

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

15

FACULTAD DE INGENIERIA

LA TECNICA DEL KRIGING EN LA INTERPOLACION DE VARIABLES GEOFISICAS.

México, D. F.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

FACULTAD DE INGENIERIA EXAMENES PROFESIONALES 60-1-176

VNIVERIDAD NACIONAL AVENMA

A los Pasantes señores ADOLFO VAZQUEZ CONTRERAS y LUIS RAMOS MARTINEZ P r e s e n t e s

En atención a su solicitud relativa, me es grato transcribir a ustedes a continuación el tema que aprobado por esta Direc ción propuso el Prof. Dr. Juan M. Berlanga Gutiérrez, para que lo desarrollen como tesis en su Examen Profesional de I<u>N</u> GENIERO GEOFIGICO.

"LA TECNICA DEL KRIGING EN LA INTERPOLACION DE VARIABLES GEOFISICAS".

- I. Introducción
- II. Conceptos básicos de la teoría de las va riables regionalizadas
- III. El kriging universal
 - IV. El método de las covarianzas generalizadas
 - V. Otros métodos de interpolación
 - VI. Aplicaciones
- VII. Conclusiones

Ruego a ustedes se sirvan tomar debida nota de que en cumpli miento de lo especificado por la Ley de Profesiones, deberán prestar Servicio Social durante un tiempo mínimo de seis meses como requisito indispensable para sustentar Examen Profe sional; así como de la disposición de la Dirección General de Servicios Escolares en el sentido de que se imprima en lu gar visible de los ejemplares de la tesis, el título del tra bajo realizado.

Atentamente, "POR MI RAZA HABLARA EL ESPIRITU" Cd. Universitaria D.F., a 19 de noviembre de 1980 EL DIRECTOR Lavier Jiménez 🖊

JJE'MRV'mdb.

CONTENIDO

Capítulo	Página
I Introducción	1
II Conceptos básicos de la Geoestadística	3
Definición de variable regionalizada	3
Inferencia estadística	5
Hipótesis de estacionariedad	5
Semivariograma	6
Propiedades del semivariograma	7
Modelos de semivariograma	11
III Kriging universal	12
Interpretación física del drift	13
Derivación de las ecuaciones del kriging universal	14
Estimación óptima del drift	20
Semivariograma de los residuales estimados	21
Semivariograma experimental de los residuales estimados	22
Identificación del semivariograma fundamental	22
IV Método de covarianzas generalizadas	28
Incrementes generalizator	29

Función covarianza generalizada	32
Funciones aleatorias intrínsecas	33
Hipótesis intrínseca generalizada	34
Modelos de covarianza generalizada	35
Estimación puntual	38
ldentificación automática de la función covarianza	
generalizada en dos dimensiones	41
V.– Kriging y otros métodos de interpolación	45
Panorama general de la configuración	4 5
Interpolación de campos potenciales	46
Interpolación de variables sísmicas	54
VI Aplicaciones	61
Configuración de una malla de datos aeromagnéticos	61
Configuración de tiempos de reflexión y velocidades	
sísmicas	80
VII Conclusiones	107
Agradecimientos	110
Bibliografía	111
Apéndice I: Desarrollo del sistema de ecuaciones lineales de	
regresión de la covarianza generalizada	116

Apéndice II: Fórmula de tiempo vertical de reflexión para un

contacto tridimensional

RESUMEN

En este trabajo se presentan las bases teóricas fundamentales del kriging en sus tres variantes: kriging normal, kriging universal y el método de covarianzas generalizadas. Se hace notar la versatilidad del kriging para llevar a cabo no únicamente la estimación pun tual sino también la estimación de derivadas y valores promedios sobre volúmenes. Por ser el método de covarianzas generalizadas la teoría más recientemente desarrollada y por representar ésta el enfoque más general al problema de la estimación, se desarrolla integramente el algoritmo necesario para su aplicación. Igualmente se analizan algunas técnicas de interpolación comúnmente empleadas en problemas geológicos y geofísicos, discutiendo se sus ventajas y desventajas con respecto al kriging.

Se presentan dos ejemplos. El primero considera datos aeromagnéticos interpolados utilizando tres técnicas distintas: el kriging normal, el kriging universal y el método de relajación. En el segundo ejemplo, se describe el proceso para la obtención de un mapa de cimas a partir de datos de tiempos de reflexión. Dos programas de cómputo son elabora dos con tales propósitos: el mejor modelo de covarianza generalizada correspondiente a determinado conjunto de datos es definido en el primer programa cuyos resultados son manejados, con propósitos de interpolación, por un segundo programa de cómputo.

CAPITULO I

En el campo de las Ciencias de la Tierra el mapeo de estructuras geológicas subsuper ficiales así como el de variables geofísicas (velocidades sísmicas, tiempos de reflexión, gravedad, etc.) es de primordial importancia para la interpretación, ya que constituye la base de futuros desarroltos en la exploración y explotación de recursos naturales.

Puesto que la cartidad de información disponible es limitada, ya sea por su costo o por ser ésta técnicamente inaccesible, la aplicación de métodos de interpolación resulta necesaria en la obtención de información adicional.

Existen muchos métodos de interpolación, algunos diseñados especialmente para resolver problemas específicos (generalmente con enfoques determinísticos), pero ninguno de ellos aplicable en todas circunstancias. La aparición de la geoestadística como una metodo logía de estimación que no se limitó a agregar, a lo Geología, técnicas estadísticas conve<u>n</u> cionales, sino que, ante la necesidad de resolver ciertos problemas geológico-mineros, enriqueció el significado de términos ya conocidos y creó otros nuevos, lo cuál permitió an<u>a</u> lizar objetivamente las ventajas y desventajas de los demás métodos de estimación. Así, se llegó a la conclusión de que unos métodos de interpolación tienden a considerar a la variable a estimar como una variable totalmente aleatoria, sin considerar las posibles relaciones existentes entre los distintos valores que lo variable puede tomar en diferentes puntos.

Otros métodos no pueden proporcionar una medida del error que puede esperarse al efectuar la estimación. El método kriging es el único que toma en cuenta las relaciones estadísticoespaciales de la variable y proporciona además, una medida del error en la estimación.

En sus inicios(1960), la técnica del kriging fué empleada exclusivamente como – herramienta en la evaluación de yacimientos minerales; actualmente la teoría en que –– esta basada(la teoría de las variables regionalizadas) la hacen un método general de esti mación que puede aplicarse a cualesquiera fenómenos distribuidos espacialmente.

CAPITULO II

CONCEPTOS BASICOS DE LA GEOESTADISTICA

11. 1) Definición de variable regionalizada

Una variable regionalizada es una variable aleatoria distribuida espacialmente. Matemáticamente, una variable regionalizada Z(x) es una función definida en un espacio n-dimensional cuya representación no es simple y que presenta características tales como:

a) Localización y soporte geométrico(puntual, superficial o volumétrico).

b) Continuidad, la cuál puede clasificarse en tres tipos principales(figura 1):

- Altamente continua, tal como el espesor de una formación geológica, el campo magnético terrestre y los tiempos de reflexión de un contacto litológico en una área de -tectónica suave.

- Continuas, donde las variables aleatorias presentan un aspecto aleatorio local, pero que en conjunto muestran zonas donde los valores tienden a ser regulares. Como ejem plos de variables aleatorias continuas pueden citarse la porosidad, la saturación de agua, la permeabilidad, etc.

- Discontinuas, donde las variables muestran una marcada aleatoriedad, tal es el caso de las velocidades sísmicas calculadas a lo largo de un perfil mediante el analisis de velocidades.

c) Anisotropía, donde las variables aleatorias regionalizadas presentan direcciones preferenciales de variabilidad.

- a).- Variabl**e muy continu**a
- b).- Variable discantinua
- c).- Variable continua en promedio

11. 2) Inferencia estadística

La idea básica de la teoría de las variables regionalizadas es considerar a la función z(x) como una realización de una función aleatoria $Z(\overline{x})$, esto es, considerar al único valor numérico $z(\overline{x}_0)$, en el punto \overline{x}_0 , como la realización de un proceso aleatorio.

De esta forma para hacer posible la estimación del valor de una variable en un punto desconocido, es necesario encontrar las características de la función oleatoria $Z(\bar{x})$ a partir de una realización de dicha función. Esto puede lograrse si introducimos hipótesis acerca de la estacionariedad de la función aleatoria.

111. 3) Hipótesis de estacionariedad

111.3.1) Hipótesis de estacionariedad-débil

Esta hipótesis rara vez se adopta en fenómenos naturales y esta dada por dos con diciones:

- El valor esperado de la variable regionalizado es el mismo sobre todo el cam pa de interés R.

$$E[Z(\bar{x})] = m, \forall \bar{x} \in \mathbb{R}$$
(2.1)

- La covarianza entre dos variables aleatorias separadas por un vector \bar{h} depende exclusivamente de h.

$$E[(Z(\overline{x} + \overline{h}) - m)(Z(\overline{x}) - m)] = C(\overline{h}) \qquad (2.2)$$

La varianza de la función aleatoria $Z(\bar{x})$ se obtiene al hacer $\bar{h} = \bar{0}$ en la -ecuación anterior, es decir:

vor
$$[Z(\overline{x})] = E[Z(\overline{x}) - m]^2 = C(\overline{0})$$

El proceso aleatorio tendrá una covarianza finita si la varianza de la variable -aleatoria es finita, var $[Z(\bar{x})] < \infty$. Esto implicará que la función aleatoria $Z(\bar{x})$ sea homogénea. Ejemplos de tales funciones se encuentran comúnmente en el analisis de series de tiempo(la variación secular del campo magnético o los movimientos de marea).

II. 3. 2) Hipótesis intrínseca

Puesto que en muchos casos la condición de varianza finita no se cumple, resulta necesario introducir un nuevo tipo de hipótesis que considere a los incrementos, más que a la variable misma. La hipótesis intrínseca establece que:

$$E[Z(\bar{x} + \bar{h}) - Z(\bar{x})] = 0 , \quad \forall \quad \bar{x} \in \mathbb{R}$$
(2.3)

$$\operatorname{var} \left[Z(\overline{x} + \overline{h}) - Z(\overline{x}) \right] = 2 \overset{\text{h}}{\downarrow} (\overline{h})$$
(2.4)

donde a la función $\mathcal{Y}(\overline{h})$ se le nombra semivariograma.

Considerando la ecuación (2.3) en la expansión de la ecuación (2.4) se puede -obtener la expresión siguiente:

$$var \left[Z(\bar{x} + \bar{h}) - Z(\bar{x}) \right] = E \left[Z(\bar{x} + \bar{h}) - Z(\bar{x}) \right]^2$$
(2.5)

11. 4) Semivariograma

Todas las características esenciales de la variable regionalizada tales como, con tinuidad, anisotropía y zona de influencia, se encuentran representadas en la función -semivariograma.

La función semivariograma esta definida según las ecuaciones (2.4) y (2.5) como: $\bigvee_{h}(h) = \frac{1}{2} E \left[Z(\bar{x} + \bar{h}) - Z(\bar{x}) \right]^{2}$ (2.6)

11.4.1) Estimación del semivariograma

Cuando la variable regionalizada bajo estudio satisface la hipótesis intrínseca, el semivariograma $i(\overline{h})$ puede ser estimado únicamente en base a las diferencias cuadráticas de dos variables aleatorias regionalizadas espaciadas una de la otra por un vector \overline{h} .

Si las muestras están separadas regularmante a lo largo de un perfil, el semivariograma puede estimarse para valores de h múltiplos de la unidad de separación por medio del estimador:

$$\int_{0}^{\infty} (\bar{h}) = \frac{1}{2 N(\bar{h})} \sum_{i=1}^{N(\bar{h})} [Z(\bar{x}_{i} + \bar{h}) - Z(\bar{x}_{i})]^{2}$$
(2.7)

7

siendo $Z(\overline{x}_i) \neq Z(\overline{x}_i + \overline{h})$ los datos y $N(\overline{h})$ el número de pares de datos separados por un vector \overline{h} .

En el caso de datos irregularmente espaciados en el plano, la estimación del semivariograma se hace más difícil, ya que es necesario agrupar los datos por clases de dis-tancias y ángulo de tal manera que las diferencias medias cuadráticas puedan calcularse.

11. 5) Propiedades del semivariograma

Entre las propiedades más importantes del semivariograma caben mencionar:

$$\begin{cases}
\begin{pmatrix} \langle \vec{0} \rangle = 0 \\
\langle \langle \vec{h} \rangle = \langle \langle -\vec{h} \rangle \ge 0 \\
\end{cases}$$

11.5.1) Zona de influencia

Es la región donde las variables aleatorias son estadísticamente dependientes. Esta región se define por la distancia L llamada rango(figura 2) a partir de la cual el semivariograma tiende a estabilizarse alrededor de un valor límite, denominado meseta.

Este valor límite es igual a la varianza de los datos,

$$\begin{pmatrix} & \\ & \\ & \end{pmatrix} (\infty) = \text{var} [Z(\overline{x})] = C(\overline{0})$$

A los semivariogramas caracterizados por el valor de su meseta y de su rango, se les conoce como modelos de transición y corresponden a funciones aleatorias estaciona-rias de segundo orden(y por ende intrínsecas).

11.5.2) Comportamiento en el origen

Del comportamiento del semivariograma cerca del origen se pueden diferenciar -cuatro formas principales(figura 3):

1) Parabólica: $\lambda(\bar{h}) \approx A |\bar{h}|^2$ cuando $\bar{h} \rightarrow 0$. El semivariograma es dos veces dif<u>e</u> renciable y caracteriza a una variable extremadamente regular.

2) Lineal: $\mathcal{Y}(\overline{h}) \approx A | \overline{h} |$ cuando $\overline{h} \rightarrow 0$. En este caso $\mathcal{Y}(\overline{h})$ corresponde a una variable menos regular que el anterior(es continuo, pero no diferenciable en el origen).

3) Discontinuidad en el origen,

$$\lim_{\overline{h}} \sqrt[h]{(\overline{h})} = Co , \quad Co > 0$$

$$\overline{h} \rightarrow 0$$

La discontinuidad en el origen puede observarse en el semivariograma de una variable aleatoria muy irregular. Puntos muy cercanos muestran marcada diferencia entre si, produciendo una varianza Co, denominada "efecto pepita". Este efecto refleja la existen cia de estructuras a una escala mucho más pequeña que la del espaciamiento de los datos. Errores en la medición también pueden dar origen a este efecto.

4) Semivariograma plano, representa a una variable completamente aleatoria:

donde E es una distancia muy pequeña en comparación con las distancias de las observaciones experimentales.

COMPORTAMIENTO DEL SEMIVARIOGRAMA CERCA DEL ORIGEN

- a).- Tipo parabolico
- b).- Tipo lineal
- c).- Discontinuidad en el origen
- d).- Aleatorio

II. 5. 3) Anisotropía

La anisotropía se detecta por un comportamiento muy particular del semivariograma a lo largo de diferentes direcciones(figura 4).

11. 6) Modelos de semivariogramas

Con propósitos de estimación, los semivariogramas experimentales $\int_{0}^{+\infty} (h)$ se ajustan a cierto tipo de funciones analíticas. La condición que deben cumplir dichas funciones para ser semivariogramas es que éstas sean funciones positivamente definidas. Los -modelos más comunes son los del tipo esférico, exponencial y lineal. Una clara exposi-ción de las características de estos modelos ha sido dada por David(1976).

FIG. 4

ANISOTROPIA

Semivariograma calculado en dirección N—S en contraste con otro calculado en dirección E—W

CAPITULO III KRIGING UNIVERSAL

En el capitulo anterior se asumieron condiciones de estacionariedad en la función aleatoria Z(x), ecuaciones 2.1, 2.2 y 2.3, 2.4. Sin embargo surge un problema cuando tratamos con funciones aleatorias no estacionarias, esto es, cuando el valor esperado de la variable regionalizada no es constante, sino que éste depende de la posición de la variable Z(\bar{x}):

$E[Z(\bar{x})] = m(\bar{x})$

El kriging universal resuelve este problema, ya que considera tipos de hipótesis -menos estrictas que las anteriores. El kriging universal asume que el segundo momento de la función aleatoria tiene propiedades de estacionariedad dentro de una vecindad de tama no restringido y su valor esperado no es estacionario sino que varía de una manera regu lar. Si \bar{x} y \bar{x} + \bar{h} son dos localizaciones dentro de una misma vecindad restringida, la hipótesis del kriging universal establece lo siguiente:

a) Para la variable
$$Z(\bar{x})$$

E [$Z(\bar{x})$] = m(\bar{x}) (3.1)

$$\operatorname{cov} [Z(\overline{x}), Z(\overline{x} + h)] = C(\overline{h})$$
(3.2)

b) Para los incrementos de la variable $Z(\bar{x})$

$$E[Z(\overline{x} + \overline{h}) - Z(x)] = m(x + h) - m(x)$$
(3.3)

$$\operatorname{var}\left[\mathbb{Z}(\overline{x}+\overline{h})-\mathbb{Z}(\overline{x})\right] = 2\sqrt[k]{\overline{h}}$$
(3.4)

A la función m(x) se le denomina en geoestadística "drift".

La razón por la cual el kriging considera únicamente los momentos de primero y segundo orden en la variable regionalizada, se debe a que es un método que proporciona un estimador lineal insesgado. Dicho de otra manera, la evaluación del valor desconocido de una variable regionalizada $Z(\bar{x})$ en un cierto punto \bar{x} a través de estimadores line<u>a</u> les, depende de los momentos de primero y segundo orden.

Por otro lado, los estimadores "no-lineales" requieren para su utilización de la distribución conjunta de la función aleatoria $Z(\bar{x})$, la cuál es imposible de derivar a partir de la infarmación disponible(al menos en problemas de Ciencias de la Tierra).

La aparente desventaja de los estimadores lineales al no incluir la función de dis tribución conjunta, es compensada en cierta manera por su menor grado de dificultad en su aplicación. Tal desventaja no existiría en el caso de una función aleatoria $Z(\bar{x})$ dis-tribuida normalmente pues en ese caso el mejor estimador(esperanza condicional) tendría la forma de un estimador lineal(Papoulis, 1965).

111. 1) Interpretación física del drift

Fisicamente el drift representa la tendencia de la función aleatoria a lo largo de ciertas direcciones. El drift representa apariencias sistemáticas más que detalles esporádi cos. El concepto de anomalía regional en gravimetría, corresponde al de drift.

Si la función m (\bar{x}) es irregular y aparentemente caótica, esta debe ser considera da como la realización de una nueva función aleatoria.

Al igual que el semivariograma, el drift esta estrechamente relacionado a la escala de trabajo. En geofísica por ejemplo, la anomalía magnética debida a un depósito de material ferromagnético en una escala de cientos de metros representaría clasamente el drift. Sin embargo, esta misma anomalía(de interés en prospección minera) se conside ra como una función aleatoria en un estudio cuyos propósitos fueran detectar trampas estructurales de hidrocarburos, donde la escala de trabajo sería de decenas de kilometros.

El concepto de drift proporciona un medio para dividir a la variable regionaliza da en dos componentes: el drift m(\bar{x}) y el residual Y(\bar{x}). El residual es la diferencia de la variable regionalizada y el drift,

$$Y(\overline{x}) = Z(\overline{x}) - m(\overline{x})$$

la interpretación de los términos m(\overline{x}) y Y(\overline{x}) es diferente a la dada por el analisis de superficies de tendencias(Watson, 1969). El kriging universal pone especial interés en el residual, el cuál se asume que no es totalmente aleatorio, sino que posee estructura propia. Esto significa que para dos localizaciones \overline{x}_1 y \overline{x}_2 , los residuales Y(\overline{x}_1) y Y(\overline{x}_2) mantienen una relación que puede ser descrita como una función aleatoria de la distancia.

111. 2) Derivación de las ecuaciones del kriging universal

Cuando la hipótesis del kriging universal es aplicada, el drift de la función alea toria queda representada por la expresión:

$$m(\overline{x}) = \sum_{k=0}^{n} \alpha_{k} f^{k}(\overline{x})$$
(3.5)

en una cierta vecindad R.

El problema general a resolver es: dada una serie de datos Z_i con soporte v_i , estimar el valor Z_o en el punto x_o empleando el estimador lineal $Z_o^* = \sum_{i=1}^{K} \lambda_i Z_i$. Ciertos pesos λ_i serán calculados de tal manera que Z_o^* sea el mejor estimador lineal insesgado, es decir, con error cuadrático infinimo. La cantidad Zo a ser estimada puede ser: 1) El valor de Z(\overline{x}) en el punto $\overline{x} = \overline{x}_0$

$$Z_o = Z(\bar{x}_o)$$

2) la derivada a lo largo de cierta dirección,

$$Z_{o} = \frac{\partial}{\partial u} | Z(\bar{x}) |_{\bar{x} = \bar{x}_{o}}$$

3) El valor promedio de Z sobre un volumen centrado en \overline{x}_{o}

$$Z_{o} = \frac{1}{V(\bar{x}_{o})} \int_{V(\bar{x}_{o})} Z(\bar{x}) dx$$

Considérese entonces el estimador

$$Z_{0}^{\star} = \sum_{i=1}^{k} \lambda_{i} Z_{i}$$

El objetivo es determinar los pesos λ_i tales que Zo*:

a) Sea insesgado

$$E[Z_{o}^{*} - Z_{o}] = 0$$

b) Tenga varianza de estimación mínima

var [Zo – Zo] minima

De la primera condición

$$E[Z_{o}^{\star} - Z_{o}] = E[Z_{o}^{\star}] - E[Z_{o}]$$

$$E[Z_{o}^{\star}] = \sum_{i=1}^{K} \lambda_{i} E[Z_{v_{i}}] = \sum_{i=1}^{K} \lambda_{i} \frac{1}{v_{i}} \int_{v_{i}} E[Z(\overline{x})] dx \qquad (3.6)$$

$$E[Z_{o}] = \frac{1}{V(\bar{x}_{o})} \int_{V(\bar{x}_{o})} E[Z(\bar{x})] dx \qquad (3.7)$$

Puesto que nuestro objetivo es la estimación puntual, de ec. (3.7) se obtiene: E $[Z_0] = E [Z(\overline{x}_0)] = m(\overline{x}_0)$

Por otro lado si las muestras están definidas en un punto, de ec. (3.6)

$$E[Z_{o}^{*}] = \sum_{i=1}^{K} \lambda_{i} E[Z_{i}] = \sum_{i=1}^{K} \lambda_{i} m(\bar{x}_{i})$$

y por consiguiente,

$$E[Z_{o}^{*} - Z_{o}] = \sum_{i=1}^{K} \lambda_{i} m(\overline{x}_{i}) - m(\overline{x}_{o}) = 0$$

donde \overline{x}_i y \overline{x}_o son los vectores de localización.

Considerando la ec. (3.5):

$$E[Z_{o}^{\star} - Z_{o}] = \sum_{i=1}^{K} \lambda_{i} \sum_{\ell=0}^{n} \alpha_{\ell} f^{\ell}(x_{i}) - \sum_{\ell=0}^{N} \alpha_{\ell} f^{\ell}(x_{o}) .$$
$$= \sum_{\ell=0}^{N} \alpha_{\ell} [\sum_{i=1}^{K} \lambda_{i} f^{\ell}(x_{i}) - f^{\ell}(x_{o})]$$

se obtiene,

$$\sum_{i=1}^{K} \lambda_{i} f^{1}(x_{i}) = f^{1}(x_{0}) , \qquad \hat{\chi} = 0, 1, \dots, n \qquad (3.8)$$

Este sistema de ecuaciones representa la condición de insesgamiento del estima – dor Zo .

Si **l** fuese igual a $0 ext{ y f}(x_i)$ fuese igual a la constante a₀ se tendría como -condición de insesgamiento lo siguiente:

$$\sum_{i=1}^{K} \lambda_{i} a_{o} = a_{o} \qquad \sum_{i=1}^{K} \lambda_{i} = 1$$

Como puede observarse en el sistema de ecs. (3.8) los coeficientes del drift ____ no intervienen.

Haciendo intervenir la primera condición en el desarrollo de la segunda:

$$\operatorname{var} \left[Z_{o}^{\star} - Z_{o} \right] = E \left[Z_{o}^{\star} - Z_{o} \right]^{2} = E \left[\sum_{i=1}^{\kappa} \sum_{j=1}^{\kappa} \lambda_{i} \lambda_{j} \left(Z(\overline{x}_{i}) - Z_{o} \right) (Z(\overline{x}_{j}) - Z_{o}) \right]$$

$$= \sum_{i=1}^{K} \sum_{j=1}^{K} \lambda_{i} \lambda_{j} \in [\mathbb{Z}(\overline{x}_{i})\mathbb{Z}(\overline{x}_{j}) - \mathbb{Z}(\overline{x}_{j})\mathbb{Z}_{0} - \mathbb{Z}_{0}\mathbb{Z}(\overline{x}_{i}) + \mathbb{Z}_{0}^{2}]$$

$$\text{var} [\mathbb{Z}_{0}^{*} - \mathbb{Z}_{0}] = \sum_{i=1}^{K} \lambda_{i} \frac{1}{2} \in [\mathbb{Z}(\overline{x}_{i}) - \mathbb{Z}_{0}]^{2} + \sum_{j=1}^{K} \lambda_{i} \frac{-1}{2} \in [\mathbb{Z}(\overline{x}_{i}) - \mathbb{Z}_{0}]^{2}$$

$$- \sum_{i=1}^{K} \sum_{j=1}^{K} \lambda_{i} \lambda_{i} \frac{-1}{2} \in [\mathbb{Z}(\overline{x}_{i}) - \mathbb{Z}(\overline{x}_{i})]^{2}$$

$$\text{var} [\mathbb{Z}_{0}^{*} - \mathbb{Z}_{0}] = \sum_{i=1}^{K} \lambda_{i} \sqrt[3]{(\overline{x}_{i} - \overline{x}_{0})} + \sum_{j=1}^{K} \lambda_{i} \sqrt[3]{(\overline{x}_{i} - \overline{x}_{0})} - \sum_{i=1}^{K} \sum_{j=1}^{K} \lambda_{i} \lambda_{i} \sqrt[3]{(\overline{x}_{i} - \overline{x}_{i})}$$

$$\text{var} [\mathbb{Z}_{0}^{*} - \mathbb{Z}_{0}] = 2\sum_{i=1}^{K} \lambda_{i} \sqrt[3]{(\overline{x}_{i} - \overline{x}_{0})} - \sum_{i=1}^{K} \sum_{j=1}^{K} \lambda_{i} \lambda_{i} \sqrt[3]{(\overline{x}_{i} - \overline{x}_{i})}$$

$$(3.9)$$

17

Obtener la varianza mínima, es un problema que puede ser resuelto por el método – de multiplicadores de Lagrange. Tomando en cuenta las restricciones dadas por la condi-ción de insesgamiento (3.8), la función auxiliar es :

$$\Psi = \operatorname{var} \left[Z_{0}^{\star} - Z_{0} \right] - 2 \sum_{k=0}^{n} u_{k} \left(\sum \lambda_{i} f^{k}(\bar{x}_{i}) - f^{k}(\bar{x}_{0}) \right)$$

ug son los multiplicadores de Lagrange.

Calculando las k derivadas parciales de ϕ con respecto a los λ_i e igualandolas a cero, resulta en forma general :

$$\sum_{j=1}^{k} \lambda_{j} \lambda_{i} (\overline{x}_{i} - \overline{x}_{j}) + \sum_{l=0}^{n} u_{l} f^{l}(\overline{x}_{i}) = \lambda_{i} (\overline{x}_{i} - \overline{x}_{o})$$

$$(3.10)$$

$$\forall i = 1, 2, ..., k$$

Así el sistema de kriging universal esta constituido por las condiciones (3.8) y (3.10) :

$$\sum_{j=1}^{K} \lambda_{i} \sqrt[N]{(\overline{x}_{i} - \overline{x}_{j})} + \sum_{\substack{k=0 \ k \in \mathbb{Z}}}^{N} u_{k} f^{1}(\overline{x}_{i}) = \sqrt[N]{(\overline{x}_{i} - \overline{x}_{o})} \qquad i = 1, \dots k$$

$$\sum_{\substack{i=1 \ i \in \mathbb{Z}}}^{K} \lambda_{i} f^{1}(\overline{x}_{i}) = f^{1}(\overline{x}_{o}) \qquad \lambda = 0, \dots n$$
(3.11)

18

y su varianza de estimación es,

$$\operatorname{var} \left[\mathbb{Z}_{o}^{\star} - \mathbb{Z}_{o} \right]_{\min} = \sum_{i=1}^{K} \lambda_{i} \sqrt[N]{(\overline{x}_{i} - \overline{x}_{o})} + \sum_{\substack{n \\ l = 0}}^{n} u_{l} f^{l}(\overline{x}_{o})$$
(3.12)

De la condición (3.8) se puede demostrar que el kriging es un método de interpola ción exacto. Esto no se demostrará, ya que es más interesante señalar las modificaciones que sufrirá el sistema de kriging universal para que la estimación de la derivada, casa 2 (y el valor promedio, caso 3) sea posible.

Si analizamos las expresiones (. 3.6) y (3.7) para este nuevo caso(cálculo de la derivada) resulta:

$$E[Z_{o}^{\star}] = \sum_{i=1}^{K} \lambda_{i} E[Z_{v_{i}}] = \sum_{i=1}^{K} \lambda_{i} \frac{1}{v_{i}} \int_{v_{i}} E[Z(\overline{x})] dx$$

Si los datos son los valores de Zi definidos en un soporte puntual,

$$E[Z_{o}^{*}] = \sum_{i=1}^{K} \lambda_{i} E[Z_{i}] = \sum_{i=1}^{K} \lambda_{i} m(\bar{x}_{i})$$

Por otro lado,

$$E[Z_{o}] = E[\frac{\partial}{\partial u} (Z(\bar{x}))_{\bar{x}=\bar{x}_{o}}]$$
$$E[Z_{o}] = \frac{\partial}{\partial u} E[Z(\bar{x})]_{\bar{x}=\bar{x}_{o}} = \frac{\partial}{\partial u} [m(\bar{x}_{o})]$$

De lo anterior, la condición de insesgamiento se establece de la siguiente manera:

$$\sum_{i=j}^{k} \lambda_{i} f^{Q}(\overline{x}_{i}) = \frac{\partial}{\partial u} [f^{Q}(\overline{x}_{o})] \qquad \forall p = 0, 1, \dots n$$

y el sistema de kriging universal para la estimación de la derivada es:

$$\sum_{j=1}^{k} \lambda_{j} \, \overset{\text{V}}{(\overline{x}_{j} - \overline{x}_{j})} + \sum_{\lambda=0}^{n} \upsilon_{\lambda} f^{\lambda}(\overline{x}_{j}) = \overset{\text{V}}{(\overline{x}_{j} - \overline{x}_{0})} \qquad i=1, 2, ... k$$

$$\sum_{j=1}^{k} \lambda_{j} f^{\lambda}(\overline{x}_{0}) = \frac{\partial}{\partial \upsilon} [f^{\lambda}(\overline{x}_{0})] \qquad \lambda = 0, 1, ... n \qquad (3.13)$$

Nótese que sólo la condición de insesgamiento (3.8) se modifica. De manera simi lar se puede obtener el sistema de kriging universal para la estimación del valor promedio sobre un volumen.

En sí, la solución del sistema de kriging universal no es difícil. El problema estriba en la adecuada elección de las funciones que están involucradas en dicho sistema(semivariograma fundamental, drift, etc.) las cuales son proporcionadas por la información disponible.

$$\bigvee_{b}^{*}(\overline{h}) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} [Z(\overline{x}_{i} + \overline{h}) - Z(\overline{x})]^{2}$$

es un estimador de:

$$\mathcal{Y}_{b}(\overline{h}) = \frac{1}{2} E \left[Z(\overline{x}_{i} + \overline{h}) - Z(\overline{x}) \right]^{2}$$

Ahora, si el valor esperado de Z(x) no es constante se tiene que

$$E[Z(\overline{x} + \overline{h}) - Z(\overline{x})]^{2} = var[Z(\overline{x} + \overline{h}) - Z(\overline{x})] + [E(Z(\overline{x} + \overline{h}) - Z(\overline{x}))]^{2}$$

Debido a ésto, el cálculo del semivariograma fundamental se tiene que hacer en base a los residuales Y(x). Para la obtención de éstos es necesaria una estimación del drift.

111.3) Estimación óptima del drift.

La condición de regularidad impuesta "a priori" a la función $m(\bar{x})$, significa -que una estimación local de $m(\bar{x})$ es siempre posible en alguna extensión.

Dada una vecindad \overline{r} en \overline{x}_0 , el drift en cualquier punto \overline{x} , tal que $|\overline{x} - \overline{x}_0| \le \overline{r}$, puede ser definida como:

$$m(\bar{x}) = \sum_{l=0}^{\gamma_{1}} a_{l} f^{l}(\bar{x})$$
(3.6)

donde las a $_{l^1s}$ son constantes desconocidas y las $f^{\mathbb{A}}(\bar{x})$ son funciones básicas -dadas (en la práctica, estas funciones son potencias enteras de \times ó funciones senoida-les). Los coeficientes a $_{l^1s}$ pueden ser definidos por estimadores lineales:

$$A_{j} = \sum_{j=k}^{K} \lambda_{j}^{j} Z(x_{j})$$

para $|\bar{x}_{j} - \bar{x}_{o}| \leq |r|$ e $i = 0, 1, ..., n$

 $y m(\overline{x})$ estimada por:

$$M(\overline{\mathbf{x}}) = \sum_{\boldsymbol{k}=0}^{N} A_{\boldsymbol{k}} f^{\boldsymbol{k}}(\overline{\mathbf{x}}) = \sum_{j=1}^{k} \sum_{\boldsymbol{k}=0}^{N} \lambda_{\boldsymbol{k}}^{j} Z(\overline{\mathbf{x}}_{j}) f^{\boldsymbol{k}}(\overline{\mathbf{x}})$$

Siguiendo un proceso similar al de la sección anterior(para que el estimador Ag sea óptimo e insesgado), el sistema de ecuaciones resultante para la estimación de cada coeficiente ag es:

$$\begin{split} \sum_{j=1}^{K} \lambda_{j}^{jj} \, \mathcal{N}(\bar{\mathbf{x}}_{oc}, \bar{\mathbf{x}}_{ji}) &= -\sum_{s=1}^{N} \upsilon_{s}^{s} f^{s}(\bar{\mathbf{x}}_{oc}) - \upsilon_{o,l} \quad oc = 1, 2, \dots k \\ \sum_{j=1}^{K} \lambda_{j}^{j} f^{s}(\bar{\mathbf{x}}_{oc}) &= \delta(s, l) \quad (3.14) \\ &\sum_{j=1}^{K} \lambda_{j}^{j} = 0 \quad s, l = 0, 1, 2, \dots n \\ donde \quad \delta(s, l) &= \begin{cases} 0, l \neq s \\ 1, l = s \end{cases} \end{split}$$

111.4) Semivariograma de los residuales estimados

Debido a que no conocemos el drift, sino solo una estimación de éste, es decir – M(x), los verdaderos residuales no pueden ser conocidos. Los residuales obtenidos utilizando M(x), son los residuales estimados y guardan un considerable sesgo con los verdaderos residuales.

La relación entre el semivariograma fundamental(o de los residuales) y el de los residuales estimados $\langle h_e(\overline{h}) \rangle$ es la siguiente(Matheron, 1969):

Sea $\aleph_{e}(\bar{h})$ el semivariograma de los residuales estimados en <u>t</u> localizaciones a intervalos regulares <u>a</u>. Entonces si h es <u>p</u> veces la distancia <u>a</u> entre muestras consec<u>u</u> tivas y $\aleph(\bar{h})$ el semivariograma fundamental de los residuales, entonces:

$$\begin{aligned} \lambda_{e}^{i}(\bar{h}) &= \lambda_{e}^{i}(\bar{h}) - \frac{1}{2(k-p)} \sum_{j=1}^{k-p} \sum_{i=1}^{n} \sum_{s=1}^{n} u_{s}^{i} \left[\left[f^{i}(\bar{x}_{j} + \bar{p}\bar{a}) - f^{i}(\bar{x}_{j}) \right] \right] \\ &= \left[f^{s}(\bar{x}_{j} + \bar{p}\bar{a}) - f^{s}(\bar{x}_{j}) \right] \end{aligned} (3.15)$$
para $k + 1 \leq t$ y $p=0, 1, 2, \dots, k-1$

como us está positivamente definida(Matheron, 1970), la existencia de un -sesgo es obvia.

Esto implica que el semivariograma de los residuales estimados es menor que el semivariograma fundamental. De la figura 5 podemos observar que conforme aumenta la distancia, el sesgo entre los dos semivariogramas se hace más notorio. Esto no es más que el reflejo de la estructura de la ecuación (3.15), a partir de una cierta distancio h, el -último término de la derecha se hace más significativo.

Cabe señalar que una de las características de los semivariogramas de residuales – estimados es que todos tienen una forma parabólica y aunque ésto es difícil de probar, la ecuación (3.15) representa una parábola cuyas raíces son $\overline{h} = 0$ y $\overline{h} = (t - 1)a$.

111. 5) Semivariograma experimental de los residuales estimados

Sean $R(\bar{x}_1)$, $R(\bar{x}_2)$, $R(\bar{x}_t)$ residuales estimados tomados a intervalos regulares en una vecindad donde la expresión analítica para el drift no cambia. Entonces si los -residuales satisfacen la hipótesis intrínseca, es decir, si los residuales tienen un semivario grama común, el siguiente es un estimador insesgado para $\bigvee_{c}(\bar{h})$,

$$\bigvee_{e}^{*}(\overline{h}) = \frac{1}{2(k-p)} \sum_{j=1}^{K-P} \left[LR(\overline{x}_{j} + \overline{pa}) - R(\overline{x}_{j}) \right]^{2}$$
(3.16)

para $k+1 \le t$ y $p=0, 1, \ldots, k-1$ es decir: $E\left[\bigvee_{e}^{*}(\overline{h}) \right] = \bigvee_{e}^{N} e(\overline{h})$

111. 6) Identificación del semivariograma fundamental

Existen dos métodos para la identificación del semivariograma funadamental, --ambos debidos a Matheron(1969, 1970) los cuales han sido denominados por Sabourin(1976) método indirecto y método directo, respectivamente.

Sesgo existente entre el semivoriograma de los residuales estimodos y el semivoriograma fundomental.

III. 6. 1) Método indirecto

Consiste básicamente en los siguientes pasos:

1) Se selecciona una vecindad

2) Se elige un tipo de drift dentro de esta vecindad

3) Se calculan los coeficientes a; del drift estimados mediante A; en el sistema de ecuaciones (3.14). Como se señaló anteriormente esta estimación del drift es óptima, sin embargo, basta con un simple estimador insesgado (mínimos cuadrados) para este propó sito(David, 1976; Matheron, 1969). Aún así, el sesgo entre el semivariograma de los resi duales estimados y el semivariograma fundamental se mantendrá.

4) Se calculan los residuales estimados $R(\bar{x})$

 $R(\overline{x}) = Z(\overline{x}) - M(\overline{x})$

5) Obtención del semivariograma experimental de los residuales(ec. 3.16) $\frac{1}{h}$

6) Se calcula el semivariograma teórico de los residuales estimados $V_e(\overline{h})$ con – ecuación (3.15).

7) Se comparan ambos semivariogramas, $\mathcal{Y}_{e}(\overline{h})$ y $\mathcal{Y}_{e}^{*}(\overline{h})$.

8) Si se logra un ajuste razonable(no hay pruebas todavía para la bondad del -ajuste) las funciones empleadas(drift y semivariograma fundamental), así como la vecindad, se consideran como correctas.

9) Si no existe un ajuste razonable, se hace necesario definir otras funciones o un nuevo tamaño de vecindad, o ambos. Con ésto, el proceso de ajuste empieza nuevamente(ver figura 6).

Como puede observarse, este proceso no es más que un método de ensaye y error, donde no existe un criterio bien definido por medio del cual se determinen cuales paráme tros son los mejores.

Identificación del semivariograma fundamental

III. 6. 2) Método directo

Este método proporciona "casi" automáticamente el semivariograma fundamental X(h) e involucra básicamente el procedimiento del séptimo paso del método indirecto. La determinación del semivariograma fundamental se hace en base a un factor.

La expresión del semivariograma fundamental es:

$$2 \bigvee (\overline{x}, \overline{x} + \overline{h}) = \operatorname{var} [Z(\overline{x}) - Z(\overline{x} + \overline{h})] = E [Z(\overline{x}) - Z(\overline{x} + \overline{h})]^{2}$$
$$- E^{2} [Z(\overline{x}) - Z(x + \overline{h})]$$
$$= E [Z(\overline{x}) - Z(\overline{x} + \overline{h})]^{2} - [m(\overline{x}) - m(\overline{x} + \overline{h})]^{2}$$

Tomando $M(\overline{x})$ como una estimación de $m(\overline{x})$, se puede decir(Sabourin, 1975) que: $\sqrt[4]{(\overline{x}, \overline{x} + \overline{h})} = E[Z(\overline{x}) - Z(\overline{x} + \overline{h})]^2 - E^2[M(\overline{x}) - M(\overline{x} + \overline{h})] \pm E[M(\overline{x}) - M(\overline{x} + \overline{h})]^2$ $\sqrt[4]{(\overline{x}, \overline{x} + \overline{h})} = E[(Z(\overline{x}) - Z(\overline{x} + \overline{h}))^2 - (M(\overline{x}) - M(\overline{x} + \overline{h}))^2] + var[M(\overline{x}) - M(\overline{x} + \overline{h})]$ $\sqrt[4]{(\overline{x}, \overline{x} + \overline{h})} = E[(Z(\overline{x}) - Z(\overline{x} + \overline{h}))^2 - (M(\overline{x}) - M(\overline{x} + \overline{h}))^2] + var[M(\overline{x}) - M(\overline{x} + \overline{h})]$ $\sqrt[4]{(\overline{x}, \overline{x} + \overline{h})} = CT(\overline{h}) + var[M(\overline{x}) - M(\overline{x} + \overline{h})]$

De esta expresión el primer término de la derecha se puede calcular, es decir: E $[Z(\bar{x}) - Z(\bar{x} + \bar{h})]$ puede ser aproximado por medio del estimador

$$\frac{1}{2N(h)} \sum_{i=1}^{u(h)} [Z(\bar{x}_i) - Z(\bar{x}_i + \bar{h})] \quad y \quad [M(\bar{x}) - M(\bar{x} + h)] \text{ por medio del sistema}$$

de ecuaciones (3.14), no así el segundo término el cuál permanece indeterminado. Sin – embargo, este último término, puede ser aproximado de la siguiente manera(Matheron, 1969):

var $[M(\bar{x}) - M(\bar{x} + \bar{h})] = \sum_{l=1}^{n} \sum_{s=1}^{n} \bigcup_{s=1}^{n} [f^{l}(\bar{x}) - f^{l}(\bar{x} + \bar{h})] [f^{s}(\bar{x}) - f^{s}(\bar{x} + \bar{h})]$ siendo u_{ks} multiplicadores de Lagrange.

Por otro lado, si $\overset{\circ}{a} \overset{\circ}{e}(h)$ es un estimador insesgado del semivariograma de los residuales estimados, minimizando la siguiente expresión:

$$\left[\bigvee_{e}^{*}(\overline{h}) - \bigvee_{e}^{*}(\overline{x}, \overline{x} + \overline{h}) \right]^{2}$$

se pueden encontrar todos los $u_{Q,s}$, excepto u_{LL} el cuál es, por ahora, inacc<u>e</u> sible. Consideraciones prácticas permitirán el cálculo de u_{1L} , esto es, considerando que el primer valor del semivariograma experimental debe ser muy cercano al primero del semi variograma fundamental. Así, la ecuación a resolver para obtener el valor de u_{LL} , es la siguiente:

Con este valor de u_{11} , estamos en posibilidad de obtener una mejor aproximación del semivariograma fundamental.

CAPITULO IV

METODO DE COVARIANZAS GENERAUZADAS

Como se ha expuesto, la mayor dificultad con que tropieza la aplicación del -método kriging al estudio de fenómenos no estacionarios es la inferencia del semivariograma y/o de la covarianza.

Diferentes investigadores(David, 1975; Olea, 1972 y otros) han desarrollado -programas de cómputo bacados en la hipótesis del kriging universal la cuál considera la no estacionariedad de los fenómenos naturales. Con esta variante se ha evitado el tener que emplear un semivariograma sesgado cuando el fenómeno es no estacionario.

En el kriging universal la inferencia del semivariograma fundamental es indirecta, es decir, se hace a través del semivariograma de los residuales de la variable que se estudia. El cálculo de los residuales es, sin embargo, altamente subjetivo ya que la práctica ha demostrado que su estimación es más un arte que una ciencia.

En este capítulo describiremos la inferencia estadística de la covarianza adoptan do un modelo en el cual la función covarianza será definida a través de operadores linea les llamados incrementos generalizados.

La estimación de variables asociadas a fenómenos no estacionarios empleando métodos lineales presenta la ventaja sobre los métodos no-lineales de requerir menos suposiciones teóricas, lo cual se traduce en un número menor de parámetros a estimar con las consecuentes facilidades de adaptación a las computadoras digitales. IV.1) Incrementos generalizados

Sea Z(\overline{x}) una variable regionalizada y $\bigvee (\overline{h})$ su semivariograma. Si Z(\overline{x}) represent ta un fenómeno estacionario entonces el valor esperado de Z(\overline{x}) será constante en toda localización, esto es: $E[Z(\overline{x})] = m$, $\forall \overline{x}$. El semivariograma será función de \overline{h} dada por,

$$\sqrt[3]{(\overline{h})} = \frac{1}{2} E \left[Z(\overline{x} + \overline{h}) - Z(\overline{x}) \right]^{2}$$

y podrá estimarse sin sesgo a través de la ecuación (2.7).

En el caso de fenómenos no estacionarios, en los cuales la hipótesis intrínseca común no es suficiente, la idea es emplear diferencias de orden más alto de tal manera que ya no únicamente constantes, sino polinomios de grado variable que representen un drift, puedan ser filtrados. Por simplicidad representaremos la forma del drift mediante modelos polinomiales.

Considérese el caso de datos igualmente espaciados en una línea. La función incremento se definirá entonces como:

$$\begin{array}{l} \Delta \ Zn = Z_{n+1} - Zn \\ \text{Similarmente,} \\ \Delta^{2} \ Zn = \Delta \ (\Delta \ Zn) \\ = \Delta \ Z_{n+1} - \Delta \ Zn = (Z_{n+2} - Z_{n+1}) - (Z_{n+1} - Zn) \\ = Z_{n+2} - 2Z_{n+1} + Z_{n} \\ \Delta^{3} \ Z_{n} = Z_{n+3} - 3Z_{n+2} + 3Z_{n+1} - Z_{n} \end{array}$$

Una propiedad importante de este operador de diferencia es la de filtrar polinomios P(x) de grado n,
$$\Delta^{n+1} P(x) = 0$$

Esta propiedad se empleará para filtrar drifts cuando éstos estén presentes en un fenómeno. Supóngase, por ejemplo, un fenómeno unidimensional Z(x) con drift lineal, o sea: $E[Z(x)] = a_0 + a_1 x$

La diferencia de las dos diferencias de primer orden(tal que $x_2 - x_1 = x_1 - x_0$) es: [$Z(x_2) - Z(x_1)$] - [$Z(x_1) - Z(x_0)$]

con esperanza igual a cero,

$$E[Z(x_2) - Z(x_1) - Z(x_1) + Z(x_0)] = a_0 + a_1 x_2 - a_0 - a_1 x_1 - a_0 - a_1 x_1 + a_0 + a_1 x_0$$
$$= a_1 \{ (x_2 - x_1) - (x_1 - x_0) \} = 0$$

El fenómeno representado por la diferencia de segundo orden,

 $Z(x_2) - 2Z(x_1) - Z(x_0)$ tiene ahora una media igual a cero(filtra drifts de orden 1).

En el caso de pares de puntos espaciados irregularmente en una, dos o tres dimensiones, la analogía de una diferencia finita será un incremento generalizado representado por una combinación lineal de $Z(\bar{x})$ la cual tiene la propiedad de filtrar polinomios en las coordenadas de un punto dado \bar{x} . La función aleatoria $Z(\bar{x})$ que interviene en esta combinación lineal se denomina función aleatoria intrínseca de orden k (abreviada F. A. I. K) donde k es el grado del polinomio filtrado. En general un incremento de orden k está -- asociado a una diferencia de orden k+1.

Al considerar únicamente incrementos, en realidad estamos trabajando con una – clase equivalente de funciones aleatorias $Z(\bar{x})$, es decir, con la clase de funciones que generan los mismos incrementos. Por ejemplo, en el caso unidimensional la ecuación $\Delta^{K} Z_{i} = f(x)$ determina $Z(\bar{x})$ solamente hasta un polinomio arbitrario de grado k-1. Definición. – Sea Z(\bar{x}) una función aleatoria en IRⁿ donde \bar{x} denota un punto con

coordenadas en una, dos o tres dimensiones. Una combinación lineal de m valores

$$\sum_{i=1}^{m} \lambda_i Z(\bar{\mathbf{x}}_i) \tag{4.1}$$

es un incremento generalizado de orden k de la función aleatoria $Z(\bar{x})$ si y solo si:

$$\sum_{i=1}^{M} \lambda_{i} f^{\mathcal{Q}}(\bar{x}_{i}) = 0$$
(4.2)

para todos los monomios f^{*} de grado menor o igual a k. En el caso bidimensional por ejem plo los monomios serán de la forma $x^p y^q$ con $0 \le p+q \le k$ y con las siguientes cond<u>i</u> ciones sobre los pesos λ_i de acuerdo al orden del incremento:

$$k = 0 \qquad \sum_{i=1}^{m} \lambda_{i} = 0$$

$$k = 1 \qquad \sum_{i=1}^{m} \lambda_{i} = 0 \qquad \sum_{i=1}^{m} \lambda_{i} \overline{x}_{i} = 0 \qquad \sum_{i=1}^{m} \lambda_{i} \overline{y}_{i} = 0$$

$$k = 2 \qquad \sum_{i=1}^{m} \lambda_{i} = 0 \qquad \sum_{i=1}^{m} \lambda_{i} \overline{x}_{i} = 0 \qquad \sum_{i=1}^{m} \lambda_{i} \overline{y}_{i} = 0$$

$$\sum_{i=1}^{m} \lambda_{i} \overline{x}_{i} \overline{y}_{i} = 0 \qquad \sum_{i=1}^{m} \lambda_{i} \overline{x}_{i}^{2} = 0 \qquad \sum_{i=1}^{m} \lambda_{i} \overline{y}_{i}^{2} = 0$$

Ejemplos:

En el plano la cantidad:

Z(-1, 0) + Z(1, 0) + Z(0, -1) + Z(0, 1) - 4Z(0, 0) es un incremento de orden 1.

Los pesos ; satisfacen;

 $\sum_{i=1}^{5} \lambda_{i} = 0, \sum_{i=1}^{5} \lambda_{i} \overline{x}_{i} = 0, \quad \sum_{i=1}^{5} \lambda_{i} \overline{y}_{i} = 0, \quad \sum_{i=1}^{5} \lambda_{i} \overline{x}_{i} \overline{y}_{i} = 0$ pero $\sum_{i=1}^{5} \lambda_{i} \overline{x}_{i}^{2} \neq 0 \quad y \quad \sum_{i=1}^{5} \lambda_{i} \overline{y}_{i}^{2} \neq 0, \text{ por lo tanto, no es un incremento de}$

orden 2.

En una dimensión, la diferencia de segundo orden $x_{i+1} - 2x_i + x_{i-1}$ es un incremento de orden 1 ya que satisface

$$\sum \lambda_{j} = 0 : \quad \lambda_{i+1} + \lambda_{i} + \lambda_{i-1} = 1 + (-2) + 1 = 0$$

y
$$\sum \lambda_{j} \times_{j} = 0 : \quad 1(i+1) - 2(i) - 1(i-1) = 0$$

El propósito de tomar incrementos generalizados es producir una variable regionalizada estacionaria a partir de una variable con drift. Esta es la analogía n-dimensional del enfoque que se emplea actualmente para el análisis de series de tiempo no-estacio narias(Box y Jenkins, 1969) en el cual se calculan diferencias finitas sucesivas hasta -que se obtienen cantidades aproximadamente estacionarias.

IV. 2) Función covarianza generalizada

Sea $Z(\bar{x})$ una función aleatoria no-estacionaria compuesta de una parte aleatoria estacionaria $Y(\bar{x})$ y de una parte determinística $m(\bar{x})$ que puede expandirse como:

$$m(\bar{x}) = \sum_{l=0}^{n} a_{l} f^{l}(\bar{x})$$
(4.3)

es decir,

$$Z(\bar{\mathbf{x}}) = Y(\bar{\mathbf{x}}) + \sum_{\underline{\mathbf{x}}=0}^{N} a_{\underline{\mathbf{x}}} f^{\underline{\mathbf{x}}}(\bar{\mathbf{x}})$$
(4.4)

Sustituyendo ec.(4.4) en la expresión del incremento generalizado(4.1) tenemos:

$$\sum_{i=1}^{m} \lambda_{i} Z(\bar{\mathbf{x}}_{i}) = \sum_{i=1}^{m} \lambda_{i} Y(\bar{\mathbf{x}}_{i}) + \sum_{i=1}^{m} \sum_{k=0}^{n} a_{k} \lambda_{i} f^{\ell}(\bar{\mathbf{x}}_{i})$$

y por lo tanto

$$\sum_{i=1}^{m} \lambda_{i} Z(\mathbf{x}_{i}) = \sum_{i=1}^{m} \lambda_{i} Y(\mathbf{x}_{i})$$
(4.5)

ya que la restricción (4.2) impuesta sobre el incremento generalizado filtra el --

término
$$\sum_{i=1}^{m} \sum_{k=0}^{n} a_{i} \lambda_{i} f^{2}(\overline{x}_{i}).$$

La igualdad (4.5) nos permite definir la covarianza generalizada a través de la -varianza del incremento generalizado de $Z(\bar{x})$ en lugar de hacerlo a través del incremen to generalizado de $Y(\overline{x})$ (como sería lo normal), ya que los residuales son desconoci--

dos. De esta forma tenemos:

$$\operatorname{var}\left[\sum_{i=1}^{m} \lambda_{i} Z(\bar{x}_{i})\right] = \sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_{i} \lambda_{i} \left(\bar{h}\right)$$

$$(4.6)$$

donde $h = \bar{x}_i - \bar{x}_i$, $Z(\bar{x}_i) \vee Z(\bar{x}_i)$ son correlacionables \vee K(h) es la covarianza

generalizada.

Cuando la función aléatoria intrínseca es de orden cero las diferencias asociadas son de orden 1 y filtran constantes. Por otra parte, el semivariograma es una varia<u>n</u> za de incrementos(diferencia de orden 1) y si $E L Z(\bar{x})] = m$ entonces las diferencias $Z(\bar{x} + \bar{h}) - Z(\bar{x})$ tienen esperanza igual a cero, es decir, también filtran constantes. Por lo tanto cuando k=0 la covarianza generalizada equivale al semivariograma pero con signo contrario,

$$K(|\bar{x}_{i} - \bar{x}_{i}|) = - \mathcal{Y}(|\bar{x}_{i} - \bar{x}_{i}|), \quad \text{si } k=0$$

$$(4.7)$$

IV. 3) Funciones aleatorias intrínsecas

Una función aleatoria intrínseca de orden k es una función aleatoria cuyos in-crementos de orden k-ésimo son estacionarios. En otras palabras, para todas las series de pesos λ_i que satisfagan,

 $\sum_{i=1}^{m} \lambda_i f^{\lambda}(\overline{x}_i) = 0 \qquad \forall \quad \ell = 0, 1, \dots n$

la función aleatoria $\sum_{i=1}^{m} \lambda_i Z(\bar{x}_i + \bar{h})$ tiene una media y una varianza que no depende de \bar{x}_i .

Se puede observar que si reemplazamos $Z(\bar{x})$ por $Z(\bar{x}) + \sum_{l=0}^{n} a_{l} f^{l}(x)$, esto no -cambia el valor de $\sum \lambda_{i} Z(\bar{x}_{i} + \bar{h})$ ya sea que los $a_{l's}$ sean aleatorios o no.

Demostración:

$$\sum_{i=1}^{m} \lambda_{i} \left[Z(\overline{x}_{i} + \overline{h}) + \sum_{l=0}^{n} a_{l} f^{l}(\overline{x}_{i} + \overline{h}) \right] = \sum_{i=1}^{m} \lambda_{i} Z(\overline{x}_{i} + \overline{h}) + \sum_{l=0}^{n} a_{l} \sum_{i=1}^{m} \lambda_{i} f^{l}(\overline{x}_{i} + \overline{h})$$

Pero la familia de polinomios es cerrada bajo traslación y por lo tanto existen fun

$$B_{s}^{\ell}(\overline{h}) \text{ tales que:}$$

$$E^{\ell}(\overline{x}_{i} + \overline{h}) = \sum_{s}^{K} B_{s}^{\ell}(\overline{h}) f^{s}(\overline{x}_{i})$$

por lo tanto,

$$\sum_{i=1}^{m} \lambda_{i} f^{\mathcal{A}}(\overline{x}_{i} + \overline{h}) = \sum_{i=1}^{m} \lambda_{i} \sum_{s=0}^{n} B_{s}^{\mathcal{A}}(\overline{h}) f^{s}(\overline{x}_{i})$$
$$= \sum_{s=0}^{n} B_{s}^{\mathcal{A}}(\overline{h}) \sum_{i=1}^{m} \lambda_{i} f^{s}(\overline{x}_{i}) = 0$$

ya que los pesos λ_i , s satisfacen la ecuación (4.2).

Esto demuestra que cuando trabajamos con incrementos, más que una función alea toria particular estamos considerando una clase completa equivalente de funciones iguales a $Z(\bar{x})$ hasta un polinomio de grado k. Esta clase equivalente es lo que llamamos una -función aleatoria intrínseca de orden k y su covarianza es la covarianza generalizada definida como:

$$\operatorname{var}\left[\sum_{i=1}^{m} \lambda_{i} Z(\overline{x}_{i})\right] = \sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_{i} \lambda_{j} K \left(|\overline{x}_{i} - \overline{x}_{i}|\right)$$

IV. 4) Hipótesis intrínseca generalizada

Se ha visto que a partir de un proceso no estacionario podemos producir otro esta cionario obteniendo los incrementos de orden k-ésimo. Después, con la covarianza gene ralizada podemos estimar la covarianza del proceso estacionario. Sin embargo, el proble ma original es la estimación de un proceso no estacionario.

Esta aparente contradicción se resuelve si recordamos que de acuerdo a las condiciones de insesgamiento del kriging universal, los coeficientes del estimador de $Z(\overline{x_0})$:

$$Z * (\bar{x}_{0}) = \sum_{i=1}^{m} \lambda_{i} Z(\bar{x}_{i})$$
satisfacen
$$\sum_{i=1}^{m} \lambda_{i} = 1$$
(4.8)

$$y \sum_{i=1}^{m} \lambda_i f^{\hat{x}}(\bar{x}_i) = f^{\hat{x}}(\bar{x}_o)$$
(4.9)

Consideremos ahora el error de kriging $Z^{*}(\bar{x}_{0}) - Z(\bar{x}_{0})$ y definamos el coefi-ciente de $Z(\bar{x}_{0})$ como:

$$\lambda_{m+1} = -1$$

entonces

$$Z^{*}(\overline{x}_{0}) - Z(\overline{x}_{0}) = \sum_{\substack{i=1\\i=1\\j\in L}}^{m} \lambda_{i} Z(\overline{x}_{i}) + (-1)Z(\overline{x}_{0})$$

$$= \sum_{\substack{j\in L\\j\in L}}^{m+L} \lambda_{i} Z(\overline{x}_{i})$$
(4.10)

y se observa que para la serie $[\lambda_i, -1] = [\lambda_1, \lambda_2, \dots -1]$ se cumple que: $\sum_{i=1}^{m+1} \lambda_i = 0$

Por otro lado, la condición de insesgamiento (4.9) puede escribirse de la siguien

te manera:

$$\sum_{i=1}^{m+1} \lambda_i f^{\mathfrak{L}}(\overline{x}_i) = 0$$

Por lo tanto, de acuerdo a las expresiones (4.1) y (4.2) el error de kriging es un incremento generalizado de orden k.

De esta forma la hipótesis mínima requerida para la inferencia estadística es la – estacionariedad de tales incrementos de orden k, es decir, que los momentos de primero – y segundo orden se conserven bajo traslación. Lo anterior constituye la hipótesis intrínseca generalizada.

IV. 5) Modelos de covarianza generalizada

Para que una función pueda representar una covarianza generalizada deberá satisfacer la condición matemática que asegure que las varianzas de los incrementos sean siempre positivas. Dicha condición es que $K(\overline{h})$ sea positivamente definida y se expresa de la siguiente manera: Los modelos de covarianza generalizada más convenientes para los problema: prác ticos son de tipo polinomial. Matheron ha demostrado que en una covarianza polinomial los términos con potencias pares no importan(se anulan al realizar la sumatoria ---- $\sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_i \lambda_j K(\bar{x}_i - \bar{x}_j)$). La demostración es difícil y solamente se esboza a continuación(Matheron, 1971):

Primero se muestra que una función continua y simétrica $\mathscr{Q}(\bar{x}, \bar{y})$ en $\mathbb{R}^n \times \mathbb{R}^n$ (es decir, tal que $\mathscr{Q}(\bar{x}, \bar{y}) = \mathscr{Q}(\bar{y}, \bar{x})$) satisface:

 $\sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_{i} \lambda_{j} \varphi(\bar{x}_{i}, \bar{y}_{i}) = 0 \qquad \forall \quad \lambda_{i} \text{ tal que } \sum_{i=1}^{m} \lambda_{i} f^{\hat{\lambda}}(\bar{x}_{i}) = 0 \text{ si y solo si}$

es de la forma:

$$\emptyset(\bar{\mathbf{x}}, \bar{\mathbf{y}}) = C_r(\bar{\mathbf{x}})\mathbf{y}^r + C_r(\bar{\mathbf{y}})\mathbf{x}^r + T_{rs}\mathbf{x}^r\mathbf{y}^s$$

para algunas constantes simétricas T_{rs} y funciones continuas C.

Luego queda el problema de caracterizar aquellas funciones dentro de esta clase que son de la forma K($\bar{x} - \bar{y}$).

Como las funciones x^r son monomios hasta de grado k, es claro que diferenciando $\mathcal{O}(\overline{x} - \overline{y})$ k+1 veces en \overline{x} y k+1 veces en \overline{y} , dará como resultado cero.

Ahora, si $\overline{h} = \overline{x} - \overline{y}$:

$$\frac{d^{2k+2}}{dh} = (-1)^{k+1} \frac{\partial^{k+1}}{\partial x^{k+1}} \frac{\partial^{k+1}}{\partial y^{k+1}} = K(\overline{x} - \overline{y})$$

de tal modo que $K(\overline{h})$ tiene todas sus derivadas de orden 2k+2 iguales a cero. Por lo tanto $K(\overline{h})$ debe ser un polinomio de grado 2k+1, es decir, con términos elevados a potencias – impares únicamente.

Las covarianzas generalizadas polinomiales son isotrópicas pues $K(\overline{h})$ depende solo del modulo 1h1 del vector \overline{h} . Su forma depende del orden del incremento como se mues tra en la tabla 1 y consiste de todas las posibles combinaciones de términos. Cada término toma en cuenta cierto aspecto del fenómeno espacial: $C_1|\overline{h}|$ para una componente continua pero no diferenciable(constante); $C_2|\overline{h}|^3$ para una componente diferenciable una --vez(lineal); $C_3|\overline{h}|^5$ para una componente dos veces diferenciable(cuadrática). Si es nece sario se añade a $K(\overline{h})$ un término de efecto pepita $C_0\delta$ para tomar en cuenta errores -de medición.

TABLA 1

Modelos polinomiales de covarianzas generalizadas

Drift	Orden k	Modelos
Constante	0	$K(h) = Co\delta + C_1 \overline{lh}$
Lineal	1	$K(h) = C_0 \delta + C_1 \bar{h} + C_2 \bar{h} ^3$
Cuadrático	2	$K(h) = C_0 \delta + C_1 \overline{h} + C_2 \overline{h}^3 + C_3 \overline{h}^5$
Restricciones: $C_0 \ge 0$, $C_1 \le 0$, $C_2 \ge (-10/3) \sqrt{C_1 C_3}$, $C_3 \le 0$		

Estos modelos de covarianzas polinomiales pueden adaptarse a la mayoría de los – problemas y además al depender linealmente de sus coeficientes permiten que la inferencia estadística sea más sencilla. Por medio de un procedimiento automático los coeficientes Co, C_1 , C_2 y C_3 se obtienen por regresión de las varianzas experimentales de los incrementos –

de orden k sobre sus valores teóricos, expresados linealmente como una función de esos coeficientes. Esto se verá con más detalle en la parte correspondiente a la identifica -ción automática de la covarianza generalizada.

IV. 6) Estimación puntual

El problema es estimar $Z(\bar{x}_0)$ como una combinación lineal de $Z(\bar{x}_i)$, i=1,2,..m. Se asume el modelo de una función aleatoria $Z(\bar{x})$ compuesta de una parte aleatoria – $Y(\bar{x})$ y de una parte determinística m(\bar{x}),

$$Z(\overline{x}) = Y(\overline{x}) + m(\overline{x})$$

y se hacen las siguientes hipótesis básicas:

1) E
$$[Y(\overline{x})] = 0$$

2) $m(\overline{x}) = \sum_{k=0}^{n} a_{k} f^{k}(\overline{x})$

Como en el kriging universal debe cumplirse que:

i) El estimador sea insesgado

ii) El estimador tenga varianza mínima

Sea Q el error de estimación:

$$Q = \sum_{i=1}^{m} \lambda_i Z(\bar{x}_i) - Z(\bar{x}_o)$$
(4.11)

La condición de que el estimador sea insesgado implica que:

$$E[Z^{*}(\bar{x}_{o}) - Z(\bar{x}_{o})] = E[Q] = 0$$
 (4.12)

$$E[Q] = \sum_{i=1}^{m} \lambda_{i} E[Z(\overline{x}_{i})] - E[Z(\overline{x}_{o})]$$
(4.13)

pero,

$$E[Z(\overline{x}_{i})] = E[Y(\overline{x}_{i})] + E[m(\overline{x}_{i})]$$
$$= 0 + m(\overline{x}_{i}) = \sum_{\substack{n \in O}}^{n} \sigma_{\underline{n}} f^{\underline{n}}(\overline{x}_{i})$$

similarmente

$$[Z(\overline{x}_{o})] = \sum_{l=0}^{n} a_{l} f^{l}(\overline{x}_{o})$$

Sustituyendo en ec.(4.13) se tiene:

Ε

$$E[Q] = \sum_{i=1}^{m} \sum_{l=0}^{n} \lambda_{i} a_{l} f^{l}(\overline{x}_{i}) - \sum_{l=0}^{n} a_{l} f^{l}(\overline{x}_{o}) = 0$$

de donde
$$\sum_{i=1}^{m} \lambda_{i} a_{l} f^{l}(\overline{x}_{i}) = a_{l} f^{l}(\overline{x}_{o})$$

por lo tanto una condición suficiente es que:

$$\sum_{i=1}^{m} \lambda_{i} f^{2}(\bar{x}_{i}) = f^{2}(\bar{x}_{0}) , \quad 0 \leq l \leq n$$

$$(4.14)$$

que es la misma condición de insesgamiento del kriging universal.

Por otra parte, la varianza del error del kriging es: *

$$\operatorname{var} \left[\mathbb{Z}^{*}(\overline{\mathbf{x}}_{o}) - \mathbb{Z}(\overline{\mathbf{x}}_{o}) \right] = \mathbb{E} \left[\mathbb{Z}^{*}(\overline{\mathbf{x}}_{o}) - \mathbb{Z}(\overline{\mathbf{x}}_{o}) \right]^{2} - \left[\mathbb{E} \left[\mathbb{Z}^{*}(\overline{\mathbf{x}}_{o}) - \mathbb{Z}(\overline{\mathbf{x}}_{o}) \right] \right]^{2}$$

pero de acuerdo a la ecuación (4.12) el segundo término del lado derecho de la igualdad

vale cero.

$$\therefore \text{ var } [Z^*(\bar{x}_0) - Z(\bar{x}_0)] = E[\bar{Q}]$$
(4.15)

Desarrollando Q tenemos:

$$Q = \left[\sum_{i=1}^{m} \lambda_{i} \left[Y(\overline{x}_{i}) + \sum_{\lambda=0}^{n} a_{\mu} f^{\lambda}(\overline{x}_{i})\right] - Y(\overline{x}_{o}) - \sum_{\lambda=0}^{n} a_{\lambda} f^{\lambda}(\overline{x}_{o})\right]$$

$$Q = \sum_{i=1}^{m} \lambda_{i} Y(\overline{x}_{i}) - Y(\overline{x}_{o})$$

$$Q^{2} = \left[\sum_{i=1}^{m} \lambda_{i} Y(\overline{x}_{i})\right]^{2} - 2Y(\overline{x}_{o}) \sum_{i=1}^{m} \lambda_{i} Y(\overline{x}_{i}) + \left[Y(\overline{x}_{o})\right]^{2}$$

$$E[Q]^{2} = \sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_{i} \lambda_{j} E[Y(\overline{x}_{i}) Y(\overline{x}_{j})] - 2 \sum_{i=1}^{m} \lambda_{i} E[Y(\overline{x}_{i}) Y(\overline{x}_{o})] + E[Y(\overline{x}_{o})^{2}]$$

Sea $K_{ij} = E \left[Y(\bar{x}_i) Y(\bar{x}_j) \right]$ la función covarianza generalizada, entonces tenemos:

$$E[Q]^{2} = \operatorname{var} [Z^{*}(\overline{x}_{o}) - Z(\overline{x}_{o})]$$
$$= \sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_{i} \lambda_{j} K_{ij} - 2 \sum_{i=1}^{m} \lambda_{i} K_{i,o} + K_{o,o} \qquad (4.16)$$

Esta varianza del error de kriging se minimiza bajo las condiciones de insesgamiento --(4.14) empleando el método de multiplicadores de Lagrange con lo cual se llega al sistema de ecuaciones:

$$\sum_{i=1}^{m} \lambda_{i} K_{ij} + \sum_{l=0}^{n} u_{l} f^{l}(\overline{x}_{i}) = K_{0,i} , \quad i = 1, 2, ..., m$$
 (4.17)

$$\sum_{i=1}^{m} \lambda_{i} f^{\hat{X}}(\bar{x}_{i}) = f^{\hat{X}}(\bar{x}_{0}) \qquad \hat{X} = 0, 1, ..., n \qquad (4.18)$$

o en forma matricial,

$$\begin{bmatrix} \kappa_{1,1} & \kappa_{1,2} & \dots & \kappa_{1,m} & 1 & f_1^1 & \dots & f_1^n \\ \kappa_{2,1} & \kappa_{2,2} & \dots & \kappa_{2,m} & 1 & f_2^1 & \dots & f_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\ \ddots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \ddots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \kappa_{m,1} & \kappa_{m,2} & \kappa_{m,m} & 1 & f_m^1 & \dots & f_m^n \\ 1 & 1 & \dots & 1 & 0 & \dots & 0 \\ f_1^1 & f_2^1 & \dots & f_m^1 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots & \dots & 0 \\ f_1^n & \vdots & \dots & f_m^n & 0 & \dots & 0 \\ f_1^n & \vdots & \dots & f_m^n & 0 & \dots & 0 \\ f_1^n & \vdots & \dots & f_m^n & 0 & \dots & 0 \\ \end{bmatrix} \begin{bmatrix} \kappa_{0,1} \\ \lambda_2 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ k_{0,2} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ k_{0,m} \end{bmatrix} = \begin{bmatrix} \kappa_{0,m} \\ 1 \\ f_0^1 \\ \vdots \\ \vdots \\ f_0^n \end{bmatrix}$$

La varianza de estimación viene dada por:

$$\widehat{U_{\kappa}}^{2} = \operatorname{var} \left[Z^{*}(\overline{x}_{0}) - Z(\overline{x}_{0}) \right] = \sum_{i=1}^{M} \lambda_{i} K_{0,i} + \sum_{l=0}^{N} U_{l} f^{l}(\overline{x}_{0})$$
(4.19)

IV. 7) Identificación automática de la función covarianza generalizada en dos

dimensiones

Ya se ha visto que la función covarianza generalizada está definida por la ec.

(4.6):

var
$$\left[\sum_{i=L}^{m} \lambda_{i} \quad Z(\bar{x}_{i})\right] = \sum_{i=L}^{m} \sum_{j=L}^{m} \lambda_{i} \lambda_{j} \quad K_{ij}(\bar{h})$$

donde $\lambda_i Z(\bar{x}_i)$ es un incremento generalizado.

Por otro lado, se ha demostrado(ver ec. 4.10) que el error de kriging es un in-cremento generalizado y que se cumple la siguiente igualdad (ec. 4.15):

var [error de kriging] = E [(error de kriging)²]

Tomando en cuenta todo lo anterior podemos escribir:

$$E\left[\left(\sum_{i=1}^{m}\lambda_{i}Z(\bar{x}_{i})\right)^{2}\right] = \sum_{i=1}^{m}\sum_{j=1}^{m}\lambda_{i}\lambda_{j} K_{ij} \qquad (4.20)$$

Esta ecuación puede plantearse en términos de una regresión. El hecho de consid<u>e</u> rar covarianzas polinomiales simplifica el problema de la regresión ya que se reduce a la solución de un sistema de ecuaciones lineales.

Sea

$$R = \sum \left[\left[\sum \lambda_{i} Z(\bar{x}_{i}) \right]^{2} - \sum \sum \lambda_{i} \lambda_{i} \kappa_{ij} \right]^{2}$$
(4.21)

donde la suma se toma sobre configuraciones de puntos que satisfacen

$$\sum_{i=1}^{m} \lambda_{i} x_{i}^{k} y_{i}^{q} = 0 , \qquad \ \ \, \& +q \leq k$$

Entonces el mejor modelo de covarianza generalizada es aquel con coeficientes – escogidos para minimizar R. Una manera de hacer esto es empleando mínimos cuadrados, sin embargo, una comparación de la ecuación (4.21) con el sistema de kriging nos propor

cionará otras relaciones útiles. Veamos que es lo que pasa si un punto de la serie de da tos, digamos $Z(\overline{x}_0)$ se remueve del conjunto y luego se estima por kriging a partir de -los puntos circundantes.

Sean $Z^*(\bar{x}_0)$ el valor estimado de $Z(\bar{x}_0) \neq \overline{\lambda}_i$ los pesos calculados por kriging correspondientes a los puntos dato que rodean al punto omitido, entonces:

$$Z^{*}(\bar{x}_{0}) = \sum_{i=1}^{m} \bar{\lambda}_{i} Z(\bar{x}_{i})$$

y el sistema de kriging para obtener los $\overline{\lambda}_{i^{1}s}$ es,

$$\sum_{i=1}^{m} \overline{\lambda}_{i} K_{ij} + \sum_{i=0}^{n} u_{\ell} f^{\ell}(\overline{x}_{i}) = K_{0,j} \qquad j = 1, 2, \dots m$$

$$\sum_{i=1}^{m} \overline{\lambda}_{i} f^{\ell}(\overline{x}_{i}) = f^{\ell}(\overline{x}_{0}) \qquad \qquad \ell \leq n$$

Como se demostró anteriormente, el error de kriging

$$Q = \sum_{i=L}^{m} \overline{\lambda}_{i} Z(\overline{x}_{i}) - Z(\overline{x}_{o}) = \sum_{i=L}^{m+L} \overline{\lambda}_{i} Z(\overline{x}_{i})$$
(4.11)

es un incremento generalizado.

Por otra parte, de acuerdo a la ecuación (4.15) el error de estimación es:

$$\operatorname{var} \left[\sum_{i=1}^{m} \overline{\lambda}_{i} Z(\overline{x}_{i}) - Z(\overline{x}_{o}) \right] = E \left[\sum_{i=1}^{m} \overline{\lambda}_{i} Z(\overline{x}_{i}) - Z(\overline{x}_{o}) \right]^{2}$$
$$= E \left[\sum_{i=1}^{m} \sum_{j=1}^{m} \overline{\lambda}_{i} \overline{\lambda}_{j} Z(\overline{x}_{i}) Z(\overline{x}_{i}) - 2 \sum_{i=1}^{m} \overline{\lambda}_{i} Z(\overline{x}_{i}) Z(\overline{x}_{o}) \right]$$
$$+ Z(\overline{x}_{o}) Z(\overline{x}_{o}) \right]$$
$$= \sum_{i=1}^{m} \sum_{j=1}^{m} \overline{\lambda}_{i} \overline{\lambda}_{j} K_{ij} - 2 \sum_{i=1}^{m} \overline{\lambda}_{i} K_{i,o} + K_{o,o}$$

y escribiéndolo en forma compacta:

$$\operatorname{var}\left[\sum_{i=1}^{m} \overline{\lambda}_{i} Z(\overline{x}_{i}) - Z(\overline{x}_{o})\right] = \sum_{i=0}^{m} \sum_{j=0}^{m} \lambda_{i} \lambda_{j} \kappa_{ij} \qquad (4.22)$$

De este modo, a partir de ecs. (4.11) y (4.22) la ecuación (4.21) puede inter-

pretarse como:

$$R = \sum [(error de kriging)^2 - error teórico de estimación]^2$$

De acuerdo a lo anterior puede formularse un procedimiento de regresión iterativo con los siguientes pasos:

1) Se escoge un primer modelo arbitrario de covarianza generalizada(por ejemplo K(h) = -h).

2) Algunos puntos representativos del área se quitan temporalmente, uno a la vez y son estimados por kriging a partir de los puntos adyacentes.

3) Los pesos λ_i calculados se sustituyen en la ecuación(4.21).

4) Se escogen todos los modelos de covarianza generalizada apropiados al fenómeno. Por ejemplo, si el drift es lineal se proponen los modelos:

$$K(h) = C_0 \delta + C_2 \overline{h} \overline{h}^3$$
$$K(h) = C_1 \overline{h} + C_2 \overline{h} \overline{h}^3$$
$$K(h) = C_2 \overline{h} \overline{h}^3$$

Para cada uno de los modelos se calcularán por separado los coeficientes de la covarianza que minimizan R.

5) Se desechan los modelos de covarianza generalizada cuyos coeficientes no cum plan con la restricciones impuestas sobre los mismos y para los restantes modelos se calcu la el valor de R. El modelo de covarianza generalizada que finalmente se escoge es el que minimiza el error cuadrótico medio (ECM),

$$ECM = \frac{1}{N} \sum_{i=1}^{N} [Z^{*}(\bar{x}_{0})_{i} - Z(\bar{x}_{0})_{i}]^{2}$$

y que además hace que el error cuadrático medio estandarizado(ECS) tienda a uno,

$$ECS = \frac{1}{N} \sum_{i=1}^{N} \frac{\left[Z^{*}(\overline{x}_{0})_{i} - Z(\overline{x}_{0})_{i}\right]^{2}}{\int_{K}(\overline{x}_{0})_{i}} \longrightarrow 1$$

El modelo así escogido se sustituye en el sistema de kriging y el proceso se --

repite.

Para llevar a cabo el punto 4 es necesario conocer el orden del drift; asimismo es conveniente que el primer modelo de covarianza generalizada corresponda al orden – del drift del fenómeno pues de este modo la convergencia al modelo final es más rápida. Es por ello que previamente al proceso iterativo, ciertos paquetes de kriging(BLUEPACK) llevan a cabo la identificación del orden del drift por medio del siguiente procedimiento:

- Un subgrupo seleccionado de datos se divide en dos grupos y se predice cada punto dato a partir de los datos del otro grupo suponiendo primero un drift constante, luego uno lineal y finalmente uno cuadrático. Para cada grupo se obtiene el error cuadrá tico medio con cada uno de los drifts y se ordenan de acuerdo a la magnitud absoluta de dicho error. El orden del drift que produce el menor error en promedio sobre todos los puntos dato se considera como el más probable. Debe notarse que en esta etapa de la -identificación del drift la covarianza generalizada se desconoce y los estimadores mencionados se calculan simplemente por mínimos cuadrados.

El desarrollo completo del sistema de ecuaciones lineales de regresión para el cálculo de los coeficientes de los modelos de covarianza generalizada se expone en el apé<u>n</u> dice 1.

CAPITULO V

KRIGING Y OTROS METODOS DE INTERPOLACION

En este capítulo se discutirán brevemente los métodos de interpolación más em-pleados en Geofísica, varios de los cuales, por otra parte, son de uso general en Ciencias de la Tierra. Asimismo, se señalarán algunas diferencias importantes entre estos métodos y el kriging.

V. 1) Panorama general de la configuración

La configuración de datos geológicos y geofísicos puede dividirse en dos partes – fundamentales: la interpolación de los datos irregularmente distribuidos para generar una malla regular "suficientemente" cerrada y en segundo lugar la configuración de los datos de la malla.

La configuración puede ser manual o automática, en este último caso los algorit--mos utilizados para localizar los contornos siguen una lógica más o menos similar y más --bien el factor determinante en la calidad del mapa obtenido es el método de interpolación utilizado para crear la malla.

Se han publicado muchos artículos discutiendo los diferentes métodos de interpola ción de datos bidimensionales en Geofísica. Entre las diferentes clasificaciones propuestas se distinguen las siguientes: métodos exactos e inexactos(Crain y Bhattacharyya, 1967); superficies matemáticas y superficies numéricas(Crain, 1970); métodos determinísticos y – métodos estocásticos(Bolondi, Rocca y Zanoletti, 1975); etc. En general no puede hacerse una clasificación rigurosa pues algunos métodos participan de más de una de esas clasificacianes. Por esta razón y en interés de la Geofísica se hablará en cambio de los métodos empleados en la configuración de campos potenciales y de variables sísmicas.

\vee . 2) Interpolación de campos potenciales

Dentro de la exploración geofísica, los fenómenos que han recibido mayor atención en cuanto al desarrollo de técnicas de interpolación son el campo gravitacional terrestre y el campo geomagnético, agrupados baja la denaminacián de campos patenciales. Las -técnicas de interpolacián empleadas incluyen: ajuste de palinamios(superficies de tenden--cia), promedias pesados, ecuaciones en diferencias finitas(harmonizacián y curvatura míni ma) y splines bicúbicos.

V. 2. 1) Superficies de tendencia

Este es el métado estadística más camúnmente empleada. De hecho es una técnica derivada directamente del análisis de regresián múltiple, aplicada a variables gealágicas y geafísicas.

Este método trata de determinar una función $f(\bar{x}, \bar{y})$ que asuma valares en los puntos dato aproximadamente iguales a las valares observados G₁. Par lo tanto, en general existirá un error $\mathcal{E}(\bar{x})$ en cada punta dato dado por:

$$\boldsymbol{\varepsilon}(\overline{\mathbf{x}}_i) = f(\overline{\mathbf{x}}_i, \overline{\mathbf{y}}_i) - G_i$$

 $f(\overline{x}, \overline{y})$ se expresa como un polinomio algebraico o trigonamétrico,

$$f(\bar{x}, \bar{y}) = \sum_{j=1}^{M} \alpha_{j} R_{j}(\bar{x}, \bar{y}) + \mathcal{E}(\bar{x})$$
(5.1)

donde M es el númera total de monomios y los coeficientes a_j se escogen de tal manera que minimizen la siguiente expresión(criterio de mínimos cuadrados):

$$\sum_{i=1}^{N} \mathcal{E}(\bar{x}_{i})^{2} = \sum_{i=1}^{N} [f(\bar{x}_{i}, \bar{y}_{i}) - G_{i}]^{2}$$
(5.2)

Esto se lagra derivanda parcialmente can respecto a cada coeficiente a_j e iguala<u>n</u> do a cero la derivada. Se obtiene así el sistema de ecuaciones normales cuya solución son los a: ·

$$\sum_{j=1}^{M} a_{j} \left[\sum_{i=1}^{N} R_{k}(\bar{x}_{i}, \bar{y}_{i}) * R_{j}(\bar{x}_{i}, \bar{y}_{i}) \right] = \sum_{i=1}^{N} G_{i} R_{k}(\bar{x}_{i}, \bar{y}_{i})$$

$$k = 1, 2, \dots, M$$
(5.3)

El problema que se tiene al emplear superficies de tendencia en áreas grandes es -que al tratar de encontrar una función de interpolacián para todos los datos, se requerirá una función de orden muy alto si se desea una interpolación exacta de los puntos dato. Es to es un inconveniente, pues será necesaria mucha memoria de computadora además de los problemas de inversión de matrices grandes. Por otro lado los polinomios de grado alto tien den a ser inestables, es decir, pueden producir valores extremos sin relación verdadera -con el fenómeno verdadero(lo cual no sucede con el kriging). Es por ello que usualmente se consideran áreas pequeñas con traslape entre las mismas(para asegurar la continuidad) y se interpola en esas áreas empleando polinomios de grado bajo.

El modelo de superficies de tendencia puede expresarse como la suma de una componentes nente determinística llamada tendencia y de un término $\mathcal{E}(\bar{x})$ que incluye las componentes locales y de error:

$$Z(\bar{\mathbf{x}}) = \sum_{j=1}^{M} a_j R_j(\bar{\mathbf{x}}, \bar{\mathbf{y}}) + \mathcal{E}(\bar{\mathbf{x}})$$
(5.4)

La separación que se hace del fenómeno en tendencia y error esta determinada por -el orden del polinomio empleado para ajustar los datos. Es por ello que dicha separación es más o menos subjetiva y generalmente se hace en base a la escala de variación "grande" o "pequeña" del fenómeno.

El término $\mathcal{E}(\bar{x})$ puede considerarse como las alturas de una superficie aleatoria -e(\bar{x}, \bar{y}) sobre los valores verdaderos. Si $P_1(\bar{x}_1, \bar{y}_1)$ y $P_2(\bar{x}_2, \bar{y}_2)$ son dos puntos de observación, esto implica que:

E L e(
$$\overline{x}_1, \overline{y}_1$$
) J = 0
E [e²($\overline{x}_1, \overline{y}_1$)] = $\overline{\bigcirc}^2$ = cte.
E [e($\overline{x}_1, \overline{y}_1$) e($\overline{x}_2, \overline{y}_2$)] = 0

es decir, el error $\mathcal{E}(\overline{x})$ es una cantidad con media cero, varianza constante y sin autocorrelación(ruido blanco). Esta es la diferencia que guarda $\mathcal{E}(\overline{x})$ con el término Y(\overline{x})(residual) del kriging, ya que Y(\overline{x}) es una función con estructura propia y autocorrelacionable. Obvi<u>u</u> mente la autocorrelación es cero únicamente si P₁ y P₂ están muy alejados.

El método de superficies de tendencia no puede resolver problemas de predicción local, ya que incluso cuando no hay error en los datos, éste no restituye los valores originales. Por otra parte, este método es incapaz de dar una varianza de estimación verdadera pues -las desviaciones $Z(\bar{x}_i) - P(\bar{x}_i)$ observadas en los puntos experimentales son mucho menores que las desviaciones en los puntos desconocidos. Es decir, la diferencia entre la superficie verdadera y la superficie estimada solo puede considerarse que es mínima en los puntos dato; en contraste el kriging proporciona estimaciones que minimizan el error en las localizacio--nes donde no hay datos.

El cálculo de superficies de tendencia tiene mayor significado cuando se pretende – obtener el valor esperado(por ejemplo el regional en gravimetría). Se ha demostrado(Matheron, 1969) que el polinomio de mínimos cuadrados $P(\bar{x})$ constituye siempre un estimador insesgado del drift aunque no el óptimo, excepto cuando la parte aleatoria $Z(\bar{x}) - m(\bar{x})$ es -un ruido blanco o en términos geoestadísticos efecto pepita puro.

V.2.2) Promedios pesados

Este método se basa en la aproximación del valor en un punto por el promedio de los datos circundantes, a cada uno de los cuales se asigna un determinado peso. Obvia--mente los puntos más cercanos tendrán un mayor peso.

La función de interpolación puede escribirse como:

$$f(\bar{\mathbf{x}}, \bar{\mathbf{y}}) = \frac{\sum_{i=1}^{N} w(\bar{\mathbf{x}}_{i}, \bar{\mathbf{y}}_{i}) * G_{i}}{\sum_{i=1}^{N} w(\bar{\mathbf{x}}_{i}, \bar{\mathbf{y}}_{i})}$$
(5.5)

donde w $(\overline{x}_i, \overline{y}_i)$ es la función de peso.

Existen muchas variantes de los promedios pesados pero los más comunes son los – siguientes:

- Pesos lineales; $w_i = 1/\sqrt{x_i^2 + y_i^2}$ - Pesos cuadráticos; $w_i = 1/(x_i^2 + y_i^2)$

Una de las principales desventajas de estos métodos es que no discriminan la información redundante. Por ejemplo, considérese la figura 7 en la cual se desea estimar – el valor del punto z. Como los puntos A, B y C están equidistantes de z se les asignará un peso de 1/3 a cada uno ya que los pesos deben sumar uno. Supóngase ahora que A es en realidad un par de puntos A y A' muy cercanos. Lo lógico sería que a cada ele-mento de ese par se le asignara un peso de 1/6. Sin embargo un método de promedios pesa dos basado únicamente en la distancia asignará un peso de 1/4 a A y A' del mismo modo que a B y C. En un caso extremo, si A es una acumulación de muchos puntos, la conse =cuencia será que B y C tendrán una influencia mínima en la estimación de z.

Otra de las características de estos métodos es que la función de interpolación ob tenido estará limitada por: $G_i(min) \leq f(\bar{x}, \bar{y}) \leq G_i(máx)$ como puede deducirse de la ex

ERROR AL ASIGNAR PESOS EN LA ESTIMACION DE Z

a) y b) pesos correctos

c) y d) pesos incorrectos calculados por promedios pesados

presión general de f (\tilde{x}, \tilde{y}) , ecuación (5.5). Esto implica que se producirá un suavizamle<u>n</u> to de los datos, el cual es más marcado cuando se emplean pesos lineates.

No existe un criterio objetivo para aplicar a un caso particular una de las distintas clases de promedios pesados. En algunos casos darán buenos resultados(generalmente – donde los gradientes son suaves), pero en otros dará resultados inaceptables.Por ejemplo, en una zona con densidad de datos variable, ciertos paquetes de configuración que usan promedios pesados producen mapas con máximos y mínimos ficticios donde hay escasez – de datos(figura 8)

En cierta forma puede considerarse que el kriging es un tipo especial de promedio pesado, el cual se distingue por asignar a los datos unos pesos que dependen no solo de la distancia entre éstos y el punto a estimar, sino también de las relaciones entre cada par<u>e</u> ja de datos. El kriging elimina así la incertidumbre inherente a los otros métodos pues -identifica parcialmente la estructura espacial del fenómeno y la incorpora al algoritmo de estimación. Dicha estructura espacial será diferente no solo para variables diferentes sino incluso para la misma variable dentro de regiones diferentes.

La ventaja que tienen los promedios pesados es la rapidez con que proporcionan – resultados ya que es muy sencillo implementarlos en las computadoras y por lo mismo su – costo es muy bajo. Cuando los datos san bastante continuos y suaves dan muy buenos resultados y no hay por que utilizar métodos más complejos.

V. 2. 3) Métodos de diferencias finitas

El comportamiento espacial de los campos gravitacional y magnético puede expresarse por medio de una fórmula analítica: la solución de la ecuación de Laplace. Esto proporciona la alternativa de tratar el problema de la interpolación de campos potenciales -

FIG. 8

EJEMPLO DE MAPA CONFIGURADO CON UN PROMEDIO PESADO INADECUADO PRODUCIENDO MAXIMOS Y MINIMOS FICTICIOS desde un punto de vista determinístico.

El método de harmonización considera este enfoque al resolver la ecuación diferencial de Laplace

$$\nabla^{2} Z(x, y) = 0$$

$$\frac{\partial^{2} Z}{\partial x^{2}} + \frac{\partial^{2} Z}{\partial y^{2}} = 0$$
(5.6)

por el método de diferencias finitas.

Las condiciones de frontera vienen dadas por $Z(\overline{x}_i, \overline{y}_i) = \overline{Z}_i$. Los algoritmos para la solución de la ecuación de Laplace en una malla regular discreta son bien conocidos(Milne, 1953).

En general de tendrá:

$$Z_{p,q} = \frac{1}{4} (Z_{p+1,q} + Z_{p-1,q} + Z_{p,q+1} + Z_{p,q-1})$$
(5.7)

si Z_{p,q} no es dato.

$$Z_{p,q} = Z_{p,q} , \text{ si } Z_{p,q} \text{ es dato}$$
 (5.8)

Para obtener (5.7) se tiene que iterar el algoritmo:

$$Z_{p,q}^{(\kappa+L)} = \frac{1}{4} (Z_{p+1,q}^{(\kappa)} + Z_{p-1,q}^{(\kappa)} + Z_{p,q+1}^{(\kappa)} + Z_{p,q-1}^{(\kappa)})$$

hasta que máx | $Z_{p,q}^{(\kappa+L)} - Z_{p,q}^{(\kappa)}$ | $\leq \xi$

Se ha encontrado que es útil inicializar todos los puntos que no son dato asignándo le el valor \overline{Z} dado por $\overline{Z} = \sum_{i=1}^{n} Z_i/n$ lo cual incrementa la convergencia del algoritmo. Si $\not>$ se escoge tal que $\not>$ sea 1/100 del intervalo de contorno a usarse, se asegu rará que cualquier iteración posterior no alterará significativamente la posición de la línea de contorno.

Las características principales de este tipo de interpolación son su rapidez, bajo costo y estimaciones que nunca exceden el rango de los datos. Esto equivale a suavizar la superficie (o al menos algunos de sus puntos) dejando los datos sin modificar.

V. 3) Interpolación de variables sísmicas

En la prospección sismológica de reflexión los objetivos finales son la obtención – de un mapa de isopacas o el mapa de un horizonte geológico de interés. Estos objetivos – se alcanzan después de un largo proceso que incluye entre otras cosos esrímación de tiem pos de reflejo y de velocidades sismicas en zonas sin información, finalizando con la migración y conversión de tiempos a profundidades. La exactitud de los diferentes mapas obtenidos durante el proceso dependerá de la calidad de la información así como de la aplicación de un método adecuado de interpolación.

En cierta forma la configuración automática de variables sismicas presenta más dificultades que el caso de los campos potenciales. Por ejemplo, en un campo potencial pue de haber datos que aunque tengan un error apreciable tiene un valor bien definido; en con traste, en el caso sismico frecuentemente se tienen secciones sismicas en tiempo, donde se pasa de zonas en que puede identificarse perfectamente un reflector a otras donde desaparece y aún otras donde se distinguen dos o tres rasgos, alguno de los cuales corresponde al contacto reflector.

Otro de los factores que hacen que el manejo de las variables sismicas requiera de mayor supervisión es que los aspectos geológicos estructurales juegan un papel mucho más importante que en cualquier otro método geofísico y debe existir una estrecha corresponden cia entre la respuesta sismica y la estructura del subsuelo. Es por ello que generalmente -

el mapa interpolado automáticamente se acepta solamente como una primera aproxima--ción, sujeta al criterio geológico del intérprete.

V. 3. 1) Estimación de tiempos de reflexión y velocidades

En el caso sísmico se presentan dos variables principales a configurar: los tiempos de reflexión y las velocidades sísmicas, las cuales son de naturaleza muy distinta.

La configuración de tiempos de reflexión es realizada usualmente por el método – de promedios pesados que pueden ser de muchos tipos. Como se mencionó anteriormente – este método no puede indicar máximos y mínimos que existen pero que no se muestrea-ron. Por esta razón, otros olgoritmos consideran el echado entre puntos adyacentes(en pa res o tercias) y proyectan este echado hacia el nodo. Estos valores proyectados son luego promediados y pesados. De esta forma se producirán máximos y mínimos donde debería haberlas, pero también daría como resultado máximos y mínimos donde no hay datos. En estos programas debe decidirse la manera de usar los puntos dato en la medición del echado así como en la relación peso-distancia.

Ya sea que se emplee uno u otro programa de interpolación, existen varios hechos que deben tomarse en cuenta: donde los datos son densos el mapa final depende poco del algoritmo usado; donde los datos están dispersos, el mapa final depende críticamente del número de datos empleados al estimor el punto.

En general los métodos de promedios pesados proporcionan resultados aceptables -siempre que no existan fallas. Al gunos programas consideran la existencia de fallas y -llevan a cobo la estimación de valores en forma separada a uno y otro lado de la falla, -sin embargo los puntos interpolados cercanos a la falla serán menos confiables por la falta de datos en ciertas direcciones. En lo que respecta a los datos de velocidad, su tratamiento es diferente al dado -a los tiempos de reflexión. En un principio podría pensarse que dicho manejo es más senci llo por el carácter univaluado de las velocidades sísmicas. Sin embargo éstas últimas ge neralmente muestran gran dispersión, por lo que requieren de un suavizamiento. Además, su obtención es limitada en comparación con los datos de tiempo de reflexión.

V. 3. 2) Importancia de la velocidad en la migración

La validez del proceso de migración y la exactitud de la conversión de tiempos a profundidades dependen en un alto grado de un método apropiado de interpolación y suavi zamiento de velocidades.

La migración automática es una de las etapas finales del procesamiento de las -secciones sísmicas y se hace generalmente en áreas de geología compleja. El objetivo del proceso es eliminar los patrones de difracción causados por fallas y anticlinales, así como distorsiones causadas por echados fuertes, lográndose así una clarificación de la estructura geológica. Actualmente el proceso puede considerarse compuesta de dos pasos:

1) Migración en tiempo, consiste en mover los segmentos de reflexión a su verdadera posición horizontal, pero el eje vertical sigue siendo el tiempo de reflexión.

2) Conversión a profundidad

Previamente al suavizado de las velocidades que se usarán en la migración se desechan los análisis de velocidad que desde un punto de vista geológico o geofísico no -corresponden a las estructuras de interés. El suavizado de un perfil se hace generalmente de acuerdo al criterio del intérprete o se emplea un operador de suavizado que es un tipo de promedio pesado.

Cuando en las secciones sísmicas sin migrar, todos los reflectores de interés pueden seguirse sin ninguna dificultad no se justifica la migración en tiempo. En este caso - es mucho mejor migrar los contornos de tiempo(Hagedoorn, 1954; Hass y Viallix, 1974), es decir, se lleva a cabo una migración tridimensional. Esta clase de migración es muy --conveniente para tratar el problema de la estimación de reservas de hidrocarburos en una estructura anticlinal.

V. 3. 3) Kriging y el proceso de migración en tres dimensiones

Para llevar a cabo la migración tridimensional, es necesario un método de suaviza miento de las velocidades sísmicas en un plano. Esto puede realizarse automáticamente – por diferentes métodos(p omedios pesados, mínimos cuadrados, etc.). Sin embargo el suavizamiento que producen es hasta cierto punto arbitrario(como ya se vió en el caso de – superficies de tendencia) ya que el intérprete puede variar parámetros hasta obtener el – suavizamiento que le parezca más apropiado.

Para este problema el kriging es el único método que puede proporcionar un crit<u>e</u> rio objetivo: el grado de suavizamiento es función de la máxima varianza que puede esp<u>e</u> rarse entre dos datos cercanos. Este parámetro viene dado por el término Co de la cova-rianza generalizada de las velocidades y es particular de cada conjunto de datos.

La idea de aplicar el método de kriging al proceso de migración tridimensional – fué desarrollada originalmente por dos compañias francesas: la Sociedad Nacional del – Petróleo de Aquitania y la Compañia Francesa del Petróleo en cooperación con la ––– Escuela de Minas de París. El procedimiento general se esqueniatiza en la figura ?(de –– Hass y Viallix, 1974).

Hass y Viallix describen brevemente la aplicación de este procedimiento a un ca so de prospección sísmica marina. El tratamiento de los datos a lo largo de todo el proce so se hace utilizando la técnica del kriging normal, es decir, se considera que el fenó-

FIG. 9 PROCEDIMIENTO PARA CALCULAR UN MAPA DE CIMAS UTILIZANDO KRIGING

meno es estacionario. Es por esto que su aplicación es muy restringida ya que en muchos casos es frecuente la presencia de un drift o en su defecto no existen suficientes datos c<u>o</u> mo para considerar zonas de quasi-estacionariedad. Tomando en cuenta estas limitaciones se hace necesario el empleo de una técnica más general de estimación, esto es, que considere el caso no estacionario. Este objetivo puede satisfacerse a través de la aplicación de la teoría de las funciones aleatorias intrínsecas de orden k ya descritas con anterioridad.

El sistema de kriging empleado para calcular los gradientes de tiempo es el dado por el sistema de ecuaciones (3.13), donde las condiciones de insesgamiento son:

$$\sum_{i=T}^{j=T} y^{i} t_{j}(\underline{x}^{i}) = \frac{y^{j}}{2} [t_{j}(\underline{x}^{o})]$$

para estimar el gradiente en \overline{x} y

$$\sum_{i=1}^{m} \lambda_i f^{1}(x_i) = \frac{\partial}{\partial y} [f^{1}(\bar{x}_0)]$$

para el gradiente en \overline{y} .

Una vez obtenidos los gradientes de tiempo y la estimación de las velocidades en cada punto dato, puede llevarse a cabo la migración de los puntos dato(figura 10) es d<u>e</u> cir, el cálculo de las coordenadas (x', y') del punto migrado M' y el cálculo de los tie<u>m</u> pos verticales. Esta es una idealización del fenómeno, ya que considera trayectorias rec tas entre el punto de tiro M y el punto de reflexión R. Por supuesto el modelo puede – mejorarse de acuerdo a la información disponible, considerando por ejemplo las interfaces refractoras.

NIGRACION DE PUNTOS DE TIRO

Las coordenadas del punto migrado vienen dadas por:

$$x' = x - {V'}^{2} * T \frac{\partial T}{\partial x}$$

$$y' = y - {V'}^{2} * T \frac{\partial T}{\partial y}$$
(5.9)

y el tiempo vertical T' por:

$$T' = T\cos \alpha$$

$$\infty = \operatorname{sen}^{-1} \left[\quad \bigvee' \sqrt{\left(\frac{\partial T}{\partial x}\right)^2} + \left(\frac{\partial T}{\partial y}\right)^2 \right]$$

La deduccián de estas fórmulas puede verse en el apendice 11.

CAPITULO VI APLICACIONES

(A) Configuración de una malla de datos aeromagnéticos

En octubre de 1979, la Comisión Federal de Electricidad realizó un estudio aeromagnético en Puerto Libertad, Sonora (figura 11) como parte de un reconocimiento geofí sico del área, para determinar espesores de los sedimentos que sobreyacen el basamento igneo. Estos datos eran útiles para contribuir a la caracterización hidrogeológica de la región.

Se cubrió un área de 168 km² con siete líneas de vuelo en dirección N-S y ocho líneas en dirección E-W, separadas dos kilómetros en ambas direcciones. Las líneas se – muestrearon del registro analógico cada 200 metros y se emplearon las técnicas del kri-ging para interpolar hacia el centro de los cuadros formados por las líneas de vuelo con – el objeto de construir una retícula uniforme con nodos cada 500 metros, tal como se ilustra en la figura 12.

Algunos perfiles N-S y E-W que son característicos del área se muestran en las figuras 13 y 14. Puede observarse en casi todos ellos, una fuerte tendencia lineal. Se calcularon los semivariogramas experimentales del campo magnético en las direcciones de vuelo (figura 15). Ambos semivariogramas resultaron ser de forma regular creciente, sin efecto pepita, lo cual era de esperarse debido a la alta continuidad de la variable y sin presencia aparente de meseto. Se ajustaron los primeros 40 puntos de cada semivariogra ma a un modelo de función de potencia resultando las siguientes expresiones analíticas:

FIG. 11**0** LOCALIZACION DE LA ZONA ESTUDIADA

FIG. 12 DISTRIBUCION DE DATOS Y PUNTOS A ESTIMAR

FIG. 13 PERFILES MAGNETICOS EN DIRECCION N - S

FIG. 14 PERFILES MAGNETICOS EN DIRECCION E - W

SEMIVARIOGRAMAS EXPERIMENTALES DEL CAMPO MAGNETICO

semivariograma N-S, $\lambda(h) = 47.06 \overline{lh} 1.43$

semivariograma E-W, $\delta(h) = 53.34 \text{ lh}$

Habiendo sido fácil el ajuste de los semivariogramas se decidió emplearlos direc tamente en el sistema de kriging normal, lo que implicaba considerar el fenómeno como estacionario, a pesar de existir un drift. Con el propósito de tomar en cuenta la anisotro pía, las direcciones del segmento que une dos puntos cualesquiera fueron clasificados en tres zonas (figura 16).

FIG. 16 ZONAS CONSIDERADAS PARA ASIGNAR SEMIVARIOGRAMA SEGUN LA ORIENTACION DE h

Para todos los pares de puntos unidos por un segmento cuya dirección esta incluida en la zona N-S se obtuvo:

$$|\tan \theta| = |\frac{y_2 - y_1}{x_2 - x_1}| > \tan 60^\circ = 1.732$$

y se les aplicó el semivariograma N-S.

Similarmente, para los pares de puntos tales que:

$$|\tan \Theta| = |\frac{y_2 - y_1}{x_2 - x_1}| < \tan 30^\circ = 0.5773$$

se les aplicó el semivariograma E-W y para los pares de puntos tales que:

0.5773 <1 tan 01 <1.732

se les aplicó un promedio de los dos semivariogramas.

Puesto que el semivariograma experimental no presenta meseta, no es posible definir el radio de influencia. Es por ello que se eligió "arbitrariamente" un radio de quasi es tacionariedad de 7 unidades (1400 mts.), todo ello con propósitos de interpolación. Los resultados obtenidos fueron incongruentes, lo que obligó a reducir el radio a 5.5 unidades. Esta vez los resultados mejoraron y se obtuvo el mapa* de la figura (17). Sin embargo, la superficie aún presenta distorsiones muy bruscas que no concuerdan en los puntos de control con el fenómeno real. Esto se verificó fácilmente pues varios puntos de los perfiles magnéticos originales, que no intervinieron como datos en el cálculo, fueron estimados como nodos en la malla interpolada produciendo máximos, mínimos e inclusive dipolos – ficticios. Este efecto se hizo más notorio en la dirección de la tendencia. En la tabla 2 se muestran algunos puntos sobre o sub-estimados, así como sus coordenadas y su valor – tomado de los perfiles. Obtener el mapa de desviaciones estándar en este caso era inútil.

* En la configuración de las mallas se utilizó el paquete "SURFACE II"

the grant FI was a further was the

出版ない

行行的建設的

12-13 Bar

Renglón	Columna	Valor real	Valor estimado
29	4	-85.0	-105.7
28	5	-74.0	658.0
29	6	-70.0	-339.0
21	16	41.0	5.5
26	21	-21.0	27.0
28	25	-19.0	-430.0

Error de estimación en puntos dato

Posteriarmente, se utilizó la variante del kriging que toma en cuenta el drift o sea el kriging universal. Para ello se calcularon los semivariogramas de residuales experimentales y teóricos en las direcciones principales (N-S y E-W), de acuerdo al proceso descrito en el capítulo III (figura 6). Algunos de estos semivariogramas se muestran en las figuras 18, 19 y 20. El mejor ajuste entre los semivariogramas de residuates teóricos y experimentales se encontró para una vecindad de 7 unidades (1400 mts.) y un drift lineal (figura 21). A partir de este semivariograma de residuales se calculó la pendiente, la cual es necesaria para la estimación de las varianzas. Los datos de vecindad óptima, – orden del drift y pendiente se alimentaron al programa de kriging universal (Olea, 1971). Este programa se modificó ligeramente para ahorrar tiempo de cómputo, aprovechando el patrón geométrico regular y repetitivo de los datos. Este patrón permitió que sólo fuera – necesario calcular los pesos asociados a los puntos a estimar contenidos dentro de una de

SEMIVARIOGRAMA DE RESIDUALES PARA UN DRIFT CUADRATICO Y VECINDAD DE 1000 m, EN DIRECCION E -- W

0 100 200 m.

FIG. 20

SEMIVARIOGRAMA DE RESIDUALES PARA UN DRIFT LINEAL Y VECINDAD DE 1200 m, EN LAS DIRECCIONES N – S Y E – W

MEJOR AJUSTE OBTENIDO ENTRE EL SEMIVARIOGRAMA EXPERIMENTAL. Y EL SEMIVARIOGRAMA TEORICO

las celdas (figura 12), ya que en las demás celdos los pesos asociados serían los mismos. De este modo se obtuvo una malla interpolada de lo variable así como una malla asociada de desviaciones estándar que posteriormente se configuraron (figuras 22 y 23 respectivamen te).

El mapa de la variable que se obtuvo es considerablemente diferente al calculado -con kriging normal. Los puntos interpolados conservan el drift del fenómeno y ningún valor esta sobre o sub-estimado en demasía. Como puede observarse el mapa de desviaciones estándor es repetitivo y simétrico con respecto al centro de cada celda, donde se encuentran las desviaciones estándar mayores.

Por último se llevó a cabo lo interpoloción empleando el método de relajoción -aprovechondo que lo disposición de los datos en forma equiespaciada y formando cuadros permitía emplear un programa muy rápido. El mapa interpolado resultante (figura 24) es -prácticamente igual ol obtenido por kriging universol, excepto por la forma del máximo de 220 gommas en la parte inferior centrol del mapo y en general por la mayor suavidad de los contornos.

5 16 d 12

ET LETTER

To 2. 0 40 41

EL.

(Proventient of a second

1 Trans

11.1111111111111

的与HT和高的大口+自然的公路的开

行行和其他

3世的考虑是"我们的时候",我们就是我们的意思。

(B) Canfiguración de tiempos de reflexián y de velocidades sísmicas

El primer problema consistió en generar una malla cuadrada regular a partir de la información de tiempos de reflexión dispanible, 1681 datas (figura 25).

Tomando en cuenta algunos perfiles de tiempos de reflexión se considerá que el fenámena tenía un drift lineal y de acuerda a esta se procedió a calcular los modelos de covarianzas generalizadas. Con este propósito se quitaran 85 puntos dato (figura 26) y se estimaron por covarianzas generalizadas utililizando el modelo "arbitrario" IĥI³. En la tabla 3 se muestran los valores estimadas y los valores reales de los 85 puntos. El signi ficado de cada columna es el siguiente:

IPO : indice del punto omitido

XX : abcisa del punta omitida

YY : coordenada del punto omitido

Z(3, IPO) : valor del punto omitido, Z_o

ESTIMACION : valor del punto omitido calculado por kriging (covarianzas gene

ralizadas) utilizando el modelo inicial, $Z^* = \sum \lambda_i Z_i$

NW : número de muestras utilizadas para la estimación

ERROR : error de kriging, Zo- Z* ERROR2 : $(Z_o - Z^*)^2$ VARIANZA : varianza de estimación, G_k^2 = var [Zo- Z*]

Los primeros modelos obtenidos se presentan en la tabla 4 donde,

 $S_o = \times (\delta)$ $S_1 = Y(\overline{lh}l)$

TABLA 3 ESTIMACION DE 85 PUNTOS DATO UTILIZANDO EL MODELO DE COVARIANZA GENERALIZADA INI

	co	C1	C2	63				
	•000000	• ຍົມ ເປັນ ເປັນ ເປັນ ເປັນ ເປັນ ເປັນ ເປັນ ເປັນ	1.30060	a inaa	000			
I FO	XX	¥ Y	213,110)	ESTIMACION	NW	ERROR	EPROR 2	VAR TANZA
1	92.4220	50,5040	3.7000	3.6552	0			
21	95 • 19 3D	47 - 3130	3+8500	3.8410	10		-072010	8.853153
41	96 • 4980 '	24. 6570	3.7200	3.0172	10	-0020	-000081	-079332
61	97,2560	23.8500	3.5500	3+6270		0300	-0000008	.045459
	98 • 05 2D	18.0210	2,7500	2.7269	10	0 731	-1100 5 3 3	-170244
101	98 • 5720	32 • 6000	3+4070	3.3861	12	0139		- 020334
141	99 . 44 10	27.4250	3.1200	3.1386	15	+0186	•000346	099171
14.1	100 6140	23 4990	3+7200	3+6614	Ĩ 2	.0414	-071718	.229758
101	101 - 26 00	970C/4U	3+8300	3.6377	8	.0077	·000059	-1172421
201	101.2630	46.7640	7 7700	4.0408	12	•0008	.00001	.089464
221	102 - 4640	40 0 1 3 40 54 c 4 3 10	3.1110	3+7670	9	-•0010	-000001	.180687
201	102.0500	63,7580	- J800 7.5500	3,9746	17	1054	•U11101	+076605
261	103.4870	48.3530	317500	3+2457	10	-,0C43	+000018	·D31953
281	104 - 0870	39.0900	3 1 1 0 5	3.7250	12	-•0220	+000485	.261752
30 1	104.5870	26.7340	3+1100	3.0518	17	0582	•003390	.060641
32 1	105.0000	61.5580	3.7000	7.4770	42	0011	+070001	+128427
391	105+6220	50.2550	3.7500	1.0274	. 4 0	-• D 230	+600530	.011991
361	106.2130	67.2350	3.9500	7.9600	11	+1774	+031458	+076466
301	106.7940	66.6200	3.6000	3.6043	13	•U 10 9	.000119	+022311
401	107 . 7490	24 .0970	3.5500	3.4071	17	• U U 4 4	•160018	_101848
421	107.8410	58.3790	3.4400	3.4433	12		•UU15600	• 048051
44.7	108.3236	23.0610	3.3600	3.3329	12	• 0 73 0	•000011	•017661
461	108.9200	45.1350	3.0000	3.8638	10	-0010	.001083	-057201
481	109 • 4850	67+6520	3.5100	3.5078	13		+000015	+408714
501	139.9960	54 - 5170	3.2720	3+2245	11		+0/01/05	•171095
521	110.5420	€6 . 5280	3+5200	3.5700	16	-U-50		• 14 0344
241	111+0760	45.0510	3.7200	3.7390	14	•D 19n		-079426
261	111.5790	71.0300	3∍45⊓ü	3.4594	11	- (109 H	-0000000	• 00 0 € 25
201	112.1670	32.2440	2.7900	2+8052	17	•0152	.000231	056104
601	112,7790	65.6883	3.4000	3.4005	11	.0095	-000091	• 17 5 7 70
621	113+3310	57+€600	3,1400	3.1644	0	.0244	.000598	- 140741
661	118 2440	33.F670	3.500	3+3471	R	1*20	023391	-021709
68 1	114.400	12.4800	2+6000	2+6136	8	•0136	.000186	.009397
701	115-1600	01.4030	3.8600	3.8082	11	3.18	+002683	. 35 3084
721	115.6400	10.5670	3.0500	3.0468	13	-•0035	+000010	-002715
741	116 1850	17 3370	3.0400	3.0263	10	0137	.600148	.074108
76 1	114.7820	1/+2//J	2.9000	Z+8486	12	•0686	.000074	.156493
78 1	117.7630	44 - 1770	3-3300	3.3225	13	-•0075	+600056	.079625
£0 1	117.7920	18.5600	342000	3 • 19 5 3	12	= "D (:4 7	.UCOF 27	D55951
821	118. 3940	13 2620	2.1800	7+7816	5	•0r16	•000003	.084171
E 4 1	117.1010	38.555	7.7300	2.9861	12	-+0139	•u00192	• 044721
861	119.7960	0.9620	2.9404	2.0.4	10	*• 0 29 6	-LOD 275	+ 62 38 3A
881	120,6140	54.129.1	2.0400	2 0 7 0 1	13	•0760	.001294	.124629
901	121-1550	31.4060	3.6000	2 + 7 7 7 1	11	•0381	•U01452	• 320 69 7
521	121.6630	22. P520	3.2400	7.3774	1	-• 0006	•000000	· D16866
54 1	122.1820	14.0510	2-8600	102010	17	.0418	.001745	• 11 92 70
96 1	122 - 4910	72,5190	2.4200	2.1347	1.7	-•0051	•000026	.574263
981	123.0350	52 . F250	2.7800	2 7847	14	-•u 437	.001914	1 • 129263
1 00 1	123.6300	50.4600	3.0300	3-03-0	10	•004/	•000022	•018699
•				/ • U Z • •	11	-•0051	•000026	.069061

83

1021	124+2480	51 . 45 70	2 0400	2 0442				
1 69 1	124 6670	58.9450	3,100	2.4442	11	+D::42	+600Cla	+014859
1 16 1	125.2060	18.6150	3 44 3 6	3+1059	14	.01:59	•600r35	-005999
1(8)	125 . 7900	14 1.50	104600	3+6 312	11	+1712	• U29325	.282488
iioi	126.3060	36.5350	7 7070	3+1956	11	•DP56	.007322	.746475
1121	126 - 7730	C 1670	2.000	SUN /	12	• 0 26 7	-000715	.061476
1 14 1	127.7130	25 7740	+12 12 FA C 7 - m 12 m 2	•FU02	0	0498	+002483	.822669
1 16 1	127.7940	76.5.70	3.7800	*•3061	17	+0061	000038	. 6 3693
1 18 1	178. 7910	10 (570)	2+34133	2.3377	9	0023	•080ros	+230522
1:01	129 . 0325	11 0270	7.67200	2.9486	9	+0268	•UTU 8 30	266737
1.721	120.4250	11.742.70	2.3490	2.747 0	10	+0020	■1000Cu4	.141357
1 54 1	120.0580		2+4100	2.4172	ê,	.0032	+000010	.002852
1 - 6 3	127 + 7300	してき 12年月	7.7100	2+7961	11	0739	.000015	.112777
1 201	130 0540	1.5 . 299.01	2.6600	2.5448	10	1152	.u13278	.304047
1 70 1	171 7707		3.4200	3.3656	10	-+05 32	-D02828	706215
1 721	177 7570	03 + 7661	3.4506	3.1366	10	•1866	.034832	2179.7
1 74 1	132 00 50	E4 . 12 10	3.5.200	3+4645	11	015*	.000239	+62111n
1 36 1		1+1240	3+3300	3.2457	9	.0157	·UD0246	67 5 740
1 701	133 • 2620	52 + 1550	3."En.	2.9949	12	0051	+u00026	20 6 51 6
1 40 1	133+*7710	25.1030	3,3986	2.775	10	-•Ú122	+000150	-3612/8
1 471	134427115	· • • • • · · ·	1+7500	.9540	10	0 960	•U09214	115672
1 76 1	134 4 10 71	45.0570	3.7170	3.2717	10	0383	.001468	353810
1441	132.6410	6.7020	●670℃	.6764	9	.0064	+1100043	010144
1401	136 • 2900	10+22HD	₹ . 7978	267235	10	0665	-004417	-153070
1401	136.9980	56 . E3 9u	3.0100	3.5914	10	.5414	-293105	- 25 24.40
1 201	13/. 7730	**5910	1.7400	1.0300	Q	-+0P20	-000000	0000000
1521	138.4600	°.3370	1.7470	1.3326	10	0174	+400055	-021495
1 24 1	139.4170	10+1350	1+490	1.4707	ī 1	0113	4000127	. 181446
1 26 1	145.5190	31+3450	3.7000	3+2050	12	.0050	-0000121	-101005
1 7 8 1	140 • 7740	11,9590	1.7500	1.6944	12	0556		-005702
1 60 1	141.4460	12.(71)	1.66000	1.6017	12	.0017		• 04 7 ° 00
1621	142,70,40	10.4500	1.4576	1+4658	11	T-0442	-00105	+ L000763
1447	143,5400	23.6255	3+1206	7+1173	ę	0097	-(1001431	*034566
1 1 6 1	144 + 9560	15+5930	2.5000	2.4952	10		.0000195	•726356
1681	146+5945	27.5200	2.0534	2.96.79		0571	+000017	+663676
							•000130	●UZ 859A

TABLA 3 (CONTINUACION)

CUATRO MODELOS DE COVARIANZA GENERALIZADA CALCULADOS PARTIR DEL MODELO ARBITRARIO INIS

FARAMETROS GUE SE UTILTZARAN EN LA REGRESION

	\$0= 52=	2•3 •C	8116 3236	+	S	3=	25351 .04988			
		TERMINO A		1740		·				
		PX1=	•541	9+00 2				140		
FPP= .036	5	£CS=	•9	44	ECM=	•0759	RHEDI A=	3.0264	RME ST=	3+0290
									-	
V ≜RI	R =	.51941		V AR EST=	• 5 *	5696	COPR=	.99474		
COVARIAN7A=		50519	CON T=	85 .000						
		-	LOS	MODELOS	CALCULAD	OS SON				* ;

MODELO 1	C 0	Cl	C7 . 393 8-002	C3
2	1702-002	1976-001	4160-002	-0000
1	. 4 320 -0,13	•0000	2714-002	.0000
4	ູ້ມຸດດຸກ	8817-002	1828-002	.0000

$$S_{2} = U(\overline{Ih}^{3})$$

$$S_{3} = W(\overline{Ih}^{5})$$

$$Rx_{1} = \sum_{v=L}^{M} (T_{r} - X_{r}C_{0} - Y_{r}C_{1} - U_{r}C_{2} - W_{r}C_{3})^{2}$$

$$EPP = \frac{1}{N} \sum_{i=1}^{N} |Z_{i} - Z_{i}^{*}|$$

$$ECM = \frac{1}{N} \sum_{i=L}^{N} (Z_{i} - Z_{i}^{*})^{2}$$

$$ECS = \frac{1}{N} \sum_{i=L}^{N} \frac{(Z_{i} - Z_{i}^{*})^{2}}{U_{k}^{2}}$$

$$RMEDIA = \frac{1}{N} \sum_{i=L}^{N} Z_{i}$$

$$RMEST = \frac{1}{N} \sum_{i=L}^{N} Z_{i}^{*}$$

$$VARR = \frac{1}{N} \sum_{i=L}^{N} (Z_{i} - RMEDIA)^{2}$$

$$VAREST = \frac{1}{N} \sum_{i=L}^{N} (Z_{i} - RMEST)^{2}$$

$$CORR = coeficiente de correlación = \frac{covarianza(Z, Z^{*})}{\sqrt{VARR + VAREST}}$$

Todos los modelos calculados se muestran en la tabla 5. En general los modelos – del tipo $C_1 \overline{IhI} + C_2 \overline{IhI}^3$ son mejores (error cuadrático mínimo, error cuadrático estandarizado más cercano a uno, máxima correlación, etc.) que los del tipo Co + $C_1 \overline{IhI}$ +

		Modelo										
No.	Co	C ¹	c ₂	RMEDIA	RMEST	VARR	VAREST	EPP	ECS	ECM	CORR	R×1
ı	0.0	0.0	10	3 0264	3 0208	53941	55686	034	044	0059	0047	54 10
2	.4320F-3	0.0	2714F-2	3.0264	3.0269	.53941	55324	033	7 208	.0057	.7747 99 <i>1</i> 9	0779
3	.1933E-2	0.0	.1271E-2	3.0264	3.0254	.53941	.54862	.036	4.168	.0050	.9954	.0509
4	.1458E-2	0.0	.2324E-2	3.0264	3.0265	.53941	.55102	.033	3.757	.0050	.9955	.0601
5	0.0 -	4186E-2	.1867E-2	3.0264	3.0272	.53941	.55299	.033	1.908	.0052	.9953	.0696
6	.1165E-2	0.0	.2861E-2	3.0264	3.0278	.53941	.55187	.032	3.954	.0051	.9954	.0655
7	0.0 -	4888E-2	.1854E-2	3.0254	3.0271	.53941	.55271	.033	1.651	.0052	.9953	.0686
8	.1926E-2	0.0	.1196E-2	3.0264	3.0253	.53941	.54843	.036	4.297	.0050	.9954	.0504
9	0.0 -	8228E-2	.1229E-3	3.0264	3.0248	.53941	.54832	.032	1.077	.0049	.9955	.0602
10	.1393E-2	0.0	.2571E-2	3.0264	3.0266	.53941	.55133	.033	3.706	.00 50	.9955	.0618
11	0.0	6227E-2	.1155E-2	3.0264	3.0266	.53941	.55145	.032	1.341	.0050	.9955	.0655
12	.1955E-2	0.0	.1159E-2	3.0264	3.0252	.53941	.54828	.036	4.327	.0051	.9954	.0500
13	0.0	8027E-2	.2054E-3	3.0264	3.0268	.53941	.55202	.032	1.026	.0051	.9954	.0672
14	.2124E-2	0.0	.8972E-3	3.0264	3.0246	.53941	.54710	.039	4.696	.0052	.9952	.0473
15	0.0	7439E-2	.3338E-3	3.0264	3.0255	.53941	.54934	.032	1.171	.0049	.9956	.0618

TABLA 5

1.0

Quince modelos correspondientes a la primera opción

 $C_2 \overline{lhl}^3$. De acuerdo a criterios ya señalados (ver capítulo IV) el "mejor" modelo de covarianza generalizada es: -.8228 x $10^{-2} \overline{lhl}$ + .1229 x $10^{-3} \overline{lhl}^3$. Este modelo se uti lizó para construir la tabla 6 (valores estimados y valores reales de los 85 puntos). La figura 27 indica la secuencia que se siguió para la obtención de los modelos, donde cada número indica el número de modelo de covarianza generalizada de acuerdo a la tabla 5.

Sin soslayar el hecho de que gran parte de los datos a lo largo de los tendidos -sismicos están muy cercanos unos de los otros, las estimaciones fueron bastante aceptables. En el proceso de estimación se observó que éste dependía casi totalmente de los dos datos más cercanos al punto a estimar. En la estimación, un radio efectivo mucho menor al rango podría ser empleado en interpolaciones en puntos aislados. Por ello, el "mejor" modelo de covarianza generalizada obtenido, -.8228 x 10⁻² Ihl + .1229 x 10⁻³ Ihl³, no se -consideró como el más representativo por el momento.

Consecuentemente, se decidió crear una segunda opción: eliminar información – muy cercana al punto estimado (figura 28). En este caso se eligió un radio igual a dos v<u>e</u> ces el espaciamiento entre datos (.6 kms.). Con esto se logró un modelo más representativo, al menos intuitivamente, para la interpolación en áreas con datos distribuidos a lo largo de líneas, como es el caso de los trabajos geofísicos.

Se utilizaron los mismos puntos dato para re-estimarse, sin embargo, no fué posible encontrar modelos de covarianza generalizada debido a que ninguno cumplía con las condiciones establecidas en la tabla 1. Esto hizo necesario que se utilizarán puntos dato diferentes a los de la figura 26. Los modelos resultantes de esta nueva opción aparecen en la tabla 7. Nuevamente se observa que los modelos del tipo $C_1 \overline{h} + C_2 \overline{h} \overline{l}$ son considerablemente mejores que los del tipo Co + $C_1 \overline{h} + C_2 \overline{h} \overline{l}^3$. En la figura 30 se mues

TABLA 6

VALORES REALES Y VALORES ESTIMADOS UTILIZANDO EL MODELO DE COVARIANZA GENERALIZADA: - 0.8228 E-2 hi + 0.1229 E-3 hi³

EL	MODELO	UTILIZANO	ES	EL	SIGUIENTE
----	--------	-----------	----	----	-----------

	CO	C1	C 2	C 3				
	•00000	06228	.00012	23 •0000	500			
IPO	xx	YY	Z(3,IP0)	ESTIMACION	NW	ERROR	ER ROR 2	VARIANZA
I	92 .4220	50.5040	3.7006	3.7683	9	.0683	.004667	.025552
21	95 • 59 3 _D	47.3130	3.8500	3 . 8 389	17	0111	.CD0123	.003706
41	96 +4980	24.8570	3.0200	3.0192	10	0008	• 000001	+002 801
61	97 .2560	33+8500	3.6500	3 .6 397	8	~.0103	+ C00105	.006646
81	98.0520	18.021J	2.7500	2.7427	10	0073	.000053	.002543
101	98 •5720	32.6ú00	3.4000	3 .4 045	12	.0045	.000020	•002229
121	99.2010	27.4280	3.1200	3 • 1 294	15	•0094	• CODO67	+003862
141	99.9470	23.4990	3.0200	3.0180	12	0020	• COO O O A	.005 356
161	100_6140	42.6740	3+8 300	3.8398	8	3600	.000095	003567
181	101 -2600	52.6180	4.0400	4.0465	12	.0065	.000042	+003534
201	101.8830	46.7540	3.7700	3.7888	8	.0188	.000354	.004953
221	102 • 4640	56.4730	4.3806	3.9680	13	-,1120	.012541	.003527
241	102 .9590	63.758G	3.5500	3.5542	10	+0042	.00018	.002792
261	103 4870	48.3530	3.7500	3.7505	12	.00 05	• COO O O O	• 0 05 75 8
281	104 0870	39,0900	3.1100	3.0288	10	0812	• 006 5 9 8	003326
301	104.5870	26.7340	3+5100	3.4 974	12	D126	.000160	.004556
321	105.0000	61.5580	3.7000	3 • 6 6 2 7	16	0173	•C003 ₀₀ '	.001843
341	105.6220	50.3550	3.7500	3.7537	11	• D D 37	• 000013	.003700
361	106 +2130	6D_235J	3.8500	3 • 8 5 9 2	13	•0092	.000084	.002193
381	106.7940	66.6800	3+6000	3.6181	13	.0181	• 000 326	-004078
401	107.2490	24.0970	3.5500	3.4827	12	- 0673	.004534	.003027
421	107.8410	58.3796	3.4400	3 • 4 4 6 1	12	.0061	·CC0037	.002139
441	108+3230	23.0610	3.3600	3.3493	12	•D493	+ CO2432	+003387
461	108.9200	45.1350	3.8000	3 .7 865	10	0135	.000184	.006756
4B1	109.4850	67.6520	3.5170	3 • 5 1 7 9	13	.0979	.000063	.004876
501	109.9960	54.5170	3.2700	3 • 2 179	11	0521	.002718	•004273
521	110+5420	66.5280	3.5200	3.5628	16	•D428	·C01835	.003992
541	111.0760	45.0510	3.7230	3.7206	14	.0306	.000000	.003522
561	111.5790	71.0330	3.4500	3 • 4 4 9 2	11	~_0008	.000001	.002484
561	112.1670	32 • 3 4 4 ú	2.7970	2 .8 293	12	•0393	+001545	•C03209
601	112.7790	65.8880	3+4000	3.3681	11	0319	· CO1 0 2 0	.004801
621	113.3310	57.6800	3.1400	3.1584	9	0184	.000338	.004303
641	113 7800	33.887 _U	3.5000	3.3166	8	1834	.033620	• 002 334
661	114 - 2460	72,4800	2.6000	2.6099	ß	.0099	• COBC 98	+001766
681	114.6800	61.9630	3+8600	3 .7 CD9	11	1591	.025298	.005862
701	115-1600	16.3670	3.0500	3.0446	13	0054	.00022	.000832

			. .					-1
721	115.6400	49,9480	3.0400	3+0354	10	0046	•000021	.003432
/41	116.1850	17.3770	2.8010	2.8287	17	•0287	• 0008 26	.004720
761	116.7420	44.1990	3.3300	3.3279	13	0021	.000004	.003347
/81	117.3630	44.6880	3-200	3 • 1 990	12	0010	.00001	•003009
801	117 - 7923	18+9600	2,7800	2.7842	8	.01742	.00018	· 003525
821	118+3940	13.2529	3.0000	3.0028	12	•00 ²⁸	.00008	.002589
841	119.1010	38.9550	3.7300	3.6657	17	-+0643	· CO4131	.007979
861	119 7960	20.9620	2+8800	2.9264	10	•0464	•602158	· D04 48 2
681	120+6140	54 1296	2.8400	2.8462	11	•0062	•CC0038	•006243
901	121.1550	31.6(6)	3.4000	3.4667	17	.0007		.001990
921	121+6630	22.8525	3+2400	3+2416	12	.0016	.00002	-004142
941	122 .1820	14*0220	2.88116	·•• 019	12	+0219	• UD04 78	.007378
961	122.5910	15.4140	2.4200	2.3573	8	0630	• CO3964	+015744
981	123.0350	52+8250	2.7800	2,7862	16	.0062	• C CO O 38	.361929
1301	123.6300	50.4600	3.9300	3.0334	11	.0734	.00011	.003486
1021	124 .2480	51+4536	2+9400	2.9470	11	.0970	• 808049	.001959
1041	124 +6670	50,9450	3+1000	3.1.57	14	.0757	• 000 0 33	-301565
1061	125 +2066	38.8150	3.4000	5 61 38	11	•1438	• C20687	.005676
1081	125.7890	16+1050	2+1100	3 • 1 5 9 6	11	.0496	. EU2462	.008509
1101	120.3060	36.8350	3+2800	3.3080	12	•058C	• C 00 7 84	.003412
1121	126 7330	5.1520	•8500 7 7 800	+0 20 /		0233	.000544	009095
1141	127+3130	25+7740	3.3810	3.3902	1:	.0102	• UUUIU3	• 00 * • 00
1161	127+7943	10.0500	2.03410	2.0501	9	-0101	• 600258	.005083
1101	120 +2710	11 077	2.9200	2.3300	• •	•0306	• 600 938	.005538
1201	128 9020	11.9230	2+3400	2 . 3 340	13	0060	. 000037	• 004498
1221	129 9560	12 4 386	2.4100	2.44103		• 11 7 11 5	• 000000	• UUU845
1241	127 .7500	33.12.1	2.7100	2.1323	11			.004239
1201	130+5050	13.3460	2.0000	203470	1.4	- 113C	.012778	• 005830
1 201	131 7790	63 7-00	3.4270	7 4 14 5	10	- 0055	• 000030	.00818/
1 7 7 1	132 2530	64 1210	3+4500	3 4 776	10		• 000030	• (103 • • 0
1 361	132.8050	71	7.7770	3 7 700	• 1	- 3003	• 000 500	+003678
1 74 1	102 - 00000	57 0550	7 3.00	3 0 6 8 6	• 7		- 300 000	•003521
1 701	177 9770	36 933U	3.3000	247000	12	-•0114	- LUUI 30	-005373
1401	134.3710	7 4781	1 05-0	2 - 2 - 2 - 2	10	- 1007	• (00056	• 445 694
1421	174.0800	1 . 4 / 6 G	1.3390	•7493	10		• 010150	•004140
3 6 6 3	135.4010	45.3620	5431.0	2.6477	1,		- 362010	• 445654
1461	176.2903	16.5080	2.7900	7.7(09	1.7	- 00035	* COOODO	004571
1481	+36 - 9980	EC-610)	7 0502	2.1898	10		+ (000000	-004551
1601	177.0730	5000000	1.0400	1.0701	•	• • • • • •	+244021	•00•000
1521	178.6000	0.3770	1.3401	1.3.75	10		-000001	•001988
1541	179 4170	10.135.5	1.090.0	1.0603	1.5	- 0757	-000/01	• 303729
15/1	140.0100	11 3480	7 2003	1	12		+000001	• 005 11 1
1581	140.7740	11,9581	1.7500	1 6 6 4 6	10	+0111	-000125	•UU3565
1601	181.6600	12.3710	1.6000	1.6000	12		+000001	•003082
1621	142.100	12.0719	1.4670	1.0097	11	+41104	.000099	• 003555
1601	147.5430	10.4500 50 0525	7,1200	1 04 173			+600942	+UU2803
1661	144.9544	10.0920	2.5000	2 + 7 4 2 2 + 7 14 2	10			+ UUO 7 U 7
1401	146-6047	15.5730	2,0000	2.0810	10		+600010	+003367

TABLA 6 (CONTINUACION)

FIG. 27

SECUENCIA DE OBTENCION DE MODELOS DE COVARIANZA GENERALIZADA CORRESPONDIENTES A LA ESTIMACION DE 85 PUNTOS DATO

b) segunda opción

TABLA 7

Nueve modelos correspondientes a la segunda opción

		Modelo										
No.	Co	C ¹	c ₂	RMEDIA	RMEST	VARR	VAREST	EPP	ECS	ECM	CORR	R×1
1	0.0	0.0	1.0	3.0551	3.0621	.36061	.35836	.067	.014	.0099	.9863	262.6
2	.2058E-3	0.0	.3114E-2	3.0551	3.0603	.36061	.35844	.064	3.187	.0090	.9875	.0365
3	0.0	4765E-2	.1463E-3	3.0551	3.0556	.36061	.34865	.056	1.301	.0066	.9909	.0284
4	.4084E-4	0.0	.1235E-2	3.0551	3.0612	.36061	.35879	.065	9.108	.0093	.9871	.0417
5	0.0	3266E-2	.3696E-3	3.0551	3.0563	.36061	.35191	.057	1.736	.0067	.9907	.0256
6	0.0	2483E-2	.9703E-3	3.0551	3.0576	.36061	.35510	.060	1.959	.0073	.9899	.0240
7	0.0	2465E-2	.1212E-2	3.0551	3.0579	.36061	.35561	.061	1.891	.0074	.9896	.0243
8	0.0	2619E-2	.1188E-2	3.0551	3.0578	.36061	.35543	.061	1.808	.0074	.9897	.0241
9	0.0	256JE-2	.1199E-2	3.0551	3.0578	.36061	.35550	.061	1.838	.0074	.9897	.0242

FIG. 30

SECUENCIA DE OBTENCION DE MODELOS DE COVARIANZA GENERALIZADA CORRESPONDIENTES A LA ESTIMACION DE 89 PUNTOS DATO tra esquemáticamente la secuencia de obtención del "mejor" modelo. Los puntos dato que se re-estimaron fueron 89 (figura 29) y el "mejor" modelo que se obtuvó fué: $-.4765 \times 10^{-2}$ Inl + $.1463 \times 10^{-3}$ Inl³. La necesidad de demostrar la validez de la supues to en la segunda opción sobre la primera opción hizo que se probaran los mejores modelos de ambas opciones en condiciones similares. Rimeramente se utilizaron los 85 puntos dato correspondientes a la primera opción y se hizo variar el radio (RIN), para desechar información, desde 0.0 hasta 3.5 kms. y con ello realizar la re-estimación empleando el "me jor "modelo de cada opción. Los resultados obtenidos se muestran en la tabla 8. De acuer do al error cuadrático medio la diferencia entre ambos modelos es despreciable para cual quier situación. Esta diferencia, por el contrario, se hace notable cuando se considera el error cuadrático estandarizado (ver columna ECS). Los dos modelos tienden por un lado, a suavizar el fenómeno conforme aumenta el radio para desechar información y por el otro, a hacerlo más irregular cuando dicho radio (RIN) es pequeño, de 0.0 a 0.6 kms. (ver columnas VARR y VAREST). De todo la anterior resulta que el "mejor" modelo es: -.8228 x 10 [h] + .1229 x 10 [h] el cuál corresponde al "mejor" modelo de la -primera opción.

Posteriormente, se hizo la re-estimoción de los 89 puntos dato bajo las condiciones ya descritas (vecindad anular), obteniéndose los resultados de la tabla 9. En este ca so los resultados de ambos modelos son similares, según el error cuadrático medio y el -error cuadrático estandarizado, para radios (RIN) de 0.0 a 0.6 kms. Sin embargo, a partir de un radio de un kilómetro la diferencia vuelve a hacerse notoria, como en el ca so anterior, según el error cuadrático estandarizado. El modelo propuesto en el caso anterior continua siendo el "mejor" para esta nueva situación.

P.

TABLA 8

Comparación de modelos de covarianza generalizada basados en la estimación de 85 puntos dato

		Modelo											RIN
Orción	Co	c1	c ₂	RMEDIA	RMEST	VARR	VAREST	EPP	ECS	ECM	CORR	R×1	kms .
١	0.0	8228E-2	.1229E-3	3.0264	3 .0248	.53941	.54832	.032	1.077	.0049	.99 55	.06021	0.0
2	0.0	4765E-2	.1463E-3	3.0264	3.0252	.53941	.54893	.032	1.841	.0049	.9956	.06135	0.0
1	0.0	8228E-2	.1229E-3	3.0264	2.9965	.53941	.55530	.101	1.871	.0 565	.9493	9.963	0.6
2	0.0	4765E-2	.1463E-3	3.0264	2 .99 22	.53941	.55107	.099	2.705	.0525	.9530	9.148	0.6
1	0.0	8228E-2	.12 2 9E-3	3.0264	3.0087	.53941	.52656	.092	1.735	.0204	.9813	.2799	1.0
2	0.0	4765E-2	.1463E-3	3.0264	3.0092	.53941	.52824	.091	2.852	.0204	.9813	.3019	1.0
1	0.0	8228E-2	.1229E-3	3.0264	2.9941	.53941	.52747	.166	1.861	.0305	.9725	2.369	2.0
2	0.0	4765E-2	.1463E-3	3.0264	2.9952	.53941	.52887	.117	3.0 83	.0312	.9718	1.122	2.0
١	0.0	8228E-2	.1229E-3	3.0264	2.9937	.53941	.52612	.121	2.124	.0332	.9699	.6389	2.5
2	0.0	4765E-2	.1463E-3	3.0264	2,9955	.53941	.52871	.122	3.529	.0340	.9691	.7535	2. 5
١	0.0	8228E-2	.1229E-3	3 3.0264	2.9886	.53941	.53831	.130	2.071	.0370	.9670	.8296	3.0
2	0.0	4765E-2	.1463E-3	3 3.0264	2.9901	.5394	.54176	.130	3.423	.0382	.9659	9 1.020	3.0
۱	0.0	8228E-2	.1229E-3	3 3.0264	2.9997	.5394	.5289	.125	5 1.813	.033	5.9694	4 .4354	3.5
2	0.0	4765E-2	.1463E-	3 3.0264	4 3.0015	.5394	1.53362	2.125	5 2.908	.0338	3.969	1.4878	3.5

TABLA 9

Comparación de modelos de covarianza generalizada basados en la estimación de 89 puntos dato

		Mod el o						_	_				RIN
Opción	Co	C1	c ₂	RMEDIA	RMEST	VARR	VAREST	EPP	ECS	ECM	CORR	R× 1	kms.
1	0.0	8228E-2	.1229E-3	3.0551	3.0577	.36061	.36396	.028	.740	.0027	.9962	.0082	0.0
2	0.0	4765E-2	.1463E-3	3.0551	3.0580	.36061	.36014	.027	1 .0 26	.0027	.9963	.0090	0.0
1	0.0	8228E-2	.12 2 9E-3	3.0551	3.0568	.36061	.35326	.0 58	.867	.0069	.9904	.0277	0.6
2	0.0	4765E-2	.1463E-3	3.0551	3.0556	.36061	.34865	.0 56	1.301	.0066	.9909	.0 284	0.6
1	0.0	8228E-2	.1229E-3	3.0551	3.0576	.36061	.35233	.075	1.088	.0120	.9832	9.775	1.0
2	0.0	4765E-2	.1463E-3	3.0551	3.0611	.36061	.35 590	.077	1.786	.0143	.9801	3.001	1.0
1	0.0	8228E-2	.1229E-3	3.0551	3.0549	.36061	.32747	.098	1.158	.0188	.9738	.1370	2.0
2	0.0	4765E-2	.1463E-3	3.0551	3.0548	.360 61	.3248 5	.100	2.287	.0200	.9721	.1688	2.0
1	0.0	8228E-2	.1229E-3	3.0551	3.0637	.36061	.33240	.107	1.136	.0223	.9687	.2364	2.5
2	0.0	4765E-2	.1463E-3	3.0551	3.0621	.36061	.33035	.107	2.345	.0234	.9672	.3336	2.5
1	0 .0	8228E-2	.1229E-3	3 3.0551	3.0614	.36061	.32899	.108	1.078	.0244	.9657	.2941	3.0
2	0.0	4765E-2	.1463E-3	3 3.0551	3.0607	.36061	.32640	.107	2.247	.0245	.9656	.3710) 3.0
1	0.0	8228E-2	.1229E-3	3 3.0551	3.0832	.3606	.37141	.130	.929	.0468	.9372	78.85	5 3.5
2	0.0	4765E-2	.1463E-	3 3.055	3.0803	.3606	.36663	.134	1.499	.0398	.9462	19.9	3. 5

Respecto al tiempo de cómputo utilizado para la identificación de la covarianza – generalizada éste fué de 59 segundos de CPU, empleando 15 iteraciones (ver tabla 5). ~ Este tiempo pudo haberse reducido en un 30 por ciento aproximadamente, si sólo se hubi<u>e</u> sen considerado los modelos del tipo $C_1 \overline{IhI} + C_2 \overline{IhI}^3$ a partir de la quinta iteración. El – error cuadrático estandarizado de los modelos del tipo Co + C₁ \overline{IhI} + C₂ \overline{IhI}^3 tiende a esta bilizarse alrededor de un valor igual a cuatro, por lo que no debió haberse insistido en – su uso. Esto es más claro en la tabla 7, pues de todos los modelos calculados sólo dos de ellos son del tipo Co + C₁ \overline{IhI} + C₂ \overline{IhI}^3.

Por otro lado, para valorar la efectividad del método se construyeron las tablas 10 y 11. En éstas se compara el modelo inicial de covarianza generalizada con el "mejor" modelo de covarianza generalizada. Para el caso en que se considera información muy -cercana al punto a ser estimado, la diferencia no es muy notable según el error cuadrático medio, para ambos modelos, aunque no sucede lo mismo con el error cuadrático estandarizado y con el término Rx1 (suma del cuadrado de las diferencias entre el error de kriging cuadrático y el error teórico de estimación). Sin embargo, cuando se empieza a ampliar el radio (RIN) los resultados son bastante diferentes, notándose claramente el mejoramien to en la estimación y la minimización del término Rx1.

Con el "mejor" modelo de covarianza generalizada se llevó a cabo la estimación de una malla de 38 x 31 nodos, lo que requirió un tiempo de 44 segundos de CPU. La malla se configuró dando como resultado el mapa de la figura 31. En la figura 32 se prese<u>n</u> ta el mapa de desviaciones estándar asociado a dicha malla.

La imposibilidad de conseguir datos de análisis de velocidad correspondientes al área de donde se tenía información de tiempos de reflexión impidió que se llevara a cabo la -

Comparación entre modelo inicial de covarianza generalizada y "mejor" modelo de covarianza generalizada utilizando infor mación de la figura 25.

	Modelo					RIN
Co	۲	c2	ECS	ECM	R×1	kms.
0.0	0.0	1.0	.044	.0059	54.190	0.0
0.0	8228E-2	.1229E-3	1.077	.0049	.06021	0.0
0.0	0.0	1.0	.047	.0900	274.10	0.6
0.0	8228E-2	.1229E-3	1.871	.0565	9.9630	0.6
0.0	0.0	1.0	.0 36	.07 12	1156.0	1.0
0.0	8228E-2	.1229E-3	1.735	.0204	.27990	1.0
0.0	0.0	1.0	.024	.0845	19,110.	2.0
0.0	8228E-2	.1229E-3	1.861	.0305	2.369	2.0
0.0	0.0	1.0	.025	.0797	7378.0	2.5
0.0	8228E-2	.1229E-3	2.124	.03 32	.6389	2.5
0.0	0.0	1.0	.025	.1101	11,140.	3.0
0.0	8228E-2	.1229E-3	2.071	.0370	.8296	3.0
0.0	0.0	1.0	.008	.0553	15,280.	3.5
0.0	8228E-2	.1229E-3	1.813	.0335	.4354	3.5

Comparación entre modelo inicial de covarianza generalizada y "mejor" modelo de covarianza generalizada utilizando infor mación de la figura 29.

Co	Modelo C1	с ₂	ECS	ECM	R×1	RIN kms .
0.0	0.0	1.0	.034	.0040	69.13	0.0
0.0	8228E-2	.1229E-3	.740	.0027	.008171	0.0
0.0	0.0	1.0	.014	.0099	262.6	0.6
0.0	8228E-2	.1229E-3	.867	.0069	.0277	0.6
0.0	0.0	1.0	.013	.0172	1 02 5.0	1.0
0.0	8228E-2	.1229E-3	1.088	.0120	9.775	1.0
0.0	0.0	1.0	.008	.0307	6853.0	2.0
0.0	8228E-2	.1229E-3	1.158	.0188	.1370	2.0
0.0	0.0	۱.0	.007	.0282	6301.0	2.5
0.0	8228E-2	1229E-3.	1.136	.0223	.2364	2.5
0.0	0.0	1.0	.007	.0364	7613.0	3.0
0.0	8228E-2	.1229E-3	1.078	.0244	.2941	3.0
0.0	0.0	1.0	.008	.0503	2.35E+6	3.5
0.0	8228E-2	.1229E-3	.929		78.85	3.5

二相關語

23

and the second second

migración de estos últimos. Sin embargo, se presenta un ejemplo con datos fictícios de ve locidad que ilustra la manera como se hubiera realizado el proceso con datos reales.

El mapa de la figura 33 muestra una serie de datos de "velocidad" en los que se efectuó el suavizamiento por kriging (método de covarianzas generalizadas). Primero se calcularon varias funciones de covarianza generalizada para los datos y de éstas se eli-gió el modelo 214.7 - 16.491hl + 0.03981hl³ por ser éste el que restituía el valor de los puntos con mayor precisión (55.46 m/seg de error promedio en datos que variaban de -2700 a 2900 m/s). Esta función de covarianza se empleó para re-estimar (en este caso suavizar, por la existencia del término Co) las velocidades. El término Co sólo aparece en la diagonal principal de la matriz de kriging y no en el vector de términos indepen dientes. El resultado fué el mapa de la figura 34 en el que puede apreciarse un suaviza miento de la variable.

Si los datos fuesen reales, con las velocidades suavizadas y estimando los gradientes de tiempo por kriging (ec. 3.13) se habrián calculado las nuevas posiciones de los puntos migrados mediante la ecuación 5.9.

CAPITULO VII CONCLUSIONES

El kriging es el método que proporciona el mejor estimador lineal insesgado en el sentido de varianza de estimación mínima (Journel, 1978).

Este es el único método que toma en cuenta la estructura del fenómeno bajo estudio (a través del semivariograma o covarianza) y proporciona una medida del error al efectuar estimaciones (varianza de estimación). Sin embargo, presenta dos limitaciones que hacen que su empleo no sea el más apropiado en todos las casas:

- Excesiva tiempo de cómputo, en comparacián can otras métados convencionales de interpalación.

- Base teárica extensa y na muy sencilla. Esto provoca que en algunos casos se haga una incorrecta aplicación del método o se elimine como una posible alternativa.

Estas desventajas no san muy apreciables en el ejempla No. 1, ya que los costos – difieren muy poco. Como se dija anteriormente esto se debió a que la configuración de – los datos es repetitiva y el patrón geométrico de estimación es constante de una celda a atra (ver figura 22). Este mismo factor determiná que el método de relajación necesitara de un algaritmo muy sencillo para su aplicacián.

En el casa de una distribución irregular de las datos, los das métodos resultarían sumamente caros. Por un lado la aplicación del kriging implicaría resolver un sistema de ecuaciones para cada punto a estimar. Por otro, la relajación involucraría mayor compl<u>e</u> jidad por las transformaciones de un espacio irregular a uno regular y viceversa (ver Bolondi, Rocca y Zanoletti, 1975). Existen casos fuera del campo de la minería en los cuales la aplicación del krim ging está plenamente justificada. La caracterización de un determinado horizonte geoló gico con información obtenida a partir de núcleos de perforación y/o sismología de refle xión son ejemplos de lo anterior.

La obtención de núcleos es muy costosa por lo que los sitios de muestreo se deben limitar. A partir de esos pocos datos el kriging puede proporcionar un modelo del horizonte geológico con una medida asociada de incertidumbre. Esta última información expresada a través del mapa de desviaciones estándar proporciona un criterio lágico para seleccionar nuevas localizaciones de barrenos. Con esto se logra resolver el problema de obtener la máxima información con el mínimo de muestras.

En el caso de fenómenos no estacionarios el kriging universal produce mejores r<u>e</u> sultados que el kriging normal como pudo observarse en el primer ejemplo de aplicación, debiéndose básicamente al uso en el sistema de kriging normal de un semivariograma sobreestimado.

El mejoramiento al efectuar la estimación por medio del kriging universal se ve – afectado por un incremento en costo de tiempo de cómputo, cuando los datos no están – regularmente espaciados a lo largo de líneas y además se desea una estimación óptima – del drift. Para la estimación óptima del drift en un punto en base a N datos circundan tes, es necesario resolver dos veces (para un drfit lineal) o seis veces (para un drift cua drático) un sistema de N+q ecuaciones, donde q es el número de monomios del drift – asociado.

En el método de kriging universal la dependencia entre drift y semivariograma obliga a utilizar un método recursivo para la inferencia de ambas funciones, a partirde una sola realización. En contraste, el método de covarianzas generalizadas, al filtrar el drift, requiere únicamente la inferencia de la función covarianza generalizada para su aplicación.

Otra ventaja del método de covarianzas generalizadas sobre el kriging universal es que puede ser enteramente programable.

En el contexto de la sismología de reflexión, el kriging empleando covarianzas – generalizadas ha sido considerado como "una herramienta geofísica cara que mide algunas propiedades simples del subsuelo" (David, 1975). Aún así, el kriging es redituable – debido a que el procesamiento de datos sísmicos (para no hablar de la prospección sísmi ca en sí) siempre ha sido costoso por su complejidad matemática.

AGRADECIMIENTOS

Al Dr. Juan M. Berlanga G. por sus valiosas sugerencias, interés e impulso en la realización de esta tesis.

Al Ing. Mario Vargas F. por su ayuda en las etapas preliminares de este trabajo.

Al Dpto. de Geología y Minería de la Gerencia de Estudios e Ingeniería Preliminar de la C.F.E. por habernos permitido utilizar información de su -propiedad.

BIBLIO G RAFIA

- Akima, K., 1975: "Comments on optimal contour mapping using kriging by Ricardo Olea", Journal of Geophysical Research, Vol. 80, No. 5, págs. 832-836.
- Anstey, N. A., 1977: "Seismic interpretation: The physical aspects", IHRDC, Boston, Mass. 02116, partes 7 y 9.
- Bolondi, G., Rocca, F. y Zanoletti, S., 1976: "Automatic contouring of faulted subsurfaces", Geophysics, Vol. 41, págs. 1377–1393.
- Bolondi, G., Rocca, F. y Zanoletti, S., 1977: "Methods for contouring irregularly spaced data", Geophysical Prospecting, Vol. 25, págs. 96-119.
- Box, G. y Jenkins, G. M., 1969: "Time Series Analysis Forecasting and Control", Holden-Day, San Francisco.
- Crain, I. K., 1970: "Computer interpolation and contouring of two dimensional data: A review", Geoexploration, Vol. 8, págs. 71–86.
- Crain, I.K. y Bhatacharyya, B.K., 1967: "Treatment of non-equispaced two dimensional data with a digital computer", Geoexploration, Vol. 5, págs. 173–194.
- Chiles, J. P., 1975: "How to adapt kriging to non-classical problems: three case studies", en Advanced Geostatistics in the Mining Industry, págs. 69-89, Reidel Publishing Corp., Dordrecht.

- Chiles, J. P., Delfiner, P., Marechal, A. y Matheron, G. 1979: "Specialized Techniques of Geostatistics", Private short course, Batelle Research Center, Seattle, Washington.
- Dagbert, M. y David, M., 1976: "Universal kriging for ore-reserve estimation. Conceptual background and application to the Navan Deposit", CIM bulletin, Vol. 69, No. 766, págs. 80–92.
- David, M., 1976: "The practice of kriging", en Advanced Geostatistics in the --Minig Industry, págs. 31–48.

David, M., 1977: "Geostatistical Ore Reserve Estimation", Elsevier, Amsterdam.

- Davis, M. y David, M., 1978: "Automatic kriging and contouring in the presence of trends (Universal kriging made simple)", The Journal of Canadian Pe-troleum, No. 1, págs. 90-99.
- Davis, J. C., 1973: "Statistics and Data Analysis in Geology", John Wiley and Sons, New York.
- Delfiner, P. y Delhomme, J. P., 1975: "Optimum interpolation by kriging", en Display and Analysis of Spatial Data, John Wiley and Sons, New York, págs. 96–114.
- Delfiner, P., 1975: "Linear estimation of non-stationary phenomena", en Advanced Geostatistics in the Mining Industry, págs. 49-68.

- Delfiner, P., 1976: "Basic Introduction to Geostatistics", Private short course, --Batelle Research Center, Seattle, Washington.
- Delhomme, J., P., 1978: "Kriging in the Hydrosciences", Advances in Water Resources, Vol. 1, No. 5, págs. 251–266.
- Doctor, P. G., 1979: "An Evaluation of Kriging Techniques for High Level Radioactive Waste Repository Site Characterization", Pacific Northwest Laboratory, -Richland, Washington 99352
- Grant, F., S., 1972: "Review of Data Processing and Interpretation Methods in --Gravity and Magnetics 1964–1971", Geophysics, Vol. 37, No. 4, págs. 647–661.
- Hagedoorn, J.G., 1954: "A process of seismic reflection interpretation", Geophysical Prospecting, Vol. 2, No. 1, págs. 85–127.
- Hass, A. G. y Jousselin, C., 1975: "Geostatistics in the petroleum industry", en Advanced Geostatistics in the Mining Industry, págs. 333–347.
- Hass, A. G. y Viallix, J. R., 1976: "Krigeage applied to geophysics, the answer to the problem of estimates and contouring", Geophysical Prospecting, --Vol. 24, págs. 48-69.
- Huijbregts, Ch., 1975: "Regionalized variables and application to quantitative -analysis of spatial data", en Display and Analysis of Spatial Data, John Wiley and Sons, New York, págs. 38-53.

- Journel, A.G. y Huijbregts, Ch., 1978: "Mining Geostatistics", Academic Press, New York.
- Karas, S. y Paccou, Y., 1969: "Le krigeage universel et ses applications a la --cartographie automatique", Reporte técnico S-26, Centre de Morphologie Mathematique, Fontainebleau, France.
- Matheron, G., 1963: "Frinciples of Geostatistics", Economic Geology, Vol. 58, págs. 1246–1266.
- Matheron, G., 1967: "Kriging or polynomial interpolation procedures?", Canadian Mining and Metallurgical bulletin, No. 60, págs. 1041–1045.
- Matheron, G., 1971: "The theory of regionalized variables and its applications", Les Cahiers du Centre de Morphologie Mathématique, Fasc. 5, Fontainebleau, France.
- Olea, R., 1972: "Application of regionalized variable theory to automatic con --touring", Special report to the American Petroleum Insitute, Research --Project No. 131, 191 págs.
- Olea, R., 1974: "Optimal contour mapping using universal kriging", Journal of -Geophysical Research, Vol. 79, págs. 695–702.
- Papoulis, A., 1965: "Probability Random Variables and Stochastic Processes", McGraw-Hill, New York.

- Sabourin, R., 1979: "Application of two methods for the interpretation of the -underlying variogram", en Advanced Geostatistics in the Mining Industry, págs. 101–109.
- Sampson, R. J., 1975: "Surface II Graphics System", Kansas Geological Survey, Lawrence, Kansas.
- Telford, Geldart, Sheriff y Keys, 1976: "Applied Geophysics", Cambridge University Press, New York.
- Walters, R., 1969: "Contouring by machine, a user's guide", The American Association of Petroleum Geologist Bulletin, Vol. 53, No. 11, págs. 2324-2340.
- Watson, G. S., 1969: "Trend surface analysis and spatial correlation", Technical Report No. 124, Department of Statistics, The John Hopkins University, Baltimore, Maryland.
- Watson, G.S., 1971: "Trend surface analysis", Mathematical Geology, Vol. 13, No. 3, págs. 215–225.
- Whitten, E. H., 1975: 'The practical use of trend-surface analysis in the Geological Sciences", en Display and Analysis of Spatial Data, John Wiley and Sons, New York, págs. 282–297.

APEN DICE I

DESARROLLO DEL SISTEMA DE ECUACIONES LINEALES DE REGRESION DE LA COVARIANZA GENERALIZADA

Sean p el número total de puntos omitidos, $Z(\bar{x}_{oi})$ el i-ésimo punto omitido y $\bar{\lambda}_i$ los pesos asociados a su estimación en las siguientes expresiones:

$$R = \sum_{\substack{\gamma = 1 \\ \gamma = 1}}^{r} \left[(\text{error de kriging})^2 - \text{error teórico de estimación} \right]^2$$
$$= \sum_{\substack{\gamma = 1 \\ \gamma = 1}}^{m} \left[\left(\sum_{i=1}^{m} \lambda_i Z(\bar{x}_i) \right)^2 - \sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_j \lambda_j K_{ij} \right]^2$$
(1)

error de kriging =
$$\sum_{i=1}^{m} \overline{\lambda}_{i} Z(\overline{x}_{i}) - Z(\overline{x}_{o})$$
 (2)

error teórico de estimación =
$$\sum_{i=1}^{m} \sum_{j=1}^{m} \overline{\lambda}_{i} \overline{\lambda}_{j} K_{ij} - 2 \sum_{i=1}^{m} \overline{\lambda}_{i} K_{i,o} + K_{o,o}$$
(3)

Sustituyendo ecuaciones (2) y (3) en ecuación (1) y definiendo Rx como uno de los sumandos de R tenemos:

$$Rx = 1 \left(\sum_{i=1}^{m} \overline{\lambda}_{i} Z(\overline{x}_{i}) - Z(\overline{x}_{o}) \right)^{2} - \sum_{i=1}^{m} \sum_{j=1}^{m} \overline{\lambda}_{i} \overline{\lambda}_{j} K_{ij} + 2 \sum_{i=1}^{m} \overline{\lambda}_{i} K_{i,o} - K_{o,o} (4)$$

$$y R = \sum_{i=1}^{p} R_{x}^{2} r$$
(5)

Cabe hacer la aclaración de que:

$$\sum_{i=1}^{m} \sum_{j=1}^{m} \overline{\lambda}_{i} \overline{\lambda}_{j} K_{ij} = \overline{\lambda}_{1} \overline{\lambda}_{1} K_{1,1} + \overline{\lambda}_{1} \overline{\lambda}_{2} K_{1,2} + \dots + \overline{\lambda}_{l} \overline{\lambda}_{n} K_{l,n}$$

$$+ \overline{\lambda}_{2} \overline{\lambda}_{1} K_{2,1} + \dots + \overline{\lambda}_{n} \overline{\lambda}_{n} K_{n,n}$$

$$+ \overline{\lambda}_{n} \overline{\lambda}_{1} K_{n,1} + \dots + \overline{\lambda}_{n} \overline{\lambda}_{n} K_{n,n}$$

$$+ K_{1,1} = K_{2,2} = \dots = K_{n,n} = K(\overline{0})$$

donde $K_{1,1} = K_{2,2} = \dots = K_{n,n} =$

por lo tanto:

$$\sum_{i=1}^{m} \sum_{j=1}^{m} \overline{\lambda}_{i} \overline{\lambda}_{j} \kappa_{ij} = \sum_{i=1}^{m} \overline{\lambda}_{i}^{2} \kappa(\overline{0}) + \sum_{i=1}^{m} \sum_{j=1}^{m} \overline{\lambda}_{i} \overline{\lambda}_{j} \kappa_{ij}(\overline{h})$$
(6)

Consideremos el modelo el modelo más general de covarianza generalizada: $K(h) = C_1 \overline{h} + C_2 \overline{h}^3 + C_3 \overline{h}^5$ $K(0) = C_0$

entonces sustituyendo este modelo en ecuación (4) y tomando en cuenta ecuación(6) -tenemos:

$$Rx = \left[\left(\sum_{i=1}^{m} \overline{\lambda}_{i} Z(\overline{x}_{i}) - Z(\overline{x}_{o})\right)^{2} - C_{o} \sum_{i=1}^{m} \overline{\lambda}_{i}^{2} - \sum_{i=1}^{m} \sum_{i=1}^{m} \overline{\lambda}_{i} C_{1} |\overline{h}_{ii}|^{1} + C_{2} |\overline{h}_{ii}|^{3} + C_{3} |\overline{h}_{io}|^{5}\right] + C_{2} |\overline{h}_{io}|^{3} + C_{3} |\overline{h}_{io}|^{5} - C_{0}$$

$$= \left[\sum_{i=1}^{m} \overline{\lambda}_{i} Z(\overline{x}_{i}) - Z(\overline{x}_{o})\right]^{2} - C_{o}\left(\sum_{i=1}^{m} \overline{\lambda}_{i}^{2} + 1\right)$$
$$- C_{1}\left(\sum_{i=1}^{m} \sum_{j=1}^{m} \overline{\lambda}_{i} \overline{\lambda}_{j} \overline{h}_{i} \overline{h}_{ij}\right] - 2\sum_{i=1}^{m} \overline{\lambda}_{i} \overline{h}_{io}\right]$$
$$- C_{2}\left(\sum_{i=1}^{m} \sum_{j=1}^{m} \overline{\lambda}_{i} \overline{\lambda}_{j} \overline{h}_{ij}\right]^{3} - 2\sum_{i=1}^{m} \overline{\lambda}_{i} \overline{h}_{io}\right]^{3}$$
$$- C_{3}\left(\sum_{i=1}^{m} \sum_{j=1}^{m} \overline{\lambda}_{i} \overline{\lambda}_{j} \overline{h}_{ij}\right]^{5} - 2\sum_{i=1}^{m} \overline{\lambda}_{i} \overline{h}_{io}\right]^{5}$$

Definiendo:

$$T = \left[\sum_{i=1}^{m} \overline{\lambda}_{i} Z(\overline{x}_{i}) - Z(\overline{x}_{o})\right]^{2}$$

$$X(\delta) = \sum_{i=1}^{m} \overline{\lambda}_{i}^{2} + 1$$

$$Y(h) = \sum_{i=1}^{m} \sum_{i=1}^{m} \overline{\lambda}_{i} \overline{\lambda}_{i} \overline{h}_{i} \overline{h}_{i}^{1} - 2 \sum_{i=1}^{m} \overline{\lambda}_{i} \overline{h}_{i}^{0} \overline{h}_{i}^{0}$$

$$U(\overline{h})^{3} = \sum_{i=1}^{m} \sum_{i=1}^{m} \overline{\lambda}_{i} \overline{\lambda}_{i} \overline{h}_{i}^{1} \overline{h}_{i}^{1}^{3} - 2 \sum_{i=1}^{m} \overline{\lambda}_{i} \overline{h}_{i}^{0} \overline{h}_{i}^{3}$$

$$W(\overline{h})^{5} = \sum_{i=1}^{m} \sum_{i=1}^{m} \overline{\lambda}_{i} \overline{\lambda}_{i}^{1} \overline{h}_{i}^{1}^{0} \overline{h}_{i}^{5} - 2 \sum_{i=1}^{m} \overline{\lambda}_{i}^{1} \overline{h}_{i}^{0}^{5}$$

y sustituyendo en Rx tenemos:

$$R_{x} = (T - XC_{0} - YC_{1} - UC_{2} - WC_{3})$$

(7)

así como :

$$R = \sum_{r=1}^{p} R_{x(r)}^{2} = \sum_{r=1}^{p} (T_{r} - X_{r} C_{0} - Y_{r} C_{1} - U_{r} C_{2} - W_{r} C_{3})$$
(8)

para obtener el mínimo de R, derivamos parcialmente con respecto a X, Y, U y

W e igualamos a cero las derivadas,

$$\frac{\partial R}{\partial C_0} = 2 \sum_{v=1}^{P} (T_r - X_r C_0 - Y_r C_1 - U_r C_2 - W_r C_3)(-X_r) = 0$$

y simplificando:

$$C_{0}\sum_{r=L}^{P}X_{r}^{2} + C_{1}\sum_{r=L}^{P}X_{r} Y_{r} + C_{2}\sum_{r=L}^{P}X_{r}U_{r} + C_{3}\sum_{r=L}^{P}X_{r}W_{r} = \sum_{r=L}^{P}T_{r}X_{r}$$

De manera similar, calculando $\frac{\partial R}{\partial C_{1}}$, $\frac{\partial R}{\partial C_{2}}$, $\frac{\partial R}{\partial C_{3}}$, igualando a cero -

cada derivada parcial y reordenando términos se llega al siguiente sistema de ecuaciones simultáneas:

$$C_{0} \sum_{r=1}^{p} X_{r}^{2} + C_{1} \sum_{r=1}^{p} X_{r}^{2} Y_{r}^{2} + C_{2} \sum_{r=1}^{p} X_{r}^{2} U_{r}^{2} + C_{3} \sum_{r=1}^{p} X_{r}^{2} W_{r}^{2} = \sum_{r=1}^{p} T_{r}^{2} X_{r}^{2}$$

$$C_{0} \sum_{r=1}^{p} X_{r}^{2} Y_{r}^{2} + C_{1} \sum_{r=1}^{p} Y_{r}^{2} + C_{2} \sum_{r=1}^{p} Y_{r}^{2} U_{r}^{2} + C_{3} \sum_{r=1}^{p} Y_{r}^{2} W_{r}^{2} = \sum_{r=1}^{p} T_{r}^{2} Y_{r}^{2}$$

$$C_{0} \sum_{r=1}^{p} X_{r}^{2} U_{r}^{2} + C_{1} \sum_{r=1}^{p} Y_{r}^{2} U_{r}^{2} + C_{2} \sum_{r=1}^{p} U_{r}^{2} U_{r}^{2} + C_{3} \sum_{r=1}^{p} U_{r}^{2} U_{r}^{2} W_{r}^{2} = \sum_{r=1}^{p} T_{r}^{2} U_{r}^{2}$$

$$C_{0} \sum_{r=1}^{p} X_{r}^{2} W_{r}^{2} + C_{1} \sum_{r=1}^{p} Y_{r}^{2} W_{r}^{2} + C_{2} \sum_{r=1}^{p} U_{r}^{2} W_{r}^{2} + C_{3} \sum_{r=1}^{p} W_{r}^{2} = \sum_{r=1}^{p} T_{r}^{2} W_{r}^{2}$$

Resolviendo el sistema anterior se obtienen los coeficientes del modelo más general de covarianza: Co δ + C₁ $|\vec{h}|$ + C₂ $|\vec{h}|^3$ + C₃ $|\vec{h}|^5$, pero el sistema también incluye la solución de todos los demás modelos de covarianza. Por ejemplo, si el modelo que se desea calcular es del tipo C₁ $|\vec{h}|$ + C₂ $|\vec{h}|^3$, se resuelve el sistema que queda al considerar iguales a cero todos los términos e incógnitas asociados al efecto pepita y $|\vec{h}|^5$ (o sea: Co = 0, C₃ = 0, X = 0 y W = 0).

Así el sistema a resolver es:

$$C_{1}\sum_{y=L}^{P}Y_{r}^{2} + C_{2}\sum_{y=L}^{P}Y_{r}U_{r} = \sum_{y=L}^{P}T_{r}Y_{r}$$
$$C_{1}\sum_{y=L}^{P}Y_{r}U_{r} + C_{2}\sum_{y=L}^{P}U_{r}^{2} = \sum_{y=L}^{P}T_{r}U_{r}$$

APENDICE II

FORMULA DE TIEMPO VERTICAL DE REFLEXION PARA UN CONTACTO TRIDIMENSIONAL INCLINADO

Considérese el plano X-Y como horizontal (ver figura 36) y el eje vertical Z -apuntando hacia abajo. La línea OP de longitud h es perpendicular a un plano buzante que intersecta el piano X-Y a lo largo de la línea MN si se extiende suficientemente.

FIG. 35

Vista tridimensional de la trayectoria de un rayo reflejado en una capa buzante.

Sean Θ_1 , Θ_2 y Θ_3 los ángulos entre OP y los ejes X, Y y Z, y l, m, n los – cosenos de dichos angulos en ese orden; por lo tanto son los cosenos directores de OP y – cumplen con la igualdad:

 $g^2 + m^2 + n^2 = 1$

El ángulo Ø entre MN y el eje X es el rumbo, mientras que θ_3 es el echado. La trayectoria de la onda reflejada que llega al geófono R en el eje X puede en contrarse utilizando el punto imagen I. La trayectoria OQR tiene la misma longitud -que la línea IR que puede expresarse como el producto VT siendo T el tiempo de viaje para el geófono R. Las coordenadas de I y R son respectivamente (2hP, 2hm, 2hn) y (X, 0, 0), por lo tanto tenemos:

$$\sqrt{2}T^{2} = (IR)^{2} = (X - 2hR)^{2} + (0 - 2hm)^{2} + (0 - 2hm)^{2}$$
$$= X^{2} + 4h^{2}(x^{2} + m^{2} + n^{2}) - 4hx$$
$$\sqrt{2}T^{2} = X^{2} + 4h^{2} - 4hx$$
$$T^{2} = \frac{4h^{2}}{\sqrt{2}}(1 + \frac{x^{2} - 4hx}{4h^{2}})$$
$$T = \frac{2h}{\sqrt{2}}(1 + \frac{x^{2} - 4hx}{4h^{2}})$$

como To = 2h/V, tiempo de reflejo en el punto de tiro,

$$T = T_0 (1 + (\frac{\sqrt{\chi^2 - 4hlx}}{2h})^2)^{y_2}$$

Haciendo la expansión binimial de la expresión anterior tenemos:

T = To 1 +
$$\frac{1}{2} \left(\frac{\sqrt{\chi^2 - 4h \times}}{2h} \right)^2 - \frac{1}{8} \left(\frac{\sqrt{\chi^2 - 4h \times}}{2h} \right)^4 + \dots$$

 $T = T_0 [1 + \frac{x^2 - 4h!x}{8h^2}]$

Empleando la fórmula anterior para sustraer los tiempos de arribo en dos geófonos localizados en el eje X a distancias $X = \pm s$ y haciendo $2s = \Delta x$ encontramos:

$$\Delta T x \approx T_0 \left(\frac{\pounds s}{h}\right) = \frac{\Delta x}{V}$$

y despejando :

Si también se tiene un tendido en el eje Y:

$$m = \cos \theta_2 = V \left(\frac{\Delta T_y}{\Delta y} \right)$$
 (2)

donde Δ Ty es la diferencia de tiempo entre geófonos separados por una distancia Δ y y simétricos con respecto al punto de tiro.

Asimismo:

$$n = \cos \theta_{3} = [1 - (\chi^{2} + m^{2})]^{\gamma_{2}}$$

sen $\theta_{3} = [1 - n^{2}] = (\chi^{2} + m^{2})^{\gamma_{2}}$
Sustituyendo ecuaciones (1), (2) en ecuación (3) (3)

$$\operatorname{sen} \Theta_3 = \vee \left[\left(\frac{\Delta \mathsf{T} \mathsf{x}}{\Delta \mathsf{x}} \right)^2 + \left(\frac{\Delta \mathsf{T} \mathsf{y}}{\Delta \mathsf{y}} \right)^2 \right]$$

y generalizando el problema:

$$\Theta_3 = \operatorname{sen}^{-1} \left[\vee \left[\left(\frac{\partial T}{\partial x} \right)^2 + \left(\frac{\partial T}{\partial y} \right)^2 \right]^{\frac{1}{2}} \right]$$

El tiempo vertical para el geófono R será:

$$Tv = T \cos \Theta_3$$