

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO Facultad de Ingeniería

58 Zej

"Incremento de la Capacidad Térmica de los Calentadores de Aire a Vapor de Centrales Termoeléctricas, Utilizando Vapor Saturado"

> T E S T S Que para obtener el título de: **INGENIERO MECANICO ELECTRICISTA** P r A S n а e Guillermo Jaime García Tinoco Director: Ing. Rogelio Escalera Campoverde Asesor: Ing. Jesús Espinoza Garza

México, D, F. 1987

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE GENERAL

RESUMEN

CAPITULO 1

CENTRALES TERMOELECTRICAS

1.1.-GENERALIDADES

1.2.-PRINCIPALES EQUIPOS QUE AFECTAN LA DISPONIBILIDAD DE LAS CTE's

1.3.-DESCRIPCION GENERAL DEL FUNCIONAMIENTO DE UNA CTE CONVENCIONAL DE 300 MW

CAPITULO 2

PROBLEMATICA EN PRECALENTADORES DE AIRE REGENERATIVOS Y SUS ALTERNATIVAS DE SOLUCION

2.1.-ANTECEDENTES

- 2.2.-PROBLEMATICA DE LOS PRECALENTADORES DE AIRE REGENERATIVOS Y LOS CALENTADORES DE AIRE A VAPOR
- 2.3.-ALTERNATIVAS DE SOLUCION

CAPITULO 3

CONDICIONES ACTUALES DE OPERACION DE LOS CALENTADORES DE AIRE A VAPOR

- 3.1.-INTERCAMBIADORES DE CALOR CON SUPERFICIES EXTENDIDAS
- 3.2.-CARACTERISTICAS DE LOS CALENTADORES DE AIRE A VAPOR DE UN GENERADOR DE VAPOR MARCA MITSUBISHI CON CAPACIDAD DE 300 MW
- 3.3.-METODOLOGIA DE CALCULO PARA CAV's

3.3.1 FLUJO DE CALOR TOTAL INTERCAMBIADO 3.3.2 FLUJO DE VAPOR 3.3.3.FLUJO DE CALOR INTERCAMBIADO EN EL DESOBRECALENTAMIENTO DEL VAPOR 3.3.4.FLUJO DE CALOR INTERCAMBIADO EN LA CONDENSACION 3.3.5.DIFERENCIA DE TEMPERATURA MEDIA LOGARITMICA BALANCEADA 3.3.6. SUPERFICIE TOTAL EXTERNA DISPONIBLE

3.3.7. SUPERFICIE TOTAL INTERNA DISPONIBLE

3.3.8. AREA LIBRE DE FLUJO DEL AIRE

3.3.9.DIAMETRO EQUIVALENTE

- 3.3.10.VELOCIDAD-MASICA DEL AIRE
- 3.3.11.NUMERO DE REYNOLDS EN EL LADO-AIRE DEL CAV
- 3.3.12.VELOCIDAD MAXIMA DEL AIRE
- 3.3.13.COEFICIENTE PELICULAR DE TRANSFERENCIA DE CALOR EN EL LADO-AIRE
- 3.3.14.COEFICIENTE PELICULAR EFECTIVO DE TRANSFERENCIA DE CALOR EN EL LADO-AIRE
- 3.3.15.AREA AL PASO DE FLUJO DEL VAPOR
- 3.3.16.VELOCIDAD-MASICA DEL VAPOR
- 3.3.17.COEFICIENTE PELICULAR DEL VAPOR SOBRECALENTADO
- 3.3.18.COEFICIENTE PELICULAR DEL VAPOR EN LA ETAPA DE CONDENSACION
- 3.3.19.COEFICIENTE TOTAL LIMPIO DE TRANSFERENCIA DE CALOR EN LA ETAPA DE DESOBRECALENTAMIENTO
- 3.3.20.COEFICIENTE TOTAL LIMPIO DE TRANSFERENCIA DE CALOR EN LA ETAPA DE CONDENSACION
- 3.3.21.COEFICIENTE TOTAL DE TRANSFERENCIA DE CALOR DE DISENO EN LA ETAPA DE DESOBRECALENTAMIENTO
- 3.3.22.COEFICIENTE TOTAL DE TRANSFERENCIA DE CALOR DE DISENO EN LA ETAPA DE CONDENSACION
- 3.3.23.SUPERFICIE EXTERNA REQUERIDA EN EL DESOBRECALENTAMIENTO DEL VAPOR
- 3.3.24.SUPERFICIE EXTERNA REQUERIDA EN LA CONDENSACION
- 3.3.25.SUPERFICIE TOTAL EXTERNA REQUERIDA
- 3.3.26.COEFICIENTE GLOBAL LIMPIO DE TRANSFERENCIA DE CALOR
- 3.3.27.COEFICIENTE GLOBAL DE TRANSFERENCIA
 - DE CALOR DE DISENO
- 3.3.28.FACTOR DE OBSTRUCCION
- 3.3.29.CAIDA DE PRESION DEL VAPOR
- 3.3.30.CAIDA DE PRESION DEL AIRE
- 3.4.-VALIDACION EN CAMPO DE LA METODOLOGIA DESARROLLADA
- 3.5.-NOMENCLATURA

CAPITULO 4

INCREMENTO DE LA CAPACIDAD TERMICA DE LOS CALENTADORES DE AIRE A VAPOR UTILIZANDO VAPOR SATURADO

- 4.1.-FUNDAMENTOS DE LA HIPOTESIS
- 4.2.-JUSTIFICACION DE LA HIPOTESIS
- 4.3.-COMPORTAMIENTO ESPERADO EN LOS CAV'S AL EMPLEAR VAPOR SATURADO

4.3.1.GRAFICAS DEL COMPORTAMIENTO ESPERADO EN EL CAV (LADO A) DE LA UNIDAD 4 4.3.2.GRAFICAS DEL COMPORTAMIENTO ESPERADO EN EL CAV (LADO A) DE LA UNIDAD 1

4.4.-CONDICIONES DE OPERACION CON VAPOR SATURADO

CAPITULO 5

EXPERIMENTACION

5.1.-EQUIPO E INSTRUMENTACION REQUERIDA

5.1.1.CILINDRO PITOT

5.1.2.EQUIPO ADICIONAL DE MEDICION

5.1.3. INSTRUMENTACION INSTALADA EN LOS CIRCUITOS DE VAPOR-CONDENSADOS Y AIRE DE LOS CAV'S DE LA CTE

5.2.-DISENO DEL EXPERIMENTO

5.2.1.MEDICION DEL FLUJO DE AIRE

5.2.2.MEDICION DE TEMPERATURAS DEL AIRE A LA SALIDA DEL CAV 5.2.3.PRUEBAS EXPERIMENTALES DE ATEMPERACION DE VAPOR

5.3.-RESULTADOS EXPERIMENTALES

5.3.1.FLUJOS DE AIRE MEDIDOS 5.3.1.1.MEDICION DEL FLUJO DE AIRE EN EL CAV (LADO A) DE LA UNIDAD 4. 5.3.1.2.MEDICION DEL FLUJO DE AIRE EN EL CAV (LADO A) DE LA UNIDAD 1

5.3.2.RESULTADOS EXPERIMENTALES DE LAS PRUEBAS DE ATEMPERACION DE VAPOR 5.3.3.ANALISIS COMPARATIVO DE LOS RESULTADOS 5.3.3.1.CAV (LADO A) UNIDAD 4 5.3.3.2.CAV (LADO A) UNIDAD 1

CONCLUSIONES

REFERENCIAS

RESUMEN

Actualmente, las centrales termoeléctricas (CTE's) ocupan el lugar más importante dentro de la capacidad instalada de generación de energía, debido a que suministran aproximadamente el 65% de la energía eléctrica total generada en el país.

En una central termoeléctrica, los generadores de vapor cuentan con equipos tales como los precalentadores de aire regenerativos (PAR's) y los calentadores de aire a vapor (CAV's); ambos equipos forman parte del circuito aire-gases, siendo la función de los CAV's precalentar el aire que entra a los PAR's.

Dadas las condiciones críticas de trabajo a las que se los PAR's, propiciadas por la mala calidad someten del combustible (combustóleo), los altos puntos de rocio ácido de los gases de combustión y las bajas temperaturas de aire a la entrada de los mismos; las superficies de intercambio de calor de éstos equipos sufren problemas tales como ensuciamiento y corrosión. Por lo anterior, el presente trabajo surge con el propósito de disminuir la depositación de ácido sulfúrico aumentando **1a** temperatura del aire en la zona fria de los PAR's. Este aumento de temperatura puede lograrse de dos maneras, incrementando la superficie de intercambio de calor de los CAV's ó empleando vapor saturado en lugar del vapor sobrecalentado que actualmente se utiliza.

La investigación realizada en éste trabajo, se enfoca а determinar la efectividad del empleo de vapor saturado para incrementar la capacidad térmica (capacidad de intercambio de de los CAV's. Lo anterior se fundamenta en el hecho de calor) que el coeficiente de transferencia de calor en la etapa de condensación del vapor es mayor que el de la etapa de desobrecalentamiento, lo cual permite establecer aue la superficie de intercambio de calor tiene mayor capacidad térmica en la zona de condensación que en la zona de desobrecalentamiento del vapor. Por lo tanto la optimización del funcionamiento térmico de los CAV's, puede lograrse eliminando **e**1 sobrecalentamiento del vapor y utilizando únicamente su etapa de condensación: incrementandose asi 1a capacidad total de transferencia de calor de los mismos.

Dentro de los estudios iniciales, se desarrolla y comprueba experimentalmente un método de cálculo que permite efectuar el diseño y evaluación del funcionamiento térmico de CAV's. Posteriormente, de dicha metodología surgen los parámetros que son de interés para establecer el comportamiento esperado de los CAV's al utilizar vapor saturado.

Finalmente, se analizan y discuten los resultados de la experimentación efectuada en los CAV's empleando vapor saturado, de los cuales se derivan las conclusiones del presente trabajo.

C A P I T U L O 1

CENTRALES TERMOBLECTRICAS

1.1.-GENERALIDADES

En la actualidad el sector energético del país cumple un papel importante en el proceso de desarrollo nacional, proporcionando la energía necesaria para el funcionamiento y expansión del sistema productivo.

Hasta 1984 México contaba con una capacidad total instalada de generación de energía eléctrica de 20202 MW [megawatts].

De acuerdo con los proyectos en ejecución, para el periodo 1984-1990, se espera aumentar la capacidad instalada en más de 7000 MW; de los que aproximadamente, un 16% serán generados por hidroeléctricas, 6% por geotermoeléctricas, 8% por carboeléctricas, 16% por nucleoeléctricas y el restante 54%, por termoeléctricas convencionales[1].

La distribución de la capacidad instalada de generación de energia eléctrica que se proyecta obtener anualmente hasta 1988, se muestra en la tabla 1.1..

TIPO DE PLANTA	1983	1984	1985	1986	1987	1988
HIDROELECTRICAS	6 550.	6 550.	6 550.	7 446.	7 722.	7 814.
GEOTERMICAS	205.	425.	645.	645.	645.	645.
*TERMOELECTRICAS	12 295.	13 227.	13 864.	14 694.	15 673.	17 125.
NUCLEARES	0.	0.	0.	0.	654.	1 308.
TOTAL	19 050.	20 202.	21 059.	22 785.	24 694.	26 892.

* se incluyen carboeléctricas

TABLA No.1.1 Capacidad instalada de generación de energía eléctrica, en megawatts, proyectada hasta 1988[1]

Las centrales termoeléctricas (CTE's), ocupan un lugar muy importante dentro de la capacidad instalada de generación de energía. Actualmente suministran aproximadamente el 65% de la energía eléctrica total generada en el paísElJ, de manera que pueden considerarse como las principales fuentes generadoras de electricidad en México.

Las CTE's se pueden clasificar en:

- Centrales termoeléctricas de vapor.
- Centrales termoeléctricas de ciclo-combinado.
- Centrales termoeléctricas de combustión interna.

En la República Mexicana, el Sector Eléctrico Nacional abarca 7 Regiones de Generación Termoeléctrica, las cuales se muestran en la figura 1.1.[2].

FIGURA No.1.1.- Regiones de generación termoeléctrica.

Asimismo, las CTE's que usan generadores de vapor varian de tamaño según su capacidad de generación instalada, la cual puede ser de 80,82,84,150,158,300 ó 350 MW. Las características de los generadores de vapor con capacidad mayor a 80 MW se muestran en la tabla 1.2.[2].

Construction of the second sec	_							_						_		-	_	_
	G	ENE	RA	L	c	A	LD	E	RA			TURBI	N A	•	GE	NEI	RAD	O R
CENTRAL	- 11	TEECH	DF	TTPO						r	1		T .	T				
	พ	TATDA		DE	1				TENDE	DDE	FLUTO		TEMPE	PRE	VOT.	POTE	NCIA	(MW)
·	Į	OPER	CTON		ј мат	, ,	А		RATTIRA	STON	DE	MARCA	RATURA	STON	TATE			
TERMOELECTRICA	Ă	COME	RCTAT	TT-			••		(°C)	(Ka/cm ²	VAPOR		(°C)	(Ka/cm ²)	(KV)	PLACA	REAL	DE
	D	A/1	4/D	BLE					,		(Ton/h	i			1			
				RE	GION D	E	GΕ	ΝE	RAC	ION	I T	ERMOELECTRIC	A CI	ENT	RAI			
FRANCISCO PEREZ PIOS	1	76/06	5/29	C.G	C.E. (CANADA)				540.55	174.71	977	ITTSUBISHI	537.78	168.73	20	300.0	300.0	10.
	2	75/09	9/27_	C.G	C.E. (CANADA				540.55	174.71	977	MITSUBISHT	537.78	168.73	20	300.0	300.0	10.
TULA (HIDALGO)	3	77/0	2/14	C.G	B & W (CANADA	<u> </u>			540.55	174.71	922	MURSUBISHT	537.78	163.73	20	300.0	300.0	10.
	4	78/04	$\frac{1}{12}$	C.G	LB & W (CANADA	1			540.55	174.71	922	NITSUBISHT	537.78	168.73	20.	300.0	300.0	10
	<u> </u>	1 25/11	120	0.6	MITSUBISHI IC	ا بنظ و			540.55	153 26	1 477	CENERAL ELECTRIC	1537.78	1266.73	1-20-1	150 0	150.0	- 0-
VALLE DE MEXICO		1 70/1	2/01	6.6	MINCIPICUT (C	F 1			540 55	132 28	504	HTTACHT	537 70	126.55	20	152 0	150.0	+
(MEXICO)		70/12	2/01	6.6	MTTSUBISHT (C				540.55	132.98	504	HTTACHT	537 78	126 55	20	158 0	1250 0	+ *
	4	74/0	716	IC.G	IB & W (FNGLAN	D1			540.55	197.56	907	BROWN BOVERI	537.78	168.73	20	300.0	280.0	120
CATAMANTA	1	7170	5719	1c	MITSUBISHI (C	.E.)			540	134.60	504	HITACHI	538	126.50	15	158.0	150.0	18.
SALPHPERCA	2	70/11	/27	C	MITSUBISHI (C	.E.			540	134.60	504	HITACHI	538	126.50	15	158.0	150.0	8.
(GUANAJUATO)	3	77/02	2/01	C	C.E. (CANADA)				540	175	977	MITSUBISHI	540	169	20	300.0	300.0	10.
	4	78/08	3/08]C	BORGIG				540	175	977	FRANCO TOSY	1540	169	20	300.0	220.0	180.
MANZANILLO	1	81/09)	C	MITSUBISHI (C	.E.)					<u> </u>		·			300.0	300.0	10.
(COLIMA)	2	81/11		C	MITSUBISHI (C	.E.)		-		ļ			L			300.0	300.0	19-
		83/04	1/01	C	MITSUBISHI (C	.E.)					<u> </u>	·····	ł			300.0	300.0	10-
	4	83/09	1/01	- <u>C</u>	MTTSUBISHI IC	.E.)				ļ	<u> </u>		100			300.0	1300-0	<u>+ 9</u> -
JORGE LUQUE (MEXCO)		1 28/0	<u></u>		A. E. G.						I	A. G. G.	1482			82	84	-1-0-1
		1.00/14	2 2	- C T		C F	NE	D A	CTO	NT T	E D A	AOFTECTPICA 7	1402		<u></u>	° <u>~</u>	96	1.64
MAZATT AN TT		1 75		10 1	INTRECTOTORY (C	E		<u></u>	540.55	1122 8	504	I HTTACHT	1538	126 54	1-15-1	158 0	158 0	10
	2	75/10	0/01	C	MITSUBISHI (C	.E.)			540.55	132.88	504	HITACHI	538	126.54	15	158.0	158.0	10.
(SINALDA)	3	80/12	2/01	C	HTTACHE (B &	(V)			540,55	174.71	922		538	168.86	20	300.0	270.0	130.
GUAMAAS II	1	73/12	2/06	C	MITSUBISHI (C	.E.			540	120.20	324	MITSUBISHI	538	103	13.8	84.0	84.0	10.
(CONDRA)	2	73/08	3/18	C	MITSUBISHI (C	.E.)			540	120.20	324	MITSUBISHI	1538	103	13.8	84.0	84.0	0.
(COLONEL)		79/09	9/27	C	MITACHI (B &	(i)										158.0	138.0	<u></u>
·	4	1_80/01	<u></u>	<u></u>	HITACHI (B &	<u>w)</u>				Ļ	<u> </u>				<u> </u>	158.0	1128.0	جالبة
		1 01 /01	RE	GIO	ON DE	GE	NEF			N 1	ERM	IOELECTRICA (<u>SENT</u>	RO	NO	2 T		T. 0.
G. FRANCISCO VILLA	4	1 81/0	5/01	C	HITACHL (B &	W)									<u> </u>	129.0	150.0	- 0.
		1 82/0	101		C T O N D	<u>~</u>	CEN		PAC	TON		PNOFIECTPICA	1	DEC		150.0	120.0	بمقلب
NUNPERPEC		1 72707	1701	10 0	CEDDEV				540	106	1 222	FSCIEP WYSS	1538	103	113 व	34 0	1.20.0	
(TIERCEI		1 73705	1/01	CG	CERREY				540	106	324	ESCHER WYSS	538	103	13.9	84.0	80.0	14.
(NOEVO LEON)	ä	74		IC.G	CERREY				540	106	324	MITSUBISHI	537	103	13.8	84.0	80.0	14.
BTO BRAVO (TAM)	7	82/12	,	C.G	MTTSUBISHT (C	E.)					1					300.0	300.0	10.
RIO ESCONDIDO		31/10	0701	Ca	HITACHI (B &	W)			541	176.50	980		1			300.0	300.0	10.
(COAHUTLA)	2	33/04	1/01	Ca	HITACHI (B &	W)			541	176.50	280					300.0	300.0	10.
				1	REGION	D	E G	E	NER	ACI	ON	TERMOELECTRI	CA	GOL	FO			1.1
AT TRANT DA	1	75/12	2/23	C	HITACHI (B &	W)			540	130	504	TOSHIBA	538	126.60	16	158.0	150.0	18.
	2	76/04	/01	C	HITACHI (B &	W)			540	130	504	TOSHIBA	538	126.60	16	158.0	150.0	18.
(CAMALILIPAS)	3	78/98	3/27	C,G	BORSIG				540	174.60	975	FRANCO TOSY	537.8	168.80	20	300.0	220.0	80.
	4	78/98	3/27	C,G	BORSIG				540	174.60	975	FRANCO TOSY	537.8	168.80	20	300.0	220.0	80.
· · ·						D	IVI	S	LON	BA	JA	CALIFORNIA						
RISARITO (TIJUANA)	4	69/0	3/18	C	IC.E.				513	97	136	SYBETRA (WS)	510	87.90		92.0	75.0	17.
					·		D	IV	ISI	ON	PEN	INSULAR						
INTERTOA TT (VICATIANI)	1	T 81/12	2/01	1	1			1							T	34.2	24.0	10.
(Income and (Income and)		1 82/0	101		1				1		1					54. Ú	84.0	1.0.1

7

TABLA No.1.2.- Principales características de los generadores de vapor

con capacidad de 80,82,84,150,158 y 300 MW.

1.2.-PRINCIPALES EQUIPOS QUE AFECTAN LA DISPONIBILIDAD DE LAS CTE's

A partir de 1979 se ha venido detectando, mediante los análisis rutinarios del combustible, una degradación en la calidad del combustóleo suministrado a las CTE's nacionales; lo cual ha ocasionado un constante decremento de los indices de disponibilidad en las CTE's.

Esta situación hace necesario considerar la disponibilidad, como uno de los principales problemas que tendrá que afrontar el sector eléctrico a corto y mediano plazo.

La indisponibilidad asociada a equipos en generadores de vapor con capacidades de 80 a 300 MW, se indican en las tablas 1.3 y 1.4.E2J.

EQUIPO	TOT	AL DE INDISPONIBILIDAD
 Generador de vapor Turbogenerador Bombas de agua de alime Precalentador de aire Recirculador de gases Ventiladores torre de e Condensadores Calentadores agua de al Ventiladores de tiro fo Bombas de circulación f 	entación enfriamiento limentación orzado forzada	54.04 16.41 6.57 5.31 4.71 3.87 3.79 3.37 0.99 0.94

TABLA No.1.3 Indisponibilidad asociada a equipos de CTE's durante el periódo 1977-1982 para generadores de vapor de 80 a 300 MW

EQUIPO	TOTAL DE INDISPONIBILIDAD
! Generador de vapor	30.56
! Bombas de agua de alimentación	11.03
! Turbogenerador	10.40
! Precalentador de aire	10.13
! Tiros y recirculadores	8.87
! Tableros y protecciones	8.06
! Condensador	5.90
! Calentadores de agua de alimentación	5.72
! Bombas de circulación forzada	5.18
! Errores en operación y/o	
! mantenimiento	4.15

TABLA No.1.4 Indisponibilidad asociada a equipos de CTE's durante el periódo 1983-1984 para generadores de vapor de 80 a 300 MW.

Haciendo una estadística de los datos presentados en las tablas anteriores, puede observarse que entre el generador de vapor, el turbogenerador, las bombas de agua de alimentación y los precalentadores de aire, se sobrepasa el 60% de la indisponibilidad total.

Del análisis de los datos estadísticos de indisponibilidad causada por los precalentadores y de la evaluación del comportamiento operativo de los mismos, se establecen dos categorías de problemas, que se dividen en la forma siguiente[3]:

POR DISENO

- Mala calidad del combustible (3 a 4% de azufre y un alto contenido de asfaltenos y metales que propician la formación de cenizas ácidas muy difíciles de remover).
- Bajas temperaturas ambiente.
- Puntos de rocio ácido altos (±140°C)
- Bajas temperaturas de metal en las canastas del lado frío.
- Sistemas de limpieza de canastas subdimensionados (en particular sopladores de hollin).

POR OPERACION Y/O MANTENIMIENTO

- Ensuciamiento de canastas.
- Depositación ácida.
- Corrosión de canastas y sellos.
- Taponamiento de canastas.
- Mal ajuste y/o mantenimiento de sellos.
- Fugas de aire hacia gases.
- Lavado inadecuado de canastas.
- Otros (sistema motriz, eléctrico; incendios etc.)

1.3.-DESCRIPCION GENERAL DEL FUNCIONAMIENTO DE UNA CTE CONVENCIONAL DE 300MM

El funcionamiento general de una CTE se describe analizando los diagramas de flujo de los dos circuitos principales que forman parte de la operación de ésta, los cuales son:

El ciclo agua-vapor y el circuito aire-gases de combustión del generador de vapor (figuras 1.2 y 1.4).

DESCRIPCION DEL CICLO AGUA-VAPOR

Durante la operación de un generador típico de una unidad de 300 MW a plena carga, el agua se calienta y se evapora por efecto de la radiación que producen la flama y los gases de combustión.

La producción de vapor se efectúa dentro de los tubos aue conforman las paredes del hogar o cámara de combustión, donde se obtiene una mezcla de liquido-vapor que continúa hacia el domo superior, donde se lleva a cabo la separación del líquido y del vapor. La presión en el domo se controla mediante válvulas a la entrada de la turbina y su valor para éste caso es de 187 kaf/cm2. que corresponde a una temperatura de saturación de 358°C. El vapor producido en ésta forma se envia a los bancos de tubos del sobrecalentador en donde recibe una cantidad adicional de calor procedente de los gases de combustión. La temperatura que tiene el vapor proveniente del sobrecalentador es controlada mediante atemperadores cuya función es mantener la

temperatura requerida.

El vapor sobrecalentado que sale del generador de vapor entra a la turbina de alta presión con las siguientes condiciones:

Presión = 175 kgf/cm2 Temperatura= 540°C Flujo = 910 ton/hr

Debido al proceso de expansión del vapor dentro de la turbina, la energía del vapor se transforma en energía mecánica, la cual a su vez se utiliza para accionar el eje del generador eléctrico y producir la energía eléctrica de la unidad.

El vapor abandona la turbina de alta presión a 40 kgf/cm2 y 340° C.

Del total de vapor que sale de la turbina de alta presión, parte es utilizado como extracción que se emplea en otra etapa del ciclo regenerativo, en tanto que el resto del vapor (810 ton/hr) se envía al recalentador. La función del recalentador es incrementar nuevamente la temperatura del vapor hasta 540°C, utilizando para ello la energía calorífica de los gases de combustión de la caldera.

El vapor una vez recalentado, (llamado recalentado caliente) se envia a las etapas de presión intermedia y consecutivamente a la etapa de baja presión de la turbina.

Alrededor de 600 ton/hr de vapor salen de la turbina de baja presión (el resto es vapor de extracción) con destino al condensador, a una temperatura de 43°C y con una presión absoluta de 0.086 kgf/cm2.

Al entrar en contacto el vapor con los tubos del condensador, los cuales conducen el agua de enfriamiento, éste se condensa y cae al pozo caliente.

El condensador opera ya sea con agua de mar en circuito abierto ó mediante un sistema de torres de enfriamiento en circuito cerrado.

Del pozo caliente, el agua inicia el retorno hacia la caldera pasando por la bomba de condensados, que incrementa la presión hasta 25 kgf/cm2 aproximadamente; para enviarla posteriormente, a los calentadores de baja presión, en donde aumenta su temperatura al intercambiar calor con vapor de extracción.

De los calentadores de baja presión, el agua de alimentación pasa al deareador, en el cual se inyecta vapor, proveniente también de una extracción, para arrastrar el oxigeno y las impurezas que lleva el agua con el fin de evitar picaduras por causa del primero ó corrosión por efecto de las últimas. El vapor inyectado al deareador se extrae por drenes y el agua entra al tanque de oscilación. De ahi las bombas de agua de alimentación, sincronizadas con la presión en el domo, elevan la presión del agua y la envian a los calentadores de agua de alta

presión; de donde posteriormente se dirige hacia el economizador de la caldera con una presión de 189 kgf/cmz y una temperatura de 250°C aproximadamente.

El economizador es un intercambiador de calor de tubos aletados externamente, que tiene como función recuperar el calor de desperdicio de los gases de combustión y aprovecharlo para precalentar el agua de alimentación.

En el trayecto del agua por el economizador hacia el domo, ocurre un incremento de temperatura de 250°C hasta 325°C.

El agua entra al domo para reemplazar el vapor que sale rumbo al sobrecalentador, y en ésta forma se completa el ciclo agua-vapor de un generador de vapor típico de 300 MW, cuyos elementos se muestran en las figuras 1.2 y 1.3.

FIGURA No. 1.2.- Diagrama del ciclo agua vapor de una central termoeléctrica de 300 MW de capacidad.

FIGURA No.1.3.- Diagrama de un generador de vapor MITSUBISHI de 300 MW de capacidad.

DESCRIPCION DEL CIRCUITO AIRE-GASES DE COMBUSTION

La cantidad total de aire requerida para la combustión es proporcionada por 2 ventiladores de tiro forzado, de eje horizontal, accionados por motores eléctricos.

Los ventiladores de tiro forzado descargan el aire hacia el ducto de entrada de los calentadores de aire a vapor, encontrandose los ductos de entrada interconectados para igualar presiones.

El calentador de aire a vapor (CAV), es un intercambiador de calor formado por un banco de tubos aletados externamente; el cual conduce dentro de los tubos, vapor de extracción de la turbina (en condiciones normales de operación), ó vapor auxiliar (durante el arrangue de la unidad).

El aire sale del CAV a una temperatura aproximada de 75°C, y se dirige al precalentador de aire regenerativo (PAR), el cual se asemeja a un tambor giratorio; constituido en su parte interior por paquetes de láminas corrugadas llamadas también canastas. Los gases producto de la combustión atraviezan el PAR en dirección axial por una mitad de éste, en tanto que el aire procedente de CAV, lo hace en sentido opuesto por la otra.

El PAR funciona como una masa calefactora giratoria que absorbe calor de los gases y la cede al aire. A la salida del PAR el aire alcanza una temperatura aproximada de 290°C y se conduce a los compartimientos de la caja de aire tangencial para

ser utilizado en la combustión.

Despues de llevarse a cabo la reacción de combustión, 105 gases producidos viajan hacia arriba del horno pasando por el sobrecalentador, el recalentador y el economizador antes de salir de la caldera. Del total de gases que salen de la caldera (aproximadamente a una temperatura de 340°C), una parte es enviada al sistema de recirculación de gases que funciona como un medio de control de temperatura del vapor recalentado. La recirculación de los gases al fondo del hogar se realiza por medio de un ventilador, regulandose la cantidad de aas recirculado por medio de la compuerta de entrada del ventilador. La otra parte de gases que salen de la caldera se envian al PAR de donde lo abandonan a una temperatura aproximada de 150°C. Finalmente los gases que salen del PAR se dirigen a la atmósfera a través de la chimenea, completandose así el circuito aire-gases de combustión, el cual se muestra en la figura 1.4.

FIG No 1.4. DIAGRAMA DE FLUJO DEL CIRCUITO AIRE-GASES DE UN GENERADOR DE VAPOR.

CAPITULO 2

PROBLEMATICA EN PRECALENTADORES DE AIRE REGENERATIVOS

Y SUS ALTERNATIVAS DE SOLUCION

2.1.-ANTECEDENTES

En una central termoeléctrica los generadores de vapor cuentan, para su desempeño eficiente, con equipos tales como los precalentadores de aire regenerativos (PAR's) y los calentadores de aire a vapor (CAV's), siendo indispensable mantenerlos operando de manera óptima dadas las condiciones críticas de trabajo a las que están sometidos.

Los PAR's tienen gran importancia en el funcionamiento de los generadores de vapor, ya que aumentan la eficiencia de éstos tanto por el hecho de recuperar parte del calor que llevan los gases de combustión hacia la chimenea, como porque proporcionan el aire lo suficientemente caliente para que se efectúe la combustión del combustóleo en forma adecuada.

El incremento de eficiencia que se obtiene al utilizar los PAR's fluctúa entre 8 y 10%, dependiendo de las dimensiones de los mismos y de los valores de temperatura y flujos que se manejen[3].

2.2.-PROBLEMATICA DE LOS PRECALENTADORES DE AIRE REGENERATIVOS Y LOS CALENTADORES DE AIRE A VAPOR

En general la problemática de éstos equipos se puede resumir en lo siguiente:

La mala calidad del combustible y las altas temperaturas de rocio ácido provocan ensuciamiento y depositación ácida en la superficie de intercambio de calor de los PAR's. Si a estos dos conceptos se les añade la deficiencia de los sistemas de limpieza, se ocasionan problemas tales como: taponamiento de canastas, corrosión y deterioro tanto de canastas como de los sistemas de sellos.

En la figura 2.1 se incluyen fotografías que muestran la corrosión y deterioro que se presenta en las canastas del lado frio de los PAR's.

Los efectos que ocasionan éstos problemas son: fugas de aire hacia los gases, bajas eficiencias térmicas, altas caídas de presión y sobre todo altos indices de indisponibilidad y costos de mantenimiento de los generadores de vapor.

Por otro lado, la función principal de los CAV's es precalentar el aire, para que en el lado frio de los PAR's se sobrepase la temperatura del punto de rocio ácido y se evite asi la depositación. Sin embargo, se ha encontrado[3], que actualmente ésta función no se desempeña adecuadamente debido a que en general, las dimensiones de los CAV's son inferiores a las requeridas.

FIGURA No.2.1.- Corrosión y ensuciamiento de canastas en la zona fría de los PAR's.

2.3.-ALTERNATIVAS DE SOLUCION

La problemática detectada en los PAR's comprende básicamente dos conceptos: depositación ácida y ensuciamiento; por lo que las alternativas de solución que se contemplan son también de dos tipos[4], las cuales se describen a continuación.

1.- Optimizar los sistemas de limpieza

Dadas las características de los depósitos que se acumulan en las canastas de los PAR's, los sistemas tanto de soplado como de lavado resultan deficientes para remover dichos depósitos.

La fuerte adherencia de éstos depósitos se debe en gran medida al ácido que contienen y a la depositación ácida que ocurre cuando la humedad y la temperatura de los gases son propicias.

Por lo tanto antes de efectuar cualquier modificación a los sistemas de limpieza, es recomendable probar si disminuyendo la depositación ácida, los depósitos que se formen son posibles de remover con los dispositivos de limpieza existentes.

2.- Disminuir la depositación ácida

La corrosión y deterioro de los elementos metálicos (canastas y sistemas de sellos) son ocasionados por la depositación de ácido sulfúrico contenido en los gases de combustión. La formación de éste último, depende de factores tales como el contenido de azufre en el combustible, del nivel de ensuciamiento de los bancos de tubos del generador de vapor, del

exceso de aire con que se operen éstos, etc.

Los dos últimos factores son factibles de controlarse estableciendo medios y rutinas apropiadas de limpieza de caldera, y, trabajando los generadores de vapor con el mínimo posible de exceso de aire.

En cuanto al contenido de azufre del combustóleo éste resulta prácticamente inmovible dados los altos niveles de inversión requeridos para disminuírle el contenido de azufre.

En virtud de lo anterior, es necesario analizar y evaluar otras alternativas de solución que permitan abatir y controlar el punto de rocio ácido como requisito indispensable para minimizar la depositación ácida.

Una de las mejores alternativas de solución a éste problema, consiste esencialmente en mantener la zona fria de los PAR's a una temperatura mayor que el punto de rocio ácido; para lograr ésto, se proponen las siguientes soluciones[4]:

- Modificar los calentadores de aire a vapor (CAV's).

- Disminuir el número de canastas en el lado frio de los precalentadores regenerativos.
- Recircular aire caliente.
- Derivación (By-pass) de aire frio.

Las modificaciones que es posible efectuar en los CAV's comprenden:

- Incrementar la superficie de calentamiento y utilizar vapor sobrecalentado como servicio.
- Utilizar vapor saturado como servicio, manteniendo la misma superficie actual.
- Una mezcla de ambas.

La solución más viable es la que se refiere a la utilización de vapor saturado como servicio, manteniendo la misma superficie de intercambio del CAV. Esta solución requiere de pocas modificaciones a los equipos actualmente en operación y por lo tanto de poca inversión monetaria.

En los estudios realizados[4], se han establecido cuales deben ser las temperaturas del aire a la entrada de los PAR's, para disminuir la depositación ácida en la zona fría de los mismos. En la tabla 2.1 se muestran las temperaturas requeridas en los PAR's, para las unidades de 300 MM de CFE.

GRUPO No.	СТЕ	UNIDAD	FABRICANTE	t2 (°C)	
I	ALTAMIRA ALTAMIRA SALAMANCA	3 4 4	BORSIG	102.5	
II	MANZANILLO MANZANILLO	1 2	MITSUBISHI	105	
III	MANZANILLO MANZANILLO	3 4	MITSUBISHI	104.8	
IV	TULA TULA SALAMANCA	1 2 3	C.E. CANADA	99.5	
v	TULA TULA	3 4	B.W. CANADA	81.5	
VI	TULA RIO BRAVO	5	MITSUBISHI	$104.7 \\ 105.7$	
VII	MAZATLAN	3	B. HITACHI	103.7	
VIII	VALLE DE MEXICO	4	B.W. ENGLAND	102.9	

TABLA No.2.1.- Temperaturas requeridas para disminuir la depositación ácida en la zona fría de los PAR's

CAPITULO 3

CONDICIONES ACTUALES DE OPERACION DE

LOS CALENTADORES DE AIRE A VAPOR

3.1.-INTERCAMBIADORES DE CALOR CON SUPERFICIES EXTENDIDAS

Los intercambiadores de calor son dispositivos en los cuales se transfiere calor entre 2 corrientes de fluidos durante un proceso.

La mayoría de los intercambiadores de calor se adquieren como articulos prefabricados y la selección se hace en base a los diseños y especificaciones proporcionados por los diferentes fabricantes. En aplicaciones más especializadas es frecuentemente necesario un diseño particular.

Para el diseño y selección de un intercambiador de calor es necesario hacer las siguientes consideraciones:

1.- Características de transferencia de calor.

2.- Características de caídas de presión.

3.- Dimensiones, forma y tipo.

4.- Costo

5.- Ensuciamiento por operación.

Las variables que afectan las condiciones de operación de un intercambiador de calor son: las relaciones de flujo de masa, los calores específicos de los fluidos, las temperaturas de entrada y salida de los fluidos caliente y frio, la superficie disponible para la transferencia de calor, la conductividad térmica del material, los coeficientes convectivos de

transferencia de calor en las superficies interior y exterior de los tubos, y el grado de ensuciamiento en las superficies de intercambio de calor.

Cuando a las superficies ordinarias de transferencia de calor se añaden piezas adicionales de metal, se aumenta la superficie disponible de transferencia de calor formando así las llamadas superficies extendidas. A las tiras de metal ó piezas que se emplean para extender las superficies de transferencia de calor se les conoce generalmente como aletas.

Las aletas en superficies extendidas son empleadas para incrementar el valor de la transferencia de calor de una superficie. Estas superficies se utilizan generalmente cuando uno de los fluidos convectivos es un gas, esto es debido a que los coeficientes convectivos ó peliculares para un gas son usualmente más pequeños que los de un líquido.

Los tubos aletados externamente, se utilizan también cuando los coeficientes externos de transferencia de calor de los tubos (correspondientes a un gas) son varias veces más pequeños que los internos.

Los tubos aletados son usados extensivamente en: recuperadores de calor, economizadores de calderas convencionales, enfriadores y calentadores de aire V en cambiadores de calor tipo paquete.

El incremento en la transferencia de calor que se obtiene utilizando superficies extendidas depende de los siguientes factores :

(a) Espaciamiento y número de aletas.

- (b) Eficiencia de las aletas.
- (c) El uso de configuraciones especiales de aletas con objeto de incrementar los coeficientes de transferencia de calor.

El aumento en el número de aletas por metro de tubo producirá:

- Un incremento en la superficie de calentamiento y por consiguiente en la capacidad térmica del calentador (UxA).
- Un incremento en el coeficiente de transferencia de calor externo debido a que al disminuir el área libre de pasaje del flujo, se incrementa el número de Reynolds y aumenta en consecuencia el coeficiente pelicular de transferencia de calor.
- Una caida de presión más grande, debido a la reducción del área de pasaje del flujo.
Para seleccionar el número de aletas por metro que deben montarse en los tubos se tiene que tomar en cuenta lo siguiente:

- Las caídas de presión permitidas en el gas.
- Las condiciones de ensuciamiento esperadas en el lado del gas.

Las aletas pueden estar montadas sobre los tubos por ajuste mecánico, por contracción, por tensión de enrrollamiento, por soldadura autógena, embutidas ó extruídas.

En los tubos aletados de acero al carbón, las aletas pueden ser de los siguientes materiales:

- Acero al carbón.
- Acero inoxidable.
- Aluminio
- Latón.

3.2.-CARACTERISTICAS DE LOS CALENTADORES DE AIRE A VAPOR DE UN GENERADOR DE VAPOR MARCA MITSUBISHI CON CAPACIDAD DE 300 MW

Los calentadores de aire a vapor (CAV's) son intercambiadores de calor formados por bancos de tubos con aletas circulares externas, arreglados en forma escalonada; a través de los cuales circula, en forma transversal y por convección forzada, el aire (requerido para la combustión) que descargan los ventiladores de tiro forzado (VTF's), mientras que por dentro de los tubos circula el fluido caliente que es vapor de agua.

Por cada generador de 300 MW se requieren 2 calentadores de aire a vapor, los cuales pueden ser de dos tipos:

- Horizontales.

- Verticales.

El CAV está dividido en páneles removibles que pueden ser reemplazados en caso de fugas de vapor; los tubos son de acero al carbón, en tanto que las aletas son de aluminio. El vapor entra por cabezales que distribuyen el vapor a todos los tubos, de igual forma existen cabezales a la salida que recolectan los condensados provenientes de los tubos.

En condiciones normales de operación los calentadores de aire a vapor utilizan vapor sobrecalentado proveniente de la extracción No.5 de la turbina, con las siguientes caracteristicas:

Presión = 8.1 kgf/cmz man.

Temperatura = 330°C

El flujo de aire que por diseño circula a través de los calentadores de aire a vapor es:

- 525200 kg/hr; en los calentadores horizontales, por cada calentador.
- 525235 kg/hr; en los calentadores verticales, por cada calentador.

En general el flujo de aire que circula a través del CAV es mayor al de diseño, esto se debe a que existen fugas de aire hacia los gases de combustión en el PAR, que son superiores a las de diseño. Las fugas reducen el flujo de aire que se utiliza para la combustión, lo cual ocasiona que la caldera demande un mayor flujo, satisfaciéndose ésta demanda con el aumento producido por los VTF's.

Las figuras 3.1 y 3.2 muestran las características de un CAV tipo horizontal de los utilizados en las unidades 1 y 2 de la CTE de Manzanillo,Colima.

FIGURA No. 3.1 .- Plano de construcción del CAV

3.3.-METODOLOGIA DE CALCULO PARA CAV'S

En condiciones normales de operación, los CAV's trabajan con vapor en dos etapas, la etapa de desobrecalentamiento y la etapa de condensación. Un método que permite evaluar el comportamiento térmico del CAV, considerando las dos etapas del fluido mencionadas, es el método de balanceo[7,8] y consiste en considerar al CAV dividido en dos zonas en serie, una para el desobrecalentamiento y otra para la condensación del vapor, calculando independientemente los parámetros de operación correspondientes a cada zona y utilizandolos posteriormente en el cálculo de los parámetros globales del CAV.

Las consideraciones del método de balanceo sirven como medios consistentes aunque no enteramente precisos para evaluar el funcionamiento de intercambiadores de calor que trabajan con varias etapas.

Los parámetros que se calculan independientemente para cada zona son el flujo de calor intercambiado, la diferencia de temperatura media logaritmica, el coeficiente total limpio de transferencia de calor y, con estos parámetros la superficie de transferencia de calor requerida en cada zona. La suma de las superficies requeridas en cada zona, es la superficie total de transferencia de calor requerida en el CAV, para satisfacer las condiciones de transferencia de calor establecidas.

Una vez conocidos estos parámetros, se procede a calcular el coeficiente global limpio de transferencia de calor (UC) y la diferencia de temperatura media logaritmica balanceada (Δ tm), utilizando para ello las ecuaciones propuestas en el método de balanceo.

For otra parte el coeficiente global de diseño (UD), se calcula directamente sustituyendo en la ecuación de Fourier, los valores encontrados de flujo de calor total intercambiado (Q_A) , diferencia de temperatura media logaritmica balanceada (Δ tm), y superficie total de transferencia de calor disponible (A'_{mo}) .

Finalmente, con los valores de UC y UD se calcula el factor de obstrucción RDO, el cual aplicándolo sobre los coeficientes totales limpios de transferencia de calor ya obtenidos, permitirá encontrar los coeficientes totales de transferencia de calor reales o de diseño que se tienen en cada zona del CAV.

La figura 3.3 es un diagrama de bloques que muestra la secuencia de cálculo de la metodologia desarrollada para los CAV's.

FIGURA No.3.3.- Diagrama de bloques de la metodología de cálculo para CAV's.

METODOLOGIA

3.3.1 FLUJO DE CALOR TOTAL INTERCAMBIADO

Inicialmente se calcula la cantidad de calor, Q_A , que es absorbido por el aire al pasar por el CAV, utilizando la ecuación:

$$Q_{A} = W_{A} C_{PA} (t2 - t1)$$

3.3.2 FLUJO DE VAPOR

Haciendo un balance de energía se tiene que, el calor absorbido por el aire (Q_A) , debe ser igual al calor cedido por el vapor (Qs); además, conociendo las entalpías del vapor a la entrada y salida del CAV, el flujo de vapor se calcula estableciendo:

 $Q_A = Qs$

Y

 $Qs = Ws(H_1 - H_3)$

por lo tanto:

$$Ws = \frac{Q_A}{(H_1 - H_3)}$$

3.3.3.FLUJO DE CALOR INTERCAMBIADO EN EL Desobrecalentamiento del Vapor

La cantidad de calor cedido por el vapor en el desobrecalentamiento se calcula mediante la expresión:

$$Q_1 = Ws(H_1 - H_2)$$

3.3.4.FLUJO DE CALOR INTERCAMBIADO EN LA CONDENSACION

Ahora la cantidad de calor cedido por el vapor en la etapa de condensación se calcula mediante la expresión:

 $Q_2 = Ws(H_2 - H_3)$

3.3.5.DIFERENCIA DE TEMPERATURA MEDIA Logaritnica Balanceada

Generalmente en los cambiadores de calor la diferencia de temperatura entre los fluidos caliente y frio varia entre la entrada y salida, como se observa en la figura 3.4; por lo que es necesario determinar un valor promedio de diferencia de temperatura, el cual recibe el nombre de Diferencia de Temperatura Media Logaritmica (Δ t) y se calcula con la ecuación:

$$\Delta t = \frac{(T_{C1} - T_{F2}) - (T_{C2} - T_{F1})}{(T_{C1} - T_{F2})}$$

$$\frac{(T_{C1} - T_{F2})}{(T_{C2} - T_{F1})}$$

Sin embargo para los propósitos del presente trabajo, ésta forma de determinar Δt no es de utilidad, puesto que supone, que no existe cambio de fase de evaporación o condensación en el cambiador; por lo tanto, para calcular la Δt de los CAV's, en los cuales se presentan normalmente las etapas de desobrecalentamiento y condensación del vapor, será necesario utilizar el método de balanceo y considerar al calentador dividido en dos zonas en serie (ver figura 3.5).

FIGURA No.3.4.- Perfil de temperatura típico para flujos en contracorriente.

FIGURA No.3.5.- Perfil de temperatura en el CAV.

De tal manera que la diferencia de temperatura media logaritmica para los CAV's (Δ tm), se obtiene haciendo un balance del calor transferido por las diferencias de temperatura en cada zona y es expresada como[7,8]:

$$\Delta tm = \frac{Q_A}{\frac{Q_1}{\Delta t_1} + \frac{Q_2}{\Delta t_2}}$$

donde las diferencias de temperatura media logarítmica en las zonas de desobrecalentamiento y condensación se calculan respectivamente como:

$$\Delta t_{1} = FTI \left(\frac{(TG - t_{2}) - (TS - t_{2}')}{(TG - t_{2})} \right)$$

$$\ln \frac{(TG - t_{2})}{(TS - t_{2}')}$$

$$\Delta t_{2} = FT2 \left(\frac{(TS - t'_{2}) - (TS - t_{1})}{(TS - t'_{2})} \right)$$

$$\ln \frac{(TS - t'_{2})}{(TS - t_{1})}$$

y la temperatura intermedia del aire (t'_2) se determina a partir de la ecuación:

$$t_2' = t_2 - \frac{Q_1}{W_A C_{PA}}$$

Debido a que en los CAV's se tiene flujo cruzado, las verdaderas diferencias de temperatura se obtienen aplicando factores de corrección (FT) à Δt_1 y Δt_2 , que son función de los parámetros S y R. Para tal propósito se utiliza la gráfica de la figura 3.6171:

FIGURA No. 3.6. - Factores de corrección para flujo cruzado.

3.3.6. SUPERFICIE TOTAL EXTERNA DISPONIBLE

Para conocer la superficie total de transferencia de calor disponible en el CAV, se calcula primero el área de calentamiento por unidad de longitud de tubo aletado de acuerdo a las características geométricas del mismo.

El área de las aletas por unidad de longitud de tubo es:

$$Af = \frac{\pi}{4} \left(D0^2 - Ad0^2 \right) (2)AN(100)$$

Y si el área externa de tubo liso por unidad de longitud de tubo aletado es:

$$Ao = (100\pi Ad0) (1 - EA AN)$$

Entonces, la superficie externa de calentamiento por unidad de longitud será:

Afo = Af + Ao

Y la superficie total externa disponible en el CAV es:

$$A'_{T0} = \left(\frac{Afo}{10000}\right)$$
 TLA NTB

3.3.7. SUPERFICIE TOTAL INTERNA DISPONIBLE

Se calcula como:

$$A'_{Ti} = \frac{\pi DI}{100}$$
 TLA NTB

3.3.8.AREA LIBRE DE FLUJO DEL AIRE

Con el objeto de calcular la velocidad másica del aire que pasa por el CAV y poder obtener posteriormente, tanto el coeficiente pelicular del aire como la caida de presión, es necesario determinar el área libre al paso de flujo (As).

FIGURA No.3.7.- Panel de un CAV.

El área libre al paso de flujo se determina como: As = E(HP)(ALC)(NP)] - E(AdO/100)(TLA)(TFP)(NP)] - E(HA/100)(2)(EA/100)(AN)(100)(TLA)(TFP)(NP)] - E(APB)(ALC)(2)(NP)] - E(ASO)(ALC)(3)(NP)]

3.3.9.DIAMETRO EQUIVALENTE

Para calcular el número de Reynolds en el lado-àire es necesario conocer el diámetro equivalente, que está definido para tubos de aletas transversales por la relación de JamesonE7J:

$$De = \frac{2 (Af + Ao)}{\pi B 100}$$

siendo (B) el perimetro proyectado que se define como la suma de todas las distancias externas del tubo aletado por unidad de longitud, en una vista frontal del mismo, y está dado por:

B = E(2)(HA)(2)(AN)(100)] + E(2)(100)(1 - (EA)(AN))]

3.3.10.VELOCIDAD-NASICA DEL AIRE

Se calcula como:

$$G_{S} = \frac{W_{A}}{A_{S}}$$

3.3.11.NUMERO DE REYNOLDS EN EL LADO-AIRE DEL CAV

Tanto el número de Reynolds como los coeficientes peliculares del aire, se calculan considerando las propiedades de éste a la temperatura promedio entre la entrada y salida del CAV. El número de Reynolds se calcula a partir de la ecuación:

$$Res = \frac{Gs De}{\mu 3600}$$

La máxima velocidad que alcanza el aire al pasar por el CAV

$$Vmax = \frac{Gs}{3600 \rho}$$

es:

3.3.13.COEFICIENTE PELICULAR DE TRANSFERENCIA DE CALOR En el lado-aire

El coeficiente pelicular (hf) del lado-aire, se calcula a partir de la ecuación:

$$h_{f} = JF \frac{K}{De} \left(\frac{C_{PA} \mu 3600}{K}\right)^{1/3}$$

donde el factor (JF), se obtiene de la curva de transferencia de calor que se muestra en la figura 3.8E7J, y cuyos puntos se ajustan mediante la ecuación:

 $JF = 0.08846 (Res)^{0.7257}$

Aún cuando los valores de JF son altos (debido **a la baja** viscosidad del aire), los coeficientes peliculares (h_f) son reducidos, ya que la conductividad térmica del aire es pequeña.

.

FIGURA No.3.8.- Gráfica de transferencia de calor y caída de presión para aletas transversales.

3.3.14.COEFICIENTE PELICULAR EFECTIVO DE TRANSFERENCIA De calor en el lado-aire

El coeficiente pelicular de transferencia de calor en el lado-aire se determina considerando que la temperatura en las aletas y en la base del tubo es uniforme. Sin embargo existe un gradiente térmico entre la base y la punta de las aletas que es función del material de las aletas, de las caracteristicas geométricas de las aletas, y del coeficiente películar del lado-aire. Para considerar lo anterior, se obtiene la eficiencia térmica de las aletas (Ω) utilizando la gráfica de la figura 3.9[7]; donde una vez encontrado el valor de Ω , se determina la superficie efectiva de transferencia de calor, la cual relacionada con la superficie disponible (Afo), permite obtener el coeficiente películar efectivo de transferencia de calor en el lado- aire (h'fo), expresado como:

$$h'_{fo} = \frac{(\Omega Af + Ao)}{Afo} h_{f}$$

FIGURA No.3.9.- Eficiencia térmica para aleta circular de espesor constante.

La eficiencia térmica de las aletas se obtiene de la figura 3.9 empleando los siguientes parámetros:

$$Yb = \frac{EA}{(2)(100)}$$
$$re = \frac{D0}{2}$$
$$rb = \frac{Ad0}{2}$$
$$S_r = \frac{re}{rb}$$

$$X = \frac{(re - rb)}{100} \int \frac{hf}{(AKP)(Y_b)}$$

Donde, los puntos de la linea utilizada para obtener la Ω en los CAV's se ajustan mediante las ecuaciones:

 $\Omega = -0.3636X^2 - 0.0242X + 0.997$

PARA 0 < X < 0.5

 $\Omega = 0.0095X^3 + 0.064X^2 - 0.5545X + 1.1583$ PARA 0.5 < X < 2

Se determina con el objeto de calcular la velocidad-másica del vapor y obtener posteriormente los coeficientes peliculares y la caída de presión, y se expresa como:

 $A_{T} = \frac{\pi DI^{2}}{(4)(10000)} \frac{NTB}{n}$

3.3.16.VELOCIDAD-MASICA DEL VAPOR

Se calcula como:

$$Gt = \frac{Ws}{A_{T} 3600}$$

3.3.17.COEFICIENTE PELICULAR DEL VAPOR SOBRECALENTADO

El coeficiente pelicular de transferencia de calor para la etapa de vapor sobrecalentado, se calcula utilizando la ecuación:

$$h_{11} = JH \quad \frac{K_{vap}}{DI} \quad \left(\frac{C_{pvap} \mu_{vap} 3600}{K_{vap}}\right)^{1/3} 100$$

donde las propiedades del vapor sobrecalentado se evaluan a la temperatura promedio TM = (TG + TS)/2, **e1** factor v de transferencia de calor JH se obtiene de la figura 3.10273 a partir del número de Reynolds para vapor sobrecalentado que se expresa como :

 $Rev = \frac{100 \,\mu_{vap}}{100 \,\mu_{vap}}$

Los puntos de la figura 3.10, se ajustan mediante las ecuaciones:

 $JH = 0.0014 (Rev)^{1.1053}$

PARA 6000 < Rev < 10000

 $JH = 0.021 (Rev)^{0.8162}$

PARA Rev > 10000

3.3.18.COEFICIENTE PELICULAR DEL VAPOR

EN LA ETAPA DE CONDENSACION

Para determinar el coeficiente pelicular en la etapa de condensación, existen múltiples correlaciones en la literatura las cuales son aplicadas para ciertas condiciones de operación. De los estudios que se han realizado para flujo en dos fases se ha encontrado que existen diferentes regimenes de flujo durante la condensación dentro de tubos, y que además, éstos varian cuando la condensación se efectúa en tubos horizontales ó verticales.

Para la condensación dentro de tubos horizontales, los regimenes de flujo más importantes, desde el punto de vista de utilización de correlaciones son [9,10]:

a).- Flujo controlado por la fuerza de gravedad.- El cual a su vez puede ser estratificado u ondulante.

Flujo estratificado.- Se obtiene cuando los condensados forman una película laminar de flujo en la parte inferior del tubo, esto se presenta cuando existe dominio de la fuerza de gravedad sobre la fuerza cortante del vapor.

Flujo ondulante.- Se presenta cuando los condensados forman una película turbulenta de flujo a lo largo de la parte inferior del tubo.

b).- Flujo controlado por la fuerza cortante del vapor.- El cual se comporta como un flujo anular, en donde la fuerza cortante del vapor es la dominante y el espesor de la película de condensado se mantiene más o menos uniforme sobre las paredes del tubo.

En la condensación dentro de tubos verticales la fuerza cortante del vapor es la que domina, siendo el efecto de la gravedad despreciable y el régimen de flujo que prevalece es el de flujo anular.

Los regimenes de flujo que se presentan durante la condensación, tanto en tubos horizontales como verticales, se muestran en la figura 3.11.

Para calcular los coeficientes películares de transferencia de calor durante la condensación del vapor en los CAV's, se utiliza la relación propuesta por CHATO[9,11]:

$$h_{2i} = 142.92 F \left(\frac{K_f^3 \rho_f \left(\rho_f^{-\rho} g \right) h_f g}{\mu_f DI' (TS' - TWs')} \right)^{1/4} 4.882$$

donde F es un factor que se considera como: F=0.725 para condensación en tubos verticales. F=0.557 para condensación en tubos horizontales.

Debido a que se desconoce la temperatura de la pared del tubo (TW), ésta se calcula mediante un proceso iterativo que finaliza al satisfacer la condición de convergencia:

|TWC - TWS| < 0.01

donde la temperatura de pared calculada (TWc) está definida por la ecuación[7]:

 $TWc = t_a + \frac{hio}{hio + h_f} (TS - t_a)$

siendo

y

$$hio = \frac{h_{zi} A'_{Ti}}{A'_{T0}}$$

$$t_a = \frac{t1 + t2}{2}$$

Para iniciar el cálculo, se supone una temperatura de pared TWs=TPRO y ésta temperatura se utiliza para obtener el primer valor de h_{2i} , el cual a su vez se requiere para calcular la temperatura de pared (TWc). Si al comparar los valores de TWc y TWs no se satisface la condición de convergencia, se asigna el valor calculado de TWc a TWs y se inicia nuevamente el proceso con el calculo de h_{2i} . Una vez que se cumple la condición de convergencia, los últimos valores de TWc y h_{2i} serán los buscados.

COEFICIENTES TOTALES LIMPIOS DE TRANSFERENCIA DE CALOR

El coeficiente total de transferencia de calor se obtiene a partir de los coeficientes convectivos calculados para el exterior (h'fo) e interior (hi) de los tubos aletados. Al calcular el coeficiente total de transferencia de calor referido a la superficie externa (U_C) , el coeficiente pelicular interno (hi), se multiplica por la relación (A'_{Ti}/A'_{T0}) , para obtener el valor que tendría hi si se calculara originalmente en base a la superficie externa A'_{T0} .

El coeficiente total de transferencia de calor en tubos limpios (U_C), referido a la superficie externa está dado por[7,11]:

$$\frac{1}{U_{c}} = \frac{1}{h'_{fo}} + \frac{1}{h_{i}\left(\frac{A'_{fi}}{A'_{f0}}\right)} + R_{w}$$

En la ecuación anterior los reciprocos de los coeficientes peliculares $[1/h'fo, y 1/hi(A'_{Ti}/A'_{T0})]$ representan respectivamente, la resistencia de la pelicula de fluido y R_w la resistencia térmica de la pared del tubo. La suma de éstas resistencias es la resistencia total a la transferencia de calor, la cual es igual a $1/U_c$. Normalmente la resistencia térmica del tubo metálico es pequeña en comparación con la suma de las resistencias de ambos coeficientes de película.

Si un coeficiente pelicular es pequeño y el otro muy grande, el coeficiente menor proporciona la mayor resistencia, y el coeficiente total de transferencia de calor (U_c) , es muy cercano al valor del coeficiente menor, por lo que se dice que el

coeficiente menor es el coeficiente pelicular controlante. Por $hi(A'_{Ti}/A'_{TO}) = 1000$ y h'fo=10 ejemplo si suponemos que entonces Ri=1/1000=0.001, Ro=1/10=0.1 y ΣR=0.101 siendo y Uc=9.9. Del ejemplo anterior puede observarse 1/U_=0.101 que una disminución del 50% en el coeficiente de película mayor, influirá significativamente en el valor de ΣR (sufre no variación de 0.101 a 0.102).

En el caso de los CAV's, durante la etapa de condensación el coeficiente pelicular controlante es el del lado-aire (h'fo), y de acuerdo con lo analizado anteriormente, la desviación que pueda tenerse en el cálculo del coeficiente pelicular para el flujo en dos fases (que aún es motivo de estudios), no afectará significativamente el valor del coeficiente total de transferencia de calor calculado.

3.3.19.COEFICIENTE TOTAL LIMPIO DE TRANSFERENCIA DE CALOR

EN LA ETAPA DE DESOBRECALENTAMIENTO

Este coeficiente se obtiene a partir de los coeficientes peliculares del aire y del vapor sobrecalentado, está referido a la superficie externa, y se calcula como:

$$\frac{1}{\text{UC10}} = \frac{1}{\text{h}'_{fo}} + \frac{1}{\text{h}_{1i} \left(\frac{A'_{Ti}}{A'_{T0}}\right)} + \frac{\text{Dext} - \text{DI}}{(2)(100)\text{KM}}$$

donde, la conductividad térmica de la pared del tubo (KM) se calcula utilizando la ecuación obtenida del ajuste de valores de la tabla A.4[9], y se expresa como:

KM = [54.6611-(0.03152 TPRO)]0.86

siendo

 $TPRO = \frac{TS + \frac{t1 + t2}{2}}{2}$

3.3.20.COEFICIENTE TOTAL LIMPIO DE TRANSFERENCIA DE CALOR En la Etapa de condensacion

Se obtiene a partir de los coeficientes peliculares del aire y del vapor en la etapa de condensación; es referido a la superficie externa y se calcula como:

$$\frac{1}{\text{UC20}} = \frac{1}{\text{h}_{fo}'} + \frac{1}{\text{h}_{2i}} + \frac{1}{\frac{\text{A}_{Ti}'}{\text{A}_{T0}'}} + \frac{\text{Dext} - \text{DI}}{(2)(100)\text{KM}}$$

COEFICIENTES TOTALES DE TRANSFERENCIA

DE CALOR DE DISENO

Cuando los equipos de transferencia de calor han estado en servicio durante algun tiempo, las superficies de transferencia de calor tienen depositación de incrustaciones y basura que se encuentran presentes en los sistemas de flujo ó bien puede presentarse corrosión como resultado de la interacción entre los fluidos y el material empleado en la construcción de las superficies.

El recubrimiento producido por el ensuciamiento representa una resistencia adicional al flujo de calor, que debe incluirse junto con las otras resistencias térmicas que forman el coeficiente total limpio de transferencia de calor (U_c) , ocasionando que el valor original de U_c disminuya. A ésta resistencia adicional se le conoce comunmente con el nombre de factor de ensuciamiento o incrustación (Rd).

Normalmente existen tablas donde se dan valores numéricos de factores de ensuciamiento para cierta variedad de procesos.

Cuando el coeficiente total de transferencia de calor incluye el factor de ensuciamiento Rd, se le conoce con el nombre de coeficiente total de transferencia de calor de diseño o coeficiente sucio (U_d) .

Para el caso de los CAV's, las diferencias existentes entre los coeficientes totales $U_{\rm C}$ y $U_{\rm d}$, no se deberán unicamente al ensuciamiento, sino que deberá tomarse en cuenta el error involucrado en la aplicación de las relaciones establecidas, así como la resistencia térmica de contacto entre las aletas y el tubo, por lo que se utilizará el término de factor de obstrucción (RDO), para relacionar los coeficientes totales $U_{\rm C}$ y $U_{\rm d}$ de acuerdo con la expresión:

$$RDO = \frac{1}{U_d} - \frac{1}{U_c}$$

3.3.21.COEFICIENTE TOTAL DE TRANSFERENCIA DE CALOR DE Disero en la Etapa de desobrecalentamiento

Este coeficiente es el coeficiente real de transferencia de calor que se tiene en la zona de desobrecalentamiento, es obtenido a partir del coeficiente total limpio y del factor de obstrucción encontrado, y se calcula como:

 $\frac{1}{UD10} = \frac{1}{UC10} + RD0$

Puesto que inicialmente se desconoce el valor de RDO, éste se considera igual a cero, por lo tanto todos los coeficientes totales obtenidos en el primer cálculo serán los limpios, de modo tal que pueda calcularse así el coeficiente global limpio de transferencia de calor (UC).

3.3.22.COEFICIENTE TOTAL DE TRANSFERENCIA DE CALOR DE Disero en la Etapa de Condensacion

Este es el coeficiente real de transferencia de calor que se tiene en la zona de condensación y se calcula como:

$$\frac{1}{\text{UD20}} = \frac{1}{\text{UC20}} + \text{RD0}$$

como ya se mencionó anteriormente, el factor de obstrucción se considera inicialmente igual a cero.

3.3.23.SUPERFICIE EXTERNA REQUERIDA EN EL Desobrecalentamiento del vapor

La superficie requerida en ésta etapa se calcula como:

$$A10 = \frac{Q_1}{UD10 \Delta t_1}$$

3.3.24. SUPERFICIE EXTERNA REQUERIDA EN LA CONDENSACION

La superficie requerida en ésta etapa se calcula como:

$$A20 = \frac{Q_2}{UD20 \Delta t_2}$$

3.3.25.SUPERFICIE TOTAL EXTERNA REQUERIDA

Esta superficie es la suma de las superficies requeridas en cada zona, y representa la superficie total de transferência de calor que se requiere para satisfacer las condiciones de transferencia de calor establecidas en el CAV, y se expresa como:

 $A_{TO} = A10 + A20$
3.3.26.COEFICIENTE GLOBAL LIMPIO DE TRANSFERENCIA DE CALOR

En los CAV's el coeficiente global limpio de transferencia de calor (UC), se calcula aplicando el método de balanceo, y se obtiene a partir de los coeficientes totales limpios UC10 y UC20 utilizando la ecuación[7]:

$$UC = \frac{UC10 A10 + UC20 A20}{A_{T0}}$$

3.3.27.COEFICIENTE GLOBAL DE TRANSFERENCIA De Calor de Disero

Es el coeficiente global de transferencia de calor real que se tiene en el CAV, y es obtenido directamente de los valores de flujo de calor total intercambiado, las temperaturas obtenidas y la superficie total externa disponible, y se calcula como:

$$UD = \frac{Q_A}{A'_{TO} \Delta tm}$$

3.3.28.FACTOR DE OBSTRUCCION

Se obtiene a partir de los coeficientes globales de transferencia de calor UC y UD, y se calcula como:

$$RD0 = \frac{UC - UD}{UC UD}$$

Aplicando el factor de obstrucción sobre los coeficientes totales limpios ya obtenidos, se podrán conocer los coeficientes totales reales en cada zona del CAV. El valor de RDO dependerá del grado de ensuciamiento que presente el CAV, y en el caso de una superficie limpia, el RDO (que será pequeño), representará la desviación involucrada entre los coeficientes calculados y los coeficientes reales.

CAIDAS DE PRESION

Las caidas de presión que se tienen tanto en el lado-aire como en el lado-vapor, se calculan utilizando relaciones que involucran factores de fricción que han sido graficados en función del número de Reynolds.

3.3.29.CAIDA DE PRESION DEL VAPOR

La caída de presión del vapor en los tubos se calcula utilizando la ecuación[7]:

$$\Delta P_{t} = \frac{1}{2} \frac{\text{ff } G_{t}^{\prime 2} \text{ L } n}{5.22 \text{ x } 10^{10} \text{ DI}^{\prime} \text{ sp}} 703.32$$

donde el factor de fricción dentro de los tubos (ff) se obtiene de la figura 3.12, cuyos puntos para tubos de cambiadores se ajustan mediante la ecuación:

-0.2593 ff = 0.00301 (Ret)

PARA 3000 < Ret < 1X10

siendo:

 $Ret = \frac{Gt DI}{100 \mu_{vsat}}$

FIGURA No.3.12 .- Factores de fricción dentro de tubos.

3.3.30.CAIDA DE PRESION DEL AIRE

La caida de presión en el lado-aire del CAV se calcula utilizando la ecuaciónE7J:

$$\Delta P = \frac{f \ Gs'^{2} \ Lp}{5.22 \ x \ 10^{10} D' ev \ s} \left(\frac{Dev \ 100}{S_{T}}\right)^{0.4} \left(\frac{S_{L}}{S_{T}}\right)^{0.3.32}$$

donde el factor de fricción f se obtiene de la figura 3.8 cuyos puntos se ajustan mediante la ecuación:

> -0.12629f = 0.00765 (Ref)

siendo

$$Ref = \frac{Gs Dev}{\mu 3600}$$

1

El diámetro volumétrico equivalente (D' ev), se obtiene considerando las características geométricas de los tubos aletados y el arreglo de las hileras de tubos, y se calcula como:

Dev = $\frac{4 \times \text{VOLUMEN LIBRE NETO}}{\text{SUPERFICIE FRICCIONAL}} = \frac{4 \times \text{VLN}}{\text{SUF}}$

donde
SUF =
$$\left(\frac{Afo}{10000}\right)$$
 (TLA) (TFP) (NP)

$$VLN = \left[\left(\frac{EH}{100} (ALC) (NP) (TLA) \right) - \left((NP) (TFP) \frac{\pi (Ad0)^2}{(4) (10000)} (TLA) \right) \right]$$

 $- \left((NP) (TFP) \frac{\pi}{(4) (10000)} \left(D0^2 - Ad0^2 \right) (EA) (AN) (TLA) \right) \right]$

siendo: D' ev = 3.2808 Dev

La longitud de la trayectoria del aire se calcula como:

Lp = (EH/100)(3.2808)(NH)

Basándose en la metodología de cálculo presentada, se ha desarrollado un programa de cómputo en lenguaje FORTRAN 77E12J, el cual realiza los cálculos correspondientes a la evaluación térmica de los CAV's tanto verticales como horizontales, en una computadora VAX 11/780.

La ventaja del programa de cómputo es la rapidéz con la que se obtienen todos los parámetros de operación correspondientes a la evaluación de un CAV.

Cabe mencionar que todas las propiedades termodinámicas tanto del aire como del vapor de agua, son obtenidas de un programa de cómputo[13], que utiliza la formulación propuesta por International Association for Properties of Steam.

3.4.-VALIDACION EN CAMPO DE LA METODOLOGIA DESARROLLADA

Las relaciones involucradas en el método de cálculo desarrollado, han sido validadas realizando mediciones en campo de los parámetros de operación de los CAV's de CTE's.

Debido a que la metodologia de cálculo fué desarrollada para la evaluación térmica de CAV's horizontales y verticales con tubos de aletas circulares; fué necesario seleccionar las CTE's que tuvieran CAV's con éstas características para llevar a cabo las mediciones requeridas.

En las tablas 3.1 y 3.2 se muestran, respectivamente, los resultados de la evaluación del comportamiento térmico de un CAV tipo vertical de la unidad 4 de la CTE de Manzanillo, Colima, y de un CAV tipo horizontal de la unidad 1 de la misma central.

CTE : MANZANILLO, COLIMA

TIPO DE BANCO : VERTICAL

のないない

ť

UNIDAD : 4

No.BANCOS/UNIDAD : 2

CARGA : 300 MW

PARAMETRO DE OPERACION	SIMBOLO	MAGNITUD	UNIDADES
 PRESION DEL VAPOR EN EL CABEZAL DE ENTRADA DEL CAV.	PG	8.533	kgf/cm ² a.
TEMPERATURA DEL VAPOR EN EL CABEZAL DE ENTRADA DEL CAV	TG	290	°C
PRESION EN EL TANQUE DE CONDENSADOS	PT	8.033	kgf/cm^2 a.
TEMPERATURA EN EL TANQUE DE CONDENSADOS	TS	170	°C
FLUJO DE AIRE	WA	619.380	kg/hr
TEMPERATURA DEL AIRE A LA ENTRADA DEL CAV.	t1	37.5	°C
TEMPERATURA DEL AIRE A LA SALIDA DEL CAV.	t2	87	°C
FLUJO DE CALOR TOTAL INTERCAMBIADO.	QA	7 373 780	Kcal/hr
CALOR ESPECIFICO A PRESION CONSTANTE DEL AIRE	C _{PA}	0.2405	Kcal/kg-°C
FLUJO DE VAPOR .	Ws	13 330.47	kg/hr
ENTALPIA DE VAPOR SOBRECALENTADO	H ₁	724.77	Kcal/kg
ENTALPIA DE VAPOR SATURADO.	H ₂	661.31	Kcal/kg
ENTALPIA DE LIQUIDO SATURADO.	H ₃	171.62	Kcal/kg
FLUJO DE CALOR INTERCAMBIADO EN EL DESOBRECALENTAMIENTO.	Q1	846 032.6	Kcal/hr
FLUJO DE CALOR INTERCAMBIADO EN LA CONDENSACION.	Q ₂	6 527 748	Xcal/hr
TEMPERATURA INTERMEDIA DEL AIRE.	t_2	81.32	°C
DIFERENCIA DE TEMPERATURA MEDIA LOGARITMICA EN LA ZONA DE DESOBRECALENTAMIENTO.	Δt ₁	137.9	°C
DIFERENCIA DE TEMPERATURA MEDIA LOGARITMICA EN LA ZONA DE CONDENSACION.	Δt ₂	108.93	°C
SUPERFICIE TOTAL EXTERNA DISPONIBLE.	ATO	1027.38	m2
DIAMETRO EQUIVALENTE .	De	0.0247	m
AREA LIBRE DE FLUJO DEL AIRE .	As	11.45	m ²
VELOCIDAD MAXIMA DEL AIRE,	Vmax	14.26	m/s
PRESION ATMOSFERICA.	Patm	1.03323	kgf/cm ² a.
DENSIDAD DEL AIRE .	ρ	1.05	kg/m ²
	1	1	L'AND AND AND AND AND AND AND AND AND AND

TABLA No. 3.1. Resultados de la evaluación del CAV (lado \wedge)

	· · · · · · · · · · · · · · · · · · ·		·····	
	PARAMETRO DE OPERACION	SIMBOLO	MAGNITUD	UNIDADES
V	ISCOSIDAD DINAMICA DEL AIRE	μ	2×10 ⁻⁵	kg/m-s
N	UMERO DE REYNOLDS EN EL LADO-AIRE	Res	18 548.86	
C	DEFICIENTE PELICULAR EN EL LADO-AIRE	h _f	98.99	Kcal/br-m2-°C
C	ONDUCTIVIDAD TERMICA DEL AIRE	ĸ	2.495 $\times 10^{-2}$	Kcal/hr-m-°C
C	ONDUCTIVIDAD TERMICA DE LAS ALETAS	лкр	175.58	Kcal/hr-m-°C
E	FICIENCIA TERMICA DE LAS ALETAS	Ω	0.912	
C	DEF. PELICULAR EFECTIVO EN EL LADO-AIRE	h _f	91.2	Kcal/hr-m ² -°C
Ci	AIDA DE PRESION DEL AIRE EN EL CAV.	Δp	32.96	m.m. c.a. 🖓
SI	JPERFICIE TOTAL INTERNA DISPONIBLE.	ATi	88.21	m ²
N	JMERO DE REYNOLDS DEL VAPOR.	Rep	42 141.8	
C	AIDA DE PRESION EN LOS TUBOS .	ΔPt	149.22	kgf/m ²
C	DEF. PELICULAR DEL VAPOR SOBRECALENTADO	h _{1i}	301.6	Kcal/hr-m ² -°C
D	DEF. TOTAL LIMPIO EN LA ZONA DE ESOBRECALENTAMIENTO.	UCIO	20.15	Kcal/hr-m ² -°C
C	DEF, TOTAL SUCIO EN LA ZONA DE ESOBRECALENTAMIENTO.	UD10	20.03	Kcal/hr-m ² -°C
C	ONDUCTIVIDAD TERMICA DEL TUBO.	км	43.86	Kcal/hr-m-°C
SI	UPERFICIE EXTERNA REQUERIDA EN EL ESOBRECALENTAMIENTO .	A10	304.42	m ²
TI	EMPERATURA DE PARED DEL TUBO.	TWC	162.48	℃
C	DEF. PELICULAR DEL VAPOR CONDENSANTE.	h _{2i}	15 783.85	Kcal/hr-m ² -°C
C	DEF. TOTAL LIMPIO EN LA ZONA DE CONDENSACION	UC20	85.12	Kcal/hr-m ² -°C
C	DEF. TOTAL SUCIO EN LA ZONA DE CONDENSACION	ÚD20	83.09	Kcal/hr-m ² -°C
S	JPERFICIE EXTERNA REQUERIDA EN LA DNDENSACION.	A20	703.95	m ²
S	JPERFICIE TOTAL EXTERNA REQUERIDA .	ATO	1008.37	m ²
C	DEFICIENTE GLOBAL LIMPIO .	UC'	65.51	Kcal/hr-m ² -°C
D	IFERENCIA DE TEMPERATURA MEDIA DGARITMICA BALANCEADA.	Δtm	111.62	℃
C	DEFICIENTE GLOBAL SUCIO.	UD	64.29	Kcal/hr-m ² -°C
F	ACTOR DE OBSTRUCCION .	RDO	1.404×10^{-3}	hr-pie ² -°F/BTU
		1	1	

TABLA No. 3.1. (continuación).

「小学の日本」の特別なない

CTE : MANZANILLO, COLIMA

1

UNIDAD :

No.BANCOS/UNIDAD : 2

CARGA : 300 MW

	PARAMETRO DE OPERACION	SIMBOLU	MAGNITUD	UNIDADES
	PRESION DEL VAPOR EN EL CABEZAL DE ENTRADA DEL CAV.	PG	8,433	kdf/cm ² a.
	TEMPERATURA DEL VAPOR EN EL CABEZAL DE Entrada del cav	TG	319	nc i
	PRESION EN EL TANQUE DE CONDENSADOS	PT	8.233	kgt/cm ² a.
	TEMPERATURA EN EL TANQUE DE CONDENSADOS	TS	170.8	°C
	FLUJO DE AIRE	w	583 142	t:g/hr
	TEMPERATURA DEL AIRE A LA ENTRADA DEL CAV.	Et	. 38	°C
	TEMPERATURA DEL AIRE A LA SALIDA DEL CAV.	t2	80	<u>~c</u>
	FLUJO DE CALOR TOTAL INTERCAMBIADO.	QΛ	5 889 103	Real/hr
	CALOR ESPECIFICO A PRESION CONSTANTE DEL AIRE	С _{РЛ}	0.2404	Real/tra-ht
	FLUJO DE VAPOR .	Ws	10 389.61	kg/hr
	ENTALPIA DE VAPOR SOBRECALENTADO	111	739.51	Koal/ka
	ENTALPIA DE VAPOR SATURADO.	11 ₂	661.55	Koal/kg
	ENTALPIA DE LIQUIDO SATURADO.	113	172.69	Kcal/kg
	FLUJO DE CALOR INTERCAMBIADO EN EL DESOBRECALENTAMIENTO.	Q1	810 030.1	Kca1/hr
	FLUJO DE CALOR INTERCAMBIADO EN LA CONDENSACION.	Q2	5 079 073	Kcál/hr
	TEMPERATURA INTERMEDIA DEL AIRE.	tź	74.22	°C
	DIFERENCIA DE TEMPERATURA MEDIA LOGARITMICA EN LA ZONA DE DESOBRECALENTAMIENTO.	Atj	157.19	°C
- 	DIFERENCIA DE TEMPERATURA MEDIA LOGARITMICA En la zona de condensacion.	Δt ₂	113.75	°C
1	SUPERFICIE TOTAL EXTERNA DISPONIBLE.	ΛÍO	940.87	m 2
	DIAMETRO EQUIVALENTE .	De	0.0245	m
	AREA LIBRE DE FLUJO DEL AIRE .	λs	11.56	m ²
	VELOCIDAD MAXIMA DEL AIRE.	Vmax	13.17	m/s
	PRESION ATMOSFERICA.	Patm	1.03323	kgt/cm ² a.
	DENSIDAD DEL AIRE .	Q	1.06	kgi/m ³

TABLA No.3.2. Resultados de la evaluación del CAV (lado Λ)

PARAMETRO DE OPERACIÓN	SIMBOLO	MAGNÍTUD	UNIPADES
VISCOSIDAD DINAMICA DEL ALRE	11	1.98×10 ⁻⁵	kcj/m +1
NUMERO DE REYNOLDS EN EL LADO-AURE	Res	17 325.65	••• •• •
COEFICIENTE PELICULAR EN EL LADO-AIRE	he	93.98	Koal/hr-m2-2
CONDUCTIVIDAD TERMICA DEL AIRE	ĸ	2.474x10 ⁻²	Kcal/hr-m-"d
CONDUCTIVIDAD TERMICA DE LAS ALETAS	лкр	175.58	Fenl/hr-m-°C
EFICIENCIA TERMICA DE LAS ALETAS	Ω	0.9071	•
COEF. PELICULAR EFECTIVO EN EL LADO-AIRE	h _{fo}	86.02	Koal/hr-m ² -
CAIDA DE PRESION DEL AIRE EN EL CAV.	ΔP	27.52	m.m. c.a.
SUPERFICIE TOTAL INTERNA DISPONIBLE.	Δíi	71.22	^{m2}
NUMERO DE REYNOLDS DEL VAPOR.	Rep	34 377.9	
CAIDA DE PRESION EN LOS TUBOS .	APt	84.75	kgf/m ²
COEF. PELICULAR DEL VAFOR SOBRECALENTADO	h ₁₁	256.12	Kcal/hr-m2-
COEF. TOTAL LIMPIO EN LA ZONA DE DESOBRECALENTAMIENTO.	ucto	15.81	Kdal/ht-m2-6
COEF. TOTAL SUCIO EN LA ZONA DE DESOBRECALENTAMIENTO.	UD10	15.62	Kcal/lur-m ² -
CONDUCTIVIDAD TERMICA DEL TUBO.	км	43.89	Kcal/hr-m-°C
SUPERFICIE EXTERNA REQUERIDA EN EL Desobrecalentamiento .	<u>7</u> 10	325.89	m ²
TEMPERATURA DE PARED DEL TUBO.	TWC	158.87	°C
COEF. PELICULAR DEL VAPOR CONDENSANTE.	h _{2i}	10 373.23	Kcal/hr-m ² -6
COEF. TOTAL LIMPIO EN LA ZONA DE CONDENSACION	UC20	77.25	Kcal/hr-m ² -
COEF. TOTAL SUCIO EN LA ZONA DE CONDENSACION	UD20	73.05	Kcal/hr-m2-0
SUPERFICIE EXTERNA REQUERIDA EN LA CONDENSACION.	¥50	577.93	m ²
SUPERFICIE TOTAL EXTERNA REQUERIDA .	^ _{TO}	903.82	m ²
COEFICIENTE GLOBAL LIMPIO .	UC	55.10	Kcal/hr-m2-*
DIFERENCIA DE TEMPERATURA MEDIA Logaritmica balanceada.	۵tm	118.24	۳C
COEFICIENTE GLOBAL SUCIO.	UD	52.93	Kcal/hr-m2-
FACTOR DE OBSTRUCCION	RDO	3.631x10 ⁻³	hr-pio ² -°F/81

TABLA No. 3.2. (continuación)

3.5.-NOMENCLATURA

SIMBOLO	DESCRIPCION	UNIDADES
Af	Area de aletas por unidad de longitud de tubo aletado	cm2/m
Αο	Area externa de tubo liso por unidad de longitud de tubo aletado	cm2/m
Afo	Superficie externa de calentamiento por unidad de longitud de tubo aletado	cm2/m
A'_{Ti}	Superficie total interna disponible	m2
A _{T0}	Superficie total externa disponible	m2
AN	Número de aletas por cm	
0DA	Diámetro en la base de la aleta	CM
ALC	Ancho de un panel del CAV	m
Аз	Area libre de flujo del aire	m2
APB	Ancho de la placa base	an a
ASO	Ancho de los soportes de tubos de CAV	
АКР	Conductividad térmica del material de las aletas	Kcal/hr-m-°C
A _T	Area al paso de flujo del vapor	m 2
A10	Superficie externa requerida en el desobrecalentamiento	m2

A20	Superficie externa requerida en la condensación	m2
A _{T0}	Superficie total externa requerida	m 2
В	Perimetro proyectado	cm/m
C _{PA}	Calor específico a presión constante del aire evaluado a la temperatura t _a	Kcal/Kg-°C
C _{pvap}	Calor específico a presión constante del vapor sobrecalentado evaluado a (Pvap, TM)	Kcal/Kg-°C
DO	Diámetro exterior de la aleta	CM
DI	Diámetro interior del tubo.	CN
DI'	Diámetro interior del tubo	pies
De	Diámetro equivalente	m
Dev	Diámetro volumétrico equivalente	T T T T T T T T T T T T T T T T T T T
D' ev	Diámetro volumétrico equivalente	pies
Dext	Diámetro exterior del tubo	Cm
EA	Espesor de la aleta	CM
	Espaciamiento entre las lineas de centro de 2 hileras de tubos consecutivas	CM
F.	Factor de CHATO	Adim.

Factor de corrección a la diferencia de temperatura media logaritmica en la zona de desobrecalentamiento

Factor de corrección a la diferencia de temperatura media logaritmica en la zona de condensación

FT1

FT2

f

ff

Gs

Gs'

GŁ

Gt'

Η,

H

H

HP

HA

hf.

Factor de fricción para el lado-aire obtenido de la figura 3.8

Factor de fricción dentro de los tubos obtenido de la figura 3.12

Velocidad másica del aire Velocidad másica del aire Velocidad másica del vapor Velocidad másica del vapor

Entalpia del vapor sobrecalentado a la entrada del CAV

Entalpia de vapor saturado Entalpia de liquido saturado Altura de un panel del CAV Altura de la aleta.

Coeficente pelicular de transferencia de calor en el lado-aire

81

Adim.

Adim.

piesz/pulgz

piesz/pulgz

Kg/hr-m2 1b/hr-piez Kg/s-m2 lb/hr-piez Kcal/Kg

Kcal/Kg Kcal/Kg m CM:

Kcal/hr-m2-°C

h'fo	Coeficiente pelicular efectivo de transferencia de calor en el lado-aire	Kcal/hr-mz-°C
h _{li}	Coeficiente pelicular del vapor sobrecalentado	Kcal/hr-m2-°C
h ₂₁	Coeficiente pelicular del vapor en la etapa de condensación	Kcal/hr-mz-°C
^h fg	Calor latente de vaporización correspondiente a TS'	BTU/1b
hio	Coeficiente pelicular del vapor en la etapa de condensación referido a la superficie externa	Kcal/hr-m2-°C
hi	Coeficiente pelicular interno	Kcal/hr-m2-°C
JF	Factor de transferencia de calor obtenido de la figura 3.8	Adim.
JH	Factor de transferencia de calor obtenido de la figura 3.10	Adim.
K	Conductividad térmica del aire evaluada a la temperatura t _a	Kcal/hr-m-°C
Kvap	Conductividad térmica del vapor sobrecalentado evaluada a la temperatura TM	Kcal/hr-m-°C
KM	Conductividad térmica de la pared del tubo evaluada a la temperatura TPRO	Kcal/hr-m-°C
ĸ _f	Conductividad térmica de liquido saturado evaluada a la temperatura TS'	BTU/hr-pie-°F

Lp	Longitud de la trayectoria del aire	pies
L	Longitud de los tubos	pies
n	Número de pasos de tubo	
NTB	Número de tubos por banco	·
NP	Números de paneles por banco	
NH	Número de hileras de tubos	
Pvap	Presión del vapor dentro de los tubos	Kgf/cm2
Q _A	Flujo de calor total intercambiado en el CAV	Kcal/hr
Qs	Flujo de calor total cedido por el vapor	Kcal/hr
Qı	Flujo de calor intercambiado en la etapa de desobrecalentamiento	Kcal/hr
Qz	Flujo de calor intercambiado en la etapa de condensación	Kcal/hr
Res	Número de Reynolds en el lado-aire del CAV	Adim.
re	Radio exterior de la aleta	Cm
rb	Radio de la base de la aleta.	Cm
Ref	Número de Reynolds en el lado-aire basado en el diámetro volumétrico equivalente	Adim
Ret	Número de Reynolds dentro de los tubos para vapor saturado	Adim.
Rev	Número de Reynolds dentro de los tubos para vapor sobrecalentado	Adim.
Rw	Resistencia térmica de la pared del tubo	hr-m2-°C/Kcal
Rd	Factor de ensuciamiento ó incrustación	hr-m2-°C/Kcal

RDO	Factor de obstrucción	hr-m2-°C/Kcal
SUF	Superficie friccional	m 2
Sr	Relación de radios de aleta	Adim.
S and a c	Gravedad específica del aire	Adim.
sp	Gravedad específica de vapor saturado	Adim.
s _T	Distancia entre centros de 2 tubos consecutivos en la misma hilera	
s _L	Distancia entre centros de 2 tubos de hileras consecutivas	CM
tl	Temperatura del aire a la entrada del CAV	•C
t2	Temperatura del aire a la salida del CAV	•C
TG	Temperatura del vapor sobrecalentado	°C
TS	Temperatura de saturación del vapor	•C
TS '	Temperatura de saturación del vapor	° F
t ₂	Temperatura intermedia del aíre	°C
TLA	Longitud de tubo con aletas	m
TFP	Número de tubos frontales por panel	n of the state of the state of the state of the st
THC	Temperatura calculada de la pared del tubo	•C
TWS	Temperatura supuesta de la pared del tubo	•C
TWs '	Temperatura supuesta de la pared del tubo	9 F

		and the second
TPRO	Temperatura promedio	°C
TM	Temperatura promedio del vapor sobrecalentado	•C
ta	Temperatura promedio del aire	°C
TCI	Temperatura del fluído caliente a la entrada del cambiador de calor	°C
T _{C2}	Temperatura del fluido caliente a la salida del cambiador de calor	°C
T _{F1}	Temperatura del fluido frio a la entrada del cambiador de calor	°C
T _{F2}	Temperatura del fluido frio a la salida del cambiador de calor	•C
		na se su angle a l'hanne. An hanne hanne an hanne a
U.C.	Coeficiente total limpio de transferencia de calor	Kcal/hr-m2-°C
Ud	Coeficiente total de transferencia de calor de diseño	Kcal/hr-mz-°C
UC10	Coeficiente total limpio de transferencia de calor en la etapa de desobrecalentamiento	Kcal/hr-m2-°C
UD10	Coeficiente total de transferencia de calor de diseño en la etapa de desobrecalentamiento	Kcal/hr-m2-°C
UC20	Coeficiente total limpio de transferencia de calor en la etapa de condensación	Kcal/hr-m2-°C
UD20	Coeficiente total de transferencia de calor de diseño en la etapa de condensación	Kcal/hr-m2-°C
UC	Coeficiente global limpio de transferencia de calor	Kcal/hr-m2-°C
UD	Coeficiente global de transferencia de calor de diseño	Kcal/hr-m2-°C
Vmax	Velocidad máxima del aire	m/s
VLN	Volumen libre neto	m 3
WA	Flujo de aire que pasa por el CAV	Kg/hr
Ws	Flujo de vapor utilizado	Kg/hr

X	Relación de variables utilizada en la figura 3.9	Adim.
УЪ	Mitad del espesor de la aleta	m
Δt ₁	Diferencia de temperatura media logarítmica en la zona de desobrecalentamiento	°C
Δt ₂	Diferencia de temperatura media logarítmica en la zona de condensación	°C
∆tm	Diferencia de temperatura media logaritmica balanceada	°C
ΔΡ	Caida de presión del aire en el CAV	mm C.a
ΔP _t	Caida de presión del vapor en los tubos	Kgf/m2
μ	Viscosidad dinámica del aire evaluada a la temperatura t _a	Kg/m-s
μ_{vsat}	Viscosidad dinámica de vapor saturado correspondiente a TS	Kg/m-s
μ _{vap}	Viscosidad dinámica del vapor sobrecalentado evaluada a la temperatura TM	Kg/m-s
μf	Viscosidad dinámica de liquido saturado evaluada a TS'	lb/hr-pie
ρ	Densidad del aire evaluada a la temperatura t _a	Kg/m3
٩f	Densidad de líquido saturado correspondiente a TS'	lb/pie3
ρ _g	Densidad de vapor saturado correspondiente a TS'	lb/pie3
D - 1	Eficiencia térmica de las aletas	Adim.

CAPITULO 4

INCREMENTO DE LA CAPACIDAD TERMICA DE LOS CALENTADORES

DE AIRE A VAPOR UTILIZANDO VAPOR SATURADO

.

4.1.-FUNDAMENTOS DE LA HIPOTESIS

Esta hipótesis contempla la posibilidad de incrementar la capacidad de transferencia de calor de los CAV's, utilizando vapor saturado, es decir modificando la operación del CAV para que trabaje solamente con la etapa de condensación del vapor.

La hipótesis surge del anàlisis comparativo de los coeficientes totales de transferencia de calor y superficies de calentamiento, obtenidos para las zonas de desobrecalentamiento y condensación del vapor.

Analizando los valores de los coeficientes totales de transferencia de calor que se muestran en la tabla 3.1; se observa que el de la etapa de desobrecalentamiento (UC10), es aproximadamente 4 veces más pequeño que el de la etapa de condensación (UC20). Esto significa que en la etapa de condensación se tiene mayor capacidad de transferencia de calor por unidad de superficie que en la etapa de desobrecalentamiento. Desde el punto de vista de los coeficientes peliculares, ésto se debe a que el coeficiente de película controlante en la etapa de condensación (coeficiente pelicular mas pequeño), es el del aire (h'fo), el cual determina el valor de UC20 de la ecuación:

$$\frac{1}{\text{UC20}} = \frac{1}{\text{h}'_{fo}} + \frac{1}{\text{h}_{2i}} = \frac{1}{91.2} + \frac{1}{1355.18}$$

mientras que en la etapa de desobrecalentamiento, el coeficiente de película controlante es el coeficiente películar del vapor sobrecalentado (h_{11}) , el cual determina el valor de UC10 de la ecuación:

$$\frac{1}{\text{UC10}} = \frac{1}{h'_{fo}} + \frac{1}{h_{1i} \left(\frac{A'_{Ti}}{A'_{T0}}\right)} = \frac{1}{91.2} + \frac{1}{25.89}$$

Lo cual significa que el coeficiente pelicular del vapor sobrecalentado referido a la superficie externa $Eh_{1i}(A'_{Ti}/A'_{T0})$], produce una resistencia a la transferencia de calor más grande que la correspondiente al coeficiente h'fo, reflejandose ésto en un coeficiente total de transferencia de calor UC10 más pequeño que el obtenido en la etapa de condensación (UC20). En cuanto a la superficie de calentamiento requerida, se observa que aproximadamente la tercera parte de la superficie total de transferencia de calor del CAV se utiliza para desobrecalentar el vapor.

Basandose en lo expuesto anteriormente, la hipótesis de optimización térmica de los CAV's con vapor saturado, propone eliminar el desobrecalentamiento del vapor y utilizar únicamente la etapa de condensación del mismo, de modo tal que toda la superficie del CAV intercambie calor con el coeficiente total más grande que tiene, que es el de condensación (UC20), lograndose con ésto incrementar la capacidad de transferencia de calor de la superficie total del CAV.

El flujo de calor cedido por el vapor depende de la diferencia de entalpias y del flujo de vapor y se expresa como:

 $Qs = Ws(H_1 - H_2)$ (4.1)

Considerando lo anterior, al utilizar vapor saturado, la diferencia de entalpias (H_2-H_3) será menor que la del vapor sobrecalentado (H_1-H_3) ; por lo que será necesario aumentar el flujo de vapor, de modo tal que pueda incrementarse así el flujo de calor total intercambiado; es decir, la operación

del CAV con vapor saturado requerirá un flujo de vapor mayor al que se utiliza con vapor sobrecalentado.

4.2. - JUSTIFICACION DE LA HIPOTESIS

Utilizando los parametros de operación obtenidos en la evaluación del comportamiento térmico del CAV tipo vertical de la sección 3.4, y considerando la operación del CAV con vapor saturado, es decir trabajando unicamente con la zona de condensación del vapor, se tiene que:

UD10=0

∆t,=0

FIGURA No.4.1.- Perfil de temperatura con vapor saturado

y por lo tanto el coeficiente global de transferencia de calor será:

UD=UD20= 83.09 Kca1/hr-m2-C

ésto es debido a que toda la superficie del CAV se utiliza en la etapa de condensación del vapor.

Ahora considerando el mismo flujo de calor total intercambiado que en el ejemplo mencionado, se calculará la superficie de transferencia de calor requerida utilizando vapor saturado, y se comparará con la superficie de transferencia de calor disponible, que es la que se requiere al utilizar vapor sobrecalentado.

$$Q_{a} = 7373780 \text{ Kcal/hr}$$

El flujo de vapor saturado requerido será:

 $Ws = \frac{Q_A}{(H_2 - H_3)} = \frac{7,373,780}{(661.31 - 171.62)} = 15058.05 \text{ Kg/hr}$

La diferencia de temperatura media logaritmica total será:

A+	((T	3 -	t2))	<u>(TS</u>	-	t1)	ì
		1.		TS	- t	2)		Ľ
en de la companya de		ана ста 1. с.	•	TS	- t	1)		Ľ

 $= \frac{(170 - 87) - (170 - 37.5)}{\ln \frac{(170 - 87)}{(170 - 37.5)}} = 105.82 \text{ °C}$

entonces la superficie de transferencia de calor requerida utilizando vapor saturado será:

$$A_{TO} = \frac{Q_A}{UD \ \Delta tm} = \frac{7,373,780}{(83.09)(105.82)} = 838.63 m^2$$

Finalmente se tiene

SUPERFICIE	REQUERIDA (m2)
VAPOR SATURADO	! VAPOR SOBRECALENTADO
838.63	1027.38

Comparando las superficies de calentamiento requeridas en cada caso, se observa que utilizando vapor saturado se requiere menos superficie (aproximadamente 18% menos) para intercambiar el mismo flujo de calor Q_A , lo cual significa que se incrementa la capacidad de transferencia de calor de la superficie del CAV al emplear vapor saturado. Por consiguiente si se utiliza vapor saturado con la superficie de calentamiento disponible (A_{TO}^{\prime} = 1027.38 m2), se tendrá un incremento en el flujo de calor total intercambiado.

La temperatura que alcanzaria el aire a la salida del CAV al trabajar con vapor saturado, puede calcularse a partir de las siguientes ecuaciones:

$$Q_{A} = W_{A} C_{PA} (t2 - t1)$$
 (4.2)

pero también

 $Q_{A} = UD A'_{T0} \Delta t = UD A'_{T0} \left(\frac{(TS - t2) - (TS - t1)}{\ln \frac{(TS - t2)}{(TS - t1)}} \right) =$

$$= - UD A'_{TO} \left(\frac{(t2 - t1)}{\ln \frac{(TS - t2)}{(TS - t1)}} \right)$$
(4.3)

igualando las ecuaciones (4.2) y (4.3)

$$W_{A} C_{PA} (t2 - t1) = -UD A'_{TO} \left(\frac{(t2 - t1)}{\ln \frac{(TS - t2)}{(TS - t1)}} \right)$$

y simplificando, se obtiene que

$$\ln \frac{(TS - t2)}{(TS - t1)} = -\frac{UD A'_{T0}}{W_A C_{PA}}$$
(4)

.4)

despejando t2 de la ecuación (4.4) se tiene:

$$t2 = TS - \left(exp \left(-\frac{UD A_{T0}}{W_A C_{PA}} \right) (TS - t1) \right)$$
(4.5)

con ésta última ecuación se calcula la temperatura del aire a la salida del CAV cuando se emplea vapor saturado.

Ahora sustituyendo los datos se tiene que:

$$t2 = 170 - \left(exp^{\left(-\frac{(83.09)(1027.38)}{(619380)(0.2405)}\right)} (170 - 37.5) \right)$$

t2 = 95.3°C

Finalmente

TEMPERATURA DEL AIRE A	LA SALIDA DEL CAV (°C)
VAPOR SATURADO	VAPOR SOBRECALENTADO
95.3	87

Comparando las temperaturas obtenidas en cada caso, se observa que con la utilización de vapor saturado se incrementa la temperatura del aire a la salida del CAV.

4.3.-COMPORTAMIENTO ESPERADO EN LOS CAV'S

AL EMPLEAR VAPOR SATURADO

Considerando los resultados obtenidos en la justificación de la hipótesis, se han desarrollado gráficas que muestran, para diferentes condiciones de operación, el comportamiento esperado del CAV al trabajar con vapor saturado.

Los parámetros que comunmente varian en la operación de un CAV son: el flujo de aire que circula a través del CAV, la temperatura de entrada del aire, el flujo de vapor, la presión del vapor, y por consiguiente la temperatura de saturación.

Las gráficas que se presentan son obtenidas por computadora utilizando el denominado sistema PAGRA (Paquete Gráfico), el cual consiste en un paquete para gráficas computacionales con un conjunto de subrutinas en FORTRAN (ANSI 77), y que fué desarrollado originalmente en la Unidad de Computo del IIE.

Todas las gráficas que se muestran, excepto las de flujo de vapor y caidas de presión, han sido elaboradas a partir de la ecuación (4.4), utilizando los valores de : flujo de aire medido (W_A), coeficiente total de transferencia de calor en la etapa de condensación (UD20), y superficie total externa disponible (A'_{TO}), que han sido obtenidos de las evaluaciones de los CAV's.

Debido a que la efectividad de la hipótesis se va a comprobar experimentalmente en los CAV's de las unidades 4 y 1 de la CTE de Manzanillo,Colima (por ser ésta CTE la que cuenta con la instrumentación, equipo y disponibilidad requerida), el primer grupo de gráficas corresponde a un CAV (tipo vertical) de la unidad 4 y el segundo grupo corresponde a un CAV (tipo horizontal) de la unidad 1; ésto se realiza con el propósito de conocer los resultados que se esperan obtener al realizar las pruebas experimentales con vapor saturado en los CAV's.

Como ya se mencionó anteriormente el flujo de aire (W_A) que circula a través de los CAV's, varia según las condiciones y el tiempo de operación de la caldera, por ésta razon, en las gráficas se consideran 2 flujos de aire diferentes que son, el flujo de aire medido en una evaluación del CAV y el flujo de aire especificado por diseño para 300 MN de carga.

4.3.1.GRAFICAS DEL COMPORTAMIENTO ESPERADO EN

EL CAV (LADO A) DE LA UNIDAD 4

GRAFICA 1-U4

Considerando que la temperatura del aire a la salida de los CAV's, requerida para disminuir la corrosión en el lado frio de los PAR's, es de t2=104.8°C (propuesta en la tabla 2.1), se elabora ésta gráfica que muestra la temperatura de vapor saturado que se requiere para alcanzar dicha temperatura, al tener diferentes temperaturas de aire a la entrada del CAV.

Despejando de la ecuación 4.4 se tiene la ecuación que se utiliza para obtener ésta gráfica y se expresa como:

(4.6)

$$TS = \frac{t2 - \left(t1 \exp\left(-\frac{UD20 A'_{T0}}{W_A C_{PA}}\right)\right)}{1 - \exp\left(-\frac{UD20 A'_{T0}}{W_A C_{PA}}\right)}$$

y los datos son:

 W_A POR DISENO = 525235 kg/hr UD20 PARA EL FLUJO DE DISENO = 75.18 Kcal/hr-m2-°C W_A MEDIDO = 619380 kg/hr UD20 PARA EL FLUJO MEDIDO = 83.09 Kcal/hr-m2-°C t2 = 104.8°C C_{PA} = 0.2404 Kcal/kg-°C

 $A'_{TO} = 1027.38 mz$

GRAFICA 1 - U4

GRAFICA 2-U4

Esta gráfica muestra la temperatura de vapor saturado que debe emplearse para obtener la temperatura de salida del aire deseada; cuando la temperatura de entrada del aire es constante.

Para la obtención de ésta gráfica se utiliza la ecuación (4.6).

y los datos son:

 W_A POR DISENO = 525235 kg/hr UD20 PARA EL FLUJO DE DISENO = 75.18 Kcal/hr-m2-°C W_A MEDIDO = 619380 kg/hr UD20 PARA EL FLUJO MEDIDO = 83.09 Kcal/hr-m2-°C t1 = 38°C C_{PA} = 0.2404 Kcal/kg-°C A'_{TO} = 1027.38 m2

GRAFICA 2 - U4

GRAFICA 3-U4

Esta gráfica muestra la superficie total externa que se requiere en el CAV para que la temperatura de salida del aire sea t2= 104.8°C, cuando se tienen diferentes temperaturas de entrada del aire al CAV, y se utilizan las temperaturas de vapor saturado especificadas.

La ecuación utilizada para la obtención de ésta gráfica es:

$$A_{\rm TO} = -\frac{W_{\rm A} C_{\rm PA}}{UD20} \left(\ln \frac{(\rm TS - t2)}{(\rm TS - t1)} \right)$$
(4.7)

y los datos son:

 W_A POR DISENO = 525235 kg/hr UD20 PARA EL FLUJO DE DISENO = 75.18 Kcal/hr-m2-°C t2 = 104.8°C C_{PA} = 0.2404 Kcal/kg-°C

TEMPERATURAS DE VAPOR SATURADO 180,190,200 y 210°C

GRAFICA 3 - U4

GRAFICA 4-U4

Esta gráfica es complemento de la gráfica l-U4 y muestra el flujo de vapor que se requiere, al utilizar diferentes temperaturas de vapor saturado, para obtener una temperatura de salida del aire t2=104.8°C.

La ecuación utilizada para la obtención de ésta gráfica se determina a partir de lo siguiente:

$$Q_{\lambda} = Ws(H_2 - H_3)$$

pero también

$$D_{A} = UD20 A'_{T0} \left(\frac{(t1 - t2)}{\ln \frac{(TS - t2)}{(TS - t1)}} \right)$$

igualando y despejando, se tiene finalmente que:

$$W_{B} = \frac{UD20 \ A'_{T0} \ (t1 - t2)}{(H_2 - H_3) \ \ln \frac{(TS - t2)}{(TS - t1)}}$$

(4.8)

Y los datos empleados son:

```
W_{h} POR DISENO = 525235 kg/hr
```

UD20 PARA EL FLUJO DE DISENO = 75.18 Kcal/hr-m2-°C

W_a MEDIDO = 619380 kg/hr

UD20 PARA EL FLUJO MEDIDO = 83.09 Kcal/hr-m2-°C

t2 = 104.8°C

 $C_{pa} = 0.2404 \text{ Kcal/kg-°C}$

 $A'_{TO} = 1027.38 \text{ mz}$

GRAFICA 4 - U4

.109

GRAFICA 5-U4

Esta gráfica muestra las caídas de presión que se tienen dentro de los tubos del CAV al utilizar las temperaturas de vapor saturado especificadas y trabajar con diferentes flujos de vapor.

La ecuación utilizada para la obtención de ésta gráfica es:

$$\Delta P_{t} = \frac{1}{2} \frac{\text{ff } G_{t}^{\prime 2} \text{ L } n}{5.22 \times 10^{10} \text{ DI}^{\prime} \text{ sp}} 703.32$$

Y los datos utilizados son:

DI = 1.1913 cm NTB = 640 tubos LT = 3.88 m n = 1

TEMPERATURAS DE VAPOR SATURADO 180, 190, 200, y 210°C

Cabe mencionar que en todas las gráficas de caida de presión así como en las de flujo de vapor, se utiliza el programa CALORE133 para obtener las propiedades termodinámicas del vapor.

GRAFICA 5 - U4

4.3.2.GRAFICAS DEL CONPORTAMIENTO ESPERADO EN

EL CAV (LADO A) DE LA UNIDAD 1

Las gráficas que se presentan para el CAV de la unidad l, son del mismo tipo que las de la unidad 4, con la diferencia que en éstas se utilizan los parámetros de operación correspondientes al CAV de la unidad l.

GRAFICA 1-U1

En la unidad l, la temperatura del aire requerida a la salida de los CAV's para disminuir la corrosión en el lado frio de los PAR's, es t2=105°C (propuesta en la tabla 2.1).

Y los datos utilizados para obtener ésta gráfica son: W_A POR DISENO = 525200 kg/hr UD20 PARA EL FLUJO DE DISENO = 68.85 Kcal/hr-m2-°C W_A MEDIDO = 583142 kg/hr UD20 PARA EL FLUJO MEDIDO = 73.05 Kcal/hr-m2-°C t2 = 105°C C_{PA} = 0.2404 Kcal/kg-°C A_{TO} = 940.87 m2

GRAFICA 1 - U1

GRAFICA 2-U1

Los datos utilizados para obtener ésta gráfica son: W_A POR DISENO = 525200 kg/hr UD20 PARA EL FLUJO DE DISENO = 68.85 Kcal/hr-mz-°C W_A MEDIDO = 583142 kg/hr UD20 PARA EL FLUJO MEDIDO = 73.05 Kcal/hr-mz-°C t1 = 38°C C_{PA} = 0.2404 Kcal/kg-°C A_{TO}^{\prime} = 940.87 mz

GRAFICA 3-U1

Los datos utilizados para obtener ésta gráfica son:

 W_A POR DISENO = 525200 kg/hr UD20 PARA EL FLUJO DE DISENO = 68.85 Kcal/hr-m₂-°C t2 = 105°C

C_{PA}= 0.2404 Kcal/kg-°C TEMPERATURAS DE VAPOR SATURADO 180, 190, 200, y 210°C

GRAFICA 2 - U1

GRAFICA 3 - U1

GRAFICA 4-U1

Los datos utilizados para obtener ésta gráfica son:

 W_A POR DISENO = 525200 kg/hr UD20 PARA EL FLUJO DE DISENO = 68.85 Kcal/hr-m2-°C W_A MEDIDO = 583142 kg/hr UD20 PARA EL FLUJO MEDIDO = 73.05 Kcal/hr-m2-°C t2= 105°C C_{PA} = 0.2404 Kcal/kg-°C A_{TO} = 940.87 m2

GRAFICA 5-U1

Los datos utilizados son:

DI = 1.1913 cm

NTB = 610 tubos

LT = 3.2 m

n = 1

TEMPERATURAS DE VAPOR SATURADO 180, 190, 200, y 210°C

GRAFICA 4 - U1

GRAFICA 5 - U1

4.4.-CONDICIONES DE OPERACION CON VAPOR SATURADO

Analizando las gráficas presentadas anteriormente se concluye que las condiciones de operación con vapor saturado que se requieren en los CAV's con el fin de obtener la temperatura de salida del aire para disminuir la corrosión en el lado frio de los PAR's, son :

EN LOS CAV'S DE LA UNIDAD 4 (PARA t2 = 104.8°C)

Con el flujo de aire especificado por diseño (WA=525235 kg/hr)

TEMPERATURA DEL VAPOR SATURADO: 185°C PRESION DEL VAPOR SATURADO: 10.4 kgf/cm2 man. SUPERFICIE REQUERIDA: 1027.38 m2 FLUJO DE VAPOK: 17800 kg/hr CAIDAS DE PRESION EN LOS TUBOS: 178 kgf/m2

Con el flujo de aire medido (WA=619380 kg/hr)

TEMPERATURA DEL VAPOR SATURADO: 192°C PRESION DEL VAPOR SATURADO: 12.3 kgf/cm2 man. SUPERFICIE REQUERIDA: 1027.38 m2 FLUJO DE VAPOR: 21300 kg/hr CAIDAS DE PRESION EN LOS TUBOS: 215 kgf/m2

EN LOS CAV'S DE LA UNIDAD 1 (PARA t2=105°C)

Con el flujo de aire especificado por diseño (WA=525200 kg/hr)

TEMPERATURA DEL VAPOR SATURADO: 205°C PRESION DEL VAPOR SATURADO: 16.5 kgf/cm2 man. SUPERFICIE REQUERIDA: 940.37 m2 FLUJO DE VAPOK: 18400 kg/hr CAIDAS DE PRESION EN LOS TUBOS: 113 kgf/m2

Con el flujo de aire medido (WA=583142 kg/hr)

TEMPERATURA DEL VAPOR SATURADO: 211°C PRESION DEL VAPOR SATURADO: 18.8 kgf/cmz man. SUPERFICIE REQUERIDA: 940.87 m2 FLUJO DE VAPOR: 20700 kg/hr CAIDAS DE PRESION EN LOS TUBOS: 123 kgf/m2

Todas las condiciones han sido determinadas considerando un temperatura de entrada del aire t1=38°C.

EXPERIMENTACION

ULO

5

Las razones principales por las que la CTE de Manzanillo, Colima, fué seleccionada como planta piloto para efectuar las pruebas experimentales correspondientes a la hipótesis de trabajo propuesta, son las siguientes:

-Contar con los dos tipos de CAV's comprendidos en la metodología de cálculo antes descrita.

-Disponer de la instrumentación, equipo y puertos de medición requeridos (en los CAV's) durante la experimentación.

-Disponer de la colaboración de su personal.

5.1.-EQUIPO E INSTRUMENTACION REQUERIDA

5.1.1.CILINDRO PITOT

Para realizar la medición de flujo de aire que circula a través del CAV, se utiliza como elemento primario sensor de velocidad un cilindro Pitot, que por tener características especiales, fué necesario diseñarlo, construírlo y, posteriormente calibrarlo con un tubo de Pitot patrón.

El diseño del cilindro Pitot se desarrolló considerando los resultados obtenidos en el trabajo de investigación "Humidificación, Secado y Pulverización de carbón" realizado en el Instituto de Investigaciones EléctricasE143.

Fundamentalmente para el diseño del cilindro Pitot, fué necesario seleccionar la posición de los orificios detectores de presión, que son la parte fundamental de éste tipo de medidores de flujo o velocidad en ductos. Dichos orificios fueron practicados en forma diametrálmente opuesta al tubo, es decir, con un desplazamiento angular entre ellos de 180°. Esta posición de orificios se seleccionó considerando el intervalo más estable de la constante del cilindro Pitot (observado en la figura 4.1[14]) y el arreglo de más fácil maquinado.

El cilindro Pitot construído, es un tubo liso recto de 19.05 mm. de diámetro exterior, con el orificio detector de presión total, que se coloca de frente al flujo, de 3.92 mm. de diámetro y el orificio posterior a éste de 6.4 mm. de diámetro. Este instrumento tiene una longitud total de 4 m., y los materiales empleados para su construcción son:

TUBBING 3/4" ¢ ACERO INOXIDABLE TIPO 316 BWG 16 TUBBING 1/4" ¢ ACERO INOXIDABLE TIPO 304 BWG 18 BARRA DE ACERO INOXIDABLE

Todas las piezas del cilindro Pitot fueron unidas con soldadura de Argón, para permitir su uso en zonas de alta temperatura.

El diagráma esquemático del cilindro Pitot se muestra en la figura 5.1.

FIGURA No. 5.1. Diagrama esquemático del cilindro pitot.

Fundamento teórico del cilindro Pitot

El principio en el que se fundamenta el diseño de éste tipo de equipos es basicamente el teorema de Bernoulli, el cual conduce a la siguiente ecuación simplificada:

$$\Delta \mathbf{P} = -\frac{1}{2} \rho \mathbf{V}^2 \qquad (5.1)$$

Despejando la velocidad e introduciendo la constante adimensional K del elemento se obtiene:

$$V = K \int \frac{2\Delta P}{\rho}$$
 (5.2)

la cual aplicándola para el cilindro Pitot se transforma en:

$$V = Kc \int \frac{2\Delta Pc}{\rho}$$
(5.3)

Ahora, haciendo un análisis dimensional, queda finalmente la ecuación para calcular la velocidad del aire como:

$$V = 24 (Kc) \left[\frac{\Delta Pc (T + 273)}{(Pb + Pe)} \right]^{1/2} (5.4)$$

Kc = constante del cilindro Pitot = 0.714 EAdimensional]

APc= presión diferencial obtenida con el cilindro Pitot Emm. c.al

- Pb = presión barométrica local [mm. c.a]
- Pe = presión estática [mm. c.a]
- T = temperatura del aire E°CJ
- V = velocidad del aire Em/s]

Calibración del cilindro Pitot

El equipo de calibración empleado fué un tubo de Pitot de constante conocida (Kp=1), cuya ecuación general es la siguiente:

$$V = (1) \int \frac{2\Delta Pp}{\rho}$$
(5.5)

La ecuación de calibración del cilindro Pitot se obtiene al considerar la misma velocidad e igualar las ecuaciones 5.3 y 5.5 como:

$$Kc \int \frac{2\Delta Pc}{\rho} = (1) \int \frac{2\Delta Pp}{\rho}$$

despejando Kc se tiene la ecuación que permite calibrar el cilindro Pitot, la cual se expresa como:

$$Kc = \int \frac{\Delta Pp}{\Delta Pc}$$

donde ΔPp y ΔPc son las presiones diferenciales obtenidas con el tubo y cilindro Pitot respectivamente, medidas en unidades iguales.

La calibración se realizó introduciendo el cilindro Pitot en un ducto de sección circular de diámetro interno D=44.5 cm., para dos diferentes velocidades del flujo de aire, manteniendo constantes las condiciones del flujo. Para cada valor de velocidad se establecieron 9 puntos de medición radialmente alineados.

Para la calibración se consideró la relación de diámetros establecidaE143:

$$\frac{d}{D} \stackrel{\prime}{\leftarrow} \frac{1}{16}$$

donde

d = diámetro del elemento a calibrarse.

D = diametro del ducto donde se realiza la calibración.

Las mediciones de presión diferencial fuéron realizadas utilizando un micromanómetro diferencial con intervalo de 1 a 100 mm de columna de agua.

Los valores de presión diferencial medidos a diferentes velocidades del aire, así como las constantes del cilindro Pitot obtenidas, se muestran en la tabla 5.1.

PUNTOS DE MEDICION	·+ ! +	$V_1 = 14.17 \text{ m/s}$				+			
		ΔPc	ΔPp (mm c.a)	Kc (Adim)	! ! (m	ΔPc	ΔPp	Kc Adim	1
1 1	· · · ·	20	10.2	0.7141	1	18	9.5	0.7264	i
! 2	i .	20	10.2	0.7141	ī	18	9.2	0.7149	i
1 3	1	20	10.2	0.7141	i	17.5	9	0.7171	1
1 4	· 1	20	10.2	0.7141	1	17.5	9	0.7171	L
1 5	1	20	10.2	0.7141	1	17.5	9	0.7171	ł
! 6	1	20	10	0.7071	1	17.5	9	0.7171	1
1 7	1	19.5	10	0.7161	ł	17.5	9	0.7171	1
1	1	19.5	10	0.7161	Ł	17.5	8.5	0.6969	1
1 9	1	19.5	10	0.7161	ł	17	8.5	0.7071	1
-		Kc= 0.7140				Kc= 0.7145			

TABLA 5.1 VALORES DE PRESION DIFERENCIAL Y CONSTANTES OBTENIDAS EN LA CALIBRACION DEL CILINDRO PITOT.

Realizando el promedio de las constantes Kc obtenidas, se encuentra el valor de la constante del cilindro Pitot:

Kc = 0.714

la cual aplicada en la ecuación 5.4 permitirá calcular la velocidad del aire a partir de la presión diferencial medida con el instrumento.

5.1.2.EQUIPO ADICIONAL DE MEDICION

El equipo auxiliar de medición que se emplea para desarrollar la parte experimental es:

- <u>Micromanómetro diferencial</u> con intervalo de l a 100 mm de columna de agua. Este se utiliza para medir la presion diferencial obtenida con el cilindro Pitot al realizar las mediciones del flujo de aire.
 - <u>Termopares tipo K (cromel-alumel)</u>, para medición de las temperaturas del aire a la entrada y salida del CAV.
 - <u>Multimetro digital</u> para medición de los milivolts producidos por los termopares al sensar la temperatura.
 - <u>Columna de aqua</u> para medición de la presión estática del aire, así como las caidas de presión del mismo al pasar por el CAV.

5.1.3. INSTRUMENTACION INSTALADA EN LOS CIRCUITOS DE Vapor-condensados y aire de los cav's de la cie

Los instrumentos y equipos que fueron instalados en el circuito vapor-condensados de los CAV's son: manómetros de tubo de Bourdón, termómetros de carátula, indicador de nivel en el tanque de condensados y el atemperador de vapor con válvula de control de agua de atemperación.

Atemperador

El atemperador es un equipo que se utiliza para desobrecalentar el vapor que entra a los CAV's, y su funcionamiento consiste en disminuir parcialmente la temperatura del vapor al realizar un rociado de agua dentro de la corriente de vapor.

A ésta forma de control de temperatura se le conoce con el nombre de sistema de atemperación por contacto directo.

El atemperador fué instalado en el cabezal principal de vapor, a una distancia apropiada de la entrada de los CAV's y de los instrumentos de medición (manómetro y termómetro). Esto se realizó con el propósito de permitir que la corriente de vapor supere la etapa de transición y sea homogénea, de tal manera que los instrumentos registren valores de presión y temperatura

estables y evitar también posibles arrastres de humedad con el vapor que entra a los CAV's.

Para la atemperación se utilizó agua de condensados, con una presión de 20 kgf/cm2 man. y una temperatura de 45°C.

El diseño, selección e instalación del atemperador fué realizado por el personal de la CTE.

El arreglo de los instrumentos instalados en el circuito vapor-condensados de los CAV's, se muestra en forma simplificada en la figura 5.2.

Para referencia del lector se presenta, en la figura 5.3, el DTI de vapor de los CAV's de la unidad 1, en el cual se muestra todo el circuito vapor-condensados, así como los accesorios, equipos, e instrumentación especificados por diseño.

La instrumentación requerida en el circuito aire del CAV está constituida basicamente por termopares, los cuales se encuentran localizados en los puntos de medición mostrados en la figura 5.2.

FIGURA No. 5.3 D.T.I. del circuito vapor-condensados de los CAV's.

5.2.-DISENO DEL EXPERIMENTO

5.2.1. MEDICION DEL FLUJO DE AIRE

Para conocer el flujo de aire que circula a través del CAV, fué necesario elaborar un procedimiento de cálculo, que consiste en establecer un sistema coordenado de puntos de medición de presiones diferenciales (obtenidas con el cilindro Pitot), donde se estiman los valores de velocidad empleando la ecuación 5.4.

Una vez que se conocen los valores de velocidad, se considera que a cada uno de ellos le corresponde un área de flujo, en la que se supone a la velocidad uniforme, de tal forma que al multiplicar la velocidad por el área de flujo correspondiente, se obtendrá el valor del gasto volumétrico local (Qi), y, el gasto volumétrico total que circula a través del CAV, (Q_T), será la suma de todos los gastos volumétricos locales calculados.

Es decir:

$$Q_{T} = \sum_{i=1}^{n} Q_{i}$$

donde n = número de puntos de medición.

Finalmente, el flujo másico de aire que circula a través del CAV se calcula multiplicando el gasto volumétrico total (Q_T) por la densidad del aire.

Para los puntos de medición cercanos a la pared del ducto, las áreas de flujo correspondientes se consideran con una extensión casi hasta la pared, basandose ésto en que se tiene un número de Reynolds correspondiente a un régimen altamente turbulento.

Este procedimiento de cálculo de flujo de aire, será más preciso en tanto mayor sea el número de puntos de medición.

5.2.2.MEDICION DE TEMPERATURAS DEL AIRE A LA SALIDA DEL CAV

De la misma manera que en la medición de flujo de aire, inicialmente se establece un sistema coordenado de puntos de medición de temperatura en el ducto de aire a la salida del CAV, con el objeto de definir los puntos de medición representativos de la temperatura promedio del aire, de modo tal que conociendo la temperatura en éstos puntos pueda obtenerse rapidamente la temperatura promedio del aire a la salida del CAV durante el desarrollo de la experimentación.

Para los CAV's de la unidad 4 los puntos de medición de temperatura del aire se localizan justo antes de la entrada al PAR; mientras que para los de la unidad l los puntos de medición de temperatura son los mismos que los de medición de velocidad.

5.2.3. PRUEBAS EXPERIMENTALES DE ATEMPERACION DE VAPOR

Con el objeto de comprobar experimentalmente los resultados teóricos esperados al emplear vapor saturado en los CAV's (presentados en la seccion 4.3), se efectuaron pruebas experimentales de atemperación de vapor para diferentes presiones y flujos de aire, empleando para ello vapor auxiliar y vapor de extracción (el cual se utiliza en condiciones normales de operación).

Para evitar posibles arrastres de humedad con el vapor desobrecalentado, éste no se llevó a la temperatura de saturación sino un poco más arriba, es decir, con poco grado de sobrecalentamiento. Se programó también la medición de los parámetros de operación del CAV al trabajar éste con vapor de diferentes grados de sobrecalentamiento. En la tabla 5.2 se muestran las presiones de vapor auxiliar y los flujos de aire para los que se programaron las pruebas experimentales de atemperación de vapor, tanto en el CAV(lado A) de la unidad 4, como en el de la unidad 1.

PRESION DEL VA-	TEMPERATURA DE SATURACION (°C)	UNIDAD 4 UNIDAD 1						
POR A LA ENTRADA DEL CAV (kgf/cm ²)		FLUJO DE AIRE EN CONDICIO- NES ACTUA- LES DE OPERACION	FLUJO DE AIRE EN CONDICIO- NES DE OPERACION ANTES DE MANTENI- MIENTO	FLUJO DE AIRE CORRES- PONDIENTE A 145 MW	FLUJO DE AIRE CORRES- PONDIENTE A 225 MW	FLUJO DE AIRE CORRES- PONDIENTE A 300 MW		
7.04	170							
8.1	175							
11.8	190							
14.8	200							
18.4	210							
22.6	220							
VAPOR DE EXTRACCION								

TABLA No.5.2.- Programa de pruebas experimentales de atemperación de vapor
5.3.-RESULTADOS EXPERIMENTALES

5.3.1.FLUJOS DE AIRE MEDIDOS

A continuación se presentan los resultados de las mediciones de flujo de aire realizadas en los CAV's de las unidades 4 y 1, mostrándose los parámetros de operación medidos en cada caso.

Finalmente, para las mediciones de flujo de aire a diferentes cargas de la unidad l, se presentan únicamente los resultados debido a que el procedimiento de cálculo es repetitivo y laborioso.

5.3.1.1.MEDICION DEL FLUJO DE AIRE EN EL

CAV (LADO A) DE LA UNIDAD 4.

En ésta unidad se instalaron 4 tomas (A,B,C y D) para medición de velocidad en cada lado del CAV y fueron colocadas entre las dos paredes de tubos del mismo.

El sistema coordenado de los puntos de medición de velocidad se muestra en la figura 5.4.

(COTAS: mm)

FIGURA No.5.4.- Sistema coordenado de puntos de medición en el CAV(lado A) de la unidad 4

FLUJO DE AIRE EN CONDICIONES ACTUALES DE OPERACION (11 - AGOSTO - 86)

Los parámetros obtenidos en la medición del flujo de aire son :

Temperatura promedio del aire = 64°C Presión estática = 680 mm. c.a. Presión barométrica local = 10336 mm. c.a.

4

1

2

3

VALORES DE PRESION DIFERENCIAL OBTENIDOS CON EL CILINDRO PITOT EN LOS PUNTOS DE MEDICION (mm. c.a.)

6

7

8

9

10

11 12

5

A	4.8	-5.1	4.8	5.8	8.1	7.1	6.6	5.3	5.6	3.8	4.8	4.3
в	3.3	4.6	5.1	5.3	6.8	5.6	5.3	3.8	3.8	3.8	3.8	3.5
С	3.0	4.6	3.8	5.8	6.3	4.6	6.1	7.6	4.3	3.8	3.8	4.6
D	8.1	7.1	6.8	6.6	6.1	4.8	4.8	5.8	5.3	3.0	4.3	3.8

VALORES DE VELOCIDAD ENCONTRADOS (m/s)

4	1	2	3	4	5	6	7	8	9	10	11.	12
A	6,58	6.75	6.58	7.24	8.54	7.99	7.70	6.92	7.07	5.85	6.58	6,22
В	5.44	6.40	6.75	6.92	7.84	7.07	6.92	5.85	5 .85	5.85	5.85	5.64
с	5.22	6.40	5.85	7.24	7.55	6.40	7.41	8.27	6.22	5.85	5.85	6.4
Ð	8.54	7.99	7.84	7.70	7.41	6.58	6.58	7.24	6.92	5.22	6.22	5.85

Calculando y sumando los gastos volumétricos correspondientes a cada punto de medición se tiene que :

$$Q_{\rm T} = 155 \text{ m}^3/\text{s} = 558000 \text{ m}^3/\text{hr}$$

siendo el flujo másico de aire medido :

$$W_{A4} = \Omega_{T}^{\rho} = (558000) (1.11) = 619380 \text{ kg/hr}$$

5.3.1.2. MEDICION DEL FLUJO DE AIRE EN EL CAV (LADO λ) DE LA UNIDAD 1

En esta unidad se realizaron 7 tomas para puntos de medición de velocidad en el ducto de aire, localizadas aproximadamente a 80 cm de la salida del CAV.

El sistema coordenado de los puntos de medición de velocidad se muestra en la figura 5.5.

(COTAS: mm)

FLUJO DE AIRE EN CONDICIONES DE OPERACION ANTES DE MANTENIMIENTO (8 - AGOSTO - 86)

Los parámetros obtenidos en la medición del flujo de aire son :

Temperatura promedio del aire = 82.3 °C Presión estática = 620 mm. c.a. Presión barométrica local = 10336 mm. c.a.

VALORES DE PRESION DIFERENCIAL OBTENIDOS CON EL CILINDRO PITOT EN LOS PUNTOS DE MEDICION (mm. c.a.)

1 2 3 4 5 6 7

5.0	4.0	9.0	12.0	10.0	2.0	11.0
5.2	3.8	3.0	8.5	4.0	1.2	10.5
5.0	4.0	2.5	7.0	3.0	2.5	7.0
4.2	4.2	3.0	7.2	2.5	2.2	5.0

VALORES DE VELOCIDAD ENCONTRADOS (m/s)

Α

В

С

D

Α

в

С

D

	2	3	4	5	6	. 7
6.9	6.17	9.25	10.68	9,75	4.36	10.23
7.0	6.01	5.34	8.99	6.17	3,38	9.99
6.9	6.17	4.88	8.16	5.34	4.88	8.16
6.3	6.3	5.34	8.28	4.88	4.57	· 6.9

El gasto volumétrico total de aire,es la suma de los gastos volumétricos locales

$$Q_{T} = \sum_{i=1}^{28} Q_{i} = 153.685 \text{ m}^{3}/\text{s} = 553266 \text{ m}^{3}/\text{hr}$$

Finalmente el flujo másico de aire medido es :

$$W_{A1} = Q_{T}^{\rho} = (553266)(1.054) = 583142 \text{ kg/hr}$$

FLUJO DE AIRE PARA 145, 225, y 300 MW DE CARGA, EN CONDICIONES POSTERIORES AL MANTENIMIENTO (NOVIEMBRE - 86)

Los flujos de aire medidos fueron :

$$W_{a145} = 366230 \text{ kg/hr}$$
 para 145 MW.

 $W_{A225} = 450200 \text{ kg/hr}$ para 225 MW.

 $W_{A300} = 560030 \text{ kg/hr}$ para 300 MW.

5.3.2 RESULTADOS EXPERIMENTALES DE LAS

PRUEBAS DE ATEMPERACION DE VAPOR

Los principales parámetros resultantes de las pruebas experimentales de atemperación de vapor en los CAV's de las unidades 4 y 1 de la CTE de Manzanillo, Colima, se muestran en las tablas 5.3 a 5.8.

Estas tablas contienen los valores de los parámetros de operación del CAV antes y después de efectuar la atemperación, es decir, al trabajar el CAV primero con vapor sobrecalentado y después con vapor casi saturado.

Para los cálculos efectuados, se consideró como temperatura de saturación del vapor la correspondiente a la presión del tanque de condensados, ya que existen caídas de presión (por concepto de válvulas, codos y reducciones) entre el punto de medición del cabezal principal y la entrada a los tubos del CAV, por lo que se encontró que la presión del tanque es la más aproximada a la que se tiene dentro de los tubos del CAV.

Durante la experimentación se realizaron, en varios eventos, mediciones de los parámetros de operación a diferentes grados de sobrecalentamiento, con el propósito de conocer sus efectos y analizar los resultados obtenidos en cada caso. También puede observarse en algunos casos, que al utilizar vapor auxiliar la válvula de control de flujo de vapor del CAV(lado B) fué cerrada total o parcialmente, con la finalidad de que por el CAV(lado A)

fluyéra la máxima cantidad de vapor.

Los valores de presión de vapor saturado para los cuales fué realizada la experimentación, no corrresponden exactamente a los programados, debido a la dificultad que presenta en campo el obtener en forma rápida, precisa y estable las condiciones requeridas. De la misma manera, el desobrecalentamiento hasta la cuasi-saturación, no es el mismo para todas las presiones en las que se realizó la atemperación, porque el tiempo de respuesta requerido para obtener una lectura estable de temperatura del vapor es grande.

En el desarrollo de las pruebas experimentales con vapor saturado se observaron los siguientes resultados:

- En casi todos los casos, al realizar el desobrecalentamiento del vapor hasta las condiciones casi de saturación, no se registró incremento ó disminución en la temperatura del aire a la salida del CAV.
 - Solamente se registró incremento en la temperatura de salida del aire al efectuar la atemperación del vapor con el flujo de aire correspondiente a 145 MN de carga en la unidad l.

Para diferentes grados de sobrecalentamiento, la temperatura del aire a la salida del CAV se mantiene constante.

- Al tratar de aumentar el flujo de vapor en el CAV(lado A), bloqueando el paso de la corriente de flujo al CAV(lado B), se obtiene momentáneamente un incremento de presión del vapor en el cabezal principal, que es controlado por el SET-POINT de la válvula principal de vapor auxiliar (ver figura 5.3), el cual por cierre de válvula y por consiguiente disminución de flujo, reestablece la presión inicial del vapor.
 - Empleando vapor casi saturado y cerrando total ó parcialmente la válvula de control de flujo del CAV(lado B), la temperatura del aire a la salida del CAV(lado A) no presenta variación y el flujo de vapor al CAV(lado A) no se incrementa debido al cierre de la válvula principal de vapor auxiliar (realizado por el SET-POINT).

PRESION DE VAPOR EN EL CABEZAL PRINCIPAL	TEMPERATURA DEL VAPOR EN EL CABEZAL PRINCIPAL	PRESION DE LOS CONDENSADOS EN EL TANQUE (LADO A)	TEMPERATURA DE LOS CONDENSADOS EN EL TANQUE (LADO A)	TEMPERATURA DEL AIRE A LA ENTRADA .DEL CAV	TEMPERATURA DEL AIRE A LA SALIDA DEL CAV	APERTURA VALVULA I DE FLUJO 3	DE LA DE CONTROL DE VAPOR
(kgf/cm ² man.)	(°C)	(kgf/cm ² man.)	(°C)	(C) (C)	(°C)	CAV(LADO A)	CAV(LADO B)
*7.5	290	7	170	37.5	87	100	100
*7.5	180	7	170	37.5	87	100	100
12	296	11.1	188	38	95	100	100
12	200	11.1	188	38	95	100	100
15	302	14.2	198	38	99	100	100
15	220	14.2	198	38	99	100	100
15.1	220	14.3	198	38	99	100	o
18.5	305	17.9	208	38	103	100	100
18.5	270	17.9	208	38	103	100	100
18.5	230	17.9	208	38	103	100	100
18.5	218	17.9	208	38	103	100	0
19.5	307	18.7	211	37.5	104	100	100
19.5	270 -	18.7	211	37.5	104	100	100
19.5	250	18.7	211	37.5	104	100	100
19.5	225	18.7	211	37.5	104	100	100
21	310	20	214	37.5	105.5	100	100

FLUJO DE-AIRE $W_{A4} = 619380 \text{ kg/hr}$

* VAPOR DE EXTRACCION

TABLA No.5.3.- PARAMETROS DE OPERACION MEDIDOS EN CAMPO EN EL CAV(LADO A) DE LA UNIDAD 4

	TEMPEPATTIPA	TEMDEDATIDA	00000000000000			J			_	·	_
	DEL VAPOR EN EL CABEZAL PRINCIPAL	DE SATURA- CION DEL VAPOR	SOBRECALEN- TAMIENTO DEL VAPOR	Ws	UC	ŪŪ	020	RD0x10 ³	۵Pt	۵₽	Δtra
	TG	TS	SH								
	(°C)	(°C)	(°C)	(kg/hr)	(Kcal/hr-m ² -C)	(Kcal/hr-m ² C)	(Kcal/hr-m ² -C)	(hr-ft ² F/BTU)	(kgf/m^2)	mm ca	°c
1	* 290	1 69. 79	120.2	13330.4	65.51	64.3	83.09	1.40.	149 22	32 9	1111
	* 180	169.79	10.21	14901.9	82.24	67.89		12 54	191 16	22.0	105
	296	187.57	108.4	15890.1	67.66	66.32	83.06	1.45	139 19	32.9	105.
	200	187,57	12.4	17655.9	82.15	69.49		10.92	166	33.4	124
H	302	198.09	104	17332.2	68.47	66.5	83, 10	2 1	120 02	33.4	118.
õ	220	198.09	22	19015.1	79.89	69.33		93	162.66	33.6	132.
	220	198.41	21.6	19033.4	79.95	69.17		9.52	151 00	33.0	12/.
	305	208.68	96.3	18905.7	69. 50	66.78	83-04	2.86	122 12	33.0	127.
	270	208.68	61.3	19659.3	73.42	68.14		5 14	123.12	33.8	141.
	230	208.68	21.3	20673.6	80.02	69 32		0.42	131.79	.33.8	138.
	218	208.68	9.3	21027.8	82.83	69.52		9.42	143,85	33.8	136.
	307	210.75	96.35	19410 5	69 69	67.45	00.00	11.3	148.17	33.8	135.
	270	210.75	59 25	20240 5	72.05	67.45	83.02	2.31	123.94	33.8	143.
	250	210 75	30.25	20240.5	73.85	68.91		4.73	133.31	33.8	140
	225	210.75	14.05	20745.8	/6.8	69.5		6.6	139.16	33.8	138.
	210	210.75	14.25	21462.1	81.72	70.15		9.85	147.63	33.8	137.
- 1	210	212.98	96	19959.8	69.86	67.79		2.13	122.46	33 9	145

FLUJO DE AIRE $W_{A4} = 619380 \text{ kg/hr}$

* VAPOR DE EXTRACCION

TABLA NO.5.4. - PARAMETROS DE OPERACION CALCULADOS PARA EL CAV (LADO A) DE LA UNIDAD 4

PRESION DE VAPOR EN EL CABEZAL PRINCIPAL	TEMPERATURA DEL VAPOR EN EL CABEZAL PRINCIPAL	PRESION DE LOS CONDENSADOS EN EL TANQUE (LADO A)	TEMPERATURA DE LOS CONDENSADOS EN EL TANQUE (LADO A)	TEMPERATURA DEL AIRE A LA ENTRADA DEL CAV	TEMPERATURA DEL AIRE A LA SALIDA DEL CAV	APERTURA D VALVULA D DE FLUJO D %	DE LA E CONTROL DE VAPOR
(kgf/cm ² man.)	(°C)	(kgf/cm ² man.)	(°C)	(°C)	(12°)	CAV(LADO A)	CAV(LADO B)
*7.4	319	7.2	171	38	80	100	100
*7.4	280	7.2	171	38	80	100	100
*7.4	185	7.2	171	38	80	100	100
7	257	6.8	169	39	80	100	100
7	175	6.6	168	39	80	. 100	100
7	175	6.6	168	39	80	100	50
11.35	266	10.3	187	39	86	100	100
11.35	197	10.8	187	39	86	100	10
11.6	197	11	187	39	86	100	100
14.75	270	14.2	198	39	90	100	100
14.75	217	14.2	198	39	90	100	12

FLUJO DE AIRE W_{A1} = 583142 kg/hr

* VAPOR DE EXTRACCION

TABLA No.5.5.- PARAMETROS DE OPERACION MEDIDOS EN CAMPO EN EL CAV(LADO A) DE LA ÚNIDAD 1

TEMPERATURA DEL VAPOR EN EL CABEZAL PRINCIPAL TG (°C)	TEMPERATURA DE SATURA- CION DEL VAPOR TS	SOBRECALEN- TAMIENTO DEL VAPOR	Ws	UC 2	UD 2	UD20	RD0x10 ³	ΔPt	Δ₽	Δtm
		(-C)	(kg/nr)	(Kcal/hr-m-C)	(Kcal/hr-m-C)	(Kcal/hr-m=C)	(hr-ft-F/BTU)	(kgf/m ²)	(mm ca)	:(°C):
*319	170.8	148.2	10389.6	55.10	52.93	73.05	3,63	84.75	27.5	118.2
*280	170.8	109.2	10764	58.20	54.20		6.19	90.15	27.5	115.4
*185	170.8	14.2	11854.6	72.88	56.56		19.32	106.6	27.5	110 6
257	168.7	88.2	10690.4	60.15	54.78	73	7.95	93.26	27.5	111 5
175	167.7	7.3	11615.4	75.18	57.14		20.5	110 3	27 5	106.9
.175	167.7	7.3	11615.4	75.18	57.14		20.5	110.3	27.5	106.9
266	186.4	79.5	12668.9	62.07	55.66	73	9.05	95 40	27.5	100.9
197	186.4	10.5	13693.5	74.33	57.15		10.77	07.00	27.0	125.0
197	187,2	9.7	13727	74.57	56-81		19.75	97.00	27.8	122.5
270	198.12	71.8	14101.2	63.41	56.27	- 73	20.40	96.78	27.8	123.3
217	198.12	18.8	15011.4	72 23	57 47	/3	9.76	81.34	28.0	135.1
In succession of the second	h			1 12.23	1 2/14/		17.35	90.7	28.0	132.2

FLUJO DE AIRE $W_{A1} = 583142 \text{ kg/hr}$

* VAPOR DE EXTRACCION

TABLA NO.5.6. - PARAMETROS DE OPERACION CALCULADOS PARA EL CAV(LADO A) DE LA UNIDAD 1

FLUJOS DE AIRE A DIFERENTES CARGAS

FLUJO DE AIRE	PRESION DEL VAPOR EN EL CABEZAL PRINCIPAL	TEMPERATURA DEL VAPOR EN EL CABEZAL PRINCIPAL	PRESION DE LOS CONDENSADOS EN EL TANQUE (LADO A)	TEMPERATURA DE LOS CONDENSADOS EN EL TANQUE (LADO A)	TEMPERATURA DEL AIRE A LA ENTRADA DEL CAV (LADO A)	TEMPERATURA DEL AIRE A LA SALIDA DEL CAV (LADO A)	APERTURA VALVULA CONTROL DE VAPOR %	DE LA DE DE FLUJO
(kg/hr)	(kgf/cm ² man)	(°C)	(kgf/cm ² man.)	(°C)	(°C)	(°C)	CAV(LADO A)	CAV (LADO B)
366230	8.0	229	7.6	173	35	91.5	100	0
366230	7.5	173	6.9	170	35	96.4	100	0
450200	8.0	255	7.0	170	37	86.3	100	. 0
450200	7.1	17 1	6.0	165	37	86.3	100	0
560030	7.9	273	7.3	171	39	84	100	100
560030	7.6	2 73	7.0	170	39	83.3	55	100
560030	7.0	170	6.4	167	39	84	100	100

TABLA NO.5.7. - PARAMETROS DE OPERACION MEDIDOS EN CAMPO EN EL CAV-(LADO A) DE LA UNIDAD 1

	FLUJO DE AIRE W _A	TEMPERA- TURA DEL VAPOR EN EL CABE- ZAL PRIN- CIPAL	TEMPERA- TURA DE SATURA- CION DEL VAPOR	SOBRECA- LENTA- MIENTO DEL VAPOR	Ws	UC	συ	UD20	RD0x10 ³	Δ₽t	ΔP	۵tı
	(kg/hr)	TG (°C)	TS (°C)	SH (°C)	kg/hr	(Kcal/hr-m ² C)	(Kcal/hr-m ² C)	(Kcal/hr-m ² C)	(hr-ft ² F/BTU)	(kgf/m ²)	(mm ca)	(°C)
	366230	229	172.8	56.2	9607.10	49.55	48.49	57.18	2.15	70.77	11.6	109.0
	366230	173	169.2	3.7	11011.4	58.33	57.21		1.64	97.04	11.7	100.4
ц С	450200	255	169.8	85.2	99 76. 40	52.84	51.74	64.76	1.97	81.09	17.1	109.6
4	450200	171	164.3	6.7	10761.8	65.56	56.31		12.22	104.2	17.1	100.7
	560030	273	171.5	101.4	11175,1	58,27	56.96	73.44	1.91	94.62	25.7	113.0
	560030	273	169.8	103.2	10959.8	58.01	56.75		1,87	95.15	25.7	111.7
	560030	170	166.6	3.4	12289.3	75.17	62.23		13.5	124.7	25.7	103.5

FLUJOS DE AIRE A DIFERENTES CARGAS

TABLA No.5.8.- PARAMETROS DE OPERACION CALCULADOS PARA EL CAV(LADO A) DE LA UNIDAD 1

5.3.3 ANALISIS COMPARATIVO DE LOS RESULTADOS

A continuación se muestran gráficamente los valores experimentales obtenidos de las pruebas de atemperación de vapor en los CAV's, junto con los esperados.

El primer grupo de gráficas corresponde al CAV(lado A) de la unidad 4 mientras que el segundo grupo corresponde al CAV(lado A) de la unidad 1.

5.3.3.1.CAV (LADO A) UNIDAD 4

Un resultado que se encontró al efectuar la atemperación del vapor, fué que no se registró incremento en la temperatura de salida del aire con respecto a la obtenida con vapor sobrecalentado de la misma presión.

Al graficar los valores obtenidos experimentalmente se observa que forman una linea paralela a la linea esperada para vapor saturado, tal como se muestra en la gráfica 5.1.

Ahora analizando la gráfica 5.2, puede observarse que para los valores experimentales, el flujo de vapor saturado empleado en el CAV fué menor que el flujo requerido para obtener la temperatura de salida del aire pronosticada; incluso se observa que el flujo de vapor saturado empleado, fué menor al que se

requeriria si el flujo de aire fuera igual al de diseño. Por ésta razón al no emplearse el flujo de vapor requerido en la atemperación, no se presenta incremento en la temperatura del aire a la salida del CAV.

Al efectuar la atemperación del vapor existe de hecho un incremento en el flujo de vapor que entra al CAV, debido a que se suministra una cantidad de masa adicional correspondiente al agua de atemperación. Por ésta razon la temperatura de salida del aire se mantiene constante, ya que el incremento del flujo de vapor es tal que compensa la disminución de la diferencia de entalpias del vapor por efecto de la atemperación, de modo tal que el flujo de calor intercambiado es el mismo que con vapor sobrecalentado. Es decir el producto del flujo de vapor por la diferencia de entalpias se mantiene constante.

De la gráfica 5.3 puede observarse que los coeficientes globales de transferencia de calor obtenidos para un mismo flujo de aire, son independientes de la temperatura de saturación del vapor, pero se incrementan al utilizar vapor saturado en lugar de vapor sobrecalentado. En ésta gráfica se observa que los coeficientes obtenidos experimentalmente al utilizar vapor saturado son menores a los esperados.

Analizando ahora la gráfica 5.4 puede observarse que los coeficientes globales de transferencia de calor obtenidos experimentalmente aumentan al disminuir el sobrecalentamiento del vapor, pero existe un punto a partir del cual, al seguir disminuyendo el sobrecalentamiento ocurre una desviación, cada vez más grande, de los coeficientes obtenidos experimentalmente con respecto a los coeficientes esperados.

La desviación que sufren los coeficientes obtenidos experimentalmente con respecto a los esperados, es consecuencia del empleo de flujos de vapor menores a los requeridos. La dependencia del flujo de vapor se observa analizando la ecuación que define el valor del coeficiente global de transferencia de calor dada por

 $UD = \frac{Q_A}{A'_{TO}\Delta tm} = \frac{Ws \Delta H}{A'_{TO}\Delta tm}$

en la cual puede observarse que el valor de UD depende directamente de la cantidad de calor que cede el vapor, y en consecuencia del flujo de vapor utilizado.

Al emplear flujos de vapor menores que los requeridos, se obtienen consecuentemente flujos de calor, temperaturas de salida del aire y coeficientes UD menores que los esperados.

El motivo por el cual para una misma presión no puede incrementarse el flujo de vapor, aún aumentando la capacidad de intercambio de calor del CAV y por consiguiente la capacidad de condensar mayor cantidad de vapor, como resultado de **1**a 1a insuficiencia de1 atemperación, se debe а sistema vapor-condensados para manejar flujos de vapor más grandes que los asociados a cada una de las presiones de trabajo.

La insuficiencia del sistema vapor-condensados para manejar mayores flujos de vapor a una misma presión se debe :

- Al subdimensionamiento de los tanques de condensados del CAV.

- Al reducido tamaño de tuberia de vapor, y consecuentemente a las grandes caidas de presión provocadas por válvulas, codos, y cambios de sección.
- A la contrapresión que debe vencer para entrar al calentador No.4.

Manzanillo Unidad 4

GRAFICA No. 5.1

 $W_{\Lambda4} = 619380 \text{ kg/hr}$

---- • --- teóricos ---- • --- experimentales ------ esperados

GRAFICA No. 5.4

5.3.3.2.CAV (LADO A) UNIDAD 1

En el CAV de ésta unidad al igual que en la anterior, no se obtuvo incremento en la temperatura del aire a la salida del CAV al realizar la atemperación del vapor con casi todos los flujos de aire.

Con el flujo de aire WAl los valores experimentales obtenidos forman una linea paralela a la linea esperada tal como se observa en la gráfica 5.5.

En la gráfica 5.6 puede observarse que utilizando el flujo de aire WAL, los flujos de vapor empleados en las pruebas de atemperación, al igual que en la unidad 4, son menores a los requeridos. Presentandose el problema de restricción de flujo de vapor a los CAV como consecuencia de la insuficiencia del sistema vapor-condensados para incrementar los flujos de vapor a una misma presión.

Al realizar las pruebas de atemperación de vapor con flujos de aire más pequeños (correspondientes a bajas cargas), se encontró que para el flujo de aire WA145, si se obtiene el incremento pronosticado en la temperatura de salida del aire del CAV al utilizar vapor saturado tal como se observa en la gráfica 5.7.

Analizando las gráfica 5.8 que muestra la variación de los coeficientes globales de transferencia de calor con el flujo de aire puede observarse lo siguiente:

- Tal y como se consideró inicialmente, el coeficiente de película controlante es el coeficiente del lado del aire, lo cual provoca que los coeficientes globales de transferencia de calor se incrementen al aumentar el flujo de aire, y que éstos coeficientes se mantengan constantes a cualquier presión de vapor para un mismo flujo de aire (ver gráfica 5.9).
- Para el flujo de aire WAl45, el coeficiente global de transferencia de calor obtenido experimentalmente es igual al coeficiente esperado al utilizar vapor saturado.

En la gráfica 5.10 se observa que para el flujo de aire WAl los coeficientes globales de transferencia de calor experimentales, presentan una desviación con respecto a los coeficientes esperados, semejante a la obtenida para el CAV de la unidad 4. Pero también se observa que para el flujo de aire WAl45, el coeficiente obtenido experimentalmente al utilizar vapor casi saturado, es igual al coeficiente esperado.

La razon por la que, para el flujo de aire WA145, se obtienen los valores esperados de temperatura de salida del aire y coeficientes globales de transferencia de calor al utilizar vapor saturado, es que, en éste caso si fué empleada la cantidad de vapor saturado requerida, como puede observarse en la gráfica

5.11.

Al manejarse el flujo de aire WA145 fué posible incrementar el flujo de vapor con la atemperación debido a que en éste caso el sistema de vapor-condensados tenia, para la misma presión del vapor, capacidad para manejar flujos de vapor más grandes. Es decir al utilizar un flujo de aire pequeño, empleando la misma presión del vapor, el aire condensa una menor cantidad de flujo de vapor que la obtenida para flujos de aire mayores, por ésta razon al efectuar la atemperación del vapor, y por consiguiente incrementar la capacidad de transferencia de calor del CAV, éste permite la condensación de una mayor cantidad de vapor, cantidad de vapor que entra al CAV debido a que el sistema tiene capacidad de manejar mayor flujo de vapor a la misma presión.

Esto comprueba que al emplear solamente la etapa de condensación del vapor, se incrementa la capacidad de transferncia de calor de los CAV's, los cuales aumentan el flujo de calor total intercambiado siempre y cuando el sistema vapor-condensados permita manejar los flujos de vapor requeridos.

GRAFICA No. 5.5

GRAFICA No. 5.7

5,

Manzanillo Unidad 1

GRAFICA No. 5.11

CONCLUSIONES

- 1. El valor del coeficiente global de transferencia de calor de los CAV's de CTE's, es determinado por el coeficiente pelicular de transferencia de calor del aire, el cual a su vez depende de la conductividad térmica, la capacidad calorifica del aire, del flujo y del área libre de flujo. Por lo tanto, se establece que los parámetros fundamentales que deberán considerarse en el diseño de los CAV's serán: el número de aletas por unidad de longitud de tubo, el material de las aletas, y el arreglo de los bancos de tubos, procurando que las caidas de presión del aire a traves del CAV no excedan a las permitidas en el proceso.
- 2. Se encontró que el coeficiente global de transferencia de calor de los CAV's verticales es mayor que el de los horizontales, debido a que los coeficientes peliculares del aire y del vapor son mayores en los primeros.
- 3. La metodología de cálculo implementada, permite evaluar satisfactoriamente el comportamiento térmico de los CAV's y puede ser utilizada en el diseño de los mismos.

- 4. Para el flujo de aire correspondiente a 145 MW de carga (en el que se requiere también bajo flujo de vapor saturado), el flujo de calor intercambiado así como los coeficientes de transferencia de calor pronosticados, son iguales a los obtenidos experimentalmente. Por lo tanto, se concluye que utilizando vapor saturado si se incrementa la capacidad de intercambio de calor de los CAV's.
- 5. Debido al subdimensionamiento de las válvulas, tuberia y tanques del sistema vapor-condensados, no fué posible introducir a los CAV's la cantidad de vapor saturado requerida para lograr el intercambio de calor pronosticado para cada prueba. Sin embargo, el incremento esperado en la temperatura de salida del aire, utilizando vapor saturado, puede lograrse rediseñando el diagrama de tuberia e instrumentación del sistema vapor-condensados de los CAV's, lo cual no se contempla en el presente trabajo.
- 6. La disminución de la depositación ácida en el lado frio de los PAR's, (por efecto del aumento en la temperatura del aire a la entrada de los mismos), puede lograrse incrementando la capacidad de transferencia de calor de la superficie de los CAV's utilizando vapor saturado a una temperatura cuya presión asociada sea mayor que la especificada para las condiciones de diseño. Lo anterior se establece considerando que, tanto el valor de la temperatura como el del flujo de aire a la salida del CAV, son mayores a los establecidos por diseño.

 7. - La utilización de vapor saturado proporciona ventajas tanto en el diseño como en la operación de los equipos de transferencia de calor.

En el diseño representará una menor inversión en equipo, ya que con menor superficie será posible obtener la carga térmica deseada. Y su aplicación en la operación de los mismos permitirá prolongar los periodos de mantenimiento (limpieza), debido a que al disponerse de mayores coeficientes de transferencia de calor (para la misma superficie), la superficie disponible será mayor que la requerida por el proceso y en consecuencia el factor de ensuciamiento permitido se incrementará.
REFERENCIAS

1.-Secretaria de Energia, Minas e Industria Paraestatal.

"Programa Nacional de Energéticos 1984-1988"

Primera Edición, Agosto, 1984.

2.-Bautista Margulis R.

"Características de los generadores de vapor para generación de energia eléctrica mayor de 80MM y análisis de sus fallas de materiales más frecuentes"

Tesis de licenciatura Instituto de Investigaciones Eléctricas

Noviembre, 1985, p. 95-99

3.-Espinoza Garza J. et al.

"Análisis de operación y propuesta de alternativas para disminuir la indisponibilidad causada por precalentadores de aire"

Instituto de Investigaciones Eléctricas

Informe final, IIE/12/1911/I 06/F, Junio, 1986.

4.-Comisión Federal de Electricidad.

Gerencia de Generación y Transmisión

"Manual de operación 4X300, CTE Manzanillo, Gral. Manuel Alvarez"

Julio, 1985.

5.-Comisión Federal de Electricidad.

Gerencia de Generación y Transmisión

"Instructivo del Generador de Vapor Mitsubishi" CTE Manzanillo, Colima. 6.-Holman J.P.

"Transferencia de Calor"

Ed. McGraw-Hill, Sexta impresión, Abril, 1983.

7.-Kern D.Q.

"Procesos de Transferencia de Calor"

Ed. McGraw-Hill, Decimoséptima impresión

New York, Enero, 1984.

8.-Gulley D.L.

"How to Calculate Weighted MTD's"

Handbook of heat transfer, Hydrocarbon processing

9.-Collier J.G.

"Convective Boiling and Condensation"

Ed. McGraw-Hill, Primera Edición,

p.13,341,411

10.-Afgan N.H., & Schlunder E.U.

"Heat Exchangers, Design and Theory Sourcebook" Ed. McGraw-Hill, 1974, p.63

11.-Ganapathy V.

"Applied Heat Transfer"

Penn Well Books, 1982, p.338,494

12.-Espinoza Garza J. et. al.

"Análisis de operación y propuesta de alternativas para disminuir la indisponibilidad causada por precalentadores de aire"

Instituto de Investigaciones Eléctricas

Informe interno, Abril, 1987 (en elaboración).

13.-Ley Koo M. et al.

"Desarrollo de un sistema de tipificación y registro de fallas en materiales de CTE's"

Instituto de Investigaciones Eléctricas

Reporte IIE/12/1921/I 04/P, Junio, 1986.

14.-Espinoza Garza J.

"Humidificación, secado y pulverización de carbón"

Instituto de Investigaciones Eléctricas

Informe final, IIE/12/1816/I 01/F, Diciembre, 1983.

15.-Webb R. L.

"Air-side heat transfer in finned tube heat exchangers" Heat Transfer Engineering

Vol.1, No.3, Enero-Marzo, 1980.

16.-Lokshin V.A. & Kokaya V.N.

"Features of Calculation for air preheaters when working on superheated steam"

Thermal Engineering 27(9), 1980.

17.-Mitsubishi Heavy Industries LTD

"Operation-maintenance instructions for steam air heater"

178

18.-Holman J.P.

"Métodos experimentales para Ingenieros"

Ed. McGraw-Hill, 1981.

19.-Mataix C.

"Mecánica de Fluidos y Máquinas Hidraúlicas"

Ed. Harla, Segunda Edición

Septiembre, 1983, p.129,132

20.-Ley Koo M., (Comunicación privada)

21.-Castrejon Garcia R., (Comunicación privada)

22.-Muñoz-Ledo Carranza R., (Comunicación privada)