIG. II.2). --Donde se restringe la deformación horizontal mediante las paredes del anillo que confina la muestra.

Si consideramos un elemento diferencial dz, a una profun didan Z, el confinamiento estará dado por el esfuerzo principal menor Og que restringe la deformación horizontal presentándose así una consolidación unidimensional.

Para decir que se presenta una consolidación unidimensional debe tenerse en cuenta que la magnitud del estrato en ---cuanto a su plano horizontal es considerablemente mayor en re lación a su espesor.

De todo lo anterior podemos concluir que durante la consolidación unidimensional ocurren dos tipos de variaciones; de volumen y de forma (FIG. II.3)

II.1.2.- Consolidación Primaria y Consolidación Secundaria.

Durante el proceso de consolidación se tienen dos dife--

rentes etapas: consolidación primaria y consolidación secund<u>a</u> ria. (FIG. II.4).

a) .- Consolidación Primaria.

La consolidación primaria se presenta inmediatamente des pués de aplicado un esfuerzo, donde el acomodo de partículas o disminución de volumen, es causado por el drenaje del agua hacia el exterior y termina hasta que se disipa la presión de poro.

Para determinar teóricamente donde termina la consolidación primaria y comienza la secundaria, Arthur Casagrande desarrolló un método gráfico que determina todos los valores -comprendidos entre el 0 y 100% de consolidación primaria, para esto primeramente vamos a definir las diferentes curvas -que se presentan en la gráfica, lecturas de micrómetro-logaritmo de tiempo que sirve para tal efecto (FIG. II.4).

Dicha curva comienza siendo una parábola que tiende a -volverse recta, es esta curva la que recibe el nombre de tramo de recompresión, la parábola con sus propiedades geométricas puede ser utilizada para encontrar el valor del 0% de con solidación primaria.

El tramo recto recibe el nombre de línea virgen, al fi-nal del cual la recta tiende a volverse horizontal, siendo es te último tramo el denominado tramo de consolidación secundaria.

Para obtener el valor del 100% de consolidación primaria se prolonga la línea recta o tramo virgen, hasta intersectar la línea de consolidación secundaria.

La obtención del valor de 0% de consolidación primaria es poco más elaborado, debiendo seguir los siguientes pasos para encontrarlo:

1.- Escoger un punto arbitrario t_i tal que este sea se<u>n</u> siblemente menor al t₅₀ (t para U = 50%)^{*}. El punto B de la curva es el correspondiente a t₁.

2.~ Determinar el punto t=t /4. el punto C de la curva es el correspondiente a $t_1/4$.

3.- Tómese la diferencia entre ordenadas de los puntos -C y B (a). Considerando las propiedades geométricas de la pa rábola, podemos decir que el origen de ésta, se encontrará a una distancia "a" por encima de C.

 U es el porcentaje de consolidación y se encuentra entre los valores de 0 y 100%. b).- Consolidación Secundaria.

Con la expulsión gradual del agua contenida en el suelo, el esfuerzo aplicado lo irán soportando los granos o partículas del suelo, originando así la consolidación secundaria.

Aunque la consolidación secundaria se presenta poco tiem po después de aplicado el esfuerzo, se considera despreciable, ya que este esfuerzo es casi totalmente soportado por el agua.

Para fines prácticos se considera que la consolidación secundaria inícia al término de la consolidación primaria.

II.1.3.- Analogía Mecánica de Terzaghi.

Para explicar el fenómeno de consolidación, Terzaghi desarrolló un modelo que consiste en un émbolo con un orificio y que no presenta fricción con las paredes del cilindro que lo contiene, este émbolo está sujeto de alguna manera con el fondo del cilindro, el espacio entre el émbolo y el fondo del vaso se llena con agua, (FIG. II.5)

FIG. II.5.- Modelo de Terzaghi.

En el modelo de Terzaghi, si el orificio se encuentra cerrado y se aplica una carga "P" por unidad de área, la pre--sión generada será soportada únicamente por el líquido.

En el instante en que se abre el orificio, se genera un gradiente de presiones entre la entrada y salida del mismo, lo cual provoca que el agua fluya hacia el exterior, entrando aquí dos parámetros importantes, la viscosidad del líquido y el área del orificio.

Con el flujo al exterior del líquido, la presión que es-

te soporta, gradualmente deberá irla soportando el resorte.

Terzaghi consideró una serie de émbolos con sus resortes correspondientes, la Fig. II.6 presenta este modelo donde: 8wh es la presión hidrostática y P/A es la carga por unidad de área.

Si consideramos que existen una gran cantidad de cámaras con sus resortes, el modelo se aproximará grandemente a las condiciones reales del suelo, los orificios a los canículos capilares y el líquido al agua intersticial.

Para entender el fenómeno de consolidación es necesario

conocer los esfuerzos en la masa de suelo, estos esfuerzos se esquematizan en la Fig. II.7, donde: Δp es el incremento de carga, H es el espesor del estrato, z es la profundidad del elemento diferencial de suelo en estudio, J_{ω} es el peso específico del agua, δm es el peso específico saturado del mate-rial, u es la presión en exceso de la hidrostática, \overline{p} es la presión efectiva, p es la presión total.

Con lo anterior, podemos decir que el fenómeno de consolidación se rige por la siguiente función

donde z = profundidad t = tiempo

II.2.- Otros Modelos Teóricos.

Actualmente no existe un modelo único que simule adecuadamente el comportamiento de un suelo sometido a un estado -tridimensional de esfuerzos arbitrarios. Sin embargo se puede estructurar una teoría general, utilizando la información dis ponible.

La representación del fenómeno de deformación (volumétr<u>i</u> ca y desviadora) del suelo, se hace mediante modelos de com-portamiento, que toman en cuenta las restricciones dadas por las condiciones de frontera.

II.2.1.- Modelos Viscoplásticos (2)

Los estados esfuerzo-deformación de un elemento de suelo, pueden ser descritos por tensores generales (de esfuerzo y de deformación), los cuales pueden ser divididos en sus compone<u>n</u> tes volumétrica y desviadora:

$\sigma = \sigma_v + \sigma_b$	11 J.	(1a)
E= €v + E	D •	
Donde: C	J =	Tensor general de esfuerzo.
	5 =	Tensor general de deformación.
ale de la constante de la const La constante de la constante de La constante de la constante de	v =	Componente volumétrica del ten- sor.
I	D ≕	Componente desviadora del tensor.

Para desarrollar las componentes de deformación volumétrica y desviadora del suelo, se asume que existe una contribu ción que no depende del tiempo y que ocurre inmediatamente des pués de someter al suelo a un estado tridimensional y arbitrario de esfuerzos, causado por la imposición de la carga, siendo esta la componente inmediata de deformación. Así mismo se asume que existe una contribución que si depende del tiempo o retardo (3), como lo indican las siguientes ecuaciones:

$$\mathcal{E}_{\mathbf{v}} = \mathcal{E}_{\mathbf{v}_{i}} + \mathcal{E}_{\mathbf{v}_{j}} \qquad (2a)$$

$$\mathcal{E}_{\mathbf{b}} = \mathcal{E}_{\mathbf{b}_{i}} + \mathcal{E}_{\mathbf{b}_{-1}} \qquad (2b)$$

donde:

i = Componente de deformación inmediata.

d = Componente de deformación retardada.

II.2.1.1.- Componente volumétrico

Esta componente se utiliza para calcular el tensor operador volumétrico y deberá manejarse como un modelo general de compresión unidimensional.

El comportamiento de los suelos cohesivos puede ser descrito a partir de una gráfica relación de vaciós (o contenido de agua), contra esfuerzos efectivos verticales (4). Para generalizar este modelo, se debe cambiar el esfuerzo vertical efectivo al volumétrico u octaédrico.

Deformaciones Volumétricas Retardadas.- Para utilizar esta -componente primeramente se debe definir el coeficiente de compresión secudaria. El coeficiente de compresión secundaria es definido como la pendiente de la curva en una gráfica relación de vacíos-logaritmo de tiempo, una vez que la presión de poro ha sido completamente disipada, a este rango se le denomina rango de compresión secundaria (FIG. II.8). Las deformaciones retardadas siguen el mismo patrón de comportamiento en el rango de compresión primaria (donde no se pueden medir directamente), así como en el de compresión secundaria.

Muchos autores han encontrado que C \approx es constante en compresión unidimensional, algunos como Ladd y Preston (5), han encontrado que C \approx es constante y aplicable a muchos problemas de ingeniería.

Deformaciones Volumétricas Inmediatas.- Para describir las de formaciones volumétricas inmediatas, se utiliza la gráfica re lación de vacíos contra logaritmo de esfuerzo, esta gráfica concuerda con la suposición de Rendulic (6) de un contorno -concéntrico de contenido constante de agua en un plano espa-cial para compresión triaxial. La gráfica de logaritmo de es fuerzo contra relación de vacíos que describe las deformaciones volumétricas inmediatas para diferentes esfuerzos desviadores se presenta en la figura II.9.

Modelo General Volumétrico.- En base a los trabajos realiza-dos Ladd y Preston, Rendulic y algunos otros, se puede supo-ner que el valor de C_{α} es independiente tanto para el esfue<u>r</u> zo desviador como para el volumétrico, y que C_{c} (relación de compresión virgen), también se puede suponer constante, con lo que se tiene un modelo general muy simple, el cual es re-presentado en la fig. II.10.

Para este modelo el estado de suelo se mueve a través de la gráfica, a lo largo de una línea con pendiente igual a C_R (relación de recompresión), hasta que se alcanza la pre--sión de preconsolidación, una vez cumplido esto se moverá por la línea virgen. Con una disminución instantánea del esfuerzo, el modelo asume que el punto que describe el estado del -

suelo, se mueve a lo largo de una línea recta con pendiente igual a C_s (relación de expansión), esta gráfica se muestra en la figura II.11.

II.2.1.2.- Componente Desviadora.

Deformaciones Desviadoras Inmediatas,- Para describir el comportamiento desviador inmediato de los suelos cohesivos, puede ser utilizado cualquier modelo de comportamiento esfuerzodeformación.

Kodner (7) sugiere que la curva esfuerzo-deformación para suelos cohesivos puede ser representada por una hipérbola, la figura II.12 muestra la gráfica que sugiere Kodner, -donde la hipérbola se representa mediante una línea recta, -con esta gráfica se puede describir el comportamiento desviador a una relación de sobreconsolidación y confinamiento esp<u>e</u> cífico. Los parámetros que se necesitan son únicamente la -pendiente de esta línea recta y su ordenada al origen, donde la pendiente es el recíproco de la asíntota de la curva hipe<u>r</u> bólica y la ordenada al origen es el recíproco del módulo ta<u>n</u> gente inicial de la hipérbola.

28

Deformaciones Desviadoras Retardadas.- Para describir las deformaciones desviadoras retardadas se puede utilizar de una manera muy efectiva el modelo propuesto por Singh y Mitchell (8), ya que aparte de ser un modelo muy sencillo que únicamen te requiere tres parámetros para describir las deformaciones desviadoras retardadas, también es compatible con el modelo de deformación desviadora inmediata. Este modelo describe -las deformaciones desviadoras retardadas en función del nivel de esfuerzo desviador aplicado, para esto Singh y Mitchell de sarrollaron la siguiente ecuación:

$$\mathring{\mathcal{E}}_{A} = A e^{\overrightarrow{a}} (\frac{c}{2})^{n}$$

Donde: \hat{c}_{A} es la velocidad de deformación axial, t_{1} es el -tiempo unitario, t es un tiempo arbitrario, \bar{D} es el nivel de esfuerzo desviador donde $\bar{D}=\left[(\sigma_{i}-\sigma_{3})/(\sigma_{i}-\sigma_{i})_{max}\right]$, A, \bar{a} y m

.

son los parámetros del modelo que pueden considerarse propiedades del material.

II.2.2 .- Modelos Reológicos.

Los modelos reológicos se han desarrollado para explicar el comportamiento de los suelos mediante el acoplamiento de resortes, pistones y elementos que proporcionan fricción, la figura II.13 muestra algunos de estos.

Estos modelos se han propuesto para proveer una des--cripción matemática del comportamiento esfuerzo-deformacióntiempo de los suelos. De entre algunos investigadores que --

29

. . . (3)

han realizado trabajos sobre estos modelos se pueden mencio-nar; Geuze y Tan (9), Murayama y Shibata (10), (11), Christen sen y Wu (12) Abdel-Hady y Herrin (13). II.3.- Resultados experimentales de algunos investigadores.

El comportamiento de fluencia* en los suelos puede esquematizarse mediante una gráfica tiempo contra deforma---ción, como se muestra en la figura II.14, en esta figura se pueden apreciar tres diferentes curvas. La curva I es para esfuerzos relativamente pequeños, hasta valores cercanos a un 30% de la resistencia, en esta curva los movimientos de fluencia que se registran son muy pequeños y se detienen des pués de un corto período de tiempo. En la curva II los mov<u>i</u> mientos de fluencia continúan debido a que el esfuerzo aplicado es mayor, aunque no se llega a la falla del material, esta curva se encuentra dentro del rango de interés para la -Ingeniería. Si se aumenta la intensidad del esfuerzo se puede llegar a la falla, como se muestra en la curva III de la figura II.14, en dicha curva la magnitud del esfuerzo para

* Se denomina comportamiento de fluencia, a los valores de deformación que se obtienen con respecto al tiempo y para un valor de esfuerzo desviador dado. Algunos autores definen este comportamiento por la palabra inglesa "creep". ocasionar la falla puede ser desde un 60% de la resistencia inicial. En todas las curvas el esfuerzo desviador se expresa con el símbolo D.

De la figura II.15 a la II.20 pueden verse algunas gráf<u>i</u> cas de velocidad de deformación contra tiempo en escala logarítmica, obtenidas por diversos autores, en tales gráficas se puede apreciar que el logaritmo de deformación decrece linea<u>l</u> mente con el logaritmo de tiempo, lo cual nos da una expresión muy simple para la caracterización del fenómeno de fluencia.

en donde $\tilde{\mathcal{E}}$ = velocidad de deformación; $\mathcal{E}_{(\ell_i, p)}$ = valor de la velocidad de deformación a un tiempo unitario en función del esfuerzo desviador, D; m = valor absoluto de la pendiente - de la línea recta en la gráfica logarítmica de velocidad de - deformación contra logarítmo de tiempo; t_i = tiempo unitario.

La gráfica II.15 muestra los resultados de pruebas triaxiales drenadas realizadas en la arcilla de la Ciudad de Londres por Bishop (14)

La figura II.16 indica la relación velocidad de deformación contra tiempo para pruebas de compresión sin drenaje en la arcilla de la Ciudad de Osaka, Japón, obtenidas por Muray<u>a</u>

Las figuras II.17 y II.18 son para pruebas triaxiales de compresión sin drenaje en una illita saturada y remoldeada y pruebas drenadas en illita seca respectivamente, ambas gráficas fueron obtenidas por Campanella (16).

Las figuras II.19 y II.20 son de pruebas de consolidación sin drenaje y pruebas normalmente consolidadas de la arcilla inalterada y remoldeada de la Bahía de San Francisco.

En las figuras anteriores, de la II.15 a la II.20 se mues tra la influencia del esfuerzo desviador en la velocidad de -fluencia, sin embargo esta influencia se ve más claramente si los datos se grafican como logaritmo de velocidad de deforma-ción contra esfuerzo desviador, como se muestra en las figuras II.21 a la II.25, donde el patrón de comportamiento se observa indistintamente en todas las arcillas ensayadas.

FIG. II.24.- Variación de la velocidad de deformación con el esfuerzo desviador para la arcilla normalmente consolidada de la bahía de San Francisco.

Las ecuaciones 4 y 5 expresadas según las gráficas de la fig. II.21 a la II.25 se pueden escribir como:

 $ln\left(\frac{\dot{e}}{\dot{e}_{(\ell,p)}}\right) = \propto D \qquad (6)$ $\delta \qquad ln \dot{e} = ln \dot{e}_{(\ell,p)} + \propto D \qquad (7)$

en donde $\tilde{c}_{(e,\phi)}$ = valor ficticio de la velocidad de deforma ción con D=o, en función del tiempo después de haber comenzado el fenómeno de fluencia; α = valor de la pendiente en el tra mo recto de la gráfica logaritmo de velocidad de deformación contra esfuerzo desviador.

. 40

Referencias.

- (1) Lambe T. William
- (2) Eduard Kavazanjian and James Mitchell
- (3) Bjerrum L.
- (4) Bjerrum L.
- (5) Ladd and Preston.
- (6) Rendulic L.
- (7) Kondner R.L.
- (8) Autar Singh and James Mitchell.

(9) Geuze E. y Tan T.K.

(10) Murayama and Shibata.

"Soil Testing for Engineers" New York, John Willey and Sons Inc. 1951, U.S.A. p. 165.

"Time-depen deformation behavior of clays", Journal of the geotechnical engineering division. ASCE, junio 1980 p.p. 611-630.

"Engineering Geology of Normalli-Consolidated Marine Clay as Rela ted to Settlemets of Building", Seven Rankine Lecture, Geotechni que, Vol. 17, No. 2; Junio 1967, p.p. 82-118.

"Problems of Soil Mechanics and -Construction on Soft Clays and -Structurally Unstable Soils", --Proceedings, 8th ICSMFF, Vol. 3 1973 p.p. 111-159.

"On the Secondary Compression of Saturated Clays", Research Re--port R65-59, Massachusetts Institute of Technology 1965.

"Pore-Index and Pore-Water Pressu re", Bavingenier, Vol. 17, 1936, p. 559.

"Hyperbolic Stress-Strain Respon se: Cohesive Soils", Journal of the Soil Mechanics and Foundation division, ASCE, Vol. 89, No. SMI Proc. Paper 3429, Feb., 1963, p.p. 115-144.

"General Stress-strain-time function for soils", Journal of the Soil Mechanics and Foundations division, ASCE, January 1968, -p.p. 21-46.

"The Mechanical Behavior of Clays" Proceedings, 2th International --Congress on Rheology, Oxford, --1953, p. 247.

"On the Rheological Characteristic

- (11) Murayama and Shibata. "Rheological Properties of Clays" Proceedings, 5th International -Congress on Soil Mechanics and--Foundations, Paris, 1961, p.p. -269-273.
- (12) Christensen an Wu T.H. "Analysis of Clay Deformation as a Rate Process", Journal of the Soil Mechanics and Foundations Di vision ASCE, Vol. 90 No. SM6, --Proc. Paper 4147, Nov. 1964 p.p. 125-157.
- (13) Abdel-Hady and Herrin M. "Characteristics of Soil-Asphalt as a Rate process", Journal of the Highway Division, ASCE, Vol. 92, No. HWI, Proc. Paper 4719, -Mar. 1966, p.p. 49-69.
- (14) Bishop A.W. "The Strength of Soils and Engi-neering Materials", 6th Rankine Lecture, Geotechnique, Institu-tion of Civil Engineers, London, Vol. 12, No. 2, June 1966.
- (15) Murayama S. And Shibata T. Clays (Theoretical Studies on the Rheological Propieties of Clay -Part I)", Proceedings, Grenoble. France, Apr. 1964.

Philosophy.

(16) Campanella Richard G. "Effects of Temperature and Stress on the time-deformation behavior in Saturated Clay", thesis presented to the University of California at Berkeley, in 1965, in partial fulfilment of the requere-ments for the degree of Doctor of

III.- RESULTADOS EXPERIMENTALES.

III.- Resultados Experimentales.

III.1.- Descripción del Equipo a Utilizar.

Para la realización del presente trabajo se ensayó el -suelo en cuestión en cámaras triaxiales, sin embargo se pue-den obtener buenos resultados realizando las pruebas en equipo de consolidación o consolidómetro, por lo que en este cap<u>í</u> tulo se dará una exposición de ambas pruebas.

III.1.1.- Consolidómetro.

Con el consolidômetro se reproduce el estado de esfuerzos bajo los cuales se encuentra sometida una muestra del sue lo en su estado natural, en donde el esfuerzo lateral de confinamiento está dado por el anillo que confina la muestra y el esfuerzo geoestático lo da el marco de carga*

Preparación de la Muestra**

- Quitar parafina (sin perder la orientación del suelo)
 Labrado de la muestra (utilizando torno, anillos, -moldeador, espátula y regla).
 - a) .- Lubricar el anillo.
 - b).- Colocar el anillo sobre la muestra y éste sobre el torno.
 - c).- Labrar la muestra e irla introduciendo en el -anillo, teniendo cuidado de que sea de una forma uniforme, para evitar huecos en las proximidades de la pared del anillo.

* Ver capítulo II p. 15

^{**} Las muestras deben ser inalteradas y deben mantenerse en un cuarto húmedo, así mismo la preparación de la muestra deberá realizarse en el cuarto húmedo, para que esta no pierda humedad.

FIG. III.1.- Unidad de Consolidación.

45

III.1.2.- Cámara Triaxial.

Como se vió anteriormente, en los ensayos con consolidómetro la restricción lateral* de las muestras la proporciona el anillo de confinamiento, ver figura III.3, en cambio en los ensayos triaxiales la restricción lateral está dada por el --fluído de la cámara de presión, la cual generalmente es de lucita. Esta presión se puede proporcionar ya sea con aire, agua,

FIG. III.3.- Cámara de compresión triaxial.

Dentro de los ensayes triaxiales existen tres tipos diferentes, los cuales se describen a continuación:

1.- Ensaye no drenado.

(Ensaye no consolidado - no drenado, U).

* La restricción lateral, está dada por el esfuerzo principal menor O.

47

En este ensaye no se permite la consolidación de la muestra, manteniéndose la válvula de drenaje cerrada, du rante toda la prueba.

2.- Ensaye consolidado - no drenado.

(Ensaye consolidado rápido, CU).

Aquí las válvulas de drenaje se mantienen abiertas hasta que se completa la consolidación, una vez terminada ésta, se cierran las válvulas de drenaje.

3.- Ensaye consolidado - drenado.

(Ensaye consolidado lento, CD).

En este ensaye primero se abre la válvula de drenaje y posteriormente se aplica la presión de cámara, controlando la consolidación de la muestra, una vez realizado esto, se aplica el esfuerzo desviador.

·		1	1	0.00	al carriera Mariadoria		1		b
			-						1
· · · · · · · · · · · · · · · · · · ·	Arona gruesa gris claro con arcilla		13题					- ¹ } .	1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Limo arcilloso gris oscuro compacto			$\Rightarrow$					1
~~~~~	y duro.		F					. I .	1
2000	Availlag grigos y artis yordorne figuradar		$(1,1,\dots,1,n)$						1
	y de consistencia media a suave con la pro			$\sum_{i=1}^{n} a_{ii}$			·		
	fundidad y algunas vetas de ceniza.	the diffe					Z.		
			1999)			-		1
							- `		1
	Ceniza volcánica negra de media a fino con limos en la parte inferior.								1
A State		1							
	Arcillas grises y café verdoso y café roji							-	- 1
	volcánico.	1.					_		j.
YIIII		11 ¹¹ 11							
		<u> </u>	-				-		
<i>Halla</i>	Limo v arcillas suaves grises v café verdo	- 1	1.2			_	-	1	1400
ATH11#19	so y rujas con vidrio volcánico y fósiles				_				
AHHURA MARKA	y Detas de arena.		-					}	
	Ceniza volcánica		+		===			1.	
	Arcillas grises verdosas muy suaves con							_	
	fracturamiento prismático fósiles y vidrio volcánico y betas de ceniza y vidrio vol-						-		-
	cánico.						=		
	Limo							~	A
	suaves con incursiones de arena fina			Ħ					ji ji
	y vidrio volcânico		-	_				-	.
191111111	Ceniza obscura de media a fina					ĺ			1
	Arcillas cafes y cafes rojo de consisten					==	-		
	cia media a suave con fósiles y vidrio -		29.0		-				
							-		1
	Arena.		-	-		├ <u>─</u> ──	\rightarrow		
	drio volcánico y algunas betas de arena			· .			$ \mathbf{L} $		1
	fina.	<u>ensis</u>		à chia				-+-	1
' I IIII		a gara ng	1				+-	-+-	
							-1	1	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Arena limosa	1 - 1 - 1 - <del>1 -</del>		-	्यत्	<b>1</b>		ļ	(
0 ° ° °						$\mathcal{G}_{i} = \mathcal{G}_{i}$			
in the second	Arena limosa de media a fina.					5	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
	Arcillas limosas suaves a más suaves con vidrio volcánico.								
		le de ser de		S. []]		<-			ß
					eser de Plésie		1		
		5 t. u s							
						ない時代			ľ
61169168						antitie st			

de humedad y la distribución de esfuerzos correspondientes a cada profundidad.

En la tabla III.i, se presentan las características generales de las muestras que se utilizaron en el programa de pruebas.

Panki

Identificada	Muestra	(m)	v₁x	e _i	^e f	^S r ⁷ ₁	8	(T/m ³ )	S _s	~ _L X	I _p &	Descripción
COF	M5-T2	4.20	438	11.6	10.9	99	1.12	1.15	2.625	462	360	Arcilla gris-verde consis tencia, suave a media.
CIF	И10-Т2	9.35	455	11.8	7.9	98	1.11	1.18	2.55	445	338	Arcilla gris-verde con manchas cafés, consisten- cia suave, con fractura- miento prismático
C27	M17-T3	15.55	467	- 11.2	9.4	99	1.11	1,21	2.38	453	352	Arcilla gris-verdoso de consistencia suave con f <u>ó</u> siles y v.v.
C37	M24-T2	23.30	464	12.0	9.1	97	1.11	1.21	2.51	493	395	Arcilla café-verdoso pá- lído de consistencia suav
сон	M24-T2	23.20	491	12.8	11.9	99	1.11	1.14	2.60			Arcilla gris-verdoso de consistencia suave, con f siles.
CIM	M24-T2	23,23	477	12.3	11.0	99	1.11	1.12	2.55			Arcilla gris-verdoso cons tencia dura, con fósiles
С2И	M24-T2	23.26	524	13.4	12.4	99	1.11	1,12	2.55			Arcilla gris-verdoso de consistencia suave con fósiles
СЗН	M24-T2	23.33	498	13.0	8.8	97	1.11	1.18	2.52			Arcilla gris-verdosa suav con abundantes fósiles
CIJ	M24-T3	23.55	514	13.6	9.7	99	1.10	1.16	2.62	525	409	Arcilla café-verde, consi tencia suave con v.v. y fósiles
C2.J	M24-T3	23.57	500	12.7	12.7	98	1.10	1.16	2.50			Arcilla café-verdoso, con sistencia suave con v.v. v fósiles.

.

.

.

### III.3.- Resultados.

Para el presente trabajo se realizaron tres pruebas en cámara triaxial del tipo CD, las muestras fueron obtenidas -del Aeropuerto Internacional de la Ciudad de México *, en el pozo PI-M24-T3, a una profundidad de entre 23.40 y 23.485 -mts, estos muestreos fueron realizados por el Instituto de In geniería como parte de un proyecto para Aeropuertos y Servi-cios Auxiliares.

Los resultados obtenidos en las pruebas 4, 5 y 6 se presentan a continuación en forma de tablas.

* Ver anexo 1.

	$ \begin{array}{c} \textbf{W}_{k1}^{i} = & \underline{93.57} \\ \textbf{U}_{k1}^{i} = & \underline{0.50} \\ \textbf{U}_{k1}^{i} = & \underline{0.59} \\ \textbf{W}_{k1}^{i} = & \underline{3.59} \\ \textbf{W}_{k1}^{i} = & \underline{3.57} \\ \textbf{W}_{k2}^{i} = & 3$	Ai = <u>10.0566</u> an ³ Vi = <u>85.561</u> an ³ Vi = <u>414.90</u> % Aga <u>0.561</u> an ³	L= <u>E+3.586</u> K = <u>2.28</u> 4; = <u>2.38</u>	$W_{AP} = \frac{W_{AP}}{W_{AP}} = \frac{W_{AP}}{W_{AP}} = \frac{1}{W_{AP}} = $
--	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Preste _ 4(0) Charle T. Serie II' (AICH) (91-MEA-TOX D.A. - 13.46 ...) R. = 0.55 4/16, 0.15 14/an2

ETAPA		*	AM.	L. 930	6L %	1-6	AB cn	44	V cm ^b	A 1	ďş' ₩e/cał	5,' 14/cal	3 */•	e -	<b></b> */.
Datos inuciales	1	22.15	0	8.500	•	ī	0	0	85. 561	10.066	0	o	414.9	10.21	96.7
Set con be	2	21.52	0.63	8.437					83 672	9917	0.376	0.376	419	9.96	99.1
Bok	3	21.37	0.78	8.482					83 227	9.682	0.376	0.376	414.9	9.90	99.7
Coas. Isotrópico	4	19.97	2.18	8,487			14.4	8078	75.148	9.074	0.650	0.650	370.5	8.64	99.8
										L					

al inico de palla Whp = 93.57 - 8.08 = 88.49 gr

Etopa de falla.- (co).-

Teur	A	AM	4	4.	1-61	AO	*	¢	6.4		44	AV	Y	E.	1 - Lu	6	6.0	4	P	W	•	Ð	S. Latte
H*	-		48	*		al	Mg	14	<b>T</b>	Can_	(M	ut.	(a)	•6	-	-/	7/2	<b>h/</b> #	-	•/	-		- ]
0	19.97	0	8.982	0	1	9.074	0	0	0	1530	0	0	78.148	0	1	0.65	0.45	0	0.65	370.5	8.94	3.40	2.43
1	18.49	1.48	8.134	1.8195	,98180	9.08	1.815	1.815	0.9	156.2	3.2	17952	73.35	2.3889	,97611	0.65	0.85	0,1	0.75	360.6	8.61	3,59	1.40
2	16.37	3.60	7.922	4.347	. 95653	8.998	1.193	3 698	0.4	-	37	2.076	71.274	5.151	94849	0.65	1.05	0.2	0.85	349.2	<b>€</b> .₹3	3.38	2.34
3	13,44	0.53	7.679	7.884	,92115	8.989	1.19}	9,309	0,6	-	4.8	2.693	68.581	9.135	.91265	0.65	1.25	0.3	0.95	334.4	7%	3.38	2.26

**i** 1

# Ausba 4. (CD) - Camara 7. Serie IN- (AICM)-

Etapa de saturación cou Q

F	H	t	Ŀ₽	®	<b>'</b> @	©	Μ	۸A	Ð.	ΔB	ΔC	υ	Pe	Canal®	Le" CL + 17654
	_	เกิก	-	Kg/cm2	BASE	¥4/(_2	in.m	Yn m	(17)	(m	Kuj –	kq	¥=/cm2		Kc = 0.024667
3.06.86	15:50	0	35.628	0	35.628	0	22.15	ۍ د			0	0	0	Carnel	L====+36880
					35.902		22.13						0,50		K= 0.002105
					36,049		22.06						1.00		
					56.250		21.81						1.50		
	16:00				36.450		21.75						2.00		
			37.009	2.3765	36.830	2.00	21.57		158.0	0			2.75		
4.06.86	8:50		37.003		36.830	2.00	21.52	0.63	156.8	1.2			2.75		
			-		- Bse -		-		[	L®	L@				
								inici	ales	'5'T 003	36 830				
								fire	ales	37 576	37377				
									Δ	573	547			Bse =	95.5%
4.06.86	9:200		37.003	2. 364	36 830	2.00	21.37	0.78	157.0	1.0	0	0	2.65		
			-		ons. Is	otrople	۵	- T _{a,s}	= 0.6	5 Kg/	Cu 2				
F	н	t	ρεσ	⊂e	œ₀'= (A	0-(B)	٤	ΔM	В	<b>∆</b> 8	1-@)	·L@	7		
04 06 86	10:15	0	2.364	2.000	0.364	0	21.37	Ð	140.0	0	37 œ3	36830			
		(5	2.650	2.000	0.650	0	21.35	0.02	140.5	0,5	37139	36 830	22.2		
		ઝ૦					21.32	0.05	140,7	0.7					
		1					21.28	0.09	141.0	1.0	-				
		2					21.21	0.16	141.5	1.9					
•		4					21.11	0.26	142.4	2.4					
		9					20.97	0.40	143.6	36					
		15					20.86	0.51	145.0	5,0					
	10:40	25					20.71	0.66	146.2	6.2					
	10:55	40					20.62	0.75	147.4	7.4					Prueba 4 (CD)
	11:15	60					20.53	0.84	148.6	8.6			22.5		
	11:45	90					20, 24	0.93	149.7	9.7			22.5		# 2.

Proeba 4: (CD);- Camara 7 .: Serie IX'- (AICM);-

P	н	t	P,	CP.	ۍ'	M	AM	в	٨B	L@	4G)	+		
	10.15	180				20.30	0.09	150 2	10.3	}		<b> </b>	 	
	13:15	100				00.30	1.05	151.7	11.7				 	
	1505	000				20.52	1.11	151.0	11.0			000		
5.06.80	8:17	1220				20.00	1.20	157.5	13.9			20.6	 	
	14:45	1990				20.08	1.29	1520	13.9			22.3	 	
	21:00	1965				20 022	1.35	154 2	14.2				 	<u>·</u>
6.06.86	7:30	2715				19.988	1.38	154 5	14.5					
· · · · · · · ·	9:45	2850				19.97	1.40	154.4	144	<u> </u>		20.9	 	
													 · · · · · · · · · · · · · · · · · · ·	
			h							·			 	
									· · · · ·				 	
									·					
														<u>`</u>
														1
						1		_						
	÷													
														Prueba 4 (CD)
			L										 	
								L					 	# 3

# Aveba 4. (CO) Camara 7 Serie 15'- (AICM)

Failo drenada

*** · · · · ·																	
	Incr	F	н	t	M	Δм	в	ΔB	Т	Δc	с	(0,-0,)					
	Nº.	_	-	min	91/71	<b>379</b> 477		เม	~	Kas	Kg	5/cm2	٤%				
	0	C6-06-86	10:25	0	19.97	0	1030	0		0	0	0	L= 0.26	2	PPD	1. 611	S
	ι			/s	19.60	0.37	103.2	0.2	20.9	1.815	1.815	0.2			۵c	1.675	<u>،</u>
				30	19.60	0.37	103.3	0.3									
	· ·			1	19.59	0.38	103.3	0.3		· · ·					1		
				2	19.59	0.38	103.3	0.3									
				4	19.56	0.41	103.4	0.4									
			10:34	g	19.52	0.45	103.5	0.5							-		
				16	19.48	0.49	1037	0.7									
			10:55	30	19.43	0.54	103.8	0.8									
			11:10	45	19.39	0.58	103.9	0.9	· ·								
			11:25	60	19.34	0.63	103.9	0.9							-		
			11:55	90	19.31	0.66	104.0	1.0									
			12:25	120	19.29	0.68	104.0	1.0	<u> </u>								
			15:25	300	19.19	0.78	154,3	1.3	22.5								
			18:45	500	19.10	0.87	154.5	1.5	20.3								
		7-06-B6	10:25	1440	18 - 89	1.08	155.0	2.0	20.2				-1.3/2				
			15:31	1746	18.87	1.10	155.12	2.2									
		8-06-84	10:06	2860	18.718	1.19	155.4	2.4	20.8				-1.447				
		9-06-86	8:33	4210	18.10	1.27	155.5	2.5					-1.545				
			20:05	4900	18.69	1.2g	155.6	2.6	21.9								
		10.06-66	ч - 45	5600	18.63	1.34	155.7	2.7	20.7				-1.631				
		11-06-64	13:25	7360	18.57	1.40	155.9	2.9	20.5				-1.705				
			18:45	1780	18 55		155.9	2.9	212		_						
		12-06-86	8:32	8527	18 53	1.44	156.0	30					-1.754				
			14:45	8900	18.52		156.1	31	21.9						Pru	eba	4 (CD
		13-0-86	8:29	9964	18.49	1.48	156.2	32	20.5				- 1.803		<u> </u>		
													L	L	#	4	
										_					1		ī

Prueba 4: (CD);- Camara 7 - Serie IX'- (ATCM);-

Etapo de fallo dienada

N° 2	- 13-06-86	9:19	min	**		1 .						/		
2	13-06-86	9:19			mm	CM	cm	€2	لاحم	Ky	20/00	E%		
			0	18.49	0	153.0	U		1.818	1.815				PPD 1.793
			15	18.18	0.31	153.1	0.1		1.793	3.608		8.134		РРТ О
			30	18-19	0.31	153.1		r						AC=1.793
			1	18.175	0.31	153.1					r			
			2	18.165	0.32	153.2								
			4	18.10	0.39	153.3								
			3	18.09	0.40	153.4								
			30	17.97	0.52	153.6			·					
			60	17.91	D.58	153.7			1			· · ·	. april 1	e talis de la se
		11:09	(10	17.83	0.66	1539		21.5				and a s		al anna a' a' a'
		12:09	170	17.78	0.71	154.0		21.8	[		1977 - S. ¹⁷ -		12.00	
		13:39	260	17.72	0.77	154.0		22.2			1.1.81.5			Alexandra de la compañía de la comp
		15:09	315	17 66	0.83	154.1		22.4			1990 N 19	3. CA 192		
		16:49	450	17.62	0.87	154.3	1	82.5		·	1257	Soziin e.	1.1.2.8.	a daga ng sa n
		19:19	600	17.56	0,93	154.5		22.3	a ni yay	مرقب أي	an a			$p_{ij}^{(1)} \frac{1}{2} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$
	14.86.06	11:11	1550	17.25	1.24	154.9		20.6		4.1		-1.54	1.05	
		15:19	1800	17.14	1.35	155.0		20.9			-	1.1		
	15 6.86	14:39	3200	16.89	1.60	155.5		21.3			1	- 1.99		
	6.06.86	B:20	4260	16.77	1.72	155.8		20.5				- 2.14		
		13:59	4600	16.75	1.74	155.9		22.7						
		20:39	5000	16.72	1.77	156.0		22.4						
	11.06.86	13:19	6000	16.62	1.87	156.1						- 2.32		Prueba 4 (Cl
	16-06-86	9:00	7160	16.53	1.96	156.4						.2.44		
		14.19	7500	16.52	1.97	156.4		22.8						# 5
	19.06.86	8:17	8577	16.45	2.04	156.6						- 2,54		
	0.06.86	8:06	10006	16.37	2.12	156.7	3.7	20.7				- 2.64		
	r-												Camp	o bureta
		14.86-06 15.06-86 10.06-86 10.06-86 10.06-86 10.06-86 10.06-86	11:09 12:09 13:39 15:09 16:49 19:19 14.86-06 11:11 15:19 16:06.86 13:59 20:39 11:06.86 13:19 16:06.86 9:109 14.19 16:06.86 9:109 14.19 16:06.86 13:19 16:06.86 14.19 16:06.86 16:17 10:06.86 17 10:06.86 17	2        4        30        60        11:09        12:09        13:39        16:49        450        19:19        19:19        19:19        13:39        14:86-66        11:11        15:13        15:14        15:13        15:13        15:13        15:13        15:23        46co        13:53        46co        14.19        75co        13:66        14.19        15:000000000000000000000000000000000000	2      18. 165        4      18. 00        30      17. 97        60      17. 91        11.09      110        12.09      170        13.33      260        15.09      315        16.48      450        16.49      450        19.19      600        19.19      600        19.19      600        19.19      600        19.19      600        19.19      600        19.19      600        19.19      600        17.25      17.26        19.19      600        16.49      450        17.22      19.19        19.19      600        19.19      600        19.19      600        19.20      16.69        19.23      200        19.259      400        19.259      16.72        11.06.86      13.19        10.06.86      9100        116.53      16.53 <tr< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></tr<>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Prueba d: (CD) .- Camara T.- Serie IX'- (AICM),-

Etapa de falla dienada.-

Incr	F	Ч	ŧ	м	٨M	в	ΔB	Т	Δc	c	J.	404	· · · · ·		
 NE			mín		mm	cm.	Cm	۰د	Eg	kg	~/w	En / cm2			
 3			0	16.37	0	152.0	0		1.793	3.608	0.4	0.2		PPD=	1.800
 			15	16.08	0.29	152.1 -	0.1	21.6	1.791	5.399	0.6	0.2	<u> </u>	ρρτ,,	0.010
			30	16.0B	0,29	152.1	0,1					·.		Ac =	1.790
			1	16.08	0,29	152.1	0.1						1.		
			2	16.07	0,30	152.2	0.2							2	
 			4	16.05	0.32	152.3	0,3					1	1		the relation
			9	16.01	0.36	152.4	0,4								1111111
 		10:16	16	1977	0.40	15.7.4	0.4					1.		3. S. S.	and the second
 		10:25	25	15.92	0.45	152.5	0,5	<u> </u>		· ·				di karan	
 		10:40	40	15.87	0.50	152.6	0.6								11 10 00
 		11:10	70	15 80	0,57	152.8	0.8								980 B. A.Y
 		12:00	120	15.72	0.65	152.9	0.9								
		13:00	160	15.64	0,73	1530	1.0								1997 - 1997 - 1997 1997 - 1997 - 1997
		14:00	240	15.57	0.80	153.2	1.2								
		15:00	300	15 51	0.86	/53 3	1.3	22.2							
		16:40	400	15.42	0.95	1535	1.5								
		18:20	500	15.35	1.02	153.5	1.5	21.7	[	r					
		22:40	760	15.185	1.19	153,9	1,9	22.4							
	210086	10:07	1447	14.86	1.51	154,7	2.2								
		19:42	2022	14.673	1.75	154,5	25								
	22.06.86	14:11	ઝાઝા	14.41	1.96	155.0	3.0								
	23.06 84	7:42	4482	14.19	2.18	155.4	3.4								
		8:50	4250	14.18	2.19	155.4	3.4	20.2							
		18:30	4830	14.08	2.29	155.6	3.6	22.4							
		22:00	5040	14.04	2.33	155.8	3.8					L			
	240686	7:39	5619	13.95	2.42	155.9	3,9	20.8						Prue	ba 4 (CD)
		18:30	6270	13.67	2,50	156.1	4.1	23.2						•	
	25 06 86	8:17	7097	1374	2.63	156.3	4.3	21.2						# 6	

Prueba <u>A: (CD);</u> Camara <u>7.</u> Serie <u>(X'; (AICM);</u>

Etapa de falla dienada.-

	Ler	F	H	T t	M	ΔM	В	ΔB	<b>T</b>	ΔC	c	5.1	Δœ	1	
	N₽	_	-	mín	mr	(n m	cm.	6.00	•⊂	1 Kin	FO	Eg/101	La / cur		· . ·
			19:00	7740	13.67	2.70	156.3	4.3	20.7		<u>† – – – – – – – – – – – – – – – – – – –</u>		1		
			22:30	7950	13 632	2.74	156.4	4.6							
		26.06.80	8:1B	6538	13,620	2.75	156.5	4,5	·	1			-		
			9:40	8620	13.57	2.80	156.5	4.5	21-8						
			19:00	9180	13.51	2.86	156.6	4.6	21.0			<u> </u>	<u> </u>		
		27.06.84	B:22	9982	13,445	2.93	156.8	4.8	20.8			<u> </u>	1		
			9:20	10040	13.44	2.93	156.8	4.8	21.1	1					-2
<u> </u>															
							<u> </u>					1.			
						· ·			· · ·						
							1				1.5.1.		1.1.1.1		
		1.						· · ·							
		İ					1			-94.000	· · · · · · · · · · · · · · · · · · ·	12. i. i			
		1					1	51.0	1 1				1	and the second	
<u> </u>							•	11 A. A.				• • •	1.00	·	
· · ·						•							1		
[							Sec. 1					• -			
						1. ¹								1.1.1	
						1			1.1.1.1.1						
								1.00					1.1.1.1		
· ·					1					di di				the starts	
								1.1					1	1.1	Prueba 4 (CD)
											-				# 7
				•									3 - A		

Procha 5. (CD) Canara - Serie 12 (AZ.M) (PI-M21-13) 1340-23,455 m2 HE = U.33 /14 03,0 .

Whi =94.15 qr	Ai = 9.982 cm2	$L = \frac{P}{E} + 3030$	Wap = Who + War
Ds= <u>3.58</u> (m	W: 409.3 %	G ₅ = <u>2.38</u>	typ in Wisp
Dia 3.56 (a)	Aga 0.567 cm2		
			W= Whi- (Ww)-1
			G = 1.65

. ____ .. .. . .

ETAPA	Etapa N*	M	-	L. (11	EL %	1-6	AB	<u>م</u> ۷ د=•	V cn ³	A (m1	5' K1/(m2	5.' 14/102	w */•	e -	G.) -/.
Datos iniciales	1	17.68	0	8.5œ	0	1	0	.0	84.846	9.982	0	0	409.3	9.92	98.2
Sat con Pr	ę	17.08	0.60	8.44					83 294	9.869	0.18	0.18	409.3	972	100.2
Bst.	З	-		1					83 294	9869	o.18	0.18	409.3	972	100.2
Cons. Isutropica	4	14.93	2.75	8.225			20.6	11.68	71.614	8.707	0.65	0.65	346.1	8.22	100.2
													1		
											alir	nuar f	allo - V	$l_{n} = 94$	15-11.68

Etapa de falla, (CD)

• ____

Taur .	M	۸A	L	۴L	1-61	AQ.	AC.	υ	0.3	В	ΔÐ	Ā٧	۷	€v	1- Ev	σ,	¢,'®	4	P'	W	e	Þ	E lette
N°	#n	-		%		en2	ra	59	l ©	(m	cm	CA3	(1)5	%	-	51/u2	5/a2	Kj/a²	14/w2	. •/.	-		-
0	14.93	0	8.225	0	1	8.707	0	0	0	100.C	0	0	71.614	D	1	0.45	0.65	0	0 65	346.1	8.22	3 33	2.47
1	12.26	2.67	7958	ə 25	96754	8.621	2.612	2.612	0.3	105.3	53	3005	68.609	4.196	0.958	0.65	0,95	0.15	0.80	389.9	783	331	2,40
2	16.75	7.50	1.467	9.216	,90784	8.588	2.560	5 172	0.602		7.9	4 479	64.130	10.450	0 8955	0.65	625	0.30	0.9s	305.6	7.25	330	2.26
Э	10.92	13.41	6.884	16.304	. 83696	8.640	2 557	7.729	0.694	_	6.2	4.649	59,48	16.943	0.8305	0,65	1.54	0.45	1.095	250.5	6.66	э.3I	2.08
										1													

Prueba 5 (CD)

# 8

Arueba 5. (CD). Camara 1. Serie IX'- (AICH).

-

Saturación con (R)

	н	t	L®	æ	L@	Ø	м	ΔM	۵c	C	Рс Восколин Буда 2	в	ΔB		L= + 3030 K= 0.001B1B
-06-86	12:05	0	3030	0	3030	0	17.68	0	0	0	0				
					3162		17.58				0.50				
					3445		17.34		1		1.00		•		
					3734		17.20		1.00		LSC			· · ·	
					4023		17.12	a a saita	i ku eye	- 18 1 ^{- 1} 1	2.00	- 1 1		11.0	
	12:15		4230	2.18	4130		17.09	an an			9.20	106.0	0	5 J. (2014)	
0686	8:25		4221		4123		17.08				2.20	105.4		en standa	a an
	8:25		4230	2.18	4130		17.08	0.60			2.25	105.5		1.1.1	
				[							1				
					<b>-</b>			1.1.1							
						BSE -			4		LR	Lep	4 N 1 N	e parte	n strike de statio
									inic	iales	4230	4130		1.1.1.1	한 동안 동안 하는 것이다.
					1				fin	ales	4860	4753			
								3.21		Δ	630	623	. નેડા	= 98.9	%
			-		Cons.	Isotro	pica -	(J3.0 =	0.65	15/cm2					
	t:-	н	t	Peo	CP.	03' = (A	- CR)	• M	AM	É	64	40	L@	T	and a second sec
	3-06-B6	9:30	0	2.18	2.00	0.1	B	17.0B	0	82.0	0	4230	4130	1	
			15	2.65	2.00	0.6	5	16.73	0.35	83.6	1.6	44.68	4130	22.0	
			. 30		1	1		16.65	0.43	84.1	2.1				
			1		1			16,56	0.52	85.0	30			一次成	
·			2		1			16.42	0.66	B6.3	4.3				
			4		1			16.24	0.84	88.0	6.0			1. S. 282	
			9					15.98	1.10	90.4	6.4				
			18					15.79	1.29	92.7	10.7				
		10:00	30					15.66	1.42	94.3	12.3			ndi ber	Prueba 5 (CD)
		10:20	50					15.55	1.53	95.7	13.7				
		10:40	70		7			15 48	1.60	96.5	14:5			22.2	# 9
Prueba 5- (CD).- Camara 1- Serie 12'- (AICM).-

Saturación con (R)

	4	н	£	Pcc	сp	σ3'=(	ዲ- (ዩ)	м	Δм	8	ΔB	L®	409	Т	
h		(1:20	110			[		15.40	1.68	97.5	155				
		12:10	160		1			15.36	1.72	98.2	16.2			1	
		13:00	210				÷	15 37	1.76	98.6	16.6	[	-	1	
		13:40	250			1		15.29	1: 79	98.9	16.9	[		1	10
		15:40	370					15.24	1.64	39.5	175			23.8	
		18:20	530					15.19	1.89	100.0	18.0				
	4.06.86	8:40	1390					15.05	2.03	101.3	19.3			21.5	
		19:00	1670					15.03	2.05	101.6	19.6			22.2	
	5.06.86	8'.IS	2805					14.97	2.11	102.1	20.1			20.6	
		14:40	3190					14.97	2.11	102.2	20.2			22.3	
		21:00	3570					14.97	2.11	102.5	20.5				
	6.06.86	7:30	4200					14.965	2.11	102.6	20.6				
		8:30	4260					14.93	2.15	102.6	20.6			20.7	
						<u></u>									
				[	1	[									
						<u> </u>	İ								
				[	<u> </u>										
·						ĺ			. 					L	
						{									
L															
					<u> </u>										
					ļ	·	ļ								Prueba 5 (CD)
				<b> </b>	<u> </u>	ļ				l					
		1		L		1	1								# 10

Prueba S.- (CD) - Camara 1 Serie IX : (AICN),-

Falla drenada

an an the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states

	Incr	F	н	÷	м	ΔM	в	ΔB	т	∆⊂	Ċ	653)			
	N۶	-		min	mm	መጥ	< m	cm	°C	Łg	Łg	kg/cm2	٤		
	0	6.06.86	ງ:ເຣ	0	14.93	0	100.0	0		0	٥	0	Lo = 8%	25	PPD 2.612
	1			ູ່ທ	14 45	0.48	100.2	0.2	20.8	2.612	2.612	0,300			Ac 2.612
				30	14.42	0.51	100.3	0.3					•		and the second
					14.39	0.54	100,5	0,5							
				2	14.34	0,59	100.6	0.6					1.14 1.14		falle de la fille a
				4	14.28	0.65	100,7	۲.0			1				
				9	14.18	0,75	100.9	0.9				al transfer		(1. d) starting	
				16	14.09	0.84	101.1	1.1			. de A	i afrida	15. P		
				30	1399	0.94	101.3	1.3		1.1	김 이곳 같은		Altanta.		
				45	13.92	1.01	101,4	1.4			3.03.3e		的情况去		
			10:15	60	13.87	1.06	101.5	1.5		et in the state	人的政治				<b>建</b> 的运行 <i>的 (建</i> 定)
			10:45	90	13.79	1.14	101.7	1.7		an na araa	arte k		지 않는 것이 같다.		$\begin{array}{c} \max_{i=1}^{n} \frac{T_{i,i}}{T_{i,i}} & = \max_{i=1}^{n} \max_{i=1}^{n} \frac{\pi_{i,i}}{\pi_{i,i}} \sum_{i=1}^{n} \frac{\pi_{i,i}}{\pi_{i,i}} \sum_{i=1}$
			11:15	120	13.74	1.19	101.8	1.8					27.5 54	19 - A.	en sestema
			12:15	<b>6</b> 9	13.65	L. 26	102.0	2.0			e e per e de la				
			15:05	350	13.49	1.44	1024	2.4	22.5						
			18:25	500	13.35	1.58	102.7	27	20, 3			• 1. A.A.			ار موجوع میں بائیں دیکھیا
		7.06.86	10:30	1465	13.03	1.90	103.4	3.4	20.3				- 2.33		n an
			15:30	1765	12.962	1.97	103.7	Э.7							
		8.06.80	10:05	2930	12.79	2.14	104.4	4.0	20.8				-2.64		
		9.06.86	8:35	4280	12.63	2.30	104.4	4.4					- 2.84		
			Qo:35	5000	12.56	2.37	104.6	4.6	21.9						
· ·		10.06-B6	8:15	\$700	12.51	2.42	104.8	4.8	20.7				- 2.99		
			18:55	6340	12.46	247	104.9	4.9	22.2						
		11:06.86	13.32	7460	12.40	2.53	105.1	5.1	20.5				-3.12		Prueba 5 (CD)
			18:55	7780	12.36	7.57	1051	5.1	21.2						
		12.06.66	8:34	8599	12.33	2.60	105.2	52					- 3,21		¥ 11
		13.06.86	8:31	10036	12-26	2.67	105.3	5.3	20,5				-3.30		

Arusba 5.- (CD).- Camara 1 Serie JX'- (AICM).-

Falla drenada

-	Icr	F	Ĥ	t	X	AM	в	ΔB	T	Δc	C	$(\sigma, -\sigma_{i})$			
	Nº		_	min	mm	171/1	۲m	<u>cm</u>	"c	ات	Ka	1/14/14/2	ε		1
	2	13 06 B6	9.25	0	12.26	0	100.0	0		2.612	2.612		L=1.958		PPD + 2.56 Eg
				15	11.85	0.41	100.2	0.2		2.560	5.172				0 799
				30	11.83	0.43	100.2								+ 2.56
				1	11.90	0,46	100.3								
				2	11.75	0.51	100.4								
				4	11.68	0.58	100,5								
				25	11.38	0.80	101.1								
				55	11.18	1.08	101.4	:					1.		
			11:05	60	10.96	1.30	101.8		21.5						
			12:05	160	10.77	1.49	102.1		21.8						
			13:35	250	10,54	1.72	102.4		22.2						
			15:15	350	10.32	1.94	102.B		22.4						
			16:55	450	10.15	2.11	103.2								
			19:15	390	9,93	2.33	103,5		22.3		[	[			[]
		14-06-86	11:14	1550	9.07	3.19	100.0		20.6				-4.09		Cambio de
			15:25	1800	8.97	3.29	100.2	4.9	209						bureta
		15.06.86	14:55	3150	8.44	3.82	101.1		21.3				-4.92		
		16-06-86	8:22	4260	8.21	4.05	101.5		20.5		i		-5.22		
			14:02	4600	8.13	4.13	101.7		22.7						
			20:45	5000	8.03	4.23	102.0		22.4						
		17 06.86	13:25	6000	7.84	4.42	107.1			<u> </u>			- 5.71		
		18.00.96	9:00	7175	7.66	4.60	102,5		20 9				- 5.95		
			14:25	7500	7.62	4.64	107.6		22.8						
		19 06 86	8:16	8971	7.49	4.77	102.8						- 6.18		
		2006-86	8:05	10000	7,35	4.91	103.0	7.9	20.7				- 6,37		[
				}			1	· · · · ·		·	[				Cambio micometin
							1				<u> </u>				" bueta
	<u> </u>			· ·						I	1			\$ 12	Prueba 5 (CD)

## Prusha 5- (CP); Camara 1. Serie K'- (AICM);

Falla drenada

Incr	F	н	Ł	м	ΔM	в	ΔB	т	AC	c	$(\sigma_{1} - \sigma_{3})$	∆07.J		
Nº	-	-	mia	<b>a</b> m	IN ID	cm	< m	°c	Kg	ka	Kg/cu²	¥g/cu²		
3	20 06 86	9:10	0	16.15	0	98.0	ð		2.560	5.172	0.9	0.3		PPD + 2.600 - 0.043
			15	16.44	0.31	98.1	0.1	21.2	2.557	7. 729				AC +2,557
			Эc	16.41	0.34	98.2	0.2					-		
			l	16.40	0.35	98.3	0.3							
			2	16.35	0.40	98.4	0.4							
			4	16.29	0.46	98,5	0.5							
			ÿ	16.18	0.57	98.7	0.7						·	
			18	16.05	0.70	98.9	0.9							
			30	19.93	0.82	99.1	1.1				1			
 		9:55	45	15.81	0.94	99.2	1.2					÷ .	÷	
		10:19	65	15.68	1.07	99.4	1.4							
		10:40	୨୦	19.61	1.24	99.7	1.7							and the second
	•	11:40	150	15.23	1.52	100.0	2.0							
		13:30	260	14,80	1.95	60.60	2.6					t a se	行行的	
 		14:20	310	14.66	2.09	101.0	3.0					e al i		
		15:10	360	14.51	2.24	101-1	3.1	27.2				(1,1,2,1,2,1)	and a second	2. Sup1 - 201 ² - 1 - 201 π. Μαθαταία (2021) - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
		16:40	450	14.27	2.48	101.4	34					an sha ka	a di tanggan di salah salah salah salah salah salah salah salah salah salah salah salah salah salah salah salah Salah salah	
		18:20	550	14.07	2.68	101.8	3.8	21.7						방송 중요소하는 것
		22:40	610	13.64	3.11	102.4	4.4	22.4					i det ag	
•	21.06.86	10:10	1900	1296	3,79	103.3	5.3							
		19:45	2015	12,608	4.14	1038	58						e e ch	
	22.06.86	14:12	3182	12.18	4.57	104.5	6.5							
	23.06-86	٦:42	4232	11.86	<b>4</b> .89	105.0	7.0							
		8:30	4280	11.84	4.91	105.0	7.0	21.1						
		18:30	4880	11.68	5.07	105.2	7.2	22.3						Prueba 5 (CD)
 		22:00	9090	11.64	5.11	105.4	7.4							
	24-06-86	7:38	5468	11.53	5.22	105.5	7.5	20.8						# 13
		18:30	6320	11.40	535	105.7	דר	23 2						

Aveba 5- (CD). - Camara _ -Serie IX - (AICM)

.

talla dienada

	Incr	F	н	-ę	Μ	АМ	в	ΔВ	Т	∆c	c	(5,-53)	707 7		
	N≚			<u></u>	Am.	mm io	<u> </u>	<u>cn</u>		<u> = 9</u>	Kcj	K9/142	19/cm2	<u> </u>	
		25-06-86	8:17	7147	11.265	5 49	105 9	79	21.2		7147				
·			19:00	1/98	11 18	557	<u> </u>		20,7					<u> </u>	
			22.30	8000	11.15	5.0	106.0	8.0				┣		<u> </u>	
		26 06 86	8.17	8587	11. 8	56/	106.1	8.1	20.5					┝	
			19:00	9230	(1.00	5.75	106.1	8.1	210				·		
		27 06 86	8:21	10031	10.934	5.82	106.3	8.3			<u> </u>	<u> </u>			
<u>.                                    </u>		L	8:40	10050	10.92	5.83	106.2	8.2	212						
												· · · · ·		1.121	
			L				l					<u> </u>	<u> </u>	1. A. S. S.	
										and the second		1919			
									$(1,1)_{i=1}^{i=1} (f_{i+1}, f_{i+1})_{i=1}^{i=1}$	$(1, j_{2,j+1}, j_{2,j})$		2012/201		ak sijates	an an an an an an an an an an an an an a
							- 201	Nedel de					2012		
			1. A. 1997	an an an an an an an an an an an an an a		est de _{re}				大能的展	物的问题	2835	建合物社	法的经济	
			sin ang				医施尿管		$\overline{A} \geq 10^{10}$				被調查	動陶器	
	1.11	1993		49.50M	電力を	127444	관계관							12.2021.202 22.512.42.8	制度的现在分词
		19.385							$\widetilde{\sigma}(\mathcal{E}(p_{i}^{n})) = 0$				为这种家人		的国际的开始的分子
		的感激		NE SER		ere (20	法管理	N.W.M.		167.9X		$\sum_{\substack{i=1,\dots,r\\r_i \neq i}} r_{i,r_i} r$			and the second second second second second second second second second second second second second second second
				Manadad.	Vien Ekster Secolaria		and a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the	di undigina da ka kati pinana da ka	<u> 2</u>	1. <u>1</u>		46.5-466			<b>动动物 小学教育学 小学</b>
2.0			Rechart			Service Service				法法规			家王均东		
	1.00		Station Station	R.S.S.S.L		潮波開始					S. C. Con			25.52 BC	
		2233446	Margar Aller				ning services and Alternation					146	52.075		
	S. Constant		动物的	Se Hale		STAR STAR		35200			网络白垩	017 M	tentas		
	n shariba ya	and an and a second	Sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector	Checking and C	and a second second second second second second second second second second second second second second second s		সন্দ্রা আকর্তন অভিযোগ	Sales-		15. a G	0.000	and the second	<u>Seberary</u>	33,3365	
			海道的		17-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-				د. مراجع می ک		And Selection				
A		12 HEARING	A. 6.3	國家和影響	<b>标识的用</b> 种	建物物的	Server X	2632.0	1996			Select St			Prueba 5 (CD)
			ever Vala hij	N. CRARK	San Sec	State (Second	20.800		9707a.e.	1.65 No.					
			a teoreta y			362.94A			1953	an an an an an an an an an an an an an a			1.00		# 14
			16.2	1					1.1						
L			<b>.</b>					· · · ·	<b>.</b>			•	L-+		· · · · · · · · · · · ·

Prosba 6 (CD) Comara & Serie 12 (ALCH) (PI-N24-T3) 23.40-23.485 => Pc= 0.55 00,0 0.65 4/ 000 2

Whi = 04.14 gr	Ai = 10.113 cm2	$L = \frac{1}{2} + 27800$	Wa
$D_{S} = \frac{3.50}{3.50}$ cm	Wi 413 90 %	Gs = <u>736</u>	¥;
$D_{1} = \frac{3.59}{3.58}$ cm	Aga <u>0.521</u> cm ²		· e

$$W_{ap} = \frac{W_{bp}}{W_{ar}} \cdot W_{dr}$$

$$W_{f} = \frac{W_{ap}}{W_{ar}} \cdot \frac{1}{V_{u}}$$

$$C = \frac{V}{V_{dr}} - 1$$

$$W = \frac{W_{b} - 1}{W_{dp}}$$

$$G_{uv} = \frac{U \cdot G_{av}}{C}$$

Etaper N*	M	AM NP	L. 	٤.	1-E.	AB	4∨ (₩)	V (n ³	A 	€5' ₩1/(=1	the / cont	ω •⁄•	e	G.,
1	20.0	0	8.50	0	1	0	O	85 960	10.113	0	0	413 5	10.17	96.3
2	1972	0.28	8 472					65 194	10.056	0.156	0.156	413 9	10.07	978
3		-						ES 194	10.056	0.156	0.156	413 9	10.07	97 B
4	FT 25	2.75	£,225			253	13 iBI	72.c13	8.755	0.650	0.65	3419	8.36	97.4
	N° 1 2 3 4	Etape         M           Nº         nm           1         20.0           2         1972           3            4         1725	Eterpe         M         AM           N°         nm         an           1         20.0         0           2         1972         0.2B           3          -           4         17         25         2.75	Eterps         M         MM         L           I         20.0         Q         8.50           Z         1972         0.28         8.472           3           -           4         17         25         2.75         6.225	Ethype         M         AH         L         EL           N°         no.         n         cn         ½           1         20.0         0         8.50         0           2         1972         0.26         8.472         3           3               4         17         25         2.75         6.225	Etapse         M         AM         L         E         I-e           N°         mm         mm         rd         %            1         20.0         Q         8.50         0         1           2         1972         0.28         8.472            3               4         17         25         2.75         6.225	Etaple         M $\Delta M$ L $\epsilon_L$ $\epsilon_L$ $\Delta E$ N°         nm         nm         n $r_1$ $r_2$ <td< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>Letters         M         AM         L         $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$<!--</td--><td>Letter         M         M         L         $E_L$ $I = E_L$ $AV$ $V$ $A$ $G_S$           N°         m         m         c.m         $V_L$ $I = E_L$ $I = C_L$ $V_L$ /td><td>Ethype         M         AM         L         $E_L$ $I-E_L$         AB         $VV$ $V$ $A$ $G_3$ $U_{1-1}$           N°         n         n         tr         $K'$         -         tr         tr          1         20.0         0         8.50         0         1         0         0         85 90t         10.113         0         0           2         1972         0.28         8.472         -         65 194         10.056         0.156         0.156           3         -         -         -          8.5 74         10.056         0.156         0.156           4         17 25         2.75         6.225         253         13 181         72.013         8.755         0.650         0.655</td><td>Letter         M         AM         L         E         L         I.e         AB         AV         Y         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         <!--</td--><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></td></td></td<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Letters         M         AM         L $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ $\xi_L$ </td <td>Letter         M         M         L         $E_L$ $I = E_L$ $AV$ $V$ $A$ $G_S$           N°         m         m         c.m         $V_L$ $I = E_L$ $I = C_L$ $V_L$ /td> <td>Ethype         M         AM         L         $E_L$ $I-E_L$         AB         $VV$ $V$ $A$ $G_3$ $U_{1-1}$           N°         n         n         tr         $K'$         -         tr         tr          1         20.0         0         8.50         0         1         0         0         85 90t         10.113         0         0           2         1972         0.28         8.472         -         65 194         10.056         0.156         0.156           3         -         -         -          8.5 74         10.056         0.156         0.156           4         17 25         2.75         6.225         253         13 181         72.013         8.755         0.650         0.655</td> <td>Letter         M         AM         L         E         L         I.e         AB         AV         Y         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         <!--</td--><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></td>	Letter         M         M         L $E_L$ $I = E_L$ $AV$ $V$ $A$ $G_S$ N°         m         m         c.m $V_L$ $I = E_L$ $I = C_L$ $V_L$	Ethype         M         AM         L $E_L$ $I-E_L$ AB $VV$ $V$ $A$ $G_3$ $U_{1-1}$ N°         n         n         tr $K'$ -         tr         tr          1         20.0         0         8.50         0         1         0         0         85 90t         10.113         0         0           2         1972         0.28         8.472         -         65 194         10.056         0.156         0.156           3         -         -         -          8.5 74         10.056         0.156         0.156           4         17 25         2.75         6.225         253         13 181         72.013         8.755         0.650         0.655	Letter         M         AM         L         E         L         I.e         AB         AV         Y         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A </td <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Etapa de falla (CD)-

Incr	M	AM	L	4L	1-61	AD	AC.	C	۵۵	в	۵Ð	Δv	v	€v	1- €4	<b>ማ</b> ,	<b>ح</b> , @	4	P'	W	e	D	Shelle
Nº.	**	**	6.300	%	<u> </u>	cm2	Kg	Eq	©	(14	(n	(1)	Ca.B	•/.	-	47/w2	5/02	K1/m2	14/01	•/.	_		
0	17 25	0	8.225	0	1	8.755	0	0	0	68.0	0	0	72.013	U	1	0,65	0.65	0	0.65	341.9	8.36	334	2.46
1	17.665	4 545	7776	5.904	,94096	6.678	350	3.500	0.4	97.3	93	4 845	67 168	6.728	.9327	065	(.05	0.2	0.65	315 5	1.72	3 32	2.34
2	563=	11.62	7063	14.127	, 85672	8,661	3 4 4 2	6.942	0.801	-	11.5	5991	61.176	15047	. 8475	4.65	1.45	04	1,05	282.8	6.95	332	2.13
3	761	13.06	7313	23 173	76827	6.782	3451	10.393	1 183		10.9	5.679	55 497	22.93	71067	C 65	1.63	0.6	1.24	251.8	6.21	3 34	1,69
						$\Gamma^{-}$					1										l		

Prueba 6 (CD)

.

# 15

Prueba 6. (LD). Camara 8. Serie 18: (AICH)-

Saturado con Pe

F	н	۰ <del>د</del>	L®	®	L@	Ð	м	ΔM	۵C	c	Fc	в	ΔB		L" + 27800
-	-	min		ky/w²		49/042		መኮ	kg	۲u	21/142	Lm	<u>۲</u> ۳		K=0.00123
2 66 86	13:20	0	27800	0	27800	0	20.00	0	ပ	0	0				
					28008		20.00				0,50				
					28398		19.89				1.00		•		
		_			28756		19.81				1.50				a ang ang ang ang ang ang ang ang ang an
					29156		19.16				2.00				
			29553	2.156	29426	2.00	19.73				2.35	98.0	0	1	
3 6 86			29547		29422		19 72	0.28			2.35	97.3	0,7		the second states of the
		-	29 553		29426		1972				2.40	973	-0,7	5	an an an an an an an an an an an an an a
															All and shall be a
				· · ·		BSE		-			L®	Lŵ			a shutshi utiya.
									Inicia	ales	29553	.79426			
									fina	les	20498	30360			
										Δ	945	934	-	Bor =	98.8%
					- Con	5. Iso	tropic	a - 02	o = 0,6	5 49/	cm?	_			
	7	н	÷	Pe,	CP.	ا) = 'ول	¦₀ - ር ቢ)	M.	ΔM	в	ΔB	L®	L@	т	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
	3 06 86	11:10	0	2.156	2.00	. 0,	156	1972	0	73.0	0	29553	23426		
			15	2.650	2.00	0.	650	1934	0.38	75.3	2.3			22.2	· ·
			30		[			19 19	0.53	76.5	3,5				
			1					19 02	0,70	78.0	5.0				
			2					18.65	0.87	79.7	6.7				
			4					18.65	1.07	818	8.8				
			9			[		18.40	132	84.8	11.8				
			16					16:21	1.51	86.9	130				
			25					18.09	163	86.6	156				Prueba 6 (CD)
		11'50	40					17.97	1.75	90.2	17.2				
		12:10	60		1 A. A. A.	a se e		17.87	185	91.3	18,3				# 16
		13.00	110					17 76	1 07	(40 7	10.0				

Aveba 6: (	(D),-	Camara Br	_ Serie IX	(MOTA)
------------	-------	-----------	------------	--------

Saturado con Pr

. .

	F	н	t	PcD	CB	σ _a ' = (f	\$-CP;)	M	ΔM	B	ΔB	4®	۲@	т	
		13:40	150		t			17.68	2.04	93.5	20,5			23.8	······································
		15:35	265				_	17.60	2.12	94.6	21.6			1	
	1	18:25	435		1	1		1753	2.19	95.3	22.3				
	4 06 86	9:20	1330					17.40	2:32	96,9	23.9				
	1	15:10	1680		1			17.38	2.34	97.2	24.2				
	5 06 86	8:18	2708			1		17 32	2,40	97.8	24.8				
		14:50	3098					17 32	2.40	97.8	24.8				
	ļ	21:00	3470					17.32	2.40	98,2	25.2				
	6 06 86	7:30	4100			1		17.295	2.42	98,4	25.4				e en en en en en en en en en en en en en
		10:30	4280					17.25	2.47	96.3	253	1		210	
· · ·	1											1		5	gan hagan san
	1				1							ļ	e serves.		
	1				1										
					,	1								1.199	
			,								1				
	1							· i			1			1.00	graden en
	1					1.					1		ann Albria		an shiring a san an
	1				1	1					1		1 1		
						1		1.1.1					1		aria.
	1				1	1.		<u> </u>							and the state of the
	1					1									
	1					1									
	1														and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec
									·	ł	1		l sul s	an an	
	1							1				1	14 A.		
												10			Prueba 6 (CD
													1.1		
	1		,		1				1.17			e des la		1.	# 17

Prueba 6. - (CD). - Camara B. Serie IX - (ALLM).-

Falla drenada

<u> </u>	Incr	F	н	t	м	AM	₽	ΔB	Т	∆c.	c	(J, -J)			
	Nº	-	-	ភាំកេ	നന	mm	ረጥ	_ cm	°c	rg	rq	×9/1002	ε		
	0	6 06 86	11:30	0	17.25	0	<del>66</del> .0	0		0	0	0	Le = 8,24	5	
	- F			15	16.48	0,77	69.3	0.3	21.3	3.5	3.5	0.4			
				30	16.41	0.84	69.4	0.4				}			and the second second
				1	16, 32	0.93	98.6	0.6							and the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set
				2	16.22	1.03	86.8	0.8							
1				4	16.07	1.18	89.2	12						1. T	
			11:39	9	15 85	1.40	89.7	17						ŀ	
[			11:45	15	15.69	1.56	90.1	2.1	_						
			12:00	30	15.46	1.79	90.6	2.6							
			12:15	45	15 31	1.94	90.9	2.9	{						
			12:30	60	15 20	2.05	91.1	31		-					a në Myride
			13:00	120	15 03	2. 22	91.5	3.5	22.1			[			
			15:00	240	14.68	2.57	92.3	4.3	22.5				1		
			19:00	450	14.28	2.97	93.2	52	20.3						
		7.06.86	10:20	1370	13.71	3.54	94.5	6.5	20,2				- 4.40		
			15:32	1660	13.59	3.66	95.0	7.0							
		8 06 86	10:06	2795	13.31	э.94	95 6	7.6	20.8				- 4.91		a a hijinga ya
		9.06.86	8:35	4 145	13.10	4.15	96.0	8.0					-5.18		
	ر.		19:30	4800	13.02	4.23	96.2	8,2	21.9						
		10 06 86	7 40	5530	12.94	4.31	96.4	8.4	20.7				- 5,38		
			18:50	6200	12.88	4.37	96.G	86	22.2						
		11.06.86	13:30	7320	12.82	4.43	96.9	8.9	20,5				-9 94		
			18:50	7640	12.78	4 47	97.0	9.0	21.2						
		12 06 80	8:32	8460	12.74	4.51	97.1	9.1					- 9.64		
			15:10	6650	12.70	4.55	97.2	9.2	21.9						Prueba 6 (CD)
		13 06 86	8:28	9696	12.665	4585	97.3	9.3	20.5				-5.735		
															# 18

#### Prusba 6- (CD).- Camara 8.- Serie IS'r (AICM).-

talla drenada

Incr	F	н	٠Ł	M	Δм	в	ΔB	т	AC	C	(JJ.)				
 NE	-	-	min	mm	m m	<u>Cm</u>	<u> </u>	°د	Kg	Ky	19/cm2	Ē			
 2	13 06 86	9:12	0	12.665	o	90.0			3,50	3.500	0.4	L=7766		PPD	3.442
			15	12.05	0.61	90.2	0.2		3 442	6.942	0.8			PPT	0
			30	12 00	0.66	90.3	0.3							۵c	3 44 2
			1	11.90	0.76	90.4	0.4								
			?	11.61	0.85	90.6	0.6								
			4	11.65	1.01	90.9	0.9								
		_	g	11.42	1.24	91.4	1.4								
			19	11.16	1.50	91.8	1.8								·
			36	10.68	1.98	92.6	2.6						•		
		10:18	66	10.23	2.43	93.5	3.5								
 		11:12	120	9.77	2.89	94.2	1.2	21.5							
 		12:12	160	9.41	3,25	94.8	4.8	21.8							
 		13:32	260	904	3.62	95.4	5,4	22.2							
		15:02	350	6.73	3.93	95.9	5.9	22.4							
		16:42	450	8.50	4.16	96.4	6,4	22.5							· · · · ·
 		19:12	600	8.19	4.47	96.9	6.9	22.3							
 	14 06 86	11.10	1560	7 26	5.40	98.5	8,5	20.6	1			- 7.20		Cantic	de bureta
 		15:22	1810	7./S	5.51	90.3		20.9							
	15 06 86	14:32	3200	6.65	6.01	91.1		21.3				- 8.05			
	16 06 86	8:19	4265	6.41	6.25	916		20.5				- 8.39			
		13.52	4600	6.34	6.32	91.8		22.7							
 		20:32	5000	6.25	6.41	91.9		22.4							·
 	17 06 BG	13:12	6000	6.10	6.56	92.3		22.0			-	- 8.82			
	18 06 86	9:00	7190	5.94	6.72	98,5						-9.05			
		14:12	7500	5.91	6.75	98.6		22.8						Prue	ba_6 (CD
	19 06 66	8:15	8568	5.79	687	92.6						- 4.26		1.19	
	20 06 86			5.642		93.0		20.7							
		10110	10140	5.63	7.03	93.0	11.5	22.0				- 9.49		Camb.c	de burcha

### Prueba 6. (CD). Camara B. Serie D'- (AICM).-

Falla drenada

	Incr	F	H	÷t	Μ	٨M	в	ΔB		Ac	C	50	202		
	Nº	-	_	min	80	<b>7571</b>	cm	cm	°د	Kg	Key	kg/142	Kg/w2		
	з	20 06 86	11:00	0	15.05	0	63.0	0		3 4 4 2	6.942	0,8	0,4		
				15	14.70	0,35	83.1	0.1	22.7	3 451	10.393	1.2	0.4		
				30	14.66	0.39	83.2	0.2							
				I _	14.61	0.44	83.3	0.3							
				2	14.53	0.52	83.4	0.4							en demonstration de la composition de l La composition de la c
	_			4	14,45	0.60	836	0.6				·			
			11:09	9	14.29	0.76	63.6	0.8						《三國第	
				16	14.11	0,94	84.1	1.1					1		A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESC
				25	1397	1.08	84.3	1.3	230		[	1.0	制的建	物管制的	
				40	1377	128	84.6	1.6				0		服用的	
			12 10	70	13 43	1.62	85.1	2.1				1		88840 1	
[			13.00	120	13.00	2.05	85.7	2.7	27.9						nan wata san arawa Mana san arawa
			14:00	180	12.58	2.47	86.4	3.4						New Mer	
			15:10	250	12.21	2.84	86.9	3.9	22.2						
	1		16:50	350	11.75	3.30	87.6	4.6							
			16:30	450	11.40	365	88.1	5.1	21.7					1	
			22 42	702	10.725	4.33	89.1	6.1	22.4	1					
		2106 86	10:05	1385	9.825	523	90.4	74			1				
			19:40	1960	9.402	5.65	91.0	8.0		}	1				
	1	220686	14:10	3070	8,90	6.15	91.8	8.8							
		23 76 86	7.42	4122	8.56	6.49	92.4	9.4	20,7						
			9:10	4210	0.53	6.52	92.3	9.3	20.7		[	{			
			18:30	4770	8.36	6.69	92.6	96	22.4				{		Prueba 6 (CD)
			22:00	4980	8.312	6.74	92,8	9.8							
		24 0686	7:40	5560	8.20	6.85	93.0	10.0	20.8						#_20_
			18:30	6210	8.05	7.00	93.1	10.1	232						
		25 06 86	8:17	7037	7.93	7.12	93.4	10.4	21.2						
			19:00	7680	785	7.20	934	10.4	20.7			1			

Prusha 6. (CD), Camara D. Serie LA, CALLEY,

Palla alencida

Incr	1	H	t	M	ΔM	в	∆B	т	∆c	U	J.	ACT.			:
N°	-	-	ได้เก	(f) m	81/3k	cm.	(m	℃	وسط	Kg	ky/142	49/002			
		22:30	7890	7.82	7.23	93.5	10,5								
	26 06 66	8:18	8478	7.77	7.26	93.6	10.6								
		9:50	8570	7.15	7.30	93.6	10.6	21.8		1					
	·	19:00	9120	7.70	7.35	937	10.7	21.0							
	27 06 86	<b>8</b> :22	9922	7.63	7 42	93.9	10.9	20.9							
		9:40	10000	7.61	7.44	93,9	10.9	20.7							
															an 11 an 11
								1							
									1.1.2						
								1.00		1.					
											1				यही हुई हो दिनी से दिने ह
								$(1+ f _{1})^{1}$						1.1962	12:5:2:2:1
							at where is	1. 74	1		1		11.11.1		
						1			1		1	1	al an an	1.11	A STREET STREET STREET STREET STREET
										1	1		and the second		
						1							1.12.275		
	{					1									Prueba 6 (CD)
						1									
													1.00		# 21
										1					
		[						1							
	1			1		1		1			}				



0.02 mm





# IV.- PREDICCION DEL COMPORTAMIENTO.

TV -Predicción del Comportamiento.

IV.1.- Descripción de los Modelos Teóricos Considerados.

Para la predicción del comportamiento de un suelo dado, es necesario encontrar un modelo que sea compatible con el sue lo en estudio.

En el presente trabajo se consideran dos modelos diferentes, uno propuesto sor Singh y Mitchell, y otro propuesto por Murayama y Shibata, este último modelo es de los llamados reológicos.

El modelo propuesto por Singh y Mitchell presentó un comportamiento bastante compatible con el suelo que sustenta las pistas del Aeropuesto Internacional de la Ciudad de México, en cambio el modelo reológico elaborado por Murayama y Shibata no proporciona tan buenos resultados con el suelo estudiado, sin embargo se presenta para dar una idea general de este tipo de modelos.

IV.1.1.- Modelo de Singh y Mitchell.

Como recordaremos, anteriormente se vió que la relación logaritmo de velocidad de deformación contra logaritmo de tiem po, se expresa por las siguientes ecuaciones:

y que la relación velocidad de deformación contra esfuerzo des viador se expresa por:

Q

sustituyendo la ecuación (5) en la (6) tenemos que

si en la ecuación anterior tenemos que el esfuerzo desviador es igual a cero (D=0), tenemos que:

en donde  $\tilde{E}_{(\ell_1,D_n)}$  = valor de la velocidad de deformación obtenida por la proyección de la línea recta de la relación entre logaritmo de velocidad de deformación y esfuerzo desviador a un tiempo unitario, para un valor de D=0, con esto la ecuación (7) nos da:

$$ln \dot{\mathcal{E}} = ln \dot{\mathcal{E}}_{(\ell_1, D_e) + \alpha D - m ln} \left(\frac{t}{t_1}\right) \qquad (10)$$

la cual se puede expresar como:

en donde A =  $\hat{\mathcal{E}}(t_1, D_0)$ 

Como se ve la ecuación número (12) es una relación muy simple de únicamente tres parámetros; A,  $\alpha$  y m. Para establecer el valor de estos parámetros se requiere un mínimo de dos pruebas de fluencia, utilizando dos especímenes idénticos y som<u>e</u> tiéndolos a diferentes intensidades de esfuerzo, se pueden -realizar dos gráficas diferentes; logaritmo de velocidad de deformación contra logaritmo de tiempo  $(\log \hat{\epsilon} - \log \hat{\epsilon})$ , con la que se obtiene el valor de m, y logaritmo de velocidad de deformación contra esfuerzo desviador para diferentes valores de tiem po  $(\log \hat{\epsilon} - D)$ , con lo que se puede encontrar los valores A y  $\alpha$ , a partir de la intercepción a un tiempo unitario del eje de las ordenadas y la pendiente respectivamente.

#### Función de fluencia.

Integrando la ecuación (12) se puede obtener una relación general entre deformación y tiempo, la cual se podrá utilizar de manera alternativa con las gráficas.

Integrando la ecuación (12) para m=1, las dos soluciones son:

$$\mathcal{E} = A e^{-c} (t_1)^m (\frac{1}{1-m}) t^{-m} + cte; (m \neq 1)....(13)$$

$$E = A e^{o}(t_1) \ln e^{t} + c_1^{\dagger} e^{t}; \quad (n=1) \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad (14)$$

Las constantes de integración en estas ecuaciones pueden evaluarse a partir de un valor conocido de la deformación a un tiempo conocido. Si es la deformación a un tiempo unitario t = 1, y  $t_1 = 1$ , la constante de integración a, para la ecua-ción (13) es:

$$a = \mathcal{E}_{i} - \left(\frac{A}{i-m}\right) e^{\alpha t}$$

y para la ecuación (14) la constante de integración a, es:

 $q = E_1$ 

sustituyendo los valores de las constantes en las ecuaciones (13) y (14), estas se pueden escribir como:

 $E = E_1 + A e^{\alpha D} h t; (n=1, t>1) \dots (18)$ 

. (15)

.....(16)

IV.1.2- Modelo Reológico de Murayama y Shibata.

Murayama y Shibata han desarrollado un modelo para expl<u>i</u> car la viscosidad de las arcillas (FIG. IV.1).



Este modelo se compone de un resorte  $E_1$  y de un elemento modificado  $E_2$ ,  $\sigma_{\circ}$ ,  $\eta_{\circ}$ , el cual consta de un resorte  $E_2$ , un ele-mento que proporciona fricción  $\sigma_{\circ}$  y un pistón  $\eta_{\circ}$ , siendo --- $E_1 = \sigma_{\circ} / \tilde{\epsilon}_{\circ}$ ,  $E_2 = \sigma_2 / \tilde{\epsilon}_2$ 

Para este modelo los autores encontraron una relación en tre el módulo elástico  $(E_1 \ y \ E_2)$  y el esfuerzo aplicado, esta relación se expresa mediante la ecuación 19.

 $\mathbf{E} = \frac{\mathcal{T}}{\mathcal{T}_c / E_c + 1/E' \log \mathcal{T}/\mathcal{T}_c} \qquad (19)$ donde:  $E_c \ \gamma E' = \text{constantes}; \qquad \mathcal{T} = \text{esfuerzo } \mathbf{y}$  $\mathcal{T}_c = \text{esfuerzo total excedente.}$ 

Así mismo, la relación entre el esfuerzo aplicado en el pistón  $\sigma_2$  y la deformación del resorte  $E_2$ , se expresa por ---

la ecuación 20, la cual se presenta a continuación:

La relación entre deformación y tiempo  $(\mathcal{E}-t)$ , la cual caracteriza el mecanismo de flujo de la arcilla, está dada por las ecuaciones 25 y 27, que se obtienen a partir de las siguien tes ecuaciones simultáneas:

$$\sigma = \mathcal{E}_{\varrho} \mathcal{E}_{\varrho} + \frac{(\sigma - \sigma_{\bullet})}{B_{\varrho}} \operatorname{sen} h^{-1} \left\{ \frac{1}{A_{\varrho} (\sigma - \sigma_{\bullet})} \frac{d \mathcal{E}_{\varrho}}{d \mathcal{E}_{\bullet}} \right\} + \sigma_{\bullet} \dots (23)$$

si 
$$\mathcal{E}_2$$
  $\left( \frac{(\sigma-\sigma_0)}{2\mathcal{B}_2 \mathcal{E}_2} \right)$  (2 $\mathcal{B}_2-1$ ) .....(26)

En la gráfica de la figura IV.2.- se muestra el flujo de deformación , expresado por la ecuación 25.



Como se puede apreciar en la gráfica IV.2., las gráficas obtenidas del ensaye en el suelo que sustenta las pistas del Aeropuerto Internacional de la Ciudad de México, no tuvieron la duración necesaria para establecer los parámetros del modelo. Sin embargo, de acuerdo a los resultados obtenidos en -pruebas de hasta seis meses de duración, es difícil apreciar el valor asintótico de la deformación debido a que la componen te viscosa del suelo sigue siendo muy importante, aún para --grandes lapsos de tiempo. Por esta razón, este tipo de mode-los reológicos no proporcionan resultados satisfactorios. PRUEBA NO. 4



Tiempo [t]

PRUEBA NO.



88

Tiemp 0 ŧ.



[t] тi е m D o

89

RU P E R А N 0



3

4

5

Tiempo

2

7

[ = ]

8

PRUEBA N O. 6

Deformación unitaria

IV.2.- Cálculo de Parámetros.

Para utilizar el modelo de Singh y Mitchell, es necesario encontrar el valor de los parámetros  $\alpha$ , m y A, para lo cual se pueden utilizar dos procedimientos diferentes: por medio de fórmulas y por medio de las gráficas, como se vió en el capítu lo anterior.

Cualquiera de las dos que sea elegida, requiere de los va lores de deformación  $\mathcal{E}$ , velocidad de deformación  $\dot{\mathcal{E}}$  y del esfuerzo desviador aplicado, por lo que primeramente se obten-drán estos valores para ser utilizados en las fórmulas obtenidas por Singh y Mitchell, y así encontrar el valor de los pa rámetros.

IV.2.1.- Procedimiento para medir los parámetros m, ~ y A.

PASO 1.- Encontrar el valor de la deformación.

La deformación se encuentra a partir de los resultados arrojados por los ensayos triaxiales, donde la deformación E, se obtiene mediante la siguiente ecuación:

 $\mathcal{E} = \frac{\Delta L}{L_0} \times 100$  (28)

Los valores de la deformación se podrán encontrar para las tres pruebas (4,5 y 6), así como para cada esfuerzo desviador.

PASO 2.- Encontrar el valor de la velocidad de deformación. La velocidad de deformación  $\hat{\mathcal{E}}$ , se encuentra a través de la derivada con respecto al tiempo de la deformación axial, para lo cual se utiliza el método de los cinco pasos.*

$$\frac{de}{dt} = \frac{de}{dt}$$
$$e = \frac{t}{a+bt}$$

donde:

$$E + \Delta E = \frac{t + \Delta t}{a + b(t + \Delta t)}$$

$$E + \Delta E = \frac{t + \Delta t}{a + b(t + \Delta t)} - \frac{t}{a + bt}$$

$$\Delta E = \frac{(a + b(\chi t + \Delta t)) - [a + b(t + \Delta t)](t)}{[a + b(t + \Delta t)](a + bt)}$$

$$\Delta E = \frac{at + a\Delta t + bt^{0} + bt\Delta t - at - bt^{0} - bt\Delta t}{[a + b(t + \Delta t)](a + bt)}$$

$$\Delta E = \frac{a\Delta t}{\Delta t - \Delta t}$$

$$\Delta E = \frac{a\Delta t}{[a + b(t + \Delta t)](a + bt)}$$

$$\Delta E = \frac{a\Delta t}{[a + b(t + \Delta t)](a + bt)}$$

$$\frac{\Delta E}{\Delta t} = \frac{a}{(a+bt+bbt)(a+bt)}$$

$$\lim_{\Delta t} \frac{\Delta E}{\Delta t} = \frac{a}{(a+bt+oXa+bt)}$$
  
$$\Delta t \to o$$

$$\frac{de}{dt} = \frac{e}{(a+bt)(a+bt)}$$

$$\dot{\mathbf{E}} = \frac{\mathbf{a}}{(a+b+1)^2}$$

* También se puede encontrar de una manera directa aplicando la fórmula de la derivada de un cociente;  $\frac{d}{dx} \left( \frac{u}{v} \right) = \frac{\sqrt{du} - u \frac{dv}{dv}}{\sqrt{dv}}$ 

29)

Las constantes a y b de la ecuación 29, se pueden encontrar a partir de una gráfica  $t/e - \varepsilon$ , donde *a* es el valor de la ordenada al origen , para cada esfuerzo desviador como lo muestra la gráfica de la figura IV.3



PASO 3.- Encontrar el valor de los parámetros A y Q.

La obtención de estos parámetros, puede hacerse gráficamente, pero debido a que las gráficas son logarítmicas, no se puede medir directamente las pendientes, por lo que se utilizará la fórmula encontrada por Singht y -Mitchell, donde tenemos que:

$$\dot{\mathcal{E}}_i = A e^{\ll D_i} \quad y \quad \dot{\mathcal{E}}_i = A e^{\ll D_i}$$

Para encontrar A tenemos la siguiente solución a las ecua

ciones simultáneas:

$$\dot{\varepsilon}_{i} = A e^{\prec D_{i}}$$

$$- \left(\dot{\varepsilon}_{i} = A e^{\prec D_{i}}\right)$$

$$\dot{\varepsilon}_{i} - \dot{\varepsilon}_{i} = A e^{\prec D_{i}} - A e^{\prec D_{i}}$$

$$\dot{\varepsilon}_{i} - \dot{\varepsilon}_{i} = A \left(e^{\prec D_{i}} - e^{\prec D_{i}}\right)$$

$$A = \frac{\dot{\varepsilon}_{2} - \dot{\varepsilon}_{i}}{\left(e^{\prec D_{i}} - e^{\prec D_{i}}\right)}$$

医无足的 医子宫 医白斑白色病

- And

De igual manera tenemos que:

PASO 4.- Obtención del parámetro m.

Este parámetro se encuentra a partir de la ecuación 9, de Singh y Mitchell:*

$$\ln \tilde{\mathcal{E}}_{(\ell, D_0)} = \ln \tilde{\mathcal{E}}_{(\ell_1, D_0)} - \min\left(\frac{t}{\tau_1}\right)$$

$$m \ln \left(\frac{t}{t_1}\right) = \ln \hat{e}_{(t_1, D_0)} - \ln \hat{e}_{(t_1, D_0)}$$

$$m = \frac{\ln \hat{e}_{(\epsilon_1, \rho_2)} - \ln \hat{e}_{(\epsilon_2, \rho_2)}}{\ln \left(\frac{1}{2}\right)}$$

* Ver capítulo IV.1.- pag. 82

(32)



	( D =	0.2 kg/cm	² )	P R U ( D =	EBANC 0.4 Kg/cm ²	· 4	(D=	= 0.6 kg/cm	n ² )			
	ler. ir	icremento		20. in	cremento		3er.	3er. incremento				
Ē	٤	Ê	t/ε	٤	٤	t/e	ε	ۓ ا	t/ε			
1	1.30	0.48	0.77	1.52	0.71	0.66	1.90	1.01	0.53			
2	1.44	0.19	1.39	1.97	0.33	1.02	2.47	0.54	0.81			
3	1.53	0.10	1.96	2.11	0.19	1.42	2.75	0.34	1.09			
4	1.62	0.06	2.47	2.30	0.12	1.74	3.05	0.23	1.31			
5	1.69	0.04	2.96	2.40	0.08	2.08	3.32	0.17	1.51			
6	1.74	0.03	3.45	2.50	0.06	2.40	3.47	0.13	1.73			
7	1.79	0.02	4.07	2.61	0.05	2.68	3.70	0.10	1.89			
					1		[					
					1		1	1	1			
ε έ	≈ΔL/I = a/(	$(a+bt)^{2}$	% ] % día ]									

.



	ler. i	ncremento		20. in	cremento		3er. incremento			
τ	ε	έ	t/e	٤	ιέ	t/e	٤	Ê	<b>t</b> /	
1	2.31	0.78	0.43	4.01	1.67	0.25	5.08	1.89	0.2	
2	2.60	0.30	0.77	4.80	0.74	0.42	6.12	0.77	0.3	
3	2.80	0.15	1.07	5.09	0.42	0.59	6.55	0.42	0.4	
4	2.94	0.09	1.36	5.55	0.27	0.72	6.99	0.26	0.5	
5	3.08	0.06	1.62	5.78	0.18	0.87	7.35	0.18	0.6	
6	3.16	0.05	1.90	5.99	0.14	1.00	7.59	0.13	0.7	
7	3.25	0.03	2.15	6.17	0.10	1.13	7.79	0.10	0.9	
				1					1	
					1	-	1	1	1	

.


	PRUEBANO.6								
ļ		).4 kg/cm	, <del></del>		I.B KG/Cal	, 	,		
t	ler. in	cremento		20. inc	remento	3er, incremento			
	٤	Ê	t/E	3	έ	t/e	ε	٤	t/E
1	4.30	1.37	0.23	6.95	2.22	0.14	7.40 '	2.55	0.13
2	4.79	0.52	0.42	7.74	0.80	0.26	8.71	0.94	0.23
3	5.05	0.27	0.59	8.05	0.41	0.37	9.19	0.49	0.33
. 4	5.24	0.16	0.76	8.45	0.25	0.47	9.70	0.30	0.41
5	5.39	0.11	0.93	8.65	0.16	0,58	10.08	Q.20	0.50
6	-5.48	0.08	1.09	8.85	0.12	0.68	10.31	0.14	0.58
7	5,57	0.06	1.26	9.05	0.09	0.77	10.51	0.11	0.67
ع غ	$\mathcal{E} = \Delta L / L \times 100  [\$]$ $\mathcal{E} = a / (a+bt)^2  [\$ dfa]$								



~

PRUEBA NO. 4

tiempo [días]





tiempo [dfas]

VELOCIDAD DE DEFORMACION [ % / día ]

ρ





103

% / dfa ] VELOCIDAD DE DEFORMACIÓN

ø

۵



tiëmpo [dfas]

PRIMER INCREMENTO





Esfuerzo Desviador [kg/cm²] 

TERCER INCREMENTO



Esfuerzo Desviador [ kg/cm² ]

Velocidad de Deformación [ % / dfa ]

PASO 5.- Sustituir los valores de  $D, \dot{\mathcal{E}}_g t$  en las ecuaciones 30, 31 y 32 para encontrar los parámetros A,  $\propto$ y m respectivamente.

$$\begin{bmatrix} D_{1} = 0.2 ; \tilde{E}_{1} = 0.06 \\ D_{2} = 0.4 ; \tilde{E}_{2} = 0.155 \end{bmatrix}^{*}$$

$$\alpha = \frac{1}{D_{2} - D_{1}} \ln \frac{\tilde{E}_{2}}{\tilde{E}_{1}}$$

$$\alpha = \frac{1}{(0.4 - 0.2)} \ln \frac{0.155}{0.06} = 4.745$$

$$A_{\odot} = \frac{\tilde{E}_{2} - \tilde{E}_{1}}{e^{\pi D_{2}} - e^{\pi D_{1}}} = \frac{0.155 - 0.06}{(e^{4.745 + 0.4} - e^{245 \times 0.2})} = 0.0235^{*}$$

$$A_{\odot} = \frac{1.2 - 0.49}{4.089} = 0.174^{** \times *}$$

$$M = \frac{\ln \tilde{E}(\epsilon_{1}, \Delta_{0}) - \ln \tilde{E}(\epsilon, \Delta_{0})}{\ln (\frac{\epsilon}{\epsilon_{1}})}$$

$$M = \frac{\ln 0.174 - \ln 0.0235}{\ln (\frac{4}{1})}$$

$$M = 1.44$$

Ŷ

 * Se utilizaron los valores de t=4 días por ser esta línea, la de pendiente media.
 ** Para t = 4 días.
 *** Para t = 1 día. IV.2.2.- Obtención de  $\mathcal{E}$  y  $\mathcal{E}$  teóricos y experimentales.

La obtención de los valores de la deformación y de la ve locidad de deformación,  $\mathcal{E}$  y  $\dot{\mathcal{E}}$  respectivamente, es a partir de los parámetros obtenidos.

a = i	E1-(	$\left(\frac{A}{-m}\right)$	e d D	•••••		(15) *
٤=	a+ <u>A</u> 1-m	e (t)	1-m		•••••	•••••(17) *
ể₌	Ae (	<u>t</u> ) ^m				(12) *

**PRUKBA NO. 4** (ler. incremento, D=0.2)  $a = \mathcal{E}_1 - (\frac{A}{1-m}) e$  $a = 1.304 - (\frac{0.174}{1-1.44}) e^{4.745 \times 0.20} = 2.326$ 

	EXPERI	MENTAL	TI	EORICA
L L	ε	Ê	ε	Ě
1	1.304	0.484	1.304	0.449
2	1.437	0.192	1.573	0.166
3	1.533	0.102	1.696	0.092
4	1.618	0.063	1.770	0.061
5	1.690	0.043	1.822	0.044
6	1.739	0.031	1.861	0.034
7	1.787	0.024	1.892	0.027

* Las ecuaciones 12, 15 y 17 se obtuvieron en el capítulo IV, pag. 83.

		· · · · · · · · · · · · · · · · · · ·			
•	EXPER	IMENTAL	TEORICA		
	E	Ė	E	Ê	
1	2.31	0.781	2,310	0.722	
2	2.60	0.296	2.742	0.266	
3	2.80	0.154	2.939	0.148 ·	
4	2.94	0.094	2.060	0.098	
5	3.08	0.064	3.143	0.071	
6	3.16	0.046	3.205	0.055	
7	3.25	0.035	3.254	0.044	
		E	1	1	

**PRUEDA NO. 5** (ler. incremento, D = 0.3) a = 2.31 -  $\left(\frac{0.174}{1-1.44}\right)$  e  $\frac{4.745 \times 0.3}{3.952}$ 

**PRUEBA HO. 6** (ler. incremento, D = 0.4)  $a = \mathcal{E}_1 - (\frac{A}{1-m}) e^{\alpha D}$  $a = 4.304 - (\frac{0.174}{1-1.44}) e^{4.745 \times 0.4 = 6.943}$ 

	EXPER	IMENTAL	TEOR	ICA
C	ε	Ê	ε	Ê
1	4.304	1.372	4.304	1.161
2	4.790	0.516	4.998	0.428
3	5.050	0.269	5.315	0.239
4	5.240	0.164	5,509	0.158
5	5.390	0.111	5.643	0.114
6	5.483	0.080	5,743	0.088
7	5.574	0.060	5.822	0.070





IV.3.- Predicción del Comportamiento.

Para predecir el comportamiento de las pistas del Aero-puerto Internacional de la Ciudad de México, utilizaremos la fórmula propuesta por el modelo de Singh y Mitchell, proyec-tándola a un tiempo de 365 días (12 meses), con este método so lo se podrá cuantificar la deformación del estrato VI*, puesto que es el estrato del cual se pudieron obtener los parámetros del modelo (nivel -22.0 mts al nivel -26.0 mts), por lo que la aplicación del modelo será limitada. También se calcu lará la deformación mediante el método de Terzaghi** y se hará una comparación de ambos métodos.

IV.3.1.- Predicción del comportamiento mediante el modelo de "creep" de Singh y Mitchell.

Para encontrar la deformación del estrato del cual se ob tuvieron las probetas para los ensayes en las cámaras triaxía les, se utilizará la fórmula (17) obtenida por Singh y Mitchell para un tiempo de 180 días.

$$\xi = a + \frac{\Lambda}{1-m} \, \tilde{e}^{b} \, (t)^{l+m} \, .... (17)$$

donde:  $a = \xi_1 - (\frac{A}{1-m}) e^{x_0} = 3.952 ***$ 

- A = 0.174 m = 1.44 X = 4.745
- * Ver estratigrafía pág. 52.
- ** Los datos utilizados para este método se tomaron del informe No. 5525 del Instituto de Ingeniería, Noviembre de 1986.
- **  $\xi_1$  es la deformación para un tiempo unitario y para un esfuerzo desviador D=0.3, ver pág. 123

# $\xi = 2.310 + \frac{0.174}{1-1.44} e^{4.745 \times 0.3}$ (365) ^{1-1.44}

E = 2,15 % (para 12.0 meses)

La deformación del estrato V a los 365 días, será según el modelo de 2.15% y si tenemos que el espesor del estrato es de 4.0 mts., el $\Delta H$  del estrato será:



IV.3.2.- Predicción del comportamiento mediante el método de Terzaghi.

Para utilizar este método se hace necesario conocer las propiedades de cada uno de los estratos bajo las pistas del -Aeropuerto, estas propiedades se enlistan a continuación:

a) .- Relación de vacíos

c).

e).-

Peso e

Co

b).- Coeficiente de permeabilidad

d).- Coeficiente de compresibilidad

$$\begin{array}{l}
\mathbf{a}_{\mathbf{v}} = \frac{\Delta \mathbf{e}}{\Delta \mathbf{p}} & \dots & (36) \\
\text{eficiente de variación volumétrica} \\
\mathbf{m}_{\mathbf{v}} = \frac{\mathbf{Q} \cdot \mathbf{v}}{1 + \mathbf{e}} & \dots & (37)
\end{array}$$

f).- Coeficiente de consolidación

g) .- Ecuación del factor tiempo

IV.3.2.1.- Cálculo de la distribución de esfuerzos por el método de Newmark.

Para encontrar la distribución de esfuerzos en la masa de suelo, bajo las pistas del Aeropuerto Internacional de la Ciudad de México, se utilizará el método de Newmark, el cual se detalla en el anexo II.

Con las cartas de Newmark únicamente se puede encontrar la distribución de esfuerzos para un área uniformemente carga da, ya que estas cartas no son más que una simplificación de la fórmula de Bousineesq para cargas uniformemente distribuídas en un área circular. De lo anterior se deriva que el método de Newmark aplicado en la estructura de pavimento de las pistas del aeropuerto, dará lugar a un pequeño error en la -cuantificación de los esfuerzos, sin embargo se puede utili-zar haciendo las siguientes suposiciones:

- a) -- La carpeta asfáltica se supone horizontal, sin bom beo transversal (FIG. IV.4).
- b).- La base se supone horizontal.
- c).- Para suponer tanto la base como la carpeta horizon tal se tomó un espesor promedio de ambas capas.
- d).- No se consideran las solicitaciones impuestas por el paso de las aeronaves en las operaciones de des pegue y aterrizaje de las mismas, ya que dichas so licitaciones requieren un estudio amplio y compli-

cado que por si solo puede abarcar un volúmen com pleto.

En la FIG. IV.5 se presenta una vista en planta de la pista, la cual servirá para utilizar las cartas de Newmark y así encontrar la distribución de esfuerzos (Tabla IV.1).

La Tabla IV.1 muestra la distribución de esfuerzos encon trada, donde N es el número de cuadros en la carta de Newmark que se encuentran dentro de la pista.





FIG. IV.5.- Vista en Planta de la Pista 051-23D.

ESC 1: 500

 $w_{t} = 2.0 \text{ t/m}^{3} \times 0.33 \text{ m} = 0.660 \text{ t/m}^{2}$   $w_{t} = 1.8 \text{ t/m}^{3} \times 0.66 \text{ m} = 1.188 \text{ t/m}^{2}$  $w = 1.848 \text{ t/m}^{2}$ 

Punto	Prof (m)	N	w₀= 0.005 N	$\sigma = w \times w_0  (t/m^2)$
Α	2.0	108	0.540	0.998
	5.0	108	0.540	0.998
	10.0	104.5	0.5225	0.965
	15.0	89	0.445	0.822
	20.0	74	0.370	0.684
	25.0	64	0.320	0.591
	30.0	56.5	0.2825	0.522
В	2.0	54	0.270	0.499
	5.0	54	0.270	0.499
	10. O	54	0.270	0.499
	15.O	53	0.265	0.490
	20.0	49.5	0.2475	0.457
	25.0	48	0.240	0.443
	30.0	44	0.220	0.406

Tabla IV.1.- Obtención de la distribución de esfuerzos.



PUNTO A

PUNTO B

Distribución de esfuerzos por Newmark.

IV.3.2.2.- Deformación de cada estrato bajo la pista



y deformación total.

## ESTRATO IL

$$\Delta e = e_0 - e_f = 11.6 - 10.9 = 0.70$$
  
$$\Delta p = 1.12 \ kg/cm^2$$
  
$$\Omega_v = \frac{\Delta e}{\Delta p} = \frac{0.70}{1.12 \ kg/cm^2} = 0.625 \ cm^2/kg$$

$$M_V = \frac{O_V}{1+C_0} = \frac{0.625 \text{ cm}^2/kg}{1+11.6} = 0.03 \text{ cm}^2/kg$$

 $K = C_{v} M_{v} \delta_{w} = 0.5 \times 10^{-3} \text{ cm}^{2}/\text{seq} \times 0.05 \text{ cm}^{2}/\text{kg} \times 0.001 \text{ kg}/\text{cm}^{3}$  $K = 2.5 \times 10^{-3} \text{ cm}/\text{seq}$ 

 $\Delta H = m_{\star} \Delta p H = 0.05 \times 0.112 \times 400 = 2.24 \text{ cms}$   $T_{70} = \frac{\Omega \times \delta w H^2}{\kappa (1+\epsilon_0)} t = \frac{0.625 \times 0.001 \times (200)^2}{2.5 \times 10^{-8} (12.60)} \times 0.405 = 372.0 \text{ divs}$ 

 $\Delta H_{360} = 2.24 \text{ cms} \times 0.70 = 1.57 \text{ cms}$ 

## ESTEATO III

$$\Delta c = 11.8 - 7.9 = 3.9$$
  

$$\Delta p = 0.71 \quad kg/cm^{2}$$
  

$$\alpha_{v} = \frac{3.90}{0.71} = 5.49 \ cm^{2}/kg$$
  

$$m_{v} = \frac{5.49}{12.8} = 0.43 \ cm^{2}/kg$$
  

$$K = 0.52 \times 10^{3} \times 0.43 \times 0.001 = 2.236 \times 10^{7} \ cm/seg$$
  

$$\Delta H = 0.43 \times 0.108 \times 750 = 34.83 \ cms$$
  

$$T_{ig} = \frac{5.49 \times 0.001 \times (750)^{2}}{2.236 \times 10^{7} (12.80)} \approx 0.029 = 365.0 \ d/os$$
  

$$\Delta H = 34.03 = 0.13 = 0.641 \ cms$$

### ESTEATO IX

$$\Delta e = 11.2 - 9.4 = 1.80$$
  

$$\Delta p = 0.43 \text{ Kg/cm}^2$$
  

$$\sigma_v = \frac{\Delta e}{\Delta p} = \frac{1.80}{0.43} = 4.186 \text{ cm}^2/\text{Kg}$$
  

$$m_v = \frac{\sigma_v}{1 + c_0} = \frac{4.186}{12.20} = 0.34 \text{ cm}^2/\text{Kg}$$

$$K = C_{v} m_{v} Y_{w} = 0.58 \times 10^{-4} \times 0.34 \times 0.001 = 1.97 \times 10^{-8} cm/seq$$
  

$$\Delta H = 0.34 \times 0.084 \times 800 = 22.85 cms$$
  

$$L = \frac{H^{2}}{C_{v}} T = \frac{(400)^{2}}{0.58 \times 10^{-4}} T$$

- t₁₂ = 365 días .
- $\Delta H_{365} = ??.85 \, cm \times 0.12 = ?.74 \, cms$

$$\frac{\textbf{ESTRATO} \ \textbf{x}}{\Delta_{p}} = \frac{(6.95 - 6.21)}{(1.24 - (.05))} = 3.9 \ cm^{2}/kg$$

$$C_{v} = \frac{T(H)^{2}}{t} = \frac{0.197 (7.06)^{2}}{5000 \text{ seg}} = 3.27 \times 10^{-4} \ cm^{2}/seg$$

$$K = \frac{O_{v} (C_{v} y_{m})}{(1+C_{v})} = \frac{3.89 \times 3.27 \times 10^{-4} \times 1.11 \times 10^{-3}}{(1+6.95)^{-1}} = 1.776 \times 10^{-7} \ cm/seg$$

$$t = \frac{H^{2}}{C_{v}} T = \frac{(200 \ cm)^{2}}{3.27 \times 10^{-6} \ cm^{2}/seg} \times T = 4.693 \times 10^{-8} \ T$$

t 57 = 4.893 × 10° × 0.245 = 365 Jias.

 $\Delta H = 0.49 \times 0.067 \times 400 = 13.0 \text{ cms}$  $\Delta H_{365} = 13.0 \text{ cms} \times 0.57 = 7.41 \text{ cms}.$ 

ESTILATO	ΔH (365 Jims)
<u>I</u> L	1.57 cms
m	6.61 cms
11	2.74 cms
<b>ئر</b>	7.41 cms
LATOT	18.33 cms

Para encontrar en el estrato V los valores de:

1).- 
$$\Omega_{\mathbf{v}} = \frac{\Delta \mathbf{e}}{\Delta \mathbf{p}}$$
  
2).-  $C_{\mathbf{v}} = \frac{T (Ho)^2}{t}$   
3).-  $\mathbf{k} = \frac{\mathbf{Q}_{\mathbf{v}} C \mathbf{v} \delta \mathbf{m}}{1 - eo}$   
4).-  $\mathbf{t} = \frac{H^2}{C \mathbf{v}} T$ 

Se utilizaron los resultados de los ensayes en cámaras triaxiales*, en forma de gráficas;

 deformación contra tiempo (Fig. IV.7), tercer incre-mento para un esfuerzo desviador igual a 1.183 kg/cm² de la prueba No. 6

- deformación contra tiempo (Fig. IV.8), primer incre-mento para un esfuerzo desviador igual a 0.60 kg/cm² de la prueba No. 4
- relación de vacíos contra carga (Fig. IV.9), de los tres incrementos en las pruebas No. 4, 5 y 6.

* Ver sección III.3, pág. 55.

1000000 100000 100 1000 10 0 0 0 10 1 0 U = 08 `*<u>+</u>-1 Prueba No. 6 Tercer incremento · · · · · 틑 2  $D = 1.183 | Kg/cm^2$ ---deformación ٠. 3 th ۲t 4 -----U = 50% 5 6 20.2.20 7 U = 100% 8 9

FIG. IV.7

tiempo [ min ]



tiempo [ min ]

12

11

10 9 8

Relación de vacíos

0

0

19.00 NO. annie: Yysoar it just i 12.20 - 15 辏 Prueba 6 ΥŤ Prueba 5 Prueba 4 360 103.1

> 0.3 0.2 0.1 산 28일 같은 이 이 인구 구구

92

0.4 0.5 0.6 0.7 0.8 

10

0.9

FIG. IV.9 Carga - P [ kg / cm² ]

IV.3.3.- Comparación de ambos métodos.

Para encontrar el asentamiento de cada uno de los estratos bajo las pistas, por medio del modelo de Singh y Mitchell es necesario realizar cuando menos tres ensayes triaxiales -por estrato, lo cual no fue posible debido a que los especíme nes obtenidos durante el sondeo, presentaron diferentes gra-dos de remoldeo, con excepción del estrato ensayado.

Por lo anteriormente señalado, la comparación entre elmétodo de Singh y Mitchell y el método de Terzaghi se realizó para el estrato antes mencionado y la deformación de los de--más se encontró mediante la teoría de Terzaghi, para un tiempo de 365 días, como lo indica la siguiente tabla:

	TERZAGHI	MITCHELL Y SINGH
ΔΗ	1.57 cms	-
$\Delta H_{III}$	6.61 cms	_
ΔHIV	2.74 cms	
$\Delta H_{v}$	7.41 cms	8.60 cms
TOTAL	18.33 cms	

TABLA IV.2 Deformaciones obtenidas por ambos métodos.

Como se puede ver, la deformación encontrada según la teo ría de Terzaghi (de 7.41 cms) es menor que la obtenida mediante el modelo de Singh y Mitchell (de 8.60 cms.), lo cual es de bido a que Terzaghi considera únicamente el drenaje de agua co mo el causante del asentamiento total del suelo, sin conside-rar la componente de la consolidación secundaria que para pe-ríodos largos de tiempo es de suma importancia sobre todo en suelos que poseen un comportamiento sumamente viscoso como es el caso de la arcilla del Valle de México.

Por otro lado, el modelo propuesto por Singh y Mitchell toma en cuenta los dos tipos de consolidación, es decir que -además de la deformación provocada por el drenaje de agua, tam bién considera la deformación por reorientación o reacomodo de las partículas del suelo.

Por lo tanto no es extraño que el valor obtenido por el método de Terzaghi sea inferior al obtenido por el método de -Singh y Mitchell. Sin embargo, posiblemente el valor obtenido por este último método se encuentre por encima del valor real, como se concluye al comparar los valores teóricos y experimentales obtenidos en la Sec. IV.2.2. De ahí que muy probablemente, el valor real se encuentre entre los valores dados por estos dos métodos.

IV.4.- Solución Constructiva.

De los resultados obtenidos se deduce que es necesario realizar renivelaciones períodicas en las pistas, lo cual no se debe tomar como un remedio adecuado, pues con la superposi ción de sobrecargas aumenta la velocidad de deformación del suelo, además de que dichas renivelaciones no son uniformes debido a que se debe restablecer un bombeo adecuado para las pistas.

## IV.4.1.- Solución constructiva utilizando material por sustitución.

Para conocer el espesor de pavimento que se debe susti-tuír por material ligero, es necesario conocer el comporta---miento de las muestras del suelo, ensayadas en consolidómetro, sometidas a diferentes ciclos de carga y descarga. Para obt<u>e</u> ner estos datos se utilizó el informe elaborado por el Instituto de Ingeniería para el organismo de Aeropuertos y Servi--cios Auxiliares*, donde para dar una solución adecuada se obtiene un espesor por sustituir del orden del 50% del peso total de la estructura del pavimento.

Para obtener el porcentaje antes citado, se realizaron pruebas de consolidación con ciclos de carga y descarga. Los incrementos de carga variaron de 1 a 7 días y de 0.093 a 0.20 kg/cm² (ver anexo 3). Se hicieron ciclos dobles de carga y descarga, y además para evaluar la capacidad de expansión y compresión en períodos más largos, se permitió la permanencia

^{*} Evangelina Gutiérrez, M.P. Romo, H.M. Gallegos, G.A. Hernández, "Estudio para determinar el comportamiento a largo plazo de las arcillas bajo las pistas del Aeropuerto Internacional de la Ciudad de México", Instituto de Ingeniería UNAM, México.

de un esfuerzo dado para tres niveles de descarga y uno de carga, durante 38 días.

El material ligero puede tener un espesor menor en las partes extremas de la pista (sentido transversal), debido a que aquí disminuye el esfuerzo aplicado, así como los espesores del pavimento existentes (FIG. IV.6).

### PAVIMENTO EXISTENTE

1	0.45m x 2.2	Ton/m ³	= 0.99	) Ton/m ²	
3	0.55m x 2.0	Ton/m ³	= 1.1(	Ton/m ²	다. 다.
<b>—</b>		0.00	1 0	<u>,</u> 3	1 44 50- 4-2
Te:	rreno natural	0.80m X	1.8 100/	' <b>т</b> =	1.44 TON/M-

3.53 Ton/m

 $3.53 \text{ Ton/m}^2 \times 50\% = 1.765 \text{ Ton/m}^2$ 

#### PAVIMENTO ALIGERADO

1	$0.10m \times 2.2 \text{ Ton/m}^3 = 0.22 \text{ Ton/m}^2$	
3	$0.20m \times 2.0 \text{ Ton/m}^3 = 0.40 \text{ Ton/m}^2$	
4	$0.00 \text{m} \times 2.0 \text{ Ton/m}^3 = 0.00 \text{ Ton/m}^2$	
5	$0.50 \text{ m} \times 0.80 \text{ Ton/m}^3 = 1.145 \text{ Ton/m}^3$	2
	1.765 Ton/m	2

		X	Povimento actual		Pavimento aligerado	
	Capa	[Ton/m"]	h [mts]	8h [ T/m2]	h [ats]	8h [t/m2]
0	Carpeta	2.20	0.45	0. 99	0.10	0, 22
3	Base	2.00	0.55	1,10	0.20	0.40
0	Subbase	2.00				
0	Tezontle	0.80			1.50	1. 145
Terreno natural		1.80	0, 80	l. 44	-	
			1.80	3.53	1.80	1.765





# CONCLUSIONES

- CONCLUSIONES
- 1.- El modelo de Singh y Mitchell considera las principales causas que producen el fenómeno de consolidación y que son: deformación instantánea, consolidación primaria y consolidación secundaria (efectos viscosos). Sin embar go es probable que los valores obtenidos con este método para la arcilla del Valle de México, estén por encima de los valores reales.
- 2.- El cálculo de asentamientos mediante la teoría desarrollada por Terzaghi da lugar a una subestimación de los asentamientos, debido a que Terzaghi considera la expul sión del agua intersticial (consolidación primaria), co mo causa principal de la deformación unidimensional de los suelos finos, despreciando los efectos secundarios, como el reacomodo o reorientación de las partículas del suelo.
- 3.- La utilización de los modelos en este trabajo tropezó con serias limitaciones, como un muestreo deficiente -que impidió realizar el cálculo de los hundimientos totales mediante el modelo de Singh y Mitchell, sin embar go la aplicabilidad de los modelos es incuestionable, pues consideran las características de cada suelo en -particular y puede decirse que ambos métodos se comple-

mentan entre sí, pues es muy probable que el asentamiento real del estrato se encuentre entre los valores obtenidos por estos dos métodos.

- 4.- Las constantes renivelaciones de las pistas, al contrario de ser una solución para aliviar el problema de los hundi mientos, acelera el proceso de consolidación provocando además hundimientos diferenciales en las pistas.
- 5.- Para tener una solución adecuada mediante la sustitución del material de las pistas por material ligero, es necesa rio sustituir un espesor del orden de 1.40 mts. (cadena--miento 1 + 750), lo que equivale a eliminar un 50% del pe so que soporta actualmente el suelo bajo las pistas. Debido a que el tráfico aéreo del Aeropuerto Internacio--nal de la Ciudad de México, es en la actualidad de una --cantidad muy importante, se hace imposible cerrar una pis ta para su completa reparación, por lo que se hace necesa ria la construcción de una pista adicional que no inter--fiera con la operación de las dos que funcionan actualmen te para que posteriormente estas sufran el tratamiento ne cesario para aligerarlas.
ANEXOI

INFORME DE LAS PISTAS 051-23D Y 05D-231

#### ANEXO 1

ć

Como es sabido, los antecedentes del actual Aeropuerto de la Cd. de México, se remontan a los albores de la aviación civil en nuestro país, pudiendo decirse que para el año de 1924, cuando surge la la. Compañía Aérea de México, ya existían en el sitio actual, las instalaciones y facilidades mínimas indis pensables para la operación de las pequeñas aeronaves de la -época. A partir de entonces, dichas instalaciones fueron evolucionando paralelamente con el avance y requerimientos de la aviación, hasta alcanzar el nivel de desarrollo que ahora con<u>o</u> cemos.

Obviamente el crecimiento de los diferentes elementos de operación terrestre, y de las instalaciones en general, tuvo necesariamente que ser progresivo, para adaptarse día a día a las crecientes demandas, y bien pudiera decirse que ha existido desde entonces en el Aeropuerto un estado de construcción permanente, en donde no sólo las pistas y plataformas, sino to das las instalaciones en general, son motivo de ampliaciones y modificaciones.

Con el fin de interpretar de la mejor manera posible las características estructurales de los pavimentos existentes, se consideró de gran valor el averiguar la cronología de este tipo de obras, razón por la cual se presentan a continuación, -las fecha que marcan las etapas de construcción que se han con siderado más relevantes, en cuanto a la construcción de pavi--

mentos se refiere.

- 1932.- Se pavimenta hasta el nivel de carpeta asfáltica las --Pistas 10-28 y 05I-23D, con longitudes de 1 750 y 1 800 respectivamente. Se presume que dicho pavimento consis tió esencialmente de una capa de fragmentos de roca, -acomodados, de 30 cm de espesor, coronada por una capa bituminosa delgada, mismas que corresponden a las desig naciones de base Telford y Macadam asfáltico, respectivamente.
- 1937.- Se inicia la construcción de la Pista 14-32 concluyéndo se al siguiente año, con una longitud de 1 715 m. La estructura del pavimento fue similar a la anteriormente descrita.
- 1940.- Se repara parcialmente la Pista 05I-23D, y se prolonga la cabecera 23D, para alcanzar una longitud total de --2 200 m. En este mismo año se tiene noticias de la --construcción de la pista 05D-23I, con una longitud de -1 130 m, contando con un pavimento de la misma estruct<u>u</u> ra descrita.
- 1949.- Se prolonga la pista 05D-23I, hasta alcanzar una longitud total de 3 000 m. En esta ampliación el pavimento se constituye por una capa de base de grava cementada, con espesor del orden de 60 cm y una carpeta asfáltica de 8 cm, abandonándose el hasta entonces tradicional -

sistema de pavimentación.

- 1951.- Queda terminada la pista 13-31, con una longitud de ---2 300 m y un pavimento análogo al de la prolongación de la pista 03D-23T.
- 1957.- Se prolonga la cabecera 23D, de la estación 2+200 a la 2+720, utilizando una estructura de pavimento como la descrita a propósito de la prolongación de la pista ---05D-23I.
- 1958.- Se efectúa una renivelación general de la pista 05D-23I y se prolonga la cabecera 23I en una longitud de 300 m, para alcanzar una longitud total de 3 300 m. El pavi--mento de esta última se contituyó por una carpeta asfál tica de 8 cm, base de grava cementada de 60 cm. y subba se de tepetate de 30 cm.
- 1959.- Se reconstruye desde la terracería el pavimento de la cabecera 05I, eliminada la base Telford, la cual es sus tituída por una base de grava cementada, de 60 cm de es pesor y carpeta asfáltica de 8 cm.
- 1960.- Se prolonga la cabecera 23D, en una longitud de 400 m, para alcanzar una longitud total de 3 100 m. En esta ocasión se utiliza por primera vez el pavimento de tipo compensado, con las siguientes estructuras:

	ELEMENTO						
Carpeta	de	concreto	asfáltico	10			

Base asfáltica de mezcla en el lugar.	15
Subbase de tezontle.	60
Losa de concreto hidráulico.	15
Plantilla de arena.	5

1963 .- Renivelación general de ambas pistas.

1967.- Renivelación general de la pista 05D-23I

1971.- Renivelación general de ambas pistas y prolongación de la cabecera 23I en 600 m, para alcanzar una longitud to tal de 3 900 m. En esta prolongación se utilizó la -sección compensada con estructura similar a la ya des-crita, variando el espesor de la base asfáltica a 10 cm y utilizando para ella concreto asfáltico.

1975.- Renivelación general de la pista 05D-23I.

1977 .- Renivelación parcial de la pista 05D-23I.

1979.- Renivelación parcial de ambas pistas.

1980.- Prolongación de la cabecera 23D, en 500 m, para alcanzar una longitud total de 3 632 m. utilizando también la sec ción compensada; sólo que en este caso el espesor total subió a 1.45 m. en lugar de 1.05 m. Dicho aumento se -proporcionó en la subbase de tezontle, aclarando también que la base asfáltica fue elaborada con concreto asfálti co, al igual que la carpeta.







# la carta de Newmark

ANEXO II 

La carta de Newmark se emplea para encontrar la distribu ción de esfuerzos en una masa de suelo, causados por una so-brecarga (terraplenes, edificios, etc.) que se aplica uniformemente en una superficie dada. Esta carta se basa en la teo ría desarrollada por Boussinesq, aplicando dicha teoría a un área circular, mediante la fórmula de Boussinesq para áreas circulares, la cual se escribe a continuación:

$$\frac{\sigma_{2}}{V} = \left[1 - \left\{\frac{1}{1 + (r/2)^{2}}\right\}^{3/2}\right] \\ = \left[1 - \left\{\frac{1}{1 - (r/2)^{2}}\right\}^{3/2}\right] \\ = \left[1 - \left\{\frac{1}{1 - (r/2)^{2}}\right\}^{3/2}\right] \\ = \left[\sqrt{\left[\frac{1}{1 - \frac{\sigma_{1}}{W} + \beta^{2}s}\right]^{-1}}\right] \\ = \left[\sqrt{\left[\frac{1}{1 - \frac{\sigma_{2}}{W} + \beta^{2}s}\right]^{-1}}\right] \\ = \left[\sqrt{\left[\frac{1}{1 - \frac{\sigma_{1}}{W} + \frac{\sigma_{1}}{W} + \beta^{2}s}\right]^{-1}} \\ = \left[\sqrt{\left[\frac{1}{1 - \frac{\sigma_{1}}{W} + \beta^{2}s}\right]^{-1}} \\ = \left[\sqrt{\left[\frac{1}{1 - \frac{\sigma_{1}}{W} + \beta^{2}s}\right]^{-1}} \\ = \left[\sqrt{\left[\frac{1}{1 - \frac{\sigma_{1}}{W} + \beta^{2}s}\right]^{-1}} \\ = \left[\sqrt{\left[\frac{1}{1 - \frac{\sigma_{1}}{W} + \beta^{2}s}\right]^{-1}} \\ = \left[\sqrt{\left[\frac{1}{1 - \frac{\sigma_{1}}{W} + \beta^{2}s}\right]^{-1}} \\ = \left[\sqrt{\left[\frac{1}{1 - \frac{\sigma_{1}}{W} + \beta^{2}s}\right]^{-1}} \\ = \left[\sqrt{\left[\frac{1}{1 - \frac{$$

La carta de Newmark puede ser utilizada de dos formas d<u>i</u> ferentes; utilizando el dibujo en planta de la estructura a una escala determinada y diversas cartas en papel transparente, una para cada profundidad y escala, o también una sola -carta y varias plantas de la estructura en papel transparente y a diferentes escalas para cada profundidad. En el caso par ticular de este trabajo se utilizó una sola planta a escala -1:500 y varias cartas, una para cada profundidad.

En la ecuación (3) se puede encontrar el valor de r/z --

sustituyendo  $\overline{\sigma_z}/W$  según la influencia de esfuerzo requerido, el cual se puede tomar con la secuencia: 0.1, 0.2, 0.3,...1.0, esto significa que el círculo con 0.1 tendrá 10% de influencia de carga y el círculo con 1.0 tendrá 100% de influencia de la carga, en realidad el círculo con 100% de influencia no existe, pues al sustituir el valor de  $\frac{\sigma_z}{\omega} = 1.0$  en la ecuación (3), r/z nos da infinito.

A continuación se presenta el cálculo de los radios de las circunferencias, así como las cartas de Newmark.

05₂ / W	r/z
0.1	0.27
0.2	0.40
0.3	0.52
0.4	0.64
0.5	0.77
0.6	0.92
0.7	1.11
0.8	1.39
0.9	1.91
1.0	0

#### ESCALA 1:500

#### Profundidad 2.0 mts.

$r_1$	=	0.27	(	0.40	)	. =	0.10	8 cms.	•
$\mathbf{r}_2$	=	0.40	(	0.40	)	=	0.16	cms.	
r.,	=	0.52	(	0.40	~)	=	0.21	cms.	
r4	=	0.64	1	0.40	.)	=	0.26	cms.	
r5	=	0.77	-0	0.40	)	=	0.31	cms.	
r ₆	=	0.92	) ( e	0.40	)	. =	0.37	cms.	
r7	=	1.11	(	0.40	)	-	0.44	cms.	
ra –	=	1.39	1	0.40	)	=	0.56	cms.	
x.9	=	1.91	(	0.40	)	=	0.76	cms.	

## Profundidad 5.0 mts.

r,	=	0.27	(	1.0 ) = 0.27 cms.
$\mathbf{r}_{2}^{\prime}$	=	0.40	(	1.0) = 0.40 cms.
r3	=	0.52	(	1.0) = 0.52 cms.
<b>r</b> 4	=	0.64	(	1.0) = 0.64 cms.
r ₅	=	0.77	.(	1.0) = 0.77 cms.
r.	=	0.92	(	1.0 ) = 0.92 cms.
r7	=	1.11	(	1.0) = $1.11$ cms.
rė	=	1.39	(	1.0) = $1.39$ cms.
r9	=	1.91	- C.	1.0) = $1.91$ cms.

## Profundidad 10.0 mts.

r,	Ξ	0.27(	2.0	)	=	0.54	cms.
r,	=	0.40(	2.0	)	=	0.80	cms.
r.	=	0.52(	2.0	)	=	1.04	cms.
r	=	0.64(	2.0	)	=	1.28	cms.
r5	=	0.77(	2.0	)	=	1.54	cms.
I.	=	0.92(	2.0	)	=	1.84	cms.
r7	=	1.11(	2.0	)	=	2.22	cms.
ra	=	1.39(	2.0	)	=	2.78	cms.
r.	=	1.91(	2.0	)	=	3.82	cms.

Profundidad 15.0 mts.

			1993 an 1993.	e de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de la sectión de	1110 A.S.A.	[1] 10 (1) (2) (2)
$\mathbf{r}_1$	=	0.27(	3.0	) =	0.81	cms.
r,	=	0.40(	3.0	) =	1.20	cms.
r,	=	0.52(	3.0	.)`≦=`	1.56	cms.
<b>I</b> 4	=	0.64(	3.0	) =	1.92	cms.
r5	=	0.77(	3.0	·) =	2.31	Cms.
r ₆	=	0.92(	3.0	) =	2.76	cms.
$\mathbf{r}_7$	=	1.11(	3.0	) =	3.33	cms.
$r_8$	=	1.39(	3.0	) =	4.17	cms.
r,	=	1.91(	3.0	) =	5.73	cms.

### Profundidad 20.0 mts.

rı	=	0.27(	4.0	)	==	1.08	cms.
r ₂	=	0.40(	4.0	)	=	1,60	cms.
r ₃	=	0.52(	4.0	)	=	2.08	cms.
r4	=	0.64(	4.0	)	-	2.56	cms.
r5		0.77(	4.0	)	=	3.08	cms.
r ₆	=	0,92(	4.0	)	=	3.68	cms.
r7	=	1.11(	4.0	)	==	4.44	cms.
rs	=	1,39(	4.0	)	=	5.56	cms.
rg	=	1,91(	4.0	)	=	7,64	cms.

 $500 \times \frac{1}{500} = 1.0$ 

 $1000 \times \frac{1}{500} = 2.0$ 

# $1500 \times \frac{1}{500} = 3.0$

 $2000 \times \frac{1}{500} = 4.0$ 

Profundidad 25.0 mts.

ri	=	0.27	(	5.0	)	1.35	cms.
r,	=	0.40	(	5.0	)	2.00	cms.
r.	=	0.52	(	5.0	)	2.60	cms.
ra	=	0.64	(	5.0	)	3.20	cms.
r.	=	0.77	(	5.0	)	3.85	cms.
re	=	0.92	(	5.0	)	4.60	cms.
r.	=	1.11	Ċ	5.0	)	5.55	cms.
ra	=	1.39	Ć	5.0	)	6,95	cms.
r.	=	1.91	Ċ	5.0	)	9.55	cms.

### Profundidad 30.0 mts.

					-			
rı	=	0.27	(	6.0	)	1.62	cms.	
r,	=	0.40	(	6.0	)	2.40	cms.	
$r_{x}^{-}$	=	0.52	(	6.0	)	3.12	cms.	
r4	=	0.64	(	6.0	)	3.84	cms.	
r5	=	0.77	(	6.0	)	4.62	cms.	
r ₆	=	0.92	(	6.0	)	5.52	cms.	
$r_7$	=	1.11	. (	6.0	)	6.66	cms.	
r's	=	1.39	(	6.0	)	8.34	cms.	
r,	=	1.91	(	6.0	):	L1.46	cms.	

 $2500 \times \frac{1}{500} = 5.$ 

 $3000 \times \frac{1}{500} = 6.0$ 

## Profundidad = 2.0 mts



# Profundidad = 5.0 mts.



# Profundidad = 10.0 mts













# ANEXO III

INFORME NO. 5525 DEL INSTITUTO DE INGENIERIA.

and the start

#### ANEXO III

Informe No. 5525 del Instituto de Ingeniería.

<

El presente informe fue elaborado por la Coordinación de Geotecnia del Instituto de Ingeniería para el organismo de Aeropuertos y Servicios Auxiliares y contiene un estudio del comportamiento a largo plazo de las arcillas de la zona de las pistas del Aeropuerto Internacional de la Ciudad de México.

En este informe se presentan los resultados de la investigación experimental que consistió básicamente de ensayes de consolidación unidimensional, realizados con diferentes condiciones de frecuencia de carga, magnitud y duración de los incrementos de carga y duración total de la etapa de carga; así mismo en la etapa de descarga se utilizaron diversas combinaciones de frecuencia, magnitud y duración de los decrementos de esfuerzo.

Todos los especímenes fueron ensayados en consolidómetros mecánicos con anillos de 8.0 cms de diámetro y altura de la partilla de 2.0 cms. Las Características de cada ensaye y tipo de ensaye se resumen en la tabla 1. Los incrementos de carga variaron de 0.093 a 0.20 kg/cm² y la duración de cada incremento varió de 1 a 7 días. En las muestras COF, C1F, C2F y C3F se hicieron ciclos dobles de carga y descarga y además, para evaluar la capacidad de expansión y compresión en períodos más largos, se permi-

### TABLA 1 RESUMEN DE LAS CONDICIONES DEL INCREMENTO Y TIEMPO DE DURACION

DEL MISMO, DURANTE LAS PRUEBAS DE CONSOLIDACION

CLAVE IDENTIFICACION	MUESTRA	PROF. (m)	MAGNITUD DEL INCREMENTO (kg/cm ² )	TIEMPO DE PERMANENCIA (días)	ESFUERZO MAXIMO (kg/cm ² )	CICLOS	COMENTARIOS
COF	<b>M5-</b> T2	4.20	de 0.093 a 0.151	2	1.48	carga descarga	En la descarga se dejó expander durante 38días con o = 0.105 kg/cm²
CIF	M10-T2	9.35	de 0.095 e 0.095	2	1.05	carga descarga recarga descarga	Durante la 2a. descarga se dejó expander por 38 días con σ = 0.86 kg/cm²
C2F	M16-T3	15.55 ==	de 0,093 a 0.094	2	0.76	carga descarga recarga descarga	Durante la 2a. descarga se dej6 expander por 38 días con σ = 0.5 kg/cm²
C3F	M24-T2	23.33 	de 0.093 a 0.094	2	0.94	carga descarga recarga	Durante la recarga se dej6 consolidar por 38 días con σ = 0.94 kg/cm ²
COM	M2 4-T2	23.20	0.10	7	0.80	carga descarga	El primer incremento fue de 0.5 kg/cm ²
CIM	M24-T2	23.23	0.15	7	0,95	carga descarga	El primer incremento fue de 0.5 kg/cm ²

:-

#### TABLA 1 (continuación)

CLAVE IDENTIFICACION	MUESTRA	PROF. (m)	MAGNITUD DEL INCREMENTO (kg/cm ² )	TIEMPO DE PERMANENCIA . (días)	ESFUERZO HAXINO (kg/cm ² )	CICLOS	COMENTARIOS
С2М	M24-T2	23.26	0,20	7	1.10	carga descarga	El primer incremento fue de 0.5 kg/cm ²
СЗН	M24-T2	23.30	0,15	7	1.50	carga descarga	Todos los incrementos iguales
Cij	M24-T3	23.55	0,10	1	1.50	carga descarga	Todos los incrementos iguales
C2J	M24-T3	23.57	0,15	1	1.50	carga descarga	Todos los incrementos iguales

tió la permanencia de un esfuerzo dado para tres niveles de descarga y uno de carga, durante 38 días, de la manera siguiente:

Muestra	σ kg/cm ²	omáx kg/cm ²	Ciclo
COF	0.105	1.479	descarga
C1 F	0.873	1.053	2 descarga
C2F	0.387	0.760	2 descarga
C3F	0.944	0.944	recarga

Los resultados de los ensayes indicados en la tabla No. 1 se muestran en las figuras 2-30.

Los resultados muestran claramente que para esfuerzos verticales menores que la presión de preconsolidación la deformación es relativamente pequeña. Sin embargo cuando se alcanza o supera la presión de preconsolidación, la deformación se incrementa notablemente, en especial las deformaciones por consolidación secundaria.

Los resultados parecen indicar que solo hasta que se tiene una descarga se detiene, y para decrementos de cargas mayores se empiezan a tener expansiones. Estos resultados tienen un significado práctico importante, ya que para el caso en que se proponga una compensación del peso actual del pavimento, para detener el proceso de asent<u>a</u> miento, se debe obtener compensaciones del orden del 50% del peso actual del pavimento.

Muestra	Esfuerzo de preconsolidación kg/cm²
COF	1.10 - 1.20
C1F C2F	0.32 - 0.36 * - 0.33
C3F C0M	0.61 - 0.66
C2M C2M C3M	+ + +
C1J C2J	0.60 - 0.65 0.63 - 0.67

* No se puede definir debido al remoldeo de la muestra.

+ Difícil de definir debido a que el primer incremento de esfuerzo (0.5 kg/cm²) es muy cercano a la presión de preconsolidación, pero que se estima en aproximadamente 0.6 kg/cm² para las 3 muestras.

> TABLA 3.- Esfuerzos de preconsolidación determinados en las muestras





FIG. 5 CURVAS DE COMPRESIBILIDAD EN ESCALA SEMILOGARITMICA C3F, C3M, CLJ Y C2J

.



C3F/CARGA











FIC. 19' CURVAS DE CONSOLIDACION, MUESTRA C3F/RECARGA CCN T=2 días exceptuando el ultimo increme<u>m</u> To que permanecio 28 dias