UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUIMICA

LOS METABOLITOS SECUNDARIOS DE <u>VIGUIERA</u> QUINQUERADIATA Y VIGUIERA MACULATA

F 2 QUE PARA OBTÉNER EL DE: TITULO I. 1 ñ U М C 0 R E S E P A Т N LAURA PATRICIA ALVAREZ RF MEXICO, D. F. 1983

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

CONTENIDO

I.	INTRODUCCION Y GENERALIDADES	1
II.	PARTE TEORICA	12
	A Constituyentes de <u>Viguiera quin</u> - <u>queradiata</u> .	
	B Diterpenoides de <u>Viguiera macula</u> <u>ta</u> .	
111.	ESPECTROS	43
IV.	RESUMEN Y CONCLUSIONES	74
V.	PARTE EXPERIMENTAL A Constituyentes de <u>Viguiera quin-queradiata</u> . B Diterpenoides de <u>Viguiera macula</u> <u>ta</u> .	76
VI.	BIBLIOGRAFIA	96

I. INTRODUCCION Y GENERALIDADES-

•

INTRODUCCION

1.

El término "producto natural" es el nombre <u>ge</u> neral para cualquier substancia que proviene de organismos vivos, ya sean plantas, animales o micoorganismos.

Durante el siglo pasado y hasta la fecha, se han aislado y caracterizado estructuralmente una gran cantidad de substancias, de las cuales, la mayoría son de orígen vegetal y microbial.¹

Los productos naturales son el resultado de procesos metabólicos catalizados predominantemente por enzimas. Estas secuencias metabólicas interrelacionadas proveen las bases para una clasificación biosintética en la cual se han dividido los productos naturales, quizá de manera algo arbitraria, en dos grupos denominados metabolitos primarios y metabolitos secundarios.²

Los metabolitos primarios son los productos del metabolismo general y están ampliamente distribuídos en las plantas, animales y microorganismos, ejemplos de ellos son los aminoácidos, acetil-coenzima A,.monosacáridos, ácido mevalónico, nucleótidos, proteínas, ácidos nucléicos, etc.

Los metabolitos secundarios son los productos de rutas metabólicas especiales, ó de la biosíntesis a par-tir de los metabolitos primarios; su distribución restrin---

1

gida, encontrándose en su mayor parte en plantas y microo<u>r</u> ganismos, ejemplos de ellos son los alcaloides, terpenos,fenoles, oligosacáridos, flavonoides, etc.

La importancia del estudio de los metabolitossecundarios es su distribución comparativamente restringida, algunas veces a especies ó subespecies. Estos produc-tos, que son por definición metabolitos no generales, sonconsecuentemente una manifestación de la individualidad de la planta. Su producción puede ser en algunos casos, una consecuencia directa (más que indirecta) de su medio ambiente, los cuales pueden influenciar el crecimiento, condu<u>c</u> ta, salud y población de otros organismos vivientes.³

En el presente trabajo, se aislan y caracterizan químicamente los metabolitos secundarios de dos espe cies vegetales de nuestro País. La mayoría de estas subs tancias tienen . Inificado biológico en los procesos metabólicos y ecológicos que sólo pueden conocerse por medio de una investigación interdisciplinaria, detallada y exhaustiva de las especies individuales.

ANTECEDENTES

La familia Compositae ó Asteraceae es la más -grande y mejor distribuída de las Fanerógamas, se le ha e<u>n</u> contrado en abundancia en todos los continentes excepto en la Antártica. La familia es más abundante y diversificadaen las regiones montañosas y desérticas ó semiáridas que en las tropicales.⁴

El número de especies reconocidas es de aproximadamente 2500, distribuídas en 1400 géneros (con subgéneros y secciones) y trece tribus.⁵

La tribu Heliantheae es una de las más grandes y diversificadas de ésta familia, que se le ha considerado como la más primitiva, puesto que la <u>Viguiera cronquistii</u>, el fósil más antiguo, pertenece a ésta tribu.⁶

Los metabolitos secundarios más comunes en Com positae son aceites esenciales de ácidos grasos, diterpe-nos, triterpenos, compuestos acetilénicos, flavonas y flavonoles (Fig. 1); pero probablemente las que caractericenmejor a ésta familia sean las lactonas sesquiterpénicas, aunque no sean exclusivas de ella.⁷

Los productos naturales de la familia Compositae tienen gran interés desde el punto de vista biológicoy taxonómico porque la determinación estructural de los --

ф.

componentes de la planta proporciona una gran ayuda a laclasificación biológica y a las posibles relaciones bio-sintéticas entre compuestos idénticos que son sintetiza-dos por diversas rutas, en diferentes especies de la fa-milia.

Las lactonas sesquiterpénicas que son las -substancias más características de ésta familia, se for man biogenéticamente por modificación o ciclización de é<u>s</u> teres de pirofosfato de <u>trans</u>,<u>trans</u>-farnesol ó <u>cis</u>,<u>cis</u>- farnesol, para dar un anillo de diez miembros que por medio de oxidaciones sucesivas produce un anillo lactónicofusionado <u>cis</u> o <u>trans</u>.⁸

Estos compuestos se clasifican principalmente en base a sus esqueletos carboxílicos en germacranólidas, guayanólidas, eudesmanólidas, pseudoguayanólidas y xanth<u>a</u> nólidas,⁹

El sufijo "olida" se refiere a la función la<u>c</u> tona basado en costunólida, que es una germacranólida relcionada con un sesquiterpeno carboxílico de 10 miembros. Las eudesmanólidas (santanólidas) son compuestos de anillo de 6/6 miembros, las guayanólidas y pseudoguayanólidas son lactonas sesquiterpénicas de anillos de 5 y 7 miembros.¹⁰

Las relaciones biogenéticas propuestas para -estas lactonas se muestran en la figura 2.

Se ha asociado la presencia de éste tipo de --

compuestos con un sabor amargo, que probablemente funcione como medida de protección de las plantas en contra de pa<u>rá</u> sitos¹¹.

La actividad biológica y alta toxicidad han <u>ge</u> nerado una serie de estudios relacionados con estas prop<u>ie</u> dades; como por ejemplo: actividad cititóxica, dermatítica insecticida, antimicrobial, alelopática y tóxica^{12.13.14}.

El género <u>Viquiera</u> perteneciente a la familia-Compositeae es uno de los más grandes v diversificados dela tribu Heliantheae. La mavor variedad de especies de este género se encuentra en el área comprendida entre Durango y Oaxaca, continuando hacia Centro y Suramérica; y conmenos variedad en Norteamérica.¹⁵

Del género <u>Viguiera</u> se han aislado compuestosaromáticos como (I,II),¹⁶ ácidos diterpénicos del tipo del kaureno, estacheno y trachilobano (III.IV. V.VI.VII)^{17.18.19} así como acetilenos (VIII)¹⁶ y lactonas sesouiterpénicas del grupo de las germacranólidas (IX.X):^{20.21} heliangóli-das (XI,XII,XIII);^{22,23} y 3(2H) furano-heliangólidas (XIV, XV, XVI).^{21,24}

Continuando con el estudio sistemático del género <u>Viguiera</u>, se reportan en el presente trabajo, los --constituyentes químicos de <u>Viguiera quinqueradiata</u> (dos p<u>o</u> blaciones) y V<u>iguiera maculata</u>. Así como las implicaciones quimiotaxonómicas de éstos metabolitos secundarios en el género y géneros afines.

(II) Sulferitina

(IV) ac. <u>ent</u>-kaur-15-en-15-oico

(III) _Y-asarosa

•

(V) stach-15-en $3\alpha - 19 - diol$

(VI) ac. trachilobano.

 $Me-(C=C)_5-CH=CH_2$

(VII) ac. stach-15-en 19-oico.

(X) esferocefalina

(XII) $R_1 = Ac$ Viguiestenina $R_2 = iBu$

(XIII) $R_1 = H$ $R_2 = iBu$

Desacetil Viquiestenina

- (XIV) R=Ang. budleina A
- (XV) R= iBu viguiepinina
- (XVI) R= Meacr. 17-18-dehidro-viguiepi-

nina.

II. PARTE TEORICA

A.- Constituyentes de <u>Viguiera</u> quinqueradiata.

B.- Diterpenoides de <u>Viguiera</u> <u>maculata</u>.

A. Constituyentes de Viguiera quinqueradiata.

Se analizaron dos poblaciones diferentes de <u>Viguiera quinqueradiata</u> encontrándose que la composición en constituyentes aislados de ambas poblaciones es muy similar.

Del extracto clorofórmico del primer especí-men se aislaron dos ácidos diterpénicos de polaridad semeja<u>n</u> te, un esteroide, se detectó la pesencia de un compuesto ar<u>o</u> mático que no fué posible aislar en ésta muestra, pero sí en la segunda, <u>vide infra</u>, y dos lactonas sesquiterpénicas. La descripción para determinar las estructuras de éstas subs tancias se discutirá a continuación.

Uno de los productos menos polares. p.f. de $187-8^{\circ}$ C muestra en su espectro de IR (espectro 1) banda para ácido carboxílico de 3490 a 2530 cm⁻¹, bandas de éster en 1700, 1690 y 1250 cm⁻¹ y dobles enlaces en 900 cm⁻¹.

El espectro de RMP (espectro 2) muestra señales típicas para un ácido diterpénico con esqueleto del kaureno²⁶; va que el protón H-15 base de éster aparece en 5.05 ppm (1H. s, ancho) y los protónes vinílicos H-17 y H-17' aparecen en 5.10 ppm y 5.34 ppm (1H, <u>s</u>, ancho) respectivame<u>n</u> te; el multiplete centrado en 2.77 ppm (1H, <u>m</u>) se asigna al protón alílico H-13; el metilo en C-10 aparece en 0.85 ppm (3H, <u>s</u>). Este ácido se encuentra esterificado por un angelato en C-15 ésto se comprueba por las señales en 6.08 ppm (1H, c) que corresponde al protón vinílico del angelato y las señales de los metilos del éster C-24 y C-25 que aparecen en 1.83 ppm (3H, <u>s</u>) y 2.05 ppm (3H, m) respectivamente.

Las propiedades físicas y espectroscópicas de éste compuesto resultan idénticas con las reportadas para el ácido 15α -angeloiloxi-<u>ent</u>-kaur-16-en-19-oico (XIV), aislado anteriormente de varias especies.^{27,28,29}

Con polaridad semejante al anterior se aisló un producto cristalino con p.f. de 201-2⁰C cuyo espectro de IR (espectro 3) presenta banda de ácido carboxílico en 3490 a 2530 cm⁻¹, bandas de éster en 1700,1690, 1250 cm⁻¹ y banda característica de vibración de doble enlace en 900 cm⁻¹.

Su espectro de RMP (espectro 4) presenta las mismas señales que el del ácido 15α -angeloiloxi-<u>ent</u>-kaur-16 en-19-oico pero con un cuarteto adicional en 6.79 ppm que corresponde con el protón vinílico de un tiglato, por lo que se deduce que se trata de una mezcla de ácidos kaurenóicos los cuales sólo difieren en el residuo del éster, el tiglato y el angelato (XV y XIV).

La hidrólisis básica de ésta mezcla produce el ácido 15α-hidroxi-<u>ent</u>-kaur-16-en-19-oico (XVI) con p.f. de 228-31⁰C y peso molecular determinado por espectrometría de masas de 318 (espectro 5). En el espectro de IR de esta molécula (espectro 6) muestra la aparición de una banda c<u>a</u> racterística de oxhidrilo en 3500 cm⁻¹ y en 910 cm⁻¹ banda para doble enlace.

El espectro de RMP (espectr 7) muestra señales en 5.05 ppm y 5.18 ppm (1H, <u>s</u>, ancho) que se asignan a los protones vinílicos H-17 y H-17' respectivamente; en 3.78 ppm (1H, <u>s</u>) aparece el protón H-15 base de alcohol, el mu<u>l</u> tiplete centrado en 2.73 ppm se asigna al protón alílico -H-13. El metilo en C-4 aparece en 1.25 ppm, el singulete en 0.97 ppm se asigna al metilo en C-10.

Se compararon las propiedades físicas y espectroscópicas de ésta substancia con las reportadas para elácido 15α - hidroxi-<u>ent</u>-kaur-16-en-19-oico (XVI)²⁷, las cu<u>a</u> les fueron muy semejantes, comprobandose así la identidaddel producto de hidrólisis de los ácidos mencionados, y d<u>e</u> terminando de esta manera la composición de la mezcla.

De la fracciones más polares del mismo extracto se aisló una substancia cristalina con P.f. 218-9°C; – $\left[\alpha\right] = -112.8^{\circ}$ (c: 0.125, CHCl₃), peso molecular determinado por espectrometría de masas de 404 y análisis elemental que corresponde a la fórmula C₂₂H₂₈O₇. Esta substancia ti<u>e</u> ne una γ -lactona conjugada con un metileno exocíclico como se muestra en su espectro de IR (espectro 9) en 1750 y --1660 cm⁻¹ y una banda en 1720 cm¹ característica de carbonilo de éster o cetona en anillo de seis miembros. ó cetona en anillo de seis miembros.

En el espectro de masas de ésta molécula ap<u>a</u> rece un fragmento típico de éster angélico ó tíglico m/z 83 (99.5%) y m/z 55 (100%). La existencia del primero se com probó por la señal del protón vinílico en RMP (espectro 10) el cual aparece como un multiplete centrado en 6.08 ppm que es un desplazamiento característico del protón β del éster angélico. Corresponde entonces, en IR, la señal de 1720 cm⁻¹ a éste agrupamiento.

Esta substancia debe ser una heliangólida³¹ con función oxigenada en C-3 ß va que el espectro de RMP muestra la señal del protón base de la lactona H-6 como un doble de doble, desplazado a muy bajo campo, centrado en 6.7 ppm (1H; dd, 11,2 Hz) debido a la anisotropía que ejerce sobre él el oxígeno orientado β en C-3³². H-6 se encuentra vecino a un protón vinílico (H-5) cuya señal aparece en 5.15-5.40 ppm (m) y a un protón alílico (H-7) que aparece como multiplete en 2.85 ppm, que se encuentra acoplado a su vez con los protones del metileno exocíclico H-13 y H-13' cuyas señales aparecen en 6.34 ppm (d, 2 Hz) y 5.75 ppm (d, 2 Hz) respectivamente. Esta disposición de protones se confirma al irradiar la señal en 2.85 ppm (espectro 10) donde se observa que colapsan a singulete las señales de los protunes del metileno exocíclico, al mismo tiempo, se simplifica a doblete la señal del protón base de la lactona con J_{6,7} de 2 Hz y

 $J_{5,6}$ de 11 Hz, y se simplifica el multiplete en 5.15-5.40 ppm que por su desplazamiento debe ser la base de un éster.

10

La anterior discusión permite dibujar la fór mula parcial A de esta molécula.

Por otro lado, el singulete en 2.10 ppm que integra para tres protones, indica la presencia de un metilo de acetato.

Hasta ahora se han asignado seis oxígenos de los cuales dos corresponden a la γ -lactona (IR), dos al éster angélico (RMP, EM) y dos al acetato (RMP) por lo que quedan por asignar uno de ellos, éste se encuentra como un epóxido entre los átomos de carbono C-1 y C-10 ya que el grupo metilo en C-10 aparece como un singulete en 1.50 ppm que es el desplazamiento químico característico para un gr<u>u</u> po metilo unido a un átomo de carbono con función oxigenada.

La señal ancha en 5.40-5.15 ppm corresponde al protón alílico H-3 base de éster. El singulete en 1.9 ppm se asigna al metilo vinílico en C-4. Las propiedades físicas y espectroscópicas de ésta molécula corresponden con el acetil derivado de la leptocarpina (XVIII) (<u>vide infra</u>). Estableciendose su identidad por comparación directa y por correlación con la leptocarpina (XVII), que se describirá posteriormente.

La RMN ¹³C (espectro 11) de éste nuevo pro-ducto natural (XVIII) está acorde con la estructura propue<u>s</u> ta; ya que se observan doce carbonos sp³, seis carbonos sp² y dos carbonilos. Tales asignaciones se muestran en la ta-bla I; éstas fueron establecidas por comparación directa con las de otras heliangólidas reportadas.³⁰

El componente mayoritario del cromatograma tiene p.f. de 98-9°C, muestra en su espectro de IR (espec-tro 12) bandas características de y-lactona en 1770 cm⁻¹, carbonilo de éster insaturado en 1715 cm⁻¹, carbonilo de c<u>e</u> tona conjugada en 1709 cm⁻¹, oxhidrilo en 3460 cm⁻¹ y do--bles ligaduras en 1650 cm⁻¹.

En el espectro de RMP (espectro 14) de ésta molécula se observan las señales características de los pr<u>o</u> tones del metileno exocíclico H-13 y H-13' conjugados con la lactona en 6.35 ppm (1H. <u>d</u>, 4 Hz) y 5.67 ppm (1H, <u>d</u>, 4Hz) superpuesto con ésta última señal aparece el singulete asi<u>g</u> nado al protón vinílico en C-2. La señal en 6.18 ppm (<u>dt</u>, 1,5 y 6 Hz) se asigna al protón vinílico H-5 que se encuentra acoplado (J=6~Hz) con el protón base de la lactona H-6 en 5.31 ppm (<u>m</u>) que a su vez se encuentra acoplado con el protón alílico H-7 cuya señal aparece como un multiplete centrado en 3.75 ppm. El multiplete centrado en 5.25 ppm se asigna al protón H-8 base de éster, las señales doble de d<u>o</u> ble centradas en 2.57 ppm (1H, 6 y 16 Hz) y 2.27 ppm (1H, 4 y 16 Hz) corresponden a los protones H-9 y H-9' respectivamente.

Las señales en 6.08 ppm (\underline{m}), 1.93 ppm (\underline{m}), 1.8 ppm (\underline{m}), que integran para 1, 3 y 3 protones respectiv<u>a</u> mente indican que se trata de un residuo de ácido angélico. El metilo en C-10 aparece en 1.5 ppm (1H, <u>s</u>) y la señal en 4.39 ppm (2H, <u>dt</u>) se asigna a los protones alílicos con fu<u>n</u> ción oxigenada H-15.

Las propiedades físicas y espectroscópicas de ésta molécula son idénticas a las correspondientes de la Budleina A (XIX) aislada anteriormente de otras especies de e<u>s</u> te género³². La identidad de ésta substancia se comprobó por comparación directa con una muestra auténtica.

La acetilación en condiciones normales (Ac₂0/Py) produce el acetil derivado transpuesto (XX) como se ha descrito anteriormente³³. Para evitar ésta transposi-ción se realizó la esterificación <u>in situ</u> con isocianato de tricloro acetilo (ITA) obteniéndose el carbamato correspondiente y corriendo el espectro de RMP a diferentes interva-

los de tiempo (espectro 14) no observándose alteración del éster normal, en cuanto al desplazamiento de los protones, en estas condiciones esencialmente neutras.

La RMN 13 C (espectro 15) del acetil derivado-transpuesto (XX) es congruente con la estructura propuesta ya que se observan diez carbonos sp³, ocho carbonos sp² ycuatro carbonilos; las señales fueron asignadas por comparación con las de otras heliangólidas reportadas³⁰. Es notable el desplazamiento a campo bajo (182.89 ppm) del C-3, ya que es un carbono base de un enol en anillo de cinco -miembros, y β a un grupo carbonilo. Las asignaciones se -presentan en la Tabla I.

En el espectro de RMN ¹³C (espectro 16) del -éster normal, obtenido <u>în situ</u> con ITA (XXI), se observandiez carbonos sp³, ocho carbonos sp² y cuatro carbonilos.-Las asignaciones se reportan en la Tabla I.

De la segunda población analizada de esta es<u>pe</u> cie, se aislaron los ácidos diterpénicos (ac. 15 α -angeloi<u>1</u> oxi-<u>ent</u>-kaur-16-en-19-oico y ac. 15 α -tigloiloxi-<u>ent</u>-kaur-16-en-19-oico), el estigmasterol y la budleína A; que se-habían encontrado en la población anteriormente estudiada-Identificandose estas substancias por comparación directa por los métodos usuales. De las fracciones menos polares y como pro-ducto minoritario se aisló un sólido amorfo ligeramente rosa, detectado en la primera población (vide supra), con p.f. de 155-6°C y peso molecular determinado por espectrometría de masas (espectro 17) de 332. En su espectro de UV se obser van máximos de absorción en 204 (ε : 6112), 228 (ε :22895) y 278 (ε : 39935) nm. (MeOH) que son característicos de compuestos aromáticos. (espectro 13)

El espectro de IR (espectro 18) presenta ba<u>n</u> das de oxhidrilo en 3500 cm⁻¹ y bandas en 1616,1585,1490 y 1450 cm⁻¹ que corresponden a la vibración de doble ligadura aromática.

Para conocer la fórmula molecular de esta substancia, se procedió a calcular el número de protones por medio del espectro de RMP (espectro 19) donde se observan dos hidrógenos intercambiables con D_20 en 5.67 y 4.05 ppm correspondientes al protón del fenol y al protón del alcohol respectivamente (IR en 3568 y 3525 cm⁻¹). En la región de 3.9 a 3.7 ppm se observan tres singuletes que integran para 9 protones que se asignan a tres grupos metoxilo, por lo que en la molécula deben estar presentes 5 oxígenos por lo menos. A campo bajo, entre 6 y 7 ppm se observan señales que integran para 2 protones, lo que hace un total de 20 hidróg<u>e</u> nos. La asignación de las señales se discutirá posteriormente.

Restando del ión molecular (332) las 136 un<u>i</u> dades de masa asignadas hasta ahora ($C_3H_{20}O_5$), quedan por asignar 196 unidades que sólo pueden corresponder a 15 carbonos, y por diferencia, a un oxígeno adicional. De esta manera, la fórmula molecular de ésta substancia corresponde a $C_{18}H_{20}O_6$.

Esta fórmula molecular indica que la molécula tiene nueve insaturaciones, ocho de ellas corresponden a los dos anillos aromáticos (UV, RMP), y la insaturación adicio-nal que falta por asignar puede deberse a un ciclo adicional ya que no se observan grupos carbonílicos (IR), ni protones sobre doble enlace (RMP).

Por otro lado, en el espectro de RMP(espectro 19) se observan señales en 4.62 ppm (1H, <u>d</u>, 8 Hz) que corre<u>s</u> ponde al desplazamiento típico para un hidrógeno bencílico unido a un carbono con función oxigenada.

La señal base de alcohol que aparece en 4.05 ppm (1H, ddd, 10,8,6, Hz) indica que está interaccionando por lo menos con tres protones, por otra parte, las señales que aparecen en 3.01 ppm (1H, dd, 16,6 Hz) y 2.53 ppm (1H, dd, 16,10 Hz) que corresponden alas de un metileno, se en cuentran acopladas con el protón base de alcohol con J de 6 y 10 Hz respectivamente, ya que al irradiar la señal del protón base de alcohol (espectro 19) colapsan a doblete las señales de éstos protones con J_{gem} de 16 Hz, por otro lado, la señal qu aparece a 4.62 ppm (1H, d, 8 Hz) se simplifica

a singulete. Esta disposición de protones corresponde a-un sistema ABMX, y por lo tanto, la discución anterior -permite dibujar la estructura parciaí A para esta molécula.

SISTEMA ABMX

En la región de los protones aromáticos, seobserva un sistema AB en donde A tiene un desplazamiento de 6.06 ppm (1H, <u>d</u>, 3 Hz) y de 6.11 ppm (1H, <u>d</u>, 3 Hz) -que corresponden a protones en posición <u>meta³⁴</u> Esto hace suponer que se trata de un fenilo tetrasubstituído con tres substituyentes oxigenados en las posiciones 1, 3 y 5 del anillo, como se muestra en la formula parcial B.

FORMULA PARCIAL R

Este tipo de substitución se confirma con el fragmento m/z 167 (100%) que indica la presencia de un ión $C_9H_{11}O_3$ que por comparación con datos reportados para fragmentaciones de éste tipo de moléculas³⁵, concuerda con la e<u>s</u> tructura del fragmento mostrado en la figura:

Por lo cual se confirma la presencia de dos grupos metoxilo como substituyentes en el anillo aromático.

Las señales que aparecen en 6.87 ppm (1H, <u>m</u>) y en 6.93 ppm (2H, m) indican un patrón de substitución en el segundo anillo aromático como el mostrado en la fórmula parcial C.³⁶

FORMULA PARCIAL C

En el espectro de RMP (espectro 19) aparecen tres señales para metoxilo en 3.73 ppm (\underline{s}), 3.78 ppm (\underline{s}), y 3.87 ppm (\underline{s}); de los cuales se han asignado los dos prime ros en los carbonos 3 y 5 de la fórmula parcial B respectivamente, por lo solamente queda por asignar uno de ellos.

Por otro lado, en 5.62 ppm (1H, <u>s</u>) aparece una señal indicativa de un protón fenólico <u>orto</u> a una fun-ción oxigenada, por lo que el oxhidrilo y el metoxilo por asignar deben estar en los carbonos 3' y 4' del fenilo respectivamente, por comparación con patrones de substitución bencénica reportadas en la literatura³⁴, el metoxilo debe estar en C-3' y el hidroxilo en el C-4' de la fórmula par-cial C.

La estructura (XXII) es la única manera de combinar los fragmentos discutidos anteriormente, que corres ponde al nuevo producto natural 5,7,3'-trimetoxi-4'-hidroxiflavan-3-o1, y las asignaciones en su espectro de RMP (espe<u>c</u> tro 19) quedan de la siguiente manera: las señales que apar<u>e</u> cen en 6.06 y 6.11 ppm (1H, <u>s</u>) se asignan a los protones H-6 y H-8 respectivamente. El protón fenólico aparece en 5.60 ppm (1H, <u>s</u>), las señales en 6.93 ppm (2H, <u>m</u>) y 6.87 ppm (1H, <u>s</u>) se asignan a los protones H-2', H-5' y H-6' del anillo C. El protón H-2 aparece en 4.62 ppm (<u>d</u>, 8 Hz), el proton H-3 base de alcohol aparece en 4.05ppm (1H, ddd, 8,10 6 Hz); los protones H-4_a y H-4_b en 2.53 ppm (<u>dd</u>, 16,10 Hz) y 3.01 ppm (<u>dd</u>, 16,6 Hz) respectivemente, forman la parte AB del sistema ABMX.

La J grande de 8 Hz entre los protones H-3 y H-2 indica que están en una disposición <u>quasi anti-peripla--</u> <u>nar</u> por lo que el fenilo y el hidroxilo tienen una estereoquímica <u>trans</u>. (fig. 3)

Por lo tanto, la estructura de ésta molécula queda representada por la fórmula XXII ó su imaígen especular.

De las fracciones más polares del cromatograma del mismo extracto, se aisló una substancia cristalina . con p.f. de 213-5°C y peso molecular determinado por espec-trometría de masas de 362 Su espectro de IR (espectro 20) muestra bandas para γ -lactona en 1764 cm⁻¹, de éster en 1722 cm⁻¹ y dobles enlaces en 1648 cm⁻¹.

El espectro de RMP (espectro 21) de ésta molécula muestra las señales típicas para una lactona sesquiterpénica del grupo de las heliangólidas con función oxigena da en C-3, ya que el protón base de la lactona (H-6) se en-cuentra desplazado a campo bajo en 6.59 ppm (dd, 6,2 Hz) debido a la anisotropía que ejerce sobre él el oxígeno en C-3 (<u>vide supra</u>). H-6 se encuentra vecino a un protón vinílico (H-5) cuya señal aparece como un doble de doble en 5.32 ppm y a un protón alílico (H-7) que aparece en 2.9 ppm (<u>m</u>) que se encuentra acoplado a su vez con los protones vinílicos Fig. 3 Disposición <u>quasi</u> <u>anti-periplanar</u> de la <u>trans</u>- 5,7,3'-trimetoxi-4'-hidroxi-flavan 3- ol (XXII).

del metileno exocíclico del anillo de la lactona H-13 y ---H-13', cuyas señales aparecen en 6.32 ppm (<u>d</u>, 2 Hz) y 5.75ppm (<u>d</u>, 2 Hz) respectivamente.

El protón H-8 base de éster aparece de 5.12a 5.25 ppm (\underline{m}). Las señales en 6.08 ppm (\underline{m}) y 1.85 ppm (\underline{m})que integran para 1 y 6 protones respectivamente indican -que se trata de un residuo de éster angélico, lo cual se -confirma por el fragmento m/z 83.1 (100%).

La señal doble de doble en 4.44 ppm se asigna al protón alílico H-3 base de alcohol, el singulete en -2.10 ppm se asigna al metilo del acetato. Los singuletes en 1.90 ppm y 1.50 ppm corresponden a los metilos en C-4 y C-10 respectivamente.

Las propiedades físicas y espectroscópicas-de ésta molécula corresponden con las reportadas para la -leptocarpina (XVII) aislada anteriormente de <u>Leptocarpha</u> r<u>i 37</u> La identidad de ésta substancia se comprobó por -comparación directa de IR paralelo con una muestra auténtica

La acetilación de ésta molécula con Ac_2O/Py produce una substancia en cuyo espectro de RMP (espectro 28) se observa que el protón base de alcohol (H-3) que en lep-tocarpina aparecía en 4.44 ppm (<u>dd</u>), en el acetil derivado, se encuentra desplazado a campo bajo de 5.10 a 5.40 ppm (<u>m</u>) y el protón base de la lactona, que en leptocarpina aparece

en 6.59 ppm (\underline{dd}), en el acetil derivado se desplaza a 6.12 ppm (\underline{dd}) quedando las demás señales inalteradas.

Las propiedades físicas y espectroscópicasdel acetil derivado se compararon con las del producto natural obtenido de la primera población analizada de éste especímen encontrandose que son indénticas, por lo que secomprobó así la estructura de la nueva lactona sesquiterpé nica, como el acetil derivado de la leptocarpina (XVIII) -IR en paralelo (espectro 24).

La Rmn ¹³C (espectro 25) de leptocarpina --(XVII) es congruente con la estructura propuesta ya que se observan doce carbonos sp³, seis carbonos sp², dos carbonilos. Las asignaciones de éstas señales se muestran en la Tabla I.

Estas señales se asignan por comparación d<u>i</u> recta con las de otras heliangólidas reportadas.³⁸

Por otra parte, de las fracciones menos polares se aisló el estigmasterol como constituyente de <u>V</u>. ---<u>quinqueradiata</u>. Su identidad fue establecida por los mét<u>o</u> dos usuales, 43 y con la obtención de los derivados correspondientes (ver parte experimental). B. Diterpenoides de Viguiera maculata Blake.

Del extracto clorofórmico de la parte aérea-de esta especie, se aislaron dos ácidos diterpénicos y -una lactona diterpénica cuyas determinaciones estructurales se describen a continuación.

De las fracciones menos polares del cromato-grama del extracto clorofórmico se aisló un compuesto --cristalino con P.f. de 178-80°C y peso molecular determinado por espectrometría de masas de 302. Su espectro de -IR (espectro 26) presenta una banda correspondiente al -ácido carboxílico en $3500-2700 \text{ cm}^{-1}$. la absorción en 1725 cm⁻¹ representa al grupo carbonilo de ácido, la banda en-1655 cm⁻¹ indica la vibración de doble ligadura.

En el espectro de RMP (espectro 27) de esta molécula se observa una señal ancha en 4.77 ppm que se -asigna a los dos protones vinílicos H-17 y H-17'; el multiplete centrado en 2.63 ppm se asigna al protón alílico-H-13, el singulete en 1.27 ppm corresponde al metilo en -C-4 y el metilo en C-10 aparece en 0.98 ppm.

Las propiedades físicas y espectroscópicas -de esta molécula coinciden con las del ácido <u>ent</u>-kaur-16en-19-oico (XXIII), aislado previamente de otros especí<u>me</u> nes.^{39,40} La identidad de esta substancia se comprobó alobtener el éster metílico correspondiente, coincidien-do las constántes físicas v espectroscópicas de éste ulti mo con las reportadas. La comparación directa con una --muestra auténtica⁴⁰, comprueba éstos resultados.

El otro compuesto de polaridad intermedia, -con β .f. 229-31°C y peso molecular determinado por espectrometría de masas de 318, muestra en su espectro de IR-una banda ancha de 3570 a 2650 cm⁻¹ que corresponde al -ácido carboxílico, y una banda en 3520 cm⁻¹ característica de oxhidrilo, y bandas en 1725 y 1690 cm⁻¹ que corresponden a la vibración del grupo carbonilo, y absorción <u>ca</u> racterística de doble ligadura en 1655 y 885 cm⁻¹.

Su espectro de RMF muestra señales en 5.18 -ppm y 5.05 ppm que corresponden a los protones vinílicos H-17 y H-17'. En 4.73 ppm (<u>s</u>) aparece la señal del protón base de alcohol H-15, el protón H-13 aparece como un multiplete centrado en 2.73 ppm, el metilo en C-4 aparece en 1.25 ppm v el metilo en C-10 en 0.97 ppm.

Las propiedades físicas v espectroscópicas de ésta molécula corresponden con las del ácido 15a-hidroxi-<u>ent</u>-kaur-16-en-19-oico (XVI) obtenido anteriormente comoel producto de hidrólisis de los ácidos 15a-angeloiloxi-ent-kaur-16-en-19-oico (XIV) v ác. 15a-tigloiloxi-<u>ent</u>-kau 16-en-19-oico (\mathbb{N}) aislados de <u>V</u>. <u>quinqueradiata</u>. La identidad de esta molécula se comprobó inequívocamente por co<u>m</u> paración directa con el ya obtenido, (IR paralelo, espec-tro **30**).

El tercer compuesto aislado de <u>V</u>. <u>maculata</u> pr<u>e</u> senta P.f. 163-5°C y peso molecular determinado por espectrometría de masas de 314 (espectro 32).

Esta substancia presenta en su espectro de UVun máximo de absorción a 233 nm (ɛ: 6083) característica de enona conjugada. El espectro de IR (espectro 31) de esta molécula muestra una banda en 1755 cm⁻¹ que representael carbonilo de una cetona α . β -insaturada. y bandas de doble ligadura en 1690 cm⁻¹ y 880 cm⁻¹.

Para conocer la fórmula molecular de esta sub<u>s</u> tancia se analizó su espectro de RMP (espectro 22) obser-vándose que las áreas bajo las curvas de las señales. int<u>e</u> gran, a campo bajo (5.20-5.90 ppm), para dos protones, y a campo alto (1-3 ppm), para 24 protones, dando un total de-26 hidrógenos. Las asignaciones de estos protones se disc<u>u</u> tirán más adelante.

En el espectro de RMN 13 C (espectro 23), se o<u>b</u> servan cuatro átomos de carbono sp² y diez y seis átomos - de carbono sp³ dando un total de 20 carbonos. Por lo tanto, tenemos una fórmula $C_{20}H_{26}$ que por diferencia con el peso molecular (314), quedan 48 unidades de masa que correspon-den a tres oxígenos, dos de la lactona (IR y RMN ¹³C) y uno de carbonilo de cetona (IR y RMN ¹³C) por lo que se obtiene una fórmula molecular de $C_{20}H_{26}O_3$; por lo tanto, la molécula presenta ocho insaturaciones de las cuales se asignan -dos de ellos al grupo γ -lactona (IR), y los otros dos gra-dos de insaturación pertenecen a la cetona α,β -insaturada--(IR).

Hasta ahora se han asignado cuatro unidades deinsaturación, quedando por asignar cuatro de ellas, que por analogía con los ácidos diterpénicos aislados de este especímen debe corresponder a una lactona diterpénica pentací-clica.

Por otro lado, en el espectro de RMP (espectro-22) se observan dos señales doble de doble que integran cada una de ellas para un protón, centradas en 5.94 ppm (2Hz) y en 5.20 ppm (2 Hz) que corresponden con los protones vin<u>í</u> licos exocíclicos a un anillo de 5 miembros conjugado con un carbonilo (U.V). Por lo tanto, corresponden a H-17 y ---H-17' de un <u>ent</u>-kaureno. El multiplete centrado en 2.87 ppm se asigna al protón alílico H-13.

La discusión anterior nos permite escribir la-fórmula parcial A, corroborada por las señales en RMN ¹³C -
en 210.39 ppm (<u>s</u>) asignada al carbonilo de la cetona y en-149.20 ppm (<u>s</u>) y 114.92 ppm (<u>t</u>) asignados a los carbonos del metileno exocíclico C-16 y C-17 respectivamente.

FORMULA PARCIAL A

Los dos singuletes que se observan en el-espectro de RMP en 1.10 ppm y 1.27 ppm indican la presen-cia de metilos cuaternarios, y la ausencia del protón base de la lactona, indica que el cierre debe ser también angular, por lo que la molécula debe ser un <u>ent</u>-kaureno modif<u>i</u> cado. La señal en 1.27 ppm está de acuerdo con el metilo en C-4 ecuatorial, por lo que el cierre de la lactona debe ser hacia C-10, ya que el cierre hacia C-5 ó C-9 no corre<u>s</u> ponde a una lactona de 5 miembros (IR). Las únicas posici<u>o</u> nes donde el metilo que se observa en 1.10 ppm sería angular es en C-5 ó en C-9 y siendo ésta última la posición -más probable de acuerdo a una serie de moléculas análogas, 41(a), (b), (c) y a la discusión posterior, permitiendo es-cribir la fórmula parcial B.

FORMULA PARCIAL B

Combinando las dos fórmulas parciales deducidas anteriormente, se obtiene la fórmula parcial C; cuyaestereoquímica se discute a continuación.

FORMULA PARCIAL C

Por analogía con los ácidos <u>ent</u>-kaurenóicos obtenidos anteriormente, <u>vide supra</u>, el anillo de ciclo-pentanona del biciclo [3,2,1] debe ser β . El desplazamie<u>n</u> to químico del metilo en C-4 (1.27 ppm) indica la dispos<u>i</u> ción β -ecuatorial de éste metilo⁴², por lo que el carbonilo de la lactona y su cierre deben ser α .

La estereoquímica del metilo en C-9 se com -prueba al agregar diferentes concentraciones de reactivode desplazamiento⁴⁴ (Fig. 4, Tabla II), en donde se obse<u>r</u> va el desplazamiento de los metilos en C-4 y C-9 por lo que ambos grupos se ven afectados por el efecto de despr<u>o</u> tección del metal, ésto indica la cercanía entre los oxígenos de la molécula y los grupos metilo.

Fig. 4 Variación en el desplazamiento químico de los metilos con reactivo de desplazamiento

δ Me-C _g	δ Me-C ₄	mg Eu(fod) ₃
1.10	1.27	0
1.29	1.35	3.8
1.55	1.47	7.7
1.80	1.57	10.8
1.88	1.60	15.1

Tabla II.

El metilo en C-9 sufre una mayor desprotección ya que el acomplejamiento del metal con el oxígeno etéreode la lactona es más efectivo que con el oxígeno del car-bonilo, por lo que éste metilo se encuentra <u>cis</u> a éste ox<u>í</u> geno, como se muestra en la fórmula siguiente:

La estructura deducida para esta molécula es el 15-oxo derivado de la tetrachyrina, aislada de <u>Tetrachyron</u> <u>orizabensis</u> y <u>Helianthus debilis</u>^{41(a)} Esta última substancia había recibido anteriormente el nombre de zoapatlina, aislada de <u>Montanoa tormentosa</u>^{41(b)}, por lo que el no<u>m</u> bre de tetrachyrina debe ser eliminado de la literatura yésta nueva substancia aislada de <u>Viguiera maculata</u>, corre<u>s</u> ponde a la 15-oxo-zoapatlina (XXIV).

(XIV) ac. 15α-angeloiloxi <u>ent</u>-kaur-16-en-19-oico

(XV) ac. 15α-tigloiloxi-

ent-kaur-16-en-19-oico

(XVI) ac. 15α-hidroxient-kaur-16-en-19-oico

(XVII) R=H Leptocarpina

(XVIII) R=Ac Acetil leptocarpina

(XIX) BUDLEINA A

(XX) Acetil derivado transpuesto de Budleina A

(XXII) <u>trans</u>- 5,7.3'- trimetoxi-4'-hidroxi-flavan-3-ol

(XXIV) 15-oxo-zoapatlina

×

(XXVI) estigmasterol

(XXV) <u>ent</u>-kaur-16-en-

19-oato-de metilo

TABLA I

	(XVII)	(XVIII)	(XIX)	(XX)	(XXI)
C-1	60.74 (<u>d</u>)	60.35 (<u>d</u>)	205.19 (<u>s</u>)	204.37 (<u>s</u>)	204.90 (<u>s</u>)
C-2	32.68 (<u>t</u>)	30.62 (<u>t</u>)	104.87 (<u>d</u>)	105.31 (<u>d</u>)	105.34 (<u>d</u>)
C-3	72.45 (<u>d</u>)	73.04 (<u>d</u>)	182.75 (<u>s</u>)	182.89 (<u>s</u>)	180.71 (<u>s</u>)
C-4	141.63 (<u>s</u>)	138.26 (<u>s</u>)	138.64 (<u>s</u>)	139.50 (<u>s</u>)	138.44 (<u>s</u>)
C-5	126.67 (<u>d</u>)	126.32 (<u>d</u>)	134.24 (<u>d</u>)	78.50 (<u>s</u>)	139.12 (<u>d</u>)
C-6	74_17 <u>(d</u>)	74.55 (<u>d</u>)	74.19 (<u>d</u>)	74.52 (<u>d</u>)	74.28 (<u>d</u>)
C-7	48.68 (<u>d</u>)	48.66 (<u>d</u>)	48.56 (<u>d</u>)	43.43 (<u>d</u>)	48.12 (<u>d</u>)
C-8	75.91 (<u>d</u>)	75.67 (<u>d</u>)	75.50 (<u>d</u>)	75.05 (<u>d</u>)	75.12 (<u>d</u>)
C-9	43.84 (<u>t</u>)	43.72 (<u>t</u>)	42.14 (<u>t</u>)	42.53 (<u>t</u>)	42.16 (<u>t</u>)
C-10	58.66 (<u>s</u>)	58.30 (<u>s</u>)	87,86 (<u>s</u>)	89.32 (<u>s</u>)	88.03 (<u>s</u>)
C-11	137.66 (<u>s</u>)	137.23 (<u>s</u>)	136.17 (<u>s</u>)	135.13 (<u>s</u>)	149.59 (<u>s</u>)
C-12	169.50 (<u>s</u>)	169.15 (<u>s</u>)	168.91 (<u>s</u>)	169.47 (<u>s</u>)	168.60 (<u>s</u>)
C-13	124.54 (<u>t</u>)	124.73 (<u>t</u>)	123.75 (<u>t</u>)	122.45 (<u>t</u>)	124.01 (<u>t</u>)
C-14	20.31 (<u>c</u>)	20.23 (<u>c</u>)	21.21 (<u>c</u>)	21.84 (<u>c</u>)	21.17 (<u>c</u>)
C-15	22.94 (<u>c</u>)	22.95 (<u>c</u>)	62.41 (కූ)	128.50 (<u>t</u>)	65.35 (<u>t</u>)
C-16	166.51 (<u>s</u>)	166.09 (<u>s</u>)	165.92 (<u>s</u>)	165.84 (<u>s</u>)	165.77 (<u>s</u>)
C-17	127.67 (<u>s</u>)	126.67 (<u>s</u>)	126.54 (<u>s</u>)	126.46 (<u>s</u>)	126.41 (<u>s</u>)
C-18	139.98 (<u>d</u>)	140.86 (<u>d</u>)	141.11 (<u>d</u>)	140.94 (<u>d</u>)	141.17 (<u>d</u>)
C-19	15.66 (<u>c</u>)	15.77 (<u>c</u>)	15.74 (c)	15.67 (<u>c</u>)	15.70 (<u>c</u>)
C-20	19.71 (<u>c</u>)	19.35 (<u>c</u>)	19.99 (<u>c</u>)	19.99 (<u>c</u>)	19.94 (<u>c</u>)
C-21		169.15 (<u>s</u>)		167.97 (<u>s</u>)	157.90 (<u>s</u>)
C-22		21.01 (<u>c</u>)		20.84 (<u>c</u>)	129.96 (<u>s</u>)
C-23					91.75 (<u>s</u>)

Asignaciones de ¹³C para leptocarpina (XVII), acetilleptocarpina (XVIII), budleína A (XIX), acetil derivado transpue<u>s</u> to de budleína A (XX) y éster con ITA de budleína A (XXI).

III. ESPECTROS.

ñ

.

i.

,

ကြီးကို ကြေးကျွန်းကြီးကြဲကြောက်ကြောင့် ကြိုက်ကြိုင်းကြောင့်သည်။ ကြေးကြီးကြီးကြိုင်းကြိုက်ကြိုင်းကြိုင်းကြိုင်းကြိုင်းကြိုက်ကြိုင်းကြိုက်ကြိုက်ကြိုက်ကြိုက်ကြိုက်ကြိုက်ကြိုက်ကြိ ကြေးကြီးကြီးကြိုက်ကြိုက်ကြိုက်ကြိုက်ကြိုက်ကြိုက်ကြိုက်ကြိုက်ကြိုက်ကြိုက်ကြိုက်ကြိုက်ကြိုက်ကြိုက်ကြိုက်ကြိုက်ကြိ

ESPECTRO 4

ар. -

30 	40	50	MICRONS	60 	70	80	90	10	12	<u></u>
MAC					$h_{\Lambda,\Lambda}$	A A	- A A AA	N. A.A	NV-	
					W EO					
			V.			T. V:				
A N		1=			40					
										••••••••••••••••••••••••••••••••••••••
3500 3000 Wayten Harris	2500	2000	1800	1600	1400	120		1000	800	
Mac-24-43 1 224-223't	SOLVENT. CONCENTRATION	CHCI2 Saurcian NaCl	REMARKS	a tora and the			SCAN TIME	10 5	DROMATE E	23 48
SULLATERA STRACK	REFERENCE	CHC1.				10	OPERATOR 4 2	CATE 33-1	N STATUE COLS	TATUE

ESPECTRO 6

PERKIN-ELMER St. 7. - NG 714 Som Ac Leres & Deconor CONTRA-MON 0.34 mg me PATHIC THE COMPANY SCHER HIE GH ACC221 44 RESPECT MEDI REMARK DIE. S.ISMELS-

......

. .

5

. . .

. . . **.** .

MICRONS

.....

20.84.5

.....

5υ

-,1

a. . . à

40

11... i et

.....

bere a chan

4 . . .

Gan tar

66.00

.....

00

90

80

. . .

-C'A

÷ .

. . .

. .

....

.

10

12

54

52

3.0		4-0	50 MICR	OMETERS 6		7.0	8-0 9-0 1111111111111111	10 12	14 16
								1	1 1 1 1 1 1
M									
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		han sana bura bara bara banga bira bara nan manan bura sana sa bara bara bara	1946 - 1959 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			1			
			80		111			- H	
	Series by Filler				N E				N K
	M I				V File		A HA		XI
						N/HITPIN	history and the		
						₩-4141-1		┼┼┼╎╎╎┤	
						60-1			
	ESPECT	0-24					M		
								40	
		l-Hammen ha	- 124						
									The second se The second se The second se The second se
				1. N.					T I
	······································	rben an							
uniante atenti				tales is repr					
VAVENUMBER(CM-1	3000	2500	2000	1800	1600	1400 WAV	ENUMBER(CM-1) H	800 800	6
- A. 3723	REMARKS FAL-SLAW F TOSTILLATS	SOLVENT	a ha ta		ABSCISSA		12 mm	ORDIN	ATE
160	at a status	CRIL PATH .	n an	HIGH LIM	IT	ON an and a second second	RESPONSE	SINGLE BEAM	······································
	here at the	ALFERENCE	3.4"	LOW UM	TIME DEIV	towners at any	SLIT PROGRAM	PRE SAMPLE CHOPPER	•**
Line of Land o									

ئا ئە		40	5;0	MICROMETERS	6,0		8 0	9:0	10	12 14
a. 141. 14. 14. 14. 14. 14. 14. 14. 14. 1		- 1014 (2017) 4 114	11 11 1	alter Hinth						
			11 2 410							
					17/			M	'n	\cap
	80	1	-80						MA	7 36
	XIIII XZ								TWIT	
Auffer of the provided state of the second sta										
					<u> </u>			f:::::::::::::::::::::::::::::::::::::		
(1) Constant (1) (2) (2) Constant (2) Constant (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)							Wi j			
						40				40
										(d) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b
										20
		ESPECTRO 26								
WAVENUMBER(CM-1)	3000 21	500	2000	1800	160	0 1400 WA	VENUMB	ER(CM-1) K	00	800
//-71 113	MARKS A VI AN ALL A AF	SOLVENT	Such			ABSCISSA	T			ORDINATE
CIRAL PARA		CONCENTRATION	Sur .	Real and the second sec	. SCAN	EXPANSION	SCAN T	IME 2	EXPANSION	·····
1.0	ゆん や ス・メート・コー	CELL PATH	Ner		igh limit 🔒 🛄	SUPPRESSION	RESPON	ISE	SINGLE BEAM	A , a state and a second
S. Jach		REPERENCE	<u>Cytry</u>	<u> </u>	OW LINUT.	TIME DAIVE	_ SUT PA	DGRAM	PRE SAMPLE CHO	PER
2 3 1 8 1 7 1 7 1	Anna I		TILL	I do the total and the			TT	and the state of the second second	1-11-	

713	PERMIT ELECTR		CONCERNMENTER (em)	39 % 3	
					PERKIN-ELMER
-	inan in an	nan olar olaranana isanaiy A		The second	BANG THEIM MADE STORE
	- - 26 - 66 given brygeneting torong 196 -		, , , , , , , , , , , , , , , , , , ,	anna an sin a san an san san san san san san san s	States F - 5 - 82€ - 31
	· •	i interes a		and the second	
1. 	وروب والمراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع	محمد المحمد المحمد المحمد المحمد المحمد المحمد (المحمد المحمد) المحمد المحمد المحمد المحمد المحمد المحمد الم			المربعة المسلم فالتقال المستحد المستحد والمتعادية والتقارين
			4 i 1		19.43 - AC 194
••• • •	· ·				Sector Alson
a a a a a a	an ann an an an ann an an ann an an ann an a	арандара (¹⁷) однак, у сандародарон — — — — Ф	·	nanganakan sahiji 2 dalam yake ana kanjo gunanistani ana	MT (55.00)
	ESPECTRO 29	· · · · · · · · · · · · · · · · · · ·		en and the second se	REFECTIVES. RAS .
		12	· · · · · · · · · · · · · · · · · · ·		م مديني محمد مدينة المريد ا
	8) A Manamaningaryangan etaanta ping sinasisi si si				and the second secon
			2		
	$\bigwedge :$, , , , , , , , , , , , , , , , , , ,		• • • • • • • • • • • • • • • • • • •	ANDE DAS A TA
				ianagan ian 1948 ind⊎r⊄an Standariangan at 1951 ind 19 19	entry the second s
-42	/	ана (). 		dan ganar a sana ana ana ana ana ana ana ana ana	
	، من من معدد معدد ما م			· · · · · · · · · · · · · · · · · · ·	5000 Brits 46 19
<u>)</u>		c		а с с с 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	UN CONTROL CONTROLS
					ிய தடமைக் பதிடப்பட்டைக்குள்ளது. இதி 1. படைதடமைக் பதிடப்பட்டைக்களது. பிரையிக் 1.
11				· · · · · ·	R-SYDNE FAST ADD. A S.G.W.
	·····			an an an an ann an an an an an an an an	BANDPASS INTE 20
1	· · · · · · · · · · · · · · · · · · ·		and a state of a state	ung≊ oronin oralinitien.	e e e e e e e e e e e e e e e e e e e
<u>4</u>	and \$2. The second s			A - H Laure are	ಸ್ಟ್ ರಕ್ಷಣ್ಣ 🖓 ರಕ್ಷಣ್ಣ 🖓 ರಕ್ಷಣ್ಣ 🖓
V:		i i i i i i i i i i i i i i i i i i i	 	т (1) а (1) т (1) анд (1)	
					DATE 21-12-12 OPENATE X V
200	CHARLE & LEVEL	300 WA	VELENGTH (mm)	ATT ST-SUM 26	

30		40	5;0	MICROMETER	s 60		7.0	80 90	10	12 14
					- <u> </u> +					
				T-		L-A				
				<u>↓</u>					nn fial	
	80		80				figm/ -11-	A/		- 30
							上的门口			
					三日相					
		*		i. 1		L. L.				
								七月月日		
			\$Q					···		60
		22 ml 22 - 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	自由書							
								1		
			11.1-5				Eli			
	40		10				40			40
					## #					
			1.7.1.1.1							
find an eine an eine Barten bei Berrich mit find ber	ESPECTRO SE									
										-20
fre fenteterener funns billen in an ersen		· ************************************								
The based a second fran yan birte bar a a second									арана (1990) - С. 19 арана (1990) - С. 19 арана (1990) - С.	
								line and the first		
							<u>t - t</u>			
TYAVENUMBERIUM"	3000 2	100 20	00	1800	160	ABC/1051	INDU WAV	ENUMBERICM-"}		
A State Red	1 - 101, 1700 - 10192 fotor 193 - Rukhar Lillar	CONCENTRATION	an a		10° SCAN	TILIJIA	**	SCAN TIME	EXPANSION	2000/18/61C /
	maria	CRU PATH		ب هم	HIGH LIMIT	- SUPPRESS	юж	RESPONSE	SINGLE BEAM	
		ALPERSINCE	- 1 Alle	<u></u>	LOW LIMIT		1	SLIT PROGRAM	PER SAMPLE CHOPPI	(i

* *===

ESPECTRO 32

IV. RESUMEN Y CONCLUSIONES.

IV. RESUMEN Y CONCLUSIONES.

Se analizaron químicamente dos especies de <u>Vi</u>guiera: V. quinqueradiata y V. maculata Blake.

De <u>V</u>. <u>quinqueradiata</u> se analizaron dos pobla-ciones: De la primera población, se aisló el estigmasterol (XXVI), el ác. 15α -angeloiloxi-<u>ent</u>-kaur-16-en-19 oico (XIV), el ác. 15α -tigloiloxi-<u>ent</u>-kaur-16-en-19-oico (XV),un nuevo compuesto aromático, el 5,7,3'-trimetoxi-4'-hidr<u>o</u> xi-flavan-3-ol (XXII) y la budleina A (XIX).

De la segunda población se aisló el estigmast<u>e</u> rol (XXVI), los ácidos diterpénicos 15α -angeloiloxi-<u>ent</u>--kaur-16-en-19-oico (XIV) y 15α -tigloiloxi-<u>ent</u>-kaur-16-en--19-oico ((XV), se detectó la presencia del 5.7.3'-trimetoxi-4'-hidroxi-flavan-3-ol (XXII). la budleína A (XIX) y la nueva molécula acetil leptocarpina (XVIII).

De éstos resultados se deduce oue ambas poblaciones tienen, en general, la misma composición v que lasligeras variaciones encontradas nueden deberse a diferen tes ambientes ecológicos de ambas poblaciones.

De <u>V. maculata</u>, se aislaron los ácidos diterpé nicos 15α -hidroxi-<u>ent</u>-kaur-16-en-19-oico (XVI), y ác. <u>ent</u>kaur-16-en-19-oico (XXIII), y una nueva lactona diterpénica a la que se asignó el nombre de 15-oxo-zoapatlina --(XXIV). Integrando los resultados obtenidos de los --constituventes de las especies analizadas, se observa unaconcordancia con las relaciones filogenéticas del género.-Las lactonas sesquiterpénicas aisladas de <u>Viguiera quinque</u> <u>radiata</u> son típicas de éste género^{32(b)} mientras que los constituyentes diterpénicos aislados de ésta especie y de <u>Viguiera maculata</u> son análogos a los aislados en otras especies y a los constituyentes de algunas especies de <u>Helianthus</u>^{41(a)}, que es cercano filogenéticamente a <u>Viguiera</u>.

Estos resultados ayudan a delinear el perfil quimiotaxonómico de éste género, cuyas especies son de las más distribuídas, variadas y abundantes de nuestro País, contribuyendo a la investigación de los recursos naturales renovables disponibles. La aplicación práctica de las mol<u>é</u> culas aisladas requiere una investigación interdisciplinaria que está aún por realizarse.

V. PARTE EXPERIMENTAL.

•

A.- Constituyentes de <u>Viguiera quinqueradiata</u>.
B.- Diterpenoides de <u>Viguiera maculata</u>.

Los especímenes analizados fueron clasificados por el Dr. Arthur Cronquist, profesor emérito del Jardín Botánicode Nueva York, E.U., durante su estancia en el Herbario Nacional de México, Instituto de Biología, UNAM, en octubre de 1980 Los especímenes se encuentran depositados en el Herbario Nacional, como se describe en la parte experimental.

Los puntos de fusión se determinaron en un aparato Fischer-Jones y no están corregidos. Las cromatografías en columna se efectuaron en sílica-gel 60 Merck (70-230 mesh ASTM). La pureza de los productos y el desarrollo de las reacciones se siguió por cromatoplaca de sílica-gel Merck F-254, usando como revelador sulfato cérico al 1% en ác. sulfúrico 2N. Los espectros de IR fueron corridos en soluciones de CHCl, ó en pastilla de KBr. Los espectros de masas se determinaron en unespectrómetro Hewlett Packard 5985-B. Los espectros de RMN 1 H se determinaron en aparatos HA-100 v FT-80A Varian. Los despla zamientos químicos están dados en ppm referidos al tetrametilsilano como referencia interna. Los espectros de RMN 13 C se efectuaron en el espectrómetro FT-80A (20.1 MHz) tomando la --misma referencia. Los análisis elementales fueron efectuados por el Dr. Franz Pascher, en Bonn, República Federal de Alemania.

A. Constituyentes de Viguiera quinqueradiata.

La <u>V</u>. <u>quinqueradiata</u> se trabajó en dos lotesrecolectados en lugares diferentes:

El lote colectado el 11 de Octubre de 1980 en la carretera Nº 90 a 5 Km al E de Tototlán Jalisco. Depósito en el Herbario Nacional, Instituto de Biología UNAM. Voucher: MEXU-ARV 0022, Nº de Registro 282551, se trabajó de la siguiente manera:

1740 gr. de planta seca se extrajeron tres v<u>e</u> ces consecutivas con cloroformo a reflujo y a temperatura ambiente, los extractos se reunieron y concentraron a pr<u>e</u> sión reducida, el peso del extracto clorofórmico así obt<u>e</u> nido fue de 140.5 gr.

El extracto clorofórmico se comparó por crom<u>a</u> tografía en placa analítica en capa fina (CHCl₃-Me₂CO 7:3) con las siguientes referencias en orden creciente de pol<u>a</u> ridad: Viguiestenina R₁ (Rf: 0.5517) (XII), Desacetil viguiestenina R₂ (Rf: 0.4827) (XIII), Budleína A R₃ (Rf: --0.3218) (X1X) y Budleína B R₄ (Rf: 0.2298) (X). Se usaron como reveladores, sulfato cérico, vainillina, y p-dimetil amino-benzaldehído.

La placa revelada con sulfato cérico, muestra que todas las referencias usadas revelan casi del mismo color (café-gris), a excepción de R₃ que revela con un c<u>o</u> lor amarillo. El extracto presenta mancha con el mismo Rf que R_1 , una mancha con el mismo Rf que R_3 y el mismo co-lor, y otra mancha con Rf mayor que R_1 .

En la placa revelada con vainillina, sólo seobservan las referencias R_4 y R_2 , el extracto presenta -las manchas con Rf igual a R_1 (gris).

La placa revelada con <u>p</u>-dimetil-aminobenzald<u>e</u> hido tiene las siguientes características: R_1 revela conun color café-gris, R_2 revela con un color azul-morado, R_3 revela con un color amarillo y R_4 revela con un color café. El extracto revela una mancha con kf igual a K_3 y elmismo color, la mancha con Rf igual a R_1 no se aprecia -claramente por el color amarillo de la substancia; tam--bién aparece la mancha con Rf mayor que R_1 color gris.

El extracto clorofórmico se dividió en dos -porciones: la primera de ellas, con peso de 60 gr., se -analizó por cromatografía en columna de vidrio empacada con 1860 gr. de sílice. La columna se eluyó inicialmentecon una mezcla de disolventes de Hexano-Acetato de etilo-(7:3), aumentando gradualmente la polaridad hasta llegara 100% de acetato de etilo.

Algunas de las fracciones eluídas con Hex-AcO Et (7:3) presentaron una mancha constánte en CCF (Rf: ---0.5235, CHCl₃/Me₂CO, 8:2), por lo que se reunieron, obteniendose 2.591 gr. de residuo, éste se recromatografió en

una columna empacada con 130 gr. de sílice usando como me<u>z</u> cla eluyente, benceno-acetato de etilo (9:1).

De las fracciones menos polares de ésta recromatografía, cristalizaron de CHCl₃/iPro₂0/Me₂CO, 72.2 mg de una substancia cristalina en forma de agujas con P.f. -218-9°C, cuyas propiedades físicas y espectroscópicas co-rresponden a la acetil leptocarpina (XVIII). La muestra analíticas se obtuvo por recristalizaciones sucesivas de --CHCl₃/iPro₂0/Me₂CO, P.f. 219-20°C.

* U.V. (MeOH) (espectro 8) λ_{max} 205 nm. (e: 12514)

* I.R. (CHCl₃) (espectro 9) 1764, 1733, 1722, --1670, 1648 cm⁻¹.

* RMN ¹H-80 MHz (CDCl₃) (espectro 10) 2.83 ppm - (H-1, 1H, <u>dd</u>), 5.1-5.4 ppm (H-3, H-5, H-8, 3H, <u>m</u>), 6.12 -- ppm (H-6, 1H, <u>dd</u>, 2,11 Hz), 2.85 ppm (H-7, 1H, <u>m</u>), 6.34 -- ppm (H-13, 1H, d, 2 Hz), 5.72 ppm (H-13', 1H, d, 2 Hz), -- 1.49 ppm (14CH₃-, 3H, s), 1.88 ppm (15CH₃-, 3H, s), 6.08 - ppm (H-18, 1H, cc), 1.90 ppm (19CH₃, 3H, dt), 1.80 ppm (-- $20CH_3$ -, 3H, d), 2.10 ppm (CH₃ del acetato, 3H, s).

* RMN 13 C (CDC1₃) (espectro 11, tabla I).

* EM (espectro 28) m/z 404 (1%); M⁺-18, m/z 386 (1%); m/z 83 (M⁺ C₅H₇O, 100%); m/z 261 (28.2%); m/z 95.2 (20.6%).

* Análisis elemental calculado para C₂₂H₂₈O₇: 65.33% C, 27.69% O, 6.98% H. Encontrado: 65.23% C, 27.6% O, 6.95% H.

* $[\alpha]_{D}^{25} = -112.8$ (MeOH, c.0.125).

Se comparó directamente con el producto de -acetilación de leptocarpina (<u>vide infra</u>)

Algunas de las fracciones eluídas con Hex-AcO Et (50:50) presentaron una mancha constánte en CCF (Rf: -0.4409, CHCl₃-MeOH, 98:2) por lo que se reunieron, obte-niendose 5.895 gr. de residuo, el cual se recromatografió en una columna empacada con 200 qr. de sílice, usando como eluvente una mezcla de disolventes de Hex-AcO-Et (8:2) De las fracciones más polares de ésta recromatografía --cristalizaron 989.9 mq de Budleína A, P.f. 88-9°C. (XIX), que se corparó con una muestra auténtica obteniendose re-sultados inequívocos de su identidad.

* I.R. (CHC1₃) (espectro 12) 3460, 1770, 1715,-1650 cm⁻¹.

* RMN 1 H-80 MHz (CDC1₃) (espectro 14 5.67 ppm-(H-2. 1H, <u>s</u>), 6.18 ppm (H-5, 1H, <u>dt</u>. 1.5.6 Hz), 5.31 ppm-(H-6. 1H, <u>m</u>), 3.75 ppm (H-7, 1H, m), 5.25 ppm (H-8, 1H,m) 2.27 ppm (H-9, 1H, dd, 4,16 Hz), 2.57 ppm (H-9', 1H, dd,-6,16 Hz), 5.67 ppm (H-13, 1H, d, 4 Hz), 6.35 ppm (H-13',-

1H, d, 4 Hz), 1.5 ppm (14CH₃-, 3H, s), 4.39 ppm (H-15, 2H dt), 6.08 ppm (H-18, 1H, cc), 1.93 ppm (19CH₃-, 3H, m), -1.80 ppm (20CH₃-, 3H, m).

<u>Obtención de la acetil budleína A</u> (XXI) in situ

A una solución de budleína A (XIX) (35 mg) en CDCl₃, en el tubo de resonancia, se le agregaron ca. 0.07 ml de isocianato de tricloroacetilo (ITA). Se dejó equil<u>i</u> brar 5 minutos y se corrió el espectro a diferentes int<u>er</u> valos de tiempo, con el objeto de observar si la molécula se descomponía al cabo de 18 horas. El espectro de RMP -así obtenido, sólo difiere con el de la molécula original en el desplazamiento a campo bajo de los protones H-15.

* RMN 1 H-80 MHz (CDCI₃) (espectro 14) 4.97 ppm-(H-15, H-15', 2H, dt), 1.50 ppm (CH₃del acetato, 3H, <u>s</u>).

* RMN 13 C (CDCl₃) (espectro 16, tabla I).

Obtención del acetato transpuesto de budleina A (XX).

229.1 mg de budlefna A (XIX) en 2 ml de anhídrido acético. 1 ml de piridina. v 15 gotas de trietil -amina, se dejaron reaccionar a temperatura ambiente si--guiéndose el curso de la reacción por CCF. Después de 18horas de reacción, desaparece la materia prima, se detiene la reacción con 5 ml de hielo. se extaio repetidas veces con solución al 10% de HCl y después con solución saturada de bicarbonato de sodio, y por último, con agua -destilada. Se secó con sulfato de sodio anhídro, crista<u>li</u> zando el acetato transpuesto de budleína A (XXI) de Me₂CO iPro₂O, P.f. 155-6°C, 149.3 mg (56.9%).

* RMN 13C (CDCl₃) (espectro 15, tabla I).

La segunda parte del extacto clorofórmico, --50 gr. se analizó por cromatografía en columna empacada con 1600 gr. de sílice, usando como eluyente una mezcla de Hex-AcO-Et (7:3), aumentando gradualmente la polaridad

Algunas de las fracciones eluídas con Hex-AcO Et (7:3) presentaron dos manchas constántes en CCF (Rf: -0.5125, CHCl₃/Me₂CO, 95:5), por lo que se reunieron, obt<u>e</u> niendose 1.4 gr. de residuo, el cual se recromatografió en una columna empacada con 60 gr. de sílice usando comoeluyente una mezcla de disolventes de Hex-AcO-Et (9:1). De las fracciones menos polares cristalizaron 10 mg de la mezcla de ácidos diterpénicos 15α-angeloiloxi-<u>ent</u>-kaur-16 en-19-oico (XIV) y 15α-tigloiloxi-<u>ent</u>-kaur-16-en-19-oico-(XV), P.f. 179-80°C. Encontrándose en mayor proporción el primero.

* I.R. (CHCl₃) (espectro 3) 3490, 2530. 1700. - 1690. 1250. 900 cm⁻¹.

* RMN 1 H-80 MHz (CDC1₃) (espectro 4) 2.77 ppm--(H-13, 1H, <u>m</u>), 5.05 ppm (H-15, 1H, <u>s</u>, ancho), 5.10 ppm (H-17, 1H, <u>s</u>, ancho); 5.34 ppm (H-17', 1H, <u>s</u>, ancho); 1.22 -ppm (18CH₃-, 3H, <u>s</u>); 2.05 ppm (24CH₃-, 3H, <u>m</u>); 1.83 ppm --(25CH₃-, 3H, <u>s</u>).

De las fracciones más polares de las fraccio nes eluídas con Hex-AcO-Et (7:3) cristalizaron 53.8 mg deestigmasterol (XXVI) con P.f. 154-7°C.

Alqunas de las fracciones eluídas con AcO-Et--Hex (7:3), presentaron una mancha constánte en CCF por loque se reunieron obteniendose 517 mq de residuo, el cual se purificó por cromatoplaca preparativa de sílice utili-zando como mezcla eluyente CHCl₃-Me₂CO (8:2), que despuésde extraer con CHCl₃ se obtuvieron 16.5 mg de budleína A -P.f. 89-90°C (Me₂CO/iPro₂O) que se comparó con la obtenida anteriormente, <u>vide supra</u>.

la segunda colección de <u>Viguiera quinqueradia-</u> <u>ta</u> colectada el 11 de Octubre de 1980 en la carretera # 90 a 8 Km al W de Zapotlanejo, se trabajó de la siguiente manera:

1200 gr. de planta seca se extrajeron tres veces consecutivas con cloroformo a reflujo, durante una hora a temperatura ambiente, los extractos se reunieron y --

concentraron a presión reducida, el peso del extracto clorofórmico se analizó por cromatografía en columna empacada con 2500 gr. de sílice. La columna se eluyó inicialmente con una mezcla de disolventes de Hex-AcO-Et (7:3), aumen - : tando gradualmente la polaridad hasta 100% de AcO-Et.

Algunas de las fracciones eluídas con Hex-AcO-Et (7:3) mostraron en CCF una mancha constánte por lo quese reunieron obteniendose 42.7 gr. de residuo, que se dec<u>o</u> loró con carbón activado, obteniendose después de eliminar el disolvente, 40.6 gr. de residuo, el cual se recromato-grafió en una columna empacada con 1200 gr. de sílice, el<u>u</u> yendo inicialmente con una mezcla de disolventes de Hex---AcO-Et (85:15).

De ésta recromatografía algunas de las fraccio-nes eluídas con Hex-AcO-Et (85:15), presentaron una mancha onstánte en CCF (Rf: 0.5125, CHCl₃-Me₂CO, 95:5), por lo -que se reunieron, obteniendose 4.14 gr. de residuo que serecromatografió en una columna empacada con 160 gr. de sílice, usando como eluvente, una mezcla de disolventes de--Hex-AcO-Et (95:5).

De las fracciones menos polares cristalizaron --476.5 mg de una substancia cristalina con P.f. 179-80°C (∹ Hexano), cuyas propiedades físicas y espectroscópicas co--rresponden a una mezcla de ácidos diterpénicos 15α-angeloiloxi-ent-kaur-16-en-19-oico y 15α-tigloiloxi-<u>ent</u>-kaur-16-

en-19-oico obtenidos en la primera población de esta especie.

Por cristalización fraccionada se separó el ácido 15α-angeloiloxi-<u>ent</u>-kaur-16-en-19-oico con P.f. 187 188°C, quedando en las aguas madres la mezcla de los ác<u>i</u> dos.

* I.R. (CHCl₃) (espectro 1); 3490, 1700, 1690, 1250, 900 cm⁻¹.

* RMN ¹H-80 MHz (CDCl₃) (espectro 2) 2.77 ppm (H-13, 1H, <u>m</u>); 5.05 ppm (H-15, 1H, <u>s</u>, ancho); 5.10 ppm-(H-17, 1H, <u>s</u>, ancho); 5.34 ppm (H-17', 1H, <u>s</u>, ancho); -0.85 ppm (CH₃-C₁₀, 3H, <u>s</u>); 6.08 ppm (H-23, 1H, <u>m</u>); 1.22 ppm (18CH₃-, 3H, <u>s</u>); 2.05 ppm (24CH₃-, 3H, <u>m</u>); 1.83 ppm (25CH₃-, 3H, <u>s</u>).

<u>Obtención del ácido 15a-hidroxi-ent-kaur-16-en-19-oico.</u>

79.2 mg de la mezcla de ácidos diterpénicos con 9.5 ml de solución de KOH al 5% en metanol, reacci<u>o</u> nan a reflujo siguiendose la reacción con CCF. Despuésde 24 hrs. desaparece la materia prima y, procediendo de la manera usual, se obtienen 36.9 mg de producto --P.f. 229-31°C (Me₂CO/iPro₂O). (XVI).

* I.R. (CHC1₃) (espectro 6) 3500, 1250, 900 - $\rm cm^{-1}$.

* RMN 1 H-80 MHz (CDCl₃) (espectro 7); 2.73 ppm (H-13, 1H, <u>m</u>); 3.78 ppm (H-15, 1H, <u>s</u>); 5.05 ppm (H-17, -1H, <u>s</u>, ancho); 5.18 ppm (H-17', 1H, <u>s</u>, ancho); 1.25 ppm-(18CH₃-, 3H, <u>s</u>); 0.97 ppm (20CH₃-, 3H, <u>s</u>).

* EM: m/z 318 ($M^{+} C_{20}H_{30}O_{3}$, 7.9%); m/z 300 (M^{+} -H₂O, 15.0%); m/z 285 (M^{+} -H₂O - CH₃, 20%), m/z 260 (M^{+} -C₃H₆O, 32%); m/z 121 (50%); m/z 93 (58%); m/z 91 (100%) m/z 81 (73%); m/z 79 (92.7%); m/z 55 (71.5%).

De las fracciones más polares de la cromatogr<u>a</u> fía anterior cristalizaron 45.3 mg de estigmasterol (---XXVI) P.f. 166-7°C ya aislado en la población anterior.

Obtención del acetil estigmasterol.

38.7 mg de estigmasterol (XXVI) en 1 ml de piridina y 2 ml de anhidrido acético, se dejaron reaccio-nar con aditación durante dos horas. la reacción se si-quió por CCF (CHCl₃/Me₂CO 98:2). Se detiene la reacción con 5 ml de hielo, y procediendo de la manera usual. seobtienen 26.9 mg del acetil estigmasterol con P.f. 136-137°C. Algunas de las fracciones eluídas con Hex-AcO-Et (50:50), mostraron una mancha constánte en CCF (Rf: -0.3823, CHCl₃/Me₂CO, 8:2) por lo que se reunieron, obteniendose 1.794 gr. de residuo, el cual se recromatogra-fió en una columna empacada con 50 gr. de sílice, usando como eluyente una mezcla de disolventes de CHCl₃-Me₂CO -(95:5).

De esta recromatografía, las fracciones eluídas con CHCl₃-Me₂CO (95:5), cristalizaron 28.6 mg de – una substancia cristalina con P.f. de 213-5°C, cuyas –propiedades físicas y espectroscópicas corresponden a – la leptocarpina.

* I.R. (CHCl₃) (espectro 20) 3568, 1764, 1722 1648, 900 cm⁻¹.

* RMN ¹H-80 MHz (CDCl₃) (espectro 21): 4.44 ppm (H-3, 1H, <u>dd</u>, 6, 3 Hz); 5.32 ppm (H-5, 1H, <u>dd</u>, 10 -Hz); 6.59 ppm (H-6, 1H, <u>dd</u>, 2, 6 Hz); 2.90 ppm (H-7, --1H, <u>m</u>); 5.23 ppm (H-8, 1H, <u>m</u>); 6.32 ppm (H-13, 1H, <u>d</u>, 2 Hz); 5.75 ppm (H-13', 1H, <u>d</u>, 2 Hz); 1.48 ppm (14CH₃-, -3H, <u>s</u>); 1.80 ppm (15CH₃-, 3H, <u>s</u>); 6.08 ppm (H-18, 1H, -<u>cc</u>); 1.90 ppm (19 CH₃-, 3H, <u>m</u>); 1.97 ppm (20CH₃-, 3H, <u>m</u>) * RMN ¹³C (CDC1₃) (espectro 25, tabla I). <u>Acetilación de la leptocarpina</u>.

125 mg de leptocarpina (XVII) en 1 ml de piridina y 3 ml de anhídrido acético, se dejaron reaccionara temperatura ambiente, siguiendose la reacción por CCF. Al cabo de 20 horas se detiene la reacción con 5 ml de hielo, y procediendo de la manera usual, se obtienen 98. 3 mg de acetil leptocarpina (XVIII) con P.f. de 219-20°C idéntica en todos los aspectos (IR paralelo, RMP, EM, --P.f.) a la obtenida en la población anterior <u>vide supra</u>.

Algunas de las fracciones más polares de la -cromatografía inicial, presentaron una mancha roja en --CCF (Rf: 0.3529, CHCl₃/Me₂CO, 8:2) por lo que se reunieron, obteniendose 1.162 gr. de residuo, que se recromat<u>o</u> grafió en una columna empacada con 50 gr. de sílice, ut<u>i</u> lizando como eluyente cloroformo, de esta recromatogra fía, las fracciones que mostraron la mancha roja en CCFse reunieron obteniendose 175.6 mg de residuo. el cual se purificó por placa preparativa de sílice. utilizandocomo mezcla eluvente CHCl₃/Me₂CO (8:2), obteniendose 18.1 mg de un polvo amarillo con P.f. de 155-6°C que por re-cristalizaciones sucesivas de MeOH-iPro₂O se obtuvieron-9./ mg de una substancia cristalina con P.f. de 158-9°C, cuyas propiedades físicas y espectroscópicas correspon-- den con el <u>trans</u>-5,7,3'-trimetoxi-4-hidroxi-flavan-3-ol
(XXII).

* U.V. (MeOH) (espectro 13) λ_{max} 204 (ϵ : 6112) 228 (ϵ : 22895), 278 (ϵ : 39935) nm.

* I.R. (CHC1₃) (espectro 18) 3500, 1616, 1585, 1490, 1450 $\rm cm^{-1}$.

* RMN ¹H-80 MHz (CDCl₃) (espectro 19) 4.62 -ppm (H-2, 1H, <u>d</u>, 8 Hz); 4.05 ppm (H-3, 1H, <u>ddd</u>, 10,8,6, Hz); 2.53 ppm (H-4, 1H, <u>dd</u>, 16,10 Hz); 3.01 ppm (H-4',-1H, <u>dd</u>, 16, 6 Hz); 6.09 ppm (H-6, 1H, <u>d</u>, 3 Hz); 6.11 -ppm (H-8, 1H, <u>d</u>, 3 Hz); 6.87 ppm (H-2', 1H, <u>m</u>); 6.93 -ppm (H-5', H-6', 2H, <u>m</u>); 3.73 ppm (CH₃-0 en C₇, 3H, <u>s</u>); 3.78 ppm (CH₃-0 en C₅, 3H, <u>s</u>); 3.87 ppm (CH₃-0 en C_{3'}, 3H, <u>s</u>); 5.62 ppm (OH en C_{4'}, 1H, <u>s</u>).

* EM: (espectro 17) m/z 332 (M^{+} , $C_{18}H_{20}O_{6}$, -18%); m/z 301 (M^{+} , $CH_{3}O$, 8.9 %); m/z 167.3 (M^{+} , $C_{9}H_{11}O_{3}$ 100%); m/z 137.2 (M^{+} , $C_{8}H_{9}O_{2}$, 50.5%).

Algunas de las fracciones eluídas con AcO-Et Hex (7:3), presentaron en CCF una mancha constânte porlo que se reunieron estas, obteniendose 5.6 gr. de res<u>i</u> duo, el cual se recromatografió en una columna de vi--drio empacada con 150 gr. de sílice usando como mezclaeluyente $CHCl_3-Me_2CO$ (9:1), aumentando gradualmente lapolaridad. De las fracciones eluídas con $CHCl_3-Me_2CO$ --(8:2) cristalizaron 1.1489 gr. de budleína A con P.f. de 89-90°C, la cual se identificó inequívocamente por comparación directa con una muestra auténtica de la subs-tancia, obtenida de la población anterior. B. Diterpenoides de Viguiera maculata Blake

La <u>V</u>. <u>maculata</u> se colectó en la carretera 190a 125 Km SSE de Izúcar de Matamoros, Puebla, en Octubre de 1981. Depósito en el Herbario Nacional. Instituto de Bio<u>lo</u> gía UNAM. Voucher MEXU-AOH 0021 Nº de Registro 282569.

960 gr. de planta seca se extrajeron tres ve-ces consecutivas con cloroformo a reflujo durante 1 hr. atemperatura ambiente, los extractos se reunieron v concentraron a presión reducida obteniéndose34.69 gr. de extracto clorofórmico.

El extracto clorofórmico se analizó por cromatografía en columna de vidrio, empacada con 1200 gr. de sí lice, eluyendo inicialmente con una mezcla de disolventesde Hexano-Acetato de etilo (7:3) y aumentando gradualmente la polaridad, concluyendo la cromatografía cuando se util<u>i</u> zó acetato de etilo como eluyente.

Algunas de las fracciones eluídas con Hex-AcO-Et (7:3) mostraron una mancha constante, por lo que se re<u>u</u> nieron, obteniendose 16.528 gr. de residuo, el cual se decoloró, primero con tonsil, y después con carbón activadoobtenierdose 13.7 gr. de residuo, que se recromatografió en una columna empacada con 500 gr. de sílice eluvéndose con una mezcla de disolventes de Hexano-AcO-Et (8:2).

Se reunieron las fracciones menos polares obte niendose 1.9 gr. de residuo, el cual se analizó en una columna de cromatografía empacada con 60 gr. de sílice, usan do como mezcla eluyente Hexano-Acetato de etilo (9:1). Deésta recromatografía se obtuvieron 347.3 mg de la lactonaditerpénica 15-oxo-zoapatlina (XXIV) con P.f. 163-5°C (i--Pro₂0).

* U.V. (MeOH) (espectro 29) $\lambda_{\textrm{max}}$ 232 nm (e:6083)

* I.R. (CHCl₃) (espectro 31) 1755, 1715, 1690, - 880 cm^{-1} .

* RMN ¹H-80 MHz (CDC1₃) (espectro 22) 2.87 ppm - (H-13, 1H, m), 5.94 ppm (H-17, 1H, dd), 5.20 ppm (H-17', - 1H, dd), 1.10 ppm (Me-C₉, 3H, s), 1.27 ppm (Me-C₄, 3H, s).

* RMN 13 C (CDCl₃) (espectro 23) 39.15 ppm (C-1,t), 18.26 ppm (C-2, t), 30.19 ppm (C-3, t), 43.64 ppm (C-4 s), 52.00 ppm (C-5, d), 20.12 ppm (C-6, t), 31.08 ppm (C-7 t), 52.09 ppm (C-8, s), 47.51 ppm (C-9, s), 87.64 ppm (C--10, s), 25.71 ppm (C-11, t), 29.64 ppm (C-12, t), 37.62 -ppm (C-13, d), 35.50 ppm (C-14, t), 210.39 ppm (C-15, t),-149.20 ppm (C-16, s), 114.92 ppm (C-17, t), 17.06 ppm (C--18, c), 180.27 ppm (C-19, s), 18.59 ppm (C-20, c).

* EM: (espectro 32) m/z 314 ($M^+, C_{20}H_{26}O_3$), m/z - 271.1 (M^+ , $C_{18}H_{23}O_2$, 100%), 270.2 (M^+ , $C_{18}H_{22}O_2$, 55.7%), - m/z 255.2 (M^+ , $C_{17}H_{19}O_2$, 38.6%).

Alqunas de las fracciones eluídas con Hex-AcO-Et (8:2), presentaron una mancha constánte en CCF (Rf: ---0.5714, CHCl₃/Me₂CO 8:2) por lo que se reunieron obteniendose 6.171 gr. de residuo, mismo que se recromatografió en una columna de vidrio empacada con 190 gr de sílice, con--Hex-AcO-Et (9:1) como mezcla eluyente. De las fracciones eluídas con Hex-AcO-Et (8:2) se obtuvo una substancia cr<u>is</u> talina 1.6287 gr. (Hexano) con P.f. 178-80°C cuyas propiedades físicas y espectroscópicas corresponden con las delacido <u>ent-kaur-16-en-19-oico (XXIII)</u>.

* IR CHCl₃ (espectro 26) 3490,1725,1655,1690 $c\bar{m}^1$

* RMP-80 MHz (CDC1₃) (espectro 27) 2.63 ppm (H-13, 1H, m); 4.77 ppm (H-17 y H-17', 2H, ancho) 1.27 ppm (Me-C₄, 3H,s); 0.98 ppm (Me-C₁₀, 3H, s).

Metilación del ácido ent-kaur-16-en-19-oico.

A una solución de 63.7 mg de ácido ent-kaur-16 en-19-oico (XXIII) en 20 ml de éter etílico se goteó solución etérea de diazometano hasta que dejó de desprendersenitrógeno v el color amarillo presisitió. Después de 5 min de reposo se adicionaron gotas de ácido acético diluído -hasta decoloración de la mezcla.

La mezcla se lavó primero con solución satura-

da de carbonato de sodio, y después con aqua destilada --tres veces consecutivas, separando la fase acuosa de la -de la orgánica y concentrando ésta; se secó con sulfato de sodio anhídro obteniéndose 20.6 mg (MeOH) del éster metí-lico del ácido, P.f. 83-5°C. (XXV).

De las fracciones eluídas con Hex-AcO-Et (6:4) de la cromatografía inicial cristalizaron 17.4 mg del ácido 15α-hidroxi-ent-kaur-16-en-19-oico (XVI) idéntico en -todos los aspectos al obtenido al hidrolizar los ácidos --15α-angeloiloxi-ent-kaur-16-en19-oico (XIV) v 15α-tigloiloxi-<u>ent</u>-kaur-16-en-19-oico (XV) aislados previamente de --V. guingueradiata.

- Xe

VI. BIBLIOGRAFIA.

J

VI. BIBLIOGRAFIA

- Thomas, R. Comprensive Organic Chemistry. (Sir. Barton, D. and Ollis, W.D. eds.) Vol. 4, p. 870 (1979).
- Quayle, J.R., Fuller, R.C. J. <u>Amer. Chem. Soc. 76</u>, -3610 (1954).
- 3. (a) Herz,W., Recent Advances in Phytochemistry (Ma-bry,T.J., Alston,R. and Runeckles,V.C. eds.). p. 16-Appleton-Century-Crofts. New York. (1968).

(b) Heywood, V.H., Harborne, J.B. and Turner, B.L. The-Biology and Chemistry of the Compositae. (Heywood, V.H., Harborne, J.b. and Turner, B.L. eds.) Vol. 1 p. 11
Academic Press. London. (1977).

- Hevwood,V.H., Harborne,J.B. and Turner,B.L. The Biology and Chemistry of the Compositae. (Heywood,V.H., Harborne,J.B. and Turner,B.L. eds.) Vol. 1, p. 6 Academic Press. London. (1977).
- Turner, V.L. The Biology and Chemistry of the Compositae. (Heywood, V.H., Harborne, J.B. and Turner, B.L. eds.) Vol. 1, p. 27. Academic Press, London. (1977).
- Turner, V.L., The Biology and Chemistry of the Compositae. (Heywood, V.H., Harborne, J.B. and Turner, B.L. eds.) Vol. 1, p. 27. Academic Press. London. (1977).
- Hegnauer, R. The Biology and Chemistry of the Compositae. (Heywood, V.H., Harborne, J.B. and Turner, B.L. eds.) Vol. 1, p. 289. Academic Press. London. (1977)
- Fisher,N.H., Olivier,E.J. and Fischer,H.D. The Bioge nesis and Chemistry of Sesquiterpene Lactones. En: -Progress in the Chemistry of Organic Natural Produ-cts. (Herz,W., Grisebach,H. and Kirby,G.W. eds.) ---

Vol. 38. p. 223. Springer-Verlag. Wien. (1979).

- 9. Rodriguez, F. Rev. Latinoamer. Quim. 8, 56-62 (1977).
- 10. Romo de Vivar, A. and Romo, J. Ciencia. 21, 31 (1961).
- Burnett, W.C. <u>Biochem</u>. <u>System</u>. and <u>Ecology</u>. <u>2</u>, 25 --(1974).
- 12. Kupchan, S.H. J.Org. Chem. 41, 3481 (1976).
- 13. (a) Herout,V. Chemotaxonomy of the family Compositae (Asteraceae). En: Pharmacognosy and Phytochemistry.-(Wagner,M. and Horhambier,L. eds.). Wien: Springer. (1971).

(b) Herout, V. and Sorm, F. Chemotaxonomy of Sesquite<u>r</u> penoids of the Compositae. En: Perspectives in Phyt<u>o</u> chemistry. (Harborne, J.B. and Swain eds.). London -and New York. Academic Press. (1977).

- 14. Rodriguez, E. Rev. Latinoamer. Quim. 8, 56 (1977).
- Delgado Lamas, E. Guillermo; Tesis de Maestría, Fa-cultad de Química. v.N.A.M. (1981).
- Shimokoriyama, H. and Geïssman, T.A. J. Org. Chem. 25, 1956 (1960).
- Bohlman, F., Jakupovic, J., Ahmed, M. <u>Phytochemistry</u>, -<u>20</u>, 113-6 (1981).
- Delgado,G., Romo de Vivar,A., Ortega,A. y Cárdenas,J Phytochemistry (1983) en Prensa.
- Cuevas,L.A., García Jiménez,F., Romo de Vivar,A. <u>Rev</u>. Latinoamer. Quim. <u>3</u>, 22-7 (1972).
- Ortega, A., Lara, R., Martínez, R. <u>Phytochemistry</u>. <u>19</u>, -1545-6 (1980).
- Romo de Vivar, A., Guerrero, C., Díaz, E. <u>Phytochemistry</u> <u>15</u>, 527 (1976).

- Guerrero.C.. Ortega.A., Díaz.E.. Romo de Vivar.A. --Rev. Latinoamer. Quim. <u>4</u>, 118-26 (1973).
- Delgado,G., Romo de Vivar,A. and Herz,W. <u>Phytoche---</u> mistry. <u>21</u>, 1305-8 (1982).
- 24. Romo de Vivar, A., Delgado, G., Guerrero, C., Reséndiz-J. and Ortega, A. <u>Rev. Latinoamer</u>. <u>Quim</u>. <u>9</u>, 171 ---(1978).
- Picman, A. Visualization Reagents for Sesquiterpene--Lactones and Polyacetylenes on thin-layer chromato-gramas. Journal of Chromatography. 189, p. 187-98 --(1981).
- Esahak Ali, P.P., Ghosh, D. and Pakrashi, C. J. <u>Indian</u> Chem. Soc. <u>51</u>, 409-18 (1974).
- Bohlmann, F. und LeVan, N. <u>Phytochemistry</u>. <u>16</u>, 579-81-(1977).
- Schteingart, C. and Pomilio, B.A. <u>Phytochemistry</u>. <u>20</u>,-2589-90 (1981).
- 29. Tomassini,C.B. and Oliveira,M.A. <u>Phytochemistry</u> <u>18</u>,-663-4 (1979).

30. (a) Wehrli,W.F. and Nishida,T. Progress in the Che-mistry of Organic Natural Products (Zechmeister,L.--Herz,W., Grisebach,H. and Kirby,N.G. eds.) Vol. 36 p. 50-52 Wien. Springer-Verlag. New York (1979).

(b) Baruah, C.N., Sharma, P.R., Madhusudanan, P.K. and-Thyagarajan, G. J. Org. Chem. 44, 1831-5 (1979).

31. (a) Herz, W. and Wahlberg, I.J. Org. Chem. 38, 2485 --(1973).

(b) Baruah,N.C., Sharma,R.P., Madhusudanan,K.P., Th<u>y</u> agarajan,G., Herz,W. and Murari,R. <u>J. Org. Chem</u>. <u>44</u>, 1831 (1979).

- 32. (a) Romo de Vivar, A., Guerrero, C., Díaz, E., Bratoeff, E.A. and Jiménez, L. Phytochemistry 15, 525 (1976).
 (b) Delgado, G., Romo de Vivar, A. and Herz, W. Phyto---chemistry 21, 1305 (1982).
- 33. (a) Herz,E. and Kumar,N. <u>Phytochemistry</u> 20, 99-104 -- (1981).
 (b) Romo de Vivar,A., Delgado,G., Guerrero,C., Resendiz,J. y Ortega,A. <u>Rev. Latinoamer</u>. <u>Quim.</u> 9, 171-4 -- (1978).
- 34. Mabry, T.J., Markaham.R.K. and Thomas.M.B. The Svstema tic Identification of Flavonoids. p. 275-343. Sprin-ger-Verlag. Berlin, Heidelberg. New York (1970).
- 35. Mabry,T.J. and Markaham.R.K. Mass Spectrometry of Fla vonoids. En: The Flavonoids (Harborne,B.J., Mabry,T.J and Mabry,H. eds.) Cap. 3, p. 78-126. Chapman and ---Hall. London. (1975).
- 36. Silverstein, M.R., Bassler, C. and Morrill, C.T. Spectro metric Identification of Organic Compounds. John & --Sons. Inc. New York, N. Y., U.S.A. (1974).
- Martinez, J.R., Ayamante, S.I., Núñez-Alarcón, J.A. <u>Phy-</u> tochemistry <u>18</u>, 1527-8 (1979).
- 38. Ibid., Ref. 30
- 39. Cannon, J.R., Chow, P.W., Jefferies, P.R. <u>Aust. J. Chem.</u> <u>19</u>, 861-7 (1966).
- González,G.A., Fraga,M.B., Hernández,G.M. and Hanson-R.J. <u>Phytochemistry</u> 20, 846-7 (1981).
- 41. (a) Ohno, N., Mabry, J.M., Zabel, V. and Watson, H.W. Phy tochemistry 18, 1687-9 (1979).
 (b) Caballero, Y. y Walls, F. Bol. Inst. Quim. U.N.A.M. 20, 79-102 (1970).